WorldWideScience

Sample records for glass substrates high-resolution

  1. High-resolution and high-conductive electrode fabrication on a low thermal resistance flexible substrate

    International Nuclear Information System (INIS)

    Kang, Bongchul; Kno, Jinsung; Yang, Minyang

    2011-01-01

    Processes based on the liquid-state pattern transfer, like inkjet printing, have critical limitations including low resolution and low electrical conductivity when fabricating electrodes on low thermal resistance flexible substrates such as polyethylene terephthalate (PET). Those are due to the nonlinear transfer mechanism and the limit of the sintering temperature. Although the laser direct curing (LDC) of metallic inks is an alternative process to improve the resolution, it is also associated with the disadvantages of causing thermal damage to the polymer substrate. This paper suggests the laser induced pattern adhesion transfer method to fabricate electrodes of both high electrical conductivity and high resolution on a PET substrate. First, solid patterns are cost-effectively created by the LDC of the organometallic silver ink on a glass that is optically and thermally stable. The solid patterns sintered on the glass are transferred to the PET substrate by the photo-thermally generated adhesion force of the substrate. Therefore, we achieved electrodes with a minimum line width of 10 µm and a specific resistance of 3.6 μΩcm on the PET substrate. The patterns also showed high mechanical reliability

  2. High-resolution and high-conductive electrode fabrication on a low thermal resistance flexible substrate

    Science.gov (United States)

    Kang, Bongchul; Kno, Jinsung; Yang, Minyang

    2011-07-01

    Processes based on the liquid-state pattern transfer, like inkjet printing, have critical limitations including low resolution and low electrical conductivity when fabricating electrodes on low thermal resistance flexible substrates such as polyethylene terephthalate (PET). Those are due to the nonlinear transfer mechanism and the limit of the sintering temperature. Although the laser direct curing (LDC) of metallic inks is an alternative process to improve the resolution, it is also associated with the disadvantages of causing thermal damage to the polymer substrate. This paper suggests the laser induced pattern adhesion transfer method to fabricate electrodes of both high electrical conductivity and high resolution on a PET substrate. First, solid patterns are cost-effectively created by the LDC of the organometallic silver ink on a glass that is optically and thermally stable. The solid patterns sintered on the glass are transferred to the PET substrate by the photo-thermally generated adhesion force of the substrate. Therefore, we achieved electrodes with a minimum line width of 10 µm and a specific resistance of 3.6 μΩcm on the PET substrate. The patterns also showed high mechanical reliability.

  3. Fine-pitch glass GEM for high-resolution X-ray imaging

    International Nuclear Information System (INIS)

    Fujiwara, T.; Toyokawa, H.; Mitsuya, Y.

    2016-01-01

    We have developed a fine-pitch glass gas electron multiplier (G-GEM) for high-resolution X-ray imaging. The fine-pitch G-GEM is made of a 400 μm thick photo-etchable glass substrate with 150 μm pitch holes. It is fabricated using the same wet etching technique as that for the standard G-GEM. In this work, we present the experimental results obtained with a single fine-pitch G-GEM with a 50 × 50 mm 2 effective area. We recorded an energy resolution of 16.2% and gas gain up to 5,500 when the detector was irradiated with 5.9 keV X-rays. We present a 50 × 50 mm 2 X-ray radiograph image acquired with a scintillation gas and optical readout system.

  4. High performance, transparent a-IGZO TFTs on a flexible thin glass substrate

    International Nuclear Information System (INIS)

    Lee, Gwang Jun; Jang, Jae Eun; Kim, Joonwoo; Kim, Jung-Hye; Jeong, Soon Moon; Jeong, Jaewook

    2014-01-01

    We investigated electrical properties of transparent amorphous indium gallium zinc oxide (a-IGZO) thin-film transistors (TFTs) with amorphous indium zinc oxide (a-IZO) transparent electrodes on a flexble thin glass substrate. The TFTs show a high field-effect mobility, a good subthreshold slope and a high on/off ratio owing to the high temperature thermal annealing process which cannot be applied to typical transparent polymer-based flexible substrates. Bias stress instability tests applying tensile stress concurrently with the bending radius of up to 40 mm indicated that mechanically and electrically stable a-IGZO TFTs can be fabricated on the transparent thin glass substrate. (paper)

  5. Development of a High Precision Edge Alignment System for Touch-Panel Glass Substrates

    Directory of Open Access Journals (Sweden)

    Hau-Wei Lee

    2014-06-01

    Full Text Available There are two kinds of alignment systems, marked and unmarked. The glass substrate for touch panels is categorized as an unmarked work piece. Vision based glass substrate alignment (GSA relies on the edge of the glass. Traditional GSA systems compensate first for angular and then for linear error. This reduces alignment accuracy and increases alignment time and edge detection usually takes longer than 10 ms. This study proposes an effortless edge detection method. This method is very simple and can significantly reduce the time taken to detect the edge to about 6 ms using a 1.3 megapixel image. In this study, a floating center idea is used to control the glass substrate on a high precision coplanar XXY alignment stage. According to the method, users can set the rotation center anywhere as long as it is on the working (xy plane. Tolerance prognosis is also considered in this study to help the operator decide if the substrate is usable or should be rejected. The experimental results show alignment repeatability of the x, y, and θ axes to be 1 μm, 1 μm, and 5 arcsec, respectively.

  6. PLZT capacitor on glass substrate

    Science.gov (United States)

    Fairchild, M. Ray; Taylor, Ralph S.; Berlin, Carl W.; Wong, Celine W. K.; Ma, Beihai; Balachandran, Uthamalingam

    2016-01-05

    A lead-lanthanum-zirconium-titanate (PLZT) capacitor on a substrate formed of glass. The first metallization layer is deposited on a top side of the substrate to form a first electrode. The dielectric layer of PLZT is deposited over the first metallization layer. The second metallization layer deposited over the dielectric layer to form a second electrode. The glass substrate is advantageous as glass is compatible with an annealing process used to form the capacitor.

  7. Ground-glass opacity: High-resolution computed tomography and 64-multi-slice computed tomography findings comparison

    International Nuclear Information System (INIS)

    Sergiacomi, Gianluigi; Ciccio, Carmelo; Boi, Luca; Velari, Luca; Crusco, Sonia; Orlacchio, Antonio; Simonetti, Giovanni

    2010-01-01

    Objective: Comparative evaluation of ground-glass opacity using conventional high-resolution computed tomography technique and volumetric computed tomography by 64-row multi-slice scanner, verifying advantage of volumetric acquisition and post-processing technique allowed by 64-row CT scanner. Methods: Thirty-four patients, in which was assessed ground-glass opacity pattern by previous high-resolution computed tomography during a clinical-radiological follow-up for their lung disease, were studied by means of 64-row multi-slice computed tomography. Comparative evaluation of image quality was done by both CT modalities. Results: It was reported good inter-observer agreement (k value 0.78-0.90) in detection of ground-glass opacity with high-resolution computed tomography technique and volumetric Computed Tomography acquisition with moderate increasing of intra-observer agreement (k value 0.46) using volumetric computed tomography than high-resolution computed tomography. Conclusions: In our experience, volumetric computed tomography with 64-row scanner shows good accuracy in detection of ground-glass opacity, providing a better spatial and temporal resolution and advanced post-processing technique than high-resolution computed tomography.

  8. Selective formation of GaN-based nanorod heterostructures on soda-lime glass substrates by a local heating method.

    Science.gov (United States)

    Hong, Young Joon; Kim, Yong-Jin; Jeon, Jong-Myeong; Kim, Miyoung; Choi, Jun Hee; Baik, Chan Wook; Kim, Sun Il; Park, Sung Soo; Kim, Jong Min; Yi, Gyu-Chul

    2011-05-20

    We report on the fabrication of high-quality GaN on soda-lime glass substrates, heretofore precluded by both the intolerance of soda-lime glass to the high temperatures required for III-nitride growth and the lack of an epitaxial relationship with amorphous glass. The difficulties were circumvented by heteroepitaxial coating of GaN on ZnO nanorods via a local microheating method. Metal-organic chemical vapor deposition of ZnO nanorods and GaN layers using the microheater arrays produced high-quality GaN/ZnO coaxial nanorod heterostructures at only the desired regions on the soda-lime glass substrates. High-resolution transmission electron microscopy examination of the coaxial nanorod heterostructures indicated the formation of an abrupt, semicoherent interface. Photoluminescence and cathodoluminescence spectroscopy was also applied to confirm the high optical quality of the coaxial nanorod heterostructures. Mg-doped GaN/ZnO coaxial nanorod heterostructure arrays, whose GaN shell layers were grown with various different magnesocene flow rates, were further investigated by using photoluminescence spectroscopy for the p-type doping characteristics. The suggested method for fabrication of III-nitrides on glass substrates signifies potentials for low-cost and large-size optoelectronic device applications.

  9. Selective formation of GaN-based nanorod heterostructures on soda-lime glass substrates by a local heating method

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Young Joon; Kim, Yong-Jin [Department of Materials Science and Engineering, POSTECH, Pohang, Gyeongbuk 790-784 (Korea, Republic of); Jeon, Jong-Myeong; Kim, Miyoung; Choi, Jun Hee [Department of Materials Science and Engineering, Seoul National University, Seoul 151-744 (Korea, Republic of); Baik, Chan Wook; Kim, Sun Il; Park, Sung Soo; Kim, Jong Min [Frontier Research Laboratory, Samsung Advanced Institute of Technology, PO Box 111, Kiheung 446-712 (Korea, Republic of); Yi, Gyu-Chul, E-mail: joonie.choi@samsung.com, E-mail: gcyi@snu.ac.kr [National Creative Research Initiative Center for Semiconductor Nanorods, Department of Physics and Astronomy, Seoul National University, Seoul 151-747 (Korea, Republic of)

    2011-05-20

    We report on the fabrication of high-quality GaN on soda-lime glass substrates, heretofore precluded by both the intolerance of soda-lime glass to the high temperatures required for III-nitride growth and the lack of an epitaxial relationship with amorphous glass. The difficulties were circumvented by heteroepitaxial coating of GaN on ZnO nanorods via a local microheating method. Metal-organic chemical vapor deposition of ZnO nanorods and GaN layers using the microheater arrays produced high-quality GaN/ZnO coaxial nanorod heterostructures at only the desired regions on the soda-lime glass substrates. High-resolution transmission electron microscopy examination of the coaxial nanorod heterostructures indicated the formation of an abrupt, semicoherent interface. Photoluminescence and cathodoluminescence spectroscopy was also applied to confirm the high optical quality of the coaxial nanorod heterostructures. Mg-doped GaN/ZnO coaxial nanorod heterostructure arrays, whose GaN shell layers were grown with various different magnesocene flow rates, were further investigated by using photoluminescence spectroscopy for the p-type doping characteristics. The suggested method for fabrication of III-nitrides on glass substrates signifies potentials for low-cost and large-size optoelectronic device applications.

  10. Ultra-high carrier mobility InSb film by rapid thermal annealing on glass substrate

    Directory of Open Access Journals (Sweden)

    Charith Jayanada Koswaththage

    2016-11-01

    Full Text Available InSb films were deposited on both mica and glass substrates using thermal evaporation and subjected to FA or RTA. Crystallinity, composition and electrical properties were investigated. High Hall electron mobility as high as 25,000 cm2/(Vs was obtained with the capped InSb film by keeping the In:Sb ratio after RTA at 520°C for 30 sec or more without adopting epitaxial growth on glass.

  11. High resolution laser patterning of ITO on PET substrate

    Science.gov (United States)

    Zhang, Tao; Liu, Di; Park, Hee K.; Yu, Dong X.; Hwang, David J.

    2013-03-01

    Cost-effective laser patterning of indium tin oxide (ITO) thin film coated on flexible polyethylene terephthalate (PET) film substrate for touch panel was studied. The target scribing width was set to the order of 10 μm in order to examine issues involved with higher feature resolution. Picosecond-pulsed laser and Q-switched nanosecond-pulsed laser at the wavelength of 532nm were applied for the comparison of laser patterning in picosecond and nanosecond regimes. While relatively superior scribing quality was achieved by picosecond laser, 532 nm wavelength showed a limitation due to weaker absorption in ITO film. In order to seek for cost-effective solution for high resolution ITO scribing, nanosecond laser pulses were applied and performance of 532nm and 1064nm wavelengths were compared. 1064nm wavelength shows relatively better scribing quality due to the higher absorption ratio in ITO film, yet at noticeable substrate damage. Through single pulse based scribing experiments, we inspected that reduced pulse overlapping is preferred in order to minimize the substrate damage during line patterning.

  12. Gas scintillation glass GEM detector for high-resolution X-ray imaging and CT

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, T., E-mail: fujiwara-t@aist.go.jp [Research Institute for Measurement and Analytical Instrumentation, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Mitsuya, Y. [Nuclear Professional School, The University of Tokyo, Tokai, Naka, Ibaraki 319-1188 (Japan); Fushie, T. [Radiment Lab. Inc., Setagaya, Tokyo 156-0044 (Japan); Murata, K.; Kawamura, A.; Koishikawa, A. [XIT Co., Naruse, Machida, Tokyo 194-0045 (Japan); Toyokawa, H. [Research Institute for Measurement and Analytical Instrumentation, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Takahashi, H. [Institute of Engineering Innovation, School of Engineering, The University of Tokyo, Bunkyo, Tokyo 113-8654 (Japan)

    2017-04-01

    A high-spatial-resolution X-ray-imaging gaseous detector has been developed with a single high-gas-gain glass gas electron multiplier (G-GEM), scintillation gas, and optical camera. High-resolution X-ray imaging of soft elements is performed with a spatial resolution of 281 µm rms and an effective area of 100×100 mm. In addition, high-resolution X-ray 3D computed tomography (CT) is successfully demonstrated with the gaseous detector. It shows high sensitivity to low-energy X-rays, which results in high-contrast radiographs of objects containing elements with low atomic numbers. In addition, the high yield of scintillation light enables fast X-ray imaging, which is an advantage for constructing CT images with low-energy X-rays.

  13. Ground-glass opacity at high resolution CT: an approach for differential diagnosis

    International Nuclear Information System (INIS)

    Spina, Juan C.; Rogondino, Jose; Vidales, Valeria; Rolnik, Maria C.; Montanari, Mariano; Salazar, Santiago N.

    2004-01-01

    Purpose: To evaluate the Ground-Glass Opacity in high resolution computed tomography (HRCT) with its underlying abnormality and anatomic distribution and its correlation with different etiologies. Methods: A 38 patients series, (32 men, 16 women, mean age 54,6 years, range 20-28) was retrospectively analyzed. They were evaluated with high resolution computed tomography, 2 mm thick sections and 10 mm of interval. Contrast intravenous iodinated contrast (no-ionic) was injected in 11 patients. The final diagnosis was made with sputum analysis, bronchioalveolar lavage, trans bronchial biopsy and open lung biopsy. Results: The differential diagnosis of ground glass opacity is based on analyzing their anatomic resolution and the underlying pathology in the lung parenchyma. Centrilobular distribution indicated early air-spaces pathology produced in our series by 21 infections, 4 pulmonary hemorrhages, 1 hypersensitivity pneumonitis and 1 descamative interstitial pneumonitis. Panlobular distribution, alveolar proteinosis (1 case) sarcoidosis (1 case) drug toxicity 1 case and one case of pneumocystis carinii. Peripherical distribution typical of early idiopathic fibrosis (1). Bronchiolitis obliterans with organizing pneumonia (1). Structural alterations of the lung parenchyma with bronchiectasias was seen in 16 cases, cystic lesions in 3 cases, sub pleural linear opacities 4 cases, peribronchovascular interstitial thickening or nodularity and emphysema in 10 cases. Conclusion: HRCT is useful to evaluate ground glass opacities pattern with the anatomic distribution and the underlying structural pathology. These findings under some clinical circumstances can suggest a specific diagnosis in most cases, indicating a potentially treatable disease. (author)

  14. Design and fabrication of directional diffractive device on glass substrate for multiview holographic 3D display

    Science.gov (United States)

    Su, Yanfeng; Cai, Zhijian; Liu, Quan; Zou, Wenlong; Guo, Peiliang; Wu, Jianhong

    2018-01-01

    Multiview holographic 3D display based on the nano-grating patterned directional diffractive device can provide 3D images with high resolution and wide viewing angle, which has attracted considerable attention. However, the current directional diffractive device fabricated on the photoresist is vulnerable to damage, which will lead to the short service life of the device. In this paper, we propose a directional diffractive device on glass substrate to increase its service life. In the design process, the period and the orientation of the nano-grating at each pixel are carefully calculated accordingly by the predefined position of the viewing zone, and the groove parameters are designed by analyzing the diffraction efficiency of the nano-grating pixel on glass substrate. In the experiment, a 4-view photoresist directional diffractive device with a full coverage of pixelated nano-grating arrays is efficiently fabricated by using an ultraviolet continuously variable spatial frequency lithography system, and then the nano-grating patterns on the photoresist are transferred to the glass substrate by combining the ion beam etching and the reactive ion beam etching for controlling the groove parameters precisely. The properties of the etched glass device are measured under the illumination of a collimated laser beam with a wavelength of 532nm. The experimental results demonstrate that the light utilization efficiency is improved and optimized in comparison with the photoresist device. Furthermore, the fabricated device on glass substrate is easier to be replicated and of better durability and practicability, which shows great potential in the commercial applications of 3D display terminal.

  15. Development of textured ZnO-coated low-cost glass substrate with very high haze ratio for silicon-based thin film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Hongsingthong, Aswin, E-mail: aswin.hongsingthong@nectec.or.th [Solar Energy Technology Laboratory, National Electronics and Computer Technology Center, 112 Thailand Science Park, Phahonyothin Road, Khlong 1, Khlong Luang, Pathumthani 12120 (Thailand); Krajangsang, Taweewat; Limmanee, Amornrat; Sriprapha, Kobsak; Sritharathikhun, Jaran [Solar Energy Technology Laboratory, National Electronics and Computer Technology Center, 112 Thailand Science Park, Phahonyothin Road, Khlong 1, Khlong Luang, Pathumthani 12120 (Thailand); Konagai, Makoto [Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1, NE-15, O-okayama, Meguro-ku, Tokyo 152-8552 (Japan)

    2013-06-30

    Zinc oxide (ZnO) films with a very high haze ratio and low resistivity were developed on soda–lime glass substrate by using reactive ion etching (RIE) treatment with carbon tetrafluoride (CF{sub 4}) to modify the substrate surface morphology before the deposition of ZnO films. We found that the surface morphology of the ZnO films deposited by metal organic chemical vapor deposition (MOCVD) technique could be modified by varying the glass treatment conditions and the gas pressure was a key parameter. With increasing glass-etching pressure, the surface morphology of the ZnO films changed from conventional pyramid-like single texture to greater cauliflower-like double texture, leading to significant increases in root mean square roughness and haze ratio of the films. By employing the developed high-haze ZnO films as a front transparent conductive oxide (TCO) layer in microcrystalline silicon solar cells, an enhancement in the quantum efficiency in the long-wavelength region has been achieved. Experimental results have verified that our unique and original glass etching treatment is a simple and effective technique to improve the light-scattering properties of the ZnO films while preserving their good transparency and electrical properties. Thus, the ZnO films deposited on etched soda–lime glass have a high potential for the use as a front TCO layer in thin-film Si solar cells. - Highlights: • High-haze zinc oxide (ZnO) grown on low cost soda–lime glass has been developed. • Surface of the ZnO can be modified by varying glass-substrate etching conditions. • Glass-etching pressure is a key to increase haze ratio of the ZnO films. • Higher cell efficiency has been achieved from cell using etched glass. • High-haze ZnO coated glass is a promising transparent conductive oxide coated glass.

  16. Development of textured ZnO-coated low-cost glass substrate with very high haze ratio for silicon-based thin film solar cells

    International Nuclear Information System (INIS)

    Hongsingthong, Aswin; Krajangsang, Taweewat; Limmanee, Amornrat; Sriprapha, Kobsak; Sritharathikhun, Jaran; Konagai, Makoto

    2013-01-01

    Zinc oxide (ZnO) films with a very high haze ratio and low resistivity were developed on soda–lime glass substrate by using reactive ion etching (RIE) treatment with carbon tetrafluoride (CF 4 ) to modify the substrate surface morphology before the deposition of ZnO films. We found that the surface morphology of the ZnO films deposited by metal organic chemical vapor deposition (MOCVD) technique could be modified by varying the glass treatment conditions and the gas pressure was a key parameter. With increasing glass-etching pressure, the surface morphology of the ZnO films changed from conventional pyramid-like single texture to greater cauliflower-like double texture, leading to significant increases in root mean square roughness and haze ratio of the films. By employing the developed high-haze ZnO films as a front transparent conductive oxide (TCO) layer in microcrystalline silicon solar cells, an enhancement in the quantum efficiency in the long-wavelength region has been achieved. Experimental results have verified that our unique and original glass etching treatment is a simple and effective technique to improve the light-scattering properties of the ZnO films while preserving their good transparency and electrical properties. Thus, the ZnO films deposited on etched soda–lime glass have a high potential for the use as a front TCO layer in thin-film Si solar cells. - Highlights: • High-haze zinc oxide (ZnO) grown on low cost soda–lime glass has been developed. • Surface of the ZnO can be modified by varying glass-substrate etching conditions. • Glass-etching pressure is a key to increase haze ratio of the ZnO films. • Higher cell efficiency has been achieved from cell using etched glass. • High-haze ZnO coated glass is a promising transparent conductive oxide coated glass

  17. Broadband anti-reflective and water-repellent coatings on glass substrates for self-cleaning photovoltaic cells

    International Nuclear Information System (INIS)

    Li, Xiaoyu; He, Junhui; Liu, Weiyi

    2013-01-01

    Graphical abstract: High performance broadband antireflective and water-repellent coatings were fabricated on glass substrates, which can improve the short-circuit current of solar cells as much as 6.6% in comparison with glass substrates without the coatings. - Highlights: • Broadband anti-reflective and water-repellent coatings were fabricated. • Transmittance increased to 99.0%, significantly higher than that of commercial solar glasses. • The performance of standard solar cells with the AR coating was enhanced as much as 6.6%. - Abstract: High performance broadband antireflective (AR) and water-repellent coatings were fabricated on glass substrates by assembly of silica nanoparticles and polyelectrolytes via the layer-by-layer (LbL) assembly technique, followed by calcination and hydrophobic modification. A porous poly(diallyladimethylammonium chloride) (PDDA)/20 nm SiO 2 nanoparticles (S-20) multilayer coating with AR property was prepared first. The maximum transmittance is as high as 99.0%, while that of the glass substrate is only 91.3%. After calcination and hydrophobic modification, the coating became water-repellent while maintaining the good AR property. Such water-repellent AR coatings can improve the short-circuit current of solar cells as much as 6.6% in comparison with glass substrates without the coatings. Scanning electron microscopy (SEM) was used to observe the morphology and thickness of coatings. Transmission spectra and reflection spectra were characterized by UV–vis spectrophotometer. The surface wettability was studied by a contact angle/interface system

  18. High resistivity ZnSe coated substrates for microstrip gas chambers

    International Nuclear Information System (INIS)

    Sudharsanan, R.; Greenwald, A.C.; Vakerlis, G.; Yoganathan, M.; Cho, H.S.; Kadyk, J.; Dubeau, J.; Dixit, M.

    1998-01-01

    Microstrip gas chambers (MSGCs) require substrates with sheet resistance in the range of 10 13 --10 16 ohms/square to eliminate polarization and surface charging effects between the electrodes. Thin films of II-VI semiconductors deposited on glass or plastic substrates are attractive for this application since bulk resistivity of these semiconductors vary in the range 10 9 --10 12 ohm-cm and films with good uniformity can be deposited over large-areas using inexpensive deposition techniques. In this paper, deposition, characterization, and fabrication of MSGCs using ZnSe thin films are reported for the first time. ZnSe thin films were deposited on glass and plastic substrates by thermal evaporation. Sheet resistance of ZnSe varied in the range of 10 15 to 10 16 ohms/square depending on the deposition conditions. A MSGC detector fabricated using a 0.5 microm thick ZnSe layer on glass substrate exhibited best values; gas gain of 25,000 and an energy resolution of about 16.7% FWHM at a gain of 1,080 for a 55 Fe source

  19. Preparation of Pb(Zr, Ti)O3 Thin Films on Glass Substrates

    Science.gov (United States)

    Hioki, Tsuyoshi; Akiyama, Masahiko; Ueda, Tomomasa; Onozuka, Yutaka; Hara, Yujiro; Suzuki, Kouji

    2000-09-01

    Lead-zirconate-titanate (PZT) thin films were prepared on non-alkaline glass substrates widely used in liquid crystal display (LCD) devices, by plasma-assisted magnetron RF sputtering with an immersed coil. After preparation of the PZT thin film, the glass was available for use in LCD device processing. No mutual diffusion of the elements was recognized between the glass substrate and the bottom electrode. The PZT layer had a dense film structure with rectangular and columnar grains, and only its perovskite phase was crystalline. PZT thin films on a glass substrate had leakage current densities of about 10-8 A/cm2, acceptable hysteresis loop shapes with the remanent polarization (Pr) of 45 μC/cm2 and the coercive field (Ec) of 90 kV/cm. Ferroelectric properties on a glass substrate almost conform with those on a Si-based substrate.

  20. Sputter deposition of PZT piezoelectric films on thin glass substrates for adjustable x-ray optics.

    Science.gov (United States)

    Wilke, Rudeger H T; Johnson-Wilke, Raegan L; Cotroneo, Vincenzo; Davis, William N; Reid, Paul B; Schwartz, Daniel A; Trolier-McKinstry, Susan

    2013-05-10

    Piezoelectric PbZr(0.52)Ti(0.48)O(3) (PZT) thin films deposited on thin glass substrates have been proposed for adjustable optics in future x-ray telescopes. The light weight of these x-ray optics enables large collecting areas, while the capability to correct mirror figure errors with the PZT thin film will allow much higher imaging resolution than possible with conventional lightweight optics. However, the low strain temperature and flexible nature of the thin glass complicate the use of chemical-solution deposition due to warping of the substrate at typical crystallization temperatures for the PZT. RF magnetron sputtering enabled preparation of PZT films with thicknesses up to 3 μm on Schott D263 glass substrates with much less deformation. X-ray diffraction analysis indicated that the films crystallized with the perovskite phase and showed no indication of secondary phases. Films with 1 cm(2) electrodes exhibited relative permittivity values near 1100 and loss tangents below 0.05. In addition, the remanent polarization was 26 μC/cm(2) with coercive fields of 33 kV/cm. The transverse piezoelectric coefficient was as high as -6.1±0.6 C/m(2). To assess influence functions for the x-ray optics application, the piezoelectrically induced deflection of individual cells was measured and compared with finite-element-analysis calculations. The good agreement between the results suggests that actuation of PZT thin films can control mirror figure errors to a precision of about 5 nm, allowing sub-arcsecond imaging.

  1. High resolution microstructure characterization of the interface between cold sprayed Al coating and Mg alloy substrate

    International Nuclear Information System (INIS)

    Wang, Qiang; Qiu, Dong; Xiong, Yuming; Birbilis, Nick; Zhang, Ming-Xing

    2014-01-01

    High-resolution transmission electron microscopy (HR-TEM) has validated the intimate metallurgical (atomic) bond formed along the interface of a cold-sprayed Al coating upon an Mg-alloy (AZ91) substrate. The compressive impact led to the formation of nanostructured layers of about 300–500 nm into the substrate. A highly distorted lattice structure with the inclusion of small amorphous zones was observed at the periphery of the particle/substrate interface, as a result of adiabatic shear plastic deformation at a high strain rate.

  2. Yttrium aluminum garnet coating on glass substrate

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Camila M.A.; Freiria, Gabriela S.; Faria, Emerson H. de; Rocha, Lucas A.; Ciuffi, Katia J.; Nassar, Eduardo J., E-mail: eduardo.nassar@unifran.edu.br

    2016-02-15

    Thin luminescent films have seen great technological advances and are applicable in the production of a variety of materials such as sensors, solar cells, photovoltaic devices, optical magnetic readers, waveguides, lasers, and recorders. Systems that contain yttrium aluminum oxide are important hosts for lanthanide ions and serve as light emission devices. This work deals with the deposition of yttrium aluminum garnet (YAG) film doped with Eu{sup 3+} onto a glass substrate obtained by the sol–gel methodology. Spray pyrolysis furnished the yttrium aluminum oxide powder. Dip-coating at a withdrawal speed of 10 mm min{sup −1} and evaporation led to deposition of different numbers of layers of the YAG:Eu{sup 3+} film onto the glass substrate from a YAG:Eu{sup 3+} powder suspension containing ethanol, water, and tetraethylorthosilicate. Photoluminescence, X-ray diffraction, scanning electron microscopy, and transparency measurements aided film characterization. The emission spectra revealed that the number of layers influenced film properties. - Highlights: • The spray pyrolysis was used to obtain luminescent YAG:Eu{sup 3+}. • The matrix was deposited as transparent films. • The YAG:Eu{sup 3+} was deposited by sol–gel process onto glass substrate.

  3. Yttrium aluminum garnet coating on glass substrate

    International Nuclear Information System (INIS)

    Ferreira, Camila M.A.; Freiria, Gabriela S.; Faria, Emerson H. de; Rocha, Lucas A.; Ciuffi, Katia J.; Nassar, Eduardo J.

    2016-01-01

    Thin luminescent films have seen great technological advances and are applicable in the production of a variety of materials such as sensors, solar cells, photovoltaic devices, optical magnetic readers, waveguides, lasers, and recorders. Systems that contain yttrium aluminum oxide are important hosts for lanthanide ions and serve as light emission devices. This work deals with the deposition of yttrium aluminum garnet (YAG) film doped with Eu 3+ onto a glass substrate obtained by the sol–gel methodology. Spray pyrolysis furnished the yttrium aluminum oxide powder. Dip-coating at a withdrawal speed of 10 mm min −1 and evaporation led to deposition of different numbers of layers of the YAG:Eu 3+ film onto the glass substrate from a YAG:Eu 3+ powder suspension containing ethanol, water, and tetraethylorthosilicate. Photoluminescence, X-ray diffraction, scanning electron microscopy, and transparency measurements aided film characterization. The emission spectra revealed that the number of layers influenced film properties. - Highlights: • The spray pyrolysis was used to obtain luminescent YAG:Eu 3+ . • The matrix was deposited as transparent films. • The YAG:Eu 3+ was deposited by sol–gel process onto glass substrate.

  4. Near-field enhanced femtosecond laser nano-drilling of glass substrate

    International Nuclear Information System (INIS)

    Zhou, Y.; Hong, M.H.; Fuh, J.Y.H.; Lu, L.; Lukyanchuk, B.S.; Wang, Z.B.

    2008-01-01

    Particle mask assisted near-field enhanced femtosecond laser nano-drilling of transparent glass substrate was demonstrated in this paper. A particle mask was fabricated by self-assembly of spherical 1 μm silica particles on the substrate surface. Then the samples were exposed to femtosecond laser (800 nm, 100 fs) and characterized by field emission scanning electron microscope (FESEM) and atomic force microscope (AFM). The nano-hole array was found on the glass surface. The hole sizes were measured from 200 to 300 nm with an average depth of 150 nm and increased with laser fluence. Non-linear triple-photon absorption and near-field enhancement were the main mechanisms of the nano-feature formation. Calculations based on Mie theory shows an agreement with experiment results. More debris, however, was found at high laser fluence. This can be attributed to the explosion of silica particles because the focusing point is inside the 1 μm particle. The simulation predicts that the focusing point will move outside the particle if the particle size increases. The experiment performed under 6.84 μm silica particles verified that no debris was formed. And for all the samples, no cracks were found on the substrate surface because of ultra-short pulse width of femtosecond laser. This method has potential applications in nano-patterning of transparent glass substrate for nano-structure device fabrication

  5. Structure of Se-rich As-Se glasses by high-resolution x-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Golovchak, R.; Kovalskiy, A.; Miller, A. C.; Jain, H.; Shpotyuk, O.

    2007-01-01

    To establish the validity of various proposed structural models, we have investigated the structure of the binary As x Se 100-x chalcogenide glass family (x≤40) by high-resolution x-ray photoelectron spectroscopy. From the composition dependence of the valence band, the contributions to the density of states from the 4p lone pair electrons of Se and the 4p bonding states and 4s electrons of Se and As are identified in the top part of the band. The analysis of Se 3d and As 3d core-level spectra supports the so-called chain crossing model for the atomic structure of Se-rich As x Se 100-x bulk glasses. The results also indicate small deviations (∼3-8%) from this model, especially for glass compositions with short Se chains (25 40 Se 60 and of Se-Se-Se fragments in a glass with composition x=30 is established

  6. Impact of optical properties of front glass substrates on Cu(In,Ga)Se{sub 2} solar cells using lift-off process

    Energy Technology Data Exchange (ETDEWEB)

    Tamura, Akihiro, E-mail: ro005080@ed.ritsumei.ac.jp [College of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga 525-0058 (Japan); Abe, Yasuhiro [Ritsumeikan Global Innovation Research Organization, Ritsumeikan University, Kusatsu, Shiga 525-0058 (Japan); Minemoto, Takashi [College of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga 525-0058 (Japan)

    2013-11-01

    Transmittance of a front glass is one of the important factors in the development of high efficiency superstrate-type Cu(In,Ga)Se{sub 2} (CIGS) solar cells. In this study, we investigated the impact of optical properties of the front glass on the solar cell performance of the CIGS solar cells fabricated using the lift-off process. First, optical properties of quartz substrates and soda-lime glass (SLG) substrates with various thicknesses were investigated. Although optical properties of the SLG substrates depend on the thickness, those of the quartz substrates hardly depend on the thickness. Secondly, the superstrate-type CIGS solar cells were fabricated using 1-mm-thick SLG or 1-mm-thick quartz substrates. As a result, the short-circuit current density of the superstrate-type CIGS solar cell with 1-mm-thick quartz substrate was approximately 7% higher than that with 1-mm-thick SLG substrate, and its conversion efficiency was 7.1%. The external quantum efficiency of the solar cells was also improved using the quartz substrate as a front glass because transmittance and absorptance of the quartz substrate were superior to those of the SLG substrate. We therefore conclude that optical properties of the front glasses play an important role in the improvement of the superstrate-type solar cells. - Highlights: • Superstrate type Cu(In,Ga)Se{sub 2} solar cells are fabricated by lift-off process. • Various glasses are used as front glass for lift-off. • The impact of optical properties of the glasses on cell performance is investigated. • Quartz front glass gives 7% higher short-circuit current than soda-lime glass. • High transmittance is desired for front glass.

  7. Large-scale uniform ZnO tetrapods on catalyst free glass substrate by thermal evaporation method

    Energy Technology Data Exchange (ETDEWEB)

    Alsultany, Forat H., E-mail: foratusm@gmail.com [School of Physics, USM, 11800 Penang (Malaysia); Hassan, Z. [Institute of Nano-Optoelectronics Research and Technology Laboratory (INOR), USM, 11800 Penang (Malaysia); Ahmed, Naser M. [School of Physics, USM, 11800 Penang (Malaysia)

    2016-07-15

    Highlights: • Investigate the growth of ZnO-Ts on glass substrate by thermal evaporation method. • Glass substrate without any catalyst or a seed layer. • The morphology was controlled by adjusting the temperature of the material and the substrate. • Glass substrate was placed vertically in the quartz tube. - Abstract: Here, we report for the first time the catalyst-free growth of large-scale uniform shape and size ZnO tetrapods on a glass substrate via thermal evaporation method. Three-dimensional networks of ZnO tetrapods have needle–wire junctions, an average leg length of 2.1–2.6 μm, and a diameter of 35–240 nm. The morphology and structure of ZnO tetrapods were investigated by controlling the preparation temperature of each of the Zn powder and the glass substrate under O{sub 2} and Ar gases. Studies were carried out on ZnO tetrapods using X-ray diffraction, field emission scanning electron microscopy, UV–vis spectrophotometer, and a photoluminescence. The results showed that the sample grow in the hexagonal wurtzite structure with preferentially oriented along (002) direction, good crystallinity and high transmittance. The band gap value is about 3.27 eV. Photoluminescence spectrum exhibits a very sharp peak at 378 nm and a weak broad green emission.

  8. Morphology and transmittance of porous alumina on glass substrate

    Energy Technology Data Exchange (ETDEWEB)

    Guo Peitao, E-mail: guopeitao@hotmail.com [Wuhan University of Technology. Wuhan (China); Xia Zhilin [Wuhan University of Technology. Wuhan (China); Key Laboratory of Low Dimensional Materials and Application Technology, Xiangtan University, Ministry of Education, Xiangtan (China); Xue Yiyu [Wuhan University of Technology. Wuhan (China); Huang Caihua [China Three Gorges University, Yichang (China); Zhao Lixin [Wuhan University of Technology. Wuhan (China)

    2011-02-01

    The porous optical film has higher threshold of laser-induced damage than densified films, for the study of mechanism of laser-induced damage of porous optical film with ordered pore structure. Porous anodic alumina (PAA) film with high transmittance on glass substrate has been prepared. Aluminum film was deposited on glass substrate by means of resistance and electron beam heat (EBH) evaporation. Porous alumina was prepared in oxalic acid solution under different anodizing conditions. At normal incidence, the optical transmittance spectrum over 300-1000 nm spectra region was obtained by spectrophotometer. SEM was introduced to analysis the morphology of the porous alumina film. The pore aperture increased with the increase of anodizing voltage, which resulted in a rapid decrease of the pore concentration and the optical thickness of porous alumina film. Damage morphology of porous alumina film is found to be typically defects initiated, and the defect is the pore presented on the film.

  9. Paper-based microfluidics with high resolution, cut on a glass fiber membrane for bioassays.

    Science.gov (United States)

    Fang, Xueen; Wei, Shasha; Kong, Jilie

    2014-03-07

    In this report, we describe a simple, low-cost, straight forward and highly reproducible fabrication method of microfluidic systems. This system was cut on a glass fiber membrane by a common cutter without using any other sophisticated equipment or organic solvents. This format represents a novel type of paper-based microfluidics with high resolution of the microchannel down to ~137 μm, comparable to those made by conventional photolithography. We successfully applied this method to microfluidics to create a star micro-array format of multiplexed urine tests in this study.

  10. EPR dosimetry of glass substrate of mobile phone LCDs

    International Nuclear Information System (INIS)

    Trompier, F.; Della Monaca, S.; Fattibene, P.; Clairand, I.

    2011-01-01

    Previous studies have shown that mineral glass from watches, windows and displays of personal electronic devices could be a suitable restrospective dosimeter in case of radiation accident. In this paper glass substrates of the window display of 100 mobile phones of different trademarks were analized by X-band cw-EPR before and after irradiation at 100 Gy. The objective of this study was to highlight some issues of EPR measurements of glass related to inter-sample variability of: i) signal line shape in irradiated and unirradiated glass; ii) signal intensity loss and line shape change with post-irradiation time; iii) signal changes induced by sample preparation and iv) signal changes induced by thermal annealing. Scope of the paper is to provide a phenomenological picture of the observed effects in order to give a warning about possible problems and to provide suggestions for future work. Explanation of the mechanisms and the causes leading to the observed effects was beyond the scope of this work. These preliminary results confirm that glass substrate of mobile phone displays should be considered as a fortuitous dosimeter in radiation accidents. However, albeit very promising, mineral glass presents a number of issues that should be thoroughly investigated and addressed in future work.

  11. High-quality substrate for fluorescence enhancement using agarose-coated silica opal film.

    Science.gov (United States)

    Xu, Ming; Li, Juan; Sun, Liguo; Zhao, Yuanjin; Xie, Zhuoying; Lv, Linli; Zhao, Xiangwei; Xiao, Pengfeng; Hu, Jing; Lv, Mei; Gu, Zhongze

    2010-08-01

    To improve the sensitivity of fluorescence detection in biochip, a new kind of substrates was developed by agarose coating on silica opal film. In this study, silica opal film was fabricated on glass substrate using the vertical deposition technique. It can provide stronger fluorescence signals and thus improve the detection sensitivity. After coating with agarose, the hybrid film could provide a 3D support for immobilizing sample. Comparing with agarose-coated glass substrate, the agarose-coated opal substrates could selectively enhance particular fluorescence signals with high sensitivity when the stop band of the silica opal film in the agarose-coated opal substrate overlapped the fluorescence emission wavelength. A DNA hybridization experiment demonstrated that fluorescence intensity of special type of agarose-coated opal substrates was about four times that of agarose-coated glass substrate. These results indicate that the optimized agarose-coated opal substrate can be used for improving the sensitivity of fluorescence detection with high quality and selectivity.

  12. Highly (001) oriented L1{sub 0}-CoPt/TiN multilayer films on glass substrates with perpendicular magnetic anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    An, Hongyu; Sannomiya, Takumi; Muraishi, Shinji; Nakamura, Yoshio; Shi, Ji, E-mail: shi.j.aa@m.titech.ac.jp [Department of Metallurgy and Ceramics Science, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8552 (Japan); Xie, Qian; Zhang, Zhengjun [Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Wang, Jian [National Institute for Materials Science (NIMS), Sengen 1-2-1, Tsukuba, Ibaraki 305-0047 (Japan)

    2015-03-15

    To obtain strong perpendicular magnetic anisotropy (PMA) based on L1{sub 0} structure for magnetic storage devices, costly single crystalline substrates are generally required to achieve (001) texture. Recently, various studies also have focused on depositing different kinds of seed layers on glass or other amorphous substrates to promote (001) preferred orientation of L1{sub 0} CoPt and FePt. TiN is a very promising seed layer material because of its cubic crystalline structure (similar to MgO) and excellent diffusion barring property even at high temperatures. In the present work, highly (001) oriented L1{sub 0}-CoPt/TiN multilayer films have been successfully deposited on glass substrates. After annealing at 700 °C, the film exhibits PMA, and a strong (001) peak is detected from the x-ray diffraction profiles, indicating the ordering transformation of CoPt layers from fcc (A1) to L1{sub 0} structure. It also is found that alternate deposition of cubic TiN and CoPt effectively improves the crystallinity and (001) preferred orientation of CoPt layers. This effect is verified by the substantial enhancement of (001) reflection and PMA with increasing the period number of the multilayer films.

  13. Superhydrophobic ZnAl double hydroxide nanostructures and ZnO films on Al and glass substrates

    Energy Technology Data Exchange (ETDEWEB)

    De, Debasis, E-mail: debasis.de@bcrec.ac.in [Electronics and Instrumentation Engineering Department, Dr. B C Roy Engineering College, Durgapur, West Bengal 713206 (India); Sarkar, D.K. [Centre Universitaire de Recherche sur l' Aluminium (CURAL), L' Université du Québec à Chicoutimi, 555 Blvd. Université, Chicoutimi, Saguenay, Québec G7H 2B1 (Canada)

    2017-01-01

    Superhydrophobic nanostructured ZnAl: layered double hydroxides (LDHs) and ZnO films have been fabricated on Al and glass substrates, respectively, by a simple and cost effective chemical bath deposition technique. Randomly oriented hexagonal patterned of ZnAl: LDHs thin nanoplates are clearly observed on Al-substrate in the scanning electron microscopic images. The average size of these hexagonal plates is ∼4 μm side and ∼30 nm of thickness. While on the glass substrate, a oriented hexagonal patterned ZnO nanorods (height ∼5 μm and 1 μm diameter) are observed and each rod is further decorated throughout the top few nanometers with several nanosteps. At the top of the nanorod, a perfectly hexagonal patterned ZnO surface with ∼250 nm sides is observed. The tendency to form hexagonal morphological features is due to the hexagonal crystal structure of ZnO confirmed from X-ray diffraction patterns and transmission electron microscopy image. The ZnAl: LDHs and/or ZnO coated substrates have been passivated by using stearic acid (SA) molecules. Infrared spectra of passivated ZnAl: LDHs coated substrates confirm the presence of SA. X-ray diffraction pattern also corroborates the results of infrared spectrum. The contact angle of the as prepared samples is zero. The superhydrophobicity is achieved by observing contact angle of ∼161° with a hysteresis of ∼4° for Al-substrate. On the glass substrate, a higher contact angle of ∼168° with a lower hysteresis of ∼3° is observed. A lower surface roughness of ∼4.93 μm is measured on ZnAl: LDHs surface layer on the Al substrate as compare to a higher surface roughness of 6.87 μm measured on ZnO layer on glass substrate. The superhydrophobicity of passivated nanostructured films on two different substrates is observed due to high surface roughness and low surface energy. - Highlights: • ZnAl: layered double hydroxides (LDHs) nanoplates are fabricated on Al substrate. • ZnO nanorods are fabricated on

  14. Microstrip gas chamber on thin-film Pestov glass and micro gap chamber

    International Nuclear Information System (INIS)

    Gong, W.G.; Harris, J.W.; Wieman, H.

    1994-07-01

    The authors report developments of the Microstrip Gas Chamber on thin-film Pestov glass and the Micro Gap Chamber. By coating a thin-layer of low-resistive, electronically-conductive glass on various substrates (including quartz and ceramics), they built MSGCs of high gain stability and low leakage current. They were tested in Ar-CH 4 (10%) and He-C 2 H 6 (50%) gas mixtures. Energy resolutions of 17-20% were measured for 6keV x-rays. This design can make the choice of substrate less important, save the cost of ion-implantation, and use less glass material. Micro Gap Chamber was successfully tested in He-C 2 H 6 (50%) and Ar-C 2 H 6 (50%) gas mixtures. Energy resolutions of about 20% were obtained. Both detectors are expected to have high rate capability

  15. Low-temperature deposition of ZnO thin films on PET and glass substrates by DC-sputtering technique

    International Nuclear Information System (INIS)

    Banerjee, A.N.; Ghosh, C.K.; Chattopadhyay, K.K.; Minoura, Hideki; Sarkar, Ajay K.; Akiba, Atsuya; Kamiya, Atsushi; Endo, Tamio

    2006-01-01

    The structural, optical and electrical properties of ZnO thin films (260 - 490 nm thick) deposited by direct-current sputtering technique, at a relatively low-substrate temperature (363 K), onto polyethylene terephthalate and glass substrates have been investigated. X-ray diffraction patterns confirm the proper phase formation of the material. Optical transmittance data show high transparency (80% to more than 98%) of the films in the visible portion of solar radiation. Slight variation in the transparency of the films is observed with a variation in the deposition time. Electrical characterizations show the room-temperature conductivity of the films deposited onto polyethylene terephthalate substrates for 4 and 5 h around 0.05 and 0.25 S cm -1 , respectively. On the other hand, for the films deposited on glass substrates, these values are 8.5 and 9.6 S cm -1 for similar variation in the deposition time. Room-temperature conductivity of the ZnO films deposited on glass substrates is at least two orders of magnitude higher than that of ZnO films deposited onto polyethylene terephthalate substrates under identical conditions. Hall-measurements show the maximum carrier concentration of the films on PET and glass substrate around 2.8 x 10 16 and 3.1 x 10 2 cm -3 , respectively. This report will provide newer applications of ZnO thin films in flexible display technology

  16. Characteristics of Schottky-barrier source/drain metal-oxide-polycrystalline thin-film transistors on glass substrates

    International Nuclear Information System (INIS)

    Jung, Seung-Min; Cho, Won-Ju; Jung, Jong-Wan

    2012-01-01

    Polycrystalline-silicon (poly-Si) Schottky-barrier thin-film transistors (SB-TFTs) with Pt-silicided source /drain junctions were fabricated on glass substrates, and the electrical characteristics were examined. The amorphous silicon films on glass substrates were converted into high-quality poly-Si by using excimer laser annealing (ELA) and solid phase crystallization (SPC) methods. The crystallinity of poly-Si was analyzed by using scanning electron microscopy, transmission electron microscopy, and X-ray diffraction analysis. The silicidation process was optimized by measuring the electrical characteristics of the Pt-silicided Schottky diodes. The performances of Pt-silicided SB-TFTs using poly-Si films on glass substrates and crystallized by using ELA and SPC were demonstrated. The SB-TFTs using the ELA poly-Si film demonstrated better electrical performances such as higher mobility (22.4 cm 2 /Vs) and on/off current ratio (3 x 10 6 ) and lower subthreshold swing value (120 mV/dec) than the SPC poly-Si films.

  17. One-step femtosecond laser welding and internal machining of three glass substrates

    Science.gov (United States)

    Tan, Hua; Duan, Ji'an

    2017-05-01

    In this paper, it demonstrated one-step femtosecond laser welding and internal machining of three fused silica substrates in the optical- and non-optical-contact regimes by focusing 1030-nm laser pulses at the middle of the second substrate. Focusing laser pulses within the second glass in optical-contact and non-optical-contact samples induces permanent internal structural modification, leading to the three glass substrates bonding together simultaneously. The bonding mechanism is based on the internal modification of glass, and this mechanism is different from that of ordinary glass welding at the interface. Welding-spot size is affected by not only the gap distance (ablation effect) and heat transmission, but also by gravity through examining the sizes of the welding spots on the four contact welding surfaces. The maximum bonding strength of the lower interface (56.2 MPa) in the optical-contact regime is more than double that (27.6 MPa) in the non-optical-contact regime.

  18. Patterned Electroplating of Micrometer Scale Magnetic Structures on Glass Substrates

    NARCIS (Netherlands)

    de Vries, A.H.B.; Kanger, Johannes S.; Krenn, Bea E.; van Driel, Roel

    2004-01-01

    This paper has developed a new method of micro patterned electroplating that enables the fabrication of micrometer scale magnetic structures on glass substrates. In contrast to other methods, the process as developed here leaves the surrounding substrate area untouched: that is there is no seed

  19. Patterned electroplating of micrometer scale magnetic structures on glass substrates.

    NARCIS (Netherlands)

    de Vries, A.H.B.; Kanger, S.J.; Krenn, G.E.; van Driel, R.

    2004-01-01

    This paper has developed a new method of micro patterned electroplating that enables the fabrication of micrometer scale magnetic structures on glass substrates. In contrast to other methods, the process as developed here leaves the surrounding substrate area untouched: that is there is no seed

  20. Room temperature deposition of perpendicular magnetic anisotropic Co{sub 3}Pt thin films on glass substrate

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yu-Shen; Dai, Hong-Yu; Hsu, Yi-Wei [Department of Chemical Engineering and Materials Science, Yuan-Ze University, Chung-Li 32003, Taiwan (China); Ou, Sin-Liang, E-mail: slo@mail.dyu.edu.tw [Department of Materials Science and Engineering, Da-Yeh University, Changhua 51591, Taiwan (China); Chen, Shi-Wei [National Synchrotron Radiation Research Center (NSRRC), Hsinchu 300, Taiwan (China); Lu, Hsi-Chuan; Wang, Sea-Fue [Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei 106, Taiwan (China); Sun, An-Cheng, E-mail: acsun@saturn.yzu.edu.tw [Department of Chemical Engineering and Materials Science, Yuan-Ze University, Chung-Li 32003, Taiwan (China)

    2017-03-01

    Co{sub 3}Pt alloy thin films were deposited on the glass substrate at room temperature (RT) and 300 °C, which showed high perpendicular magnetic anisotropy (PMA) and isotropy magnetic behaviors, respectively. Co{sub 3}Pt HCP (0002) planes grew along the substrate plane for the films deposited at RT. The easy axis [0001] was consequently vertical to the substrate surface and obtained the predominant PMA. Large magnetic domains and sharp boundary also supported high PMA in RT-deposited samples. On the other hand, the PMA was significantly decreased with increasing the deposition temperature from RT to 300 °C. Hard HCP(0002) and soft A1(111) co-existed in the film and the magnetic exchanged coupling between these two phases induced isotropy magnetic behavior. In addition, the various thicknesses (t) of the RT-deposited Co{sub 3}Pt films were deposited with different base pressures prior to sputtering. The Kerr rotation loops showed high PMA and out-of-plane squareness (S{sub ⊥}) of ~0.9 were found in low base pressure chamber. Within high base pressure chamber, Co{sub 3}Pt films just show magnetic isotropy behaviors. This study provides a fabrication method for the preparation of high PMA HCP-type Co{sub 3}Pt films on the glass substrate without any underlayer at RT. The results could be the base for future development of RT-deposited magnetic alloy thin film with high PMA. - Highlights: • Fabricated high perpendicular magnetic anisotropy Co{sub 3}Pt thin film on glass substrate. • Prepared HCP Co{sub 3}Pt thin film at room temperature. • The key to enhance the PMA of the Co{sub 3}Pt films. • Thinner film is good to fabricate PMA Co{sub 3}Pt thin films.

  1. Ground-glass opacity in diffuse lung diseases: high-resolution computed tomography-pathology correlation

    International Nuclear Information System (INIS)

    Santos, Maria Lucia de Oliveira; Vianna, Alberto Domingues; Marchiori, Edson; Souza Junior, Arthur Soares; Moraes, Heleno Pinto de

    2003-01-01

    Ground-glass opacity is a finding frequently seen in high-resolution computed tomography examinations of the chest and is characterized by hazy increased attenuation of lung, however without blurring of bronchial and vascular margins. Due to its un specificity, association with other radiological, clinical and pathological findings must be considered for an accurate diagnostic interpretation. In this paper were reviewed 62 computed tomography examinations of patients with diffuse pulmonary diseases of 14 different etiologies in which ground-glass opacity was the only or the most remarkable finding, and correlated this findings with pathology abnormalities seen on specimens obtained from biopsies or necropsies. In pneumocystosis, ground-glass opacities correlated histologically with alveolar occupation by a foaming material containing parasites, in bronchiole alveolar cell carcinoma with thickening of the alveolar septa and occupation of the lumen by mucus and tumoral cells, in paracoccidioidomycosis with thickening of the alveolar septa, areas of fibrosis and alveolar bronchopneumonia exudate, in sarcoidosis with fibrosis or clustering of granulomas and in idiopathic pulmonary fibrosis with alveolar septa thickening due to fibrosis. Alveolar occupation by blood was found in cases of leptospirosis, idiopathic hemo siderosis, metastatic kidney tumor and invasive aspergillosis whereas oily vacuole were seen in lipoid pneumonia, proteinaceous and lipo proteinaceous material in silico proteinosis and pulmonary alveolar proteinosis, and edematous fluid in cardiac failure. (author)

  2. Transverse and longitudinal electrooptic properties of highly (100) oriented Pb(Zr,Ti)O{sub 3} films grown on glass substrates

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jong-Jin [Department of Future Technology, Korea Institute of Machinery and Materials, 66 Sang-Nam Dong, Chang-Won, Gyeong-Nam, 641-010 (Korea, Republic of) and School of Materials Science and Engineering, Seoul National University, Seoul, 151-742 (Korea, Republic of)]. E-mail: finaljin@kmail.kimm.re.kr; Park, Gun-Tae [School of Materials Science and Engineering, Seoul National University, Seoul, 151-742 (Korea, Republic of); Kim, Hyoun-Ee [School of Materials Science and Engineering, Seoul National University, Seoul, 151-742 (Korea, Republic of); Kim, Dal-Young [Department of Visual Optics, Seoul National University of Technology, 172 Gongreung 2-dong, Nowon-gu, Seoul 139-743 (Korea, Republic of)

    2006-12-05

    The Pb(Zr,Ti)O{sub 3} [PZT] films with a preferred orientation generally have columnar texture. Because the properties of a PZT film are strongly dependent on its crystallographic direction, the electrooptic properties along the longitudinal and transverse direction are expected to be anisotropic. In this study, highly (100) oriented PZT films were grown on glass and ITO (Indium Tin Oxide) coated glass substrates using the sol-gel multi-coating method with lanthanum nitrate and lanthanum nickel nitrate as buffer layers. The longitudinal and transverse electrooptic properties of the textured films were characterized by transmission-mode measuring equipment with a Senarmont compensator using a sample tilting method. The calculated longitudinal and transverse electrooptic coefficients of the highly (100) oriented PZT films were 147 and 250 pm/V, respectively.

  3. Improving yield of PZT piezoelectric devices on glass substrates

    Science.gov (United States)

    Johnson-Wilke, Raegan L.; Wilke, Rudeger H. T.; Cotroneo, Vincenzo; Davis, William N.; Reid, Paul B.; Schwartz, Daniel A.; Trolier-McKinstry, Susan

    2012-10-01

    The proposed SMART-X telescope includes adaptive optics systems that use piezoelectric lead zirconate titanate (PZT) films deposited on flexible glass substrates. Several processing constraints are imposed by current designs: the crystallization temperature must be kept below 550 °C, the total stress in the film must be minimized, and the yield on 1 cm2 actuator elements should be work, RF magnetron sputtering was used to deposit films since chemical solution deposition (CSD) led to warping of large area flexible glass substrates. A PZT 52/48 film that wasdeposited at 4 mTorr and annealed at 550 °C for 24 hours showed no detectable levels of either PbO or pyrochlore second phases. Large area electrodes (1cm x 1 cm) were deposited on 4" glass substrates. Initially, the yield of the devices was low, however, two methods were employed to increase the yield to near 100 %. The first method included a more rigorous cleaning to improve the continuity of the Pt bottom electrode. The second method was to apply 3 V DC across the capacitor structure to burn out regions of defective PZT. The result of this latter method essentially removed conducting filaments in the PZT but left the bulk of the material undamaged. By combining these two methods, the yield on the large area electrodes improved from < 10% to nearly 100%.

  4. F2-laser patterning of indium tin oxide (ITO) thin film on glass substrate

    International Nuclear Information System (INIS)

    Xu, M.Y.; Li, J.; Herman, P.R.; Lilge, L.D.

    2006-01-01

    This paper reports the controlled micromachining of 100 nm thick indium tin oxide (ITO) thin films on glass substrates with a vacuum-ultraviolet 157 nm F 2 laser. Partial to complete film removal was observed over a wide fluence window from 0.49 J/cm 2 to an optimized single pulse fluence of 4.5 J/cm 2 for complete film removal. Optical microscopy, atomic force microscopy, and energy dispersive X-ray analysis show little substrate or collateral damage by the laser pulse which conserved the stoichiometry, optical transparency and electrical conductivity of ITO coating adjacent to the trenches. At higher fluence, a parallel micron sized channel can be etched in the glass substrate. The high photon energy and top-hat beam homogenized optical system of the F 2 laser opens new means for direct structuring of electrodes and microchannels in biological microfluidic systems or in optoelectronics. (orig.)

  5. Gas microstrip detectors on polymer, silicon and glass substrates

    International Nuclear Information System (INIS)

    Barasch, E.F.; Demroff, H.P.; Drew, M.M.; Elliott, T.S.; Gaedke, R.M.; Goss, L.T.; Kasprowicz, T.B.; Lee, B.; Mazumdar, T.K.; McIntyre, P.M.; Pang, Y.; Smith, D.D.; Trost, H.J.; Vanstraelen, G.; Wahl, J.

    1993-01-01

    We present results on the performance of Gas Microstrip Detectors on various substrates. These include a 300 μm anode-anode pitch pattern on Tempax borosilicate glass and ABS/copolyether, a 200 μm pattern on Upilex ''S'' polyimide, Texin 4215, Tedlar, ion-implanted Kapton, orientation-dependent etched flat-topped silicon (''knife-edge chamber''), and iron-vanadium glass, and a 100 μm pitch pattern on Upilex ''S'' and ion-implanted Kapton. (orig.)

  6. Printed electronic on flexible and glass substrates

    Science.gov (United States)

    Futera, Konrad; Jakubowska, Małgorzata; Kozioł, Grażyna

    2010-09-01

    Organic electronics is a platform technology that enables multiple applications based on organic electronics but varied in specifications. Organic electronics is based on the combination of new materials and cost-effective, large area production processes that provide new fields of application. Organic electronic by its size, weight, flexibility and environmental friendliness electronics enables low cost production of numerous electrical components and provides for such promising fields of application as: intelligent packaging, low cost RFID, flexible solar cells, disposable diagnostic devices or games, and printed batteries [1]. The paper presents results of inkjetted electronics elements on flexible and glass substrates. The investigations was target on characterizing shape, surface and geometry of printed structures. Variety of substrates were investigated, within some, low cost, non specialized substrate, design for other purposes than organic electronic.

  7. Remote and direct plasma regions for low-temperature growth of carbon nanotubes on glass substrates for display applications

    International Nuclear Information System (INIS)

    Tabatabaei, M K; Ghafouri fard, H; Koohsorkhi, J; Khatami, S; Mohajerzadeh, S

    2011-01-01

    A novel method for growing carbon nanotubes (CNTs) on glass substrates is introduced in this study. A two-stage plasma was used to achieve low-temperature and vertically aligned CNTs. Ni deposited on indium tin oxide/glass substrate was used as the catalyst and hydrogen and acetylene were used as gas feeds. In this investigation a new technique was developed to grow vertically aligned CNTs at temperatures below 400 deg. C while CNT growth by plasma-enhanced chemical vapour deposition required high temperatures. Low-temperature growth of vertically aligned CNTs was suitable for the fabrication of micro-lens and self-oriented displays on glass substrates. Also, we have reported a new configuration for CNT-based display by means of controlling the refractive index of liquid crystal around the CNT by applying a proper voltage to the top and bottom array.

  8. Surface treatment of glass substrates for the preparation of long-lived carbon stripper foils

    International Nuclear Information System (INIS)

    Takeuchi, Suehiro; Takekoshi, Eiko

    1981-02-01

    Glass substrates having uniformly distributed microscopic grains on the surfaces are useful to make long-lived carbon stripper foils for heavy ions. A method of surface treatment of glass substrates to form the surface structure is described. This method consists of precipitation of glass components, such as soda, onto the surfaces in a hot and humid atmosphere and a fogging treatment of forming microscopic grains of the precipitated substances. Some results of studies on the treatment conditions are also presented. (author)

  9. Thermal forming of glass microsheets for x-ray telescope mirror segments

    DEFF Research Database (Denmark)

    Jimenez-Garate, M.A.; Hailey, C.J.; Craig, W.W.

    2003-01-01

    envisioned for future x-ray observatories. The glass microsheets are shaped into mirror segments at high temperature by use of a guiding mandrel, without polishing. We determine the physical properties and mechanisms that elucidate the formation process and that are crucial to improve surface quality. We......We describe a technology to mass-produce ultrathin mirror substrates for x-ray telescopes of near Wolter-I geometry. Thermal glass forming is a low-cost method to produce high-throughput, spaceborne x-ray mirrors for the 0.1-200-keV energy band. These substrates can provide the collecting area...... develop a viscodynamic model for the glass strain as the forming proceeds to find the conditions for repeatability. Thermal forming preserves the x-ray reflectance and scattering properties of the raw glass. The imaging resolution is driven by a large wavelength figure. We discuss the sources of figure...

  10. Calcium and Zinc Containing Bactericidal Glass Coatings for Biomedical Metallic Substrates

    Directory of Open Access Journals (Sweden)

    Leticia Esteban-Tejeda

    2014-07-01

    Full Text Available The present work presents new bactericidal coatings, based on two families of non-toxic, antimicrobial glasses belonging to B2O3–SiO2–Na2O–ZnO and SiO2–Na2O–Al2O3–CaO–B2O3 systems. Free of cracking, single layer direct coatings on different biomedical metallic substrates (titanium alloy, Nb, Ta, and stainless steel have been developed. Thermal expansion mismatch was adjusted by changing glass composition of the glass type, as well as the firing atmosphere (air or Ar according to the biomedical metallic substrates. Formation of bubbles in some of the glassy coatings has been rationalized considering the reactions that take place at the different metal/coating interfaces. All the obtained coatings were proven to be strongly antibacterial versus Escherichia coli (>4 log.

  11. All-inkjet-printed flexible electronics fabrication on a polymer substrate by low-temperature high-resolution selective laser sintering of metal nanoparticles

    International Nuclear Information System (INIS)

    Ko, Seung H; Pan Heng; Grigoropoulos, Costas P; Luscombe, Christine K; Frechet, Jean M J; Poulikakos, Dimos

    2007-01-01

    All-printed electronics is the key technology to ultra-low-cost, large-area electronics. As a critical step in this direction, we demonstrate that laser sintering of inkjet-printed metal nanoparticles enables low-temperature metal deposition as well as high-resolution patterning to overcome the resolution limitation of the current inkjet direct writing processes. To demonstrate this process combined with the implementation of air-stable carboxylate-functionalized polythiophenes, high-resolution organic transistors were fabricated in ambient pressure and room temperature without utilizing any photolithographic steps or requiring a vacuum deposition process. Local thermal control of the laser sintering process could minimize the heat-affected zone and the thermal damage to the substrate and further enhance the resolution of the process. This local nanoparticle deposition and energy coupling enable an environmentally friendly and cost-effective process as well as a low-temperature manufacturing sequence to realize large-area, flexible electronics on polymer substrates

  12. High resolution electron microscopy studies of interfaces between Al2O3 substrates and MBE grown Nb films

    International Nuclear Information System (INIS)

    Mayer, J.; Ruhle, M.; Dura, J.; Flynn, C.P.

    1991-01-01

    This paper reports on single crystal niobium films grown by Molecular Beam Epitaxy (MBE) on (001) S sapphire substrates. Cross-sectional specimens with thickness of 2 O 3 interface could be investigated by high resolution electron microscopy (HREM). The orientation relationship between the metal film and the ceramic substrate was verified by selected area diffraction: (111) Nb parallel (0001) S and [1 bar 10] Nb parallel [2 bar 1 bar 10] S . The atomistic structure of the interface was identified by HREM

  13. Binding of mouse immunoglobulin G to polylysine-coated glass substrate for immunodiagnosis

    Science.gov (United States)

    Vashist, Sandeep Kumar; Tewari, Rupinder; Bajpai, Ram Prakash; Bharadwaj, Lalit Mohan; Raiteri, Roberto

    2006-12-01

    We report a method for immobilizing mouse immunoglobulin G (IgG) on polylysine-coated glass substrate for immunodiagnostic applications. Mouse IgG molecules were immobilized on polylysine-coated glass substrate employing 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) and protein A. The amino groups of the polylysine-coated glass slide were cross linked to the carboxyl groups of protein A employing EDC crosslinker. Protein A was employed as it binds to the constant Fc region of antibodies keeping their antigen binding sites on the variable F ab region free to bind to antigens. The qualitative analysis of surface immobilized mouse IgG was done by fluorescent microscopy employing fluorescein isothiocyanate (FITC) labeled mouse IgG molecules. The immobilization densities of protein A and mouse IgG were determined by 3, 3', 4, 4'-tetramethyl benzidine (TMB) substrate assay employing horse radish peroxidise labelled molecules and were found to be 130 +/- 17 ng/cm2 and 596 +/- 31 ng/cm2 respectively. The biomolecular coatings analyzed by atomic force microscopy (AFM) were found to be uniform.

  14. Conductive stability of graphene on PET and glass substrates under blue light irradiation

    Science.gov (United States)

    Cao, Xueying; Liu, Xianming; Li, Xiangdi; Lei, Xiaohua; Chen, Weimin

    2018-01-01

    Electrical properties of graphene transparent conductive film under visible light irradiation are investigated. The CVD-grown graphene on Polyethylene Terephthalate (PET) and glass substrates for flexible and rigid touch screen display application are chosen for research. The resistances of graphene with and without gold trichloride (AuCl3) doping are measured in vacuum and atmosphere environment under blue light irradiation. Results show that the conductivities of all samples change slowly under light irradiation. The change rate and degree are related to the substrate material, doping, environment and lighting power. Graphene on flexible PET substrate is more stable than that on rigid glass substrate. Doping can improve the electrical conductivity but induce instability under light irradiation. Finally, the main reason resulting in the graphene resistance slowly increasing under blue light irradiation is analyzed.

  15. Sputtering of silicon and glass substrates with polyatomic molecular ion beams generated from ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, Mitsuaki, E-mail: m-takeuchi@kuee.kyoto-u.ac.jp; Hoshide, Yuki; Ryuto, Hiromichi; Takaoka, Gikan H. [Photonics and Electronics Science and Engineering Center, Kyoto University, Kyotodaigaku-Katsura, Nishikyo-ku, Kyoto 615-8510 (Japan)

    2016-03-15

    The effect of irradiating 1-ethyl-3-methylimidazolium positive (EMIM{sup +}) or dicyanamide negative (DCA{sup –}) ion beams using an ionic liquid ion source was characterized concerning its sputtering properties for single crystalline Si(100) and nonalkaline borosilicate glass substrates. The irradiation of the DCA{sup –} ion beam onto the Si substrate at an acceleration voltage of 4 and 6 kV exhibited detectable sputtered depths greater than a couple of nanometers with an ion fluence of only 1 × 10{sup 15} ions/cm{sup 2}, while the EMIM{sup +} ion beam produced the same depths with an ion fluence 5 × 10{sup 15} ions/cm{sup 2}. The irradiation of a 4 kV DCA{sup –} ion beam at a fluence of 1 × 10{sup 16} ions/cm{sup 2} also yields large etching depths in Si substrates, corresponding to a sputtering yield of Si/DCA{sup – }= 10, and exhibits a smoothed surface roughness of 0.05 nm. The interaction between DCA{sup –} and Si likely causes a chemical reaction that relates to the high sputtering yield and forms an amorphous C-N capping layer that results in the smooth surface. Moreover, sputtering damage by the DCA{sup –} irradiation, which was estimated by Rutherford backscattering spectroscopy with the channeling technique, was minimal compared to Ar{sup +} irradiation at the same condition. In contrast, the glass substrates exhibited no apparent change in surface roughnesses when sputtered by the DCA{sup –} irradiation compared to the unirradiated glass substrates.

  16. Coating extracellular matrix proteins on a (3-aminopropyl)triethoxysilane-treated glass substrate for improved cell culture.

    Science.gov (United States)

    Masuda, Hiro-taka; Ishihara, Seiichiro; Harada, Ichiro; Mizutani, Takeomi; Ishikawa, Masayori; Kawabata, Kazushige; Haga, Hisashi

    2014-01-01

    We demonstrate that a (3-aminopropyl)triethoxysilane-treated glass surface is superior to an untreated glass surface for coating with extracellular matrix (ECM) proteins when used as a cell culture substrate to observe cell physiology and behavior. We found that MDCK cells cultured on untreated glass coated with ECM removed the coated ECM protein and secreted different ECM proteins. In contrast, the cells did not remove the coated ECM protein when seeded on (3-aminopropyl)triethoxysilane-treated (i.e., silanized) glass coated with ECM. Furthermore, the morphology and motility of cells grown on silanized glass differed from those grown on non-treated glass, even when both types of glass were initially coated with laminin. We also found that cells on silanized glass coated with laminin had higher motility than those on silanized glass coated with fibronectin. Based on our results, we suggest that silanized glass is a more suitable cell culture substrate than conventional non-treated glass when coated by ECM for observations of ECM effects on cell physiology.

  17. High-temperature laser annealing for thin film polycrystalline silicon solar cell on glass substrate

    Science.gov (United States)

    Chowdhury, A.; Schneider, J.; Dore, J.; Mermet, F.; Slaoui, A.

    2012-06-01

    Thin film polycrystalline silicon films grown on glass substrate were irradiated with an infrared continuous wave laser for defects annealing and/or dopants activation. The samples were uniformly scanned using an attachment with the laser system. Substrate temperature, scan speed and laser power were varied to find suitable laser annealing conditions. The Raman spectroscopy and Suns- V oc analysis were carried out to qualify the films quality after laser annealing. A maximum enhancement of the open circuit voltage V oc of about 100 mV is obtained after laser annealing of as-grown polysilicon structures. A strong correlation was found between the full width half maximum of the Si crystalline peak and V oc. It is interpreted as due to defects annealing as well as to dopants activation in the absorbing silicon layer. The maximum V oc reached is 485 mV after laser treatment and plasma hydrogenation, thanks to defects passivation.

  18. Development of a glass GEM

    International Nuclear Information System (INIS)

    Takahashi, Hiroyuki; Mitsuya, Yuki; Fujiwara, Takeshi; Fushie, Takashi

    2013-01-01

    Gas electron multipliers (GEMs) apply the concept of gas amplification inside many tiny holes, realizing robust and high-gain proportional counters. However, the polyimide substrate of GEMs prevents them from being used in sealed detector applications. We have fabricated and tested glass GEMs (G-GEMs) with substrates made of photosensitive glass material from the Hoya Corporation. We fabricated G-GEMs with several different hole diameters and thicknesses and successfully operated test G-GEMs with a 100×100 mm 2 effective area. The uniformity of our G-GEMs was good, and the energy resolution for 5.9 keV X-rays was 18.8% under uniform irradiation of the entire effective area. A gas gain by the G-GEMs of up to 6700 was confirmed with a gas mixture of Ar (70%)+CH 4 (30%). X-ray imaging using the charge division readout method was demonstrated

  19. Glass substrates crosslinked with tetracycline-imprinted polymeric silicate and CdTe quantum dots as fluorescent sensors

    Energy Technology Data Exchange (ETDEWEB)

    Chao, Mu-Rong [Department of Occupational Safety and Health, Chung Shan Medical University, Taichung 402, Taiwan (China); Department of Occupational Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan (China); Hu, Chiung-Wen [Department of Public Health, Chung Shan Medical University, Taichung 402, Taiwan (China); Department of Family and Community Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan (China); Chen, Jian-Lian, E-mail: cjl@mail.cmu.edu.tw [School of Pharmacy, China Medical University, No. 91 Hsueh-Shih Road, Taichung 40402, Taiwan (China)

    2016-06-21

    A fluorescence-based sensor that combines the merits of quantum dots (QDs) and molecularly imprinted polymers (MIPs) was first fabricated on a glass substrate via a sol–gel route. Some of the key performance factors, including silane selection, substrate etching, the reaction times of glass silanization and sol–gel polymerization, and the times and methods used for template stripping and loading, were discussed and determined. After fabricating the sensor on either a 3-aminopropyltriethoxysilane (APS) or a 3-mercaptopropyltriethoxysilane (MPS) modified glass substrate, APS showed a much better performance than MPS as both the capping reagent of QDs and the functional monomer of tetracycline-templated MIPs. The APS-QDs on APS-modified glass had a higher imprinted factor (IF = 5.6), a lower LOD (2.1 μM, 3σ), and a more stable signal (2.8%, n = 10 at 70 μM) than those on the MPS-modified glass (IF = 5.2, LOD = 6.5 μM, stability = 6.2%). Furthermore, the recoveries of tetracycline (70 μM) from BSA (133 μg/mL) and FBS (0.66 ppt) by the APS-modified glass were 98% (RSD = 3.5%, n = 5) and 97% (RSD = 5.7%), respectively. For the MPS-modified glass, recoveries of 95% (RSD = 7.2%) and 89% (RSD = 8.7%) were observed at 67 μg/mL of BSA and 0.33 ppt of FBS, respectively. - Highlights: • QD-MIP composites were first built on a glass substrate through a sol–gel route. • Two silanes were evaluated as both a surface modifier and a functional capping monomer. • Fluorescence enhancement by template on glass was different from quenching in solution.

  20. Crystal Nucleation Using Surface-Energy-Modified Glass Substrates.

    Science.gov (United States)

    Nordquist, Kyle A; Schaab, Kevin M; Sha, Jierui; Bond, Andrew H

    2017-08-02

    Systematic surface energy modifications to glass substrates can induce nucleation and improve crystallization outcomes for small molecule active pharmaceutical ingredients (APIs) and proteins. A comparatively broad probe for function is presented in which various APIs, proteins, organic solvents, aqueous media, surface energy motifs, crystallization methods, form factors, and flat and convex surface energy modifications were examined. Replicate studies ( n ≥ 6) have demonstrated an average reduction in crystallization onset times of 52(4)% (alternatively 52 ± 4%) for acetylsalicylic acid from 91% isopropyl alcohol using two very different techniques: bulk cooling to 0 °C using flat surface energy modifications or microdomain cooling to 4 °C from the interior of a glass capillary having convex surface energy modifications that were immersed in the solution. For thaumatin and bovine pancreatic trypsin, a 32(2)% reduction in crystallization onset times was demonstrated in vapor diffusion experiments ( n ≥ 15). Nucleation site arrays have been engineered onto form factors frequently used in crystallization screening, including microscope slides, vials, and 96- and 384-well high-throughput screening plates. Nucleation using surface energy modifications on the vessels that contain the solutes to be crystallized adds a layer of useful variables to crystallization studies without requiring significant changes to workflows or instrumentation.

