WorldWideScience

Sample records for glass mat technology

  1. Thermomechanical analyses of phenolic foam reinforced with glass fiber mat

    International Nuclear Information System (INIS)

    Zhou, Jintang; Yao, Zhengjun; Chen, Yongxin; Wei, Dongbo; Wu, Yibing

    2013-01-01

    Highlights: • Over 10% glass fiber was used to reinforce phenolic foam in the shape of glass fiber mat. • Nucleating agents were used together with glass fiber mat and improved tensile strength of phenolic foam by 215.6%. • Nucleating agents lead to a smaller bubble size of phenolic foam. • The glass transition temperature of phenolic foam remained unchanged during the reinforcement. - Abstract: In this paper, thermomechanical analysis (TMA) and dynamic mechanical analysis were employed to study the properties of phenolic foam reinforced with glass fiber mat. Unreinforced phenolic foam was taken as the control sample. Mechanical tests and scanning electron microscopy were performed to confirm the results of TMA. The results show that glass fiber mat reinforcement improves the mechanical performance of phenolic foam, and nucleating agents improve it further. Phenolic foam reinforced with glass fiber mat has a smaller thermal expansion coefficient compared with unreinforced foam. The storage modulus of the reinforced phenolic foam is also higher than that in unreinforced foam, whereas the loss modulus of the former is lower than that of the latter. The glass transition temperature of the phenolic foam matrix remains unchanged during the reinforcement

  2. Mechanical characterization of glass fiber (woven roving/chopped strand mat E-glass fiber) reinforced polyester composites

    Science.gov (United States)

    Bhaskar, V. Vijaya; Srinivas, Kolla

    2017-07-01

    Polymer reinforced composites have been replacing most of the engineering material and their applications become more and more day by day. Polymer composites have been analyzing from past thirty five years for their betterment for adapting more applications. This paper aims at the mechanical properties of polyester reinforced with glass fiber composites. The glass fiber is reinforced with polyester in two forms viz Woven Rovings (WRG) and Chopped Strand Mat (CSMG) E-glass fibers. The composites are fabricated by hand lay-up technique and the composites are cut as per ASTM Standard sizes for corresponding tests like flexural, compression and impact tests, so that flexural strength, compression strength, impact strength and inter laminar shear stress(ILSS) of polymer matrix composites are analyzed. From the tests and further calculations, the polyester composites reinforced with Chopped Strand Mat glass fiber have shown better performance against flexural load, compression load and impact load than that of Woven Roving glass fiber.

  3. Foam-mat drying technology: A review.

    Science.gov (United States)

    Hardy, Z; Jideani, V A

    2017-08-13

    This article reviews various aspects of foam-mat drying such as foam-mat drying processing technique, main additives used for foam-mat drying, foam-mat drying of liquid and solid foods, quality characteristics of foam-mat dried foods, and economic and technical benefits for employing foam-mat drying. Foam-mat drying process is an alternative method that allows the removal of water from liquid materials and pureed materials. In this drying process, a liquid material is converted into foam that is stable by being whipped after adding an edible foaming agent. The stable foam is then spread out in sheet or mat and dried by using hot air (40-90°C) at atmospheric pressure. Methyl cellulose (0.25-2%), egg white (3-20%), maltodextrin (0.5-05%), and gum Arabic (2-9%) are the commonly utilized additives for the foam-mat drying process at the given range, either combined together for their effectiveness or individual effect. The foam-mat drying process is suitable for heat sensitive, viscous, and sticky products that cannot be dried using other forms of drying methods such as spray drying because of the state of product. More interest has developed for foam-mat drying because of the simplicity, cost effectiveness, high speed drying, and improved product quality it provides.

  4. Glass science tutorial: Lecture No. 7, Waste glass technology for Hanford

    International Nuclear Information System (INIS)

    Kruger, A.A.

    1995-07-01

    This paper presents the details of the waste glass tutorial session that was held to promote knowledge of waste glass technology and how this can be used at the Hanford Reservation. Topics discussed include: glass properties; statistical approach to glass development; processing properties of nuclear waste glass; glass composition and the effects of composition on durability; model comparisons of free energy of hydration; LLW glass structure; glass crystallization; amorphous phase separation; corrosion of refractories and electrodes in waste glass melters; and glass formulation for maximum waste loading

  5. Ceramic fiber reinforced glass-ceramic matrix composite

    Science.gov (United States)

    Bansal, Narottam P. (Inventor)

    1993-01-01

    A slurry of BSAS glass powders is cast into tapes which are cut to predetermined sizes. Mats of continuous chemical vapor deposition (CVD)-SiC fibers are alternately stacked with these matrix tapes. This tape-mat stack is warm-pressed to produce a 'green' composite which is heated to burn out organic constituents. The remaining interim material is then hot-pressed to form a BSAS glass-ceramic fiber-reinforced composite.

  6. Micro-hybrid electric vehicle application of valve-regulated lead-acid batteries in absorbent glass mat technology: Testing a partial-state-of-charge operation strategy

    Energy Technology Data Exchange (ETDEWEB)

    Schaeck, S.; Stoermer, A.O.; Hockgeiger, E. [BMW Group, Powertrain Development, Energy Storage, Hufelandstrasse 4, 80788 Muenchen (Germany)

    2009-05-01

    The BMW Group has launched two micro-hybrid functions in high volume models in order to contribute to reduction of fuel consumption in modern passenger cars. Both the brake energy regeneration (BER) and the auto-start-stop function (ASSF) are based on the conventional 14 V vehicle electrical system and current series components with only little modifications. An intelligent control algorithm of the alternator enables recuperative charging in braking and coasting phases, known as BER. By switching off the internal combustion engine at a vehicle standstill the idling fuel consumption is effectively reduced by ASSF. By reason of economy and package a lead-acid battery is used as electrochemical energy storage device. The BMW Group assembles valve-regulated lead-acid (VRLA) batteries in absorbent glass mat (AGM) technology in the micro-hybrid electrical power system since special challenges arise for the batteries. By field data analysis a lower average state-of-charge (SOC) due to partial state-of-charge (PSOC) operation and a higher cycling rate due to BER and ASSF are confirmed in this article. Similar to a design of experiment (DOE) like method we present a long-term lab investigation. Two types of 90 Ah VRLA AGM batteries are operated with a test bench profile that simulates the micro-hybrid vehicle electrical system under varying conditions. The main attention of this lab testing is focused on capacity loss and charge acceptance over cycle life. These effects are put into context with periodically refresh charging the batteries in order to prevent accelerated battery aging due to hard sulfation. We demonstrate the positive effect of refresh chargings concerning preservation of battery charge acceptance. Furthermore, we observe moderate capacity loss over 90 full cycles both at 25 C and at 3 C battery temperature. (author)

  7. Micro-hybrid electric vehicle application of valve-regulated lead-acid batteries in absorbent glass mat technology: Testing a partial-state-of-charge operation strategy

    Science.gov (United States)

    Schaeck, S.; Stoermer, A. O.; Hockgeiger, E.

    The BMW Group has launched two micro-hybrid functions in high volume models in order to contribute to reduction of fuel consumption in modern passenger cars. Both the brake energy regeneration (BER) and the auto-start-stop function (ASSF) are based on the conventional 14 V vehicle electrical system and current series components with only little modifications. An intelligent control algorithm of the alternator enables recuperative charging in braking and coasting phases, known as BER. By switching off the internal combustion engine at a vehicle standstill the idling fuel consumption is effectively reduced by ASSF. By reason of economy and package a lead-acid battery is used as electrochemical energy storage device. The BMW Group assembles valve-regulated lead-acid (VRLA) batteries in absorbent glass mat (AGM) technology in the micro-hybrid electrical power system since special challenges arise for the batteries. By field data analysis a lower average state-of-charge (SOC) due to partial state-of-charge (PSOC) operation and a higher cycling rate due to BER and ASSF are confirmed in this article. Similar to a design of experiment (DOE) like method we present a long-term lab investigation. Two types of 90 Ah VRLA AGM batteries are operated with a test bench profile that simulates the micro-hybrid vehicle electrical system under varying conditions. The main attention of this lab testing is focused on capacity loss and charge acceptance over cycle life. These effects are put into context with periodically refresh charging the batteries in order to prevent accelerated battery aging due to hard sulfation. We demonstrate the positive effect of refresh chargings concerning preservation of battery charge acceptance. Furthermore, we observe moderate capacity loss over 90 full cycles both at 25 °C and at 3 °C battery temperature.

  8. SITE - DEMONSTRATION BULLETIN - MINERGY GLASS FURNACE TECHNOLOGY - MINERGY CORPORATION

    Science.gov (United States)

    The Glass Furnace Technology (GFT) was developed by Minergy Corporation (Minergy), of Waukesha, Wisconsin. Minergy originally developed vitrification technologies to process wastewater sludge into glass aggregate that could be sold as a commercial product. Minergy modified a st...

  9. MINERGY CORPORATION GLASS FURNACE TECHNOLOGY EVALUATION: INNOVATION TECHNOLOGY EVALUATION REPORT

    Science.gov (United States)

    This report presents performance and economic data for a U.S. Environmental Protection Agency (EPA) Superfund Innovative Technology Evaluation (SITE) Program demonstration of the Minergy Corporation (Minergy) Glass Furnace Technology (GFT). The demonstration evaluated the techno...

  10. Wearable technology smart watches to Google Glass for libraries

    CERN Document Server

    Bruno, Tom

    2015-01-01

    Emerging devices are placing powerful computing abilities into the wardrobes of consumers through wearable technology which combines fashion and function in new and exciting ways. The most recognizable of these emerging gadgets is Google Glass. Wearable Technology: Smart Watches to Google Glass for Libraries provides a comprehensive overview of the current wearable technology landscape, the types of devices and functionality available, the benefits and limitations of this type of technology, and how you can make use of it in yo

  11. Constitutive modelling of creep in a long fiber random glass mat thermoplastic composite

    Science.gov (United States)

    Dasappa, Prasad

    The primary objective of this proposed research is to characterize and model the creep behaviour of Glass Mat Thermoplastic (GMT) composites under thermo-mechanical loads. In addition, tensile testing has been performed to study the variability in mechanical properties. The thermo-physical properties of the polypropylene matrix including crystallinity level, transitions and the variation of the stiffness with temperature have also been determined. In this work, the creep of a long fibre GMT composite has been investigated for a relatively wide range of stresses from 5 to 80 MPa and temperatures from 25 to 90°C. The higher limit for stress is approximately 90% of the nominal tensile strength of the material. A Design of Experiments (ANOVA) statistical method was applied to determine the effects of stress and temperature in the random mat material which is known for wild experimental scatter. Two sets of creep tests were conducted. First, preliminary short-term creep tests consisting of 30 minutes creep followed by recovery were carried out over a wide range of stresses and temperatures. These tests were carried out to determine the linear viscoelastic region of the material. From these tests, the material was found to be linear viscoelastic up-to 20 MPa at room temperature and considerable non-linearities were observed with both stress and temperature. Using Time-Temperature superposition (TTS) a long term master curve for creep compliance for up-to 185 years at room temperature has been obtained. Further, viscoplastic strains were developed in these tests indicating the need for a non-linear viscoelastic viscoplastic constitutive model. The second set of creep tests was performed to develop a general non-linear viscoelastic viscoplastic constitutive model. Long term creep-recovery tests consisting of 1 day creep followed by recovery has been conducted over the stress range between 20 and 70 MPa at four temperatures: 25°C, 40°C, 60°C and 80°C. Findley's model

  12. PREFACE: International Seminar on Science and Technology of Glass Materials (ISSTGM-2009)

    Science.gov (United States)

    Veeraiah, N.

    2009-07-01

    The progress of the human race is linked with the development of new materials and also the values they acquired in the course of time. Though the art of glass forming has been known from Egyptian civilization, the understanding and use of these glasses for technological applications only became possible once the structural aspects were revealed by the inspiring theories proposed by William H Zachariasen. Glass and glass ceramics have become the essential materials for modern technology. The applications of these materials are wide and cover areas such as optical communication, laser host, innovative architecture, bio-medical, automobile and space technology. As we master the technology, we must also learn to use it judiciously and for the overall development of all in this global village. The International Seminar on Science and Technology of Glass Materials (ISSTGM-2009) is organized to bring together scientists, academia and industry in order to discuss various aspects of the technology and to inspire young scholars to take up fruitful research. Various topics such as glass formation and glass-ceramics, glass structure, applications of glass and glass ceramics in nuclear waste management, radiation dosimetry, electronics and information technology, biotechnological applications, bulk metallic glasses, glasses containing nano-particles, hybrid glasses, novel glasses and applications in photonics, Non-linear optics and energy generation were discussed. In this volume, 59 research articles covering 18 invited talks, 10 oral presentations and 31 poster presentations are included. We hope these will serve as a valuable resource to all the scientists and scholars working with glass materials. Acharya Nagarjuna University, established in 1976, is named after the great Buddhist preceptor and philosopher, Acharya Nagarjuna, who founded a university on the banks of river Krishna some centuries ago. The University is situated between Vijayawada and Guntur, the famous

  13. Wafer-level manufacturing technology of glass microlenses

    Science.gov (United States)

    Gossner, U.; Hoeftmann, T.; Wieland, R.; Hansch, W.

