WorldWideScience

Sample records for glass scintillators

  1. Glass scintillator pair for compensation neutron logging

    International Nuclear Information System (INIS)

    Ji Changsong; Li Xuezhi; Yiu Guangduo

    1985-01-01

    Glass scintillator pair types ST 1604 and ST 1605 for compensation of neutron logging is developed. The neutron sensitive material used is multistick lithium glass scintillators 3 and 4 mm in diameter respectively. Thermoneutron detection efficiencies are 50-60% and 100% respectively. The detection efficiency for 60 Co γ ray is lower than 0.3%. The type ST 1604 and ST 1605 may also be used as high sensitive neutron detectors in an intensive γ ray field

  2. High-efficiency organic glass scintillators

    Science.gov (United States)

    Feng, Patrick L.; Carlson, Joseph S.

    2017-12-19

    A new family of neutron/gamma discriminating scintillators is disclosed that comprises stable organic glasses that may be melt-cast into transparent monoliths. These materials have been shown to provide light yields greater than solution-grown trans-stilbene crystals and efficient PSD capabilities when combined with 0.01 to 0.05% by weight of the total composition of a wavelength-shifting fluorophore. Photoluminescence measurements reveal fluorescence quantum yields that are 2 to 5 times greater than conventional plastic or liquid scintillator matrices, which accounts for the superior light yield of these glasses. The unique combination of high scintillation light-yields, efficient neutron/gamma PSD, and straightforward scale-up via melt-casting distinguishes the developed organic glasses from existing scintillators.

  3. Eu-activated fluorochlorozirconate glass-ceramic scintillators

    International Nuclear Information System (INIS)

    Johnson, J. A.; Schweizer, S.; Henke, B.; Chen, G.; Woodford, J.; Newman, P. J.; MacFarlane, D. R.

    2006-01-01

    Rare-earth-doped fluorochlorozirconate (FCZ) glass-ceramic materials have been developed as scintillators and their properties investigated as a function of dopant level. The paper presents the relative scintillation efficiency in comparison to single-crystal cadmium tungstate, the scintillation intensity as a function of x-ray intensity and x-ray energy, and the spatial resolution (modulation transfer function). Images obtained with the FCZ glass-ceramic scintillator and with cadmium tungstate are also presented. Comparison shows that the image quality obtained using the glass ceramic is close to that from cadmium tungstate. Therefore, the glass-ceramic scintillator could be used as an alternative material for image formation resulting from scintillation. Other inorganic scintillators such as single crystals or polycrystalline films have limitations in resolution or size, but the transparent glass-ceramic can be scaled to any shape or size with excellent resolution

  4. Improved terbium-doped, lithium-loaded glass scintillator fibers

    International Nuclear Information System (INIS)

    Spector, G.B.; McCollum, T.; Spowart, A.R.

    1993-01-01

    An improved terbium-doped, 6 Li-loaded glass scintillator has been drawn into fibers. Tests indicate that the neutron detection response of the fibers is superior to the response with fibers drawn from the original terbium-doped glass. The new fibers offer less attenuation (1/e length of ∝40 cm) and improved gamma ray/neutron discrimination. The improved fibers will be incorporated in a scintillator fiber optic long counter for neutron detection. (orig.)

  5. Positron annihilation study on ZnO-based scintillating glasses

    Science.gov (United States)

    Nie, Jiaxiang; Yu, Runsheng; Wang, Baoyi; Ou, Yuwen; Zhong, Yurong; Xia, Fang; Chen, Guorong

    2009-04-01

    Positron lifetime of ZnO-based scintillating glasses (55 - x)SiO 2-45ZnO- xBaF 2 ( x = 5, 10, 15 mol%) were measured with a conventional fast-fast spectrometer. Three positron lifetime components τ1, τ 2, and τ3 are ˜0.23 ns, ˜0.45 ns, and ˜1.6 ns, respectively. All the three positron lifetime components first increase with increasing BaF 2 concentration from 5 mol% to 10 mol%, then decreases as BaF 2 further increases to 15 mol%. The result suggests that the glass sample with 10 mol% BaF 2 contains the highest defect density, and is in excellent agreement with glass chemistry, glass density, thermal properties, and calculated crystallinity. Therefore, positron annihilation lifetime measurement is an effective tool for analyzing defects in ZnO-based scintillating glasses.

  6. Scintillating glasses for total absorption dual readout calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Bonvicini, V. [INFN, Trieste; Driutti, A. [Udine U.; Cauz, D. [Udine U.; Pauletta, G. [Udine U.; Rubinov, P. [Fermilab; Santi, L. [Udine U.; Wenzel, H. [Fermilab

    2012-01-01

    Scintillating glasses are a potentially cheaper alternative to crystal - based calorimetry with common problems related to light collection, detection and processing. As such, their use and development are part of more extensive R&D aimed at investigating the potential of total absorption, combined with the readout (DR) technique, for hadron calorimetry. A recent series of measurements, using cosmic and particle beams from the Fermilab test beam facility and scintillating glass with the characteristics required for application of the DR technique, serve to illustrate the problems addressed and the progress achieved by this R&D. Alternative solutions for light collection (conventional and silicon photomultipliers) and signal processing are compared, the separate contributions of scintillation and Cherenkov processes to the signal are evaluated and results are compared to simulation.

  7. Scintillation characteristics of LiPO3:Ce3+ glass scintillators

    International Nuclear Information System (INIS)

    Shin, S. W.; Hwang, J. H.

    2003-01-01

    LiPO 3 :Ce 3+ glass scintillators doped with 0.5, 0.75, 1.0, 1.25 and 1.5wt% cerium as an activator were fabricated. For the best transparency of the LiPO 3 glasses, optimum heating conditions were investigated. Optimum heating temperature and time is 950 .deg. C and 90 min with 1wt% sugar add as reductant. The lattice structure of LiPO 3 :Ce 3+ glass scintillator was monoclinic, its lattice constants(a 0 , b 0 , c 0 ) being 16,490λ, 5.427λ and 13.120λ. Photo-refraction index of LiPO 3 :Ce 3 + measured by SE(Spectroscopic ellipsometry) was 1.45 ∼ 1.5 and its bandgap energy was 2.342 eV. The absorption spectral range of LiPO 3 :Ce 3+ measured by UV-VIS spectrophotometry was 350∼ 375nm and the spectral ranges of photoluminescence(PL) were 400∼450nm and 750∼900nm, its maximum PL intensity appeared at 417nm and 791nm. LiPO 3 :Ce 3 + glass scintillator doped with 0.75wt% cerium showed the best PL intensity. The PL intensity increased until cerium content reaches 0.75wt% above which ir decreased

  8. A variety of neutron sensors based on scintillating glass waveguides

    International Nuclear Information System (INIS)

    Bliss, M.; Craig, R.A.

    1995-05-01

    Pacific Northwest Laboratory (PNL) has fabricated cerium-activated, lithium-silicate glass scintillating fiber neutron sensors via a hot-downdraw process. These fibers typically have a transmission length (e -1 length) of greater than 2 meters. The underlying physics of, the properties of, and selected devices incorporating these fibers are described. These fibers constitute an enabling technology for a wide variety of neutron sensors

  9. Positron annihilation study on ZnO-based scintillating glasses

    Energy Technology Data Exchange (ETDEWEB)

    Nie Jiaxiang [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 20023 (China); Yu Runsheng; Wang Baoyi [Key Laboratory of Nuclear Analysis Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100039 (China); Ou Yuwen [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 20023 (China); Zhong Yurong [Key Laboratory of Nuclear Analysis Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100039 (China); Xia Fang [School of Chemical Engineering, University of Adelaide, Adelaide, SA 5005 (Australia); Chen Guorong, E-mail: grchen@ecust.edu.cn [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 20023 (China)

    2009-04-15

    Positron lifetime of ZnO-based scintillating glasses (55 - x)SiO{sub 2}-45ZnO-xBaF{sub 2} (x = 5, 10, 15 mol%) were measured with a conventional fast-fast spectrometer. Three positron lifetime components {tau}{sub 1}, {tau}{sub 2}, and {tau}{sub 3} are {approx}0.23 ns, {approx}0.45 ns, and {approx}1.6 ns, respectively. All the three positron lifetime components first increase with increasing BaF{sub 2} concentration from 5 mol% to 10 mol%, then decreases as BaF{sub 2} further increases to 15 mol%. The result suggests that the glass sample with 10 mol% BaF{sub 2} contains the highest defect density, and is in excellent agreement with glass chemistry, glass density, thermal properties, and calculated crystallinity. Therefore, positron annihilation lifetime measurement is an effective tool for analyzing defects in ZnO-based scintillating glasses.

  10. Absolute measurement of the responses of small lithium glass scintillators to gamma radiation

    International Nuclear Information System (INIS)

    Dalton, A.W.

    1987-04-01

    The absolute scintillation efficiency and intrinsic resolution of lithium glass scintillators for electron excitation have been determined over a range of electron energies, lithium concentrations and lithium enrichments. Measurements of these response characteristics form part of a study on the possible use of such glasses for the determination of tritium breeding in fusion reactor blanket experiments. The measurements were undertaken to establish a basis for extracting the information relating to tritium production reactions from the background signals induced within the glass scintillators by the neutron/gamma fields of a fusion reactor blanket. Criteria for the selection of glasses most suitable for tritium breeding measurements are discussed in tems of their observed responses

  11. Neutron flux measurement with 6Li and 7Li dual glass scintillators by γ compensation method

    International Nuclear Information System (INIS)

    Ji Changsong; Zhang Shulan; Zhang Shuheng

    1996-01-01

    Based on the characteristics of 6 Li glass scintillator which is sensitive to both neutron and gamma rays, and 7 Li glass scintillator which is sensitive to gamma rays only, a new method of detecting weak neutron flux under interference of strong gamma radiation has been investigated by means of 6 Li- 7 Li pair glass scintillator gamma compensation method. The result of neutron flux measurement by above-mentioned method with an error of about 1% when the gamma ray interference is up to 18.7% has been obtained

  12. Neutron flux measurement with 6Li and 7Li dual glass scintillators by γ compensation method

    International Nuclear Information System (INIS)

    Ji Changsong; Zhang Shulan; Zhang Shuheng

    1998-01-01

    Based on the characteristics of 6 Li glass scintillator which is sensitive to both neutron and gamma rays, and 7 Li glass scintillator which is sensitive to gamma rays only, a new method of detecting weak neutron flux under interference of strong gamma radiation has been investigated by mans of 6 Li- 7 Li dual glass scintillator gamma compensation method. The result of neutron flux measurement by above-mentioned method with an error of about 1% when the gamma ray interference is up to 18.7% has been obtained

  13. Barium halide nanocrystals in fluorozirconate based glass ceramics for scintillation application

    International Nuclear Information System (INIS)

    Selling, J.

    2007-01-01

    Europium (Eu)-activated barium halide nanocrystals in fluorozirconate based glass ceramics represent a promising class of Xray scintillators. The scintillation in these glass ceramics is mainly caused by the emission of divalent Eu incorporated in hexagonal BaCl 2 nanocrystals which are formed in the glass matrix upon appropriate annealing. Experiments with cerium (Ce)-activated fluorozironate glass ceramics showed that Ce is an interesting alternative. In order to get a better understanding of the scintillation mechanism in Eu- or Ce-activated barium halide nanocrystals, an investigation of the processes in the corresponding bulk material is essential. The objective of this thesis is the investigation of undoped, Eu-, and Ce-doped barium halides by X-ray excited luminescence (XL), pulse height, and scintillation decay spectra. That will help to figure out which of these crystals has the most promising scintillation properties and would be the best nanoparticles for the glass ceramics. Furthermore, alternative dopants like samarium (Sm) and manganese (Mn) were also investigated. Besides the above-mentioned optical investigation electron paramagnetic resonance (EPR) and Moessbauer measurements were carried out in order to complete the picture of Eu-doped barium halides. The EPR data of Eu-doped BaI 2 is anticipated to yield more information about the crystal field and crystal structure that will help to understand the charge carrier process during the scintillation process. The main focus of the Moessbauer investigations was set on the Eu-doped fluorochlorozirconate glass ceramics. The results of this investigation should help to improve the glass ceramics. The Eu 2+ /Eu 3+ ratio in the glass ceramics should be determined and optimize favor of the Eu 2+ . We also want to distinguish between Eu 2+ in the glass matrix and Eu 2+ in the nanocrystals. For a better understanding of Moessbauer spectroscopy on Eu also measurements on Eu in a CaF 2 host lattice were carried

  14. Scintillation properties and X-ray irradiation hardness of Ce3+-doped Gd2O3-based scintillation glass

    International Nuclear Information System (INIS)

    Liu, Liwan; Shao, Chongyun; Zhang, Yu; Liao, Xili; Yang, Qiuhong; Hu, Lili; Chen, Danping

    2016-01-01

    Ce 3+ -doped Gd 2 O 3 -based scintillation glasses are prepared within an air or CO atmosphere. The effects of fluorine, lutetium, barium, and the melting atmosphere on the optical properties, scintillation properties and irradiation hardness are studied. Absorption spectra, luminescence spectra under UV and X-ray excitation, and the X-ray radiation-induced spectra are presented. The results show that the density can be increased by doping with fluorine, lutetium and barium. The luminescence intensity decreases after X-ray irradiation. Because of charge transfer quenching, fluorine and lutetium enhance the UV-excited and X-ray excited luminescence intensity, but barium decreases. Moreover, fluorine and lutetium are advantageous to irradiation hardness while barium is not. In addition, a non-reducing atmosphere provides a higher irradiation hardness than a reducing atmosphere. Fluorine-doped glass is promising to enhance luminescence intensity, promote irradiation hardness, and increase the density.

  15. Luminescence properties of Ce3+ doped gadolinium-calcium-silicaborate glass scintillator

    International Nuclear Information System (INIS)

    Park, J.M.; Ha, D.H.; Kaewjeang, S.; Maghanemi, U.; Kothan, S.; Kaewkhao, J.; Kim, H.J.

    2016-01-01

    In this work, the Ce 3+ doped gadolinium-calcium-silicaborate glass scintillators of the composition ratio 25Gd 2 O 3 :10CaO:10SiO 2 :(55−x)B 2 O 3 :xCeF 3 , have been fabricated by using the melt-quenching technique. The doping concentration of the Ce 3+ was varied from 0.05 mol% to 2.5 mol%. The 4f-5d transition of the Ce 3+ allowed scintillation with a fast decay time. The absorption spectrum, X-ray induced emission spectrum, photo luminescence spectrum, laser luminescence spectrum and decay time of the scintillators were measured for studying the luminescence properties. From the X-ray induced emission spectrum result, we checked the trend between doping concentration and light yield. The laser induced luminescence spectrum was measured while changing the temperature from 300 K to 10 K. We also measured the decay time by using the laser excitation of the 0.15 mol% Ce 3+ doped glass scintillator. - Highlights: • Ce 3+ doped gadolinium-calcium-silicaborate glass scintillators were developed. • Glass is easily fabricated with large sizes and various doping materials. • The luminescence properties are studied by using various radiation sources. • The light yield and decay time were measured at low temperature. • One decay time component is found.

  16. Comparative measurements between a Li-6 glass and a He-3 high-pressure gas scintillator

    International Nuclear Information System (INIS)

    Priesmeyer, H.G.; Fischer, P.; Harz, U.; Soldner, B.

    1983-01-01

    The He-3 high-pressure gas scintillation neutron detector commercially available as LND 800, has been compated to a Li-6 glass scintillator type NE 912. (n,γ) pulse height discrimination capabilities and neutron detection efficiencies have been determined. The objective of these measurements was to try to improve the Kiel Fast-Chopper TOF detector system by using a gasscintillator, which could cover the neutron beam geometry and by which gamma ray background contributions could be reduced. The time response always meets the requirements of a chopper experiment, but the neutron detection efficiency of the Li-6 glasses now used had to be maintained. (orig./HP) [de

  17. Effect of gamma irradiation on optical properties of Ce 3+ - doped phosphate and silicate scintillating glasses

    Czech Academy of Sciences Publication Activity Database

    Baccaro, S.; Cecilia, A.; Chen, B.; Mareš, Jiří A.; Mihóková, Eva; Nikl, Martin; Polato, P.; Zanella, G.; Zannoni, R.

    2002-01-01

    Roč. 63, - (2002), s. 231-234 ISSN 0969-806X R&D Projects: GA MŠk ME 519 Institutional research plan: CEZ:AV0Z1010914 Keywords : glass scintillator * radiation hardness * colour centres Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.738, year: 2002

  18. Luminescence and scintillation of Eu.sup.2+./sup.-doped high silica glass

    Czech Academy of Sciences Publication Activity Database

    Chewpraditkul, W.; Chen, D.; Yu, B.; Zhang, Q.; Shen, Y.; Nikl, Martin; Kučerková, Romana; Beitlerová, Alena; Wanarak, C.; Phunpueok, A.

    2011-01-01

    Roč. 5, č. 1 (2011), s. 40-42 ISSN 1862-6254 R&D Projects: GA MŠk(CZ) ME10084 Institutional research plan: CEZ:AV0Z10100521 Keywords : glasses * Eu 2+ * luminescence * scintillation * time-resolved luminescence * porous materials Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.218, year: 2011

  19. Barium halide nanocrystals in fluorozirconate based glass ceramics for scintillation application

    Energy Technology Data Exchange (ETDEWEB)

    Selling, J.

    2007-07-01

    Europium (Eu)-activated barium halide nanocrystals in fluorozirconate based glass ceramics represent a promising class of Xray scintillators. The scintillation in these glass ceramics is mainly caused by the emission of divalent Eu incorporated in hexagonal BaCl{sub 2} nanocrystals which are formed in the glass matrix upon appropriate annealing. Experiments with cerium (Ce)-activated fluorozironate glass ceramics showed that Ce is an interesting alternative. In order to get a better understanding of the scintillation mechanism in Eu- or Ce-activated barium halide nanocrystals, an investigation of the processes in the corresponding bulk material is essential. The objective of this thesis is the investigation of undoped, Eu-, and Ce-doped barium halides by X-ray excited luminescence (XL), pulse height, and scintillation decay spectra. That will help to figure out which of these crystals has the most promising scintillation properties and would be the best nanoparticles for the glass ceramics. Furthermore, alternative dopants like samarium (Sm) and manganese (Mn) were also investigated. Besides the above-mentioned optical investigation electron paramagnetic resonance (EPR) and Moessbauer measurements were carried out in order to complete the picture of Eu-doped barium halides. The EPR data of Eu-doped BaI{sub 2} is anticipated to yield more information about the crystal field and crystal structure that will help to understand the charge carrier process during the scintillation process. The main focus of the Moessbauer investigations was set on the Eu-doped fluorochlorozirconate glass ceramics. The results of this investigation should help to improve the glass ceramics. The Eu{sup 2+}/Eu{sup 3+} ratio in the glass ceramics should be determined and optimize favor of the Eu{sup 2+}. We also want to distinguish between Eu{sup 2+} in the glass matrix and Eu{sup 2+} in the nanocrystals. For a better understanding of Moessbauer spectroscopy on Eu also measurements on Eu in a

  20. Scintillation and optical properties of TiO2-ZnO-Al2O3-B2O3 glasses and glass-ceramics

    Science.gov (United States)

    Usui, Yuki; Okada, Go; Kawaguchi, Noriaki; Masai, Hirokazu; Yanagida, Takayuki

    2018-04-01

    13TiO2-xZnO-17Al2O3-(70 - x)B2O3 (x = 17, 26, and 35) glasses were prepared by a melt-quenching method, and the obtained glass samples were heated at temperatures 30 °C above the glass transition temperature of corresponding glass in order to obtain glass-ceramics. The obtained glass-ceramic samples were confirmed to have anatase (x = 17) and rutile (x = 26 and 35) phases from X-ray diffraction analysis. Then, the scintillation and optical properties were evaluated and discussed the difference between the glass-ceramic and glass samples. In the scintillation spectra under X-ray irradiation, a broad emission peak was observed around 450 nm in all the samples, and the new peak around 500 nm appeared in the anatase-precipitated glass-ceramic. The intensities of the glass-ceramic samples were enhanced in comparison with the corresponding glasses because the glass-ceramics includes TiO2 crystallites with defect centers which act as effective emission centers. The scintillation decay curves of the glass and glass-ceramic samples were approximated by one and a sum of two exponential decay functions, respectively. The faster component of glass and glass-ceramic samples would be caused by the host emission, and the slower component of glass-ceramic sample would be ascribed to the emission of Ti3+.

  1. Scintillation property of rare earth-free SnO-doped oxide glass

    OpenAIRE

    Masai, Hirokazu; Yanagida, Takayuki; Fujimoto, Yutaka; Koshimizu, Masanori; Yoko, Toshinobu

    2012-01-01

    The authors have demonstrated scintillation of rare earth (RE)-free Sn-doped oxide glass by excitation of ionizing radiation. It is notable that light emission is attained for RE-free transparent glass due to s[2]-sp transition of Sn[2+] centre and the emission correlates with the excitation band at 20 eV. We have also demonstrated that excitation band of emission centre can be tuned by the chemical composition of the host glass. The present result is valuable not only for design of RE-free i...

  2. Scintillators

    International Nuclear Information System (INIS)

    Cusano, D.A.; Holub, F.F.; Prochazka, S.

    1979-01-01

    Scintillator bodies comprising phosphor materials and having high optical translucency with low light absorption, and methods of making the scintillator bodies, are described. Fabrication methods include (a) a hot-pressing process, (b) cold-pressing followed by sintering, (c) controlled cooling from a melt, and (d) hot-forging. The scintillator bodies that result are easily machined to desired shapes and sizes. Suitable phosphors include BaFCl:Eu, LaOBr:Tb, CsI:Tl, CaWO 4 and CdWO 4 . (U.K.)

  3. Precision charge amplification and digitization system for a scintillating and lead glass array

    International Nuclear Information System (INIS)

    Delchamps, S.W.; Rameika, R.; Arenton, M.

    1989-01-01

    A 544-channel low-noise, high-rate, precision charge amplification and ADC system was constructed for the Fermilab Experiment 705 electromagnetic calorimeter, which employs SCG1-C scintillating glass and SF5 lead glass instrumented with photo-multiplier tubes. A general discussion of the system is given, and the charge amplification, fast trigger pulse generation, and analog to digital conversion aspects of the system are presented in more detail. Performance is evaluated using data from Experiment 705 and from off-line tests. Short and long term pedestal stability, baseline recovery and rate capability, linearity of response, and crosstalk between channels are discussed. 8 refs., 2 tabs

  4. Precision charge amplification and digitization system for a scintillating and lead glass array

    Energy Technology Data Exchange (ETDEWEB)

    Delchamps, S.W.; Rameika, R.; Arenton, M.; Chen, T.Y.; Conetti, S.; Cox, B.; Etemadi, B.; Fortney, L.; Guffey, K.; Haire, M.

    1989-01-01

    A 544-channel low-noise, high-rate, precision charge amplification and ADC system was constructed for the Fermilab Experiment 705 electromagnetic calorimeter, which employs SCG1-C scintillating glass and SF5 lead glass instrumented with photo-multiplier tubes. A general discussion of the system is given, and the charge amplification, fast trigger pulse generation, and analog to digital conversion aspects of the system are presented in more detail. Performance is evaluated using data from Experiment 705 and from off-line tests. Short and long term pedestal stability, baseline recovery and rate capability, linearity of response, and crosstalk between channels are discussed. 8 refs., 2 tabs.

  5. Gas scintillation glass GEM detector for high-resolution X-ray imaging and CT

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, T., E-mail: fujiwara-t@aist.go.jp [Research Institute for Measurement and Analytical Instrumentation, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Mitsuya, Y. [Nuclear Professional School, The University of Tokyo, Tokai, Naka, Ibaraki 319-1188 (Japan); Fushie, T. [Radiment Lab. Inc., Setagaya, Tokyo 156-0044 (Japan); Murata, K.; Kawamura, A.; Koishikawa, A. [XIT Co., Naruse, Machida, Tokyo 194-0045 (Japan); Toyokawa, H. [Research Institute for Measurement and Analytical Instrumentation, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Takahashi, H. [Institute of Engineering Innovation, School of Engineering, The University of Tokyo, Bunkyo, Tokyo 113-8654 (Japan)

    2017-04-01

    A high-spatial-resolution X-ray-imaging gaseous detector has been developed with a single high-gas-gain glass gas electron multiplier (G-GEM), scintillation gas, and optical camera. High-resolution X-ray imaging of soft elements is performed with a spatial resolution of 281 µm rms and an effective area of 100×100 mm. In addition, high-resolution X-ray 3D computed tomography (CT) is successfully demonstrated with the gaseous detector. It shows high sensitivity to low-energy X-rays, which results in high-contrast radiographs of objects containing elements with low atomic numbers. In addition, the high yield of scintillation light enables fast X-ray imaging, which is an advantage for constructing CT images with low-energy X-rays.

  6. Neutron detector based on Particles of {sup 6}Li glass scintillator dispersed in organic lightguide matrix

    Energy Technology Data Exchange (ETDEWEB)

    Ianakiev, K.D., E-mail: ianakiev@lanl.gov; Hehlen, M.P.; Swinhoe, M.T.; Favalli, A.; Iliev, M.L.; Lin, T.C.; Bennett, B.L.; Barker, M.T.

    2015-06-01

    Most {sup 3}He replacement neutron detector technologies today have overlapping neutron–gamma pulse-height distributions, which limits their usefulness and performance. Different techniques are used to mitigate this shortcoming, including Pulse Shape Discrimination (PSD) or threshold settings that suppress all gammas as well as much of the neutrons. As a result, count rates are limited and dead times are high when PSD is used, and the detection efficiency for neutron events is reduced due to the high threshold. This is a problem in most applications where the neutron–gamma separation of {sup 3}He detectors had been essential. This challenge is especially severe for neutron coincidence and multiplicity measurements that have numerous conflicting requirements such as high detection efficiency, short die-away time, short dead time, and high stability. {sup 6}Li-glass scintillators have excellent light output and a single peak distribution, but they are difficult to implement because of their gamma sensitivity. The idea of reducing the gamma sensitivity of {sup 6}Li-glass scintillators by embedding small glass particles in an organic light-guide medium was first presented by L.M. Bollinger in the early 60s but, to the best of our knowledge, has never been reduced to practice. We present a proof of principle detector design and experimental data that develop this concept to a large-area neutron detector. This is achieved by using a multi-component optical medium ({sup 6}Li glass particles attached to a glass supporting structure and a mineral oil light guide) which matches the indices of refraction and minimizes the absorption of the 395 nm scintillator light. The detector design comprises a 10 in. long tube with dual end readout with about 3% volume density of {sup 6}Li glass particles installed. The presented experimental data with various neutron and gamma sources show the desired wide gap between the neutron and gamma pulse height distributions, resulting in a

  7. Scintillating-Glass-Fiber neutron sensors, their application and performance for plutonium detection and monitoring

    International Nuclear Information System (INIS)

    Seymour, R.S.; Richardson, B.; Morichi, M.; Bliss, M.; Craig, R.A.; Sunberg, D.S.

    1998-01-01

    Most neutron detection sensors presently employ 3 He gas-filled detectors. Despite their excellent performance and widespread use, there are significant limitations to this technology. A significant alternative neutron sensor utilizing neutron-active material incorporated into a glass scintillator is presented that offers novel commercial sensors not possible or practical with gas tube technology. The scintillating optical fiber permits sensors with a multitude of sizes ranging from devices of a single fiber of 150μm to sensors with tens of thousands of fibers with areas as large as 5m 2 depending on the neutron flux to be measured. A second significant advantage is the use of high-speed electronics that allow a greater dynamic range, not possible with gas detectors. These sensors are flexible, conformable and less sensitive to vibration that optimizes the source-to-detector geometry and provides robust performance in field applications. The glass-fibers are sensitive to both gamma rays and neutrons. However the coincidence electronics are optimized for neutron to gamma ray discrimination allowing very sensitive measurements with a low false-alarm rate. Applications include SNM surveillance, material control and accountability (MC and A), safeguard inspections, Pu health physics / bioassay and environmental characterization. (author)

  8. Ionoluminescence analysis of glass scintillators and application to single-ion-hit real-time detection

    Energy Technology Data Exchange (ETDEWEB)

    Yokoyama, Akihito, E-mail: yokoyama.akihito@jaea.go.jp [Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515 (Japan); Takasaki Advanced Radiation Research Institute (TARRI), Japan Atomic Energy Agency (JAEA), 1233 Watanuki-machi, Takasaki, Gunma 370-1292 (Japan); Kada, Wataru [Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515 (Japan); Satoh, Takahiro; Koka, Masashi [Takasaki Advanced Radiation Research Institute (TARRI), Japan Atomic Energy Agency (JAEA), 1233 Watanuki-machi, Takasaki, Gunma 370-1292 (Japan); Shimada, Keisuke; Yokoata, Yuya; Miura, Kenta; Hanaizumi, Osamu [Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515 (Japan)

    2016-03-15

    In this paper, we propose and test a real-time detection system for single-ion hits using mega-electronvolt (MeV)-heavy ions. The system was constructed using G2000 and G9 glass scintillators, as well as an electron-multiplying charge-coupled device (EMCCD) camera combined with an inverted microscope with a 10× objective lens. Commercially available G2000 and G9 glass scintillators, which have been reported to exhibit strong photoluminescence at 489, 543, 585, and 622 nm as a result of the Tb{sup 3+} f–f transition, were employed for highly accurate ionized particle detection. The EMCCD camera had a resolution of 512 × 512 pixels, each with a size of 16 μm × 16 μm, and a maximum linear gain of 8 × 10{sup 5} electrons. For 260-MeV Ne, 3 ion hits/s were detected by our system. The intensity of the ionoluminescence (IL) peak induced by the heavy ions was 140 times the noise intensity. In contrast, the luminous diameter at the full width at half maximum (FWHM) in both the horizontal and vertical directions was calculated to be approximately 4.5 μm. These results suggest that our detection system can accurately detect single-ion hits with a diameter of the order of 1 μm.

  9. Characterization of a scintillating lithium glass ultra-cold neutron detector

    Energy Technology Data Exchange (ETDEWEB)

    Jamieson, B.; Rebenitsch, L.A.; Hansen-Romu, S.; Mammei, R.; Martin, J.W. [University of Winnipeg, Department of Physics, Winnipeg (Canada); Lauss, B. [Paul Scherrer Institute, Laboratory for Particle Physics, Villigen (Switzerland); Lindner, T. [TRIUMF, Vancouver (Canada); University of Winnipeg, Department of Physics, Winnipeg (Canada); Pierre, E. [TRIUMF, Vancouver (Canada); Osaka University, Research Centre for Nuclear Physics, Osaka (Japan)

    2017-01-15

    A {sup 6}Li-glass-based scintillation detector developed for the TRIUMF neutron electric dipole moment experiment was characterized using the ultra-cold neutron source at the Paul Scherrer Institute (PSI). The data acquisition system for this detector was demonstrated to perform well at rejecting backgrounds. An estimate of the absolute efficiency of background rejection of 99.7±0.1% is made. For variable ultra-cold neutron rate (varying from < 1 kHz to approx. 100 kHz per channel) and background rate seen at the Paul Scherrer Institute, we estimate that the absolute detector efficiency is 89.7{sup +1.3}{sub -1.9}%. Finally a comparison with a commercial Cascade detector was performed for a specific setup at the West-2 beamline of the ultra-cold neutron source at PSI. (orig.)

  10. Integrating amplifiers for PHENIX lead-glass and lead-scintillator calorimeters

    International Nuclear Information System (INIS)

    Wintenberg, A.L.; Simpson, M.L.; Britton, C.L. Jr.; Palmer, R.L.; Jackson, R.G.

    1995-01-01

    Two types of integrating amplifier systems have been developed for use with lead-glass and lead-scintillator calorimeters with photomultiplier tube readout. Requirements for the amplifier system include termination of the line from the photomultiplier, compact size and low power dissipation to allow multiple channels per chip, dual range outputs producing 10-bit accuracy over a 14-bit dynamic range, rms noise levels of one LSB or less, and compatibility with timing filter amplifiers, tower sum circuits for triggering and calibration circuits to be built on the same integrated circuit (IC). Advantages and disadvantages of an active integrator system are compared and contrasted to those of a passive integrator-based system. In addition, details of the designs and results from prototype devices including an 8-channel active integrator IC fabricated in 1.2 microm Orbit CMOS are presented

  11. Experimental results from a large volume active target made of glass capillaries and liquid scintillator

    International Nuclear Information System (INIS)

    Annis, P.; Buontempo, S.; Brunner, J.; De Jong, M.; Fabre, J.P.; Frenkel, A.; Galeazzi, F.; Golovkin, S.; Gregoire, G.; Hoepfner, K.; Konijn, J.; Kozarenko, E.; Kreslo, I.; Kushnirenko, A.; Martellotti, G.; Mazzoni, M.A.; Medvedkov, A.; Michel, L.; Mondardini, M.R.; Panman, J.; Penso, G.; Petukhov, Y.; Riccardi, F.; Siegmund, W.P.; Strack, R.; Tyukov, V.; Vasilchenko, V.; Vilain, P.; Wilquet, G.; Winter, K.; Wong, H.; Zymin, K.

    1995-01-01

    We are investigating the feasibility of high-resolution tracking with an active target made of glass capillaries filled with organic liquid scintillator. This technique allows real time detection of short-lived particle decays. In this paper, we report on experimental results obtained from an active target having 2 x 2 cm 2 cross section and 180 cm length, installed in front of the CHORUS detector and exposed to the CERN Wide Band Neutrino Beam. The detector consists of 5.1 x 10 5 capillaries with 20 μm inner diameter, read out by a single optoelectronic chain and a Megapixel CCD. Details on tests in the neutrino beam will be reported. First neutrino interactions have been detected. (orig.)

  12. Transitioning glass-ceramic scintillators for diagnostic x-ray imaging from the laboratory to commercial scale

    Science.gov (United States)

    Beckert, M. Brooke; Gallego, Sabrina; Elder, Eric; Nadler, Jason

    2016-10-01

    This study sought to mitigate risk in transitioning newly developed glass-ceramic scintillator technology from a laboratory concept to commercial product by identifying the most significant hurdles to increased scale. These included selection of cost effective raw material sources, investigation of process parameters with the most significant impact on performance, and synthesis steps that could see the greatest benefit from participation of an industry partner that specializes in glass or optical component manufacturing. Efforts focused on enhancing the performance of glass-ceramic nanocomposite scintillators developed specifically for medical imaging via composition and process modifications that ensured efficient capture of incident X-ray energy and emission of scintillation light. The use of cost effective raw materials and existing manufacturing methods demonstrated proof-of-concept for economical viable alternatives to existing benchmark materials, as well as possible disruptive applications afforded by novel geometries and comparatively lower cost per volume. The authors now seek the expertise of industry to effectively navigate the transition from laboratory demonstrations to pilot scale production and testing to evince the industry of the viability and usefulness of composite-based scintillators.

  13. Comparative study of scintillation properties of RE doped NaPO3-Al(PO3)3 glasses

    International Nuclear Information System (INIS)

    Kuro, Tomoaki; Yanagida, Takayuki; Okada, Go; Fujimoto, Yutaka; Masai, Hirokazu

    2015-01-01

    We systematically investigated photoluminescence (PL), scintillation and dosimeter properties of rare-earth (RE) doped NaPO 3 -Al(PO 3 ) 3 (NAP) glasses. Ag-doped NAP glass is widely used for individual radiation dosimeter, however, there have been few reports on studies about NAP glasses when RE ions are doped as the luminescence center. The NAP glasses doped with 0.3 wt% RE (La∼Yb) were prepared by the conventional melt-quenching method. PL decay time and scintillation decay time profiles showed fast (ns) and slow (μs or ms) components: the fast components were from several tens to 100 ns due to the host emission or 5d-4f transition emission, and the slow component from few μs to few ms was caused by 4f-4f transition emission of RE 3+ . Thermally stimulated luminescence (TSL) was evaluated as a dosimeter property, and glow peaks appeared around 400degC in all the samples. The TSL dose response function was examined in the dose range from 10 mGy to 10 Gy, and good linearity was observed in RE-doped NAP glasses. (author)

  14. Study on the fabrication and photoluminescence characteristics of LiPO3 glass scintillators with the lanthanides activators

    International Nuclear Information System (INIS)

    Jeong, S. Z.; Lee, J. M.; Hwang, J. H.; Choi, S. H.

    2001-01-01

    In this syudy, LiPO 3 glass scintillators were fabricated, and lanthanides (except Pm) oxides or chlorides were used as an activator. For the fabrication of LiPO 3 glasses, optimum heating conditions were obtained, and the photoluminescence of the glasses was measured by the monochromator. For the best transparency of the glass samples, optimum heating temperature and time is 950 .deg. C and 90 min, respectively. As the result of photoluminescence analysis, it was impossible to apply Pr, Nd, Gd, Ho, Er, Tm, Yb, and Lu to activator. Because emission spectrum of samples with them was equal to that of sample without activator. In case of samples with Europium, the peak of emission spectrum of Eu(II) and Eu(III) is 420 nm and 620 nm, separately. And Samples with Ce(III) are about 380 nm, and Tb(III) are about 550 nm. On the fabrication of LiPO 3 glass samples, PL intensity was increased by adding sugar as reductant, and using Ar reduction atmosphere. And the optimum reduction conditions were differed as to the kinds of activators. Samples with Eu(II) and Tb(III) have the best PL intensity in the Ar reduction atmosphere, and sample with Ce(III) have the best intensity by added sugar

  15. Study on the fabrication and photoluminescence characteristics of LiBO2 glass scintillators with the lanthanides activators

    International Nuclear Information System (INIS)

    Sin, S. W.; Hwang, J. H.; Choi, S. H.; Sumarokov, S. Yu.

    2002-01-01

    LiBO 2 glass scintillators were fabricated, and lanthanides(except Pm) oxides or chlorides were used as an activator. For the fabrication of LiBO 2 glasses, optimum heating conditions were obtained, and the photoluminescence of the glasses was measured by the monochromator. For the best transparency of the glass samples, optimum heating temperature and time are 1000 .deg. C and 40 min, respectively. The result of photoluminescence analysis shows that Pr, Nd, Gd, Ho, Er, Tm, Yb, and Lu are not good as activator. Because emission spectrum of samples with them was equal to that of sample without activator. In the case of samples with Europium, the peak of emission spectrum of Eu(III) is 810 nm. And Samples with Ce(III) are 760 nm, and Tb(III) are about 535 nm. Samples with Ce(III) and Tb(III) have the best PL intensity with added sugar in Ar reduction atmosphere, and sample with Eu(III) has the best intensity without a reducing process

  16. Luminescence and scintillation of Ce.sup.3+./sup.-doped oxide glass with high Gd.sub.2./sub.O.sub.3./sub. concentration

    Czech Academy of Sciences Publication Activity Database

    Chewpraditkul, W.; He, X.; Chen, D.; Shen, Y.; Sheng, Q.; Yu, B.; Nikl, Martin; Kučerková, Romana; Beitlerová, Alena; Wanarak, C.; Phunpueok, A.

    2011-01-01

    Roč. 208, č. 12 (2011), s. 2830-2832 ISSN 1862-6300 R&D Projects: GA MŠk(CZ) ME10084 Institutional research plan: CEZ:AV0Z10100521 Keywords : Ce 3+ * light yield * luminescence * oxide glasses * scintillation * time-resolved luminescence Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.463, year: 2011

  17. Luminescence and scintillation of Ce.sup.3+./sup.- doped high silica glass

    Czech Academy of Sciences Publication Activity Database

    Chewpraditkul, W.; Shen, Y.; Chen, D.; Yu, B.; Průša, Petr; Nikl, Martin; Beitlerová, Alena; Wanarak, C.

    2012-01-01

    Roč. 34, č. 11 (2012), s. 1762-1766 ISSN 0925-3467 R&D Projects: GA MŠk LH12185 Institutional research plan: CEZ:AV0Z10100521 Keywords : Ce 3+ * luminescence * porous materials * scintillation * photoluminescence decay Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.918, year: 2012 http://dx.doi.org/10.1016/j.optmat.2012.04.012

  18. Growth and Characterization of Nanostructured Glass Ceramic Scintillators for Miniature High-Energy Radiation Sensors

    Science.gov (United States)

    2013-10-01

    rise time was resolved using Kerr gating technique with 8 ps resolution. Spectro -temporal dynamics was resolved using streak camera and tunable pump...mol% CeF3 doped glass under UV light irradiation). Fig. 5. Radioluminescence (RL) spectra of all the CeF3 doped glasses...technique with 8 ps resolution. Spectro -temporal dynamics was resolved using streak camera and tunable pump at second/third harmonic (400/267nm) and XUV

  19. Development of gamma-ray-suppression type of small-sized neutron detector based on a 6Li-glass scintillator

    International Nuclear Information System (INIS)

    Matsumoto, T.; Harano, H.; Shimoyama, T.; Kudo, K.; Uritani, A.

    2005-01-01

    A small-sized thermal neutron detector based on a 6 Li-glass scintillator and a plastic optical fiber was developed for measurement of a dose distribution of thermal neutrons in a thermal neutron standard field. A contribution of gamma rays can not be neglected in the neutron measurement with this detector, although the 6 Li-glass scintillator can be distinguishable for the neutrons and the gamma rays by difference of each pulse height. Moreover, to reduce an uncertainty of neutron counts caused by the gamma ray background around a discrimination level, we suggested a gamma-ray-suppression type of small-sized thermal neutron detector with a 6 Li-glass scintillator, a hollow CsI(Tl) scintillator and plastic optical fibers. The detector can reject signals due to the gamma rays with an anti-coincidence method. In the present paper, we evaluated an ability of a gamma-ray suppression of the detector using the EGS4 electron-photon transport Monte-Carlo code with the PRESTA routine. As the results, the sufficient gamma-ray suppression effect was shown. (author)

  20. Temperature dependence of the ultraviolet luminescence of Pr3+-doped 20Al(PO3)3-80LiF glass scintillator

    International Nuclear Information System (INIS)

    Tsuboi, Mizuki; Takeda, Kohei; Nakazato, Tomoharu

    2017-01-01

    The development of scintillator materials for scattered neutrons is essential in studying laser fusion experiments. We have previously investigated and proposed Pr 3+ -doped 20Al(PO 3 ) 3 -80LiF (APLF + Pr) glasses as scintillators for neutron detection. The APLF + Pr glass emissions are then investigated with synchrotron radiation excitation and varying sample temperature. APLF + Pr glasses exhibit luminescence emission located at 200 to 300 nm and 400 nm attributed to the 4f5d → 4f 2 and 4f 2 → 4f 2 ( 1 S 0 → 3 P j + 1 I 6 ) transitions, respectively. In addition, the 200 to 300-nm emission is not substantially affected by temperature, while the 400-nm emission intensities increase with decreasing sample temperature. This temperature dependence is attributed to cross relaxation whose effect can be controlled by the Pr-doping concentration. Our results suggest that doping concentration of APLF + Pr must be optimized and that APLF + Pr glasses must operate a low temperatures for better neutron detection. (author)

  1. Performance of molded plastic scintillators

    International Nuclear Information System (INIS)

    Gen, N.S.; Leman, V.E.; Solomonov, V.M.

    1989-01-01

    The performance of molded plastic scintillators is studied. The plastic scintillators studied were formed by transfer molding and intrusion from a scintillation composition consisting of polystyrene and a standard system of luminescent additives: 2 mass % of paraterphenyl + 0.06 mass % 1,4-di-/2-[5-phenyloxazoyly]/benzene and a plasticizer. The combined effect of mechanical load and temperature was studied. The effect of radiation on molded plastic scintillators was studied using gamma radiation from a 60 Co source. The studies show that the main operating characteristics of molded plastic scintillators are on a par with those of polymerized plastic scintillators. At the same time, molded plastic scintillators are superior in thermal stability at temperatures below the glass transition temperature and with respect to their working temperature range

  2. Scintillator structure

    International Nuclear Information System (INIS)

    Cusano, D.A.; Swank, R.K.; White, P.J.

    1978-01-01

    Scintillator structures are described in which the phosphor is embedded or suspended in an optically transparent matrix which is selected or adjusted to have an index of refraction which is approximately equal to that of the phosphor at the wavelength of the light emitted by the phosphor. The matrix may be glass, copoly 2-vinyl naphthalene/vinyl toluene or a liquid e.g. Br-naphthalene and optionally CH 3 I, the ratio of components being adjusted to give the desired refractive index. The polymer may be made in situ or a mixture of phosphor and polymer formed e.g. by freeze drying a solution and pulverizing, and then heating. Specified dyes may be used for converting the emitted light to other wavelengths. (author)

  3. Structural relaxation of scintillating Ce doped NaGd(PO.sub.3./sub.).sub.4./sub. glass

    Czech Academy of Sciences Publication Activity Database

    Chromčíková, M.; Rodová, Miroslava; Nitsch, Karel; Liška, M.

    2010-01-01

    Roč. 102, č. 3 (2010), 961-964 ISSN 1388-6150 R&D Projects: GA AV ČR KAN300100802 Institutional research plan: CEZ:AV0Z10100521 Keywords : structural relaxation * Tool-Narayanaswamy-Mazurin model * thermo-mechanical analysis * Ce:NaGd(PO 3 ) 4 glass * dynamic viscosity Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.752, year: 2010

  4. An on-line monitor for cation exchange elution chromatography using lithium silicate glass beads as solid scintillator

    International Nuclear Information System (INIS)

    Zhu Rongbao; Yang Liucheng; Wei Liansheng; Ji Liqiang; Zhang Zengrui

    1988-03-01

    A new type of on-line monitoring system used to monitor radioactive nuclides with α or soft β radiation in the effluent from a high pressure ion exchange column is described. The beads made of cerium-impregnated lithium silicate glass are used as scientillation material. They are filled into a quartz glass tube to form a flow cell. By reducing the diameter of glass beads to more closly approximate the average range of α or soft β radiation in solution, the absolute counting efficiency for 241 Am, 242 Cm α radiation have reached and 85.8% and 92.8% respectively, for 14 C, 90 Sr- 90 Y β radiation, 62.1% and 88.6% respectively. These values can be comparable to those achieved with on-line liquid scientillation technique. When the total amount of 241 Am added into column is decreased to 7.4 Bq it is still possible to obtain a clear chromatography peak (half peak width = 0.22 mL)

  5. Scintillator structures

    International Nuclear Information System (INIS)

    Cusano, D.A.; Prener, J.S.

    1978-01-01

    Distributed phosphor scintillator structures providing superior optical coupling to photoelectrically responsive devices together with methods for fabricating said scintillator structures are disclosed. In accordance with one embodiment of the invention relating to scintillator structures, the phosphor is distributed in a 'layered' fashion with certain layers being optically transparent so that the visible wavelength output of the scintillator is better directed to detecting devices. In accordance with another embodiment of the invention relating to scintillator structures, the phosphor is distributed throughout a transparent matrix in a continuous fashion whereby emitted light is more readily transmitted to a photodetector. Methods for fabricating said distributed phosphor scintillator structures are also disclosed. (Auth.)

  6. Scintillation scanner

    International Nuclear Information System (INIS)

    Mehrbrodt, A.W.; Mog, W.F.; Brunnett, C.J.

    1977-01-01

    A scintillation scanner having a visual image producing means coupled through a lost motion connection to the boom which supports the scintillation detector is described. The lost motion connection is adjustable to compensate for such delays as may occur between sensing and recording scintillations. 13 claims, 5 figures

  7. Glasses

    DEFF Research Database (Denmark)

    Dyre, Jeppe

    2004-01-01

    The temperature dependence of the viscosity of most glassforming liquids is known to depart significantly from the classical Arrhenius behaviour of simple fluids. The discovery of an unexpected correlation between the extent of this departure and the Poisson ratio of the resulting glass could lead...... to new understanding of glass ageing and viscous liquid dynamics....

  8. Scintillation Counters

    Science.gov (United States)

    Bell, Zane W.

    Scintillators find wide use in radiation detection as the detecting medium for gamma/X-rays, and charged and neutral particles. Since the first notice in 1895 by Roentgen of the production of light by X-rays on a barium platinocyanide screen, and Thomas Edison's work over the following 2 years resulting in the discovery of calcium tungstate as a superior fluoroscopy screen, much research and experimentation have been undertaken to discover and elucidate the properties of new scintillators. Scintillators with high density and high atomic number are prized for the detection of gamma rays above 1 MeV; lower atomic number, lower-density materials find use for detecting beta particles and heavy charged particles; hydrogenous scintillators find use in fast-neutron detection; and boron-, lithium-, and gadolinium-containing scintillators are used for slow-neutron detection. This chapter provides the practitioner with an overview of the general characteristics of scintillators, including the variation of probability of interaction with density and atomic number, the characteristics of the light pulse, a list and characteristics of commonly available scintillators and their approximate cost, and recommendations regarding the choice of material for a few specific applications. This chapter does not pretend to present an exhaustive list of scintillators and applications.

  9. Scintillation camera

    International Nuclear Information System (INIS)

    Zioni, J.; Klein, Y.; Inbar, D.

    1975-01-01

    The scintillation camera is to make pictures of the density distribution of radiation fields created by the injection or administration radioactive medicaments into the body of the patient. It contains a scintillation crystal, several photomultipliers and computer circuits to obtain an analytical function at the exits of the photomultiplier which is dependent on the position of the scintillations at the time in the crystal. The scintillation crystal is flat and spatially corresponds to the production site of radiation. The photomultipliers form a pattern whose basic form consists of at least three photomultipliers. They are assigned to at least two crossing parallel series groups where a vertical running reference axis in the crystal plane belongs to each series group. The computer circuits are each assigned to a reference axis. Each series of a series group assigned to one of the reference axes in the computer circuit has an adder to produce a scintillation dependent series signal. Furthermore, the projection of the scintillation on this reference axis is calculated. A series signal is used for this which originates from a series chosen from two neighbouring photomultiplier series of this group. The scintillation must have appeared between these chosen series. They are termed as basic series. The photomultiplier can be arranged hexagonally or rectangularly. (GG/LH) [de

  10. Plastic scintillator

    International Nuclear Information System (INIS)

    Andreeshchev, E.A.; Kilin, S.F.; Kavyrzina, K.A.

    1978-01-01

    A plastic scintillator for ionizing radiation detectors with high time resolution is suggested. To decrease the scintillation pulse width and to maintain a high light yield, the 4 1 , 4 5 -dibromo-2 1 , 2 5 , 5 1 , 5 5 -tetramethyl-n-quinquiphenyl (Br 2 Me 4 Ph) in combination with n-terphenyl (Ph 3 ) or 2, 5-diphenyloxadiazol-1, 3, 4 (PPD) is used as a luminescent addition. Taking into consideration the results of a special study, it is shown, that the following ratio of ingradients is the optimum one: 3-4 mass% Ph 3 or 4-7 mas% PPD + 2-5 mass% Br 2 Me 4 Ph + + polymeric base. The suggested scintillator on the basis of polystyrene has the light yield of 0.23-0.26 arbitrary units and the scintillation pulse duration at half-height is 0.74-0.84 ns

  11. Measurement of light emission in scintillation vials

    International Nuclear Information System (INIS)

    Duran Ramiro, M. Teresa; Garcia-Torano, Eduardo

    2005-01-01

    The efficiency and energy resolution of liquid scintillation counting (LSC) systems are strongly dependent on the optical characteristics of scintillators, vials, and reflectors. This article presents the results of measurements of the light-emission profile of scintillation vials. Two measurement techniques, autoradiographs and direct measurements with a photomultiplier tube, have been used to obtain light-emission distribution for standard vials of glass, etched glass and polyethylene. Results obtained with both techniques are in good agreement. For the first time, the effect of the meniscus in terms of light contribution has been numerically estimated. These results can help design LSC systems that are more efficient in terms of light collection

  12. The measurement of temperature effect of light output of scintillators

    International Nuclear Information System (INIS)

    Ji Changsong; Zhou Zaiping; Zhang Longfang

    1999-01-01

    The author describes a experiment equipment used for measurement of temperature effect of light output of scintillators; gives some measurement results of temperature effect of light output for NaI(Tl), CsI(Tl), plastic scintillator, ZnS(Ag), anthracene crystal glass scintillator; analyzes the error factors affecting the measurement results. The total uncertainty of the temperature effect measurement for NaI(Tl) and plastic scintillator is 11%

  13. Alpha scintillation radon counting

    International Nuclear Information System (INIS)

    Lucas, H.F. Jr.

    1977-01-01

    Radon counting chambers which utilize the alpha-scintillation properties of silver activated zinc sulfide are simple to construct, have a high efficiency, and, with proper design, may be relatively insensitive to variations in the pressure or purity of the counter filling. Chambers which were constructed from glass, metal, or plastic in a wide variety of shapes and sizes were evaluated for the accuracy and the precision of the radon counting. The principles affecting the alpha-scintillation radon counting chamber design and an analytic system suitable for a large scale study of the 222 Rn and 226 Ra content of either air or other environmental samples are described. Particular note is taken of those factors which affect the accuracy and the precision of the method for monitoring radioactivity around uranium mines

  14. Luminescence, scintillation and energy transfer in SiO.sub.2./sub.–Al.sub.2./sub.O.sub.3./sub.–B.sub.2./sub.O.sub.3./sub.–Gd.sub.2./sub.O.sub.3./sub.:Ce.sup.3+./sup., Pr.sup.3+./sup. glasses.

    Czech Academy of Sciences Publication Activity Database

    Lertloypanyachai, P.; Chewpraditkul, W.; Pattanaboonmee, N.; Chen, D.; Babin, Vladimir; Beitlerová, Alena; Nikl, Martin

    2017-01-01

    Roč. 214, č. 9 (2017), s. 1-6, č. článku 1700072. ISSN 1862-6300 Institutional support: RVO:68378271 Keywords : Ce3+ * energy transfer * luminescence * oxide glasses * Pr3+ * scintillation Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 1.775, year: 2016

  15. Liquid scintillation solutions

    International Nuclear Information System (INIS)

    Long, E.C.

    1976-01-01

    The liquid scintillation solution described includes a mixture of: a liquid scintillation solvent, a primary scintillation solute, a secondary scintillation solute, a variety of appreciably different surfactants, and a dissolving and transparency agent. The dissolving and transparency agent is tetrahydrofuran, a cyclic ether. The scintillation solvent is toluene. The primary scintillation solute is PPO, and the secondary scintillation solute is dimethyl POPOP. The variety of appreciably different surfactants is composed of isooctylphenol-polyethoxyethanol and sodium dihexyl sulphosuccinate [fr

  16. Scintillating camera

    International Nuclear Information System (INIS)

    Vlasbloem, H.

    1976-01-01

    The invention relates to a scintillating camera and in particular to an apparatus for determining the position coordinates of a light pulse emitting point on the anode of an image intensifier tube which forms part of a scintillating camera, comprising at least three photomultipliers which are positioned to receive light emitted by the anode screen on their photocathodes, circuit means for processing the output voltages of the photomultipliers to derive voltages that are representative of the position coordinates; a pulse-height discriminator circuit adapted to be fed with the sum voltage of the output voltages of the photomultipliers for gating the output of the processing circuit when the amplitude of the sum voltage of the output voltages of the photomultipliers lies in a predetermined amplitude range, and means for compensating the distortion introduced in the image on the anode screen

  17. Scintillator structure

    International Nuclear Information System (INIS)

    Cusano, D.A.; Prener, J.S.

    1979-01-01

    A scintillator structure comprises at least one layer of transparent fused quartz with a phosphor coating on one or both sides adjacent to at least one transparent layer of epoxy resin which directs light from the phosphor to a detector. The phosphor layer may be formed from a powder optionally with a binder, a single crystal or a melt, or by evaporation or sintering. A plurality of multiple layers may be used or the structure tilted for greater absorption. The structure may be surrounded by another such structure optionally operating in cascade with the first. Many phosphors are specified. A scintillator structure comprises phosphor particles dispersed in epoxy resin or copoly imide-silicone and cast in a multi-compartment box with long sides transparent to X-rays and dividers opaque to X-rays. (UK)

  18. Scintillating fibres

    International Nuclear Information System (INIS)

    Nahnhauer, R.

    1990-01-01

    In the search for new detector techniques, scintillating fibre technology has already gained a firm foothold, and is a strong contender for the extreme experimental conditions of tomorrow's machines. Organized by a group from the Institute of High Energy Physics, Berlin-Zeuthen, a workshop held from 3-5 September in the nearby village of Blossin brought together experts from East and West, and from science and industry

  19. Scintillating fibres

    Energy Technology Data Exchange (ETDEWEB)

    Nahnhauer, R. [IHEP Zeuthen (Germany)

    1990-11-15

    In the search for new detector techniques, scintillating fibre technology has already gained a firm foothold, and is a strong contender for the extreme experimental conditions of tomorrow's machines. Organized by a group from the Institute of High Energy Physics, Berlin-Zeuthen, a workshop held from 3-5 September in the nearby village of Blossin brought together experts from East and West, and from science and industry.