  1. Scalable creation of gold nanostructures on high performance engineering polymeric substrate

    Science.gov (United States)

    Jia, Kun; Wang, Pan; Wei, Shiliang; Huang, Yumin; Liu, Xiaobo

    2017-12-01

    The article reveals a facile protocol for scalable production of gold nanostructures on a high performance engineering thermoplastic substrate made of polyarylene ether nitrile (PEN) for the first time. Firstly, gold thin films with different thicknesses of 2 nm, 4 nm and 6 nm were evaporated on a spin-coated PEN substrate on glass slide in vacuum. Next, the as-evaporated samples were thermally annealed around the glass transition temperature of the PEN substrate, on which gold nanostructures with island-like morphology were created. Moreover, it was found that the initial gold evaporation thickness and annealing atmosphere played an important role in determining the morphology and plasmonic properties of the formulated Au NPs. Interestingly, we discovered that isotropic Au NPs can be easily fabricated on the freestanding PEN substrate, which was fabricated by a cost-effective polymer solution casting method. More specifically, monodispersed Au nanospheres with an average size of ∼60 nm were obtained after annealing a 4 nm gold film covered PEN casting substrate at 220 °C for 2 h in oxygen. Therefore, the scalable production of Au NPs with controlled morphology on PEN substrate would open the way for development of robust flexible nanosensors and optical devices using high performance engineering polyarylene ethers.

  2. Stress-induced light scattering method for the detection of latent flaws on fine polished glass substrates.

    Science.gov (United States)

    Sakata, Y; Sakai, K; Nonaka, K

    2014-08-01

    Fine polishing techniques, such as the chemical mechanical polishing treatment, are one of the most important technique to glass substrate manufacturing. Mechanical interaction in the form of friction occurs between the abrasive and the substrate surface during polishing, which may cause formation of latent flaws on the glass substrate surface. Fine polishing-induced latent flaws may become obvious during a subsequent cleaning process if glass surfaces are corroded away by chemical interaction with the cleaning liquid. Latent flaws thus reduce product yield. In general, non-destructive inspection techniques, such as the light-scattering methods, used to detect foreign matters on the glass substrate surface. However, it is difficult to detect latent flaws by these methods because the flaws remain closed. Authors propose a novel inspection technique for fine polishing-induced latent flaws by combining the light scattering method with stress effects, referred to as the stress-induced light scattering method (SILSM). SILSM is able to distinguish between latent flaws and particles on the surface. In this method, samples are deformed by an actuator and stress effects are induced around the tips of latent flaws. Due to the photoelastic effect, the refractive index of the material around the tip of a latent flaw is changed. This changed refractive index is in turn detected by a cooled charge-coupled device camera as variations in light scattering intensity. In this report, surface latent flaws are detected non-destructively by applying SILSM to glass substrates, and the utility of SILSM evaluated as a novel inspection technique.

  3. Comparison study of ITO thin films deposited by sputtering at room temperature onto polymer and glass substrates

    International Nuclear Information System (INIS)

    Guillen, C.; Herrero, J.

    2005-01-01

    Indium tin oxide (ITO) thin films have been grown simultaneously onto glass and polymer substrates at room temperature by sputtering from ceramic target. The structure, morphology and electro-optical characteristics of the ITO/glass and ITO/polymer samples have been analyzed by X-ray diffraction, atomic force microscopy, four-point electrical measurements and spectrophotometry. In the selected experimental conditions, the polycrystalline ITO coating shows higher average grain size and higher conductivity, with similar visible transmittance, onto the polymer than onto the glass substrate

  4. Merging high resolution geophysical and geochemical surveys to reduce exploration risk at glass buttes, Oregon

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, Patrick [Ormat Nevada, Inc., Reno, NV (United States); Fercho, Steven [Ormat Nevada, Inc., Reno, NV (United States); Perkin, Doug [Ormat Nevada, Inc., Reno, NV (United States); Martini, Brigette [Corescan Inc., Ascot (Australia); Boshmann, Darrick [Oregon State Univ., Corvallis, OR (United States)

    2015-06-01

    The engineering and studies phase of the Glass Buttes project was aimed at reducing risk during the early stages of geothermal project development. The project’s inclusion of high resolution geophysical and geochemical surveys allowed Ormat to evaluate the value of these surveys both independently and in combination to quantify the most valuable course of action for exploration in an area where structure, permeability, and temperature are the most pressing questions. The sizes of the thermal anomalies at Glass Buttes are unusually large. Over the course of Phase I Ormat acquired high resolution LIDAR data to accurately map fault manifestations at the surface and collected detailed gravity and aeromagnetic surveys to map subsurface structural features. In addition, Ormat collected airborne hyperspectral data to assist with mapping the rock petrology and mineral alteration assemblages along Glass Buttes faults and magnetotelluric (MT) survey to try to better constrain the structures at depth. Direct and indirect identification of alteration assemblages reveal not only the geochemical character and temperature of the causative hydrothermal fluids but can also constrain areas of upflow along specific fault segments. All five datasets were merged along with subsurface lithologies and temperatures to predict the most likely locations for high permeability and hot fluids. The Glass Buttes temperature anomalies include 2 areas, totaling 60 km2 (23 mi2) of measured temperature gradients over 165° C/km (10° F/100ft). The Midnight Point temperature anomaly includes the Strat-1 well with 90°C (194 °F) at 603 m (1981 ft) with a 164 °C/km (10°F/100ft) temperature gradient at bottom hole and the GB-18 well with 71°C (160 °F) at 396 m (1300 ft) with a 182°C/km (11°F/100ft) gradient. The primary area of alteration and elevated temperature occurs near major fault intersections associated with Brothers Fault Zone and Basin and Range systems. Evidence for faulting is

  5. Glass: a candidate engineered material for management of high level nuclear waste

    International Nuclear Information System (INIS)

    Mishra, R.K.; Kaushik, C.P.

    2011-01-01

    While the commercial importance of glass is generally recognized, a few people are aware of extremely wide range of glass formulations that can be made and of the versatility of this engineered material. Some of the recent developments in the field of glass leading to various technological applications include glass fiber reinforcement of cement to give new building materials, substrates for microelectronics circuitry in form of semiconducting glasses, nuclear waste immobilization and specific medical applications. The present paper covers fundamental understanding of glass structure and its application for immobilization of high level radioactive liquid waste. High level radioactive liquid waste (HLW) arising during reprocessing of spent fuel are immobilized in sodium borosilicate glass matrix developed indigenously. Glass compositions are modified according to the composition of HLW to meet the criteria of desirable properties in terms. These glass matrices have been characterized for different properties like homogeneity, chemical durability, thermal stability and radiation stability. (author)

  6. A comparative study of Co thin film deposited on GaAs (1 0 0) and glass substrates

    International Nuclear Information System (INIS)

    Sharma, A.; Brajpuriya, R.; Tripathi, S.; Jain, D.; Dubey, R.; Shripathi, T.; Chaudhari, S.M.

    2006-01-01

    The structural, magnetic and transport properties of Co/GaAs (1 0 0) and Co/glass thin films have been investigated. The structural measurements reveal the crystalline nature of Co thin film grown on GaAs, while microcrystalline nature in case of glass substrate. The film grown on GaAs shows higher coercivity (49.0 G), lower saturation magnetization (3.65 x 10 -4 ) and resistivity (8 μΩ cm) values as compared to that on glass substrate (22 G, 4.77 x 10 -4 and 18 μΩ cm). The grazing incidence X-ray reflectivity and photoemission spectroscopy results show the interaction between Co and GaAs at the interface, while the Co layer grown on glass remains unaffected. These observed results are discussed and interpreted in terms of different growth morphologies and structures of as grown Co thin film on both substrates

  7. Probing the chemistry of adhesion between a 316L substrate and spin-on-glass coating

    DEFF Research Database (Denmark)

    Lampert, Felix; Kadkhodazadeh, Shima; Kasama, Takeshi

    2018-01-01

    Hydrogen silsesquioxane ([HSiO3/2]n) based "spin-on-glass" has been deposited on 316L substrate and cured in Ar/H2 gas atmosphere at 600 ºC to form a continuous surface coating with sub-micrometer thickness. The coating functionality depends primarily on the adhesion to the substrate, which...... is largely affected by the chemical interaction at the interface between the coating and the substrate. We have investigated this interface by transmission electron microscopy and electron energy loss spectroscopy. The analysis identified a 5-10 nm thick interaction zone containing signals from O, Si, Cr....... In agreement with computational thermodynamics, it is proposed that the spin-on-glass forms a chemically bonded silicate-rich interaction zone with the substrate. It was further suggested that this zone is composed of a corundum-type oxide at the substrate surface, followed by an olivine-structure intermediate...

  8. Protective amorphous carbon coatings on glass substrates

    Science.gov (United States)

    Silins, Kaspars; Baránková, Hana; Bardos, Ladislav

    2017-11-01

    Thick amorphous carbon films were deposited by the Magnets-in-Motion (M-M) rf linear hollow cathode at varying acetylene contents in Ar in a hybrid PVD/PE-CVD process directly on glass substrates. The hollow cathode plates manufactured from graphite were used as the PVD target. The measurements show that the films can reach thickness of up to 50 μm at deposition rates of up to 2.5 μm/min. Scratch test measurements confirm that well adhering films several μm thick can be achieved at C2H2 contents of up to 0.5%.

  9. Highly-ordered mesoporous titania thin films prepared via surfactant assembly on conductive indium-tin-oxide/glass substrate and its optical properties

    International Nuclear Information System (INIS)

    Uchida, Hiroshi; Patel, Mehul N.; May, R. Alan; Gupta, Gaurav; Stevenson, Keith J.; Johnston, Keith P.

    2010-01-01

    Highly ordered mesoporous titanium dioxide (titania, TiO 2 ) thin films on indium-tin-oxide (ITO) coated glass were prepared via a Pluronic (P123) block copolymer template and a hydrophilic TiO 2 buffer layer. The contraction of the 3D hexagonal array of P123 micelles upon calcination merges the titania domains on the TiO 2 buffer layer to form mesoporous films with a mesochannel diameter of approximately 10 nm and a pore-to-pore distance of 10 nm. The mesoporous titania films on TiO 2 -buffered ITO/glass featured an inverse mesospace with a hexagonally-ordered structure, whereas the films formed without a TiO 2 buffer layer had a disordered microstructure with submicron cracks because of non-uniform water condensation on the hydrophobic ITO/glass surface. The density of the mesoporous film was 83% that of a bulk TiO 2 film. The optical band gap of the mesoporous titania thin film was approximately 3.4 eV, larger than that for nonporous anatase TiO 2 (∼ 3.2 eV), suggesting that the nanoscopic grain size leads to an increase in the band gap due to weak quantum confinement effects. The ability to form highly-ordered mesoporous titania films on electrically conductive and transparent substrates offers the potential for facile fabrication of high surface area semiconductive films with small diffusion lengths for optoelectronics applications.

  10. Comparative studies on p-type CuI grown on glass and copper substrate by SILAR method

    Energy Technology Data Exchange (ETDEWEB)

    Dhere, Sunetra L.; Latthe, Sanjay S. [Air Glass Laboratory, Department of Physics, Shivaji University, Kolhapur 416 004, Maharashtra (India); Kappenstein, Charles [University of Poitiers, Laboratory of Catalysis in Organic Chemistry, LA CCO, UMR CNRS 6503, Poitiers-86000 (France); Mukherjee, S.K. [Fuel Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai - 400085, Maharashtra India (India); Rao, A. Venkateswara, E-mail: avrao2012@gmail.com [Air Glass Laboratory, Department of Physics, Shivaji University, Kolhapur 416 004, Maharashtra (India)

    2010-04-01

    Depending upon the method of synthesis and the nature of substrate surface, there is variation in the physico-chemical properties of the material. Cuprous iodide films are deposited at room temperature on the glass and copper substrates by a simple SILAR method and the obtained results are compared. The p-type material with optical band gap 2.88 eV is found to be possessing face-centered cubic crystal structure with lattice parameter 6.134 A. We observed irregular particles for the CuI film on the glass substrate while patterned arrays of micro-rods with cabbage like tips on copper substrate, for the same preparative conditions. Also, the material deposited on copper is showing superhydrophobic nature (contact angle {approx}156{sup o}) while that on glass it is hydrophilic (contact angle {approx}88{sup o}). We have characterized the thin films by X-ray diffraction, scanning electron microscopy, surface roughness and contact angle measurement, thermoelectric power measurement and optical studies. This hydrophobic, p-type material with wide band gap will be helpful in the development of optoelectronic devices.

  11. Comparative studies on p-type CuI grown on glass and copper substrate by SILAR method

    International Nuclear Information System (INIS)

    Dhere, Sunetra L.; Latthe, Sanjay S.; Kappenstein, Charles; Mukherjee, S.K.; Rao, A. Venkateswara

    2010-01-01

    Depending upon the method of synthesis and the nature of substrate surface, there is variation in the physico-chemical properties of the material. Cuprous iodide films are deposited at room temperature on the glass and copper substrates by a simple SILAR method and the obtained results are compared. The p-type material with optical band gap 2.88 eV is found to be possessing face-centered cubic crystal structure with lattice parameter 6.134 A. We observed irregular particles for the CuI film on the glass substrate while patterned arrays of micro-rods with cabbage like tips on copper substrate, for the same preparative conditions. Also, the material deposited on copper is showing superhydrophobic nature (contact angle ∼156 o ) while that on glass it is hydrophilic (contact angle ∼88 o ). We have characterized the thin films by X-ray diffraction, scanning electron microscopy, surface roughness and contact angle measurement, thermoelectric power measurement and optical studies. This hydrophobic, p-type material with wide band gap will be helpful in the development of optoelectronic devices.

  12. Top-Emission Organic Light Emitting Diode Fabrication Using High Dissipation Graphite Substrate

    Directory of Open Access Journals (Sweden)

    Yu-Sheng Tsai

    2014-01-01

    Full Text Available This study uses a synthetic graphite fiber as the heat dissipation substrate for top-emission organic light emitting diode (TEOLED to reduce the impact from joule heat. UV glue (YCD91 was spin coated onto the substrate as the insulation layer. The TEOLED structure is (glass; copper; graphite substrate/YCD91 glue/Al/Au/EHI608/TAPC/Alq3/LiF/Al/Ag. The proposed graphite fiber substrate presents better luminous performance compared with glass and copper substrate devices with luminance of 3055 cd/m2 and current efficiency of 6.11 cd/A at 50 mA/cm2. When lighting period of different substrates TEOLED, the substrate case back temperature was observed using different lighting periods. A glass substrate element operating from 5 to 25 seconds at 3000 cd/m2 luminance produced a temperature rate of 1.207°C/sec. Under 4000 cd/m2 luminance the copper and graphite substrate temperature rates were 0.125°C/sec and 0.088°C/sec. Graphite component lifetime was determined to be 1.875 times higher than the glass components and 1.125 times higher than that of copper.

  13. Bonding strength of glass-ceramic trabecular-like coatings to ceramic substrates for prosthetic applications.

    Science.gov (United States)

    Chen, Qiang; Baino, Francesco; Pugno, Nicola M; Vitale-Brovarone, Chiara

    2013-04-01

    A new approach based on the concepts of quantized fracture mechanics (QFM) is presented and discussed in this paper to estimate the bonding strength of trabecular-like coatings, i.e. glass-ceramic scaffolds mimicking the architecture of cancellous bone, to ceramic substrates. The innovative application of glass-derived scaffolds as trabecular-like coatings is proposed in order to enhance the osteointegration of prosthetic ceramic devices. The scaffolds, prepared by polymeric sponge replication, are joined to alumina substrates by a dense glass-ceramic coating (interlayer) and the so-obtained 3-layer constructs are investigated from micro-structural, morphological and mechanical viewpoints. In particular, the fracture strengths of three different crack propagation modes, i.e. glass-derived scaffold fracture, interface delamination or mixed fracture, are predicted in agreement with those of experimental mechanical tests. The approach proposed in this work could have interesting applications towards an ever more rational design of bone tissue engineering biomaterials and coatings, in view of the optimization of their mechanical properties for making them actually suitable for clinical applications. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. High-resolution X-ray diffraction studies of multilayers

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; Hornstrup, Allan; Schnopper, H. W.

    1988-01-01

    High-resolution X-ray diffraction studies of the perfection of state-of-the-art multilayers are presented. Data were obtained using a triple-axis perfect-crystal X-ray diffractometer. Measurements reveal large-scale figure errors in the substrate. A high-resolution triple-axis set up is required...

  15. Mapping the Complex Morphology of Cell Interactions with Nanowire Substrates Using FIB-SEM

    DEFF Research Database (Denmark)

    Wierzbicki, Rafal; Købler, Carsten; Jensen, Mikkel Ravn Boye

    2013-01-01

    Using high resolution focused ion beam scanning electron microscopy (FIB-SEM) we study the details of cell-nanostructure interactions using serial block face imaging. 3T3 Fibroblast cellular monolayers are cultured on flat glass as a control surface and on two types of nanostructured scaffold...... substrates made from silicon black (Nanograss) with low- and high nanowire density. After culturing for 72 hours the cells were fixed, heavy metal stained, embedded in resin, and processed with FIB-SEM block face imaging without removing the substrate. The sample preparation procedure, image acquisition...

  16. Study on Modified Water Glass Used in High Temperature Protective Glass Coating for Ti-6Al-4V Titanium Alloy

    Directory of Open Access Journals (Sweden)

    Shuang Yang

    2018-04-01

    Full Text Available Sodium silicate water glass was modified with sodium polyacrylate as the binder, the composite slurry used for high-temperature oxidation-resistant coating was prepared by mixing glass powder with good lubrication properties in the binder. The properties of the modified binder and high-temperature oxidation resistance of Ti-6Al-4V titanium alloy coated with composite glass coating were studied by XRD, SEM, EDS, TG-DSC and so on. Results showed that sodium polyacrylate modified water glass could obviously improve the suspension stability of the binder, the pyrolytic carbon in the binder at high temperature could increase the surface tension in the molten glass system, and the composite glass coating could be smooth and dense after heating. Pyrolytic carbon diffused and combined with oxygen in the coating under the heating process to protect the titanium alloy from oxidation. The thickness of the oxide layer was reduced 51% after applying the high-temperature oxidation-resistant coating. The coating also showed a nearly 30% reduction in friction coefficient due to the boundary lubricant regime. During cooling, the coating could be peeled off easily because of the mismatched CTE between the coating and substrate.

  17. Effect of barrier layers on the properties of indium tin oxide thin films on soda lime glass substrates

    International Nuclear Information System (INIS)

    Lee, Jung-Min; Choi, Byung-Hyun; Ji, Mi-Jung; An, Yong-Tae; Park, Jung-Ho; Kwon, Jae-Hong; Ju, Byeong-Kwon

    2009-01-01

    In this paper, the electrical, structural and optical properties of indium tin oxide (ITO) films deposited on soda lime glass (SLG) haven been investigated, along with high strain point glass (HSPG) substrate, through radio frequency magnetron sputtering using a ceramic target (In 2 O 3 :SnO 2 , 90:10 wt.%). The ITO films deposited on the SLG show a high electrical resistivity and structural defects compared with those deposited on HSPG due to the Na ions from the SLG diffusing to the ITO film by annealing. However, these properties can be improved by intercalating a barrier layer of SiO 2 or Al 2 O 3 between the ITO film and the SLG substrate. SIMS analysis has confirmed that the barrier layer inhibits the Na ion's diffusion from the SLG. In particular, the ITO films deposited on the Al 2 O 3 barrier layer, show better properties than those deposited on the SiO 2 barrier layer.

  18. Continuous depth-sensing nano-mechanical characterization of living, fixed and dehydrated cells attached on a glass substrate

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yun-Ta; Liao, Jiunn-Der; Chang, Chia-Wei [Department of Materials Science and Engineering, National Cheng Kung University, No. 1, University Road, Tainan 70101, Taiwan (China); Lin, Chou-Ching K [Department of Neurology, National Cheng Kung University, No. 1, University Road, Tainan 70101, Taiwan (China); Ju, Ming-Shaung, E-mail: jdliao@mail.ncku.edu.tw [Department of Mechanical Engineering, National Cheng Kung University, No. 1, University Road, Tainan 70101, Taiwan (China)

    2010-07-16

    Continuous depth-sensing nano-indentation on living, fixed and dehydrated fibroblast cells was performed using a dynamic contact module and vertically measured from a pre-contact state to the glass substrate. The nano-indentation tip-on-cell approaches took advantage of finding a contact surface, followed by obtaining a continuous nano-mechanical profile along the nano-indentation depths. In the experiment, serial indentations from the leading edge, i.e., the lamellipodium to nucleus regions of living, fixed and dehydrated fibroblast cells were examined. Nano-indentations on a living cell anchored upon glass substrate were competent in finding the tip-on-cell contact surfaces and cell heights. For the result on the fixed and the dehydrated cells, cellular nano-mechanical properties were clearly characterized by continuous harmonic contact stiffness (HCS) measurements. The relations of HCS versus measured displacement, varied from the initial tip-on-cell contact to the glass substrate, were presumably divided into three stages, respectively induced by cellular intrinsic behavior, the substrate-dominant property, and the substrate property. This manifestation is beneficial to elucidate how the underlying substrate influences the interpretation of the nano-mechanical property of thin soft matter on a hard substrate. These findings, based upon continuous depth-sensing nano-indentations, are presumably valuable as a reference to related work, e.g., accomplished by atomic force microscopy.

  19. Continuous depth-sensing nano-mechanical characterization of living, fixed and dehydrated cells attached on a glass substrate

    International Nuclear Information System (INIS)

    Yang, Yun-Ta; Liao, Jiunn-Der; Chang, Chia-Wei; Lin, Chou-Ching K; Ju, Ming-Shaung

    2010-01-01

    Continuous depth-sensing nano-indentation on living, fixed and dehydrated fibroblast cells was performed using a dynamic contact module and vertically measured from a pre-contact state to the glass substrate. The nano-indentation tip-on-cell approaches took advantage of finding a contact surface, followed by obtaining a continuous nano-mechanical profile along the nano-indentation depths. In the experiment, serial indentations from the leading edge, i.e., the lamellipodium to nucleus regions of living, fixed and dehydrated fibroblast cells were examined. Nano-indentations on a living cell anchored upon glass substrate were competent in finding the tip-on-cell contact surfaces and cell heights. For the result on the fixed and the dehydrated cells, cellular nano-mechanical properties were clearly characterized by continuous harmonic contact stiffness (HCS) measurements. The relations of HCS versus measured displacement, varied from the initial tip-on-cell contact to the glass substrate, were presumably divided into three stages, respectively induced by cellular intrinsic behavior, the substrate-dominant property, and the substrate property. This manifestation is beneficial to elucidate how the underlying substrate influences the interpretation of the nano-mechanical property of thin soft matter on a hard substrate. These findings, based upon continuous depth-sensing nano-indentations, are presumably valuable as a reference to related work, e.g., accomplished by atomic force microscopy.

  20. The micro-optic photovoltaic behavior of solar cell along with microlens curved glass substrate

    International Nuclear Information System (INIS)

    Xie, Jin; Wu, Keke; Cheng, Jian; Li, Ping; Zheng, Jiahua

    2015-01-01

    Highlights: • A microlens array may be micro-ground on curved photovoltaic glass substrate. • Its micro-optical structure absorbs and scatters the inclined light to solar cell. • It increases conversion efficiency and fill factor in weak and inclined lights. • It improves electricity generation by about 4 times in scattered cloudy daylight. • It produces stronger electricity generation in cloudy day than in sunny day. - Abstract: A hybrid of microlens structure and curved surface may produce high value-added micro-optic performance. Hence, the microlens array is proposed on macro curved glass substrate of thin film solar cell. The objective is to understand how the micro-optic behavior of microlens curved array influences indoor power conversion efficiency and outdoor electricity generation. First, the absorptivities of visible light and infrared light were analyzed in connection with the curved microlens sizes; then the microlens curved glass substrate was fabricated by a Computer Numerical Control (CNC) micro-grinding with micro diamond wheel V-tip; finally, its photovoltaic properties and electricity generation were measured, respectively. It is shown that the microlens curved surface may strongly absorb and scatter light to solar cell. It increases the absorptivity of visible light against plane surface, but it decreases the one of infrared light against microlens surface. When it is applied to solar cell, it enhances the power conversion efficiency by 3.4–10.6% under oblique illumination. When it is applied to solar device, it increases the electricity generation of daylight by 119–106% against microlens surface and by 260–419% against traditional plane surface, respectively. The surprising finding is that it produces much larger electricity generation during cloudy day than during sunny day, but traditional plane surface does not so

  1. A Rapid Method for Deposition of Sn-Doped GaN Thin Films on Glass and Polyethylene Terephthalate Substrates

    Science.gov (United States)

    Pat, Suat; Özen, Soner; Korkmaz, Şadan

    2018-01-01

    We report the influence of Sn doping on microstructure, surface, and optical properties of GaN thin films deposited on glass and polyethylene terephthalate (PET) substrate. Sn-doped GaN thin films have been deposited by thermionic vacuum arc (TVA) at low temperature. TVA is a rapid deposition technology for thin film growth. Surface and optical properties of the thin films were presented. Grain size, height distribution, roughness values were determined. Grain sizes were calculated as 20 nm and 13 nm for glass and PET substrates, respectively. Nano crystalline forms were shown by field emission scanning electron microscopy. Optical band gap values were determined by optical methods and photoluminescence measurement. The optical band gap values of Sn doped GaN on glass and PET were determined to be approximately ˜3.40 eV and ˜3.47 eV, respectively. As a result, TVA is a rapid and low temperature deposition technology for the Sn doped GaN deposited on glass and PET substrate.

  2. Fused silica segments: a possible solution for x-ray telescopes with very high angular resolution like Lynx/XRS

    Science.gov (United States)

    Salmaso, Bianca; Basso, Stefano; Civitani, Marta; Ghigo, Mauro; Hołyszko, Joanna; Spiga, Daniele; Vecchi, Gabriele; Pareschi, Giovanni

    2017-09-01

    In order to look beyond Chandra, the Lynx/XRS mission has been proposed in USA and is currently studied by NASA. The optic will have an effective area of 2.5 m2 and an angular resolution of 0.5 arcsec HEW at 1 keV. In order to fulfill these requirements different technologies are considered, with the approaches of both full and segmented shells (that, possibly, can be also combined together). Concerning the production of segmented mirrors, a variety of thin substrates (glass, metal, silicon) are envisaged, that can be produced using both direct polishing or replication methods. Innovative post-fabrication correction methods (such as piezoelectric or magneto-restrictive film actuators on the back surface, differential deposition, ion implantation) are being also considered in order to reach the final tolerances. In this paper we are presenting a technology development based on fused silica (SiO2) segmented substrates, owing the low coefficient of thermal expansion of Fused Silica and its high chemical stability compared to other glasses. Thin SiO2 segmented substrates (typically 2 mm thick) are figured by direct polishing combined with final profile ion figuring correction, while the roughness reduction is reached with pitch tools. For the profile and roughness correction, the segments are glued to a substrate. In this paper we present the current status of this technology.

  3. Seebeck coefficient of synthesized Titanium Dioxide thin film on FTO glass substrate

    Science.gov (United States)

    Usop, R.; Hamed, N. K. A.; Megat Hasnan, M. M. I.; Ikeda, H.; Sabri, M. F. M.; Ahmad, M. K.; Said, S. M.; Salleh, F.

    2018-04-01

    In order to fabricate a thermoelectric device on glass substrate for harvesting waste heat energy through house appliances, the Seebeck coefficient of translucent TiO2 thin film was investigated. The TiO2 thin film was synthesized by using hydrothermal method with F-SnO2 coated glass as substrate. From scanning electron microscopy analysis, the synthesized TiO2 thin film was found to be in nanometer-scale rod structure with a thickness of 4 µm. The Seebeck coefficient was measured in the temperature range of 300 – 400 K. The Seebeck coefficient is found to be in negative value which shows that synthesized film is an n-type semiconductor material, and is lower than the value of bulk-size material. This reduction in Seebeck coefficient of TiO2 thin film is likely due to the low dimensional effect and the difference of carrier concentration.

  4. High performance multilayered nano-crystalline silicon/silicon-oxide light-emitting diodes on glass substrates

    Energy Technology Data Exchange (ETDEWEB)

    Darbari, S; Shahmohammadi, M; Mortazavi, M; Mohajerzadeh, S [Thin Film and Nano-Electronic Laboratory, School of ECE, University of Tehran, Tehran (Iran, Islamic Republic of); Abdi, Y [Nano-Physics Research Laboratory, Department of Physics, University of Tehran, Tehran (Iran, Islamic Republic of); Robertson, M; Morrison, T, E-mail: mohajer@ut.ac.ir [Department of Physics, Acadia University, Wolfville, NS (Canada)

    2011-09-16

    A low-temperature hydrogenation-assisted sequential deposition and crystallization technique is reported for the preparation of nano-scale silicon quantum dots suitable for light-emitting applications. Radio-frequency plasma-enhanced deposition was used to realize multiple layers of nano-crystalline silicon while reactive ion etching was employed to create nano-scale features. The physical characteristics of the films prepared using different plasma conditions were investigated using scanning electron microscopy, transmission electron microscopy, room temperature photoluminescence and infrared spectroscopy. The formation of multilayered structures improved the photon-emission properties as observed by photoluminescence and a thin layer of silicon oxy-nitride was then used for electrical isolation between adjacent silicon layers. The preparation of light-emitting diodes directly on glass substrates has been demonstrated and the electroluminescence spectrum has been measured.

  5. Anisotropic surroundings effects on photo absorption of partially embedded Au nanospheroids in silica glass substrate

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Xuan; Shibayama, Tamaki, E-mail: shiba@qe.eng.hokudai.ac.jp; Watanabe, Seiichi [Center for Advanced Research of Energy and Materials, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060–8628 (Japan); Yu, Ruixuan; Ishioka, Junya [Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060–8628 (Japan)

    2015-02-15

    The influence of a directly adjacent or an anisotropic surrounding medium alters the plasmonic properties of a nanoparticle because it provides a mechanism for symmetry breaking of the scattering. Given the success of ion irradiation induced embedment of rigid metallic nanospheroids into amorphous substrate, it is possible to examine the effect of the silica glass substrate on the plasmonic properties of these embedded nanospheroids. In this work presented here, discrete dipole approximation (DDA) calculations for the Au nanospheroids’ optical properties were performed based on 3–dimensional (3D) configuration extracted from planar SEM micrographs and cross–sectional TEM micrographs of the Au nanospheroids partially embedded in the silica glass, and the well–matched simulations with respect to the experimental measurements could demonstrate the dielectric constant at the near surface of silica glass decreased after Ar–ion irradiation.

  6. Photovoltaic Properties of Co-doped ZnO Thin Film on Glass Substrate

    International Nuclear Information System (INIS)

    Sabia Aye; Zin Ma Ma; May Nwe Oo; Than Than Win; Yin Maung Maung; Ko Ko Kyaw Soe

    2011-12-01

    Cobalt (Co) 0.4 mol doped zinc oxide (ZnO) fine powder was prepared by solid state mixed oxide route. Phase formation and crystal structure of Co-doped ZnO (CZO) powder were examined by X-ray diffraction (XRD). Scanning Electron Microscopy (SEM) was used to observe the micro structure of Co doped ZnO powder. Energy Dispersive X-ray Fluorescent (EDXRF) technique gave the elemental content of cobalt and zinc. Co-doped ZnO film was formed on glass substrate by spin coating technique. Photovoltaic properties of CZO/glass cell were measured.

  7. Exogenous lipoid pneumonia: high-resolution CT findings

    International Nuclear Information System (INIS)

    Lee, J.S.; Song, K.S.; Lim, T.H.; Im, J.G.; Seo, J.B.

    1999-01-01

    The aim of this study was to assess high-resolution computed tomography (HRCT) findings of exogenous lipoid pneumonia. High-resolution computed tomography was obtained in 25 patients with proven exogenous lipoid pneumonia resulting from aspiration of squalene (derived from shark liver oil). Diagnosis was based on biopsy (n = 9), bronchoalveolar lavage (n = 8), or sputum cytology and clinical findings (n = 8). The clinical history of taking squalene was confirmed in all patients. The CT findings were classified into three patterns: diffuse ground-glass opacity, consolidation, and interstitial abnormalities. Distribution of the abnormalities, duration of taking squalene, predisposing factors for aspiration, and route of administration were analyzed. Ten patients showed diffuse ground-glass opacity pattern. Seven of 10 patients had predisposing conditions such as unconsciousness, pharyngeal dysmotility, or motor disturbances, and 6 patients had a recent history of taking large amount of squalene through nasal route. Seven patients who had consolidation pattern had a history of taking squalene for several months and did not have any predisposing factor. All of the 5 patients who had a pattern of interstitial abnormalities had a history of taking squalene longer than 1 year and showed segmental distribution of interstitial thickening with interposing ground-glass opacities. Three patients simultaneously had two different patterns at different lobes of the lung. The HRCT findings of lipoid pneumonia are ground-glass opacities, consolidation, and interstitial abnormalities. These HRCT findings with appropriate inquiries could be useful for diagnosis of exogeneous lipoid pneumonia. (orig.)

  8. Luminescent properties of CaTiO3:Pr thin-film phosphor deposited on ZnO/ITO/glass substrate

    International Nuclear Information System (INIS)

    Chung, Sung Mook; Han, Sang Hyuk; Song, Kuk Hyun; Kim, Eung Soo; Kim, Young Jin

    2005-01-01

    Red-emitting CaTiO 3 :Pr phosphor thin films were deposited on glass, ZnO/ITO/glass, and ITO/glass substrates by RF magnetron sputtering. The effects of various substrates and heat treatment on the structural and luminous properties were investigated. The films deposited on ZnO/ITO/glass exhibited superior crystallinity and more enhanced PL and CL properties compared with those on ITO/glass. The intermediate ZnO layer between phosphor film and ITO contributed to the growing behaviors and the roughening of CaTiO 3 :Pr phosphor thin films, and consequently, to the excellent luminescence. The luminescent properties of the films were improved by following heat-treatment due to a combination of factors, namely the transformation from amorphous to poly crystalline phases, the activation of the activators, and the elimination of microdefects

  9. Electrophoretic deposition (EPD) of multi-walled carbon nano tubes (MWCNT) onto indium-tin-oxide (ITO) glass substrates

    International Nuclear Information System (INIS)

    Mohd Roslie Ali; Shahrul Nizam Mohd Salleh

    2009-01-01

    Full text: Multi-Walled Carbon Nano tubes (MWCNT) were deposited onto Indium-Tin-Oxide (ITO)-coated glass substrates by introducing the use of Electrophoretic Deposition (EPD) as the method. The Multi-Walled Carbon Nano tubes (MWCNT) were dispersed ultrasonically in ethanol and sodium hydroxide (NaOH) to form stable suspension. The addition of Sodium Hydroxide in ethanol can stabilize the suspension, which was very important step before the deposition take place. Two substrates of Indium-Tin-Oxide(ITO)-coated glass placed in parallel facing each other (conductive side) into the suspension. The deposition occurs at room temperature, which the distance fixed at 1 cm between both electrodes and the voltage level applied was fixed at 400 V, respectively. The deposition time also was fixed at 30 minutes. The deposited ITO-Glass with Multi-Walled Carbon Nano tubes (MWCNT) will be characterized using Scanning Electron Microscope (SEM), Atomic Force Microscope (AFM), and Raman Microscope. The images of SEM shows that the Multi -Walled Carbon Nano tubes (MWCNT) were distributed uniformly onto the surface of ITO-Glass. The deposited ITO-Glass with Multi-Walled Carbon Nano tubes (MWCNT) could be the potential material in various practical applications such as field emission devices, fuel cells, and super capacitors. Electrophoretic deposition (EPD) technique was found to be an efficient technique in forming well distribution of Multi-Walled Carbon Nano tubes (MWCNT) onto ITO-Glass substrates, as proved in characterization methods, in which the optimum conditions will play the major role. (author)

  10. Use of an arc plasma rotating in a magnetic field for metal coating glass substrates

    International Nuclear Information System (INIS)

    Vukanovic, V.; Butler, S.; Kapur, S.; Krakower, E.; Allston, T.; Belfield, K.; Gibson, G.

    1983-01-01

    First results are reported about deposition of metals on glass substrate using a low current arc plasma source at atmospheric pressure. The arc source consists of a graphite cathode rod placed on the axis of a graphite anode cylinder aligned in a magnetic field. The carrier gas is argon. The deposition material, zinc or gold, is evaporated from a reservoir in the cathode. Depositions on flat substrates positioned on the periphery of the rotating plasma within the anode tube and in a jet outside the anode have been investigated. The investigations are planned to lead towards laser fusion target pusher layer fabrication. This fabrication would be facilitated by a high pressure deposition process where target levitation is readily performed

  11. Characterization of TiO2 Thin Films on Glass Substrate Growth Using DC Sputtering Technique

    International Nuclear Information System (INIS)

    Agus Santoso; Tjipto Sujitno; Sayono

    2002-01-01

    It has been fabricated and characterization a TiO 2 thin films deposited on glass substrate using DC sputtering technique. Fabrication of TiO 2 thin films were carried out at electrode voltage 4 kV, sputtering current 5 mA, vacuum pressure 5 x 10 -4 torr, deposition time 150 minutes, and temperature of the substrate were varied from 150 -350 o C, while as a gas sputter was argon. The results was tested their micro structure using SEM, and crystal structure using XRD and found that the crystal structure of TiO 2 powder before deposited on glass substrate was rutile and anatase with orientation (110) and (200) for anatase and (100) and (111) rutile structure. While the crystal structure which deposited at temperature 150 o C and deposition time 2.5 hours was anatase with orientation (001) and (200). (author)

  12. Activation behavior of boron implanted poly-Si on glass substrate

    International Nuclear Information System (INIS)

    Furuta, M.; Shimamura, K.; Tsubokawa, H.; Tokushige, K.; Furuta, H.; Hirao, T.

    2010-01-01

    The activation behavior of boron (B) implanted poly-Si films on glass substrates has been investigated. The effect of B dose and annealing temperature on crystal defects and electrical properties of the films were evaluated by Raman spectroscopy and Hall measurement. It was found that the maximum activation ratio of the film with B dose of 1 x 10 15 cm -2 was obtained when Raman peak associated with disordered amorphous silicon disappeared. However, reverse anneal was observed in the film when the annealing temperature further increased. The results from secondary ion mass spectrometry and Hall measurement revealed that B segregation at the top and bottom interface and deactivation of B substitutional occurred simultaneously in the high-dose specimens when the annealing temperature increased from 600 to 750 o C.

  13. Synthesis of functionally graded bioactive glass-apatite multistructures on Ti substrates by pulsed laser deposition

    International Nuclear Information System (INIS)

    Tanaskovic, D.; Jokic, B.; Socol, G.; Popescu, A.; Mihailescu, I.N.; Petrovic, R.; Janackovic, Dj.

    2007-01-01

    Functionally graded glass-apatite multistructures were synthesized by pulsed laser deposition on Ti substrates. We used sintered targets of hydroxyapatite Ca 10 (PO 4 ) 6 (OH) 2 , or bioglasses in the system SiO 2 -Na 2 O-K 2 O-CaO-MgO-P 2 O 5 with SiO 2 content of either 57 wt.% (6P57) or 61 wt.% (6P61). A UV KrF* (λ = 248 nm, τ > 7 ns) excimer laser source was used for the multipulse laser ablation of the targets. The hydroxyapatite thin films were obtained in H 2 O vapors, while the bioglass layers were deposited in O 2 . Thin films of 6P61 were deposited in direct contact with Ti, because Ti and this glass have similar thermal expansion behaviors, which ensure good bioglass adhesion to the substrate. This glass, however, is not bioactive, so yet more depositions of 6P57 bioglass and/or hydroxyapatite thin films were performed. All structures with hydroxyapatite overcoating were post-treated in a flux of water vapors. The obtained multistructures were characterized by various techniques. X-ray investigations of the coatings found small amounts of crystalline hydroxyapatite in the outer layers. The scanning electron microscopy analyses revealed homogeneous coatings with good adhesion to the Ti substrate. Our studies showed that the multistructures we had obtained were compatible with further use in biomimetic metallic implants with glass-apatite coating applications

  14. A simple technique for direct growth of Au into a nanoporous alumina layer on conductive glass as a reusable SERS substrate

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Jiajie [Chemicobiology and Functional Materials Institute, Nanjing University of Science and Technology, Nanjing 210094 (China); Shen, Muzhong [School of Engineering, AnHui Agricultural University, Hefei 230036 (China); Liu, Siyu; Li, Feng [Chemicobiology and Functional Materials Institute, Nanjing University of Science and Technology, Nanjing 210094 (China); Sun, Dongping, E-mail: sundpe301@163.com [School of Engineering, AnHui Agricultural University, Hefei 230036 (China); Wang, Tianhe, E-mail: thwang56@126.com [Chemicobiology and Functional Materials Institute, Nanjing University of Science and Technology, Nanjing 210094 (China)

    2017-06-01

    Graphical abstract: A simple technique for direct growth of gold nanoparticles (GNPs) into a nanostructured porous alumina layer on conductive glass slide (PAOCG). Gold was uniformly distributed in porous alumina layer. Au/PAOCG can serve as a portable, durable and reusable SERS substrate. - Highlights: • A simple method of producing nanoporous alumina layer on conductive glasses. • A facile technique for direct growth of gold nanoparticles (GNPs) into PAOCG. • It presents a general protocol for preparation of (MNPs) on conductive glasses. • Au/PAOCG exhibits high SERS sensitivity and excellent reusability. - Abstract: In this paper, we describe a simple technique for direct growth of gold nanoparticles (GNPs) into a nanostructured porous alumina layer on conductive glass slide (PAOCG). PAOCG was attached firmly with a small piece of steel and was then immersed in a HAuCl{sub 4} solution. Electro-induced electrons from steel were employed to reduce AuCl{sub 4}{sup −} on PAOCG. The galvanic replacement reaction (GRR) was adopted as the fundamental mechanism for reducing metal precursors. This mechanism was further studied by open circuit potential-time (OCP-t) experiment and the result demonstrated that steel induced the continuous proceeding of this reaction. This strategy presents a simple and general protocol for preparation of metal nanoparticles (MNPs) on conductive glass substrates. The SERS properties of Au/PAOCG were investigated using aqueous crystal violet (CV) and 4-mercaptopyridine (4-Mpy) as probe molecules. Au/PAOCG allowed as low as 10{sup −9} M CV and 10{sup −8} M 4-Mpy to be detected. The reusability of this substrate was achieved by measuring the SERS spectrum of the probe molecules followed with a 400 °C heat treatment for 10 min to remove the residuals. This substrate could be reused for at least ten cycles without any significantly reduced SERS performance. Therefore, this surface can serve as a portable, durable and reusable SERS

  15. Influences of oxygen gas flow rate on electrical properties of Ga-doped ZnO thin films deposited on glass and sapphire substrates

    International Nuclear Information System (INIS)

    Makino, Hisao; Song, Huaping; Yamamoto, Tetsuya

    2014-01-01

    The Ga-doped ZnO (GZO) films deposited on glass and c-plane sapphire substrates have been comparatively studied in order to explore the role of grain boundaries in electrical properties. The influences of oxygen gas flow rates (OFRs) during the deposition by ion-plating were examined. The dependences of carrier concentration, lattice parameters, and characteristic of thermal desorption of Zn on the OFR showed common features between glass and sapphire substrates, however, the Hall mobility showed different behavior. The Hall mobility of GZO films on glass increased with increasing OFR of up to 15 sccm, and decreased with further increasing OFR. On the other hand, the Hall mobility of GZO films on c-sapphire increased for up to 25 sccm. The role of grain boundary in polycrystalline GZO films has been discussed. - Highlights: • Ga-doped ZnO films were deposited on glass and c-sapphire by ion-plating. • The epitaxial growth on c-sapphire was confirmed by X-ray diffraction. • Dependence of Hall mobility showed different tendency between glass and sapphire. • Grain boundaries influence transport properties at high O 2 gas flow rate

  16. Field emission characteristics of vertically aligned carbon nanotubes with honeycomb configuration grown onto glass substrate with titanium coating

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yung-Jui [Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China); Chang, Hsin-Yueh; Chang, Hsuan-Chen [Department of Electronic and computer Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China); Shih, Yi-Ting; Su, Wei-Jhih [Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China); Ciou, Chen-Hong [Department of Electronic and computer Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China); Chen, Yi-Ling [Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China); Honda, Shin-ichi [Graduate School of Engineering, University of Hyogo, Himeji, Hyogo 671-2280 (Japan); Huang, Ying-Sheng [Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China); Department of Electronic and computer Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China); Lee, Kuei-Yi, E-mail: kylee@mail.ntust.edu.tw [Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China); Department of Electronic and computer Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China)

    2014-03-15

    Highlights: • We have successfully designed the honeycomb patterns on glass substrate by photolithography technique. • Honeycomb-VACNTs were synthesized successfully onto glass substrate by using thermal CVD and covered different Ti films on VACNTs by e-beam evaporation. • After coating the Ti films, the current density reached 7 mA/cm{sup 2} when the electric field was 2.5 V/μm. • The fluorescence of VACNTs with Ti 15 nm films exhibits the high brightness screen and emission uniformity. -- Abstract: Carbon nanotubes (CNTs) were grown successfully onto a glass substrate using thermal chemical vapor deposition (TCVD) with C{sub 2}H{sub 2} gas at 700 °C. The synthesized CNTs exhibited good crystallinity and a vertically aligned morphology. The vertically aligned CNTs (VACNTs) were patterned with a honeycomb configuration using photolithography and characterized using field emission (FE) applications. Owing to the electric field concentration, the FE current density of VACNTs with honeycomb configuration was higher than that of the un-patterned VACNTs. Ti was coated onto the VACNT surface utilizing the relatively lower work function property to enhance the FE current density. The FE current density reached up to 7.0 mA/cm{sup 2} at an applied electric field of 2.5 V/μm. A fluorescent screen was monitored to demonstrate uniform FE VACNTs with a honeycomb configuration. The designed field emitter provided an admirable example for FE applications.

  17. Nanosheet controlled epitaxial growth of PbZr0.52Ti0.48O3 thin films on glass substrates

    NARCIS (Netherlands)

    Bayraktar, Muharrem; Chopra, A.; Bijkerk, Frederik; Rijnders, Augustinus J.H.M.

    2014-01-01

    Integration of PbZr0.52Ti0.48O3 (PZT) films on glass substrates is of high importance for device applications. However, to make use of the superior ferro- and piezoelectric properties of PZT, well-oriented crystalline or epitaxial growth with control of the crystal orientation is a prerequisite. In

  18. Spectral and optical performance of electrochromic poly(3,4-ethylenedioxythiophene) (PEDOT) deposited on transparent conducting oxide coated glass and polymer substrates

    International Nuclear Information System (INIS)

    Sindhu, S.; Narasimha Rao, K.; Ahuja, Sharath; Kumar, Anil; Gopal, E.S.R.

    2006-01-01

    Electrochromic devices utilizing conjugated polymers as electrochromic layers have gained increasing attention owing to their optical properties, fast switching times and contrast ratios. Polyethylenedioxythiophene (PEDOT) is an excellent material from its electrochromic properties, high conductivity and high stability in the doped form. Aqueous dispersions of PEDOT were either spin coated or electro-polymerized on transparent conducting oxide coated glass and polyethylene tetraphthalate (PET) film substrates. The spectro- and opto-electrochemical studies of the films on transparent conducting oxide coated glass/PET substrates were performed. These films have application in the fabrication of electrochromic windows (smart windows). Smart window devices having excellent switching characteristics over wide range of temperature are used for glazing applications. The aerospace industry is interested in the development of visors and windows that can control glare for pilots and passengers, especially if the coatings can be made on curved surfaces and electrically conducting

  19. Internet-Enabled High-Resolution Brain Mapping and Virtual Microscopy

    OpenAIRE

    Mikula, Shawn; Trotts, Issac; Stone, James M.; Jones, Edward G.

    2007-01-01

    Virtual microscopy involves the conversion of histological sections mounted on glass microscope slides to high resolution digital images. Virtual microscopy offers several advantages over traditional microscopy, including remote viewing and data-sharing, annotation, and various forms of data-mining.

  20. High-Resolution Electronics: Spontaneous Patterning of High-Resolution Electronics via Parallel Vacuum Ultraviolet (Adv. Mater. 31/2016).

    Science.gov (United States)

    Liu, Xuying; Kanehara, Masayuki; Liu, Chuan; Sakamoto, Kenji; Yasuda, Takeshi; Takeya, Jun; Minari, Takeo

    2016-08-01

    On page 6568, T. Minari and co-workers describe spontaneous patterning based on the parallel vacuum ultraviolet (PVUV) technique, enabling the homogeneous integration of complex, high-resolution electronic circuits, even on large-scale, flexible, transparent substrates. Irradiation of PVUV to the hydrophobic polymer surface precisely renders the selected surface into highly wettable regions with sharply defined boundaries, which spontaneously guides a metal nanoparticle ink into a series of circuit lines and gaps with the widths down to a resolution of 1 μm. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Large piezoelectric strain with ultra-low strain hysteresis in highly c-axis oriented Pb(Zr0.52Ti0.48)O3 films with columnar growth on amorphous glass substrates

    NARCIS (Netherlands)

    Nguyen, Minh D.; Houwman, Evert P.; Rijnders, Guus

    2017-01-01

    Thin films of PbZr0.52Ti0.48O3 (PZT) with largely detached columnar grains, deposited by pulsed laser deposition (PLD) on amorphous glass substrates covered with Ca2Nb3O10 nanosheets as growth template and using LaNiO3 electrode layers, are shown to exhibit very high unipolar piezoelectric strain

  2. Impact of deposition temperature on the properties of SnS thin films grown over silicon substrate—comparative study of structural and optical properties with films grown on glass substrates

    Science.gov (United States)

    Assili, Kawther; Alouani, Khaled; Vilanova, Xavier

    2017-11-01

    Tin sulfide (SnS) thin films were chemically deposited over silicon substrate in a temperature range of 250 °C-400 °C. The effects of deposition temperature on the structural, morphological and optical properties of the films were evaluated. All films present an orthorhombic SnS structure with a preferred orientation along (040). High absorption coefficients (in the range of 105 cm-1) were found for all obtained films with an increase in α value when deposition temperature decreases. Furthermore, the effects of substrate type were investigated based on comparison between the present results and those obtained for SnS films grown under the same deposition conditions but over glass substrate. The results suggest that the formation of SnS films onto glass substrate is faster than onto silicon substrate. It is found that the substrate nature affects the orientation growth of the films and that SnS films deposited onto Si present more defects than those deposited onto glass substrate. The optical transmittance is also restricted by the substrate type, mostly below 1000 nm. The obtained results for SnS films onto silicon suggest their promising integration within optoelectronic devices.

  3. Highly reflective polymeric substrates functionalized utilizing atomic layer deposition

    Science.gov (United States)

    Zuzuarregui, Ana; Coto, Borja; Rodríguez, Jorge; Gregorczyk, Keith E.; Ruiz de Gopegui, Unai; Barriga, Javier; Knez, Mato

    2015-08-01

    Reflective surfaces are one of the key elements of solar plants to concentrate energy in the receivers of solar thermal electricity plants. Polymeric substrates are being considered as an alternative to the widely used glass mirrors due to their intrinsic and processing advantages, but optimizing both the reflectance and the physical stability of polymeric mirrors still poses technological difficulties. In this work, polymeric surfaces have been functionalized with ceramic thin-films by atomic layer deposition. The characterization and optimization of the parameters involved in the process resulted in surfaces with a reflection index of 97%, turning polymers into a real alternative to glass substrates. The solution we present here can be easily applied in further technological areas where seemingly incompatible combinations of polymeric substrates and ceramic coatings occur.

  4. Highly reflective polymeric substrates functionalized utilizing atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Zuzuarregui, Ana, E-mail: a.zuzuarregui@nanogune.eu; Gregorczyk, Keith E. [CIC Nanogune Consolider, de Tolosa Hiribidea 76, 20018 San Sebastián (Spain); Coto, Borja; Ruiz de Gopegui, Unai; Barriga, Javier [IK4-Tekniker, Iñaki Goenaga 5, 20600 Eibar (Spain); Rodríguez, Jorge [Torresol Energy (SENER Group), Avda. de Zugazarte 61, 48930 Las Arenas (Spain); Knez, Mato [CIC Nanogune Consolider, de Tolosa Hiribidea 76, 20018 San Sebastián (Spain); IKERBASQUE Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao (Spain)

    2015-08-10

    Reflective surfaces are one of the key elements of solar plants to concentrate energy in the receivers of solar thermal electricity plants. Polymeric substrates are being considered as an alternative to the widely used glass mirrors due to their intrinsic and processing advantages, but optimizing both the reflectance and the physical stability of polymeric mirrors still poses technological difficulties. In this work, polymeric surfaces have been functionalized with ceramic thin-films by atomic layer deposition. The characterization and optimization of the parameters involved in the process resulted in surfaces with a reflection index of 97%, turning polymers into a real alternative to glass substrates. The solution we present here can be easily applied in further technological areas where seemingly incompatible combinations of polymeric substrates and ceramic coatings occur.

  5. Highly reflective polymeric substrates functionalized utilizing atomic layer deposition

    International Nuclear Information System (INIS)

    Zuzuarregui, Ana; Gregorczyk, Keith E.; Coto, Borja; Ruiz de Gopegui, Unai; Barriga, Javier; Rodríguez, Jorge; Knez, Mato

    2015-01-01

    Reflective surfaces are one of the key elements of solar plants to concentrate energy in the receivers of solar thermal electricity plants. Polymeric substrates are being considered as an alternative to the widely used glass mirrors due to their intrinsic and processing advantages, but optimizing both the reflectance and the physical stability of polymeric mirrors still poses technological difficulties. In this work, polymeric surfaces have been functionalized with ceramic thin-films by atomic layer deposition. The characterization and optimization of the parameters involved in the process resulted in surfaces with a reflection index of 97%, turning polymers into a real alternative to glass substrates. The solution we present here can be easily applied in further technological areas where seemingly incompatible combinations of polymeric substrates and ceramic coatings occur

  6. Substrate-induced instability in gas microstrip detectors

    International Nuclear Information System (INIS)

    Bateman, J.E.; Connolly, J.F.

    1992-12-01

    The results of a programme of research into substrate-induced gain instability in gas microstrip detectors are reported. Information has been collected on a wide range of substrates including many commonly available glasses and ceramics. A theoretical model of the gain instability is proposed. While we have not yet found an acceptable substrate for the construction of high flux detectors our experience points to electronically conductive glasses as the most promising source of a stable substrate. (Author)

  7. Growth of tin oxide thin films composed of nanoparticles on hydrophilic and hydrophobic glass substrates by spray pyrolysis technique

    Energy Technology Data Exchange (ETDEWEB)

    Paloly, Abdul Rasheed; Satheesh, M. [Nano Functional Materials Lab, Department of Physics, Cochin University of Science and Technology, Kochi 682022, Kerala (India); Martínez-Tomás, M. Carmen; Muñoz-Sanjosé, Vicente [Departamento de Física Aplicada y Electromagnetismo, Universitat de Valencia, c/Dr Moliner 50, Burjassot, Valencia 46100 (Spain); Rajappan Achary, Sreekumar [Nano Functional Materials Lab, Department of Physics, Cochin University of Science and Technology, Kochi 682022, Kerala (India); Bushiri, M. Junaid, E-mail: junaidbushiri@gmail.com [Nano Functional Materials Lab, Department of Physics, Cochin University of Science and Technology, Kochi 682022, Kerala (India)

    2015-12-01

    Highlights: • SnO{sub 2} thin films were grown on hydrophilic and hydrophobic glass substrates. • Samples on hydrophobic substrates are having comparatively larger lattice volume. • Films on hydrophobic substrates have larger particles and low density distribution. • Substrate dependent photoluminescence emission is observed and studied. • SnO{sub 2} thin films grown over hydrophobic substrates may find potential applications. - Abstract: In this paper, we have demonstrated the growth of tin oxide (SnO{sub 2}) thin films composed of nanoparticles on hydrophobic (siliconized) and hydrophilic (non-siliconized) glass substrates by using the spray pyrolysis technique. X-ray diffraction (XRD) analysis confirmed the formation of SnO{sub 2} thin films with tetragonal rutile-phase structure. Average particle size of nanoparticles was determined to be in the range of 3–4 nm measured from the front view images obtained by a field emission gun scanning electron microscope (FESEM), while the size of nanoparticle clusters, when present, were in the range of 11–20 nm. Surface morphology of SnO{sub 2} films grown over hydrophobic substrates revealed larger isolated particles which are less crowded compared to the highly crowded and agglomerated smaller particles in films on hydrophilic substrates. Blue shift in the band gap is observed in samples in which the average particle size is slightly larger than the exciton Bohr radius. Photoluminescence (PL) analysis of samples grown over hydrophobic substrates exhibited an intense defect level emission and a weak near band edge emission. The enhanced visible emission from these SnO{sub 2} thin films is attributed to lattice defects formed during the film growth due to the mismatch between the film and the hydrophobic substrate surface.

  8. In situ study of the growth and degradation processes in tetragonal lysozyme crystals on a silicon substrate by high-resolution X-ray diffractometry

    Science.gov (United States)

    Kovalchuk, M. V.; Prosekov, P. A.; Marchenkova, M. A.; Blagov, A. E.; D'yakova, Yu. A.; Tereshchenko, E. Yu.; Pisarevskii, Yu. V.; Kondratev, O. A.

    2014-09-01

    The results of an in situ study of the growth of tetragonal lysozyme crystals by high-resolution X-ray diffractometry are considered. The crystals are grown by the sitting-drop method on crystalline silicon substrates of different types: both on smooth substrates and substrates with artificial surface-relief structures using graphoepitaxy. The crystals are grown in a special hermetically closed crystallization cell, which enables one to obtain images with an optical microscope and perform in situ X-ray diffraction studies in the course of crystal growth. Measurements for lysozyme crystals were carried out in different stages of the crystallization process, including crystal nucleation and growth, developed crystals, the degradation of the crystal structure, and complete destruction.

  9. Alkali passivation mechanism of sol-gel derived TiO2-SiO2 films coated on soda-lime-silica glass substrates

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, A; Matsuno, Y; Katayama, S; Tsuno, T [Nippon Steel Glass Co. Ltd., Tokyo (Japan); Toge, N; Minami, T [University of Osaka Prefecture, Osaka (Japan). College of Engineering

    1992-09-01

    TiO2-SiO2 films prepared by the sol-gel method serves as an effective alkali passivation layer on a soda-lime-silica glass substrate and the film is superior to a sol-gel derived pure SiO2 film from the view point of weathering resistance improvement. To clarify the reason, alkali passivation mechanism of sol-gel derived TiO2-SiO2 glass films with different TiO2 contents coated on a soda-lime-silica glass substrate was studied by SIMS (secondary ion mass spectroscopy) and XPS (X-ray photoelectron spectroscopy) analyses, and compared with the results of a sol-gel derived pure SiO2 film. As a result, the following conclusions were obtained: An increase in TiO2 content in the TiO2 SiO2 film increases the sodium concentration in the film, which was induced by sodium migration from the glass substrate during the heat-treatment. Because of the presence of sodium the TiO2 -SiO2 films serve not as a barrier but as an effective getter of alkali ions and thereby effectively improve the weathering resistance Of the glass substrate. 10 refs., 6 figs.

  10. Influence of annealing temperature on the nanostructure TiO2-SnO2 prepared by electron gun method on the glass substrate and the aluminum/glass

    Directory of Open Access Journals (Sweden)

    N Beigmohammadi

    2013-09-01

    Full Text Available  TiO2-SnO2 thin films were coated on glass and Al / glass substrates by electron gun method. In coating process, the vacuum was 1.5×10-5 torr. Then, films were annealed at 450, 500 and 550 ˚ C. The crystallographic structure and film morphology were investigated by means of XRD and SEM. The electrical (I-V and optical properties were studied by the two point props system and UV/Vis/NIR spectrophotometer. The results showed the films under 550 ˚ C were crystalline. The thickness and grain size were 350 and 50 nm respectively. The electrical conductivity in the sample with Al / glass substrate under 550 ˚ C was better than the other samples. When temperature increased, the energy gap decreased from 4.05 to 4.03 eV for direct cases.

  11. Ultra smooth NiO thin films on flexible plastic (PET) substrate at room temperature by RF magnetron sputtering and effect of oxygen partial pressure on their properties

    International Nuclear Information System (INIS)

    Nandy, S.; Goswami, S.; Chattopadhyay, K.K.

    2010-01-01

    Transparent p-type nickel oxide thin films were grown on polyethylene terephthalate (PET) and glass substrates by RF magnetron sputtering technique in argon + oxygen atmosphere with different oxygen partial pressures at room temperature. The morphology of the NiO thin films grown on PET and glass substrates was studied by atomic force microscope. The rms surface roughnesses of the films were in the range 0.63-0.65 nm. These ultra smooth nanocrystalline NiO thin films are useful for many applications. High resolution transmission electron microscopic studies revealed that the grains of NiO films on the highly flexible PET substrate were purely crystalline and spherical in shape with diameters 8-10 nm. XRD analysis also supported these results. NiO films grown on the PET substrates were found to have better crystalline quality with fewer defects than those on the glass substrates. The sheet resistances of the NiO films deposited on PET and glass substrates were not much different; having values 5.1 and 5.3 kΩ/□ and decreased to 3.05, 3.1 kΩ/□ respectively with increasing oxygen partial pressure. The thicknesses of the films on both substrates were ∼700 nm. It was also noted that further increase in oxygen partial pressure caused increase in resistivity due to formation of defects in NiO.

  12. High rate operation of micro-strip gas chambers on diamond-coated glass

    CERN Document Server

    Bouclier, Roger; Million, Gilbert; Ropelewski, Leszek; Sauli, Fabio; Temmel, T; Cooke, R A; Donnel, S; Sastri, S A; Sonderer, N

    1996-01-01

    Very high rate operation of micro­strip gas chambers can be achieved using slightly conducting substrates. We describe preliminary measurements realized with detectors manufactured on boro-silicate glass coated, before the photo-lithographic processing, with a diamond layer having a surface resistivity of around 1014 ‡/o. Stable medium-term operation, and a rate capability largely exceeding the one obtained with identical plates manufactured on uncoated glass are demonstrated. If these results are confirmed by long-term measurements the diamond coating technology appears very attractive since it allows, with a moderate cost overhead, to use thin, commercially available glass with the required surface quality for the large-scale production of gas micro-strip detectors.

  13. Applications of high resolution NMR to geochemistry: crystalline, glass, and molten silicates

    International Nuclear Information System (INIS)

    Schneider, E.

    1985-11-01

    The nuclear spin interactions and the associated quantum mechanical dynamics which are present in solid state NMR are introduced. A brief overview of aluminosilicate structure is presented and crystalline structure is then reviewed, with emphasis on the contributions made by 29 Si NMR spectroscopy. The local structure of glass aluminosilicates as observed by NMR, is presented with analysis of the information content of 29 Si spectra. A high-temperature (to 1300 0 C) NMR spectroscopic investigation of the local environment and dynamics of molecular motion in molten aluminosilicates is described. A comparison is made of silicate liquid, glass, and crystalline local structure. The atomic and molecular motions present in a melt are investigated through relaxation time (T 1 and T 2 ) measurements as a function of composition and temperature for 23 Na and 29 Si

  14. Preparation and characterization of nanocrystalline ITO thin films on glass and clay substrates by ion-beam sputter deposition method

    International Nuclear Information System (INIS)

    Venkatachalam, S.; Nanjo, H.; Kawasaki, K.; Wakui, Y.; Hayashi, H.; Ebina, T.

    2011-01-01

    Nanocrystalline indium tin oxide (ITO) thin films were prepared on clay-1 (Clay-TPP-LP-SA), clay-2 (Clay-TPP-SA) and glass substrates using ion-beam sputter deposition method. X-ray diffraction (XRD) patterns showed that the as-deposited ITO films on both clay-1 and clay-2 substrates were a mixture of amorphous and polycrystalline. But the as-deposited ITO films on glass substrates were polycrystalline. The surface morphologies of as-deposited ITO/glass has smooth surface; in contrast, ITO/clay-1 has rough surface. The surface roughnesses of ITO thin films on glass and clay-1 substrate were calculated as 4.3 and 83 nm, respectively. From the AFM and SEM analyses, the particle sizes of nanocrystalline ITO for a film thickness of 712 nm were calculated as 19.5 and 20 nm, respectively. Optical study showed that the optical transmittance of ITO/clay-2 was higher than that of ITO/clay-1. The sheet resistances of as-deposited ITO/clay-1 and ITO/clay-2 were calculated as 76.0 and 63.0 Ω/□, respectively. The figure of merit value for as-deposited ITO/clay-2 (12.70 x 10 -3 /Ω) was also higher than that of ITO/clay-1 (9.6 x 10 -3 /Ω), respectively. The flexibilities of ITO/clay-1 and ITO/clay-2 were evaluated as 13 and 12 mm, respectively. However, the ITO-coated clay-2 substrate showed much better optical and electrical properties as well as flexibility as compared to clay-1.

  15. Improved high-frequency soft magnetic properties of FeCo films on organic ferroelectric PVDF substrate

    Energy Technology Data Exchange (ETDEWEB)

    Li, Dong; Wang, Zhen; Han, Xuemeng; Li, Yue; Guo, Xiaobin; Zuo, Yalu; Xi, Li, E-mail: xili@lzu.edu.cn

    2015-02-01

    FeCo films with various thicknesses were fabricated by direct-current magnetron sputtering on corning glass and organic ferroelectric PVDF substrates at the same time with 5 nm Ru seed layer and 5 nm Ta protective layer. The in-plane uniaxial anisotropy field of FeCo on glass substrate increases from 24 to 36 Oe with the increase of FeCo film thickness from 5 to 100 nm. However, a large in-plane anisotropy field of FeCo on PVDF substrate increases with FeCo thickness from 5 to 20 nm and gradually decreases with the FeCo thickness further increasing. Atomic force microscope images of FeCo on glass show quite smooth surface with root-mean-square roughness around 0.5 nm and have none visible granules on the surface for all samples. While, AFM images of FeCo on PVDF show quite rough surface with RMS roughness around 25 nm and have visible granules with the smallest granules appearing at the FeCo thickness of 20 nm. The permeability spectra show the typical ferromagnetic resonance phenomenon and can be well fitted by the LLG equation with the obtained experimental parameters. The ferromagnetic resonance frequency can reach 7.0 GHz for the 20 nm FeCo film on PVDF. Moreover, the quality factor of this sample can respectively reach 26, 12 and 7 at 1.0, 2.0, and 3.0 GHz, indicating the potential real 3G application for high-frequency devices. - Highlights: 1.Magnetic and morphological properties of FeCo films on PVDF substrates are studied. 2.The large anisotropy field of FeCo films on PVDF is obtained. 3.Improved high frequency properties of FeCo films on flexible substrates are obtained. 4.The origin of improved high frequency properties of FeCo films on PVDF is studied.

  16. Transfer-free synthesis of highly ordered Ge nanowire arrays on glass substrates

    Energy Technology Data Exchange (ETDEWEB)

    Nakata, M.; Toko, K., E-mail: toko@bk.tsukuba.ac.jp; Suemasu, T. [Institute of Applied Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573 (Japan); Jevasuwan, W.; Fukata, N. [National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044 (Japan); Saitoh, N.; Yoshizawa, N. [Electron Microscope Facility, TIA, AIST, 16-1 Onogawa, Tsukuba 305-8569 (Japan)

    2015-09-28

    Vertically aligned Ge nanowires (NWs) are directly synthesized on glass via vapor-liquid-solid (VLS) growth using chemical-vapor deposition. The use of the (111)-oriented Ge seed layer, formed by metal-induced crystallization at 325 °C, dramatically improved the density, uniformity, and crystal quality of Ge NWs. In particular, the VLS growth at 400 °C allowed us to simultaneously achieve the ordered morphology and high crystal quality of the Ge NW array. Transmission electron microscopy demonstrated that the resulting Ge NWs had no dislocations or stacking faults. Production of high-quality NW arrays on amorphous insulators will promote the widespread application of nanoscale devices.

  17. Wet chemical etching of Al-doped ZnO film deposited by RF magnetron sputtering method on textured glass substrate for energy application

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Ki Hwan; Nam, Sang Hun; Jung, Won Suk; Lee, Yong Min; Yang, Hee Su; Boo, Jin Hyo [Dept. of Chemistry, Sungkyunkwan University, Suwon (Korea, Republic of)

    2015-03-15

    The etching of glasses in aqueous hydrofluoric acid (HF) solutions is applied in many technological fields. Particularly, the textured transparent conductive oxide materials on the glass substrate etched by HF were used to improve the current density of solar cells. In this study, the textured glass substrate has been etched by solution and the Al-doped ZnO (AZO) thin films have been prepared on this textured glass substrates by RF magnetron sputtering method. After the AZO film deposition, the surface of AZO has been etched by hydrochloric acid with different concentration and etching time. Etched AZO thin films had higher haze ratio and sheet resistance than bare AZO glass. Increases in the root-mean-square surface roughness of AZO films enhanced from 53.78 to 84.46 nm the haze ratio in above 700 nm wavelength. Our process could be applicable in texturing glass and etching AZO surface to fabricate solar cell in industrial scale. We also carried out fabricating an organic solar-cell device. Energy conversion efficiency improvement of 123% was obtained with textured AZO-based solar-cell device compared with that of nontextured solar-cell device.

  18. High-resolution CT findings in Streptococcus milleri pulmonary infection

    International Nuclear Information System (INIS)

    Okada, F.; Ono, A.; Ando, Y.; Nakayama, T.; Ishii, H.; Hiramatsu, K.; Sato, H.; Kira, A.; Otabe, M.; Mori, H.

    2013-01-01

    Aim: To assess pulmonary high-resolution computed tomography (CT) findings in patients with acute Streptococcus milleri pulmonary infection. Materials and methods: Sixty consecutive patients with acute S. milleri pneumonia who had undergone high-resolution CT chest examinations between January 2004 and March 2010 were retrospectively identified. Twenty-seven patients with concurrent infections were excluded. The final study group comprised 33 patients (25 men, 8 women; aged 20–88 years, mean 63.1 years) with S. milleri infection. The patients' clinical findings were assessed. Parenchymal abnormalities, enlarged lymph nodes, and pleural effusion were evaluated on high-resolution CT. Results: Underlying conditions included malignancy (n = 15), a smoking habit (n = 11), and diabetes mellitus (n = 8). CT images of all patients showed abnormal findings, including ground-glass opacity (n = 24), bronchial wall thickening (n = 23), consolidation (n = 17), and cavities (n = 7). Pleural effusion was found in 18 patients, and complex pleural effusions were found in seven patients. Conclusion: Pulmonary infection caused by S. milleri was observed mostly in male patients with underlying conditions such as malignancy or a smoking habit. The CT findings in patients with S. milleri consisted mainly of ground-glass opacity, bronchial wall thickening, pleural effusions, and cavities

  19. Applications of high resolution NMR to geochemistry: crystalline, glass, and molten silicates

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, E.

    1985-11-01

    The nuclear spin interactions and the associated quantum mechanical dynamics which are present in solid state NMR are introduced. A brief overview of aluminosilicate structure is presented and crystalline structure is then reviewed, with emphasis on the contributions made by /sup 29/Si NMR spectroscopy. The local structure of glass aluminosilicates as observed by NMR, is presented with analysis of the information content of /sup 29/Si spectra. A high-temperature (to 1300/sup 0/C) NMR spectroscopic investigation of the local environment and dynamics of molecular motion in molten aluminosilicates is described. A comparison is made of silicate liquid, glass, and crystalline local structure. The atomic and molecular motions present in a melt are investigated through relaxation time (T/sub 1/ and T/sub 2/) measurements as a function of composition and temperature for /sup 23/Na and /sup 29/Si.

  20. Water transport by Na+-coupled cotransporters of glucose (SGLT1) and of iodide (NIS). The dependence of substrate size studied at high resolution

    DEFF Research Database (Denmark)

    Zeuthen, Thomas; Belhage, Bo; Zeuthen, Emil

    2005-01-01

    and osmosis at the membrane with diffusion in the cytoplasm. The combination of high resolution measurements and precise modelling showed that water transport across the membrane can be explained by cotransport of water in the membrane proteins and that intracellular unstirred layers effects are minute.......The relation between substrate and water transport was studied in Na+-coupled cotransporters of glucose (SGLT1) and of iodide (NIS) expressed in Xenopus oocytes. The water transport was monitored from changes in oocyte volume at a resolution of 20 pl, more than one order of magnitude better than...... previous investigations. The rate of cotransport was monitored as the clamp current obtained from two-electrode voltage clamp. The high resolution data demonstrated a fixed ratio between the turn-over of the cotransporter and the rate of water transport. This applied to experiments in which the rate...

  1. High-spatial resolution and high-spectral resolution detector for use in the measurement of solar flare hard x rays

    International Nuclear Information System (INIS)

    Desai, U.D.; Orwig, L.E.

    1988-01-01

    In the areas of high spatial resolution, the evaluation of a hard X-ray detector with 65 micron spatial resolution for operation in the energy range from 30 to 400 keV is proposed. The basic detector is a thick large-area scintillator faceplate, composed of a matrix of high-density scintillating glass fibers, attached to a proximity type image intensifier tube with a resistive-anode digital readout system. Such a detector, combined with a coded-aperture mask, would be ideal for use as a modest-sized hard X-ray imaging instrument up to X-ray energies as high as several hundred keV. As an integral part of this study it was also proposed that several techniques be critically evaluated for X-ray image coding which could be used with this detector. In the area of high spectral resolution, it is proposed to evaluate two different types of detectors for use as X-ray spectrometers for solar flares: planar silicon detectors and high-purity germanium detectors (HPGe). Instruments utilizing these high-spatial-resolution detectors for hard X-ray imaging measurements from 30 to 400 keV and high-spectral-resolution detectors for measurements over a similar energy range would be ideally suited for making crucial solar flare observations during the upcoming maximum in the solar cycle

  2. Atomic layer deposition of alternative glass microchannel plates

    Energy Technology Data Exchange (ETDEWEB)

    O' Mahony, Aileen, E-mail: aom@incomusa.com; Craven, Christopher A.; Minot, Michael J.; Popecki, Mark A.; Renaud, Joseph M.; Bennis, Daniel C.; Bond, Justin L.; Stochaj, Michael E.; Foley, Michael R.; Adams, Bernhard W. [Incom, Inc., 294 Southbridge Road, Charlton, Massachusetts 01507 (United States); Mane, Anil U.; Elam, Jeffrey W. [Argonne National Laboratory, 9700 S. Cass Ave., Argonne, Illinois 60439 (United States); Ertley, Camden; Siegmund, Oswald H. W. [Space Sciences Laboratory, University of California, 7 Gauss Way, Berkeley, California 94720 (United States)

    2016-01-15

    The technique of atomic layer deposition (ALD) has enabled the development of alternative glass microchannel plates (MCPs) with independently tunable resistive and emissive layers, resulting in excellent thickness uniformity across the large area (20 × 20 cm), high aspect ratio (60:1 L/d) glass substrates. Furthermore, the use of ALD to deposit functional layers allows the optimal substrate material to be selected, such as borosilicate glass, which has many benefits compared to the lead-oxide glass used in conventional MCPs, including increased stability and lifetime, low background noise, mechanical robustness, and larger area (at present up to 400 cm{sup 2}). Resistively stable, high gain MCPs are demonstrated due to the deposition of uniform ALD resistive and emissive layers on alternative glass microcapillary substrates. The MCP performance characteristics reported include increased stability and lifetime, low background noise (0.04 events cm{sup −2} s{sup −1}), and low gain variation (±5%)

  3. Highly transparent ITO thin films on photosensitive glass: sol-gel synthesis, structure, morphology and optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Koroesi, Laszlo; Papp, Szilvia; Dekany, Imre [University of Szeged, Supramolecular and Nanostructured Materials Research Group of the Hungarian Academy of Sciences, Szeged (Hungary); Beke, Szabolcs [Italian Institute of Technology, Department of Nanophysics, Genova (Italy); Pecz, Bela; Horvath, Robert; Petrik, Peter; Agocs, Emil [Research Institute for Technical Physics and Materials Science, Budapest (Hungary)

    2012-05-15

    Conductive and highly transparent indium tin oxide (ITO) thin films were prepared on photosensitive glass substrates by the combination of sol-gel and spin-coating techniques. First, the substrates were coated with amorphous Sn-doped indium hydroxide, and these amorphous films were then calcined at 550 {sup circle} C to produce crystalline and electrically conductive ITO layers. The resulting thin films were characterized by means of scanning electron microscopy, UV-Vis spectroscopy, X-ray photoelectron spectroscopy and spectroscopic ellipsometry. The measurements revealed that the ITO films were composed of spherical crystallites around 20 nm in size with mainly cubic crystal structure. The ITO films acted as antireflection coatings increasing the transparency of the coated substrates compared to that of the bare supports. The developed ITO films with a thickness of {proportional_to}170-330 nm were highly transparent in the visible spectrum with sheet resistances of 4.0-13.7 k{omega}/sq. By coating photosensitive glass with ITO films, our results open up new perspectives in micro- and nano-technology, for example in fabricating conductive and highly transparent 3D microreactors. (orig.)