    2014-08-01

    In high-tech products, there is an increasing demand to integrate glass lenses into complex micro systems. Especially in the lighting industry LEDs and laser diodes used for automotive applications require encapsulated micro lenses. To enable low-cost production, manufacturing of micro lenses on wafer level base using a replication technology is a key technology. This requires accurate forming of thousands of lenses with a diameter of 1-2 mm on a 200 mm wafer compliant with mass production. The article will discuss the technical aspects of a lens manufacturing replication process and the challenges, which need to be solved: choice of an appropriate master for replication, thermally robust interlayer coating, choice of replica glass, bonding and separation procedure. A promising approach for the master substrate material is based on a lens structured high-quality glass wafer with high melting point covered by a coating layer of amorphous silicon or germanium. This layer serves as an interlayer for the glass bonding process. Low pressure chemical vapor deposition and plasma enhanced chemical vapor deposition processes allow a deposition of layer coatings with different hydrogen and doping content influencing their chemical and physical behavior. A time reduced molding process using a float glass enables the formation of high quality lenses while preserving the recyclability of the mother substrate. The challenge is the separation of the replica from the master mold. An overview of chemical methods based on optimized etching of coating layer through small channels will be given and the impact of glass etching on surface roughness is discussed.

  14. Google Glass - Dazzling Yet Brittle Technology

    Directory of Open Access Journals (Sweden)

    Saideep Koppaka

    2015-08-01

    Full Text Available In todays digital world everyones carrying a mobile phone a laptop and a tablet. All the devices mentioned above need to be carried by an individual in his bag or in his pocket. Google tried to bring up a wearable revolution with the introduction of Google glass. It is a wearable computer with an optical head mounted display that is worn like a pair of glasses. This paper will discuss the technology working benefits and concerns over the first wearable computer.

  15. Investigations on the Broadband Shielding Effectiveness of Metallized Glass Fiber

    National Research Council Canada - National Science Library

    Coburn, William

    1998-01-01

    ...) is an E-glass fiber metallized with Al and processed into a nonwoven mat. When formed into a mat, the MGFs lead to an effective sample conductivity, sigma eff, which is the parameter of interest for electromagnetic shielding in the RF region...

  16. Deep glass etched microring resonators based on silica-on-silicon technology

    DEFF Research Database (Denmark)

    Ou, Haiyan; Rottwitt, Karsten; Philipp, Hugh Taylor

    2006-01-01

    Microring resonators fabricated on silica-on-silicon technology using deep glass etching are demonstrated. The fabrication procedures are introduced and the transmission spectrum of a resonator is presented.......Microring resonators fabricated on silica-on-silicon technology using deep glass etching are demonstrated. The fabrication procedures are introduced and the transmission spectrum of a resonator is presented....

  17. Fabrication of nanocomposite mat through incorporating bioactive glass particles into gelatin/poly(ε-caprolactone) nanofibers by using Box–Behnken design

    Energy Technology Data Exchange (ETDEWEB)

    Gönen, Seza Özge, E-mail: gonens@itu.edu.tr; Erol Taygun, Melek; Aktürk, Ayşen; Küçükbayrak, Sadriye

    2016-10-01

    The current research was conducted to propose a nanocomposite material, which could be suitable to be used as a scaffold for bone tissue engineering applications. For this purpose, nanocomposite fibers of gelatin, poly(ε-caprolactone) (PCL), and bioactive glass were successfully fabricated via electrospinning process. In this context, response surface methodology based on a three-level, four-variable Box-Behnken design was adopted as an optimization tool to choose the most appropriate parameter settings to obtain the desired fiber diameter. The investigation, based on a second order polynomial model, focused on the analysis of the effect of both solution and processing parameters on the fiber diameter and its standard deviation. In optimum conditions (bioactive glass content of 7.5% (w/v), applied voltage of 25 kV, tip-to-collector distance of 12.5 cm, and flow rate of 1 mL/h), the fiber diameter was found to be 584 ± 337 nm which was in good agreement with the predicted value by the developed models (523 ± 290 nm). Analytical tools such as scanning electron microscopy, X-ray diffraction analysis, Fourier transform infrared spectroscopy, and differential thermal analyzer were used for further evaluation of the optimized nanocomposite mat. The overall results showed that nanocomposite scaffolds could be promising candidates for tissue engineering applications. - Highlights: • Nanocomposite fibers of gelatin, PCL, and bioactive glass were successfully fabricated. • Three-level, four-variable Box-Behnken design was adopted as an optimization tool. • The individual and interactive effects of the electrospinning parameters were determined. • Quadratic models were used to adjust the fiber diameter and its standard deviation.

  18. Fabrication of nanocomposite mat through incorporating bioactive glass particles into gelatin/poly(ε-caprolactone) nanofibers by using Box–Behnken design

    International Nuclear Information System (INIS)

    Gönen, Seza Özge; Erol Taygun, Melek; Aktürk, Ayşen; Küçükbayrak, Sadriye

    2016-01-01

    The current research was conducted to propose a nanocomposite material, which could be suitable to be used as a scaffold for bone tissue engineering applications. For this purpose, nanocomposite fibers of gelatin, poly(ε-caprolactone) (PCL), and bioactive glass were successfully fabricated via electrospinning process. In this context, response surface methodology based on a three-level, four-variable Box-Behnken design was adopted as an optimization tool to choose the most appropriate parameter settings to obtain the desired fiber diameter. The investigation, based on a second order polynomial model, focused on the analysis of the effect of both solution and processing parameters on the fiber diameter and its standard deviation. In optimum conditions (bioactive glass content of 7.5% (w/v), applied voltage of 25 kV, tip-to-collector distance of 12.5 cm, and flow rate of 1 mL/h), the fiber diameter was found to be 584 ± 337 nm which was in good agreement with the predicted value by the developed models (523 ± 290 nm). Analytical tools such as scanning electron microscopy, X-ray diffraction analysis, Fourier transform infrared spectroscopy, and differential thermal analyzer were used for further evaluation of the optimized nanocomposite mat. The overall results showed that nanocomposite scaffolds could be promising candidates for tissue engineering applications. - Highlights: • Nanocomposite fibers of gelatin, PCL, and bioactive glass were successfully fabricated. • Three-level, four-variable Box-Behnken design was adopted as an optimization tool. • The individual and interactive effects of the electrospinning parameters were determined. • Quadratic models were used to adjust the fiber diameter and its standard deviation.

  19. Fabrication of nanocomposite mat through incorporating bioactive glass particles into gelatin/poly(ε-caprolactone) nanofibers by using Box-Behnken design.

    Science.gov (United States)

    Gönen, Seza Özge; Erol Taygun, Melek; Aktürk, Ayşen; Küçükbayrak, Sadriye

    2016-10-01

    The current research was conducted to propose a nanocomposite material, which could be suitable to be used as a scaffold for bone tissue engineering applications. For this purpose, nanocomposite fibers of gelatin, poly(ε-caprolactone) (PCL), and bioactive glass were successfully fabricated via electrospinning process. In this context, response surface methodology based on a three-level, four-variable Box-Behnken design was adopted as an optimization tool to choose the most appropriate parameter settings to obtain the desired fiber diameter. The investigation, based on a second order polynomial model, focused on the analysis of the effect of both solution and processing parameters on the fiber diameter and its standard deviation. In optimum conditions (bioactive glass content of 7.5% (w/v), applied voltage of 25kV, tip-to-collector distance of 12.5cm, and flow rate of 1mL/h), the fiber diameter was found to be 584±337nm which was in good agreement with the predicted value by the developed models (523±290nm). Analytical tools such as scanning electron microscopy, X-ray diffraction analysis, Fourier transform infrared spectroscopy, and differential thermal analyzer were used for further evaluation of the optimized nanocomposite mat. The overall results showed that nanocomposite scaffolds could be promising candidates for tissue engineering applications. Copyright © 2016. Published by Elsevier B.V.

  20. Rediscovering ancient glass technologies through the examination of opacifier crystals

    Science.gov (United States)

    Lahlil, S.; Biron, I.; Galoisy, L.; Morin, G.

    2008-07-01

    The aim of the study is to understand how antimonate opacifying crystals were obtained throughout history. Two archaeological glass productions opacified with calcium and lead antimonates are studied in this paper, in order to rediscover ancient opaque glass technologies: Roman mosaic tesserae (1st cent. B.C. 4th cent. A.D.) and Nevers lampworking glass (18th cent. A.D.). The fine examination of crystalline phases and of the vitreous matrix is undertaken using various and complementary techniques. Results are compared with a modern reference production, for which the technological process is well known. We demonstrate that Ca-antimonate opacifiers in Roman mosaic tesserae, as well as in Nevers lampworking glass, were obtained by in situ crystallization. Nevertheless, Roman and Nevers glass would have undergone different firing processes. We propose that the addition of previously synthesized crystals or the use of “anime” could be the process used to obtain Pb-antimonate opacified glass, for both productions studied. We demonstrate that CaO, PbO and Sb2O3 concentrations in the bulk compositions and in the matrices, and their evolution with the crystallinity ratio, offer robust criteria for the distinction of the opacification process used. Also, the different crystalline structures help to provide information on the experimental conditions.

  1. Production of coloured glass-ceramics from incinerator ash using thermal plasma technology.

    Science.gov (United States)

    Cheng, T W; Huang, M Z; Tzeng, C C; Cheng, K B; Ueng, T H

    2007-08-01

    Incineration is a major treatment process for municipal solid waste in Taiwan. It is estimated that over 1.5 Mt of incinerator ash are produced annually. This study proposes using thermal plasma technology to treat incinerator ash. Sintered glass-ceramics were produced using quenched vitrified slag with colouring agents added. The experimental results showed that the major crystalline phases developed in the sintered glass-ceramics were gehlenite and wollastonite, but many other secondary phases also appeared depending on the colouring agents added. The physical/mechanical properties, chemical resistance and toxicity characteristic leaching procedure of the coloured glass-ceramics were satisfactory. The glass-ceramic products obtained from incinerator ash treated with thermal plasma technology have great potential for building applications.

  2. El tablero de bambú prensado, una nueva propuesta tecnológica The bamboo mat board, a new technological proposal

    Directory of Open Access Journals (Sweden)

    Lena Mora Rodriguez

    2008-01-01

    Full Text Available Este artículo presenta un estudio que propone el uso de bambú como una nueva tecnología de madera laminada. La tecnología usa tejidos de bambú dispuestos de manera ortogonal formando tableros que pueden reemplazar a la madera tradicional en ciertos elementos estructurales. Tableros de bambú prensados, hechos con Bambusa Vulgaris Schrab y diferentes presiones y temperaturas durante la fabricación, son caracterizados en el laboratorio mediante ensayos mecánicos.This paper presents a study that proposes the use of bamboo as a new laminated wood technology. The technology uses pressed fabrics of bamboo placed in orthogonal directions to build mat boards that can replace wood in certain structural elements. Bamboo mat boards, made with Bambusa Vulgaris Schrab using different temperatures and pressure during fabrication, are characterized in the lab by means of mechanical testing.

  3. Compression-recovery model of absorptive glass mat (AGM) separator guided by X-ray micro-computed tomography analysis

    Science.gov (United States)

    Kameswara Rao, P. V.; Rawal, Amit; Kumar, Vijay; Rajput, Krishn Gopal

    2017-10-01

    Absorptive glass mat (AGM) separators play a key role in enhancing the cycle life of the valve regulated lead acid (VRLA) batteries by maintaining the elastic characteristics under a defined level of compression force with the plates of the electrodes. Inevitably, there are inherent challenges to maintain the required level of compression characteristics of AGM separators during the charge and discharge of the battery. Herein, we report a three-dimensional (3D) analytical model for predicting the compression-recovery behavior of AGM separators by formulating a direct relationship with the constituent fiber and structural parameters. The analytical model of compression-recovery behavior of AGM separators has successfully included the fiber slippage criterion and internal friction losses. The presented work uses, for the first time, 3D data of fiber orientation from X-ray micro-computed tomography, for predicting the compression-recovery behavior of AGM separators. A comparison has been made between the theoretical and experimental results of compression-recovery behavior of AGM samples with defined fiber orientation characteristics. In general, the theory agreed reasonably well with the experimental results of AGM samples in both dry and wet states. Through theoretical modeling, fiber volume fraction was established as one of the key structural parameters that modulates the compression hysteresis of an AGM separator.

  4. Durability-Based Design Criteria for a Chopped-Glass-Fiber Automotive Structural Composite; TOPICAL

    International Nuclear Information System (INIS)

    Battiste, R.L.; Corum, J.M.; Ren, W.; Ruggles, M.B.

    1999-01-01

    This report provides recommended durability-based design criteria for a chopped-glass-fiber reinforced polymeric composite for automotive structural applications. The criteria closely follow the framework of an earlier criteria document for a continuous-strand-mat (CSM) glass-fiber reference composite. Together these design criteria demonstrate a framework that can be adapted for future random-glass-fiber composites for automotive structural applications

  5. Arctic Glass: Innovative Consumer Technology in Support of Arctic Research

    Science.gov (United States)

    Ruthkoski, T.