  20. Plastic scintillation dosimetry: Optimal selection of scintillating fibers and scintillators

    International Nuclear Information System (INIS)

    Archambault, Louis; Arsenault, Jean; Gingras, Luc; Sam Beddar, A.; Roy, Rene; Beaulieu, Luc

    2005-01-01

    Scintillation dosimetry is a promising avenue for evaluating dose patterns delivered by intensity-modulated radiation therapy plans or for the small fields involved in stereotactic radiosurgery. However, the increase in signal has been the goal for many authors. In this paper, a comparison is made between plastic scintillating fibers and plastic scintillator. The collection of scintillation light was measured experimentally for four commercial models of scintillating fibers (BCF-12, BCF-60, SCSF-78, SCSF-3HF) and two models of plastic scintillators (BC-400, BC-408). The emission spectra of all six scintillators were obtained by using an optical spectrum analyzer and they were compared with theoretical behavior. For scintillation in the blue region, the signal intensity of a singly clad scintillating fiber (BCF-12) was 120% of that of the plastic scintillator (BC-400). For the multiclad fiber (SCSF-78), the signal reached 144% of that of the plastic scintillator. The intensity of the green scintillating fibers was lower than that of the plastic scintillator: 47% for the singly clad fiber (BCF-60) and 77% for the multiclad fiber (SCSF-3HF). The collected light was studied as a function of the scintillator length and radius for a cylindrical probe. We found that symmetric detectors with nearly the same spatial resolution in each direction (2 mm in diameter by 3 mm in length) could be made with a signal equivalent to those of the more commonly used asymmetric scintillators. With augmentation of the signal-to-noise ratio in consideration, this paper presents a series of comparisons that should provide insight into selection of a scintillator type and volume for development of a medical dosimeter

  1. Encapsulated scintillation detector

    International Nuclear Information System (INIS)

    Toepke, I.L.

    1982-01-01

    A scintillation detector crystal is encapsulated in a hermetically sealed housing having a glass window. The window may be mounted in a ring by a compression seal formed during cooling of the ring and window after heating. The window may be chemically bonded to the ring with or without a compression seal. The ring is welded to the housing along thin weld flanges to reduce the amount of weld heat which must be applied. A thin section is provided to resist the flow of welding heat to the seal between the ring and the window thereby forming a thermal barrier. The thin section may be provided by a groove cut partially through the wall of the ring. A layer of PTFE between the tubular body and the crystal minimizes friction created by thermal expansion. Spring washers urge the crystal towards the window. (author)

  2. Liquid scintillation solution

    International Nuclear Information System (INIS)

    Long, E.C.

    1977-01-01

    A liquid scintillation solution is described which includes (1) a scintillation solvent (toluene and xylene), (2) a primary scintillation solute (PPO and Butyl PBD), (3) a secondary scintillation solute (POPOP and Dimethyl POPOP), (4) a plurality of substantially different surfactants and (5) a filter dissolving and/or transparentizing agent. 8 claims

  3. Research in high energy physics: Scintillating fiber detector development for the SSC: Annual progress report

    International Nuclear Information System (INIS)

    Ruchti, R.C.

    1988-01-01

    The scintillating fiber detector development program at the University of Notre Dame is divided into several components. These include: Research on scintillating glass fiber materials; Research on scintillating plastic fiber materials; Research on scintillating liquids in fiber capillaries; Studies of improvements in image intensification and light amplification of appropriate test and development facilities at Notre Dame. The overall goal of the program is to develop efficient scintillating fiber detectors with long, optical attenuation length, and excellent radiation resistance properties for tracking and microvertex detectors and as component active sampling materials for scintillation calorimetry. We now discuss each of these programs in turn. 2 figs., 3 tabs

  4. High efficiency scintillation detectors

    International Nuclear Information System (INIS)

    Noakes, J.E.

    1976-01-01

    A scintillation counter consisting of a scintillation detector, usually a crystal scintillator optically coupled to a photomultiplier tube which converts photons to electrical pulses is described. The photomultiplier pulses are measured to provide information on impinging radiation. In inorganic crystal scintillation detectors to achieve maximum density, optical transparency and uniform activation, it has been necessary heretofore to prepare the scintillator as a single crystal. Crystal pieces fail to give a single composite response. Means are provided herein for obtaining such a response with crystal pieces, such means comprising the combination of crystal pieces and liquid or solid organic scintillator matrices having a cyclic molecular structure favorable to fluorescence. 8 claims, 6 drawing figures

  5. Scintillation counting apparatus

    International Nuclear Information System (INIS)

    Noakes, J.E.

    1978-01-01

    Apparatus is described for the accurate measurement of radiation by means of scintillation counters and in particular for the liquid scintillation counting of both soft beta radiation and gamma radiation. Full constructional and operating details are given. (UK)

  6. Liquid scintillation solution

    International Nuclear Information System (INIS)

    Long, E.C.

    1976-01-01

    The invention deals with a liquid scintillation solution which contains 1) a scintillation solvent (toluol), 2) a primary scintillation solute (PPO), 3) a secondary scintillation solute (dimethyl POPOP), 4) several surfactants (iso-octyl-phenol polyethoxy-ethanol and sodium di-hexyl sulfosuccinate) essentially different from one another and 5) a filter resolution and/or transparent-making agent (cyclic ether, especially tetrahydrofuran). (HP) [de

  7. Scintillator manufacture at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Mellott, K.; Bross, A.; Pla-Dalmau, A.

    1998-08-01

    A decade of research into plastic scintillation materials at Fermilab is reviewed. Early work with plastic optical fiber fabrication is revisited and recent experiments with large-scale commercial methods for production of bulk scintillator are discussed. Costs for various forms of scintillator are examined and new development goals including cost reduction methods and quality improvement techniques are suggested.

  8. WORKSHOP: Scintillating fibre detectors

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    Scintillating fibre detector development and technology for the proposed US Superconducting Supercollider, SSC, was the subject of a recent workshop at Fermilab, with participation from the high energy physics community and from industry. Sessions covered the current status of fibre technology and fibre detectors, new detector applications, fluorescent materials and scintillation compositions, radiation damage effects, amplification and imaging structures, and scintillation fibre fabrication techniques

  9. Liquid scintillation measurement. I

    International Nuclear Information System (INIS)

    Rexa, R.; Tykva, R.

    1983-01-01

    The individual components of scintillation solutions and their tasks are listed. Explained briefly is the scintillation process in a liquid scintillator. Factors are discussed which influence this process as are methods applied to supress their influence. They include: ionization quenching, quenching by dilution and concentration, chemical, colour, phase and photon quenching and single-photon events causing an undesirable backgorund. (M.D.)

  10. Scintillation response of organic and inorganic scintillators

    CERN Document Server

    Papadopoulos, L M

    1999-01-01

    A method to evaluate the scintillation response of organic and inorganic scintillators to different heavy ionizing particles is suggested. A function describing the rate of the energy consumed as fluorescence emission is derived, i.e., the differential response with respect to time. This function is then integrated for each ion and scintillator (anthracene, stilbene and CsI(Tl)) to determine scintillation response. The resulting scintillation responses are compared to the previously reported measured responses. Agreement to within 2.5% is observed when these data are normalized to each other. In addition, conclusions regarding the quenching parameter kB dependence on the type of the particle and the computed values of kB for certain ions are included. (author)

  11. Survey meter using novel inorganic scintillators

    International Nuclear Information System (INIS)

    Yoshikawa, Akira; Fukuda, Kentaro; Kawaguchi, Noriaki; Kamada, Kei; Fujimoto, Yutaka; Yokota, Yuui; Kurosawa, Shunsuke; Yanagida, Takayuki

    2012-01-01

    Single crystal scintillator materials are widely used for detection of high-energy photons and particles. There is continuous demand for new scintillator materials with higher performance because of increasing number of medical, industrial, security and other applications. This article presents the recent development of three novel inorganic scintillators; Pr-doped Lu 3 Al 5 O 12 (Pr:LuAG), Ce doped Gd 3 (Al, Ga) 5 O 12 (Ce:GAGG) and Ce or Eu-doped 6 LiCaAlF 6 (Ce:LiCAF, Eu:LiCAF). Pr:LuAG shows very interesting scintillation properties including very fast decay time, high light yield and excellent energy resolution. Taking the advantage of these properties, positron emission mammography (PEM) equipped with Pr:LuAG were developed. Ce:GAGG shows very high light yield, which is much higher than that of Ce:LYSO. Survey meter using Ce:GAGG is developed using this scintillator. Ce:LiCAF and Eu:LiCAF were developed for neutron detection. The advantage and disadvantage are discussed comparing with halide scintillators. Eu-doped LiCAF indicated five times higher light yield than that of existing Li-glass. It is expected to be used as the alternative of 3 He. (author)

  12. A study of liquid scintillator and fiber materials for use in a fiber calorimeter

    International Nuclear Information System (INIS)

    Altice, P.P. Jr.

    1990-04-01

    This reports an investigation into the performance of selected scintillation oils and fiber materials to test their applicability in high energy, liquid scintillator calorimetry. Two scintillating oils, Bicron BC-517 and an oil mixed for the MACRO experiment, and two fiber materials, Teflon and GlassClad PS-252, were tested for the following properties: light yield, attenuation length and internal reflection angle. The results of these tests indicated that the scintillation oils and the fiber materials had an overall good performance with lower energies and would meet the requirements of liquid scintillator detection at SSC energies. 6 refs

  13. Liquid scintillation systems and apparatus for measuring high-energy radiation emitted by samples in standard laboratory test tubes

    International Nuclear Information System (INIS)

    Benvenutti, R.A.

    1976-01-01

    Liquid scintillation detection system employs improved sample holders in which the cap of a glass vial is provided with a well for receiving a standard laboratory test tube containing a radioactive sample. The well is immersed in a liquid scintillator in the vial, the scintillator containing lead acetate solution to enhance its efficiency. A commercially available beta-counting liquid scintillation apparatus is modified to provide gamma-counting with the improved sample holders

  14. Scintillating fiber detector development for the SSC: Annual progress report

    International Nuclear Information System (INIS)

    Ruchti, R.C.

    1989-01-01

    During the past year, considerable effort has been applied to the development of scintillating fiber detectors in several areas: new scintillation liquids and studies of their fluorescence properties; new fluorescent dyes based on non-intramolecular proton transfer; new dyes based on intramolecular proton transfer; incorporation of these new dyes in plastic (polystyrene) and liquid scintillation solutions; development of small cross section glass capillaries for the containment of liquid scintillators; studies of waveguide characteristics; studies of image intensifier phosphor screen characteristics; initial steps to form a collaboration to study and develop appropriate new properties of the Solid State Photomultiplier; construction of a new laboratory at Notre Dame to enhance our capabilities for further measurements and studies; and organization of and execution of a Workshop on Scintillating Fiber Detector Development for the SSC, held at Fermilab, November 14--16, 1988

  15. Detection of gamma rays using scintillation optical fibers

    International Nuclear Information System (INIS)

    Park, J. W.; Hong, S. B.

    2002-01-01

    Scintillating optical fibers have several advantages over other conventional materials used for radiation detection. We have used glass and plastic scintillating fibers to detect gamma rays emitted from 60 Co and 137 Cs, and beta rays from 90 Sr. The sensors are constructed of single strand or multi-strand fibers of 1 mm diameter. The glass scintillating fiber used contains cerium-activated lithium-silicate as scintillating material and the plastic scintillating fiber used is Bicron model BCF-12. In this paper, we report the pulse-height spectra obtained by both sensor types, and analyze them in the aspect of their usability for radiation detectors. Our investigation suggests that the glass fiber can be used to develop gamma ray detectors which will function in high and low gamma ray flux environments. Use of the sensor for the beta ray detection was not satisfactory. The plastic fiber sensor did not work satisfactorily for the weak gamma sources, but did produce somewhat promising results. The scintillating plastic fiber offers some feasibility as beta ray sensor material

  16. Scintillator material. Szintillatormaterial

    Energy Technology Data Exchange (ETDEWEB)

    Siegmund, M; Bendig, J; Regenstein, W

    1987-11-25

    A scintillator material for detection and quantitative determination of ionizing radiation is discussed consisting of an acridone dissolved in a fluid or solid medium. Solvent mixtures with at least one protogenic component or polymers and copolymers are used. The scintillator material is distinguished by an excellent stability at high energy doses.

  17. Radioactive flow detectors: liquid or solid scintillators

    International Nuclear Information System (INIS)

    Reich, A.R.

    1983-01-01

    During the past five years, two schools of thought have emerged producing two different types of radio-HPLC detectors. Based on the naphthalene-in-the-vial principle, manufacturers have developed heterogeneous scintillation detectors. In these detectors the anthracene or naphthalene crystals are replaced by other scintillators. In order to avoid dead space and turbulence, a narrow diameter tube is used, either straight, or more popularly formed into a coil or a 'U' as the cell. To optimize light transmission to the photomultiplier tubes, mirrors are used. Due to limiting factors in this technique the counting efficiency for tritium is below the 10 percent level. The other school of radio-HPLC detectors based their design on classical liquid scintillation counting technology. In a homogeneous detector, the effluent from the HPLC system is mixed with a suitable liquid scintillator before entering the counting cell. The cell design is typically a flat glass or Teflon coil tightly sandwiched between two photomultiplier tubes, making good optical contact without the use of mirrors. Depending on the chromatographic effluent, 3 H efficiencies between 25 to 50 percent, and 14 C counting efficiencies up to 85 percent can be achieved

  18. Use of pliable bags in liquid scintillation counting

    International Nuclear Information System (INIS)

    Simonnet, G.; Jacquet, M.A.; Sharif, A.; Engler, R.

    1981-01-01

    Pliable plastic bags have been used to replace glass or plastic vials for liquid scintillation counting. The two major advantages of this method are the lower cost of the plastic bags and the fact that, per sample, the radioactive waste is significantly reduced. The following parameters have been checked: the impermeability of the bags to various scintillator mixtures and the fact that neither the irregular shape of the bags nor their position in the counting chamber had any effect on the results of the counting. The latter was also constant with time, at least over a period of 10 days. The technique has been used to count the radioactivity of 3 H-DNA precipitates prepared from bacteria and lymphocytes and deposited on filters impregnated with only 200 μl scintillator. It is a method that can be applied to the counting of any samples deposited on filters and insoluble in scintillator. (author)

  19. A more rugged ZnS(Ag) alpha scintillation detector

    International Nuclear Information System (INIS)

    McElhaney, S.A.; Ramsey, J.A.; Bauer, M.L.; Chiles, M.M.

    1990-01-01

    Conventional alpha scintillation detectors comprise a phosphor-coated light-pipe covered by a thin aluminized Mylar layer. This opaque radiation entrance window serves as a shield against ambient light entering the detector with minimum alpha attenuation. Unfortunately, Mylar is extremely fragile and easily punctured or torn by sticks, stones, and screws encountered during regular radiation surveys. The authors have been developing an alpha scintillation detector more rugged and durable than conventional models. This paper presents the scintillator assembly, which consists of a mixture of silver-activated zinc sulfide [ZnS(Ag)] and clear epoxy. The ZnS(Ag) scintillation powder is mixed with a low-viscosity, optically transparent epoxy and poured into a glass-smooth mold of desired shape and size

  20. Phosphor scintillator structure

    International Nuclear Information System (INIS)

    Cusano, D.A.; Prener, J.S.

    1980-01-01

    A method of fabricating scintillators is described in which the phosphor is distributed within the structure in such a way as to enhance the escape of the visible wavelength radiation that would otherwise be dissipated within the scintillator body. Two embodiments of the present invention are disclosed: one in which the phosphor is distributed in a layered structure and another in which the phosphor is dispersed throughout a transparent matrix. (U.K.)

  1. Determination of low tritium activities, selection of suitable scintillator and measuring vials

    International Nuclear Information System (INIS)

    Tomasek, M.

    1996-01-01

    The scintillator cocktails tested were limited to scintillators highly miscible with water and included alkylnaphthalene-based scintillators exhibiting low toxicity and easy biodegradability. The following vials were tested: a vial of glass with reduced potassium content, a conventional polyethylene vial, and a teflon-coated polyethylene vial. Each combination was measured in triplicate: two samples of tritium-free water as the background and one sample with the standard tritium content. The best results were obtained when using a combination of the Ultima Gold LLT scintillator and the polyethylene vial. (M.D.) 2 tabs., 2 figs., 6 refs

  2. Background characterization in a liquid scintillation spectrometer

    International Nuclear Information System (INIS)

    Rodriguez Barquero, L.; Los Arcos, J.M.; Jimenez de Mingo, A.

    1995-01-01

    An alternate procedure for background count rate estimation in a liquid scintillation spectrometer is presented, which does not require to measure a blank with similar composition, volume and quench, to the problem sample. The procedure is based on a double linear parameterization which was obtained from a systematic study of the background observed with glass vials, in three different windows, 0 - 20 KeV, 0 - 800 KeV and 0 - 2 MeV, for volume between 2 and 20 mi of three commercial scintillators, Hisafe II, Ultima-Gold and Instagel, and quenching degree in the interval equivalent to 50% - 3% tritium efficiency. This procedure was tested with standard samples of 3H, and led to average discrepancies less than 10% for activity ≥0,6 Bq, against conventional methods for which the discrepancies are twice on average. (Author) 10 refs

  3. Background characterization in a liquid scintillation spectrometer

    International Nuclear Information System (INIS)

    Rodriguez Barquero, L.; Los arcos, J.M.; Jimenez de Mingo, A.

    1995-01-01

    An alternate procedure for background count rate estimation in a liquid scintillation spectrometer is presented, which does not require to measure a blank with similar composition, volume and quench, to the problem sample. The procedure is based on a double linear parameterization which was obtained from a systematic study of the background observed with glass vials, in three different windows, 0-20 KeV, 0-800 KeV and 0-2 MeV, for volume between 2 and 20 ml of three commercial scintillators, Hisafe II, Ultima-gold and Instagel, and quenching degree in the interval equivalent to 50%-3% tritium efficiency. This procedure was tested with standard samples of ''3 H, and led to average discrepancies less than 10% for activity => 0,6 Bq, against conventional methods for which the discrepancies are twice on average

  4. Scintillating properties of frozen new liquid scintillators

    CERN Document Server

    Britvich, G I; Golovkin, S V; Martellotti, G; Medvedkov, A M; Penso, G; Soloviev, A S; Vasilchenko, V G

    1999-01-01

    The light emission from scintillators which are liquid at room temperature was studied in the interval between $+20$~$^{\\circ}$C and $-120$~$^{\\circ}$C, where the phase transition from liquid to solid takes place. The light yield measured at $-120$~$^{\\circ}$C is about twice as much as that observed at $+20$~$^{\\circ}$C. By cooling the scintillator from $+20$~$^{\\circ}$C to $-120$~$^{\\circ}$C and then heating it from $-120$~$^{\\circ}$C to $+20$~$^{\\circ}$C, the light yield varies in steps at well defined temperatures, which are different for the cooling and heating processes. These hysteresis phenomena appear to be related to the solvent rather than to the dopant. The decay time of scintillation light was measured at $+20$~$^{\\circ}$C and $-120$~$^{\\circ}$C. Whilst at room temperature most of the light is emitted with a decay time of 6--8 ns, at $-120$~$^{\\circ}$C a slower component, with a decay time of 25--35 ns, becomes important.

  5. Inorganic liquid scintillator

    International Nuclear Information System (INIS)

    Pavlicek, Z.; Barta, C.; Jursova, L.

    1986-01-01

    An inorganic liquid scintillator is designed which contains 1 to 30 wt.% of an inorganic molecular compound as the basic active component; the compound contains a cation with an atomic number higher than 47 and a halogen anion. The basic inorganic component is dissolved in water or in an organic solvent in form of non-dissociated molecules or self-complexes in which the bond is preserved between the cation and anion components. The light yield from these scintillators ranges between 70 and 150% of the light yield of a standard organic scintillator based on toluene. They are advantageous in that that they allow to increase the water content in the sample to up to 100%. (M.D.)

  6. Physics of scintillation detectors

    International Nuclear Information System (INIS)

    Novotny, R.

    1991-01-01

    The general concept of a radiation detector is based on three fundamental principles: sensitivity of the device to the radiation of interest which requires a large cross-section in the detector material, detector response function to the physical properties of the radiation. As an example, a scintillation detector for charged particles should allow to identify the charge of the particle, its kinetic energy and the time of impact combined with optimum resolutions. Optimum conversion of the detector response (like luminescence of a scintillator) into electronical signals for further processing. The following article will concentrate on the various aspects of the first two listed principles as far as they appear to be relevant for photon and charged particle detection using organic and inorganic scintillation detectors. (orig.)

  7. Scintillator plate calorimetry

    International Nuclear Information System (INIS)

    Price, L.E.

    1990-01-01

    Calorimetry using scintillator plates or tiles alternated with sheets of (usually heavy) passive absorber has been proven over multiple generations of collider detectors. Recent detectors including UA1, CDF, and ZEUS have shown good results from such calorimeters. The advantages offered by scintillator calorimetry for the SSC environment, in particular, are speed (<10 nsec), excellent energy resolution, low noise, and ease of achieving compensation and hence linearity. On the negative side of the ledger can be placed the historical sensitivity of plastic scintillators to radiation damage, the possibility of nonuniform response because of light attenuation, and the presence of cracks for light collection via wavelength shifting plastic (traditionally in sheet form). This approach to calorimetry is being investigated for SSC use by a collaboration of Ames Laboratory/Iowa State University, Argonne National Laboratory, Bicron Corporation, Florida State University, Louisiana State University, University of Mississippi, Oak Ridge National Laboratory, Virginia Polytechnic Institute and State University, Westinghouse Electric Corporation, and University of Wisconsin

  8. Scintillation proximity assay

    International Nuclear Information System (INIS)

    Hart, H.

    1980-01-01

    In a method of immunological assay two different classes of particles which interact at short distances to produce characteristic detectable signals are employed in a modification of the usual latex fixation test. In one embodiment an aqueous suspension of antigen coated tritiated latex particles (LH) and antigen coated polystyrene scintillant particles (L*) is employed to assay antibody in the aqueous medium. The amount of (LH) (L*) dimer formation and higher order aggregation induced and therefore the concentration of antibody (or antigen) present which caused the aggregation can be determined by using standard liquid scintillation counting equipment. (author)

  9. Microfluidic Scintillation Detectors

    CERN Multimedia

    Microfluidic scintillation detectors are devices of recent introduction for the detection of high energy particles, developed within the EP-DT group at CERN. Most of the interest for such technology comes from the use of liquid scintillators, which entails the possibility of changing the active material in the detector, leading to an increased radiation resistance. This feature, together with the high spatial resolution and low thickness deriving from the microfabrication techniques used to manufacture such devices, is desirable not only in instrumentation for high energy physics experiments but also in medical detectors such as beam monitors for hadron therapy.

  10. Liquid scintillation, counting, and compositions

    International Nuclear Information System (INIS)

    Sena, E.A.; Tolbert, B.M.; Sutula, C.L.

    1975-01-01

    The emissions of radioactive isotopes in both aqueous and organic samples can be measured by liquid scintillation counting in micellar systems. The micellar systems are made up of scintillation solvent, scintillation solute and a mixture of surfactants, preferably at least one of which is relatively oil-soluble water-insoluble and another which is relatively water-soluble oil-insoluble

  11. Scintillation properties of acrylate based plastic scintillator by photoploymerization method

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Hwan [Dept. of Radiological Science, Cheongju University, Cheongju (Korea, Republic of); Lee, Joo Il [Dept. of of Radiology, Daegu Health College, Daegu (Korea, Republic of)

    2016-12-15

    In this study, we prepared and characterized a acrylate based UV-curable plastic scintillator. It was used co-polymers TMPTA, DHPA and Ultima GoldTM LLT organic scintillator. The emission spectrum of the plastic scintillator was located in the range of 380⁓520 nm, peaking at 423 nm. And the scintillator is more than 50% transparent in the range of 400⁓ 800 nm. The emission spectrum is well match to the quantum efficiency of photo-multiplier tube and the fast decay time of the scintillation is 12 ns, approximately. This scintillation material provides the possibility of combining 3D printing technology, and then the applications of the plastic scintillator may be expected in human dosimetry etc.

  12. Liquid scintillation counting analysis of cadmium-109

    International Nuclear Information System (INIS)

    Robinson, M.K.; Barfuss, D.W.

    1991-01-01

    Recently the authors have used radiolabled cadmium-109 to measure the transport of inorganic cadmium in renal proximal tubules. An anomaly discovered in the liquid scintillation counting analysis of Cd-109 which is not attributable to normal decay; it consists of a significant decrease in the measured count rate of small amounts of sample. The objective is to determine whether the buffer solution used in the membrane transport studies is causing precipitation of the cadmium or whether cadmium is being adsorbed by the glass. It was important to determine whether the procedure could be modified to correct this problem. The problem does not appear to be related to the use of the buffer or to adsorption of Cd onto glass. Correction based on using triated L-glucose in all of these experiments and calculating a correction factor for the concentration of cadmium

  13. Polysiloxane scintillator composition

    Science.gov (United States)

    Walker, J.K.

    1992-05-05

    A plastic scintillator useful for detecting ionizing radiation comprising a matrix which comprises an optically transparent polysiloxane having incorporated therein at least one ionizing radiation-hard fluor capable of converting electromagnetic energy produced in the polysiloxane upon absorption of ionizing radiation to detectable light.

  14. WORKSHOP: Scintillating crystals

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1992-12-15

    Scintillating crystals are one of the big spinoff success stories of particle physics, and from 22-26 September an international workshop in Chamonix in the French Alps looked at the increasing role of these materials in pure and applied science and in industry.

  15. Radiopharmaceuticals for bone scintillators

    International Nuclear Information System (INIS)

    Rey, A.M.

    1994-01-01

    One of the diagnostic techniques used in nuclear medicine is the bone scintiscanning with labelled compounds for obtain skeletal images. The main sections in this work are: (1) bone composition and anatomy;(2)skeletal radiopharmaceutical development;(3)physical properties of radionuclides;(4)biological behaviour and chemical structures;(5)radiopharmaceuticals production for skeletal scintillation;(6)kits;(7)dosimetry and toxicity.tabs

  16. WORKSHOP: Scintillating crystals

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Scintillating crystals are one of the big spinoff success stories of particle physics, and from 22-26 September an international workshop in Chamonix in the French Alps looked at the increasing role of these materials in pure and applied science and in industry

  17. Economical stabilized scintillation detector

    International Nuclear Information System (INIS)

    Anshakov, O.M.; Chudakov, V.A.; Gurinovich, V.I.

    1983-01-01

    An economical scintillation detector with the stabilization system of an integral type is described. Power consumed by the photomultiplier high-voltage power source is 40 mW, energy resolution is not worse than 9%. The given detector is used in a reference detector of a digital radioisotope densimeter for light media which is successfully operating for several years

  18. Uranium-scintillator device

    International Nuclear Information System (INIS)

    Smith, S.D.

    1979-01-01

    The calorimeter subgroup of the 1977 ISABELLE Summer Workshop strongly recommended investigation of the uranium-scintillator device because of its several attractive features: (1) increased resolution for hadronic energy, (2) fast time response, (3) high density (i.e., 16 cm of calorimeter per interaction length), and, in comparison with uranium--liquid argon detectors, (4) ease of construction, (5) simple electronics, and (6) lower cost. The AFM group at the CERN ISR became interested in such a calorimeter for substantially the same reasons, and in the fall of 1977 carried out tests on a uranium-scintillator (U-Sc) calorimeter with the same uranium plates used in their 1974 studies of the uranium--liquid argon (U-LA) calorimeter. The chief disadvantage of the scintillator test was that the uranium plates were too small to fully contain the hadronic showers. However, since the scintillator and liquid argon tests were made with the plates, direct comparison of the two types of devices could be made

  19. Optimization of cocktail volume in estimation of Tritium activity using liquid scintillation spectrometer

    International Nuclear Information System (INIS)

    Kumaravel, S.; Narashimha Nath, V.; Prashanth Kumar, M.; Sunil, C.N.; Raghunath, T.; Bera, Utpal; Ramakrishna, V.; Nair, B.S.K.; Ganesh, G.; Tripathi, R.M.

    2016-01-01

    Liquid Scintillation Spectrometers (LSS) are widely used for the estimation of Tritium in Nuclear Industry and Environmental labs to find out the Tritium concentration. The main component used for the detection of tritium is the liquid scintillation cocktail composed of different chemicals. To reduce the radioactive chemical wastes and the cost of liquid scintillation cocktails the use of as small volume of cocktail as possible is required. Typically, 1 ml of the aqueous sample is added with 5 ml of the liquid scintillation cocktail in a 20 ml low potassium glass. In this study, suitability of the combination of I ml aqueous sample with 2.5 ml cocktail in a 7 ml low potassium glass vial using a HIDEX 300 SL TDCR LSS was carried out instead of the other combination

  20. Scintillator detector array

    International Nuclear Information System (INIS)

    Cusano, D.A.; Dibianca, F.A.

    1981-01-01

    This patent application relates to a scintillator detector array for use in computerized tomography and comprises a housing including a plurality of chambers, the said housing having a front wall transmissive to x-rays and side walls opaque to x-rays, such as of tungsten and tantalum, a liquid scintillation medium including a soluble fluor, the solvent for the fluor being disposed in the chambers. The solvent comprises either an intrinsically high Z solvent or a solvent which has dissolved therein a high Z compound e.g. iodo or bromonaphthalene; or toluene, xylene or trimethylbenzene with a lead or tin alkyl dissolved therein. Also disposed about the chambers are a plurality of photoelectric devices. (author)

  1. DETECTORS: scintillating fibres

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    In the continual search for improved detection techniques, new materials are continually proving profitable. A good example is scintillating plastic fibres - tiny transparent threads sometimes finer than a human hair which transmit light. The narrowness and flexibility of these fibres was a major breakthrough for endoscopy - non-invasive techniques for viewing the otherwise inaccessible in surgery or machine inspection. In a more sophisticated form, these fibres find ready application in communications technology, where the goal is to transmit information rather than electrical power, replacing conventional and unwieldy current-carrying wire conductors. In particle physics, fibres have long been used to take the tiny scintillations produced when high energy particles hit fluorescent materials and 'conduct' them to photosensitive detectors some distance away

  2. A gamma scintillation spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Symbalisty, S

    1952-07-01

    A scintillation type gamma ray spectrometer employing coincidence counting, designed and built at the Physics Department of the University of Western Ontario is described. The spectrometer is composed of two anthracene and photomultiplier radiation detectors, two pulse analyzing channels, a coincidence stage, three scalers and a high voltage stabilized supply. A preliminary experiment to test the operation of the spectrometer was performed and the results of this test are presented. (author)

  3. Modular scintillation camera

    International Nuclear Information System (INIS)

    Barrett, H. H.

    1985-01-01

    Improved optical coupling modules to be used in coded-aperture-type radiographic imaging systems. In a first system, a rotating slit coded-aperture is employed between the radioactive object and the module. The module consists of one pair of side-by-side photomultipliers receiving light rays from a scintillation crystal exposed to the object via the coded-aperture. The light rays are guided to the photomultipliers by a mask having a central transverse transparent window, or by a cylindrical lens, the mask or lens being mounted in a light-conveying quartz block assembly providing internal reflections at opposite faces of the assembly. This generates output signals from the photomultipliers which can be utilized to compute one-dimensional coordinate values for restoring the image of the radioactive object on a display screen. In another form of optical coupling module, usable with other types of coded-apertures, four square photomultipliers form a substantially square block and receive light rays from scintillations from a scintillation crystal exposed to the radioactive object via the coded-aperture. The light rays are guided to the photomultipliers by a square mask or a centrally transparent square lens configuration mounted in a light-conveying assembly formed by internally reflecting quartz blocks, the optical rays being directed to the respective photomultipliers so as to generate resultant output signals which can be utilized to compute image coordinate values for two-dimensional representation of the radioactive object being examined

  4. Liquid scintillation counting of chlorophyll

    International Nuclear Information System (INIS)

    Fric, F.; Horickova, B.; Haspel-Horvatovic, E.

    1975-01-01

    A precise and reproducible method of liquid scintillation counting was worked out for measuring the radioactivity of 14 C-labelled chlorophyll a and chlorophyll b solutions without previous bleaching. The spurious count rate caused by luminescence of the scintillant-chlorophyll system is eliminated by using a suitable scintillant and by measuring the radioactivity at 4 to 8 0 C after an appropriate time of dark adaptation. Bleaching of the chlorophyll solutions is necessary only for measuring of very low radioactivity. (author)

  5. Luminescence, scintillation, and energy transfer in SiO{sub 2}-Al{sub 2}O{sub 3}-B{sub 2}O{sub 3}-Gd{sub 2}O{sub 3}:Ce{sup 3+},Pr{sup 3+} glasses

    Energy Technology Data Exchange (ETDEWEB)

    Lertloypanyachai, Prapon; Chewpraditkul, Weerapong; Pattanaboonmee, Nakarin [Department of Physics, King Mongkut' s University of Technology Thonburi, Bangkok (Thailand); Chen, Danping [Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai (China); Babin, Vladimir; Beitlerova, Alena; Nikl, Martin [Institute of Physics, AS CR, Prague (Czech Republic)

    2017-09-15

    Ce{sup 3+},Pr{sup 3+}-codoped SiO{sub 2}-Al{sub 2}O{sub 3}-B{sub 2}O{sub 3}-Gd{sub 2}O{sub 3} glasses (SABG:Ce,Pr) were prepared by melt quenching under a CO reducing atmosphere. Luminescence properties were investigated under UV and X-ray excitations. A dominant emission band at 430 nm belonging to the Ce{sup 3+}:5d{sub 1} → 4f transition was observed in the photo- and radio-luminescence spectra. The energy transfer occurs from this Ce{sup 3+} band toward the {sup 3}P{sub J} levels of Pr{sup 3+} with an efficiency of up to 24%, followed by the reduction of integrated luminescence intensity with an increasing Pr{sup 3+} concentration. This result is attributed to the increase in the reabsorption of Ce{sup 3+} luminescence and the non-radiative energy transfer toward the {sup 3}P{sub J} levels of Pr{sup 3+}. The cross-relaxation process within the Pr{sup 3+} pairs can further diminish the total luminescence yield at high Pr{sup 3+} concentrations. The integral scintillation efficiency and light yield measurements were carried out and compared to the reference Bi{sub 4}Ge{sub 3}O{sub 12} (BGO) crystal. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Neutron crosstalk between liquid scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Verbeke, J.M., E-mail: verbeke2@llnl.gov; Prasad, M.K., E-mail: prasad1@llnl.gov; Snyderman, N.J., E-mail: snyderman1@llnl.gov

    2015-09-11

    A method is proposed to quantify the fractions of neutrons scattering between liquid scintillators. Using a spontaneous fission source, this method can be utilized to quickly characterize an array of liquid scintillators in terms of crosstalk. The point model theory due to Feynman is corrected to account for these multiple scatterings. Using spectral information measured by the liquid scintillators, fractions of multiple scattering can be estimated, and mass reconstruction of fissile materials under investigation can be improved. Monte Carlo simulations of mono-energetic neutron sources were performed to estimate neutron crosstalk. A californium source in an array of liquid scintillators was modeled to illustrate the improvement of the mass reconstruction.

  7. Neutron crosstalk between liquid scintillators

    International Nuclear Information System (INIS)

    Verbeke, J.M.; Prasad, M.K.; Snyderman, N.J.

    2015-01-01

    A method is proposed to quantify the fractions of neutrons scattering between liquid scintillators. Using a spontaneous fission source, this method can be utilized to quickly characterize an array of liquid scintillators in terms of crosstalk. The point model theory due to Feynman is corrected to account for these multiple scatterings. Using spectral information measured by the liquid scintillators, fractions of multiple scattering can be estimated, and mass reconstruction of fissile materials under investigation can be improved. Monte Carlo simulations of mono-energetic neutron sources were performed to estimate neutron crosstalk. A californium source in an array of liquid scintillators was modeled to illustrate the improvement of the mass reconstruction

  8. R&D on scintillation materials for novel ionizing radiation detectors for High Energy Physics, medical imaging and industrial applications

    CERN Multimedia

    Chipaux, R; Rinaldi, D; Boursier, Y M; Vasilyev, A; Tikhomirov, V; Morel, C; Choi, Y; Tamulaitis, G

    2002-01-01

    The Crystal Clear Collaboration (CCC) was approved by the Detector R&D Committee as RD18 in 1990 with the objective of developing new inorganic scintillators suitable for crystal electromagnetic calorimeters of LHC experiments. From 1990 to 1994, CCC made an intensive investigation for the quest of the most adequate ideal scintillator for the LHC; three main candidates were identified and extensively studied : CeF$_{3}$, PbWO$_{4}$ and heavy scintillating glasses. Lead tungstate was chosen by CMS and ALICE as the most cost effective crystal compliant to LHC conditions. Today 76648 PWO crystals are installed in CMS and 17920 in ALICE. After this success Crystal clear has continued its investigation on new scintillators and the understanding of scintillation mechanisms and light transfer properties in particular : The understanding of cerium ion as activator, The development of LuAP, LuYAP crystals for medical imaging applications, (CERN patent) Investigation of Ytterbium based scintillators for solar ne...

  9. Scintillating-fibre calorimetry

    International Nuclear Information System (INIS)

    Livan, M.; Vercesi, V.; Wigmans, R.

    1995-01-01

    In the past decade, calorimetry based on scintillating plastic fibres as active elements was developed from a conceptual idea to a mature detector technology, which is nowadays widely applied in particle physics experiments. This development and the performance characteristics of representative calorimeters, both for the detection of electromagnetic and hadronic showers, are reviewed. We also discuss new information on shower development processes in dense matter and its application to calorimetric principles that has emerged from some very thorough studies that were performed in the framework of this development. (orig.)

  10. Hybrid scintillators for neutron discrimination

    Science.gov (United States)

    Feng, Patrick L; Cordaro, Joseph G; Anstey, Mitchell R; Morales, Alfredo M

    2015-05-12

    A composition capable of producing a unique scintillation response to neutrons and gamma rays, comprising (i) at least one surfactant; (ii) a polar hydrogen-bonding solvent; and (iii) at least one luminophore. A method including combining at least one surfactant, a polar hydrogen-bonding solvent and at least one luminophore in a scintillation cell under vacuum or an inert atmosphere.

  11. Liquid scintillation in medical diagnosis

    International Nuclear Information System (INIS)

    Painter, K.

    1976-01-01

    With the tremendous increase in the application of radioassay, particularly radioimmunoassay, in the clinical laboratory liquid scintillation counting became an indispensable tool in diagnostic medicine. Few publications, however, have concerned themselves with problem areas which occur with the method in the clinical laboratory. The purpose of this presentation is to summarize our experiences with the liquid scintillation technique in the clinical situation

  12. A user's guide to scintillation

    International Nuclear Information System (INIS)

    Hewish, A.

    1989-01-01

    During the past four decades scintillation methods have been used for remote-sensing distant plasmas and for providing high angular resolution in radioastronomy. This brief review illustrates some of the techniques employed and explains the underlying theory in simple physical terms; it is not intended to be a complete survey of all applications of scintillation. (author)

  13. Laser Beam Scintillation with Applications

    CERN Document Server

    Andrews, Larry C; Young, Cynthia

    2001-01-01

    Renewed interest in laser communication systems has sparked development of useful new analytic models. This book discusses optical scintillation and its impact on system performance in free-space optical communication and laser radar applications, with a detailed look at propagation phenomena and the role of scintillation on system behavior. Intended for practicing engineers, scientists, and students.

  14. Scintillation light transport and detection

    International Nuclear Information System (INIS)

    Gabriel, T.A.; Lillie, R.A.

    1986-08-01

    The MORSE neutron gamma-ray transport code has been modified to allow for the transport of scintillation light. This modified code is used to analyze the light collection characteristics of a large liquid scintillator module (18 x 18 x 350 cm 3 )

  15. Extruding plastic scintillator at Fermilab

    International Nuclear Information System (INIS)

    Pla-Dalmau, Anna; Bross, Alain D.; Rykalin, Viktor V.

    2003-01-01

    An understanding of the costs involved in the production of plastic scintillators and the development of a less expensive material have become necessary with the prospects of building very large plastic scintillation detectors. Several factors contribute to the high cost of plastic scintillating sheets, but the principal reason is the labor-intensive nature of the manufacturing process. In order to significantly lower the costs, the current casting procedures had to be abandoned. Since polystyrene is widely used in the consumer industry, the logical path was to investigate the extrusion of commercial-grade polystyrene pellets with dopants to yield high quality plastic scintillator. This concept was tested and high quality extruded plastic scintillator was produced. The D0 and MINOS experiments are already using extruded scintillator strips in their detectors. An extrusion line has recently been installed at Fermilab in collaboration with NICADD (Northern Illinois Center for Accelerator and Detector Development). This new facility will serve to further develop and improve extruded plastic scintillator. This paper will discuss the characteristics of extruded plastic scintillator and its raw materials, the different manufacturing techniques and the current R andD program at Fermilab

  16. Cerium doped heavy metal fluoride glasses, a possible alternative for electromagnetic calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Auffray, E. [CERN, Geneva (Switzerland); Bouttet, D. [LPCM Lyon, CNRS and Universite Claude Bernard, Villeurbanne (France); Dafinei, I. [CERN, Geneva (Switzerland); Fay, J. [IPN Lyon, IN2P3-CNRS and Universite Claude Bernard, Villeurbanne (France); Lecoq, P. [CERN, Geneva (Switzerland); Mares, J.A. [Institute of Physics, Praha (Czech Republic); Martini, M. [University of Milan, Department of Physics, Milan (Italy); Maze, G. [Le Verre Fluore, F - 35770 Vern/Seiche, Bretagne (France); Meinardi, F. [University of Milan, Department of Physics, Milan (Italy); Moine, B. [LPCM Lyon, CNRS and Universite Claude Bernard, Villeurbanne (France); Nikl, M. [Institute of Physics, Praha (Czech Republic); Pedrini, C. [LPCM Lyon, CNRS and Universite Claude Bernard, Villeurbanne (France); Poulain, M. [Le Verre Fluore, F - 35770 Vern/Seiche, Bretagne (France); Schneegans, M. [LAPP, IN2P3-CNRS, Annecy-le-Vieux (France); Tavernier, S. [VUB, Vrije Universiteit Brussels, Brussels (Belgium); Vedda, A. [University of Milan, Department of Physics, Milan (Italy)

    1996-10-11

    The article is an overview of the research activity made in the framework of the Crystal Clear Collaboration aimed at obtaining scintillating glasses able to fit the constraints imposed for the active medium of the central Electromagnetic Calorimeter at CMS. The manufacturing of heavy metal fluoride glasses doped with Ce{sup 3+} is discussed. The luminescence and scintillation characteristics as well as the radiation hardness properties are extensively studied in the case of Ce doped fluorohafnate, found to be the most convenient glass scintillator for high energy physics applications. (orig.).

  17. Cerium doped heavy metal fluoride glasses, a possible alternative for electromagnetic calorimetry

    International Nuclear Information System (INIS)

    Auffray, E.; Bouttet, D.; Dafinei, I.; Fay, J.; Lecoq, P.; Mares, J.A.; Martini, M.; Maze, G.; Meinardi, F.; Moine, B.; Nikl, M.; Pedrini, C.; Poulain, M.; Schneegans, M.; Tavernier, S.; Vedda, A.

    1996-01-01

    The article is an overview of the research activity made in the framework of the Crystal Clear Collaboration aimed at obtaining scintillating glasses able to fit the constraints imposed for the active medium of the central Electromagnetic Calorimeter at CMS. The manufacturing of heavy metal fluoride glasses doped with Ce 3+ is discussed. The luminescence and scintillation characteristics as well as the radiation hardness properties are extensively studied in the case of Ce doped fluorohafnate, found to be the most convenient glass scintillator for high energy physics applications. (orig.)

  18. Scintillation properties of GSO

    International Nuclear Information System (INIS)

    Melcher, C.L.; Schweitzer, J.S.; Utsu, T.; Akiyama, S.

    1990-01-01

    The timing properties of Gd 2 SiO 5 :Ce (GSO) single crystal scintillators have previously been evaluated for positron emission tomography applications. The measured time resolution, however, was worse than expected from calculations based on photoelectron yield and a 60 nanosecond exponential decay constant, leading us to further investigate GSO's basic properties. With a time-correlated-single-photon technique, the authors have found two decay components, one of 56 ns and one of 600 ns, the latter containing 10--15% of the total scintillation output. This may explain the difference between the experimental and theoretical time resolutions and confirms a previous hypothesis of a long decay component. In addition, the authors have found that each component's decay constant strongly depends on the cerium concentration. The primary component varies from ∼ 20 ns to ∼ 190 ns and the secondary component varies from ∼ 70 ns to ∼ 1200 ns as the cerium concentration is varied from 5.0 mol% to 0.1 mol%

  19. Next Generation Neutron Scintillators Based On Semiconductor Nanostructures

    International Nuclear Information System (INIS)

    Wang, Cai-Lin

    2008-01-01

    The results reported here successfully demonstrate the technical feasibility of ZnS QDs/ 6 LiF/polymer composites as thermal neutron scintillators. PartTec has obtained stable ZnS QDs with a quantum yield of 17% induced by UV light, and light pulse decay lifetimes of 10-30 ns induced by both UV and neutrons. These lifetime values are much shorter than those of commercial ZnS microparticle and 6 Li-glass scintillators. Clear pulse height peaks induced by neutron irradiation were seen for PartTec's ZnS nanocomposites. By adjusting the concentrations, particle size and degree of dispersion of ZnS QD/ 6 LiF in a PVA matrix, the light absorption and light yield of films at 420-440 nm can be optimized. PartTec's novel scintillators will replace traditional 6 Li-glass and ZnS/ 6 LiF:Ag scintillators if the PL quantum yield can be improved above 30%, and/or increase the transparency of present nanoscintillators. Time and resources inhibited PartTec's total success in Phase I. For example, bulk doping preparations of ZnS QDs with Ag + , Eu 3+ or Ce 3+ QDs was impractical given those constraints, nor did they permit PartTec to measure systematically the change of PL decay lifetimes in different samples. PartTec will pursue these studies in the current proposal, as well as develop a better capping and dopant along with developing brighter and faster ZnS QD scintillators.

  20. Liquid xenon/krypton scintillation calorimeter

    International Nuclear Information System (INIS)

    Akimov, D.Yu.; Bolozdynya, A.I.; Brastilov, A.D.

    1994-01-01

    A scintillating LXe/LKr electromagnetic calorimeter has been built at the ITEP and tested at the BATES (MIT) accelerator. The detector consists of PMT matrix and 45 light collecting cells made of aluminized 50 microns Mylar partially covered with p-terphenyl as a wavelength-shifter. Each pyramidal cell has (2.1 x 2.1) x 40 x (4.15 x 4.15) cm dimensions and is viewed by FEU-85 glass-window photomultiplier. The detector has been exposed at 106-348 MeV electron beam. The energy resolution σ E /E ≅ 5% √ E at 100 - 350 MeV range in LXe, the coordinate resolution τ x ≅ 0.7 cm, the time resolution for single cell ≅ 0.6 ns have been obtained. Possible ways to improve energy resolution are discussed. 8 refs., 15 figs

  1. Comparison of analysis techniques by liquid scintillation and Cerenkov Effect for 40K quantification in aqueous samples

    International Nuclear Information System (INIS)

    Miranda C, L.; Davila R, J. I.; Lopez del R, H.; Mireles G, F.

    2015-09-01

    In this work the counting by liquid scintillation and Cerenkov Effect to quantify 40 K in aqueous samples was used. The performance of both techniques was studied by comparing the response of three commercial liquid scintillation OptiPhase HiSafe 3, Ultima Gold Ab and OptiPhase TriSafe, the vial type and presentation conditions of the sample for counting. In liquid scintillation, the ability to form homogeneous mixtures depended on the ionic strength of the aqueous solutions. The scintillator OptiPhase HiSafe 3 showed a greater charge capacity for solutions with high ionic strength (<3.4), while the scintillator OptiSafe TriSafe no form homogeneous mixtures for solutions of ionic strength higher than 0.3. Counting efficiencies for different proportions of sample and scintillator near 100% for the scintillators OptiSafe HiSafe 3 and Ultima Gold Ab were obtained. In the counting by Cerenkov Effect, the efficiency and sensitivity depended of the vial type; polyethylene vials were more suitable for counting that the glass vials. The sample volume had not significant effect on counting efficiency, obtaining an average value of 44.8% for polyethylene vials and 37.3% for glass vials. Therefore, the liquid scintillation was more efficient and sensitive for the measurement of 40 K in aqueous solutions. (Author)

  2. Scintillating plate calorimeter optical design

    International Nuclear Information System (INIS)

    McNeil, R.; Fazely, A.; Gunasingha, R.; Imlay, R.; Lim, J.

    1990-01-01

    A major technical challenge facing the builder of a general purpose detector for the SSC is to achieve an optimum design for the calorimeter. Because of its fast response and good energy resolution, scintillating plate sampling calorimeters should be considered as a possible technology option. The work of the Scintillating Plate Calorimeter Collaboration is focused on compensating plate calorimeters. Based on experimental and simulation studies, it is expected that a sampling calorimeter with alternating layers of high-Z absorber (Pb, W, DU, etc.) and plastic scintillator can be made compensating (e/h = 1.00) by suitable choice of the ratio of absorber/scintillator thickness. Two conceptual designs have been pursued by this subsystem collaboration. One is based on lead as the absorber, with read/out of the scintillator plates via wavelength shifter fibers. The other design is based on depleted uranium as the absorber with wavelength shifter (WLS) plate readout. Progress on designs for the optical readout of a compensating scintillator plate calorimeter are presented. These designs include readout of the scintillator plates via wavelength shifter plates or fiber readout. Results from radiation damage studies of the optical components are presented

  3. Radiation damage studies on new liquid scintillators and liquid-core scintillating fibers

    International Nuclear Information System (INIS)

    Golovkin, S.V.

    1994-01-01

    The radiation resistant of some new liquid scintillation and capillaries filled with liquid scintillators has been presented. It was found that scintillation efficiency of the scintillator based on 1-methyl naphthalene with a new R39 only by 10% at the dose of 190 Mrad and the radiation resistance of thin liquid-core scintillating was decreased fibers exceeded 60 Mrad. 35 refs

  4. Scintillators and other particle optical detectors

    International Nuclear Information System (INIS)

    Chipaux, R.

    2011-01-01

    The author reports and comments his researcher career in the field of particle optical detectors. He addresses the cases of organic scintillators (scintillating fibers, liquid scintillators), inorganic scintillators (crystals for electromagnetic calorimetry, crystals for solar neutrino spectroscopy), and Cherenkov Effect detectors. He also reports his works on Cd Te detectors and their modelling

  5. Scintillation 1024-channel hodoscope

    International Nuclear Information System (INIS)

    Kotov, I.V.; Krasnokutskij, R.N.; Kurbakov, V.I.; Shchukin, A.V.

    1993-01-01

    Flow diagram of voltage divider for photomultiplier used in scintillation multichannel hodoscope is described. The suggested diagram of the divider allows to optimize potential distribution at the innput chamber (photocathode - modulator - first dynode) and in the tail segment of the divider (the nineth dynode-anode). Adjustment of high voltage is conducted using multirotational potentiometer switched in series with the divider. Amplifier-limiter with 80 mkA threshold set at voltage comparator is placed at divide plate. Threshold of its sensitivity constitutes 80 mkA. Hodoscope supply system consists of supply sources of comparators (+-6V) four sources of auxiliary supply sources of the last dynodes of photomultipliers and high-voltage source. Current consumption constitutes 25 A by - 6V, 23 A by + 6 V for the whole hodoscope and up to 200 mA from high-voltage source for one plane. Additional charging sources have constant consumption equal to ∼ 20 mA

  6. Scintillation counter, segmented shield

    International Nuclear Information System (INIS)

    Olson, R.E.; Thumim, A.D.

    1975-01-01

    A scintillation counter, particularly for counting gamma ray photons, includes a massive lead radiation shield surrounding a sample-receiving zone. The shield is disassembleable into a plurality of segments to allow facile installation and removal of a photomultiplier tube assembly, the segments being so constructed as to prevent straight-line access of external radiation through the shield into radiation-responsive areas. Provisions are made for accurately aligning the photomultiplier tube with respect to one or more sample-transmitting bores extending through the shield to the sample receiving zone. A sample elevator, used in transporting samples into the zone, is designed to provide a maximum gamma-receiving aspect to maximize the gamma detecting efficiency. (U.S.)

  7. Properties of scintillator solutes

    International Nuclear Information System (INIS)

    Fluornoy, J.M.

    1998-06-01

    This special report summarizes measurements of the spectroscopic and other properties of the solutes that were used in the preparation of several new liquid scintillators developed at EG and G/Energy Measurements/Santa Barbara Operations (the precursor to Bechtel Nevada/Special Technologies Laboratory) on the radiation-to-light converter program. The data on the individual compounds are presented in a form similar to that used by Prof. Isadore Berlman in his classic handbook of fluorescence spectra. The temporal properties and relative efficiencies of the new scintillators are presented in Table 1, and the efficiencies as a function of wavelength are presented graphically in Figure 1. In addition, there is a descriptive glossary of the abbreviations used herein. Figure 2 illustrates the basic structures of some of the compounds and of the four solvents reported in this summary. The emission spectra generally exhibit more structure than the absorption spectra, with the result that the peak emission wavelength for a given compound may lie several nm away from the wavelength, λ avg , at the geometric center of the emission spectrum. Therefore, the author has chosen to list absorption peaks, λ max , and emission λ avg values in Figures 3--30, as being most illustrative of the differences between the compounds. The compounds, BHTP, BTPB, ADBT, and DPTPB were all developed on this program. P-terphenyl, PBD, and TPB are commercially available blue emitters. C-480 and the other longer-wavelength emitters are laser dyes available commercially from Exciton Corporation. 1 ref., 30 figs

  8. Radiation damage in plastic scintillators

    International Nuclear Information System (INIS)

    Majewski, S.

    1990-01-01

    Results of radiation damage studies in plastic scintillators are reviewed and critically analyzed from the point of view of applications of plastic scintillators in calorimetric detectors for the SSC. Damage to transmission and to fluorescent yield in different conditions is discussed. New directions in R ampersand D are outlined. Several examples are given of the most recent data on the new scintillating materials made with old and new plastics and fluors, which are exhibiting significantly improved radiation resistance. With a present rate of a vigorous R D programme, the survival limits in the vicinity of 100 MRad seem to be feasible within a couple of years

  9. Sub-nanosecond plastic scintillators

    International Nuclear Information System (INIS)

    Lyons, P.B.; Caldwell, S.E.; Hocker, L.P.; Crandall, D.G.; Zagarino, P.A.; Cheng, J.; Tirsell, G.; Hurlbut, C.R.

    1977-01-01

    Quenched plastic scintillators have been developed that yield much faster short decay components and greatly reduced long decay components compared to conventional plastic scintillators. The plastics are produced through the addition of selected quench agents to NE111 plastic scintillator that result in reduced total light output. Eight different agents have been studied. Benzophenone and piperidine are two of the most effective quench agents. Data are presented both for short and long decay components. The plastics are expected to make significant contributions in areas of plasma diagnostics

  10. Sub-nanosecond plastic scintillators

    International Nuclear Information System (INIS)

    Lyons, P.B.; Caldwell, S.E.; Hocker, L.P.; Crandall, D.G.; Zagarino, P.A.; Cheng, J.; Tirsell, G.; Hurlbut, C.R.

    1976-01-01

    Quenched plastic scintillators have been developed that yield much faster short decay components and greatly reduced long decay components compared to conventional plastic scintillators. The plastics are produced through the addition of selected quench agents to NE111 plastic scintillator that result in reduced total light output. Eight different agents have been studied. Benzophenone and piperidine are two of the most effective quench agents. Data are presented both for short and long decay components. The plastics are expected to make significant contributions in areas of plasma diagnostics

  11. Applications of liquid scintillation tubes

    International Nuclear Information System (INIS)

    Broga, D.W.