  4. Sputtered type s thermocouples on quartz glass substrates

    International Nuclear Information System (INIS)

    Sopko, B.; Vlk, J.; Chren, D.; Sopko, V.; Dammer, J.; Mengler, J.; Hynek, V.

    2011-01-01

    The work deals with the development of thin film thermocouples and their practical use. The principle of measuring planar thin film thermocouples is the same as for conventional thermocouples and is based on the thermoelectric effect, which named after its discoverer, Seebeck. Seebeck effect is direct conversion of temperature differences to electric voltage. In different applications it is necessary to use temperature sensors with high spatial resolution (with the placement of several measured points on the segment of length 1 mm) and short response time. For this application are currently used planar thermocouples with important advantage in production price and reproducible production. The innovative potential of thin-film thermocouples are to be found mainly in: 1 st use of technology in thin layers, unlike the already mature technologies applied in the production of conventional thermocouple probes are capable of further improvement with the usage of new substrate materials, modified methods for creating electrical contacts to the new thermocouple configuration and adhesive and protective layers, 2 nd in saving precious and rare metals, 3 rd decreasing the thickness of the layers and reducing the overall size of thermo probe. Measuring the temperature of molten steel, leading to a general loss of strength and the subsequent destruction of the probe. Here exhibited the highest resistance of quartz plates used in thin film substrates thermocouples. (authors)

  5. CMOS pixel sensors on high resistive substrate for high-rate, high-radiation environments

    Energy Technology Data Exchange (ETDEWEB)

    Hirono, Toko, E-mail: thirono@uni-bonn.de [Physikalisches Institute der Universität Bonn, Bonn (Germany); Barbero, Marlon; Breugnon, Patrick; Godiot, Stephanie [CPPM, Aix-Marseille Universite, CNRS/IN2P3, Marseille (France); Gonella, Laura; Hemperek, Tomasz; Hügging, Fabian; Krüger, Hans [Physikalisches Institute der Universität Bonn, Bonn (Germany); Liu, Jian; Pangaud, Patrick [CPPM, Aix-Marseille Universite, CNRS/IN2P3, Marseille (France); Peric, Ivan [IPE, Karlsruher Institut für Technologie, Karlsruhe (Germany); Pohl, David-Leon [Physikalisches Institute der Universität Bonn, Bonn (Germany); Rozanov, Alexandre [CPPM, Aix-Marseille Universite, CNRS/IN2P3, Marseille (France); Rymaszewski, Piotr [Physikalisches Institute der Universität Bonn, Bonn (Germany); Wang, Anqing [CPPM, Aix-Marseille Universite, CNRS/IN2P3, Marseille (France); Wermes, Norbert [Physikalisches Institute der Universität Bonn, Bonn (Germany)

    2016-09-21

    A depleted CMOS active pixel sensor (DMAPS) has been developed on a substrate with high resistivity in a high voltage process. High radiation tolerance and high time resolution can be expected because of the charge collection by drift. A prototype of DMAPS was fabricated in a 150 nm process by LFoundry. Two variants of the pixel layout were tested, and the measured depletion depths of the variants are 166 μm and 80 μm. We report the results obtained with the prototype fabricated in this technology.

  6. Room temperature growth of biaxially aligned yttria-stabilized zirconia films on glass substrates by pulsed-laser deposition

    CERN Document Server

    Li Peng; Mazumder, J

    2003-01-01

    Room temperature deposition of biaxially textured yttria-stabilized zirconia (YSZ) films on amorphous glass substrates was successfully achieved by conventional pulsed-laser deposition. The influence of the surrounding gases, their pressure and the deposition time on the structure of the films was studied. A columnar growth process was revealed based on the experimental results. The grown biaxial texture appears as a kind of substrate independence, which makes it possible to fabricate in-plane aligned YSZ films on various substrates.

  7. Highly Electrically Conducting Glass-Graphene Nanoplatelets Hybrid Coatings.

    Science.gov (United States)

    Garcia, E; Nistal, A; Khalifa, A; Essa, Y; Martín de la Escalera, F; Osendi, M I; Miranzo, P

    2015-08-19

    Hybrid coatings consisting of a heat resistant Y2O3-Al2O3-SiO2 (YAS) glass containing 2.3 wt % of graphene nanoplatelets (GNPs) were developed by flame spraying homogeneous ceramic powders-GNP granules. Around 40% of the GNPs survived the high spraying temperatures and were distributed along the splat-interfaces, forming a percolated network. These YAS-GNP coatings are potentially interesting in thermal protection systems and electromagnetic interference shields for aerospace applications; therefore silicon carbide (SiC) materials at the forefront of those applications were employed as substrates. Whereas the YAS coatings are nonconductive, the YAS-GNP coatings showed in-plane electrical conductivity (∼10(2) S·m(-1)) for which a low percolation limit (below 3.6 vol %) is inferred. Indentation tests revealed the formation of a highly damaged indentation zone showing multiple shear displacements between adjacent splats probably favored by the graphene sheets location. The indentation radial cracks typically found in brittle glass coatings are not detected in the hybrid coatings that are also more compliant.

  8. Fabrication of nanostructured transmissive optical devices on ITO-glass with UV1116 photoresist using high-energy electron beam lithography

    Science.gov (United States)

    Williams, Calum; Bartholomew, Richard; Rughoobur, Girish; Gordon, George S. D.; Flewitt, Andrew J.; Wilkinson, Timothy D.

    2016-12-01

    High-energy electron beam lithography for patterning nanostructures on insulating substrates can be challenging. For high resolution, conventional resists require large exposure doses and for reasonable throughput, using typical beam currents leads to charge dissipation problems. Here, we use UV1116 photoresist (Dow Chemical Company), designed for photolithographic technologies, with a relatively low area dose at a standard operating current (80 kV, 40-50 μC cm-2, 1 nAs-1) to pattern over large areas on commercially coated ITO-glass cover slips. The minimum linewidth fabricated was ˜33 nm with 80 nm spacing; for isolated structures, ˜45 nm structural width with 50 nm separation. Due to the low beam dose, and nA current, throughput is high. This work highlights the use of UV1116 photoresist as an alternative to conventional e-beam resists on insulating substrates. To evaluate suitability, we fabricate a range of transmissive optical devices, that could find application for customized wire-grid polarisers and spectral filters for imaging, which operate based on the excitation of surface plasmon polaritons in nanosized geometries, with arrays encompassing areas ˜0.25 cm2.

  9. Pneumocystis carinii pneumonia in acquired immunodeficiency syndrome - correlation of high-resolution computed tomography and anatomopathology

    International Nuclear Information System (INIS)

    Marchiori, Edson; Moreira, Luiza Beatriz; Capone, Domenico; Moraes, Heleno Pinto de; Pereira, Cyntia Inez Guedes Soares

    2001-01-01

    We present the main findings observed on the high-resolution computed tomography examinations of 15 patients with acquired immunodeficiency syndrome and Pneumocystis carinii pneumonia. The high-resolution computed tomography and autopsy findings of 5 patients were also compared. The most frequently observed high-resolution computed tomography patterns were ground-glass attenuation, consolidation areas, crazy-paving pattern and cysts. Nodules and intralobular reticulation were less frequently observed. Ground-glass attenuation and consolidation areas corresponded to alveolar filling with inflammatory exudate. Thickening of the interlobular septa was due to cell infiltration and edema. One patient presented interlobular reticulation, and the pathology study revealed alveolar septa thickening due to cell infiltration and fibrosis. Nodules observed in one of the patients corresponded to a patchy intra alveolar accumulation of microorganisms and inflammatory cells forming a 'granulomatous' pattern. (author)

  10. Electrocardiography-triggered high-resolution CT for reducing cardiac motion artifact. Evaluation of the extent of ground-glass attenuation in patients with idiopathic pulmonary fibrosis

    International Nuclear Information System (INIS)

    Nishiura, Motoko; Johkoh, Takeshi; Yamamoto, Shuji

    2007-01-01

    The aim of this study was to evaluate the decreasing of cardiac motion artifact and whether the extent of ground-glass attenuation of idiopathic pulmonary fibrosis (IPF) was accurately assessed by electrocardiography (ECG)-triggered high-resolution computed tomography (HRCT) by 0.5-s/rotation multidetector-row CT (MDCT). ECG-triggered HRCT were scanned at the end-diastolic phase by a MDCT scanner with the following scan parameters; axial four-slice mode, 0.5 mm collimation, 0.5-s/rotation, 120 kVp, 200 mA/rotation, high-frequency algorithm, and half reconstruction. In 42 patients with IPF, both conventional HRCT (ECG gating (-), full reconstruction) and ECG-triggered HRCT were performed at the same levels (10-mm intervals) with the above scan parameters. The correlation between percent diffusion of carbon monoxide of the lung (%DLCO) and the mean extent of ground-glass attenuation on both conventional HRCT and ECG-triggered HRCT was evaluated with the Spearman rank correlation coefficient test. The correlation between %DLCO and the mean extent of ground-glass attenuation on ECG-triggered HRCT (observer A: r=-0.790, P<0.0001; observer B: r=-0.710, P<0.0001) was superior to that on conventional HRCT (observer A: r=-0.395, P<0.05; observer B: r=-0.577, P=0.002) for both observers. ECG-triggered HRCT by 0.5 s/rotation MDCT can reduce the cardiac motion artifact and is useful for evaluating the extent of ground-glass attenuation of IPF. (author)

  11. Large piezoelectric strain with ultra-low strain hysteresis in highly c-axis oriented Pb(Zr0.52Ti0.48)O3 films with columnar growth on amorphous glass substrates.

    Science.gov (United States)

    Nguyen, Minh D; Houwman, Evert P; Rijnders, Guus

    2017-10-10

    Thin films of PbZr 0 . 52 Ti 0 . 48 O 3 (PZT) with largely detached columnar grains, deposited by pulsed laser deposition (PLD) on amorphous glass substrates covered with Ca 2 Nb 3 O 10 nanosheets as growth template and using LaNiO 3 electrode layers, are shown to exhibit very high unipolar piezoelectric strain and ultra-low strain hysteresis. The observed increase of the piezoelectric coefficient with increasing film thickness is attributed to the reduction of clamping, because of the increasingly less dense columnar microstructure (more separation between the grains) with across the film thickness. A very large piezoelectric coefficient (490 pm/V) and a high piezoelectric strain (~0.9%) are obtained in 4-µm-thick film under an applied electric field of 200 kV/cm, which is several times larger than in usual PZT ceramics. Further very low strain hysteresis (H≈2-4%) is observed in 4 to 5 µm thick films. These belong to the best values demonstrated so far in piezoelectric films. Fatigue testing shows that the piezoelectric properties are stable up to 10 10 cycles. The growth of high quality PZT films with very large strain and piezoelectric coefficients, very low hysteresis and with long-term stability on a technologically important substrate as glass is of great significance for the development of practical piezo driven microelectromechanical actuator systems.

  12. Foaming Glass Using High Pressure Sintering

    DEFF Research Database (Denmark)

    Østergaard, Martin Bonderup; Petersen, Rasmus Rosenlund; König, Jakob

    Foam glass is a high added value product which contributes to waste recycling and energy efficiency through heat insulation. The foaming can be initiated by a chemical or physical process. Chemical foaming with aid of a foaming agent is the dominant industrial process. Physical foaming has two...... to expand. After heat-treatment foam glass can be obtained with porosities of 80–90 %. In this study we conduct physical foaming of cathode ray tube (CRT) panel glass by sintering under high pressure (5-25 MPa) using helium, nitrogen, or argon at 640 °C (~108 Pa s). Reheating a sample in a heating...... variations. One way is by saturation of glass melts with gas. The other involves sintering of powdered glass under a high gas pressure resulting in glass pellets with high pressure bubbles entrapped. Reheating the glass pellets above the glass transition temperature under ambient pressure allows the bubbles...

  13. A Four-Gap Glass-RPC Time-of-Flight Array with 90 ps Time Resolution

    CERN Document Server

    Akindinov, A; Formenti, F; Golovine, V; Klempt, W; Kluge, A; Martemyanov, A N; Martinengo, P; Pinhão, J; Smirnitsky, A V; Spegel, M; Szymanski, P; Zalipska, J

    2001-01-01

    In this paper, we describe the performance of a prototype developed in the context of the ALICE time-of-flight research and development system. The detector module consists of a 32-channel array of 3 x 3 cm2 glass resistive plate chamber (RPC) cells, each of which has four accurately space gaps of 0.3 mm thickness arranged as a pair of double-gap resisitive plate chambers. Operated with a nonflammable gas mixture at atmospheric pressure, the system achieved a time resolution of 90 ps at 98% efficiency with good uniformity and moderate crosstalk. This result shows the feasibility of large-area high-resolution time-of-flight systems based on RPCs at affordable cost.

  14. Optical and morphological characterizations of pyronin dye-poly (vinyl alcohol) thin films formed on glass substrates

    International Nuclear Information System (INIS)

    Meral, Kadem; Arik, Mustafa; Onganer, Yavuz

    2016-01-01

    Thin films of pyronin dye mixed with poly(vinyl alcohol) (PVA) on glass substrate were prepared by using spin-coating technique. The optical and morphological properties of the thin films were studied by UV-Vis., steady-state fluorescence spectroscopies and atomic force microscopy (AFM). The thin films on glass substrate were fabricated at various [PVA]/[dye] (P/D) ratios. Hence, the monomeric and H-aggregates thin films of pyronin dye mixed with PVA were formed as a function of the dye and PVA concentration. It was determined that while the monomeric thin films showed strong fluorescence, the formation of H-aggregates in the thin film caused to decreasing the fluorescence intensity. AFM studies demonstrated that the morphology of the thin film was drastically varied with changing the optical property of the thin film such as monomeric and H-aggregates thin films.

  15. Optical and morphological characterizations of pyronin dye-poly (vinyl alcohol) thin films formed on glass substrates

    Energy Technology Data Exchange (ETDEWEB)

    Meral, Kadem, E-mail: kademm@atauni.edu.tr; Arik, Mustafa, E-mail: marik@tatauni.edu.tr; Onganer, Yavuz, E-mail: yonganer@atauni.edu.tr [Department of Chemistry, Faculty of Sciences, Atatürk University, 25240 Erzurum (Turkey)

    2016-04-18

    Thin films of pyronin dye mixed with poly(vinyl alcohol) (PVA) on glass substrate were prepared by using spin-coating technique. The optical and morphological properties of the thin films were studied by UV-Vis., steady-state fluorescence spectroscopies and atomic force microscopy (AFM). The thin films on glass substrate were fabricated at various [PVA]/[dye] (P/D) ratios. Hence, the monomeric and H-aggregates thin films of pyronin dye mixed with PVA were formed as a function of the dye and PVA concentration. It was determined that while the monomeric thin films showed strong fluorescence, the formation of H-aggregates in the thin film caused to decreasing the fluorescence intensity. AFM studies demonstrated that the morphology of the thin film was drastically varied with changing the optical property of the thin film such as monomeric and H-aggregates thin films.

  16. High-Resolution Inkjet-Printed Oxide Thin-Film Transistors with a Self-Aligned Fine Channel Bank Structure.

    Science.gov (United States)

    Zhang, Qing; Shao, Shuangshuang; Chen, Zheng; Pecunia, Vincenzo; Xia, Kai; Zhao, Jianwen; Cui, Zheng

    2018-05-09

    A self-aligned inkjet printing process has been developed to construct small channel metal oxide (a-IGZO) thin-film transistors (TFTs) with independent bottom gates on transparent glass substrates. Poly(methylsilsesquioxane) was used to pattern hydrophobic banks on the transparent substrate instead of commonly used self-assembled octadecyltrichlorosilane. Photolithographic exposure from backside using bottom-gate electrodes as mask formed hydrophilic channel areas for the TFTs. IGZO ink was selectively deposited by an inkjet printer in the hydrophilic channel region and confined by the hydrophobic bank structure, resulting in the precise deposition of semiconductor layers just above the gate electrodes. Inkjet-printed IGZO TFTs with independent gate electrodes of 10 μm width have been demonstrated, avoiding completely printed channel beyond the broad of the gate electrodes. The TFTs showed on/off ratios of 10 8 , maximum mobility of 3.3 cm 2 V -1 s -1 , negligible hysteresis, and good uniformity. This method is conductive to minimizing the area of printed TFTs so as to the development of high-resolution printing displays.

  17. Structural characterization of epitaxial YBa2Cu3O7 thin films on step-edge substrates by means of high-resolution electron microscopy

    International Nuclear Information System (INIS)

    Jia, C.L.; Kabius, B.; Urban, K.

    1993-01-01

    The microstructure of YBa 2 Cu 3 O 7 films epitaxially grown on step-edge (0 0 1) SrTiO 3 and LaAlO 3 substrates has been characterized by means of high-resolution electron microscopy. The results indicate a relationship between the microstructure of the film across a step and the angle the step makes with the substrate plane. On a steep, high-angle step, the film grows with its c-axis perpendicular to that of the film on substrate surface so that two grain boundaries are formed. In the upper grain boundary, on the average, a (0 1 3) habit plane alternates with a (1 0 3) habit plane. This alternating structure is caused by twinning in the orthorhombic structure. The lower boundaries consist of a chain of (0 1 3)(0 1 3) and (0 1 0)(0 0 1) type segments exhibiting a tendency to tilt the whole habit plane toward the a-b plane of the flank film. Dislocations, stacking faults and misfit strains were also observed in or close to the boundaries. (orig.)

  18. Enhanced columnar structure in CsI layer by substrate patterning

    Energy Technology Data Exchange (ETDEWEB)

    Jing, T.; Cho, G.; Drewery, J.; Kaplan, S.N.; Mireshghi, A.; Perez-Mendez, V.; Wildermuth, D. [Lawrence Berkeley Lab., CA (United States); Fujieda, I. [Xerox Palo Alto Research Center, CA (United States)

    1991-10-01

    Columnar structure in evaporated CsI layers can be controlled by patterning substrates as well as varying evaporation conditions. Mesh-patterned substrates with various dimensions were created by spin-coating polyimide on glass or amorphous silicon substrates and defining patterns with standard photolithography technique. CsI(Tl) layers 200--1000 {mu}m were evaporated. Scintillation properties of these evaporated layers, such as light yield and speed, were equivalent to those of the source materials. Spatial resolution of X-ray detectors consisting of these layers and a linear array of X-ray detectors consisting of these layers and a linear array of Si photodiodes was evaluated by exposing them to a 25{mu}m narrow beam of X-ray. The results obtained with 200{mu}m thick CsI layers coupled to a linear photodiode array with 20 dots/mm resolution showed that the spatial resolution of CsI(Tl) evaporated on patterned substrates was about 75 {mu}m FWHM, whereas that on CsI(Tl) on flat substrates was about 230 {mu}m FWHM. Micrographs taken by SEM revealed that these layers retained the well-defined columnar structure originating from substrate patterns. Adhesion and light transmission of CsI(Tl) were also improved by patterning the substrate.

  19. Microstructural and Wear Behavior Characterization of Porous Layers Produced by Pulsed Laser Irradiation in Glass-Ceramics Substrates.

    Science.gov (United States)

    Sola, Daniel; Conde, Ana; García, Iñaki; Gracia-Escosa, Elena; de Damborenea, Juan J; Peña, Jose I

    2013-09-09

    In this work, wear behavior and microstructural characterization of porous layers produced in glass-ceramic substrates by pulsed laser irradiation in the nanosecond range are studied under unidirectional sliding conditions against AISI316 and corundum counterbodies. Depending on the optical configuration of the laser beam and on the working parameters, the local temperature and pressure applied over the interaction zone can generate a porous glass-ceramic layer. Material transference from the ball to the porous glass-ceramic layer was observed in the wear tests carried out against the AISI316 ball counterface whereas, in the case of the corundum ball, the wear volume loss was concentrated in the porous layer. Wear rate and friction coefficient presented higher values than expected for dense glass-ceramics.

  20. Microstructural and Wear Behavior Characterization of Porous Layers Produced by Pulsed Laser Irradiation in Glass-Ceramics Substrates

    Directory of Open Access Journals (Sweden)

    Jose I. Peña

    2013-09-01

    Full Text Available In this work, wear behavior and microstructural characterization of porous layers produced in glass-ceramic substrates by pulsed laser irradiation in the nanosecond range are studied under unidirectional sliding conditions against AISI316 and corundum counterbodies. Depending on the optical configuration of the laser beam and on the working parameters, the local temperature and pressure applied over the interaction zone can generate a porous glass-ceramic layer. Material transference from the ball to the porous glass-ceramic layer was observed in the wear tests carried out against the AISI316 ball counterface whereas, in the case of the corundum ball, the wear volume loss was concentrated in the porous layer. Wear rate and friction coefficient presented higher values than expected for dense glass-ceramics.

  1. Magnetic properties of Pr-Fe-B thick-film magnets deposited on Si substrates with glass buffer layer

    Science.gov (United States)

    Nakano, M.; Kurosaki, A.; Kondo, H.; Shimizu, D.; Yamaguchi, Y.; Yamashita, A.; Yanai, T.; Fukunaga, H.

    2018-05-01

    In order to improve the magnetic properties of PLD-made Pr-Fe-B thick-film magnets deposited on Si substrates, an adoption of a glass buffer layer was carried out. The glass layer could be fabricated under the deposition rate of approximately 70 μm/h on a Si substrate using a Nd-YAG pulse laser in the vacuum atmosphere. The use of the layer enabled us to reduce the Pr content without a mechanical destruction and enhance (BH)max value by approximately 20 kJ/m3 compared with the average value of non-buffer layered Pr-Fe-B films with almost the same thickness. It is also considered that the layer is also effective to apply a micro magnetization to the films deposited on Si ones.

  2. Highly sensitive pseudo-differential ac-nanocalorimeter for the study of the glass transition

    International Nuclear Information System (INIS)

    Laarraj, Mohcine; Adhiri, Rahma; Moussetad, Mohamed; Ouaskit, Said; Guttin, Christophe; Richard, Jacques; Garden, Jean-Luc

    2015-01-01

    We present a nanocalorimeter designed for the measurement of the dynamic heat capacity of thin films. The microfabricated sensor, the thermal conditioning of the sensor, as well as the highly stable and low noise electronic chain allow measurements of the real and imaginary parts of the complex specific heat with a resolution Δ C/C of about 10 −5 . The performances of this quasi-differential nanocalorimeter were tested on a model of polymeric glass-former, the polyvinyl acetate (PVAc). The high stability and low noise of the device are essential for accurate studies on non-equilibrium slow relaxing systems such as glasses

  3. Extremely improved InP template and GaInAsP system growth on directly-bonded InP/SiO2-Si and InP/glass substrate

    International Nuclear Information System (INIS)

    Matsumoto, Keiichi; Makino, Tatsunori; Kimura, Katsuya; Shimomura, Kazuhiko

    2013-01-01

    We have developed an ultrathin InP template with low defect density on SiO 2 -Si and glass substrate by employing wet etching and wafer direct bonding technique. We have demonstrated epitaxial growth on these substrates and GaInAs/InP multiple quantum well layers were grown by low pressure metal-organic vapor-phase epitaxy. Photoluminescence measurements of the layers show that they are optically active and we have obtained almost the same intensity from these substrates compared to the InP substrate. These results may be attributed to improvement of InP template quality and should provide further improvements in device performance realized on SiO 2 -Si and glass substrate. And, these are promising results in terms of integration of InP-based several functional optical devices on SiO 2 -Si and glass substrate. (copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Sol-gel processing of glasses and glass-ceramics for microelectronic packaging

    International Nuclear Information System (INIS)

    Sriram, M.A.; Kumta, P.N.

    1992-01-01

    In recent years considerable progress has been made in electronic packaging substrate technology. The future need of miniaturization of devices to increase the signal processing speeds calls for an increase in the device density requiring the substrates to be designed for better thermal, mechanical and electrical efficiency. Fast signal propagation with minimum delay requires the substrate to possess very low dielectric constant. Several glasses and glass-ceramic materials have been identified over the years which show good promise as candidate substrate materials. among these borophosphate and borophosphosilicate glass-ceramics have been recently identified to have the lowest dielectric constant. This paper reports that sol-gel processing has been used to synthesize borosilicate, borophosphosilicate and borophosphate glasses and glass-ceramics using inexpensive boron oxide and phosphorus pentoxide precursors. Preliminary results of the processing of these gels and the effect of volatility of boron alkoxide and its modification on the gel structure are described. X-ray diffraction, Differential thermal analyses and FTIR have been used to characterize the as-prepared and heat treated gels

  5. Noise origin of Co-Cr-Ta films on ultra-flat glass-ceramic and Si substrates for longitudinal recording disks

    International Nuclear Information System (INIS)

    Noda, Kohki; Kadokura, Sadao; Naoe, Masahiko

    2001-01-01

    Co 85 Cr 13 Ta 2 /Cr bilayered films for longitudinal recording disks were deposited by plasma-enhanced facing targets sputtering apparatus on 2.5 in and ultra-flat disk substrates of glass-ceramic and single-crystal silicon. Their noise and read/write characteristics were almost comparable with those of the high-performance disks using Co-Cr-Pt films, with coercivity H c of 2.4 kOe, as a reference disk, even though the Co-Cr-Ta films exhibited macroscopic H c of only 800 Oe. Co 85 Cr 13 Ta 2 films are known as low-noise media. This study addresses the problem of how to obtain low-noise media, using excellent sputtering apparatus and disk substrate materials, to allow practical applications in ultra-high-density recording systems, including 1 in microdrives for mobile applications

  6. Amorphous-like interfacial layer between a high-Tc superconducting Tl-1223 film and a Ag substrate examined by high-voltage high-resolution transmission electron microscopy

    International Nuclear Information System (INIS)

    Kim, Bongjun; Kim, Hyuntak; Nagai, Takuro; Matsui, Yoshio; Horiuchi, Shigeo; Jeong, Daeyeong; Deinhofer, Christian; Gritzner, Gerhard; Kim, Youngmin; Kim, Younjoong

    2006-01-01

    The thin amorphous-like layer, formed at the interface between a high-T c superconducting (Tl 0.5 , Pb 0.5 )(Sr 0.8 , Ba 0.2 )Ca 2 Cu 3 O y (Tl-1223) film and a Ag substrate during heating at 910 .deg. C, has been examined by using high-voltage high-resolution transmission electron microscopy. The interfacial layer is less than 10 nm in thickness. It contacts the (001) plane of Tl-1223 and the (113) or (133) planes of Ag in most cases. Its composition is similar to that of Tl-1223, except for the inclusion of a substantial amount of Ag. Its formation proceeds by diffusion of Ag into Tl-1223, during which a structure change first occurs at the layer of CuO 2 + Ca planes. The Tl(Pb)O + the Sr(Ba)O layers are then destroyed to cause the total structure to become amorphous-like. Furthermore, we have found that it is formed under an irradiation of highly energetic electrons.

  7. Microstructural and Optical Properties of Porous Alumina Elaborated on Glass Substrate

    Science.gov (United States)

    Zaghdoudi, W.; Gaidi, M.; Chtourou, R.

    2013-03-01

    A transparent porous anodized aluminum oxide (AAO) nanostructure was formed on a glass substrate using the anodization of a highly pure evaporated aluminum layer. A parametric study was carried out in order to achieve a fine control of the microstructural and optical properties of the elaborated films. The microstructural and surface morphologies of the porous alumina films were characterized by x-ray diffraction and atomic force microscopy. Pore diameter, inter-pore separation, and the porous structure as a function of anodization conditions were investigated. It was then found that the pores density decreases with increasing the anodization time. Regular cylindrical porous AAO films with a flat bottom structure were formed by chemical etching and anodization. A high transmittance in the 300-900 nm range is reported, indicating a fulfilled growth of the transparent sample (alumina) from the aluminum metal. The data showed typical interference oscillations as a result of the transparent characteristics of the film throughout the visible spectral range. The thickness and the optical constants ( n and k) of the porous anodic alumina films, as a function of anodizing time, were obtained using spectroscopic ellipsometry in the ultraviolet-visible-near infrared (UV-vis-NIR) regions.

  8. The peculiarity of the formation of zinc films on a glass substrate

    Energy Technology Data Exchange (ETDEWEB)

    Tomaev, V. V., E-mail: tvaza@mail.ru [Saint Petersburg State University, 198504, Russia, Saint-Petersburg, Petrodvorets, Universitetskii pr. 26 (Russian Federation); Saint Petersburg Mining University, Russia, 199106, St. Petersburg, V.O., 21-st line, 2 (Russian Federation); Polishchuk, V. A., E-mail: vpvova2010@yandex.ru [St. Petersburg University of Information Technologies, Mechanics, and Optics, 197101, Russia, St. Petersburg, Kronverksky Pr., 49 (Russian Federation); Borisov, E. N., E-mail: enbor@bk.ru [Saint Petersburg State University, 198504, Russia, Saint-Petersburg, Petrodvorets, Universitetskii pr. 26 (Russian Federation)

    2016-06-17

    Thin Nanocrystalline films of the zinc have been fabricated by thermal spraying on the glass substrate. Morphologies and structure of the films had been investigated by the methods X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). It is found that the surface of the films has a different types of the nanocrystals zinc. Were detected intergrowths of two or more the nanocrystals, hexagonal shape. Using the theory of homogeneous and heterogeneous nucleation of a new phase, had been evaluated the geometrical and thermodynamic parameters nanocrystals zinc.

  9. Advancements in ion beam figuring of very thin glass plates (Conference Presentation)

    Science.gov (United States)

    Civitani, M.; Ghigo, M.; Hołyszko, J.; Vecchi, G.; Basso, S.; Cotroneo, V.; DeRoo, C. T.; Schwartz, E. D.; Reid, P. B.

    2017-09-01

    The high-quality surface characteristics, both in terms of figure error and of micro-roughness, required on the mirrors of a high angular resolution x-ray telescope are challenging, but in principle well suited with a deterministic and non-contact process like the ion beam figuring. This process has been recently proven to be compatible even with very thin (thickness around 0.4mm) sheet of glasses (like D263 and Eagle). In the last decade, these types of glass have been investigated as substrates for hot slumping, with residual figure errors of hundreds of nanometres. In this view, the mirrors segments fabrication could be envisaged as a simple two phases process: a first replica step based on hot slumping (direct/indirect) followed by an ion beam figuring which can be considered as a post-fabrication correction method. The first ion beam figuring trials, realized on flat samples, showed that the micro-roughness is not damaged but a deeper analysis is necessary to characterize and eventually control/compensate the glass shape variations. In this paper, we present the advancements in the process definition, both on flat and slumped glass samples.

  10. Pulmonary malaria: high-resolution computed tomography findings - a case report

    International Nuclear Information System (INIS)

    Rodrigues, Rosana; Souza, Daniel Andrade Tinoco de; Marchiori, Edson

    2004-01-01

    We report the case of a 38-year-old man with pulmonary malaria. High-resolution computed tomography showed thickening of the peribronchovascular interstitium and interlobular septa, areas of consolidation and ground glass attenuation and bilateral pleural effusion suggesting pulmonary edema. The patient recovered well after receiving specific treatment and was discharged after 11 days of hospitalization. (author)

  11. Development of a novel non-contact inspection technique to detect micro cracks under the surface of a glass substrate by thermal stress-induced light scattering method

    Science.gov (United States)

    Sakata, Yoshitaro; Terasaki, Nao; Nonaka, Kazuhiro

    2017-05-01

    Fine polishing techniques, such as a chemical mechanical polishing treatment, are important techniques in glass substrate manufacturing. However, these techniques may cause micro cracks under the surface of glass substrates because they used mechanical friction. A stress-induced light scattering method (SILSM), which was combined with light scattering method and mechanical stress effects, was proposed for inspecting surfaces to detect polishing-induced micro cracks. However, in the conventional SILSM, samples need to be loaded with physical contact, and the loading point is invisible in transparent materials. Here, we introduced a novel non-contact SILSM using a heating device. A glass substrate was heated first, and then the light scattering intensity of micro cracks was detected by a cooled charge-couple device camera during the natural cooling process. Results clearly showed during the decreasing surface temperature of a glass substrate, appropriate thermal stress is generated for detecting micro cracks by using the SILSM and light scattering intensity from micro cracks changes. We confirmed that non-contact thermal SILSM (T-SILSM) can detect micro cracks under the surface of transparent materials.

  12. Highly sensitive pseudo-differential ac-nanocalorimeter for the study of the glass transition

    Energy Technology Data Exchange (ETDEWEB)

    Laarraj, Mohcine [Institut NÉEL, CNRS, 25 Avenue des Martyrs, F-38042 Grenoble (France); University Grenoble Alpes, Institut NEEL, F-38042 Grenoble (France); Laboratoire d’Ingénierie et des Matériaux (LIMAT), Université Hassan II de Casablanca, Faculté des Sciences Ben M’Sik, Casablanca Maroc (Morocco); Adhiri, Rahma; Moussetad, Mohamed [Laboratoire d’Ingénierie et des Matériaux (LIMAT), Université Hassan II de Casablanca, Faculté des Sciences Ben M’Sik, Casablanca Maroc (Morocco); Ouaskit, Said [Laboratoire de Physique de la Matière Condensée (LPMC), Université Hassan II de Casablanca, Faculté des Sciences Ben M’Sik, Casablanca Maroc (Morocco); Guttin, Christophe; Richard, Jacques; Garden, Jean-Luc [Institut NÉEL, CNRS, 25 Avenue des Martyrs, F-38042 Grenoble (France); University Grenoble Alpes, Institut NEEL, F-38042 Grenoble (France)

    2015-11-15

    We present a nanocalorimeter designed for the measurement of the dynamic heat capacity of thin films. The microfabricated sensor, the thermal conditioning of the sensor, as well as the highly stable and low noise electronic chain allow measurements of the real and imaginary parts of the complex specific heat with a resolution Δ C/C of about 10{sup −5}. The performances of this quasi-differential nanocalorimeter were tested on a model of polymeric glass-former, the polyvinyl acetate (PVAc). The high stability and low noise of the device are essential for accurate studies on non-equilibrium slow relaxing systems such as glasses.

  13. Direct observation of atomic-level nucleation and growth processes from an ultrathin metallic glass films

    Energy Technology Data Exchange (ETDEWEB)

    Huang, K. Q.; Cao, C. R.; Sun, Y. T.; Li, J.; Bai, H. Y.; Zheng, D. N., E-mail: l.gu@iphy.ac.cn, E-mail: dzheng@iphy.ac.cn, E-mail: whw@iphy.ac.cn; Wang, W. H., E-mail: l.gu@iphy.ac.cn, E-mail: dzheng@iphy.ac.cn, E-mail: whw@iphy.ac.cn [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Gu, L., E-mail: l.gu@iphy.ac.cn, E-mail: dzheng@iphy.ac.cn, E-mail: whw@iphy.ac.cn [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Collaborative Innovation Center of Quantum Matter, Beijing 100190 (China)

    2016-01-07

    Till date, there have been no direct atomic-level experimental observations of the earliest stages of the nucleation and growth processes of nanocrystals formed by thermally induced crystallization in ultrathin metallic glasses (MGs). Here, we present a study of the crystallization process in atomically thin and highly stable MG films using double spherical aberration-corrected scanning transmission electron microscopy (Cs-TEM). Taking advantage of the stability of MG films with a slow crystallization process and the atomic-level high resolution of Cs-TEM, we observe the formation of the nucleus precursor of nanocrystals formed by atom aggregation followed by concomitant coalescence and stepwise evolution of the shape of the nanocrystals with a monodispersed and separated bimodal size distribution. Molecular dynamics simulation of the atomic motion in the glass film on a rigid amorphous substrate confirms the stepwise evolution processes of atom aggregation, cluster formation, cluster movement on the substrate, and cluster coalescence into larger crystalline particles. Our results might provide a better fundamental understanding of the nucleation and growth processes of nanocrystals in thin MG films.

  14. Bioactive glass 13-93 as a subchondral substrate for tissue-engineered osteochondral constructs: a pilot study.

    Science.gov (United States)

    Jayabalan, Prakash; Tan, Andrea R; Rahaman, Mohammed N; Bal, B Sonny; Hung, Clark T; Cook, James L

    2011-10-01

    Replacement of diseased areas of the joint with tissue-engineered osteochondral grafts has shown potential in the treatment of osteoarthritis. Bioactive glasses are candidates for the osseous analog of these grafts. (1) Does Bioactive Glass 13-93 (BG 13-93) as a subchondral substrate improve collagen and glycosaminoglycan production in a tissue-engineered cartilage layer? (2) Does BG 13-93 as a culture medium supplement increase the collagen and glycosaminoglycan production and improve the mechanical properties in a tissue-engineered cartilage layer? In Study 1, bioactive glass samples (n = 4) were attached to a chondrocyte-seeded agarose layer to form an osteochondral construct, cultured for 6 weeks, and compared to controls. In Study 2, bioactive glass samples (n = 5) were cocultured with cell-seeded agarose for 6 weeks. The cell-seeded agarose layer was exposed to BG 13-93 either continuously or for the first or last 2 weeks in culture or had no exposure. Osteochondral constructs with a BG 13-93 base had improved glycosaminoglycan deposition but less collagen II content. Agarose scaffolds that had a temporal exposure to BG 13-93 within the culture medium had improved mechanical and biochemical properties compared to continuous or no exposure. When used as a subchondral substrate, BG 13-93 did not improve biochemical properties compared to controls. However, as a culture medium supplement, BG 13-93 improved the biochemical and mechanical properties of a tissue-engineered cartilage layer. BG 13-93 may not be suitable in osteochondral constructs but could have potential as a medium supplement for neocartilage formation.

  15. High Resolution Adjustable Mirror Control for X-ray Astronomy

    Science.gov (United States)

    Trolier-McKinstry, Susan

    We propose to build and test thin film transistor control circuitry for a new highresolution adjustable X-ray mirror technology. This control circuitry will greatly simplify the wiring scheme to address individual actuator cells. The result will be a transformative improvement for the X-ray Surveyor mission concept: mathematical models, which fit the experimental data quite well, indicate that 0.5 arcsecond imaging is feasible through this technique utilizing thin slumped glass substrates with uncorrected angular resolution of order 5-10 arcseconds. In order to correct for figures errors in a telescope with several square meters of collecting area, millions of actuator cells must be set and held at specific voltages. It is clearly not feasible to do this via millions of wires, each one connected to an actuator. Instead, we propose to develop and test thin-film technology that operates on the same principle as megapixel computer screens. We will develop the technologies needed to build thin film piezoelectric actuators, controlled by thin film ZnO transistors, on flexible polyimide films, and to connect those films to the back surfaces of X-ray mirrors on thin glass substrates without deforming the surface. These technologies represent a promising avenue of the development of mirrors for the X-Ray Surveyor mission concept. Such a telescope will make possible detailed studies of a wide variety of astrophysical sources. One example is the Warm-Hot Intergalactic Medium (WHIM), which is thought to account for a large fraction of the normal matter in the universe but which has not been detected unambiguously to date. Another is the growth of supermassive black holes in the early universe. This proposal supports NASA's goals of technical advancement of technologies suitable for future missions, and training of graduate students.

  16. Mechanistic basis for high stereoselectivity and broad substrate scope in the (salen)Co(III)-catalyzed hydrolytic kinetic resolution.

    Science.gov (United States)

    Ford, David D; Nielsen, Lars P C; Zuend, Stephan J; Musgrave, Charles B; Jacobsen, Eric N

    2013-10-16

    In the (salen)Co(III)-catalyzed hydrolytic kinetic resolution (HKR) of terminal epoxides, the rate- and stereoselectivity-determining epoxide ring-opening step occurs by a cooperative bimetallic mechanism with one Co(III) complex acting as a Lewis acid and another serving to deliver the hydroxide nucleophile. In this paper, we analyze the basis for the extraordinarily high stereoselectivity and broad substrate scope observed in the HKR. We demonstrate that the stereochemistry of each of the two (salen)Co(III) complexes in the rate-determining transition structure is important for productive catalysis: a measurable rate of hydrolysis occurs only if the absolute stereochemistry of each of these (salen)Co(III) complexes is the same. Experimental and computational studies provide strong evidence that stereochemical communication in the HKR is mediated by the stepped conformation of the salen ligand, and not the shape of the chiral diamine backbone of the ligand. A detailed computational analysis reveals that the epoxide binds the Lewis acidic Co(III) complex in a well-defined geometry imposed by stereoelectronic rather than steric effects. This insight serves as the basis of a complete stereochemical and transition structure model that sheds light on the reasons for the broad substrate generality of the HKR.

  17. Research on high-efficiency polishing technology of photomask substrate

    Science.gov (United States)

    Zhao, Shijie; Xie, Ruiqing; Zhou, Lian; Liao, Defeng; Chen, Xianhua; Wang, Jian

    2018-03-01

    A method of photomask substrate fabrication is demonstrated ,that the surface figure and roughness of fused silica will converge to target precision rapidly with the full aperture polishing. Surface figure of optical flats in full aperture polishing processes is primarily dependent on the surface profile of polishing pad, therefor, a improved function of polishing mechanism was put forward based on two axis lapping machine and technology experience, and the pad testing based on displacement sensor and the active conditioning method of the pad is applied in this research. Moreover , the clamping deformation of the thin glass is solved by the new pitch dispensing method. The experimental results show that the surface figure of the 152mm×152mm×6.35mm optical glass is 0.25λ(λ=633nm) and the roughness is 0.32nm ,which has meet the requirements of mask substrate for 90 45nm nodes.

  18. Effect of Ag film thickness on the optical and the electrical properties in CuAlO2/Ag/CuAlO2 multilayer films grown on glass substrates

    International Nuclear Information System (INIS)

    Oh, Dohyun; No, Young Soo; Kim, Su Youn; Cho, Woon Jo; Kwack, Kae Dal; Kim, Tae Whan

    2011-01-01

    Research highlights: The CuAlO 2 /Ag/CuAlO 2 multilayer films were grown on glass substrates using radio-frequency magnetron sputtering at room temperature. Effects of Ag film thickness on the optical and the electrical properties in CuAlO 2 /Ag/CuAlO 2 multilayer films grown on glass substrates were investigated. X-ray diffraction patterns showed that the phase of the CuAlO 2 layer was amorphous. Atomic force microscopy images showed that Ag films with a thickness of a few nanometers had island structures. The morphology Ag films with a thickness of 8 nm was uniform. The morphology of the Ag films inserted in the CuAlO 2 films significantly affected the optical transmittance and the resistivity of the CuAlO 2 films deposited on glass substrates. The maximum transmittance of the CuAlO 2 /Ag/CuAlO 2 multilayer films with a thickness of 8 nm was 89.16%. The resistivity of the CuAlO 2 /Ag/CuAlO 2 multilayer films with an Ag film thickness of 18 nm was as small as about 2.8 x 10 -5 Ω cm. The resistivity of the CuAlO 2 /Ag/CuAlO 2 multilayer films was decreased as a result of the thermal annealing treatment. These results indicate that CuAlO 2 /Ag/CuAlO 2 multilayer films grown on glass substrates hold promise for potential applications as TCO films in solar cells. - Abstract: Effects of Ag film thickness on the optical and the electrical properties in CuAlO 2 /Ag/CuAlO 2 multilayer films grown on glass substrates were investigated. Atomic force microscopy images showed that Ag films with a thickness of a few nanometers had island structures. X-ray diffraction patterns showed that the phase of the CuAlO 2 layer was amorphous. The resistivity of the 40 nm-CuAlO 2 /18 nm-Ag/40 nm-CuAlO 2 multilayer films was 2.8 x 10 -5 Ω cm, and the transmittance of the multilayer films with an Ag film thickness of 8 nm was approximately 89.16%. These results indicate that CuAlO 2 /Ag/CuAlO 2 multilayer films grown on glass substrates hold promise for potential applications as

  19. High-silica glass matrix process for high-level waste solidification

    International Nuclear Information System (INIS)

    Simmons, J.H.; Macedo, P.B.

    1981-01-01

    In the search for an optimum glass matrix composition, we have determined that chemical durability and thermal stability are maximized, and that stress development is minimized for glass compositions containing large concentrations of glass-forming oxides, of which silica is the major component (80 mol%). These properties and characteristics were recently demonstrated to belong to very old geological glasses known as tektites (ages of 750,000 to 34 million years.) The barrier to simulating tektite compositions for the waste glasses was the high melting temperature (1600 to 1800 0 C) needed for these glasses. Such temperatures greatly complicate furnace design and maintenance and lead to an intolerable vaporization of many of the radioisotopes into the off-gas system. Research conducted at our laboratory led to the development of a porous high-silica waste glass material with approximately 80% SiO 2 by mole and 30% waste loading by weight. The process can handle a wide variety of compositions, and yields long, elliptical, monolithic samples, which consist of a loaded high-silica core completely enveloped in a high-silica glass tube, which has collapsed upon the core and sealed it from the outside. The outer glass layer is totally free of waste isotopes and provides an integral multibarrier protection system

  20. Wear Resistance of Nano Alumina Containing SiO2-B2O3-Na2O Glass-Ceramic on Steel Substrate

    OpenAIRE

    A. Faeghinia; A. Zamanian

    2016-01-01

    The experimental study has been carried out to investigate the tribological properties of nano Alumina reinforced glass-ceramic enamel. The mixtures of (5, 10, 15 wt.%) nano alumina and glass powders have been air sprayed on stainless steel substrate.. The thixotropy, wetting angle and surface tension of used slurry were increased inherently by 15-wt.% nano alumina. By heat treating at 870-640-525 ºC, the homogeneous crystalline sodium silicate phase beside nano alumina was obtained in glass ...

  1. Transistors using crystalline silicon devices on glass

    Science.gov (United States)

    McCarthy, Anthony M.

    1995-01-01

    A method for fabricating transistors using single-crystal silicon devices on glass. This method overcomes the potential damage that may be caused to the device during high voltage bonding and employs a metal layer which may be incorporated as part of the transistor. This is accomplished such that when the bonding of the silicon wafer or substrate to the glass substrate is performed, the voltage and current pass through areas where transistors will not be fabricated. After removal of the silicon substrate, further metal may be deposited to form electrical contact or add functionality to the devices. By this method both single and gate-all-around devices may be formed.

  2. Biaxially oriented CdTe films on glass substrate through nanostructured Ge/CaF2 buffer layers

    Science.gov (United States)

    Lord, R. J.; Su, P.-Y.; Bhat, I.; Zhang, S. B.; Lu, T.-M.; Wang, G.-C.

    2015-09-01

    Heteroepitaxial CdTe films were grown by metal organic chemical vapor deposition on glass substrates through nanostructured Ge/CaF2 buffer layers which were biaxially oriented. It allows us to explore the structural properties of multilayer biaxial semiconductor films which possess small angle grain boundaries and to test the principle of a solar cell made of such low-cost, low-growth-temperature semiconductor films. Through the x-ray diffraction and x-ray pole figure analysis, the heteroepitaxial relationships of the mutilayered films are determined as [111] in the out-of-plane direction and CdTe//Ge//{ }{{{CaF}}2} in the in-plane direction. The I-V curves measured from an ITO/CdS/CdTe/Ge/CaF2/glass solar cell test structure shows a power conversion efficiency of ˜η = 1.26%, illustrating the initial success of such an approach. The observed non-ideal efficiency is believed to be due to a low shunt resistance and high series resistance as well as some residual large-angle grain boundary effects, leaving room for significant further improvement.

  3. Clinical, pathological, and radiological characteristics of solitary ground-glass opacity lung nodules on high-resolution computed tomography

    Directory of Open Access Journals (Sweden)

    Qiu ZX

    2016-09-01

    Full Text Available Zhi-Xin Qiu,1 Yue Cheng,1 Dan Liu,1 Wei-Ya Wang,2 Xia Wu,2 Wei-Lu Wu,2 Wei-Min Li1,2 1Department of Respiratory Medicine, 2Department of Pathology, West China Hospital, Sichuan University, Chengdu, People’s Republic of China Background: Lung nodules are being detected at an increasing rate year by year with high-resolution computed tomography (HRCT being widely used. Ground-glass opacity nodule is one of the special types of pulmonary nodules that is confirmed to be closely associated with early stage of lung cancer. Very little is known about solitary ground-glass opacity nodules (SGGNs. In this study, we analyzed the clinical, pathological, and radiological characteristics of SGGNs on HRCT.Methods: A total of 95 resected SGGNs were evaluated with HRCT scan. The clinical, pathological, and radiological characteristics of these cases were analyzed.Results: Eighty-one adenocarcinoma and 14 benign nodules were observed. The nodules included 12 (15% adenocarcinoma in situ (AIS, 14 (17% minimally invasive adenocarcinoma (MIA, and 55 (68% invasive adenocarcinoma (IA. No patients with recurrence till date have been identified. The positive expression rates of anaplastic lymphoma kinase and ROS-1 (proto-oncogene tyrosine-protein kinase ROS were only 2.5% and 8.6%, respectively. The specificity and accuracy of HRCT of invasive lung adenocarcinoma were 85.2% and 87.4%. The standard uptake values of only two patients determined by 18F-FDG positron emission tomography/computed tomography (PET/CT were above 2.5. The size, density, shape, and pleural tag of nodules were significant factors that differentiated IA from AIS and MIA. Moreover, the size, shape, margin, pleural tag, vascular cluster, bubble-like sign, and air bronchogram of nodules were significant determinants for mixed ground-glass opacity nodules (all P<0.05.Conclusion: We analyzed the clinical, pathological, and radiological characteristics of SGGNs on HRCT and found that the size, density

  4. An enhanced resolution of the structural environment of zirconium in borosilicate glasses

    International Nuclear Information System (INIS)

    Jollivet, P.; Angeli, F.; Bergeron, B.; Gin, S.; Calas, G.; Galoisy, L.; Ruffoni, M.P.; Trcera, N.

    2013-01-01

    The short- and medium-range local environment of zirconium was determined by Zr L 2,3 -edge and K-edge XANES and by Zr K-edge EXAFS in borosilicate glasses with 1 to 8 mol% ZrO 2 . Regardless of the ZrO 2 content of the glass, Zr is six-coordinated in octahedra with Zr-O distances of 2.09 Angstroms. In the glasses containing 8 mol% ZrO 2 , the octahedra are more distorted than at lower ZrO 2 content. Enhanced resolution in the real space is achieved by recording Zr K-edge EXAFS spectra over a broad energy range, enabling to get access k-values up to 20 Angstroems -1 with a high signal to noise ratio. This allows discriminate between the various second neighbor contributions. A correct fit is based on four Si and two B. This local structure around Zr derived from that of zircono-silicates such as elpidite, in which two Si are replaced by two B. The Zr-Si distances increase from 3.63 ± 0.02 to 3.67 ± 0.01 Angstroms, as Zr-B distances remain constant within uncertainties, as ZrO 2 content increases. Two Na are situated at 3.64 ± 0.03 Angstroms from Zr, ensuring charge compensation of the ZrO 6 sites. Increasing the CaO content from 4 to 8 mol% does not lead to any structural change around Zr. (authors)

  5. Influences of Indium Tin Oxide Layer on the Properties of RF Magnetron-Sputtered (BaSr)TiO3 Thin Films on Indium Tin Oxide-Coated Glass Substrate

    Science.gov (United States)

    Kim, Tae Song; Oh, Myung Hwan; Kim, Chong Hee

    1993-06-01

    Nearly stoichiometric ((Ba+Sr)/Ti=1.08-1.09) and optically transparent (BaSr)TiO3 thin films were deposited on an indium tin oxide (ITO)-coated glass substrate by means of rf magnetron sputtering for their application to the insulating layer of an electroluminescent flat panel display. The influence of the ITO layer on the properties of (BaSr)TiO3 thin films deposited on the ITO-coated substrate was investigated. The ITO layer did not affect the crystallographic orientation of (BaSr)TiO3 thin film, but enhanced the grain growth. Another effect of the ITO layer on (BaSr)TiO3 thin films was the interdiffusion phenomenon, which was studied by means of secondary ion mass spectrometry (SIMS). As the substrate temperature increased, interdiffusion intensified at the interface not only between the grown film and ITO layer but also between the ITO layer and base glass substrate. The refractive index (nf) of (BaSr)TiO3 thin film deposited on a bare glass substrate was 2.138-2.286, as a function of substrate temperature.

  6. Synthesis and properties of ultra-long InP nanowires on glass.

    Science.gov (United States)

    Dhaka, Veer; Pale, Ville; Khayrudinov, Vladislav; Kakko, Joona-Pekko; Haggren, Tuomas; Jiang, Hua; Kauppinen, Esko; Lipsanen, Harri

    2016-12-16

    We report on the synthesis of Au-catalyzed InP nanowires (NWs) on low-cost glass substrates. Ultra-dense and ultra-long (up to ∼250 μm) InP NWs, with an exceptionally high growth rate of ∼25 μm min -1 , were grown directly on glass using metal organic vapor phase epitaxy (MOVPE). Structural properties of InP NWs grown on glass were similar to the ones grown typically on Si substrates showing many structural twin faults but the NWs on glass always exhibited a stronger photoluminescence (PL) intensity at room temperature. The PL measurements of NWs grown on glass reveal two additional prominent impurity related emission peaks at low temperature (10 K). In particular, the strongest unusual emission peak with an activation energy of 23.8 ± 2 meV was observed at 928 nm. Different possibilities including the role of native defects (phosphorus and/or indium vacancies) are discussed but most likely the origin of this PL peak is related to the impurity incorporation from the glass substrate. Furthermore, despite the presence of suspected impurities, the NWs on glass show outstanding light absorption in a wide spectral range (60%-95% for λ = 300-1600 nm). The optical properties and the NW growth mechanism on glass is discussed qualitatively. We attribute the exceptionally high growth rate mostly to the atmospheric pressure growth conditions of our MOVPE reactor and stronger PL intensity on glass due to the impurity doping. Overall, the III-V NWs grown on glass are similar to the ones grown on semiconductor substrates but offer additional advantages such as low-cost and light transparency.

  7. Perspective: Highly stable vapor-deposited glasses

    Science.gov (United States)

    Ediger, M. D.

    2017-12-01

    This article describes recent progress in understanding highly stable glasses prepared by physical vapor deposition and provides perspective on further research directions for the field. For a given molecule, vapor-deposited glasses can have higher density and lower enthalpy than any glass that can be prepared by the more traditional route of cooling a liquid, and such glasses also exhibit greatly enhanced kinetic stability. Because vapor-deposited glasses can approach the bottom of the amorphous part of the potential energy landscape, they provide insights into the properties expected for the "ideal glass." Connections between vapor-deposited glasses, liquid-cooled glasses, and deeply supercooled liquids are explored. The generality of stable glass formation for organic molecules is discussed along with the prospects for stable glasses of other types of materials.

  8. Chronic pneumonitis of infancy: high-resolution CT findings

    International Nuclear Information System (INIS)

    Olsen, Oeystein E.; Owens, Catherine M.; Sebire, Neil J.; Jaffe, Adam

    2004-01-01

    Chronic pneumonitis of infancy (CPI) is a very rare entity. We report the chest radiography and high-resolution CT (HRCT) findings in an infant with histopathologically confirmed CPI. The child was admitted for intensive care 18 h after birth and died at 39 days of age. On HRCT there was diffuse ground-glass change, interlobular septal thickening and discrete centrilobular nodules. An accurate diagnosis is crucial for correct management; however, several entities with the same HRCT findings are recognized. (orig.)

  9. High-resolution wavefront control of high-power laser systems

    International Nuclear Information System (INIS)

    Brase, J.; Brown, C.; Carrano, C.; Kartz, M.; Olivier, S.; Pennington, D.; Silva, D.

    1999-01-01

    Nearly every new large-scale laser system application at LLNL has requirements for beam control which exceed the current level of available technology. For applications such as inertial confinement fusion, laser isotope separation, laser machining, and laser the ability to transport significant power to a target while maintaining good beam quality is critical. There are many ways that laser wavefront quality can be degraded. Thermal effects due to the interaction of high-power laser or pump light with the internal optical components or with the ambient gas are common causes of wavefront degradation. For many years, adaptive optics based on thing deformable glass mirrors with piezoelectric or electrostrictive actuators have be used to remove the low-order wavefront errors from high-power laser systems. These adaptive optics systems have successfully improved laser beam quality, but have also generally revealed additional high-spatial-frequency errors, both because the low-order errors have been reduced and because deformable mirrors have often introduced some high-spatial-frequency components due to manufacturing errors. Many current and emerging laser applications fall into the high-resolution category where there is an increased need for the correction of high spatial frequency aberrations which requires correctors with thousands of degrees of freedom. The largest Deformable Mirrors currently available have less than one thousand degrees of freedom at a cost of approximately $1M. A deformable mirror capable of meeting these high spatial resolution requirements would be cost prohibitive. Therefore a new approach using a different wavefront control technology is needed. One new wavefront control approach is the use of liquid-crystal (LC) spatial light modulator (SLM) technology for the controlling the phase of linearly polarized light. Current LC SLM technology provides high-spatial-resolution wavefront control, with hundreds of thousands of degrees of freedom, more

  10. High rate, fast timing Glass RPC for the high ${\\eta}$ CMS muon detectors

    CERN Document Server

    Lagarde, F.; Laktineh, I.; Buridon, V.; Chen, X.; Combaret, C.; Eynard, A.; Germani, L.; Grenier, G.; Mathez, H.; Mirabito, L.; Petrukhin, A.; Steen, A.; Tromeur, W.; Wang, Y.; Gong, A.; Moreau, N.; de la Taille, C.; Dulucq, F.; Cimmino, A.; Crucy, S.; Fagot, A.; Gul, M.; Rios, A.A.O.; Tytgat, M.; Zaganidis, N.; Aly, S.; Assran, Y.; Radi, A.; Sayed, A.; Singh, G.; Abbrescia, M.; Iaselli, G.; Maggi, M.; Pugliese, G.; Verwilligen, P.; Van Doninck, W.F.; Colafranceschi, S.; Sharmag, A.; Benussi, L.; Bianco, S.; Piccolo, D.; Primavera, F.; Bhatnagar, V.; Kumari, R.; Mehta, A.; Singh, J.; Ahmad, A.; Ahmed, W.; Asghar, M.I.; Awan, I.M.; Hoorani, R.; Muhammad, S.; Shahzad, H.; Shah, M.A.; Cho, S.W.; Choi, S.Y.; Hong, B.; Kang, M.H.; Lee, K.S.; Lim, J.H.; Park, S.K.; Kim, M.S.; Carpinteyro Bernardino, S.; Pedraza, I.; Uribe Estradam, C.; Carrillo Moreno, S.; Vazquez Valencia, F.; Pant, L.M.; Buontempo, S.; Cavallo, N.; Esposito, M.; Fabozzi, F.; Lanza, G.; Orso, I.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Thyssen, F.; Braghieri, A.; Magnani, A.; Montagna, P.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Ban, Y.; Qian, S.J.; Choi, M.; Choi, Y.; Goh, J.; Kim, D.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Litov, L.; Pavlov, B.; Petkov, P.; Bagaturia, I.; Lomidze, D.; Avila, C.; Cabrera, A.; Sanabria, J.C.; Crotty, I.; Vaitkus, J.

    2016-09-09

    The HL-LHC phase is designed to increase by an order of magnitude the amount of data to be collected by the LHC experiments. To achieve this goal in a reasonable time scale the instantaneous luminosity would also increase by an order of magnitude up to $6.10^{34} cm^{-2} s^{-1}$ . The region of the forward muon spectrometer ($|{\\eta}| > 1.6$) is not equipped with RPC stations. The increase of the expected particles rate up to $2 kHz/cm^{2}$ (including a safety factor 3) motivates the installation of RPC chambers to guarantee redundancy with the CSC chambers already present. The actual RPC technology of CMS cannot sustain the expected background level. The new technology that will be chosen should have a high rate capability and provides a good spatial and timing resolution. A new generation of Glass-RPC (GRPC) using low-resistivity (LR) glass is proposed to equip at least the two most far away of the four high ${\\eta}$ muon stations of CMS. First the design of small size prototypes and studies of their perfor...

  11. High Resolution Tracking Devices Based on Capillaries Filled with Liquid Scintillator

    CERN Multimedia

    Bonekamper, D; Vassiltchenko, V; Wolff, T

    2002-01-01

    %RD46 %title\\\\ \\\\The aim of the project is to develop high resolution tracking devices based on thin glass capillary arrays filled with liquid scintillator. This technique provides high hit densities and a position resolution better than 20 $\\mu$m. Further, their radiation hardness makes them superior to other types of tracking devices with comparable performance. Therefore, the technique is attractive for inner tracking in collider experiments, microvertex devices, or active targets for short-lived particle detection. High integration levels in the read-out based on the use of multi-pixel photon detectors and the possibility of optical multiplexing allow to reduce considerably the number of output channels, and, thus, the cost for the detector.\\\\ \\\\New optoelectronic devices have been developed and tested: the megapixel Electron Bombarded CCD (EBCCD), a high resolution image-detector having an outstanding capability of single photo-electron detection; the Vacuum Image Pipeline (VIP), a high-speed gateable pi...

  12. Amorphous-like interfacial layer between a high-T{sub c} superconducting Tl-1223 film and a Ag substrate examined by high-voltage high-resolution transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bongjun; Kim, Hyuntak [Electronics and Tele-Communications Research Institute, Daejeon (Korea, Republic of); Nagai, Takuro; Matsui, Yoshio [National Institute for Materials Science, Tsukuba, Ibaraki (Japan); Horiuchi, Shigeo; Jeong, Daeyeong [Electrotechnology Research Institute, Changwon (Korea, Republic of); Deinhofer, Christian; Gritzner, Gerhard [Johannes Kepler University, Linz (Austria); Kim, Youngmin; Kim, Younjoong [Electron Microscopy Team, Korea Basic Science Institute, Daejeon (Korea, Republic of)

    2006-05-15

    The thin amorphous-like layer, formed at the interface between a high-T{sub c} superconducting (Tl{sub 0.5}, Pb{sub 0.5})(Sr{sub 0.8}, Ba{sub 0.2})Ca{sub 2}Cu{sub 3}O{sub y} (Tl-1223) film and a Ag substrate during heating at 910 .deg. C, has been examined by using high-voltage high-resolution transmission electron microscopy. The interfacial layer is less than 10 nm in thickness. It contacts the (001) plane of Tl-1223 and the (113) or (133) planes of Ag in most cases. Its composition is similar to that of Tl-1223, except for the inclusion of a substantial amount of Ag. Its formation proceeds by diffusion of Ag into Tl-1223, during which a structure change first occurs at the layer of CuO{sub 2} + Ca planes. The Tl(Pb)O + the Sr(Ba)O layers are then destroyed to cause the total structure to become amorphous-like. Furthermore, we have found that it is formed under an irradiation of highly energetic electrons.

  13. Novel low-temperature sintering ceramic substrate based on indialite/cordierite glass ceramics

    Science.gov (United States)

    Varghese, Jobin; Vahera, Timo; Ohsato, Hitoshi; Iwata, Makoto; Jantunen, Heli

    2017-10-01

    In this paper, a novel low-temperature sintering substrate for low temperature co-fired ceramic applications based on indialite/cordierite glass ceramics with Bi2O3 as a sintering aid showing low permittivity (εr) and ultralow dielectric loss (tan δ) is described. The fine powder of indialite was prepared by the crystallization of cordierite glass at 1000 °C/1 h. The optimized sintering temperature was 900 °C with 10 wt % Bi2O3 addition. The relative density achieved was 97%, and εr and tan δ were 6.10 and 0.0001 at 1 MHz, respectively. The composition also showed a moderately low temperature coefficient of relative permittivity of 118 ppm/°C at 1 MHz. The obtained linear coefficient of thermal expansion was 3.5 ppm/°C in the measured temperature range of 100 to 600 °C. The decreasing trend in dielectric loss, the low relative permittivity at 1 MHz, and the low thermal expansion of the newly developed composition make it an ideal choice for radio frequency applications.

  14. The next generation CdTe technology- Substrate foil based solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Ferekides, Chris [Univ. of South Florida, Tampa, FL (United States)

    2017-03-22

    The main objective of this project was the development of one of the most promising Photovoltaic (PV) materials CdTe into a versatile, cost effective, and high throughput technology, by demonstrating substrate devices on foil substrates using high throughput fabrication conditions. The typical CdTe cell is of the superstrate configuration where the solar cell is fabricated on a glass superstrate by the sequential deposition of a TCO, n-type heterojunction partner, p-CdTe absorber, and back contact. Large glass modules are heavy and present significant challenges during manufacturing (uniform heating, etc.). If a substrate CdTe cell could be developed (the main goal of this project) a roll-to-toll high throughput technology could be developed.

  15. Surface adhesion study of La2O3 thin film on Si and glass substrate for micro-flexography printing

    Science.gov (United States)

    Hassan, S.; Yusof, M. S.; Embong, Z.; Maksud, M. I.

    2017-01-01

    Adhesive property can be described as an interchangeably with some ink and substance which was applied to one surface of two separate items that bonded together. Lanthanum oxide (La2O3) has been used as a rare earth metal candidate as depositing agent or printing ink. This metal deposit was embedded on Silica (Si) wafer and glass substrate using Magnetron Sputtering technique. The choose of Lanthanum oxide as a target is due to its wide application in producing electronic devices such as thin film battery and printed circuit board. The La2O3 deposited on the surface of Si wafer and glass substrate was then analyzed using Angle Resolve X-Ray Photoelectron Spectroscopy (ARXPS). The position for each synthetic component in the narrow scan of Lanthanum (La) 3d and O 1s are referred to the electron binding energy (eV). This research will focus on 3 narrow scan regions which are C 1s, O 1s and La 3d. Further discussion of the spectrum evaluation will be discussed in detail. Here, it is proposed that from the adhesive and surface chemical properties of La is the best on glass substrate which suitable as an alternative medium for micro-flexography printing technique in printing multiple fine solid lines at nano scale. Hence, this paper will describe the capability of this particular metal as rare earth metal in a practice of micro-flexography printing.

  16. Idiopathic pulmonary fibrosis and collagen vascular diseases - high resolution CT findings

    International Nuclear Information System (INIS)

    Ferreira Neto, Armando Leao; Mogami, Roberto; Marchiori, Edson; Capone, Domenico

    1996-01-01

    The aspects of the thorax high-resolution computed tomography of 15 patients with idiopathic pulmonary fibrosis and 11 patients with collagen vascular diseases are described and characterized mainly by the presence of reticular lesions with little cysts predominantly in the periphery and lower lobes. They may be associated with ground-glass lesions that, as usual, means areas of alveolitis. (author)

  17. Stability of perovskite solar cells on flexible substrates

    Science.gov (United States)

    Tam, Ho Won; Chen, Wei; Liu, Fangzhou; He, Yanling; Leung, Tik Lun; Wang, Yushu; Wong, Man Kwong; Djurišić, Aleksandra B.; Ng, Alan Man Ching; He, Zhubing; Chan, Wai Kin; Tang, Jinyao

    2018-02-01

    Perovskite solar cells are emerging photovoltaic technology with potential for low cost, high efficiency devices. Currently, flexible devices efficiencies over 15% have been achieved. Flexible devices are of significant interest for achieving very low production cost via roll-to-roll processing. However, the stability of perovskite devices remains a significant challenge. Unlike glass substrate which has negligible water vapor transmission rate (WVTR), polymeric flexible film substrates suffer from high moisture permeability. As PET and PEN flexible substrates exhibit higher water permeability then glass, transparent flexible backside encapsulation should be used to maximize light harvesting in perovskite layer while WVTR should be low enough. Wide band gap materials are transparent in the visible spectral range low temperature processable and can be a moisture barrier. For flexible substrates, approaches like atomic layer deposition (ALD) and low temperature solution processing could be used for metal oxide deposition. In this work, ALD SnO2, TiO2, Al2O3 and solution processed spin-on-glass was used as the barrier layer on the polymeric side of indium tin oxide (ITO) coated PEN substrates. The UV-Vis transmission spectra of the prepared substrates were investigated. Perovskite solar cells will be fabricated and stability of the devices were encapsulated with copolymer films on the top side and tested under standard ISOS-L-1 protocol and then compared to the commercial unmodified ITO/PET or ITO/PEN substrates. In addition, devices with copolymer films laminated on both sides successfully surviving more than 300 hours upon continuous AM1.5G illumination were demonstrated.

  18. Manufacturing Process for OLED Integrated Substrate

    Energy Technology Data Exchange (ETDEWEB)

    Hung, Cheng-Hung [Vitro Flat Glass LLC, Cheswick, PA (United States). Glass Technology Center

    2017-03-31

    The main objective of this project was to develop a low-cost integrated substrate for rigid OLED solid-state lighting produced at a manufacturing scale. The integrated substrates could include combinations of soda lime glass substrate, light extraction layer, and an anode layer (i.e., Transparent Conductive Oxide, TCO). Over the 3+ year course of the project, the scope of work was revised to focus on the development of a glass substrates with an internal light extraction (IEL) layer. A manufacturing-scale float glass on-line particle embedding process capable of producing an IEL glass substrate having a thickness of less than 1.7mm and an area larger than 500mm x 400mm was demonstrated. Substrates measuring 470mm x 370mm were used in the OLED manufacturing process for fabricating OLED lighting panels in single pixel devices as large as 120.5mm x 120.5mm. The measured light extraction efficiency (calculated as external quantum efficiency, EQE) for on-line produced IEL samples (>50%) met the project’s initial goal.

  19. Foam glass obtained through high-pressure sintering

    DEFF Research Database (Denmark)

    Østergaard, Martin Bonderup; Petersen, Rasmus Rosenlund; König, Jakob

    2018-01-01

    Foam glasses are usually prepared through a chemical approach, that is, by mixing glass powder with foaming agents, and heating the mixture to a temperature above the softening point (106.6 Pa s) of the glass. The foaming agents release gas, enabling expansion of the sintered glass. Here, we use...... a physical foaming approach to prepare foam glass. First, closed pores filled with inert gases (He, Ar, or N2) are physically introduced into a glass body by sintering cathode ray tube (CRT) panel glass powder at high gas pressure (5‐25 MPa) at 640°C and, then cooled to room temperature. The sintered bodies...... are subjected to a second heat treatment above the glass transition temperature at atmospheric pressure. This heat treatment causes expansion of the pores due to high internal gas pressure. We found that the foaming ability strongly depends on the gas pressure applied during sintering, and on the kinetic...

  20. Characterization of active CMOS pixel sensors on high resistive substrate

    Energy Technology Data Exchange (ETDEWEB)

    Hirono, Toko; Hemperek, Tomasz; Huegging, Fabian; Krueger, Hans; Rymaszewski, Piotr; Wermes, Norbert [Physikalisches Institut, Universitaet Bonn, Bonn (Germany)

    2016-07-01

    Active CMOS pixel sensors are very attractive as radiation imaging pixel detector because they do not need cost-intensive fine pitch bump bonding. High radiation tolerance and time resolution are required to apply those sensors to upcoming particle physics experiments. To achieve these requirements, the active CMOS pixel sensors were developed on high resistive substrates. Signal charges are collected faster by drift in high resistive substrates than in standard low resistive substrates yielding also a higher radiation tolerance. A prototype of the active CMOS pixel sensor has been fabricated in the LFoundry 150 nm CMOS process on 2 kΩcm substrate. This prototype chip was thinned down to 300 μm and the backside has been processed and can contacted by an aluminum contact. The breakdown voltage is around -115 V, and the depletion width has been measured to be as large as 180 μm at a bias voltage of -110 V. Gain and noise of the readout circuitry agree with the designed values. Performance tests in the lab and test beam have been done before and after irradiation with X-rays and neutrons. In this presentation, the measurement results of the active CMOS prototype sensors are shown.

  1. High resolution x-ray diffraction study of the substrate temperature and thickness dependent microstructure of reactively sputtered epitaxial ZnO films

    KAUST Repository

    Singh, Devendra

    2017-08-24

    Epitaxial ZnO films were grown on c-sapphire by reactive sputtering of zinc target in Ar-O2 mixture. High resolution X-ray diffraction measurements were carried out to obtain lateral and vertical coherence lengths, crystallite tilt and twist, micro-strain and densities of screw and edge dislocations in epilayers of different thickness (25 - 200 nm) and those grown at different temperatures (100 - 500 °C). phgr-scans indicate epitaxial growth in all the cases, although epilayers grown at lower substrate temperatures (100 °C and 200 °C) and those of smaller thickness (25 nm and 50 nm) display inferior microstructural parameters. This is attributed to the dominant presence of initially grown strained 2D layer and subsequent transition to an energetically favorable mode. With increase in substrate temperature, the transition shifts to lower thickness and growth takes place through the formation of 2D platelets with intermediate strain, over which 3D islands grow. Consequently, 100 nm thick epilayers grown at 300 °C display the best microstructural parameters (micro-strain ~1.2 x 10-3, screw and edge dislocation densities ~1.5 x 1010 cm-2 and ~2.3 x 1011 cm-2, respectively). A marginal degradation of microstructural parameters is seen in epilayers grown at higher substrate temperatures, due to the dominance of 3D hillock type growth.

  2. High resolution x-ray diffraction study of the substrate temperature and thickness dependent microstructure of reactively sputtered epitaxial ZnO films

    KAUST Repository

    Singh, Devendra; Kumar, Ravi; Ganguli, Tapas; Major, Syed S

    2017-01-01

    Epitaxial ZnO films were grown on c-sapphire by reactive sputtering of zinc target in Ar-O2 mixture. High resolution X-ray diffraction measurements were carried out to obtain lateral and vertical coherence lengths, crystallite tilt and twist, micro-strain and densities of screw and edge dislocations in epilayers of different thickness (25 - 200 nm) and those grown at different temperatures (100 - 500 °C). phgr-scans indicate epitaxial growth in all the cases, although epilayers grown at lower substrate temperatures (100 °C and 200 °C) and those of smaller thickness (25 nm and 50 nm) display inferior microstructural parameters. This is attributed to the dominant presence of initially grown strained 2D layer and subsequent transition to an energetically favorable mode. With increase in substrate temperature, the transition shifts to lower thickness and growth takes place through the formation of 2D platelets with intermediate strain, over which 3D islands grow. Consequently, 100 nm thick epilayers grown at 300 °C display the best microstructural parameters (micro-strain ~1.2 x 10-3, screw and edge dislocation densities ~1.5 x 1010 cm-2 and ~2.3 x 1011 cm-2, respectively). A marginal degradation of microstructural parameters is seen in epilayers grown at higher substrate temperatures, due to the dominance of 3D hillock type growth.