    2015-12-01

    The advancement of cyberinfrastructure on the North Slope of Alaska is drastically limited by location-specific conditions, including: unique geophysical features, remoteness of location, and harsh climate. The associated cost of maintaining this unique cyberinfrastructure also becomes a limiting factor. As a result, field experiments conducted in this region have historically been at a technological disadvantage. The Arctic Glass project explored a variety of scenarios where innovative consumer-grade technology was leveraged as a lightweight, rapidly deployable, sustainable, alternatives to traditional large-scale Arctic cyberinfrastructure installations. Google Glass, cloud computing services, Internet of Things (IoT) microcontrollers, miniature LIDAR, co2 sensors designed for HVAC systems, and portable network kits are several of the components field-tested at the Toolik Field Station as part of this project. Region-specific software was also developed, including a multi featured, voice controlled Google Glass application named "Arctic Glass". Additionally, real-time sensor monitoring and remote control capability was evaluated through the deployment of a small cluster of microcontroller devices. Network robustness was analyzed as the devices delivered streams of abiotic data to a web-based dashboard monitoring service in near real time. The same data was also uploaded synchronously by the devices to Amazon Web Services. A detailed overview of solutions deployed during the 2015 field season, results from experiments utilizing consumer sensors, and potential roles consumer technology could play in support of Arctic science will be discussed.

  6. Development of Self-Luminous Glass Tube (SLGT) Manufacturing Technology

    International Nuclear Information System (INIS)

    Kim, Kwang Sin; Kim, Kyeong Sook; Chung, Eun Su; Song, Kyu Min; Lee, Sook Kyung; Son, Soon Hwan

    2005-01-01

    Tritium produced from the Wolsong Tritium Removal Facility (WTRF) will be a radioactive waste when it is stored in the vault inside the WTRF, which requires maintenance cost and is a troublesome waste such that it cannot be sent to the radioactive waste disposal facility. However, when tritium is utilized it can be valuable resource for many applications. As a starting point to utilize tritium we tried to domesticate the selfluminous glass tube (SLGT) manufacturing technology. As a hydrogen isotope, tritium has similar chemical properties to hydrogen but slightly different physical properties. Due to its unstable nature, tritium emits beta rays, which are streams of electrons, with 0∼18.6 keV (5.7 keV in average) energies and 12.323 years of a half-life. The energy level of tritium is relatively low and the biological effects of tritium to the human body are not significant, which makes tritium a popular radioactive isotope for use in industries. The electrons in a beta ray collide with phosphor to produce light so that tritium sealed in phosphor coated glass tubes can make the tubes glow without an external supply of energy. To manufacture these SLGTs, 4 core technologies are needed: coating technology, tritium injection technology, laser sealing/cutting technology and tritium handling technology

  7. Talking Mats

    DEFF Research Database (Denmark)

    2012-01-01

    Talking Mats are visualizations in the handy size of a set of cards used to support interviews with people with mental disabilities.......Talking Mats are visualizations in the handy size of a set of cards used to support interviews with people with mental disabilities....

  8. Thermal Protection System Materials (TPSM): 3D MAT

    Data.gov (United States)

    National Aeronautics and Space Administration — The 3D MAT Project seeks to design and develop a game changing Woven Thermal Protection System (TPS) technology tailored to meet the needs of the Orion Multi-Purpose...

  9. Assembly and Succession of Iron Oxide Microbial Mat Communities in Acidic Geothermal Springs

    Directory of Open Access Journals (Sweden)

    Jacob P. Beam

    2016-02-01

    Full Text Available Biomineralized ferric oxide microbial mats are ubiquitous features on Earth, are common in hot springs of Yellowstone National Park (YNP, WY, USA, and form due to direct interaction between microbial and physicochemical processes. The overall goal of this study was to determine the contribution of different community members to the assembly and succession of acidic high-temperature Fe(III-oxide mat ecosystems. Spatial and temporal changes in Fe(III-oxide accretion and the abundance of relevant community members were monitored over 70 days using sterile glass microscope slides incubated in the outflow channels of two acidic geothermal springs (pH = 3 - 3.5; temperature = 68 - 75 °C in YNP. Hydrogenobaculum spp. were the most abundant taxon identified during early successional stages (4 - 40 d, and have been shown to oxidize arsenite, sulfide, and hydrogen coupled to oxygen reduction. Iron-oxidizing populations of Metallosphaera yellowstonensis were detected within 4 d, and reached steady-state levels within 14 - 30 d, corresponding to visible Fe(III-oxide accretion. Heterotrophic archaea colonized near 30 d, and emerged as the dominant functional guild after 70 d and in mature Fe(III-oxide mats (1 - 2 cm thick. First-order rate constants of Fe(III-oxide accretion ranged from 0.046 - 0.05 d-1, and in situ microelectrode measurements showed that the oxidation of Fe(II is limited by the diffusion of O2 into the Fe(III-oxide mat. The formation of microterracettes also implicated O2 as a major variable controlling microbial growth and subsequent mat morphology. The assembly and succession of Fe(III-oxide mat communities follows a repeatable pattern of colonization by lithoautotrophic organisms, and the subsequent growth of diverse organoheterotrophs. The unique geochemical signatures and micromorphology of extant biomineralized Fe(III-oxide mats are useful for understanding other Fe(II-oxidizing systems.

  10. Materials Characterisation of Glass/epoxy Composites - Focusing on Process Conditions

    DEFF Research Database (Denmark)

    Jakobsen, Johnny; Lyckegaard, Anders; Jensen, Erik Appel

    2013-01-01

    Predicting the behaviour of fibre reinforced polymer composites taking the process conditions into account involves advanced modelling techniques and an extensive materials characterisation. The materials characterisation of a chopped strand mat glass/epoxy composite has been the focus...

  11. Laboratory testing of glasses for Lockheed Idaho Technology Company: Final report

    International Nuclear Information System (INIS)

    Ellison, A.J.G.; Buck, E.C.; Dietz, N.L.; Ebert, W.L.; Luo, J.S.; Wolf, S.F.; Bates, J.K.

    1997-06-01

    Tests have been conducted at Argonne National Laboratory (ANL) in support of the efforts of Lockheed Idaho Technology Company (LITCO) to vitrify high-level waste calcines. Tests were conducted with three classes of LITCO glass formulations: Formula 127 (fluorine-bearing), Formula 532 (fluorine-free), and 630 series (both single- and mixed-alkali) glasses. The test matrices included, as appropriate, the Product Consistency Test Method B (PCT-B), the Materials Characterization Center Test 1 (MCC-1), and the Argonne vapor hydration test (VHT). Test durations ranged from 7 to 183 d. In 7-d PCT-Bs, normalized mass losses of major glass-forming elements for the LITCO glasses are similar to, or lower than, normalized mass losses obtained for other domestic candidate waste glasses. Formula 532 glasses form zeolite alteration phases relatively early in their reaction with water. The formation of those phases increased the dissolution rate. In contrast, the Formula 127 glass is highly durable and forms alteration phases only after prolonged exposure to water in tests with very high surface area to volume ratios; these alteration phases have a relatively small effect on the rate of glass corrosion. No alteration phases formed within the maximum test duration of 183 d in PCT-Bs with the 630 series glasses. The corrosion behavior of the mixed-alkali 630 series glasses is similar to that of 630 series glasses containing sodium alone. In VHTs, both single- and mixed-alkali glasses form zeolite phases that increase the rate of glass reaction. The original 630 series glasses and those based on a revised surrogate calcine formulation react at the same rate in PCT-Bs and form the same major alteration phases in VHTs

  12. MatLab Script and Functional Programming

    Science.gov (United States)

    Shaykhian, Gholam Ali

    2007-01-01

    MatLab Script and Functional Programming: MatLab is one of the most widely used very high level programming languages for scientific and engineering computations. It is very user-friendly and needs practically no formal programming knowledge. Presented here are MatLab programming aspects and not just the MatLab commands for scientists and engineers who do not have formal programming training and also have no significant time to spare for learning programming to solve their real world problems. Specifically provided are programs for visualization. The MatLab seminar covers the functional and script programming aspect of MatLab language. Specific expectations are: a) Recognize MatLab commands, script and function. b) Create, and run a MatLab function. c) Read, recognize, and describe MatLab syntax. d) Recognize decisions, loops and matrix operators. e) Evaluate scope among multiple files, and multiple functions within a file. f) Declare, define and use scalar variables, vectors and matrices.

  13. Phylogenetic stratigraphy in the Guerrero Negro hypersaline microbial mat.

    Science.gov (United States)

    Harris, J Kirk; Caporaso, J Gregory; Walker, Jeffrey J; Spear, John R; Gold, Nicholas J; Robertson, Charles E; Hugenholtz, Philip; Goodrich, Julia; McDonald, Daniel; Knights, Dan; Marshall, Paul; Tufo, Henry; Knight, Rob; Pace, Norman R

    2013-01-01

    The microbial mats of Guerrero Negro (GN), Baja California Sur, Mexico historically were considered a simple environment, dominated by cyanobacteria and sulfate-reducing bacteria. Culture-independent rRNA community profiling instead revealed these microbial mats as among the most phylogenetically diverse environments known. A preliminary molecular survey of the GN mat based on only ∼1500 small subunit rRNA gene sequences discovered several new phylum-level groups in the bacterial phylogenetic domain and many previously undetected lower-level taxa. We determined an additional ∼119,000 nearly full-length sequences and 28,000 >200 nucleotide 454 reads from a 10-layer depth profile of the GN mat. With this unprecedented coverage of long sequences from one environment, we confirm the mat is phylogenetically stratified, presumably corresponding to light and geochemical gradients throughout the depth of the mat. Previous shotgun metagenomic data from the same depth profile show the same stratified pattern and suggest that metagenome properties may be predictable from rRNA gene sequences. We verify previously identified novel lineages and identify new phylogenetic diversity at lower taxonomic levels, for example, thousands of operational taxonomic units at the family-genus levels differ considerably from known sequences. The new sequences populate parts of the bacterial phylogenetic tree that previously were poorly described, but indicate that any comprehensive survey of GN diversity has only begun. Finally, we show that taxonomic conclusions are generally congruent between Sanger and 454 sequencing technologies, with the taxonomic resolution achieved dependent on the abundance of reference sequences in the relevant region of the rRNA tree of life.

  14. Lava cave microbial communities within mats and secondary mineral deposits: implications for life detection on other planets.

    Science.gov (United States)

    Northup, D E; Melim, L A; Spilde, M N; Hathaway, J J M; Garcia, M G; Moya, M; Stone, F D; Boston, P J; Dapkevicius, M L N E; Riquelme, C

    2011-09-01

    Lava caves contain a wealth of yellow, white, pink, tan, and gold-colored microbial mats; but in addition to these clearly biological mats, there are many secondary mineral deposits that are nonbiological in appearance. Secondary mineral deposits examined include an amorphous copper-silicate deposit (Hawai'i) that is blue-green in color and contains reticulated and fuzzy filament morphologies. In the Azores, lava tubes contain iron-oxide formations, a soft ooze-like coating, and pink hexagons on basaltic glass, while gold-colored deposits are found in lava caves in New Mexico and Hawai'i. A combination of scanning electron microscopy (SEM) and molecular techniques was used to analyze these communities. Molecular analyses of the microbial mats and secondary mineral deposits revealed a community that contains 14 phyla of bacteria across three locations: the Azores, New Mexico, and Hawai'i. Similarities exist between bacterial phyla found in microbial mats and secondary minerals, but marked differences also occur, such as the lack of Actinobacteria in two-thirds of the secondary mineral deposits. The discovery that such deposits contain abundant life can help guide our detection of life on extraterrestrial bodies.

  15. Single-mode glass waveguide technology for optical interchip communication on board level

    Science.gov (United States)

    Brusberg, Lars; Neitz, Marcel; Schröder, Henning

    2012-01-01

    The large bandwidth demand in long-distance telecom networks lead to single-mode fiber interconnects as result of low dispersion, low loss and dense wavelength multiplexing possibilities. In contrast, multi-mode interconnects are suitable for much shorter lengths up to 300 meters and are promising for optical links between racks and on board level. Active optical cables based on multi-mode fiber links are at the market and research in multi-mode waveguide integration on board level is still going on. Compared to multi-mode, a single-mode waveguide has much more integration potential because of core diameters of around 20% of a multi-mode waveguide by a much larger bandwidth. But light coupling in single-mode waveguides is much more challenging because of lower coupling tolerances. Together with the silicon photonics technology, a single-mode waveguide technology on board-level will be the straight forward development goal for chip-to-chip optical interconnects integration. Such a hybrid packaging platform providing 3D optical single-mode links bridges the gap between novel photonic integrated circuits and the glass fiber based long-distance telecom networks. Following we introduce our 3D photonic packaging approach based on thin glass substrates with planar integrated optical single-mode waveguides for fiber-to-chip and chip-to-chip interconnects. This novel packaging approach merges micro-system packaging and glass integrated optics. It consists of a thin glass substrate with planar integrated singlemode waveguide circuits, optical mirrors and lenses providing an integration platform for photonic IC assembly and optical fiber interconnect. Thin glass is commercially available in panel and wafer formats and characterizes excellent optical and high-frequency properties. That makes it perfect for microsystem packaging. The paper presents recent results in single-mode waveguide technology on wafer level and waveguide characterization. Furthermore the integration in a

  16. Hydroponic root mats for wastewater treatment-a review.

    Science.gov (United States)

    Chen, Zhongbing; Cuervo, Diego Paredes; Müller, Jochen A; Wiessner, Arndt; Köser, Heinz; Vymazal, Jan; Kästner, Matthias; Kuschk, Peter

    2016-08-01

    Hydroponic root mats (HRMs) are ecotechnological wastewater treatment systems where aquatic vegetation forms buoyant filters by their dense interwoven roots and rhizomes, sometimes supported by rafts or other floating materials. A preferential hydraulic flow is created in the water zone between the plant root mat and the bottom of the treatment system. When the mat touches the bottom of the water body, such systems can also function as HRM filter; i.e. the hydraulic flow passes directly through the root zone. HRMs have been used for the treatment of various types of polluted water, including domestic wastewater; agricultural effluents; and polluted river, lake, stormwater and groundwater and even acid mine drainage. This article provides an overview on the concept of applying floating HRM and non-floating HRM filters for wastewater treatment. Exemplary performance data are presented, and the advantages and disadvantages of this technology are discussed in comparison to those of ponds, free-floating plant and soil-based constructed wetlands. Finally, suggestions are provided on the preferred scope of application of HRMs.