    1977-01-01

    A new cocktail containing device for liquid scintillation counting, the scintillation tube, consists of a two-layered plastic bag which is heatsealed after the cocktail and sample have been placed in it. It is then placed in a carrying vial and counted in a conventional liquid scintillation counter. These tubes have proved to be a practical and economical alternative to vials. Some of their advantages are elimination of absorption problems, transparency, lower background and higher counting efficiency, low breakage danger and savings in waste disposal costs. Two applications for which the tubes are particularly suitable are the counting of laboratory swipes and urine analysis. (author)

  12. Glass sealing

    Energy Technology Data Exchange (ETDEWEB)

    Brow, R.K.; Kovacic, L.; Chambers, R.S. [Sandia National Labs., Albuquerque, NM (United States)

    1996-04-01

    Hernetic glass sealing technologies developed for weapons component applications can be utilized for the design and manufacture of fuel cells. Design and processing of of a seal are optimized through an integrated approach based on glass composition research, finite element analysis, and sealing process definition. Glass sealing procedures are selected to accommodate the limits imposed by glass composition and predicted calculations.

  13. A time - zero detector based on thin film plastic scintillator

    International Nuclear Information System (INIS)

    Petrovici, M.; Simion, V.; Pagano, A.; Urso, S.; Geraci, E.

    1998-01-01

    Thin film scintillator used as a fast time-zero detector exhibits some advantages: fast response, small energy loss of transmitted particles, insensitivity to radiation damage, high efficiency and high counting rate capability. In order to increase the efficiency of the light collection, the scintillating plastic foil is housed in a reflecting body having an ellipsoidal geometry. A concave ellipsoidal mirror has the property that the geometrical foci are optically conjugate points and consequently, all optical path lengths from one focus to the other via a single reflection are equal. With the thin scintillator foil situated at one focal point and the PM's photocathode at the other one, an excellent light collection can be obtained. The principle of detector and the main components are presented. For our purposes we constructed the detector in two variants: glass mirror and polished aluminium mirror. The semi-axes of the ellipsoidal profile are: a 49.8 mm, b = 34.2 mm for the glass mirror and a = 35 mm, b = 26.5 mm for the aluminium mirror, respectively. The diameter of the beam access hole on the both mirrors is 12 mm. The detectors are foreseen to be used at 4π detecting system CHIMERA for experiments with heavy ion beams at intermediate energies delivered by Superconducting Cyclotron from LNS - Catania. Presently, the performance of these detectors are tested using alpha radioactive sources and in-beam measurements. (authors)

  14. Electrochromic Glasses.

    Science.gov (United States)

    1980-07-31

    this glass and that dipole-dipole correlations contribute to the "ferroelectric-like" character of this amorphous system. The TeO2 -W03 glasses can only...shows the dielectric constant and Fig. I(b) glass from pure TeO2 ot pure WO. In addition, glass the tan 8 of the WO glass as a function of temperature... glasses containing WO, in various glass forming nitworks of LifO-B1O0, Na:O-BzO,, and TeO2 were prepared from reagent grade oxides at 800 C - 9SO C in

  15. Improvement in the accuracy of polymer gel dosimeters using scintillating fibers

    International Nuclear Information System (INIS)

    Tremblay, Nicolas M; Hubert-Tremblay, Vincent; Bujold, Rachel; Beaulieu, Luc; Lepage, Martin

    2010-01-01

    We propose a novel method for the absolute calibration of polyacrylamide gel (PAG) dosimeters with one or more reference scintillating fiber dosimeters inserted inside the gel. Four calibrated scintillating fibers were inserted into a cylindrical glass container filled with a PAG dosimeter irradiated with a wedge filtered 6 MV photon beam. Calibration curves using small glass vials containing the same gel as the cylindrical containers were used to obtain a first calibration curve. This calibration curve was then adjusted with the dose measured with one of the scintillating fibers in a low gradient part of the field using different approaches. Among these, it was found that a translation of the gel calibration curve yielded the highest accuracy with PAG dosimeters.

  16. Temperature dependence of plastic scintillators

    Science.gov (United States)

    Peralta, L.

    2018-03-01

    Plastic scintillator detectors have been studied as dosimeters, since they provide a cost-effective alternative to conventional ionization chambers. Several articles have reported undesired response dependencies on beam energy and temperature, which provides the motivation to determine appropriate correction factors. In this work, we studied the light yield temperature dependency of four plastic scintillators, BCF-10, BCF-60, BC-404, RP-200A and two clear fibers, BCF-98 and SK-80. Measurements were made using a 50 kVp X-ray beam to produce the scintillation and/or radioluminescence signal. The 0 to 40 °C temperature range was scanned for each scintillator, and temperature coefficients were obtained.

  17. Photon statistics in scintillation crystals

    Science.gov (United States)

    Bora, Vaibhav Joga Singh

    Scintillation based gamma-ray detectors are widely used in medical imaging, high-energy physics, astronomy and national security. Scintillation gamma-ray detectors are eld-tested, relatively inexpensive, and have good detection eciency. Semi-conductor detectors are gaining popularity because of their superior capability to resolve gamma-ray energies. However, they are relatively hard to manufacture and therefore, at this time, not available in as large formats and much more expensive than scintillation gamma-ray detectors. Scintillation gamma-ray detectors consist of: a scintillator, a material that emits optical (scintillation) photons when it interacts with ionization radiation, and an optical detector that detects the emitted scintillation photons and converts them into an electrical signal. Compared to semiconductor gamma-ray detectors, scintillation gamma-ray detectors have relatively poor capability to resolve gamma-ray energies. This is in large part attributed to the "statistical limit" on the number of scintillation photons. The origin of this statistical limit is the assumption that scintillation photons are either Poisson distributed or super-Poisson distributed. This statistical limit is often dened by the Fano factor. The Fano factor of an integer-valued random process is dened as the ratio of its variance to its mean. Therefore, a Poisson process has a Fano factor of one. The classical theory of light limits the Fano factor of the number of photons to a value greater than or equal to one (Poisson case). However, the quantum theory of light allows for Fano factors to be less than one. We used two methods to look at the correlations between two detectors looking at same scintillation pulse to estimate the Fano factor of the scintillation photons. The relationship between the Fano factor and the correlation between the integral of the two signals detected was analytically derived, and the Fano factor was estimated using the measurements for SrI2:Eu, YAP

  18. Radiation Damage in Scintillating Crystals

    CERN Document Server

    Zhu Ren Yuan

    1998-01-01

    Crystal Calorimetry in future high energy physics experiments faces a new challenge to maintain its precision in a hostile radiation environment. This paper discusses the effects of radiation damage in scintillating crystals, and concludes that the predominant radiation damage effect in crystal scintillators is the radiation induced absorption, or color center formation, not the loss of the scintillation light yield. The importance of maintaining crystal's light response uniformity and the feasibility to build a precision crystal calorimeter under radiation are elaborated. The mechanism of the radiation damage in scintillating crystals is also discussed. While the damage in alkali halides is found to be caused by the oxygen or hydroxyl contamination, it is the structure defects, such as oxygen vacancies, cause damage in oxides. Material analysis methods used to reach these conclusions are presented in details.

  19. Alkali metal hafnium oxide scintillators

    Science.gov (United States)

    Bourret-Courchesne, Edith; Derenzo, Stephen E.; Taylor, Scott Edward

    2018-05-08

    The present invention provides for a composition comprising an inorganic scintillator comprising an alkali metal hafnate, optionally cerium-doped, having the formula A2HfO3:Ce; wherein A is an alkali metal having a valence of 1, such as Li or Na; and the molar percent of cerium is 0% to 100%. The alkali metal hafnate are scintillators and produce a bright luminescence upon irradiation by a suitable radiation.

  20. Ionospheric Scintillation Effects on GPS

    Science.gov (United States)

    Steenburgh, R. A.; Smithtro, C.; Groves, K.

    2007-12-01

    . Ionospheric scintillation of Global Positioning System (GPS) signals threatens navigation and military operations by degrading performance or making GPS unavailable. Scintillation is particularly active, although not limited to, a belt encircling the earth within 20 degrees of the geomagnetic equator. As GPS applications and users increases, so does the potential for detrimental impacts from scintillation. We examined amplitude scintillation data spanning seven years from Ascension Island, U.K.; Ancon, Peru; and Antofagasta, Chile in the Atlantic/Americas longitudinal sector at as well as data from Parepare, Indonesia; Marak Parak, Malaysia; Pontianak, Indonesia; Guam; and Diego Garcia, U.K.; in the Pacific longitudinal sector. From these data, we calculate percent probability of occurrence of scintillation at various intensities described by the S4 index. Additionally, we determine Dilution of Precision at one minute resolution. We examine diurnal, seasonal and solar cycle characteristics and make spatial comparisons. In general, activity was greatest during the equinoxes and solar maximum, although scintillation at Antofagasta, Chile was higher during 1998 rather than at solar maximum.

  1. Tritium activity in milk by liquid scintillation counting

    International Nuclear Information System (INIS)

    Zheng Huang

    1993-01-01

    This paper estimates the total tritium content of both the organic and aqueous fractions simultaneously. To fulfill these conditions, the chosen scintillator should be able to accept large sample loadings and display the same counting efficiency for the organic as well as aqueous fractions of the whole milk. In an attempt to establish this method, samples from four different brands of milk were analysed using the pseudocumence based Picofluor 30 (Canberra Packard) and the di-isopropyl naphthalene based Aquasafe 500 (Zinser Analytic) scintillator solution. Glass vials were used thus enabling visual observation to be made. The tritium activities of four different brands of milks were estimated to be very low and at, or near, the detection level of the system

  2. Highly lead-loaded red plastic scintillators as an X-ray imaging system for the laser Mega Joule

    International Nuclear Information System (INIS)

    Hamel, Matthieu; Normand, Stephane; Turk, Gregory; Darbon, Stephane

    2012-01-01

    The scope of this project intends to record spatially resolved images of core shape and size of a deuterium-tritium micro-balloon during inertial confinement fusion (ICF) experiments at Laser Mega Joule facility (LMJ). We need to develop an x-ray imaging system which can operate in the hard radiative background generated by an ignition shot of ICF. The scintillator is a part of the imaging system and has to gather a compromise of scintillating properties (scintillating efficiency, decay time, emission wavelength) so as to both operate in the hard radiative environment and to allow the acquisition of spatially resolved images. Inorganic scintillators cannot be used because no compromise can be found regarding the expected scintillating properties. Most of them are not fast enough and emit blue light. Organic scintillators are generally fast, but present low x-ray photoelectric absorption in the 10 to 40 keV range. This does not enable the acquisition of spatially resolved images. To this aim, we have developed highly lead-loaded and red-fluorescent fast plastic scintillators. Such a combination is not currently available via scintillator suppliers, since they propose only blue-fluorescent plastic scintillators doped with up to 12 wt% Pb. Thus, incorporation ratio up to 27 wt% Pb has been reached in our laboratory, which can afford a plastic scintillator with an outstanding Z(eff) close to 50. X-rays in the 10 to 40 keV range can thus interact with a higher probability of photoelectric effect than for classic organic scintillators, such as NE-102. The strong orange-red fluorescence can be filtered, so that we can eliminate residual Cerenkov light, generated by gamma-ray absorption in glass parts of the imaging system. Characteristic decay times of our scintillators evaluated under UV excitation were estimated to be in the range 10 to 13 ns. (authors)

  3. Scintillation counter based radiation dosimeter

    International Nuclear Information System (INIS)

    Shin, Jeong Hyun

    2009-02-01

    The average human exposure per year is about 240mrem which is come from Radon and human body and terrestrial and cosmic radiation and man-made source. Specially radiation exposure through air from environmental radiation sources is 80mrem/yr(= 0.01mR/hr) which come from Terrestrial and cosmic radiation. Radiation dose is defined as energy deposit/mass. There are two major methods to detect radiation. First method is the energy integration using Air equivalent material like GM counter wall material. Second method is the spectrum to dose conversion method using NaI(Tl), HPGe. These two methods are using generally to detect radiation. But these methods are expensive. So we need new radiation detection method. The research purpose is the development of economical environmental radiation dosimeter. This system consists of Plastic/Inorganic scintillator and Si photo-diode based detector and counting based circuitry. So count rate(cps) can be convert to air exposure rate(R/hr). There are three major advantages in this system. First advantages is no high voltage power supply like GM counter. Second advantage is simple electronics. Simple electronics system can be achieved by Air-equivalent scintillation detector with Al filter for the same detection efficiency vs E curve. From former two advantages, we can know the most important advantages of the this system. Third advantage is economical system. The price of typical GM counter is about $1000. But the price of our system is below $100 because of plastic scintillator and simple electronics. The role of scintillation material is emitting scintillation which is the flash of light produced in certain materials when they absorb ionizing radiation. Plastic scintillator is organic scintillator which is kind of hydrocarbons. The special point are cheap price, large size production(∼ton), moderate light output, fast light emission(ns). And the role of Al filter is equalizing counting efficiency of air and scintillator for

  4. Radiation-induced transmission spectral variations of Ce3+-doped heavy germanate glasses

    International Nuclear Information System (INIS)

    Yang Yunxia; Baccaro, S.; Cecilia, A.; Rao Jinhua; Zhang Junbiao; Xia Fang; Chen Guorong

    2005-01-01

    Radiation-induced transmission spectral variations of Ce 3+ -doped heavy germanate glasses used as scintillating materials are presented. Glass matrix contains mainly GeO 2 , BaO and Gd 2 O 3 with a density higher than 5 g/cm 3 . Glasses are melted in the different atmosphere. The transmission spectra of glasses before and after radiation treatments are measured and compared. Unlike exhibiting the monotonous deterioration effect on the glass matrix, radiation plays the radiation protection role, even making enhanced transmission of Ce 3+ -doped glasses, depending upon glass melting atmosphere and radiation dose. Radiation-induced reducing and oxidizing mechanism is proposed to explain phenomena

  5. Neutrons detection by scintillation; Detection de neutrons par scintillations

    Energy Technology Data Exchange (ETDEWEB)

    Giraudon, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1955-01-15

    The absence of charge of neutrons and their elevated penetration power make difficult their detection. Techniques vary otherwise with the energy of the particle. The author proposes the realization of a scintillation detector with a big volume of liquid scintillator and containing boron for the detection of slowing-down neutrons in the domain of intermediate energies from 1 to 10{sup 5} eV about. (M.B.) [French] L'absence de charge du neutron et son pouvoir de penetration eleve rendent difficile sa detection. Les techniques par ailleurs varient avec l'energie de cette particule. L'auteur propose la realisation d'un detecteur a scintillations comprenant un grand volume de scintillateur liquide et contenant du bore pour la detection des neutrons en ralentissement dans le domaine des energies intermediaires de 1 a 10{sup 5} eV environ. (M.B.)

  6. Cherenkov and scintillation light separation in organic liquid scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Caravaca, J.; Descamps, F.B.; Land, B.J.; Orebi Gann, G.D. [University of California, Berkeley, CA (United States); Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Yeh, M. [Brookhaven National Laboratory, Upton, NY (United States)

    2017-12-15

    The CHErenkov/Scintillation Separation experiment (CHESS) has been used to demonstrate the separation of Cherenkov and scintillation light in both linear alkylbenzene (LAB) and LAB with 2 g/L of PPO as a fluor (LAB/PPO). This is the first successful demonstration of Cherenkov light detection from the more challenging LAB/PPO cocktail and improves on previous results for LAB. A time resolution of 338 ± 12 ps FWHM results in an efficiency for identifying Cherenkov photons in LAB/PPO of 70 ± 3% and 63 ± 8% for time- and charge-based separation, respectively, with scintillation contamination of 36 ± 5% and 38 ± 4. LAB/PPO data is consistent with a rise time of τ{sub r} = 0.72 ± 0.33 ns. (orig.)

  7. Cherenkov and scintillation light separation in organic liquid scintillators

    International Nuclear Information System (INIS)

    Caravaca, J.; Descamps, F.B.; Land, B.J.; Orebi Gann, G.D.; Yeh, M.

    2017-01-01

    The CHErenkov/Scintillation Separation experiment (CHESS) has been used to demonstrate the separation of Cherenkov and scintillation light in both linear alkylbenzene (LAB) and LAB with 2 g/L of PPO as a fluor (LAB/PPO). This is the first successful demonstration of Cherenkov light detection from the more challenging LAB/PPO cocktail and improves on previous results for LAB. A time resolution of 338 ± 12 ps FWHM results in an efficiency for identifying Cherenkov photons in LAB/PPO of 70 ± 3% and 63 ± 8% for time- and charge-based separation, respectively, with scintillation contamination of 36 ± 5% and 38 ± 4. LAB/PPO data is consistent with a rise time of τ r = 0.72 ± 0.33 ns. (orig.)

  8. Neutrons detection by scintillation; Detection de neutrons par scintillations

    Energy Technology Data Exchange (ETDEWEB)

    Giraudon, J. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1955-01-15

    The absence of charge of neutrons and their elevated penetration power make difficult their detection. Techniques vary otherwise with the energy of the particle. The author proposes the realization of a scintillation detector with a big volume of liquid scintillator and containing boron for the detection of slowing-down neutrons in the domain of intermediate energies from 1 to 10{sup 5} eV about. (M.B.) [French] L'absence de charge du neutron et son pouvoir de penetration eleve rendent difficile sa detection. Les techniques par ailleurs varient avec l'energie de cette particule. L'auteur propose la realisation d'un detecteur a scintillations comprenant un grand volume de scintillateur liquide et contenant du bore pour la detection des neutrons en ralentissement dans le domaine des energies intermediaires de 1 a 10{sup 5} eV environ. (M.B.)

  9. Glass consistency and glass performance

    International Nuclear Information System (INIS)

    Plodinec, M.J.; Ramsey, W.G.

    1994-01-01

    Glass produced by the Defense Waste Processing Facility (DWPF) will have to consistently be more durable than a benchmark glass (evaluated using a short-term leach test), with high confidence. The DWPF has developed a Glass Product Control Program to comply with this specification. However, it is not clear what relevance product consistency has on long-term glass performance. In this report, the authors show that DWPF glass, produced in compliance with this specification, can be expected to effectively limit the release of soluble radionuclides to natural environments. However, the release of insoluble radionuclides to the environment will be limited by their solubility, and not glass durability

  10. Colloidal glasses

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Colloidal glasses. Glassy state is attained when system fails to reach equilibrium due to crowding of constituent particles. In molecular glasses, glassy state is reached by rapidly lowering the temperature. In colloidal glasses, glassy state is reached by increasing the ...

  11. Scintillation-Hardened GPS Receiver

    Science.gov (United States)

    Stephens, Donald R.

    2015-01-01

    CommLargo, Inc., has developed a scintillation-hardened Global Positioning System (GPS) receiver that improves reliability for low-orbit missions and complies with NASA's Space Telecommunications Radio System (STRS) architecture standards. A software-defined radio (SDR) implementation allows a single hardware element to function as either a conventional radio or as a GPS receiver, providing backup and redundancy for platforms such as the International Space Station (ISS) and high-value remote sensing platforms. The innovation's flexible SDR implementation reduces cost, weight, and power requirements. Scintillation hardening improves mission reliability and variability. In Phase I, CommLargo refactored an open-source GPS software package with Kalman filter-based tracking loops to improve performance during scintillation and also demonstrated improved navigation during a geomagnetic storm. In Phase II, the company generated a new field-programmable gate array (FPGA)-based GPS waveform to demonstrate on NASA's Space Communication and Navigation (SCaN) test bed.

  12. Development of radiation hard scintillators

    International Nuclear Information System (INIS)

    Markley, F.; Woods, D.; Pla-Dalmau, A.; Foster, G.; Blackburn, R.

    1992-05-01

    Substantial improvements have been made in the radiation hardness of plastic scintillators. Cylinders of scintillating materials 2.2 cm in diameter and 1 cm thick have been exposed to 10 Mrads of gamma rays at a dose rate of 1 Mrad/h in a nitrogen atmosphere. One of the formulations tested showed an immediate decrease in pulse height of only 4% and has remained stable for 12 days while annealing in air. By comparison a commercial PVT scintillator showed an immediate decrease of 58% and after 43 days of annealing in air it improved to a 14% loss. The formulated sample consisted of 70 parts by weight of Dow polystyrene, 30 pbw of pentaphenyltrimethyltrisiloxane (Dow Corning DC 705 oil), 2 pbw of p-terphenyl, 0.2 pbw of tetraphenylbutadiene, and 0.5 pbw of UVASIL299LM from Ferro

  13. Nanophosphor composite scintillator with a liquid matrix

    Science.gov (United States)

    McKigney, Edward Allen; Burrell, Anthony Keiran; Bennett, Bryan L.; Cooke, David Wayne; Ott, Kevin Curtis; Bacrania, Minesh Kantilal; Del Sesto, Rico Emilio; Gilbertson, Robert David; Muenchausen, Ross Edward; McCleskey, Thomas Mark

    2010-03-16

    An improved nanophosphor scintillator liquid comprises nanophosphor particles in a liquid matrix. The nanophosphor particles are optionally surface modified with an organic ligand. The surface modified nanophosphor particle is essentially surface charge neutral, thereby preventing agglomeration of the nanophosphor particles during dispersion in a liquid scintillator matrix. The improved nanophosphor scintillator liquid may be used in any conventional liquid scintillator application, including in a radiation detector.

  14. Improvements to well scintillation counters

    International Nuclear Information System (INIS)

    Farukhi, M.R.; Mataraza, G.A.; Wimer, O.D.

    1977-01-01

    This invention relates to the field of ionising radiation detection. It concerns in particular scintillation detectors of the type that is commonly used in conjunction with a photomultiplier tube and that is used for monitoring radiation, for instance in the clinical measurements of isotopes. This invention enables well scintillation counters to be made, characterised by a high efficiency in measuring the thindown rate of radio-pharmaceutical solutions and to resolve the distribution of energy emanating from the radioactive source. It particularly consists in improving the uniformity of the luminous efficiency, the quality of the resolution and the efficiency whilst improving the reception of light [fr

  15. Magnetic fields and scintillator performance

    International Nuclear Information System (INIS)

    Green, D.; Ronzhin, A.; Hagopian, V.

    1995-06-01

    Experimental data have shown that the light output of a scintillator depends on the magnitude of the externally applied magnetic fields, and that this variation can affect the calorimeter calibration and possibly resolution. The goal of the measurements presented here is to study the light yield of scintillators in high magnetic fields in conditions that are similar to those anticipated for the LHC CMS detector. Two independent measurements were performed, the first at Fermilab and the second at the National High Magnetic Field Laboratory at Florida State University

  16. Development of scintillating fiber tracker

    International Nuclear Information System (INIS)

    Ishikawa, Shuzo; Kawai, Toshihide; Kozaki, Tetsuo

    1995-01-01

    In order to use thin scintillating fiber (diameter 500 micron) as a particle tracking detector, we have developed a method to construct precise multi-layer scintillating fiber sheets. We have also developed dedicated machines for this purpose. This paper presents the details of the method and the machines. Using these machines, we have produced fiber sheets for CERN WA95/CHORUS, which intend to detect a neutrino oscillation in the νμ-ντ channel using Hybrid Emulsion Set-up. Fiber Trackers are used as a vertex detector which support the neutrino event location in the nuclear emulsion target. (author)

  17. Silicate glasses

    International Nuclear Information System (INIS)

    Lutze, W.

    1988-01-01

    Vitrification of liquid high-level radioactive wastes has received the greatest attention, world-wide, compared to any other HLW solidification process. The waste form is a borosilicate-based glass. The production of phosphate-based glass has been abandoned in the western world. Only in the Soviet Union are phosphate-based glasses still being developed. Vitrification techniques, equipment and processes and their remote operation have been developed and studied for almost thirty years and have reached a high degree of technical maturity. Industrial demonstration of the vitrification process has been in progress since 1978. This chapter is a survey of world-wide research and development efforts in nuclear waste glasses and its production technology. The principal glasses considered are silicate glasses which contain boron, i.e., borosilicate glasses

  18. Time resolution research in liquid scintillating detection

    International Nuclear Information System (INIS)

    He Hongkun; Shi Haoshan

    2006-01-01

    The signal processing design method is introduced into liquid scintillating detection system design. By analyzing the signal of liquid scintillating detection, improving time resolution is propitious to upgrade efficiency of detecting. The scheme of realization and satisfactory experiment data is demonstrated. Besides other types of liquid scintillating detection is the same, just using more high speed data signal processing techniques and elements. (authors)

  19. Composite scintillators for detection of ionizing radiation

    Science.gov (United States)

    Dai, Sheng [Knoxville, TN; Stephan, Andrew Curtis [Knoxville, TN; Brown, Suree S [Knoxville, TN; Wallace, Steven A [Knoxville, TN; Rondinone, Adam J [Knoxville, TN

    2010-12-28

    Applicant's present invention is a composite scintillator having enhanced transparency for detecting ionizing radiation comprising a material having optical transparency wherein said material comprises nano-sized objects having a size in at least one dimension that is less than the wavelength of light emitted by the composite scintillator wherein the composite scintillator is designed to have selected properties suitable for a particular application.

  20. Photonic crystal scintillators and methods of manufacture

    Science.gov (United States)

    Torres, Ricardo D.; Sexton, Lindsay T.; Fuentes, Roderick E.; Cortes-Concepcion, Jose

    2015-08-11

    Photonic crystal scintillators and their methods of manufacture are provided. Exemplary methods of manufacture include using a highly-ordered porous anodic alumina membrane as a pattern transfer mask for either the etching of underlying material or for the deposition of additional material onto the surface of a scintillator. Exemplary detectors utilizing such photonic crystal scintillators are also provided.

  1. Novel methods for measuring afterglow in developmental scintillators for X-ray and neutron detection

    Science.gov (United States)

    Bartle, C. M.; Edgar, A.; Dixie, L.; Varoy, C.; Piltz, R.; Buchanan, S.; Rutherford, K.

    2011-09-01

    In this paper we discuss two novel methods of measuring afterglow in scintillators. One method is designed for X-ray detection and the other for neutron detection applications. In the first method a commercial fan-beam scanner of basic design similar to those seen at airports is used to deliver a typically 12 ms long X-ray pulse to a scintillator by passing the test equipment through the scanner on the conveyor belt. In the second method the thermal neutron beam from a research reactor is incident on the scintillator. The beam is cut-off in about 1 ms using a 10B impregnated aluminum pneumatic shutter, and the afterglow is recorded on a dual range storage oscilloscope to capture both the steady state intensity and the weak decay. We describe these measurement methods and the results obtained for a range of developmental ceramic and glass scintillators, as well as some standard scintillators such as NaI(Tl), LiI(Eu) and the plastic scintillator NE102A. Preliminary modeling of the afterglow is presented.

  2. Novel methods for measuring afterglow in developmental scintillators for X-ray and neutron detection

    Energy Technology Data Exchange (ETDEWEB)

    Bartle, C.M., E-mail: m.bartle@gns.cri.nz [National Isotope Centre, GNS Science, PO Box 31312, Lower Hutt 5040 (New Zealand); Edgar, A.; Dixie, L.; Varoy, C. [School of Chemistry and Physics, Victoria University of Wellington, Wellington 6140 (New Zealand); Piltz, R. [Bragg Institute, ANSTO, PMB 1, Menai NSW 2234 (Australia); Buchanan, S.; Rutherford, K. [School of Chemistry and Physics, Victoria University of Wellington, Wellington 6140 (New Zealand)

    2011-09-21

    In this paper we discuss two novel methods of measuring afterglow in scintillators. One method is designed for X-ray detection and the other for neutron detection applications. In the first method a commercial fan-beam scanner of basic design similar to those seen at airports is used to deliver a typically 12 ms long X-ray pulse to a scintillator by passing the test equipment through the scanner on the conveyor belt. In the second method the thermal neutron beam from a research reactor is incident on the scintillator. The beam is cut-off in about 1 ms using a {sup 10}B impregnated aluminum pneumatic shutter, and the afterglow is recorded on a dual range storage oscilloscope to capture both the steady state intensity and the weak decay. We describe these measurement methods and the results obtained for a range of developmental ceramic and glass scintillators, as well as some standard scintillators such as NaI(Tl), LiI(Eu) and the plastic scintillator NE102A. Preliminary modeling of the afterglow is presented.

  3. Synthesis of plastic scintillation microspheres: Evaluation of scintillators

    International Nuclear Information System (INIS)

    Santiago, L.M.; Bagán, H.; Tarancón, A.; Garcia, J.F.

    2013-01-01

    The use of plastic scintillation microspheres (PSm) appear to be an alternative to liquid scintillation for the quantification of alpha and beta emitters because it does not generate mixed wastes after the measurement (organic and radioactive). In addition to routine radionuclide determinations, PSm can be used for further applications, e.g. for usage in a continuous monitoring equipment, for measurements of samples with a high salt concentration and for an extractive scintillation support which permits the separation, pre-concentration and measurement of the radionuclides without additional steps of elution and sample preparation. However, only a few manufacturers provide PSm, and the low number of regular suppliers reduces its availability and restricts the compositions and sizes available. In this article, a synthesis method based on the extraction/evaporation methodology has been developed and successfully used for the synthesis of plastic scintillation microspheres. Seven different compositions of plastic scintillation microspheres have been synthesised; PSm1 with polystyrene, PSm2 with 2,5-Diphenyloxazol(PPO), PSm3 with p-terphenyl (pT), PSm4 with PPO and 1,4-bis(5-phenyloxazol-2-yl) (POPOP), PSm5 pT and (1,4-bis [2-methylstyryl] benzene) (Bis-MSB), PSm6 with PPO, POPOP and naphthalene and PSm7 with pT, Bis-MSB and naphthalene. The synthesised plastic scintillation microspheres have been characterised in terms of their morphology, detection capabilities and alpha/beta separation capacity. The microspheres had a median diameter of approximately 130 μm. Maximum detection efficiency values were obtained for the PSm4 composition as follows 1.18% for 3 H, 51.2% for 14 C, 180.6% for 90 Sr/ 90 Y and 76.7% for 241 Am. Values of the SQP(E) parameter were approximately 790 for PSm4 and PSm5. These values show that the synthesised PSm exhibit good scintillation properties and that the spectra are at channel numbers higher than in commercial PSm. Finally, the addition

  4. Measurement of radionuclides using ion chromatography and flow-cell scintillation counting with pulse shape discrimination

    International Nuclear Information System (INIS)

    DeVol, T.A.; Fjeld, R.A.

    1995-01-01

    A project has been initiated at Clemson Univ. to develop a HPLC/flow- cell system for analysis of non-gamma emitting radionuclides in environmental samples; an important component is development of a low background flow-cell detector that counts alpha and beta particles separately through pulse shape discrimination. Objective of the work presented here is to provide preliminary results of an evaluation of the following scintillators: CaF 2 :Eu, scintillating glass, and BaF 2 . Slightly acidic aqueous solutions of the alpha emitter 233 U and the beta emitter 45 Ca were used. Detection efficiencies and minimum detectable activities were determined

  5. Investigation of Novel Glass Scintillators for Gamma Ray Detection

    Science.gov (United States)

    2013-02-01

    STATEMENT Approved for public release; distribution is unlimited. 13. SUPPLEMENTARY NOTES NIA 14.ABSTRACT Develop a new class of high...fncfude area code/ ( 505 ) 277-2080 Standard Form 298 (Rev. 8 /98) PrC$eribed by ANSI S1d. Z39. 18 CONVERSION TABLE Conversion Factors for U.S

  6. A Performance Comparison of Nine Selected Liquid Scintillation Cocktails

    Energy Technology Data Exchange (ETDEWEB)

    Verrezen, F; Loots, H; Hurtgen, Ch

    2008-06-15

    In the selection of a suitable liquid scintillation (LSC) cocktail, the primary aspects taken into consideration are overall cocktail performance and specific laboratory needs. Overall performance of 9 selected, commercially available LSC cocktails was assessed by studying parameters of importance for the requirements of the Laboratory for Low Level Radioactivity Measurements of SCK-CEN: sample load capacity, sample compatibility, influence of sample load on counting efficiency, background count rate, figure of merit, quench resistance, sample stability and alpha/beta separation characteristics. The cocktails tested were EcoscintA, Insta Gel Plus, OptiPhase Hisafe3, OptiPhase Trisafe, Ready Gel, SafeScint 1:1, Ultima Gold, Ultima Gold LLT, and Ultima Gold XR. For the data acquisition a Packard TriCarb Model 1900CA and a Quantulus 1220 liquid scintillation counter is used. All samples were prepared in either 20 mL low potassium, borosilicate glass vials or 20 mL high density, polyethylene vials. The aim of this study was to determine a single cocktail that best suits all measurement requirements of the liquid scintillation laboratory at SCK-CEN for the determination of low levels of radioactivity in biological and environmental samples. As a conclusion, Optiphase HiSafe 3 was confirmed to be the optimal cocktail for the laboratory.

  7. A Performance Comparison of Nine Selected Liquid Scintillation Cocktails

    International Nuclear Information System (INIS)

    Verrezen, F.; Loots, H.; Hurtgen, Ch.

    2008-01-01

    In the selection of a suitable liquid scintillation (LSC) cocktail, the primary aspects taken into consideration are overall cocktail performance and specific laboratory needs. Overall performance of 9 selected, commercially available LSC cocktails was assessed by studying parameters of importance for the requirements of the Laboratory for Low Level Radioactivity Measurements of SCK-CEN: sample load capacity, sample compatibility, influence of sample load on counting efficiency, background count rate, figure of merit, quench resistance, sample stability and alpha/beta separation characteristics. The cocktails tested were EcoscintA, Insta Gel Plus, OptiPhase Hisafe3, OptiPhase Trisafe, Ready Gel, SafeScint 1:1, Ultima Gold, Ultima Gold LLT, and Ultima Gold XR. For the data acquisition a Packard TriCarb Model 1900CA and a Quantulus 1220 liquid scintillation counter is used. All samples were prepared in either 20 mL low potassium, borosilicate glass vials or 20 mL high density, polyethylene vials. The aim of this study was to determine a single cocktail that best suits all measurement requirements of the liquid scintillation laboratory at SCK-CEN for the determination of low levels of radioactivity in biological and environmental samples. As a conclusion, Optiphase HiSafe 3 was confirmed to be the optimal cocktail for the laboratory.

  8. Shock-resistant scintillation detector

    International Nuclear Information System (INIS)

    Novak, W.P.

    1979-01-01

    A unique scintillation detector unit is disclosed which employs a special light transfer and reflector means that encases and protects the scintillator crystal against high g forces. The light transfer means comprises a flexible silicon rubber optical material bonded between the crystal and the optical window and having an axial thickness sufficient to allow the scintillator to move axially inside the container under high g forces without destroying the bonds. The reflector means comprises a soft elastic silicone rubber sleeve having a multiplicity of closely arranged tapered protrusions radiating toward and engaging the periphery of the scintillator crystal to cushion shocks effectively and having a reflective material, such as aluminum oxide powder, in the spaces between the protrusions. The reflector means provides improved shock absorption because of the uniform support and cushioning action of the protrusions and also provides the detector with high efficiency. The silicon rubber composition is specially compounded to include a large amount of aluminum oxide which enables the rubber to function effectively as a light reflector

  9. Extruded plastic scintillator for MINERvA

    International Nuclear Information System (INIS)

    Pla-Dalmau, Anna; Bross, Alan D.; FermilabRykalin, Victor V.; Wood, Brian M.; NICADD, DeKalb

    2005-01-01

    An extrusion line has recently been installed at Fermilab in collaboration with NICADD (Northern Illinois Center for Accelerator and Detector Development). This new facility will serve to further develop and improve extruded plastic scintillator. Since polystyrene is widely used in the consumer industry, the logical path was to investigate the extrusion of commercial-grade polystyrene pellets with dopants to yield high quality plastic scintillator. The D0 and MINOS experiments are already using extruded scintillator strips in their detectors. A new experiment at Fermilab is pursuing the use of extruded plastic scintillator. A new plastic scintillator strip is being tested and its properties characterized. The initial results are presented here

  10. Scintillators for positron emission tomography

    International Nuclear Information System (INIS)

    Moses, W.W.; Derenzo, S.E.

    1995-09-01

    Like most applications that utilize scintillators for gamma detection, Positron Emission Tomography (PET) desires materials with high light output, short decay time, and excellent stopping power that are also inexpensive, mechanically rugged, and chemically inert. Realizing that this ''ultimate'' scintillator may not exist, this paper evaluates the relative importance of these qualities and describes their impact on the imaging performance of PET. The most important PET scintillator quality is the ability to absorb 511 keV photons in a small volume, which affects the spatial resolution of the camera. The dominant factor is a short attenuation length (≤ 1.5 cm is required), although a high photoelectric fraction is also important (> 30% is desired). The next most important quality is a short decay time, which affects both the dead time and the coincidence timing resolution. Detection rates for single 511 keV photons can be extremely high, so decay times ≤ 500 ns are essential to avoid dead time losses. In addition, positron annihilations are identified by time coincidence so ≤5 ns fwhm coincidence pair timing resolution is required to identify events with narrow coincidence windows, reducing contamination due to accidental coincidences. Current trends in PET cameras are toward septaless, ''fully-3D'' cameras, which have significantly higher count rates than conventional 2-D cameras and so place higher demands on scintillator decay time. Light output affects energy resolution, and thus the ability of the camera to identify and reject events where the initial 511 keV photon has undergone Compton scatter in the patient. The scatter to true event fraction is much higher in fully-3D cameras than in 2-D cameras, so future PET cameras would benefit from scintillators with a 511 keV energy resolution < 10--12% fwhm

  11. Energy resolution of scintillation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Moszyński, M., E-mail: M.Moszynski@ncbj.gov.pl; Syntfeld-Każuch, A.; Swiderski, L.; Grodzicka, M.; Iwanowska, J.; Sibczyński, P.; Szczęśniak, T.

    2016-01-01

    According to current knowledge, the non-proportionality of the light yield of scintillators appears to be a fundamental limitation of energy resolution. A good energy resolution is of great importance for most applications of scintillation detectors. Thus, its limitations are discussed below; which arise from the non-proportional response of scintillators to gamma rays and electrons, being of crucial importance to the intrinsic energy resolution of crystals. The important influence of Landau fluctuations and the scattering of secondary electrons (δ-rays) on intrinsic resolution is pointed out here. The study on undoped NaI and CsI at liquid nitrogen temperature with a light readout by avalanche photodiodes strongly suggests that the non-proportionality of many crystals is not their intrinsic property and may be improved by selective co-doping. Finally, several observations that have been collected in the last 15 years on the influence of the slow components of light pulses on energy resolution suggest that more complex processes are taking place in the scintillators. This was observed with CsI(Tl), CsI(Na), ZnSe(Te), and undoped NaI at liquid nitrogen temperature and, finally, for NaI(Tl) at temperatures reduced below 0 °C. A common conclusion of these observations is that the highest energy resolution, and particularly intrinsic resolution measured with the scintillators, characterized by two or more components of the light pulse decay, is obtainable when the spectrometry equipment integrates the whole light of the components. In contrast, the slow components observed in many other crystals degrade the intrinsic resolution. In the limiting case, afterglow could also be considered as a very slow component that spoils the energy resolution. The aim of this work is to summarize all of the above observations by looking for their origin.

  12. High Efficiency, Low Cost Scintillators for PET

    International Nuclear Information System (INIS)

    Kanai Shah

    2007-01-01

    Inorganic scintillation detectors coupled to PMTs are an important element of medical imaging applications such as positron emission tomography (PET). Performance as well as cost of these systems is limited by the properties of the scintillation detectors available at present. The Phase I project was aimed at demonstrating the feasibility of producing high performance scintillators using a low cost fabrication approach. Samples of these scintillators were produced and their performance was evaluated. Overall, the Phase I effort was very successful. The Phase II project will be aimed at advancing the new scintillation technology for PET. Large samples of the new scintillators will be produced and their performance will be evaluated. PET modules based on the new scintillators will also be built and characterized

  13. The quest for the ideal inorganic scintillator

    International Nuclear Information System (INIS)

    Derenzo, S.E.; Weber, M.J.; Bourret-Courchesne, E.; Klintenberg, M.K.

    2002-01-01

    The past half century has witnessed the discovery of many new inorganic scintillator materials and numerous advances in our understanding of the basic physical processes governing the transformation of ionizing radiation into scintillation light. Whereas scintillators are available with a good combination of physical properties, none provides the desired combination of stopping power, light output, and decay time. A review of the numerous scintillation mechanisms of known inorganic scintillators reveals why none of them is both bright and fast. The mechanisms of radiative recombination in wide-bandgap direct semiconductors, however, remain relatively unexploited for scintillators. We describe how suitably doped semiconductor scintillators could provide a combination of high light output, short decay time, and linearity of response that approach fundamental limits

  14. Recycle Glass in Foam Glass Production

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund; König, Jakob; Yue, Yuanzheng

    The foam glass industry turn recycle glass into heat insulating building materials. The foaming process is relative insensitive to impurities in the recycle glass. It is therefore considered to play an important role in future glass recycling. We show and discuss trends of use of recycled glasses...... in foam glass industry and the supply sources and capacity of recycle glass....

  15. The study of vial and cocktail for tritium radioactivity analysis of rain water by liquid scintillation counter

    International Nuclear Information System (INIS)

    Noh, Sung Jin; Kim, Hyo Jin; Kim, Hyun; Lee, Man Woo; Jeong, Dong Hyeok; Yang, Kwang Mo; Kang, Yeong Rok; Nam, Sang Hee

    2015-01-01

    Even though the current method for tritium (3H) analysis is routine, for the case of the low level of tritium in the environment, special conditions have to be fulfilled in order to obtain accurate and reliable tritium measurements. There are very little comparative data concerning commercial scintillating cocktails. The best cocktails for measuring tritium are those based on benzene derived solvent, and the worse cocktails are those which have complex chemical composition or contain too small concentration of scintillators. The aim of study was to investigate various vials and cocktails by comparison with the combination of few different scintillation cocktails and vials in our routine measurements according to count, efficiency, and the figure of merit (FOM). The comparison of three types of vials with scintillation cocktails for tritium activity analysis of rain water shows that glass vials have higher count rates and HiSafe 3 cocktails have lower FOM

  16. Cosmos & Glass

    DEFF Research Database (Denmark)

    Beim, Anne

    1996-01-01

    The article unfolds the architectural visions of glass by Bruno Taut. It refers to inspirations by Paul Sheerbart and litterature and the Crystal Chain, also it analyses the tectonic univers that can be found in the glass pavillion for the Werkbund exposition in Cologne....

  17. Glass Glimpsed

    DEFF Research Database (Denmark)

    Lock, Charles

    2015-01-01

    Glass in poetry as it reflects the viewer and as its power of reflection are both reduced and enhanced by technology.......Glass in poetry as it reflects the viewer and as its power of reflection are both reduced and enhanced by technology....

  18. SU-F-T-239: Evaluation of Plastic Scintillator Light Output for Various Lead Doping Concentrations: Towards LET Detection

    International Nuclear Information System (INIS)

    Nusrat, H; Pang, G; Sarfehnia, A

    2016-01-01

    Purpose: This work seeks to develop a beam quality meter using multiple differently doped plastic scintillators that are thus intrinsically beam-quality dependent. Plastic scintillators spontaneously emit visible light upon irradiation; the amount of light produced is dependent on stopping power (closely related to LET) according to Birks’ law. Doping plastic scintillators can be used to tune their sensitivity to specific LET ranges. Methods: GEANT4.10.1 Monte Carlo (MC) was used to evaluate the response of various scintillator dopant combinations. MC radiation transport and scintillator light response were validated against previously published literature. Current work involves evaluating detector response experimentally; to that end, a detector prototype with interchangeable scintillator housing was constructed. Measurement set-up guides light emitted by the scintillator to a photomultiplier tube via a glass taper junction coupled to an optical fiber. The resulting signal is measured by an electrometer, and normalized to dose readout from a diode. Measurements have been done using clinical electron and orthovoltage beams. MC response (simulated scintillator light normalized to dose scored inside the scintillating volume) was evaluated for four different LET radiations for an undoped and 1%Pb doped scintillator (σ=0.85%). Simulated incident electrons included: 0.05, 0.1, 0.2, 6, 12, and 18 MeV; these energies correspond to a range of stopping power (related to LET) values ranging from 1.824 to 11.09 MeVcm"2g"−"1 (SCOL from NIST-ESTAR). Results: Initial MC results show a distinct divergence in scintillator response as LET increases. The response for undoped plastic scintillator indicated a 35.0% increase in signal when going from 18 MeV (low LET) to 0.05 MeV (high LET) while 1%-Pb doped scintillator indicated a 100.9% increase. Conclusion: After validating MC against measurement, simulations will be used to test various concentrations (2%, 4%, 6%) of different

  19. SU-F-T-239: Evaluation of Plastic Scintillator Light Output for Various Lead Doping Concentrations: Towards LET Detection

    Energy Technology Data Exchange (ETDEWEB)

    Nusrat, H [Ryerson University, Toronto, ON (Canada); Pang, G; Sarfehnia, A [Sunnybrook Health Sciences Centre, Toronto, ON (Canada)

    2016-06-15

    Purpose: This work seeks to develop a beam quality meter using multiple differently doped plastic scintillators that are thus intrinsically beam-quality dependent. Plastic scintillators spontaneously emit visible light upon irradiation; the amount of light produced is dependent on stopping power (closely related to LET) according to Birks’ law. Doping plastic scintillators can be used to tune their sensitivity to specific LET ranges. Methods: GEANT4.10.1 Monte Carlo (MC) was used to evaluate the response of various scintillator dopant combinations. MC radiation transport and scintillator light response were validated against previously published literature. Current work involves evaluating detector response experimentally; to that end, a detector prototype with interchangeable scintillator housing was constructed. Measurement set-up guides light emitted by the scintillator to a photomultiplier tube via a glass taper junction coupled to an optical fiber. The resulting signal is measured by an electrometer, and normalized to dose readout from a diode. Measurements have been done using clinical electron and orthovoltage beams. MC response (simulated scintillator light normalized to dose scored inside the scintillating volume) was evaluated for four different LET radiations for an undoped and 1%Pb doped scintillator (σ=0.85%). Simulated incident electrons included: 0.05, 0.1, 0.2, 6, 12, and 18 MeV; these energies correspond to a range of stopping power (related to LET) values ranging from 1.824 to 11.09 MeVcm{sup 2}g{sup −1} (SCOL from NIST-ESTAR). Results: Initial MC results show a distinct divergence in scintillator response as LET increases. The response for undoped plastic scintillator indicated a 35.0% increase in signal when going from 18 MeV (low LET) to 0.05 MeV (high LET) while 1%-Pb doped scintillator indicated a 100.9% increase. Conclusion: After validating MC against measurement, simulations will be used to test various concentrations (2%, 4%, 6%) of

  20. Spin glasses

    CERN Document Server

    Bovier, Anton

    2007-01-01

    Spin glass theory is going through a stunning period of progress while finding exciting new applications in areas beyond theoretical physics, in particular in combinatorics and computer science. This collection of state-of-the-art review papers written by leading experts in the field covers the topic from a wide variety of angles. The topics covered are mean field spin glasses, including a pedagogical account of Talagrand's proof of the Parisi solution, short range spin glasses, emphasizing the open problem of the relevance of the mean-field theory for lattice models, and the dynamics of spin glasses, in particular the problem of ageing in mean field models. The book will serve as a concise introduction to the state of the art of spin glass theory, usefull to both graduate students and young researchers, as well as to anyone curious to know what is going on in this exciting area of mathematical physics.

  1. A helical scintillating fiber hodoscope

    CERN Document Server

    Altmeier, M; Bisplinghoff, J; Bissel, T; Bollmann, R; Busch, M; Büsser, K; Colberg, T; Demiroers, L; Diehl, O; Dohrmann, F; Engelhardt, H P; Eversheim, P D; Felden, O; Gebel, R; Glende, M; Greiff, J; Gross, A; Gross-Hardt, R; Hinterberger, F; Jahn, R; Jeske, M; Jonas, E; Krause, H; Lahr, U; Langkau, R; Lindemann, T; Lindlein, J; Maier, R; Maschuw, R; Mayer-Kuckuck, T; Meinerzhagen, A; Naehle, O; Pfuff, M; Prasuhn, D; Rohdjess, H; Rosendaal, D; Von Rossen, P; Sanz, B; Schirm, N; Schulz-Rojahn, M; Schwarz, V; Scobel, W; Thomas, S; Trelle, H J; Weise, E; Wellinghausen, A; Wiedmann, W; Woller, K; Ziegler, R

    1999-01-01

    A novel scintillating fiber hodoscope in helically cylindric geometry has been developed for detection of low multiplicity events of fast protons and other light charged particles in the internal target experiment EDDA at the Cooler Synchrotron COSY. The hodoscope consists of 640 scintillating fibers (2.5 mm diameter), arranged in four layers surrounding the COSY beam pipe. The fibers are helically wound in opposing directions and read out individually using 16-channel photomultipliers connected to a modified commercial encoding system. The detector covers an angular range of 9 deg. <= THETA<=72 deg. and 0 deg. <=phi (cursive,open) Greek<=360 deg. in the lab frame. The detector length is 590 mm, the inner diameter 161 mm. Geometry and granularity of the hodoscope afford a position resolution of about 1.3 mm. The detector design took into consideration a maximum of reliability and a minimum of maintenance. An LED array may be used for monitoring purposes. (author)

  2. Silicon photomultipliers for scintillating trackers

    Energy Technology Data Exchange (ETDEWEB)

    Rabaioli, S., E-mail: simone.rabaioli@gmail.com [Universita degli Studi dell' Insubria, Via Valleggio, 11 - 22100 Como (Italy); Berra, A.; Bolognini, D. [Universita degli Studi dell' Insubria, Via Valleggio, 11 - 22100 Como (Italy); INFN sezione di Milano Bicocca (Italy); Bonvicini, V. [INFN sezione di Trieste (Italy); Bosisio, L. [Universita degli Studi di Trieste and INFN sezione di Trieste (Italy); Ciano, S.; Iugovaz, D. [INFN sezione di Trieste (Italy); Lietti, D. [Universita degli Studi dell' Insubria, Via Valleggio, 11 - 22100 Como (Italy); INFN sezione di Milano Bicocca (Italy); Penzo, A. [INFN sezione di Trieste (Italy); Prest, M. [Universita degli Studi dell' Insubria, Via Valleggio, 11 - 22100 Como (Italy); INFN sezione di Milano Bicocca (Italy); Rashevskaya, I.; Reia, S. [INFN sezione di Trieste (Italy); Stoppani, L. [Universita degli Studi dell' Insubria, Via Valleggio, 11 - 22100 Como (Italy); Vallazza, E. [INFN sezione di Trieste (Italy)

    2012-12-11

    In recent years, silicon photomultipliers (SiPMs) have been proposed as a new kind of readout device for scintillating detectors in many experiments. A SiPM consists of a matrix of parallel-connected pixels, which are independent photon counters working in Geiger mode with very high gain ({approx}10{sup 6}). This contribution presents the use of an array of eight SiPMs (manufactured by FBK-irst) for the readout of a scintillating bar tracker (a small size prototype of the Electron Muon Ranger detector for the MICE experiment). The performances of the SiPMs in terms of signal to noise ratio, efficiency and time resolution will be compared to the ones of a multi-anode photomultiplier tube (MAPMT) connected to the same bars. Both the SiPMs and the MAPMT are interfaced to a VME system through a 64 channel MAROC ASIC.

  3. Silicon photomultipliers for scintillating trackers

    Science.gov (United States)

    Rabaioli, S.; Berra, A.; Bolognini, D.; Bonvicini, V.; Bosisio, L.; Ciano, S.; Iugovaz, D.; Lietti, D.; Penzo, A.; Prest, M.; Rashevskaya, I.; Reia, S.; Stoppani, L.; Vallazza, E.

    2012-12-01

    In recent years, silicon photomultipliers (SiPMs) have been proposed as a new kind of readout device for scintillating detectors in many experiments. A SiPM consists of a matrix of parallel-connected pixels, which are independent photon counters working in Geiger mode with very high gain (∼106). This contribution presents the use of an array of eight SiPMs (manufactured by FBK-irst) for the readout of a scintillating bar tracker (a small size prototype of the Electron Muon Ranger detector for the MICE experiment). The performances of the SiPMs in terms of signal to noise ratio, efficiency and time resolution will be compared to the ones of a multi-anode photomultiplier tube (MAPMT) connected to the same bars. Both the SiPMs and the MAPMT are interfaced to a VME system through a 64 channel MAROC ASIC.

  4. LHCb Upgrade: Scintillating Fibre Tracker

    International Nuclear Information System (INIS)

    Tobin, Mark

    2016-01-01

    The LHCb detector will be upgraded during the Long Shutdown 2 (LS2) of the LHC in order to cope with higher instantaneous luminosities and to read out the data at 40 MHz using a trigger-less read-out system. All front-end electronics will be replaced and several sub-detectors must be redesigned to cope with higher occupancy. The current tracking detectors downstream of the LHCb dipole magnet will be replaced by the Scintillating Fibre (SciFi) Tracker. The SciFi Tracker will use scintillating fibres read out by Silicon Photomultipliers (SiPMs). State-of-the-art multi-channel SiPM arrays are being developed to read out the fibres and a custom ASIC will be used to digitise the signals from the SiPMs. The evolution of the design since the Technical Design Report in 2014 and the latest R & D results are presented.

  5. Studies of novel plastic scintillators

    International Nuclear Information System (INIS)

    McInally, I.D.

    1979-08-01

    The general aim of this study was to synthesize fluorescent compounds which are capable of polymerisation, to prepare polymers and co-polymers from these compounds and to study the photophysical properties of these materials. In this way it is hoped to produce plastic scintillators exhibiting improved energy transfer efficiency. Materials studied included POS(2-phenyl-5-(p vinyl) phenyloxazole) vinyl naphthalene, methyl anthracene terminated poly vinyl toluene) and derivatives of BuPBD. (author)

  6. Charged particle scintillation mass spectrometer

    International Nuclear Information System (INIS)

    Baranov, P.S.; Zhuravlev, E.E.; Nafikov, A.A.; Osadchi , A.I.; Raevskij, V.G.; Smirnov, P.A.; Cherepnya, S.N.; Yanulis, Yu.P.

    1982-01-01

    A scintillation mass-spectrometer for charged particle identification by the measured values of time-of-flight and energy operating on line with the D-116 computer is described. Original time detectors with 100x100x2 mm 3 and 200x2 mm 2 scintillators located on the 1- or 2 m path length are used in the spectrometer. The 200x200x200 mm 3 scintillation unit is used as a E-counter. Time-of-flight spectra of the detected particles on the 2 m path length obtained in spectrometer test in the beam of charged particles escaping from the carbon target at the angle of 130 deg under 1.2 GeV bremsstrahlung beam of the ''Pakhra'' PIAS synchrotron are presented. Proton and deuteron energy spectra as well as mass spectrum of all the particles detected by the spectrometer are given. Mass resolution obtained on the 2 m path length for π-mesons is +-25%, for protons is +-5%, for deuterons is +-3%

  7. Liquid scintillation alpha spectrometry techniques

    International Nuclear Information System (INIS)

    McKlveen, J.W.; McDowell, W.J.

    1984-01-01

    Accurate, quantitative determinations of alpha emitting nuclides by conventional plate counting methods are difficult, because of sample self-absorption problems in counting and because of non-reproducible losses in conventional sample separation methods. Liquid scintillation alpha spectrometry offers an attractive alternative with no sample self-absorption or geometry problems and with 100% counting efficiency. Sample preparation may include extraction of the alpha emitter of interest by a specific organic phase-soluble compound directly into the liquid scintillation counting medium. Detection electronics use energy and pulse-shape discrimination, to yield alpha spectra without beta and gamma background interference. Specific procedures have been developed for gross alpha, uranium, plutonium, thorium and colonium assay. Possibilities for a large number of other applications exist. Accuracy and reproducibility are typically in the 1% range. Backgrounds of the order of 0.01 cpm are readily achievable. The paper will present an overview of liquid scintillation alpha counting techniques and some of the results achieved for specific applications. (orig.)

  8. Ionospheric scintillation monitoring and modelling

    Directory of Open Access Journals (Sweden)

    Mariusz Pozoga

    2009-06-01

    Full Text Available

    This paper presents a review of the ionospheric scintillation monitoring and modelling by the European groups

    involved in COST 296. Several of these groups have organized scintillation measurement campaigns at low and

    high latitudes. Some characteristic results obtained from the measured data are presented. The paper also addresses the modeling activities: four models, based on phase screen techniques, with different options and application domains are detailed. Finally some new trends for research topics are given. This includes the wavelet analysis, the high latitudes analysis, the construction of scintillation maps and the mitigation techniques.


  9. Evaluation of characteristics of x-ray phosphors and hybrid scintillators

    International Nuclear Information System (INIS)

    Winter, John M. Jr.; Jones, Thomas S.