  3. High insulation foam glass material from waste cathode ray tube panel glass

    DEFF Research Database (Denmark)

    König, Jakob; Petersen, Rasmus Rosenlund; Yue, Yuanzheng

    . In general CRT consists of two types of glasses: barium/strontium containing glass (panel glass) and lead containing glass (funnel and panel glass). In this work we present the possibility to produce high performance insulation material from the recycled lead-free glass. We studied the influence of foaming...... between 750 and 850°C. We investigated the influence of milling time, particle size, foaming and oxidizing agent concentrations, temperature and time on the foaming process, foam density, foam porosity and homogeneity. Only moderate foaming was observed in carbon containing samples, while the addition...... of the oxidizing agent greatly improved the foaming quality. The results showed that the amount of oxygen available from the glass is not sufficient to combust all of the added carbon, therefore, additional oxygen was supplied via manganese reduction. In general, a minimum in the foam glass density was observed...

  4. High-Purity Glasses Based on Arsenic Chalcogenides

    Science.gov (United States)

    2001-06-01

    Chemical interaction of chalcogenides and some impurities (CS 2, TeO2 ) with the quartz glass at high temperature leads to the thin layers formation...UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADPO1 1523 TITLE: High-Purity Glasses Based on Arsenic Chalcogenides...Materials Vol. 3, No. 2, June 2001, p. 341 - 349 HIGH-PURITY GLASSES BASED ON ARSENIC CHALCOGENIDES M. F. Churbanov, I. V. Scripachev, G. E. Snopatin, V. S

  5. Higher-resolution selective metallization on alumina substrate by laser direct writing and electroless plating

    Science.gov (United States)

    Lv, Ming; Liu, Jianguo; Wang, Suhuan; Ai, Jun; Zeng, Xiaoyan

    2016-03-01

    How to fabricate conductive patterns on ceramic boards with higher resolution is a challenge in the past years. The fabrication of copper patterns on alumina substrate by laser direct writing and electroless copper plating is a low cost and high efficiency method. Nevertheless, the lower resolution limits its further industrial applications in many fields. In this report, the mechanisms of laser direct writing and electroless copper plating were studied. The results indicated that as the decomposed products of precursor PdCl2 have different chemical states respectively in laser-irradiated zone (LIZ) and laser-affected zone (LAZ). This phenomenon was utilized and a special chemical cleaning method with aqua regia solution was taken to selectively remove the metallic Pd in LAZ, while kept the PdO in LIZ as the only active seeds. As a result, the resolution of subsequent copper patterns was improved significantly. This technique has a great significance to develop the microelectronics devices.

  6. Growth and Characterization of Nanostructured Glass Ceramic Scintillators for Miniature High-Energy Radiation Sensors

    Science.gov (United States)

    2013-10-01

    rise time was resolved using Kerr gating technique with 8 ps resolution. Spectro -temporal dynamics was resolved using streak camera and tunable pump...mol% CeF3 doped glass under UV light irradiation). Fig. 5. Radioluminescence (RL) spectra of all the CeF3 doped glasses...technique with 8 ps resolution. Spectro -temporal dynamics was resolved using streak camera and tunable pump at second/third harmonic (400/267nm) and XUV

  7. Wafer-level manufacturing technology of glass microlenses

    Science.gov (United States)

    Gossner, U.; Hoeftmann, T.; Wieland, R.; Hansch, W.

    2014-08-01

    In high-tech products, there is an increasing demand to integrate glass lenses into complex micro systems. Especially in the lighting industry LEDs and laser diodes used for automotive applications require encapsulated micro lenses. To enable low-cost production, manufacturing of micro lenses on wafer level base using a replication technology is a key technology. This requires accurate forming of thousands of lenses with a diameter of 1-2 mm on a 200 mm wafer compliant with mass production. The article will discuss the technical aspects of a lens manufacturing replication process and the challenges, which need to be solved: choice of an appropriate master for replication, thermally robust interlayer coating, choice of replica glass, bonding and separation procedure. A promising approach for the master substrate material is based on a lens structured high-quality glass wafer with high melting point covered by a coating layer of amorphous silicon or germanium. This layer serves as an interlayer for the glass bonding process. Low pressure chemical vapor deposition and plasma enhanced chemical vapor deposition processes allow a deposition of layer coatings with different hydrogen and doping content influencing their chemical and physical behavior. A time reduced molding process using a float glass enables the formation of high quality lenses while preserving the recyclability of the mother substrate. The challenge is the separation of the replica from the master mold. An overview of chemical methods based on optimized etching of coating layer through small channels will be given and the impact of glass etching on surface roughness is discussed.

  8. Glass Property Data and Models for Estimating High-Level Waste Glass Volume

    Energy Technology Data Exchange (ETDEWEB)

    Vienna, John D.; Fluegel, Alexander; Kim, Dong-Sang; Hrma, Pavel R.

    2009-10-05

    This report describes recent efforts to develop glass property models that can be used to help estimate the volume of high-level waste (HLW) glass that will result from vitrification of Hanford tank waste. The compositions of acceptable and processable HLW glasses need to be optimized to minimize the waste-form volume and, hence, to save cost. A database of properties and associated compositions for simulated waste glasses was collected for developing property-composition models. This database, although not comprehensive, represents a large fraction of data on waste-glass compositions and properties that were available at the time of this report. Glass property-composition models were fit to subsets of the database for several key glass properties. These models apply to a significantly broader composition space than those previously publised. These models should be considered for interim use in calculating properties of Hanford waste glasses.

  9. Glass Property Data and Models for Estimating High-Level Waste Glass Volume

    International Nuclear Information System (INIS)

    Vienna, John D.; Fluegel, Alexander; Kim, Dong-Sang; Hrma, Pavel R.

    2009-01-01

    This report describes recent efforts to develop glass property models that can be used to help estimate the volume of high-level waste (HLW) glass that will result from vitrification of Hanford tank waste. The compositions of acceptable and processable HLW glasses need to be optimized to minimize the waste-form volume and, hence, to save cost. A database of properties and associated compositions for simulated waste glasses was collected for developing property-composition models. This database, although not comprehensive, represents a large fraction of data on waste-glass compositions and properties that were available at the time of this report. Glass property-composition models were fit to subsets of the database for several key glass properties. These models apply to a significantly broader composition space than those previously publised. These models should be considered for interim use in calculating properties of Hanford waste glasses.

  10. Spectroscopic properties of triangular silver nanoplates immobilized on polyelectrolyte multilayer-modified glass substrates

    Science.gov (United States)

    Rabor, Janice B.; Kawamura, Koki; Muko, Daiki; Kurawaki, Junichi; Niidome, Yasuro

    2017-07-01

    Fabrication of surface-immobilized silver nanostructures with reproducible plasmonic properties by dip-coating technique is difficult due to shape alteration. To address this challenge, we used a polyelectrolyte multilayer to promote immobilization of as-received triangular silver nanoplates (TSNP) on a glass substrate through electrostatic interaction. The substrate-immobilized TSNP were characterized by absorption spectrophotometry and scanning electron microscopy. The bandwidth and peak position of localized surface plasmon resonance (LSPR) bands can be tuned by simply varying the concentration of the colloidal solution and immersion time. TSNP immobilized from a higher concentration of colloidal solution with longer immersion time produced broadened LSPR bands in the near-IR region, while a lower concentration with shorter immersion time produced narrower bands in the visible region. The shape of the nanoplates was retained even at long immersion time. Analysis of peak positions and bandwidths also revealed the point at which the main species of the immobilization had been changed from isolates to aggregates.

  11. Pulmonary complications of crack cocaine use: high-resolution computed tomography of the chest

    International Nuclear Information System (INIS)

    Mancano, Alexandre

    2008-01-01

    Here, we report high-resolution computed tomography (HRCT) findings in a patient who developed sudden hemoptysis, dyspnea and chest pain after smoking crack cocaine. Chest X-rays showed consolidations, primarily in the upper lobes, and HRCT scans showed ground glass attenuation opacities, consolidations and air-space nodules. A follow-up CT, after drug use discontinuation and administration of corticosteroids, showed partial resolution of pulmonary lesions and the appearance of cavitations. Clinical, imaging and laboratory findings led to a diagnosis of 'crack lung'. (author)

  12. High-resolution CT of lymphoid interstitial pneumonia

    International Nuclear Information System (INIS)

    Vilgrain, V.; Frija, J.; Yana, C.; Couderc, L.J.; David, M.; Clauvel, J.P.; Laval-Jeantet, M.

    1989-01-01

    Three patients with lymphoid interstitial pneumonia (two HIV 1+ patients with chronic lymphadenopathic syndromes and one with a not-characterized autoimmune disease) have been studied with high-resolution computed tomography (HR-CT). This technique reveals septal lines, small reticulonodular opacities, polyhedral micronodular opacities, 'ground-glass' opacities and a dense, subpleural, curved broken line in one patient. The lesions dominate in the bases of the lungs. They are not characteristic for lymphoid interstitial pneumonia. If a patient presents with a chronic lymphadenopathic syndrome, the diagnosis of an opportunistic infection should not be automatically made, since the syndrome can be caused by lymphoid interstitial pneumonia [fr

  13. Hydrophilicity Reinforced Adhesion of Anodic Alumina Oxide Template Films to Conducting Substrates for Facile Fabrication of Highly Ordered Nanorod Arrays.

    Science.gov (United States)

    Wang, Chuanju; Wang, Guiqiang; Yang, Rui; Sun, Xiangyu; Ma, Hui; Sun, Shuqing

    2017-01-17

    Arrays of ordered nanorods are of special interest in many fields. However, it remains challenging to obtain such arrays on conducting substrates in a facile manner. In this article, we report the fabrication of highly ordered and vertically standing nanorod arrays of both metals and semiconductors on Au films and indium tin oxide glass substrates without an additional layering. In this approach, following the simple hydrophilic treatment of an anodic aluminum oxide (AAO) membrane and conducting substrates, the AAO membrane was transferred onto the modified substrates with excellent adhesion. Subsequently, nanorod arrays of various materials were electrodeposited on the conducting substrates directly. This method avoids any expensive and tedious lithographic and ion milling process, which provides a simple yet robust route to the fabrication of arrays of 1D materials with high aspect ratio on conducting substrates, which shall pave the way for many practical applications in a range of fields.

  14. The effect of substrate on thermodynamic and kinetic anisotropies in atomic thin films

    International Nuclear Information System (INIS)

    Haji-Akbari, Amir; Debenedetti, Pablo G.

    2014-01-01

    Glasses have a wide range of technological applications. The recent discovery of ultrastable glasses that are obtained by depositing the vapor of a glass-forming liquid onto the surface of a cold substrate has sparked renewed interest in the effects of confinements on physicochemical properties of liquids and glasses. Here, we use molecular dynamics simulations to study the effect of substrate on thin films of a model glass-forming liquid, the Kob-Andersen binary Lennard-Jones system, and compute profiles of several thermodynamic and kinetic properties across the film. We observe that the substrate can induce large oscillations in profiles of thermodynamic properties such as density, composition, and stress, and we establish a correlation between the oscillations in total density and the oscillations in normal stress. We also demonstrate that the kinetic properties of an atomic film can be readily tuned by changing the strength of interactions between the substrate and the liquid. Most notably, we show that a weakly attractive substrate can induce the emergence of a highly mobile region in its vicinity. In this highly mobile region, structural relaxation is several times faster than in the bulk, and the exploration of the potential energy landscape is also more efficient. In the subsurface region near a strongly attractive substrate, however, the dynamics is decelerated and the sampling of the potential energy landscape becomes less efficient than the bulk. We explain these two distinct behaviors by establishing a correlation between the oscillations in kinetic properties and the oscillations in lateral stress. Our findings offer interesting opportunities for designing better substrates for the vapor deposition process or developing alternative procedures for situations where vapor deposition is not feasible

  15. The effect of substrate on thermodynamic and kinetic anisotropies in atomic thin films.

    Science.gov (United States)

    Haji-Akbari, Amir; Debenedetti, Pablo G

    2014-07-14

    Glasses have a wide range of technological applications. The recent discovery of ultrastable glasses that are obtained by depositing the vapor of a glass-forming liquid onto the surface of a cold substrate has sparked renewed interest in the effects of confinements on physicochemical properties of liquids and glasses. Here, we use molecular dynamics simulations to study the effect of substrate on thin films of a model glass-forming liquid, the Kob-Andersen binary Lennard-Jones system, and compute profiles of several thermodynamic and kinetic properties across the film. We observe that the substrate can induce large oscillations in profiles of thermodynamic properties such as density, composition, and stress, and we establish a correlation between the oscillations in total density and the oscillations in normal stress. We also demonstrate that the kinetic properties of an atomic film can be readily tuned by changing the strength of interactions between the substrate and the liquid. Most notably, we show that a weakly attractive substrate can induce the emergence of a highly mobile region in its vicinity. In this highly mobile region, structural relaxation is several times faster than in the bulk, and the exploration of the potential energy landscape is also more efficient. In the subsurface region near a strongly attractive substrate, however, the dynamics is decelerated and the sampling of the potential energy landscape becomes less efficient than the bulk. We explain these two distinct behaviors by establishing a correlation between the oscillations in kinetic properties and the oscillations in lateral stress. Our findings offer interesting opportunities for designing better substrates for the vapor deposition process or developing alternative procedures for situations where vapor deposition is not feasible.

  16. The effect of substrate on thermodynamic and kinetic anisotropies in atomic thin films

    Energy Technology Data Exchange (ETDEWEB)

    Haji-Akbari, Amir; Debenedetti, Pablo G., E-mail: pdebene@exchange.princeton.edu [Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544 (United States)

    2014-07-14

    Glasses have a wide range of technological applications. The recent discovery of ultrastable glasses that are obtained by depositing the vapor of a glass-forming liquid onto the surface of a cold substrate has sparked renewed interest in the effects of confinements on physicochemical properties of liquids and glasses. Here, we use molecular dynamics simulations to study the effect of substrate on thin films of a model glass-forming liquid, the Kob-Andersen binary Lennard-Jones system, and compute profiles of several thermodynamic and kinetic properties across the film. We observe that the substrate can induce large oscillations in profiles of thermodynamic properties such as density, composition, and stress, and we establish a correlation between the oscillations in total density and the oscillations in normal stress. We also demonstrate that the kinetic properties of an atomic film can be readily tuned by changing the strength of interactions between the substrate and the liquid. Most notably, we show that a weakly attractive substrate can induce the emergence of a highly mobile region in its vicinity. In this highly mobile region, structural relaxation is several times faster than in the bulk, and the exploration of the potential energy landscape is also more efficient. In the subsurface region near a strongly attractive substrate, however, the dynamics is decelerated and the sampling of the potential energy landscape becomes less efficient than the bulk. We explain these two distinct behaviors by establishing a correlation between the oscillations in kinetic properties and the oscillations in lateral stress. Our findings offer interesting opportunities for designing better substrates for the vapor deposition process or developing alternative procedures for situations where vapor deposition is not feasible.

  17. Glass precursor approach to high-temperature superconductors

    Science.gov (United States)

    Bansal, Narottam P.

    1992-01-01

    The available studies on the synthesis of high T sub c superconductors (HTS) via the glass precursor approach were reviewed. Melts of the Bi-Sr-Ca-Cu-O system as well as those doped with oxides of some other elements (Pb, Al, V, Te, Nb, etc.) could be quenched into glasses which, on further heat treatments under appropriate conditions, crystallized into the superconducting phase(s). The nature of the HTS phase(s) formed depends on the annealing temperature, time, atmosphere, and the cooling rate and also on the glass composition. Long term annealing was needed to obtain a large fraction of the 110 K phase. The high T sub c phase did not crystallize out directly from the glass matrix, but was preceded by the precipitation of other phases. The 110 K HTS was produced at high temperatures by reaction between the phases formed at lower temperatures resulting in multiphase material. The presence of a glass former such as B2O3 was necessary for the Y-Ba-Cu-O melt to form a glass on fast cooling. A discontinuous YBa2Cu3O(7-delta) HTS phase crystallized out on heat treatment of this glass. Attempts to prepare Tl-Ba-Ca-Cu-O system in the glassy state were not successful.

  18. Determination of work of adhesion of gelatin hydrogels on a glass substrate

    Science.gov (United States)

    Thakre, Avinash A.; Singh, Arun K.

    2018-04-01

    In this article, work of adhesion (w adh ) of soft gelatin hydrogels on a smooth glass substrate is determined experimentally using the wedge adhesion test. The results showed that w adh decreases with the increase in gelatin concentration in the hydrogels but the same is found to be independent of thickness of hydrogel specimen. These results are used further for establishing a scaling law between w adh and mesh size (ξ) of the three dimensional structure present in the hydrogel as w adh ∼ ξ 8.6. Finite element analysis is also carried out for validating the fracture stability of wedge test in view of analytical prediction. At the end, practical significance of the present study is also discussed.

  19. Polymer brushes: a controllable system with adjustable glass transition temperature of fragile glass formers.

    Science.gov (United States)

    Xie, Shi-Jie; Qian, Hu-Jun; Lu, Zhong-Yuan

    2014-01-28

    We present results of molecular dynamics simulations for coarse-grained polymer brushes in a wide temperature range to investigate the factors that affect the glass transition in these systems. We focus on the influences of free surface, polymer-substrate interaction strength, grafting density, and chain length not only on the change of glass transition temperature Tg, but also the fragility D of the glass former. It is found that the confinement can enhance the dependence of the Tg on the cooling rate as compared to the bulk melt. Our layer-resolved analysis demonstrates that it is possible to control the glass transition temperature Tg of polymer brushes by tuning the polymer-substrate interaction strength, the grafting density, and the chain length. Moreover, we find quantitative differences in the influence range of the substrate and the free surface on the density and dynamics. This stresses the importance of long range cooperative motion in glass formers near the glass transition temperature. Furthermore, the string-like cooperative motion analysis demonstrates that there exists a close relation among glass transition temperature Tg, fragility D, and string length ⟨S⟩. The polymer brushes that possess larger string length ⟨S⟩ tend to have relatively higher Tg and smaller D. Our results suggest that confining a fragile glass former through forming polymer brushes changes not only the glass transition temperature Tg, but also the very nature of relaxation process.

  20. HIGH ALUMINUM HLW (HIGH LEVEL WASTE) GLASSES FOR HANFORD'S WTP (WASTE TREATMENT PROJECT)

    International Nuclear Information System (INIS)

    Kruger, A.A.; Bowan, B.W.; Joseph, I.; Gan, H.; Kot, W.K.; Matlack, K.S.; Pegg, I.L.

    2010-01-01

    This paper presents the results of glass formulation development and melter testing to identify high waste loading glasses to treat high-Al high level waste (HLW) at Hanford. Previous glass formulations developed for this HLW had high waste loadings but their processing rates were lower that desired. The present work was aimed at improving the glass processing rate while maintaining high waste loadings. Glass formulations were designed, prepared at crucible-scale and characterized to determine their properties relevant to processing and product quality. Glass formulations that met these requirements were screened for melt rates using small-scale tests. The small-scale melt rate screening included vertical gradient furnace (VGF) and direct feed consumption (DFC) melter tests. Based on the results of these tests, modified glass formulations were developed and selected for larger scale melter tests to determine their processing rate. Melter tests were conducted on the DuraMelter 100 (DMIOO) with a melt surface area of 0.11 m 2 and the DuraMelter 1200 (DMI200) HLW Pilot Melter with a melt surface area of 1.2 m 2 . The newly developed glass formulations had waste loadings as high as 50 wt%, with corresponding Al 2 O 3 concentration in the glass of 26.63 wt%. The new glass formulations showed glass production rates as high as 1900 kg/(m 2 .day) under nominal melter operating conditions. The demonstrated glass production rates are much higher than the current requirement of 800 kg/(m 2 .day) and anticipated future enhanced Hanford Tank Waste Treatment and Immobilization Plant (WTP) requirement of 1000 kg/(m 2 .day).

  1. Direct synthesis of multi-layer graphene film on various substrates by microwave plasma at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hyun Jae [Plasma Technology Research Center, 814-2 Osickdo-dong (SGFEZ), Gunsan, Jeollabuk-do 573-540 (Korea, Republic of); Ahn, Byung Wook; Kim, Tae Yoo; Lee, Jung Woo [School of Advanced Materials Science and Engineering, Advanced Materials and Process Research Center (AMPRC), Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Jung, Yong Ho; Choi, Yong Sup [Plasma Technology Research Center, 814-2 Osickdo-dong (SGFEZ), Gunsan, Jeollabuk-do 573-540 (Korea, Republic of); Song, Young Il, E-mail: physein01@skku.edu [School of Advanced Materials Science and Engineering, Advanced Materials and Process Research Center (AMPRC), Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Suh, Su Jeong, E-mail: suhsj@skku.edu [School of Advanced Materials Science and Engineering, Advanced Materials and Process Research Center (AMPRC), Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2015-07-31

    We introduce a possible route for vertically standing multi-layer graphene films (VMGs) on various substrates at low temperature by electron cyclone resonance microwave plasma. VMG films on various substrates, including copper sheet, glass and silicon oxide wafer, were analyzed by studying their structural, electrical, and optical properties. The density and temperature of plasma were measured using Cylindrical Langmuir probe analysis. The morphologies and microstructures of multi-layer graphene were characterized using field emission scattering electron microscope, high resolution transmission electron microscope, and Raman spectra measurement. The VMGs on different substrates at the same experimental conditions synthesized the wrinkled VMGs with different heights. In addition, the transmittance and electrical resistance were measured using ultra-violet visible near-infrared spectroscopy and 4 probe point surface resistance measurement. The VMGs on glass substrate obtained a transmittance of 68.8% and sheet resistance of 796 Ω/square, whereas the VMGs on SiO{sub 2} wafer substrate showed good sheet resistance of 395 Ω/square and 278 Ω/square. The results presented herein demonstrate a simple method of synthesizing of VMGs on various substrates at low temperature for mass production, in which the VMGs can be used in a wide range of application fields for energy storage, catalysis, and field emission due to their unique orientation. - Highlights: • We present for synthesis method of graphene at low temperature on various substrates. • We grow the graphene films at low temperature under of 432 °C. • Structural information of graphene films were studied upon Raman spectroscopy. • Inter-layer spacing of vertically standing graphene relies on synthesis time. • We measured a transmittance and a resistance for graphene films on difference substrate.

  2. High-pitch metal-on-glass technology for pad pitch adaptation between detectors and readout electronics

    CERN Document Server

    Ullán, Miguel; Campabadal, Francesca; Fleta, Celeste; Garcia, Carmen; Gonzalez, Francisco; Bernabeu, Jose

    2004-01-01

    Modern high-energy physics and astrophysics strip detectors have increased channel density to levels at which their connection with readout electronics has become very complex due to high pad pitch. Also, direct wire bonding is prevented by the fact that typically detector's pad pitch and electronics' pad pitch do not match. A high- pitch metal-on-glass technology is presented, that allows pad pitch adaptation between detectors and readout electronics. It consists of high-density metal lines on top of an insulating glass substrate. A photoresist layer is deposited covering the metal tracks for passivation and protection The technology is tested for conductivity, bondability, bonding pull force, peel off, and radiation hardness, and it is an established technology in the clean room of the CNM Institute in Barcelona. This technology has been chosen by the ATLAS Collaboration for the pad pitch adapters (PPA) of the SCT Endcap Modules, by a Compton camera project, and by other HEP groups for interconnection betwe...

  3. Transparent conducting properties of anatase Ti0.94Nb0.06O2 polycrystalline films on glass substrate

    International Nuclear Information System (INIS)

    Hitosugi, T.; Ueda, A.; Nakao, S.; Yamada, N.; Furubayashi, Y.; Hirose, Y.; Konuma, S.; Shimada, T.; Hasegawa, T.

    2008-01-01

    We report on transparent conducting properties of anatase Ti 0.94 Nb 0.06 O 2 (TNO) polycrystalline films on glass substrate, and discuss the role of grain crystallinity and grain boundary on resistivity. Thin films of TNO were deposited using pulsed laser deposition at substrate temperature ranging from room temperature to 350 deg. C, with subsequent H 2 -annealing at 500 deg. C. Polycrystalline TNO films showed resistivity of 4.5 x 10 -4 Ω cm and 1.5 x 10 -3 Ω cm for films prepared at substrate temperature of room temperature and 250 deg. C, respectively. X-ray diffraction measurements and transmission electron microscopy reveal that grain crystallinity and grain boundary play key roles in conductive films

  4. Crystallization in high-level waste glass: A review of glass theory and noteworthy literature

    Energy Technology Data Exchange (ETDEWEB)

    Christian, J. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-08-01

    There is a fundamental need to continue research aimed at understanding nepheline and spinel crystal formation in high-level waste (HLW) glass. Specifically, the formation of nepheline solids (K/NaAlSiO₄) during slow cooling of HLW glass can reduce the chemical durability of the glass, which can cause a decrease in the overall durability of the glass waste form. The accumulation of spinel solids ((Fe, Ni, Mn, Zn)(Fe,Cr)₂O₄), while not detrimental to glass durability, can cause an array of processing problems inside of HLW glass melters. In this review, the fundamental differences between glass and solid-crystals are explained using kinetic, thermodynamic, and viscosity arguments, and several highlights of glass-crystallization research, as it pertains to high-level waste vitrification, are described. In terms of mitigating spinel in the melter and both spinel and nepheline formation in the canister, the complexity of HLW glass and the intricate interplay between thermal, chemical, and kinetic factors further complicates this understanding. However, new experiments seeking to elucidate the contributing factors of crystal nucleation and growth in waste glass, and the compilation of data from older experiments, may go a long way towards helping to achieve higher waste loadings while developing more efficient processing strategies.

  5. High-resolution computed tomography and histopathological findings in hypersensitivity pneumonitis: a pictorial essay

    Energy Technology Data Exchange (ETDEWEB)

    Torres, Pedro Paulo Teixeira e Silva; Moreira, Marise Amaral Reboucas; Silva, Daniela Graner Schuwartz Tannus; Moreira, Maria Auxiliadora do Carmo [Universidade Federal de Goias (UFG), Goiania, GO (Brazil); Gama, Roberta Rodrigues Monteiro da [Hospital do Cancer de Barretos, Barretos, SP (Brazil); Sugita, Denis Masashi, E-mail: pedroptstorres@yahoo.com.br [Anapolis Unievangelica, Anapolis, GO (Brazil)

    2016-03-15

    Hypersensitivity pneumonitis is a diffuse interstitial and granulomatous lung disease caused by the inhalation of any one of a number of antigens. The objective of this study was to illustrate the spectrum of abnormalities in high-resolution computed tomography and histopathological findings related to hypersensitivity pneumonitis. We retrospectively evaluated patients who had been diagnosed with hypersensitivity pneumonitis (on the basis of clinical-radiological or clinical-radiological-pathological correlations) and had undergone lung biopsy. Hypersensitivity pneumonitis is clinically divided into acute, subacute, and chronic forms; high-resolution computed tomography findings correlate with the time of exposure; and the two occasionally overlap. In the subacute form, centrilobular micronodules, ground glass opacities, and air trapping are characteristic high-resolution computed tomography findings, whereas histopathology shows lymphocytic inflammatory infiltrates, bronchiolitis, variable degrees of organizing pneumonia, and giant cells. In the chronic form, high-resolution computed tomography shows traction bronchiectasis, honeycombing, and lung fibrosis, the last also being seen in the biopsy sample. A definitive diagnosis of hypersensitivity pneumonitis can be made only through a multidisciplinary approach, by correlating clinical findings, exposure history, high-resolution computed tomography findings, and lung biopsy findings. (author)

  6. Nanosheet controlled epitaxial growth of PbZr0.52Ti0.48O3 thin films on glass substrates

    Science.gov (United States)

    Bayraktar, M.; Chopra, A.; Bijkerk, F.; Rijnders, G.

    2014-09-01

    Integration of PbZr0.52Ti0.48O3 (PZT) films on glass substrates is of high importance for device applications. However, to make use of the superior ferro- and piezoelectric properties of PZT, well-oriented crystalline or epitaxial growth with control of the crystal orientation is a prerequisite. In this article, we report on epitaxial growth of PZT films with (100)- and (110)-orientation achieved by utilizing Ca2Nb3O10 (CNO) and Ti0.87O2 (TO) nanosheets as crystalline buffer layers. Fatigue measurements demonstrated stable ferroelectric properties of these films up to 5 × 109 cycles. (100)-oriented PZT films on CNO nanosheets show a large remnant polarization of 21 μC/cm2 that is the highest remnant polarization value compared to (110)-oriented and polycrystalline films reported in this work. A piezoelectric response of 98 pm/V is observed for (100)-oriented PZT film which is higher than the values reported in the literature on Si substrates.

  7. Recovery Act: Low Cost Integrated Substrate for OLED Lighting Development

    Energy Technology Data Exchange (ETDEWEB)

    Benton, Scott [PPG Industries, Inc., Pittsburgh, PA (United States); Bhandari, Abhinav [PPG Industries, Inc., Pittsburgh, PA (United States)

    2012-12-26

    PPG pursued the development of an integrated substrate, including the anode, external, and internal extraction layers. The objective of PPG's program was to achieve cost reductions by displacing the existing expensive borosilicate or double-side polished float glass substrates and developing alternative electrodes and scalable light extraction layer technologies through focused and short-term applied research. One of the key highlights of the project was proving the feasibility of using PPG's high transmission Solarphire® float glass as a substrate to consistently achieve organic lightemitting diode (OLED) devices with good performance and high yields. Under this program, four low-cost alternatives to the Indium Tin Oxide (ITO) anode were investigated using pilot-scale magnetron sputtered vacuum deposition (MSVD) and chemical vapor deposition (CVD) technologies. The anodes were evaluated by fabricating small and large phosphorescent organic lightemitting diode (PHOLED) devices at Universal Display Corporation (UDC). The device performance and life-times comparable to commercially available ITO anodes were demonstrated. A cost-benefit analysis was performed to down-select two anodes for further low-cost process development. Additionally, PPG developed and evaluated a number of scalable and compatible internal and external extraction layer concepts such as scattering layers on the outside of the glass substrate or between the transparent anode and the glass interface. In one external extraction layer (EEL) approach, sol-gel sprayed pyrolytic coatings were deposited using lab scale equipment by hand or automated spraying of sol-gel solutions on hot glass, followed by optimizing of scattering with minimal absorption. In another EEL approach, PPG tested large-area glass texturing by scratching a glass surface with an abrasive roller and acid etching. Efficacy enhancements of 1.27x were demonstrated using white PHOLED devices for 2.0mm substrates which are

  8. High resolution CT findings of pleuropulmonary lnvolvement in systemic lupus erythematosus

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Kun Sik; Kim, Jung Sik; Suh, Soo Jhi; Lee, Sung Moon; Sohn, Seok Ho; Park, Sung Bae; Kim, Hyun Chul [Keimyung University College of Medicine, Deagu (Korea, Republic of)

    1993-09-15

    To evaluate the high resolution computed tomography (HRCT) findings of pleuropulmonary involvement in systemic lupus erythematosus (SLE), we analyzed HRCT findings of 12 patients of clinically confirmed SLE with respiratory symptoms. In four patients, HRCT findings before and after chemotherapy were compared. The common HRCT findings were ground glass opacity (100%), bronchial wall thickening (66%), patch parenchymal opacity (58%), septal or intralobular line thickening (58%), micronodule (58%), central core prominence (41%), small pleural effusion (91%), and pericardial effusion (33%). Follow up HRCT obtained after treatment showed significant improvement of pleural effusion (4/4), pericardial effusion (3/3), pericardial thickening (1/1), patch opacity (2/2), and ground glass opacity (2/4). But bronchial wall thickening (2/2) and micronodule (2/2) were not improved. Although there are no pathognomonic HRCT findings in SLE, bilateral small pleural effusion, ground glass opacity, subpleural patchy opacity, and micronodule are common and suggestive findings in the pleuropulmonary involvement of SLE.

  9. Interfacial analysis and properties of regioregular Poly (3-Hexyl thiophene) spin-coated on an Indium tin oxide coated glass substrate

    CSIR Research Space (South Africa)

    Malgas, GF

    2008-08-01

    Full Text Available Interfacial analysis of the rrP3HT samples spincoated on a glass substrate was studied in detail using transmission electron microscopy (TEM) and SEM measurements. Very homogeneous and smooth polymer (P3HT and PEDOT:PSS) layers are observed...

  10. Photolithographic Synthesis of High-Density DNA and RNA Arrays on Flexible, Transparent, and Easily Subdivided Plastic Substrates.

    Science.gov (United States)

    Holden, Matthew T; Carter, Matthew C D; Wu, Cheng-Hsien; Wolfer, Jamison; Codner, Eric; Sussman, Michael R; Lynn, David M; Smith, Lloyd M

    2015-11-17

    The photolithographic fabrication of high-density DNA and RNA arrays on flexible and transparent plastic substrates is reported. The substrates are thin sheets of poly(ethylene terephthalate) (PET) coated with cross-linked polymer multilayers that present hydroxyl groups suitable for conventional phosphoramidite-based nucleic acid synthesis. We demonstrate that by modifying array synthesis procedures to accommodate the physical and chemical properties of these materials, it is possible to synthesize plastic-backed oligonucleotide arrays with feature sizes as small as 14 μm × 14 μm and feature densities in excess of 125 000/cm(2), similar to specifications attainable using rigid substrates such as glass or glassy carbon. These plastic-backed arrays are tolerant to a wide range of hybridization temperatures, and improved synthetic procedures are described that enable the fabrication of arrays with sequences up to 50 nucleotides in length. These arrays hybridize with S/N ratios comparable to those fabricated on otherwise identical arrays prepared on glass or glassy carbon. This platform supports the enzymatic synthesis of RNA arrays and proof-of-concept experiments are presented showing that the arrays can be readily subdivided into smaller arrays (or "millichips") using common laboratory-scale laser cutting tools. These results expand the utility of oligonucleotide arrays fabricated on plastic substrates and open the door to new applications for these important bioanalytical tools.

  11. DEFENSE HIGH LEVEL WASTE GLASS DEGRADATION

    International Nuclear Information System (INIS)

    Ebert, W.

    2001-01-01

    The purpose of this Analysis/Model Report (AMR) is to document the analyses that were done to develop models for radionuclide release from high-level waste (HLW) glass dissolution that can be integrated into performance assessment (PA) calculations conducted to support site recommendation and license application for the Yucca Mountain site. This report was developed in accordance with the ''Technical Work Plan for Waste Form Degradation Process Model Report for SR'' (CRWMS M andO 2000a). It specifically addresses the item, ''Defense High Level Waste Glass Degradation'', of the product technical work plan. The AP-3.15Q Attachment 1 screening criteria determines the importance for its intended use of the HLW glass model derived herein to be in the category ''Other Factors for the Postclosure Safety Case-Waste Form Performance'', and thus indicates that this factor does not contribute significantly to the postclosure safety strategy. Because the release of radionuclides from the glass will depend on the prior dissolution of the glass, the dissolution rate of the glass imposes an upper bound on the radionuclide release rate. The approach taken to provide a bound for the radionuclide release is to develop models that can be used to calculate the dissolution rate of waste glass when contacted by water in the disposal site. The release rate of a particular radionuclide can then be calculated by multiplying the glass dissolution rate by the mass fraction of that radionuclide in the glass and by the surface area of glass contacted by water. The scope includes consideration of the three modes by which water may contact waste glass in the disposal system: contact by humid air, dripping water, and immersion. The models for glass dissolution under these contact modes are all based on the rate expression for aqueous dissolution of borosilicate glasses. The mechanism and rate expression for aqueous dissolution are adequately understood; the analyses in this AMR were conducted to

  12. Pulmonary leukemic involvement: high-resolution computed tomography evaluation

    International Nuclear Information System (INIS)

    Oliveira, Ana Paola de; Marchiori, Edson; Souza Junior, Arthur Soares

    2004-01-01

    Objective: To evaluate the role of high-resolution computed tomography (HRCT) in patients with leukemia and pulmonary symptoms, to establish the main patterns and to correlate them with the etiology. Materials and Methods: This is a retrospective study of the HRCT of 15 patients with leukemia and pulmonary symptoms. The examinations were performed using a spatial high-resolution protocol and were analyzed by two independent radiologists. Results: The main HRCT patterns found were ground-glass opacity (n=11), consolidation (n=9), airspace nodules (n=3), septal thickening (n=3), tree-in-bud pattern (n=3), and pleural effusion (n=3). Pulmonary infection was the most common finding seen in 12 patients: bacterial pneumonia (n=6), fungal infection (n = 4), pulmonary tuberculosis (n=1) and viral infection (n=1). Leukemic pleural infiltration (n=1), lymphoma (n=1) and pulmonary hemorrhage (n=1) were detected in the other three patients. Conclusion: HRCT is an important tool that may suggest the cause of lung involvement, its extension and in some cases to guide invasive procedures in patients with leukemia. (author)

  13. Lead recovery and high silica glass powder synthesis from waste CRT funnel glasses through carbon thermal reduction enhanced glass phase separation process

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Mingfei [Henan Key Laboratory Cultivation Base of Mine Environmental Protection and Ecological Remediation, Henan Polytechnic University, Jiaozuo 454000 Henan China (China); Institute of Resource and Environment, Henan Polytechnic University, Jiaozuo 454000 Henan China (China); Fu, Zegang [Institute of Resource and Environment, Henan Polytechnic University, Jiaozuo 454000 Henan China (China); Wang, Yaping, E-mail: wangyp326@163.com [School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454000, Henan China (China); Wang, Jingyu [Institute of Resource and Environment, Henan Polytechnic University, Jiaozuo 454000 Henan China (China); Zhang, Zhiyuan [Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China)

    2017-01-15

    Highlights: • CRT funnel glass was remelted with B{sub 2}O{sub 3} in reducing atmosphere. • A part of PbO was reduced into Pb and detached from the glass phase. • The rest of PbO and other metal oxides were mainly concentrated in the B{sub 2}O{sub 3} phase. • PbO enriched in the interconnected B{sub 2}O{sub 3} phase can be completely leached out by HNO{sub 3}. • High silica glass powder(SiO{sub 2} purity >95%) was obtained after the leaching process. - Abstract: In this study, a novel process for the removal of toxic lead from the CRT funnel glass and synchronous preparation of high silica glass powder was developed by a carbon-thermal reduction enhanced glass phase separation process. CRT funnel glass was remelted with B{sub 2}O{sub 3} in reducing atmosphere. In the thermal process, a part of PbO contained in the funnel glass was reduced into metallic Pb and detached from the glass phase. The rest of PbO and other metal oxides (including Na{sub 2}O, K{sub 2}O, Al{sub 2}O{sub 3,} BaO and CaO) were mainly concentrated in the boric oxide phase. The metallic Pb phase and boric oxide phase were completely leached out by 5 mol/L HNO{sub 3}. The lead removal rate was 99.80% and high silica glass powder (SiO{sub 2} purity >95 wt%) was obtained by setting the temperature, B{sub 2}O{sub 3} added amount and holding time at 1000 °C, 20% and 30 mins, respectively. The prepared high silicate glass powders can be used as catalyst carrier, semipermeable membranes, adsorbents or be remelted into high silicate glass as an ideal substitute for quartz glass. Thus this study proposed an eco-friendly and economical process for recycling Pb-rich electronic glass waste.

  14. Friction and wear performance of diamond-like carbon, boron carbide, and titanium carbide coatings against glass

    International Nuclear Information System (INIS)

    Daniels, B.K.; Brown, D.W.; Kimock, F.M.

    1997-01-01

    Protection of glass substrates by direct ion beam deposited diamond-like carbon (DLC) coatings was observed using a commercial pin-on-disk instrument at ambient conditions without lubrication. Ion beam sputter-deposited titanium carbide and boron carbide coatings reduced sliding friction, and provided tribological protection of silicon substrates, but the improvement factor was less than that found for DLC. Observations of unlubricated sliding of hemispherical glass pins at ambient conditions on uncoated glass and silicon substrates, and ion beam deposited coatings showed decreased wear in the order: uncoated glass>uncoated silicon>boron carbide>titanium carbide>DLC>uncoated sapphire. Failure mechanisms varied widely and are discussed. Generally, the amount of wear decreased as the sliding friction decreased, with the exception of uncoated sapphire substrates, for which the wear was low despite very high friction. There is clear evidence that DLC coatings continue to protect the underlying substrate long after the damage first penetrates through the coating. The test results correlate with field use data on commercial products which have shown that the DLC coatings provide substantial extension of the useful lifetime of glass and other substrates. copyright 1997 Materials Research Society

  15. A quartz-based micro catalytic methane sensor by high resolution screen printing

    Science.gov (United States)

    Lu, Wenshuai; Jing, Gaoshan; Bian, Xiaomeng; Yu, Hongyan; Cui, Tianhong

    2016-02-01

    A micro catalytic methane sensor was proposed and fabricated on a bulk fused quartz substrate using a high resolution screen printing technique for the first time, with reduced power consumption and optimized sensitivity. The sensor was designed by the finite element method and quartz was chosen as the substrate material and alumina support with optimized dimensions. Fabrication of the sensor consisted of two MEMS processes, lift-off and high resolution screen printing, with the advantages of high yield and uniformity. When the sensor’s regional working temperature changes from 250 °C to 470 °C, its sensitivity increases, as well as the power consumption. The highest sensitivity can reach 1.52 mV/% CH4. A temperature of 300 °C was chosen as the optimized working temperature, and the sensor’s sensitivity, power consumption, nonlinearity and response time are 0.77 mV/% CH4, 415 mW, 2.6%, and 35 s, respectively. This simple, but highly uniform fabrication process and the reliable performance of this sensor may lead to wide applications for methane detection.

  16. A quartz-based micro catalytic methane sensor by high resolution screen printing

    International Nuclear Information System (INIS)

    Lu, Wenshuai; Jing, Gaoshan; Bian, Xiaomeng; Yu, Hongyan; Cui, Tianhong

    2016-01-01

    A micro catalytic methane sensor was proposed and fabricated on a bulk fused quartz substrate using a high resolution screen printing technique for the first time, with reduced power consumption and optimized sensitivity. The sensor was designed by the finite element method and quartz was chosen as the substrate material and alumina support with optimized dimensions. Fabrication of the sensor consisted of two MEMS processes, lift-off and high resolution screen printing, with the advantages of high yield and uniformity. When the sensor’s regional working temperature changes from 250 °C to 470 °C, its sensitivity increases, as well as the power consumption. The highest sensitivity can reach 1.52 mV/% CH 4 . A temperature of 300 °C was chosen as the optimized working temperature, and the sensor’s sensitivity, power consumption, nonlinearity and response time are 0.77 mV/% CH 4 , 415 mW, 2.6%, and 35 s, respectively. This simple, but highly uniform fabrication process and the reliable performance of this sensor may lead to wide applications for methane detection. (paper)

  17. Capillary detectors for high resolution tracking

    CERN Document Server

    Annis, P

    1997-01-01

    We present a new tracking device based on glass capillary bundles or layers filled with highly purified liquid scintillator and read out at one end by means of image intensifiers and CCD devices. A large-volume prototype consisting of 5 × 105 capillaries with a diameter of 20 μm and a length of 180 cm and read out by a megapixel CCD has been tested with muon and neutrino beams at CERN. With this prototype a two track resolution of 33 μm was achieved with passing through muons. Images of neutrino interactions in a capillary bundle have also been acquired and analysed. Read-out chains based on Electron Bombarded CCD (EBCCD) and image pipeline devices are also investigated. Preliminary results obtained with a capillary bundle read out by an EBCCD are presented.

  18. Novel high-resolution temperature probe for radiofrequency dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Schuderer, Juergen [Foundation for Research on Information Technologies in Society (IT' IS), Integrated Systems Laboratory IIS, Swiss Federal Institute of Technology (ETH), CH-8092 Zurich (Switzerland); Schmid, Thomas [Schmid and Partner Engineering AG, 8004 Zurich (Switzerland); Urban, Gerald [IMTEK, Albert-Ludwigs University Freiburg, 79110 Freiburg (Germany); Samaras, Theodoros [Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Kuster, Niels [Foundation for Research on Information Technologies in Society (IT' IS), Integrated Systems Laboratory IIS, Swiss Federal Institute of Technology (ETH), CH-8092 Zurich (Switzerland)

    2004-03-21

    A novel integrated thermistor probe for temperature evaluations in radiofrequency-heated environments was realized. The probe's sensitive area is based on a highly resistive 50 {mu}m x 100 {mu}m layer of amorphous germanium processed on a glass tip. The small dimensions allow measurements with a distance as close as 150 {mu}m from solid boundaries. Due to its high temperature resolution of 4 mK and its short response time of the order of 10 ms, the sensor is very well suited for dosimetric measurements in strong absorption gradients. The influence of radiofrequency (RF) electric fields on the signal is minimized due to the high resistance of the sensor and the leads. The probe was successfully used to determine the highly nonuniform absorption distribution resulting from the RF exposure of cell cultures placed in Petri dishes. (note)

  19. Novel high-resolution temperature probe for radiofrequency dosimetry

    International Nuclear Information System (INIS)

    Schuderer, Juergen; Schmid, Thomas; Urban, Gerald; Samaras, Theodoros; Kuster, Niels

    2004-01-01

    A novel integrated thermistor probe for temperature evaluations in radiofrequency-heated environments was realized. The probe's sensitive area is based on a highly resistive 50 μm x 100 μm layer of amorphous germanium processed on a glass tip. The small dimensions allow measurements with a distance as close as 150 μm from solid boundaries. Due to its high temperature resolution of 4 mK and its short response time of the order of 10 ms, the sensor is very well suited for dosimetric measurements in strong absorption gradients. The influence of radiofrequency (RF) electric fields on the signal is minimized due to the high resistance of the sensor and the leads. The probe was successfully used to determine the highly nonuniform absorption distribution resulting from the RF exposure of cell cultures placed in Petri dishes. (note)

  20. Deposition of gold nanoparticles on glass substrate by ultrasonic spray pyrolysis

    International Nuclear Information System (INIS)

    Garza, Maria de la; Hernandez, Tomas; Colas, Rafael; Gomez, Idalia

    2010-01-01

    Ultrasonic spray pyrolysis was used to deposit gold nanoparticles on a glass substrate using ZrO 2 as a surrounding medium. The deposition was made using three flow rates of caring gas. The characterization was made by UV-Vis spectroscopy, X-ray diffraction, scanning electronic microscopy and atomic force microscopy. The UV-Vis spectra showed that the surface plasmon resonance peak, indicative of the presence of gold nanoparticles, was shown to shift towards the red spectrum as the flow rate increased; this shift can be associated to the change in size of the particles, which are assumed to grow on a {1 1 1} planes, as was detected by X-ray diffraction. Gold nanoparticles of spheroidal morphology with a relation of around 2:1 were detected by scanning electron microscopy, these observations were confirmed by atomic force microscopy.

  1. Deposition of gold nanoparticles on glass substrate by ultrasonic spray pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Garza, Maria de la; Hernandez, Tomas [Laboratorio de Materiales I, Centro de Laboratorios Especializados, Facultad de Ciencias Quimicas, Universidad Autonoma de Nuevo Leon. Av. Universidad s/n Cd. Universitaria, C.P. 66451, San Nicolas de los Garza, Nuevo Leon (Mexico); Colas, Rafael [Programa Doctoral en Ingenieria de Materiales, Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon. Av. Universidad s/n Cd. Universitaria, C.P. 66451, San Nicolas de los Garza, Nuevo Leon (Mexico); Gomez, Idalia, E-mail: mgomez@fcq.uanl.mx [Laboratorio de Materiales I, Centro de Laboratorios Especializados, Facultad de Ciencias Quimicas, Universidad Autonoma de Nuevo Leon. Av. Universidad s/n Cd. Universitaria, C.P. 66451, San Nicolas de los Garza, Nuevo Leon (Mexico)

    2010-10-25

    Ultrasonic spray pyrolysis was used to deposit gold nanoparticles on a glass substrate using ZrO{sub 2} as a surrounding medium. The deposition was made using three flow rates of caring gas. The characterization was made by UV-Vis spectroscopy, X-ray diffraction, scanning electronic microscopy and atomic force microscopy. The UV-Vis spectra showed that the surface plasmon resonance peak, indicative of the presence of gold nanoparticles, was shown to shift towards the red spectrum as the flow rate increased; this shift can be associated to the change in size of the particles, which are assumed to grow on a {l_brace}1 1 1{r_brace} planes, as was detected by X-ray diffraction. Gold nanoparticles of spheroidal morphology with a relation of around 2:1 were detected by scanning electron microscopy, these observations were confirmed by atomic force microscopy.

  2. Ultra-high resolution optical coherence tomography for encapsulation quality inspection

    KAUST Repository

    Czajkowski, Jakub

    2011-08-28

    We present the application of ultra-high resolution optical coherence tomography (UHR-OCT) in evaluation of thin, protective films used in printed electronics. Two types of sample were investigated: microscopy glass and organic field effect transistor (OFET) structure. Samples were coated with thin (1-3 μm) layer of parylene C polymer. Measurements were done using experimental UHR-OCT device based on a Kerr-lens mode locked Ti: sapphire femtosecond laser, photonic crystal fibre and modified, free-space Michelson interferometer. Submicron resolution offered by the UHR-OCT system applied in the study enables registration of both interfaces of the thin encapsulation layer. Complete, volumetric characterisation of protective layers is presented, demonstrating possibility to use OCT for encapsulation quality inspection. © Springer-Verlag 2011.

  3. High-resolution spatiotemporal strain mapping reveals non-uniform deformation in micropatterned elastomers

    Science.gov (United States)

    Aksoy, B.; Rehman, A.; Bayraktar, H.; Alaca, B. E.

    2017-04-01

    Micropatterns are generated on a vast selection of polymeric substrates for various applications ranging from stretchable electronics to cellular mechanobiological systems. When these patterned substrates are exposed to external loading, strain field is primarily affected by the presence of microfabricated structures and similarly by fabrication-related defects. The capturing of such nonhomogeneous strain fields is of utmost importance in cases where study of the mechanical behavior with a high spatial resolution is necessary. Image-based non-contact strain measurement techniques are favorable and have recently been extended to scanning tunneling microscope and scanning electron microscope images for the characterization of mechanical properties of metallic materials, e.g. steel and aluminum, at the microscale. A similar real-time analysis of strain heterogeneity in elastomers is yet to be achieved during the entire loading sequence. The available measurement methods for polymeric materials mostly depend on cross-head displacement or precalibrated strain values. Thus, they suffer either from the lack of any real-time analysis, spatiotemporal distribution or high resolution in addition to a combination of these factors. In this work, these challenges are addressed by integrating a tensile stretcher with an inverted optical microscope and developing a subpixel particle tracking algorithm. As a proof of concept, the patterns with a critical dimension of 200 µm are generated on polydimethylsiloxane substrates and strain distribution in the vicinity of the patterns is captured with a high spatiotemporal resolution. In the field of strain measurement, there is always a tradeoff between minimum measurable strain value and spatial resolution. Current noncontact techniques on elastomers can deliver a strain resolution of 0.001% over a minimum length of 5 cm. More importantly, inhomogeneities within this quite large region cannot be captured. The proposed technique can

  4. High-resolution spatiotemporal strain mapping reveals non-uniform deformation in micropatterned elastomers

    International Nuclear Information System (INIS)

    Aksoy, B; Alaca, B E; Rehman, A; Bayraktar, H

    2017-01-01

    Micropatterns are generated on a vast selection of polymeric substrates for various applications ranging from stretchable electronics to cellular mechanobiological systems. When these patterned substrates are exposed to external loading, strain field is primarily affected by the presence of microfabricated structures and similarly by fabrication-related defects. The capturing of such nonhomogeneous strain fields is of utmost importance in cases where study of the mechanical behavior with a high spatial resolution is necessary. Image-based non-contact strain measurement techniques are favorable and have recently been extended to scanning tunneling microscope and scanning electron microscope images for the characterization of mechanical properties of metallic materials, e.g. steel and aluminum, at the microscale. A similar real-time analysis of strain heterogeneity in elastomers is yet to be achieved during the entire loading sequence. The available measurement methods for polymeric materials mostly depend on cross-head displacement or precalibrated strain values. Thus, they suffer either from the lack of any real-time analysis, spatiotemporal distribution or high resolution in addition to a combination of these factors. In this work, these challenges are addressed by integrating a tensile stretcher with an inverted optical microscope and developing a subpixel particle tracking algorithm. As a proof of concept, the patterns with a critical dimension of 200 µ m are generated on polydimethylsiloxane substrates and strain distribution in the vicinity of the patterns is captured with a high spatiotemporal resolution. In the field of strain measurement, there is always a tradeoff between minimum measurable strain value and spatial resolution. Current noncontact techniques on elastomers can deliver a strain resolution of 0.001% over a minimum length of 5 cm. More importantly, inhomogeneities within this quite large region cannot be captured. The proposed technique can

  5. Investigation of Substrates and Mounting Techniques for the High Energy Focusing Telescope (HEFT)

    DEFF Research Database (Denmark)

    Hailey, Charles J.; Abdali, Salim; Christensen, Finn Erland

    1997-01-01

    The High Energy Focusing Telescope (HEFT) is a balloon-borne system for obtaining arcminute imagery in the 20-100 keV energy band. The hard X-ray optics are baselined to use thin epoxy-replicated aluminum foil substrates coated with graded-d multilayers, and we show some results on X-ray performa...... is a better substrate due to its superior hard X-ray reflectivity and scattering properties in comparison to similarly coated epoxyreplicated aluminum foil. We also discuss some preliminary work on the HEFT mirror mounting concept and the associated angular resolution error budget....

  6. High-resolution patterning of graphene by screen printing with a silicon stencil for highly flexible printed electronics.

    Science.gov (United States)

    Hyun, Woo Jin; Secor, Ethan B; Hersam, Mark C; Frisbie, C Daniel; Francis, Lorraine F

    2015-01-07

    High-resolution screen printing of pristine graphene is introduced for the rapid fabrication of conductive lines on flexible substrates. Well-defined silicon stencils and viscosity-controlled inks facilitate the preparation of high-quality graphene patterns as narrow as 40 μm. This strategy provides an efficient method to produce highly flexible graphene electrodes for printed electronics. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Crystallization in high-level waste glass: A review of glass theory and noteworthy literature

    Energy Technology Data Exchange (ETDEWEB)

    Christian, J. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-08-18

    There is a fundamental need to continue research aimed at understanding nepheline and spinel crystal formation in high-level waste (HLW) glass. Specifically, the formation of nepheline solids (K/NaAlSiO4) during slow cooling of HLW glass can reduce the chemical durability of the glass, which can cause a decrease in the overall durability of the glass waste form. The accumulation of spinel solids ((Fe, Ni, Mn, Zn)(Fe, Cr)2O4), while not detrimental to glass durability, can cause an array of processing problems inside HLW glass melters. In this review, the fundamental differences between glass and solid-crystals are explained using kinetic, thermodynamic, and viscosity arguments, and several highlights of glass-crystallization research, as it pertains to high-level waste vitrification, are described. In terms of mitigating spinel in the melter and both spinel and nepheline formation in the canister, the complexity of HLW glass and the intricate interplay between thermal, chemical, and kinetic factors further complicates this understanding. However, new experiments seeking to elucidate the contributing factors of crystal nucleation and growth in waste glass, and the compilation of data from older experiments, may go a long way towards helping to achieve higher waste loadings while developing more efficient processing strategies. Higher waste loadings and more efficient processing strategies will reduce the overall HLW Hanford Tank Waste Treatment and Immobilization Plant (WTP) vitrification facilities mission life.

  8. High-efficiency organic glass scintillators

    Science.gov (United States)

    Feng, Patrick L.; Carlson, Joseph S.

    2017-12-19

    A new family of neutron/gamma discriminating scintillators is disclosed that comprises stable organic glasses that may be melt-cast into transparent monoliths. These materials have been shown to provide light yields greater than solution-grown trans-stilbene crystals and efficient PSD capabilities when combined with 0.01 to 0.05% by weight of the total composition of a wavelength-shifting fluorophore. Photoluminescence measurements reveal fluorescence quantum yields that are 2 to 5 times greater than conventional plastic or liquid scintillator matrices, which accounts for the superior light yield of these glasses. The unique combination of high scintillation light-yields, efficient neutron/gamma PSD, and straightforward scale-up via melt-casting distinguishes the developed organic glasses from existing scintillators.

  9. High-Resolution Graphene Films for Electrochemical Sensing via Inkjet Maskless Lithography.

    Science.gov (United States)

    Hondred, John A; Stromberg, Loreen R; Mosher, Curtis L; Claussen, Jonathan C

    2017-10-24

    Solution-phase printing of nanomaterial-based graphene inks are rapidly gaining interest for fabrication of flexible electronics. However, scalable manufacturing techniques for high-resolution printed graphene circuits are still lacking. Here, we report a patterning technique [i.e., inkjet maskless lithography (IML)] to form high-resolution, flexible, graphene films (line widths down to 20 μm) that significantly exceed the current inkjet printing resolution of graphene (line widths ∼60 μm). IML uses an inkjet printed polymer lacquer as a sacrificial pattern, viscous spin-coated graphene, and a subsequent graphene lift-off to pattern films without the need for prefabricated stencils, templates, or cleanroom technology (e.g., photolithography). Laser annealing is employed to increase conductivity on thermally sensitive, flexible substrates [polyethylene terephthalate (PET)]. Laser annealing and subsequent platinum nanoparticle deposition substantially increases the electroactive nature of graphene as illustrated by electrochemical hydrogen peroxide (H 2 O 2 ) sensing [rapid response (5 s), broad linear sensing range (0.1-550 μm), high sensitivity (0.21 μM/μA), and low detection limit (0.21 μM)]. Moreover, high-resolution, complex graphene circuits [i.e., interdigitated electrodes (IDE) with varying finger width and spacing] were created with IML and characterized via potassium chloride (KCl) electrochemical impedance spectroscopy (EIS). Results indicated that sensitivity directly correlates to electrode feature size as the IDE with the smallest finger width and spacing (50 and 50 μm) displayed the largest response to changes in KCl concentration (∼21 kΩ). These results indicate that the developed IML patterning technique is well-suited for rapid, solution-phase graphene film prototyping on flexible substrates for numerous applications including electrochemical sensing.

  10. Higher-resolution selective metallization on alumina substrate by laser direct writing and electroless plating

    International Nuclear Information System (INIS)

    Lv, Ming; Liu, Jianguo; Wang, Suhuan; Ai, Jun; Zeng, Xiaoyan

    2016-01-01

    Graphical abstract: - Highlights: • Mechanisms of laser direct writing and electroless plating were studied. • Active seeds in laser-irradiated zone and laser-affected zone were found to be different. • A special chemical cleaning method with aqua regia was taken. • Higher-resolution copper patterns on alumina ceramic were obtained conveniently. - Abstract: How to fabricate conductive patterns on ceramic boards with higher resolution is a challenge in the past years. The fabrication of copper patterns on alumina substrate by laser direct writing and electroless copper plating is a low cost and high efficiency method. Nevertheless, the lower resolution limits its further industrial applications in many fields. In this report, the mechanisms of laser direct writing and electroless copper plating were studied. The results indicated that as the decomposed products of precursor PdCl_2 have different chemical states respectively in laser-irradiated zone (LIZ) and laser-affected zone (LAZ). This phenomenon was utilized and a special chemical cleaning method with aqua regia solution was taken to selectively remove the metallic Pd in LAZ, while kept the PdO in LIZ as the only active seeds. As a result, the resolution of subsequent copper patterns was improved significantly. This technique has a great significance to develop the microelectronics devices.

  11. The immobilization of High Level Waste Into Glass

    International Nuclear Information System (INIS)

    Aisyah; Martono, H.

    1998-01-01

    High level liquid waste is generated from the first step extraction in the nuclear fuel reprocessing. The waste is immobilized with boro-silicate glass. A certain composition of glass is needed for a certain type of waste, so that the properties of waste glass would meet the requirement either for further process or for disposal. The effect of waste loading on either density, thermal expansion, softening point and leaching rate has been studied. The composition of the high level liquid waste has been determined by ORIGEN 2 and the result has been used to prepare simulated high level waste. The waste loading in the waste glass has been set to be 19.48; 22.32; 25.27; and 26.59 weight percent. The result shows that increasing the waste loading has resulted in the higher density with no thermal expansion and softening point significant change. The increase in the waste loading increase that leaching rate. The properties of the waste glass in this research have not shown any deviation from the standard waste glass properties

  12. Crystallization of high-strength nano-scale leucite glass-ceramics.

    Science.gov (United States)

    Theocharopoulos, A; Chen, X; Wilson, R M; Hill, R; Cattell, M J

    2013-11-01

    Fine-grained, high strength, translucent leucite dental glass-ceramics are synthesized via controlled crystallization of finely milled glass powders. The objectives of this study were to utilize high speed planetary milling of an aluminosilicate glass for controlled surface crystallization of nano-scale leucite glass-ceramics and to test the biaxial flexural strength. An aluminosilicate glass was synthesized, attritor or planetary milled and heat-treated. Glasses and glass-ceramics were characterized using particle size analysis, X-ray diffraction and scanning electron microscopy. Experimental (fine and nanoscale) and commercial (Ceramco-3, IPS Empress Esthetic) leucite glass-ceramics were tested using the biaxial flexural strength (BFS) test. Gaussian and Weibull statistics were applied. Experimental planetary milled glass-ceramics showed an increased leucite crystal number and nano-scale median crystal sizes (0.048-0.055 μm(2)) as a result of glass particle size reduction and heat treatments. Experimental materials had significantly (p0.05) strength difference. All other groups' mean BFS and characteristic strengths were found to be significantly different (pglass-ceramics with high flexural strength. These materials may help to reduce problems associated with brittle fracture of all-ceramic restorations and give reduced enamel wear. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  13. Damage characterization of E-glass and C-glass fibre polymer composites after high velocity impact

    Science.gov (United States)

    Razali, N.; Sultan, M. T. H.; Cardona, F.; Jawaid, M.

    2017-12-01

    The purpose of this work is to identify impact damage on glass fibre reinforced polymer composite structures after high velocity impact. In this research, Type C-glass (600 g/m2) and Type E-glass (600 g/m2) were used to fabricate Glass Fibre-Reinforced Polymer composites (GFRP) plates. The panels were fabricated using a vacuum bagging and hot bounder method. Single stage gas gun (SSGG) was used to do the testing and data acquisition system was used to collect the damage data. Different types of bullets and different pressure levels were used for the experiment. The obtained results showed that the C-glass type of GFRP experienced more damage in comparison to E-glass type of materials based on the amount of energy absorbed on impact and the size of the damage area. All specimens underwent a partial fibre breakage but the laminates were not fully penetrated by the bullets. This indicated that both types of materials have high impact resistance even though the applied pressures of the gas gun were on the high range. We concluded that within the material specifications of the laminates including the type of glass fibre reinforcement and the thickness of the panels, those composite materials are safe to be applied in structural and body armour applications as an alternative to more expensive materials such as Kevlar and type S-glass fibre based panels.

  14. Investigation of the Structural, Electrical, and Optical Properties of the Nano-Scale GZO Thin Films on Glass and Flexible Polyimide Substrates

    Directory of Open Access Journals (Sweden)

    Fang-Hsing Wang

    2016-05-01

    Full Text Available In this study, Ga2O3-doped ZnO (GZO thin films were deposited on glass and flexible polyimide (PI substrates at room temperature (300 K, 373 K, and 473 K by the radio frequency (RF magnetron sputtering method. After finding the deposition rate, all the GZO thin films with a nano-scale thickness of about 150 ± 10 nm were controlled by the deposition time. X-ray diffraction patterns indicated that the GZO thin films were not amorphous and all exhibited the (002 peak, and field emission scanning electron microscopy showed that only nano-scale particles were observed. The dependences of the structural, electrical, and optical properties of the GZO thin films on different deposition temperatures and substrates were investigated. X-ray photoemission spectroscopy (XPS was used to measure the elemental composition at the chemical and electronic states of the GZO thin films deposited on different substrates, which could be used to clarify the mechanism of difference in electrical properties of the GZO thin films. In this study, the XPS binding energy spectra of Ga2p3/2 and Ga2p1/2 peaks, Zn2p3/2 and Zn2p1/2 peaks, the Ga3d peak, and O1s peaks for GZO thin films on glass and PI substrates were well compared.

  15. Glass matrix armor

    International Nuclear Information System (INIS)

    Calkins, N.C.

    1991-01-01

    This patent describes an armor system which utilizes glass. A plurality of constraint cells are mounted on a surface of a substrate, which is metal armor plate or a similar tough material, such that the cells almost completely cover the surface of the substrate. Each constraint cell has a projectile receiving wall parallel to the substrate surface and has sides which are perpendicular to and surround the perimeter of the receiving wall. The cells are mounted such that, in one embodiment, the substrate surface serves as a sixth side or closure for each cell. Each cell has inside of it a plate, termed the front plate, which is parallel to and in contact with substantially all of the insides surface of the receiving wall. The balance of each cell is completely filled with a projectile-abrading material consisting of glass and a ceramic material and, in certain embodiments, a polymeric material

  16. Pneumonia: high-resolution CT findings in 114 patients

    Energy Technology Data Exchange (ETDEWEB)

    Reittner, Pia [Department of Radiology, Vancouver Hospital and Health Sciences Center, 855 W. 12th Ave., Vancouver, BC (Canada); Department of Radiology, Karl Franzens University and University Hospital Graz, Auenbruggerplatz 9, 8036 Graz (Austria); Ward, Suzanne; Heyneman, Laura; Mueller, Nestor L. [Department of Radiology, Vancouver Hospital and Health Sciences Center, 855 W. 12th Ave., Vancouver, BC (Canada); Johkoh, Takeshi [Department of Radiology, Osaka University Medical School, 2-2 Yamadaoka, Suita, Osaka 565-0825 (Japan)

    2003-03-01

    The objective of the present study was to assess the high-resolution CT appearances of different types of pneumonia. The high-resolution CT scans obtained in 114 patients (58 immunocompetent, 59 immunocompromised) with bacterial, Mycoplasma pneumoniae, viral, fungal, and Pneumocystis carinii pneumonias were analyzed retrospectively by two independent observers for presence, pattern, and distribution of abnormalities. Areas of air-space consolidation were not detected in patients with viral pneumonia and were less frequently seen in patients with Pneumocystis carinii pneumonia (2 of 22 patients, 9%) than in bacterial (30 of 35, 85%), Mycoplasma pneumoniae (22 of 28, 79%), and fungal pneumonias (15 of 20, 75%; p<0.01). There was no significant difference in the prevalence or distribution of consolidation between bacterial, Mycoplasma pneumoniae, and fungal pneumonias. Extensive symmetric bilateral areas of ground-glass attenuation were present in 21 of 22 (95%) patients with Pneumocystis carinii pneumonia and were not seen in other pneumonias except in association with areas of consolidation and nodules. Centrilobular nodules were present less commonly in bacterial pneumonia (6 of 35 patients, 17%) than in Mycoplasma pneumoniae (24 of 28, 96%), viral (7 of 9, 78%), or fungal (12 of 20, 92%) pneumonia (p<0.01). Except for Pneumocystis carinii pneumonia and Mycoplasma pneumoniae pneumonia, which often have a characteristic appearance, high-resolution CT is of limited value in the differential diagnosis of the various types of infective pneumonia. (orig.)

  17. Pneumonia: high-resolution CT findings in 114 patients

    International Nuclear Information System (INIS)

    Reittner, Pia; Ward, Suzanne; Heyneman, Laura; Mueller, Nestor L.; Johkoh, Takeshi

    2003-01-01

    The objective of the present study was to assess the high-resolution CT appearances of different types of pneumonia. The high-resolution CT scans obtained in 114 patients (58 immunocompetent, 59 immunocompromised) with bacterial, Mycoplasma pneumoniae, viral, fungal, and Pneumocystis carinii pneumonias were analyzed retrospectively by two independent observers for presence, pattern, and distribution of abnormalities. Areas of air-space consolidation were not detected in patients with viral pneumonia and were less frequently seen in patients with Pneumocystis carinii pneumonia (2 of 22 patients, 9%) than in bacterial (30 of 35, 85%), Mycoplasma pneumoniae (22 of 28, 79%), and fungal pneumonias (15 of 20, 75%; p<0.01). There was no significant difference in the prevalence or distribution of consolidation between bacterial, Mycoplasma pneumoniae, and fungal pneumonias. Extensive symmetric bilateral areas of ground-glass attenuation were present in 21 of 22 (95%) patients with Pneumocystis carinii pneumonia and were not seen in other pneumonias except in association with areas of consolidation and nodules. Centrilobular nodules were present less commonly in bacterial pneumonia (6 of 35 patients, 17%) than in Mycoplasma pneumoniae (24 of 28, 96%), viral (7 of 9, 78%), or fungal (12 of 20, 92%) pneumonia (p<0.01). Except for Pneumocystis carinii pneumonia and Mycoplasma pneumoniae pneumonia, which often have a characteristic appearance, high-resolution CT is of limited value in the differential diagnosis of the various types of infective pneumonia. (orig.)

  18. High temperature glass thermal control structure and coating. [for application to spacecraft reusable heat shielding

    Science.gov (United States)

    Stewart, D. A.; Goldstein, H. E.; Leiser, D. B. (Inventor)

    1983-01-01

    A high temperature stable and solar radiation stable thermal control coating is described which is useful either as such, applied directly to a member to be protected, or applied as a coating on a re-usable surface insulation (RSI). It has a base coat layer and an overlay glass layer. The base coat layer has a high emittance, and the overlay layer is formed from discrete, but sintered together glass particles to give the overlay layer a high scattering coefficient. The resulting two-layer space and thermal control coating has an absorptivity-to-emissivity ratio of less than or equal to 0.4 at room temperature, with an emittance of 0.8 at 1200 F. It is capable of exposure to either solar radiation or temperatures as high as 2000 F without significant degradation. When used as a coating on a silica substrate to give an RSI structure, the coatings of this invention show significantly less reduction in emittance after long term convective heating and less residual strain than prior art coatings for RSI structures.

  19. Influence of substrate on structural, morphological and optical properties of TiO2 thin films deposited by reaction magnetron sputtering

    Directory of Open Access Journals (Sweden)

    Xinghua Zhu

    2017-12-01

    Full Text Available Titanium dioxide (TiO2 films have been prepared by DC reaction magnetron sputtering technique on different substrates (glass, SiO2, platinum electrode-Pt, Silicon-Si. X-ray diffraction (XRD patterns showed that all TiO2 films were grown along the preferred orientation of (110 plane. Samples on Si and Pt substrates are almost monophasic rutile, however, samples on glass and SiO2 substrates accompanied by a weak anatase structure. Atomic force microscopy (AFM images revealed uniform grain distribution except for films on Pt substrates. Photoluminescence (PL spectra showed obvious intrinsic emission band, but films on glass was accompanied by a distinct defect luminescence region. Raman spectroscopy suggested that all samples moved to high wavenumbers and films on glass moved obviously.

  20. PZT piezoelectric films on glass for Gen-X imaging

    Science.gov (United States)

    Wilke, Rudeger H. T.; Trolier-McKinstry, Susan; Reid, Paul B.; Schwartz, Daniel A.

    2010-09-01

    The proposed adaptive optics system for the Gen-X telescope uses piezoelectric lead zirconate titanate (PZT) films deposited on flexible glass substrates. The low softening transition of the glass substrates imposes several processing challenges that require the development of new approaches to deposit high quality PZT thin films. Synthesis and optimization of chemical solution deposited 1 μm thick films of PbZr0.52Ti0.48O3 on small area (1 in2) and large area (16 in2) Pt/Ti/glass substrates has been performed. In order to avoid warping of the glass at temperatures typically used to crystallize PZT films ({700°C), a lower temperature, two-step crystallization process was employed. An {80 nm thick seed layer of PbZr0.30Ti0.70O3 was deposited to promote the growth of the perovskite phase. After the deposition of the seed layer, the films were annealed in a rapid thermal annealing (RTA) furnace at 550°C for 3 minutes to nucleate the perovskite phase. This was followed by isothermal annealing at 550°C for 1 hour to complete crystallization. For the subsequent PbZr0.52Ti0.48O3 layers, the same RTA protocol was performed, with the isothermal crystallization implemented following the deposition of three PbZr0.52Ti0.48O3 spin-coated layers. Over the frequency range of 1 kHz to 100 kHz, films exhibit relative permittivity values near 800 with loss tangents below 0.07. Hysteresis loops show low levels of imprint with coercive fields of 40-50 kV/cm in the forward direction and 50-70 kV/cm in the reverse direction. The remanent polarization varied from 25-35 μC/cm2 and e31,f values were approximately -5.0 C/m2. In scaling up the growth procedure to large area films, where warping becomes more pronounced due to the increased size of the substrate, the pyrolysis and crystallization conditions were performed in a box furnace to improve the temperature uniformity. By depositing films on both sides of the glass substrate, the tensile stresses are balanced, providing a

  1. Infrared-transmittance tunable metal-insulator conversion device with thin-film-transistor-type structure on a glass substrate

    Directory of Open Access Journals (Sweden)

    Takayoshi Katase

    2017-05-01

    Full Text Available Infrared (IR transmittance tunable metal-insulator conversion was demonstrated on a glass substrate by using thermochromic vanadium dioxide (VO2 as the active layer in a three-terminal thin-film-transistor-type device with water-infiltrated glass as the gate insulator. Alternative positive/negative gate-voltage applications induce the reversible protonation/deprotonation of a VO2 channel, and two-orders of magnitude modulation of sheet-resistance and 49% modulation of IR-transmittance were simultaneously demonstrated at room temperature by the metal-insulator phase conversion of VO2 in a non-volatile manner. The present device is operable by the room-temperature protonation in an all-solid-state structure, and thus it will provide a new gateway to future energy-saving technology as an advanced smart window.

  2. Fabrication of gold nanodot arrays on a transparent substrate as a nanobioplatform for label-free visualization of living cells

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Mi; El-Said, Waleed Ahmed; Choi, Jeong-Woo, E-mail: jwchoi@sogang.ac.kr [Interdisciplinary Program of Integrated Biotechnology, Sogang University, Seoul 121-742 (Korea, Republic of)

    2011-06-10

    Two-dimensional gold (Au) nanodot arrays on a transparent substrate were fabricated for imaging of living cells. A nanoporous alumina mask with large-area coverage capability was prepared by a two-step chemical wet etching process after a second anodization. Highly ordered Au nanodot arrays were formed on indium-tin-oxide (ITO) glass using very thin nanoporous alumina of approximately 200 nm thickness as an evaporation mask. The large-area Au nanodot arrays on ITO glass were modified with RGD peptide (arginine; glycine; aspartic acid) containing a cysteine (Cys) residue and then used to immobilize human cancer HeLa cells, the morphology of which was observed by confocal microscopy. The confocal micrographs of living HeLa cells on Au nanodot arrays revealed enhanced contrast and resolution, which enabled discernment of cytoplasmic organelles more clearly. These results suggest that two-dimensional Au nanodot arrays modified with RGD peptide on ITO glass have potential as a biocompatible nanobioplatform for the label-free visualization and adhesion of living cells.

  3. Sealed glass coating of high temperature ceramic superconductors

    Science.gov (United States)

    Wu, Weite; Chu, Cha Y.; Goretta, Kenneth C.; Routbort, Jules L.