  17. Deconstructing three-dimensional (3D) structure of absorptive glass mat (AGM) separator to tailor pore dimensions and amplify electrolyte uptake

    Science.gov (United States)

    Rawal, Amit; Rao, P. V. Kameswara; Kumar, Vijay

    2018-04-01

    Absorptive glass mat (AGM) separator is a vital technical component in valve regulated lead acid (VRLA) batteries that can be tailored for a desired application. To selectively design and tailor the AGM separator, the intricate three-dimensional (3D) structure needs to be unraveled. Herein, a toolkit of 3D analytical models of pore size distribution and electrolyte uptake expressed via wicking characteristics of AGM separators under unconfined and confined states is presented. 3D data of fiber orientation distributions obtained previously through X-ray micro-computed tomography (microCT) analysis are used as key set of input parameters. The predictive ability of pore size distribution model is assessed through the commonly used experimental set-up that usually apply high level of compressive stresses. Further, the existing analytical model of wicking characteristics of AGM separators has been extended to account for 3D characteristics, and subsequently, compared with the experimental results. A good agreement between the theory and experiments pave the way to simulate the realistic charge-discharge modes of the battery by applying cyclic loading condition. A threshold criterion describing the invariant behavior of pore size and wicking characteristics in terms of maximum permissible limit of key structural parameters during charge-discharge mode of the battery has also been proposed.

  18. Glass Glimpsed

    DEFF Research Database (Denmark)

    Lock, Charles

    2015-01-01

    Glass in poetry as it reflects the viewer and as its power of reflection are both reduced and enhanced by technology.......Glass in poetry as it reflects the viewer and as its power of reflection are both reduced and enhanced by technology....

  19. Study into the feasibility of manufacturing liquid glass using resource-saving technology

    Directory of Open Access Journals (Sweden)

    Mizyuryaev Sergey

    2017-01-01

    Full Text Available The authors’ views on the problem of resource-saving in the production of building materials are outlined, with three main modes of resource-saving indicated: the use of cheap raw materials, a reduction in the production costs, and an increase in the efficiency of the produced materials and products. The research provides information on the production and use of liquid glass in industry, including the construction industry. The theoretical substantiation of the possibility of developing a resource-saving technology for the production of liquid glass for construction purposes is given. The work provides information on promising alternative raw material components - diatomite, natural rock and black ash, industrial waste. Their properties are given as well as the justification of their effective use as raw materials. The method of preparation of the components and their mixtures, the preparation of sodium silicate through roasting, and the identification of the suitability of the obtained product for the manufacture of efficient building materials are described. Conclusions are made in regards to the feasibility of producing liquid glass using resource-saving technology.

  20. Characterization and Modification of Electrospun Fiber Mats for Use in Composite Proton Exchange Membranes

    Science.gov (United States)

    Mannarino, Matthew Marchand

    . Post-spin thermal annealing was used to modify the fiber morphology, inter-fiber welding, and crystallinity within the fibers. Morphological changes, in-plane tensile response, friction coefficient, and wear rate were characterized as functions of the annealing temperature. The Young's moduli, yield stresses and toughnesses of the PA 6(3)T nonwoven mats improved by two- to ten-fold when annealed slightly above the glass transition temperature, but at the expense of mat porosity. The mechanical and tribological properties of the thermally annealed P A 6,6 fiber mats exhibited significant improvements through the Brill transition temperature, comparable to the improvements observed for amorphous P A 6(3)T electrospun mats annealed near the glass transition temperature. The wear rates for both polymer systems correlate with the yield properties of the mat, in accordance with a modified Ratner-Lancaster model. The variation in mechanical and tribological properties of the mats with increasing annealing temperature is consistent with the formation of fiber-to-fiber junctions and a mechanism of abrasive wear that involves the breakage of these junctions between fibers. A mechanically robust proton exchange membrane with high ionic conductivity and selectivity is an important component in many electrochemical energy devices such as fuel cells, batteries, and photovoltaics. The ability to control and improve independently the mechanical response, ionic conductivity, and selectivity properties of a membrane is highly desirable in the development of next generation electrochemical devices. In this thesis, the use of layer-by-layer (LbL) assembly of polyelectrolytes is used to generate three different polymer film morphologies on highly porous electrospun fiber mats: webbed, conformal coating, and pore-bridging films. Specifically, depending on whether a vacuum is applied to the backside of the mat or not, the spray-LbL assembly either fills the voids of the mat with the proton

  1. Properties and Clinical Application of Three Types of Dental Glass-Ceramics and Ceramics for CAD-CAM Technologies

    Science.gov (United States)

    Ritzberger, Christian; Apel, Elke; Höland, Wolfram; Peschke, Arnd; Rheinberger, Volker M.

    2010-01-01

    The main properties (mechanical, thermal and chemical) and clinical application for dental restoration are demonstrated for three types of glass-ceramics and sintered polycrystalline ceramic produced by Ivoclar Vivadent AG. Two types of glass-ceramics are derived from the leucite-type and the lithium disilicate-type. The third type of dental materials represents a ZrO2 ceramic. CAD/CAM technology is a procedure to manufacture dental ceramic restoration. Leucite-type glass-ceramics demonstrate high translucency, preferable optical/mechanical properties and an application as dental inlays, onlays and crowns. Based on an improvement of the mechanical parameters, specially the strength and toughness, the lithium disilicate glass-ceramics are used as crowns; applying a procedure to machine an intermediate product and producing the final glass-ceramic by an additional heat treatment. Small dental bridges of lithium disilicate glass-ceramic were fabricated using a molding technology. ZrO2 ceramics show high toughness and strength and were veneered with fluoroapatite glass-ceramic. Machining is possible with a porous intermediate product.

  2. MAT FOR LEPTOSPIROSIS DIAGNOSIS

    Directory of Open Access Journals (Sweden)

    Esti Rahardianingtyas.

    2014-06-01

    Full Text Available Leptospirosis is a disease caused by bacterial infection leptospira interrogans.Leptospira bacteria is a spiral bacterium with solid strands with two flagella periplasmik.Septicaemic phase patient samples taken from the blood and cerebrospinal fluid, whereassamples taken at phase immune extracted from urine. The diagnosis of leptospirosis occurdirectly or indirectly. Diagnosis is done by directly isolate and identify the causative agents ofthe agent. Diagnosis is done indirectly by detecting specific antibodies from the patient's body.Gold Standard of the diagnosis of leptospirosis is MAT. Mat made by reacting antibodies toleptospira antigen. Positive results seen with clump formed.Key words: Leptospirosis, Leptospirosis Diagnostic, MAT (Microscopic Agglutination Test Leptospirosis merupakan penyakit yang disebabkan karena infeksi bakteri leptospirainterrogans. Bakteri leptospira merupakan bakteri spiral dengan untaian yang padat dengan duaflagella periplasmik. Sampel pasien pada fase septicaemic diambil dari darah dan cairanserebrospinal, sedangkan sampel yang diambil pada fase immune diambil dari urine. Diagnosisleptospirosis dilakukan secara langsung maupun tidak langsung. Diagnosis secara langsungdilakukan dengan cara mengisolasi agen penyebab dan mengidentifikasi agen tersebut. Diagnosissecara tidak langsung dilakukan dengan cara mendeteksi antibodi spesiflk dari dalam tubuhpasien. Gold Standart dari diagnosis leptospirosis adalah MAT. Mat dilakukan dengan caramereaksikan antibodi dengan antigen leptospira. Hasil positif dilihat dengan terbentuk gumpalanagglutinasiKata kunci: Leptospirosis, Leptospira, Leptospirosis Diagnosis.

  3. Optimization of the contents of hollow glass microsphere and sodium hexametaphosphate for glass fiber vacuum insulation panel

    Science.gov (United States)

    Li, C. D.; Chen, Z. F.; Zhou, J. M.

    2016-07-01

    In this paper, various additive amounts of hollow glass microspheres (HGMs) and sodium hexametaphosphate (SHMP) powders were blended with flame attenuated glass wool (FAGW) to form hybrid core materials (HCMs) through the wet method. Among them, the SHMP was dissolved in the glass fiber suspension and coated on the surface of glass fibers while the HGMs were insoluble in the glass fiber suspension and filled in the fiber-fiber pores. The average pore diameter of the FAGW/HGM HCMs was 8-11 μm which was near the same as that of flame attenuated glass fiber mats (FAGMs, i.e., 10.5 µm). The tensile strength of the SHMP coated FAGMs was enhanced from 160 N/m to 370 N/m when SHMP content increased from 0 wt.% to 0.2 wt.%. By contrast, the tensile strength of the FAGW/HGM HCMs decreased from 160 N/m to 40 N/m when HGM content increased from 0 wt.% to 50 wt.%. Both the FAGW/HGM HCMs and SHMP coated FAGMs were vacuumed completely to form vacuum insulation panels (VIPs). The results showed that both the addition of SHMP and HGM led a slight increase in the thermal conductivity of the corresponding VIPs. To obtain a high-quality VIP, the optimal SHMP content and HGM content in glass fiber suspension was 0.12-0.2 wt.% and 0 wt.%.

  4. Social yoga mats: reinforcing synergy between physical and social activity

    DEFF Research Database (Denmark)

    Nagargoje, Arun; Sokoler, Tomas; Maybach, Karl

    2011-01-01

    This paper discusses our early research into the design space for digital technologies that extend the existing synergistic relationship between physical and social activity from fitness centers to the home. We focus on yoga activity for senior citizens and explore the concept of social yoga mats...

  5. Glass sealing

    Energy Technology Data Exchange (ETDEWEB)

    Brow, R.K.; Kovacic, L.; Chambers, R.S. [Sandia National Labs., Albuquerque, NM (United States)

    1996-04-01

    Hernetic glass sealing technologies developed for weapons component applications can be utilized for the design and manufacture of fuel cells. Design and processing of of a seal are optimized through an integrated approach based on glass composition research, finite element analysis, and sealing process definition. Glass sealing procedures are selected to accommodate the limits imposed by glass composition and predicted calculations.

  6. Matérn thinned Cox processes

    DEFF Research Database (Denmark)

    Andersen, Ina Trolle; Hahn, Ute

    2016-01-01

    and hard core behaviour can be achieved by applying a dependent Matérn thinning to a Cox process. An exact formula for the intensity of a Matérn thinned shot noise Cox process is derived from the Palm distribution. For the more general class of Matérn thinned Cox processes, formulae for the intensity...

  7. Matérn thinned Cox processes

    DEFF Research Database (Denmark)

    Andersen, Ina Trolle; Hahn, Ute

    of clustering and hard core behaviour can be achieved by applying a dependent Matérn thinning to a Cox process. An exact formula for the intensity of a Matérn thinned shot noise Cox process is derived from the Palm distribution. For the more general class of Matérn thinned Cox processes, formulae...