    1999-01-01

    Glass x-ray scintillators produce very high resolution images but suffer diminished brightness at x-ray energies below about 150 kV. This produces a loss in effective imaging due to the very low light flux, just at energies where many high resolution applications require the maximum image fidelity. Many phosphors produce substantially more light at these energy levels, but lack the resolution needed for critical industrial applications. A family of hybrid scintillators consisting of a scintillating fiber-optic base coupled to a thin coating of a high resolution phosphor is being developed. To facilitate evaluation of these hybrids and to measure their performance compared to other alternatives, a specialized real time x-ray imaging system was constructed and integrated with a microfocus x-ray source. This imaging system is described, and the results of a program to evaluate the brightness, resolution, and contrast sensitivity of a number of glass scintillators, phosphors, and hybrid imaging screens is presented

  10. Multi element high resolution scintillator structure

    International Nuclear Information System (INIS)

    Cusano, D.A.

    1980-01-01

    A gamma camera scintillator structure, suitable for detecting high energy gamma photons which, in a single scintillator camera, would require a comparatively thick scintillator crystal, so resulting in unacceptable dispersion of light photons, comprises a collimator array of a high Z material with elongated, parallel wall channels with the scintillator material being disposed in one end of the channels so as to form an integrated collimator/scintillator structure. The collimator channel walls are preferably coated with light reflective material and further light reflective surfaces being translucent to gamma photons, may be provided in each channel. The scintillators may be single crystals or preferably comprise a phosphor dispersed in a thermosetting translucent matrix as disclosed in GB2012800A. The light detectors of the assembled camera may be photomultiplier tubes charge coupled devices or charge injection devices. (author)

  11. 4 GHz ionospheric scintillations observed at Taipei

    International Nuclear Information System (INIS)

    Huang, Y.N.; Jeng, B.S.

    1978-01-01

    In a study of ionospheric scintillations 3950 MHz beacon signals from geostationary communication satellites Intelsat-IV-F8 and Intelsat-IV-F1 were recorded on a strip chart and magnetic tape at the Taipei Earth Station. While the strip charts were used to monitor the occurrence of the scintillation, the magnetic tape output was digitized and processed by a computerized system to yield a detailed analysis of scintillation events. It was found that diurnal variations were similar to the diurnal patterns of sporadic E at greater than 5 MHz and VHF band ionospheric scintillations during daytime as reported by Huang (1978). Eight typical scintillation events were selected for the calculation of the scintillation index, S4, and other parameters. The mean S4 index for the 8 events was found to be 0.15. Numerical and graphic results are presented for the cumulative amplitude distributions, message reliability, autocorrelation functions and power spectra

  12. A Review of Ionospheric Scintillation Models.

    Science.gov (United States)

    Priyadarshi, S

    This is a general review of the existing climatological models of ionospheric radio scintillation for high and equatorial latitudes. Trans-ionospheric communication of radio waves from transmitter to user is affected by the ionosphere which is highly variable and dynamic in both time and space. Scintillation is the term given to irregular amplitude and phase fluctuations of the received signals and related to the electron density irregularities in the ionosphere. Key sources of ionospheric irregularities are plasma instabilities; every irregularities model is based on the theory of radio wave propagation in random media. It is important to understand scintillation phenomena and the approach of different theories. Therefore, we have briefly discussed the theories that are used to interpret ionospheric scintillation data. The global morphology of ionospheric scintillation is also discussed briefly. The most important (in our opinion) analytical and physical models of scintillation are reviewed here.

  13. Morphology of auroral zone radio wave scintillation

    International Nuclear Information System (INIS)

    Rino, C.L.; Matthews, S.J.

    1980-01-01

    This paper describes the morphology of midnight sector and morning sector auroral zone scintillation observations made over a two-year period using the Wideband satelite, which is in a sun-synchronous, low-altitude orbit. No definitive seasonal variation was found. The nighttime data showed the highest scintillation ocurrence levels, but significant amounts of morning scintillation were observed. For the most part the scintillation activity followed the general pattern of local magnetic activity. The most prominent feature in the nightime data is a localized amplitude and phase scintillation enhancement at the point where the propagation vector lies within an L shell. A geometrical effect due to a dynamic slab of sheetlike structures in the F region is hypothesized as the source of his enhancement. The data have been sorted by magnetic activity, proximity to local midnight, and season. The general features of the data are in agreement with the accepted morphology of auroral zone scintillation

  14. Scintillation properties of quantum-dot doped styrene based plastic scintillators

    International Nuclear Information System (INIS)

    Park, J.M.; Kim, H.J.; Hwang, Y.S.; Kim, D.H.; Park, H.W.

    2014-01-01

    We fabricated quantum-dot doped plastic scintillators in order to control the emission wavelength. We studied the characterization of the quantum-dots (CdSe/ZnS) and PPO (2, 5-diphenyloxazole) doped styrene based plastic scintillators. PPO is usually used as a dopant to enhance the scintillation properties of organic scintillators with a maximum emission wavelength of 380 nm. In order to study the scintillation properties of the quantum-dots doped plastic scintillators, the samples were irradiated with X-ray, photon, and 45 MeV proton beams. We observed that only PPO doped plastic scintillators shows a luminescence peak around 380 nm. However, both the quantum-dots and PPO doped plastic scintillators shows luminescence peaks around 380 nm and 520 nm. Addition of quantum-dots had shifted the luminescence spectrum from 380 nm (PPO) toward the region of 520 nm (Quantum-dots). Emissions with wavelength controllable plastic scintillators can be matched to various kinds of photosensors such as photomultiplier tubes, photo-diodes, avalanche photo-diodes, and CCDs, etc. Also quantum-dots doped plastic scintillator, which is irradiated 45 MeV proton beams, shows that the light yield of quantum-dots doped plastic scintillator is increases as quantum-dots doping concentration increases at 520 nm. And also the plastic scintillators were irradiated with Cs-137 γ-ray for measuring fluorescence decay time. -- Highlights: • Quantum-dot doped plastic scintillator is grown by the thermal polymerization method. • Quantum-dot doped plastic scintillators can control the emission wavelength to match with photo-sensor. • Quantum-dots and PPO doped plastic scintillators emitted luminescence peaks around 380 nm and 520 nm. • We observed the energy transfer from PPO to quantum-dot in the quantum-dot doped plastic scintillator

  15. Scintillation properties of quantum-dot doped styrene based plastic scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.M.; Kim, H.J., E-mail: hongjooknu@gmail.com; Hwang, Y.S.; Kim, D.H.; Park, H.W.

    2014-02-15

    We fabricated quantum-dot doped plastic scintillators in order to control the emission wavelength. We studied the characterization of the quantum-dots (CdSe/ZnS) and PPO (2, 5-diphenyloxazole) doped styrene based plastic scintillators. PPO is usually used as a dopant to enhance the scintillation properties of organic scintillators with a maximum emission wavelength of 380 nm. In order to study the scintillation properties of the quantum-dots doped plastic scintillators, the samples were irradiated with X-ray, photon, and 45 MeV proton beams. We observed that only PPO doped plastic scintillators shows a luminescence peak around 380 nm. However, both the quantum-dots and PPO doped plastic scintillators shows luminescence peaks around 380 nm and 520 nm. Addition of quantum-dots had shifted the luminescence spectrum from 380 nm (PPO) toward the region of 520 nm (Quantum-dots). Emissions with wavelength controllable plastic scintillators can be matched to various kinds of photosensors such as photomultiplier tubes, photo-diodes, avalanche photo-diodes, and CCDs, etc. Also quantum-dots doped plastic scintillator, which is irradiated 45 MeV proton beams, shows that the light yield of quantum-dots doped plastic scintillator is increases as quantum-dots doping concentration increases at 520 nm. And also the plastic scintillators were irradiated with Cs-137 γ-ray for measuring fluorescence decay time. -- Highlights: • Quantum-dot doped plastic scintillator is grown by the thermal polymerization method. • Quantum-dot doped plastic scintillators can control the emission wavelength to match with photo-sensor. • Quantum-dots and PPO doped plastic scintillators emitted luminescence peaks around 380 nm and 520 nm. • We observed the energy transfer from PPO to quantum-dot in the quantum-dot doped plastic scintillator.

  16. Measurements of energy resolution with hemispheric scintillators

    International Nuclear Information System (INIS)

    Mendonca, A.C.S.; Binns, D.A.C.; Tauhata, L.; Poledna, R.

    1980-01-01

    The hemispheric configuration is used for plastic scintillators type NE 102 with the aiming to optimize the light collect. Scintillators at this configuration, with radii of 3,81 cm and 2,54 cm, are showing improvement about 16-17% in the energy resolution, on cilyndric scintillators with the same volume, for gamma rays of 511-1275 KeV. (E.G.) [pt

  17. Polyethylene vials for liquid scintillation counters produced by the National Materials Research Institute

    International Nuclear Information System (INIS)

    Fiser, B.; Lukas, D.

    1984-01-01

    The properties were tested of polyethylene vials for liquid scintillation counters manufactured by the National Materials Research Institute. Liquid scintillation counter ISOCAP 300 by Nuclear Chicago was used for measuring. For unquenched samples, channel A was set up to 0.5-3.6 keV and channel B to 0.5-18 keV. The scintillation solution was prepared of toluene, 4 g PPO, 0.15 g POPOP per 1 l of toluene. CCl 4 was used as the quenching agent. Radioactive samples were prepared from 20 μl of standard solution of [ 3 H]-toluene with specific activity of 349 Bq/g. All measurements were made using a 7 ml scintillation solution into which radioactivity and possibly quenching agents were added. Potassium-free glass vials by SKLO UNION Teplice and thin-walled polyethylene vials by Nuclear Chicago were used for comparison. The background was measured, as were the time dependences of weight losses of the scintillation solution and carbon tetrachloride from the counting vials, changes in efficiency in channel B with time, changes in SCR with time and changes in the quenching curve with time. (E.S.)

  18. Random wave fields and scintillated beams

    CSIR Research Space (South Africa)

    Roux, FS

    2009-01-01

    Full Text Available F. Stef Roux CSIR National Laser Centre PO Box 395, Pretoria 0001, South Africa CSIR National Laser Centre – p.1/29 Contents . Scintillated beams and adaptive optics . Detecting a vortex — Shack-Hartmann . Remove optical vortices . Random vortex... beam. CSIR National Laser Centre – p.3/29 Weak scintillation If the scintillation is weak the resulting phase function of the optical beam is still continuous. Such a weakly scintillated beam can be corrected by an adaptive optical system. CSIR National...

  19. High-symmetry organic scintillator systems

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Patrick L.

    2018-03-13

    An ionizing radiation detector or scintillator system includes a scintillating material comprising an organic crystalline compound selected to generate photons in response to the passage of ionizing radiation. The organic compound has a crystalline symmetry of higher order than monoclinic, for example an orthorhombic, trigonal, tetragonal, hexagonal, or cubic symmetry. A photodetector is optically coupled to the scintillating material, and configured to generate electronic signals having pulse shapes based on the photons generated in the scintillating material. A discriminator is coupled to the photon detector, and configured to discriminate between neutrons and gamma rays in the ionizing radiation based on the pulse shapes of the output signals.

  20. Designing an optimally proportional inorganic scintillator

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Jai, E-mail: jai.singh@cdu.edu.au [School of Engineering and IT, B-Purple-12, Faculty of EHSE, Charles Darwin University, NT 0909 (Australia); Koblov, Alexander [School of Engineering and IT, B-Purple-12, Faculty of EHSE, Charles Darwin University, NT 0909 (Australia)

    2012-09-01

    The nonproportionality observed in the light yield of inorganic scintillators is studied theoretically as a function of the rates of bimolecular and Auger quenching processes occurring within the electron track initiated by a gamma- or X-ray photon incident on a scintillator. Assuming a cylindrical track, the influence of the track radius and concentration of excitations created within the track on the scintillator light yield is also studied. Analysing the calculated light yield a guideline for inventing an optimally proportional scintillator with optimal energy resolution is presented.

  1. Designing an optimally proportional inorganic scintillator

    International Nuclear Information System (INIS)

    Singh, Jai; Koblov, Alexander

    2012-01-01

    The nonproportionality observed in the light yield of inorganic scintillators is studied theoretically as a function of the rates of bimolecular and Auger quenching processes occurring within the electron track initiated by a gamma- or X-ray photon incident on a scintillator. Assuming a cylindrical track, the influence of the track radius and concentration of excitations created within the track on the scintillator light yield is also studied. Analysing the calculated light yield a guideline for inventing an optimally proportional scintillator with optimal energy resolution is presented.

  2. High-symmetry organic scintillator systems

    Science.gov (United States)

    Feng, Patrick L.

    2017-07-18

    An ionizing radiation detector or scintillator system includes a scintillating material comprising an organic crystalline compound selected to generate photons in response to the passage of ionizing radiation. The organic compound has a crystalline symmetry of higher order than monoclinic, for example an orthorhombic, trigonal, tetragonal, hexagonal, or cubic symmetry. A photodetector is optically coupled to the scintillating material, and configured to generate electronic signals having pulse shapes based on the photons generated in the scintillating material. A discriminator is coupled to the photon detector, and configured to discriminate between neutrons and gamma rays in the ionizing radiation based on the pulse shapes of the output signals.

  3. Some adsorption characteristics of polysterene base scintillators

    International Nuclear Information System (INIS)

    Seredenko, T.N.; Ehkkerman, V.M.; Solomonov, V.M.; Gen, N.S.

    1980-01-01

    It is necessary to account for the adsorption on the surface of a scintillator when measuring nuclide activity in solutions by submerging into these solutions plastic scintillators. Dependences of 144 Ce, 90 Y, 137 Cs adsorption on specific activities (α) and pH value of solution were investigated. It is shown that K-α ratio is described by the equation K=Casup(p), where K is the specific surface activity of the polystyrene scintillator. Values of C and p are presented for investigated nuclides. The criterion estimating the possibility for repeated usage of scintillator are considered

  4. Design of Fluorescent Compounds for Scintillation Detection

    Energy Technology Data Exchange (ETDEWEB)

    Pla-Dalmau, Anna [Northern Illinois U.

    1990-01-01

    Plastic scintillation detectors for high energy physics applications require the development of new fluorescent compounds to meet the demands set by the future generation of particle accelerators such as the Superconducting Supercollider (SSe). Plastic scintillators are commonly based on a polymer matrix doped with two fluorescent compounds: the primary dopant and the wavelength shifter. Their main characteristics are fast response time and high quantum efficiency. The exposure to larger radiation doses and demands for larger light output questions their survivability in the future experiments. A new type of plastic scintillator - intrinsic scintillator - has been suggested. It uses a single dopant as primary and wavelength shifter, and should be less susceptible to radiation damage....

  5. Waveshifters and Scintillators for Ionizing Radiation Detection

    International Nuclear Information System (INIS)

    Baumgaugh, B.; Bishop, J.; Karmgard, D.; Marchant, J.; McKenna, M.; Ruchti, R.; Vigneault, M.; Hernandez, L.; Hurlbut, C.

    2007-01-01

    Scintillation and waveshifter materials have been developed for the detection of ionizing radiation in an STTR program between Ludlum Measurements, Inc. and the University of Notre Dame. Several new waveshifter materials have been developed which are comparable in efficiency and faster in fluorescence decay than the standard material Y11 (K27) used in particle physics for several decades. Additionally, new scintillation materials useful for fiber tracking have been developed which have been compared to 3HF. Lastly, work was done on developing liquid scintillators and paint-on scintillators and waveshifters for high radiation environments

  6. High-symmetry organic scintillator systems

    Science.gov (United States)

    Feng, Patrick L.

    2018-02-06

    An ionizing radiation detector or scintillator system includes a scintillating material comprising an organic crystalline compound selected to generate photons in response to the passage of ionizing radiation. The organic compound has a crystalline symmetry of higher order than monoclinic, for example an orthorhombic, trigonal, tetragonal, hexagonal, or cubic symmetry. A photodetector is optically coupled to the scintillating material, and configured to generate electronic signals having pulse shapes based on the photons generated in the scintillating material. A discriminator is coupled to the photon detector, and configured to discriminate between neutrons and gamma rays in the ionizing radiation based on the pulse shapes of the output signals.

  7. GLASS BOX

    National Research Council Canada - National Science Library

    Curtis, Laura

    2008-01-01

    The goals of this effort were to develop Glass Box capabilities to allow for the capturing of analyst activities and the associated data resources, track and log the results of automated processing...

  8. Collimator changer for scintillation camera

    International Nuclear Information System (INIS)

    Jupa, E.C.; Meeder, R.L.; Richter, E.K.

    1976-01-01

    A collimator changing assembly mounted on the support structure of a scintillation camera is described. A vertical support column positioned proximate the detector support column with a plurality of support arms mounted thereon in a rotatable cantilevered manner at separate vertical positions. Each support arm is adapted to carry one of the plurality of collimators which are interchangeably mountable on the underside of the detector and to transport the collimator between a store position remote from the detector and a change position underneath said detector

  9. New shaper of scintillation signals

    International Nuclear Information System (INIS)

    Brovchenko, V.G.

    2001-01-01

    Summation of the exponential shape pulse (abrupt front, exponential fall-off) with the pulse, proportional to its integral (the integration time constant is equal to the exponent fall-off constant), results in the pulse, the apex whereof is horizontal (parallel to the base line). Such a pulse is suitable for registration through standard analog-to-digital converters of the consecutive binary approximation, The described scheme is accomplished for verification of the basic principle of the shaper action. The parameters of the scheme are approximated to those ones, necessary for processing scintillation signals NaI(Tl) [ru

  10. Scintillating fibre tracking neutron detector

    International Nuclear Information System (INIS)

    Karlsson, Joakim.

    1995-04-01

    A detector for measurements of collimated fluxes of neutrons in the energy range 2-20 MeV is proposed. It utilizes (n.p) elastic scattering in scintillating optical fibres placed in successive orthogonal layers perpendicular to the neutron flux. A test module has been designed, constructed and tested with respect to separation of neutron and gamma events. The pulse height measurements show the feasibility to discriminate between neutron, gamma and background events. Application to measurements of fusion neutrons is considered. 18 refs, 22 figs, 4 tabs

  11. Pulsar scintillation patterns and strangelets

    Energy Technology Data Exchange (ETDEWEB)

    Pérez-García, M. Ángeles, E-mail: mperezga@usal.es [Department of Fundamental Physics and IUFFyM, University of Salamanca, Plaza de la Merced s/n, 37008 Salamanca (Spain); Silk, Joseph, E-mail: silk@iap.fr [Institut d' Astrophysique, UMR 7095, CNRS, Université Pierre et Marie Curie, 98bis Blvd Arago, 75014 Paris (France); Department of Physics and Astronomy, Johns Hopkins University, Homewood Campus, Baltimore MD 21218 (United States); Beecroft Institute of Particle Astrophysics and Cosmology, Department of Physics, University of Oxford, Oxford OX1 3RH (United Kingdom); Pen, Ue-Li, E-mail: pen@cita.utoronto.ca [Canadian Institute for Theoretical Astrophysics, University of Toronto, 0N M5S 3H8 (Canada)

    2013-12-18

    We propose that interstellar extreme scattering events, usually observed as pulsar scintillations, may be caused by a coherent agent rather than the usually assumed turbulence of H{sub 2} clouds. We find that the penetration of a flux of ionizing, positively charged strangelets or quark nuggets into a dense interstellar hydrogen cloud may produce ionization trails. Depending on the specific nature and energy of the incoming droplets, diffusive propagation or even capture in the cloud are possible. As a result, enhanced electron densities may form and constitute a lens-like scattering screen for radio pulsars and possibly for quasars.

  12. Mounting LHCb hadron calorimeter scintillating tiles

    CERN Multimedia

    Maximilien Brice

    2004-01-01

    Scintillating tiles are carefully mounted in the hadronic calorimeter for the LHCb detector. These calorimeters measure the energy of particles that interact via the strong force, called hadrons. The detectors are made in a sandwich-like structure where these scintillator tiles are placed between metal sheets.

  13. Lower bounds on scintillation detector timing performance

    International Nuclear Information System (INIS)

    Clinthorne, N.H.; Rogers, W.L.; Hero, A.O. III.; Petrick, N.A.

    1990-01-01

    Fundamental method-independent limits on the timing performance of scintillation detectors are useful for identifying regimes in which either present timing methods are nearly optimal or where a considerable performance gain might be realized using better pulse processing techniques. Several types of lower bounds on mean-squared timing error (MSE) performance have been developed and applied to scintillation detectors. The simple Cramer-Rao (CR) bound can be useful in determining the limiting MSE for scintillators having a relatively high rate of photon problction such as BaF 2 and NaI(Tl); however, it tends to overestimate the achievalbe performance for scintillators with lower rates such as BGO. For this reason, alternative bounds have been developed using rate-distortion theory or by assuming that the conversion of energy to scintillation light must pass through excited states which have exponential lifetime densities. The bounds are functions of the mean scintillation pulse shape, the scintillation intensity, and photodetector characteristics; they are simple to evaluate and can be used to conveniently assess the limiting timing performance of scintillation detectors. (orig.)

  14. Scintillation device of X-ray detection

    International Nuclear Information System (INIS)

    Polack, F.; Bigler, E.

    1985-01-01

    The detection device comprises a screen made of microtubes transparent to the light emitted by a scintillator material in the microtube channels. The scintillator material optical index is greater than the microtube material index, so as to constitute optical fiber, with index rise, guiding the light toward the outside [fr

  15. Status of timing with plastic scintillation detectors

    International Nuclear Information System (INIS)

    Moszynski, M.; Bengtson, B.

    1979-01-01

    Timing properties of scintillators and photomultipliers as well as theoretical and experimental studies of time resolution of scintillation counters are reviewed. Predictions of the theory of the scintillation pulse generation processes are compared with the data on the light pulse shape from small samples, in which the light pulse shape depends only on the composition of the scintillator. For larger samples the influence of the light collection process and the self-absorption process on the light pulse shape are discussed. The data on rise times, fwhm's, decay times and light yield of several commercial scintillators used in timing are collected. The next part of the paper deals with the properties of photomultipliers. The sources of time uncertainties in photomultipliers as a spread of the initial velocity of photoelectrons, emission of photoelectrons under different angles and from different points at the photocathode, the time spread and the gain dispersion introduced by electron photomultiplier are reviewed. The experimental data on the time jitter, single electron response and photoelectron yield of some fast photomultipliers are collected. As the time resolution of the timing systems with scintillation counters depends also on time pick-off units, a short presentation of the timing methods is given. The discussion of timing theories is followed by a review of experimental studies of the time resolution of scintillation counters. The paper is ended by an analysis of prospects on further progress of the subnanosecond timing with scintillation counters. (Auth.)

  16. Current status of liquid scintillation counting

    International Nuclear Information System (INIS)

    Klingler, G.W.

    1981-01-01

    Scintillation counting of alpha particles has been used since the turn of the century. The advent of pulse shape discrimination has made this method of detection accurate and reliable. The history, concepts and development of scintillation counting and pulse shape discrimination are discussed. A brief look at the ongoing work in the consolidation of components now used for pulse shape discrimination is included

  17. Some possible improvements in scintillation calorimeters

    International Nuclear Information System (INIS)

    Lorenz, E.

    1985-03-01

    Two ideas for improvements of scintillation calorimeters will be presented: a) improved readout of scintillating, totally active electromagnetic calorimeters with combinations of silicon photodiodes and fluorescent panel collectors, b) use of time structure analysis on calorimetry, both for higher rate applications and improved resolution for hadron calorimeters. (orig.)

  18. Performance and characteristics of a new scintillator

    CERN Document Server

    Czirr, J B; MacGillivray, R R; Seddon, P J

    1999-01-01

    A new class of scintillators for neutron imaging, based upon lithium gadolinium borate, is described. These scintillators offer the ability to tailor their response to the neutron spectrum by varying the relative absorption of neutrons by the key constituents (lithium, gadolinium and boron). The isotopic compositions of each constituent can be varied in order to change the spectral response.

  19. Process for obtaining luminescent glass layers

    International Nuclear Information System (INIS)

    Heindi, R.; Robert, A.

    1984-01-01

    Process for obtaining luminescent glass layers, application to the production of devices provided with said layers and to the construction of photoscintillators. The process comprises projecting onto a support, by cathodic sputtering, the material of at least one target, each target including silica and at least one chemical compound able to give luminescent centers, such as a cerium oxide, so as to form at least one luminescent glass layer of the said support. The layer or layers formed preferably undergo a heat treatment such as annealing in order to increase the luminous efficiency thereof. It is in this way possible to form a scintillating glass layer on the previously frosted entrance window of a photomultiplier in order to obtain an integrated photoscintillator

  20. Development of scintillation materials for PET scanners

    CERN Document Server

    Korzhik, Mikhail; Annenkov, Alexander N; Borissevitch, Andrei; Dossovitski, Alexei; Missevitch, Oleg; Lecoq, Paul

    2007-01-01

    The growing demand on PET methodology for a variety of applications ranging from clinical use to fundamental studies triggers research and development of PET scanners providing better spatial resolution and sensitivity. These efforts are primarily focused on the development of advanced PET detector solutions and on the developments of new scintillation materials as well. However Lu containing scintillation materials introduced in the last century such as LSO, LYSO, LuAP, LuYAP crystals still remain the best PET species in spite of the recent developments of bright, fast but relatively low density lanthanum bromide scintillators. At the same time Lu based materials have several drawbacks which are high temperature of crystallization and relatively high cost compared to alkali-halide scintillation materials. Here we describe recent results in the development of new scintillation materials for PET application.

  1. Detector construction for a scintillation camera

    International Nuclear Information System (INIS)

    Ashe, J.B.

    1977-01-01

    An improved transducer construction for a scintillation camera in which a light conducting element is equipped with a layer of moisture impervious material is described. A scintillation crystal is thereafter positioned in optical communication with the moisture impervious layer and the remaining surfaces of the scintillation crystal are encompassed by a moisture shield. Affixing the moisture impervious layer to the light conducting element prior to attachment of the scintillation crystal reduces the requirement for mechanical strength in the moisture impervious layer and thereby allows a layer of reduced thickness to be utilized. Preferably, photodetectors are also positioned in optical communication with the light conducting element prior to positioning the scintillation crystal in contact with the impervious layer. 13 claims, 4 figures

  2. Liquid mixtures for scintillation counters

    International Nuclear Information System (INIS)

    Kauffmann, J.M.

    1975-01-01

    Liquid scintillators contain emulsifiers or combinations of these which can be used over a wide temperature range for a multitude of aqueous samples. These emulsifiers are block-polymerides with a nonhygroscopic center part of the chain of oxypropylene combinations recieved by addition of propylene oxide to both hydroxyl groups of a propylene-glycol nucleus and both ends of the center part of the chain terminating in hygroscopic poly(oxyethylene) groups. The length of the nonhygroscopic center part of the chain varies from about 800 to 3,000 or 4,000 in molecular weight. The hygroscopic poly(oxyethylene) end groups have a controlled length constituting about 10 to 80wt.% of the finished molecule. The most useful members of this group of co-polymerides possess a length of their poly(oxypropylene) chains corresponding to a value of y of about 15 to 56 and a length of their poly(oxyethylene)chains corresponding to values of x and z between 1 and 35 . All known fluorines can be used. With the scintillators the radioimmunoassay can also be carried through. (DG/PB) [de

  3. Inorganic-organic rubbery scintillators

    CERN Document Server

    Gektin, A V; Pogorelova, N; Neicheva, S; Sysoeva, E; Gavrilyuk, V

    2002-01-01

    Spectral-kinetic luminescence properties of films, containing homogeneously dispersed scintillation particles of CsI, CsI:Tl, CsI:Na, and NaI:Tl in optically transparent organosiloxane matrix, are presented. Material is flexible and rubbery and in consequence the detectors of convenient shapes can be produced. It is found that luminescence spectra of the received films are identical whereas decay times are much shorter compared to the same ones of the corresponding single crystals. Layers with pure CsI demonstrate only the fast UV emission (307 nm, 10 ns) without blue microsecond afterglow typical for crystals. The films containing NaI:Tl are non-hygroscopic and preserve scintillation properties for a long time in humid atmosphere unlike single crystals. Organosiloxane layers with CsI:Tl particles provide high light output with good energy resolution for sup 5 sup 5 Fe, sup 1 sup 0 sup 9 Cd, sup 2 sup 4 sup 1 Am sources, and are capable of detecting both X-rays and alpha-, beta-particles.

  4. Liquid scintillator mixable with water

    International Nuclear Information System (INIS)

    Benson, R.H.

    1976-01-01

    A liquid scintillator mixable with water is described consisting of an aromatic solvent (xylene), a scintillation material and an ethoxylated alkyl phenol (as surface-active substance). So far such kinds of system have not given good measurements on counting samples with high water content. Due to the invention's composition one gets good results even with counting samples having a water content of over 30% if the alkyl substituent of the alkyl phenol contains 7, 10, 11, 13, 14, 15 or 16 C atoms and the ratio n/x of the number n of C atoms of the alkyl substituents to the average number x of the ethoxy groups of the ethoxylated alkyl phenols lie between 0.83 and 1.67. The following alkyl phenols are mentioned: heptyl phenol (n/x between 0.83 and 1.08), decyl phenol (n/x between 0.90 and 1.17), hendecyl phenol (n/x between 0.93 and 1.22), tridecyl phenol (n/x between 0.97 and 1.34), tetradecyl phenol (n/x between 1.08 and 1.55), pentadecyl phenol (n/x between 1.15 and 1.67), hexadecyl phenol (n/x between 1.33 and 1.51). (UWI) [de

  5. Development of a two-dimensional imaging detector based on a neutron scintillator with wavelength-shifting fibers

    CERN Document Server

    Sakai, K; Oku, T; Morimoto, K; Shimizu, H M; Tokanai, F; Gorin, A; Manuilov, I V; Ryazantsev, A; Ino, T; Kuroda, K; Suzuki, J

    2002-01-01

    For evaluating neutron optical devices, a two-dimensional (2D) detector based on a neutron scintillator with wavelength-shifting fibers has been developed at RIKEN. We have investigated a ZnS(Ag)+LiF and a Li glass plate as neutron scintillators with the coding technique for realizing the large sensitive area of 50 x 50 mm sup 2. After fabricating the 2D detector, its performance was tested using cold neutrons at JAERI. As a result, a spatial resolution of propor to 1.0 mm was obtained. (orig.)

  6. Linear position sensitive neutron detector using fiber optic encoded scintillators

    International Nuclear Information System (INIS)

    Davidson, P.L.; Wroe, H.

    1983-01-01

    A linear position sensitive slow neutron detector with 3 mm resolution is described. It uses the fiber optic coding principle in which the resolution elements are separate pieces of lithium loaded glass scintillator each coupled by means of flexible polymer optical fibers to a unique combination of 3 photo multipliers (PM's) out of a bank of 12. A decoder circuit repsponds to a triple coincidence between PM outputs and generates a 12 bit work which identifies the scintillator element which stopped the incident neutron. Some details of the construction and decoding electronics are given together with test results obtained using a laboratory isotope neutron source and a monochomated, collimated neutron beam from a reactor. The count rate in the absence of neutron sources is 2 to 3 c min - 1 per element; the element to element variation in response to a uniform flux is a few percent for 95% of the elements; the resolution as measured by a 1 mm wide prode neutron beam is 3 mm; the relative long term stability is about 0.1% over 3 days and the detection efficiency measured by comparison with an end windowed, high pressure gas counter is about 65% at a neutron wavelength of 0.9A 0

  7. Glass compositions

    Energy Technology Data Exchange (ETDEWEB)

    France, P W

    1985-05-30

    A fluoride glass for use in the production of optical fibres has an enhanced D/H ratio, preferably such that OD:OH is at least 9:1. In the example, such a glass is prepared by treating with D/sub 2/O a melt comprising 51.53 mole per cent ZrF/sub 4/, 20.47 mole per cent BaF/sub 2/, 5.27 mole per cent LaF/sub 3/, 3.24 mole per cent AlF/sub 3/, and 19.49 mole per cent LiF.

  8. Comparison of analysis techniques by liquid scintillation and Cerenkov Effect for {sup 40}K quantification in aqueous samples; Comparacion de las tecnicas de analisis por centelleo liquido y efecto Cerenkov para la cuantificacion {sup 40}K en muestras acuosas

    Energy Technology Data Exchange (ETDEWEB)

    Miranda C, L.; Davila R, J. I.; Lopez del R, H.; Mireles G, F., E-mail: lilimica20@hotmail.com [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas, Zac. (Mexico)

    2015-09-15

    In this work the counting by liquid scintillation and Cerenkov Effect to quantify {sup 40}K in aqueous samples was used. The performance of both techniques was studied by comparing the response of three commercial liquid scintillation OptiPhase HiSafe 3, Ultima Gold Ab and OptiPhase TriSafe, the vial type and presentation conditions of the sample for counting. In liquid scintillation, the ability to form homogeneous mixtures depended on the ionic strength of the aqueous solutions. The scintillator OptiPhase HiSafe 3 showed a greater charge capacity for solutions with high ionic strength (<3.4), while the scintillator OptiSafe TriSafe no form homogeneous mixtures for solutions of ionic strength higher than 0.3. Counting efficiencies for different proportions of sample and scintillator near 100% for the scintillators OptiSafe HiSafe 3 and Ultima Gold Ab were obtained. In the counting by Cerenkov Effect, the efficiency and sensitivity depended of the vial type; polyethylene vials were more suitable for counting that the glass vials. The sample volume had not significant effect on counting efficiency, obtaining an average value of 44.8% for polyethylene vials and 37.3% for glass vials. Therefore, the liquid scintillation was more efficient and sensitive for the measurement of {sup 40}K in aqueous solutions. (Author)

  9. Applications of commercial liquid scintillation counters to radon-222 and radium-226 analyses

    International Nuclear Information System (INIS)

    Gesell, T.F.; Prichard, H.M.; Haygood, J.R.

    1978-01-01

    The ubiquitous commerical liquid scintillation counter offers automatic sample processing, automatic data recording and the prospect of multiple users. With these features in mind we have explored a number of applications of liquid scintillation counters to environmental and health physics problems. One application, the analysis of radon in water has been described elsewhere and is only briefly reviewed. A method for measuring radon in air, two methods for measuring radium in water, and a technique for leak testing radium needles have also been investigated. An ordinary glass scintillation vial is readily converted into a miniature scintillation flask by coating the inside surface with a thin layer in ZnS:Ag phosphor. The lower limit detection is high, about 2 pCi/1 for a 1 hour count, but these flasks have proved to be useful in situations where a larger number of samples must be taken in environments with relatively high levels of radon. One technique for the detection of radium in water uses liquid-liquid extraction to concentrate radon into an organic scintillation fluid, the other involves passing the water sample through an ion exchange resin and then sealing the resin and scintillation fluid in a vial. Both techniques offer the prospect of easy and inexpensive analyses with limits of detection at or below 0.5 pCi/1. Radium needles can be leak tested by placing them in vials containing toluene for a few minutes, adding fluor to the toluene and counting. Preliminary data regarding these several methods are given

  10. Estimation of Fano factor in inorganic scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Bora, Vaibhav, E-mail: bora.vaibhav@gmail.com [Center for Gamma-Ray Imaging, Department of Medical Imaging, University of Arizona and College of Optical Sciences, University of Arizona, Tucson, AZ 85724 (United States); Barrett, Harrison H., E-mail: barrett@radiology.arizona.edu [Center for Gamma-Ray Imaging, Department of Medical Imaging, University of Arizona and College of Optical Sciences, University of Arizona, Tucson, AZ 85724 (United States); Fastje, David, E-mail: dfastje@gmail.com [Center for Gamma-Ray Imaging, Department of Medical Imaging, University of Arizona and College of Optical Sciences, University of Arizona, Tucson, AZ 85724 (United States); Clarkson, Eric, E-mail: clarkson@radiology.arizona.edu [Center for Gamma-Ray Imaging, Department of Medical Imaging, University of Arizona and College of Optical Sciences, University of Arizona, Tucson, AZ 85724 (United States); Furenlid, Lars, E-mail: furen@radiology.arizona.edu [Center for Gamma-Ray Imaging, Department of Medical Imaging, University of Arizona and College of Optical Sciences, University of Arizona, Tucson, AZ 85724 (United States); Bousselham, Abdelkader, E-mail: abousselham@qf.org.qa [Qatar Foundation, QEERI, P.O. Box 5825, Doha (Qatar); Shah, Kanai S., E-mail: kanaishah@yahoo.com [Radiation Monitoring Devices, Inc., Watertown, MA 02472 (United States); Glodo, Jarek, E-mail: jglodo@rmdinc.com [Radiation Monitoring Devices, Inc., Watertown, MA 02472 (United States)

    2016-01-01

    The Fano factor of an integer-valued random variable is defined as the ratio of its variance to its mean. Correlation between the outputs of two photomultiplier tubes on opposite faces of a scintillation crystal was used to estimate the Fano factor of photoelectrons and scintillation photons. Correlations between the integrals of the detector outputs were used to estimate the photoelectron and photon Fano factor for YAP:Ce, SrI{sub 2}:Eu and CsI:Na scintillator crystals. At 662 keV, SrI{sub 2}:Eu was found to be sub-Poisson, while CsI:Na and YAP:Ce were found to be super-Poisson. An experiment setup inspired from the Hanbury Brown and Twiss experiment was used to measure the correlations as a function of time between the outputs of two photomultiplier tubes looking at the same scintillation event. A model of the scintillation and the detection processes was used to generate simulated detector outputs as a function of time for different values of Fano factor. The simulated outputs from the model for different Fano factors was compared to the experimentally measured detector outputs to estimate the Fano factor of the scintillation photons for YAP:Ce, LaBr{sub 3}:Ce scintillator crystals. At 662 keV, LaBr{sub 3}:Ce was found to be sub-Poisson, while YAP:Ce was found to be close to Poisson.

  11. Geophysical analysis of coherent satellite scintillation data

    Science.gov (United States)

    Fremouw, E. J.; Lansinger, J. M.; Miller, D. A.

    1981-11-01

    In May of 1976, Air Force Satellite P76-5 was launched with the Defense Nuclear Agency's Wideband beacon, DNA-002, as its sole payload. Several researchers have employed the resulting data in studies of ionospheric structure and its effect on transionospheric radio communications. In the present work, recordings of amplitude and phase scintillation imposed on Wideband's VHF and UHF signals by the ionosphere have been used to study medium-scale structures in the auroral-zone F layer. Results include quantitative identification of a very close relationship between scintillation and solar/geomagnetic activity, together with lack of a seasonal variation in scintillation activity in the Alaskan sector. A surprisingly high correlation (90%) was found between monthly means of phase-scintillation index, on the one hand, and sunspot number and 10-cm solar radio flux, on the other. The high-latitude scintillation boundary was found to be very similar to the soft-electron precipitation boundary, including similarity in expansion rates with increasing magnetic activity. Interestingly, it is systematically shifted poleward of the precipitation boundary on the day side of the earth and equatorward on the night side. Taken together, the results of this research disclose a rather direct relationship between scintillation and soft-electron precipitation, with plasma convection likely playing an important role in generation of the scintillation-producing irregularities.

  12. Liquid scintillation counting system with automatic gain correction

    International Nuclear Information System (INIS)

    Frank, R.B.

    1976-01-01

    An automatic liquid scintillation counting apparatus is described including a scintillating medium in the elevator ram of the sample changing apparatus. An appropriate source of radiation, which may be the external source for standardizing samples, produces reference scintillations in the scintillating medium which may be used for correction of the gain of the counting system

  13. Scintillation counter: photomultiplier tube alignment

    International Nuclear Information System (INIS)

    Olson, R.E.

    1975-01-01

    A scintillation counter, particularly for counting gamma ray photons, includes a massive lead radiation shield surrounding a sample-receiving zone. The shield is disassembleable into a plurality of segments to allow facile installation and removal of a photomultiplier tube assembly, the segments being so constructed as to prevent straight-line access of external radiation through the shield into the sample receiving zone. Provisions are made for accurately aligning the photomultiplier tube with respect to one or more sample-transmitting bores extending through the shield to the sample receiving zone. A sample elevator, used in transporting samples into the zone, is designed to provide a maximum gamma-receiving aspect to maximize the gamma detecting efficiency. (auth)

  14. Scintillation counter, maximum gamma aspect

    International Nuclear Information System (INIS)

    Thumim, A.D.

    1975-01-01

    A scintillation counter, particularly for counting gamma ray photons, includes a massive lead radiation shield surrounding a sample-receiving zone. The shield is disassembleable into a plurality of segments to allow facile installation and removal of a photomultiplier tube assembly, the segments being so constructed as to prevent straight-line access of external radiation through the shield into radiation-responsive areas. Provisions are made for accurately aligning the photomultiplier tube with respect to one or more sample-transmitting bores extending through the shield to the sample receiving zone. A sample elevator, used in transporting samples into the zone, is designed to provide a maximum gamma-receiving aspect to maximize the gamma detecting efficiency. (U.S.)

  15. A new plastic scintillator with large Stokes shift

    International Nuclear Information System (INIS)

    Destruel, P.; Taufer, M.

    1989-01-01

    We have developed a new plastic scintillator with the novel characteristic of highly localized light emission; scintillation and wavelength shifting take place within a few tens of micrometers of the primary ionization. The new scintillator consists of a scintillating polymer base [polyvinyl toluene (PVT) or polystyrene (PS)] doped with a single wavelength shifter, 1-phenyl-3-mesityl-2-pyrazoline (PMP), which has an exceptionally large Stokes shift and therefore a comparatively small self-absorption of its emitted light. In other characteristics (e.g. scintillation efficiency and decay time) the performance of the new scintillator is similar to a good quality commercial plastic scintillator such as NE110. (orig.)

  16. Comparative characteristics of polystyrene scintillation strips

    International Nuclear Information System (INIS)

    Gapienko, V.A.; Denisov, A.G.; Mel'nikov, E.A.

    1992-01-01

    Results are provided for a study of the main characteristics of polystyrene scintillation strips with a cross-section of 200 x 10 mm with two different scintillation-additive compositions: 1.5% p-terphenyl + 0.01% POPOP and 1.5% p-terphenyl + 0.01% DBP. The mean light-attenuation lengths are 180 cm and 260 cm, respectively, for strips with POPOP and DBP. The emittances of the polystyrene scintillators with DBP and POPOP additives have a ratio of 0.8:1.0 as recorded by an FEU-110 photomultiplier. 2 refs., 1 fig., 2 tabs

  17. Scintillation camera with second order resolution

    International Nuclear Information System (INIS)

    Muehllehner, G.

    1976-01-01

    A scintillation camera for use in radioisotope imaging to determine the concentration of radionuclides in a two-dimensional area is described in which means is provided for second order positional resolution. The phototubes, which normally provide only a single order of resolution, are modified to provide second order positional resolution of radiation within an object positioned for viewing by the scintillation camera. The phototubes are modified in that multiple anodes are provided to receive signals from the photocathode in a manner such that each anode is particularly responsive to photoemissions from a limited portion of the photocathode. Resolution of radioactive events appearing as an output of this scintillation camera is thereby improved

  18. Factors determining radiation stability of plastic scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Gunder, O.A.; Voronkina, N.I. [National Ukranian Academy of Science, Kharkov (Ukraine). Inst. for Single Crystals; Barashkov, N.N.; Milinchuk, V.K.; Jdanov, G.S. [Karpov Inst. of Physical Chemistry, Moscow (Russian Federation)

    1995-07-01

    Polystyrene (PS) and polyvinylxylene (PVX) are the base materials for plastic scintillators. UV-Vis spectrophotometry, luminescence and EPR spectroscopy were performed on irradiated samples of PS and PVX with the p-terphenyl (TP) as primary luminophore and 1,4-di-2(5-phenyloxazolyl-1,3)benzene (POPOP) as secondary one. Dependence of the radioluminescence intensity of the scintillators on the concentration of the macroradicals formed in them in the process of irradiation was investigated. Dose dependence of the radiation stability of scintillators is discussed. (Author).

  19. Factors determining radiation stability of plastic scintillators

    Science.gov (United States)

    Gunder, O. A.; Voronkina, N. I.; Barashkov, N. N.; Milinchuk, V. K.; Jdanov, G. S.

    1995-07-01

    Polystyrene (PS) and polyvinylxylene (PVX) are the base materials for plastic scintillators. UV-Vis spectrophotometry, luminescence and EPR spectroscopy were performed on irradiated samples of PS and PVX with the p-terphenyl (TP) as primary luminophore and 1,4-di-2(5-phenyloxazolyl-1,3)benzene (POPOP) as secondary one. Dependence of the radioluminescence intensity of the scintillators on the concentration of the macroradicals formed in them in the process of irradiation was investigated. Dose dependence of the radiation stability of scintillators is discussed.

  20. Factors determining radiation stability of plastic scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Barashkov, N.N. [Texas Univ., Richardson, TX (United States). Dept. of Chemistry; Gunder, O.A.; Voronkina, N.I. [National Ukrainian Academy of Science, Kharkov (Ukraine). Inst. for Single Crystals; Milinchuk, V.K. [Karpov Inst. of Physical Chemistry, Moscow (Russian Federation)

    1996-11-01

    Polystyrene (PS) and polyvinylxylene (PVX) are the base materials for plastic scintillators u.v.-Vis spectrophotometry, luminescence and ESR spectroscopy were performed on irradiated samples of PS and PVX with the p-terphenyl (TP) as the primary luminophore and 1,4-di-2(5-phenyloxazolyl-1,3) benzene (POPOP) as the secondary one. Dependence of the radioluminescence intensity of the scintillators on the concentration of the macroradicals formed by irradiation was investigated. Dose dependence of the radiation stability of scintillators is discussed. (author).

  1. Factors determining radiation stability of plastic scintillators

    International Nuclear Information System (INIS)

    Barashkov, N.N.

    1996-01-01

    Polystyrene (PS) and polyvinylxylene (PVX) are the base materials for plastic scintillators u.v.-Vis spectrophotometry, luminescence and ESR spectroscopy were performed on irradiated samples of PS and PVX with the p-terphenyl (TP) as the primary luminophore and 1,4-di-2(5-phenyloxazolyl-1,3) benzene (POPOP) as the secondary one. Dependence of the radioluminescence intensity of the scintillators on the concentration of the macroradicals formed by irradiation was investigated. Dose dependence of the radiation stability of scintillators is discussed. (author)

  2. Factors determining radiation stability of plastic scintillators

    International Nuclear Information System (INIS)

    Gunder, O.A.; Voronkina, N.I.

    1995-01-01

    Polystyrene (PS) and polyvinylxylene (PVX) are the base materials for plastic scintillators. UV-Vis spectrophotometry, luminescence and EPR spectroscopy were performed on irradiated samples of PS and PVX with the p-terphenyl (TP) as primary luminophore and 1,4-di-2(5-phenyloxazolyl-1,3)benzene (POPOP) as secondary one. Dependence of the radioluminescence intensity of the scintillators on the concentration of the macroradicals formed in them in the process of irradiation was investigated. Dose dependence of the radiation stability of scintillators is discussed. (Author)

  3. Scintillation hodoscopes on the basis of hodoscopic photomultipliers using scintillation fibers

    International Nuclear Information System (INIS)

    Alimova, T.V.; Vasil'chenko, V.G.; Vechkanov, G.N.

    1986-01-01

    Scintillation hodoscopes characteristics and their design features have been considered. The space resolution for hodoscopes consisting of 4 layers of scintillation fibres 200 mm long and 1 mm in diameter is 0.4-0.6 mm. With 2 fibres layer 1 m long and 3.8 mm in diameter the space resolution 3 mm has been obtained. A possibility to construct 0.1 mm resolution scintillation hodoscopes is discussed

  4. Measurement of radon emanation of drainage layer media by liquid scintillation counting

    International Nuclear Information System (INIS)

    Turtiainen, T.

    2009-01-01

    Slab-on-ground is a typical base floor construction type in Finland. The drainage layer between the slab and soil is a layer of sand, gravel or crushed stone. This layer has a minimum thickness of 200 mm and is sometimes even 600 mm thick, and thus may be a significant contributor to indoor air radon. In order to investigate radon emanation from the drainage layer material, a simple laboratory test was developed. Many organic solvents have high Ostwald coefficients for radon, i.e., the ratio of the volume of gas absorbed to the volume of the absorbing liquid, which enables direct absorption of radon into a liquid scintillation cocktail. Here, we first present equations relating to the processes of gas transfer in emanation measurement by direct absorption into liquid scintillation cocktails. In order to optimize the method for emanation measurement, four liquid scintillation cocktails were assessed for their ability to absorb radon from air. A simple apparatus consisting of a closed glass container holding an open liquid scintillation vial was designed and the diffusion/absorption rate and Ostwald coefficient were determined for a selected cocktail. Finally, a simple test was developed based on this work. (author)

  5. Development of multi-color scintillator based X-ray image intensifier

    International Nuclear Information System (INIS)

    Nittoh, Koichi; Konagai, Chikara; Noji, Takashi

    2004-01-01

    A multi-color scintillator based high-sensitive, wide dynamic range and long-life X-ray image intensifier has been developed. An europium activated Y 2 O 2 S scintillator, emitting red, green and blue photons of different intensities, is utilized as the output fluorescent screen of the intensifier. By combining this image intensifier with a suitably tuned high sensitive color CCD camera, it is possible for a sensitivity of the red color component to become six times higher than that of the conventional image intensifier. Simultaneous emission of a moderate green color and a weak blue color covers different sensitivity regions. This widens the dynamic range, by nearly two orders of ten. With this image intensifier, it is possible to image simultaneously complex objects containing various different X-ray transmission from paper, water or plastic to heavy metals. This high sensitivity intensifier, operated at lower X-ray exposure, causes less degradation of scintillator materials and less colorization of output screen glass, and thus helps achieve a longer lifetime. This color scintillator based image intensifier is being introduced for X-ray inspection in various fields

  6. High-resolution tracking using large capillary bundles filled with liquid scintillator

    CERN Document Server

    Annis, P; Benussi, L; Bruski, N; Buontempo, S; Currat, C; D'Ambrosio, N; Van Dantzig, R; Dupraz, J P; Ereditato, A; Fabre, Jean-Paul; Fanti, V; Feyt, J; Frekers, D; Frenkel, A; Galeazzi, F; Garufi, F; Goldberg, J; Golovkin, S V; Gorin, A M; Grégoire, G; Harrison, K; Höpfner, K; Holtz, K; Konijn, J; Kozarenko, E N; Kreslo, I E; Kushnirenko, A E; Liberti, B; Martellotti, G; Medvedkov, A M; Michel, L; Migliozzi, P; Mommaert, C; Mondardini, M R; Panman, J; Penso, G; Petukhov, Yu P; Rondeshagen, D; Siegmund, W P; Tyukov, V E; Van Beek, G; Vasilchenko, V G; Vilain, P; Visschers, J L; Wilquet, G; Winter, Klaus; Wolff, T; Wörtche, H J; Wong, H; Zimyn, K V

    2000-01-01

    We have developed large high-resolution tracking detectors based on glass capillaries filled with organic liquid scintillator of high refractive index. These liquid-core scintillating optical fibres act simultaneously as detectors of charged particles and as image guides. Track images projected onto the readout end of a capillary bundle are visualized by an optoelectronic chain consisting of a set of image-intensifier tubes followed by a photosensitive CCD or by an EBCCD camera. Two prototype detectors, each composed of \\hbox{$\\approx 10^6$} capillaries with \\hbox{20$-$25 $\\mu$m} diameter and \\hbox{0.9$-$1.8 m} length, have been tested, and a spatial resolution of the order of \\hbox{20$-$40 $\\mu$m} has been attained. A high scintillation efficiency and a large light-attenuation length, in excess of 3 m, was achieved through special purification of the liquid scintillator. Along the tracks of minimum-ionizing particles, the hit densities obtained were $\\sim$ 8 hits/mm at the readout window, and \\hbox{$\\sim$ 3 ...

  7. The development of a single-crystal fiber-array scintillator area detector

    International Nuclear Information System (INIS)

    Loong, Chun; Vitt, Richard; Sayir, Ali; Sayir, Haluk

    2001-01-01

    The scientific output of a neutron instrument is directly proportional to the effectiveness of its detector system-coverage of scattering area, pixel resolution, counting efficiency, signal-to-noise ratio, life time and cost. The current neutron scintillator detectors employ mainly 6 Li-doped glass and ZnS, both of which present well-know limitations such as low light output, high gamma sensitivity in the case of 6 Li-glass and optical opacity in the case of ZnS. We aim to develop a position-sensitive, flight-time differentiable, efficient and cost-effective neutron detector system based on single-crystal scintillator fiber-arrays. The laser-heated melt modulation fiber growth technology developed at NASA provides the means to grow high-purity single-crystal fibers or rods of variable diameters (200 μm to 5 mm) and essentially unlimited length. Arrays of such fibers can be tailored to meet the requirements of pixel size, geometric configuration, and coverage area for a detector system. We report a plan in the growth and characterization of scintillators based on lithium silicates and boron aluminates using Ce as activator. (author)

  8. Long wavelength scintillators for fiber-optic applications

    International Nuclear Information System (INIS)

    Lyons, P.B.; Franks, L.; Lutz, S.; Flournoy, J.; Fullman, E.

    1980-01-01

    The use of fiber optics in plasma diagnostics has spurred the development of long wavelength scintillators with fast temporal characteristics. In this paper we describe several new liquid scintillator systems with fluorescent emissions maxima up to 730 nm. Subnanosecond scintillator FWHM response times have been obtained by the operation of liquid scintillators at elevated temperatures. Data on fiber system sensitivity versus fiber length and scintillator emission wavelength will be presented

  9. Glass: Rotary Electric Glass Furnace

    Energy Technology Data Exchange (ETDEWEB)

    Recca, L.

    1999-01-29

    Compared to conventional gas-fired furnaces, the new rotary electric furnace will increase energy efficiency while significantly reducing air emissions, product turnaround time, and labor costs. As this informative new fact sheet explains, the thousand different types of glass optical blanks produced for the photonics industry are used for lasers, telescopes, cameras, lights, and many other products.

  10. Measurement methods for several properties of scintillator

    International Nuclear Information System (INIS)

    Luo Fengqun; Ji Changsong

    1998-01-01

    The current paper describes the experimental measurement methods for the relative light output, the relative energy conversion efficiency, the intrinsic amplitude resolution and the detection efficiency of the scintillators and their temperature effects

  11. Development of a reference liquid scintillation cocktail

    CSIR Research Space (South Africa)

    Van Wyn Gaardt, WM

    2006-02-01

    Full Text Available A reference system that would allow national laboratories to compare their activity measurements of non-gamma-emitting radionuclides at any time is currently being developed. The system requires a non-commercial reference-liquid scintillation...

  12. Permanent automatic recalibration system for scintillation camera

    International Nuclear Information System (INIS)

    Auphan, Michel.