    1995-01-01

    A method and article of manufacture of a lead oxide based glass coating on a high temperature superconductor. The method includes preparing a dispersion of glass powders in a solution, applying the dispersion to the superconductor, drying the dispersion before applying another coating and heating the glass powder dispersion at temperatures below oxygen diffusion onset and above the glass melting point to form a continuous glass coating on the superconductor to establish compressive stresses which enhance the fracture strength of the superconductor.

  4. Transparent Substrates for Plasmonic Sensing by Lithography-Free Fabrication

    DEFF Research Database (Denmark)

    Thilsted, Anil Haraksingh

    This Ph.D. thesis presents fabrication and optimization of transparent plasmonic substrates that can be used for biological and chemical sensing by surface enhanced Raman spectroscopy (SERS) sensing and localized surface plasmon resonance refractive index (LSPR RI) sensing. These substrates are......-free fabrication methods, and resulted in large-area, high throughput and low cost production techniques. The fabrication techniques consisted of using aluminum patterned areas and reactive ion etching (RIE) to achieve nanopillars or nanocylinders in glass; using RIE to achieve nanopillars in silicon as a mould......, respectively. As the substrates were transparent, measurements from the backside were possible, showing a 44%, 1:7% and 71% Raman signal intensity in comparison to the measurements from the front, for the glass nanopillars, the polymer injected nanopillars and the transferred metal nanocaps, respectively...

  5. Capillary detectors for high resolution tracking

    International Nuclear Information System (INIS)

    Annis, P.; Bay, A.; Bonekaemper, D.; Buontempo, S.; Ereditato, A.; Fabre, J.P.; Fiorillo, G.; Frekers, D.; Frenkel, A.; Galeazzi, F.; Garufi, F.; Goldberg, J.; Golovkin, S.; Hoepfner, K.; Konijn, J.; Kozarenko, E.; Kreslo, I.; Liberti, B.; Martellotti, G.; Medvedkov, A.; Mommaert, C.; Panman, J.; Penso, G.; Petukhov, Yu.; Rondeshagen, D.; Tyukov, V.; Vasilchenko, V.; Vilain, P.; Vischers, J.L.; Wilquet, G.; Winter, K.; Wolff, T.; Wong, H.

    1997-01-01

    We present a new tracking device based on glass capillary bundles or layers filled with highly purified liquid scintillator and read out at one end by means of image intensifiers and CCD devices. A large-volume prototype consisting of 5 x 10 5 capillaries with a diameter of 20 μm and a length of 180 cm and read out by a megapixel CCD has been tested with muon and neutrino beams at CERN. With this prototype a two track resolution of 33 μm was achieved with passing through muons. Images of neutrino interactions in a capillary bundle have also been acquired and analysed. Read-out chains based on electron bombarded CCD (EBCCD) and image pipeline devices are also investigated. Preliminary results obtained with a capillary bundle read out by an EBCCD are presented. (orig.)

  6. Electrostatic spray deposition of highly transparent silver nanowire electrode on flexible substrate.

    Science.gov (United States)

    Kim, Taegeon; Canlier, Ali; Kim, Geun Hong; Choi, Jaeho; Park, Minkyu; Han, Seung Min

    2013-02-01

    In this work, a modified polyol synthesis by adding KBr and by replacing the AgCl with NaCl seed was used to obtain high quality silver nanowires with long aspect ratios with an average length of 13.5 μm in length and 62.5 nm in diameter. The Ag nanowires suspended in methanol solution after removing any unwanted particles using a glass filter system were then deposited on a flexible polycarbonate substrate using an electrostatic spray system. Transmittance of 92.1% at wavelength of 550 nm with sheet resistance of 20 Ω/sq and haze of 4.9% were measured for the electrostatic sprayed Ag nanowire transparent electrode.

  7. A suitable material for the substrate of micro-strip gas chamber

    International Nuclear Information System (INIS)

    Zhang Minglong; Xia Yiben; Wang Linjun; Zhang Weili

    2004-01-01

    Micro-strip Gas Chamber (MSGC) used as a position sensitive detector has perfect performances in the detection of nuclear irradiations. However, it encounters a severe problem, that is, positive charge accumulation which can be avoided by reducing the surface resistivity of insulating substrate. So, diamond-like carbon (DLC) film is coated on D263 glass to modify its electrical properties as substrate for MSGC. Raman spectroscopy demonstrates that DLC film is of sp 3 (σ bounding) and sp 2 bonding (π bonding), and therefore it is a type of electronically conducting material. It also reveals that the film deposited on D263 glass possesses very large of sp 3 content and consequently is a high quality DLC film. I-V plots indicate that samples with DLC film enjoy very steady and suitable resistivities in the range of 10 9 -10 12 Ω·cm. C-F characteristics also show that samples coated by DLC film have low and stable capacitance with frequency. These excellent performances of the new material, DLC film/D263 glass, meet the optimum requirements of MSGC. DLC film/D263 glass used as the substrate of MSGC should effectively avoid the charge pile-up effect and substrate instability and then improve its performances

  8. Metastatic pulmonary calcification: high-resolution computed tomography findings in 23 cases

    Directory of Open Access Journals (Sweden)

    Luciana Camara Belém

    Full Text Available Abstract Objective: The aim of this study was to evaluate the high-resolution computed tomography (HRCT findings in patients diagnosed with metastatic pulmonary calcification (MPC. Materials and Methods: We retrospectively reviewed the HRCT findings from 23 cases of MPC [14 men, 9 women; mean age, 54.3 (range, 26-89 years]. The patients were examined between 2000 and 2014 in nine tertiary hospitals in Brazil, Chile, and Canada. Diagnoses were established by histopathologic study in 18 patients and clinical-radiological correlation in 5 patients. Two chest radiologists analyzed the images and reached decisions by consensus. Results: The predominant HRCT findings were centrilobular ground-glass nodules (n = 14; 60.9%, consolidation with high attenuation (n = 10; 43.5%, small dense nodules (n = 9; 39.1%, peripheral reticular opacities associated with small calcified nodules (n = 5; 21.7%, and ground-glass opacities without centrilobular ground-glass nodular opacity (n = 5; 21.7%. Vascular calcification within the chest wall was found in four cases and pleural effusion was observed in five cases. The abnormalities were bilateral in 21 cases. Conclusion: MPC manifested with three main patterns on HRCT, most commonly centrilobular ground-glass nodules, often containing calcifications, followed by dense consolidation and small solid nodules, most of which were calcified. We also described another pattern of peripheral reticular opacities associated with small calcified nodules. These findings should suggest the diagnosis of MPC in the setting of hypercalcemia.

  9. Metastatic pulmonary calcification: high-resolution computed tomography findings in 23 cases

    Energy Technology Data Exchange (ETDEWEB)

    Belem, Luciana Camara; Souza, Carolina A.; Souza Junior, Arthur Soares; Escuissato, Dante Luiz; Hochhegger, Bruno; Nobre, Luiz Felipe; Rodrigues, Rosana Souza; Gomes, Antonio Carlos Portugal; Silva, Claudio S.; Guimaraes, Marcos Duarte; Zanetti, Glaucia; Marchiori, Edson, E-mail: edmarchiori@gmail.com [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil); Ottawa Hospital Research Institute, University of Ottawa, (Canada); Faculdade de Medicina de Sao Jose do Rio Preto (FAMERP), SP (Brazil); Ultra X, Sao Jose do Rio Preto, SP (Brazil); Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil); Universidade Federal de Ciencias da Saude de Porto Alegre (UFCSPA), Porto Alegre, RS (Brazil); Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Hospital Universitario

    2017-07-15

    Objective: The aim of this study was to evaluate the high-resolution computed tomography (HRCT) findings in patients diagnosed with metastatic pulmonary calcification (MPC). Materials and Methods: We retrospectively reviewed the HRCT findings from 23 cases of MPC [14 men, 9 women; mean age, 54.3 (range, 26-89) years]. The patients were examined between 2000 and 2014 in nine tertiary hospitals in Brazil, Chile, and Canada. Diagnoses were established by histopathologic study in 18 patients and clinical-radiological correlation in 5 patients. Two chest radiologists analyzed the images and reached decisions by consensus. Results: The predominant HRCT findings were centrilobular ground-glass nodules (n = 14; 60.9%), consolidation with high attenuation (n = 10; 43.5%), small dense nodules (n = 9; 39.1%), peripheral reticular opacities associated with small calcified nodules (n = 5; 21.7%), and ground-glass opacities without centrilobular ground-glass nodular opacity (n = 5; 21.7%). Vascular calcification within the chest wall was found in four cases and pleural effusion was observed in five cases. The abnormalities were bilateral in 21 cases. Conclusion: MPC manifested with three main patterns on HRCT, most commonly centrilobular ground-glass nodules, often containing calcifications, followed by dense consolidation and small solid nodules, most of which were calcified. We also described another pattern of peripheral reticular opacities associated with small calcified nodules. These findings should suggest the diagnosis of MPC in the setting of hypercalcemia. (author)

  10. Metastatic pulmonary calcification: high-resolution computed tomography findings in 23 cases

    International Nuclear Information System (INIS)

    Belem, Luciana Camara; Souza, Carolina A.; Souza Junior, Arthur Soares; Escuissato, Dante Luiz; Hochhegger, Bruno; Nobre, Luiz Felipe; Rodrigues, Rosana Souza; Gomes, Antonio Carlos Portugal; Silva, Claudio S.; Guimaraes, Marcos Duarte; Zanetti, Glaucia; Marchiori, Edson; Ottawa Hospital Research Institute, University of Ottawa,; Faculdade de Medicina de Sao Jose do Rio Preto; Ultra X, Sao Jose do Rio Preto, SP; Universidade Federal do Parana; Universidade Federal de Ciencias da Saude de Porto Alegre; Universidade Federal de Santa Catarina

    2017-01-01

    Objective: The aim of this study was to evaluate the high-resolution computed tomography (HRCT) findings in patients diagnosed with metastatic pulmonary calcification (MPC). Materials and Methods: We retrospectively reviewed the HRCT findings from 23 cases of MPC [14 men, 9 women; mean age, 54.3 (range, 26-89) years]. The patients were examined between 2000 and 2014 in nine tertiary hospitals in Brazil, Chile, and Canada. Diagnoses were established by histopathologic study in 18 patients and clinical-radiological correlation in 5 patients. Two chest radiologists analyzed the images and reached decisions by consensus. Results: The predominant HRCT findings were centrilobular ground-glass nodules (n = 14; 60.9%), consolidation with high attenuation (n = 10; 43.5%), small dense nodules (n = 9; 39.1%), peripheral reticular opacities associated with small calcified nodules (n = 5; 21.7%), and ground-glass opacities without centrilobular ground-glass nodular opacity (n = 5; 21.7%). Vascular calcification within the chest wall was found in four cases and pleural effusion was observed in five cases. The abnormalities were bilateral in 21 cases. Conclusion: MPC manifested with three main patterns on HRCT, most commonly centrilobular ground-glass nodules, often containing calcifications, followed by dense consolidation and small solid nodules, most of which were calcified. We also described another pattern of peripheral reticular opacities associated with small calcified nodules. These findings should suggest the diagnosis of MPC in the setting of hypercalcemia. (author)

  11. Micropatterning on glass with deep UV

    OpenAIRE

    sprotocols

    2015-01-01

    Authors: Nicolas CARPI, Matthieu PIEL, Ammar Azioune & Jenny Fink ### Abstract This protocol describes a method to print micropatterns on glass with extra-cellular matrix proteins to promote cell adhesion. The non-adhesive part is made with polylysine grafted polyethyleneglycol (PLL-g-PEG). This technique is reproducible, cheap, fast and can achieve high resolution (~1 µm). ### Introduction This protocol explains how to make high resolution adhesive micropattens of protein...

  12. Structure of high alumina content Al2O3-SiO2 composition glasses.

    Science.gov (United States)

    Weber, Richard; Sen, Sabyasachi; Youngman, Randall E; Hart, Robert T; Benmore, Chris J

    2008-12-25

    The structure of binary aluminosilicate glasses containing 60-67 mol % Al2O3 were investigated using high-resolution 27Al NMR and X-ray and neutron diffraction. The glasses were made by aerodynamic levitation of molten oxides. The 67% alumina composition required a cooling rate of approximately 1600 degrees C s(1-) to form glass from submillimeter sized samples. NMR results show that the glasses contain aluminum in 4-, 5-, and 6-fold coordination in the approximate ratio 4:5:1. The average Al coordination increases from 4.57 to 4.73 as the fraction of octahedral Al increases with alumina content. The diffraction results on the 67% composition are consistent with a disordered Al framework with Al ions in a range of coordination environments that are substantially different from those found in the equilibrium crystalline phases. Analysis of the neutron and X-ray structure factors yields an average bond angle of 125 +/- 4 degrees between an Al ion and the adjoining cation via a bridging oxygen. We propose that the structure of the glass is a "transition state" between the alumina-rich liquid and the equilibrium mullite phase that are dominated by 4- and 6-coordinated aluminum ions, respectively.

  13. Microbeam high-resolution diffraction and x-ray standing wave methods applied to semiconductor structures

    International Nuclear Information System (INIS)

    Kazimirov, A; Bilderback, D H; Huang, R; Sirenko, A; Ougazzaden, A

    2004-01-01

    A new approach to conditioning x-ray microbeams for high angular resolution x-ray diffraction and scattering techniques is introduced. We combined focusing optics (one-bounce imaging capillary) and post-focusing collimating optics (miniature Si(004) channel-cut crystal) to generate an x-ray microbeam with a size of 10 μm and ultimate angular resolution of 14 μrad. The microbeam was used to analyse the strain in sub-micron thick InGaAsP epitaxial layers grown on an InP(100) substrate by the selective area growth technique in narrow openings between the oxide stripes. For the structures for which the diffraction peaks from the substrate and the film overlap, the x-ray standing wave technique was applied for precise measurements of the strain with a Δd/d resolution of better than 10 -4 . (rapid communication)

  14. Effect of high thermal expansion glass infiltration on mechanical ...

    Indian Academy of Sciences (India)

    This work studies the effect on the mechanical properties of alumina-10 wt% zirconia (3 mol% yttria stabilized) composite by infiltrating glass of a higher thermal expansion (soda lime glass) on the surface at high temperature. The glass improved the strength of composite at room temperature as well as at high temperature.

  15. Photocatalysis over TiO/sub 2/ supported on a glass substrate

    Energy Technology Data Exchange (ETDEWEB)

    Serpone, N; Borgarello, E; Harris, R; Cahill, P; Borgarello, M; Pelizzetti, E

    1986-10-01

    TiO/sub 2/ has been prepared and simultaneously embedded onto 3-4 mm glass beads by high temperature decomposition of titanium(IV) alkoxides in alcoholic media. The metal oxide acts as a semiconductor upon irradiation with AM1 simulated sunlight as demonstrated by the formation of the methylviologen MV/sup +./ radical in aqueous/methanolic media. The photocatalytic activity of the TiO/sub 2//glass beads material has been assessed by two principal light-driven processes: photoreduction of gold(III), and photodegradation of a chlorinated phenol. The potential utility of this device is discussed. 12 refs.

  16. Structural study of Mg doped cobalt ferrite thin films on ITO coated glass substrate

    Science.gov (United States)

    Suthar, Mahesh; Bapna, Komal; Kumar, Kishor; Ahuja, B. L.

    2018-05-01

    We have synthesized thin films of Co1-xMgxFe2O4 (x = 0, 0.4, 0.6, 0.8, 1) on transparent conducting indium tin oxide (ITO) coated glass substrate by pulsed laser deposition method. The structural properties of the grown films were analyzed by the X-ray diffraction and Raman spectroscopy, which suggest the single phase growth of these films. Raman spectra revealed the incorporation of Mg ions into CoFe2O4 lattice and suggest that the Mg ions initially go both to the octahedral and tetrahedral sites upto a certain concentration. For higher concentration, Mg ions prefer to occupy the tetrahedral sites.

  17. Isolating GaSb Membranes Grown Metamorphically on GaAs Substrates Using Highly Selective Substrate Removal Etch Processes

    Science.gov (United States)

    Renteria, E. J.; Muniz, A. J.; Addamane, S. J.; Shima, D. M.; Hains, C. P.; Balakrishnan, G.

    2015-05-01

    The etch rates of NH4OH:H2O2 and C6H8O7:H2O2 for GaAs and GaSb have been investigated to develop a selective etch for GaAs substrates and to isolate GaSb epilayers grown on GaAs. The NH4OH:H2O2 solution has a greater etch rate differential for the GaSb/GaAs material system than C6H8O7:H2O2 solution. The selectivity of NH4OH:H2O2 for GaAs/GaSb under optimized etch conditions has been observed to be as high as 11,000 ± 2000, whereas that of C6H8O7:H2O2 has been measured up to 143 ± 2. The etch contrast has been verified by isolating 2- μm-thick GaSb epilayers that were grown on GaAs substrates. GaSb membranes were tested and characterized with high- resolution x-ray diffraction and atomic force microscopy.

  18. The glass transition in high-density amorphous ice.

    Science.gov (United States)

    Loerting, Thomas; Fuentes-Landete, Violeta; Handle, Philip H; Seidl, Markus; Amann-Winkel, Katrin; Gainaru, Catalin; Böhmer, Roland

    2015-01-01

    There has been a long controversy regarding the glass transition in low-density amorphous ice (LDA). The central question is whether or not it transforms to an ultraviscous liquid state above 136 K at ambient pressure prior to crystallization. Currently, the most widespread interpretation of the experimental findings is in terms of a transformation to a superstrong liquid above 136 K. In the last decade some work has also been devoted to the study of the glass transition in high-density amorphous ice (HDA) which is in the focus of the present review. At ambient pressure HDA is metastable against both ice I and LDA, whereas at > 0.2 GPa HDA is no longer metastable against LDA, but merely against high-pressure forms of crystalline ice. The first experimental observation interpreted as the glass transition of HDA was made using in situ methods by Mishima, who reported a glass transition temperature T g of 160 K at 0.40 GPa. Soon thereafter Andersson and Inaba reported a much lower glass transition temperature of 122 K at 1.0 GPa. Based on the pressure dependence of HDA's T g measured in Innsbruck, we suggest that they were in fact probing the distinct glass transition of very high-density amorphous ice (VHDA). Very recently the glass transition in HDA was also observed at ambient pressure at 116 K. That is, LDA and HDA show two distinct glass transitions, clearly separated by about 20 K at ambient pressure. In summary, this suggests that three glass transition lines can be defined in the p-T plane for LDA, HDA, and VHDA.

  19. High-resolution tracking using large capillary bundles filled with liquid scintillator

    CERN Document Server

    Annis, P; Benussi, L; Bruski, N; Buontempo, S; Currat, C; D'Ambrosio, N; Van Dantzig, R; Dupraz, J P; Ereditato, A; Fabre, Jean-Paul; Fanti, V; Feyt, J; Frekers, D; Frenkel, A; Galeazzi, F; Garufi, F; Goldberg, J; Golovkin, S V; Gorin, A M; Grégoire, G; Harrison, K; Höpfner, K; Holtz, K; Konijn, J; Kozarenko, E N; Kreslo, I E; Kushnirenko, A E; Liberti, B; Martellotti, G; Medvedkov, A M; Michel, L; Migliozzi, P; Mommaert, C; Mondardini, M R; Panman, J; Penso, G; Petukhov, Yu P; Rondeshagen, D; Siegmund, W P; Tyukov, V E; Van Beek, G; Vasilchenko, V G; Vilain, P; Visschers, J L; Wilquet, G; Winter, Klaus; Wolff, T; Wörtche, H J; Wong, H; Zimyn, K V

    2000-01-01

    We have developed large high-resolution tracking detectors based on glass capillaries filled with organic liquid scintillator of high refractive index. These liquid-core scintillating optical fibres act simultaneously as detectors of charged particles and as image guides. Track images projected onto the readout end of a capillary bundle are visualized by an optoelectronic chain consisting of a set of image-intensifier tubes followed by a photosensitive CCD or by an EBCCD camera. Two prototype detectors, each composed of \\hbox{$\\approx 10^6$} capillaries with \\hbox{20$-$25 $\\mu$m} diameter and \\hbox{0.9$-$1.8 m} length, have been tested, and a spatial resolution of the order of \\hbox{20$-$40 $\\mu$m} has been attained. A high scintillation efficiency and a large light-attenuation length, in excess of 3 m, was achieved through special purification of the liquid scintillator. Along the tracks of minimum-ionizing particles, the hit densities obtained were $\\sim$ 8 hits/mm at the readout window, and \\hbox{$\\sim$ 3 ...

  20. Wireless sEMG System with a Microneedle-Based High-Density Electrode Array on a Flexible Substrate.

    Science.gov (United States)

    Kim, Minjae; Gu, Gangyong; Cha, Kyoung Je; Kim, Dong Sung; Chung, Wan Kyun

    2017-12-30

    Surface electromyography (sEMG) signals reflect muscle contraction and hence, can provide information regarding a user's movement intention. High-density sEMG systems have been proposed to measure muscle activity in small areas and to estimate complex motion using spatial patterns. However, conventional systems based on wet electrodes have several limitations. For example, the electrolyte enclosed in wet electrodes restricts spatial resolution, and these conventional bulky systems limit natural movements. In this paper, a microneedle-based high-density electrode array on a circuit integrated flexible substrate for sEMG is proposed. Microneedles allow for high spatial resolution without requiring conductive substances, and flexible substrates guarantee stable skin-electrode contact. Moreover, a compact signal processing system is integrated with the electrode array. Therefore, sEMG measurements are comfortable to the user and do not interfere with the movement. The system performance was demonstrated by testing its operation and estimating motion using a Gaussian mixture model-based, simplified 2D spatial pattern.

  1. Pulmonary tuberculosis with airspace consolidation vs mycoplasma pneumonia in adults: high-resolution CT findings

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Chull Hee; Choi, Gyo Chang; Park, Jai Soung; Hwang, Jung Hwa; Kim, Kyung Rak; Im, Han Haek; Kim, Dae Ho; Choi, Deuk Lin [Soonchunghyang Univ. College of Medicine, Seoul (Korea, Republic of)

    1997-02-01

    To analyse and compare high-resolution CT findings of pulmonary tuberculosis with consolidation and mycoplasma pneumonia. Twenty patients with pulmonary tuberculosis [confirmed by sputum culture (n=9) and bronchoscopic biopsy (n=11)] and airspace consolidation on high-resolution CT and 17 patients with mycoplasma pneumonia, confirmed by serologic test, were included in this study. High-resolution CT findings were analyzed in terms of ground-glass opacities, distribution of consolidation, type of nodules, cavities, interlobular septal thickening, bronchial dilatations, bronchial wall thickening and pleural effusion. In patients with tuberculosis, average age was 33.5 years (range, 20-67); in those with mycoplasma pneumonia it was 32.5 years (range, 17-74). Segmental and subsegmental distributions were most common in both diseases; the preferred site of consolidation was different, however; for tuberculosis it was the upper lobes (13 cases, 65%; bilateral involvement, 7 cases); for mycoplasma pneumonia it was the lower lobes (11 cases, 64.7%). Non-segmental (diffuse and random) distribution of ground-glass opacities were seen in two patients(11.8%) with mycoplasma pneumonia. Centrilobular nodules, branching linear opacities and alveolar nodules were not different in both diseases, but there were nodules above 10mm in 14 cases of tuberculosis and in only one case of mycoplasma pneumonia. Tree-in-bud appearances were seen in five cases of tuberculosis. Cavities without air-fluid level were noted in ten cases of tuberculosis. Other interlobular septal thickening, bronchial wall thickening, bronchial dilatation and pleural effusion were not different in both diseases. There was considerable overlap between high resolution CT findings of tuberculosis with airspace consolidation and those of mycoplasma pneumonia. The location of consolidation, type of nodules, and the presence of tree-in-bud appearance and cavities help in the differentiation of the two diseases, however.

  2. Pulmonary tuberculosis with airspace consolidation vs mycoplasma pneumonia in adults: high-resolution CT findings

    International Nuclear Information System (INIS)

    Cha, Chull Hee; Choi, Gyo Chang; Park, Jai Soung; Hwang, Jung Hwa; Kim, Kyung Rak; Im, Han Haek; Kim, Dae Ho; Choi, Deuk Lin

    1997-01-01

    To analyse and compare high-resolution CT findings of pulmonary tuberculosis with consolidation and mycoplasma pneumonia. Twenty patients with pulmonary tuberculosis [confirmed by sputum culture (n=9) and bronchoscopic biopsy (n=11)] and airspace consolidation on high-resolution CT and 17 patients with mycoplasma pneumonia, confirmed by serologic test, were included in this study. High-resolution CT findings were analyzed in terms of ground-glass opacities, distribution of consolidation, type of nodules, cavities, interlobular septal thickening, bronchial dilatations, bronchial wall thickening and pleural effusion. In patients with tuberculosis, average age was 33.5 years (range, 20-67); in those with mycoplasma pneumonia it was 32.5 years (range, 17-74). Segmental and subsegmental distributions were most common in both diseases; the preferred site of consolidation was different, however; for tuberculosis it was the upper lobes (13 cases, 65%; bilateral involvement, 7 cases); for mycoplasma pneumonia it was the lower lobes (11 cases, 64.7%). Non-segmental (diffuse and random) distribution of ground-glass opacities were seen in two patients(11.8%) with mycoplasma pneumonia. Centrilobular nodules, branching linear opacities and alveolar nodules were not different in both diseases, but there were nodules above 10mm in 14 cases of tuberculosis and in only one case of mycoplasma pneumonia. Tree-in-bud appearances were seen in five cases of tuberculosis. Cavities without air-fluid level were noted in ten cases of tuberculosis. Other interlobular septal thickening, bronchial wall thickening, bronchial dilatation and pleural effusion were not different in both diseases. There was considerable overlap between high resolution CT findings of tuberculosis with airspace consolidation and those of mycoplasma pneumonia. The location of consolidation, type of nodules, and the presence of tree-in-bud appearance and cavities help in the differentiation of the two diseases, however

  3. INFLUENCE OF THE SILICON INTERLAYER ON DIAMOND-LIKE CARBON FILMS DEPOSITED ON GLASS SUBSTRATES

    Directory of Open Access Journals (Sweden)

    Deiler Antonio Lima Oliveira

    2012-06-01

    Full Text Available Diamond-like carbon (DLC films as a hard protective coating have achieved great success in a diversity of technological applications. However, adhesion of DLC films to substrates can restrict their applications. The influence of a silicon interlayer in order to improve DLC adhesion on glass substrates was investigated. Amorphous silicon interlayer and DLC films were deposited using plasma enhanced chemical vapor deposition from silane and methane, respectively. The bonding structure, transmittance, refraction index, and adherence of the films were also evaluated regarding the thickness of the silicon interlayer. Raman scattering spectroscopy did not show any substantial difference in DLC structure due to the interlayer thickness of the silicon. Optical measurements showed a sharp decrease of transmittance in the ultra-violet region caused by the fundamental absorption of the light. In addition, the absorption edge of transmittance shifted toward longer wavelength side in the ultra-violet region as the thickness of the silicon interlayer increased. The tribological results showed an increase of DLC adherence as the silicon interlayer increased, which was characterized by less cracks around the grooves.

  4. Three-dimensional printing of transparent fused silica glass

    Science.gov (United States)

    Kotz, Frederik; Arnold, Karl; Bauer, Werner; Schild, Dieter; Keller, Nico; Sachsenheimer, Kai; Nargang, Tobias M.; Richter, Christiane; Helmer, Dorothea; Rapp, Bastian E.

    2017-04-01

    Glass is one of the most important high-performance materials used for scientific research, in industry and in society, mainly owing to its unmatched optical transparency, outstanding mechanical, chemical and thermal resistance as well as its thermal and electrical insulating properties. However, glasses and especially high-purity glasses such as fused silica glass are notoriously difficult to shape, requiring high-temperature melting and casting processes for macroscopic objects or hazardous chemicals for microscopic features. These drawbacks have made glasses inaccessible to modern manufacturing technologies such as three-dimensional printing (3D printing). Using a casting nanocomposite, here we create transparent fused silica glass components using stereolithography 3D printers at resolutions of a few tens of micrometres. The process uses a photocurable silica nanocomposite that is 3D printed and converted to high-quality fused silica glass via heat treatment. The printed fused silica glass is non-porous, with the optical transparency of commercial fused silica glass, and has a smooth surface with a roughness of a few nanometres. By doping with metal salts, coloured glasses can be created. This work widens the choice of materials for 3D printing, enabling the creation of arbitrary macro- and microstructures in fused silica glass for many applications in both industry and academia.

  5. Highly textured Sr, Nb co-doped BiFeO3 thin films grown on SrRuO3/Si substrates by rf- sputtering

    International Nuclear Information System (INIS)

    Ostos, C.; Raymond, O.; Siqueiros, J. M.; Suarez-Almodovar, N.; Bueno-Baques, D.; Mestres, L.

    2011-01-01

    In this study, (011)-highly oriented Sr, Nb co-doped BiFeO 3 (BFO) thin films were successfully grown on SrRuO 3 /Si substrates by rf-magnetron sputtering. The presence of parasite magnetic phases was ruled out based on the high resolution x-ray diffraction data. BFO films exhibited a columnar-like grain growth with rms surface roughness values of ≅5.3 nm and average grain sizes of ≅65-70 nm for samples with different thicknesses. Remanent polarization values (2P r ) of 54 μC cm -2 at room temperature were found for the BFO films with a ferroelectric behavior characteristic of an asymmetric device structure. Analysis of the leakage mechanisms for this structure in negative bias suggests Schottky injection and a dominant Poole-Frenkel trap-limited conduction at room temperature. Oxygen vacancies and Fe 3+ /Fe 2+ trap centers are consistent with the surface chemical bonding states analysis from x-ray photoelectron spectroscopy data. The (011)-BFO/SrRuO 3 /Si film structure exhibits a strong magnetic interaction at the interface between the multiferroic film and the substrate layer where an enhanced ferromagnetic response at 5 K was observed. Zero-field cooled (ZFC) and field cooled (FC) magnetization curves of this film system revealed a possible spin glass behavior at spin freezing temperatures below 30 K depending on the BFO film thickness.

  6. Surface-enhanced Raman spectroscopy based on conical holed enhancing substrates

    International Nuclear Information System (INIS)

    Chen, Yao; Chen, Zeng-Ping; Zuo, Qi; Shi, Cai-Xia; Yu, Ru-Qin

    2015-01-01

    In this contribution, surface-enhanced Raman spectroscopy (SERS) based on conical holed glass substrates deposited with silver colloids was reported for the first time. It combines the advantages of both dry SERS assays based on plane films deposited with silver colloids and wet SERS assays utilizing cuvettes or capillary tubes. Compared with plane glass substrates deposited with silver colloids, the conical holed glass substrates deposited with silver colloids exhibited five-to ten-folds of increase in the rate of signal enhancement, due to the internal multiple reflections of both the excitation laser beam and the Raman scattering photons within conical holes. The application of conical holed glass substrates could also yield significantly stronger and more reproducible SERS signals than SERS assays utilizing capillary tubes to sample the mixture of silver colloids and the solution of the analyte of interest. The conical holed glass substrates in combination with the multiplicative effects model for surface-enhanced Raman spectroscopy (MEM SERS ) achieved quite sensitive and precise quantification of 6-mercaptopurine in complex plasma samples with an average relative prediction error of about 4% and a limit of detection of about 0.02 μM using a portable i-Raman 785H spectrometer. It is reasonable to expect that SERS technique based on conical holed enhancing substrates in combination with MEM SERS model can be developed and extended to other application areas such as drug detection, environmental monitoring, and clinic analysis, etc. - Highlights: • A novel conical holed SERS enhancing substrate was designed and manufactured. • The optimal conical holed glass substrates can produce stronger SERS signal. • The novel substrates can overcome the shortcomings of both dry and wet methods. • The novel substrates coupled with MEM SERS can realize quantitative SERS assays

  7. High deposition rate of low resistive and transparent ZnO:Al on glass with an industrial moving belt APCVD reactor

    NARCIS (Netherlands)

    Illiberi, A.; Kniknie, B.; Steijvers, H.L.A.H.; Habets, D.; Simons, P.J.P.M.; Beckers, E.H.A.; Deelen, J. van

    2012-01-01

    Aluminum doped ZnOx (ZnOx:Al) films have been deposited on glass in an in-line industrial-type reactor by a metalorganic chemical vapor deposition process at atmospheric pressure. ZnOx:Al films can be grown at very high deposition rates of ~ 14 nm/s for a substrate speed from 150 mm/min to 500

  8. Low expansion and high gain Nd laser glasses

    International Nuclear Information System (INIS)

    Izumitani, Tetsuro; Peng, B.

    1995-01-01

    Due to the relationship between Judd-Ofelt intensity parameter and covalency, new laser glasses have been developed which have low expansion coefficients (85--91 x 10 -7 /cm C, 0--70 C) and high emission cross sections. They have good chemical properties, high Young's modulus and high thermal conductivities. These glasses are suitable for the National Ignition Facility

  9. Ground Glass Pozzolan in Conventional, High, and Ultra-High Performance Concrete

    Directory of Open Access Journals (Sweden)

    Tagnit-Hamou Arezki

    2018-01-01

    Full Text Available Ground-glass pozzolan (G obtained by grinding the mixed-waste glass to same fineness of cement can act as a supplementary-cementitious material (SCM, given that it is an amorphous and a pozzolanic material. The G showed promising performances in different concrete types such as conventional concrete (CC, high-performance concrete (HPC, and ultra-high performance concrete (UHPC. The current paper reports on the characteristics and performance of G in these concrete types. The use of G provides several advantages (technological, economical, and environmental. It reduces the production cost of concrete and decrease the carbon footprint of a traditional concrete structures. The rheology of fresh concrete can be improved due to the replacement of cement by non-absorptive glass particles. Strength and rigidity improvements in the concrete containing G are due to the fact that glass particles act as inclusions having a very high strength and elastic modulus that have a strengthening effect on the overall hardened matrix.

  10. High-resolution computed tomography to differentiate chronic diffuse interstitial lung diseases with predominant ground-glass pattern using logical analysis of data

    International Nuclear Information System (INIS)

    Martin, Sophie Grivaud; Brauner, Michel W.; Rety, Frederique; Kronek, Louis-Philippe; Brauner, Nadia; Valeyre, Dominique; Nunes, Hilario; Brillet, Pierre-Yves

    2010-01-01

    We evaluated the performance of high-resolution computed tomography (HRCT) to differentiate chronic diffuse interstitial lung diseases (CDILD) with predominant ground-glass pattern by using logical analysis of data (LAD). A total of 162 patients were classified into seven categories: sarcoidosis (n = 38), connective tissue disease (n = 32), hypersensitivity pneumonitis (n = 18), drug-induced lung disease (n = 15), alveolar proteinosis (n = 12), idiopathic non-specific interstitial pneumonia (n = 10) and miscellaneous (n = 37). First, 40 CT attributes were investigated by the LAD to build up patterns characterising a category. From the association of patterns, LAD determined models specific to each CDILD. Second, data were recomputed by adding eight clinical attributes to the analysis. The 20 x 5 cross-folding method was used for validation. Models could be individualised for sarcoidosis, hypersensitivity pneumonitis, connective tissue disease and alveolar proteinosis. An additional model was individualised for drug-induced lung disease by adding clinical data. No model was demonstrated for idiopathic non-specific interstitial pneumonia and the miscellaneous category. The results showed that HRCT had a good sensitivity (≥64%) and specificity (≥78%) and a high negative predictive value (≥93%) for diseases with a model. Higher sensitivity (≥78%) and specificity (≥89%) were achieved by adding clinical data. The diagnostic performance of HRCT is high and can be increased by adding clinical data. (orig.)

  11. High-Resolution Phenotypic Landscape of the RNA Polymerase II Trigger Loop.

    Directory of Open Access Journals (Sweden)

    Chenxi Qiu

    2016-11-01

    Full Text Available The active sites of multisubunit RNA polymerases have a "trigger loop" (TL that multitasks in substrate selection, catalysis, and translocation. To dissect the Saccharomyces cerevisiae RNA polymerase II TL at individual-residue resolution, we quantitatively phenotyped nearly all TL single variants en masse. Three mutant classes, revealed by phenotypes linked to transcription defects or various stresses, have distinct distributions among TL residues. We find that mutations disrupting an intra-TL hydrophobic pocket, proposed to provide a mechanism for substrate-triggered TL folding through destabilization of a catalytically inactive TL state, confer phenotypes consistent with pocket disruption and increased catalysis. Furthermore, allele-specific genetic interactions among TL and TL-proximal domain residues support the contribution of the funnel and bridge helices (BH to TL dynamics. Our structural genetics approach incorporates structural and phenotypic data for high-resolution dissection of transcription mechanisms and their evolution, and is readily applicable to other essential yeast proteins.

  12. Neutron diffraction studies of glasses

    International Nuclear Information System (INIS)

    Wright, A.C.

    1987-01-01

    A survey is given of the application of neutron diffraction to structural studies of oxide and halide glasses. As with crystalline materials, neutron and X-ray diffraction are the major structural probes for glasses and other amorphous solids, particularly in respect of intermediate range order. The glasses discussed mostly have structures which are dominated by a network in which the bonding is predominantly covalent. The examples discussed demonstrate the power of the neutron diffraction technique in the investigation of the structures of inorganic glasses. The best modern diffraction experiments are capable of providing accurate data with high real space resolution, which if used correctly, are an extremely fine filter for the various structural models proposed in the literature. 42 refs

  13. Recent advances in phosphate laser glasses for high power applications

    International Nuclear Information System (INIS)

    Campbell, J.H.

    1996-01-01

    Recent advances in Nd-doped phosphate laser glasses for high-peak-power and high-average-power applications are reviewed. Compositional studies have progressed to the point that glasses can be tailored to have specific properties for specific applications. Non-radiative relaxation effects can be accurately modeled and empirical expressions have been developed to evaluate both intrinsic (structural) and extrinsic (contamination induced) relaxation effects. Losses due to surface scattering and bulk glass absorption have been carefully measured and can be accurately predicted. Improvements in processing have lead to high damage threshold (e.g. Pt inclusion free) and high thermal shock resistant glasses with improved edge claddings. High optical quality pieces up to 79 x 45 x 4cm 3 have been made and methods for continuous melting laser glass are under development

  14. Molecular Orientation in Two Component Vapor-Deposited Glasses: Effect of Substrate Temperature and Molecular Shape

    Science.gov (United States)

    Powell, Charles; Jiang, Jing; Walters, Diane; Ediger, Mark

    Vapor-deposited glasses are widely investigated for use in organic electronics including the emitting layers of OLED devices. These materials, while macroscopically homogenous, have anisotropic packing and molecular orientation. By controlling this orientation, outcoupling efficiency can be increased by aligning the transition dipole moment of the light-emitting molecules parallel to the substrate. Light-emitting molecules are typically dispersed in a host matrix, as such, it is imperative to understand molecular orientation in two-component systems. In this study we examine two-component vapor-deposited films and the orientations of the constituent molecules using spectroscopic ellipsometry, UV-vis and IR spectroscopy. The role of temperature, composition and molecular shape as it effects molecular orientation is examined for mixtures of DSA-Ph in Alq3 and in TPD. Deposition temperature relative to the glass transition temperature of the two-component mixture is the primary controlling factor for molecular orientation. In mixtures of DSA-Ph in Alq3, the linear DSA-Ph has a horizontal orientation at low temperatures and slight vertical orientation maximized at 0.96Tg,mixture, analogous to one-component films.

  15. Characterization of a smartphone size haptic rendering system based on thin-film AlN actuators on glass substrates

    Science.gov (United States)

    Bernard, F.; Casset, F.; Danel, J. S.; Chappaz, C.; Basrour, S.

    2016-08-01

    This paper presents for the first time the characterization of a smartphone-size haptic rendering system based on the friction modulation effect. According to previous work and finite element modeling, the homogeneous flexural modes are needed to get the haptic feedback effect. The device studied consists of a thin film AlN transducers deposited on an 110  ×  65 mm2 glass substrate. The transducer’s localization on the glass plate allows a transparent central area of 90  ×  49 mm2. Electrical and mechanical parameters of the system are extracted from measurement. From this extraction, the electrical impedance matching reduced the applied voltage to 17.5 V AC and the power consumption to 1.53 W at the resonance frequency of the vibrating system to reach the haptic rendering specification. Transient characterizations of the actuation highlight a delay under the dynamic tactile detection. The characterization of the AlN transducers used as sensors, including the noise rejection, the delay or the output charge amplitude allows detections with high accuracy of any variation due to external influences. Those specifications are the first step to a low-power-consumption feedback-looped system.

  16. Characterization of a smartphone size haptic rendering system based on thin-film AlN actuators on glass substrates

    International Nuclear Information System (INIS)

    Bernard, F; Basrour, S; Casset, F; Danel, J S; Chappaz, C

    2016-01-01

    This paper presents for the first time the characterization of a smartphone-size haptic rendering system based on the friction modulation effect. According to previous work and finite element modeling, the homogeneous flexural modes are needed to get the haptic feedback effect. The device studied consists of a thin film AlN transducers deposited on an 110  ×  65 mm 2 glass substrate. The transducer’s localization on the glass plate allows a transparent central area of 90  ×  49 mm 2 . Electrical and mechanical parameters of the system are extracted from measurement. From this extraction, the electrical impedance matching reduced the applied voltage to 17.5 V AC and the power consumption to 1.53 W at the resonance frequency of the vibrating system to reach the haptic rendering specification. Transient characterizations of the actuation highlight a delay under the dynamic tactile detection. The characterization of the AlN transducers used as sensors, including the noise rejection, the delay or the output charge amplitude allows detections with high accuracy of any variation due to external influences. Those specifications are the first step to a low-power-consumption feedback-looped system. (paper)

  17. Influence of the film thickness on the structure, optical and electrical properties of ITO coatings deposited by sputtering at room temperature on glass and plastic substrates

    International Nuclear Information System (INIS)

    Guillén, C; Herrero, J

    2008-01-01

    Transparent and conductive indium tin oxide (ITO) films with thickness between 0.2 and 0.7 µm were deposited by sputtering at room temperature on glass and polyethylene terephthalate (PET) substrates. All films were polycrystalline, with crystallite size increasing and lattice distortion decreasing when the film thickness was increased. Besides, transmission in the near-infrared region is found to be decreasing and carrier concentration increasing when the film thickness was increased. For the same thickness, the lattice distortion is slightly lower and the carrier concentration higher for the layers grown on PET substrates. A direct relationship between the lattice distortion and the free carrier concentration has been established, applying to the films grown on glass and plastic substrates. By adjusting ITO coating thickness, sheet resistance below 15 Ω sq −1 and average visible transmittance about 90% have been achieved by sputtering at room temperature

  18. Ultrahigh stability of atomically thin metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Cao, C. R.; Huang, K. Q.; Zhao, N. J.; Sun, Y. T.; Bai, H. Y.; Gu, L., E-mail: l.gu@iphy.ac.cn, E-mail: dzheng@iphy.ac.cn, E-mail: whw@iphy.ac.cn; Zheng, D. N., E-mail: l.gu@iphy.ac.cn, E-mail: dzheng@iphy.ac.cn, E-mail: whw@iphy.ac.cn; Wang, W. H., E-mail: l.gu@iphy.ac.cn, E-mail: dzheng@iphy.ac.cn, E-mail: whw@iphy.ac.cn [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2014-07-07

    We report the fabrication and study of thermal stability of atomically thin ZrCu-based metallic glass films. The ultrathin films exhibit striking dynamic properties, ultrahigh thermal stability, and unique crystallization behavior with discrete crystalline nanoparticles sizes. The mechanisms for the remarkable high stability and crystallization behaviors are attributed to the dewetting process of the ultrathin film. We demonstrated a promising avenue for understanding some fundamental issues such as glassy structure, crystallization, deformation, and glass formation through atomic resolution imaging of the two dimensional like metallic glasses.

  19. Radio frequency sputter deposition of high-quality conductive and transparent ZnO:Al films on polymer substrates for thin film solar cells applications

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, S. [Departamento de Energias Renovables, Energia Solar Fotovoltaica, Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Avda. Complutense 22, 28040 Madrid (Spain)], E-mail: susanamaria.fernandez@ciemat.es; Martinez-Steele, A.; Gandia, J.J. [Departamento de Energias Renovables, Energia Solar Fotovoltaica, Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Avda. Complutense 22, 28040 Madrid (Spain); Naranjo, F.B. [Grupo de Ingenieria Fotonica (GRIFO), Departamento de Electronica, Escuela Politecnica Superior, Universidad de Alcala. Campus Universitario, 28871 Alcala de Henares, Madrid (Spain)

    2009-03-31

    Thick aluminum-doped zinc oxide films were deposited at substrate temperatures from 100 {sup o}C to room temperature on polyethylene terephthalate by radio frequency magnetron sputtering, varying the deposition parameters such as radio frequency power and working pressure. Structural, optical and electrical properties were analyzed using an x-ray diffractometer, a spectrophotometer and a four-point probe, respectively. Films were polycrystalline showing a strong preferred c-axis orientation (002). The best optical and electrical results were achieved using a substrate temperature of 100 {sup o}C. Furthermore, high transmittances close to 80% in the visible wavelength range were obtained for those films deposited at the lowest Argon pressure used of 0.2 Pa. In addition, resistivities as low as 1.1 x 10{sup -3} {omega} cm were reached deposited at a RF power of 75 W. Finally, a comparison of the properties of the films deposited on polymer and glass substrates was performed, obtaining values of the figure of merit for the films on polymer comparable to those obtained on glass substrates, 17,700 {omega}{sup -1} cm{sup -1} vs 14,900 {omega}{sup -1} cm{sup -1}, respectively.

  20. Radio frequency sputter deposition of high-quality conductive and transparent ZnO:Al films on polymer substrates for thin film solar cells applications

    International Nuclear Information System (INIS)

    Fernandez, S.; Martinez-Steele, A.; Gandia, J.J.; Naranjo, F.B.

    2009-01-01

    Thick aluminum-doped zinc oxide films were deposited at substrate temperatures from 100 o C to room temperature on polyethylene terephthalate by radio frequency magnetron sputtering, varying the deposition parameters such as radio frequency power and working pressure. Structural, optical and electrical properties were analyzed using an x-ray diffractometer, a spectrophotometer and a four-point probe, respectively. Films were polycrystalline showing a strong preferred c-axis orientation (002). The best optical and electrical results were achieved using a substrate temperature of 100 o C. Furthermore, high transmittances close to 80% in the visible wavelength range were obtained for those films deposited at the lowest Argon pressure used of 0.2 Pa. In addition, resistivities as low as 1.1 x 10 -3 Ω cm were reached deposited at a RF power of 75 W. Finally, a comparison of the properties of the films deposited on polymer and glass substrates was performed, obtaining values of the figure of merit for the films on polymer comparable to those obtained on glass substrates, 17,700 Ω -1 cm -1 vs 14,900 Ω -1 cm -1 , respectively

  1. Efficient polymer solar cells on opaque substrates with a Laminated PEDOT : PSS top electrode

    NARCIS (Netherlands)

    Gupta, D.; Wienk, M.M.; Janssen, R.A.J.

    2013-01-01

    Solution processed polymer:fullerene solar cells on opaque substrates have been fabricated in conventional and inverted device configurations. Opaque substrates, such as insulated steel and metal covered glass, require a transparent conducting top electrode. We demonstrate that a high conducting

  2. Femtosecond laser texturing of glass substrates for improved light in-coupling in thin-film photovoltaics

    Science.gov (United States)

    Imgrunt, J.; Chakanga, K.; von Maydell, K.; Teubner, U.

    2017-12-01

    Due to their low thickness, thin-film solar cells usually suffer from poor light absorption. To improve this situation, light-management is necessary. Within the present work, in order to enhance light coupling, an ultra-short-pulse laser is used for texturing substrates. Here commercially available multi component soda lime glass substrates are patterned with a dot grid at ambient air pressure with 150 fs pulses, centered at a wavelength of 775 nm. The structures consist of small depressions with approximately 3 μ m diameter. Varying depths of around 300 nm could be well reproduced. Reducing the pitch (distance between structure-to-structure centers), from ten to approximately one times the crater diameter, influences the structure quality and increases the deformation of the surface in the vicinity of the depressions. Consequently, the diffuse light scattering is improved from 0 to 30% haze. Overall, the presented approach is quite simple. This single-step texturing technique which can be easily used on different substrates is applicable in a wide range of thin-film solar cells. It has the advantage that ultra-thin electrodes can be used as the front contact as well as the potential to be integrated into a PV production line. Thus, complicated layer stacks for absorption enhancement can be avoided.

  3. Substrate bias effects on composition and coercivity of CoCrTa/Cr thin films on canasite and glass

    Science.gov (United States)

    Deng, Y.; Lambeth, D. N.; Sui, X.; Lee, L.-L.; Laughlin, D. E.

    1993-05-01

    CoCrTa/Cr thin films were prepared by rf diode sputtering onto canasite and glass substrates at various bias voltages from two targets of different compositions (Co82.8Cr14.6Ta2.6 and Co86Cr12Ta2). While Auger depth profile analysis indicates that there is some broadening at the CoCrTa-Cr interface, x-ray fluorescence spectroscopy reveals that changes in alloy composition due to the resputtering processes are even more prominent. For both targets, as the substrate bias increases the Co content in the films declines, and the magnetization decreases. The maximum film coercivity appears to correlate to the final film composition. By investigating the results from both targets, it is concluded that the coercivity reaches a maximum when the film composition is in the neighborhood of Co84Cr13Ta3. Thus, to optimize the coercivity different bias voltages are required for each target. Excessive substrate bias, however, leads to films with low magnetization and coercivity.

  4. Control of high-level radioactive waste-glass melters

    International Nuclear Information System (INIS)

    Bickford, D.F.; Coleman, C.J.

    1990-01-01

    The Defense Waste Processing Facility (DWPF) will immobilize Savannah River Site High Level Waste as a durable borosilicate glass for permanent disposal in a repository. The DWPF will be controlled based on glass composition. The following discussion is a preliminary analysis of the capability of the laboratory methods that can be used to control the glass composition, and the relationships between glass durability and glass properties important to glass melting. The glass durability and processing properties will be controlled by controlling the chemical composition of the glass. The glass composition will be controlled by control of the melter feed transferred from the Slurry Mix Evaporator (SME) to the Melter Feed Tank (MFT). During cold runs, tests will be conducted to demonstrate the chemical equivalence of glass sampled from the pour stream and glass removed from cooled canisters. In similar tests, the compositions of glass produced from slurries sampled from the SME and MFT will be compared to final product glass to determine the statistical relationships between melter feed and glass product. The total error is the combination of those associated with homogeneity in the SME or MFT, sampling, preparation of samples for analysis, instrument calibration, analysis, and the composition/property model. This study investigated the sensitivity of estimation of property data to the combination of variations from sampling through analysis. In this or a similar manner, the need for routine glass product sampling will be minimized, and glass product characteristics will be assured before the melter feed is committed to the melter

  5. Optical Basicity and Nepheline Crystallization in High Alumina Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, Carmen P.; McCloy, John S.; Schweiger, M. J.; Crum, Jarrod V.; Winschell, Abigail E.

    2011-02-25

    The purpose of this study was to find compositions that increase waste loading of high-alumina wastes beyond what is currently acceptable while avoiding crystallization of nepheline (NaAlSiO4) on slow cooling. Nepheline crystallization has been shown to have a large impact on the chemical durability of high-level waste glasses. It was hypothesized that there would be some composition regions where high-alumina would not result in nepheline crystal production, compositions not currently allowed by the nepheline discriminator. Optical basicity (OB) and the nepheline discriminator (ND) are two ways of describing a given complex glass composition. This report presents the theoretical and experimental basis for these models. They are being studied together in a quadrant system as metrics to explore nepheline crystallization and chemical durability as a function of waste glass composition. These metrics were calculated for glasses with existing data and also for theoretical glasses to explore nepheline formation in Quadrant IV (passes OB metric but fails ND metric), where glasses are presumed to have good chemical durability. Several of these compositions were chosen, and glasses were made to fill poorly represented regions in Quadrant IV. To evaluate nepheline formation and chemical durability of these glasses, quantitative X-ray diffraction (XRD) analysis and the Product Consistency Test were conducted. A large amount of quantitative XRD data is collected here, both from new glasses and from glasses of previous studies that had not previously performed quantitative XRD on the phase assemblage. Appendix A critically discusses a large dataset to be considered for future quantitative studies on nepheline formation in glass. Appendix B provides a theoretical justification for choice of the oxide coefficients used to compute the OB criterion for nepheline formation.

  6. Strengthened glass for high average power laser applications

    International Nuclear Information System (INIS)

    Cerqua, K.A.; Lindquist, A.; Jacobs, S.D.; Lambropoulos, J.

    1987-01-01

    Recent advancements in high repetition rate and high average power laser systems have put increasing demands on the development of improved solid state laser materials with high thermal loading capabilities. The authors have developed a process for strengthening a commercially available Nd doped phosphate glass utilizing an ion-exchange process. Results of thermal loading fracture tests on moderate size (160 x 15 x 8 mm) glass slabs have shown a 6-fold improvement in power loading capabilities for strengthened samples over unstrengthened slabs. Fractographic analysis of post-fracture samples has given insight into the mechanism of fracture in both unstrengthened and strengthened samples. Additional stress analysis calculations have supported these findings. In addition to processing the glass' surface during strengthening in a manner which preserves its post-treatment optical quality, the authors have developed an in-house optical fabrication technique utilizing acid polishing to minimize subsurface damage in samples prior to exchange treatment. Finally, extension of the strengthening process to alternate geometries of laser glass has produced encouraging results, which may expand the potential or strengthened glass in laser systems, making it an exciting prospect for many applications

  7. Optimization of surface morphology and scattering properties of TCO/AIT textured glass front electrode for thin film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Addonizio, M.L., E-mail: marialuisa.addonizio@enea.it; Fusco, L.; Antonaia, A.; Cominale, F.; Usatii, I.

    2015-12-01

    Graphical abstract: - Highlights: • Aluminium induced texture (AIT) method has been used for obtaining highly textured glass substrates. • The effect of wet etch step on morphological and optical properties has been analyzed. • The morphology features have been optimized in order to obtain the best scattering properties. • Different ZnO surface textures, depending on the underlying glass substrate structures, are obtained. • The effect of different glass texture on optical confinement has been tested in a-Si:H devices. - Abstract: Aluminium induced texture (AIT) method has been used for obtaining highly textured glass substrate suitable for silicon based thin film solar cell technology. Wet etch step parameters of AIT process have been varied and effect of different etchants and different etching times on morphological and optical properties has been analyzed. The resulting morphology features (shape, size distribution, inclination angle) have been optimized in order to obtain the best scattering properties. ZnO:Ga (GZO) films have been deposited by sputtering technique on AIT-processed glass. Two different ZnO surface morphologies have been obtained, strongly depending on the underlying glass substrate morphology induced by different etching times. Very rough and porous texture (σ{sub rms} ∼ 150 nm) was obtained on glass etched 2 min showing cauliflower-like structure, whereas a softer texture (σ{sub rms} ∼ 78 nm) was obtained on glass etched 7 min giving wider and smoother U-shaped craters. The effect of different glass textures on optical confinement has been tested in amorphous silicon based p-i-n devices. Devices fabricated on GZO/high textured glass showed a quantum efficiency enhancement due to both an effective light trapping phenomenon and an effective anti-reflective optical behaviour. Short etching time produce smaller cavities (<1 μm) with deep U-shape characterized by high roughness, high inclination angle and low autocorrelation

  8. High-level waste glass compendium; what it tells us concerning the durability of borosilicate waste glass

    International Nuclear Information System (INIS)

    Cunnane, J.C.; Allison, J.

    1993-01-01

    Facilities for vitrification of high-level nuclear waste in the United States are scheduled for startup in the next few years. It is, therefore, appropriate to examine the current scientific basis for understanding the corrosion of high-level waste borosilicate glass for the range of service conditions to which the glass products from these facilities may be exposed. To this end, a document has been prepared which compiles worldwide information on borosilicate waste glass corrosion. Based on the content of this document, the acceptability of canistered waste glass for geological disposal is addressed. Waste glass corrosion in a geologic repository may be due to groundwater and/or water vapor contact. The important processes that determine the glass corrosion kinetics under these conditions are discussed based on experimental evidence from laboratory testing. Testing data together with understanding of the long-term corrosion kinetics are used to estimate radionuclide release rates. These rates are discussed in terms of regulatory performance standards

  9. High resolution microphotonic needle for endoscopic imaging (Conference Presentation)

    Science.gov (United States)

    Tadayon, Mohammad Amin; Mohanty, Aseema; Roberts, Samantha P.; Barbosa, Felippe; Lipson, Michal

    2017-02-01

    GRIN (Graded index) lens have revolutionized micro endoscopy enabling deep tissue imaging with high resolution. The challenges of traditional GRIN lenses are their large size (when compared with the field of view) and their limited resolution. This is because of the relatively weak NA in standard graded index lenses. Here we introduce a novel micro-needle platform for endoscopy with much higher resolution than traditional GRIN lenses and a FOV that corresponds to the whole cross section of the needle. The platform is based on polymeric (SU-8) waveguide integrated with a microlens micro fabricated on a silicon substrate using a unique molding process. Due to the high index of refraction of the material the NA of the needle is much higher than traditional GRIN lenses. We tested the probe in a fluorescent dye solution (19.6 µM Alexa Flour 647 solution) and measured a numerical aperture of 0.25, focal length of about 175 µm and minimal spot size of about 1.6 µm. We show that the platform can image a sample with the field of view corresponding to the cross sectional area of the waveguide (80x100 µm2). The waveguide size can in principle be modified to vary size of the imaging field of view. This demonstration, combined with our previous work demonstrating our ability to implant the high NA needle in a live animal, shows that the proposed system can be used for deep tissue imaging with very high resolution and high field of view.

  10. Eu-activated fluorochlorozirconate glass-ceramic scintillators

    International Nuclear Information System (INIS)

    Johnson, J. A.; Schweizer, S.; Henke, B.; Chen, G.; Woodford, J.; Newman, P. J.; MacFarlane, D. R.

    2006-01-01

    Rare-earth-doped fluorochlorozirconate (FCZ) glass-ceramic materials have been developed as scintillators and their properties investigated as a function of dopant level. The paper presents the relative scintillation efficiency in comparison to single-crystal cadmium tungstate, the scintillation intensity as a function of x-ray intensity and x-ray energy, and the spatial resolution (modulation transfer function). Images obtained with the FCZ glass-ceramic scintillator and with cadmium tungstate are also presented. Comparison shows that the image quality obtained using the glass ceramic is close to that from cadmium tungstate. Therefore, the glass-ceramic scintillator could be used as an alternative material for image formation resulting from scintillation. Other inorganic scintillators such as single crystals or polycrystalline films have limitations in resolution or size, but the transparent glass-ceramic can be scaled to any shape or size with excellent resolution

  11. Germanium field-effect transistor made from a high-purity substrate

    International Nuclear Information System (INIS)

    Hansen, W.L.; Goulding, F.S.; Haller, E.E.

    1978-11-01

    Field effect transistors have been fabricated on high-purity germanium substrates using low-temperature technology. The aim of this work is to preserve the low density of trapping centers in high-quality starting material by low-temperature ( 0 C) processing. The use of germanium promises to eliminate some of the traps which cause generation-recombination noise in silicon field-effect transistors (FET's) at low temperatures. Typically, the transconductance (g/sub m/) in the germanium FET's is 10 mA/V and the gate leakage can be less than 10 -12 A. Present devices exhibit a large 1/f noise component and most of this noise must be eliminated if they are to be competitive with silicon FET's commonly used in high-resolution nuclear spectrometers

  12. Transparent conducting properties of anatase Ti{sub 0.94}Nb{sub 0.06}O{sub 2} polycrystalline films on glass substrate

    Energy Technology Data Exchange (ETDEWEB)

    Hitosugi, T. [Department of Chemistry, University of Tokyo, Tokyo 113-0033 (Japan); Kanagawa Academy of Science and Technology (KAST), Kawasaki 213-0012 (Japan)], E-mail: hitosugi@chem.s.u-tokyo.ac.jp; Ueda, A. [Department of Chemistry, University of Tokyo, Tokyo 113-0033 (Japan); Nakao, S.; Yamada, N.; Furubayashi, Y.; Hirose, Y.; Konuma, S. [Kanagawa Academy of Science and Technology (KAST), Kawasaki 213-0012 (Japan); Shimada, T.; Hasegawa, T. [Department of Chemistry, University of Tokyo, Tokyo 113-0033 (Japan); Kanagawa Academy of Science and Technology (KAST), Kawasaki 213-0012 (Japan)

    2008-07-01

    We report on transparent conducting properties of anatase Ti{sub 0.94}Nb{sub 0.06}O{sub 2} (TNO) polycrystalline films on glass substrate, and discuss the role of grain crystallinity and grain boundary on resistivity. Thin films of TNO were deposited using pulsed laser deposition at substrate temperature ranging from room temperature to 350 deg. C, with subsequent H{sub 2}-annealing at 500 deg. C. Polycrystalline TNO films showed resistivity of 4.5 x 10{sup -4} {omega} cm and 1.5 x 10{sup -3} {omega} cm for films prepared at substrate temperature of room temperature and 250 deg. C, respectively. X-ray diffraction measurements and transmission electron microscopy reveal that grain crystallinity and grain boundary play key roles in conductive films.

  13. Characterisation of nanoparticles by means of high-resolution SEM/EDS in transmission mode

    International Nuclear Information System (INIS)

    Hodoroaba, V-D; Rades, S; Mielke, J; Ortel, E; Salge, T; Schmidt, R

    2016-01-01

    Advances in scanning electron microscopy (SEM) enable the high-resolution imaging of single nanoparticles (NPs) with sizes well below 10 nm. The SEM analysis in transmission mode (T-SEM) of NPs on thin film supports has many benefits when compared to the analysis of NPs on bulk substrates. The enhanced material (mass - thickness) contrast of the T-SEM imaging mode is well suited for in-depth and, particularly valuable, to very accurate, traceable, lateral dimensional measurements of NPs. Compared to samples prepared on bulk substrates, T-SEM with energy dispersive X-ray spectroscopy (EDS) achieves a drastically improved spatial resolution of the emitted X-rays. The poor signal-to-noise ratio of the X-ray spectra emitted by a single nanoparticle (NP) can be improved by the use of high-sensitivity (high collection solid angle) silicon drift (SDD), energy-dispersive X-ray spectrometers (EDS). The EDS spectral imaging of a single NP with a spatial resolution below 10 nm has become possible. This is demonstrated by means of various examples of nanostructures. Advanced data processing of T-SEM/EDS results sets the stage for the automated classification of NPs by feature analysis. This method combines the detection of morphological structures of interest by image processing of T-SEM micrographs with the chemical classification by EDS. (paper)

  14. Hydrogenated amorphous silicon solar cells fabricated at low substrate temperature 110°C on flexible PET substrate

    Science.gov (United States)

    Ramakrishna, M.; Kumari, Juhi; Venkanna, K.; Agarwal, Pratima

    2018-05-01

    In this paper, we report a-Si:H solar cells fabricated on flexible Polyethylene terephthalate (PET) and corning glass. The a-Si:H thin films were prepared at low substrate temperature (110oC) on corning 1737 glass with different rf powers. The influence of rf power on structural and optoelectronic properties of i-a-Si:H were studied. The films deposited at rf power 50W show less broadening of peak. This indicates these films are more ordered. With this optimized parameter for i-layer, solar cells fabricated on flexible PET substrate show best efficiency of 3.3% whereas on corning glass 3.82%.

  15. VIS-IR transmitting BGG glass windows

    Science.gov (United States)

    Bayya, Shyam S.; Chin, Geoff D.; Sanghera, Jasbinder S.; Aggarwal, Ishwar D.

    2003-09-01

    BaO-Ga2O3-GeO2 (BGG) glasses have the desired properties for various window applications in the 0.5-5 μm wavelength region. These glasses are low cost alternatives to the currently used window materials. Fabrication of a high optical quality 18" diameter BGG glass window has been demonstrated with a transmitted wave front error of λ/10 at 632 nm. BGG substrates have also been successfully tested for environmental weatherability (MIL-F-48616) and rain erosion durability up to 300 mph. Preliminary EMI grids have been successfully applied on BGG glasses demonstrating attenuation of 20dB in X and Ku bands. Although the mechanical properties of BGG glasses are acceptable for various window applications, it is demonstrated here that the properties can be further improved significantly by the glassceramization process. The ceramization process does not add any significant cost to the final window material. The crystallite size in the present glass-ceramic limits its transmission to the 2-5 μm region.

  16. High-resolution ellipsometric study of an n-alkane film, dotriacontane, adsorbed on a SiO2 surface

    DEFF Research Database (Denmark)

    Volkmann, U.G.; Pino, M.; Altamirano, L.A.

    2002-01-01

    -crystal substrates. Our results suggest a model of a solid dotriacontane film that has a phase closest to the SiO2 surface in which the long-axis of the molecules is oriented parallel to the interface. Above this "parallel film" phase, a solid monolayer adsorbs in which the molecules are oriented perpendicular...... at higher coverages. In addition, we have performed high-resolution ellipsometry and stray-light measurements on dotriacontane films deposited from solution onto highly oriented pyrolytic graphite substrates. After film deposition, these substrates proved to be less stable in air than SiO2....

  17. High-resolution X-ray television and high-resolution video recorders

    International Nuclear Information System (INIS)

    Haendle, J.; Horbaschek, H.; Alexandrescu, M.

    1977-01-01

    The improved transmission properties of the high-resolution X-ray television chain described here make it possible to transmit more information per television image. The resolution in the fluoroscopic image, which is visually determined, depends on the dose rate and the inertia of the television pick-up tube. This connection is discussed. In the last few years, video recorders have been increasingly used in X-ray diagnostics. The video recorder is a further quality-limiting element in X-ray television. The development of function patterns of high-resolution magnetic video recorders shows that this quality drop may be largely overcome. The influence of electrical band width and number of lines on the resolution in the X-ray television image stored is explained in more detail. (orig.) [de

  18. Paracoccidioidomycosis: High-resolution computed tomography-pathologic correlation

    International Nuclear Information System (INIS)

    Marchiori, Edson; Valiante, Paulo Marcos; Mano, Claudia Mauro; Zanetti, Glaucia; Escuissato, Dante L.; Souza, Arthur Soares; Capone, Domenico

    2011-01-01

    Objective: The purpose of this study was to describe the high-resolution computed tomography (HRCT) features of pulmonary paracoccidioidomycosis and to correlate them with pathologic findings. Methods: The study included 23 adult patients with pulmonary paracoccidioidomycosis. All patients had undergone HRCT, and the images were retrospectively analyzed by two chest radiologists, who reached decisions by consensus. An experienced lung pathologist reviewed all pathological specimens. The HRCT findings were correlated with histopathologic data. Results: The predominant HRCT findings included areas of ground-glass opacities, nodules, interlobular septal thickening, airspace consolidation, cavitation, and fibrosis. The main pathological features consisted of alveolar and interlobular septal inflammatory infiltration, granulomas, alveolar exudate, cavitation secondary to necrosis, and fibrosis. Conclusion: Paracoccidioidomycosis can present different tomography patterns, which can involve both the interstitium and the airspace. These abnormalities can be pathologically correlated with inflammatory infiltration, granulomatous reaction, and fibrosis.

  19. Studying the influence of substrate conductivity on the optoelectronic properties of quantum dots langmuir monolayer

    Science.gov (United States)

    Al-Alwani, Ammar J.; Chumakov, A. S.; Begletsova, N. N.; Shinkarenko, O. A.; Markin, A. V.; Gorbachev, I. A.; Bratashov, D. N.; Gavrikov, M. V.; Venig, S. B.; Glukhovskoy, E. G.

    2018-04-01

    The formation of CdSe quantum dots (QDs) monolayers was studied by Langmuir Blodgett method. The fluorescence (PL) spectra of QD monolayers were investigated at different substrate type (glass, silicon and ITO glass) and the influence of graphene sheets layer (as a conductive surface) on the QDs properties has also been studied. The optoelectronic properties of QDs can be tuned by deposition of insulating nano-size layers of the liquid crystal between QDs and conductive substrate. The monolayer of QDs transferred on conductive surface (glass with ITO) has lowest intensity of PL spectra due to quenching effect. The PL intensity of QDs could be tuned by using various type of substrates or/and by transformed high conductive layer. Also the photooxidation processes of CdSe QDs monolayer on the solid surface can be controlled by selection of suitable substrate. The current-voltage (I–V) characteristics of QDs thin film on ITO surface was studied using scanning tunneling microscope (STM).

  20. Processing of high-temperature simulated waste glass in a continuous ceramic melter

    International Nuclear Information System (INIS)

    Barnes, S.M.; Brouns, R.A.; Hanson, M.S.

    1980-01-01

    Recent operations have demonstrated that high-melting-point glasses and glass-ceramics can be successfully processed in joule-heated, ceramic-lined melters with minor modifications to the existing technology. Over 500 kg of simulated waste glasses have been processed at temperatures up to 1410 0 C. The processability of the two high-temperature waste forms tested is similar to existing borosilicate waste glasses. High-temperature waste glass formulations produced in the bench-scale melter exhibit quality comparing favorably to standard waste glass formulations

  1. Mechanical Properties of Stable Glasses Using Nanoindentation

    Science.gov (United States)

    Wolf, Sarah; Liu, Tianyi; Jiang, Yijie; Ablajan, Keyume; Zhang, Yue; Walsh, Patrick; Turner, Kevin; Fakhraai, Zahra

    Glasses with enhanced stability over ordinary, liquid quenched glasses have been formed via the process of Physical Vapor Deposition (PVD) by using a sufficiently slow deposition rate and a substrate temperature slightly below the glass transition temperature. These stable glasses have been shown to exhibit higher density, lower enthalpy, and better kinetic stability over ordinary glass, and are typically optically birefringent, due to packing and orientational anisotropy. Given these exceptional properties, it is of interest to further investigate how the properties of stable glasses compare to those of ordinary glass. In particular, the mechanical properties of stable glasses remain relatively under-investigated. While the speed of sound and elastic moduli have been shown to increase with increased stability, little is known about their hardness and fracture toughness compared to ordinary glasses. In this study, glasses of 9-(3,5-di(naphthalen-1-yl)phenyl)anthracene were deposited at varying temperatures relative to their glass transition temperature, and their mechanical properties measured by nanoindentation. Hardness and elastic modulus of the glasses were compared across substrate temperatures. After indentation, the topography of these films were studied using Atomic Force Microscopy (AFM) in order to further compare the relationship between thermodynamic and kinetic stability and mechanical failure. Z.F. and P.W. acknowledge funding from NSF(DMREF-1628407).

  2. Measurements of natural radioactivity in historical glasses

    International Nuclear Information System (INIS)

    Kierzek, J.; Kunicki-Goldfinger, J.J.; Kasprzak, A.J.

    2000-01-01

    Natural radioactive components of historical glasses and two methods of the respective measurement of the radioactivity are discussed. The evaluation of radioactivity of glass objects using a Geiger-Mueller counter and high-resolution gamma ray spectrometry is presented. A survey of the Warsaw National Museum glass collection with a Geiger-Mueller counter allowed distinguishing the vessels made of potassium and sodium glass by their level of natural radioactivity. Gamma spectrometry, on the other hand, enables estimating a specific radionuclide content. Special attention is given to uranium glasses. One 19th century Bohemian vessel, coloured with a uranium compound, was carefully examined using gamma spectrometry. K 2 O and U content were estimated to be 16.2 and 0.33%, respectively. (orig.)

  3. Glass/ceramic coatings for implants

    Science.gov (United States)

    Tomsia, Antoni P [Pinole, CA; Saiz, Eduardo [Berkeley, CA; Gomez-Vega, Jose M [Nagoya, JP; Marshall, Sally J [Larkspur, CA; Marshall, Grayson W [Larkspur, CA

    2011-09-06

    Glass coatings on metals including Ti, Ti6A14V and CrCo were prepared for use as implants. The composition of the glasses was tailored to match the thermal expansion of the substrate metal. By controlling the firing atmosphere, time, and temperature, it was possible to control the reactivity between the glass and the alloy and to fabricate coatings (25-150 .mu.m thick) with excellent adhesion to the substrate. The optimum firing temperatures ranged between 800 and 840.degree. C. at times up to 1 min in air or 15 min in N.sub.2. The same basic technique was used to create multilayered coatings with concentration gradients of hydroxyapatite (HA) particles and SiO.sub.2.

  4. High level waste forms: glass marbles and thermal spray coatings

    International Nuclear Information System (INIS)

    Treat, R.L.; Oma, K.H.; Slate, S.C.

    1982-01-01

    A process that converts high-level waste to glass marbles and then coats the marbles has been developed at Pacific Northwest Laboratory (PNL) under sponsorship of the US Department of Energy. The process consists of a joule-heated glass melter, a marble-making device based on a patent issued to Corning Glass Works, and a coating system that includes a plasma spray coater and a marble tumbler. The process was developed under the Alternative Waste Forms Program which strived to improve upon monolithic glass for immobilizing high-level wastes. Coated glass marbles were found to be more leach-resistant, and the marbles, before coating were found to be very homogeneous, highly impact resistant, and conductive to encapsulation in a metal matric for improved heat transfer and containment. Marbles are also ideally suited for quality assurance and recycling. However, the marble process is more complex, and marbles require a larger number of canisters for waste containment and have a higher surface area than do glass monoliths

  5. Comparison of a model vapor deposited glass films to equilibrium glass films

    Science.gov (United States)

    Flenner, Elijah; Berthier, Ludovic; Charbonneau, Patrick; Zamponi, Francesco

    Vapor deposition of particles onto a substrate held at around 85% of the glass transition temperature can create glasses with increased density, enthalpy, kinetic stability, and mechanical stability compared to an ordinary glass created by cooling. It is estimated that an ordinary glass would need to age thousands of years to reach the kinetic stability of a vapor deposited glass, and a natural question is how close to the equilibrium is the vapor deposited glass. To understand the process, algorithms akin to vapor deposition are used to create simulated glasses that have a higher kinetic stability than their annealed counterpart, although these glasses may not be well equilibrated either. Here we use novel models optimized for a swap Monte Carlo algorithm in order to create equilibrium glass films and compare their properties with those of glasses obtained from vapor deposition algorithms. This approach allows us to directly assess the non-equilibrium nature of vapor-deposited ultrastable glasses. Simons Collaboration on Cracking the Glass Problem and NSF Grant No. DMR 1608086.

  6. Fabricating high-resolution offset color-filter black matrix by integrating heterostructured substrate with inkjet printing

    International Nuclear Information System (INIS)

    Lu, Guo-Shin; You, Po-Chin; Lin, Kai-Lun; Hong, Chien-Chong; Liou, Tong-Miin

    2014-01-01

    This paper presents a self-aligning ink by integrating an inkjet printing technique and heterostructures to fabricate a black matrix with a micrometer-scale tunable thickness. The black matrix is a grid-like structure used in color filters. Traditionally, a black matrix has been fabricated using photolithography techniques, the disadvantages of which are high material consumption, less fabrication flexibility, complex processing procedures, and high chemical pollution. Inkjet printing technology has garnered attention because of its low material costs, high fabrication flexibility, and reduced processing procedures and pollution. In this study, a fabricating process combining an inkjet printing technique with heterostructures to form stripe-arranged and delta-arranged thickness-tunable black matrices has been demonstrated. The deformation and self-aligning process of ink droplet impingement onto gutters are driven by designed heterogeneous surface properties. The minimum track width attained is 10 µm, which is competitive for color filter resolutions for thin-film transistor liquid crystal displays. The developed technology surmounts the bottlenecks of inkjet printing resolution, and saves more than 75% black material than modern photolithography. (paper)

  7. Fabrication of transparent superhydrophobic silica-based film on a glass substrate

    Science.gov (United States)

    Wang, Shing-Dar; Luo, Shih-Shiang

    2012-05-01

    Tetraethoxysilane (TEOS) was hydrolyzed in an acidic environment and then reacted with hexamethyldisilazane (HMDS) to obtain a superhydrophobic transparent film on a glass substrate. The molar ratios of water and ethanol to TEOS, the pH value of the acidic (or basic) water that is used to hydrolyze TEOS, the heat treatment conditions and other factors were investigated systematically to optimize the transmission through, and the contact angle of water on the film. HMDS (total amount of HMDS/TEOS = 2) was divided into 20 parts, which were added into the sol successively to prevent the sudden production of a large quantity of NH3 in a small area of the sol. The optical and hydrophobic properties of the sol gel continued to change after it had been prepared. The conditions that TEOS was hydrolyzed with acidic water at pH 1.2 at 70 °C and the sol gel was aged at 20 °C for 48 h realized transmission of 90.9% and a water contact angle of 154.3°. No additional surface chemistry modification was needed.