  8. Video-based self-review: comparing Google Glass and GoPro technologies.

    Science.gov (United States)

    Paro, John A M; Nazareli, Rahim; Gurjala, Anadev; Berger, Aaron; Lee, Gordon K

    2015-05-01

    Professionals in a variety of specialties use video-based review as a method of constant self-evaluation. We believe critical self-reflection will allow a surgical trainee to identify methods for improvement throughout residency and beyond. We have used 2 new popular technologies to evaluate their role in accomplishing the previously mentioned objectives. Our group investigated Google Glass and GoPro cameras. Medical students, residents, and faculty were invited to wear each of the devices during a scheduled operation. After the case, each participant was asked to comment on a number of features of the device including comfort, level of distraction/interference with operating, ease of video acquisition, and battery life. Software and hardware specifications were compiled and compared by the authors. A "proof-of-concept" was also performed using the video-conferencing abilities of Google Glass to perform a simulated flap check. The technical specifications of the 2 cameras favor GoPro over Google Glass. Glass records in 720p with 5-MP still shots, and the GoPro records in 1080p with 12-MP still shots. Our tests of battery life showed more than 2 hours of continuous video with GoPro, and less than 1 hour for Glass. Favorable features of Google Glass included comfort and relative ease of use; they could not comfortably wear loupes while operating, and would have preferred longer hands-free video recording. The GoPro was slightly more cumbersome and required a nonsterile team member to activate all pictures or video; however, loupes could be worn. Google Glass was successfully used in the hospital for a simulated flap check, with overall audio and video being transmitted--fine detail was lost, however. There are benefits and limitations to each of the devices tested. Google Glass is in its infancy and may gain a larger intraoperative role in the future. We plan to use Glass as a way for trainees to easily acquire intraoperative footage as a means to "review tape" and

  9. Ectomycorrhizal mats alter forest soil biogeochemistry

    Science.gov (United States)

    Laurel A. Kluber; Kathryn M. Tinnesand; Bruce A. Caldwell; Susie M. Dunham; Rockie R. Yarwood; Peter J. Bottomley; David D. Myrold

    2010-01-01

    Dense hyphal mats formed by ectomycorrhizal (EcM) fungi are prominent features in Douglas-fir forest ecosystems, and have been estimated to cover up to 40% of the soil surface in some forest stands. Two morphotypes of EcM mats have been previously described: rhizomorphic mats, which have thick hyphal rhizomorphs and are found primarily in the organic horizon, and...

  10. A field operational test on valve-regulated lead-acid absorbent-glass-mat batteries in micro-hybrid electric vehicles. Part I. Results based on kernel density estimation

    Science.gov (United States)

    Schaeck, S.; Karspeck, T.; Ott, C.; Weckler, M.; Stoermer, A. O.

    2011-03-01

    In March 2007 the BMW Group has launched the micro-hybrid functions brake energy regeneration (BER) and automatic start and stop function (ASSF). Valve-regulated lead-acid (VRLA) batteries in absorbent glass mat (AGM) technology are applied in vehicles with micro-hybrid power system (MHPS). In both part I and part II of this publication vehicles with MHPS and AGM batteries are subject to a field operational test (FOT). Test vehicles with conventional power system (CPS) and flooded batteries were used as a reference. In the FOT sample batteries were mounted several times and electrically tested in the laboratory intermediately. Vehicle- and battery-related diagnosis data were read out for each test run and were matched with laboratory data in a data base. The FOT data were analyzed by the use of two-dimensional, nonparametric kernel estimation for clear data presentation. The data show that capacity loss in the MHPS is comparable to the CPS. However, the influence of mileage performance, which cannot be separated, suggests that battery stress is enhanced in the MHPS although a battery refresh function is applied. Anyway, the FOT demonstrates the unsuitability of flooded batteries for the MHPS because of high early capacity loss due to acid stratification and because of vanishing cranking performance due to increasing internal resistance. Furthermore, the lack of dynamic charge acceptance for high energy regeneration efficiency is illustrated. Under the presented FOT conditions charge acceptance of lead-acid (LA) batteries decreases to less than one third for about half of the sample batteries compared to new battery condition. In part II of this publication FOT data are presented by multiple regression analysis (Schaeck et al., submitted for publication [1]).

  11. Molecular ecology of microbial mats

    NARCIS (Netherlands)

    Bolhuis, H.; Cretoiu, M.S.; Stal, L.J.

    2014-01-01

    Phototrophic microbial mats are ideal model systems for ecological and evolutionary analysis of highly diverse microbial communities. Microbial mats are small-scale, nearly closed, and self-sustaining benthic ecosystems that comprise the major element cycles, trophic levels, and food webs. The steep

  12. Super-Hydrophobic High Throughput Electrospun Cellulose Acetate (CA) Nanofibrous Mats as Oil Selective Sorbents

    Science.gov (United States)

    Han, Chao

    The threat of oil pollution increases with the expansion of oil exploration and production activities, as well as the industrial growth around the world. Use of sorbents is a common method to deal with the oil spills. In this work, an advanced sorbent technology is described. A series of non-woven Cellulose Acetate (CA) nanofibrous mats with a 3D fibrous structure were synthesized by a novel high-throughput electrospinning technique. The precursor was solutions of CA/ acetic acid-acetone in various concentrations. Among them, 15.0% CA exhibits a superhydrophobic surface property, with a water contact angle of 128.95°. Its oil sorption capacity is many times higher the oil sorption capacity of the best commercial sorbent available in the market. Also, it showed good buoyancy properties on the water both as dry-mat and oil-saturated mat. In addition, it is biodegradable, easily available, easily manufactured, so the CA nanofibrous mat is an excellent candidate as oil sorbent for oil spill in water treatment.

  13. Using the Technology: Introducing Point of View Video Glasses Into the Simulated Clinical Learning Environment.

    Science.gov (United States)

    Metcalfe, Helene; Jonas-Dwyer, Diana; Saunders, Rosemary; Dugmore, Helen

    2015-10-01

    The introduction of learning technologies into educational settings continues to grow alongside the emergence of innovative technologies into the healthcare arena. The challenge for health professionals such as medical, nursing, and allied health practitioners is to develop an improved understanding of these technologies and how they may influence practice and contribute to healthcare. For nurse educators to remain contemporary, there is a need to not only embrace current technologies in teaching and learning but to also ensure that students are able to adapt to this changing pedagogy. One recent technological innovation is the use of wearable computing technology, consisting of video recording with the capability of playback analysis. The authors of this article discuss the introduction of the use of wearable Point of View video glasses by a cohort of nursing students in a simulated clinical learning laboratory. Of particular interest was the ease of use of the glasses, also termed the usability of this technology, which is central to its success. Students' reflections were analyzed together with suggestions for future use.

  14. Characterization of glass and glass ceramic nuclear waste forms

    International Nuclear Information System (INIS)

    Lutze, W.; Borchardt, J.; De, A.K.

    1979-01-01

    Characteristics of solidified nuclear waste forms, glass and glass ceramic compositions and the properties (composition, thermal stability, crystallization, phase behavior, chemical stability, mechanical stability, and radiation effects) of glasses and glass ceramics are discussed. The preparation of glass ceramics may be an optional step for proposed vitrification plants if tailored glasses are used. Glass ceramics exhibit some improved properties with respect to glasses. The overall leach resistance is similar to that of glasses. An increased leach resistance may become effective for single radionuclides being hosted in highly insoluble crystal phases mainly when higher melting temperatures are applicable in order to get more leach resistant residual glass phases. The development of glass ceramic is going on. The technological feasibility is still to be demonstrated. The potential gain of stability when using glass ceramics qualifies the material as an alternative nuclear waste form

  15. An innovative energy-saving in-flight melting technology and its application to glass production

    Directory of Open Access Journals (Sweden)

    Yaochun Yao et al

    2008-01-01

    Full Text Available The conventional method used for glass melting is air-fuel firing, which is inefficient, energy-intensive and time-consuming. In this study, an innovative in-flight melting technology was developed and applied to glass production for the purposes of energy conservation and environmental protection. Three types of heating sources, radio-frequency (RF plasma, a 12-phase alternating current (ac arc and an oxygen burner, were used to investigate the in-flight melting behavior of granulated powders. Results show that the melted particles are spherical with a smooth surface and compact structure. The diameter of the melted particles is about 50% of that of the original powders. The decomposition and vitrification degrees of the prepared powders decrease in the order of powders prepared by RF plasma, the 12-phase ac arc and the oxygen burner. The largest heat transfer is from RF plasma to particles, which results in the highest particle temperature (1810 °C and the greatest vitrification degree of the raw material. The high decomposition and vitrification degrees, which are achieved in milliseconds, shorten the melting and fining times of the glass considerably. Our results indicate that the proposed in-flight melting technology is a promising method for use in the glass industry.

  16. Development and application of high-precision laser welding technology for manufacturing Ti alloy frames of glasses

    International Nuclear Information System (INIS)

    Kim, S. S.; Yang, M. S.; Kim, W. K.; Lee, D. Y.; Kim, J. M.; Leem, B. C.; Shin, J. S.; Lee, D. H.

    1999-12-01

    The research and development efforts of the high precision laser welding technology for manufacturing titanium alloy frames of glasses. For this purpose, laser welding device with the high beam quality is designed and fabricated, which consists of a optical fiber transmission part, a welding monitoring part and a welding controller. The welding nozzle and holding fixtures for manufacturing titanium and shape memory alloy frames of glasses. Titanium and shape memory alloy frames of glasses to be developed were experimentally manufactured by utilizing the laser welding using the optical fiber of GI 400 μm. As a result, the seam welding with the bead width of 0.3 mm or less and the weld penetration of 0.3-0.4mm could be accomplished. The fundamental technology was established through design of welding jigs with a variety of configurations and adequate welding conditions. Also, for the purpose to enable the companies participating in this project to commercialize the developed technology acceleratedly, a training program for the engineers belonging to such companies was conducted along with the technology transfer through joint experiments with the engineers. (author)

  17. Effects of Kenaf Fiber Orientation on Mechanical Properties and Fatigue Life of Glass/Kenaf Hybrid Composites

    Directory of Open Access Journals (Sweden)

    Mohaiman Jaffar Sharba

    2015-12-01

    Full Text Available The objectives of this work were to investigate the effect of kenaf fiber alignment on the mechanical and fatigue properties of kenaf/glass hybrid sandwich composites. Three types of kenaf fibers were used, namely, non-woven random mat, unidirectional twisted yarn, and plain-woven kenaf. A symmetric sandwich configuration was constructed with glass as the shell and kenaf as the core with a constant kenaf/glass weight ratio of 30/70% and a volume fraction of 35%. Tensile, compression, flexural, and fully reversed fatigue tests were conducted, and a morphological study of the tensile failure surface of each hybrid composite was carried out. The non-woven mat kenaf hybrid had poor properties for all tests, while the unidirectional kenaf hybrid composite possessed higher tensile strength and similar compressive properties compared with the woven kenaf. Hybridization with kenaf fibers improved the fatigue degradation coefficient of the final composites to 6.2% and 6.4% for woven and unidirectional kenaf, respectively, compared with 7.9% for non-woven. Because woven kenaf hybrid composite is lightweight, environment friendly, and has a considerable balance in static and fatigue strengths with low fatigue sensitivity in bidirectional planes compared to glass, it is strongly recommended for structural applications.

  18. Electrospun silk-elastin-like fibre mats for tissue engineering applications

    International Nuclear Information System (INIS)

    Machado, Raul; Da Costa, André; Padrão, Jorge; Gomes, Andreia; Casal, Margarida; Sencadas, Vitor; Costa, Carlos M; Lanceros-Méndez, Senentxu; Garcia-Arévalo, Carmen; Rodríguez-Cabello, José Carlos

    2013-01-01

    Protein-based polymers are present in a wide variety of organisms fulfilling structural and mechanical roles. Advances in protein engineering and recombinant DNA technology allow the design and production of recombinant protein-based polymers (rPBPs) with an absolute control of its composition. Although the application of recombinant proteins as biomaterials is still an emerging technology, the possibilities are limitless and far superior to natural or synthetic materials, as the complexity of the structural design can be fully customized. In this work, we report the electrospinning of two new genetically engineered silk-elastin-like proteins (SELPs) consisting of alternate silk- and elastin-like blocks. Electrospinning was performed with formic acid and aqueous solutions at different concentrations without addition of further agents. The size and morphology of the electrospun structures was characterized by scanning electron microscopy showing its dependence on the concentration and solvent used. Treatment with methanol-saturated air was employed to stabilize the structure and promote water insolubility through a time-dependent conversion of random coils into β-sheets (FTIR). The resultant methanol-treated electrospun mats were characterized for swelling degree (570–720%), water vapour transmission rate (1083 g/m 2 /day) and mechanical properties (modulus of elasticity ∼126 MPa). Furthermore, the methanol-treated SELP fibre mats showed no cytotoxicity and were able to support adhesion and proliferation of normal human skin fibroblasts. Adhesion was characterized by a filopodia-mediated mechanism. These results demonstrate that SELP fibre mats can provide promising solutions for the development of novel biomaterials suitable for tissue engineering applications. (paper)

  19. Silicate glasses

    International Nuclear Information System (INIS)

    Lutze, W.