    1974-01-01

    A permanent automatic recalibration system for a scintillation camera, of the type consisting chiefly of a collimator if necessary, a scintillator, a light guide and a network of n photomultipliers coupled to a display system, is described. It uses a device to form a single reference light signal common to all the photomultiplication lines, integrated to these latter and associated with a periodic calibration control generator. By means of associated circuits governed by the control generator the gain in each line is brought to and/or maintained at a value between fixed upper and lower limits. Steps are taken so that any gain variation in a given line is adjusted with respect to the reference light signal common to all the lines. The light signal falls preferably in the same part of the spectrum as the scintillations formed in the scintillator [fr

  13. Improved organic scintillation detectors; Possibilites de perfectionnement des detecteurs organiques a scintillations; Usovershenstvovannye organicheskie stsintillyatsionnye detektory; Detectores organicos de centelleo perfeccionados

    Energy Technology Data Exchange (ETDEWEB)

    Birks, J B [University of Manchester, Manchester (United Kingdom)

    1962-04-15

    Equations have been derived for the practical scintillation efficiency (photo-electrons/MeV) of organic crystals and solutions in terms of molecular parameters and these have been applied to the more important scintillator systems, for photomultipliers with S11 (glass window) and S13 (quartz window) responses. The results suggest several improvements in current organic scintillation detector practice: the use of binary rather than ternary solutions; the use of quartz rather than glass windows; and the reconsideration of mixed crystal scintillators based on naphthalene. Improvements by factors of 2 or more in the figure of merit (practical efficiency/decay time) for fast-scintillation counting can be obtained. (author) [French] L'auteur a etabli des equations pour determiner le rendement de scintillation (photoelectrons/MeV) de cristaux et solutions organiques, en faisant intervenir des parametres moleculaires. Il a applique ces equations a des appareils a scintillations plus importantes pour determiner la reponse des photomultiplicateurs a fenetre en verre (S11) et a fenetre en quartz (S13). Les resultats obtenus ont fait apparaitre la possibilite d'ameliorer, a plusieurs egards, les detecteurs organiques a scintillations du type courant, par exemple en remplacant les solutions ternaires par des solutions binaires, les fenetres en verre par des fenetres en quartz, ou en reexaminant les possibilites offertes par les scintillateurs a cristaux mixtes a base de naphtalene. L'introduction de ces perfectionnements conduirait a une amelioration, du simple au double ou plus, du facteur de qualite (efficacite/temps de decroissance) des dispositifs de comptage a scintillations. (author) [Spanish] Se han establecido ecuaciones que permiten calcular el rendimiento practico de centelleo (fotoelectrones/MeV) de los cristales y soluciones organicos en funcion de parametros moleculares; estas ecuaciones han sido aplicadas a los sistemas de centelleo mas importantes, para

  14. Real-time volumetric scintillation dosimetry

    International Nuclear Information System (INIS)

    Beddar, S

    2015-01-01

    The goal of this brief review is to review the current status of real-time 3D scintillation dosimetry and what has been done so far in this area. The basic concept is to use a large volume of a scintillator material (liquid or solid) to measure or image the dose distributions from external radiation therapy (RT) beams in three dimensions. In this configuration, the scintillator material fulfills the dual role of being the detector and the phantom material in which the measurements are being performed. In this case, dose perturbations caused by the introduction of a detector within a phantom will not be at issue. All the detector configurations that have been conceived to date used a Charge-Coupled Device (CCD) camera to measure the light produced within the scintillator. In order to accurately measure the scintillation light, one must correct for various optical artefacts that arise as the light propagates from the scintillating centers through the optical chain to the CCD chip. Quenching, defined in its simplest form as a nonlinear response to high-linear energy transfer (LET) charged particles, is one of the disadvantages when such systems are used to measure the absorbed dose from high-LET particles such protons. However, correction methods that restore the linear dose response through the whole proton range have been proven to be effective for both liquid and plastic scintillators. Volumetric scintillation dosimetry has the potential to provide fast, high-resolution and accurate 3D imaging of RT dose distributions. Further research is warranted to optimize the necessary image reconstruction methods and optical corrections needed to achieve its full potential

  15. A new technique for infrared scintillation measurements

    Energy Technology Data Exchange (ETDEWEB)

    Chiossi, F., E-mail: federico.chiossi@studenti.unipd.it [Dip. di Fisica e Astronomia and INFN, University of Padua, Via F. Marzolo 8, I-35131 Padova (Italy); Brylew, K. [Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun (Poland); Borghesani, A.F. [CNISM Unit and Dip. di Fisica e Astronomia, University of Padua, Via F. Marzolo 8, I-35131 Padova (Italy); Braggio, C.; Carugno, G. [Dip. di Fisica e Astronomia and INFN, University of Padua, Via F. Marzolo 8, I-35131 Padova (Italy); Drozdowski, W. [Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun (Poland); Guarise, M. [Dip. di Fisica e Astronomia and INFN, University of Padua, Via F. Marzolo 8, I-35131 Padova (Italy)

    2017-05-21

    We propose a new technique to measure the infrared scintillation light yield of rare earth doped crystals by comparing it to near UV–visible scintillation of a calibrated Pr:(Lu{sub 0.75}Y{sub 0.25}){sub 3}Al{sub 5}O{sub 12} sample. As an example, we apply this technique to provide the light yield in visible and infrared range up to 1700 nm of this crystal.

  16. Composition for use in scintillator systems

    International Nuclear Information System (INIS)

    Tarkkanen, V.

    1976-01-01

    A liquid scintillation counting composition of the type comprising an aromatic hydrocarbon solvent, an ethoxylated alkyl phenol surfactant, and a scintillation solute, containing a small amount of a substituted ethoxylated carboxylate acid and/or a tertiary amine salt or a quaternary ammonium salt of such acid is described. The free acid reduces chemiluminescence upon the addition of an alkaline sample to the composition, while the tertiary amine or quaternary ammonium salt enhances the water miscibility of the composition

  17. Coping with plastic scintillators in nuclear safeguards

    International Nuclear Information System (INIS)

    Fehlau, P.E.; Brunson, G.S.

    1983-01-01

    Plastic scintillators offer several advantages for nuclear safeguards research and technology to those who design, assemble, encapsulate, and calibrate detectors from raw materials that are commercially available. These large, inexpensive detectors have good spatial uniformity and good high-energy gamma-ray response. Uniform light collection is obtained with a light pipe attached to a polished scintillator wrapped with aluminum foil. Best low-energy response is obtained by applying a variance analyzer to select the low energy bias level

  18. A new technique for infrared scintillation measurements

    International Nuclear Information System (INIS)

    Chiossi, F.; Brylew, K.; Borghesani, A.F.; Braggio, C.; Carugno, G.; Drozdowski, W.; Guarise, M.

    2017-01-01

    We propose a new technique to measure the infrared scintillation light yield of rare earth doped crystals by comparing it to near UV–visible scintillation of a calibrated Pr:(Lu_0_._7_5Y_0_._2_5)_3Al_5O_1_2 sample. As an example, we apply this technique to provide the light yield in visible and infrared range up to 1700 nm of this crystal.

  19. Porous glasses as a host of luminescent materials, their applications and site selective determination

    Energy Technology Data Exchange (ETDEWEB)

    Reisfeld, Renata, E-mail: renata.reisfeld@mail.huji.ac.il [Institute of Chemistry, Hebrew University of Jerusalem, Givat-Ram, Jerusalem 91904 (Israel); Jasinska, Bozena [Institute of Physics, Maria Curie-Sklodowska University, Pl. M. Curie-Skłodowsskiej 1, 20-031 Lublin (Poland); Levchenko, Viktoria [Institute of Chemistry, Hebrew University of Jerusalem, Givat-Ram, Jerusalem 91904 (Israel); Gorgol, Marek [Institute of Physics, Maria Curie-Sklodowska University, Pl. M. Curie-Skłodowsskiej 1, 20-031 Lublin (Poland); Saraidarov, Tsiala; Popov, Inna [Institute of Chemistry, Hebrew University of Jerusalem, Givat-Ram, Jerusalem 91904 (Israel); Antropova, Tatiana [I. V. Grebenshchikov Institute of the Chemistry of Silicates, Russian Academy of Sciences, Nab. Makarova, 2, Liter B, Saint-Petersburg 199034 (Russian Federation); Rysiakiewicz-Pasek, Ewa [Institute of Physics, Wroclaw University of Technology, W. Wyspianskiego 27, 50-370 Wroclaw (Poland)

    2016-01-15

    The site selective distribution of pore sizes in pure porous glasses and glasses doped by a luminescent colorant is determined by luminescent spectroscopy, SEM, SAXS and PALS. The potential applications of the studied materials as environmental and biological sensors are outlined. We suggest how luminescent porous glasses doped by complexes of Gd can act as solid scintillators in tracing elementary particles like neutrino. - Highlights: • Porous glasses are a medium for large number of luminescent materials. • Size distribution of empty and filled pores is studied. • The validity of data obtained by different methods is analyzed.

  20. Nitrate glass

    International Nuclear Information System (INIS)

    Kirilenko, I.A.; Vinogradov, E.E.

    1977-01-01

    Experimental evidence on behaviour of nitrate glasses is reviewed in terms of relationships between the presence of water in vitrescent nitrate systems and the properties of the systems. The glasses considered belong to systems of Mg(NO 3 ) 2 - Nd(NO 3 ) 3 ; Hg(NO 3 ) 2 -Nd(NO 3 ) 3 ; NaNO 3 -Mg(NO 3 ) 2 -Nd(NO 3 ) 3 ; M-Zn(NO 3 ) 3 , where M is a mixture of 20% mass NaNO 3 and 80% mass Mg(NO 3 ) 2 , and Zn is a rare earth ion. Nitrate glass is shown to be a product of dehydration. Vitrification may be regarded as a resusl of formation of molecular complexes in the chain due to hydrogen bonds of two types, i.e. water-water, or water-nicrate group. Chain formation, along with low melting points of the nitrates, hinder crystallization of nitrate melts. Provided there is enough water, this results in vitrification

  1. Computer modelling of position-sensitive scintillator detectors

    International Nuclear Information System (INIS)

    Schelten, J.; Kurz, R.; Kernforschungsanlage Juelich G.m.b.H.

    1983-01-01

    The essential properties of a two-dimensional PSD consisting of 7 x 7 circular PMs of diameter D = 68 mm, optically coupled to a glass block disperser of thickness H, and of a thin glass scintillator which is optically decoupled from the disperser are analyzed by computer-simulation of the detector geometry which determines the light distribution on rows and columns of PMs for a neutron capture event and the electronic signal handling which leads to the response function Q(x,y). The computer simulations were performed in order to investigate geometrical variations, such as PMs with a square photo-cathode, a hexagonal arrangement, the effect of the disperser thickness and of conical condensers in front of the PMs and edge-effects due to the finite size of the disperser. The linearity of the detector can be optimised by adjusting three smoothing parameters S, S' and S''. These parameters can be introduced if the signal processing, which determines a neutron event, is based on a course selection of three PM columns and three rows followed by a weighted pulse height division for a final determination of the x and y coordinates. This paper briefly describes the simulations and presents the calculated results which refer closely to the two-dimensional PSD which is being built in the Laboratory. (author)

  2. (Alpha-) quenching temperature dependence in liquid scintillator

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, Arnd; Lozza, Valentina; Krosigk, Belina von; Zuber, Kai [Institut fuer Kern- und Teilchenphysik, TU Dresden (Germany)

    2015-07-01

    Liquid scintillator (LS) is an effective and promising detector material, which is and will be used by many small and large scale experiments. In order to perform correct signal identification and background suppression, a very good knowledge of LS properties is crucial. One of those is the light yield from alpha particles in liquid scintillator. This light output strongly quenched, approx. 10 times compared to that of electrons, and has been precisely studied at room temperature for various LS. Big scintillator experiments, such as SNO+ and maybe future large scale detectors, will operate at different temperatures. While a strong temperature dependence is well known for solid state scintillators, due to the different scintillation process, a quenching temperature dependence in LS is usually assumed negligible. On the other hand, inconsistencies in between measurements are often explained by potential temperature effects. This study investigates LAB based liquid scintillator with an intrinsic, dissolved alpha emitter and its behaviour with temperature change. In a small, cooled and heated setup, a stabilized read-out with two PMTs is realised. First results are presented.

  3. A gamma-ray discriminating neutron scintillator

    International Nuclear Information System (INIS)

    Eschbach, P.A.; Miller, S.D.; Cole, M.C.

    1994-01-01

    A neutron scintillator has been developed at Pacific Northwest Laboratory which responds directly to as little as 10 mrem/hour dose equivalent rate fast neutron fields. The scintillator is composed of CaF 2 :Eu or of NaI grains within a silicone rubber or polystyrene matrix, respectively. Neutrons colliding with the plastic matrix provide knockon protons, which in turn deposit energy within the grains of phosphor to produce pulses of light. Neutron interactions are discriminated from gamma-ray events on the basis of pulse height. Unlike NE-213 liquid scintillators, this solid scintillator requires no pulseshape discrimination and therefore requires less hardware. Neutron events are anywhere from two to three times larger than the gamma-ray exposures are compared to 0.7 MeV gamma-ray exposures. The CaF 2 :Eu/silicone rubber scintillator is nearly optically transparent, and can be made into a very sizable detector (4 cm x 1.5 cm) without degrading pulse height. This CaF 2 :Eu scintillator has been observed to have an absolute efficiency of 0.1% when exposed to 5-MeV accelerator-generated neutrons (where the absolute efficiency is the ratio of observed neutron events divided by the number of fast neutrons striking the detector)

  4. Background characterization in a liquid scintillation spectrometer; Caracterizacion del fondo de un espectrometro de centelleo liquido

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Barquero, L.; Los Arcos, J.M.; Jimenez de Mingo, A.

    1995-07-01

    An alternate procedure for background count rate estimation in a liquid scintillation spectrometer is presented, which does not require to measure a blank with similar composition, volume and quench, to the problem sample. The procedure is based on a double linear parameterization which was obtained from a systematic study of the background observed with glass vials, in three different windows, 0 - 20 KeV, 0 - 800 KeV and 0 - 2 MeV, for volume between 2 and 20 mi of three commercial scintillators, Hisafe II, Ultima-Gold and Instagel, and quenching degree in the interval equivalent to 50% - 3% tritium efficiency. This procedure was tested with standard samples of 3H, and led to average discrepancies less than 10% for activity {>=}0,6 Bq, against conventional methods for which the discrepancies are twice on average. (Author) 10 refs.

  5. Temporal characteristics and saturation effects of organic scintillators to low-energy X-rays

    International Nuclear Information System (INIS)

    Pronko, J.G.; Chase, L.F.

    1979-01-01

    Rise time, short and long term decay characteristics and possible saturation effects of the fluorescence of NE102, NE111, and doped NE111 organic scintillators were investigated using low-energy X-rays from a laser produced plasma. The laser system consisted of a pulsed Nd:glass facility operating at a pulse width of 0.2 ns at levels up to 10 J. The NE111 samples consisted of a matrix of scintillators with benzophenone, acetophenone, and piperidine each at concentrations of 0, 1, 2, 5, and 10 percent. The rise time of NE102 was measured at (640+-50) ps while that of both the doped and undoped NE111 was 2 ns) of irradiance used in this investigation. (Auth.)

  6. Glasses impregnated with lead for radiation shielding

    International Nuclear Information System (INIS)

    Abd El Monem, A.M.; Kansouh, W.A.; Megahid, R.M.; Ismail, A.L.; Awad, E.M.

    2005-01-01

    The attenuation properties of glasses with different concentration of lead have been investigated for the attenuation of gamma-rays from cesium-137 and for total gamma rays using a beam of neutrons and gamma rays emitted from californium-252 source. Measurements have been performed using a gamma-ray spectrometer with Nal(T1) detector for gamma-rays emitted from 137 Cs and a neutron/gamma spectrometer with stilbene scintillator for measurement of total gamma-rays from 252 Cf neutron source. The latter applied the pulse shape discrimination technique to distinguish between recoil proton and recoil electron pulses. The obtained results given the form displayed pulse height spectra and attenuation relations which were used to derive the linear attenuation coefficient (μ), and the mass attenuation coefficient (mu/p) of the investigated glasses. In addition, calculations were performed to determine the attenuation properties of glass shields under investigation using XCOM code given by the others. A comparison of the shielding properties of these glasses with some standard shielding materials indicated that, the investigated glasses process the shielding advantages required for different nuclear technology applications

  7. Application of the Monte Carlo method to the study of the response of an organic liquid scintillator irradiated by photons

    International Nuclear Information System (INIS)

    Dupre, Corinne.

    1982-10-01

    The Monte Carlo method was applied to simulate the transport of a photon beam in an organic liquid scintillation detector. The interactions of secondary gamma rays and electrons with the detector and its peripheral materials components such as the pyrex glass container are included. The pulse height spectra and the detectors efficiency are compared with calculated and measured results. Calculations and programmation methods are presented in the same way as results concerning cobalt and cesium sources [fr

  8. A liquid scintillation counter specifically designed for samples deposited on a flat matrix

    International Nuclear Information System (INIS)

    Potter, C.G.; Warner, G.T.

    1986-01-01

    A prototype liquid scintillation counter has been designed to count samples deposited as a 6x16 array on a flat matrix. Applications include the counting of labelled cells processed by a cell harvester from 96-well microtitration plates onto glass fibre filters and of DNA samples directly deposited onto nitrocellulose or nylon transfer membranes (e.g. 'Genescreen' NEN) for genetic studies by dot-blot hybridisation. The whole filter is placed in a bag with 4-12 ml of scintillant, sufficient to count all 96 samples. Nearest-neighbour intersample cross talk ranged from 0.004% for 3 H to 0.015% for 32 P. Background was 1.4 counts/min for glass fibre and 0.7 counts/min for 'Genescreen' in the 3 H channel: for 14 C the respective figures were 5.3 and 4.3 counts/min. Counting efficiency for 3 H-labelled cells on glass fibre was 54%(E 2 /B=2053) and 26% for tritiated thymidine spotted on 'Genescreen'(E 2 /B=980). Similar 14 C samples gave figures on 97%(E 2 /B=1775) and 81(E 2 B=1526) respectively. Electron emission counting from samples containing 125 I and 51 Cr was also possible. (U.K.)

  9. Conference on Engineering of Scintillation Materials and Radiation Technologies

    CERN Document Server

    Gektin, Alexander

    2017-01-01

    This volume provides a broad overview of the latest achievements in scintillator development, from theory to applications, and aiming for a deeper understanding of fundamental processes, as well as the discovery and availability of components for the production of new generations of scintillation materials. It includes papers on the microtheory of scintillation and the initial phase of luminescence development, applications of the various materials, and development and characterization of ionizing radiation detection equipment. The book also touches upon the increased demand for cryogenic scintillators, the renaissance of  garnet materials for scintillator applications, nano-structuring in scintillator development, development and applications for security, and exploration of hydrocarbons and ecological monitoring.

  10. Role of hot electron transport in scintillators: A theoretical study

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Huihui [SZU-NUS Collaborative Innovation Center for Optoelectronic Science and Technology, Key Lab. of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen Univ. (China); Li, Qi [Physical Sciences Division, IBM TJ Watson Research Center, Yorktown Heights, NY (United States); Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL (United States); Lu, Xinfu; Williams, R.T. [Department of Physics, Wake Forest University, Winston Salem, NC (United States); Qian, Yiyang [College of Engineering and Applied Science, Nanjing University (China); Wu, Yuntao [Scintillation Materials Research Center, University of Tennessee, Knoxville, TN (United States)

    2016-10-15

    Despite recent intensive study on scintillators, several fundamental questions on scintillator properties are still unknown. In this work, we use ab-initio calculations to determine the energy dependent group velocity of the hot electrons from the electronic structures of several typical scintillators. Based on the calculated group velocities and optical phonon frequencies, a Monte-Carlo simulation of hot electron transport in scintillators is carried out to calculate the thermalization time and diffusion range in selected scintillators. Our simulations provide physical insights on a recent trend of improved proportionality and light yield from mixed halide scintillators. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Scintillation Detectors for Charged Particles and Photons

    CERN Document Server

    Lecoq, P

    2011-01-01

    Scintillation Detectors for Charged Particles and Photons in 'Charged Particle Detectors - Particle Detectors and Detector Systems', part of 'Landolt-Börnstein - Group I Elementary Particles, Nuclei and Atoms: Numerical Data and Functional Relationships in Science and Technology, Volume 21B1: Detectors for Particles and Radiation. Part 1: Principles and Methods'. This document is part of Part 1 'Principles and Methods' of Subvolume B 'Detectors for Particles and Radiation' of Volume 21 'Elementary Particles' of Landolt-Börnstein - Group I 'Elementary Particles, Nuclei and Atoms'. It contains the Subsection '3.1.1 Scintillation Detectors for Charged Particles and Photons' of Section '3.1 Charged Particle Detectors' of Chapter '3 Particle Detectors and Detector Systems' with the content: 3.1.1 Scintillation Detectors for Charged Particles and Photons 3.1.1.1 Basic detector principles and scintillator requirements 3.1.1.1.1 Interaction of ionizing radiation with scintillator material 3.1.1.1.2 Important scint...

  12. Radioactivity measurements by liquid scintillation spectroscopy

    International Nuclear Information System (INIS)

    Cassette, Ph.

    2004-01-01

    The activity measurement techniques by liquid scintillation spectroscopy consist to mix the radioactive solution to measure with a scintillating liquid and to transform the ionizing radiations, resulting from decays, into light, detectable and quantifiable. The main advantages of these techniques are the easiness of preparation of the radioactive sources, the geometric efficiency of detection of 4π and the possibility of detection of low-level energy radiations. There are one of the only methods giving the possibility to measure the activity of pure β radionuclides; indeed, the nuclear disintegration is not accompanied of gamma radiations detectable by other techniques. There are one of the only methods too of measurement of radionuclides which disintegrate by electron capture and especially those leading to the emission of low-level energy ionizing radiations. Liquid scintillation spectroscopy can be used as an absolute method of activity measurement that is to say without the use of a calibration standard. The modern liquid scintillation counting devices can be very sensitive; the measurement of micro-activities being possible. Some of the applications of these activity measurement techniques are the carbon 14 dating and the geological tracing. Their main disadvantage is the global energetic yield which is low and variable in terms of the composition of the scintillation source necessitating to calculate the detection yield for each condition of measurement. (O.M.)

  13. Analysis of low-intensity scintillation spectra

    International Nuclear Information System (INIS)

    Muravsky, V.; Tolstov, S.A.

    2002-01-01

    The maximum likelihood algorithms for nuclides activities estimation from low intensity scintillation γ-ray spectra have been created. The algorithms treat full energy peaks and Compton parts of spectra, and they are more effective than least squares estimators. The factors that could lead to the bias of activity estimates are taken into account. Theoretical analysis of the problem of choosing the optimal set of initial spectra for the spectrum model to minimize errors of the activities estimation has been carried out for the general case of the N-components with Gaussian or Poisson statistics. The obtained criterion allows to exclude superfluous initial spectra of nuclides from the model. A special calibration procedure for scintillation γ-spectrometers has been developed. This procedure is required for application of the maximum likelihood activity estimators processing all the channels of the scintillation γ-spectrum, including the Compton part. It allows one to take into account the influence of the sample mass density variation. The algorithm for testing the spectrum model adequacy to the processed scintillation spectrum has been developed. The algorithms are realized in Borland Pascal 7 as a library of procedures and functions. The developed library is compatible with Delphi 1.0 and higher versions. It can be used as the algorithmic basis for analysis of highly sensitive scintillation γ- and β-spectrometric devices. (author)

  14. Solid scintillator 'Ready Cap' for measurement with a liquid scintillation counter

    International Nuclear Information System (INIS)

    Ijiri, Kenichi; Endo, Masashi; Nogawa, Norio; Tsuda, Shoko; Nakamura, Aiko; Morikawa, Naotake; Osaki, Susumu.

    1990-01-01

    'Ready Cap', a small plastic container coated with solid scintillator has recently been introduced (Beckman Instruments, Inc.). Pulse height spectra and counting efficiencies obtained with a liquid scintillator and Ready Cap using a liquid scintillation counter were compared for 15 different radionuclides. For radionuclides emitting low-energy β-rays or characteristic X-rays, the spectra for Ready Cap shifted toward the higher energy side compared with the spectra for the liquid scintillator. This tendency was reversed for the nuclides emitting higher-energy β-radiations ( 36 Cl and 32 P). Generally, counting efficiencies both in Ready Cap and in liquid scintillator increased with increase in the energy of β- or X-rays. For some nuclides, Ready Cap gave higher counting efficiencies and for others it gave lower values than in the liquid scintillator. However, the differences were not large within each nuclide. The use of Ready Cap is recommended for measurements of radionuclides when liquid scintillation cocktails have no means of waste disposal under the present Japanese radioisotope regulation. (author)

  15. Radiation imaging with a new scintillator and a CMOS camera

    Czech Academy of Sciences Publication Activity Database

    Kurosawa, S.; Shoji, Y.; Pejchal, Jan; Yokota, Y.; Yoshikawa, A.

    2015-01-01

    Roč. 9, Jul (2015), C07015 ISSN 1748-0221 Institutional support: RVO:68378271 Keywords : scintillators * scintillation and light emission processes * image processin Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.310, year: 2015

  16. Plastic scintillator-based hodoscope for the characterization of large ...

    Indian Academy of Sciences (India)

    Plastic scintillator-based hodoscope for the characterization of large-area resistive plate chambers. V K S KASHYAP C YADAV ... Keywords. Plastic scintillators; resistive plate chambers. ... Pramana – Journal of Physics | News. © 2017 Indian ...

  17. Collimated trans-axial tomographic scintillation camera

    International Nuclear Information System (INIS)

    1980-01-01

    The objects of this invention are first to reduce the time required to obtain statistically significant data in trans-axial tomographic radioisotope scanning using a scintillation camera. Secondly, to provide a scintillation camera system to increase the rate of acceptance of radioactive events to contribute to the positional information obtainable from a known radiation source without sacrificing spatial resolution. Thirdly to reduce the scanning time without loss of image clarity. The system described comprises a scintillation camera detector, means for moving this in orbit about a cranial-caudal axis relative to a patient and a collimator having septa defining apertures such that gamma rays perpendicular to the axis are admitted with high spatial resolution, parallel to the axis with low resolution. The septa may be made of strips of lead. Detailed descriptions are given. (U.K.)

  18. Scintillation γ spectrography. Physical principles. Apparatus. Operation

    International Nuclear Information System (INIS)

    Julliot, C.

    1960-01-01

    The scintillation detector forms the main part of the instrument used, the electronic unit presenting the results produced. After a brief description of the process of γ photon absorption in the material, the particular case of NaI (T1), the scintillator used, is examined. The intensity of the scintillation caused by γ ray absorption and the characteristics of the photomultiplier play a determining part in the energy resolution of the instrument. For the γ recording spectrograph, we show to what extent the technique for using the electronic unit can modify the results. A detailed description is given of the activity measurement of a γ-emitting radioelement by the spectrographic method. (author) [fr

  19. Proportional gas scintillation detectors and their applications

    International Nuclear Information System (INIS)

    Petr, I.

    1978-01-01

    The principle is described of a gas proportional scintillation detector and its function. Dependence of Si(Li) and xenon proportional detectors energy resolution on the input window size is given. A typical design is shown of a xenon detector used for X-ray spetrometry at an energy of 277 eV to 5.898 keV and at a gas pressure of 98 to 270 kPa. Gas proportional scintillation detectors show considerable better energy resolution than common proportional counters and even better resolution than semiconductor Si(Li) detectors for low X radiation energies. For detection areas smaller than 25 mm 2 Si(Li) detectors show better resolution, especially for higher X radiation energies. For window areas 25 to 190 mm 2 both types of detectors are equal, for a window area exceeding 190 mm 2 the proportional scintillation detector has higher energy resolution. (B.S.)

  20. Scintillation camera with improved output means

    International Nuclear Information System (INIS)

    Lange, K.; Wiesen, E.J.; Woronowicz, E.M.

    1978-01-01

    In a scintillation camera system, the output pulse signals from an array of photomultiplier tubes are coupled to the inputs of individual preamplifiers. The preamplifier output signals are coupled to circuitry for computing the x and y coordinates of the scintillations. A cathode ray oscilloscope is used to form an image corresponding with the pattern in which radiation is emitted by a body. Means for improving the uniformity and resolution of the scintillations are provided. The means comprise biasing means coupled to the outputs of selected preamplifiers so that output signals below a predetermined amplitude are not suppressed and signals falling within increasing ranges of amplitudes are increasingly suppressed. In effect, the biasing means make the preamplifiers non-linear for selected signal levels

  1. Scintillation counting: an extrapolation into the future

    International Nuclear Information System (INIS)

    Ross, H.H.

    1983-01-01

    Progress in scintillation counting is intimately related to advances in a variety of other disciplines such as photochemistry, photophysics, and instrumentation. And while there is steady progress in the understanding of luminescent phenomena, there is a virtual explosion in the application of semiconductor technology to detectors, counting systems, and data processing. The exponential growth of this technology has had, and will continue to have, a profound effect on the art of scintillation spectroscopy. This paper will review key events in technology that have had an impact on the development of scintillation science (solid and liquid) and will attempt to extrapolate future directions based on existing and projected capability in associated fields. Along the way there have been occasional pitfalls and several false starts; these too will be discussed as a reminder that if you want the future to be different than the past, study the past

  2. Current trends in scintillator detectors and materials

    International Nuclear Information System (INIS)

    Moses, W.W.

    2002-01-01

    The last decade has seen a renaissance in inorganic scintillator development for gamma ray detection. Lead tungstate (PbWO 4 ) has been developed for high-energy physics experiments, and possesses exceptionally high density and radiation hardness, albeit with low luminous efficiency. Lutetium orthosilicate or LSO (Lu 2 SiO 5 :Ce) possesses a unique combination of high luminous efficiency, high density, and reasonably short decay time, and is now incorporated in commercial positron emission tomography cameras. There have been advances in understanding the fundamental mechanisms that limit energy resolution, and several recently discovered materials (such as LaBr 3 :Ce) possess energy resolution that approaches that of direct solid state detectors. Finally, there are indications that a neglected class of scintillator materials that exhibit near band-edge fluorescence could provide scintillators with sub-nanosecond decay times and high luminescent efficiency

  3. Optics study of liquid scintillation counting systems

    International Nuclear Information System (INIS)

    Duran Ramiro, M. T.; Garcia-Torano, E.

    2005-01-01

    Optics is a key issue in the development of any liquid scintillation counting (LSC) system. Light emission in the scintillating solution, transmission through the vial and reflector design are some aspects that need to be considered in detail. This paper describes measurements and calculations carried out to optimise these factors for the design of a new family of LSC counters. Measurements of the light distribution emitted by a scintillation vial were done by autoradiographs of cylindrical vials made of various materials and results were compared to those obtained by direct measurements of the light distribution made by scanning the vial with a photomultiplier tube. Calculations were also carried out to study the light transmission in the vial and the optimal design of the reflector for a system with one photomultiplier tube. (Author)

  4. The Origins of Scintillator Non-Proportionality

    Science.gov (United States)

    Moses, W. W.; Bizarri, G. A.; Williams, R. T.; Payne, S. A.; Vasil'ev, A. N.; Singh, J.; Li, Q.; Grim, J. Q.; Choong, W.-S.

    2012-10-01

    Recent years have seen significant advances in both theoretically understanding and mathematically modeling the underlying causes of scintillator non-proportionality. The core cause is that the interaction of radiation with matter invariably leads to a non-uniform ionization density in the scintillator, coupled with the fact that the light yield depends on the ionization density. The mechanisms that lead to the luminescence dependence on ionization density are incompletely understood, but several important features have been identified, notably Auger-like processes (where two carriers of excitation interact with each other, causing one to de-excite non-radiatively), the inability of excitation carriers to recombine (caused either by trapping or physical separation), and the carrier mobility. This paper reviews the present understanding of the fundamental origins of scintillator non-proportionality, specifically the various theories that have been used to explain non-proportionality.

  5. The MICE scintillating-fibre tracker

    Energy Technology Data Exchange (ETDEWEB)

    Matsushita, T [Imperial College London (United Kingdom)], E-mail: T.Matsushita@imperial.ac.uk

    2008-06-15

    The international Muon Ionization Cooling Experiment (MICE) collaboration will carry out a systematic investigation of the ionization cooling of a muon beam. An ionization cooling channel is required to compress the phase-space volume occupied by the muon beam prior to acceleration in the baseline conceptual designs for both the Neutrino Factory and the Muon Collider. Muons entering and leaving the cooling channel will be measured in two solenoidal spectrometers, each of which is instrumented with a scintillating-fibre tracker. Each tracker is composed of five planar scintillating fibre stations, each station being composed of three planar layers of 350 micron scintillating fibres. The devices will be read out using the Visible Light Photon Counters (VLPCs) developed for use in the D0 experiment at the Tevatron. The design of the system will be presented along with the status of the tracker-construction project. The expected performance of prototypes of the full tracker will be summarised.

  6. Microfluidic Scintillation Detectors for High Energy Physics

    CERN Document Server

    Maoddi, Pietro; Mapelli, Alessandro

    This thesis deals with the development and study of microfluidic scintillation detectors, a technology of recent introduction for the detection of high energy particles. Most of the interest for such devices comes from the use of a liquid scintillator, which entails the possibility of changing the active material in the detector, leading to increased radiation resistance. A first part of the thesis focuses on the work performed in terms of design and modelling studies of novel prototype devices, hinting to new possibilities and applications. In this framework, the simulations performed to validate selected designs and the main technological choices made in view of their fabrication are addressed. The second part of this thesis deals with the microfabrication of several prototype devices. Two different materials were studied for the manufacturing of microfluidic scintillation detectors, namely the SU-8 photosensitive epoxy and monocrystalline silicon. For what concerns the former, an original fabrication appro...

  7. BC-454 boron-loaded plastic scintillator

    International Nuclear Information System (INIS)

    Bellian, J.G.

    1984-01-01

    Prototype samples of plastic scintillators containing up to 10% by weight of natural boron have been produced. The maximum size scintillators made to date are 28 mm dia. x 100 mm long. Rods containing up to 2% boron are now made routinely and work is progressing on higher concentrations. The plastics are clear and emit the same blue fluorescence as other common plastic scintillators. It is expected that rods up to 3'' dia. containing 5% boron will be produced during the next few months. BC-454 is particularly useful in neutron research, materials studies, some types of neutron dosimetry, and monitoring of medium to high energy neutrons in the presence of other types radiation. It combines attractive features that enhance its usefulness to the physics community

  8. Scintillation camera with second order resolution

    International Nuclear Information System (INIS)

    1975-01-01

    A scintillation camera is described for use in radioisotope imaging to determine the concentration of radionuclides in a two-dimensional area in which means is provided for second-order positional resolution. The phototubes which normally provide only a single order of resolution, are modified to provide second-order positional resolution of radiation within an object positioned for viewing by the scintillation camera. The phototubes are modified in that multiple anodes are provided to receive signals from the photocathode in a manner such that each anode is particularly responsive to photoemissions from a limited portion of the photocathode. Resolution of radioactive events appearing as an output of this scintillation camera is thereby improved

  9. Radiocarbon dating methods using benzene liquid scintillation

    International Nuclear Information System (INIS)

    Togashi, Shigeko; Matsumoto, Eiji

    1983-01-01

    The radiocarbon dating method using benzene liquid scintillation is reported in detail. The results of measurement of NBS oxalic acid agree with the recommended value, indicating that isotopic fractionation during benzene synthesis can be negligible. Ten samples which have been already measured by gas counter are dated by benzene liquid scintillation. There is no significant difference in age for the same sample between benzene liquid scintillation and gas counters. It is shown that quenching has to be corrected for the young sample. Memory effect in stainless steel reaction vessel can be removed by using an exchangeable inner vessel and by baking it in the air. Using this method, the oldest age that can be measured with 2.3 g carbon is 40,000 years B.P. (author)

  10. CRYSTALLIZATION IN MULTICOMPONENT GLASSES

    Energy Technology Data Exchange (ETDEWEB)

    KRUGER AA; HRMA PR

    2009-10-08

    In glass processing situations involving glass crystallization, various crystalline forms nucleate, grow, and dissolve, typically in a nonuniform temperature field of molten glass subjected to convection. Nuclear waste glasses are remarkable examples of multicomponent vitrified mixtures involving partial crystallization. In the glass melter, crystals form and dissolve during batch-to-glass conversion, melter processing, and product cooling. Crystals often agglomerate and sink, and they may settle at the melter bottom. Within the body of cooling glass, multiple phases crystallize in a non-uniform time-dependent temperature field. Self-organizing periodic distribution (the Liesegnang effect) is common. Various crystallization phenomena that occur in glass making are reviewed.

  11. Crystallization In Multicomponent Glasses

    International Nuclear Information System (INIS)

    Kruger, A.A.; Hrma, P.R.

    2009-01-01

    In glass processing situations involving glass crystallization, various crystalline forms nucleate, grow, and dissolve, typically in a nonuniform temperature field of molten glass subjected to convection. Nuclear waste glasses are remarkable examples of multicomponent vitrified mixtures involving partial crystallization. In the glass melter, crystals form and dissolve during batch-to-glass conversion, melter processing, and product cooling. Crystals often agglomerate and sink, and they may settle at the melter bottom. Within the body of cooling glass, multiple phases crystallize in a non-uniform time-dependent temperature field. Self-organizing periodic distribution (the Liesegnang effect) is common. Various crystallization phenomena that occur in glass making are reviewed.

  12. Time resolution measurements with an improved discriminator and conical scintillators

    International Nuclear Information System (INIS)

    McGervey, J.D.; Vogel, J.; Sen, P.; Knox, C.

    1977-01-01

    A new constant fraction discriminator with improved stability and walk characteristics is described. The discriminator was used with RCA C31024 photomultiplier tubes to test scintillators of conical and cylindrical shapes. Conical scintillators of 2.54 cm base diameter, 1.0 cm top diameter, and 2.54 cm height gave a fwhm of 155 ps for 60 Co gamma rays; larger conical scintillators gave an improvement of 10-15% in fwhm over cylindrical scintillators of equal volume. (Auth.)

  13. Applications of low level liquid scintillation counting

    International Nuclear Information System (INIS)

    Noakes, J.E.

    1983-01-01

    Low level liquid scintillation counting is reviewed in terms of its present use and capabilities for measuring low activity samples. New areas of application of the method are discussed with special interest directed to the food industry and environmental monitoring. Advantages offered in the use of a low background liquid scintillation counter for the nuclear power industry and nuclear navy are discussed. Attention is drawn to the need for commercial development of such instrumentation to enable wider use of the method. A user clientele is suggested as is the required technology to create such a counter

  14. Cosmic ray spectroscopy using plastic scintillator detector

    International Nuclear Information System (INIS)

    Rudra, Sharmili; Nandan, Akhilesh P.; Neog, Himangshu; Biswas, S.; Mohanty, B.; Mahapatra, S.; Samal, P.K.

    2014-01-01

    A simple and new technique has been developed using plastic scintillator detectors for cosmic ray spectroscopy without single channel analyzer (SCA) or multichannel analyzer (MCA). In this technique only a leading edge discriminator (LED) and a NIM scaler have been used. Plastic scintillator detectors has been used to measure the velocity of cosmic ray muons. Here the time difference has been measured from the Tektronix DPO 5054 digital phosphor oscilloscope with 500 MHz and 5 GS/s. The details of experimental technique, analysis procedure and experimental results are presented

  15. Near-infrared scintillation of liquid argon

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, T. [Fermilab; Escobar, C. O. [Campinas State U.; Lippincott, W. H. [Fermilab; Rubinov, P. [Fermilab

    2016-03-03

    Since the 1970s it has been known that noble gases scintillate in the near infrared (NIR) region of the spectrum (0.7 $\\mu$m < $\\lambda$; < 1.5$\\mu$m). More controversial has been the question of the NIR light yield for condensed noble gases. We first present the motivation for using the NIR scintillation in liquid argon detectors, then briefly review early as well as more recent efforts and finally show encouraging preliminary results of a test performed at Fermilab.

  16. Scintillation camera for high activity sources

    International Nuclear Information System (INIS)

    Arseneau, R.E.

    1978-01-01

    The invention described relates to a scintillation camera used for clinical medical diagnosis. Advanced recognition of many unacceptable pulses allows the scintillation camera to discard such pulses at an early stage in processing. This frees the camera to process a greater number of pulses of interest within a given period of time. Temporary buffer storage allows the camera to accommodate pulses received at a rate in excess of its maximum rated capability due to statistical fluctuations in the level of radioactivity of the radiation source measured. (U.K.)

  17. Pulse shape discrimination with scintillation detectors

    International Nuclear Information System (INIS)

    Winyard, R.A.

    A quantitative study of pulse shape discrimination with scintillation counters has been undertaken using a crossover timing technique. The scintillators investigated included experimental and commercial liquids and plastics in addition to inorganic phosphors. The versatility of the pulse shape discrimination system has been demonstrated by extending the measurements to investigate phoswiches and liquids loaded with radioactive materials and by its application to the suppression of unwanted backgrounds in delayed coincidence counting for the measurement of nuclear half-lives and isotope identification have been carried out. (author)

  18. Effects of radiation on scintillating fiber performance

    International Nuclear Information System (INIS)

    Bauer, M.L.; Cohn, H.; Efremenko, Yu.; Gordeev, A.; Kamyshkov, Yu.; Onopienko, D.; Savin, S.; Shmakov, K.; Tarkovsky, E.; Young, K.G.; Carey, R.; Rothman, M.; Sulak, L.; Worstell, W.; Parr, H.

    1992-01-01

    Continued rapid improvements in formulations for scintillating fibers require the ability to parameterize and predict effects of radiation on detector performance. Experimental techniques necessary to obtain needed information and calculational procedures used in performing predications for hadron scintillating fiber calorimetry in the Superconducting Supercollider environment are described. The experimental techniques involve control of the testing environment, consideration of dose rate effects, and other factors. These calculations involve the behavior of particle showers in the detector, expected levels of radiation, and parameterization of the radiation effects. A summary of significant work is also presented

  19. Effects of radiation on scintillating fiber performance

    International Nuclear Information System (INIS)

    Young, K.G.; Bauer, M.L.; Cohn, H.; Efremenko, Yu.; Gordeev, A.; Kamyshkov, Yu.; Onopienko, D.; Savin, S.; Shmakov, K.; Tarkovsky, E.; Carey, R.; Rothman, M.; Sulak, L.; Worstell, W.; Paar, H.

    1993-01-01

    Continued rapid improvements in formulations for scintillating fibers require the ability to parameterize and predict effects of radiation on detector performance. Experimental techniques necessary to obtain desired information and calculational procedures used in performing predictions for hadron scintillating fiber calorimetry in the Superconducting Supercollider environment are described. The experimental techniques involve control of the testing environment, consideration of dose rate effects, and other factors. The calculations involve the behavior of particle showers in the detector, expected levels of radiation, and parameterization of the radiation effects. A summary of significant work is also presented

  20. Luminescence and scintillation properties of rare-earth-doped LuF.sub.3./sub. scintillation crystals

    Czech Academy of Sciences Publication Activity Database

    Pejchal, Jan; Fukuda, K.; Kurosawa, S.; Yokota, Y.; Yoshikawa, A.

    2015-01-01

    Roč. 41, Mar SI (2015), s. 58-62 ISSN 0925-3467 Institutional support: RVO:68378271 Keywords : lutetium fluoride * scintillator * scintillator * VUV luminescence Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.183, year: 2015

  1. Recycling of Glass

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Damgaard, Anders

    2011-01-01

    Glass is used for many purposes, but in the waste system glass is predominantly found in terms of beverage and food containers with a relatively short lifetime before ending up in the waste. Furthermore there is a large amount of flat glass used in building materials which also ends up in the waste...... system; this glass though has a long lifetime before ending up in the waste. Altogether these product types add up to 82% of the production of the European glass industry (IPCC, 2001). Recycling of glass in terms of cleaning and refilling of bottles as well as the use of broken glass in the production...... of new glass containers is well established in the glass industry. This chapter describes briefly howglass is produced and howwaste glass is recycled in the industry. Quality requirements and use of recycled products are discussed, as are the resource and environmental issues of glass recycling....

  2. International Colloquium on Scattering and Scintillation in Radio Astronomy

    CERN Document Server

    Coles, W A; Rickett, B J; Bird, M K; Efimov, A I; Samoznaev, L N; Rudash, V K; Chashei, I V; Plettemeier, D; Spangler, S R; Tokarev, Y; Belov, Y; Boiko, G; Komrakov, G; Chau, J; Harmon, J; Sulzer, M; Kojima, M; Tokumaru, M; Fujiki, K; Janardhan, P; Jackson, B V; Hick, P P; Buffington, A; Olyak, M R; Fallows, R A; Nechaeva, M B; Gavrilenko, V G; Gorshenkov, Yu N; Alimov, V A; Molotov, I E; Pushkarev, A B; Shanks, R; Tuccari, G; Lotova, N A; Vladimirski, K V; Obridko, V N; Gubenko, V N; Andreev, V E; Stinebring, D R; Gwinn, C; Lovell, J E J; Jauncey, D L; Senkbeil, C; Shabala, S; Bignall, H E; MacQuart, J P; Kedziora-Chudczer, L; Smirnova, T V; Malofeev, V M; Malov, O I; Tyulbashev, S A; Jessner, A; Sieber, W; Wielebinski, R; Scattering and Scintillation in Radio Astronomy

    2006-01-01

    Topics of the Colloquium: a) Interplanetary scintillation b) Interstellar scintillation c) Modeling and physical origin of the interplanetary and the interstellar plasma turbulence d) Scintillation as a tool for investigation of radio sources e) Seeing through interplanetary and interstellar turbulent media Ppt-presentations are available on the Web-site: http://www.prao.ru/conf/Colloquium/main.html

  3. Upconverting nanoparticles for optimizing scintillator based detection systems

    Science.gov (United States)

    Kross, Brian; McKisson, John E; McKisson, John; Weisenberger, Andrew; Xi, Wenze; Zom, Carl

    2013-09-17

    An upconverting device for a scintillation detection system is provided. The detection system comprises a scintillator material, a sensor, a light transmission path between the scintillator material and the sensor, and a plurality of upconverting nanoparticles particles positioned in the light transmission path.

  4. New liquid scintillators for fiber-optic applications

    International Nuclear Information System (INIS)

    Lutz, S.S.; Franks, L.A.; Flournoy, J.M.; Lyons, P.B.

    1981-01-01

    New long-wavelength-emitting, high-speed, liquid scintillators have been developed and tailored specifically for plasma diagnostic experiments employing fiber optics. These scintillators offer significant advantages over commercially available plastic scintillators in terms of sensitivity and bandwidth. FWHM response times as fast as 350 ps have been measured. Emission spectra, time response data, and relative sensitivity information are presented

  5. Development of new Polysiloxane Based Liquid Scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Dalla Palma, M.; Quaranta, A. [Department of Industrial Engineering, University of Trento,Via Sommarive, 9, 38123 Trento (Italy); INFN, Laboratori Nazionali di Legnaro,Viale dell' Universita, 2, 35020 Legnaro - Padova (Italy); Gramegna, F.; Marchi, T.; Cinausero, M. [INFN, Laboratori Nazionali di Legnaro,Viale dell' Universita, 2, 35020 Legnaro - Padova (Italy); Carturan, S.; Collazuol, G.; Checchia, C. [INFN, Laboratori Nazionali di Legnaro,Viale dell' Universita, 2, 35020 Legnaro - Padova (Italy); Department of Physics and Astronomy, University of Padova, Via Marzolo, 8, 35131 Padova (Italy); Degerlier, M. [Department of Physics, Nevsehir Haci Bektas Veli University, Science and Art Faculty, 50300 Nevsehir (Turkey)

    2015-07-01

    In the last decade, attention toward neutron detection has been growing in the scientific community, driven by new requirements in different fields of application ranging from homeland security to medical and material analysis, from research physics, to nuclear energy production. So far neutron detection, with particular attention to fast neutrons, has been mainly based on organic liquid scintillators, owing to their good efficiency and pulse shape discrimination (PSD) capability. Most of these liquids have however some main drawbacks given by toxicity, flammability, volatility and sensitivity to dissolved oxygen that limits the duration and the quality of their performances with worse handiness and increased costs. Phenyl-substituted polysiloxanes could address most of these issues, being characterized by low toxicity, low volatility and low flammability. Their optical properties can be tailored by changing the phenyl distribution and concentration thus allowing to increase the solubility of organic dyes, to modify the fluorescence spectra and to vary the refractive index of the medium. Furthermore, polysiloxanes have been recently exploited for the production of plastic scintillators with very good chemical and thermal stability and very good radiation hardness and the development of polysiloxane liquid scintillators could allow to combine these interesting properties with the supremacy of liquid scintillators as regarding PSD over plastics. For these reasons, the properties of several phenyl-substituted polysiloxane with different phenyl amounts and different viscosities have been investigated, with particular attention to the scintillation response and the pulse shape discrimination capability, and the results of the investigation are reported in this work. More in details, the scintillation light yield towards gamma rays ({sup 60}Co and {sup 137}Cs) of several polysiloxane liquids has been analyzed and compared with the light yield of a commercial non

  6. New procedure for the determination of radium in water by extraction of radon and application of integral counting with a liquid scintillation counter

    Energy Technology Data Exchange (ETDEWEB)

    Horiuchi, K [Tokyo Metropolitan Univ. (Japan). Faculty of Science; Murakami, Y [Kitasato Univ. (Japan). School of Hygienic Sciences

    1981-05-01

    A new Ra determination method is devised, storing the sample in a glass bottle with a Teflon stopper in an upside-down position, extracting Rn with liquid scintillator solution and combining integral counting with a liquid scintillation counter. This method realizes a high sensitivity of 5 x 10/sup -13/ Ci Ra, eliminates the tedious procedure of transferring Rn through the vacuum system to the detector and makes possible repeated determinations of Ra on the same sample without any further chemical treatment except extraction.

  7. Set of counts by scintillations for atmospheric samplings; Ensemble de comptages par scintillations pour prelevements atmospheriques

    Energy Technology Data Exchange (ETDEWEB)

    Appriou, D.; Doury, A.

    1962-07-01

    The author reports the development of a scintillation-based counting assembly with the following characteristics: a photo-multiplier with a wide photo-cathode, a thin plastic scintillator for the counting of beta + alpha (and possibility of mounting an alpha scintillator), a relatively small own motion with respect to activities to be counted, a weakly varying efficiency. The authors discuss the counting objective, present equipment tests (counter, proportional amplifier and pre-amplifier, input drawer). They describe the apparatus operation, discuss the selection of scintillators, report the study of the own movement (electron-based background noise, total background noise, background noise reduction), discuss counts (influence of the external source, sensitivity to alpha radiations, counting homogeneity, minimum detectable activity) and efficiencies.

  8. Scintillating fiber detector performance, detector geometries, trigger, and electronics issues for scintillating fiber tracking

    International Nuclear Information System (INIS)

    Baumbaugh, A.E.

    1994-06-01

    Scintillating Fiber tracking technology has made great advances and has demonstrated great potential for high speed charged particle tracking and triggering. The small detector sizes and fast scintillation fluors available make them very promising for use at high luminosity experiments at today's and tomorrow's colliding and fixed target experiments where high rate capability is essential. This talk will discuss the current state of Scintillating fiber performance and current Visual Light Photon Counter (VLPC) characteristics. The primary topic will be some of the system design and integration issues which should be considered by anyone attempting to design a scintillating fiber tracking system which includes a high speed tracking trigger. Design. constraints placed upon the detector system by the electronics and mechanical sub-systems will be discussed. Seemingly simple and unrelated decisions can have far reaching effects on overall system performance. SDC and DO example system designs will be discussed

  9. General considerations for SSC scintillator calorimeters (For the scintillator general subgroup)

    International Nuclear Information System (INIS)

    Nodulman, L.

    1989-01-01

    The Scintillator Calorimetry group divided into three subgroups: a conventional uranium and plate design ala ZEUS, fiber design, and a group on general considerations. The considerations of the third group are reported here on geometrical and technical issues. 1 fig

  10. Scintillator device using a combined organic-inorganic scintillator as dose ratemeter

    International Nuclear Information System (INIS)

    Kolb, W.; Lauterbach, U.

    1974-01-01

    The dose ratemeter independent of energy in the energy region 17 keV to 3 MeV consists of an organic and an inorganic scintillator. The organic scintillation material of an anthracene monocrystal is surrounded by ZnS surface coating. The coating thickness of the inorganic scintillator ZnS is measured in such a manner for gamma and X-radiation below 100 keV that the light produced due to the incident radiation compensates for the decrease of light produced in the organic scintillator. The whole energy and dose rate region of interest for radiation protection can thus be measured with a detector volume of 135 cm 3 . (DG) [de

  11. Measurement of tritium with plastic scintillator surface improvement with plasma treatment

    Energy Technology Data Exchange (ETDEWEB)

    Yoshihara, Y.; Furuta, E. [Ochanomizu University, Bunkyo-ku, Tokyo (Japan); Ohyama, R.I.; Yokota, S. [Tokai University, Hiratsuka-shi, Kanagawa (Japan); Kato, Y.; Yoshimura, T.; Ogiwara, K. [Hitachi Aloka Medical, Mure, Mitaka-shi, Tokyo (Japan)

    2015-03-15

    Tritium is usually measured by using a liquid scintillation counter. However, liquid scintillator used for measurement will become radioactive waste fluid. To solve this issue, we have developed a method of measuring tritium samples with plasma-treated plastic scintillator (PS)sheets (Plasma method). The radioactive sample is held between 2 PS sheets and the whole is enclosed in a a low-potassium glass vial. With the Plasma method of 2-min plasma treatment, we have obtained measurement efficiency of 48 ± 2 % for 2 min measurement of tritium except for tritiated water. The plasma treatment makes the PS surface rough and hydrophilic which contributes to improve the contact between tritium and PS. On the other hand, it needed almost 6 hours to obtain constant measurement efficiency. The reason was that the dry-up handling in the vial needed longer time to vaporize H{sub 2}O molecules than in the air. We tried putting silica gel beads into vials to remove H{sub 2}O molecules from PS sheet surface quickly. The silica gel beads worked well and we got constant measurement efficiency within 1-3 hours. Also, we tried using other kinds of PS treated with plasma to obtain higher measurement efficiencies of tritium samples.

  12. System and method of liquid scintillation counting

    International Nuclear Information System (INIS)

    Rapkin, E.

    1977-01-01

    A method of liquid scintillation counting utilizing a combustion step to overcome quenching effects comprises novel features of automatic sequential introduction of samples into a combustion zone and automatic sequential collection and delivery of combustion products into a counting zone. 37 claims, 13 figures

  13. Waveshifting fiber readout of lanthanum halide scintillators

    International Nuclear Information System (INIS)

    Case, G.L.; Cherry, M.L.; Stacy, J.G.

    2006-01-01

    Newly developed high-light-yield inorganic scintillators coupled to waveshifting optical fibers provide the capability of efficient X-ray detection and millimeter scale position resolution suitable for high-energy cosmic ray instruments, hard X-ray/gamma ray astronomy telescopes and applications to national security. The CASTER design for NASA's proposed Black Hole Finder Probe mission, in particular, calls for a 6-8 m 2 hard X-ray coded aperture imaging telescope operating in the 20-600 keV energy band, putting significant constraints on cost and readout complexity. The development of new inorganic scintillator materials (e.g., cerium-doped LaBr 3 and LaCl 3 ) provides improved energy resolution and timing performance that is well suited to the requirements for national security and astrophysics applications. LaBr 3 or LaCl 3 detector arrays coupled with waveshifting fiber optic readout represent a significant advance in the performance capabilities of scintillator-based gamma cameras and provide the potential for a feasible approach to affordable, large area, extremely sensitive detectors. We describe some of the applications and present laboratory test results demonstrating the expected scintillator performance

  14. Semiconductor high-energy radiation scintillation detector

    International Nuclear Information System (INIS)

    Kastalsky, A.; Luryi, S.; Spivak, B.

    2006-01-01

    We propose a new scintillation-type detector in which high-energy radiation generates electron-hole pairs in a direct-gap semiconductor material that subsequently recombine producing infrared light to be registered by a photo-detector. The key issue is how to make the semiconductor essentially transparent to its own infrared light, so that photons generated deep inside the semiconductor could reach its surface without tangible attenuation. We discuss two ways to accomplish this, one based on doping the semiconductor with shallow impurities of one polarity type, preferably donors, the other by heterostructure bandgap engineering. The proposed semiconductor scintillator combines the best properties of currently existing radiation detectors and can be used for both simple radiation monitoring, like a Geiger counter, and for high-resolution spectrography of the high-energy radiation. An important advantage of the proposed detector is its fast response time, about 1 ns, essentially limited only by the recombination time of minority carriers. Notably, the fast response comes without any degradation in brightness. When the scintillator is implemented in a qualified semiconductor material (such as InP or GaAs), the photo-detector and associated circuits can be epitaxially integrated on the scintillator slab and the structure can be stacked-up to achieve virtually any desired absorption capability

  15. Neutron spectrometer using NE218 liquid scintillator

    International Nuclear Information System (INIS)

    Dance, J.B.; Francois, P.E.

    1976-01-01

    A neutron spectrometer has been constructed using NE218 liquid scintillator. Discrimination against electron-gamma events was obtained usng a charge-comparison pulse shape discrimination system. The resolution obtained was about 0.25 MeV F.W.H.M. at 2.0 MeV

  16. Scintillating fibre (SciFi) tracker

    CERN Multimedia

    Caraban Gonzalez, Noemi

    2017-01-01

    128 modules – containing 11 000 km of scintillating fibres – will make up the new SciFi tracker, which will replace the outer and inner trackers of the LHCb detector as part of the experiment’s major upgrade during Long Shutdown 2 (LS2)

  17. Neutron energy response measurement of scintillation detectors

    International Nuclear Information System (INIS)

    Yang Hongqiong; Peng Taiping; Yang Jianlun; Tang Zhengyuan; Yang Gaozhao; Li Linbo; Hu Mengchun; Wang Zhentong; Zhang Jianhua; Li Zhongbao; Wang Lizong

    2004-01-01

    Neutron sensitivities of detectors composed of plastic scintillator ST401, ST1422, ST1423 and phyotomultiplier tube in primary energy range of fission neutron are calibrated by direct current. The energy response curve of the detectors is obtained in this experiment. The experimental result has been compared with the theoretical calculation and they are in agreement within measuring uncertainty. (authors)

  18. Homogeneous scintillating LKr/Xe calorimeters

    International Nuclear Information System (INIS)

    Chen, M.; Mullins, M.; Pelly, D.; Shotkin, S.; Sumorok, K.; Akyuz, D.; Chen, E.; Gaudreau, M.P.J.; Bolozdynya, A.; Tchernyshev, V.; Goritchev, P.; Khovansky, V.; Koutchenkov, A.; Kovalenko, A.; Lebedenko, V.; Vinogradov, V.; Gusev, L.; Sheinkman, V.; Krasnokutsky, R.N.; Shuvalov, R.S.; Fedyakin, N.N.; Sushkov, V.; Akopyan, M.; Doke, T.; Kikuchi, J.; Hitachi, A.; Kashiwagi, T.; Masuda, K.; Shibamura, E.; Ishida, N.; Sugimoto, S.