  8. Porous glass matrix method for encapsulating high-level nuclear wastes

    International Nuclear Information System (INIS)

    Macedo, P.B.; Tran, D.C.; Simmons, J.H.; Saleh, M.; Barkatt, A.; Simmons, C.J.; Lagakos, N.; DeWitt, E.

    1979-01-01

    A novel process which uses solidified porous high-silica glass powder to fixate radioactive high-level wastes is described. The process yields cylinders consisting of a core of high-silica glass containing the waste elements in its structure and a protective layer also of high-silica glass completely free of waste elements. The process can be applied to waste streams containing 0 to 100% solids. The core region exhibits a higher coefficient of thermal expansion and a lower glass transition temperature than the outer protective layer. This leads to mechanical strengthening of the glass and good resistance to stress corrosion by the development of a high residual compressive stress on the surface of the sample. Both the core and the protective layer exhibit extremely high chemical durability and offer an effective fixation of the radioactive waste elements, including 239 Pu and 99 Tc which have long half-lives, for calculated periods of more than 1 million years, when temperatures are not allowed to rise above 100 0 C

  9. Plasmonic nanoholes as SERS devices for biosensing applications: An easy route for nanostructures fabrication on glass substrates

    KAUST Repository

    Candeloro, Patrizio

    2016-12-26

    Surface enhanced Raman spectroscopy (SERS) has been largely exploited in the last decade for biochemical and biomedical research. But some issues still require attention before transferring SERS to bioclinical routinely practices, such as reproducibility, quantitative analysis and signal background interference. In this work we propose an easy and cheap route, based on a template stripping technique, for producing plasmonic nanostructured films with SERS capabilities. We focus our attention to nanoholes in a continuous gold film, conversely to the majority of the literature which is dealing with individual nanostructures. Plasmon resonances occur at the holes edges, thus enabling the possibility of SERS signals from biomolecules and the potential application as biosensors. One advantage of the nanoholes patterned film is the optical-subdiffraction pitch, which prevents any Raman and/or fluorescence signal arising from the bottom slide. This effect paves the way to standard glass slides, much cheaper than CaF2 ones, as suitable substrates for SERS devices, without any interfering signal coming from the glass itself.

  10. HIGH ALUMINUM HLW GLASSES FOR HANFORD'S WTP

    International Nuclear Information System (INIS)

    Kruger, A.A.; Joseph, I.; Bowman, B.W.; Gan, H.; Kot, W.; Matlack, K.S.; Pegg, I.L

    2009-01-01

    The world's largest radioactive waste vitrification facility is now under construction at the United State Department of Energy's (DOE's) Hanford site. The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is designed to treat nearly 53 million gallons of mixed hazardous and radioactive waste now residing in 177 underground storage tanks. This multi-decade processing campaign will be one of the most complex ever undertaken because of the wide chemical and physical variability of the waste compositions generated during the cold war era that are stored at Hanford. The DOE Office of River Protection (ORP) has initiated a program to improve the long-term operating efficiency of the WTP vitrification plants with the objective of reducing the overall cost of tank waste treatment and disposal and shortening the duration of plant operations. Due to the size, complexity and duration of the WTP mission, the lifecycle operating and waste disposal costs are substantial. As a result, gains in High Level Waste (HLW) and Low Activity Waste (LAW) waste loadings, as well as increases in glass production rate, which can reduce mission duration and glass volumes for disposal, can yield substantial overall cost savings. EnergySolutions and its long-term research partner, the Vitreous State Laboratory (VSL) of the Catholic University of America, have been involved in a multi-year ORP program directed at optimizing various aspects of the HLW and LAW vitrification flow sheets. A number of Hanford HLW streams contain high concentrations of aluminum, which is challenging with respect to both waste loading and processing rate. Therefore, a key focus area of the ORP vitrification process optimization program at EnergySolutions and VSL has been development of HLW glass compositions that can accommodate high Al 2 O 3 concentrations while maintaining high processing rates in the Joule Heated Ceramic Melters (JHCMs) used for waste vitrification at the WTP. This paper, reviews the

  11. Morphology of CdSe films prepared by chemical bath deposition: The role of substrate

    International Nuclear Information System (INIS)

    Simurda, M.; Nemec, P.; Formanek, P.; Nemec, I.; Nemcova, Y.; Maly, P.

    2006-01-01

    We combine optical spectroscopy and transmission electron microscopy to study the growth and the structural morphology of CdSe films prepared by chemical bath deposition (CBD) on two considerably different substrates. The films grown on glass are compact and strongly adherent to the substrate. On the contrary, the films deposited on carbon-coated glass (with approx. 20 nm thick amorphous carbon layer) are only loosely adherent to the substrate. Using transmission electron microscopy we revealed that even though the films grown on both substrates are assembled from closely spaced nanocrystals with diameter of about 5 nm, the films morphology on the sub-micrometer scale is considerably different in the two cases. While the films deposited on glass are rather compact, the films prepared on carbon layer have high porosity and are formed by interconnected spheres which size is dependent on the duration of deposition (e.g. 155 nm for 6 h and 350 nm for 24 h). This shows that the choice of the substrate for CBD has a stronger influence on the sub-micrometer film morphology than on the properties of individual nanocrystals forming the film

  12. Lipoid pneumonia in children following aspiration of mineral oil used in the treatment of constipation: high-resolution CT findings in 17 patients

    International Nuclear Information System (INIS)

    Zanetti, Glaucia; Marchiori, Edson; Gasparetto, Taisa D.; Escuissato, Dante L.; Soares Souza, Arthur

    2007-01-01

    Exogenous lipoid pneumonia is a rare disorder caused by aspiration of mineral, vegetable and animal oils. High-resolution CT findings of lipoid pneumonia in children taking mineral oil for constipation have been rarely reported. To evaluate the high-resolution CT findings in 17 children with exogenous lipoid pneumonia following aspiration of mineral oil. The study included nine boys and eight girls, with ages ranging from 2 months to 9 years. All patients underwent high-resolution CT and the images were reviewed by two radiologists who reached decisions by consensus. The inclusion criteria were an abnormal radiograph, history of taking mineral oil and the presence of intrapulmonary lipids proved by bronchoalveolar lavage or open lung biopsy. The most common symptoms were cough (n = 13), mild fever (n = 11), and progressive dyspnea (n = 9). The main CT findings were air-space consolidations (100%), usually with areas of fatty attenuation (70.6%), areas of ground-glass attenuation (52.9%), and a crazy-paving pattern (17.6%), predominating bilaterally in the posterior and lower regions of the lungs. The high-resolution CT features in children with exogenous lipoid pneumonia are air-space consolidations and ground-glass attenuation, occasionally with a crazy-paving pattern, distributed bilaterally in the posterior and lower zones of the lungs. (orig.)

  13. Lipoid pneumonia in children following aspiration of mineral oil used in the treatment of constipation: high-resolution CT findings in 17 patients

    Energy Technology Data Exchange (ETDEWEB)

    Zanetti, Glaucia [University of Rio de Janeiro, Department of Radiology, Rio de Janeiro (Brazil); Marchiori, Edson [University of Rio de Janeiro, Department of Radiology, University Federal Fluminense, Rio de Janeiro (Brazil); Gasparetto, Taisa D. [University Federal Fluminense, Department of Radiology, Rio de Janeiro (Brazil); Escuissato, Dante L. [University of Parana, Department of Radiology, Curitiba (Brazil); Soares Souza, Arthur [School of Medicine of Sao Jose do Rio Preto (ASSJ), Department of Radiology, Sao Jose do Rio Preto (Brazil)

    2007-11-15

    Exogenous lipoid pneumonia is a rare disorder caused by aspiration of mineral, vegetable and animal oils. High-resolution CT findings of lipoid pneumonia in children taking mineral oil for constipation have been rarely reported. To evaluate the high-resolution CT findings in 17 children with exogenous lipoid pneumonia following aspiration of mineral oil. The study included nine boys and eight girls, with ages ranging from 2 months to 9 years. All patients underwent high-resolution CT and the images were reviewed by two radiologists who reached decisions by consensus. The inclusion criteria were an abnormal radiograph, history of taking mineral oil and the presence of intrapulmonary lipids proved by bronchoalveolar lavage or open lung biopsy. The most common symptoms were cough (n = 13), mild fever (n = 11), and progressive dyspnea (n = 9). The main CT findings were air-space consolidations (100%), usually with areas of fatty attenuation (70.6%), areas of ground-glass attenuation (52.9%), and a crazy-paving pattern (17.6%), predominating bilaterally in the posterior and lower regions of the lungs. The high-resolution CT features in children with exogenous lipoid pneumonia are air-space consolidations and ground-glass attenuation, occasionally with a crazy-paving pattern, distributed bilaterally in the posterior and lower zones of the lungs. (orig.)

  14. Structural and thermal characterization of La5Ca9Cu24O41 thin films grown by pulsed laser deposition on (1 1 0) SrTiO3 substrates

    International Nuclear Information System (INIS)

    Svoukis, E.; Athanasopoulos, G.I.; Altantzis, Th.; Lioutas, Ch.; Martin, R.S.; Revcolevschi, A.; Giapintzakis, J.

    2012-01-01

    In the present study stoichiometric, b-axis oriented La 5 Ca 9 Cu 24 O 41 thin films were grown by pulsed laser deposition on (1 1 0) SrTiO 3 substrates in the temperature range 600–750 °C. High resolution transmission electron microscopy was employed to investigate the growth mechanism and the epitaxial relationship between the SrTiO 3 substrates and the La 5 Ca 9 Cu 24 O 41 films grown at 700 °C. The 3-ω method was used to measure the cross-plane thermal conductivity of La 5 Ca 9 Cu 24 O 41 films in the temperature range 50–350 K. The observed glass-like behavior is attributed to atomic-scale defects, grain boundaries and an interfacial layer formed between film and substrate.

  15. Electron irradiation induced nanocrystal formation in Cu-borosilicate glass

    Energy Technology Data Exchange (ETDEWEB)

    Sabri, Mohammed Mohammed; Möbus, Günter, E-mail: g.moebus@sheffield.ac.uk [University of Sheffield, Department of Materials Science and Engineering (United Kingdom)

    2016-03-15

    Nanoscale writing of Cu nanoparticles in glasses is introduced using focused electron irradiation by transmission electron microscopy. Two types of copper borosilicate glasses, one with high and another with low Cu loading, have been tested at energies of 200–300 keV, and formation of Cu nanoparticles in a variety of shapes and sizes using different irradiation conditions is achieved. Electron energy loss spectroscopy analysis, combined with high-resolution transmission electron microscopy imaging, confirmed the irradiation-induced precipitated nanoparticles as metallic, while furnace annealing of the glass triggered dendrite-shaped particles of copper oxide. Unusual patterns of nanoparticle rings and chains under focused electron beam irradiation are also presented. Conclusively, electron beam patterning of Cu-loaded glasses is a promising alternative route to well-established femtosecond laser photoreduction of Cu ions in glass.

  16. Security authentication using the reflective glass pattern imaging effect.

    Science.gov (United States)

    Zhu, Ji Cheng; Shen, Su; Wu, Jian Hong

    2015-11-01

    The reflective glass pattern imaging effect is investigated experimentally for the utility in forming a synthetic 3D image as a security authentication device in this Letter. An array of homogeneously randomly distributed reflective elements and a corresponding micropattern array are integrated onto a thin layer of polyester film aiming to create a vivid image floating over a substrate surface, which can be clearly visible to the naked eye. By using the reflective-type configuration, the micro-optic system can be realized on a thinner substrate and is immune to external stain due to its flat working plane. A novel gravure-like doctor blading technique can realize a resolution up to 12,000 dpi and a stringent 2D alignment requirement should be imposed. Such devices can find applications in document security and banknotes or other valuable items to protect them against forgery.

  17. Kinetic and dynamic kinetic resolution of secondary alcohols with ionic-surfactant-coated Burkholderia cepacia lipase: substrate scope and enantioselectivity.

    Science.gov (United States)

    Kim, Cheolwoo; Lee, Jusuk; Cho, Jeonghun; Oh, Yeonock; Choi, Yoon Kyung; Choi, Eunjeong; Park, Jaiwook; Kim, Mahn-Joo

    2013-03-15

    Forty-four different secondary alcohols, which can be classified into several types (II-IX), were tested as the substrates of ionic surfactant-coated Burkholderia cepacia lipase (ISCBCL) to see its substrate scope and enantioselectivity in kinetic and dynamic kinetic resolution (KR and DKR). They include 6 boron-containing alcohols, 24 chiral propargyl alcohols, and 14 diarylmethanols. The results from the studies on KR indicate that ISCBCL accepted most of them with high enantioselectivity at ambient temperature and with useful to high enantioselectivity at elevated temperatures. In particular, ISCBCL displayed high enantioselectivity toward sterically demanding secondary alcohols (types VIII and IX) which have two bulky substituents at the hydroxymethine center. DKR reactions were performed by the combination of ISCBCL with a ruthenium-based racemization catalyst at 25-60 °C. Forty-one secondary alcohols were tested for DKR. About half of them were transformed into their acetates of high enantiopurity (>90% ee) with good yields (>80%). It is concluded that ISCBCL appears to be a superb enzyme for the KR and DKR of secondary alcohols.

  18. Thermal conductivity of Glycerol's liquid, glass, and crystal states, glass-liquid-glass transition, and crystallization at high pressures.

    Science.gov (United States)

    Andersson, Ove; Johari, G P

    2016-02-14

    To investigate the effects of local density fluctuations on phonon propagation in a hydrogen bonded structure, we studied the thermal conductivity κ of the crystal, liquid, and glassy states of pure glycerol as a function of the temperature, T, and the pressure, p. We find that the following: (i) κcrystal is 3.6-times the κliquid value at 140 K at 0.1 MPa and 2.2-times at 290 K, and it varies with T according to 138 × T(-0.95); (ii) the ratio κliquid (p)/κliquid (0.1 MPa) is 1.45 GPa(-1) at 280 K, which, unexpectedly, is about the same as κcrystal (p)/κcrystal (0.1 MPa) of 1.42 GPa(-1) at 298 K; (iii) κglass is relatively insensitive to T but sensitive to the applied p (1.38 GPa(-1) at 150 K); (iv) κglass-T plots show an enhanced, pressure-dependent peak-like feature, which is due to the glass to liquid transition on heating; (v) continuous heating cold-crystallizes ultraviscous glycerol under pressure, at a higher T when p is high; and (vi) glycerol formed by cooling at a high p and then measured at a low p has a significantly higher κ than the glass formed by cooling at a low p. On heating at a fixed low p, its κ decreases before its glass-liquid transition range at that p is reached. We attribute this effect to thermally assisted loss of the configurational and vibrational instabilities of a glass formed at high p and recovered at low p, which is different from the usual glass-aging effect. While the heat capacity, entropy, and volume of glycerol crystal are less than those for its glass and liquid, κcrystal of glycerol, like its elastic modulus and refractive index, is higher. We discuss these findings in terms of the role of fluctuations in local density and structure, and the relations between κ and the thermodynamic quantities.

  19. Remediation and production of low-sludge high-level waste glasses

    International Nuclear Information System (INIS)

    Ramsey, W.G.; Brown, K.G.; Beam, D.C.

    1994-01-01

    High-level radioactive sludge will constitute 24-28 oxide weight percent of the high-level waste glass produced at the Savannah River Site. A recent melter campaign using non-radioactive, simulated feed was performed with a sludge content considerably lower than 24 percent. The resulting glass was processed and shown to have acceptable durability. However, the durability was lower than predicted by the durability algorithm. Additional melter runs were performed to demonstrate that low sludge feed could be remediated by simply adding sludge oxides. The Product Composition Control System, a computer code developed to predict the proper feed composition for production of high-level waste glass, was utilized to determine the necessary chemical additions. The methodology used to calculate the needed feed additives, the effects of sludge oxides on glass production, and the resulting glass durability are discussed

  20. Oxide glass to high temperature ceramic superconductors - a novel route

    International Nuclear Information System (INIS)

    Chaudhuri, B.K.; Som, K.K.

    1992-01-01

    Recently it has been discovered that many of transition metal oxide (TMO) glasses like Bi-Sr-Ca-Cu-O, Y-Ba-Cu-O, Bi-Pb-Sr-Ca-Cu-O etc. can be directly converted to the corresponding high temperature superconducting phases by properly annealing the respective glasses. In this review recent developements in this field are summarised. The structural, electrical, dielectrical, magnetic, optical, and other properties of these new type of (TMO) glass systems have been elucidated comparing them with the corresponding results of already known (TMO) glasses which do not become superconductors on annealing above their glass transition temperatures (T g ). The electrical properties of this novel glass system have been analysed with reference to the various existing theoretical models based on polaron hopping conduction mechanism. The electrical, magnetic, and other properties of the respective superconductors obtained from their corresponding glass phases by annealing above (T g ) and the possibility of drawing wires, ribbons etc. from these glass matrices and then converting them to their high T c superconducting phases have also been discussed. (author). 107 refs., 32 figs., 5 tabs

  1. Ground Glass Pozzolan in Conventional, High, and Ultra-High Performance Concrete

    OpenAIRE

    Tagnit-Hamou Arezki; Zidol Ablam; Soliman Nancy; Deschamps Joris; Omran Ahmed

    2018-01-01

    Ground-glass pozzolan (G) obtained by grinding the mixed-waste glass to same fineness of cement can act as a supplementary-cementitious material (SCM), given that it is an amorphous and a pozzolanic material. The G showed promising performances in different concrete types such as conventional concrete (CC), high-performance concrete (HPC), and ultra-high performance concrete (UHPC). The current paper reports on the characteristics and performance of G in these concrete types. The use of G pro...

  2. Spectroscopic properties of highly Nd-doped lead phosphate glass

    Energy Technology Data Exchange (ETDEWEB)

    Novais, A.L.F. [Instituto de Física, Universidade Federal de Alagoas, Grupo de Fotônica e Fluidos Complexos, 57072-970 Maceió, AL (Brazil); Dantas, N.O. [Laboratório de Novos Materiais Isolantes e Semicondutores (LNMIS), Instituto de Física, Universidade Federal de Uberlândia, 38400-902 Uberlândia, MG (Brazil); Guedes, I. [Departamento de Física, Universidade Federal do Ceará, Campus do PICI, Caixa Postal 6030, 60455-760 Fortaleza, CE (Brazil); Vermelho, M.V.D., E-mail: vermelho@fis.ufal.br [Instituto de Física, Universidade Federal de Alagoas, Grupo de Fotônica e Fluidos Complexos, 57072-970 Maceió, AL (Brazil)

    2015-11-05

    The spectroscopic characteristics of highly Nd{sup 3+}-doped lead phosphate glasses (xNd:Pb{sub 3}(PO{sub 4}){sub 2}) have been investigated. The X-ray spectra show that the matrices are glassy up to 25 wt% of Nd{sup 3+} doping. From the Judd–Ofelt analysis we observe that while the Ω{sub (2)} parameter remains constant indicating that the 4f{sup N} and 4f{sup N−1}5 d{sup 1} configurations are not affected by the Nd{sup 3+} doping, the behavior of both Ω{sub (4)} and Ω{sub (6)} changes for 15 wt% of Nd{sup 3+} doping. The reduction of the Ω{sub (6)} parameter is related to the increase of the covalence bonding between the ligands and the Nd{sup 3+} ions. At this particular concentration, the radiative lifetime has a four-fold enhancement. Such behaviors are likely to be related to a modification in the glass structure for high Nd{sup 3+} concentrations. - Graphical abstract: Highly doped lead-phosphate glass matrix, with nominal concentration of up to 25 wt%, maintain the spectroscopic properties without deterioration. The analysis concerning the point of view of Nd{sup 3+} ions showed that high concentrations only affects the rare earth electronic charge density distribution. - Highlights: • Spectroscopic characterization of Nd{sub 2}O{sub 3} highly doped lead phosphate glasses. • Phosphate glass doped with Nd{sup 3+} for applications in photonic devices. • Judd–Ofelt analysis in phosphate glasses doped with Neodymium.

  3. Lipase-catalyzed highly enantioselective kinetic resolution of boron-containing chiral alcohols.

    Science.gov (United States)

    Andrade, Leandro H; Barcellos, Thiago

    2009-07-16

    The first application of enzymes as catalysts to obtain optically pure boron compounds is described. The kinetic resolution of boron-containing chiral alcohols via enantioselective transesterification catalyzed by lipases was studied. Aromatic, allylic, and aliphatic secondary alcohols containing a boronate ester or boronic acid group were resolved by lipase from Candida antartica (CALB), and excellent E values (E > 200) and high enantiomeric excesses (up to >99%) of both remaining substrates and acetylated product were obtained.

  4. Thin films prepared from tungstate glass matrix

    Energy Technology Data Exchange (ETDEWEB)

    Montanari, B.; Ribeiro, S.J.L.; Messaddeq, Y. [Departamento de Quimica Geral e Inorganica, Instituto de Quimica, Sao Paulo State University-UNESP, CP 355, CEP 14800-900, Araraquara, SP (Brazil); Li, M.S. [Instituto de Fisica, USP, CP 369, CEP 13560-970, Sao Carlos, SP (Brazil); Poirier, G. [Departamento de Ciencias Exatas, UNIFAL-MG, CEP 37130-000, Alfenas-MG (Brazil)], E-mail: gael@unifal-mg.edu.br

    2008-01-30

    Vitreous samples containing high concentrations of WO{sub 3} (above 40% M) have been used as a target to prepare thin films. Such films were deposited using the electron beam evaporation method onto soda-lime glass substrates. These films were characterized by X-ray diffraction (XRD), perfilometry, X-ray energy dispersion spectroscopy (EDS), M-Lines and UV-vis absorption spectroscopy. In this work, experimental parameters were established to obtain stable thin films showing a chemical composition close to the glass precursor composition and with a high concentration of WO{sub 3}. These amorphous thin films of about 4 {mu}m in thickness exhibit a deep blue coloration but they can be bleached by thermal treatment near the glass transition temperature. Such bleached films show several guided modes in the visible region and have a high refractive index. Controlled crystallization was realized and thus it was possible to obtain WO{sub 3} microcrystals in the amorphous phase.

  5. Hydrogen-induced high damping of bulk metallic glasses

    International Nuclear Information System (INIS)

    Hasegawa, M.

    2009-01-01

    There are two important topics concerned with the recent researches on the damping materials of hydrogenated metallic glasses (HMGs). One is the mechanism of the high hydrogen-induced internal friction of HMGs. The other is the materials processing of 'bulk' HMGs for engineering. This article describes the summary of our recent studies on these topics. The first one is closely related to the local structure of the metallic glasses. Therefore, our recent results on the intermediate-range local structure of the simple two Zr-based metallic glasses are described, which has been clarified by the Voronoi analysis using the experimental data of the neutron diffraction measurements. The hydrogen-induced internal friction of HMGs is also discussed on the basis of these recent results of the local structure of the metallic glasses. In terms of the second topic, the first successful preparation of heavily hydrogenated Zr-based bulk HMG rods without hydrogen-induced surface embrittlement is described. They are prepared by a powder-compact-melting and liquid-casting process using Zr-Al-Ni-Cu metallic glass and ZrH 2 powders as the starting materials. It has been found that they have high damping properties.

  6. Network structure and thermal stability study of high temperature seal glass

    Science.gov (United States)

    Lu, K.; Mahapatra, M. K.

    2008-10-01

    High temperature seal glass has stringent requirement on glass thermal stability, which is dictated by glass network structures. In this study, a SrO-La2O3-Al2O3-B2O3-SiO2 based glass system was studied using nuclear magnetic resonance, Raman spectroscopy, and x-ray diffraction for solid oxide cell application purpose. Glass structural unit neighboring environment and local ordering were evaluated. Glass network connectivity as well as silicon and boron glass former coordination were calculated for different B2O3:SiO2 ratios. Thermal stability of the borosilicate glasses was studied after thermal treatment at 850 °C. The study shows that high B2O3 content induces BO4 and SiO4 structural unit ordering, increases glass localized inhomogeneity, decreases glass network connectivity, and causes devitrification. Glass modifiers interact with either silicon- or boron-containing structural units and form different devitrified phases at different B2O3:SiO2 ratios. B2O3-free glass shows the best thermal stability among the studied compositions, remaining stable after thermal treatment for 200 h at 850 °C.

  7. High resolution SEM imaging of gold nanoparticles in cells and tissues.

    Science.gov (United States)

    Goldstein, A; Soroka, Y; Frušić-Zlotkin, M; Popov, I; Kohen, R

    2014-12-01

    The growing demand of gold nanoparticles in medical applications increases the need for simple and efficient characterization methods of the interaction between the nanoparticles and biological systems. Due to its nanometre resolution, modern scanning electron microscopy (SEM) offers straightforward visualization of metallic nanoparticles down to a few nanometre size, almost without any special preparation step. However, visualization of biological materials in SEM requires complicated preparation procedure, which is typically finished by metal coating needed to decrease charging artefacts and quick radiation damage of biomaterials in the course of SEM imaging. The finest conductive metal coating available is usually composed of a few nanometre size clusters, which are almost identical to the metal nanoparticles employed in medical applications. Therefore, SEM monitoring of metal nanoparticles within cells and tissues is incompatible with the conventional preparation methods. In this work, we show that charging artefacts related to non-conductive biological specimen can be successfully eliminated by placing the uncoated biological sample on a conductive substrate. By growing the cells on glass pre-coated with a chromium layer, we were able to observe the uptake of 10 nm gold nanoparticles inside uncoated and unstained macrophages and keratinocytes cells. Imaging in back scattered electrons allowed observation of gold nanoparticles located inside the cells, while imaging in secondary electron gave information on gold nanoparticles located on the surface of the cells. By mounting a skin cross-section on an improved conductive holder, consisting of a silicon substrate coated with copper, we were able to observe penetration of gold nanoparticles of only 5 nm size through the skin barrier in an uncoated skin tissue. The described method offers a convenient modification in preparation procedure for biological samples to be analyzed in SEM. The method provides high

  8. High-resolution Al L2,3-edge x-ray absorption near edge structure spectra of Al-containing crystals and glasses: coordination number and bonding information from edge components

    International Nuclear Information System (INIS)

    Weigel, C; Calas, G; Cormier, L; Galoisy, L; Henderson, G S

    2008-01-01

    High-resolution Al L 2,3 -edge x-ray absorption near edge structure (XANES) spectra have been measured in selected materials containing aluminium in 4-, 5- and 6-coordination. A shift of 1.5 eV is observed between the onset of [4] Al and [6] Al L 2,3 -edge XANES, in agreement with the magnitude of the shift observed at the Al K-edge. The differences in the position and shape of low-energy components of Al L 2,3 -edge XANES spectra provide a unique fingerprint of the geometry of the Al site and of the nature of Al-O chemical bond. The high resolution allows the calculation of electronic parameters such as the spin-orbit coupling and exchange energy using intermediate coupling theory. The electron-hole exchange energy decreases in tetrahedral as compared to octahedral symmetry, in relation with the increased screening of the core hole in the former. Al L 2,3 -edge XANES spectra confirm a major structural difference between glassy and crystalline NaAlSi 2 O 6 , with Al in 4- and 6-coordination, respectively, Al coordination remaining unchanged in NaAl 1-x Fe x Si 2 O 6 glasses, as Fe is substituted for Al

  9. Effect of substrate type on the electrical and structural properties of TiO2 thin films deposited by reactive DC sputtering

    Science.gov (United States)

    Cheng, Xuemei; Gotoh, Kazuhiro; Nakagawa, Yoshihiko; Usami, Noritaka

    2018-06-01

    Electrical and structural properties of TiO2 thin films deposited at room temperature by reactive DC sputtering have been investigated on three different substrates: high resistivity (>1000 Ω cm) float zone Si(1 1 1), float zone Si(1 0 0) and alkali free glass. As-deposited TiO2 films on glass substrate showed extremely high resistivity of (∼5.5 × 103 Ω cm). In contrast, lower resistivities of ∼2 Ω cm and ∼5 Ω cm were obtained for films on Si(1 1 1) and Si(1 0 0), respectively. The as-deposited films were found to be oxygen-rich amorphous TiO2 for all the substrates as evidenced by X-ray photoemission spectroscopy and X-ray diffraction. Subsequent annealing led to appearance of anatase TiO2 on Si but not on glass. The surface of as-deposited TiO2 on Si was found to be rougher than that on glass. These results suggest that the big difference of electrical resistivity of TiO2 would be related with existence of more anatase nuclei forming on crystalline substrates, which is consistent with the theory of charged clusters that smaller clusters tend to adopt the substrate structure.

  10. High flux operation of microstrip gas chambers on glass and plastic supports

    International Nuclear Information System (INIS)

    Bouclier, R.; Florent, J.J.; Gaudaen, J.; Millon, G.; Pasta, A.; Ropelewski, L.; Sauli, F.; Shekhtman, L.I.

    1992-01-01

    Recent observations on microstrip gas chambers realized on various glass and plastic supports are presented in this paper. Short term measurements indicate a rate capability up to and above 5x10 5 counts/s mm 2 . A long term exposure to radiation shows however gain modifications, dependent on the resistivity of the chamber substrate; a choice of low resistivity supports minimizes this effect. (orig.)

  11. Mobility restrictions and glass transition behaviour of an epoxy resin under confinement.

    Science.gov (United States)

    Djemour, A; Sanctuary, R; Baller, J

    2015-04-07

    Confinement can have a big influence on the dynamics of glass formers in the vicinity of the glass transition. Already 40 to 50 K above the glass transition temperature, thermal equilibration of glass formers can be strongly influenced by the confining substrate. We investigate the linear thermal expansion and the specific heat capacity cp of an epoxy resin (diglycidyl ether of bisphenol A, DGEBA) in a temperature interval of 120 K around the glass transition temperature. The epoxy resin is filled into controlled pore glasses with pore diameters between 4 and 111 nm. Since DGEBA can form H-bonds with silica surfaces, we also investigate the influence of surface silanization of the porous substrates. In untreated substrates a core/shell structure of the epoxy resin can be identified. The glass transition behaviours of the bulk phase and that of the shell phase are different. In silanized substrates, the shell phase disappears. At a temperature well above the glass transition, a second transition is found for the bulk phase - both in the linear expansion data as well as in the specific heat capacity. The cp data do not allow excluding the glass transition of a third phase as being the cause for this transition, whereas the linear expansion data do so. The additional transition temperature is interpreted as a separation between two regimes: above this temperature, macroscopic flow of the bulk phase inside the porous structure is possible to balance the mismatch of thermal expansion coefficients between DGEBA and the substrate. Below the transition temperature, this degree of freedom is hindered by geometrical constraints of the porous substrates. Moreover, this second transition could also be found in the linear expansion data of the shell phase.

  12. SETTLING OF SPINEL IN A HIGH-LEVEL WASTE GLASS MELTER

    International Nuclear Information System (INIS)

    Pavel Hrma; Pert Schill; Lubomir Nemec

    2002-01-01

    High-level nuclear waste is being vitrified, i.e., converted to a durable glass that can be stored in a safe repository for hundreds of thousands of years. Waste vitrification is accomplished in reactors called melters to which the waste is charged together with glass-forming additives. The mixture is electrically heated to a temperature as high as 1150 decrees C to create a melt that becomes glass on cooling

  13. Wear Resistance of Nano Alumina Containing SiO2-B2O3-Na2O Glass-Ceramic on Steel Substrate

    Directory of Open Access Journals (Sweden)

    A. Faeghinia

    2016-09-01

    Full Text Available The experimental study has been carried out to investigate the tribological properties of nano Alumina reinforced glass-ceramic enamel. The mixtures of (5, 10, 15 wt.% nano alumina and glass powders have been air sprayed on stainless steel substrate.. The thixotropy, wetting angle and surface tension of used slurry were increased inherently by 15-wt.% nano alumina. By heat treating at 870-640-525 ºC, the homogeneous crystalline sodium silicate phase beside nano alumina was obtained in glass –ceramic coat. According to the EDAX results, the precipitated reduced Sb and Mo particles at the interface of enamel and steel caused to reasonable adherence of coat and steel. The dry sliding wear tests were carried out using pin on disk method. Results revealed the 0.01 mg wear rate by 30N load at 100 m for nano alumina bearing coats. The wear resistance increased by a factor of 10. According to SEM micrographs, the sliding load transfer by nano alumina particles occurred.

  14. Properties and characteristics of high-level waste glass

    International Nuclear Information System (INIS)

    Ross, W.A.

    1977-01-01

    This paper has briefly reviewed many of the characteristics and properties of high-level waste glasses. From this review, it can be noted that glass has many desirable properties for solidification of high-level wastes. The most important of these include: (1) its low leach rate; (2) the ability to tolerate large changes in waste composition; (3) the tolerance of anticipated storage temperatures; (4) its low surface area even after thermal shock or impact

  15. Structure and chemistry of epitaxial ceria thin films on yttria-stabilized zirconia substrates, studied by high resolution electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sinclair, Robert, E-mail: bobsinc@stanford.edu [Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305 (United States); Lee, Sang Chul, E-mail: sclee99@stanford.edu [Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305 (United States); Shi, Yezhou; Chueh, William C. [Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305 (United States); Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States)

    2017-05-15

    We have applied aberration-corrected transmission electron microscopy (TEM) imaging and electron energy loss spectroscopy (EELS) to study the structure and chemistry of epitaxial ceria thin films, grown by pulsed laser deposition onto (001) yttria-stabilized zirconia (YSZ) substrates. There are few observable defects apart from the expected mismatch interfacial dislocations and so the films would be expected to have good potential for applications. Under high electron beam dose rate (above about 6000 e{sup -}/Å{sup 2}s) domains of an ordered structure appear and these are interpreted as being created by oxygen vacancy ordering. The ordered structure does not appear at lower lose rates (ca. 2600 e{sup -}/Å{sup 2}s) and can be removed by imaging under 1 mbar oxygen gas in an environmental TEM. EELS confirms that there is both oxygen deficiency and the associated increase in Ce{sup 3+} versus Ce{sup 4+} cations in the ordered domains. In situ high resolution TEM recordings show the formation of the ordered domains as well as atomic migration along the ceria thin film (001) surface. - Highlights: • The local structure and chemistry of ceria can be studied by TEM combined with EELS. • At lower electron, there are no observable changes in the ceria thin films. • At higher dose rates, an ordered phase is created due to oxygen vacancy ordering. • In situ HRTEM shows the oxygen vacancy ordering and the movement of surface atoms.

  16. Spatiotemporal stability of neonatal rat cardiomyocyte monolayers spontaneous activity is dependent on the culture substrate.

    Directory of Open Access Journals (Sweden)

    Jonathan Boudreau-Béland

    Full Text Available In native conditions, cardiac cells must continuously comply with diverse stimuli necessitating a perpetual adaptation. Polydimethylsiloxane (PDMS is commonly used in cell culture to study cellular response to changes in the mechanical environment. The aim of this study was to evaluate the impact of using PDMS substrates on the properties of spontaneous activity of cardiomyocyte monolayer cultures. We compared PDMS to the gold standard normally used in culture: a glass substrate. Although mean frequency of spontaneous activity remained unaltered, incidence of reentrant activity was significantly higher in samples cultured on glass compared to PDMS substrates. Higher spatial and temporal instability of the spontaneous rate activation was found when cardiomyocytes were cultured on PDMS, and correlated with decreased connexin-43 and increased CaV3.1 and HCN2 mRNA levels. Compared to cultures on glass, cultures on PDMS were associated with the strongest response to isoproterenol and acetylcholine. These results reveal the importance of carefully selecting the culture substrate for studies involving mechanical stimulation, especially for tissue engineering or pharmacological high-throughput screening of cardiac tissue analog.

  17. An exploratory study of the effects of the dielectric-barrier-discharge surface pre-treatment on the self-assembly processes of a (3-Aminopropyl) trimethoxysilane on glass substrates

    International Nuclear Information System (INIS)

    Cui Naiyi; Liu Chaozong; Brown, Norman M.D.; Meenan, Brian J.

    2007-01-01

    X-ray photoelectron spectrometry (XPS), Fourier transform infrared spectrometry (FTIR), secondary-ion-mass spectrometry (SIMS) and contact angle measurement have been used in study of the enhancement effect of substrate pre-treatment by dielectric-barrier-discharge (DBD) for the self-assembly of a (3-Aminopropyl) trimethoxysilane (APTS) on glass substrates. In results, the concentration of the APTS molecules self-assembled on the surfaces of both the acetone-washed and the DBD-treated substrates were more than three times of that on the as-supplied substrate. Meanwhile, the self-assembly (SA) layers grown on the DBD-treated substrates have the best quality compared to those grown on the substrates pre-treated in other ways in terms of the silane-substrate bonding and the order of arrangement of the silane molecules

  18. Interpretation of the two-components observed in high resolution X-ray diffraction {omega} scan peaks for mosaic ZnO thin films grown on c-sapphire substrates using pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Durand, O., E-mail: olivier.durand@insa-rennes.fr [Universite Europeenne de Bretagne, INSA, FOTON, UMR 6082, 20 avenue des Buttes de Coesmes, F-35708 RENNES (France); Letoublon, A. [Universite Europeenne de Bretagne, INSA, FOTON, UMR 6082, 20 avenue des Buttes de Coesmes, F-35708 RENNES (France); Rogers, D.J. [Nanovation SARL, 103 bis rue de Versailles, 91400 Orsay (France); SUPA, School of Physics and Astronomy, University of St. Andrews, St. Andrews, KY16 9SS (United Kingdom); Hosseini Teherani, F. [Nanovation SARL, 103 bis rue de Versailles, 91400 Orsay (France)

    2011-07-29

    X-ray scattering methods were applied to the study of thin mosaic ZnO layers deposited on c-Al{sub 2}O{sub 3} substrates using Pulsed Laser Deposition. High Resolution (HR) studies revealed two components in the {omega} scans (transverse scans) which were not resolved in conventional 'open-detector' {omega} rocking curves: a narrow, resolution-limited, peak, characteristic of long-range correlation, and a broad peak, attributed to defect-related diffuse-scattering inducing a limited transverse structural correlation length. Thus, for such mosaic films, the conventional {omega} rocking curve Full Width at Half Maximum linewidth was found to be ill-adapted as an overall figure-of-merit for the structural quality, in that the different contributions were not meaningfully represented. A 'Williamson-Hall like' integral breadth (IB) metric for the HR (00.l) transverse-scans was thus developed as a reliable, fast, accurate and robust alternative to the rocking curve linewidth for routine non-destructive testing of such mosaic thin films. For a typical ZnO/c-Al{sub 2}O{sub 3} film, the IB method gave a limited structural correlation length of 110 nm {+-} 9 nm. The results are coherent with a thin film containing misfit dislocations at the film-substrate interface.

  19. Effect of high-energy electron beam irradiation on the transmittance of ZnO thin films on transparent substrates

    International Nuclear Information System (INIS)

    Yun, Eui-Jung; Jung, Jin-Woo; Han, Young-Hwan; Kim, Min-Wan; Lee, Byung Cheol

    2010-01-01

    We investigated in this study the effects of high-energy electron beam irradiation (HEEBI) on the optical transmittance of undoped ZnO films grown on transparent substrates, such as corning glass and polyethersulfone (PES) plastic substrates, with a radio frequency (rf) magnetron sputtering technique. The ZnO thin films were treated with HEEBI in air at RT with an electron beam energy of 1 MeV and doses of 4.7 x 10 14 - 4.7 x 10 16 electrons/cm 2 . The optical transmittance of the ZnO films was measured using an ultraviolet visible near-infrared spectrophotometer. The detailed estimation process for separating the transmittance of HEEBI-treated ZnO films from the total transmittance of ZnO films on transparent substrates treated with HEEBI is given in this paper. We concluded that HEEBI causes a slight suppression in the optical transmittance of ZnO thin films. We also concluded that HEEBI treatment with a high dose shifted the optical band gap (E g ) toward the lower energy region from 3.29 to 3.28 eV whereas that with a low dose unchanged E g at 3.25 eV. This shift suggested that HEEBI at RT at a high dose acts like an annealing treatment at high temperature.

  20. High-average-power laser medium based on silica glass

    Science.gov (United States)

    Fujimoto, Yasushi; Nakatsuka, Masahiro

    2000-01-01

    Silica glass is one of the most attractive materials for a high-average-power laser. We have developed a new laser material base don silica glass with zeolite method which is effective for uniform dispersion of rare earth ions in silica glass. High quality medium, which is bubbleless and quite low refractive index distortion, must be required for realization of laser action. As the main reason of bubbling is due to hydroxy species remained in the gelation same, we carefully choose colloidal silica particles, pH value of hydrochloric acid for hydrolysis of tetraethylorthosilicate on sol-gel process, and temperature and atmosphere control during sintering process, and then we get a bubble less transparent rare earth doped silica glass. The refractive index distortion of the sample also discussed.

  1. Installation of high-resolution ERDA in UTTAC at the University of Tsukuba: Determination of the energy resolution and the detection limit for hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Sekiba, D., E-mail: sekiba@tac.tsukuba.ac.jp [Institute of Applied Physics, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8573 (Japan); University of Tsukuba, Tandem Accelerator Complex (UTTAC), Tennodai 1-1-1, Tsukuba, Ibaraki 305-8577 (Japan); Chito, K.; Harayama, I. [Institute of Applied Physics, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8573 (Japan); Watahiki, Y.; Ishii, S. [University of Tsukuba, Tandem Accelerator Complex (UTTAC), Tennodai 1-1-1, Tsukuba, Ibaraki 305-8577 (Japan); Ozeki, K. [Department of Mechanical Engineering, Ibaraki University, Nakanarusawa 4-12-1, Hitachi, Ibaraki 316-8511 (Japan)

    2017-06-15

    A newly developed high-resolution elastic recoil detection analysis (HERDA) system installed at the 1 MV Tandetron in UTTAC at the University of Tsukuba is introduced. The effective solid angle of detector, energy resolution and detection limit for hydrogen are, for the first time, determined quantitatively by the measurements on an a-C:H (and D) film deposited on a Si substrate. In the case of a 500 keV {sup 16}O{sup +} as the incident beam, an energy resolution of ∼0.45 keV and a detection limit of ∼3.8 × 10{sup 20} atoms/cm{sup 3} (∼0.18 at.%) with a data acquisition time of ∼310 s are derived.

  2. Growth of CdS thin films on indium coated glass substrates via chemical bath deposition and subsequent air annealing

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Biswajit; Kumar, Kamlesh; Singh, Balwant Kr; Banerjee, Pushan; Das, Subrata, E-mail: neillohit@yahoo.co.in

    2014-11-30

    Graphical abstract: - Highlights: • CdS film grown on indium coated glass substrates via CBD and subsequent annealing. • Disappearance of the indium (1 1 2) peak confirms interdiffusion at 300 °C. • SIMS indicates the subsequent interdiffusion at progressively higher temperature. • Composite In–CdS layer showed lower photosensitivity compared to pure CdS. - Abstract: In the present work attempts were made to synthesize indium doped CdS films by fabricating In/CdS bilayers using CBD-CdS on vacuum evaporated In thin films and subsequent air annealing. 135 nm CdS films were grown onto 20 nm and 35 nm indium coated glass substrate employing chemical bath deposition technique. The In/CdS bilayers thus formed were subjected to heat treatment at the temperatures between 200 and 400 °C for 4 min in the muffle furnace to facilitate indium to diffuse into the CdS films. XRD pattern ascertained no noticeable shift in lattice constant implying grain boundary metal segregation, while secondary ion mass spectrometry indicated the diffusion profile of indium into CdS matrices. Mass spectrometry results showed that substantial diffusion of indium had been taken place within CdS at 400 °C. Dark and photocurrent with different illumination time were measured to ascertain the photosensitivity of pure and composite CdS films.

  3. Ground-glass opacity in diffuse lung diseases: high-resolution computed tomography-pathology correlation; Opacidades em vidro fosco nas doencas pulmonares difusas: correlacao da tomografia computadorizada de alta resolucao com a anatomopatologia

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Maria Lucia de Oliveira; Vianna, Alberto Domingues; Marchiori, Edson [Universidade Federal Fluminense, Niteroi, RJ (Brazil). Dept. de Radiologia; Souza Junior, Arthur Soares [Faculdade de Medicina de Sao Jose do Rio Preto (FAMERP), SP (Brazil). Disciplina de Radiologia; Moraes, Heleno Pinto de [Universidade Federal Fluminense, Niteroi, RJ (Brazil). Dept. de Patologia]. E-mail: edmarchiori@zipmail.com.br

    2003-12-01

    Ground-glass opacity is a finding frequently seen in high-resolution computed tomography examinations of the chest and is characterized by hazy increased attenuation of lung, however without blurring of bronchial and vascular margins. Due to its un specificity, association with other radiological, clinical and pathological findings must be considered for an accurate diagnostic interpretation. In this paper were reviewed 62 computed tomography examinations of patients with diffuse pulmonary diseases of 14 different etiologies in which ground-glass opacity was the only or the most remarkable finding, and correlated this findings with pathology abnormalities seen on specimens obtained from biopsies or necropsies. In pneumocystosis, ground-glass opacities correlated histologically with alveolar occupation by a foaming material containing parasites, in bronchiole alveolar cell carcinoma with thickening of the alveolar septa and occupation of the lumen by mucus and tumoral cells, in paracoccidioidomycosis with thickening of the alveolar septa, areas of fibrosis and alveolar bronchopneumonia exudate, in sarcoidosis with fibrosis or clustering of granulomas and in idiopathic pulmonary fibrosis with alveolar septa thickening due to fibrosis. Alveolar occupation by blood was found in cases of leptospirosis, idiopathic hemo siderosis, metastatic kidney tumor and invasive aspergillosis whereas oily vacuole were seen in lipoid pneumonia, proteinaceous and lipo proteinaceous material in silico proteinosis and pulmonary alveolar proteinosis, and edematous fluid in cardiac failure. (author)

  4. Development of high-resolution gamma detector using sub-mm GAGG crystals coupled to TSV-MPPC array

    International Nuclear Information System (INIS)

    Lipovec, A.; Shimazoe, K.; Takahashi, H.

    2016-01-01

    In this study a high-resolution gamma detector based on an array of sub-millimeter Ce:GAGG (Cerium doped Gd 3 Al 2 Ga 3 O 12 ) crystals read out by an array of surface-mount type of TSV-MPPC was developed. MPPC sensor from Hamamatsu which has a 26 by 26 mm 2 detector area with 64 channels was used. One channel has a 3 by 3 mm 2 photosensitive area with 50 μ m pitch micro cells. MPPC sensor provides 576 mm 2 sensing area and was used to decode 48 by 48 array with 0.4 by 0.4 by 20 mm 3 Ce:GAGG crystals of 500 μ m pitch. The base of the detector with the crystal module was mounted to a read out board which consists of charge division circuit, thus allowing for a read out of four channels to identify the position of the incident event on the board. The read out signals were amplified using charge sensitive amplifiers. The four amplified signals were digitized and analyzed to produce a position sensitive event. For the performance analysis a 137 Cs source was used. The produced events were used for flood histogram and energy analysis. The effects of the glass thickness between the Ce:GAGG and MPPC were analyzed using the experimental flood diagrams and Geant4 simulations. The glass between the scintillator and the detector allows the spread of the light over different channels and is necessary if the channel's sensitive area is bigger than the scintillator's area. The initial results demonstrate that this detector module is promising and could be used for applications requiring compact and high-resolution detectors. Experimental results show that the detectors precision increases using glass guide thickness of 1.35 mm and 1.85 mm; however the precision using 2.5 mm are practically the same as if using 0.8 mm or 1.0 mm glass guide thicknesses. In addition, simulations using Geant4 indicate that the light becomes scarcer if thicker glass is used, thus reducing the ability to indicate which crystal was targeted. When 2.5 mm glass thickness is used, the scarce

  5. ANL high resolution injector

    International Nuclear Information System (INIS)

    Minehara, E.; Kutschera, W.; Hartog, P.D.; Billquist, P.

    1985-01-01

    The ANL (Argonne National Laboratory) high-resolution injector has been installed to obtain higher mass resolution and higher preacceleration, and to utilize effectively the full mass range of ATLAS (Argonne Tandem Linac Accelerator System). Preliminary results of the first beam test are reported briefly. The design and performance, in particular a high-mass-resolution magnet with aberration compensation, are discussed. 7 refs., 5 figs., 2 tabs

  6. Stereoselectivity and substrate specificity in the kinetic resolution of methyl-substituted 1-oxaspiro[2.5]octanes by Rhodotorula glutinis epoxide hydrolase

    NARCIS (Netherlands)

    Weijers, C.A.G.M.; Meeuwse, P.; Herpers, R.L.J.M.; Franssen, M.C.R.; Sudhölter, E.J.R.

    2005-01-01

    [GRAPHICS] The kinetic resolution of a range of methyl-substituted 1-oxaspiro[2.5]octanes by yeast epoxide hydrolase (YEH) from Rhodotorula glutinis has been investigated. The structural determinants of substrate specificity and stereoselectivity of YEH toward these substrates appeared to be the

  7. Apatite formation on organic polymers by biomimetic process using Na2O-SiO2 glasses as nucleating agent

    Energy Technology Data Exchange (ETDEWEB)

    Tanahashi, M; Yao, t; Kokubo, T [Kyoto University, Kyoto (Japan). Faculty of Engineering; Minoda, M; Miyamoto, T [Kyoto University, Kyoto (Japan). Institute for Chemical Research; Nakamura, T [Kyoto University, Kyoto (Japan). Research Center for Biomedical Engineering; Yamamuro, T [Kyoto University, Kyoto (Japan). Faculty of Medicine

    1994-09-01

    In this investigation, CaO-SiO2-based glass, which was previously used as the nucleating agent, was replaced by Na2O-SiO2 glasses, SiO2 glass, and SiO2 gel. The induction period for the apatite nucleation on various organic polymer substrates and the adhesive strength of the apatite layer to the substrates were examined. It was considered that the short induction period for the glasses with high Na2O contents was attributed to high dissolution rates of sodium and silicate ions from them. It was also considered that highly polar carboxyl or sulfinyl groups were formed on the polymer surfaces by the hydrolysis of their ester, amide or sulfonyl group in simulated body fluid with its pH increased by the Na{sup +} dissolution from the glass, and that these polar groups formed a strong bond with the apatite. It is suggested that thus formed apatite-organic polymer composites are useful as the bone-repairing as well as soft tissue-repairing materials. 11 refs., 13 figs., 3 tabs.

  8. Glass transition and density fluctuations in the fragile glass former orthoterphenyl

    International Nuclear Information System (INIS)

    Monaco, G.; Fioretto, D.; Comez, L.; Ruocco, G.

    2001-01-01

    High-resolution Brillouin light scattering is used to measure the dynamic structure factor of the fragile glass former orthoterphenyl (OTP) in a wide temperature range around the glass transition region and up to the boiling point. The whole set of spectra is described in terms of a phenomenological generalized hydrodynamic model. In the supercooled phase, we show the contemporary existence of the structural process, whose main features come out to be consistent with the results obtained with other spectroscopies, and of a secondary, activated process, which occurs on the 10 -11 s time scale and has a low activation energy (E a f =0.28 kcal/mol). This latter process, which is also present in the glassy phase and seems to be insensitive to the glass transition, is attributed to the coupling between the density modes and intramolecular degrees of freedom. In the normal liquid phase, the two processes merge together, and the resulting characteristic time is no longer consistent with those derived with other spectroscopies. The analysis points to the conclusion that, for what concerns the long-wavelength density fluctuations in fragile glass formers such as OTP, the universal dynamical features related to the glass transition come out clearly only in the supercooled phase and at frequencies lower than ∼10 6 Hz

  9. Indium-tin oxide thin films deposited at room temperature on glass and PET substrates: Optical and electrical properties variation with the H2–Ar sputtering gas mixture

    International Nuclear Information System (INIS)

    Álvarez-Fraga, L.; Jiménez-Villacorta, F.; Sánchez-Marcos, J.; Andrés, A. de; Prieto, C.

    2015-01-01

    Highlights: • ITO deposition on glass and PET at room temperature by using H. • High transparency and low resistance is obtained by tuning the H. • The figure of merit for ITO films on PET becomes maximal for thickness near 100 nm. - Abstract: The optical and electrical properties of indium tin oxide (ITO) films deposited at room temperature on glass and polyethylene terephthalate (PET) substrates were investigated. A clear evolution of optical transparency and sheet resistance with the content of H 2 in the gas mixture of H 2 and Ar during magnetron sputtering deposition is observed. An optimized performance of the transparent conductive properties ITO films on PET was achieved for samples prepared using H 2 /(Ar + H 2 ) ratio in the range of 0.3–0.6%. Moreover, flexible ITO-PET samples show a better transparent conductive figure of merit, Φ TC = T 10 /R S , than their glass counterparts. These results provide valuable insight into the room temperature fabrication and development of transparent conductive ITO-based flexible devices

  10. Metal oxide nanorod arrays on monolithic substrates

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Pu-Xian; Guo, Yanbing; Ren, Zheng

    2018-01-02

    A metal oxide nanorod array structure according to embodiments disclosed herein includes a monolithic substrate having a surface and multiple channels, an interface layer bonded to the surface of the substrate, and a metal oxide nanorod array coupled to the substrate surface via the interface layer. The metal oxide can include ceria, zinc oxide, tin oxide, alumina, zirconia, cobalt oxide, and gallium oxide. The substrate can include a glass substrate, a plastic substrate, a silicon substrate, a ceramic monolith, and a stainless steel monolith. The ceramic can include cordierite, alumina, tin oxide, and titania. The nanorod array structure can include a perovskite shell, such as a lanthanum-based transition metal oxide, or a metal oxide shell, such as ceria, zinc oxide, tin oxide, alumina, zirconia, cobalt oxide, and gallium oxide, or a coating of metal particles, such as platinum, gold, palladium, rhodium, and ruthenium, over each metal oxide nanorod. Structures can be bonded to the surface of a substrate and resist erosion if exposed to high velocity flow rates.

  11. Neutron diffraction from lead germanate glasses

    International Nuclear Information System (INIS)

    Umesaki, Norimasa; Brunier, T.M.; Wright, A.C.; Hannon, A.C.; Scinclair, R.N.

    1993-01-01

    High resolution neutron diffraction data have been collected on the PbO-GeO 2 glasses and on GeO 2 for comparison. These neutron data have revealed the existence of 6-fold coordinated germanium (GeO 6 octahedra) by virtue of the shift in the first peak in the obtained total correlation function T(r) and increase in the coordination. The neutron results also indicate that PbO exits as PbO 4 pyramids, as found in the orthorhombic form of PbO crystal, in the studied PbO-GeO 2 glasses. (author)

  12. Isothermal crystallization kinetics in simulated high-level nuclear waste glass

    International Nuclear Information System (INIS)

    Vienna, J.D.; Hrma, P.; Smith, D.E.

    1997-01-01

    Crystallization kinetics of a simulated high-level waste (HLW) glass were measured and modelled. Kinetics of acmite growth in the standard HW39-4 glass were measured using the isothermal method. A time-temperature-transformation (TTT) diagram was generated from these data. Classical glass-crystal transformation kinetic models were empirically applied to the crystallization data. These models adequately describe the kinetics of crystallization in complex HLW glasses (i.e., RSquared = 0.908). An approach to measurement, fitting, and use of TTT diagrams for prediction of crystallinity in a HLW glass canister is proposed

  13. Glass-solidification method for high level radioactive liquid waste

    International Nuclear Information System (INIS)

    Kawamura, Kazuhiro; Kometani, Masayuki; Sasage, Ken-ichi.

    1996-01-01

    High level liquid wastes are removed with precipitates mainly comprising Mo and Zr, thereafter, the high level liquid wastes are mixed with a glass raw material comprising a composition having a B 2 O 3 /SiO 2 ratio of not less than 0.41, a ZnO/Li 2 O ratio of not less than 1.00, and an Al 2 O 3 /Li 2 O ratio of not less than 2.58, and they are melted and solidified into glass-solidification products. The liquid waste content in the glass-solidification products can be increased up to about 45% by using the glass raw material having such a predetermined composition. In addition, deposition of a yellow phase does not occur, and a leaching rate identical with that in a conventional case can be maintained. (T.M.)

  14. Late Byzantine mineral soda high alumina glasses from Asia Minor: a new primary glass production group.

    Directory of Open Access Journals (Sweden)

    Nadine Schibille

    Full Text Available The chemical characterisation of archaeological glass allows the discrimination between different glass groups and the identification of raw materials and technological traditions of their production. Several lines of evidence point towards the large-scale production of first millennium CE glass in a limited number of glass making factories from a mixture of Egyptian mineral soda and a locally available silica source. Fundamental changes in the manufacturing processes occurred from the eight/ninth century CE onwards, when Egyptian mineral soda was gradually replaced by soda-rich plant ash in Egypt as well as the Islamic Middle East. In order to elucidate the supply and consumption of glass during this transitional period, 31 glass samples from the assemblage found at Pergamon (Turkey that date to the fourth to fourteenth centuries CE were analysed by electron microprobe analysis (EPMA and by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS. The statistical evaluation of the data revealed that the Byzantine glasses from Pergamon represent at least three different glass production technologies, one of which had not previously been recognised in the glass making traditions of the Mediterranean. While the chemical characteristics of the late antique and early medieval fragments confirm the current model of glass production and distribution at the time, the elemental make-up of the majority of the eighth- to fourteenth-century glasses from Pergamon indicate the existence of a late Byzantine glass type that is characterised by high alumina levels. Judging from the trace element patterns and elevated boron and lithium concentrations, these glasses were produced with a mineral soda different to the Egyptian natron from the Wadi Natrun, suggesting a possible regional Byzantine primary glass production in Asia Minor.

  15. Glass-based integrated optical splitters: engineering oriented research

    Science.gov (United States)

    Hao, Yinlei; Zheng, Weiwei; Yang, Jianyi; Jiang, Xiaoqing; Wang, Minghua

    2010-10-01

    Optical splitter is one of most typical device heavily demanded in implementation of Fiber To The Home (FTTH) system. Due to its compatibility with optical fibers, low propagation loss, flexibility, and most distinguishingly, potentially costeffectiveness, glass-based integrated optical splitters made by ion-exchange technology promise to be very attractive in application of optical communication networks. Aiming at integrated optical splitters applied in optical communication network, glass ion-exchange waveguide process is developed, which includes two steps: thermal salts ion-exchange and field-assisted ion-diffusion. By this process, high performance optical splitters are fabricated in specially melted glass substrate. Main performance parameters of these splitters, including maximum insertion loss (IL), polarization dependence loss (PDL), and IL uniformity are all in accordance with corresponding specifications in generic requirements for optic branching components (GR-1209-CORE). In this paper, glass based integrated optical splitters manufacturing is demonstrated, after which, engineering-oriented research work results on glass-based optical splitter are presented.

  16. Effect of Radiation on Silicon and Borosilicate Glass

    National Research Council Canada - National Science Library

    Allred, Clark

    2003-01-01

    .... These two glasses are commonly used as substrates for silicon microelectromechanical (MEMS) devices, and radiation-induced compaction in a substrate can have deleterious effects on device performance...

  17. Gold nano-particles fixed on glass

    International Nuclear Information System (INIS)

    Worsch, Christian; Wisniewski, Wolfgang; Kracker, Michael; Rüssel, Christian

    2012-01-01

    Highlights: ► We produced wear resistant gold–ruby coatings on amorphous substrates. ► Thin sputtered gold layers were covered by or embedded in silica coatings. ► Annealing above T g of the substrate glass led to the formation of gold nano particles. ► A 1 1 1-texture of the gold particles is observed via XRD and EBSD. ► EBSD-patterns can be acquired from crystals covered by a thin layer of glass. - Abstract: A simple process for producing wear resistant gold nano-particle coatings on transparent substrates is proposed. Soda-lime-silica glasses were sputtered with gold and subsequently coated with SiO 2 using a combustion chemical vapor deposition technique. Some samples were first coated with silica, sputtered with gold and then coated with a second layer of silica. The samples were annealed for 20 min at either 550 or 600 °C. This resulted in the formation of round, well separated gold nano-particles with sizes from 15 to 200 nm. The color of the coated glass was equivalent to that of gold–ruby glasses. Silica/gold/silica coatings annealed at 600 °C for 20 min were strongly adherent and scratch resistant. X-ray diffraction and electron backscatter diffraction (EBSD) were used to describe the crystal orientations of the embedded particles. The gold particles are preferably oriented with their (1 1 1) planes perpendicular to the surface.

  18. Local atomic order of a metallic glass made visible by scanning tunneling microscopy

    Science.gov (United States)

    Luo, Yuansu; Samwer, Konrad

    2018-06-01

    Exploring the atomic level structure in amorphous materials by STM becomes extremely difficult due to the localized electronic states. Here we carried out STM studies on a quasi-low-dimensional film of metallic glass Zr65Cu27.5Al7.5 which is ‘ultrathin’ compared with the localization length and/or the length scale of short range order. The local electronic structure must appear more inherent, having states at E f available for tip-sample tunneling current. To enhance imaging contrasts between long-range and short-range orders, the highly oriented pyrolytic graphite was chosen as substrate, so that the structural heterogeneity arising from competition between the glass former ability and the epitaxy can be ascertained. A chemical order predicted for this system was observed in atomic ordered regimes (1–2 monolayers), accompanied with a superstructure with the period Zr–Cu(Al)–Zr along three hexagonal axes. The result implies a chemical short range order in disordered regimes, where polyhedral clusters are dominant with the solute atom Cu(Al) in the center. An attempt for the structural modelling was made based on high resolution STM images, giving icosahedral order on the surface and different Voronoi clusters in 3D space.

  19. Kinetic arrest and glass-glass transition in short-ranged attractive colloids

    International Nuclear Information System (INIS)

    Sztucki, M.; Narayanan, T.; Belina, G.; Moussaied, A.; Pignon, F.; Hoekstra, H.

    2006-01-01

    A thermally reversible repulsive hard-sphere to sticky-sphere transition was studied in a model colloidal system over a wide volume fraction range. The static microstructure was obtained from high resolution small angle x-ray scattering, the colloid dynamics was probed by dynamic x-ray and light scattering, and supplementary mechanical properties were derived from bulk rheology. At low concentration, the system shows features of gas-liquid type phase separation. The bulk phase separation is presumably interrupted by a gelation transition at the intermediate volume fraction range. At high volume fractions, fluid-attractive glass and repulsive glass-attractive glass transitions are observed. It is shown that the volume fraction of the particles can be reliably deduced from the absolute scattered intensity. The static structure factor is modeled in terms of an attractive square-well potential, using the leading order series expansion of Percus-Yevick approximation. The ensemble-averaged intermediate scattering function shows different levels of frozen components in the attractive and repulsive glassy states. The observed static and dynamic behavior are consistent with the predictions of a mode-coupling theory and numerical simulations for a square-well attractive system

  20. Heterogeneous Nucleation of Colloidal Crystals on a Glass Substrate with Depletion Attraction.

    Science.gov (United States)

    Guo, Suxia; Nozawa, Jun; Hu, Sumeng; Koizumi, Haruhiko; Okada, Junpei; Uda, Satoshi

    2017-10-10

    The heterogeneous nucleation of colloidal crystals with attractive interactions has been investigated via in situ observations. We have found two types of nucleation processes: a cluster that overcomes the critical size for nucleation with a monolayer, and a method that occurs with two layers. The Gibbs free energy changes (ΔG) for these two types of nucleation processes are evaluated by taking into account the effect of various interfacial energies. In contrast to homogeneous nucleation, the change in interfacial free energy, Δσ, is generated for colloidal nucleation on a foreign substrate such as a cover glass in the present study. The Δσ and step free energy of the first layer, γ 1 , are obtained experimentally based on the equation deduced from classical nucleation theory (CNT). It is concluded that the ΔG of q-2D nuclei is smaller than of monolayer nuclei, provided that the same number of particles are used, which explains the experimental result that the critical size in q-2D nuclei is smaller than that in monolayer nuclei.

  1. Leach behavior of high-level borosilicate glasses under deep geological environment

    International Nuclear Information System (INIS)

    Kim, Seung Soo; Chun, Kwan Sik; Park, Hyun Soo

    1998-02-01

    This report presents an overview of the activities in high-level radioactive waste glass which is considered as the most practicable form of waste, and also is intended to be used in the disposal of national high-level radioactive waste in future. Leach theory of waste glass and the leach effects of ground water, metal barrier, buffer materials and rocks on the waste glass were reviewed. The leach of waste glass was affected by various factors such as composition, pH and Eh of ground water, temperature, pressure, radiation and humic acid. The crystallization, crack, weathering and the formation of altered phases of waste glass which is expected to occur in real disposal site were reviewed. The results of leaching in laboratory and in-situ were compared. The behaviors of radioactive elements leached from waste glass and the use of basalt glass for the long-term natural analogue of waste glass were also written in this report. The appraisal of durability of borosilicate waste glass as a waste media was performed from the known results of leach test and international in-situ tests were introduced. (author). 134 refs., 15 tabs., 24 figs

  2. A method to restrain the charging effect on an insulating substrate in high energy electron beam lithography

    Science.gov (United States)

    Mingyan, Yu; Shirui, Zhao; Yupeng, Jing; Yunbo, Shi; Baoqin, Chen

    2014-12-01

    Pattern distortions caused by the charging effect should be reduced while using the electron beam lithography process on an insulating substrate. We have developed a novel process by using the SX AR-PC 5000/90.1 solution as a spin-coated conductive layer, to help to fabricate nanoscale patterns of poly-methyl-methacrylate polymer resist on glass for phased array device application. This method can restrain the influence of the charging effect on the insulating substrate effectively. Experimental results show that the novel process can solve the problems of the distortion of resist patterns and electron beam main field stitching error, thus ensuring the accuracy of the stitching and overlay of the electron beam lithography system. The main characteristic of the novel process is that it is compatible to the multi-layer semiconductor process inside a clean room, and is a green process, quite simple, fast, and low cost. It can also provide a broad scope in the device development on insulating the substrate, such as high density biochips, flexible electronics and liquid crystal display screens.

  3. Preparation and spectroscopic properties of Yb-doped and Yb-Al-codoped high silica glasses

    International Nuclear Information System (INIS)

    Qiao Yanbo; Wen Lei; Wu Botao; Ren Jinjun; Chen Danping; Qiu Jianrong

    2008-01-01

    Yb-doped and Yb-Al-codoped high silica glasses have been prepared by sintering nanoporous glasses. The absorption, fluorescent spectra and fluorescent lifetimes have been measured and the emission cross-section and minimum pump intensities were calculated. Codoping aluminum ions enhanced the fluorescence intensity of Yb-doped high silica glass obviously. The emission cross-sections of Yb-doped and Yb-Al-codoped high silica glasses were 0.65 and 0.82 pm 2 , respectively. The results show that Yb-Al-codoped high silica glass has better spectroscopic properties for a laser material. The study of high silica glass doped with ytterbium is helpful for its application in Yb laser systems, especially for high-power and high-repetition lasers

  4. Sputtering characteristics, crystal structures, and transparent conductive properties of TiO{sub x}N{sub y} films deposited on {alpha}-Al{sub 2}O{sub 3}(0 0 0 1) and glass substrates

    Energy Technology Data Exchange (ETDEWEB)

    Akazawa, Housei, E-mail: akazawa.housei@lab.ntt.co.jp [NTT Microsystem Integration Laboratories, 3-1 Morinosato Wakamiya, Atsugi, Kanagawa 243-0198 (Japan)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Reactive sputtering of TiO{sub x}N{sub y} films was achieved under metal-mode conditions. Black-Right-Pointing-Pointer Partially substituting O in TiO{sub 2} with N formed anatase rather than rutile. Black-Right-Pointing-Pointer TiO{sub 2-x}N{sub x} on Al{sub 2}O{sub 3}(0 0 0 1) was more transparent and conductive than on glass substrate. Black-Right-Pointing-Pointer Nb{sup 5+} ions could be doped as donors in TiO{sub 2-x}N{sub x} anatase crystals. - Abstract: Adding N{sub 2} gas during reactive sputtering of a Ti target prevented the target surface from being severely poisoned by oxygen atoms and sustained a high deposition rate for titanium oxynitride films under metal-mode-like sputtering conditions. With progress in the degree of oxidization, films deposited onto a glass substrate varied from TiO{sub 1-x}N{sub x} having a face-centered cubic (fcc) structure to TiO{sub 2-x}N{sub x} having an anatase structure. Titanium oxynitride films deposited on an Al{sub 2}O{sub 3}(0 0 0 1) substrate were epitaxial with major orientations toward the (1 1 1) and (2 0 0) directions for fcc-TiO{sub 1-x}N{sub x} and (1 1 2) for anatase-TiO{sub 2-x}N{sub x}. Intermediately oxidized films between TiO{sub 1-x}N{sub x} and TiO{sub 2-x}N{sub x} were amorphous on the glass substrate but crystallized into a Magneli phase, Ti{sub n}O(N){sub 2n-1}, on the Al{sub 2}O{sub 3}(0 0 0 1) substrate. Partially substituting oxygen in TiO{sub 2} with nitrogen as well as continuously irradiating the growing film surface with a Xe plasma stream preferentially formed anatase rather than rutile. However, the occupation of anion sites with enough oxygen rather than nitrogen was the required condition for anatase crystals to form. The transparent conductive properties of epitaxial TiO{sub 2-x}N{sub x} films on Al{sub 2}O{sub 3}(0 0 0 1) were superior to those of microcrystalline films on the glass substrate. Since resistivity and optical transmittance of Ti

  5. Research on Glass Frit Deposition Based on the Electrospray Process

    Directory of Open Access Journals (Sweden)

    Yifang Liu

    2016-04-01

    Full Text Available In this paper, the electrospray technology is used to easily deposit the glass frit into patterns at a micro-scale level. First, far-field electrospray process was carried out with a mixture of glass frit in the presence of ethanol. A uniform, smooth, and dense glass frit film was obtained, verifying that the electrospray technology was feasible. Then, the distance between the nozzle and the substrate was reduced to 2 mm to carry out near-field electrospray. The experimental process was improved by setting the range of the feed rate of the substrate to match both the concentration and the flow rate of the solution. Spray diameter could be less at the voltage of 2 kV, in which the glass frit film was expected to reach the minimum line width. A uniform glass frit film with a line width within the range of 400–500 μm was prepared when the speed of the substrate was 25 mm/s. It indicates that electrospray is an efficient technique for the patterned deposition of glass frit in wafer-level hermetic encapsulation.

  6. Accuracy of remote electrocardiogram interpretation with the use of Google Glass technology.

    Science.gov (United States)

    Jeroudi, Omar M; Christakopoulos, George; Christopoulos, George; Kotsia, Anna; Kypreos, Megan A; Rangan, Bavana V; Banerjee, Subhash; Brilakis, Emmanouil S

    2015-02-01

    We sought to investigate the accuracy of remote electrocardiogram (ECG) interpretation using Google Glass (Google, Mountain View, California). Google Glass is an optical head mounted display device with growing applications in medicine. We compared interpretation of 10 ECGs with 21 clinically important findings by faculty and fellow cardiologists by (1) viewing the electrocardiographic image at the Google Glass screen; (2) viewing a photograph of the ECG taken using Google Glass and interpreted on a mobile device; (3) viewing the original paper ECG; and (4) viewing a photograph of the ECG taken with a high-resolution camera and interpreted on a mobile device. One point was given for identification of each correct finding. Subjective rating of the user experience was also recorded. Twelve physicians (4 faculty and 8 fellow cardiologists) participated. The average electrocardiographic interpretation score (maximum 21 points) as viewed through the Google Glass, Google Glass photograph on a mobile device, on paper, and high-resolution photograph on a mobile device was 13.5 ± 1.8, 16.1 ± 2.6, 18.3 ± 1.7, and 18.6 ± 1.5, respectively (p = 0.0005 between Google Glass and mobile device, p = 0.0005 between Google Glass and paper, and p = 0.002 between mobile device and paper). Of the 12 physicians, 9 (75%) were dissatisfied with ECGs viewing on the prism display of Google Glass. In conclusion, further improvements are needed before Google Glass can be reliably used for remote electrocardiographic analysis. Published by Elsevier Inc.

  7. Scalable production of sub-μm functional structures made of non-CMOS compatible materials on glass

    Science.gov (United States)

    Arens, Winfried

    2014-03-01

    Biophotonic and Life Science applications often require non-CMOS compatible materials to be patterned with sub μm resolution. Whilst the mass production of sub μm patterns is well established in the semiconductor industry, semiconductor fabs are limited to using CMOS compatible materials. IMT of Switzerland has implemented a fully automated manufacturing line that allows cost effective mass manufacturing of consumables for biophotonics in substrate materials like D263 glass or fused silica and layer/coating materials like Cr, SiO2, Cr2O5, Nb2O5, Ta2O5 and with some restrictions even gold with sub-μm patterns. The applied processes (lift-off and RIE) offer a high degree of freedom in the design of the consumable.

  8. Ge nanoclusters in PECVD-deposited glass after heat treating and electron irradiation

    DEFF Research Database (Denmark)

    Ou, Haiyan; Rørdam, Troels Peter; Rottwitt, Karsten

    2007-01-01

    This paper reports the formation of Ge nanoclusters in silica glass thin films deposited by plasma-enhanced chemical vapor deposition (PECVD). We studied the samples by transmission electron microscopy (TEM) and Raman spectroscopy after annealing. TEM investigation shows that the Ge nanoclusters...... at two areaswere formed by different mechanisms. The Ge nanoclusters formed in a single row along the interface of a silicon substrate and the silica glass film by annealing during high-temperature heat treatment. Ge nanoclusters did not initially form in the bulk of the film but could be subsequently...... formed by the electron-beam irradiation. The interface between the silicon substrate and the silica glass film was investigated by Raman spectroscopy. The shift of the Raman peaks around 286.8 cm−1 and 495 cm−1 suggests that the interface is a Si1−xGex alloy film and that the composition x varies along...

  9. Isolating GaSb membranes grown metamorphically on GaAs substrates using highly selective substrate removal etch processes

    Energy Technology Data Exchange (ETDEWEB)

    Lavrova, Olga [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Electrical and Computer Engineering. Center for High Technology Materials; Balakrishnan, Ganesh [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Electrical and Computer Engineering. Center for High Technology Materials

    2017-02-24

    The etch rates of NH4OH:H2O2 and C6H8O7:H2O2 for GaAs and GaSb have been investigated to develop a selective etch for GaAs substrates and to isolate GaSb epilayers grown on GaAs. The NH4OH:H2O2 solution has a greater etch rate differential for the GaSb/GaAs material system than C6H8O7:H2O2 solution. The selectivity of NH4OH:H2O2 for GaAs/GaSb under optimized etch conditions has been observed to be as high as 11471 ± 1691 whereas that of C6H8O7:H2O2 has been measured up to 143 ± 2. The etch contrast has been verified by isolating 2 μm thick GaSb epi-layers that were grown on GaAs substrates. GaSb membranes were tested and characterized with high-resolution X-Ray diffraction (HR-XRD) and atomic force microscopy (AFM).