    1988-01-01

    Vitrification of liquid high-level radioactive wastes has received the greatest attention, world-wide, compared to any other HLW solidification process. The waste form is a borosilicate-based glass. The production of phosphate-based glass has been abandoned in the western world. Only in the Soviet Union are phosphate-based glasses still being developed. Vitrification techniques, equipment and processes and their remote operation have been developed and studied for almost thirty years and have reached a high degree of technical maturity. Industrial demonstration of the vitrification process has been in progress since 1978. This chapter is a survey of world-wide research and development efforts in nuclear waste glasses and its production technology. The principal glasses considered are silicate glasses which contain boron, i.e., borosilicate glasses

  20. High-pitch metal-on-glass technology for pad pitch adaptation between detectors and readout electronics

    CERN Document Server

    Ullán, Miguel; Campabadal, Francesca; Fleta, Celeste; Garcia, Carmen; Gonzalez, Francisco; Bernabeu, Jose

    2004-01-01

    Modern high-energy physics and astrophysics strip detectors have increased channel density to levels at which their connection with readout electronics has become very complex due to high pad pitch. Also, direct wire bonding is prevented by the fact that typically detector's pad pitch and electronics' pad pitch do not match. A high- pitch metal-on-glass technology is presented, that allows pad pitch adaptation between detectors and readout electronics. It consists of high-density metal lines on top of an insulating glass substrate. A photoresist layer is deposited covering the metal tracks for passivation and protection The technology is tested for conductivity, bondability, bonding pull force, peel off, and radiation hardness, and it is an established technology in the clean room of the CNM Institute in Barcelona. This technology has been chosen by the ATLAS Collaboration for the pad pitch adapters (PPA) of the SCT Endcap Modules, by a Compton camera project, and by other HEP groups for interconnection betwe...

  1. Preliminary Technology Maturation Plan for Immobilization of High-Level Waste in Glass Ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Vienna, John D.; Crum, Jarrod V.; Sevigny, Gary J.; Smith, G L.

    2012-09-30

    A technology maturation plan (TMP) was developed for immobilization of high-level waste (HLW) raffinate in a glass ceramics waste form using a cold-crucible induction melter (CCIM). The TMP was prepared by the following process: 1) define the reference process and boundaries of the technology being matured, 2) evaluate the technology elements and identify the critical technology elements (CTE), 3) identify the technology readiness level (TRL) of each of the CTE’s using the DOE G 413.3-4, 4) describe the development and demonstration activities required to advance the TRLs to 4 and 6 in order, and 5) prepare a preliminary plan to conduct the development and demonstration. Results of the technology readiness assessment identified five CTE’s and found relatively low TRL’s for each of them: • Mixing, sampling, and analysis of waste slurry and melter feed: TRL-1 • Feeding, melting, and pouring: TRL-1 • Glass ceramic formulation: TRL-1 • Canister cooling and crystallization: TRL-1 • Canister decontamination: TRL-4 Although the TRL’s are low for most of these CTE’s (TRL-1), the effort required to advance them to higher values. The activities required to advance the TRL’s are listed below: • Complete this TMP • Perform a preliminary engineering study • Characterize, estimate, and simulate waste to be treated • Laboratory scale glass ceramic testing • Melter and off-gas testing with simulants • Test the mixing, sampling, and analyses • Canister testing • Decontamination system testing • Issue a requirements document • Issue a risk management document • Complete preliminary design • Integrated pilot testing • Issue a waste compliance plan A preliminary schedule and budget were developed to complete these activities as summarized in the following table (assuming 2012 dollars). TRL Budget Year MSA FMP GCF CCC CD Overall $M 2012 1 1 1 1 4 1 0.3 2013 2 2 1 1 4 1 1.3 2014 2 3 1 1 4 1 1.8 2015 2 3 2 2 4 2 2.6 2016 2 3 2 2 4 2 4

  2. Management practices for end-of-life cathode ray tube glass: Review of advances in recycling and best available technologies.

    Science.gov (United States)

    Iniaghe, Paschal O; Adie, Gilbert U

    2015-11-01

    Cathode ray tubes are image display units found in computer monitors and televisions. In recent years, cathode ray tubes have been generated as waste owing to the introduction of newer and advanced technologies in image displays, such as liquid crystal displays and high definition televisions, among others. Generation and subsequent disposal of end-of-life cathode ray tubes presents a challenge owing to increasing volumes and high lead content embedded in the funnel and neck sections of the glass. Disposal in landfills and open dumping are anti-environmental practices considering the large-scale contamination of environmental media by the potential of toxic metals leaching from glass. Mitigating such environmental contamination will require sound management strategies that are environmentally friendly and economically feasible. This review covers existing and emerging management practices for end-of-life cathode ray tubes. An in-depth analysis of available technologies (glass smelting, detoxification of cathode ray tube glass, lead extraction from cathode ray tube glass) revealed that most of the techniques are environmentally friendly, but are largely confined to either laboratory scale, or are often limited owing to high cost to mount, or generate secondary pollutants, while a closed-looped method is antiquated. However, recycling in cementitious systems (cement mortar and concrete) gives an added advantage in terms of quantity of recyclable cathode ray tube glass at a given time, with minimal environmental and economic implications. With significant quantity of waste cathode ray tube glass being generated globally, cementitious systems could be economically and environmentally acceptable as a sound management practice for cathode ray tube glass, where other technologies may not be applicable. © The Author(s) 2015.

  3. Siwonhan-mat: The third taste of Korean foods

    Directory of Open Access Journals (Sweden)

    Soon Ah Kang

    2016-03-01

    Conclusion: Siwonhan-mat is a unique sensation found in Korean food. Understanding siwonhan-mat is a key to learning about Korean food and its food culture. Therefore, this paper serves an important role in understanding Korean food. Siwonhan-mat is often mistranslated using words to describe temperature, such as cool. This misinterpretation has resulted in confusion over the original meaning of siwonhan-mat and contributed to the incorrect usage of the word.

  4. Does siwonhan-mat represent delicious in Korean foods?

    Directory of Open Access Journals (Sweden)

    Dai Ja Jang

    2016-06-01

    Conclusion: Balancing kan is a determining factor of siwonhan-mat in Korean cuisine. Particularly, a strong association between siwonhan-mat and deliciousness was found in kuk and tang, suggesting the importance of siwonhan-mat in experiencing the best flavor in Korean food.

  5. Laboratory testing of glasses for Lockheed Idaho Technology Co. - fiscal year 1994 report

    International Nuclear Information System (INIS)

    Ellison, A.J.G.; Wolf, S.F.; Bates, J.K.

    1995-04-01

    The purpose of this project is to measure the intermediate and long-term durability of vitrified waste forms developed by Lockheed Idaho Technology Co. (LITCO) for the immobilization of calcined radioactive wastes at Idaho National Engineering Laboratory. Two vitreous materials referred to as Formula 127 and Formula 532, have been subjected to accelerated durability tests to measure their long-term performance. Formula 127 consists of a glass matrix containing 5-10 vol % fluorite (CaF 2 ) as a primary crystalline phase. It shows low releases of glass components to solution in 7-, 28-, 70-, and 140-day Product Consistency Tests performed at 2000 m -1 at 90 degrees C. In these tests, release rates for glass-forming components were similar to those found for durable waste glasses. The Ca and F released by the glass as it corrodes appear to reprecipitate as fluorite. Formula 532 consists of a glass matrix containing 5-10 vol % of an Al-Si-rich primary crystalline phase. The release rates for components other than aluminum are relatively low, but aluminum is released at a much higher rate than is typical for durable waste glasses. Secondary crystalline phases form relatively early during the corrosion of Formula 532 and appear to consist almost entirely of the Al-Si-rich primary phase (or a crystal with the same Al:Si ratio) and a sodium-bearing zeolite. Future test results are expected to highlight the relative importance of primary and secondary crystalline phases to the rate of corrosion of Formula 127 and Formula 532

  6. Utilization of MatPIV program to different geotechnical models

    Science.gov (United States)

    Aklik, P.; Idinger, G.

    2009-04-01

    The Particle Imaging Velocimetry (PIV) technique is being used to measure soil displacements. PIV has been used for many years in fluid mechanics; but for physical modeling in geotechnical engineering, this technique is still relatively new. PIV is a worldwide growth in soil mechanics over the last decade owing to the developments in digital cameras and laser technologies. The use of PIV is feasible provided the surface contains sufficient texture. A Cambridge group has shown that natural sand contains enough texture for applying PIV. In a texture-based approach, the only requirement is for any patch, big or small to be sufficiently unique so that statistical tracking of this patch is possible. In this paper, some of the soil mechanic's models were investigated such as retaining walls, slope failures, and foundations. The photographs were taken with the help of the high resolution digital camera, the displacements of soils were evaluated with free software named as MatPIV and the displacement graphics between the two images were obtained. Nikon D60 digital camera is 10.2 MB and it has special properties which makes it possible to use in PIV applications. These special properties are Airflow Control System and Image Sensor cleaning for protection against dust, Active D-Lighting for highlighted or shadowy areas while shooting, advanced three-point AF system for fast, efficient and precise autofocus. Its fast and continuous shooting mode enables up to 100 JPEG images at three frames per second. Norm Sand (DIN 1164) was used for all the models in a glass rectangular box. For every experiment, MatPIV was used to calculate the velocities from the two images. MatPIV program was used in two ways such as easy way and difficult way: In the easy way, the two images with 64*64 pixels with 50% or 75% overlap of the interrogation windows were taken into consideration and the calculation was performed with a single iteration through the images and the result consisted of four

  7. matérialisation des corrections. : Quels changements dans la conception d'une épreuve d'évaluation ?

    OpenAIRE

    Capelle , Camille

    2011-01-01

    International audience; Notre contribution concerne l'intégration de technologies de dématérialisation de copies d'examen dans les pratiques de correction à l'Université. Ces technologies consistent à numériser les copies après une épreuve pour permettre une correction instrumentée sur une plateforme web dédiée. Doctorante CIFRE au sein de la société NEOPTEC, conceptrice du dispositif de dématérialisation des copies, l'approche par l'observation participante me permet de collecter, au moyen d...

  8. Regulation of electron transfer processes affects phototrophic mat structure and activity

    Science.gov (United States)

    Ha, Phuc T.; Renslow, Ryan S.; Atci, Erhan; Reardon, Patrick N.; Lindemann, Stephen R.; Fredrickson, James K.; Call, Douglas R.; Beyenal, Haluk

    2015-01-01

    Phototrophic microbial mats are among the most diverse ecosystems in nature. These systems undergo daily cycles in redox potential caused by variations in light energy input and metabolic interactions among the microbial species. In this work, solid electrodes with controlled potentials were placed under mats to study the electron transfer processes between the electrode and the microbial mat. The phototrophic microbial mat was harvested from Hot Lake, a hypersaline, epsomitic lake located near Oroville (Washington, USA). We operated two reactors: graphite electrodes were polarized at potentials of -700 mVAg/AgCl [cathodic (CAT) mat system] and +300 mVAg/AgCl [anodic (AN) mat system] and the electron transfer rates between the electrode and mat were monitored. We observed a diel cycle of electron transfer rates for both AN and CAT mat systems. Interestingly, the CAT mats generated the highest reducing current at the same time points that the AN mats showed the highest oxidizing current. To characterize the physicochemical factors influencing electron transfer processes, we measured depth profiles of dissolved oxygen (DO) and sulfide in the mats using microelectrodes. We further demonstrated that the mat-to-electrode and electrode-to-mat electron transfer rates were light- and temperature-dependent. Using nuclear magnetic resonance (NMR) imaging, we determined that the electrode potential regulated the diffusivity and porosity of the microbial mats. Both porosity and diffusivity were higher in the CAT mats than in the AN mats. We also used NMR spectroscopy for high-resolution quantitative metabolite analysis and found that the CAT mats had significantly higher concentrations of osmoprotectants such as betaine and trehalose. Subsequently, we performed amplicon sequencing across the V4 region of the 16S rRNA gene of incubated mats to understand the impact of electrode potential on microbial community structure. These data suggested that variation in the

  9. Regulation of electron transfer processes affects phototrophic mat structure and activity

    Directory of Open Access Journals (Sweden)

    Haluk eBeyenal

    2015-09-01

    Full Text Available Phototrophic microbial mats are among the most diverse ecosystems in nature. These systems undergo daily cycles in redox potential caused by variations in light energy input and metabolic interactions among the microbial species. In this work, solid electrodes with controlled potentials were placed under mats to study the electron transfer processes between the electrode and the microbial mat. The phototrophic microbial mat was harvested from Hot Lake, a hypersaline, epsomitic lake located near Oroville (Washington, USA. We operated two reactors: graphite electrodes were polarized at potentials of -700 mVAg/AgCl (cathodic mat system and +300 mVAg/AgCl (anodic mat system and the electron transfer rates between the electrode and mat were monitored. We observed a diel cycle of electron transfer rates for both anodic and cathodic mat systems. Interestingly, the cathodic mats generated the highest reducing current at the same time points that the anodic mats showed the highest oxidizing current. To characterize the physicochemical factors influencing electron transfer processes, we measured depth profiles of dissolved oxygen and sulfide in the mats using microelectrodes. We further demonstrated that the mat-to-electrode and electrode-to-mat electron transfer rates were light- and temperature-dependent. Using nuclear magnetic resonance (NMR imaging, we determined that the electrode potential regulated the diffusivity and porosity of the microbial mats. Both porosity and diffusivity were higher in the cathodic mats than in the anodic mats. We also used NMR spectroscopy for high-resolution quantitative metabolite analysis and found that the cathodic mats had significantly higher concentrations of osmoprotectants such as betaine and trehalose. Subsequently, we performed amplicon sequencing across the V4 region of the 16S rRNA gene of incubated mats to understand the impact of electrode potential on microbial community structure. These data suggested that

  10. Regulation of electron transfer processes affects phototrophic mat structure and activity.

    Science.gov (United States)