    1993-01-01

    Recent R and D work on full length scintillating homogeneous liquid xenon/krypton (LXe/Kr) cells has established the essential properties for precision EM calorimeters: In-situ calibration using α's, radiation hardness as well as the uniformity required for δE/E≅0.5% for e/γ's above 50 GeV. (orig.)

  19. Fluorescent compounds for plastic scintillation applications

    International Nuclear Information System (INIS)

    Pla-Dalmau, A.; Bross, A.D.

    1994-04-01

    Several 2-(2'-hydroxyphenyl)benzothiazole, -benzoxazole, and -benzimidazole derivatives have been prepared. Transmittance, fluorescence, light yield, and decay time characteristics of these compounds have been studied in a polystyrene matrix and evaluated for use in plastic scintillation detectors. Radiation damage studies utilizing a 60 C source have also been performed

  20. The Scintillator Tile Hadronic Calorimeter Prototype

    International Nuclear Information System (INIS)

    Rusinov, V.

    2006-01-01

    A high granularity scintillator hadronic calorimeter prototype is described. The calorimeter is based on a novel photodetector - Silicon Photo-Multiplier (SiPM). The main parameters of SiPM are discussed as well as readout cell construction and optimization. The experience with a small prototype production and testing is described. A new 8 k channel prototype is being manufactured now

  1. Light pulse shapes from plastic scintillators

    International Nuclear Information System (INIS)

    Moszynski, M.; Bengtson, B.

    1977-01-01

    A detailed study of the light pulse shape from the binary NE 111 and the ternary Pilot U, Naton 136, KL 236, NE 102A, NE 104 and NE 110 plastic scintillators was performed by the single photon method using XP 1021 and C 31024 photomultipliers. The analysis of the shape of the light pulses determined experimentally for several samples of different dimensions gave the following conclusions. The original light pulse shape from the binary NE 111 scintillator, as measured with a 5 mm thick polished sample is described analytically by the convolution integral of a Gaussian and an exponential function. The Gaussian function may reflect a deexcitation of several higher levels of the solvent molecules excited by nuclear particles preceding an intermolecular energy transfer in the scintillator. It may introduce a rather important limitation of the speed of plastic scintillators as the standard deviation of the Gaussian function is equal to 0.2 ns. The light pulse shape from the ternary plastics is described by the convolution integral of a Gaussian and two exponential functions. The Gaussian function presents the rate of energy transfer from nuclear particles to the primary solute as in the binary plastics. The exponential functions describe the energy transfer from the primary solute to the wavelength shifter and the final emission of the light. (Auth.)

  2. Liquid scintillation counting (LSC) - an overview

    International Nuclear Information System (INIS)

    Ravi, S.; Mathew, K.M.

    2005-01-01

    In Liquid Scintillation Counting, the amount of light produced is proportional to the amount of radiation present in the sample and the energy of the light produced is proportional to the energy of the radiation that is present in the sample. This makes LSC a very convenient tool to measure radioactivity

  3. Scintillation camera for high activity sources

    International Nuclear Information System (INIS)

    Arseneau, R.E.

    1976-01-01

    A scintillation camera is provided with electrical components which expand the intrinsic maximum rate of acceptance for processing of pulses emanating from detected radioactive events. Buffer storage is provided to accommodate temporary increases in the level of radioactivity. An early provisional determination of acceptability of pulses allows many unacceptable pulses to be discarded at an early stage

  4. Luminescence and energy transfer in Garnet Scintillators

    NARCIS (Netherlands)

    Ogiegło, J.M.

    2012-01-01

    The thesis is focused on development and fundamental understanding of scintillators that play a central role in the field of medical imaging. These materials convert high energy, gamma or X-ray, radiation into visible light that is then used to create a detailed image of the patient’s body. The

  5. Basic processes and scintillator and semiconductor detectors

    International Nuclear Information System (INIS)

    Bourgeois, C.

    1994-01-01

    In the following course, the interaction of heavy charged particles, electrons and Γ with matter is represented. Two types of detectors are studied, organic and inorganic scintillators and semiconductors. The signal formation is analysed. (author). 13 refs., 48 figs., 5 tabs

  6. A mobile antineutrino detector with plastic scintillators

    International Nuclear Information System (INIS)

    Kuroda, Y.; Oguri, S.; Kato, Y.; Nakata, R.; Inoue, Y.; Ito, C.; Minowa, M.

    2012-01-01

    We propose a new type segmented antineutrino detector made of plastic scintillators for the nuclear safeguard application. A small prototype was built and tested to measure background events. A satisfactory unmanned field operation of the detector system was demonstrated. Besides, a detailed Monte Carlo simulation code was developed to estimate the antineutrino detection efficiency of the detector.

  7. Determining random counts in liquid scintillation counting

    International Nuclear Information System (INIS)

    Horrocks, D.L.

    1979-01-01

    During measurements involving coincidence counting techniques, errors can arise due to the detection of chance or random coincidences in the multiple detectors used. A method and the electronic circuits necessary are here described for eliminating this source of error in liquid scintillation detectors used in coincidence counting. (UK)

  8. Thallium bromide photodetectors for scintillation detection

    CERN Document Server

    Hitomi, K; Shoji, T; Hiratate, Y; Ishibashi, H; Ishii, M

    2000-01-01

    A wide bandgap compound semiconductor, TlBr, has been investigated as a blue sensitive photodetector material for scintillation detection. The TlBr photodetectors have been fabricated from the TlBr crystals grown by the TMZ method using materials purified by many pass zone refining. The performance of the photodetectors has been evaluated by measuring their leakage current, quantum efficiency, spatial uniformity, direct X-ray detection and scintillation detection characteristics. The photodetectors have shown high quantum efficiency for the blue wavelength region and high spatial uniformity for their optical response. In addition, good direct X-ray detection characteristics with an energy resolution of 4.5 keV FWHM for 22 keV X-rays from a sup 1 sup 0 sup 9 Cd radioactive source have been obtained. Detection of blue scintillation from GSO and LSO scintillators irradiated with a sup 2 sup 2 Na radioactive source has been done successfully by using the photodetectors at room temperature. A clear full-energy pea...

  9. Testing of the scintillation sandwich prototype

    International Nuclear Information System (INIS)

    Vashkevich, V.

    1995-06-01

    The 3 m 2 prototype of the surface detector using optical fiber readout was completely prepared for testing measurements in February 1995 at Fermilab. Two 25 mm thick, 3 m 2 acrylic scintillation plates (1.2 x 2.5 m 2 ) are used for light collection in the upper (above the 25 mm steel plate) and lower (below the steel) counters of the sandwich. The light is collected with the help of 1 mm diameter wavelength shifter fiber loops 3 m long inserted in the grooves on the top surface of the scintillator, 3 fibers per groove. We used Kurary Y11, 200 ppm of shifter dye, and double clad fibers. 1.5 m of clear fibers spliced to each end of the shifter fiber transport the light to the phototube. Spacing between the grooves is 5 cm. The counter's edges were painted with BICRON (BC620) white reflective paint. The scintillation plates were wrapped with Dupont Tyvek. The glued bundle of fibers is connected to an EMI-9902KB 38 mm phototube through the simple light mixer bar. Used PM has a ''green extended'' rubidium bialkali photocathode. The report contains information on the testing of the scintillation sandwich

  10. Sample oxidation for liquid scintillation counting

    International Nuclear Information System (INIS)

    Kisieleski, W.E.; Buess, E.M.

    1976-01-01

    The general features of biological and medical investigations which are responsible for the demands such investigations place upon the design specifications of liquid scintillation counters and associated methodology are reviewed. Special emphasis is given to the oxidative technique for sample preparation

  11. A projective geometry lead fiber scintillator detector

    International Nuclear Information System (INIS)

    Paar, H.; Thomas, D.; Sivertz, M.; Ong, B.; Acosta, D.; Taylor, T.; Shreiner, B.

    1990-01-01

    The Superconducting Super Collider (SSC), presently under construction near Dallas, Texas requires highly sophisticated particle detectors. The energy and particle flux at the SSC are more than an order of magnitude higher than the highest machine located at the Fermi National Accelerator near Chicago. An important element of particle detectors for the SSC is the calorimeter. It measures a particle's energy by sampling its energy deposit in heavy material, such as (depleted) uranium or lead. The sampling medium must be interspersed with heavy absorber material. In the case of scintillating plastic, two methods are under consideration: plates and fibers. In the case of plates, a sandwich of scintillator plates and uranium plates is constructed. In the use of fibers (still in the prototype stage), 1 mm. diameter cylindrical scintillating fibers are inserted into grooves that are machined into lead layers. The layers are stacked and epoxied together to form the required geometrical shape of the detector. Lead and scintillating plastic sampling can meet the physics requirements of the detector. This has been shown in an R ampersand D program which is underway at the University of California at San Diego (UCSD), High Energy Physics Group. This R ampersand D is funded by the Department of Energy, High Energy Physics and SSC Divisions

  12. Experimental evidence of infrared scintillation in crystals

    CERN Document Server

    Belogurov, S; Carugno, Giovanni; Conti, E; Iannuzzi, D; Meneguzzo, Anna Teresa

    2000-01-01

    We present experimental results on infrared emission induced by protons in some solid-state samples. Infrared scintillation occurs in many crystals, with different yield values and time-response behaviours. A rough measurement of the emission wavelength of CsI(Tl) is also reported.

  13. Spin glasses

    International Nuclear Information System (INIS)

    Mookerjee, Abhijit

    1976-01-01

    ''Spin glasses'', are entire class of magnetic alloys of moderate dilution, in which the magnetic atoms are far enough apart to be unlike the pure metal, but close enough so that the indirect exchange energy between them (mediated by the s-d interaction between local moments and conduction electrons) dominates all other energies. Characteristic critical phenomena displayed such as freezing of spin orientation at 'Tsub(c)' and spreading of magnetic ordering, are pointed out. Anomalous behaviour, associated with these critical phenomena, as reflected in : (i) Moessbauer spectroscopy giving hyperfine splitting at Tsub(c), (ii) maxima in susceptibility and remanent magnetism, (iii) thermopower maxima and change in slope, (iv) Characteristic cusp in susceptibility and its removal by very small magnetic fields, and (v) conductivity-resistivity measurements, are discussed. Theoretical developments aimed at explaining these phenomena, in particular, the ideas from percolation and localisation theories, and the approach based on the gellations of polymers, are discussed. Finally, a new approach based on renormalisation group in disordered systems is also briefly mentioned. (K.B.)

  14. Perspectives on the future development of new scintillators

    International Nuclear Information System (INIS)

    Melcher, C.L.

    2005-01-01

    The search for new scintillators has become increasingly sophisticated and increasingly successful in recent years, driven to a large degree by the rapidly growing needs of medical imaging and high energy physics. Better understanding of the various scintillation mechanisms has led to innovative new materials for both gamma-ray and neutron detection, and the concept of scintillator design and engineering has emerged, whereby materials are optimized according to the scintillation properties needed by specific applications. Numerous promising candidates have been identified during the last few years, and several are currently being actively developed for commercial production. Economical crystal growth often represents a significant challenge in the practical application of new scintillation materials

  15. Comparison of multifrequency equatorial scintillation - American and Pacific sectors

    Science.gov (United States)

    Livingston, R. C.

    1980-08-01

    In this paper we examine the severity of radio wave amplitude scintillation measured at two stations near the equator but far separated in longitude: Kwajelein, Marshall Islands (167 E), and Ancon, Peru (-77 E). The data used are long-term observations of the Defense Nuclear Agency (DNA) Wideband satellite signal intensity at VHF, UHF, and L band frequencies. The seasonal behavior of the scintillation at the two stations is similar; each shows a broad 8- to 9-month disturbed season centered about local summer. There is short-term variability in the scintillation occurrence statistics but no clear equinoctial maxima. Little difference is observed in the occurrence or severity of L band scintillation at the two stations, although a systematic difference in the frequency dependence of the scintillation produces significantly stronger VHF and UHF scintillation at Ancon. The VHF and UHF latitudinal distributions of scintillation are asymmetric about the geomagnetic equator at both stations.

  16. WE-DE-BRA-04: A Cost-Effective Pixelated EPID Scintillator for Enhanced Contrast and DQE

    Energy Technology Data Exchange (ETDEWEB)

    Rottmann, J; Myronakis, M; Hu, Y; Berbeco, R [Brigham and Woman’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA (United States); Shedlock, D; Wang, A; Humber, D; Star-Lack, J [Varian Medical Systems, Palo Alto, CA (United States); Morf, D; Fueglistaller, R [Varian Medical Systems, Daettwil (Switzerland)

    2016-06-15

    Purpose: Beams-eye-view imaging applications such as real-time soft-tissue motion estimation and MV-CBCT are hindered by the inherently low image contrast of electronic portal imaging devices (EPID) currently in clinical use. We investigate a cost effective scintillating glass that provides substantially increased detective quantum efficiency (DQE) and contrast to noise ratio (CNR). Methods: A pixelated scintillator prototype was built from LKH-5 glass. The array is 12mm thick; 42.4×42.4cm2 wide and features 1.51mm pixel pitch with 20µm separation (glue+septa). The LKH-5 array was mounted on the active matrix flat panel imager (AMPFI) of an AS-1200 (Varian) with the GdO2S2:Tb removed. A second AS-1200 was utilized as reference detector. The prototype EPID was characterized in terms of CNR, modulation transfer function (MTF) and DQE. Additionally, the visibility of various fiducial markers typically used in the clinic as well as a realistic 3D-printed lung tumor model was assessed. All items were placed in a 12cm thick solid water phantom. CNR is estimated using a Las Vegas contrast phantom, presampled MTF is estimated using a slanted slit technique and the DQE is calculated from measured normalized noise power spectra (NPS) and the MTF. Results: DQE(0) for the LKH-5 prototype increased by a factor of 8× to about 10%, compared to the AS-1200 equipped with its standard GdO2S2:Tb scintillator. CNR increased by a factor of 5.3×. Due to the pixel size the MTF50 decreased by about 55% to 0.23lp/mm. The visibility of all fiducial markers as well as the tumor model were however markedly improved in comparison to an acquisition with the same parameters using the GdO2S2:Tb scintillator. Conclusion: LKH-5 scintillating glasses allow the cost effective construction of thick pixelated scintillators for portal imaging which can yield a substantial increase in DQE and CNR. Soft tissue and fiducial marker visibility was found to be markedly improved. The project was supported

  17. Electron traps and scintillation mechanism in YAlO3:Ce and LuAlO3:Ce scintillators

    International Nuclear Information System (INIS)

    Wojtowicz, A.J.; Glodo, J.; Drozdowski, W.; Przegietka, K.R.

    1998-01-01

    In this paper we present the results of thermoluminescence, isothermal decay and scintillation light yield measurements on two isostructural scintillator materials, YAlO 3 :Ce and LuAlO 3 :Ce. In addition to the variety of deep traps identified by thermoluminescence and isothermal decays, scintillation light yield experiments demonstrate the presence in both materials of a number of relatively shallow traps. While the deep traps may reduce the scintillation light yield, they do not influence the kinetics of the process. The shallow traps, on the other hand, by interfering with the process of radiative recombination of charge carriers via Ce 3+ ions, can strongly affect not only the yield of the scintillation process but its kinetics as well. The presence of shallow traps provides a consistent explanation for a number of poorly understood relationships between the two scintillator materials, including a higher room temperature scintillation light yield and longer scintillation decay time in YAlO 3 :Ce, and a longer scintillation rise time in LuAlO 3 :Ce. Theoretical analysis indicates that elimination of these traps would make the two materials nearly identical in scintillator performance. Although the specific identity of all traps remains elusive, the performance of both scintillator materials is now, in practical terms, fully understood. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  18. Calculations and measurements of the scintillator-to-water stopping power ratio of liquid scintillators for use in proton radiotherapy

    International Nuclear Information System (INIS)

    Scott Ingram, W.; Robertson, Daniel; Beddar, Sam

    2015-01-01

    Liquid scintillators are a promising detector for high-resolution three-dimensional proton therapy dosimetry. Because the scintillator comprises both the active volume of the detector and the phantom material, an ideal scintillator will exhibit water equivalence in its radiological properties. One of the most fundamental of these is the scintillator’s stopping power. The objective of this study was to compare calculations and measurements of scintillator-to-water stopping power ratios to evaluate the suitability of the liquid scintillators BC-531 and OptiPhase HiSafe 3 for proton dosimetry. We also measured the relative scintillation output of the two scintillators. Both calculations and measurements show that the linear stopping power of OptiPhase is significantly closer to water than that of BC-531. BC-531 has a somewhat higher scintillation output. OptiPhase can be mixed with water at high concentrations, which further improves its scintillator-to-water stopping power ratio. However, this causes the solution to become cloudy, which has a negative impact on the scintillation output and spatial resolution of the detector. OptiPhase is preferred over BC-531 for proton dosimetry because its density and scintillator-to-water stopping power ratio are more water equivalent

  19. lead glass brick

    CERN Multimedia

    When you look through the glass at a picture behind, the picture appears raised up because light is slowed down in the dense glass. It is this density (4.06 gcm-3) that makes lead glass attractive to physicists. The refractive index of the glass is 1.708 at 400nm (violet light), meaning that light travels in the glass at about 58% its normal speed. At CERN, the OPAL detector uses some 12000 blocks of glass like this to measure particle energies.

  20. Development of High-Resolution Scintillator Systems

    International Nuclear Information System (INIS)

    Larry A. Franks; Warnick J. Kernan

    2007-01-01

    Mercuric iodide (HgI2) is a well known material for the direct detection of gamma-rays; however, the largest volume achievable is limited by the thickness of the detector which needs to be a small fraction of the average trapping length for electrons. We report results of using HgI2 crystals to fabricate photocells used in the readout of scintillators. The optical spectral response and efficiency of these photocells were measured and will be reported. Nuclear response from an HgI2 photocell that was optically matched to a cerium-activated scintillator is presented and discussed. Further improvements can be expected by optimizing the transparent contact technology

  1. Plastic fiber scintillator response to fast neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Danly, C. R.; Sjue, S.; Wilde, C. H.; Merrill, F. E.; Haight, R. C. [Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (United States)

    2014-11-15

    The Neutron Imaging System at NIF uses an array of plastic scintillator fibers in conjunction with a time-gated imaging system to form an image of the neutron emission from the imploded capsule. By gating on neutrons that have scattered from the 14.1 MeV DT energy to lower energy ranges, an image of the dense, cold fuel around the hotspot is also obtained. An unmoderated spallation neutron beamline at the Weapons Neutron Research facility at Los Alamos was used in conjunction with a time-gated imaging system to measure the yield of a scintillating fiber array over several energy bands ranging from 1 to 15 MeV. The results and comparison to simulation are presented.

  2. Multifrequency techniques for studying interplanetary scintillations

    International Nuclear Information System (INIS)

    Woo, R.

    1975-01-01

    Rytov's approximation or the method of smooth perturbations is utilized to derive the temporal frequency spectra of the amplitude and phase fluctuations of multifrequency plane and spherical waves propagating in the interplanetary medium and solar corona. It is shown that multifrequency observations of interplanetary scintillations using either compact radio stars or spacecraft radio signals are desirable because the correlation of the multifrequency waves yields additional independent measurements of the solar wind and turbulence. Measurements of phase fluctuations are also desirable because, unlike amplitude fluctuations, they provide information on the full range of scale sizes for the electron density fluctuations. It is shown that a coherent dual-frequency radio system is particularly useful in making such measurements. In addition to providing a means for interpreting observations of multifrequency interplanetary scintillations, the analysis is also essential for estimating the effects of solar corona turbulence on the communications and navigation of a spacecraft whose line-of-sight path passes close to the Sun

  3. Scintillation detectors of Alborz-I experiment

    International Nuclear Information System (INIS)

    Pezeshkian, Yousef; Bahmanabadi, Mahmud; Abbasian Motlagh, Mehdi; Rezaie, Masume

    2015-01-01

    A new air shower experiment of the Alborz Observatory, Alborz-I, located at the Sharif University of Technology, Iran, will be constructed in near future. An area of about 30×40 m 2 will be covered by 20 plastic scintillation detectors (each with an area of 50×50 cm 2 ). A series of experiments have been performed to optimize the height of light enclosures of the detectors for this array and the results have been compared to an extended code simulation of these detectors. Operational parameters of the detector obtained by this code are cross checked by the Geant4 simulation. There is a good agreement between the extended-code and Geant4 simulations. We also present further discussions on the detector characteristics, which can be applicable for all scintillation detectors with a similar configuration

  4. Liquid scintillation alpha particle spectrometry. Progress report

    International Nuclear Information System (INIS)

    Bell, L.L.; Hakooz, S.A.; Johnson, L.O.; Nieschmidt, E.B.; Meikrantz, D.H.

    1979-12-01

    Objective to develop a technique whereby Pu may be put into solution, extracted by solvent extraction into a suitable extractive scintillant and subsequently counted. Presented here are results of attempts to separate beta and alpha activities through pulse shape discrimination. A qualitative discussion is given which yields alpha particle peak widths, resolution and response. The detection efficiency for alpha particles in a liquid scintillant is 100%. Present detection sensitivities of the equipment being used are: 4.5 x 10 -6 μCi (100 s), 1.2 x 10 -6 μCi (1000 s), and 4.0 x 10 -7 μCi (10,000 s) at the 3 sigma level. The detectability of a particular alpha-emitting species is strongly dependent upon the population of other species. The ability to discriminate depends upon the system resolution. 14 figures, 2 tables

  5. Central Tracking Detector Based on Scintillating Fibres

    CERN Multimedia

    2002-01-01

    Scintillating fibres form a reasonable compromise for central tracking detectors in terms of price, resolution, response time, occupancy and heat production. \\\\ \\\\ New fluorescents with large Stokes shifts have been produced, capable of working without wavelength shifters. Coherent multibundles have been developed to achieve high packing fractions. Small segments of tracker shell have been assembled and beam tests have confirmed expectations on spatial resolution. An opto-electronic delay line has been designed to delay the track patterns and enable coincidences with a first level trigger. Replacement of the conventional phosphor screen anode with a Si pixel chip is achieved. This tube is called ISPA-tube and has already been operated in beam tests with a scintillating fibres tracker. \\\\ \\\\ The aim of the proposal is to improve hit densities for small diameter fibres by increasing the fraction of trapped light, by reducing absorption and reflection losses, by reflecting light at the free fibre end, and by inc...

  6. Low level scintillation counting of 239Pu

    International Nuclear Information System (INIS)

    Fueloep, M.; Minarik, F.; Cierna, V.

    1984-01-01

    For measuring the content of 239 Pu in samples taken from the working or living environment, methods should be used which are sufficiently sensitive for determining activities of the order of 10 -3 Bq. It is useful to use liquid scintillators for reasons of their 4π geometry and the exclusion of kinetic energy losses of particles detected in the sample and on the path between the sample and the detector. The method of background discrimination according to pulse shape may be used to suppress gamma background in the area of alpha particle peaks to the level 2.5x10 -4 s -1 . The diagram is given of electronic circuits for shape discrimination. The scintillator used was a SLS-31 with a PBD activator, a POPOP spectrum shifter and a mixture of solvents: toluene, dioxane and methanol. The efficiency of 239 Pu alpha particle detection is estimated at 78% and may further be improved by improving shape discrimination. (M.D.)

  7. Scintillating Optical Fiber Imagers for biology

    International Nuclear Information System (INIS)

    Mastrippolito, R.

    1990-01-01

    S.O.F.I (Scintillating Optical Fiber Imager) is a detector developed to replace the autoradiographic films used in molecular biology for the location of radiolabelled ( 32 P) DNA molecules in blotting experiments. It analyses samples on a 25 x 25 cm 2 square area still 25 times faster than autoradiographic films, with a 1.75 and 3 mm resolution for two orthogonal directions. This device performs numerised images with a dynamic upper than 100 which allows the direct quantitation of the analysed samples. First, this thesis describes the S.O.F.I. development (Scintillating Optical Fibers, coding of these fibers and specific electronic for the treatment of the Multi-Anode Photo-Multiplier signals) and experiments made in collaboration with molecular biology laboratories. In a second place, we prove the feasibility of an automatic DNA sequencer issued from S.O.F.I [fr

  8. Plastic scintillator detector for pulsed flux measurements

    Science.gov (United States)

    Kadilin, V. V.; Kaplun, A. A.; Taraskin, A. A.

    2017-01-01

    A neutron detector, providing charged particle detection capability, has been designed. The main purpose of the detector is to measure pulsed fluxes of both charged particles and neutrons during scientific experiments. The detector consists of commonly used neutron-sensitive ZnS(Ag) / 6LiF scintillator screens wrapping a layer of polystyrene based scintillator (BC-454, EJ-254 or equivalent boron loaded plastic). This type of detector design is able to log a spatial distribution of events and may be scaled to any size. Different variations of the design were considered and modelled in specialized toolkits. The article presents a review of the detector design features as well as simulation results.

  9. Plastic scintillator detector for pulsed flux measurements

    International Nuclear Information System (INIS)

    Kadilin, V V; Kaplun, A A; Taraskin, A A

    2017-01-01

    A neutron detector, providing charged particle detection capability, has been designed. The main purpose of the detector is to measure pulsed fluxes of both charged particles and neutrons during scientific experiments. The detector consists of commonly used neutron-sensitive ZnS(Ag) / 6 LiF scintillator screens wrapping a layer of polystyrene based scintillator (BC-454, EJ-254 or equivalent boron loaded plastic). This type of detector design is able to log a spatial distribution of events and may be scaled to any size. Different variations of the design were considered and modelled in specialized toolkits. The article presents a review of the detector design features as well as simulation results. (paper)

  10. Calibration of the neutron scintillation counter threshold

    International Nuclear Information System (INIS)

    Noga, V.I.; Ranyuk, Yu.N.; Telegin, Yu.N.

    1978-01-01

    A method for calibrating the threshold of a neutron counter in the form of a 10x10x40 cm plastic scintillator is described. The method is based on the evaluation of the Compton boundary of γ-spectrum from the discrimination curve of counter loading. The results of calibration using 60 Co and 24 Na γ-sources are given. In order to eValuate the Compton edge rapidly, linear extrapolation of the linear part of the discrimination curve towards its intersection with the X axis is recommended. Special measurements have shown that the calibration results do not practically depend on the distance between the cathode of a photomultiplier and the place where collimated γ-radiation of the calibration source reaches the scintillator

  11. Transparent Ceramic Scintillator Fabrication, Properties and Applications

    International Nuclear Information System (INIS)

    Cherepy, N.J.; Kuntz, J.D.; Roberts, J.J.; Hurst, T.A.; Drury, O.B.; Sanner, R.D.; Tillotson, T.M.; Payne, S.A.

    2008-01-01

    Transparent ceramics offer an alternative to single crystals for scintillator applications such as gamma ray spectroscopy and radiography. We have developed a versatile, scaleable fabrication method, using Flame Spray Pyrolysis (FSP) to produce feedstock which is readily converted into phase-pure transparent ceramics. We measure integral light yields in excess of 80,000 Ph/MeV with Cerium-doped Garnets, and excellent optical quality. Avalanche photodiode readout of Garnets provides resolution near 6%. For radiography applications, Lutetium Oxide offers a high performance metric and is formable by ceramics processing. Scatter in transparent ceramics due to secondary phases is the principal limitation to optical quality, and afterglow issues that affect the scintillation performance are presently being addressed

  12. Scintillation {gamma} spectrography. Physical principles. Apparatus. Operation; Spectrographie {gamma} a scintillations. Principes physiques. Appareillage. Utilisation

    Energy Technology Data Exchange (ETDEWEB)

    Julliot, C [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    The scintillation detector forms the main part of the instrument used, the electronic unit presenting the results produced. After a brief description of the process of {gamma} photon absorption in the material, the particular case of NaI (T1), the scintillator used, is examined. The intensity of the scintillation caused by {gamma} ray absorption and the characteristics of the photomultiplier play a determining part in the energy resolution of the instrument. For the {gamma} recording spectrograph, we show to what extent the technique for using the electronic unit can modify the results. A detailed description is given of the activity measurement of a {gamma}-emitting radioelement by the spectrographic method. (author) [French] Dans l'appareillage utilise, le detecteur a scintillations constitue la piece maitresse, l'ensemble electronique presente les resultats issus du detecteur. Apres avoir brievement decrit le processus d'absorption des photons {gamma} dans la matiere, nous examinons le cas particulier du NaI(T1), le scintillateur utilise. L'intensite de la scintillation provoque par l'absorption des rayons {gamma} et les caracteristiques du photomultiplicateur jouent un role determinant dans la resolution en energie de l'appareil. Pour le spectrographe {gamma} enregistreur, nous indiquons dans quelle mesure la technique d'utilisation de l'ensemble electronique peut modifier les resultats. La-mesure de l'activite d'un radioelement emetteur {gamma} par spectrographie fait l'objet d'une description detaillee. (auteur)

  13. Dual-readout calorimetry with scintillating crystals

    International Nuclear Information System (INIS)

    Pinci, D

    2009-01-01

    The dual-readout approach, which allows an event-by-event measurement of the electromagnetic shower fraction, was originally demonstrated with the DREAM sampling calorimeter. This approach can be extended to homogeneous detectors like crystals if Cherenkov and scintillation light can be separated. In this paper we present several methods we developed for distinguishing the two components in PWO and BGO based calorimeters and the results obtained.

  14. Scintillation detectors in experiments on plasma accelerators

    International Nuclear Information System (INIS)

    Bystritskij, V.M.; Gerasimov, V.V.; Kublikov, R.V.; Parzhitskij, S.S.; Smirnov, V.S.; Wozniak, J.; Dudkin, G.N.; Nechaev, B.A.; Padalko, V.M.

    2005-01-01

    The gating circuits for photomultipliers of scintillation detectors operating in powerful pulsed electromagnetic and nuclear radiation fields are investigated. PMTs with the jalousie-type dynode system and with the linear dynode system are considered. The basic gating circuits of the photomultipliers involving active and resistor high-voltage dividers are given. The results of the investigations are important for experiments in which it is necessary to discriminate in time the preceding background radiation and the process of interest. (author)

  15. Improved Neutron Scintillators Based on Nanomaterials

    International Nuclear Information System (INIS)

    Friesel, Dennis

    2008-01-01

    The development work conducted in this SBIR has so far not supported the premise that using nano-particles in LiFZnS:Ag foils improves their transparency to 420 (or other frequency) light. This conclusion is based solely on the light absorption properties of LiFZnS foils fabricated from nano- and from micro-particles. Furthermore, even for the case of the Gd 2 O 3 foils, the transmission of 420 nm light gained by using nano-particles all but disappears as the foil thickness is increased beyond about 0.2 mm, a practical scintillator thickness. This was not immediately apparent from the preliminary study since no foils thicker than about 0.04 mm were produced. Initially it was believed that the failure to see an improvement by using nano-particles for the LiFZnS foils was caused by the clumping of the particles in Toluene due to the polarity of the ZnS particles. However, we found, much to our surprise, that nano-particle ZnS alone in polystyrene, and in Epoxy, had worse light transmission properties than the micro-particle foils for equivalent thickness and density foils. The neutron detection measurements, while disappointing, are attributable to our inability to procure or fabricate Bulk Doped ZnS nanoparticles. The cause for the failure of nano-particles to improve the scintillation light, and hence improved neutron detection efficiency, is a fundamental one of light scattering within the scintillator. A consequence of PartTec's documentation of this is that several concepts for the fabrication of improved 6 LiFZnS scintillators were formulated that will be the subject of a future SBIR submission.

  16. Homogeneous scintillating LKr/Xe calorimeters

    Energy Technology Data Exchange (ETDEWEB)

    Chen, M.; Mullins, M.; Pelly, D.; Shotkin, S.; Sumorok, K. (Lab. for Nuclear Science, MIT, Cambridge, MA (United States)); Akyuz, D.; Chen, E.; Gaudreau, M.P.J. (Plasma Fusion Center, MIT, Cambridge, MA (United States)); Bolozdynya, A.; Tchernyshev, V.; Goritchev, P.; Khovansky, V.; Koutchenkov, A.; Kovalenko, A.; Lebedenko, V.; Vinogradov, V.; Gusev, L.; Sheinkman, V. (ITEP, Moscow (Russia)); Krasnokutsky, R.N.; Shuvalov, R.S.; Fedyakin, N.N.; Sushkov, V. (IHEP, Serpukhov (Russia)); Akopyan, M. (Inst. for Nuclear Research, Moscow (Russia)); Doke, T.; Kikuchi, J.; Hitachi, A.; Kashiwagi, T. (Science and Eng. Res. Lab., Waseda Univ., Tokyo (Japan)); Masuda, K.; Shibamura, E. (Saitama Coll. of Health (Japan)); Ishida, N. (Seikei Univ. (Japan)); Sugimoto, S. (INS, Univ. Tokyo (Japan))

    1993-03-20

    Recent R and D work on full length scintillating homogeneous liquid xenon/krypton (LXe/Kr) cells has established the essential properties for precision EM calorimeters: In-situ calibration using [alpha]'s, radiation hardness as well as the uniformity required for [delta]E/E[approx equal]0.5% for e/[gamma]'s above 50 GeV. (orig.).

  17. Interaction probability value calculi for some scintillators

    International Nuclear Information System (INIS)

    Garcia-Torano Martinez, E.; Grau Malonda, A.

    1989-01-01

    Interaction probabilities for 17 gamma-ray energies between 1 and 1.000 KeV have been computed and tabulated. The tables may be applied to the case of cylindrical vials with radius 1,25 cm and volumes 5, 10 and 15 ml. Toluene, Toluene/Alcohol, Dioxane-Naftalen, PCS, INSTAGEL and HISAFE II scintillators are considered. Graphical results for 10 ml are also given. (Author) 11 refs

  18. Nanophosphor composite scintillators comprising a polymer matrix

    Science.gov (United States)

    Muenchausen, Ross Edward; Mckigney, Edward Allen; Gilbertson, Robert David

    2010-11-16

    An improved nanophosphor composite comprises surface modified nanophosphor particles in a solid matrix. The nanophosphor particle surface is modified with an organic ligand, or by covalently bonding a polymeric or polymeric precursor material. The surface modified nanophosphor particle is essentially charge neutral, thereby preventing agglomeration of the nanophosphor particles during formation of the composite material. The improved nanophosphor composite may be used in any conventional scintillator application, including in a radiation detector.

  19. Luminescence and energy transfer in Garnet Scintillators

    OpenAIRE

    Ogiegło, J.M.

    2012-01-01

    The thesis is focused on development and fundamental understanding of scintillators that play a central role in the field of medical imaging. These materials convert high energy, gamma or X-ray, radiation into visible light that is then used to create a detailed image of the patient’s body. The power of such imaging techniques as diagnostic medical tools is hard to overestimate.

  20. Solid state scintillators for gamma spectrometry

    International Nuclear Information System (INIS)

    La Mela, G.; Torrisi, M.

    1991-01-01

    Using different scintillator crystals, measurements of energy resolution and detection efficiency have been performed to detect gamma rays of energy ranging between 500 en 1550 KeV. This investigation is devoted to characterize the best systems to detect photons coming from positron annihilation processes, such as a PET apparatus where the medical image is the final aim of the investigation, and gamma emission from radioisotopes of biomedical interest

  1. Liquid scintillator calorimetry for the LHC

    International Nuclear Information System (INIS)

    Artamonov, A.; Buontempo, S.; Epstein, V.; Ereditato, A.; Fiorillo, G.; Garufi, F.; Golovkin, S.; Gorbunov, P.; Jemanov, V.; Khovansky, V.; Kruchinin, S.; Maslennikov, A.; Medvedkov, A.; Vasilchenko, V.; Zaitsev, V.; Zuckerman, I.

    1995-01-01

    We report on the beam tests of full scale liquid scintillator modules designed for a very forward calorimeter for an experiment at the CERN Large Hadron Collider (LHC). Tests were performed in the electron beams of the SPS at CERN within the 20 and 150 GeV energy range. The response as a function of the beam impact point and incidence angle was measured. (orig.)

  2. Chloride, bromide and iodide scintillators with europium

    Science.gov (United States)

    Zhuravleva, Mariya; Yang, Kan

    2016-09-27

    A halide scintillator material is disclosed where the halide may comprise chloride, bromide or iodide. The material is single-crystalline and has a composition of the general formula ABX.sub.3 where A is an alkali, B is an alkali earth and X is a halide which general composition was investigated. In particular, crystals of the formula ACa.sub.1-yEu.sub.yI.sub.3 where A=K, Rb and Cs were formed as well as crystals of the formula CsA.sub.1-yEu.sub.yX.sub.3 (where A=Ca, Sr, Ba, or a combination thereof and X=Cl, Br or I or a combination thereof) with divalent Europium doping where 0.ltoreq.y.ltoreq.1, and more particularly Eu doping has been studied at one to ten mol %. The disclosed scintillator materials are suitable for making scintillation detectors used in applications such as medical imaging and homeland security.

  3. Scintillation counter with MRS APD light readout

    International Nuclear Information System (INIS)

    Akindinov, A.; Bondarenko, G.; Golovin, V.; Grigoriev, E.; Grishuk, Yu.; Mal'kevich, D.; Martemiyanov, A.; Ryabinin, M.; Smirnitskiy, A.; Voloshin, K.

    2005-01-01

    START, a high-efficiency and low-noise scintillation detector for ionizing particles, was developed for the purpose of creating a high-granular system for triggering cosmic muons. Scintillation light in START is detected by MRS APDs (Avalanche Photo-Diodes with Metal-Resistance-Semiconductor Structure), operated in the Geiger mode, which have 1mm 2 sensitive areas. START is assembled from a 15x15x1cm 3 scintillating plastic plate, two MRS APDs and two pieces of wavelength-shifting optical fiber stacked in circular coils inside the plastic. The front-end electronic card is mounted directly on the detector. Tests with START have confirmed its operational consistency, over 99% efficiency of MIP registration and good homogeneity. START demonstrates a low intrinsic noise of about 10 -2 Hz. If these detectors are to be mass-produced, the cost of a mosaic array of STARTs is estimated at a moderate level of 2-3kUSD/m 2

  4. Pulse height model for deuterated scintillation detectors

    International Nuclear Information System (INIS)

    Wang, Haitang; Enqvist, Andreas

    2015-01-01

    An analytical model of light pulse height distribution for finite deuterated scintillation detectors is created using the impulse approximation. Particularly, the energy distribution of a scattered neutron is calculated based on an existing collision probability scheme for general cylindrical shaped detectors considering double differential cross-sections. The light pulse height distribution is analytically and numerically calculated by convoluting collision sequences with the light output function for an EJ-315 detector from our measurements completed at Ohio University. The model provides a good description of collision histories capturing transferred neutron energy in deuterium-based scintillation materials. The resulting light pulse height distribution details pulse compositions and their corresponding contributions. It shows that probabilities of neutron collision with carbon and deuterium nuclei are comparable, however the light pulse amplitude due to collisions with carbon nuclei is small and mainly located at the lower region of the light pulse distribution axis. The model can explore those neutron interaction events that generate pulses near or below a threshold that would be imposed in measurements. A comparison is made between the light pulse height distributions given by the analytical model and measurements. It reveals a significant probability of a neutron generating a small light pulse due to collisions with carbon nuclei when compared to larger light pulse generated by collisions involving deuterium nuclei. This model is beneficial to understand responses of scintillation materials and pulse compositions, as well as nuclei information extraction from recorded pulses.

  5. Boron-Loaded Silicone Rubber Scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Bell, Z.W.; Maya, L.; Brown, G.M.; Sloop, F.V.Jr

    2003-05-12

    Silicone rubber received attention as an alternative to polyvinyltoluene in applications in which the scintillator is exposed to high doses because of the increased resistance of the rubber to the formation of blue-absorbing color centers. Work by Bowen, et al., and Harmon, et al., demonstrated their properties under gamma/x-ray irradiation, and Bell, et al. have shown their response to thermal neutrons. This last work, however, provided an example of a silicone in which both the boron and the scintillator were contained in the rubber as solutes, a formulation which led to the precipitation of solids and sublimation of the boron component. In the present work we describe a scintillator in which the boron is chemically bonded to the siloxane and so avoids the problem of precipitation and loss of boron to sublimation. Material containing up to 18% boron, by weight, was prepared, mounted on photomultipliers, and exposed to both neutron and gamma fluxes. Pulse height spectra showing the neutron and photon response were obtained, and although the light output was found to be much poorer than from samples in which boron was dissolved, the higher boron concentrations enabled essentially 100% neutron absorption in only a few millimeters' thickness of rubber.

  6. New scintillating crystals for PET scanners

    CERN Document Server

    Lecoq, P

    2002-01-01

    Systematic R&D on basic mechanism in inorganic scintillators, initiated by the Crystal Clear Collaboration at CERN 10 years ago, has contributed not to a small amount, to the development of new materials for a new generation of medical imaging devices with increased resolution and sensitivity. The first important requirement for a scintillator to be used in medical imaging devices is the stopping power for the given energy range of X and gamma rays to be considered, and more precisely the conversion efficiency. A high light yield is also mandatory to improve the energy resolution, which is essentially limited by the photostatistics and the electronic noise at these energies. A short scintillation decay time allows to reduce the dead time and therefore to increase the limiting counting rate. When all these requirements are fulfilled the sensitivity and image contrast are increased for a given patient dose, or the dose can be reduced. Examples of new materials under development by the Crystal Clear Collabor...

  7. Scintillating fiber detection development for the SSC

    International Nuclear Information System (INIS)

    Ruchti, R.

    1993-01-01

    SSC Detector Program at Notre Dame has been concentrating on the development of scintillating fiber detectors for tracking applications. Initial work has focused on the development of new scintillation materials for micro-tracking and central tracking detectors based on organic plastics and liquids, This effort has included studies of solvents, solutes and waveguides. Techniques capable of providing the detection of single photons from fibers, are also being developed, leading to a collaboration with Rockwell, UCLA, and UTexas-Dallas groups on the development and application of the Solid State Photomultiplier (SSPM). This initial collaboration has been strengthened and expanded to the formation of a larger collaboration whose goal is to develop a fiber tracking subsystem for SSC, incorporating scintillating fibers and solid state photodetectors. The major subsystem proposal submitted to SSCL by this new collaboration, known at the Fiber Tracking Group (FTG), has been approved and funding is being put in place. The collaboration consists of 12 institutions and Notre Dame is a spokesman group

  8. Composition for use in scintillator systems

    International Nuclear Information System (INIS)

    Tarkkanen, V.

    1976-01-01

    Reference is made to compositions for liquid scintillation counting of aqueous radioactive samples. A composition is described that reduces chemiluminescence on the addition of an alkaline material. Many common sample materials, for example body fluids, are inherently alkaline, whilst samples such as animal tissues are often dissolved in alkaline media. Another problem is water miscibility, and the object is to provide a scintillation counting composition that, when mixed with an aqueous sample, produces a single phase low viscosity mixture over a wide range of water contents and temperatures. The composition described includes a major amount of an aromatic hydrocarbon solvent, a minor amount of an ethoxylated alkyl phenol surfactant, a scintillation solute, an amount of a substituted ethoxylated carboxylic acid sufficient to reduce chemiluminescence, and an amount of a tertiary amine salt or a quaternary ammonium salt of the substituted ethoxylated carboxylic acid sufficient to enhance the water miscibility. The hydrocarbon solvent and the surfactant may be pre-treated with a reactive solid metal hydride to remove peroxides, and then subsequently pre-treated with SO 2 . Examples of the use of the composition are given. (U.K)

  9. Broadband Ionospheric Scintillation Measurements from Space

    Science.gov (United States)

    Suszcynsky, D. M.; Light, M. E.; Pigue, M. J.

    2014-12-01

    The U.S. Department of Energy's Radio Frequency Propagation (RFProp) experiment consists of a satellite-based radio receiver suite to study various aspects of trans-ionospheric signal propagation and detection in four frequency bands, 2 - 55 MHz, 125 - 175 MHz, 365 - 415 MHz and 825 - 1100 MHz. In this paper, we present an overview of the RFProp on-orbit research and analysis effort with particular focus on an equatorial scintillation experiment called ESCINT. The 3-year ESCINT project is designed to characterize equatorial ionospheric scintillation in the upper HF and lower VHF portions of the radio spectrum (20 - 150 MHz). Both a 40 MHz continuous wave (CW) signal and 30 - 42 MHz swept frequency signal are transmitted to the satellite receiver suite from the Reagan Test Site at Kwajalein Atoll in the Marshall Islands (8.7° N, 167.7° E) in four separate campaigns centered on the 2014 and 2015 equinoxes. Results from the first campaign conducted from April 22 - May 15, 2014 will be presented including (a) coherence bandwidth measurements over a full range of transmission frequencies and scintillation activity levels, (b) spread-Doppler clutter effects arising from preferential ray paths to the satellite due to refraction off of isolated density irregularities, and (c) supporting ray-trace simulations. The broadband nature of the measurements is found to offer unique insight into both the structure of ionospheric irregularities and their impact on HF/VHF trans-ionospheric radio wave propagation.

  10. Temperature quenching in LAB based liquid scintillator

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, A.; Zuber, K. [Technische Universitaet Dresden, Institute for Nuclear- and Particle Physics, Dresden (Germany); Hans, S.; Yeh, M. [Brookhaven National Laboratory, Chemistry Devision, Upton, NY (United States); Junghans, A.R.; Koegler, T.; Wagner, A. [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Krosigk, B. v. [Technische Universitaet Dresden, Institute for Nuclear- and Particle Physics, Dresden (Germany); University of British Columbia, Department of Physics and Astronomy, Vancouver, BC (Canada); Lozza, V. [Technische Universitaet Dresden, Institute for Nuclear- and Particle Physics, Dresden (Germany); Laboratorio de Instrumentacao e Fisica Experimental de Particulas, Lisboa (Portugal)

    2018-01-15

    The effect of temperature changes on the light output of LAB based liquid scintillator is investigated in a range from -5 to 30 C with α-particles and electrons in a small scale setup. Two PMTs observe the scintillator liquid inside a cylindrically shaped aluminum cuvette that is heated or cooled and the temperature dependent PMT sensitivity is monitored and corrected. The α-emitting isotopes in dissolved radon gas and in natural Samarium (bound to a LAB solution) excite the liquid scintillator mixtures and changes in light output with temperature variation are observed by fitting light output spectra. Furthermore, also changes in light output by compton electrons, which are generated from external calibration γ-ray sources, is analysed with varying temperature. Assuming a linear behaviour, a combined negative temperature coefficient of (-0.29 ± 0.01)%/ C is found. Considering hints for a particle type dependency, electrons show (-0.17 ± 0.02)%/ C, whereas the temperature dependency seems stronger for α-particles, with (-0.35 ± 0.03)%/ C. Due to a high sampling rate, a pulse shape analysis can be performed and shows an enhanced slow decay component at lower temperatures, pointing to reduced non-radiative triplet state de-excitations. (orig.)

  11. Efficiency and yield spectra of inorganic scintillates

    International Nuclear Information System (INIS)

    Rodnyi, P.A.

    1998-01-01

    Recent developments in the field of energy loss in inorganic scintillators are reviewed. The main parameters, which control the fundamental limit of the scintillator energy efficiency, are determined. It is shown that together with simple cascade processes one should take into account the production of plasmons to estimate the energy efficiency of scintillators or other phosphors excited by an ionizing radiation. Core-to-valence luminescence related to 5pCs→3pCl transitions is investigated in some chlorides: CsCl, KCl, RbCl, NaCl, KCaCl 3 , RbCaCl 3 . The yield spectra of the crystals in the VUV and X-ray regions are also studied. It is shown that the 4pRb-core states are involved in the process of creation of holes in the 5pCs-core band in Rb-based crystals. The formation of holes in the potassium core band acts as a competing process and suppresses the radiative core-to-valence transitions

  12. Linearity correction device for a scintillation camera

    Energy Technology Data Exchange (ETDEWEB)

    Lange, Kai

    1978-06-16

    This invention concerns the scintillation cameras still called gamma ray camera. The invention particularly covers the improvement in the resolution and the uniformity of these cameras. Briefly, in the linearity correction device of the invention, the sum is made of the voltage signals of different amplitudes produced by the preamplifiers of all the photomultiplier tubes and the signal obtained is employed to generate bias voltages which represent predetermined percentages of the sum signal. In one design mode, pairs of transistors are blocked when the output signal of the corresponding preamplifier is under a certain point on its gain curve. When the summation of the energies of a given scintillation exceeds this level which corresponds to a first percentage of the total signal, the first transistor of each pair of each line is unblocked, thereby modifying the gain and curve slop. When the total energy of an event exceeds the next preset level, the second transistor is unblocked to alter the shape again, so much so that the curve shows two break points. If needs be, the device can be designed so as to obtain more break points for the increasingly higher levels of energy. Once the signals have been processed as described above, they may be used for calculating the co-ordinates of the scintillation by one of the conventional methods.

  13. Problems associated with scintillation counting of NaH14CO3 and gel suspension counting of Ba14CO3

    International Nuclear Information System (INIS)

    MacRae, J.C.; Wilson, S.

    1978-01-01

    Liquid NaH 14 CO 3 was assayed in emulsion-type (NE260 and Unisolve) and dioxan-based (NE250) scintillation cocktails contained in glass or polyethylene vials kept at 2 0 or 24-30 0 C. Different particle size ranges of standard Ba 14 CO 3 were assayed by gel suspension counting in Cabosil scintillation cocktail and in NE260 following solubilisation in EDTA-tetrasodium salt. Initial detectable activities of NaH 14 CO 3 in glass and polyethylene vials in NE250, NE260 and Unisolve were 97 and 96, 68 and 83, 71 and 89% of the true value respectively. Subsequent losses of activity over 7 days with the emulsion-type scintillators was greater from the polyethylene vials. Addition of phenylethylamine to the NE260 and Unisolve cocktails gave the true activity levels for all vials with no loss of activity over 6 days. When different particle size ranges of Standard Ba 14 CO 3 were suspended in Cabosil scintillation cocktail there was considerable variation in counting efficiency (77-88%) with little relationship between particle size and counting efficiency. The relationship between counting efficiency and channels ratio was not sufficiently precise for predictive purposes. Solubilisation of Ba 14 CO 3 in EDTA-tetrasodium salt gave similar counting efficiency and channels ratio values for all samples. (U.K.)

  14. Glass and nuclear wastes

    International Nuclear Information System (INIS)

    Sombret, C.

    1982-10-01

    Glass shows interesting technical and economical properties for long term storage of solidified radioactive wastes by vitrification or embedding. Glass composition, vitrification processes, stability under irradiation, thermal stability and aqueous corrosion are studied [fr

  15. Microstructuring of glasses

    CERN Document Server

    Hülsenberg, Dagmar; Bismarck, Alexander

    2008-01-01

    As microstructured glass becomes increasingly important for microsystems technology, the main application fields include micro-fluidic systems, micro-analysis systems, sensors, micro-actuators and implants. And, because glass has quite distinct properties from silicon, PMMA and metals, applications exist where only glass devices meet the requirements. The main advantages of glass derive from its amorphous nature, the precondition for its - theoretically - direction-independent geometric structurability. Microstructuring of Glasses deals with the amorphous state, various glass compositions and their properties, the interactions between glasses and the electromagnetic waves used to modify it. Also treated in detail are methods for influencing the geometrical microstructure of glasses by mechanical, chemical, thermal, optical, and electrical treatment, and the methods and equipment required to produce actual microdevices.

  16. Characteristics of plastic scintillators fabricated by a polymerization reaction

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Cheol Ho; Son, Jaebum; Kim, Tae Hoon; Kim, Yong Kyun [Dept. of Nuclear Engineering, Hanyang University, Seoul (Korea, Republic of)

    2017-04-15

    Three plastic scintillators of 4.5 cm diameter and 2.5-cm length were fabricated for comparison with commercial plastic scintillators using polymerization of the styrene monomer 2.5-diphenyloxazole (PPO) and 1,4-bis benzene (POPOP). Their maximum emission wavelengths were determined at 426.06 nm, 426.06 nm, and 425.00 nm with a standard error of 0.2% using a Varian spectrophotometer (Agilent, Santa Clara, CA, USA). Compton edge spectra were measured using three gamma ray sources [i.e., cesium 137 ({sup 137}Cs), sodium 22 ({sup 22}Na), and cobalt 60 ({sup 60}Co)]. Energy was calibrated by analyzing the Compton edge spectra. The fabricated scintillators possessed more than 99.7% energy linearity. Light output was comparable to that of the BC-408 scintillator (Saint-Gobain, Paris, France). The fabricated scintillators showed a light output of approximately 59–64% of that of the BC-408 scintillator.

  17. Methods for the continuous production of plastic scintillator materials

    Science.gov (United States)

    Bross, Alan; Pla-Dalmau, Anna; Mellott, Kerry

    1999-10-19

    Methods for producing plastic scintillating material employing either two major steps (tumble-mix) or a single major step (inline-coloring or inline-doping). Using the two step method, the polymer pellets are mixed with silicone oil, and the mixture is then tumble mixed with the dopants necessary to yield the proper response from the scintillator material. The mixture is then placed in a compounder and compounded in an inert gas atmosphere. The resultant scintillator material is then extruded and pelletized or formed. When only a single step is employed, the polymer pellets and dopants are metered into an inline-coloring extruding system. The mixture is then processed under a inert gas atmosphere, usually argon or nitrogen, to form plastic scintillator material in the form of either scintillator pellets, for subsequent processing, or as material in the direct formation of the final scintillator shape or form.

  18. Measurement of optical glasses

    International Nuclear Information System (INIS)

    Nicolau-Rebigan, S.

    1978-11-01

    The possibilities of measurement of the optical glasses parameters needed in building optical devices especially in lasers devices are presented. In the first chapter the general features of the main optical glasses as well as the modalities of obtaining them are given. Chapter two defines the optical glass parameters, and the third chapter describes the measuring methods of the optical glass parameters. Finally, the conclusions which point out the utilization of this paper are presented. (author)

  19. Liquid emulsion scintillators which solidify for facile disposal

    International Nuclear Information System (INIS)

    O'Brien, R.E.; Krieger, J.K.

    1981-01-01

    A liquid organic scintillation cocktail is described which counts solutions of radiolabelled compounds containing up to ten % by volume of water with high efficiency and is readily polymerizable to a solid for easy disposal. The cocktail comprises a polymerizable organic solvent, a solubilizing agent, an intermediate solvent, and an organic scintillator. A method of disposing of liquid organic scintillation cocktail waste and a kit useful for practising the method are also described. (U.K.)

  20. Some results of ionospheric scintillation observations at Lumping

    International Nuclear Information System (INIS)

    Huang, Yinn-Nien

    1983-01-01

    The ionospheric scintillation data obtained at Lunping by use of 136.1124 MHz beacon signal transmitted from the geostationary satellite, ETS-2, have been used to analyze the diurnal, seasonal and solar cycle variations of scintillation activity. The effect of the geomagnetic activity on the scintillation activity has been studied by use of superposed epoch method. The effect is not unique but depends on season and solar activity. (author)

  1. A Scintillator Purification System for the Borexino Solar Neutrino Detector

    OpenAIRE

    Benziger, J.; Cadonati, L.; Calaprice, F.; Chen, M.; Corsi, A.; Dalnoki-Veress, F.; Fernholz, R.; Ford, R.; Galbiati, C.; Goretti, A.; Harding, E.; Ianni, Aldo; Ianni, Andrea; Kidner, S.; Leung, M.

    2007-01-01

    Purification of the 278 tons of liquid scintillator and 889 tons of buffer shielding for the Borexino solar neutrino detector was performed with a system that combined distillation, water extraction, gas stripping and filtration. The purification of the scintillator achieved unprecedented low backgrounds for the large scale liquid scintillation detector. This paper describes the principles of operation, design, construction and commissioning of the purification system, and reviews the require...