  10. Low melting high lithia glass compositions and methods

    Science.gov (United States)

    Jantzen, Carol M.; Pickett, John B.; Cicero-Herman, Connie A.; Marra, James C.

    2000-01-01

    The invention relates to methods of vitrifying waste and for lowering the melting point of glass forming systems by including lithia formers in the glass forming composition in significant amounts, typically from about 0.16 wt % to about 11 wt %, based on the total glass forming oxides. The lithia is typically included as a replacement for alkali oxide glass formers that would normally be present in a particular glass forming system. Replacement can occur on a mole percent or weight percent basis, and typically results in a composition wherein lithia forms about 10 wt % to about 100 wt % of the alkali oxide glass formers present in the composition. The present invention also relates to the high lithia glass compositions formed by these methods. The invention is useful for stabilization of numerous types of waste materials, including aqueous waste streams, sludge solids, mixtures of aqueous supernate and sludge solids, combinations of spent filter aids from waste water treatment and waste sludges, supernate alone, incinerator ash, incinerator offgas blowdown, or combinations thereof, geological mine tailings and sludges, asbestos, inorganic filter media, cement waste forms in need of remediation, spent or partially spent ion exchange resins or zeolites, contaminated soils, lead paint, etc. The decrease in melting point achieved by the present invention desirably prevents volatilization of hazardous or radioactive species during vitrification.

  11. Electron Beam Evaporated TiO2 Layer for High Efficiency Planar Perovskite Solar Cells on Flexible Polyethylene Terephthalate Substrates

    KAUST Repository

    Qiu, Weiming

    2015-09-30

    The TiO2 layer made by electron beam (e-beam) induced evaporation is demonstrated as electron transport layer (ETL) in high efficiency planar junction perovskite solar cells. The temperature of the substrate and the thickness of the TiO2 layer can be easily controlled with this e-beam induced evaporation method, which enables the usage of different types of substrates. Here, Perovskite solar cells based on CH3NH3PbI3-xClx achieve power conversion efficiencies of 14.6% on glass and 13.5% on flexible plastic substrates. The relationship between the TiO2 layer thickness and the perovskite morphology is studied with scanning electron microscope (SEM), atomic force microscope (AFM), and X-ray photoelectron spectroscopy (XPS). Our results indicate that pinholes in thin TiO2 layer lead to pinholes in the perovskite layer. By optimizing the TiO2 thickness, perovskite layers with substantially increased surface coverage and reduced pinhole areas are fabricated, increasing overall device performance.

  12. Glass formulation for phase 1 high-level waste vitrification

    International Nuclear Information System (INIS)

    Vienna, J.D.; Hrma, P.R.

    1996-04-01

    The purpose of this study is to provide potential glass formulations for prospective Phase 1 High-Level Waste (HLW) vitrification at Hanford. The results reported here will be used to aid in developing a Phase 1 HLW vitrification request for proposal (RFP) and facilitate the evaluation of ensuing proposals. The following factors were considered in the glass formulation effort: impact on total glass volume of requiring the vendor to process each of the tank compositions independently versus as a blend; effects of imposing typical values of B 2 O 3 content and waste loading in HLW borosilicate glasses as restrictions on the vendors (according to WAPS 1995, the typical values are 5--10 wt% B 2 O 3 and 20--40 wt% waste oxide loading); impacts of restricting the processing temperature to 1,150 C on eventual glass volume; and effects of caustic washing on any of the selected tank wastes relative to glass volume

  13. Glass formulation for phase 1 high-level waste vitrification

    Energy Technology Data Exchange (ETDEWEB)

    Vienna, J.D.; Hrma, P.R.

    1996-04-01

    The purpose of this study is to provide potential glass formulations for prospective Phase 1 High-Level Waste (HLW) vitrification at Hanford. The results reported here will be used to aid in developing a Phase 1 HLW vitrification request for proposal (RFP) and facilitate the evaluation of ensuing proposals. The following factors were considered in the glass formulation effort: impact on total glass volume of requiring the vendor to process each of the tank compositions independently versus as a blend; effects of imposing typical values of B{sub 2}O{sub 3} content and waste loading in HLW borosilicate glasses as restrictions on the vendors (according to WAPS 1995, the typical values are 5--10 wt% B{sub 2}O{sub 3} and 20--40 wt% waste oxide loading); impacts of restricting the processing temperature to 1,150 C on eventual glass volume; and effects of caustic washing on any of the selected tank wastes relative to glass volume.

  14. Mo-Si-B-Based Coatings for Ceramic Base Substrates

    Science.gov (United States)

    Perepezko, John Harry (Inventor); Sakidja, Ridwan (Inventor); Ritt, Patrick (Inventor)

    2015-01-01

    Alumina-containing coatings based on molybdenum (Mo), silicon (Si), and boron (B) ("MoSiB coatings") that form protective, oxidation-resistant scales on ceramic substrate at high temperatures are provided. The protective scales comprise an aluminoborosilicate glass, and may additionally contain molybdenum. Two-stage deposition methods for forming the coatings are also provided.

  15. Low emissivity Ag/Ta/glass multilayer thin films deposited by sputtering

    International Nuclear Information System (INIS)

    Park, Sun Ho; Lee, Kee Sun; Sivasankar Reddy, A.

    2011-01-01

    Ta is deposited on a glass substrate as an interlayer for the two-dimensional growth of Ag thin films because Ta has good thermal stability and can induce a negative surface-energy change in Ag/glass. From the transmission electron microscopy results, we concluded that the Ag crystals in the bottom layer (seemingly on Ag/Ta) were flattened; this was rarely observed in the three-dimensional growth mode. Comparing Ag/Ta/glass with Ag/glass, we found that the Ta interlayer was effective in reducing both the resistance and the emissivity, accompanied by the relatively high transmittance in the visible region. In particular, Ag(9 nm)/Ta(1 nm)/glass film showed 0.08 of the emissivity, including ∼61% of the transmittance in the visible region (wavelength: 550 nm).

  16. Disposition of actinides released from high-level waste glass

    International Nuclear Information System (INIS)

    Ebert, W.L.; Bates, J.K.; Buck, E.C.; Gong, M.; Wolf, S.F.

    1994-01-01

    The disposition of actinide elements released from high-level waste glasses into a tuff groundwater in laboratory tests at 90 degrees C at various glass surface area/leachant volume ratios (S/V) between dissolved, suspended, and sorbed fractions has been measured. While the maximum release of actinides is controlled by the corrosion rate of the glass matrix, their solubility and sorption behavior affects the amounts present in potentially mobile phases. Actinide solubilities are affected by the solution pH and the presence of complexants released from the glass, such as sulfate, phosphate, and chloride, radiolytic products, such as nitrate and nitrite, and carbonate. Sorption onto inorganic colloids formed during lass corrosion may increase the amounts of actinides in solution, although subsequent sedimentation of these colloids under static conditions leads to a significant reduction in the amount of actinides in solution. The solution chemistry and observed actinide behavior depend on the S/V of the test. Tests at high S/V lead to higher pH values, greater complexant concentrations, and generate colloids more quickly than tests at low S/V. The S/V also affects the rate of glass corrosion

  17. Design of a lead-glass drift calorimeter with MWPC detection

    International Nuclear Information System (INIS)

    Perez-Mendez, V.; del Guerra, A.; Mulera, T.; Hirayama, H.; Nelson, W.R.

    1983-02-01

    A drift collection calorimeter having a combined radiator and field-shaping structure made of lead-glass tubing is described. A high-resistance metallic layer is formed by reduction of the lead oxide at the surface of the glass and forms a continuous voltage divider for drift-field shaping. The energy resolution of such a calorimeter is modeled, for several configurations, by the Monte Carlo technique

  18. Nano-Continuum Modeling of a Nuclear Glass Specimen Altered for 25 Years

    Energy Technology Data Exchange (ETDEWEB)

    Steefel, Carl

    2014-01-06

    The purpose of this contribution is to report on preliminary nano-continuum scale modeling of nuclear waste glass corrosion. The focus of the modeling is an experiment involving a French glass SON68 specimen leached for 25 years in a granitic environment. In this report, we focus on capturing the nano-scale concentration profiles. We use a high resolution continuum model with a constant grid spacing of 1 nanometer to investigate the glass corrosion mechanisms.

  19. Bioactive Glass Nanoparticles-Loaded Poly(ɛ-caprolactone Nanofiber as Substrate for ARPE-19 Cells

    Directory of Open Access Journals (Sweden)

    Tadeu Henrique Lima

    2016-01-01

    Full Text Available Bioactive glass nanoparticles-loaded poly(ɛ-caprolactone nanofibers (BIOG PCL nanofibers were synthesized and evaluated as substrates for ocular cells (ARPE-19. BIOG PCL nanofibers were characterized using SEM, FTIR, and DSC, and the in vitro degradation profile was also investigated. The in vitro ocular biocompatibility of nanofibers was exploited in Müller glial cells (MIO-M1 cells and in chorioallantoic membrane (CAM; and the proliferative capacity, cytotoxicity, and functionality were evaluated. Finally, ARPE-19 cells were seeded onto BIOG PCL nanofibers and they were investigated as supports for in vitro cell adhesion and proliferation. SEM images revealed the incorporation of BIOG nanoparticles into PCL nanofibers. Nanoparticles did not induce modifications in the chemical structure and semicrystalline nature of PCL in the nanofiber, as shown by FTIR and DSC. MIO-M1 cells exposed to BIOG PCL nanofibers showed viability, and they were able to proliferate and to express GFAP, indicating cellular functionality. Moreover, nanofibers were well tolerated by CAM. These findings suggested the in vitro ocular biocompatibility and absence of toxicity of these nanofibers. Finally, the BIOG nanoparticles modulated the protein adsorption, and, subsequently, ARPE-19 cells adhered and proliferated onto the nanostructured supports, establishing cell-substrate interactions. In conclusion, the biodegradable and biocompatible BIOG PCL nanofibers supported the ARPE-19 cells.

  20. Low voltage EPMA: experiments on a new frontier in microanalysis - analytical lateral resolution

    International Nuclear Information System (INIS)

    Fournelle, J; Cathey, H; Pinard, P T; Richter, S

    2016-01-01

    Field emission (FE) electron gun sources provide new capabilities for high lateral resolution EPMA. The determination of analytical lateral resolution is not as straightforward as that for electron microscopy imaging. Results from two sets of experiments to determine the actual lateral resolution for accurate EPMA are presented for Kα X-ray lines of Si and Al and La of Fe at 5 and 7 keV in a silicate glass. These results are compared to theoretical predictions and Monte Carlo simulations of analytical lateral resolution. The experiments suggest little is gained in lateral resolution by dropping from 7 to 5 keV in EPMA of this silicate glass. (paper)

  1. New insights into microstructural evolution of epitaxial Ni-Mn-Ga films on MgO (1 0 0) substrate by high-resolution X-ray diffraction and orientation imaging investigations

    Science.gov (United States)

    Sharma, Amit; Mohan, Sangeneni; Suwas, Satyam

    2018-04-01

    In this work, a detailed investigation has been performed on hetero-epitaxial growth and microstructural evolution in highly oriented Ni-Mn-Ga (1 0 0) films grown on MgO (1 0 0) substrate using high-resolution X-ray diffraction and orientation imaging microscopy. Mosaicity of the films has been analysed in terms of tilt angle, twist angle, lateral and vertical coherence length and threading dislocation densities by performing rocking curve measurements and reciprocal space mapping. Density of edge dislocations is found to be an order of magnitude higher than the density of screw dislocations, irrespective of film thickness. X-ray pole figure measurements have revealed an orientation relationship of ? || (1 0 0)MgO; ? || [0 0 1]MgO between the film and substrate. Microstructure predicted by X-ray diffraction is in agreement with that obtained from electron microscopy and atomic force microscopy. The evolution of microstructure in the film with increasing thickness has been explained vis-à-vis dislocation generation and growth mechanisms. Orientation imaging microscopy observations indicate evolutionary growth of film by overgrowth mechanism. Decrease in coercivity with film thickness has been explained as an interplay between stress field developed due to crystal defects and magnetic domain pinning due to surface roughness.

  2. High-Level Waste Glass Formulation Model Sensitivity Study 2009 Glass Formulation Model Versus 1996 Glass Formulation Model

    International Nuclear Information System (INIS)

    Belsher, J.D.; Meinert, F.L.

    2009-01-01

    This document presents the differences between two HLW glass formulation models (GFM): The 1996 GFM and 2009 GFM. A glass formulation model is a collection of glass property correlations and associated limits, as well as model validity and solubility constraints; it uses the pretreated HLW feed composition to predict the amount and composition of glass forming additives necessary to produce acceptable HLW glass. The 2009 GFM presented in this report was constructed as a nonlinear optimization calculation based on updated glass property data and solubility limits described in PNNL-18501 (2009). Key mission drivers such as the total mass of HLW glass and waste oxide loading are compared between the two glass formulation models. In addition, a sensitivity study was performed within the 2009 GFM to determine the effect of relaxing various constraints on the predicted mass of the HLW glass.

  3. Micropatterning of biomolecules on a glass substrate in fused silica microchannels by using photolabile linker-based surface activation

    International Nuclear Information System (INIS)

    Jang, K.; Mawatari, K.; Kitamori, T.; Xu, Y.; Sato, K.; Tanaka, Y.

    2012-01-01

    We report on a straightforward method for creating micropatterns of multiple biomolecules. The anti-fouling agent 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer and a photolabile linker (PL) were covalently linked to an amino-terminated silane surface. Patterns were generated by selective removal of the MPC polymer via UV irradiation. Multiple micropatterns of fluorescein isothiocyanate (FITC)-labeled bovine serum albumin (BSA) and rhodamine-labeled goat fragment antigen-binding fragments (FAB) were deposited on a same glass substrate. We also employed micropatterning of multiple biomolecules in that Texas red-labeled BSA and FITC-labeled rabbit anti-mouse IgG were placed inside a microchannel. (author)

  4. Development of Well-Preserved, Substrate-Versatile Latent Fingerprints by Aggregation-Induced Enhanced Emission-Active Conjugated Polyelectrolyte.

    Science.gov (United States)

    Malik, Akhtar Hussain; Kalita, Anamika; Iyer, Parameswar Krishnan

    2017-10-25

    The development of highly efficient latent fingerprint (LFP) technology remains extremely vital for forensic and criminal investigations. In this contribution, a straightforward, rapid, and cost-effective method has been established for the quick development of well-preserved latent fingerprint on multiple substrates, including plastic, glass, aluminum foil, metallic surfaces, and so forth, without any additional treatment, based on aggregation-induced enhanced emission-active conjugated polyelectrolyte (CPE) 3,3'-((2-(4-(1,2-diphenyl-2-(p-tolyl)vinyl)phenyl)-7-(7-methylbenzo[c][1,2,5]thiadiazol-4-yl)-9H-fluorene-9,9-diyl)bis(hexane-6,1-diyl))bis(1-methyl-1H-imidazol-3-ium) bromide, revealing clearly the third-level details (ridges, bifurcations, and pores) with high selectivity, high contrast, and no background interference even by blood stains, confirming the ability of the proposed technique for LFP detection with high resolution. The LFP development process was accomplished simply by immersing fingerprint-loaded substrate into the CPE solution for ∼1 min, followed by shaking off the residual polymer solution and then air drying. The CPE was readily transferred to the LFPs because of the strong electrostatic and hydrophobic interaction between the CPE molecules and the fingerprint components revealing distinct fluorescent images on various smooth nonporous surfaces.

  5. Evaluation of Foaming Behavior of Glass Melts by High-Temperature Microscopy

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund; König, Jakob; Yue, Yuanzheng

    2016-01-01

    Optical monitoring techniques can record in situ the size of glass samples during a dynamic heating process. This allowed us to study sintering and expansion rate of panel glass from cathode ray tube using MnO2 as foaming agent. We show the maximum expansion rate of glass melt foaming (in situ va...... such as type and concentration of foaming agent, glass composition and particle size to obtain foam glass with high porosity and closed pores. Using this approach we show that the foaming of bottle glass is preferentially conducted at a SiC concentration of 1‒4 wt%....

  6. Experimental and simulation study of growth of TiO2 films on different substrates and its applications

    Science.gov (United States)

    Ghogare, Trupti T.; Kartha, Moses J.; Kendre, Subhash D.; Pathan, Habib M.

    2018-04-01

    Monte-Carlo Ballistic Deposition simulations have done on substrates with different initial roughness. The grown films were observed to be porous. The initial growths of the films with seed like initiations are observed for substrate with high initial roughness. In order to confirm this effect TiO2 films were deposited on different substrates using chemical bath deposition. The surface morphological and optical properties were measured using scanning electron microscopy and a UV-Vis spectrophotometer. Flower like porous structure are obtained on glass substrate and continuous porous morphology is formed on ITO substrate. The morphology of the surfaces was successfully reconstructed and the surface porosity was calculated after digitalising images and reconstructed the surfaces. The TiO2 film formed on ITO is observed to be 10% more porous than on the film formed on glass substrate. Diffusion Limited Aggregation simulations with multiple seeds confirms that the observed flower like structure formed are due to the screening effects of the diffusing ion by already deposited particles.

  7. Iron oxide coating films in soda-lime glass by triboadhesion

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar, J. O.; Arjona, M. J. [Boulevard Bahia s/n esq. Ignacio Comonfort, Chetumal (Mexico); Rodriguez-Lelis, J. M. [Interior Internado Palmira s/n, Cuernavaca, Morelos (Mexico)

    2009-04-15

    In the triboadhesion process the coating material is passed through a rotating cotton mop and the substrate to be coated. The cotton mop rotates at high velocity and exerts pressure on the surface of the substrate. The combined effect of pressure and velocity of the coating mop on the substrate increases its temperature close to the melting point, allowing deposition and diffusion of the coating material within the substrate. After it is deposited, its particles are embedded within the base material forming a thin film composite. The amount of the coating material deposited on the substrate has its maximum at the surface and then decreases as a function of the local temperature within the base material. Bearing this in mind, in the present work, triboadhesion is employed to deposit iron oxide in a substrate of soda-lime glass, with the purpose of determining the feasibility of using this technique for solar control coatings. It was found, through electronic scan microscopy, that a composite material film is formed following the coating direction. Reflectance and transmittance tests were carried out on the glass samples. A 20% difference was found in the visible spectral region (VIS), and a reduction between 10 and 20% in the Near Infrared Region (NIR). These results showed that the triboadhesion is a promising technique for the application of thin films for solar control or solar cells

  8. Iron oxide coating films in soda-lime glass by triboadhesion

    International Nuclear Information System (INIS)

    Aguilar, J. O.; Arjona, M. J.; Rodriguez-Lelis, J. M.

    2009-01-01

    In the triboadhesion process the coating material is passed through a rotating cotton mop and the substrate to be coated. The cotton mop rotates at high velocity and exerts pressure on the surface of the substrate. The combined effect of pressure and velocity of the coating mop on the substrate increases its temperature close to the melting point, allowing deposition and diffusion of the coating material within the substrate. After it is deposited, its particles are embedded within the base material forming a thin film composite. The amount of the coating material deposited on the substrate has its maximum at the surface and then decreases as a function of the local temperature within the base material. Bearing this in mind, in the present work, triboadhesion is employed to deposit iron oxide in a substrate of soda-lime glass, with the purpose of determining the feasibility of using this technique for solar control coatings. It was found, through electronic scan microscopy, that a composite material film is formed following the coating direction. Reflectance and transmittance tests were carried out on the glass samples. A 20% difference was found in the visible spectral region (VIS), and a reduction between 10 and 20% in the Near Infrared Region (NIR). These results showed that the triboadhesion is a promising technique for the application of thin films for solar control or solar cells

  9. High-temperature mechanical relaxation in glass-like B2O3

    International Nuclear Information System (INIS)

    Lomovskoj, V.A.

    1987-01-01

    The study of high-temperature mechanical relaxation in glass-like B 2 O 3 was carried out at the temperatures from 470 to 620 K using the method of internal friction at freely damped tortional vibrations (frequency range is 0.05 - 10 Hz) and forced torsional vibrations (frequency range is 0.1 -0.00001 Hz). Possible mechanisms of high-temperature mechanical relaxation are considered. It is shown that several possible mechanisms of high-temperature mechanical relaxation in glass-like B 2 O 3 can be singled out. Switching of B-O bridge bond between two boroxol cycles of boroxol grouping for oxygen vacancy in spatial structure of glass-like B 2 O 3 , formed as a result of thermal breaking of one out of three B-O bonds, according to diffusion theory of glass viscosity. The slip of one layer boroxol groupings as to another one in the presence of only tricoordinated boron atoms in the structure of glass-like B 2 O 3

  10. Rational growth of semi-polar ZnO texture on a glass substrate for optoelectronic applications

    Science.gov (United States)

    Lu, B.; Ma, M. J.; Ye, Y. H.; Lu, J. G.; He, H. P.; Ye, Z. Z.

    2013-02-01

    Semi-polar ZnO films with surface texture were grown on glass substrates via pulsed-laser deposition (PLD) through Co-Ga co-doping. Oxygen pressure (PO2) was found to have significant effects on the structural and optical properties of the Zn(Co, Ga)O (ZCGO) films. A self-textured film with (1\\,0\\,\\bar {1}\\,1) preferred orientation (PO) was achieved by varying the growth conditions including a crucial narrow PO2 window and growth time. A possible mechanism underlying the PO evolution and the final texture of the films was proposed, which can be attributed to the collaboration of the doping effect and the PO2-dependent evolutionary selection process, in which certain grains can have increased vertical growth rate with respect to the substrate surface through interplane diffusion. Moreover, the growth of undoped pure ZnO films proceeded by using the (1\\,0\\,\\bar {1}\\,1) ZCGO film as a buffer layer. The ZnO layers retained a semi-polar characteristic with improved crystallinity and better optical quality. The epitaxy-like orientation of ZnO layers grown on (1\\,0\\,\\bar {1}\\,1) ZCGO films has applications in the development of semi-polar ZnO-based light-emitting diodes.

  11. Construction and calibration of high time resolution gas pressure meter

    International Nuclear Information System (INIS)

    Rossi, J.O.; Santos, C.; Ueda, M.

    1989-11-01

    In this report, the construction and calibration of a gas pressure meter with a time resolution better than 20 μs are described. The meter consists basically of a sensor of the FIG (Fast Ionization Gauge) type and an adequate electronic circuit. A 6AU6A pentode vacuum tube without the glass envelope is used as the sensor head. (author) [pt

  12. High resolution x-ray diffraction analyses of GaN/LiGaO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Matyi, R.J. [Department of Materials Science and Engineering University of Wisconsin, Madison, WI (United States); Doolittle, W.A.; Brown, A.S. [School of Electrical and Computer Engineering Georgia Institute of Technology, Atlanta, GA (United States)

    1999-05-21

    Lithium gallate (LiGaO{sub 2}) is gaining increasing attention as a potential substrate for the growth of the important semiconductor GaN. In order to better understand this material we have performed high-resolution double- and triple-axis x-ray diffraction analyses of both the starting LiGaO{sub 2} and GaN/LiGaO{sub 2} following epitaxial growth. A high-resolution triple-axis reciprocal space map of the substrate showed a sharp, well-defined crystal truncation rod and a symmetric streak of intensity perpendicular to q{sub 002}, suggesting high structural quality with mosaic spread. Triple-axis scans following GaN growth showed (1) the development of isotropic diffuse scatter around the LiGaO{sub 2} (002) reflection, (2) the presence of a semi-continuous intensity streak between the LiGaO{sub 2} (002) and GaN (0002) reflections, and (3) a compact pattern of diffuse scatter around the GaN (0002) reflection that becomes increasingly anisotropic as the growth temperature is increased. These results suggest that LiGaO{sub 2} permits the epitaxial growth of GaN with structural quality that may be superior to that observed when growth is performed on SiC or Al{sub 2}O{sub 3}. (author)

  13. Ultrastable gold substrates: Properties of a support for high-resolution electron cryomicroscopy of biological specimens

    Science.gov (United States)

    Russo, Christopher J.; Passmore, Lori A.

    2016-01-01

    Electron cryomicroscopy (cryo-EM) allows structure determination of a wide range of biological molecules and specimens. All-gold supports improve cryo-EM images by reducing radiation-induced motion and image blurring. Here we compare the mechanical and electrical properties of all-gold supports to amorphous carbon foils. Gold supports are more conductive, and have suspended foils that are not compressed by differential contraction when cooled to liquid nitrogen temperatures. These measurements show how the choice of support material and geometry can reduce specimen movement by more than an order of magnitude during low-dose imaging. We provide methods for fabrication of all-gold supports and preparation of vitrified specimens. We also analyse illumination geometry for optimal collection of high resolution, low-dose data. Together, the support structures and methods herein can improve the resolution and quality of images from any electron cryomicroscope. PMID:26592474

  14. High-resolution imaging of cellular processes across textured surfaces using an indexed-matched elastomer.

    Science.gov (United States)

    Ravasio, Andrea; Vaishnavi, Sree; Ladoux, Benoit; Viasnoff, Virgile

    2015-03-01

    Understanding and controlling how cells interact with the microenvironment has emerged as a prominent field in bioengineering, stem cell research and in the development of the next generation of in vitro assays as well as organs on a chip. Changing the local rheology or the nanotextured surface of substrates has proved an efficient approach to improve cell lineage differentiation, to control cell migration properties and to understand environmental sensing processes. However, introducing substrate surface textures often alters the ability to image cells with high precision, compromising our understanding of molecular mechanisms at stake in environmental sensing. In this paper, we demonstrate how nano/microstructured surfaces can be molded from an elastomeric material with a refractive index matched to the cell culture medium. Once made biocompatible, contrast imaging (differential interference contrast, phase contrast) and high-resolution fluorescence imaging of subcellular structures can be implemented through the textured surface using an inverted microscope. Simultaneous traction force measurements by micropost deflection were also performed, demonstrating the potential of our approach to study cell-environment interactions, sensing processes and cellular force generation with unprecedented resolution. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  15. Fabrication of Radiation Shielding Glasses Based on Lead-free High Refractive Index Glasses Prepared from Local Sand

    International Nuclear Information System (INIS)

    Dararutana, Pisutti; Dutchaneepet, Jirapan; Sirikulrat, Narin

    2007-08-01

    Full text: Lead glasses that show high refractive index are the best know and most popular for radiation shielding. Due to harmful effects of lead and considering the health as well as the environmental issues, lead-free glasses were developed. In this work, content of Chumphon sand was fixed at 40 % (by weight) as a main composition but concentrations of BaCO3 were varied from 6 to 30 % (by weight). It was found that the absorption coefficient of the glass samples containing 30 % BaCO3 was 0.233 cm-1 for Ba-133. The density was also measured. It can be concluded that the prepared lead free glasses offered adequate shielding to gamma radiation in comparison with the lead ones. These glasses were one of the environmental friendly materials

  16. Fabrication of highly insulating foam glass made from CRT panel glass

    DEFF Research Database (Denmark)

    König, Jakob; Petersen, Rasmus Rosenlund; Yue, Yuanzheng

    2015-01-01

    We prepared low-density foam glasses from cathode-ray-tube panel glass using carbon and MnO2 as the foaming agents. We investigated the influence of the carbon and MnO2 concentrations, the glass-powder preparation and the foaming conditions on the density and homogeneity of the pore structure...... and the dependence of the thermal conductivity on the foam density. The results show that the moderate foaming effect of the carbon is greatly improved by the addition of MnO2. A density as low as 131 kg m-3 can be achieved with fine glass powder. The foam density has a slight dependence on the carbon and MnO2...... concentrations, but it is mainly affected by the foaming temperature and the time. The thermal conductivity of the foam-glass samples is lower than that of commercial foam glasses with the same density. The lowest value was determined to be 42 mW m-1 K-1 for a foam glass with a density of 131 kg m-3. A further...

  17. Study of the glass formation of high temperature superconductors

    Science.gov (United States)

    Ethridge, Edwin C.; Kaukler, William F.; Rolin, Terry

    1992-01-01

    A number of compositions of ceramic oxide high T(sub c) superconductors were elevated for their glass formation ability by means of rapid thermal analysis during quenching, optical, and electron microscopy of the quenched samples, and with subsequent DSC measurements. Correlations between experimental measurements and the methodical composition changes identified the formulations of superconductors that can easily form glass. The superconducting material was first formed as a glass; then, with subsequent devitrification, it was formed into a bulk crystalline superconductor by a series of processing methods.

  18. Substrate dependent hierarchical structures of RF sputtered ZnS films

    Science.gov (United States)

    Chalana, S. R.; Mahadevan Pillai, V. P.

    2018-05-01

    RF magnetron sputtering technique was employed to fabricate ZnS nanostructures with special emphasis given to study the effect of substrates (quartz, glass and quartz substrate pre-coated with Au, Ag, Cu and Pt) on the structure, surface evolution and optical properties. Type of substrate has a significant influence on the crystalline phase, film morphology, thickness and surface roughness. The present study elucidates the suitability of quartz substrate for the deposition of stable and highly crystalline ZnS films. We found that the role of metal layer on quartz substrate is substantial in the preparation of hierarchical ZnS structures and these structures are of great importance due to its high specific area and potential applications in various fields. A mechanism for morphological evolution of ZnS structures is also presented based on the roughness of substrates and primary nonlocal effects in sputtering. Furthermore, the findings suggest that a controlled growth of hierarchical ZnS structures may be achieved with an ordinary RF sputtering technique by changing the substrate type.

  19. High-Performance CuInS 2 Quantum Dot Laminated Glass Luminescent Solar Concentrators for Windows

    Energy Technology Data Exchange (ETDEWEB)

    Bergren, Matthew R. [UbiQD, Inc., Los Alamos, New Mexico 87544, United States; Makarov, Nikolay S. [UbiQD, Inc., Los Alamos, New Mexico 87544, United States; Ramasamy, Karthik [UbiQD, Inc., Los Alamos, New Mexico 87544, United States; Jackson, Aaron [UbiQD, Inc., Los Alamos, New Mexico 87544, United States; Guglielmetti, Rob [National Renewable Energy Laboratory, Golden, Colorado 80401, United States; McDaniel, Hunter [UbiQD, Inc., Los Alamos, New Mexico 87544, United States

    2018-01-30

    Building-integrated sunlight harvesting utilizing laminated glass luminescent solar concentrators (LSCs) is proposed. By incorporating high quantum yield (>90%), NIR-emitting CuInS2/ZnS quantum dots into the polymer interlayer between two sheets of low-iron float glass, a record optical efficiency of 8.1% is demonstrated for a 10 cm x 10 cm device that transmits ~44% visible light. After completing prototypes by attaching silicon solar cells along the perimeter of the device, the electrical power conversion efficiency was certified at 2.2% with a black background and at 2.9% using a reflective substrate. This 'drop-in' LSC solution is particularly attractive because it fits within the existing glazing industry value chain with only modest changes to typical glazing products. Performance modeling predicts >1 GWh annual electricity production for a typical urban skyscraper in most major U.S. cities, enabling significant energy cost savings and potentially 'net-zero' buildings.

  20. Coordination Environments of Highly Charged Cations (Ti, Cr, and Light REE's) in Borosilicate Glass/Melts to 1120C

    Energy Technology Data Exchange (ETDEWEB)

    Farges, Francois; /Museum Natl. Hist. Natur. /Stanford U., Geo. Environ. Sci.; Brown, Gordon E., Jr.; /Stanford U., Geo. Environ Sci. /SLAC, SSRL

    2007-01-02

    The local environments around Ti, Cr, and several light rare-earth elements (La, Ce, and Nd) were investigated by in-situ XANES spectroscopy in a number of complex borosilicate glasses and melts (to 1120 C) that are used for nuclear waste storage. Examination of the high-resolution XANES spectra at the Ti K-edge shows that the average coordination of Ti changes from {approx}5 to {approx}4.5. Cr is dominantly trivalent in the melts studied. However, its average coordination is probably lower in the melt (tetrahedral ?) as revealed by the more intense Cr-K pre-edge feature. Ce also changes its average valence from dominantly +4 to +3.5 upon glass melting. These changes are reversible at T{sub g}, the glass transition temperature ({approx}500-550 C for these glasses). In contrast, the local environments of Nd, Pr, and La are unaffected by melting. Therefore, structural reorganization of these borosilicate glass/melts above T{sub g} is variable, not only in terms of valence (as for Ce) but also speciation (Ti and Cr). Both the ability of B to adopt various coordination geometries (triangular and tetrahedral) and the chemical complexity of the glass/melts explain these changes.

  1. Talcosis in soapstone artisans: High-resolution CT findings in 12 patients

    International Nuclear Information System (INIS)

    Pereira Faria, H.; Souza Veiga, A. de; Coutinho Teixeira, L.; Paula Alves Bezerra, O.M. de; Scalia Carneiro, A.P.; Ferreira, C.S.; Marchiori, E.

    2014-01-01

    Aim: To describe the high-resolution computed tomography (HRCT) features of pneumoconiosis observed in soapstone artisans. Materials and methods: The present study included 12 soapstone artisans with chest radiography abnormalities consistent with the diagnosis of pneumoconiosis, in accordance with the International Labour Office classification. All patients had undergone HRCT, and the images were retrospectively analysed by two chest radiologists, who reached decisions in consensus. Results: All patients presented with interlobular septal thickening. Small centrilobular nodules (75%) and ground-glass opacities (67%) were also common findings. The distributions of abnormalities were predominantly diffuse. No pleural abnormality was found. Conclusion: The HRCT abnormalities observed in this group of soapstone artisans are similar to those of pure talc pneumoconiosis

  2. Glass ceramics for sealing to high-thermal-expansion metals

    International Nuclear Information System (INIS)

    Wilder, J.A. Jr.

    1980-10-01

    Glass ceramics were studied, formulated in the Na 2 O CaO.P 2 O 5 , Na 2 O.BaOP 2 O 5 , Na 2 O.Al 2 O 3 .P 2 O 5 , and Li 2 O.BaO.P 2 O 5 systems to establish their suitability for sealing to high thermal expansion metals, e.g. aluminum, copper, and 300 series stainless steels. Glass ceramics in Na 2 O.CaO.P 2 O 5 and Na 2 O.BaO.P 2 O 5 systems have coefficients of thermal expansion in the range 140 x 10 -1 per 0 C less than or equal to α less than or equal to 225 x 10 -7 per 0 C and fracture toughness values generally greater than those of phosphate glasses; they are suitable for fabricating seals to high thermal expansion metals. Crystal phases include NaPo 3 , (NaPO 3 ) 3 , NaBa(PO 3 ) 3 , and NaCa(PO 3 ) 3 . Glass ceramics formed in the Na 2 O.Al 2 O 3 .P 2 O 5 systems have coefficients of thermal expansion greater than 240 x 10 -7 per 0 C, but they have extensive microcracking. Due to their low thermal expansion values (α less than or equal to 120 x 10 -7 per 0 C), glass ceramics in the Li 2 O.BaO.P 2 O 5 system are unsuitable for sealing to high thermal expansion metals

  3. Fluorinated epoxy resins with high glass transition temperatures

    Science.gov (United States)

    Griffith, James R.

    1991-01-01

    Easily processed liquid resins of low dielectric constants and high glass transition temperatures are useful for the manufacture of certain composite electronic boards. That combination of properties is difficult to acquire when dielectric constants are below 2.5, glass transition temperatures are above 200 C and processability is of conventional practicality. A recently issued patent (US 4,981,941 of 1 Jan. 1991) teaches practical materials and is the culmination of 23 years of research and effort and 15 patents owned by the Navy in the field of fluorinated resins of several classes. In addition to high fluorine content, practical utility was emphasized.

  4. Confocal detection of Rayleigh scattering for residual stress measurement in chemically tempered glass

    Energy Technology Data Exchange (ETDEWEB)

    Hödemann, S., E-mail: siim.hodemann@ut.ee; Möls, P.; Kiisk, V.; Saar, R.; Kikas, J. [Institute of Physics, University of Tartu, Wilhelm Ostwald st., Tartu 50411 (Estonia); Murata, T. [Nippon Electric Glass Co., 7-1 Seiran 2-chome, Otsu-shi, Shiga 520-8639 (Japan)

    2015-12-28

    A new optical method is presented for evaluation of the stress profile in chemically tempered (chemically strengthened) glass based on confocal detection of scattered laser beam. Theoretically, a lateral resolution of 0.2 μm and a depth resolution of 0.6 μm could be achieved by using a confocal microscope with high-NA immersion objective. The stress profile in the 250 μm thick surface layer of chemically tempered lithium aluminosilicate glass was measured with a high spatial resolution to illustrate the capability of the method. The confocal method is validated using transmission photoelastic and Na{sup +} ion concentration profile measurement. Compositional influence on the stress-optic coefficient is calculated and discussed. Our method opens up new possibilities for three-dimensional scattered light tomography of mechanical imaging in birefringent materials.

  5. High resolution shadow mask patterning in deep holes and its application to an electrical wafer feed-through

    NARCIS (Netherlands)

    Burger, G.J.; Burger, G.J.; Smulders, E.J.T.; Berenschot, Johan W.; Lammerink, Theodorus S.J.; Fluitman, J.H.J.; Imai, S.

    1995-01-01

    This paper presents a technique to pattern materials in deep holes and/or on non-planar substrate surfaces. A rather old technique, E-beam evaporation of metals through a shadow mask, is used [1]. The realisation of high resolution shadow masks using micromachining techniques is described. Further,

  6. Pneumocystis carinii pneumonia in acquired immunodeficiency syndrome - correlation of high-resolution computed tomography and anatomopathology; Pneumocistose na sindrome da imunodeficiencia adquirida: correlacao da tomografia computadorizada de alta resolucao com a anatomopatologia

    Energy Technology Data Exchange (ETDEWEB)

    Marchiori, Edson; Moreira, Luiza Beatriz [Universidade Federal Fluminense, Niteroi, RJ (Brazil). Dept. de Radiologia]. E-mail: edmarchiori@zipmail.com.br; Capone, Domenico [Universidade do Estado, Rio de Janeiro, RJ (Brazil). Faculdade de Medicina; Moraes, Heleno Pinto de [Universidade Federal Fluminense, Niteroi, RJ (Brazil). Dept. de Patologia; Pereira, Cyntia Inez Guedes Soares

    2001-12-01

    We present the main findings observed on the high-resolution computed tomography examinations of 15 patients with acquired immunodeficiency syndrome and Pneumocystis carinii pneumonia. The high-resolution computed tomography and autopsy findings of 5 patients were also compared. The most frequently observed high-resolution computed tomography patterns were ground-glass attenuation, consolidation areas, crazy-paving pattern and cysts. Nodules and intralobular reticulation were less frequently observed. Ground-glass attenuation and consolidation areas corresponded to alveolar filling with inflammatory exudate. Thickening of the interlobular septa was due to cell infiltration and edema. One patient presented interlobular reticulation, and the pathology study revealed alveolar septa thickening due to cell infiltration and fibrosis. Nodules observed in one of the patients corresponded to a patchy intra alveolar accumulation of microorganisms and inflammatory cells forming a 'granulomatous' pattern. (author)

  7. High-resolution computed tomographic findings of Aspergillus infection in lung transplant patients

    International Nuclear Information System (INIS)

    Gazzoni, Fernando Ferreira; Hochhegger, Bruno; Severo, Luiz Carlos; Marchiori, Edson; Pasqualotto, Alessandro; Sartori, Ana Paula Garcia; Schio, Sadi; Camargo, José

    2014-01-01

    Objective: The aim of this study was to assess high-resolution computed tomographic (HRCT) findings at presentation in lung transplant patients diagnosed with pulmonary Aspergillus infection. Materials and methods: We retrospectively reviewed HRCT findings from 23 patients diagnosed with pulmonary aspergillosis. Imaging studies were performed 2–5 days after the onset of symptoms. The patient sample comprised 12 men and 11 women aged 22–59 years (mean age, 43.6 years). All patients had dyspnea, tachypnea, and cough. Diagnoses were established with Platelia Aspergillus enzyme immunoassays for galactomannan antigen detection in bronchoalveolar lavage and recovery of symptoms, and HRCT findings after voriconazole treatment. The HRCT scans were reviewed independently by two observers who reached a consensus decision. Results: The main HRCT pattern, found in 65% (n = 15) of patients, was centrilobular tree-in-bud nodules associated with bronchial thickening. This pattern was described in association with areas of consolidation and ground-glass opacities in 13% (n = 3) of patients. Consolidation and ground-glass opacities were the main pattern in 22% (n = 5) of patients. The pattern of large nodules with and without the halo sign was observed in 13% (n = 3) of patients, and were associated with consolidation and ground-glass opacities in one case. Conclusion: The predominant HRCT findings in lung transplant patients with pulmonary aspergillosis were bilateral bronchial wall thickening and centrilobular opacities with the tree-in-bud pattern. Ground-glass opacities and/or bilateral areas of consolidation were also common findings. Pulmonary nodules with the halo sign were found in only 13% of patients

  8. Microstructured fibers with high lanthanum oxide glass core for nonlinear applications

    Science.gov (United States)

    Kobelke, J.; Schuster, K.; Litzkendorf, D.; Schwuchow, A.; Kirchhof, J.; Bartelt, H.; Tombelaine, V.; Leproux, P.; Couderc, V.; Labruyere, A.

    2009-05-01

    We demonstrate a low loss microstructured fiber (MOF) with a high nonlinear glass core and silica holey cladding. The substitution of mostly used silica as core material of microstructured fibers by lanthanum oxide glass promises a high nonlinear conversion efficiency for supercontinuum (SC) generation. The glass composition is optimized in terms of thermochemical and optical requirements. The glass for the MOF core has a high lanthanum oxide concentration (10 mol% La2O3) and a good compatibility with the silica cladding. This is performed by adding a suitable alumina concentration up to 20 mol%. The lanthanum oxide glass preform rods were manufactured by melting technique. Besides purity issues the material homogeneity plays an important role to achieve low optical loss. The addition of fluorides allows the better homogenization of the glass composition in the preform volume by refining. The minimum attenuation of an unstructured fiber drawn from this glass is about 0.6 dB/m. It is mostly caused by decreasing of scattering effects. The microstructured silica cladding allows the considerable shifting of dispersive behavior of the MOF for an optimal pump light conversion. The MOF shows zero dispersion wavelengths (ZDW) of 1140 nm (LP01 mode) and 970 nm (LP11 mode). The supercontinuum generation was investigated with a 1064 nm pump laser (650 ps). It shows a broad band emission between 500 nm and 2200 nm.

  9. Measurements of spatially resolved high resolution spectra of laser-produced plasmas. FY 83 annual report

    International Nuclear Information System (INIS)

    Feldman, U.

    1984-01-01

    A high resolution grazing incidence spectrograph, provided by the Naval Research Laboratory and the Goddard Space Flight Center, has been installed on the Omega laser facility of the Laboratory for Laser Energetics (LLE) at the University of Rochester. This 3 meter instrument, with a 1200 lines/mm grating blazed at 2 0 35', has produced extremely high quality spectra in the wavelength region 10 A to 100 A. Spectra have been obtained from glass microballoon targets that are coated with a variety of high-Z materials. Transitions from the Na-like and Ne-like ionization stages of Fe, Ni, Cu, and Kr have been identified

  10. High electric field conduction in low-alkali boroaluminosilicate glass

    Science.gov (United States)

    Dash, Priyanka; Yuan, Mengxue; Gao, Jun; Furman, Eugene; Lanagan, Michael T.

    2018-02-01

    Electrical conduction in silica-based glasses under a low electric field is dominated by high mobility ions such as sodium, and there is a transition from ionic transport to electronic transport as the electric field exceeds 108 V/m at low temperatures. Electrical conduction under a high electric field was investigated in thin low-alkali boroaluminosilicate glass samples, showing nonlinear conduction with the current density scaling approximately with E1/2, where E is the electric field. In addition, thermally stimulated depolarization current (TSDC) characterization was carried out on room-temperature electrically poled glass samples, and an anomalous discharging current flowing in the same direction as the charging current was observed. High electric field conduction and TSDC results led to the conclusion that Poole-Frenkel based electronic transport occurs in the mobile-cation-depleted region adjacent to the anode, and accounts for the observed anomalous current.

  11. Structure and aqueous reactivity of silicate glasses high-resolution nuclear magnetic resonance contribution; Structure et reactivite aqueuse des verres silicates apport de la resonance magnetique nucleaire haute-resolution

    Energy Technology Data Exchange (ETDEWEB)

    Angeli, F

    2000-10-25

    This research aims at getting a better understanding of the relations which may exist between the chemical composition of the oxide silicate glasses, the structure and the aqueous reactivity. We study the cations present in most glasses, more particularly the radioactive waste glasses, and those which are more liable to bring information both about structure and reactivity. Among the experimental methods used, the nuclear magnetic resonance of multi-quantum magic-angle spinning (NMR MQ-MAS) has been carried out for the structural characterization of the pristine and altered glasses. In the first part, we discuss the possibility of deducting a type of information from a quantitative approach of the {sup 23}Na, {sup 27}Al and {sup 17}O NMR MQ-MAS. In the second part, we apply this method to glasses containing between two and six oxides. The vitreous compositions studied permit to focus our attention on the influence of sodium, aluminum and calcium on their local structural environment. We point out an evolution of the distributions of bond distances and angles in relation to the glass chemical composition. We show the strong potentiality of the {sup 17}O used to probe the pristine and altered glasses. The influence of the different cations studied on the rate of glass dissolution is debated from the alterations made on short periods. On the basis of all these data, we discuss the importance of the structural effect which may influence the kinetic phenomena of alteration. (author)

  12. High resolution x-ray diffraction analysis of annealed low-temperature gallium arsenide

    Science.gov (United States)

    Matyi, R. J.; Melloch, M. R.; Woodall, J. M.

    1992-05-01

    High resolution x-ray diffraction methods have been used to characterize GaAs grown at low substrate temperatures by molecular beam epitaxy and to examine the effects of post-growth annealing on the structure of the layers. Double crystal rocking curves from the as-deposited epitaxial layer show well-defined interference fringes, indicating a high level of structural perfection despite the presence of excess arsenic. Annealing at temperatures from 700 to 900 °C resulted in a decrease in the perpendicular lattice mismatch between the GaAs grown at low temperature and the substrate from 0.133% to 0.016% and a decrease (but not total elimination) of the visibility of the interference fringes. Triple-crystal diffraction scans around the 004 point in reciprocal space exhibited an increase in the apparent mosaic spread of the epitaxial layer with increasing anneal temperature. The observations are explained in terms of the growth of arsenic precipitates in the epitaxial layer.

  13. Infrared and x-ray photoelectron spectroscopic studies on sodium borosilicate glass interacted with thermally oxidized aluminides formed on alloy 690

    International Nuclear Information System (INIS)

    Yusufali, C.; Dutta, R.S.; Dey, G.K.; Kshirsagar, R.J.; Jagannath; Mishra, R.K.

    2012-01-01

    Thermally oxidized aluminides formed on Ni-Cr-Fe based superalloy 690 substrates were subjected to interaction with sodium borosilicate melt (used as matrices for immobilization of high-level radioactive liquid waste) at 1248 K for 192 hours. After the interaction, Fourier-transform infrared (FT-IR) spectroscopy analysis of glass samples indicated the incorporation of Al in the glass network. X-ray photoelectron spectroscopy (XPS) of glass specimens revealed modified glass structure. (author)

  14. Progressive systemic sclerosis: high-resolution computed tomography findings; Esclerose sistemica progressiva: aspectos na tomografia computadorizada de alta resolucao

    Energy Technology Data Exchange (ETDEWEB)

    Gasparetto, Emerson L.; Pimenta, Rodrigo; Ono, Sergio E.; Escuissato, Dante L. [Parana Univ., Curitiba, PR (Brazil). Hospital de Clinicas. Servico de Radiologia Medica]. E-mail: dante.luiz@onda.com.br; Inoue, Cesar [Parana Univ., Curitiba, PR (Brazil). Faculdade de Medicina

    2005-09-15

    Objective: To describe the high-resolution computed tomography findings in the lung of patients with systemic sclerosis, independently of the respiratory symptoms. Materials and methods: Seventy-three high-resolution computed tomography scans of 44 patients with clinical diagnosis of systemic sclerosis were reviewed and defined by the consensus of two radiologists. Results: Abnormalities were seen in 91.8% (n = 67) of the scans. The most frequent findings were reticular pattern (90.4%), ground-glass opacities (63%), traction bronchiectasis and bronchiolectasis (56.2%), esophageal dilatation (46.6%), honeycombing pattern (28.8%) and signs of pulmonary hypertension (15.6%). In most cases the lesions were bilateral (89%) and symmetrical (58.5%). The lesions were predominantly located in the basal (91.2%) and peripheral (92.2%) regions. Conclusion: In the majority of the patients, progressive systemic sclerosis can cause pulmonary fibrosis mainly characterized by reticular pattern with basal and peripheral distribution on high-resolution computed tomography. (author)

  15. Chronic mercury vapor poisoning of the lung plain radiography and high resolution CT

    Energy Technology Data Exchange (ETDEWEB)

    Park, Choong Ki; Hwang, Woo Cheol; Nho, Joon Young; Ahn, Bum Gyu; Woo, Hyo Cheol; Kim, Heung Cheol; Lee, Myoung Koo [Hallym University College of Medicine, Seoul (Korea, Republic of)

    1993-09-15

    Authors analyzed the findings of chest radiographs and high-resolution CT(HRCT) of the chronic mercury vapor poisoning in 12 patients who were diagnosed by previous working history for mercury-thermometer and high level of mercury in blood and urine. The purpose of this paper is to introduce the HRCT findings of chronic mercury vapor poisoning. Duration of mercury exposure was ranged from 10 to 41 months(mean, 21.8 months). Estimated value of serum mercury was ranged from 3.6 to 8.7 {mu} g/dl(mean, 5.3 {mu} g/dl: normal value is less than 0.5 {mu} g/dl). Estimated value of mercury in urine was ranged from 104 to 482 {mu} g/l(mean, 291.4 {mu} g/l; normal value is less than 20 {mu} g/l). Chest radiographs showed positive findings such as ground glass opacities and peribronchial cuffings in only 2 out of 12 patients, but HRCT showed positive findings such as ground glass opacities in 8 patients, peribronchial cuffings in 7 patients, centrilobular abnormalities in 5 patients, interface sign in 4 patients, interlobular septal thickening with intralobular lines in 2 patients and lobular consolidation in one patient. In conclusion, chest HRCT is superior to chest radiograph to show the pulmonary manifestation of chronic mercury vapor poisoning. In patients with chronic mercury vapor poisoning. HRCT findings of centrilobular distributed ground glass opacities and peribroncjial cuffinges are characteristic.

  16. Chronic mercury vapor poisoning of the lung plain radiography and high resolution CT

    International Nuclear Information System (INIS)

    Park, Choong Ki; Hwang, Woo Cheol; Nho, Joon Young; Ahn, Bum Gyu; Woo, Hyo Cheol; Kim, Heung Cheol; Lee, Myoung Koo

    1993-01-01

    Authors analyzed the findings of chest radiographs and high-resolution CT(HRCT) of the chronic mercury vapor poisoning in 12 patients who were diagnosed by previous working history for mercury-thermometer and high level of mercury in blood and urine. The purpose of this paper is to introduce the HRCT findings of chronic mercury vapor poisoning. Duration of mercury exposure was ranged from 10 to 41 months(mean, 21.8 months). Estimated value of serum mercury was ranged from 3.6 to 8.7 μ g/dl(mean, 5.3 μ g/dl: normal value is less than 0.5 μ g/dl). Estimated value of mercury in urine was ranged from 104 to 482 μ g/l(mean, 291.4 μ g/l; normal value is less than 20 μ g/l). Chest radiographs showed positive findings such as ground glass opacities and peribronchial cuffings in only 2 out of 12 patients, but HRCT showed positive findings such as ground glass opacities in 8 patients, peribronchial cuffings in 7 patients, centrilobular abnormalities in 5 patients, interface sign in 4 patients, interlobular septal thickening with intralobular lines in 2 patients and lobular consolidation in one patient. In conclusion, chest HRCT is superior to chest radiograph to show the pulmonary manifestation of chronic mercury vapor poisoning. In patients with chronic mercury vapor poisoning. HRCT findings of centrilobular distributed ground glass opacities and peribroncjial cuffinges are characteristic

  17. Ultra-high resolution protein crystallography

    International Nuclear Information System (INIS)

    Takeda, Kazuki; Hirano, Yu; Miki, Kunio

    2010-01-01

    Many protein structures have been determined by X-ray crystallography and deposited with the Protein Data Bank. However, these structures at usual resolution (1.5< d<3.0 A) are insufficient in their precision and quantity for elucidating the molecular mechanism of protein functions directly from structural information. Several studies at ultra-high resolution (d<0.8 A) have been performed with synchrotron radiation in the last decade. The highest resolution of the protein crystals was achieved at 0.54 A resolution for a small protein, crambin. In such high resolution crystals, almost all of hydrogen atoms of proteins and some hydrogen atoms of bound water molecules are experimentally observed. In addition, outer-shell electrons of proteins can be analyzed by the multipole refinement procedure. However, the influence of X-rays should be precisely estimated in order to derive meaningful information from the crystallographic results. In this review, we summarize refinement procedures, current status and perspectives for ultra high resolution protein crystallography. (author)

  18. Computational study of β-N-acetylhexosaminidase from Talaromyces flavus, a glycosidase with high substrate flexibility.

    Science.gov (United States)

    Kulik, Natallia; Slámová, Kristýna; Ettrich, Rüdiger; Křen, Vladimír

    2015-01-28

    β-N-Acetylhexosaminidase (GH20) from the filamentous fungus Talaromyces flavus, previously identified as a prominent enzyme in the biosynthesis of modified glycosides, lacks a high resolution three-dimensional structure so far. Despite of high sequence identity to previously reported Aspergillus oryzae and Penicilluim oxalicum β-N-acetylhexosaminidases, this enzyme tolerates significantly better substrate modification. Understanding of key structural features, prediction of effective mutants and potential substrate characteristics prior to their synthesis are of general interest. Computational methods including homology modeling and molecular dynamics simulations were applied to shad light on the structure-activity relationship in the enzyme. Primary sequence analysis revealed some variable regions able to influence difference in substrate affinity of hexosaminidases. Moreover, docking in combination with consequent molecular dynamics simulations of C-6 modified glycosides enabled us to identify the structural features required for accommodation and processing of these bulky substrates in the active site of hexosaminidase from T. flavus. To access the reliability of predictions on basis of the reported model, all results were confronted with available experimental data that demonstrated the principal correctness of the predictions as well as the model. The main variable regions in β-N-acetylhexosaminidases determining difference in modified substrate affinity are located close to the active site entrance and engage two loops. Differences in primary sequence and the spatial arrangement of these loops and their interplay with active site amino acids, reflected by interaction energies and dynamics, account for the different catalytic activity and substrate specificity of the various fungal and bacterial β-N-acetylhexosaminidases.

  19. Mirrors for High Resolution X-Ray Optics---Figure Preserving IR/PT Coating

    Science.gov (United States)

    Chan, Kai-Wing; Olsen, Lawrence; Sharpe, Marton; Numata, Ai; McClelland, Ryan; Saha, Timo; Zhang, Will

    2016-01-01

    Coating stress of 10 - 20 nm of Ir is sufficiently high to distort the figure of arc-second thin lightweight mirrors. For iridium: --Stress sigma 4 GPa for 15 nm film implies 60 Nm integrated stress-- Need less than 3 N/m (or stress less than 200 MPa) for sub-arcsecond optics. Basic Approaches for Mitigation. A. Annealing the film-- Glass can be heat up to 400 C without distortion. Silicon is even more resistant.-- It was found that recovery is limited by residual thermal stress from taking the mirror down from high T. B. Coating bi-layer films with compressive stress with tensile stress. C. Front-and-back coating with magnetron sputtering or atomic layer deposition-- Sputtering involve spanning of substrates. Geometric difference in setup (convexness/concaveness of curved mirrors) does not permit precise front-and-back matching-- Atomic layer deposition can provide a uniform deposition front and back simultaneously.

  20. Novel injectable gellan gum hydrogel composites incorporating Zn- and Sr-enriched bioactive glass microparticles: High-resolution X-ray microcomputed tomography, antibacterial and in vitro testing.

    Science.gov (United States)

    Douglas, Timothy E L; Dziadek, Michal; Gorodzha, Svetlana; Lišková, Jana; Brackman, Gilles; Vanhoorne, Valérie; Vervaet, Chris; Balcaen, Lieve; Del Rosario Florez Garcia, Maria; Boccaccini, Aldo R; Weinhardt, Venera; Baumbach, Tilo; Vanhaecke, Frank; Coenye, Tom; Bačáková, Lucie; Surmeneva, Maria A; Surmenev, Roman A; Cholewa-Kowalska, Katarzyna; Skirtach, Andre G

    2018-06-01

    Mineralization of hydrogel biomaterials is desirable to improve their suitability as materials for bone regeneration. In this study, gellan gum (GG) hydrogels were formed by simple mixing of GG solution with bioactive glass microparticles of 45S5 composition, leading to hydrogel formation by ion release from the amorphous bioactive glass microparticles. This resulted in novel injectable, self-gelling composites of GG hydrogels containing 20% bioactive glass. Gelation occurred within 20 min. Composites containing the standard 45S5 bioactive glass preparation were markedly less stiff. X-ray microcomputed tomography proved to be a highly sensitive technique capable of detecting microparticles of diameter approximately 8 μm, that is, individual microparticles, and accurately visualizing the size distribution of bioactive glass microparticles and their aggregates, and their distribution in GG hydrogels. The widely used melt-derived 45S5 preparation served as a standard and was compared with a calcium-rich, sol-gel derived preparation (A2), as well as A2 enriched with zinc (A2Zn5) and strontium (A2Sr5). A2, A2Zn, and A2Sr bioactive glass particles were more homogeneously dispersed in GG hydrogels than 45S5. Composites containing all four bioactive glass preparations exhibited antibacterial activity against methicillin-resistant Staphylococcus aureus. Composites containing A2Zn5 and A2Sr5 bioactive glasses supported the adhesion and growth of osteoblast-like cells and were considerably more cytocompatible than 45S5. All composites underwent mineralization with calcium-deficient hydroxyapatite upon incubation in simulated body fluid. The extent of mineralization appeared to be greatest for composites containing A2Zn5 and 45S5. The results underline the importance of the choice of bioactive glass when preparing injectable, self-gelling composites. Copyright © 2018 John Wiley & Sons, Ltd.

  1. Laser cladding of bioactive glass coatings.

    Science.gov (United States)

    Comesaña, R; Quintero, F; Lusquiños, F; Pascual, M J; Boutinguiza, M; Durán, A; Pou, J

    2010-03-01

    Laser cladding by powder injection has been used to produce bioactive glass coatings on titanium alloy (Ti6Al4V) substrates. Bioactive glass compositions alternative to 45S5 Bioglass were demonstrated to exhibit a gradual wetting angle-temperature evolution and therefore a more homogeneous deposition of the coating over the substrate was achieved. Among the different compositions studied, the S520 bioactive glass showed smoother wetting angle-temperature behavior and was successfully used as precursor material to produce bioactive coatings. Coatings processed using a Nd:YAG laser presented calcium silicate crystallization at the surface, with a uniform composition along the coating cross-section, and no significant dilution of the titanium alloy was observed. These coatings maintain similar bioactivity to that of the precursor material as demonstrated by immersion in simulated body fluid. Copyright 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  2. Non-toxic invert analog glass compositions of high modulus

    Science.gov (United States)

    Bacon, J. F. (Inventor)

    1974-01-01

    Glass compositions having a Young's modulus of at least 15 million psi are described. They and a specific modulus of at least 110 million inches consist essentially of, in mols, 15 to 40% SiO2, 6 to 15% Li2O, 24 to 45% of at least two bivalent oxides selected from the group consisting of Ca, NzO, MgO and CuO; 13 to 39% of at least two trivalent oxides selected from the group consisting of Al2O3, Fe2O3, B2O3, La2O3, and Y2O3 and up to 15% of one or more tetravelent oxides selected from the group consisting of ZrO2, TiO2 and CeO2. The high modulus, low density glass compositions contain no toxic elements. The composition, glass density, Young's modulus, and specific modulus for 28 representative glasses are presented. The fiber modulus of five glasses are given.

  3. SOI MESFETs on high-resistivity, trap-rich substrates

    Science.gov (United States)

    Mehr, Payam; Zhang, Xiong; Lepkowski, William; Li, Chaojiang; Thornton, Trevor J.

    2018-04-01

    The DC and RF characteristics of metal-semiconductor field-effect-transistors (MESFETs) on conventional CMOS silicon-on-insulator (SOI) substrates are compared to nominally identical devices on high-resistivity, trap-rich SOI substrates. While the DC transfer characteristics are statistically identical on either substrate, the maximum available gain at GHz frequencies is enhanced by ∼2 dB when using the trap-rich substrates, with maximum operating frequencies, fmax, that are approximately 5-10% higher. The increased fmax is explained by the reduced substrate conduction at GHz frequencies using a lumped-element, small-signal model.

  4. Tribocorrosion behaviour of nanostructured titanium substrates processed by high-pressure torsion

    Energy Technology Data Exchange (ETDEWEB)

    Faghihi, S [Tissue Engineering and Biomaterials Division, National Institute of Genetic Engineering and Biotechnology (NIGEB), Room 117, Shahrak-e Pajoohesh, km 15, Tehran-Karaj Highway, Tehran, PO Box 14965/161 (Iran, Islamic Republic of); Li, D [Department of Engineering Physics, Ecole Polytechnique, Montreal, QC, H3C 3A7 (Canada); Szpunar, J A, E-mail: sfaghihi@nigeb.ac.ir [Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK, S7N 5A9 (Canada)

    2010-12-03

    Aseptic loosening induced by wear particles from artificial bearing materials is one of the main causes of malfunctioning in total hip replacements. With the increase in young and active patients, complications in revision surgeries and immense health care costs, there is considerable interest in wear-resistant materials that can endure longer in the harsh and corrosive body environment. Here, the tribological behaviour of nanostructured titanium substrates processed by high-pressure torsion (HPT) is investigated and compared with the coarse-grained samples. The high resolution transmission electron microscopy reveals that a nanostructured sample has a grain size of 5-10 nm compared to that of {approx} 10 {mu}m and {approx} 50 {mu}m for untreated and annealed substrates, respectively. Dry and wet wear tests were performed using a linear reciprocating ball-on-flat tribometer. Nanostructured samples show the best dry wear resistance and the lowest wear rate in the electrolyte. There was significantly lower plastic deformation and no change in preferred orientation of nanostructured samples attributable to the wear process. Electrochemical impedance spectroscopy (EIS) shows lower corrosion resistance for nanostructured samples. However, under the action of both wear and corrosion the nanostructured samples show superior performance and that makes them an attractive candidate for applications in which wear and corrosion act simultaneously.

  5. Tribocorrosion behaviour of nanostructured titanium substrates processed by high-pressure torsion

    International Nuclear Information System (INIS)

    Faghihi, S; Li, D; Szpunar, J A

    2010-01-01

    Aseptic loosening induced by wear particles from artificial bearing materials is one of the main causes of malfunctioning in total hip replacements. With the increase in young and active patients, complications in revision surgeries and immense health care costs, there is considerable interest in wear-resistant materials that can endure longer in the harsh and corrosive body environment. Here, the tribological behaviour of nanostructured titanium substrates processed by high-pressure torsion (HPT) is investigated and compared with the coarse-grained samples. The high resolution transmission electron microscopy reveals that a nanostructured sample has a grain size of 5-10 nm compared to that of ∼ 10 μm and ∼ 50 μm for untreated and annealed substrates, respectively. Dry and wet wear tests were performed using a linear reciprocating ball-on-flat tribometer. Nanostructured samples show the best dry wear resistance and the lowest wear rate in the electrolyte. There was significantly lower plastic deformation and no change in preferred orientation of nanostructured samples attributable to the wear process. Electrochemical impedance spectroscopy (EIS) shows lower corrosion resistance for nanostructured samples. However, under the action of both wear and corrosion the nanostructured samples show superior performance and that makes them an attractive candidate for applications in which wear and corrosion act simultaneously.

  6. Tribocorrosion behaviour of nanostructured titanium substrates processed by high-pressure torsion

    Science.gov (United States)

    Faghihi, S.; Li, D.; Szpunar, J. A.

    2010-12-01

    Aseptic loosening induced by wear particles from artificial bearing materials is one of the main causes of malfunctioning in total hip replacements. With the increase in young and active patients, complications in revision surgeries and immense health care costs, there is considerable interest in wear-resistant materials that can endure longer in the harsh and corrosive body environment. Here, the tribological behaviour of nanostructured titanium substrates processed by high-pressure torsion (HPT) is investigated and compared with the coarse-grained samples. The high resolution transmission electron microscopy reveals that a nanostructured sample has a grain size of 5-10 nm compared to that of ~ 10 µm and ~ 50 µm for untreated and annealed substrates, respectively. Dry and wet wear tests were performed using a linear reciprocating ball-on-flat tribometer. Nanostructured samples show the best dry wear resistance and the lowest wear rate in the electrolyte. There was significantly lower plastic deformation and no change in preferred orientation of nanostructured samples attributable to the wear process. Electrochemical impedance spectroscopy (EIS) shows lower corrosion resistance for nanostructured samples. However, under the action of both wear and corrosion the nanostructured samples show superior performance and that makes them an attractive candidate for applications in which wear and corrosion act simultaneously.

  7. High-resolution of particle contacts via fluorophore exclusion in deep-imaging of jammed colloidal packings

    Science.gov (United States)

    Kyeyune-Nyombi, Eru; Morone, Flaviano; Liu, Wenwei; Li, Shuiqing; Gilchrist, M. Lane; Makse, Hernán A.

    2018-01-01

    Understanding the structural properties of random packings of jammed colloids requires an unprecedented high-resolution determination of the contact network providing mechanical stability to the packing. Here, we address the determination of the contact network by a novel strategy based on fluorophore signal exclusion of quantum dot nanoparticles from the contact points. We use fluorescence labeling schemes on particles inspired by biology and biointerface science in conjunction with fluorophore exclusion at the contact region. The method provides high-resolution contact network data that allows us to measure structural properties of the colloidal packing near marginal stability. We determine scaling laws of force distributions, soft modes, correlation functions, coordination number and free volume that define the universality class of jammed colloidal packings and can be compared with theoretical predictions. The contact detection method opens up further experimental testing at the interface of jamming and glass physics.

  8. The High-Resolution Lightweight Telescope for the EUV (HiLiTE)

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Galarce, D S; Boerner, P; Soufli, R; De Pontieu, B; Katz, N; Title, A; Gullikson, E M; Robinson, J C; Baker, S L

    2008-06-02

    The High-resolution Lightweight Telescope for the EUV (HiLiTE) is a Cassegrain telescope that will be made entirely of Silicon Carbide (SiC), optical substrates and metering structure alike. Using multilayer coatings, this instrument will be tuned to operate at the 465 {angstrom} Ne VII emission line, formed in solar transition region plasma at {approx}500,000 K. HiLiTE will have an aperture of 30 cm, angular resolution of {approx}0.2 arc seconds and operate at a cadence of {approx}5 seconds or less, having a mass that is about 1/4 that of one of the 20 cm aperture telescopes on the Atmospheric Imaging Assembly (AIA) instrument aboard NASA's Solar Dynamics Observatory (SDO). This new instrument technology thus serves as a path finder to a post-AIA, Explorer-class missions.

  9. High Tech Art: Chameleon Glass

    Science.gov (United States)

    1993-01-01

    Dichroic Glass is a technology wherein extremely thin films of metal are vacuum deposited on a glass surface. The coated glass shields spacecraft instruments from cosmic radiation and protects human vision from unfiltered sunlight in space. Because the coating process allows some wavelengths of light and color to reflect and others to pass through, a chameleon effect is produced. Murray Schwartz, a former aerospace engineer, has based his business KROMA on this NASA optical technology. He produces dichroic stained glass windows, mobiles and jewelry. The technique involves deposition of super thin layers of metal oxides applied one layer at a time in a specific order and thickness for the desired effect. His product line is unique and has been very successful.

  10. Calorimetric signature of structural heterogeneity in a ternary silicate glass

    DEFF Research Database (Denmark)

    Zhang, Yanfei; Yang, G.; Yue, Yuanzheng

    2013-01-01

    We investigate the structural heterogeneity in a silicate glass by hyperquenching–annealing–calorimetry approach. The results show a striking phenomenon: two separated sub-Tg relaxation peaks appear on the calorimetric curve of the hyperquenched CaO–MgO–SiO2 glass, implying the existence of two...... distinct structural domains of higher and lower potential energies, respectively. The higher energy domains in nanoscale are so unstable that they become ordered during hyperquenching. This is verified by the high-resolution transmission electron microscopy image exhibiting nanoordered domains in the glass...... matrix. The higher energy domains relax similar to a strong glass phase, whereas the lower energy domains do similar to a fragile one....

  11. High resolution solar observations

    International Nuclear Information System (INIS)

    Title, A.

    1985-01-01

    Currently there is a world-wide effort to develop optical technology required for large diffraction limited telescopes that must operate with high optical fluxes. These developments can be used to significantly improve high resolution solar telescopes both on the ground and in space. When looking at the problem of high resolution observations it is essential to keep in mind that a diffraction limited telescope is an interferometer. Even a 30 cm aperture telescope, which is small for high resolution observations, is a big interferometer. Meter class and above diffraction limited telescopes can be expected to be very unforgiving of inattention to details. Unfortunately, even when an earth based telescope has perfect optics there are still problems with the quality of its optical path. The optical path includes not only the interior of the telescope, but also the immediate interface between the telescope and the atmosphere, and finally the atmosphere itself

  12. High speed, High resolution terahertz spectrometers

    International Nuclear Information System (INIS)

    Kim, Youngchan; Yee, Dae Su; Yi, Miwoo; Ahn, Jaewook

    2008-01-01

    A variety of sources and methods have been developed for terahertz spectroscopy during almost two decades. Terahertz time domain spectroscopy (THz TDS)has attracted particular attention as a basic measurement method in the fields of THz science and technology. Recently, asynchronous optical sampling (AOS)THz TDS has been demonstrated, featuring rapid data acquisition and a high spectral resolution. Also, terahertz frequency comb spectroscopy (TFCS)possesses attractive features for high precision terahertz spectroscopy. In this presentation, we report on these two types of terahertz spectrometer. Our high speed, high resolution terahertz spectrometer is demonstrated using two mode locked femtosecond lasers with slightly different repetition frequencies without a mechanical delay stage. The repetition frequencies of the two femtosecond lasers are stabilized by use of two phase locked loops sharing the same reference oscillator. The time resolution of our terahertz spectrometer is measured using the cross correlation method to be 270 fs. AOS THz TDS is presented in Fig. 1, which shows a time domain waveform rapidly acquired on a 10ns time window. The inset shows a zoom into the signal with 100ps time window. The spectrum obtained by the fast Fourier Transformation (FFT)of the time domain waveform has a frequency resolution of 100MHz. The dependence of the signal to noise ratio (SNR)on the measurement time is also investigated

  13. Lead iron phosphate glass as a containment medium for disposal of high-level nuclear waste

    International Nuclear Information System (INIS)

    Boatner, L.A.; Sales, B.C.

    1989-01-01

    This patent describes lead-iron phosphate glasses containing a high level of Fe 2 O 3 for use as a storage medium for high-level radioactive nuclear waste. By combining lead-iron phosphate glass with various types of simulated high-level nuclear waste, a highly corrosion resistant, homogeneous, easily processed glass can be formed. For corroding solutions at 90 0 C, with solution pH values in the range between 5 and 9, the corrosion rate of the lead-iron phosphate nuclear waste glass is at least 10 2 to 10 3 times lower than the corrosion rate of a comparable borosilicate nuclear waste glass. The presence of Fe 2 O 3 in forming the lead-iron phosphate glass is critical. The lead-iron phosphate waste glasses can be prepared with minimal modification of the technology developed for processing borosilicate glass nuclear wasteforms

  14. Accuracy of high-resolution CT in distinguishing between Pneumocystis carinii pneumonia and non-Pneumocystis carinii pneumonia in AIDS patients

    International Nuclear Information System (INIS)

    Hidalgo, A.; Mauleon, S.; Andreu, J.; Caceres, J.; Falco, V.; Crespo, M.; Ribera, E.; Pahissa, A.

    2003-01-01

    The aim of this study was to assess the value of high-resolution CT in distinguishing between Pneumocystis carinii and non-Pneumocystis carinii pneumonia (PCP) in patients HIV-positive and high risk to have PCP. We performed a prospective study in 30 patients with <200 CD4 lymphocytes, clinical symptoms of pulmonary disease and chest X-ray non-conclusive for pulmonary infection. Evaluated CT findings included ground-glass opacities, reticulation, tree-in-bud appearance, consolidation, cystic lesions, bronchiectasis and lymphadenopathies. The diagnosis of ''examination suggestive of PCP'' was applied to cases showing a diffuse or predominant ground-glass pattern in the upper fields, associated or not with reticulations and small cystic lesions. The sensitivity, specificity, positive predictive value and negative predictive value of high-resolution computed tomography (HRCT) for the diagnosis of PCP was 100, 83.3, 90.5 and 100%, respectively. Pneumocystis carinii pneumonia was not demonstrated in any of the cases classified as ''examination not suggestive of PCP''. Significant small airway disease was not observed in any of the PCP cases. We conclude that HRCT is a reliable method for differentiating PCP from other infectious processes in HIV-positive patients and a good method to rule our PCP. Its inclusion in the diagnostic algorithm of lung infections is justified in these patients. (orig.)

  15. Energy absorption at high strain rate of glass fiber reinforced mortars

    Directory of Open Access Journals (Sweden)

    Fenu Luigi

    2015-01-01

    Full Text Available In this paper, the dynamic behaviour of cement mortars reinforced with glass fibers was studied. The influence of the addition of glass fibers on energy absorption and tensile strength at high strain-rate was investigated. Static tests in compression, in tension and in bending were first performed. Dynamic tests by means of a Modified Hopkinson Bar were then carried out in order to investigate how glass fibers affected energy absorption and tensile strength at high strain-rate of the fiber reinforced mortar. The Dynamic Increase Factor (DIF was finally evaluated.

  16. Solution growth of microcrystalline silicon on amorphous substrates

    Energy Technology Data Exchange (ETDEWEB)

    Heimburger, Robert

    2010-07-05

    material is proposed. MoSi{sub 2} thin films on glass, produced by annealing near-stoichiometric Mo-Si multilayers, are shown to resist solution contact. Subsequent investigation of feasibility of the vapor-liquid-solid mechanism revealed the success of indium microdroplet formation to be determined by both, the multilayer deposition parameters and the substrate temperature during indium deposition. Steady-state solution growth at 610 C was utilized to enlarge silicon seed crystals to diameters of up to 200 {mu}m. The grown material has been subject of characterization regarding the crystallinity, orientation and purity. Additionally, morphological anomalies are considered. The outgrown material was found to be bound by {l_brace}111{r_brace} facets. Many of these microcrystallites contain at least two twin domains. Twin-assisted growth at formed re-entrant edges promotes high growth rates even at low supersaturation. Additionally, many crystallites exhibit hoppers at the center of their facets. This is explained by a solute concentration inhomogeneity within the diffusion boundary layer of the nutrient solution leading to solute depletion at the facet centers and to morphological instability. The feasibility of the process for growth of microcrystalline silicon on glass has been shown in principle. Nevertheless, limitations exist regarding the achievable crystalline solidity ratio and the size of crystallites grown under stable conditions. (orig.)