    Ha, Phuc T; Renslow, Ryan S; Atci, Erhan; Reardon, Patrick N; Lindemann, Stephen R; Fredrickson, James K; Call, Douglas R; Beyenal, Haluk

    2015-01-01

    Phototrophic microbial mats are among the most diverse ecosystems in nature. These systems undergo daily cycles in redox potential caused by variations in light energy input and metabolic interactions among the microbial species. In this work, solid electrodes with controlled potentials were placed under mats to study the electron transfer processes between the electrode and the microbial mat. The phototrophic microbial mat was harvested from Hot Lake, a hypersaline, epsomitic lake located near Oroville (Washington, USA). We operated two reactors: graphite electrodes were polarized at potentials of -700 mVAg/AgCl [cathodic (CAT) mat system] and +300 mVAg/AgCl [anodic (AN) mat system] and the electron transfer rates between the electrode and mat were monitored. We observed a diel cycle of electron transfer rates for both AN and CAT mat systems. Interestingly, the CAT mats generated the highest reducing current at the same time points that the AN mats showed the highest oxidizing current. To characterize the physicochemical factors influencing electron transfer processes, we measured depth profiles of dissolved oxygen (DO) and sulfide in the mats using microelectrodes. We further demonstrated that the mat-to-electrode and electrode-to-mat electron transfer rates were light- and temperature-dependent. Using nuclear magnetic resonance (NMR) imaging, we determined that the electrode potential regulated the diffusivity and porosity of the microbial mats. Both porosity and diffusivity were higher in the CAT mats than in the AN mats. We also used NMR spectroscopy for high-resolution quantitative metabolite analysis and found that the CAT mats had significantly higher concentrations of osmoprotectants such as betaine and trehalose. Subsequently, we performed amplicon sequencing across the V4 region of the 16S rRNA gene of incubated mats to understand the impact of electrode potential on microbial community structure. These data suggested that variation in the

  11. Disruption of photoautotrophic intertidal mats by filamentous fungi

    DEFF Research Database (Denmark)

    Carreira, Cátia; Staal, Marc Jaap; Falkoski, Daniel

    2015-01-01

    Summary: Ring-like structures, 2.0-4.8cm in diameter, observed in photosynthetic microbial mats on the Wadden Sea island Schiermonnikoog (the Netherlands) showed to be the result of the fungus Emericellopsis sp. degrading the photoautotrophic top layer of the mat. The mats were predominantly comp...

  12. Contributions of Ectomycorrhizal Fungal Mats to Forest Soil Carbon Cycles

    Science.gov (United States)

    Kluber, L. A.; Phillips, C. L.; Myrold, D. D.; Bond, B. J.

    2008-12-01

    Ectomycorrhizal (EM) fungi are a prominent and ubiquitous feature of forest soils, forming symbioses with most tree species, yet little is known about the magnitude of their impact on forest carbon cycles. A subset of EM fungi form dense, perennial aggregations of hyphae, which have elevated respiration rates compared with neighboring non-mat soils. These mats are a foci of EM activity and thereby a natural laboratory for examining how EM fungi impact forest soils. In order to constrain the contributions of EM fungi to forest soil respiration, we quantified the proportion of respiration derived from EM mat soils in an old-growth Douglas-fir stand in western Oregon. One dominant genus of mat-forming fungi, Piloderma, covered 56% of the soil surface area. Piloderma mats were monitored for respiration rates over 15 months and found to have on average 10% higher respiration than non-mat soil. At the stand level, this amounts to roughly 6% of soil respiration due to the presence of Piloderma mats. We calculate that these mats may constitute 27% of autotrophic respiration, based on respiration rates from trenched plots in a neighboring forest stand. Furthermore, enzyme activity and microbial community profiles in mat and non-mat soil provide evidence that specialized communities utilizing chitin contribute to this increased efflux. With 60% higher chitinase activity in mats, the breakdown of chitin is likely an important carbon flux while providing carbon and nitrogen to the microbial communities associated with mats. Quantitative PCR showed similar populations of fungi and bacteria in mat and non-mat soils; however, community analysis revealed distinct fungal and bacterial communities in the two soil types. The higher respiration associated with EM mats does not appear to be due only to a proliferation of EM fungi, but to a shift in overall community composition to organisms that efficiently utilize the unique resources available within the mat, including plant and

  13. Studying Microbial Mat Functioning Amidst "Unexpected Diversity": Methodological Approaches and Initial Results from Metatranscriptomes of Mats Over Diel cycles, iTags from Long Term Manipulations, and Biogeochemical Cycling in Simplified Microbial Mats Constructed from Cultures

    Science.gov (United States)

    Bebout, B.; Bebout, L. E.; Detweiler, A. M.; Everroad, R. C.; Lee, J.; Pett-Ridge, J.; Weber, P. K.

    2014-12-01

    Microbial mats are famously amongst the most diverse microbial ecosystems on Earth, inhabiting some of the most inclement environments known, including hypersaline, dry, hot, cold, nutrient poor, and high UV environments. The high microbial diversity of microbial mats makes studies of microbial ecology notably difficult. To address this challenge, we have been using a combination of metagenomics, metatranscriptomics, iTags and culture-based simplified microbial mats to study biogeochemical cycling (H2 production, N2 fixation, and fermentation) in microbial mats collected from Elkhorn Slough, Monterey Bay, California. Metatranscriptomes of microbial mats incubated over a diel cycle have revealed that a number of gene systems activate only during the day in Cyanobacteria, while the remaining appear to be constitutive. The dominant cyanobacterium in the mat (Microcoleus chthonoplastes) expresses several pathways for nitrogen scavenging undocumented in cultured strains, as well as the expression of two starch storage and utilization cycles. Community composition shifts in response to long term manipulations of mats were assessed using iTags. Changes in community diversity were observed as hydrogen fluxes increased in response to a lowering of sulfate concentrations. To produce simplified microbial mats, we have isolated members of 13 of the 15 top taxa from our iTag libraries into culture. Simplified microbial mats and simple co-cultures and consortia constructed from these isolates reproduce many of the natural patterns of biogeochemical cycling in the parent natural microbial mats, but against a background of far lower overall diversity, simplifying studies of changes in gene expression (over the short term), interactions between community members, and community composition changes (over the longer term), in response to environmental forcing.

  14. HiRadMat: materials under scrutiny

    CERN Multimedia

    Anaïs Schaeffer

    2011-01-01

    CERN's new facility, HiRadMat (High Radiation to Materials), which is designed to test materials for the world's future particle accelerators, should be operational and welcoming its first experiments by the end of the year.   The HiRadMat facility, located in the TNC tunnel. The materials used in the LHC and its experiments are exposed to very high-energy particles. The LHC machine experts obviously didn't wait for the first collisions in the world's most powerful accelerator to put the materials through their paces - the equipment was validated following a series of stringent tests. And these tests will get even tougher now, with the arrival of HiRadMat. The tunnel that formerly housed the West Area Neutrino Facility (WANF) has been completely revamped to make way for CERN's latest facility, HiRadMat. Supported by the Radioprotection service, a team from the Engineering (EN) Department handled the dismantling operations from October 2009 to December 2010. "We could only work on disman...

  15. Microstructuring of glasses

    CERN Document Server

    Hülsenberg, Dagmar; Bismarck, Alexander

    2008-01-01

    As microstructured glass becomes increasingly important for microsystems technology, the main application fields include micro-fluidic systems, micro-analysis systems, sensors, micro-actuators and implants. And, because glass has quite distinct properties from silicon, PMMA and metals, applications exist where only glass devices meet the requirements. The main advantages of glass derive from its amorphous nature, the precondition for its - theoretically - direction-independent geometric structurability. Microstructuring of Glasses deals with the amorphous state, various glass compositions and their properties, the interactions between glasses and the electromagnetic waves used to modify it. Also treated in detail are methods for influencing the geometrical microstructure of glasses by mechanical, chemical, thermal, optical, and electrical treatment, and the methods and equipment required to produce actual microdevices.

  16. Fiscal 1999 international cooperation project report. R and D on convection control technology of glass melts by microgravity experiment; 1999 nendo bisho juryoku kankyo wo riyoshita glass yuekinai tairyu seigyo gijutsu no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    This R and D aims at development of convection simulation technology of glass melts based on measurement of accurate glass melt properties, and development of convection control technology of glass melts through the model experiment and small tank furnace experiment. Experiment was made on measurement of surface tension while levitating glass melts under the microgravity condition obtained by the drop tower of Japan Microgravity Center in Hokkaido. The shape of glass melt changes into a real sphere under the microgravity condition, and surface tension can be obtained by measuring its frequency, however, such frequency of glass could not be measured in this experiment. Levitation, fusion and oscillation experiment of glass was carried out by using an aero-acoustic levitator of CRT at Chicago. The experiment result is now in analysis. This study also aims the analysis in consideration of a surface tension flow effect. The calculation result showed generation of surface tension flow due to temperature gradient on a liquid surface. Various information were obtained through the model experiment using silicon oil, and glass convention observation by using a small tank furnace. (NEDO)

  17. Physical Characteristics and Technology of Glass Foam from Waste Cathode Ray Tube Glass

    Directory of Open Access Journals (Sweden)

    G. Mucsi

    2013-01-01

    Full Text Available This paper deals with the laboratory investigation of cathode-ray-tube- (CRT- glass-based glass foam, the so-called “Geofil-Bubbles” which can be applied in many fields, mainly in the construction industry (lightweight concrete aggregate, thermal and sound insulation, etc.. In this study, the main process engineering material properties of raw materials, such as particle size distribution, moisture content, density, and specific surface area, are shown. Then, the preparation of raw cathode ray tube glass waste is presented including the following steps: crushing, grinding, mixing, heat curing, coating, and sintering. Experiments were carried out to optimize process circumstances. Effects of sintering conditions—such as temperature, residence time, and particle size fraction of green pellet—on the mechanical stability and particle density of glass foam particles were investigated. The mechanical stability (abrasion resistance was tested by abrasion test in a Deval drum. Furthermore, the cell structure was examined with optical microscopy and SEM. We found that it was possible to produce foam glass (with proper mechanical stability and particle density from CRT glass. The material characteristics of the final product strongly depend on the sintering conditions. Optimum conditions were determined: particle size fraction was found to be 4–6 mm, temperature 800°C, and residence time 7.5 min.

  18. Thermal Aging of Unsaturated Polyester Composite Reinforced with E-Glass Nonwoven Mat

    Directory of Open Access Journals (Sweden)

    Hossain Milon

    2017-12-01

    Full Text Available An experiment was carried out using glass fiber (GF as reinforcing materials with unsaturated polyester matrix to fabricate composite by hand layup technique. Four layers of GF were impregnated by polyester resin and pressed under a load of 5 kg for 20 hours. The prepared composite samples were treated by prolonged exposure to heat for 1 hour at 60-150°C and compared with untreated GF-polyester composite. Different mechanical test of the fabricated composite were investigated. The experiment depicted significant improvement in the mechanical properties of the fabricated composite resulted from the heat treatment. The maximum tensile strength of 200.6 MPa is found for 90°C heat-treated sample. The mechanical properties of the composite do seem to be very affected negatively above 100°C. Water uptake of the composite was carried out and thermal stability of the composite was investigated by thermogravimetric analysis, and it was found that the composite is stable up to 600°C. Fourier transform infrared spectroscopy shows the characteristic bond in the composite. Finally, the excellent elevated heat resistant capacity of glass-fiber-reinforced polymeric composite shows the suitability of its application to heat exposure areas such as kitchen furniture materials, marine, and electric board.

  19. Technological advances in tellurite glasses properties, processing, and applications

    CERN Document Server

    Manzani, Danilo

    2017-01-01

    This book is the first to provide a comprehensive introduction to the synthesis, optical properties, and photonics applications of tellurite glasses. The book begins with an overview of tellurite glasses, followed by expert chapters on synthesis, properties, and state-of-the-art applications ranging from laser glass, optical fibers, and optical communications through color tuning, plasmonics, supercontinuum generation, and other photonic devices. The book provides in-depth information on the the structural, linear, and non-linear optical properties of tellurite glasses and their implications for device development. Real-world examples give the reader valuable insight into the applications of tellurite glass. A detailed discussion of glass production methods, including raw materials and melting and refining oxide- and fluoro-tellurite glasses, is also included. The book features an extensive reference list for further reading. This highly readable and didactic text draws on chemical composition, glass science,...

  20. Effects of preprocessing method on TVOC emission of car mat

    Science.gov (United States)

    Wang, Min; Jia, Li

    2013-02-01

    The effects of the mat preprocessing method on total volatile organic compounds (TVOC) emission of car mat are studied in this paper. An appropriate TVOC emission period for car mat is suggested. The emission factors for total volatile organic compounds from three kinds of new car mats are discussed. The car mats are preprocessed by washing, baking and ventilation. When car mats are preprocessed by washing, the TVOC emission for all samples tested are lower than that preprocessed in other methods. The TVOC emission is in stable situation for a minimum of 4 days. The TVOC emitted from some samples may exceed 2500μg/kg. But the TVOC emitted from washed Polyamide (PA) and wool mat is less than 2500μg/kg. The emission factors of total volatile organic compounds (TVOC) are experimentally investigated in the case of different preprocessing methods. The air temperature in environment chamber and the water temperature for washing are important factors influencing on emission of car mats.