  2. Systematic studies of small scintillators for new sampling calorimeter

    International Nuclear Information System (INIS)

    Jacosalem, E.P.; Sanchez, A.L.C.; Bacala, A.M.; Iba, S.; Nakajima, N.; Ono, H.; Miyata, H.

    2007-01-01

    A new sampling calorimeter using very thin scintillators and the multi-pixel photon counter (MPPC) has been proposed to produce better position resolution for the international linear collider (ILC) experiment. As part of this R and D study, small plastic scintillators of different sizes, thickness and wrapping reflectors are systematically studied. The scintillation light due to beta rays from a collimated 90 Sr source are collected from the scintillator by wavelength-shifting (WLS) fiber and converted into electrical signals at the PMT. The wrapped scintillator that gives the best light yield is determined by comparing the measured pulse height of each 10 x 40 x 2 mm strip scintillator covered with 3M reflective mirror film, teflon, white paint, black tape, gold, aluminum and white paint+teflon. The pulse height dependence on position, length and thickness of the 3M reflective mirror film and teflon wrapped scintillators are measured. Results show that the 3M radiant mirror film-wrapped scintillator has the greatest light yield with an average of 9.2 photoelectrons. It is observed that light yield slightly increases with scintillator length, but increases to about 100% when WLS fiber diameter is increased from 1.0 mm to 1.6 mm. The position dependence measurement along the strip scintillator showed the uniformity of light transmission from the sensor to the PMT. A dip across the strip is observed which is 40% of the maximum pulse height. The block type scintillator pulse height, on the other hand, is found to be almost proportional to scintillator thickness. (author)

  3. New heavy scintillating materials for precise heterogeneous EM-calorimeters

    International Nuclear Information System (INIS)

    Britvich, G.I.; Britvich, I.G.; Vasil'chenko, V.G.; Lishin, V.A.; Obraztsov, V.F.; Polyakov, V.A.; Solovjev, A.S.; Ryzhikov, V.D.

    2001-01-01

    This investigation shows some optical and scintillation properties of new scintillating media, based on heavy composite materials and an inorganic crystal CsI:Br, intended for the creation of precise heterogeneous EM-calorimeters with the energy resolution σ/E congruent with 4-5% E-radical. The possibility to use cheap heavy scintillating plates based on optical ceramics as active media in heterogeneous EM-calorimeters is considered

  4. Paraffin scintillator for radioassay of solid support samples

    International Nuclear Information System (INIS)

    Fujii, Haruo; Takiue, Makoto

    1989-01-01

    A new paraffin scintillator used for solid support sample counting has been proposed, and its composition and various characteristics are described. The solid support sample treated with this scintillator can be easily handled because of rigid sample conditions. This technique provides great advantages such as the elimination of a large volume of scintillator and little radioactive waste material by using an economical polyethylene bag instead of the conventional counting vial. (author)

  5. Growth and scintillation properties of gadolinium and yttrium orthovanadate crystals

    International Nuclear Information System (INIS)

    Voloshina, O.V.; Baumer, V.N.; Bondar, V.G.; Kurtsev, D.A.; Gorbacheva, T.E.; Zenya, I.M.; Zhukov, A.V.; Sidletskiy, O.Ts.

    2012-01-01

    Aiming to explore the possibility of using the undoped rare-earth orthovanadates as scintillation materials, we developed the procedure for growth of gadolinium (GdVO 4 ) and yttrium (YVO 4 ) orthovanadate single crystals by Czochralski method, and determined the optimal conditions of their after-growth annealing. Optical, luminescent, and scintillation properties of YVO 4 and GdVO 4 were discussed versus known literature data. Scintillation characteristics of GdVO 4 were determined for the first time.

  6. Mechanically reinforced glass beams

    DEFF Research Database (Denmark)

    Nielsen, Jens Henrik; Olesen, John Forbes

    2007-01-01

    laminated float glass beam is constructed and tested in four-point bending. The beam consist of 4 layers of glass laminated together with a slack steel band glued onto the bottom face of the beam. The glass parts of the tested beams are \\SI{1700}{mm} long and \\SI{100}{mm} high, and the total width of one...

  7. Sci-Sat AM: Radiation Dosimetry and Practical Therapy Solutions - 10: Towards LET detection: A study on the effects of scintillator doping

    Energy Technology Data Exchange (ETDEWEB)

    Nusrat, Humza; Pang, Geordi; Ahmad, Syed; Keller, Brian; Sarfehnia, Arman [Ryerson University, Sunnybrook Health Sciences Centre (Canada)

    2016-08-15

    Purpose: In radiotherapy, the amount of radiation delivered is determined by optimizing the amount of absorbed dose to the tumor. Dose does not always correlate well with the actual biological effects of radiation. This work seeks to validate the LET-dependence of doped plastic scintillators for use in a radiation beam quality (LET) detector. Methods: The LET spectrum ([Φ]) can be resolved knowing the measured signals of uniquely LET-dependent detectors, [S], and the response of each LET-dependent detector to specific LETs ([R]), through the relation [Φ]=[S][R]{sup −1}. Plastic scintillator response is intrinsically LET dependent and can be varied via doping. Initial prototype consists of plastic scintillator and glass taper coupled to an optical fiber; components are housed in black acrylic, reducing effect of ambient light. In order to determine [R], the light response matrix, GEANT4.10.1 Monte Carlo (MC) was used. To validate MC, measurements were done using high energy electrons (9,12,15MeV) and orthovoltage x-rays (100,250kV); scintillator signal was normalized to dose measured simultaneously. Results: Stopping power was varied by changing particle type/energy; measurements indicated that as stopping power increased from 1.9 to 6.6MeV/cm, detector response increased by 263% (+/−29.2%) for 5%Pb-doped scintillator (155% in MC); 52% (+/−7.8%) increase observed when undoped scintillator was used (49% in MC). 5%Pb-doped discrepancy (100kV x-rays) is being investigated. Conclusions: This work validates that doping effects LET/energy response of scintillators; an effect that can be utilized for construction of an LET detector.

  8. Ionospheric scintillation observations over Kenyan region - Preliminary results

    Science.gov (United States)

    Olwendo, O. J.; Xiao, Yu; Ming, Ou

    2016-11-01

    Ionospheric scintillation refers to the rapid fluctuations in the amplitude and phase of a satellite signal as it passes through small-scale plasma density irregularities in the ionosphere. By analyzing ionospheric scintillation observation datasets from satellite signals such as GPS signals we can study the morphology of ionospheric bubbles. At low latitudes, the diurnal behavior of scintillation is driven by the formation of large-scale equatorial density depletions which form one to two hours after sunset via the Rayleigh-Taylor instability mechanism near the magnetic equator. In this work we present ionospheric scintillation activity over Kenya using data derived from a newly installed scintillation monitor developed by CRIRP at Pwani University (39.78°E, 3.24°S) during the period August to December, 2014. The results reveal the scintillation activity mainly occurs from post-sunset to post-midnight hours, and ceases around 04:00 LT. We also found that the ionospheric scintillation tends to appear at the southwest and northwest of the station. These locations coincide with the southern part of the Equatorial Ionization Anomaly crest over Kenya region. The occurrence of post-midnight L-band scintillation events which are not linked to pre-midnight scintillation observations raises fundamental question on the mechanism and source of electric fields driving the plasma depletion under conditions of very low background electron density.

  9. Organic scintillators with long luminescent lifetimes for radiotherapy dosimetry

    DEFF Research Database (Denmark)

    Beierholm, Anders Ravnsborg; Lindvold, Lars René; Andersen, Claus Erik

    2011-01-01

    of experiments performed using two organic scintillators, one commercially available and one custom made. The luminescent lifetimes of the scintillators have been measured using i) optical excitation by pulsed UV light, and ii) irradiative excitation using high-energy X-rays from a linac. A luminescent lifetime...... component on the order of 20 μs was estimated for the custom-made organic scintillator, while the commercial scintillator exhibited a fast component of approximately 5 ns lifetime (7 ns as stated by the manufacturer) and an approximate 10 μs lifetime slow component. Although these lifetimes are not long...

  10. Radiation converter scintillator screen and its manufacturing process

    International Nuclear Information System (INIS)

    Delattre, D.; Rougeot, H.; Tassin, C.

    1984-01-01

    The present invention concerns scintillating screens receiving X or gamma radiation and converting it in luminous photons. The screen comprises a needle structure scintillating material. Its concave surface is quite smooth. The screen is obtained by evaporation on a frame having a perfectly smooth convex surface; the constituting material has a thermal dilatation coefficient different from the scintillating material one. After evaporation, the scintillating screen is set apart from the frame by simple heating. It is used for radiological image intensifier tubes and scintigraphy tubes [fr

  11. Radiation-induced chemical processes in polystyrene scintillators

    International Nuclear Information System (INIS)

    Milinchuk, V.K.; Bolbit, N.M.; Klinshpont, E.R.; Tupikov, V.I.; Zhdanov, G.S.; Taraban, S.B.; Shelukhov, I.P.; Smoljanskii, A.S.

    1999-01-01

    The regularities established for macroradical accumulation and intensity of radioluminescence under γ-irradiation of a polystyrene scintillator prove benzyl macroradicals to be efficient quenchers of the excited scintillator molecules. Dissolved oxygen was determined to have a constant of the quenching rate 100 times lower than that of macroradicals. Oxygen is an efficient antirad because of participating in oxidation reactions and subsequent recombination of macroradicals. The method was developed to obtain a polymeric scintillator with a polystyrene matrix containing a dispersed system of pores and channels. Radiation resistance of such a scintillator is 5-10 times higher than that of standard types

  12. Study on determination of 90Sr by liquid scintillation spectrometry

    International Nuclear Information System (INIS)

    Zhai Xiufang; Li Weiping; Tian Mei; Zou Ronghu

    2012-01-01

    Both of Liquid scintillation counting and Cerenkov counting can be used to determinate 90 Sr in samples by Liquid scintillation spectrometry. In this work, effects of scintillation vials wit-h different material, Liquid scintillation cocktails, sample volume, Strontium carrier, pH, quenching (chemical quenching and color quenching)are studied, and both counting methods are compared. For Liquid scintillation counting. The results show that the best appropriate volume ratio of sample and liquid scintillation cocktail is 8:12 for OPTIPHASE HISAFE-3 and OPTIPHASE HISAFE-2, stability of solution decreased when sample load exceeds the maximum load for both Liquid scintillation cocktails, and OPTIPHASE HISAFE-3 also show superior performance for high saline solution. The type of scintillation vial haven't clear influence on the MDA of 90 Sr. Chemical quenching and color quenching can decrease the counting efficiency. For Cerenkov counting, the lowest MDA is obtained when polyethylene plastic vial is used and sample volume is 20 ml. Color quenching decreases the counting efficiency, while there isn't chemical quenching for Cerenkov counting. The MDA of 90 Sr is 1.19 and 1.00 Bq/L for Liquid scintillation counting and Cerenkov counting with the optimal labeling condition. (authors)

  13. Report on radiation exposure of lead-scintillator stack

    International Nuclear Information System (INIS)

    Underwood, D.G.

    1990-01-01

    A stack of lead and scintillator was placed in a neutral beam obtained from targeting 800 GeV protons. Small pieces of film containing radiochromic dye were placed adjacent to the layers of scintillator for the purpose of measuring the radiation dose to the scintillator. Our motivation was to calibrate the radiation dose obtainable in this manner for future tests of scintillator for SSC experiments and to relate dose to flux to check absolute normalization for calculations. We also observed several other radiation effects which should be considered for both damage and compensation in a calorimeter

  14. 2003: A centennial of spinthariscope and scintillation counting

    International Nuclear Information System (INIS)

    Kolar, Z.I.; Hollander, W. den

    2004-01-01

    In 1903 W. Crookes demonstrated in England his 'spinthariscope' for the visual observation of individual scintillations caused by alpha particles impinging upon a ZnS screen. In contrast to the analogue methods of radiation measurements in that time the spinthariscope was a single-particle counter, being the precursor of scintillation counters since. In the same period F. Giesel, J. Elster and H. Geitel in Germany also found that scintillations from ZnS represent single particle events. This paper summarises the historical events relevant to the advent of scintillation counting

  15. Liquid-helium scintillation detection with germanium photodiodes

    International Nuclear Information System (INIS)

    Luke, P.N.; Haller, E.E.; Steiner, H.M.

    1982-05-01

    Special high-purity germanium photodiodes have been developed for the direct detection of vacuum ultraviolet scintillations in liquid helium. The photodiodes are immersed in the liquid helium, and scintillations are detected through one of the bare sides of the photodiodes. Test results with scintillation photons produced by 5.3-MeV α particles are presented. The use of these photodiodes as liquid-helium scintillation detectors may offer substantial improvements over the alternate detection method requiring the use of wavelength shifters and photomultiplier tubes

  16. Investigation of organic liquid-scintillator optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Winter, Juergen; Feilitzsch, Franz von; Goeger-Neff, Marianne; Lewke, Timo; Meindl, Quirin; Oberauer, Lothar; Potzel, Walter; Todor, Sebastian; Wurm, Michael [Physik Department E15, Technische Universitaet Muenchen, James-Franck-Str., 85748 Garching (Germany); Marrodan Undagoitia, Teresa [Physik Department E15, Technische Universitaet Muenchen, James-Franck-Str., 85748 Garching (Germany); Physik-Institut, Universitaet Zuerich (Switzerland)

    2009-07-01

    The characterization of different organic liquid-scintillator mixtures is an important step towards the design of a large-scale detector such as LENA (Low Energy Neutrino Astronomy). Its physics goals, extending from particle and geological to astrophysical issues, set high demands on the optical properties of the liquid scintillator. Therefore, small-scale experiments are carried out in order to optimize the final scintillator mixture. PXE, LAB, and dodecane are under consideration as solvents. Setups for the determination of scintillator properties are presented, such as attenuation length, light yield, emission spectra, fluorescence decay times, and quenching factors. Furthermore, results are discussed.

  17. An efficient energy response model for liquid scintillator detectors

    Science.gov (United States)

    Lebanowski, Logan; Wan, Linyan; Ji, Xiangpan; Wang, Zhe; Chen, Shaomin

    2018-05-01

    Liquid scintillator detectors are playing an increasingly important role in low-energy neutrino experiments. In this article, we describe a generic energy response model of liquid scintillator detectors that provides energy estimations of sub-percent accuracy. This model fits a minimal set of physically-motivated parameters that capture the essential characteristics of scintillator response and that can naturally account for changes in scintillator over time, helping to avoid associated biases or systematic uncertainties. The model employs a one-step calculation and look-up tables, yielding an immediate estimation of energy and an efficient framework for quantifying systematic uncertainties and correlations.

  18. Production low cost plastic scintillator by using commercial polystyrene

    International Nuclear Information System (INIS)

    2011-01-01

    Plastic Scintillators can be described as solid materials which contain organic fluorescent compounds dissolved within a polymer matrix. Transparent plastics commonly used for light scintillation are Polystyrene (or PS, poly-vinyl-benzene) and polyvinyl-toluene (or PVT, poly-methyl-styron). By changing the composition of plastic Scintillators some features such as light yield, radiation hardening, decay time etc. can be controlled. Plastic scintillation detectors have been used in nuclear and high energy physics for many decades. Among their benefits are fast response, ease of manufacture and versatility. Their main drawbacks are radiation resistance and cost. Many research projects have concentrated on improving the fundamental properties of plastic scintillators, but little attention has focussed on their cost and easier manufacturing techniques. First plastic Scintillators were produced in 1950's. Activities for production of low cost Scintillators accelerated in second half of 1970's. In 1975 acrylic based Plexipop Scintillator was developed. Despite its low cost, since its structure was not aromatic the light yield of Plexipop was about one quarter of classical Scintillators. Problems arising from slow response time and weak mechanical properties in scintillators developed, has not been solved until 1980. Within the last decade extrusion method became very popular in preparation of low cost and high quality plastic scintillators. In this activity, preliminary studies for low cost plastic scintillator production by using commercial polystyrene pellets and extrusion plus compression method were aimed. For this purpose, PS blocks consist of commercial fluorescent dopant were prepared in June 2008 by use of the extruder and pres in SANAEM. Molds suitable for accoupling to extruder were designed and manufactured and optimum production parameters such as extrusion temperature profile, extrusion rate and moulding pressure were obtained hence, PS Scintillator Blocks

  19. Cesium hafnium chloride scintillator coupled with an avalanche photodiode photodetector

    Czech Academy of Sciences Publication Activity Database

    Kurosawa, S.; Kodama, S.; Yokota, Y.; Horiai, T.; Yamaji, A.; Shoji, Y.; Král, Robert; Pejchal, Jan; Ohashi, Y.; Kamada, K.; Nikl, Martin; Yoshikawa, A.

    2017-01-01

    Roč. 12, Feb (2017), s. 1-8, č. článku C02042. ISSN 1748-0221 Grant - others:AV ČR(CZ) JSPS-17-18 Program:Bilaterální spolupráce Institutional support: RVO:68378271 Keywords : gamma detectors * scintillators and scintillating fibres * scintillators * scintillation and light emission processes Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 1.220, year: 2016

  20. Lanthanide doped strontium-barium cesium halide scintillators

    Science.gov (United States)

    Bizarri, Gregory; Bourret-Courchesne, Edith; Derenzo, Stephen E.; Borade, Ramesh B.; Gundiah, Gautam; Yan, Zewu; Hanrahan, Stephen M.; Chaudhry, Anurag; Canning, Andrew

    2015-06-09

    The present invention provides for a composition comprising an inorganic scintillator comprising an optionally lanthanide-doped strontium-barium, optionally cesium, halide, useful for detecting nuclear material.

  1. An alpha particle detector based on a GPS mosaic scintillator plate for continuous air monitoring in plutonium handling facilities

    International Nuclear Information System (INIS)

    Kaneko, Junichi H.; Izaki, Kenji; Toui, Kouhei; Shimaoka, Takehiro; Morishita, Yuki; Tsubota, Youichi; Higuchi, Mikio

    2016-01-01

    An alpha particle detector was developed for continuous air monitoring of radioactive contamination in working chambers at plutonium handling facilities. A 5-cm-square Gd 2 Si 2 O 7 :Ce (cerium-doped gadolinium pyro-silicate, GPS:Ce) mosaic scintillator plate for alpha particle measurements was fabricated from GPS single-crystal grains of around 550 μm diameter; the GPS grains were made of a GPS polycrystalline body grown using a top seeded solution method. The scintillator layer thickness was approximately 100 μm. The surface filling rate of the GPS grains was ca. 62%. To suppress the influence of non-uniformity of pulse heights of a photomultiplier tube, a central part of ∅ 40 mm of a 76-mm-diameter photomultiplier tube was used. In addition, 3 mm thick high-transmission glass was used as a substrate of the scintillator plate. The detector achieved energy resolution of 13% for 5.5 MeV alpha particles, detection efficiency of 61% and a radon progeny nuclide reduction ratio of 64.5%. A new alpha particle detector was developed to achieve a high radon progeny nuclide reduction ratio approaching that of a silicon semiconductor detector, with high resistance to electromagnetic noise and corrosion. - Highlights: • An alpha particle detector was developed for continuous air monitoring. • The detector comprises a mosaic scintillator plate and a photomultiplier tube. • A 5-cm-square GPS mosaic scintillator plate was fabricated. • Its respective energy resolution and detection efficiency were 13 and 61%. • The radon progeny nuclide reduction ratio of the developed detector was 64.5%.

  2. Fluoride glass fiber optics

    CERN Document Server

    Aggarwal, Ishwar D

    1991-01-01

    Fluoride Glass Fiber Optics reviews the fundamental aspects of fluoride glasses. This book is divided into nine chapters. Chapter 1 discusses the wide range of fluoride glasses with an emphasis on fluorozirconate-based compositions. The structure of simple fluoride systems, such as BaF2 binary glass is elaborated in Chapter 2. The third chapter covers the intrinsic transparency of fluoride glasses from the UV to the IR, with particular emphasis on the multiphonon edge and electronic edge. The next three chapters are devoted to ultra-low loss optical fibers, reviewing methods for purifying and

  3. Multiple Glass Ceilings

    OpenAIRE

    Russo, Giovanni; Hassink, Wolter

    2011-01-01

    Both vertical (between job levels) and horizontal (within job levels) mobility can be sources of wage growth. We find that the glass ceiling operates at both margins. The unexplained part of the wage gap grows across job levels (glass ceiling at the vertical margin) and across the deciles of the intra-job-level wage distribution (glass ceiling at the horizontal margin). This implies that women face many glass ceilings, one for each job level above the second, and that the glass ceiling is a p...

  4. Homogeneity of Inorganic Glasses

    DEFF Research Database (Denmark)

    Jensen, Martin; Zhang, L.; Keding, Ralf

    2011-01-01

    Homogeneity of glasses is a key factor determining their physical and chemical properties and overall quality. However, quantification of the homogeneity of a variety of glasses is still a challenge for glass scientists and technologists. Here, we show a simple approach by which the homogeneity...... of different glass products can be quantified and ranked. This approach is based on determination of both the optical intensity and dimension of the striations in glasses. These two characteristic values areobtained using the image processing method established recently. The logarithmic ratio between...

  5. Leaching of glass

    International Nuclear Information System (INIS)

    Hench, L.L.

    1977-01-01

    Understanding surface compositional profiles of glasses over a range of 0-2000 A with a variety of analytical instruments shows that five general types of glass surfaces exist. The surface character of a glass article depends upon bulk composition and environmental history during which surface dealkalization, film formation, and network dissolution can occur. Environmental-surface interactions generally result in complex compositional profiles of all the constituents in a glass. Durable glasses almost always develop a stable surface film which has a higher concentration of network formers than the bulk composition. Compositional effects that are used to improve glass durability usually improve the stability of the surface films. Durability tests or service conditions that lead to film destruction are especially severe for the most silicate glasses. 43 references

  6. VHF Scintillation in an Artificially Heated Ionosphere

    Science.gov (United States)

    Suszcynsky, D. M.; Layne, J.; Light, M. E.; Pigue, M. J.; Rivera, L.

    2017-12-01

    As part of an ongoing project to characterize very-high-frequency (VHF) radio wave propagation through structured ionospheres, Los Alamos National Laboratory has been conducting a set of experiments to measure the scintillation effects of VHF transmissions under a variety of ionospheric conditions. Previous work (see 2015 Fall AGU poster by D. Suszcynsky et al.) measured the S4 index and ionospheric coherence bandwidth in the 32 - 44 MHz frequency range under naturally scintillated conditions in the equatorial region at Kwajalein Atoll during three separate campaigns centered on the 2014 and 2015 equinoxes. In this paper, we will present preliminary results from the February and September, 2017 High Altitude Auroral Research Project (HAARP) Experimental Campaigns where we are attempting to make these measurements under more controlled conditions using the HAARP ionospheric heater in a twisted-beam mode. Two types of measurements are made by transmitting VHF signals through the heated ionospheric volume to the Radio Frequency Propagation (RFProp) satellite experiment. The S4 scintillation index is determined by measuring the power fluctuations of a 135-MHz continuous wave signal and the ionospheric coherence bandwidth is simultaneously determined by measuring the delay spread of a frequency-modulated continuous wave (FMCW) signal in the 130 - 140 MHz frequency range. Additionally, a spatial Fourier transform of the CW time series is used to calculate the irregularity spectral density function. Finally, the temporal evolution of the time series is used to characterize spread-Doppler clutter effects arising from preferential ray paths to the satellite due to refraction off of isolated density irregularities. All results are compared to theory and scaled for comparison to the 32 - 44 MHz Kwajalein measurements.

  7. AA, beam stopper with scintillator screen

    CERN Multimedia

    CERN PhotoLab

    1980-01-01

    An insertable steel-plate beam stopper was located after nearly a full turn downstream of the injection point. It was fitted with a scintillator screen, a thin plate of Cr-doped alumina, imprinted with a grid and reference points. The screen was illuminated through a window and observed with a highly sensitive TV camera plus image intensifier. This allowed observation of beam position and size of a proton test beam and of the beam from the target, which consisted not only of antiprotons but contained as well electrons, pions and muons of the same momentum.

  8. Scintillating Fibre Calorimetry at the LHC

    CERN Multimedia

    2002-01-01

    Good electromagnetic and hadronic calorimetry will play a central role in an LHC detector. The lead/scintillating fibre calorimeter technique provides a fast signal response well matched to the LHC rate requirements. It can be made to give equal response for electrons and hadrons (compensation) with good electromagnetic and hadronic energy resolutions.\\\\ \\\\ The aim of this R&D proposal is to study in detail the aspects that are relevant for application of this type of calorimeter in an LHC environment, including its integration in a larger system of detectors, e.g.~projective geometry, radiation hardness, light detection, calibration and stability monitoring, electron/hadron separation.....

  9. Marine radioactivity measurements with liquid scintillation spectrometers

    International Nuclear Information System (INIS)

    Liong Wee Kwong, L.; Povinec, P.P.

    1999-01-01

    Liquid Scintillation Spectrometry (LSS) has now become the most widespread method for quantitative analytical measurement of low levels of β-emitting radionuclides like 3 H and 14 C. The high efficiency resulting from the latest development in LSS makes this technique not only appropriate but also enables direct measurement in environmental samples without excessive preparation. The introduction of several new cocktails based on solvents with a high flashpoint containing surfactants and having a high degree of aqueous sample compatibility has also contributed to the simplification of procedures

  10. Scintillating ribbon x-ray detector

    International Nuclear Information System (INIS)

    Kinchen, B.E.; Rogers, A.

    1995-01-01

    A patent in the early 1970's by Aerojet Corporation in Sacramento, CA put forth the idea of using an array of scintillating fibers for x-ray detection and imaging. In about 1975, Pratt and Whitney Aircraft in East Hartford, CT designed and manufactured an imaging system based on the patent. The device was 1.75 in thick in the direction of the x-ray beam and about 4 in. by 4 in. square. The device was used with a 8 MeV x-ray source to image and measure internal clearances within operating aircraft, gas turbines engines. There are significant advantages of fiber optic detectors in x-ray detection. However, the advantages are often outweighed by the disadvantages. Two of the advantages of scintillating fiber optic x-ray detectors are: (1) high limiting spatial frequency -- between 20 and 25 lp/mm; and (2) excellent x-ray stopping power -- they can be made thick and retain spatial resolution. In traditional fiber optic detectors the x-rays are oriented parallel to the long axis of the fiber. For the scintillating ribbon x-ray sensor, the x-rays are oriented normal to the fiber long axis. This ribbon sensor technique has a number of advantages over the two current radiographic techniques digital x-radiography and x-ray film: The main advantage the ribbon has is size and shape. It can be as thin as 0.05 in., virtually any width or length, and flexible. Once positioned in a given location, 20 to 100 square inches of the object being inspected can be imaged with a single x-ray beam sweep. It is clear that conventional digital cameras do not lend themselves to placement between walls of aircraft structures or similar items requiring x-ray inspections. A prototype scintillating ribbon x-ray sensor has been fabricated and tested by Synergistic Detector Designs. Images were acquired on corrosion test panels of aluminum fabricated by Iowa State University

  11. Collimator trans-axial tomographic scintillation camera

    International Nuclear Information System (INIS)

    Jaszczak, R.J.

    1977-01-01

    A collimator is provided for a scintillation camera system in which a detector precesses in an orbit about a patient. The collimator is designed to have high resolution and lower sensitivity with respect to radiation traveling in paths laying wholly within planes perpendicular to the cranial-caudal axis of the patient. The collimator has high sensitivity and lower resolution to radiation traveling in other planes. Variances in resolution and sensitivity are achieved by altering the length, spacing or thickness of the septa of the collimator

  12. Compositions and process for liquid scintillation counting

    International Nuclear Information System (INIS)

    Kauffman, J.M.

    1976-01-01

    Liquid scintillation counting compositions which include certain polyethoxylated poly(oxypropylene) emulsifiers allow stable dispersion of aqueous or other samples merely by shaking. Preferred are mixtures of such emulsifiers, which give homogeneous, monophasic-appearing dispersions over wide ranges of temperature and aqueous sample content. Certain of these emulsifiers, without being mixed, are of particular advantage when used in analysis of samples obtained through radioimmunoassay techniques, which are extremely difficult to disperse. Certain of these emulsifiers, also without being mixed, uniformly give homogeneous, monophasic appearing aqueous couting samples over much wider ranges of aqueous sample content and temperature than prior sample emulsifiers

  13. Compositions and process for liquid scintillation counting

    International Nuclear Information System (INIS)

    Kauffman, J.M.

    1978-01-01

    Liquid scintillation compositions which include certain polyethoxylated poly(oxypropylene) emulsifiers allow stable dispersion of aqueous or other samples merely by shaking. Preferred are mixtures of such emulsifiers, which give homogeneous, monophasic-appearing dispersions over wide ranges of temperature and aqueous sample content. Certain of these emulsifiers, without being mixed, are of particular advantage when used in analysis of samples obtained through radioimmunoassay techniques, which are extremely difficult to disperse. Certain of these emulsifiers, also without being mixed, uniformly give homogeneous, monophasic appearing aqueous counting samples over much wider ranges of aqueous sample content and temperature than prior sample emulsifiers

  14. Fundamental limits of scintillation detector timing precision

    International Nuclear Information System (INIS)

    Derenzo, Stephen E; Choong, Woon-Seng; Moses, William W

    2014-01-01

    In this paper we review the primary factors that affect the timing precision of a scintillation detector. Monte Carlo calculations were performed to explore the dependence of the timing precision on the number of photoelectrons, the scintillator decay and rise times, the depth of interaction uncertainty, the time dispersion of the optical photons (modeled as an exponential decay), the photodetector rise time and transit time jitter, the leading-edge trigger level, and electronic noise. The Monte Carlo code was used to estimate the practical limits on the timing precision for an energy deposition of 511 keV in 3 mm × 3 mm × 30 mm Lu 2 SiO 5 :Ce and LaBr 3 :Ce crystals. The calculated timing precisions are consistent with the best experimental literature values. We then calculated the timing precision for 820 cases that sampled scintillator rise times from 0 to 1.0 ns, photon dispersion times from 0 to 0.2 ns, photodetector time jitters from 0 to 0.5 ns fwhm, and A from 10 to 10 000 photoelectrons per ns decay time. Since the timing precision R was found to depend on A −1/2  more than any other factor, we tabulated the parameter B, where R = BA −1/2 . An empirical analytical formula was found that fit the tabulated values of B with an rms deviation of 2.2% of the value of B. The theoretical lower bound of the timing precision was calculated for the example of 0.5 ns rise time, 0.1 ns photon dispersion, and 0.2 ns fwhm photodetector time jitter. The lower bound was at most 15% lower than leading-edge timing discrimination for A from 10 to 10 000 photoelectrons ns −1 . A timing precision of 8 ps fwhm should be possible for an energy deposition of 511 keV using currently available photodetectors if a theoretically possible scintillator were developed that could produce 10 000 photoelectrons ns −1 . (paper)

  15. Compositions and process for liquid scintillation counting

    International Nuclear Information System (INIS)

    1974-01-01

    Liquid scintillation counting compositions which include certain polyethoxylated poly(oxypropylene) emulsifiers allow stable dispersion of aqueous or other samples merely by shaking. Preferred are mixtures of such emulsifiers which give homogeneous monophasic-appearing dispersions over wide ranges of temperature and aqueous sample content. Certain of these emulsifiers, without being mixed, are of particular advantage when used in analysis of samples obtained through radioimmunoassay techniques which are extremely difficult to disperse. Certain of these emulsifiers, also without being mixed, uniformly give homogeneous monophasic-appearing aqueous counting samples over much wider ranges of aqueous sample content and temperature than prior sample emulsifiers

  16. A fast readout system for scintillation detectors

    International Nuclear Information System (INIS)

    Steijger, J.; Kok, E.; Kwakkel, E.; Visschers, J.L.; Zwart, A.N.M.

    1991-01-01

    A system of fast readout electronics for segmented scintillation detectors has been constructed and is now operational. Instead of delaying the analog signals in long coaxial cables, they are digitized immediately and stored in dual-port memories, while the trigger decision is being made. A VMEbus system collects the data from these memories on the data acquisition modules within one crate. Several VME crates are connected via a transputer network to transport the data to an event builder. A separate transputer network is used to perform the VME cycles, needed for the computer-controlled tuning of the experiment. (orig.)

  17. Scintillation {gamma} spectrography. Physical principles. Apparatus. Operation; Spectrographie {gamma} a scintillations. Principes physiques. Appareillage. Utilisation

    Energy Technology Data Exchange (ETDEWEB)

    Julliot, C. [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    The scintillation detector forms the main part of the instrument used, the electronic unit presenting the results produced. After a brief description of the process of {gamma} photon absorption in the material, the particular case of NaI (T1), the scintillator used, is examined. The intensity of the scintillation caused by {gamma} ray absorption and the characteristics of the photomultiplier play a determining part in the energy resolution of the instrument. For the {gamma} recording spectrograph, we show to what extent the technique for using the electronic unit can modify the results. A detailed description is given of the activity measurement of a {gamma}-emitting radioelement by the spectrographic method. (author) [French] Dans l'appareillage utilise, le detecteur a scintillations constitue la piece maitresse, l'ensemble electronique presente les resultats issus du detecteur. Apres avoir brievement decrit le processus d'absorption des photons {gamma} dans la matiere, nous examinons le cas particulier du NaI(T1), le scintillateur utilise. L'intensite de la scintillation provoque par l'absorption des rayons {gamma} et les caracteristiques du photomultiplicateur jouent un role determinant dans la resolution en energie de l'appareil. Pour le spectrographe {gamma} enregistreur, nous indiquons dans quelle mesure la technique d'utilisation de l'ensemble electronique peut modifier les resultats. La-mesure de l'activite d'un radioelement emetteur {gamma} par spectrographie fait l'objet d'une description detaillee. (auteur)

  18. Optimization of light collection from crystal scintillators for cryogenic experiments

    International Nuclear Information System (INIS)

    Mokina, V.M.; Danevich, F.A.; Kobychev, V.V.; Kraus, H.; Mikhailik, V.B.; Nagornaya, L.L.

    2012-01-01

    Cryogenic scintillation bolometers are a promising technique to search for dark matter and neutrinoless double decay. Improvement of light collection and energy resolution are important requirements in such experiments. Energy resolutions and relative pulse amplitudes of scintillation detectors using ZnWO 4 scintillation crystals of different shapes (cylinder 20x20 mm and hexagonal prism with diagonal 20 mm and height 20 mm), reflector materials and shapes, optical contact and surface properties (polished and diffused) were measured. The crystal scintillator of hexagonal shape shows the better energy resolution and pulse amplitude. The best energy resolution (FWHM = 9.3 % for 662 keV γ quanta of 137 Cs) was obtained with a hexagonal scintillator with all surfaces diffuse, in optical contact with a PMT and surrounded by a reflector (3M) of size 26x25 mm. In the geometry w ithout optical contact r epresenting the conditions of light collection for a cryogenic scintillating bolometer the best energy resolution and relative pulse amplitude was obtained for a hexagonal shape scintillator with diffuse side and polished face surfaces, surrounded by a reflector with a gap between the scintillator and the reflector

  19. Performance comparison of scintillators for alpha particle detectors

    Energy Technology Data Exchange (ETDEWEB)

    Morishita, Yuki [Graduate School of Medicine, Nagoya University, 1-1-20 Daiko-Minami, Higashi-ku, Nagoya, Aichi 461-8673 (Japan); Japan Atomic Energy Agency, Muramatsu 4-33, Tokai-mura, Ibaraki 319-1194 (Japan); Yamamoto, Seiichi [Graduate School of Medicine, Nagoya University, 1-1-20 Daiko-Minami, Higashi-ku, Nagoya, Aichi 461-8673 (Japan); Izaki, Kenji [Japan Atomic Energy Agency, Muramatsu 4-33, Tokai-mura, Ibaraki 319-1194 (Japan); Kaneko, Junichi H.; Toui, Kohei; Tsubota, Youichi; Higuchi, Mikio [Graduate School of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628 (Japan)

    2014-11-11

    Scintillation detectors for alpha particles are often used in nuclear fuel facilities. Alpha particle detectors have also become important in the research field of radionuclide therapy using alpha emitters. ZnS(Ag) is the most often used scintillator for alpha particle detectors because its light output is high. However, the energy resolution of ZnS(Ag)-based scintillation detectors is poor because they are not transparent. A new ceramic sample, namely the cerium doped Gd{sub 2}Si{sub 2}O{sub 7} (GPS) scintillator, has been tested as alpha particle detector and its performances have been compared to that one of three different scintillating materials: ZnS(Ag), GAGG and a standard plastic scintillator. The different scintillating materials have been coupled to two different photodetectors, namely a photomultiplier tube (PMT) and a Silicon Photo-multiplier (Si-PM): the performances of each detection system have been compared. Promising results as far as the energy resolution performances (10% with PMT and 14% with Si-PM) have been obtained in the case of GPS and GAGG samples. Considering the quantum efficiencies of the photodetectors under test and their relation to the emission wavelength of the different scintillators, the best results were achieved coupling the GPS with the PMT and the GAGG with the Si-PM.

  20. Structured scintillators for X-ray imaging with micrometre resolution

    DEFF Research Database (Denmark)

    Olsen, Ulrik Lund; Schmidt, Søren; Poulsen, Henning Friis

    2009-01-01

    A 3D X-ray detector for imaging of 30–200 keV photons is described. It comprises a stack of semitransparent structured scintillators, where each scintillator is a regular array of waveguides in silicon, and with pores filled with CsI. The performance of the detector is described theoretically...

  1. Scintillator quenching effects observed in the AMS-1 TOF data

    Science.gov (United States)

    Esquivel, O.; Reyes, T.; Menchaca-Rocha, A.

    2001-05-01

    An analytical expression for the light output response of plastic scintillators as a function of the energy and the z identity of the incident ion is proposed. The effect of the δ rays is considered in the calculation of the scintillation efficiency. .

  2. Radiation damage studies on polystyrene-based scintillators

    International Nuclear Information System (INIS)

    Britvich, G.I.; Peresypkin, A.I.; Rykalin, V.I.

    1991-01-01

    The radiation resistance of polystyrene-based scintillators containing various scintillation dopes is reported. All samples were irradiated to 137 Cs gamma rays in air at room temperature. The examination of radiation resistance of about thirty fluorescence compounds has been made. The most radiation-hard fluores are X25, X31, 3HF and M3HF. 1 fig.; 6 tabs

  3. Systematic studies of small scintillators for new sampling calorimeter

    Indian Academy of Sciences (India)

    A new sampling calorimeter using very thin scintillators and the multi-pixel photon counter (MPPC) has been proposed to produce better position resolution for the international linear collider (ILC) experiment. As part of this R & D study, small plastic scintillators of different sizes, thickness and wrapping reflectors are ...

  4. Performance evaluation of GPS receiver under equatorial scintillation

    Directory of Open Access Journals (Sweden)

    Alison de Oliveira Moraes

    2009-06-01

    Full Text Available Equatorial scintillation is a phenomenon that occurs daily in the equatorial region after the sunset and affects radio signals that propagate through the ionosphere. Depending on the temporal and spatial situation, equatorial scintillation can represent a problem in the availability and precision of the Global Positioning System (GPS. This work is concerned with evaluating the impact of equatorial scintillation on the performance of GPS receivers. First, the morphology and statistical model of equatorial scintillation is briefly presented. A numerical model that generates synthetic scintillation data to simulate the effects of equatorial scintillation is presented. An overview of the main theoretical principles on GPS receivers is presented. The analytical models that describe the effects of scintillation at receiver level are presented and compared with numerical simulations using a radio software receiver and synthetic data. The results achieved by simulation agreed quite well with those predicted by the analytical models. The only exception is for links with extreme levels of scintillation and when weak signals are received.

  5. Some history of liquid scintillator development at Los Alamos

    International Nuclear Information System (INIS)

    Ott, D.G.

    1979-01-01

    The early developments in liquid scintillation counting made at Los Alamos Scientific Laboratory are reviewed. Most of the work was under the direction of F.N. Hayes and included counter development and applications as well as synthesis and chemistry of liquid scintillators

  6. Neutron-gamma discrimination of boron loaded plastic scintillator

    International Nuclear Information System (INIS)

    Wang Dong; He Bin; Zhang Quanhu; Wu Chuangxin; Luo Zhonghui

    2010-01-01

    Boron loaded plastic scintillator could detect both fast neutrons thanks to hydrogen and thermal neutrons thanks to 10B. Both reactions have large cross sections, and results in high detection efficiency of incident neutrons. However, similar with other organic scintillators, boron loaded plastic scintillator is sensitive to gamma rays and neutrons. So gamma rays must be rejected from neutrons using their different behavior in the scintillator. In the present research zero crossing method was used to test neutron-gamma discrimination of BC454 boron loaded plastic scintillator. There are three Gaussian peaks in the time spectrum, they are corresponding to gamma rays, fast neutrons and flow neutrons respectively. Conclusion could be made that BC454 could clear discriminate slow neutrons and gamma, but the discrimination performance turns poor as the neutrons' energy becomes larger. (authors)

  7. The use of energy information in plastic scintillator materia

    International Nuclear Information System (INIS)

    Ely, J.; Anderson, K.; Bates, D.; Kouzes, R.; Lo Presti, C.; Runkle, R.; Siciliano, E.; Weier, D.

    2008-01-01

    Plastic scintillator material is often used for gamma-ray detection in many applications due to its relatively good sensitivity and cost-effectiveness compared to other detection materials. However, due to the dominant Compton scattering interaction mechanism, full energy peaks are not observed in plastic scintillator spectra and isotopic identification is impossible. Typically plastic scintillator detectors are solely gross count detectors. In some safeguards and security applications, such as radiation portal monitors for vehicle screening, naturally-occurring radioactive material (NORM) often triggers radiation alarms and results in innocent or nuisance alarms. The limited energy information from plastic scintillator material can be used to discriminate the NORM from targeted materials and reduce the nuisance alarm rate. An overview of the utilization of the energy information from plastic scintillator material will be presented, with emphasis on the detection capabilities and potential limitations for safeguards and security applications. (author)

  8. The primary research for the development of the plastic scintillator

    International Nuclear Information System (INIS)

    Huang Bing; Li Wei; Yang Yan

    2014-01-01

    In this study, We adopted the theory of the polymerism to synthesize the scintillator, and we composed the scintillating material (2, 5-diphenyloxazole (PPO) and 1, 4-bis-(2-(5-phenyloxazolyl))-benzene (POPOP)) to the plastic (PMMA) successfully by the polymerization. We found that the scintillating material (PPO and POPOP) spread well into the plastic and the scintillator could be well seasoned with many different environmental condition through the spectroanalysis and the mechanical testing. We also found that the scintillator was well responded to the γ-ray testing which we did. According to the increase of the content for the PPO, the radiant efficiency of the γ-ray testing was increase too. (authors)

  9. Lanthanum halide scintillators: Properties and applications

    International Nuclear Information System (INIS)

    Iltis, Alain; Mayhugh, M.R.; Menge, P.; Rozsa, C.M.; Selles, O.; Solovyev, V.

    2006-01-01

    BrilLanCe[reg]-350 and BrilLanCe[reg]-380, Saint-Gobain Crystals' trade-names for LaCl 3 :Ce and LaBr 3 :Ce are being brought to market under exclusive license to Delft and Bern Universities. We are reporting the properties of crystals produced with commercially viable processes and find they match others' observations. These scintillators are bright (60,000 photons/MeV for LaBr 3 :Ce) and have very linear response, a combination that leads to very good energy resolution ( 3 :Ce). The materials also have fast scintillation decay times ( 3 :Ce). These excellent properties are retained at high temperature with only moderate light loss ( 138 and Ac 227 , the latter having been substantially reduced in recent processing. BrilLanCe[reg]-350 is now available in detectors up to 51 mm diameter while 38 mm diameter is available for BrilLanCe[reg]-380. Larger sizes are expected

  10. Buried plastic scintillator muon telescope (BATATA)

    International Nuclear Information System (INIS)

    Alfaro, R.; De Donato, C.; D'Olivo, J.C.; Guzman, A.; Medina-Tanco, G.; Moreno Barbosa, E.; Paic, G.; Patino Salazar, E.; Salazar Ibarguen, H.; Sanchez, F.A.; Supanitsky, A.D.; Valdes-Galicia, J.F.; Vargas Trevino, A.D.; Vergara Limon, S.; Villasenor, L.M.

    2010-01-01

    Muon telescopes have multiple applications in the area of cosmic ray research. We are currently building such a detector with the objective of comparing the ground penetration of muon vs. electron-gamma signals originated in cosmic ray showers. The detector is composed by a set of three parallel dual-layer scintillator planes, buried at fixed depths ranging from 120 to 600g/cm 2 . Each layer is 4m 2 and is composed by 49 rectangular strips of 4cmx2m, oriented at a 90 0 angle with respect to its companion layer, which gives an xy-coincidence pixel of 4x4cm 2 . The scintillators are MINOS extruded polystyrene strips, with an embedded Bicron BC92 wavelength shifting (WLS) fibers, of 1.5 mm in diameter. Light is collected by Hamamatsu H7546B multi-anode PMTs of 64 pixels. The front-end (FE) electronics works in counting mode and signals are transmitted to the surface DAQ stage using low-voltage differential signaling (LVDS). Any strip signal above threshold opens a GPS-tagged 2μs data collection window. Data, including signal and background, are acquired by a system of FPGA (Spartan 2E) boards and a single-board computer (TS7800).

  11. Tracking heliospheric disturbances by interplanetary scintillation

    Directory of Open Access Journals (Sweden)

    M. Tokumaru

    2006-01-01

    Full Text Available Coronal mass ejections are known as a solar cause of significant geospace disturbances, and a fuller elucidation of their physical properties and propagation dynamics is needed for space weather predictions. The scintillation of cosmic radio sources caused by turbulence in the solar wind (interplanetary scintillation; IPS serves as an effective ground-based method for monitoring disturbances in the heliosphere. We studied global properties of transient solar wind streams driven by CMEs using 327-MHz IPS observations of the Solar-Terrestrial Environment Laboratory (STEL of Nagoya University. In this study, we reconstructed three-dimensional features of the interplanetary (IP counterpart of the CME from the IPS data by applying the model fitting technique. As a result, loop-shaped density enhancements were deduced for some CME events, whereas shell-shaped high-density regions were observed for the other events. In addition, CME speeds were found to evolve significantly during the propagation between the corona and 1 AU.

  12. Buried plastic scintillator muon telescope (BATATA)

    Energy Technology Data Exchange (ETDEWEB)

    Alfaro, R. [Inst. de Fisica, Universidad Nacional Autonoma de Mexico, Mexico, D.F., C.P. 04510 (Mexico); De Donato, C.; D' Olivo, J.C.; Guzman, A.; Medina-Tanco, G. [Inst. de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Mexico, D.F., C.P. 04510 (Mexico); Moreno Barbosa, E. [Fac. de Ciencias Fisico Matematicas, Benemerita Universidad Autonoma de Puebla, Puebla (Mexico); Paic, G.; Patino Salazar, E. [Inst. de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Mexico, D.F., C.P. 04510 (Mexico); Salazar Ibarguen, H. [Fac. de Ciencias Fisico Matematicas, Benemerita Universidad Autonoma de Puebla, Puebla (Mexico); Sanchez, F.A., E-mail: federico.sanchez@nucleares.unam.m [Inst. de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Mexico, D.F., C.P. 04510 (Mexico); Supanitsky, A.D. [Inst. de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Mexico, D.F., C.P. 04510 (Mexico); Valdes-Galicia, J.F. [Inst. de Geofisica, Universidad Nacional Autonoma de Mexico, Mexico, D.F., C.P. 04510 (Mexico); Vargas Trevino, A.D.; Vergara Limon, S. [Fac. de Ciencias de la Electronica, Benemerita Universidad Autonoma de Puebla, Puebla (Mexico); Villasenor, L.M. [Inst. de Fisica y Matematicas, Universidad Michoacana de San Nicolas Hidalgo Morelia (Mexico); Observatorio Pierre Auger, Av. San Martin Norte 304 (5613) Malarguee, Prov. Mendoza (Argentina)

    2010-05-21

    Muon telescopes have multiple applications in the area of cosmic ray research. We are currently building such a detector with the objective of comparing the ground penetration of muon vs. electron-gamma signals originated in cosmic ray showers. The detector is composed by a set of three parallel dual-layer scintillator planes, buried at fixed depths ranging from 120 to 600g/cm{sup 2}. Each layer is 4m{sup 2} and is composed by 49 rectangular strips of 4cmx2m, oriented at a 90{sup 0} angle with respect to its companion layer, which gives an xy-coincidence pixel of 4x4cm{sup 2}. The scintillators are MINOS extruded polystyrene strips, with an embedded Bicron BC92 wavelength shifting (WLS) fibers, of 1.5 mm in diameter. Light is collected by Hamamatsu H7546B multi-anode PMTs of 64 pixels. The front-end (FE) electronics works in counting mode and signals are transmitted to the surface DAQ stage using low-voltage differential signaling (LVDS). Any strip signal above threshold opens a GPS-tagged 2{mu}s data collection window. Data, including signal and background, are acquired by a system of FPGA (Spartan 2E) boards and a single-board computer (TS7800).

  13. Pulse widths effects on scintillator saturation

    International Nuclear Information System (INIS)

    Kohler, D.A.; Chase, L.F.

    1978-08-01

    A test was performed over an extensive range of irrradiance (approximately five orders of magnitude) to see to what extent organic scintillators responded linearly with x-ray input. At the highest levels of irradiance achievable with the experimental configuration, but only for pulses in the region of 4.0 ns or wider, a degree of nonlinear response was observed for some of the scintillators. The data suggest that at levels below 1 mJ/cm 2 -ns it is safe to asume that for pulses 6.5 ns and shorter there is no significant level of nonlinearity to x rays with spectrum. For the cases of undoped NE111 and NE111 doped with 10 percent benzophenone, experimental conditions were such that it was possible to accumulate data significantly above the 1 mJ/cm 2 -ns level of irradiance. It is with these cases that a nonlinear response was observed. It is assumed that the same nonlinearity would have also been noticed had experimental conditions been such that equivalent levels of irradiance could have been achieved at the time the other samples were studied

  14. Semiconductor scintillator detector for gamma radiation

    International Nuclear Information System (INIS)

    Laan, F.T.V. der; Borges, V.; Zabadal, J.R.S.

    2015-01-01

    Nowadays the devices employed to evaluate individual radiation exposition are based on dosimetric films and thermoluminescent crystals, whose measurements must be processed in specific transductors. Hence, these devices carry out indirect measurements. Although a new generation of detectors based on semiconductors which are employed in EPD's (Electronic Personal Dosemeters) being yet available, it high producing costs and large dimensions prevents the application in personal dosimetry. Recent research works reports the development of new detection devices based on photovoltaic PIN diodes, which were successfully employed for detecting and monitoring exposition to X rays. In this work, we step forward by coupling a 2mm anthracene scintillator NE1, which converts the high energy radiation in visible light, generating a Strong signal which allows dispensing the use of photomultipliers. A low gain high performance amplifier and a digital acquisition device are employed to measure instantaneous and cumulative doses for energies ranging from X rays to Gamma radiation up to 2 MeV. One of the most important features of the PIN diode relies in the fact that it can be employed as a detector for ionization radiation, since it requires a small energy amount for releasing electrons. Since the photodiode does not amplify the corresponding photon current, it must be coupled to a low gain amplifier. Therefore, the new sensor works as a scintillator coupled with a photodiode PIN. Preliminary experiments are being performed with this sensor, showing good results for a wide range of energy spectrum. (author)

  15. Search for missing baryons through scintillation

    International Nuclear Information System (INIS)

    Habibi, F.

    2011-06-01

    Cool molecular hydrogen H 2 may be the ultimate possible constituent to the Milky-Way missing baryon. We describe a new way to search for such transparent matter in the Galactic disc and halo, through the diffractive and refractive effects on the light of background stars. By simulating the phase delay induced by a turbulent medium, we computed the corresponding illumination pattern on the earth for an extended source and a given passband. We show that in favorable cases, the light of a background star can be subjected to stochastic fluctuations of the order of a few percent at a characteristic time scale of a few minutes. We have searched for scintillation induced by molecular gas in visible dark nebulae as well as by hypothetical halo clumpuscules of cool molecular hydrogen (H 2 -He) during two nights, using the NTT telescope and the IR SOFI detector. Amongst a few thousands of monitored stars, we found one light-curve that is compatible with a strong scintillation effect through a turbulent structure in the B68 nebula. Because no candidate were found toward the SMC (Small Magellan Cloud), we are able to establish upper limits on the contribution of gas clumpuscules to the Galactic halo mass. We show that the short time-scale monitoring of a few 10 6 star*hour in the visible band with a >4 m telescope and a fast readout camera should allow one to interestingly quantify or constrain the contribution of turbulent molecular gas to the Galactic halo. (author)

  16. Data process of liquid scintillation counting

    International Nuclear Information System (INIS)

    Ishikawa, Hiroaki; Kuwajima, Susumu.

    1975-01-01

    The use of liquid scintillation counting system has been significantly spread because automatic sample changers and printers have recently come to be incorporated. However, the system will be systematized completely if automatic data processing and the sample preparation of radioactive materials to be measured are realized. Dry or wet oxidation method is applied to the sample preparation when radioactive materials are hard to dissolve into scintillator solution. Since these several years, the automatic sample combustion system, in which the dry oxidation is automated, has been rapidly spread and serves greatly to labor saving. Since the printers generally indicate only counted number, data processing system has been developed, and speeded up calculating process, which automatically corrects quenching of samples for obtaining the final radioactivity required. The data processing system is roughly divided into on-line and off-line systems according to whether computers are connected directly or indirectly, while its hardware is classified to input, calculating and output devices. Also, the calculation to determine sample activity by external standard method is explained. (Wakatsuki, Y.)

  17. Collimator trans-axial tomographic scintillation camera

    International Nuclear Information System (INIS)

    Jaszczak, Ronald J.

    1979-01-01

    An improved collimator is provided for a scintillation camera system that employs a detector head for transaxial tomographic scanning. One object of this invention is to significantly reduce the time required to obtain statistically significant data in radioisotope scanning using a scintillation camera. Another is to increase the rate of acceptance of radioactive events to contribute to the positional information obtainable from a radiation source of known strength without sacrificing spatial resolution. A further object is to reduce the necessary scanning time without degrading the images obtained. The collimator described has apertures defined by septa of different radiation transparency. The septa are aligned to provide greater radiation shielding from gamma radiation travelling within planes perpendicular to the cranial-caudal axis and less radiation shielding from gamma radiation travelling within other planes. Septa may also define apertures such that the collimator provides high spatial resolution of gamma rays traveling within planes perpendicular to the cranial-caudal axis and directed at the detector and high radiation sensitivity to gamma radiation travelling other planes and indicated at the detector. (LL)

  18. Liquid Scintillation Detectors for High Energy Neutrinos

    International Nuclear Information System (INIS)

    Smith, Stefanie N.; Learned, John G.

    2010-01-01

    Large open volume (not segmented) liquid scintillation detectors have been generally dedicated to low energy neutrino measurements, in the MeV energy region. We describe the potential employment of large detectors (>1 kiloton) for studies of higher energy neutrino interactions, such as cosmic rays and long-baseline experiments. When considering the physics potential of new large instruments the possibility of doing useful measurements with higher energy neutrino interactions has been overlooked. Here we take into account Fermat's principle, which states that the first light to reach each PMT will follow the shortest path between that PMT and the point of origin. We describe the geometry of this process, and the resulting wavefront, which we are calling the 'Fermat surface', and discuss methods of using this surface to extract directional track information and particle identification. This capability may be demonstrated in the new long-baseline neutrino beam from Jaeri accelerator to the KamLAND detector in Japan. Other exciting applications include the use of Hanohano as a movable long-baseline detector in this same beam, and LENA in Europe for future long-baseline neutrino beams from CERN. Also, this methodology opens up the question as to whether a large liquid scintillator detector should be given consideration for use in a future long-baseline experiment from Fermilab to the DUSEL underground laboratory at Homestake.

  19. Fractography of glass

    CERN Document Server

    Tressler, Richard

    1994-01-01

    As the first major reference on glass fractography, contributors to this volume offer a comprehensive account of the fracture of glass as well as various fracture surface topography Contributors discuss optical fibers, glass containers, and flatglass fractography In addition, papers explore fracture origins; the growth of the original flaws of defects; and macroscopic fracture patterns from which fracture patterns evolve This volume is complete with photographs and schematics

  20. Diamond turning of glass

    Energy Technology Data Exchange (ETDEWEB)

    Blackley, W.S.; Scattergood, R.O.