  17. High-phase-purity zinc-blende InN on r-plane sapphire substrate with controlled nitridation pretreatment

    International Nuclear Information System (INIS)

    Hsiao, C.-L.; Wu, C.-T.; Hsu, H.-C.; Hsu, G.-M.; Chen, L.-C.; Liu, T.-W.; Shiao, W.-Y.; Yang, C. C.; Gaellstroem, Andreas; Holtz, Per-Olof; Chen, C.-C.; Chen, K.-H.

    2008-01-01

    High-phase-purity zinc-blende (zb) InN thin film has been grown by plasma-assisted molecular-beam epitaxy on r-plane sapphire substrate pretreated with nitridation. X-ray diffraction analysis shows that the phase of the InN films changes from wurtzite (w) InN to a mixture of w-InN and zb-InN, to zb-InN with increasing nitridation time. High-resolution transmission electron microscopy reveals an ultrathin crystallized interlayer produced by substrate nitridation, which plays an important role in controlling the InN phase. Photoluminescence emission of zb-InN measured at 20 K shows a peak at a very low energy, 0.636 eV, and an absorption edge at ∼0.62 eV is observed at 2 K, which is the lowest bandgap reported to date among the III-nitride semiconductors

  18. Mechanistic interpretation of glass reaction: Input to kinetic model development

    International Nuclear Information System (INIS)

    Bates, J.K.; Ebert, W.L.; Bradley, J.P.; Bourcier, W.L.

    1991-05-01

    Actinide-doped SRL 165 type glass was reacted in J-13 groundwater at 90 degree C for times up to 278 days. The reaction was characterized by both solution and solid analyses. The glass was seen to react nonstoichiometrically with preferred leaching of alkali metals and boron. High resolution electron microscopy revealed the formation of a complex layer structure which became separated from the underlying glass as the reaction progressed. The formation of the layer and its effect on continued glass reaction are discussed with respect to the current model for glass reaction used in the EQ3/6 computer simulation. It is concluded that the layer formed after 278 days is not protective and may eventually become fractured and generate particulates that may be transported by liquid water. 5 refs., 5 figs. , 3 tabs

  19. Optimization of waste loading in high-level glass in the presence of uncertainty

    International Nuclear Information System (INIS)

    Hoza, M.; Fann, G.I.; Hopkins, D.F.

    1995-02-01

    Hanford high-level liquid waste will be converted into a glass form for long-term storage. The glass must meet certain constraints on its composition and properties in order to have desired properties for processing (e.g., electrical conductivity, viscosity, and liquidus temperature) and acceptable durability for long-term storage. The Optimal Waste Loading (OWL) models, based on rigorous mathematical optimization techniques, have been developed to minimize the number of glass logs required and determine glass-former compositions that will produce a glass meeting all relevant constraints. There is considerable uncertainty in many of the models and data relevant to the formulation of high-level glass. In this paper, we discuss how we handle uncertainty in the glass property models and in the high-level waste composition to the vitrification process. Glass property constraints used in optimization are inequalities that relate glass property models obtained by regression analysis of experimental data to numerical limits on property values. Therefore, these constraints are subject to uncertainty. The sampling distributions of the regression models are used to describe the uncertainties associated with the constraints. The optimization then accounts for these uncertainties by requiring the constraints to be satisfied within specified confidence limits. The uncertainty in waste composition is handled using stochastic optimization. Given means and standard deviations of component masses in the high-level waste stream, distributions of possible values for each component are generated. A series of optimization runs is performed; the distribution of each waste component is sampled for each run. The resultant distribution of solutions is then statistically summarized. The ability of OWL models to handle these forms of uncertainty make them very useful tools in designing and evaluating high-level waste glasses formulations

  20. Settling of Spinel in A High-Level Waste Glass Melter

    International Nuclear Information System (INIS)

    Pavel Hrma; Pert Schill; Lubomir Nemec

    2002-01-01

    High-level nuclear waste is being vitrified, i.e., converted to a durable glass that can be stored in a safe repository for hundreds of thousands of years. Waste vitrification is accomplished in reactors call melters to which the waste is charged together with glass-forming additives. The mixture is electrically heated to a temperature as high as 1150 degree C (or even higher in advanced melters) to create a melt that becomes glass on cooling. This process is slow and expensive. Moreover, the melters that are currently in use or are going to be used in the U.S. are sensitive to clogging and thus cannot process melt in which solid particles are suspended. These particles settle and gradually accumulate on the melter bottom. Such particles, most often small crystals of spinel ( a mineral containing iron, nickel, chromium, and other minor oxides), inevitably occurred in the melt when the content of the waste in the glass (called waste loading) increases above a certain limit. To avoid the presence of solid particles in the melter, the waste loading is kept rather low, in average 15% lower than in glass formulated for more robust melters

  1. Chemistry of glass corrosion in high saline brines

    International Nuclear Information System (INIS)

    Grambow, B.; Mueller, R.

    1990-01-01

    Corrosion data obtained in laboratory tests can be used for the performance assessment of nuclear waste glasses in a repository if the data are quantitatively described in the frame of a geochemical model. Experimental data were obtained for conventional pH values corrected for liquid junction, amorphous silica solubility and glass corrosion in concentrated salt brines. The data were interpreted with a geochemical model. The brine chemistry was described with the Pitzer formalism using a data base which allows calculation of brine compositions in equilibrium with salt minerals at temperatures up to 200C. In MgCl 2 dominated brines Mg silicates form and due to the consumption of Mg the pH decreases with proceeding reaction. A constant pH (about 4) and composition of alteration products is achieved, when the alkali release from the glass balances the Mg consumption. The low pH results in high release of rare earth elements REE (rare earth elements) and U from the glass. In the NaCl dominated brine MgCl 2 becomes exhausted by Mg silicate formation. As long as there is still Mg left in solution the pH decreases. After exhaustion of Mg the pH rises with the alkali release from the glass and analcime is formed

  2. Structure and spectral properties of the silver-containing high-silica glasses

    International Nuclear Information System (INIS)

    Girsova, M A; Golovina, G F; Anfimova, I N; Antropova, T V; Arsent'ev, M Yu

    2016-01-01

    Silver-containing high-silica glasses were synthesized by an impregnation of the silica porous glasses (PGs) first with AgNO 3 aqueous solution (with or without the presence of the sensitizers, such as Cu(NO 3 ) 2 or Ce(NO 3 ) 3 ), next in the mixed halide salt (NH 4 Cl, KBr, KI) solution. Then some part of the samples was sintered at the temperatures from 850 to 900°C up to closing of the pores. The structure of glasses was studied by UV-VIS-NIR and IR spectroscopy and X-ray diffraction (XRD) techniques. According to XRD data the silver-containing high-silica glasses contain the AgBr, AgI, Ag 3 PO 4 , (CuBr) 0.75 (CuI) 0.25 phases. IR spectra confirmed B-O-B, Si- O-Si, P-O-P, O-P-O, O-B-O bonds, (PO 4 ) 3- and P-O - groups in glasses. (paper)

  3. Rare earth impact on glass structure and alteration kinetics

    International Nuclear Information System (INIS)

    Molieres, E.

    2012-01-01

    This work is related to the question of the geological deep repository of high-level waste glass. These wastes include fission products and minor actinides, elements which can be simulated by rare earths. As new glass compositions could enable increased rare earth concentrations, it is crucial to know and understand rare earth impact on glass structure on the one hand, and on glass alteration kinetics or their incorporation into an altered layer. This work studied simplified borosilicate glasses in order to limit synergetic effects between rare earths and other elements. Various complementary techniques were used to characterize pristine and altered glasses (solid-high resolution NMR, Raman spectroscopy, fluorescence, SIMS, SAXS). Firstly, the structural role of a rare earth is discussed and is compared to a calcium cation. The local environment of rare earths is also probed. Secondly, rare earth (nature and concentration) impact on several alteration regimes was studied (initial rate, rate drop). Then, after alteration, rare earth elements being retained within the altered layer, the structural impact of rare earth elements (and their local environment) in this alteration layer was also investigated. (author) [fr

  4. Temperature-induced structural changes in fluorozirconate glasses and liquids

    International Nuclear Information System (INIS)

    Sen, S.; Youngman, R.E.

    2002-01-01

    The atomic structure and its temperature dependence in fluorozirconate glasses and supercooled liquids have been studied with high-resolution and high-temperature 19 F and 23 Na nuclear-magnetic-resonance (NMR) spectroscopy. The 19 F NMR spectra in these glasses show the presence of multiple F environments. Temperature dependence of the 19 F magic-angle-spinning NMR spectra indicates a progressive change in the average F coordination environment in the glass structure, besides motional narrowing due to substantial mobility of F - ions. The observed change in the average 19 F NMR chemical shift is consistent with progressive breaking of the Zr-F-Zr linkages in the glass structure with increasing temperature. The onset of such a change in F speciation is observed at temperatures well below T g . This result is evidence of changes in the average equilibrium structure in an inorganic glass-forming liquid at T g , albeit on a local scale. The 23 Na NMR spectra indicate that the cations in these glasses become significantly mobile only at temperatures T≥T g , which allows for the onset of global structural relaxation and viscous flow

  5. Dosimetric properties of commercial glasses and sand for high doses

    International Nuclear Information System (INIS)

    Teixeira, Maria Ines

    2004-01-01

    Commercial glasses (transparent and colored) produced by Cebrace, Brazil, Sao Paulo, and sand samples of different Brazilian beaches were studied, due to their low cost and easy handling, to verify the possibility of their use in high dose dosimetry. The main dosimetric characteristics were determined using a densitometer, a spectrophotometer, a thermoluminescent (TL) reader and an electronic paramagnetic resonance system. The gamma irradiations were carried out using a Gamma-Cell 220 and a panoramic source ( 60 Co) of IPEN. An optical absorption band was observed at 420 nm in the glass samples. The TL glow curves presented peaks at 205 deg C, 135 deg C, 150 deg C and 145 deg C for the transparent, bronze, brown and green glass samples, respectively. All EPR spectra of the glasses showed Fe 3+ characteristic signals at g = 4.27 and 2.01. The gamma irradiated sand samples presented two peaks at 110 deg C and 170 deg C and an EPR signal at g= 1.999. However, these materials present a pronounced thermal fading at room temperature after irradiation. With the objective to minimize this thermal fading, both glass and sand samples were submitted to different pre- and post-irradiation thermal treatments. The glass and sand samples showed the possibility of utilization for high dose dosimetry and as Yes/No irradiation detectors. (author)

  6. High-level waste borosilicate glass: A compendium of corrosion characteristics. Volume 2

    International Nuclear Information System (INIS)

    Cunnane, J.C.

    1994-03-01

    The objective of this document is to summarize scientific information pertinent to evaluating the extent to which high-level waste borosilicate glass corrosion and the associated radionuclide release processes are understood for the range of environmental conditions to which waste glass may be exposed in service. Alteration processes occurring within the bulk of the glass (e.g., devitrification and radiation-induced changes) are discussed insofar as they affect glass corrosion.This document is organized into three volumes. Volumes I and II represent a tiered set of information intended for somewhat different audiences. Volume I is intended to provide an overview of waste glass corrosion, and Volume 11 is intended to provide additional experimental details on experimental factors that influence waste glass corrosion. Volume III contains a bibliography of glass corrosion studies, including studies that are not cited in Volumes I and II. Volume I is intended for managers, decision makers, and modelers, the combined set of Volumes I, II, and III is intended for scientists and engineers working in the field of high-level waste

  7. High-level waste borosilicate glass: A compendium of corrosion characteristics. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Cunnane, J.C. [comp.; Bates, J.K.; Bradley, C.R. [Argonne National Lab., IL (United States)] [and others

    1994-03-01

    The objective of this document is to summarize scientific information pertinent to evaluating the extent to which high-level waste borosilicate glass corrosion and the associated radionuclide release processes are understood for the range of environmental conditions to which waste glass may be exposed in service. Alteration processes occurring within the bulk of the glass (e.g., devitrification and radiation-induced changes) are discussed insofar as they affect glass corrosion.This document is organized into three volumes. Volumes I and II represent a tiered set of information intended for somewhat different audiences. Volume I is intended to provide an overview of waste glass corrosion, and Volume 11 is intended to provide additional experimental details on experimental factors that influence waste glass corrosion. Volume III contains a bibliography of glass corrosion studies, including studies that are not cited in Volumes I and II. Volume I is intended for managers, decision makers, and modelers, the combined set of Volumes I, II, and III is intended for scientists and engineers working in the field of high-level waste.

  8. High-Resolution Sonars: What Resolution Do We Need for Target Recognition?

    Directory of Open Access Journals (Sweden)

    Pailhas Yan

    2010-01-01

    Full Text Available Target recognition in sonar imagery has long been an active research area in the maritime domain, especially in the mine-counter measure context. Recently it has received even more attention as new sensors with increased resolution have been developed; new threats to critical maritime assets and a new paradigm for target recognition based on autonomous platforms have emerged. With the recent introduction of Synthetic Aperture Sonar systems and high-frequency sonars, sonar resolution has dramatically increased and noise levels decreased. Sonar images are distance images but at high resolution they tend to appear visually as optical images. Traditionally algorithms have been developed specifically for imaging sonars because of their limited resolution and high noise levels. With high-resolution sonars, algorithms developed in the image processing field for natural images become applicable. However, the lack of large datasets has hampered the development of such algorithms. Here we present a fast and realistic sonar simulator enabling development and evaluation of such algorithms.We develop a classifier and then analyse its performances using our simulated synthetic sonar images. Finally, we discuss sensor resolution requirements to achieve effective classification of various targets and demonstrate that with high resolution sonars target highlight analysis is the key for target recognition.

  9. Mechanical Properties of a High Lead Glass Used in the Mars Organic Molecule Analyzer

    Science.gov (United States)

    Salem, Jonathan A.; Smith, Nathan A.; Ersahin, Akif

    2015-01-01

    The elastic constants, strength, fracture toughness, slow crack growth parameters, and mirror constant of a high lead glass supplied as tubes and funnels were measured using ASTM International (formerly ASTM, American Society for Testing and Materials) methods and modifications thereof. The material exhibits lower Young's modulus and slow crack growth exponent as compared to soda-lime silica glass. Highly modified glasses exhibit lower fracture toughness and slow crack growth exponent than high purity glasses such as fused silica.

  10. Ideal glass transitions in thin films: An energy landscape perspective

    OpenAIRE

    Truskett, Thomas M.; Ganesan, Venkat

    2003-01-01

    We introduce a mean-field model for the potential energy landscape of a thin fluid film confined between parallel substrates. The model predicts how the number of accessible basins on the energy landscape and, consequently, the film's ideal glass transition temperature depend on bulk pressure, film thickness, and the strength of the fluid-fluid and fluid-substrate interactions. The predictions are in qualitative agreement with the experimental trends for the kinetic glass transition temperatu...

  11. Development of an ASTM standard glass durability test, the Product Consistency Test (PCT), for high level radioactive waste glass

    International Nuclear Information System (INIS)

    Jantzen, C.M.; Bibler, N.E.; Beam, D.C.; Ramsey, W.G.

    1994-01-01

    The nation's first, and the world's largest, facility to immobilize high-level nuclear waste in durable borosilicate glass has started operation at the Savannah River Site (SRS) in Aiken, South Carolina. The product specifications on the glass wasteform produced in the Defense Waste Processing Facility (DWPF) required extensive characterization of the glass product before actual production began and for continued characterization during production. To aid in this characterization, a glass durability (leach) test was needed that was easily reproducible, could be performed remotely on highly radioactive samples, and could yield results rapidly. Several standard leach tests were examined with a variety of test configurations. Using existing tests as a starting point, the DWPF Product Consistency Test (PCT was developed in which crushed glass samples are exposed to 90 ± 2 degree C deionized water for seven days. Based on extensive testing, including a seven-laboratory round robin and confirmatory testing with radioactive samples, the PCT is very reproducible, yields reliable results rapidly, and can be performed in shielded cell facilities with radioactive samples

  12. The role of natural glasses as analogues in projecting the long-term alteration of high-level nuclear waste glasses: Part 1

    International Nuclear Information System (INIS)

    Mazer, J.J.

    1993-01-01

    The common observation of glasses persisting in natural environments for long periods of time (up to tens of millions of years) provides compelling evidence that these materials can be kinetically stable in a variety of subsurface environments. This paper reviews how natural and historical synthesized glasses can be employed as natural analogues for understanding and projecting the long-term alteration of high-level nuclear waste glasses. The corrosion of basaltic glass results in many of the same alteration features found in laboratory testing of the corrosion of high-level radioactive waste glasses. Evidence has also been found indicating similarities in the rate controlling processes, such as the effects of silica concentration on corrosion in groundwater and in laboratory leachates. Naturally altered rhyolitic glasses and tektites provide additional evidence that can be used to constrain estimates of long-term waste glass alteration. When reacted under conditions where water is plentiful, the corrosion for these glasses is dominated by network hydrolysis, while the corrosion is dominated by molecular water diffusion and secondary mineral formation under conditions where water contact is intermittent or where water is relatively scarce. Synthesized glasses that have been naturally altered result in alkali-depleted alteration features that are similar to those found for natural glasses and for nuclear waste glasses. The characteristics of these alteration features appear to be dependent on the alteration conditions which affect the dominant reaction processes during weathering. In all cases, care must be taken to ensure that the information being provided by natural analogues is related to nuclear waste glass corrosion in a clear and meaningful way

  13. Pneumonia in novel swine-origin influenza A (H1N1) virus infection: High-resolution CT findings

    Energy Technology Data Exchange (ETDEWEB)

    Li Ping, E-mail: pinglee_2000@yahoo.com [Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, 246 Xue Fu Road, Harbin 150086 (China); Su Dongju, E-mail: hyd_sdj@yahoo.com.cn [Department of Respiratory, The Second Affiliated Hospital of Harbin Medical University, 246 Xue Fu Road, Harbin 150086 (China); Zhang Jifeng, E-mail: zjf2005520@163.com [Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, 246 Xue Fu Road, Harbin 150086 (China); Xia Xudong, E-mail: xiaxd888@163.com [Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, 246 Xue Fu Road, Harbin 150086 (China); Sui Hong, E-mail: suisuihong@126.com [Department of Statistics, Harbin Medical University, 240 Xue Fu Road, Harbin 150086 (China); Zhao Donghui, E-mail: yhwoooooo@yahoo.com.cn [Centers for Disease Control and Prevention of Heilongjiang, 187 Xiang An Street, Harbin 150036 (China)

    2011-11-15

    Objective: The purpose of our study was to review the initial high-resolution CT (HRCT) findings in pneumonia patients with presumed/laboratory-confirmed novel swine-origin influenza A (H1N1) virus (S-OIV) infection and detect pneumonia earlier. Materials and methods: High-resolution CT (HRCT) findings of 106 patients with presumed/laboratory-confirmed novel S-OIV (H1N1) infection were reviewed. The 106 patients were divided into two groups according to the serious condition of the diseases. The pattern (consolidation, ground-glass, nodules, and reticulation), distribution, and extent of abnormality on the HRCT were evaluated in both groups. The dates of the onset of symptoms of the patients were recorded. Results: The predominant CT findings in the patients at presentation were unilateral or bilateral multifocal asymmetric ground-glass opacities alone (n = 29, 27.4%), with unilateral or bilateral consolidation (n = 50, 47.2%). The consolidation had peribronchovascular and subpleural predominance. The areas of consolidation were found mainly in the posterior, middle and lower regions of the lungs. Reticular opacities were found in 6 cases of the initial MDCT scan. The extent of disease was greater in group 1 patients requiring advanced mechanical ventilation, with diffuse involvement in 19 patients (63.3%) of group 1 patients, and only 15/76 (19.7%) of group 2 patients (p < 0.01, {chi}{sup 2} test). 20 cases (19%) of the 106 patients had small bilateral or unilateral pleural effusions. None had evidence of hilar or mediastinal lymph node enlargement on CT performed at admission or later. Conclusions: The most common radiographic and CT findings in patients with S-OIV infection are unilateral or bilateral ground-glass opacities with or without associated focal or multifocal areas of consolidation. On HRCT, the ground-glass opacities had a predominant peribronchovascular and subpleural distribution. CT plays an important role in the early recognition of severe S

  14. Pneumonia in novel swine-origin influenza A (H1N1) virus infection: High-resolution CT findings

    International Nuclear Information System (INIS)

    Li Ping; Su Dongju; Zhang Jifeng; Xia Xudong; Sui Hong; Zhao Donghui

    2011-01-01

    Objective: The purpose of our study was to review the initial high-resolution CT (HRCT) findings in pneumonia patients with presumed/laboratory-confirmed novel swine-origin influenza A (H1N1) virus (S-OIV) infection and detect pneumonia earlier. Materials and methods: High-resolution CT (HRCT) findings of 106 patients with presumed/laboratory-confirmed novel S-OIV (H1N1) infection were reviewed. The 106 patients were divided into two groups according to the serious condition of the diseases. The pattern (consolidation, ground-glass, nodules, and reticulation), distribution, and extent of abnormality on the HRCT were evaluated in both groups. The dates of the onset of symptoms of the patients were recorded. Results: The predominant CT findings in the patients at presentation were unilateral or bilateral multifocal asymmetric ground-glass opacities alone (n = 29, 27.4%), with unilateral or bilateral consolidation (n = 50, 47.2%). The consolidation had peribronchovascular and subpleural predominance. The areas of consolidation were found mainly in the posterior, middle and lower regions of the lungs. Reticular opacities were found in 6 cases of the initial MDCT scan. The extent of disease was greater in group 1 patients requiring advanced mechanical ventilation, with diffuse involvement in 19 patients (63.3%) of group 1 patients, and only 15/76 (19.7%) of group 2 patients (p 2 test). 20 cases (19%) of the 106 patients had small bilateral or unilateral pleural effusions. None had evidence of hilar or mediastinal lymph node enlargement on CT performed at admission or later. Conclusions: The most common radiographic and CT findings in patients with S-OIV infection are unilateral or bilateral ground-glass opacities with or without associated focal or multifocal areas of consolidation. On HRCT, the ground-glass opacities had a predominant peribronchovascular and subpleural distribution. CT plays an important role in the early recognition of severe S-OIV (H1N1).

  15. Multi-scale graphene patterns on arbitrary substrates via laser-assisted transfer-printing process

    KAUST Repository

    Park, J. B.

    2012-01-01

    A laser-assisted transfer-printing process is developed for multi-scale graphene patterns on arbitrary substrates using femtosecond laser scanning on a graphene/metal substrate and transfer techniques without using multi-step patterning processes. The short pulse nature of a femtosecond laser on a graphene/copper sheet enables fabrication of high-resolution graphene patterns. Thanks to the scale up, fast, direct writing, multi-scale with high resolution, and reliable process characteristics, it can be an alternative pathway to the multi-step photolithography methods for printing arbitrary graphene patterns on desired substrates. We also demonstrate transparent strain devices without expensive photomasks and multi-step patterning process. © 2012 American Institute of Physics.

  16. Metal nanoparticle-doped coloured films on glass and ...

    Indian Academy of Sciences (India)

    coloured coatings (yellow to pink) on polycarbonate substrates after curing. ... followed by thermal annealing (in the case of glass substrates) or UV curing (in the ... Two representative samples of compositions SiO2 : TiO2 = 1 : 0 and 2 : 3 ...

  17. Effects of substrate on piezoelectricity of electrospun poly(vinylidene fluoride)-nanofiber-based energy generators.

    Science.gov (United States)

    Lee, Byoung-Sun; Park, Boongik; Yang, Ho-Sung; Han, Jin Woo; Choong, Chweelin; Bae, Jihyun; Lee, Kihwan; Yu, Woong-Ryeol; Jeong, Unyong; Chung, U-In; Park, Jong-Jin; Kim, Ohyun

    2014-03-12

    We report the effects of various substrates and substrate thicknesses on electrospun poly(vinylidene fluoride) (PVDF)-nanofiber-based energy harvesters. The electrospun PVDF nanofibers showed an average diameter of 84.6 ± 23.5 nm. A high relative β-phase fraction (85.2%) was achieved by applying high voltage during electrospinning. The prepared PVDF nanofibers thus generated considerable piezoelectric potential in accordance with the sound-driven mechanical vibrations of the substrates. Slide glass, poly(ethylene terephthalate), poly(ethylene naphthalate), and paper substrates were used to investigate the effects of the intrinsic and extrinsic substrate properties on the piezoelectricity of the energy harvesters. The thinnest paper substrate (66 μm) with a moderate Young's modulus showed the highest voltage output (0.4885 V). We used high-performance 76, 66, and 33 μm thick papers to determine the effect of paper thickness on the output voltage. The thinnest paper substrate resulted in the highest voltage output (0.7781 V), and the numerical analyses of the sound-driven mechanical deformation strongly support the hypothesis that substrate thickness has a considerable effect on piezoelectric performance.

  18. Structural relaxation and thermal conductivity of high-pressure formed, high-density di-n-butyl phthalate glass and pressure induced departures from equilibrium state.

    Science.gov (United States)

    Johari, G P; Andersson, Ove

    2017-06-21

    We report a study of structural relaxation of high-density glasses of di-n-butyl phthalate (DBP) by measuring thermal conductivity, κ, under conditions of pressure and temperature (p,T) designed to modify both the vibrational and configurational states of a glass. Various high-density glassy states of DBP were formed by (i) cooling the liquid under a fixed high p and partially depressurizing the glass, (ii) isothermal annealing of the depressurized glass, and (iii) pressurizing the glass formed by cooling the liquid under low p. At a given low p, κ of the glass formed by cooling under high p is higher than that of the glass formed by cooling under low p, and the difference increases as glass formation p is increased. κ of the glass formed under 1 GPa is ∼20% higher at ambient p than κ of the glass formed at ambient p. On heating at low p, κ decreases until the glass to liquid transition range is reached. This is the opposite of the increase in κ observed when a glass formed under a certain p is heated under the same p. At a given high p, κ of the low-density glass formed by cooling at low p is lower than that of the high-density glass formed by cooling at that high p. On heating at high p, κ increases until the glass to liquid transition range is reached. The effects observed are due to a thermally assisted approach toward equilibrium at p different from the glass formation p. In all cases, the density, enthalpy, and entropy would change until the glasses become metastable liquids at a fixed p, thus qualitatively relating κ to variation in these properties.

  19. Formation of Au nano-patterns on various substrates using simplified nano-transfer printing method

    Science.gov (United States)

    Kim, Jong-Woo; Yang, Ki-Yeon; Hong, Sung-Hoon; Lee, Heon

    2008-06-01

    For future device applications, fabrication of the metal nano-patterns on various substrates, such as Si wafer, non-planar glass lens and flexible plastic films become important. Among various nano-patterning technologies, nano-transfer print method is one of the simplest techniques to fabricate metal nano-patterns. In nano-transfer printing process, thin Au layer is deposited on flexible PDMS mold, containing surface protrusion patterns, and the Au layer is transferred from PDMS mold to various substrates due to the difference of bonding strength of Au layer to PDMS mold and to the substrate. For effective transfer of Au layer, self-assembled monolayer, which has strong bonding to Au, is deposited on the substrate as a glue layer. In this study, complicated SAM layer coating process was replaced to simple UV/ozone treatment, which can activates the surface and form the -OH radicals. Using simple UV/ozone treatments on both Au and substrate, Au nano-pattern can be successfully transferred to as large as 6 in. diameter Si wafer, without SAM coating process. High fidelity transfer of Au nano-patterns to non-planar glass lens and flexible PET film was also demonstrated.

  20. Identifying suitable substrates for high-quality graphene-based heterostructures

    Science.gov (United States)

    Banszerus, L.; Janssen, H.; Otto, M.; Epping, A.; Taniguchi, T.; Watanabe, K.; Beschoten, B.; Neumaier, D.; Stampfer, C.

    2017-06-01

    We report on a scanning confocal Raman spectroscopy study investigating the strain-uniformity and the overall strain and doping of high-quality chemical vapour deposited (CVD) graphene-based heterostuctures on a large number of different substrate materials, including hexagonal boron nitride (hBN), transition metal dichalcogenides, silicon, different oxides and nitrides, as well as polymers. By applying a hBN-assisted, contamination free, dry transfer process for CVD graphene, high-quality heterostructures with low doping densities and low strain variations are assembled. The Raman spectra of these pristine heterostructures are sensitive to substrate-induced doping and strain variations and are thus used to probe the suitability of the substrate material for potential high-quality graphene devices. We find that the flatness of the substrate material is a key figure for gaining, or preserving high-quality graphene.

  1. High-Resolution Printing of 3D Structures Using an Electrohydrodynamic Inkjet with Multiple Functional Inks.

    Science.gov (United States)

    An, Byeong Wan; Kim, Kukjoo; Lee, Heejoo; Kim, So-Yun; Shim, Yulhui; Lee, Dae-Young; Song, Jun Yeob; Park, Jang-Ung

    2015-08-05

    Electrohydrodynamic-inkjet-printed high-resolution complex 3D structures with multiple functional inks are demonstrated. Printed 3D structures can have a variety of fine patterns, such as vertical or helix-shaped pillars and straight or rounded walls, with high aspect ratios (greater than ≈50) and narrow diameters (≈0.7 μm). Furthermore, the formation of freestanding, bridge-like Ag wire structures on plastic substrates suggests substantial potentials as high-precision, flexible 3D interconnects. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. High-level waste borosilicate glass: A compendium of corrosion characteristics. Volume 3

    International Nuclear Information System (INIS)

    Cunnane, J.C.

    1994-03-01

    The objective of this document is to summarize scientific information pertinent to evaluating the extent to which high-level waste borosilicate glass corrosion and the associated radionuclide release processes are understood for the range of environmental conditions to which waste glass may be exposed in service. Alteration processes occurring within the bulk of the glass (e.g., devitrification and radiation-induced changes) are discussed insofar as they affect glass corrosion. Volume III contains a bibliography of glass corrosion studies, including studies that are not cited in Volumes I and II

  3. High-level waste borosilicate glass: A compendium of corrosion characteristics. Volume 3

    Energy Technology Data Exchange (ETDEWEB)

    Cunnane, J.C. [comp.; Bates, J.K.; Bradley, C.R. [Argonne National Lab., IL (United States)] [and others

    1994-03-01

    The objective of this document is to summarize scientific information pertinent to evaluating the extent to which high-level waste borosilicate glass corrosion and the associated radionuclide release processes are understood for the range of environmental conditions to which waste glass may be exposed in service. Alteration processes occurring within the bulk of the glass (e.g., devitrification and radiation-induced changes) are discussed insofar as they affect glass corrosion. Volume III contains a bibliography of glass corrosion studies, including studies that are not cited in Volumes I and II.

  4. Permanent disposal by burial of highly radioactive wastes incorporated into glass

    International Nuclear Information System (INIS)

    Merritt, W.F.

    1967-01-01

    A method has been developed at Chalk River for incorporating high-level fission product wastes from nuclear fuel processing into glass blocks for ultimate disposal. Nitric acid solutions of fission products were mixed with nepheline-syenite and lime in crucibles and fired in a kiln to a temperature of 1350 o C to form a glass with high resistance to leaching. Two test disposals of glass blocks were made into the ground below the water table. The first, in August 1958, contained about 300 Ci in 25 blocks of a highly resistant glass. The second, in May 1960, contained about 1100 Ci in 25 blocks of a less resistant formulation. Monitoring of the two tests has continued for eight and six years respectively. A soil sampling programme has indicated that the leaching rate tended to decrease with time and is now less than 10 -10 g/cm 2 per day, or two orders of magnitude lower than that predicted from laboratory leaching tests. These results indicate that the method is suitable for permanent disposal of high-level nuclear wastes and that the blocks could be buried unprotected in a controlled area, even in saturated sand of low exchange capacity. Burial above the saturated zone in an and region would result in even less release of radioactivity from the glass. (author)

  5. High-energy γ-irradiation effect on physical ageing in Ge-Se glasses

    International Nuclear Information System (INIS)

    Golovchak, R.; Kozdras, A.; Kozyukhin, S.; Shpotyuk, O.

    2009-01-01

    Effect of Co 60 γ-irradiation on physical ageing in binary Ge x Se 100-x glasses (5 ≤ x ≤ 27) is studied using conventional differential scanning calorimetry method. It is shown, that high-energy irradiation leads to additional increase in the glass transition temperature and endothermic peak area near the glass transition region over the one induced by isochronal storage of these glasses at normal conditions. This γ-induced physical ageing is shown to be well-pronounced in Se-rich glasses (x < 20), while only negligible changes are recorded for glasses of 20 ≤ x ≤ 27 compositions. The effect under consideration is supposed to be associated with γ-activated structural relaxation of the glass network towards thermodynamic equilibrium of supercooled liquid.

  6. High-energy {gamma}-irradiation effect on physical ageing in Ge-Se glasses

    Energy Technology Data Exchange (ETDEWEB)

    Golovchak, R. [Lviv Scientific Research Institute of Materials of SRC ' Carat' , 202 Stryjska Str., Lviv, UA-79031 (Ukraine); Kozdras, A. [Department of Physics of Opole University of Technology, 75 Ozimska Str., Opole, PL-45370 (Poland); Department of Economy of Academy of Management and Administration in Opole, 18 Niedzialkowski Str., Opole, PL-45085 (Poland); Kozyukhin, S. [Institute of General and Inorganic Chemistry of RAS, Leninsky Pr. 31, Moscow 199991 (Russian Federation); Shpotyuk, O. [Lviv Scientific Research Institute of Materials of SRC ' Carat' , 202 Stryjska Str., Lviv, UA-79031 (Ukraine); Institute of Physics of Jan Dlugosz University, 13/15 al. Armii Krajowej, Czestochowa, PL-42201 (Poland)], E-mail: shpotyuk@novas.lviv.ua

    2009-09-01

    Effect of Co{sup 60} {gamma}-irradiation on physical ageing in binary Ge{sub x}Se{sub 100-x} glasses (5 {<=} x {<=} 27) is studied using conventional differential scanning calorimetry method. It is shown, that high-energy irradiation leads to additional increase in the glass transition temperature and endothermic peak area near the glass transition region over the one induced by isochronal storage of these glasses at normal conditions. This {gamma}-induced physical ageing is shown to be well-pronounced in Se-rich glasses (x < 20), while only negligible changes are recorded for glasses of 20 {<=} x {<=} 27 compositions. The effect under consideration is supposed to be associated with {gamma}-activated structural relaxation of the glass network towards thermodynamic equilibrium of supercooled liquid.

  7. The design and test of ellipsoidal glass capillaries as condensers for X-ray microscope

    International Nuclear Information System (INIS)

    Tian Jinping; Li Wenjie; Chen Jie; Liu Gang; Xiong Ying; Liu Longhua; Huang Xinlong; Tian Yangchao

    2008-01-01

    A high resolution X-ray microscope endstation was constructed on a wiggler beamline at the National Synchrotron Radiation Laboratory (NSRL). Parameters of the ellipsoidal glass capillaries as condensers were calculated and designed based on the illumination requests in the X-ray microscope system. Performance of the ellipsoidal glass capillaries was tested. The results indicate that the beam size agrees with the designed parameters and focus efficiencies of the ellipsoidal glass capillary condensers are better than 85%. (authors)

  8. Electronic states of SiO2-MxOy (MxOy=P205, TiO2 and ZrO2) glasses

    Energy Technology Data Exchange (ETDEWEB)

    Kowada, Y [Hyogo Univ. of Teacher Education, Hyogo (Japan); Adachi, H [Kyoto Univ. (Japan). Faculty of Engineering; Minami, T [Univ. of Osaka Prefecture, Osaka (Japan). Faculty of Engineering

    1993-12-01

    Using the sol-gel method the surface of metal and glass substrates can be modified. For example, stainless steel sheets coated with the SiO2-ZrO2 glass films have higher resistance to corrosion and oxidation. The coating films contain high concentration of alkali ions diffusing from the glass substrates. It suggests that the sodium ions are trapped strongly within the coating films and are blocked to further diffuse to the surface. This behavior must be associated with the chemical bonding around the sodium ions in the SiO2-TiO2 and SiO2-ZrO2 films. For better understanding of the chemical bonding in the glasses, the electronic states of the SiO2-MxOy glasses were calculated by means of the DV-Xa cluster method. In this paper, the calculation method is explained, the results are discussed and the conclusion is stated. 17 refs., 6 figs.

  9. Properties and structure of high erbium doped phosphate glass for short optical fibers amplifiers

    International Nuclear Information System (INIS)

    Seneschal, Karine; Smektala, Frederic; Bureau, Bruno; Floch, Marie Le; Jiang Shibin; Luo, Tao; Lucas, Jacques; Peyghambarian, Nasser

    2005-01-01

    New phosphate glasses have been developed in order to incorporate high rare-earth ions concentrations. These glasses present a great chemical stability and a high optical quality. The phosphate glass network is open, very flexible, with a linkage of the tetrahedrons very disordered and contains a larger number of non-bridging oxygens (66%). The great stability and resistance against crystallization associated with the possibility to incorporate high doping concentration of rare-earth ions in these phosphate glasses make them very good candidates for the realization of ultra short single mode amplifiers with a high gain at 1.55 μm

  10. High-Temperature Thermal Diffusivity Measurements of Silicate Glasses

    Science.gov (United States)

    Pertermann, M.; Hofmeister, A. M.; Whittington, A. G.; Spera, F. J.; Zayac, J.

    2005-12-01

    Transport of heat in geologically relevant materials is of great interest because of its key role in heat transport, magmatism and volcanic activity on Earth. To better understand the thermal properties of magmatic materials at high temperatures, we measured the thermal diffusivity of four synthetic end-member silicate glasses with the following compositions: albite (NaAlSi3O8), orthoclase (KAlSi3O8), anorthite (CaAl2Si2O8), and diopside (CaMgSi2O6). Thermal diffusivity measurements were conducted with the laser-flash technique and data were acquired from room temperature to a maximum temperature near 1100°C, depending on the glass transition temperature. The presence of sub-mm sized bubbles in one of the orthoclase samples had no discernable effect on measured diffusivities. At room temperature, the three feldspar-type glasses have thermal diffusivity (D) values of 0.58-0.61 mm2/s, whereas the diopside glass has 0.52 mm2/s. With increasing temperature, D decreases by 5-10% (relative) for all samples and becomes virtually constant at intermediate temperatures. At higher temperatures, the anorthite and diopside glasses exhibit significant drops in thermal diffusivity over a 50-100°C interval, correlating with previously published heat capacity changes near the glass transition for these compositions. For anorthite, D (in mm2/s) decreases from 0.48 at 750-860°C to 0.36 at 975-1075°C; for diopside, D changes from 0.42 at 630-750°C to 0.30 at 850-910°C, corresponding to relative drops of 24 and 29%, respectively. Albite and orthoclase glasses do not exhibit this change and also lack significant changes in heat capacity near the glass transition. Instead, D is constant at 400-800°C for albite, and for orthoclase values go through a minimum at 500-600°C before increasing slightly towards 1100°C but it never exceeds the room temperature D. Our data on thermal diffusivity correlate closely with other thermophysical properties. Thus, at least in case of simple

  11. Effect of the Substrate on Phonon Properties of Graphene Estimated by Raman Spectroscopy

    Science.gov (United States)

    Tivanov, M. S.; Kolesov, E. A.; Korolik, O. V.; Saad, A. M.; Komissarov, I. V.

    2018-01-01

    Low-temperature Raman studies of supported graphene are presented. A linear temperature dependence of 2D peak linewidths was observed with the coefficients of 0.036 and 0.033 cm^{-1}/K for graphene on copper and glass substrates, respectively, while G peak linewidths remained unchanged throughout the whole temperature range. The different values observed for graphene on glass and copper substrates were explained in terms of the substrate effect on phonon-phonon and electron-phonon interaction properties of the material. The results of the present study can be used to consider substrate effects on phonon transport in graphene for nanoelectronic device engineering.

  12. Effect of modified ITO substrate on electrochromic properties of polyaniline films

    Energy Technology Data Exchange (ETDEWEB)

    Leon-Silva, U.; Nicho, M.E.; Cruz-Silva, Rodolfo [Centro de Investigacion en Ingenieria y Ciencias Aplicadas, UAEMor, Av. Universidad 1001, Col. Chamilpa, 62209, Cuernavaca, Morelos (Mexico); Hu, Hailin [Departamento de Materiales Solares, Centro de Investigacion en Energia, UNAM, Av. Xochicalco S/N, Temixco, 62580, Morelos (Mexico)

    2007-09-22

    In this work, we report the morphological and electrochromic properties of electrochemically synthesized polyaniline (PANI) thin films on bare and modified indium-tin oxide (ITO) glass substrates. In the last case, the surface of ITO glass was covered by a self-assembled monolayer of N-phenyl-{gamma}-aminopropyl-trimethoxysilane (PAPTS). Atomic force microscopy images and perfilometry show that smoother and thinner PANI films were grown on PAPTS-modified ITO substrates. PANI-based electrochromic devices (ECDs) were assembled by using a viscous polymeric electrolyte (PE) of LiClO{sub 4} and polymethyl methacrylate (PMMA) co-dissolved in a mixture of propylene and ethylene carbonate. The architectural design of the devices was glass/ITO/PANI/PE/ITO/glass. A dual ECD was also prepared by collocating a poly(3-methylthiophene) (P3MT) thin film as a complementary electrochromic element. The effect of the PAPTS-modified ITO substrate is reflected in a higher optical transmittance at bleach state and a little less color change at 550 nm of PANI-based ECDs. (author)

  13. Lead iron phosphate glass as a containment medium for disposal of high-level nuclear waste

    Science.gov (United States)

    Boatner, Lynn A.; Sales, Brian C.

    1989-01-01

    Lead-iron phosphate glasses containing a high level of Fe.sub.2 O.sub.3 for use as a storage medium for high-level radioactive nuclear waste. By combining lead-iron phosphate glass with various types of simulated high-level nuclear waste, a highly corrosion resistant, homogeneous, easily processed glass can be formed. For corroding solutions at 90.degree. C., with solution pH values in the range between 5 and 9, the corrosion rate of the lead-iron phosphate nuclear waste glass is at least 10.sup.2 to 10.sup.3 times lower than the corrosion rate of a comparable borosilicate nuclear waste glass. The presence of Fe.sub.2 O.sub.3 in forming the lead-iron phosphate glass is critical. Lead-iron phosphate nuclear waste glass can be prepared at temperatures as low as 800.degree. C., since they exhibit very low melt viscosities in the 800.degree. to 1050.degree. C. temperature range. These waste-loaded glasses do not readily devitrify at temperatures as high as 550.degree. C. and are not adversely affected by large doses of gamma radiation in H.sub.2 O at 135.degree. C. The lead-iron phosphate waste glasses can be prepared with minimal modification of the technology developed for processing borosilicate glass nuclear wasteforms.

  14. Alignment and Distortion-Free Integration of Lightweight Mirrors into Meta-Shells for High-Resolution Astronomical X-Ray Optics

    Science.gov (United States)

    Chan, Kai-Wing; Zhang, William W.; Schofield, Mark J.; Numata, Ai; Mazzarella, James R.; Saha, Timo T.; Biskach, Michael P.; McCelland, Ryan S.; Niemeyer, Jason; Sharpe, Marton V.; hide

    2016-01-01

    High-resolution, high throughput optics for x-ray astronomy requires fabrication of well-formed mirror segments and their integration with arc-second level precision. Recently, advances of fabrication of silicon mirrors developed at NASA/Goddard prompted us to develop a new method of mirror integration. The new integration scheme takes advantage of the stiffer, more thermally conductive, and lower-CTE silicon, compared to glass, to build a telescope of much lighter weight. In this paper, we address issues of aligning and bonding mirrors with this method. In this preliminary work, we demonstrated the basic viability of such scheme. Using glass mirrors, we demonstrated that alignment error of 1" and bonding error 2" can be achieved for mirrors in a single shell. We will address the immediate plan to demonstrate the bonding reliability and to develop technology to build up a mirror stack and a whole "meta-shell".

  15. Demonstration of sulfur solubility determinations in high waste loading, low-activity waste glasses

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-04-25

    A method recommended by Pacific Northwest National Laboratory (PNNL) for sulfate solubility determinations in simulated low-activity waste glasses was demonstrated using three compositions from a recent Hanford high waste loading glass study. Sodium and sulfate concentrations in the glasses increased after each re-melting step. Visual observations of the glasses during the re-melting process reflected the changes in composition. The measured compositions showed that the glasses met the targeted values. The amount of SO3 retained in the glasses after washing was relatively high, ranging from 1.6 to 2.6 weight percent (wt %). Measured SnO2 concentrations were notably low in all of the study glasses. The composition of the wash solutions should be measured in future work to determine whether SnO2 is present with the excess sulfate washed from the glass. Increases in batch size and the amount of sodium sulfate added did not have a measureable impact on the amount of sulfate retained in the glass, although this was tested for only a single glass composition. A batch size of 250 g and a sodium sulfate addition targeting 7 wt %, as recommended by PNNL, will be used in future experiments.

  16. Minor component study for simulated high-level nuclear waste glasses (Draft)

    International Nuclear Information System (INIS)

    Li, H.; Langowskim, M.H.; Hrma, P.R.; Schweiger, M.J.; Vienna, J.D.; Smith, D.E.

    1996-02-01

    Hanford Site single-shell tank (SSI) and double-shell tank (DSI) wastes are planned to be separated into low activity (or low-level waste, LLW) and high activity (or high-level waste, HLW) fractions, and to be vitrified for disposal. Formulation of HLW glass must comply with glass processibility and durability requirements, including constraints on melt viscosity, electrical conductivity, liquidus temperature, tendency for phase segregation on the molten glass surface, and chemical durability of the final waste form. A wide variety of HLW compositions are expected to be vitrified. In addition these wastes will likely vary in composition from current estimates. High concentrations of certain troublesome components, such as sulfate, phosphate, and chrome, raise concerns about their potential hinderance to the waste vitrification process. For example, phosphate segregation in the cold cap (the layer of feed on top of the glass melt) in a Joule-heated melter may inhibit the melting process (Bunnell, 1988). This has been reported during a pilot-scale ceramic melter run, PSCM-19, (Perez, 1985). Molten salt segregation of either sulfate or chromate is also hazardous to the waste vitrification process. Excessive (Cr, Fe, Mn, Ni) spinel crystal formation in molten glass can also be detrimental to melter operation

  17. High-resolution monitoring across the soil-groundwater interface - Revealing small-scale hydrochemical patterns with a novel multi-level well

    Science.gov (United States)

    Gassen, Niklas; Griebler, Christian; Stumpp, Christine

    2016-04-01

    Biogeochemical turnover processes in the subsurface are highly variable both in time and space. In order to capture this variability, high resolution monitoring systems are required. Particular in riparian zones the understanding of small-scale biogeochemical processes is of interest, as they are regarded as important buffer zones for nutrients and contaminants with high turnover rates. To date, riparian research has focused on influences of groundwater-surface water interactions on element cycling, but little is known about processes occurring at the interface between the saturated and the unsaturated zone during dynamic flow conditions. Therefore, we developed a new type of high resolution multi-level well (HR-MLW) that has been installed in the riparian zone of the Selke river. This HR-MLW for the first time enables to derive water samples both from the unsaturated and the saturated zone across one vertical profile with a spatial vertical resolution of 0.05 to 0.5 m to a depth of 4 m b.l.s. Water samples from the unsaturated zone are extracted via suction cup sampling. Samples from the saturated zone are withdrawn through glass filters and steel capillaries. Both, ceramic cups and glass filters, are installed along a 1" HDPE piezometer tube. First high resolution hydrochemical profiles revealed a distinct depth-zonation in the riparian alluvial aquifer. A shallow zone beneath the water table carried a signature isotopically and hydrochemically similar to the nearby river, while layers below 1.5 m were influenced by regional groundwater. This zonation showed temporal dynamics related to groundwater table fluctuations and microbial turnover processes. The HR-MLW delivered new insight into mixing and turnover processes between riverwater and groundwater in riparian zones, both in a temporal and spatial dimension. With these new insights, we are able to improve our understanding of dynamic turnover processes at the soil - groundwater interface and of surface

  18. Physical and chemical characterization of borosilicate glasses containing Hanford high-level wastes

    International Nuclear Information System (INIS)

    Kupfer, M.J.; Palmer, R.A.

    1980-10-01

    Scouting studies are being performed to develop and evaluate silicate glass forms for immobilization of Hanford high-level wastes. Detailed knowledge of the physical and chemical properties of these glasses is required to assess their suitability for long-term storage or disposal. Some key properties to be considered in selecting a glass waste form include leach resistance, resistance to radiation, microstructure (includes devitrification behavior or crystallinity), homogeneity, viscosity, electrical resistivity, mechanical ruggedness, thermal expansion, thermal conductivity, density, softening point, annealing point, strain point, glass transformation temperature, and refractive index. Other properties that are important during processing of the glass include volatilization of glass and waste components, and corrosivity of the glass on melter components. Experimental procedures used to characterize silicate waste glass forms and typical properties of selected glass compositions containing simulated Hanford sludge and residual liquid wastes are presented. A discussion of the significance and use of each measured property is also presented

  19. High-resolution computed tomography findings in chronic eosinophilic vs. cryptogenic organising pneumonia.

    Science.gov (United States)

    Mehrian, P; Doroudinia, A; Rashti, A; Aloosh, O; Dorudinia, A

    2017-11-01

    The similar clinical and computed tomography (CT) characteristics of cryptogenic organising pneumonia (COP) and chronic eosinophilic pneumonia (CEP) make precise diagnosis challenging. To help differentiate between COP and CEP using high-resolution CT (HRCT). Clinical data and HRCT images of COP and CEP patients referred to Masih Daneshvari Hospital, Tehran, Iran, from 2007 to 2015 were reviewed. Diagnosis of COP or CEP was confirmed using open lung biopsy or a combination of transbronchial biopsy, bronchoalveolar lavage fluid (BALF) analysis, peripheral eosinophilia and a favourable response to corticosteroids. Ground-glass opacity, a dominant ground-glass pattern, upper-lobe pneumonia, increased thickness of bronchial walls and a mosaic pattern in the lungs were more frequent in CEP. Lower-lobe pneumonia, subpleural reticulation, a dominant consolidation pattern, nodules and masses, non-septal linear opacities, bronchial dilation and a reverse halo sign were more frequent in COP. History of asthma, wheezing and peripheral eosinophilia was significantly more common in CEP than in COP. Distinguishing between CEP and COP based on HRCT alone is not always possible. However, in many cases, especially if the correct diagnosis cannot be established by other means, certain HRCT features can be very helpful.

  20. Aluminum-doped zinc oxide thin films grown on various substrates using facing target sputtering system

    Science.gov (United States)

    Kim, Hwa-Min; Lee, Chang Hyun; Shon, Sun Young; Kim, Bong Hwan

    2017-11-01

    Aluminum-doped zinc oxide (AZO) films were fabricated on various substrates, such as glass, polyethylene naphthalate (PEN), and polyethylene terephthalate (PET), at room temperature using a facing target sputtering (FTS) system with hetero ZnO and Al2O3 targets, and their electrical and optical properties were investigated. The AZO film on glass exhibited compressive stress while the films on the plastic substrates showed tensile stress. These stresses negatively affected the crystalline quality of the AZO films, and it is suggested that the poor crystalline quality of the films may be related to the neutral Al-based defect complexes formed in the films; these complexes act as neutral impurity scattering centers. AZO films with good optoelectronic properties could be formed on the glass and plastic substrates by the FTS technique using the hetero targets. The AZO films deposited on the glass, PEN, and PET substrates showed very low resistivities, of 5.0 × 10-4 Ω cm, 7.0 × 10-4 Ω cm, and 7.4 × 10-4 Ω cm, respectively. Further, the figure merit of the AZO film formed on the PEN substrate in the visible range (400-700 nm) was significantly higher than that of the AZO film on PET and similar to that of the AZO film on glass. Finally, the average transmittances of the films in the visible range (400-700 nm) were 83.16% (on glass), 76.3% (on PEN), and 78.16% (on PET).

  1. Systematic approach to preparing ceramic-glass composites with high translucency for dental restorations.

    Science.gov (United States)

    Yoshimura, Humberto N; Chimanski, Afonso; Cesar, Paulo F

    2015-10-01

    Ceramic composites are promising materials for dental restorations. However, it is difficult to prepare highly translucent composites due to the light scattering that occurs in multiphase ceramics. The objective of this work was to verify the effectiveness of a systematic approach in designing specific glass compositions with target properties in order to prepare glass infiltrated ceramic composites with high translucency. First it was necessary to calculate from literature data the viscosity of glass at the infiltration temperature using the SciGlass software. Then, a glass composition was designed for targeted viscosity and refractive index. The glass of the system SiO2-B2O3-Al2O3-La2O3-TiO2 prepared by melting the oxide raw materials was spontaneously infiltrated into porous alumina preforms at 1200°C. The optical properties were evaluated using a refractometer and a spectrophotometer. The absorption and scattering coefficients were calculated using the Kubelka-Munk model. The light transmittance of prepared composite was significantly higher than a commercial ceramic-glass composite, due to the matching of glass and preform refractive indexes which decreased the scattering, and also to the decrease in absorption coefficient. The proposed systematic approach was efficient for development of glass infiltrated ceramic composites with high translucency, which benefits include the better aesthetic performance of the final prosthesis. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  2. High-level radioactive waste glass and storage canister design

    International Nuclear Information System (INIS)

    Slate, S.C.; Ross, W.A.

    1979-01-01

    Management of high-level radioactive wastes is a primary concern in nuclear operations today. The main objective in managing these wastes is to convert them into a solid, durable form which is then isolated from man. A description is given of the design and evaluation of this waste form. The waste form has two main components: the solidified waste and the storage canister. The solid waste form discussed in this study is glass. Waste glasses have been designed to be inert to water attack, physically rugged, low in volatility, and stable over time. Two glass-making processes are under development at PNL. The storage canister is being designed to provide high-integrity containment for solidified wastes from processing to terminal storage. An outline is given of the steps in canister design: material selection, stress and thermal analyses, quality verification, and postfill processing. Examples are given of results obtained from actual nonradioactive demonstration tests. 14 refs

  3. Berkeley High-Resolution Ball

    International Nuclear Information System (INIS)

    Diamond, R.M.

    1984-10-01

    Criteria for a high-resolution γ-ray system are discussed. Desirable properties are high resolution, good response function, and moderate solid angle so as to achieve not only double- but triple-coincidences with good statistics. The Berkeley High-Resolution Ball involved the first use of bismuth germanate (BGO) for anti-Compton shield for Ge detectors. The resulting compact shield permitted rather close packing of 21 detectors around a target. In addition, a small central BGO ball gives the total γ-ray energy and multiplicity, as well as the angular pattern of the γ rays. The 21-detector array is nearly complete, and the central ball has been designed, but not yet constructed. First results taken with 9 detector modules are shown for the nucleus 156 Er. The complex decay scheme indicates a transition from collective rotation (prolate shape) to single- particle states (possibly oblate) near spin 30 h, and has other interesting features

  4. A High Position Resolution X-ray Detector: an Edge on Illuminated Capillary Plate Combined with a Gas Amplification Structure

    CERN Document Server

    Iacobaeus, C.; Lund-Jensen, B.; Ostling, J.; Pavlopoulos, P.; Peskov, V.; Tokanai, F.

    2006-01-01

    We have developed and successfully tested a prototype of a new type of high position resolution hybrid X-ray detector. It contains a thin wall lead glass capillary plate converter of X-rays combined with a microgap parallel-plate avalanche chamber filled with gas at 1 atm. The operation of these converters was studied in a wide range of X-ray energies (from 6 to 60 keV) at incident angles varying from 0-90 degree. The detection efficiency, depending on the geometry, photon energy, incident angle and the mode of operation, was between 5-30 percent in a single step mode and up to 50 percent in a multi-layered combination. Depending on the capillary geometry, the position resolution achieved was between 0.050-0.250 mm in digital form and was practically independent of the photon energy or gas mixture. The usual lead glass capillary plates operated without noticeable charging up effects at counting rates of 50 Hz/mm2, and hydrogen treated capillaries up to 10E5 Hz/mm2. The developed detector may open new possibil...

  5. Influence of the Hydrothermal Method Growth Parameters on the Zinc Oxide Nanowires Deposited on Several Substrates

    Directory of Open Access Journals (Sweden)

    Concepción Mejía-García

    2014-01-01

    Full Text Available We report the synthesis of ZnO nanowires grown on several substrates (PET, glass, and Si using a two-step process: (a preparation of the seed layer on the substrate by spin coating, from solutions of zinc acetate dihydrate and 1-propanol, and (b growth of the ZnO nanostructures by dipping the substrate in an equimolar solution of zinc nitrate hexahydrate and hexamethylenetetramine. Subsequently, films were thermally treated with a commercial microwave oven (350 and 700 W for 5, 20, and 35 min. The ZnO nanowires obtained were characterized structurally, morphologically, and optically using XRD, SEM, and UV-VIS transmission, respectively. XRD patterns spectra revealed the presence of Zn(OH2 on the films grown on glass and Si substrates. A preferential orientation along c-axis directions for films grown on PET substrate was observed. An analysis by SEM revealed that the growth of the ZnO nanowires on PET and glass is better than the growth on Si when the same growth parameters are used. On glass substrates, ZnO nanowires less than 50 nm in diameter and between 200 nm and 1200 nm in length were obtained. The ZnO nanowires band gap energy for the films grown on PET and glass was obtained from optical transmission spectra.

  6. Unusual inhomogeneous microstructures in charge glass state of PbCrO3

    Science.gov (United States)

    Kurushima, Kosuke; Tsukasaki, Hirofumi; Ogata, Takahiro; Sakai, Yuki; Azuma, Masaki; Ishii, Yui; Mori, Shigeo

    2018-05-01

    We investigated the microstructures and local structures of perovskite PbCrO3, which shows a metal-to-insulator transition and a 9.8% volume collapse, by electron diffraction, high-resolution transmission electron microscopy (TEM), and high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM). It is revealed that the charge glass state is characterized by the unique coexistence of the crystalline state with a cubic symmetry on average and the noncrystalline state. HAADF-STEM observation at atomic resolution revealed that Pb ions were displaced from the ideal A site position of the cubic perovskite structure, which gives rise to characteristic diffuse scatterings around the fundamental Bragg reflections. These structural inhomogeneities are crucial to the understanding of the unique physical properties in the charge glass state of PbCrO3.

  7. On the use of Plexiglass Substrates for Neutron Mirrors

    International Nuclear Information System (INIS)

    Maayouf, R.M.A.

    2009-01-01

    The work deals with neutron reflectivity measurements performed for Ni films coated on different types of the commercially available plexiglass substrates. The Ni coatings were Ni Cr (80% Ni, 20% Cr), 58 Ni and natural nickel. The reflectivity behaviors of 58 Ni and natural nickel are compared with a present measurement performed for a 58 Ni film (150 nm thick) coated on glass substrate. Some of the present mirrors were measured several years before and are included in the presented measurements in order to check the quality of the plexiglass mirrors over years. It has been found, from the presented measurements, that plexiglass, as a substrate, successfully substitutes glass and the quality of the Ni coating can last for several years without deterioration.

  8. Glass consistency and glass performance

    International Nuclear Information System (INIS)

    Plodinec, M.J.; Ramsey, W.G.

    1994-01-01

    Glass produced by the Defense Waste Processing Facility (DWPF) will have to consistently be more durable than a benchmark glass (evaluated using a short-term leach test), with high confidence. The DWPF has developed a Glass Product Control Program to comply with this specification. However, it is not clear what relevance product consistency has on long-term glass performance. In this report, the authors show that DWPF glass, produced in compliance with this specification, can be expected to effectively limit the release of soluble radionuclides to natural environments. However, the release of insoluble radionuclides to the environment will be limited by their solubility, and not glass durability

  9. A large-area glass-resistive plate chamber with multistrip readout

    CERN Document Server

    Petrovici, M; Hildenbrand, K D; Augustinski, G; Ciobanu, M; Cruceru, I; Duma, M; Hartmann, O; Koczón, P; Kress, T; Marquardt, M; Moisa, D; Petris, M; Schröder, C; Simion, V; Stoicea, G; Weinert, J

    2002-01-01

    A completely new configuration of a glass resistive-plate chamber (GRPC) was built and tested. It consists of a double two-gap structure of electrodes with an active area of about 400 cm sup 2 and is read out via a central multistrip printed circuit board. In measurements with a sup 6 sup 0 Co source and p, d particles of 1.5 A GeV time resolutions better than 80 ps, position resolution along the strips of 5-6 mm and efficiencies larger than 95% were obtained using available fast standard electronics. These results open the possibility of constructing compact TOF detectors of high resolution and high granularity.

  10. Effect of different glasses in glass bonded zeolite

    International Nuclear Information System (INIS)

    Lewis, M.A.; Ackerman, J.P.; Verma, S.

    1995-01-01

    A mineral waste form has been developed for chloride waste salt generated during the pyrochemical treatment of spent nuclear fuel. The waste form consists of salt-occluded zeolite powders bound within a glass matrix. The zeolite contains the salt and immobilizes the fission products. The zeolite powders are hot pressed to form a mechanically stable, durable glass bonded zeolite. Further development of glass bonded zeolite as a waste form requires an understanding of the interaction between the glass and the zeolite. Properties of the glass that enhance binding and durability of the glass bonded zeolite need to be identified. Three types of glass, boroaluminosilicate, soda-lime silicate, and high silica glasses, have a range of properties and are now being investigated. Each glass was hot pressed by itself and with an equal amount of zeolite. MCC-1 leach tests were run on both. Soda-lime silicate and high silica glasses did not give a durable glass bonded zeolite. Boroaluminosilicate glasses rich in alkaline earths did bind the zeolite and gave a durable glass bonded zeolite. Scanning electron micrographs suggest that the boroaluminosilicate glasses wetted the zeolite powders better than the other glasses. Development of the glass bonded zeolite as a waste form for chloride waste salt is continuing

  11. Study of micro-strip gas ionisation chambers substrates for CMS experiment at LHC

    International Nuclear Information System (INIS)

    Pallares, A.

    1996-01-01

    High luminosity, expected interaction and dose rates of the future LHC collider require the development of micro-strips gas chambers. In addition to optimization of this new detector, this work is concerned with understanding of gain loss phenomena. Influence of the gas substrate is carefully analysed, as well as theoretical concepts concerning glasses and their behaviour under polarization and irradiation, and the consequence on detection operations.Electron spin resonance is used to study, in standard glass, creation of radiation induced defects which may be charged. (D.L.)

  12. Active disease and residual damage in treated Wegener's granulomatosis: an observational study using pulmonary high-resolution computed tomography

    International Nuclear Information System (INIS)

    Komocsi, Andras; Reuter, Michael; Heller, Martin; Murakoezi, Henriette; Gross, Wolfgang L.; Schnabel, Armin

    2003-01-01

    The purpose of this study was to determine to what extent high-resolution computed tomography (HRCT) of the lungs can distinguish active inflammatory disease from inactive cicatricial disease in patients treated for Wegener's granulomatosis (WG). Twenty-eight WG patients with active pulmonary disease underwent a first HRCT examination immediately before standard immunosuppressive treatment and a second examination after clinical remission had been achieved. Lesions remaining after treatment were categorized as residual damage and were compared with findings during active disease to see by what features active and cicatricial disease can be distinguished. During active disease 17 patients had nodules/masses, 12 had ground-glass opacities, 6 had septal lines and 6 had non-septal lines. After treatment, ground-glass opacities had resolved completely. Nodules/masses had resolved in 8 patients and had diminished in 7 patients. Residual nodules were distinguished from nodules/masses in active disease by lack of cavitation and a diameter of mostly <15 mm. In one-third of patients lines resolved, but in 8 instances new lines evolved during immunosuppression. During a follow-up period of a median 26.5 months (range 20.0-33.8), patients with residual nodules or lines had no more relapses than patients with completely cleared lungs. Treated pulmonary WG leaves substantial residual damage. High-resolution CT does assist in the distinction between active and inactive lesions. Ground-glass opacities, cavitating nodules/masses and masses measuring more than 3 cm represent active disease ordinarily. Non-cavitary small nodules and septal or non-septal lines can be either active or cicatricial lesions. The nature of these lesions needs to be clarified by longitudinal observation. (orig.)

  13. Pulmonary malaria: high-resolution computed tomography findings - a case report; Malaria pulmonar: aspectos na tomografia computadorizada de alta resolucao - relato de caso

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Rosana; Souza, Daniel Andrade Tinoco de [Universidade Federal, Rio de Janeiro, RJ (Brazil). Hospital Universitario Clementino Fraga Filho. Servico de Radiodiagnostico; Hospital Copa D' Or, Rio de Janeiro, RJ (Brazil); Marchiori, Edson [Universidade Federal Fluminense, Niteroi, RJ (Brazil). Dept. de Radiologia]. E-mail: edmarchiori@bol.com.br

    2004-04-01

    We report the case of a 38-year-old man with pulmonary malaria. High-resolution computed tomography showed thickening of the peribronchovascular interstitium and interlobular septa, areas of consolidation and ground glass attenuation and bilateral pleural effusion suggesting pulmonary edema. The patient recovered well after receiving specific treatment and was discharged after 11 days of hospitalization. (author)

  14. Deposition, characterization, and tribological applications of near-frictionless carbon films on glass and ceramic substrates

    International Nuclear Information System (INIS)

    Eryilmaz, O L; Johnson, J A; Ajayi, O O; Erdemir, A

    2006-01-01

    As an element, carbon is rather unique and offers a range of rare opportunities for the design and fabrication of zero-, one-, two-, and three-dimensional nanostructured novel materials and coatings such as fullerenes, nanotubes, thin films, and free-standing nano-to-macroscale structures. Among these, carbon-based two-dimensional thin films (such as diamond and diamond-like carbon (DLC)) have attracted an overwhelming interest in recent years, mainly because of their exceptional physical, chemical, mechanical, electrical, and tribological properties. In particular, certain DLC films were found to provide extremely low friction and wear coefficients to sliding metallic and ceramic surfaces. Since the early 1990s, carbon has been used at Argonne National Laboratory to synthesize a class of novel DLC films that now provide friction and wear coefficients as low as 0.001 and 10 -11 -10 -10 mm 3 N -1 m -1 , respectively, when tested in inert or vacuum test environments. Over the years, we have optimized these films and applied them successfully to all kinds of metallic and ceramic substrates and evaluated their friction and wear properties under a wide range of sliding conditions. In this paper, we will provide details of our recent work on the deposition, characterization, and tribological applications of near-frictionless carbon films on glass and ceramic substrates. We will also provide chemical and structural information about these films and describe the fundamental tribological mechanisms that control their unusual friction and wear behaviour

  15. Nonspecific interstitial pneumonia: Histologic correlation with high-resolution CT in 29 patients

    Energy Technology Data Exchange (ETDEWEB)

    Sumikawa, Hiromitsu [Department of Radiology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0825 (Japan)], E-mail: h-sumikawa@radiol.med.osaka-u.ac.jp; Johkoh, Takeshi [Department of Radiology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0825 (Japan); Department of Medical Physics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0825 (Japan); Ichikado, Kazuya [Division of Respiratory Medicine, Saiseikai Kumamoto Hospital, 5-3-1 Tikami, Kumamoto 861-4193 (Japan); Taniguchi, Hiroyuki; Kondoh, Yasuhiro [Department of Respiratory Medicine and Allergy, Tosei General Hospital, 160 Nishioiwake-cho, Seto City, Aichi (Japan); Fujimoto, Kiminori [Department of Radiology, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011 (Japan); Yanagawa, Masahiro; Inoue, Atsuo; Mihara, Naoki; Honda, Osamu; Tomiyama, Noriyuki; Nakamura, Hironobu [Department of Radiology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0825 (Japan); Colby, Thomas V. [Department of Pathology, Mayo Clinic, Scottsdale, AZ (United States)

    2009-04-15

    Purpose: To determine the pathological correlation with various high-resolution CT (HRCT) findings in cases with nonspecific interstitial pneumonia (NSIP), paying special attention to pathological subgroups. Material and methods: The study involved 29 patients diagnosed with NSIP by surgical lung biopsy. A total of 54 specimens were obtained and grouped according to Katzenstein's classification (groups 1-3) for NSIP. Two observers then evaluated the HRCT findings for every biopsy site and classified the findings according to the main pattern evident into the following four radiologic pattern groups: A, ground-glass attenuation and fine reticulation; B, ground-glass and coarse reticulation; C, consolidation and D, ground-glass attenuation and consolidation. Results: The pathological pattern was NSIP group 1 in 6 patients, group 2 in 22 and group 3 in 25, while 1 specimen was normal. The main HRCT pattern was pattern A in 15 specimens, B in 8, C in 9 and D in 21. Although there were no significant correlation between HRCT patterns and histological subgroups (Chi-square test, p = 0.07), pattern C was more frequently seen in group 2 (7 of 9) and pattern A was more common in group 3 (11 of 15). HRCT pattern A corresponded pathologically to areas of thickened alveolar septa with temporal uniformity. Pattern B correlated with areas with airspace enlargement/emphysema or dilation of small airways superimposed on thickened alveolar septa. Pattern C was pathologically associated with areas of severe thickened alveolar septa, mucin stasis in the small airways and intraluminal organization. Conclusion: The pathological backgrounds of the same CT findings in patients with NSIP varied among all pathological subgroups. Areas of ground-glass attenuation and air-space consolidation did not always correspond to reversible pathological findings.

  16. Accuracy of high-resolution CT in distinguishing between Pneumocystis carinii pneumonia and non-Pneumocystis carinii pneumonia in AIDS patients

    Energy Technology Data Exchange (ETDEWEB)

    Hidalgo, A.; Mauleon, S.; Andreu, J.; Caceres, J. [Department of Radiology, Hospital General Universitari Vall d' Hebron, Universitari Vall d' Hebron, Universitat Autonoma de Barcelona, Paseo Vall d' Hebron 119-129, 08035 Barcelona (Spain); Falco, V.; Crespo, M.; Ribera, E.; Pahissa, A. [Department of Medicine, Service of Infectious Diseases, Hospital General Universitari Vall d' Hebron, Universitari Vall d' Hebron, Universitat Autonoma de Barcelona, Paseo Vall d' Hebron 119-129, 08035 Barcelona (Spain)

    2003-05-01

    The aim of this study was to assess the value of high-resolution CT in distinguishing between Pneumocystis carinii and non-Pneumocystis carinii pneumonia (PCP) in patients HIV-positive and high risk to have PCP. We performed a prospective study in 30 patients with <200 CD4 lymphocytes, clinical symptoms of pulmonary disease and chest X-ray non-conclusive for pulmonary infection. Evaluated CT findings included ground-glass opacities, reticulation, tree-in-bud appearance, consolidation, cystic lesions, bronchiectasis and lymphadenopathies. The diagnosis of ''examination suggestive of PCP'' was applied to cases showing a diffuse or predominant ground-glass pattern in the upper fields, associated or not with reticulations and small cystic lesions. The sensitivity, specificity, positive predictive value and negative predictive value of high-resolution computed tomography (HRCT) for the diagnosis of PCP was 100, 83.3, 90.5 and 100%, respectively. Pneumocystis carinii pneumonia was not demonstrated in any of the cases classified as ''examination not suggestive of PCP''. Significant small airway disease was not observed in any of the PCP cases. We conclude that HRCT is a reliable method for differentiating PCP from other infectious processes in HIV-positive patients and a good method to rule our PCP. Its inclusion in the diagnostic algorithm of lung infections is justified in these patients. (orig.)

  17. Surface analysis of Borkron glass for neutron optics applications

    International Nuclear Information System (INIS)

    Farnoux, B.; Maaza, M.; Maaza, M.; Samuel, F.; Sella, C.

    1991-01-01

    Grazing Angle Neutron Reflectometry, Optical and Mechanical Roughness Profilometry techniques have been used to study the effects of the polishing operations on the surface of Borkron Schott glass (special borosilicate glass for neutron optics applications) as the polishing tool pressure P and the mean grain size of the polishing powder Φ. The neutron reflectivity investigations have shown that there is formation of a layer at the surface glass substrate. This layer is less dense than the bulk substrate and its thickness is around 60A. The optical and mechanical profilometry measurements have shown that both roughness and waviness decrease with P and Φ. All the experimental results show a good correlation between the neutron refractive index, the thickness and the roughness of the surface layer and the waviness of the glass surface with the two mechanical polishing parameters. The previous techniques have been completed by Secondary Ion Mass Spectroscopy and Atomic Force Microscopy measurements

  18. High resolution imaging of La0.5Ba0.5MnO-LaMnO superlattice

    International Nuclear Information System (INIS)

    Shapoval, O.; Belenchuk, A.; Verbeeck, J.; Moshnyaga, V.

    2013-01-01

    Full text: Artificial low dimensional systems of tailored on atomic layer level manganites is a very promising class of materials for future spintronic applications. The high resolution transmission electron microscopy imaging provides a powerful approach to extract structural, chemical and functional information on atomic level in a real space. Recently, we have reported on the Metalorganic Aerosol Deposition synthesis and properties of superlattices (SL) composed from (LaMnO 3 ) n and (La 0.5 Ba 0.5 MnO 3 ) 2n with n=1-2 of perovskite monolayers. The functional properties of digitally synthesized SL are similar to the optimal doped 'bulk' thin film material. The similarities between their properties can be interpreted in frame of the many-body interactions responsible for the properties of the single-layer and bilayer manganites. This work presents the systematic studies of atomically resolved structure of (LaMnO 3 ) n /(La 0.5 Ba 0.5 MnO 3 ) 2n , n=1 by high angle annular dark field scanning transmission electron microscopy (HAADF STEM) and electron energy loss spectroscopy (EELS). The combination of atomic-resolution Z-contrast and EELS represents a powerful method to link the atomic and electronic structure of solids with macroscopic properties. All images were obtained along orientations and low magnification one shows an overview of a whole 40-nm thick structure, whereas magnified high-resolution images demonstrate an epitaxial growth of LBMO/LMO superlattice on SrTiO 3 substrate. The SL-substrate interface is coherent and free of defects, but reveals a high level of La diffusion into SrTiO 3 . EELS together with STEM are used for probing of a local chemical composition as well as a local electronic state of transition metals and oxygen. Small modulations in the La and Ba EELS signals, which are corresponded to the LBMO and LMO layers, can be observed. The observed features at the substrate interface as well as the SL periodicity in EELS profiles are

  19. Study of micro-strip gas ionisation chambers substrates for CMS experiment at LHC; Etude de substrats pour chambres gazeuses a micropistes dans le cadre de l`experience CMS au LHC

    Energy Technology Data Exchange (ETDEWEB)

    Pallares, A.

    1996-06-14

    High luminosity, expected interaction and dose rates of the future LHC collider require the development of micro-strips gas chambers. In addition to optimization of this new detector, this work is concerned with understanding of gain loss phenomena. Influence of the gas substrate is carefully analysed, as well as theoretical concepts concerning glasses and their behaviour under polarization and irradiation, and the consequence on detection operations.Electron spin resonance is used to study, in standard glass, creation of radiation induced defects which may be charged. (D.L.). 14 refs.

  20. High-Resolution PET Detector. Final report

    International Nuclear Information System (INIS)

    Karp, Joel

    2014-01-01

    The objective of this project was to develop an understanding of the limits of performance for a high resolution PET detector using an approach based on continuous scintillation crystals rather than pixelated crystals. The overall goal was to design a high-resolution detector, which requires both high spatial resolution and high sensitivity for 511 keV gammas. Continuous scintillation detectors (Anger cameras) have been used extensively for both single-photon and PET scanners, however, these instruments were based on NaI(Tl) scintillators using relatively large, individual photo-multipliers. In this project we investigated the potential of this type of detector technology to achieve higher spatial resolution through the use of improved scintillator materials and photo-sensors, and modification of the detector surface to optimize the light response function.We achieved an average spatial resolution of 3-mm for a 25-mm thick, LYSO continuous detector using a maximum likelihood position algorithm and shallow slots cut into the entrance surface