    1988-12-01

    A new research initiative will be undertaken to investigate the critical cutting depth concepts for single point diamond turning of brittle, amorphous materials. Inorganic glasses and a brittle, thermoset polymer (organic glass) are the principal candidate materials. Interrupted cutting tests similar to those done in earlier research are Ge and Si crystals will be made to obtain critical depth values as a function of machining parameters. The results will provide systematic data with which to assess machining performance on glasses and amorphous materials

  1. Glass to contain wastes

    International Nuclear Information System (INIS)

    Moncouyoux, M.; Jacquet-Francillon, M.

    1994-01-01

    Here are the tables and figures presented during the conference on the glass to confine high level radioactive wastes: definition, fabrication, storage and disposal. The composition of glasses are detailed, their properties and the vitrification proceeding. The behaviour of these glasses in front of water, irradiation and heat are shown. The characteristics of parcels are given according to the radiation protection rule, ALARA principle, the concept of multi-barriers and the geological stability

  2. Glass microspheres for brachytherapy

    International Nuclear Information System (INIS)

    Prado, Miguel O.; Prastalo, Simon; Blaumann, Herman; Longhino, Juan M.; Repetto Llamazares, A.H.V.

    2007-01-01

    We developed the capacity to produce glass microspheres containing in their structure one or more radioactive isotopes useful for brachytherapy. We studied the various facts related with their production: (Rare earth) alumino silicate glass making, glass characterization, microspheres production, nuclear activation through (n,γ) nuclear reactions, mechanical characterization before and after irradiation. Corrosion tests in simulated human plasma and mechanical properties characterization were done before and after irradiation. (author) [es

  3. Microstructured boron foil scintillating G-GEM detector for neutron imaging

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, Takeshi, E-mail: fujiwara-t@aist.go.jp [Research Institute for Measurement and Analytical Instrumentation, Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki (Japan); Center for Advanced Photonics, Neutron Beam Technology Team, RIKEN, Saitama (Japan); Bautista, Unico [Department of Nuclear Engineering and Management, The University of Tokyo, Tokyo (Japan); Philippine Nuclear Research Institute-Department of Science and Technology (PNRI-DOST), Commonwealth Avenue, Diliman, Quezon City (Philippines); Mitsuya, Yuki [Nuclear Professional School, The University of Tokyo, Tokai-mura, Naka-gun, Ibaraki (Japan); Takahashi, Hiroyuki [Department of Nuclear Engineering and Management, The University of Tokyo, Tokyo (Japan); Yamada, Norifumi L. [Neutron Science Laboratory, Institute of Material Structure Science, High Energy Accelerator Research Organization (KEK) (Japan); Otake, Yoshie; Taketani, Atsushi [Center for Advanced Photonics, Neutron Beam Technology Team, RIKEN, Saitama (Japan); Uesaka, Mitsuru [Nuclear Professional School, The University of Tokyo, Tokai-mura, Naka-gun, Ibaraki (Japan); Toyokawa, Hiroyuki [Research Institute for Measurement and Analytical Instrumentation, Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki (Japan)

    2016-12-01

    In this study, a new simple neutron imaging gaseous detector was successfully developed by combining a micro-structured {sup 10}B foil, a glass gas electron multiplier (G-GEM), and a mirror–lens–charge-coupled device (CCD)–camera system. The neutron imaging system consists of a chamber filled with Ar/CF{sub 4} scintillating gas mixture. Inside this system, the G-GEM is mounted for gas multiplication. The neutron detection in this system is based on the reaction between {sup 10}B and neutrons. A micro-structured {sup 10}B is developed to overcome the issue of low detection efficiency. Secondary electrons excite Ar/CF{sub 4} gas molecules, and high-yield visible photons are emitted from those excited gas molecules during the gas electron multiplication process in the G-GEM holes. These photons are easily detected by a mirror–lens–CCD–camera system. A neutron radiograph is then simply formed. We obtain the neutron images of different materials with a compact accelerator-driven neutron source. We confirm that the new scintillating G-GEM-based neutron imager works properly with low gamma ray sensitivity and exhibits a good performance as a new simple digital neutron imaging device.

  4. High Resolution Tracking Devices Based on Capillaries Filled with Liquid Scintillator

    CERN Multimedia

    Bonekamper, D; Vassiltchenko, V; Wolff, T

    2002-01-01

    %RD46 %title\\\\ \\\\The aim of the project is to develop high resolution tracking devices based on thin glass capillary arrays filled with liquid scintillator. This technique provides high hit densities and a position resolution better than 20 $\\mu$m. Further, their radiation hardness makes them superior to other types of tracking devices with comparable performance. Therefore, the technique is attractive for inner tracking in collider experiments, microvertex devices, or active targets for short-lived particle detection. High integration levels in the read-out based on the use of multi-pixel photon detectors and the possibility of optical multiplexing allow to reduce considerably the number of output channels, and, thus, the cost for the detector.\\\\ \\\\New optoelectronic devices have been developed and tested: the megapixel Electron Bombarded CCD (EBCCD), a high resolution image-detector having an outstanding capability of single photo-electron detection; the Vacuum Image Pipeline (VIP), a high-speed gateable pi...

  5. Development of a scintillation flow-cell detection system for environmental restoration and waste management applications

    International Nuclear Information System (INIS)

    DeVol, T.A.; Branton, S.D.; Fjeld, R.A.

    1996-01-01

    A flow-cell detection system was developed utilizing a coincidence circuit and tested with BaF 2 , CaF 2 :Eu and scintillating glass. The coincidence detection system reduced the background from ∼200 cps to ∼0.5 cps. The detection efficiencies for these cells ranged from 0.38 to 0.66 for 45 Ca beta particles (E max = 0.257 MeV) and from 0.45 to 0.52 for 233 U alpha particles (E α = 4.8 MeV). The minimum detectable activity was calculated for a 30 s count time and determined to be in the range of 1-2 Bq

  6. Silicate glasses. Chapter 1

    International Nuclear Information System (INIS)

    Lutze, W.

    1988-01-01

    This chapter is a survey of world-wide research and development efforts in nuclear waste glasses and its production technology. The principal glasses considered are silicate glasses which contain boron, i.e. borosilicate glass. A historical overview of waste form development programs in nine countries is followed by a summary of the design criteria for borosilicate glass compositions glass compositions. In the sections on glass properties the waste form is characterized in terms of potential alterations under the influence of heat, thermal gradients, radiation, aqueous solutions and combinations thereof. The topics are phase transformations, mechanical properties, radiation effects and chemical durability. The results from studies of volcanic glasses, as natural analogues for borosilicate nuclear waste glasses in order to verify predictions obtained from short-term tests in the laboratory, have been compiled in a special section on natural analogues. A special section on advanced vitrification techniques summarizes the various actual and potential processing schemes and describes the facilities. The literature has been considered until 1985. (author). 430 refs.; 68 figs.; 29 tabs

  7. Glass and vitrification

    International Nuclear Information System (INIS)

    Barton, J.L.; Vacher, R.; Moncouyoux, J.P.; Vernaz, E.

    1997-01-01

    Most glasses used as materials are oxides glasses that are produced by a quick quench of a liquid. Glasses are characterized by the absence of periodicity in the atomic arrangements, they do not have symmetries and do not present order over a long distance. This series of 4 short articles present: 1) the properties of glass and its industrial story, 2) the glass structure, 3) a forty years long story of glass as dies used to confine wastes and 4) the methodology used to study the behaviour of glass over very long periods of time. This methodology is based on 5 steps: 1) define and specify the material to study (the prediction of long term alteration of a material is nonsense unless you know well its initial properties), 2) identify all the alteration processes that are likely to happen, determine their kinetics and the influence of environmental parameters, 3) develop mathematical models in order to simulate long-term behaviour of glasses, 4) determine the release rates of the radionuclides confined in the glass, and 5) validate data and models, it is not possible to expect a complete validation of a model that will be extrapolated over tens of thousands of years, nevertheless some ways of validation can lead to a satisfactory level of confidence taking into account reasonable uncertainties. (A.C.)

  8. Characterization of glass and glass ceramic nuclear waste forms

    International Nuclear Information System (INIS)

    Lutze, W.; Borchardt, J.; De, A.K.

    1979-01-01

    Characteristics of solidified nuclear waste forms, glass and glass ceramic compositions and the properties (composition, thermal stability, crystallization, phase behavior, chemical stability, mechanical stability, and radiation effects) of glasses and glass ceramics are discussed. The preparation of glass ceramics may be an optional step for proposed vitrification plants if tailored glasses are used. Glass ceramics exhibit some improved properties with respect to glasses. The overall leach resistance is similar to that of glasses. An increased leach resistance may become effective for single radionuclides being hosted in highly insoluble crystal phases mainly when higher melting temperatures are applicable in order to get more leach resistant residual glass phases. The development of glass ceramic is going on. The technological feasibility is still to be demonstrated. The potential gain of stability when using glass ceramics qualifies the material as an alternative nuclear waste form

  9. Calibration of a liquid scintillation counter for alpha, beta and Cerenkov counting

    International Nuclear Information System (INIS)

    Scarpitta, S.C.; Fisenne, I.M.

    1996-07-01

    Calibration data are presented for 25 radionuclides that were individually measured in a Packard Tri-Carb 2250CA liquid scintillation (LS) counter by both conventional and Cerenkov detection techniques. The relationships and regression data between the quench indicating parameters and the LS counting efficiencies were determined using microliter amounts of tracer added to low 40 K borosilicate glass vials containing 15 mL of Insta-Gel XF scintillation cocktail. Using 40 K, the detection efficiencies were linear over a three order of magnitude range (10 - 10,000 mBq) in beta activity for both LS and Cerenkov counting. The Cerenkov counting efficiency (CCE) increased linearly (42% per MeV) from 0.30 to 2.0 MeV, whereas the LS efficiency was >90% for betas with energy in excess of 0.30 MeV. The CCE was 20 - 50% less than the LS counting efficiency for beta particles with maximum energies in excess of 1 MeV. Based on replicate background measurements, the lower limit of detection (LLD) for a 1-h count at the 95% confidence level, using water as a solvent, was 0.024 counts sec- -1 and 0.028 counts sec-1 for plastic and glass vials, respectively. The LLD for a 1-h-count ranged from 46 to 56 mBq (2.8 - 3.4 dpm) for both Cerenkov and conventional LS counting. This assumes: (1) a 100% counting efficiency, (2) a 50% yield of the nuclide of interest, (3) a 1-h measurement time using low background plastic vials, and (4) a 0-50 keV region of interest. The LLD is reduced an order of magnitude when the yield recovery exceeds 90% and a lower background region is used (i.e., 100 - 500 keV alpha region of interest). Examples and applications of both Cerenkov and LS counting techniques are given in the text and appendices

  10. Scintillation densimeter for liquids and an isotopic conveyor weighers with plastic scintillator

    International Nuclear Information System (INIS)

    Makhaj, B.; Antonyak, V.; Plyater, Z.

    1979-01-01

    The method is described of the weighted material's mass measuring according to the results of the conveyor momentary load measurement derived from the attenuation of radiation in the transmission geometry, conveyor belt velocity measurement and digital processing of the signals from the measurement of the bouth values. In the measuring gage there are located: the point type gamma source of cesium-137 with 4 mCi capacity, the scintillation detector with plastic cylindric scintillator of 5 cm in diameter and with the length approximately equal to the width of the conveyor belt and also the tachometer-generator. The conveyor weighers described is intended for use with conveyor having belt; from 60 to 180 cm wide. The results are given of industrial exploitation of the instrument [ru

  11. Scintillation properties of transparent ceramic and single crystalline Nd:YAG scintillators

    International Nuclear Information System (INIS)

    Yanagida, Takayuki; Kamada, Kei; Fujimoto, Yutaka; Yokota, Yuui; Yoshikawa, Akira; Yagi, Hideki; Yanagitani, Takagimi

    2011-01-01

    Nd 0.1, 1.1, 2, 4, and 6 mol% doped YAG transparent ceramics are manufactured by the sintering method and their scintillation properties are compared with those of single crystalline Nd 1 mol% doped YAG grown by the micro-pulling down method. They show ∼80% transmittance at wavelengths longer than 300 nm and strong emission lines due to Nd 3+ 4f-4f emission in their radio-luminescence spectra. Among them, the single crystalline sample shows the highest light yield of 11,000 ph/MeV under γ-ray excitation and the second highest one is from Nd 1.1 mol% doped transparent ceramic, which shows 6000 ph/MeV. In these scintillators, dominant decay time constant is around 2-3 μs due to Nd 3+ 4f-4f transitions.

  12. Scintillation properties of transparent ceramic and single crystalline Nd:YAG scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Yanagida, Takayuki, E-mail: t_yanagi@tagen.tohoku.ac.j [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Kamada, Kei; Fujimoto, Yutaka; Yokota, Yuui [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Yoshikawa, Akira [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); New Industry Creation Hatchery Center (NICHe), Tohoku University, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai 980-8579 (Japan); Yagi, Hideki; Yanagitani, Takagimi [Konoshima Chemical Co., Ltd., 80 Kouda, Takuma, Mitoyo-gun, Kagawa 769-1103 (Japan)

    2011-03-01

    Nd 0.1, 1.1, 2, 4, and 6 mol% doped YAG transparent ceramics are manufactured by the sintering method and their scintillation properties are compared with those of single crystalline Nd 1 mol% doped YAG grown by the micro-pulling down method. They show {approx}80% transmittance at wavelengths longer than 300 nm and strong emission lines due to Nd{sup 3+} 4f-4f emission in their radio-luminescence spectra. Among them, the single crystalline sample shows the highest light yield of 11,000 ph/MeV under {gamma}-ray excitation and the second highest one is from Nd 1.1 mol% doped transparent ceramic, which shows 6000 ph/MeV. In these scintillators, dominant decay time constant is around 2-3 {mu}s due to Nd{sup 3+} 4f-4f transitions.

  13. Development of scintillation materials for medical imaging and other applications

    International Nuclear Information System (INIS)

    Melcher, C. L.

    2013-01-01

    Scintillation materials that produce pulses of visible light in response to the absorption of energetic photons, neutrons, and charged particles, are widely used in various applications that require the detection of radiation. The discovery and development of new scintillators has accelerated in recent years, due in large part to their importance in medical imaging as well as in security and high energy physics applications. Better understanding of fundamental scintillation mechanisms as well as the roles played by defects and impurities have aided the development of new high performance scintillators for both gamma-ray and neutron detection. Although single crystals continue to dominate gamma-ray based imaging techniques, composite materials and transparent optical ceramics potentially offer advantages in terms of both synthesis processes and scintillation performance. A number of promising scintillator candidates have been identified during the last few years, and several are currently being actively developed for commercial production. Purification and control of raw materials and cost effective crystal growth processes can present significant challenges to the development of practical new scintillation materials.

  14. Cerium doped lanthanum halides: fast scintillators for medical imaging

    International Nuclear Information System (INIS)

    Selles, O.

    2006-12-01

    This work is dedicated to two recently discovered scintillating crystals: cerium doped lanthanum halides (LaCl 3 :Ce 3+ and LaBr 3 :Ce 3+ ).These scintillators exhibit interesting properties for gamma detection, more particularly in the field of medical imaging: a short decay time, a high light yield and an excellent energy resolution. The strong hygroscopicity of these materials requires adapting the usual experimental methods for determining physico-chemical properties. Once determined, these can be used for the development of the industrial manufacturing process of the crystals. A proper comprehension of the scintillation mechanism and of the effect of defects within the material lead to new possible ways for optimizing the scintillator performance. Therefore, different techniques are used (EPR, radioluminescence, laser excitation, thermally stimulated luminescence). Alongside Ce 3+ ions, self-trapped excitons are involved in the scintillation mechanism. Their nature and their role are detailed. The knowledge of the different processes involved in the scintillation mechanism leads to the prediction of the effect of temperature and doping level on the performance of the scintillator. A mechanism is proposed to explain the thermally stimulated luminescence processes that cause slow components in the light emission and a loss of light yield. Eventually the study of afterglow reveals a charge transfer to deep traps involved in the high temperature thermally stimulated luminescence. (author)

  15. Study of the correlation of scintillation decay and emission wavelength

    International Nuclear Information System (INIS)

    Yanagida, Takayuki; Fujimoto, Yutaka; Yamaji, Akihiro; Kawaguchi, Noriaki; Kamada, Kei; Totsuka, Daisuke; Fukuda, Kentaro; Yamanoi, Kohei; Nishi, Ryosuke; Kurosawa, Shunsuke; Shimizu, Toshihiko; Sarukura, Nobuhiko

    2013-01-01

    In photoluminescence which directly excites the emission center of phosphor material is known to have a correlation between the emission wavelength and the decay time based on quantum mechanics. In scintillation phenomenon, host lattice of the material is first excited by ionizing radiation and then the excitation energy is transferred to emission centers. For the first time, we investigated the correlation between the scintillation decay and the emission wavelength by using pulse X-ray equipped streak camera system which could observe time and wavelength resolved scintillation phenomenon. Investigated materials were Ce 3+ , Pr 3+ and Nd 3+ doped oxides and fluorides which all showed 5d-4f transition based emission. As a result, we obtained the relation that τ (scintillation decay time) was proportional to the λ 2.15 (emission wavelength). -- Highlights: ► The correlation between emission wavelength and scintillation decay time is investigated. ► Photoluminescence decay times are also evaluated and compared with scintillation decay times. ► It is proved the relaxation process in emission center is dominant even in scintillation decay

  16. Relaxations in spin glasses: Similarities and differences from ordinary glasses

    International Nuclear Information System (INIS)

    Ngai, K.L.; Rajagopal, A.K.; Huang, C.Y.

    1984-01-01

    Relaxation phenomena have become a major concern in the physics of spin glasses. There are certain resemblances of these relaxation properties to those of ordinary glasses. In this work, we compare the relaxation properties of spin glasses near the freezing temperature with those of glasses near the glass transition temperature. There are similarities between the two types of glasses. Moreover, the relaxation properties of many glasses and spin glasses are in conformity with two coupled ''universality'' relations predicted by a recent model of relaxations in condensed matter

  17. Evaluation of Structural Cellular Glass

    Science.gov (United States)

    Adams, M. A.; Zwissler, J. G.

    1984-01-01

    Preliminary design information presented. First report discusses state of structural-cellular-glass programs as of June 1979. Second report gives further details of program to develop improved cellular glasses and to characterize properties of glasses and commercially available materials.

  18. Monte Carlo simulation of electron thermalization in scintillator materials: Implications for scintillator nonproportionality

    Energy Technology Data Exchange (ETDEWEB)

    Prange, Micah P. [Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, USA; Xie, YuLong [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, USA; Campbell, Luke W. [National Security Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, USA; Gao, Fei [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, Michigan 48109, USA; Kerisit, Sebastien [Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, USA

    2017-12-21

    The lack of reliable quantitative estimates of the length and time scales associated with hot electron thermalization after a gamma-ray induced energy cascade obscures the interplay of various microscopic processes controlling scintillator performance and hampers the search for improved detector materials. We apply a detailed microscopic kinetic Monte Carlo model of the creation and subsequent thermalization of hot electrons produced by gamma irradiation of six important scintillating crystals to determine the spatial extent of the cloud of excitations produced by gamma rays and the time required for the cloud to thermalize with the host lattice. The main ingredients of the model are ensembles of microscopic track structures produced upon gamma excitation (including the energy distribution of the excited carriers), numerical estimates of electron-phonon scattering rates, and a calculated particle dispersion to relate the speed and energy of excited carriers. All these ingredients are based on first-principles density functional theory calculations of the electronic and phonon band structures of the materials. Details of the Monte Carlo model are presented along with results for thermalization time and distance distributions. These results are discussed in light of previous work. It is found that among the studied materials, calculated thermalization distances are positively correlated with measured nonproportionality. In the important class of halide scintillators, the particle dispersion is found to be more influential than the largest phonon energy in determining the thermalization distance.

  19. Comparison of plastic scintillating fibres and capillaries filled with liquid scintillator

    International Nuclear Information System (INIS)

    Cardini, A.; Cavasinni, V.; Girolamo, B. di; Flaminio, V.; Golovkin, S.V.; Gorin, A.M.; Kulichenko, A.V.; Kushnirenko, A.E.; Pyshev, A.I.; Manuilov, I.; Vasilchenko, V.G.

    1994-01-01

    A comparison is made between the light yield, attenuation length, time response and light propagation speed in plastic scintillating fibres (SCSF-38 and Kuraray-3HF) and quartz capillaries filled with liquid scintillator (LS) 1-methilnaphthalene (1MN) doped with new dyes R45 and R39. The inner diameter of capillaries and diameter of plastic fibres is 0.5 mm. The number of photoelectrons detected at the far end (2 m) was 2.9 for capillaries filled with 1MN+3 g/l R45 while it was 1.8 times smaller in the case of SCSF-38 and 3 times smaller in the case of Kuraray 3HF plastic fibres. Taking into account the quantum efficiency of the photodetector used these reduction factors became 3.0 and 2.0, respectively. Good attenuation length, high light output and also excellent radiation resistance of capillaries filled with LS (>60 Mrad, measured elsewhere) show that they are a very promising alternative to plastic scintillating fibres for future applications in tracking detectors and calorimeters. ((orig.))

  20. Surface preparation and coupling in plastic scintillator dosimetry

    International Nuclear Information System (INIS)

    Ayotte, Guylaine; Archambault, Louis; Gingras, Luc; Lacroix, Frederic; Beddar, A. Sam; Beaulieu, Luc

    2006-01-01

    One way to improve the performance of scintillation dosimeters is to increase the light-collection efficiency at the coupling interfaces of the detector system. We performed a detailed study of surface preparation of scintillating fibers and their coupling with clear optical fibers to minimize light loss and increase the amount of light collected. We analyzed fiber-surface polishing with aluminum oxide sheets, coating fibers with magnesium oxide, and the use of eight different coupling agents (air, three optical gels, an optical curing agent, ultraviolet light, cyanoacrylate glue, and acetone). We prepared 10 scintillating fiber and clear optical fiber light guide samples to test different coupling methods. To test the coupling, we first cut both the scintillating fiber and the clear optical fiber. Then, we cleaned and polished both ends of both fibers. Finally, we coupled the scintillating fiber with the clear optical fiber in either a polyethylene jacket or a V-grooved support depending on the coupling agent used. To produce more light, we used an ultraviolet lamp to stimulate scintillation. A typical series of similar couplings showed a standard deviation in light-collection efficiency of 10%. This can be explained by differences in the surface preparation quality and alignment of the scintillating fiber with the clear optical fiber. Absence of surface polishing reduced the light collection by approximately 40%, and application of magnesium oxide on the proximal end of the scintillating fiber increased the amount of light collected from the optical fiber by approximately 39%. Of the coupling agents, we obtained the best results using one of the optical gels. Because a large amount of the light produced inside a scintillator is usually lost, better light-collection efficiency will result in improved sensitivity

  1. Electric glass capturing markets

    Energy Technology Data Exchange (ETDEWEB)

    Wikman, K.; Wikstroem, T.

    1996-11-01

    Electric glass has found its place on the construction market. In public buildings, electrically heatable windows are becoming the leading option for large glass walls. Studies on detached houses, both new and renovated, show that floor heating combined with electrically heatable windowpanes is the best choice with respect to resident`s comfort. (orig.)

  2. Radioresistance of inorganic glasses

    International Nuclear Information System (INIS)

    Vorob'ev, A.A.; Zavadovskaya, E.K.; Fedorov, B.V.; Starodubtsev, V.A.

    1977-01-01

    Regularities are considered in the variation of properties of glass due to irradiations. On the basis of previous theoretical statements and experimental investigations, it is inferred that the irradiation resistance of glasses of the same type, synthesis conditions, content of impurities and amount of imperfections, is a function of the ''element-oxygen'' bond energy. The irradiation resistance depends on the number and the nature of glass structure imperfections. The averaged level of bonding forces is indicative of the glass formation temperature; the imperfections in glasses are formed in structure elements whose amount predominates as compared to the others. Electric charges which accumulate on the crack surface tend to increase its size, thus lessening even further the electric strength of the dielectric. The greater the irradiation time, the greater the number of irradiation imperfections causing a drop in the electric strength of glass. When choosing a glass for service in a radiation field, it is necessary to select those of a highest temperature of glass formation and with a least amount of imperfections

  3. Nucleation in ZBLAN glasses

    NARCIS (Netherlands)

    de Leede, G.L.A.; Waal, de H.

    1989-01-01

    Nucleation rates were detd. in a ZrF4-BaF2-NaF-LaF3-AlF3 glass (ZBLAN) using an optical method. The results were compared with a similar glass having a slightly different compn. The difference in the nucleation rate is explained by classical nucleation theory using calcd. free-energy differences

  4. Multi-view collimators for scintillation cameras

    International Nuclear Information System (INIS)

    Hatton, J.; Grenier, R.P.

    1982-01-01

    This patent specification describes a collimator for obtaining multiple images of a portion of a body with a scintillation camera comprises a body of radiation-impervious material defining two or more groups of channels each group comprising a plurality of parallel channels having axes intersecting the portion of the body being viewed on one side of the collimator and intersecting the input surface of the camera on the other side of the collimator to produce a single view of said body, a number of different such views of said body being provided by each of said groups of channels, each axis of each channel lying in a plane approximately perpendicular to the plane of the input surface of the camera and all of such planes containing said axes being approximately parallel to each other. (author)

  5. Collimated trans-axial tomographic scintillation camera

    International Nuclear Information System (INIS)

    1980-01-01

    The principal problem in trans-axial tomographic radioisotope scanning is the length of time required to obtain meaningful data. Patient movement and radioisotope migration during the scanning period can cause distortion of the image. The object of this invention is to reduce the scanning time without degrading the images obtained. A system is described in which a scintillation camera detector is moved to an orbit about the cranial-caudal axis relative to the patient. A collimator is used in which lead septa are arranged so as to admit gamma rays travelling perpendicular to this axis with high spatial resolution and those travelling in the direction of the axis with low spatial resolution, thus increasing the rate of acceptance of radioactive events to contribute to the positional information obtainable without sacrificing spatial resolution. (author)

  6. High-Z organic-scintillation solution

    International Nuclear Information System (INIS)

    Berlman, I.B.; Fluornoy, J.M.; Ashford, C.B.; Lyons, P.B.

    1983-01-01

    In the present experiment, an attempt is made to raise the average Z of a scintillation solution with as little attendant quenching as possible. Since high-Z atoms quench by means of a close encounter, such encounters are minimized by the use of alkyl groups substituted on the solvent, solute, and heavy atoms. The aromatic compound 1,2,4-trimethylbenzene (pseudocumene) is used as the solvent; 4,4''-di(5-tridecyl)-p-terphenyl (SC-180) as the solute; and tetrabutyltin as the high-Z material. To establish the validity of our ideas, various experiments have been performed with less protected solvents, and heavy atoms. These include benzene, toluene, p-terphenyl, bromobutane, and bromobenzene

  7. Elevator mechanism and method for scintillation detectors

    International Nuclear Information System (INIS)

    Frank, E.

    1975-01-01

    An elevator mechanism and method for raising and lowering radioactive samples through a shielded vertical counting chamber in a benchtop scintillation detector is described. The elevator mechanism adds little or nothing to the height of the detector by using an elongated flexible member such as a metal tape secured to the bottom of the elevator platform and extending downwardly through the counting chamber and its bottom shielding, where the tape is bent laterally for connection to a drive means. In the particular embodiment illustrated, the tape is bent laterally below the bottom shielding for the counting chamber, and then upwardly along or through one side of the shielding to a reel at the top of the shielding. The tape is wound onto the reel, and the reel is driven by a reversible motor which winds and unwinds the tape on the reel to raise and lower the elevator platform

  8. Homestake surface-underground scintillators: Initial results

    International Nuclear Information System (INIS)

    Cherry, M.L.; Corbato, S.; Daily, T.; Fenyves, E.J.; Kieda, D.; Lande, K.; Lee, C.K.

    1986-01-01

    The first 70 tons of the 140-ton Large Area Scintillation Detector (LASD) have been operating since Jan. 1985 at a depth of 4850 ft. (4200 m.w.e.) in the Homestake Gold Mine, Lead, S.D. A total of 4 x 10(4) high-energy muons (E sub mu is approx. 2.7 TeV at the surface) have been detected. The remainder of the detector is scheduled to be in operation by the Fall of 1985. In addition, a surface air shower array is under construction. The first 27 surface counters, spaced out over an area of 270' x 500', began running in June, 1985. The LASD performance, the potential of the combined shower array and underground muon experiment for detecting point sources, and the initial results of a search for periodic emission from Cygnus X-3 are discussed

  9. Borehole instrument for scintillation gamma spectrometer

    International Nuclear Information System (INIS)

    Sinitsyn, A.Ya.; Gabitov, R.M.

    1979-01-01

    Described are a schematic diagram and main specifications of a borehole instrument with autostabilization of energy scale measure by gamma bench-mark of 137 Cs, intended for the application in a logging gamma spectrometer to determine separately the concentrations of nature radioactive elements. The instrument may be connected to the KOBDFM-2 cable of 600 m length. It contains a scintillation counter for gamma quanta consisting of 30x70 mm NaI(Tl) crystal and a FEU-85 photoamplifier, an input conforming stage, a diagram of threshold pulse formation and regulating high-voltage generator. The borehole instrument has been proved under laboratory and field conditions at 10-40 deg C

  10. Radiation dosimeter built with plastic scintillator

    International Nuclear Information System (INIS)

    Barrea, R.A.

    1990-01-01

    Ionization chambers, with air equivalent plastic walls, have been used as the main x-ray dosimetry system, since its response permits to give the doses in Roentgens. From the commercial availability of plastic scintillators with air equivalent atomic number we have studied its use in x-ray dosimetry. This paper devised a system with which it is possible to reduce side effects that introduce errors and obtain a response independent of energy, from 20 to 180 KeV and it is also expected to behave that way for higher energies. The system has a high efficiency and precision for a wide dose range and it is then a new alternative to measure x-ray doses. Results obtained with a prototype, built ad-hog, make it possible its use with dosimetric purposes with several advantages over conventional. (author)

  11. Advances in semiconductor photodetectors for scintillators

    International Nuclear Information System (INIS)

    Farrell, R.; Olschner, F.; Shah, K.; Squillante, M.R.

    1997-01-01

    Semiconductors photodetectors have long seemed an attractive alternative for scintillation detection, but only recently have semiconductor photodiodes been proven suitable for some room temperature applications. There are many applications, however for which the performance of standard silicon p-i-n photodiodes is not satisfactory. This article reviews recent progress in two different families of novel semiconductor photodetectors: (1) wide bandgap compound semiconductors and (2) silicon photodetectors with enhanced signal-to-noise ratio. The compounds discussed and compared in this paper are HgI 2 , PbI 2 , InI, TlBr, TlBr 1-x I x and HgBr 1-x I x . The paper will also examine unity gain silicon drift diodes and avalanche photodiodes with maximum room temperature gain greater than 10000. (orig.)

  12. Upgradation of automatic liquid scintillation counting system

    International Nuclear Information System (INIS)

    Bhattacharya, Sadhana; Behere, Anita; Sonalkar, S.Y.; Vaidya, P.P.

    2001-01-01

    This paper describes the upgradation of Microprocessor based Automatic Liquid Scintillation Counting systems (MLSC). This system was developed in 1980's and subsequently many systems were manufactured and supplied to Environment Survey labs at various Nuclear Power Plants. Recently this system has been upgraded to a more sophisticated one by using PC add-on hardware and developing Windows based software. The software implements more intuitive graphical user interface and also enhances the features making it comparable with commercially available systems. It implements data processing using full spectrum analysis as against channel ratio method adopted earlier, improving the accuracy of the results. Also it facilitates qualitative as well as quantitative analysis of the β-spectrum. It is possible to analyze a sample containing an unknown β-source. (author)

  13. Scintillation light detectors with Neganov Luke amplification

    Science.gov (United States)

    Isaila, C.; Boslau, O.; Coppi, C.; Feilitzsch, F. v.; Goldstraß, P.; Jagemann, T.; Jochum, J.; Kemmer, J.; Lachenmaier, T.; Lanfranchi, J.-C.; Pahlke, A.; Potzel, W.; Rau, W.; Stark, M.; Wernicke, D.; Westphal, W.

    2006-04-01

    For an active suppression of the gamma and electron background in the Cryogenic Rare Event Search with Superconducting Thermometers (CRESST) dark matter experiment both phonons and scintillation light generated in a CaWO 4 crystal are detected simultaneously. The phonon signal is read out by a transition edge sensor (TES) on the CaWO 4 crystal. For light detection a silicon absorber equipped with a TES is employed. An efficient background discrimination requires very sensitive light detectors. The threshold can be improved by applying an electric field to the silicon crystal leading to an amplification of the thermal signal due to the Neganov-Luke effect. Measurements showing the improved sensitivity of the light detectors as well as future steps for reducing the observed extra noise will be presented.

  14. The red-shift of ultraviolet spectra and the relation to optical basicity of Ce-doped alkali rare-earth phosphate glasses

    Czech Academy of Sciences Publication Activity Database

    Chen, G.; Baccaro, S.; Nikl, Martin; Cecilia, A.; Du, Y. Y.; Mihóková, Eva

    2004-01-01

    Roč. 87, č. 7 (2004), s. 1378-1380 ISSN 0002-7820 R&D Projects: GA MŠk ME 621 Institutional research plan: CEZ:AV0Z1010914 Keywords : scintillation glass * Ce 3+ * luminescence * absorption Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.710, year: 2004

  15. Mechanical relaxation in glasses

    International Nuclear Information System (INIS)

    Hiki, Y.

    2004-01-01

    The basic properties of glasses and the characteristics of mechanical relaxation in glasses were briefly reviewed, and then our studies concerned were presented. Experimental methods adopted were viscosity, internal friction, ultrasonic attenuation, and Brillouin scattering measurements. The specimens used were several kinds of inorganic, organic, and metallic glasses. The measurements were mainly carried out from the room temperature up to the glass transition temperature, and the relaxation time was determined as a function of temperature. The 'double relaxation' composed of two Arrhenius-type relaxations was observed in many materials. In both relaxations, the 'compensation effect' showing a correlation of the pre-exponential factor and the activation energy was observed. These results were explained by considering the 'complex relaxation' due to cooperative motions of atoms or group of atoms. Values of activation energy near the glass transition determined by the various experimental methods were compared with each other

  16. Polymorphism in glasses

    International Nuclear Information System (INIS)

    Landa, L.M.; Nikolaeva, I.N.

    1979-01-01

    To defect phase interfaces and spasmodic properties change, the inhomogeneity and the second radiation effects in quartz glass, metamict phase and intermediate states have been investigated. When irradiating with fast neutrons the transformation of quartz glass - metamict phase occurs completely. The transformation is completed at 2x10 20 part./cm 2 dose. Thermal treatment not only increases the number of inhomogeneities but also results in increasing quartz glass density. Annealing transforms the metamict phase into common quartz glass at 1400 K. The fact, that thermal treatment results in the complete transformation of metamict phase into quartz glass, and the inverse transformation occurs only partially, is quite regular, as the metamict phase has a lesser entropy and is a more ordered state. It is shown that different amorphous phases of a chemical composition have different structures and properties, that there are interfaces between them, and the transformation from one state to another in microvolumes is realized spasmodically and requires expenditure of energy

  17. The theory of scintillation with applications in remote sensing

    CERN Document Server

    Rino, Charles

    2011-01-01

    "In order to truly understand data signals transmitted by satellite, one must understand scintillation theory in addition to well established theories of EM wave propagation and scattering. Scintillation is a nuisance in satellite EM communications, but it has stimulated numerous theoretical developments with science applications. This book not only presents a thorough theoretical explanation of scintillation, but it also offers a complete library of MATLAB codes that will reproduce the book examples. The library includes GPS coordinate manipulations, satellite orbit prediction, and earth mean magnetic field computations. The subect matter is for EM researchers; however, also theory is relevant to geophysics, acoustics, optics and astoronomy"--Provided by publisher.

  18. Quenching the scintillation in CF4 Cherenkov gas radiator

    International Nuclear Information System (INIS)

    Blake, T.; D'Ambrosio, C.; Easo, S.; Eisenhardt, S.; Fitzpatrick, C.; Forty, R.; Frei, C.; Gibson, V.; Gys, T.; Harnew, N.; Hunt, P.; Jones, C.R.; Lambert, R.W.; Matteuzzi, C.; Muheim, F.; Papanestis, A.; Perego, D.L.; Piedigrossi, D.; Plackett, R.; Powell, A.

    2015-01-01

    CF 4 is used as a Cherenkov gas radiator in one of the Ring Imaging Cherenkov detectors at the LHCb experiment at the CERN Large Hadron Collider. CF 4 is well known to have a high scintillation photon yield in the near and far VUV, UV and in the visible wavelength range. A large flux of scintillation photons in our photon detection acceptance between 200 and 800 nm could compromise the particle identification efficiency. We will show that this scintillation photon emission system can be effectively quenched, consistent with radiationless transitions, with no significant impact on the photons resulting from Cherenkov radiation

  19. Trigger and electronics issues for scintillating fiber tracking

    International Nuclear Information System (INIS)

    Baumbaugh, A.E.

    1994-01-01

    Scintillating Fiber technology has made great advances and has demonstrated great promise for high speed charged particle tracking and triggering. The small detector sizes and fast scintillation floors available, make them very promising for use at high luminosity experiments at today's and tomorrow's colliding and fixed target experiments where high rate capability is essential. This paper will discuss some of the system aspects which should be considered by anyone attempting to design a scintillating fiber tracking system and high speed tracking trigger. As the reader will see, seemingly simple decisions can have far reaching effects on overall system performance

  20. Method for measuring multiple scattering corrections between liquid scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Verbeke, J.M., E-mail: verbeke2@llnl.gov; Glenn, A.M., E-mail: glenn22@llnl.gov; Keefer, G.J., E-mail: keefer1@llnl.gov; Wurtz, R.E., E-mail: wurtz1@llnl.gov

    2016-07-21

    A time-of-flight method is proposed to experimentally quantify the fractions of neutrons scattering between scintillators. An array of scintillators is characterized in terms of crosstalk with this method by measuring a californium source, for different neutron energy thresholds. The spectral information recorded by the scintillators can be used to estimate the fractions of neutrons multiple scattering. With the help of a correction to Feynman's point model theory to account for multiple scattering, these fractions can in turn improve the mass reconstruction of fissile materials under investigation.

  1. Scintillation trigger system of the liquid argon neutrino detector

    International Nuclear Information System (INIS)

    Belikov, S.V.; Gurzhiev, S.N.; Gutnikov, Yu.E.; Denisov, A.G.; Kochetkov, V.I.; Matveev, M.Yu.; Mel'nikov, E.A.; Usachev, A.P.

    1994-01-01

    This paper presents the organization of the Scintillation Trigger System (STS) for the Liquid Argon Neutrino Detector of the Tagged Neutrino Facility. STS is aimed at the effective registration of the needed neutrino interaction type and production of a fast trigger signal with high time resolution. The fast analysis system of analog signal from the trigger scintillation planes for rejection of the trigger signals from background processes is described. Real scintillation trigger planes characteristics obtained on the basis of the presented data acquisition system are shown. 10 refs., 12 figs., 3 tabs

  2. Amplitude scintillations of ATS-6 radio signals in Lannion

    International Nuclear Information System (INIS)

    Cornec, J.P.

    1978-01-01

    The paper reports the results of a study of the scintillations observed on the amplitude of signal transmitted by the geostationary satellite ATS-6 on 40, 140, and 360 MHz, received at Lannion, France. Diffraction patterns caused bubbles of irregularities are studied and found to be mainly a summer phenomenon. It is concluded that there is a great increase in frequency occurrence and in the strength of scintillations from winter to summer, and that for the whole observation period, scintillation is mainly a nighttime pheonomenon, reaching its maximum activity at 2100-2200

  3. Design and Prototyping of a High Granularity Scintillator Calorimeter

    International Nuclear Information System (INIS)

    Zutshi, Vishnu

    2016-01-01

    A novel approach for constructing fine-granularity scintillator calorimeters, based on the concept of an Integrated Readout Layer (IRL) was developed. The IRL consists of a printed circuit board inside the detector which supports the directly-coupled scintillator tiles, connects to the surface-mount SiPMs and carries the necessary front-end electronics and signal/bias traces. Prototype IRLs using this concept were designed, prototyped and successfully exposed to test beams. Concepts and implementations of an IRL carried out with funds associated with this contract promise to result in the next generation of scintillator calorimeters.

  4. Ionization and scintillation of nuclear recoils in gaseous xenon

    Energy Technology Data Exchange (ETDEWEB)

    Renner, J., E-mail: jrenner@lbl.gov [Lawrence Berkeley National Laboratory (LBNL), 1 Cyclotron Road, Berkeley, CA 94720 (United States); Department of Physics, University of California, Berkeley, CA 94720 (United States); Gehman, V.M.; Goldschmidt, A.; Matis, H.S.; Miller, T.; Nakajima, Y.; Nygren, D.; Oliveira, C.A.B.; Shuman, D. [Lawrence Berkeley National Laboratory (LBNL), 1 Cyclotron Road, Berkeley, CA 94720 (United States); Álvarez, V. [Instituto de Física Corpuscular (IFIC), CSIC & Universitat de València, Calle Catedrático José Beltrán, 2, 46980 Paterna, Valencia (Spain); Borges, F.I.G. [Departamento de Fisica, Universidade de Coimbra, Rua Larga, 3004-516 Coimbra (Portugal); Cárcel, S. [Instituto de Física Corpuscular (IFIC), CSIC & Universitat de València, Calle Catedrático José Beltrán, 2, 46980 Paterna, Valencia (Spain); Castel, J.; Cebrián, S. [Laboratorio de Física Nuclear y Astropartículas, Universidad de Zaragoza, Calle Pedro Cerbuna 12, 50009 Zaragoza (Spain); Cervera, A. [Instituto de Física Corpuscular (IFIC), CSIC & Universitat de València, Calle Catedrático José Beltrán, 2, 46980 Paterna, Valencia (Spain); Conde, C.A.N. [Departamento de Fisica, Universidade de Coimbra, Rua Larga, 3004-516 Coimbra (Portugal); and others

    2015-09-01

    Ionization and scintillation produced by nuclear recoils in gaseous xenon at approximately 14 bar have been simultaneously observed in an electroluminescent time projection chamber. Neutrons from radioisotope α-Be neutron sources were used to induce xenon nuclear recoils, and the observed recoil spectra were compared to a detailed Monte Carlo employing estimated ionization and scintillation yields for nuclear recoils. The ability to discriminate between electronic and nuclear recoils using the ratio of ionization to primary scintillation is demonstrated. These results encourage further investigation on the use of xenon in the gas phase as a detector medium in dark matter direct detection experiments.

  5. Scintillating fibre detectors using position-sensitive photomultipliers

    International Nuclear Information System (INIS)

    Agoritsas, V.; Bergdolt, A.M.; Bing, O.; Bravar, A.; Ditta, J.; Drevenak, R.

    1995-01-01

    Scintillating fibre technology has made substantial progress, and has demonstrated great potential for fast tracking and triggering in high luminosity experiments in Particle Physics. Some recent issues of the RD-17 project at CERN are presented for fast and precise readout of scintillating fibre arrays, as well as for upgrade of position-sensitive photomultipliers. Excellent matching of the scintillating fibre and the position-sensitive photomultiplier, in particular in time characteristics, allowed to achieve excellent detector performances, typically a spatial resolution of ∼ 125 μm with time resolution better than 1 ns and detection efficiency greater than 95%. (author)10 refs.; 25 figs.; 1 tab

  6. Pulse discrimination of scintillator detector with artificial neural network

    International Nuclear Information System (INIS)

    Chen Man; Cai Yuerong; Yang Chaowen

    2006-01-01

    The features of signal for scintillator detectors are analyzed. According to the difference in the fraction of slow and fast scintillation for different particles, three intrinsic parameters (signal amplitude, integration of signal during rinsing, integration of frequency spectrum of signals in middle frequencies) of signals are defined. The artificial neural network method for pulse discrimination of scintillator detector is studied. The signals with different shapes under real condition are simulated with computer, and discriminated by the method. Results of discrimination are gotten and discussed. (authors)

  7. An integrated photosensor readout for gas proportional scintillation counters

    International Nuclear Information System (INIS)

    Lopes, J.A.M.; Santos, J.M.F. dos; Conde, C.A.N.

    1996-01-01

    A xenon gas proportional scintillation counter has been instrumented with a novel photosensor that replaces the photomultiplier tube normally used to detect the VUV secondary scintillation light. In this implementation, the collection grid of a planar gas proportional scintillation counter also functions as a multiwire proportional chamber to amplify and detect the photoelectrons emitted by a reflective CsI photocathode in direct contact with the xenon gas. This integrated concept combines greater simplicity, compactness, and ruggedness (no optical window is used) with low power consumption. An energy resolution of 12% was obtained for 59.6 keV x-rays

  8. Liquid scintillation spectrometer survey 155Eu liquid activity

    International Nuclear Information System (INIS)

    Zhang Zuhua

    2002-01-01

    In the countrywide contrasting survey of 155 Eu activity, 155 Eu liquid activity was determined for the first time through using liquid scintillation spectrometer survey 155 Eu β ray. In survey total uncertainty, determining activity accord with determining activity average value of all a wide variety of survey instrument entering into contrasting survey. But using liquid scintillation spectrometer survey, it is simple and save time, is beyond compare for other survey method. It indicate liquid scintillation spectrometer survey β-γ nuclide activity is effective as well

  9. Design and Prototyping of a High Granularity Scintillator Calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Zutshi, Vishnu [Northern Illinois Univ., DeKalb, IL (United States). Dept. of Physics

    2016-03-27

    A novel approach for constructing fine-granularity scintillator calorimeters, based on the concept of an Integrated Readout Layer (IRL) was developed. The IRL consists of a printed circuit board inside the detector which supports the directly-coupled scintillator tiles, connects to the surface-mount SiPMs and carries the necessary front-end electronics and signal/bias traces. Prototype IRLs using this concept were designed, prototyped and successfully exposed to test beams. Concepts and implementations of an IRL carried out with funds associated with this contract promise to result in the next generation of scintillator calorimeters.

  10. GAGG:ce single crystalline films: New perspective scintillators for electron detection in SEM

    International Nuclear Information System (INIS)

    Bok, Jan; Lalinský, Ondřej; Hanuš, Martin; Onderišinová, Zuzana; Kelar, Jakub; Kučera, Miroslav

    2016-01-01

    Single crystal scintillators are frequently used for electron detection in scanning electron microscopy (SEM). We report gadolinium aluminum gallium garnet (GAGG:Ce) single crystalline films as a new perspective scintillators for the SEM. For the first time, the epitaxial garnet films were used in a practical application: the GAGG:Ce scintillator was incorporated into a SEM scintillation electron detector and it showed improved image quality. In order to prove the GAGG:Ce quality accurately, the scintillation properties were examined using electron beam excitation and compared with frequently used scintillators in the SEM. The results demonstrate excellent emission efficiency of the GAGG:Ce single crystalline films together with their very fast scintillation decay useful for demanding SEM applications. - Highlights: • First practical application of epitaxial garnet films demonstrated in SEM. • Improved image quality of SEM equipped with GAGG:Ce single crystalline thin film scintillator. • Scintillation properties of GAGG:Ce films compared with standard bulk crystal scintillators.

  11. Glass leaching performance

    International Nuclear Information System (INIS)

    Chick, L.A.; Turcotte, R.P.

    1983-05-01

    Current understanding of the leaching performance of high-level nuclear waste (HLW) glass is summarized. The empirical model of waste glass leaching behavior developed shows that at high water flow rates the glass leach rate is kinetically limited to a maximum value. At intermediate water flow rates, leaching is limited by the solution concentration of silica and decreases with decreasing water flow rates. Release of soluble elements is controlled by silica dissolution because silica forms the binding network of the glass. At low water flow rates, mass loss rates reach values controlled by formation rates of alteration minerals, or by diffusion of dissolution products through essentially stagnant water. The parameters reviewed with respect to their quantifiable influence on leaching behavior include temperature, pH, leachant composition, glass composition, thermal history, and radiation. Of these, temperature is most important since the rate of mass loss approximately doubles with each 10 0 C increase in dilute solutions. The pH has small effects within the 4 to 10 range. The chemical composition of the leachant is most important with regard to its influence on alteration product formation. Glass composition exhibits the largest effects at high flow rates where improved glasses leach from ten to thirty times slower than glass 76 to 68. The effects of the thermal history (devitrification) of the glass are not likely to be significant. Radiation effects are important primarily in that radiolysis can potentially drive pH values to less than 4. Radiation damage to the glass causes insignificant changes in leaching performance

  12. Co-doping effects on luminescence and scintillation properties of Ce doped Lu3Al5O12 scintillator

    International Nuclear Information System (INIS)

    Kamada, Kei; Nikl, Martin; Kurosawa, Shunsuke; Beitlerova, Alena; Nagura, Aya; Shoji, Yasuhiro; Pejchal, Jan; Ohashi, Yuji; Yokota, Yuui; Yoshikawa, Akira

    2015-01-01

    The Mg, Ca, Sr and Ba 200 ppm co-doped Ce:Lu 3 Al 5 O 12 single crystals were prepared by micro pulling down method. Absorption and luminescence spectra were measured together with several other scintillation characteristics, namely the scintillation decay and light yield to reveal the effect of the co-doping. The scintillation decays were accelerated by both Mg and Ca co-dopants. The Mg co-doped samples showed the fastest decay and the highest light yield among the co-doped samples

  13. Thermal Conductivity of Foam Glass

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund; König, Jakob; Yue, Yuanzheng

    Due to the increased focus on energy savings and waste recycling foam glass materials have gained increased attention. The production process of foam glass is a potential low-cost recycle option for challenging waste, e.g. CRT glass and industrial waste (fly ash and slags). Foam glass is used...... as thermal insulating material in building and chemical industry. The large volume of gas (porosity 90 – 95%) is the main reason of the low thermal conductivity of the foam glass. If gases with lower thermal conductivity compared to air are entrapped in the glass melt, the derived foam glass will contain...... only closed pores and its overall thermal conductivity will be much lower than that of the foam glass with open pores. In this work we have prepared foam glass using different types of recycled glasses and different kinds of foaming agents. This enabled the formation of foam glasses having gas cells...

  14. Production of the Large-area Plastic Scintillator for Beta-ray Detection using Epoxy Resin

    International Nuclear Information System (INIS)

    Nam, Jong Soo; Choi, Yong Seok; Hong, Sang Bum; Seo, Bum Kyung; Moon, Jei Kwon; Choi, Jong Won

    2016-01-01

    In this study, we prepared a plastic scintillator whose manufacturing process is simple and can be freely shaped. A thin plate of the plastic scintillator was manufactured using epoxy resin as a polymer. The plastic scintillator was made by mixing epoxy resin and organic scintillators under various conditions. The optimal mixture ratio to prepare the plastic scintillator was derived from the above results. Using the derived results, we made the large-area plastic scintillator which can quickly measure the contamination site and evaluated characteristics of the large-area plastic scintillator in the laboratory. A thin plate of a plastic scintillator with a simple preparation process can be freely shaped using epoxy resin and organic scintillators such as PPO and POPOP. PPO emits scintillation of light in the ultraviolet range, and POPOP is a wave shifter for moving the wavelength responsible for the PMT. The mixture ratio of PPO and POPOP was determined using their emission spectra. The optimal weight percentage of PPO and POPOP in an organic scintillator was determined to be 0.2 wt%:0.01 wt%. Based on the above results, the large-area plastic scintillator of the window size of a typical pancake-type αβ surface contamination counter was prepared. We want to evaluate the characteristics of the large-area plastic scintillator. However, there were the difficulties in evaluating characteristics of the large-area plastic scintillator. The cross-sectional area of the large-area plastic scintillator is significantly different to PMT

  15. Production of the Large-area Plastic Scintillator for Beta-ray Detection using Epoxy Resin

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Jong Soo; Choi, Yong Seok; Hong, Sang Bum; Seo, Bum Kyung; Moon, Jei Kwon; Choi, Jong Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    In this study, we prepared a plastic scintillator whose manufacturing process is simple and can be freely shaped. A thin plate of the plastic scintillator was manufactured using epoxy resin as a polymer. The plastic scintillator was made by mixing epoxy resin and organic scintillators under various conditions. The optimal mixture ratio to prepare the plastic scintillator was derived from the above results. Using the derived results, we made the large-area plastic scintillator which can quickly measure the contamination site and evaluated characteristics of the large-area plastic scintillator in the laboratory. A thin plate of a plastic scintillator with a simple preparation process can be freely shaped using epoxy resin and organic scintillators such as PPO and POPOP. PPO emits scintillation of light in the ultraviolet range, and POPOP is a wave shifter for moving the wavelength responsible for the PMT. The mixture ratio of PPO and POPOP was determined using their emission spectra. The optimal weight percentage of PPO and POPOP in an organic scintillator was determined to be 0.2 wt%:0.01 wt%. Based on the above results, the large-area plastic scintillator of the window size of a typical pancake-type αβ surface contamination counter was prepared. We want to evaluate the characteristics of the large-area plastic scintillator. However, there were the difficulties in evaluating characteristics of the large-area plastic scintillator. The cross-sectional area of the large-area plastic scintillator is significantly different to PMT.

  16. Final LDRD report : advanced plastic scintillators for neutron detection.

    Energy Technology Data Exchange (ETDEWEB)

    Vance, Andrew L.; Mascarenhas, Nicholas; O' Bryan, Greg; Mrowka, Stanley

    2010-09-01

    This report summarizes the results of a one-year, feasibility-scale LDRD project that was conducted with the goal of developing new plastic scintillators capable of pulse shape discrimination (PSD) for neutron detection. Copolymers composed of matrix materials such as poly(methyl methacrylate) (PMMA) and blocks containing trans-stilbene (tSB) as the scintillator component were prepared and tested for gamma/neutron response. Block copolymer synthesis utilizing tSBMA proved unsuccessful so random copolymers containing up to 30% tSB were prepared. These copolymers were found to function as scintillators upon exposure to gamma radiation; however, they did not exhibit PSD when exposed to a neutron source. This project, while falling short of its ultimate goal, demonstrated the possible utility of single-component, undoped plastics as scintillators for applications that do not require PSD.

  17. Scintillation chamber of calorimeters for colliding beam detectors

    International Nuclear Information System (INIS)

    Jones, L.W.

    1983-01-01

    It is suggested that the scintillation chamber, a technique first discussed almost thirty years ago, might find application in colliding beam detector systems, in particular as a means of efficiently extracting detailed spatial and energy information from a sampling calorimeter

  18. A sensitivity analysis approach to optical parameters of scintillation detectors

    International Nuclear Information System (INIS)

    Ghal-Eh, N.; Koohi-Fayegh, R.

    2008-01-01

    In this study, an extended version of the Monte Carlo light transport code, PHOTRACK, has been used for a sensitivity analysis to estimate the importance of different wavelength-dependent parameters in the modelling of light collection process in scintillators

  19. A lens-coupled scintillation counter in cryogenic environment

    International Nuclear Information System (INIS)

    Stoykov, A; Scheuermann, R; Amato, A; Bartkowiak, M; Konter, J A; Rodriguez, J; Sedlak, K

    2011-01-01

    In this work we present an elegant solution for a scintillation counter to be integrated into a cryogenic system. Its distinguishing feature is the absence of a continuous light guide coupling the scintillation and the photodetector parts, operating at cryogenic and room temperatures respectively. The prototype detector consists of a plastic scintillator with glued-in wavelength-shifting fiber located inside a cryostat, a Geiger-mode Avalanche Photodiode (G-APD) outside the cryostat, and a lens system guiding the scintillation light re-emitted by the fiber to the G-APD through optical windows in the cryostat shields. With a 0.8 mm diameter multiclad fiber and a 1 mm active area G-APD the coupling efficiency of the 'lens light guide' is about 50%. A reliable performance of the detector down to 3 K is demonstrated.

  20. Production and thickness determination of thin plastic scintillator foils

    International Nuclear Information System (INIS)

    Xiao, B.; Lee, S.; Hagel, K.; Haddad, F.; Li, J.; Lou, Y.; Mdeiwayeh, N.; Tezkratt, R.; Wada, R.; Utley, D.; Natowitz, J.B.

    1995-01-01

    A method of making large thin plastic scintillator foils with good uniformity is presented. The use of Fourier Transform Infrared Spectroscopy (FTIR) to test the foil uniformity and to establish an empirical thickness calibration curve is described. ((orig.))