  1. Spatial patterns of cyanobacterial mat growth on sand ripples

    Science.gov (United States)

    Mariotti, G.; Klepac-Ceraj, V.; Perron, J. T.; Bosak, T.

    2016-02-01

    Photosynthetic microbial mats produce organic matter, cycle nutrients, bind pollutants and stabilize sediment in sandy marine environments. Here, we investigate the influence of bedforms and wave motion on the growth rate, composition and spatial variability of microbial mats by growing cyanobacterial mats on a rippled bed of carbonate sand in a wave tank. The tank was forced with an oscillatory flow with velocities below the threshold for sediment motion yet able to induce a porewater flow within the sediment. Different spatial patterns developed in mats depending on the initial biochemistry of the water medium. When growing in a medium rich in nitrogen, phosphorous and micronutrients, mats grew faster on ripple troughs than on ripple crests. After two months, mats covered the bed surface uniformly, and the microbial communities on the crests and in the troughs had similar compositions. Differences in bed shear stress and nutrient availability between crests and troughs were not able to explain the faster growth in the troughs. We hypothesize that this growth pattern is due to a "strainer" effect, i.e. the suspended bacteria from the inoculum were preferentially delivered to troughs by the wave-induced porewater flow. In the experiments initiated in a medium previously used up by a microbial mat and thus depleted in nutrients, mats grew preferentially on the ripple crests. This spatial pattern persisted for nearly two years, and the microbial composition on troughs and crests was different. We attribute this pattern to the upwelling of porewater in the crests, which increased the delivery of nutrients from sediment to the cyanobacteria on the bed surface. Thus, the macroscopic patterns formed by photosynthetic microbial mats on sand ripples may be used to infer whether mats are nutrient-limited and whether they are recently colonized or older than a month.

  2. Proceedings of the national conference on functional glasses/glass-ceramics and ceramics: souvenir

    International Nuclear Information System (INIS)

    2015-01-01

    This conference deals with issues relevant to functional glasses and glass ceramics which are technologically important materials for lasers, radioactive waste immobilization, radiation shielding, bio-glasses etc. It covers wide range of subjects and their applications right from managing the side effects of nuclear wastes and shielding the radiation, to sol-gel based bio-glass and its composites. Papers relevant to INIS are indexed separately

  3. Development of kenaf mat for slope stabilization

    Science.gov (United States)

    Ahmad, M. M.; Manaf, M. B. H. Ab; Zainol, N. Z.

    2017-09-01

    This study focusing on the ability of kenaf mat to act as reinforcement to laterite compared to the conventional geosynthetic in term of stabilizing the slope. Kenaf mat specimens studied in this paper are made up from natural kenaf fiber with 3mm thickness, 150mm length and 20mm width. With the same size of specimens, geosynthetic that obtain from the industry are being tested for both direct shear and tensile tests. Plasticity index of the soil sample used is equal to 13 which indicate that the soil is slightly plastic. Result shows that the friction angle of kenaf mat is higher compared to friction between soil particles itself. In term of resistance to tensile load, the tensile strength of kenaf mat is 0.033N/mm2 which is lower than the tensile strength of geosynthetic.

  4. Physical and Mechanical Properties of Jute Mat Reinforced Epoxy Composites

    Directory of Open Access Journals (Sweden)

    S.M Sadaf

    2011-11-01

    Full Text Available Cellulose jute fibre offers a number of benefits as reinforcement for synthetic polymers since it has a high specific strength and stiffness, low hardness, relatively low density and biodegradability. To reduce moisture uptake and hence to improve the mechanical properties of the composites, bleached jute mats were incorporated as reinforcing elements in the epoxy matrix. Composites at varying volume fractions and different orientations of jute mat were fabricated by hot compression machine under specific pressures and temperatures. Tensile, flexure, impact and water absorption tests of composites were conducted. Jute mat oriented at (0 ± 45–90° composites showed reduced strength compared to (0–90° fibre mat composites. Impact strength and water uptake of high volume fraction jute mat reinforced composites was higher compared to that of lower volume fraction composites. Fracture surfaces of jute mat composites were analyzed under SEM. Fracture surface of (0–90° jute mat oriented composites showed twisted fibres, while (0 ± 45–90° jute mat oriented composites had fibre pull-out without any twisting. Overall, composites containing 52% jute mat at orientations of (0–90° showed better properties compared to other fabricated composites.

  5. Projet ViscoMatData

    OpenAIRE

    ENGUENG,; ABIB,

    2009-01-01

    ViscoMatData est un logiciel extranet d'une gestion d'une base de données multilingue sur les propriétés des matériaux viscoélastiques des chaussées. Ce rapport constitue l'un des livrables de la deuxième partie de ce projet. Pour présenter le travail réalisé durant cette deuxième partie, nous commencerons par faire un rappel sur le contexte du projet et le projet et le projet lui-même. Puis, nous nous intéresserons à l'architecture mise en place pour le développement, la réalisation et nous ...

  6. Beaded Fiber Mats of PVA Containing Unsaturated Heteropoly Salt

    Institute of Scientific and Technical Information of China (English)

    Guo Cheng YANG; Yan PAN; Jian GONG; Chang Lu SHAO; Shang Bin WEN; Chen SHAO; Lun Yu QU

    2004-01-01

    Poly(vinyl alcohol) (PVA) fiber mats containing unsaturated heteropoly salt was prepared for the first time. IR, X-ray diffraction and SEM photographs characterized the beaded fiber mats.The viscoelasticity and the conductivity of the solution were the key factors that influence the formation of the beaded fiber mats.

  7. Two-step activation of meiosis by the mat1 locus in Schizosaccharomyces pombe

    DEFF Research Database (Denmark)

    Willer, M; Hoffmann, Ulla-Lisbeth; Styrkársdóttir, U

    1995-01-01

    in which the mat1 locus plays two roles in controlling meiosis. In the first instance, the mat1-Pc and mat1-Mc functions are required to produce the mating pheromones and receptors that allow the generation of a pheromone signal. This signal is required to induce the expression of mat1-Pm and mat1-Mm......The mat1 locus is a key regulator of both conjugation and meiosis in the fission yeast Schizosaccharomyces pombe. Two alternative DNA segments of this locus, mat1-P and mat1-M, specify the haploid cell types (Plus and Minus). Each segment includes two genes: mat1-P includes mat1-Pc and mat1-Pm....... This appears to be the major pheromone-dependent step in controlling meiosis since ectopic expression of these genes allows meiosis in the absence of mat1-Pc and mat1-Mc. The mat1-Pm and mat1-Mm products complete the initiation of meiosis by activating transcription of the mei3 gene....

  8. Mucoadhesive electrospun chitosan-based nanofibre mats for dental caries prevention.

    Science.gov (United States)

    Samprasit, Wipada; Kaomongkolgit, Ruchadaporn; Sukma, Monrudee; Rojanarata, Theerasak; Ngawhirunpat, Tanasait; Opanasopit, Praneet

    2015-03-06

    The mucoadhesive electrospun nanofibre mats were developed using chitosan (CS) and thiolated chitosan (CS-SH) as mucoadhesive polymers. Garcinia mangostana (GM) extract was incorporated into nanofibre mats. The antibacterial activity in the single and combined agents was evaluated against dental caries pathogens. The morphology of mats was observed using SEM. The mats were evaluated for GM extract amount, mucoadhesion, in vitro release, antibacterial activity and cytotoxicity. The mucoadhesion and antibacterial activity were determined in healthy human volunteers. The prepared mats were in nanoscale with good physical and mucoadhesive properties. The CS-SH caused the higher mucoadhesion. All mats rapidly released active substances, which had the synergistic antibacterial activity. In addition, the reduction of bacteria and good mucoadhesion in the oral cavity occurred without cytotoxicity. The results suggest that mats have the potential to be mucoadhesive dosage forms to maintain oral hygiene by reducing the bacterial growth that causes the dental caries. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Polycaprolactone-Chitin Nanofibrous Mats as Potential Scaffolds for Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Min Sup Kim

    2012-01-01

    Full Text Available We describe here the preparation of poly(caprolactone (PCL-chitin nanofibrous mats by electrospinning from a blended solution of PCL and chitin dissolved in a cosolvent, 1,1,1,3,3,3-hexafluoro-2-propanol and trifluoroacetic acid. Scanning electron microscopy showed that the neutralized PCL-chitin nanofibrous mats were morphologically stable, with a mean diameter of 340.5±2.6 nm, compared with a diameter of 524.2±12.1 nm for PCL mats. The nanofibrous mats showed decreased water contact angles as the proportion of chitin increased. However, the tensile properties of nanofibrous mats containing 30~50% (wt/wt chitin were enhanced compared with PCL-only mats. In vitro studies showed that the viability of human dermal fibroblasts (HDFs for up to 7 days in culture was higher on composite (OD value: 1.42±0.09 than on PCL-only (0.51±0.14 nanofibrous mats, with viability correlated with chitin concentration. Together, our results suggest that PCL-chitin nanofibrous mats can be used as an implantable substrate to modulate HDF viability in tissue engineering.

  10. Microbial communities and exopolysaccharides from Polynesian mats.

    Science.gov (United States)

    Rougeaux, H; Guezennec, M; Che, L M; Payri, C; Deslandes, E; Guezennec, J

    2001-03-01

    Microbial mats present in two shallow atolls of French Polynesia were characterized by high amounts of exopolysaccharides associated with cyanobacteria as the predominating species. Cyanobacteria were found in the first centimeters of the gelatinous mats, whereas deeper layers showing the occurrence of the sulfate reducers Desulfovibrio and Desulfobacter species as determined by the presence of specific biomarkers. Exopolysaccharides were extracted from these mats and partially characterized. All fractions contained both neutral sugars and uronic acids with a predominance of the former. The large diversity in monosaccharides can be interpreted as the result of exopolymer biosynthesis by either different or unidentified cyanobacterial species.

  11. Interaction of gelatin with polyenes modulates antifungal activity and biocompatibility of electrospun fiber mats

    Directory of Open Access Journals (Sweden)

    Lakshminarayanan R

    2014-05-01

    Full Text Available Rajamani Lakshminarayanan,1,2 Radhakrishnan Sridhar,3,4 Xian Jun Loh,5 Muruganantham Nandhakumar,1 Veluchamy Amutha Barathi,1,6 Madhaiyan Kalaipriya,3,4 Jia Lin Kwan,1 Shou Ping Liu,1,2 Roger Wilmer Beuerman,1,2 Seeram Ramakrishna3,4,7 1Singapore Eye Research Institute, 2Signature Research Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School, 3Department of Mechanical Engineering, National University of Singapore, 4Center for Nanofibers and Nanotechnology, National University of Singapore, 5Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research, 3 Research Link, Singapore, 6Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, 7NUS Nanoscience and Nanotechnology Initiative, Singapore Abstract: Topical application of antifungals does not have predictable or well-controlled release characteristics and requires reapplication to achieve therapeutic local concentration in a reasonable time period. In this article, the efficacy of five different US Food and Drug Administration-approved antifungal-loaded (amphotericin B, natamycin, terbinafine, fluconazole, and itraconazole electrospun gelatin fiber mats were compared. Morphological studies show that incorporation of polyenes resulted in a two-fold increase in fiber diameter and the mats inhibit the growth of yeasts and filamentous fungal pathogens. Terbinafine-loaded mats were effective against three filamentous fungal species. Among the two azole antifungals compared, the itraconazole-loaded mat was potent against Aspergillus strains. However, activity loss was observed for fluconazole-loaded mats against all of the test organisms. The polyene-loaded mats displayed rapid candidacidal activities as well. Biophysical and rheological measurements indicate strong interactions between polyene antifungals and gelatin matrix. As a result, the polyenes stabilized the triple helical

  12. Fatigue Characteristic of Chopped Strand Mat/Polyester Composite

    Directory of Open Access Journals (Sweden)

    I Made Astika

    2012-11-01

    Full Text Available The application of composite as an alternatif material to substitute of metal has better properties than metal such as light, high elasticity, corrosion and fatigue resistance. Some components in its application are subjected to millions of varying stress cycles that initiated to fatigue failure such as crack, delamination and fracture. The strength of composite is influenced by construction, fiber type, orientation and fiber fraction. The objective of this experiment is to investigate the fatigue characteristic on SCM composite. Material composite to be used is glass fiber with chopped strand mat (CSM as fiber and Yukalac 157 BQTN-EX with 1% hardener (Mexpox as matrix. The mold process was built with hand lay-up. Fiber volume fractions in composite are 40, 32 and 24 %. The tests to be done on composite are fatigue and tensile test. The research show that the increasing of fiber fraction in composite affects increasing of fatigue life, endurance limit and tensile strength. Fatigue failure modes of composite are debonding, matrix cracking, delamination and fiber fracture.

  13. Developing DNA barcoding (matK) primers for marama bean ...

    African Journals Online (AJOL)

    The homology found with Tylosema fassoglensis (trnK gene) and Pisum sativum (matK gene) suggests that an identical region was amplified for Tylosema esculentum. A phylogenetic tree was constructed based on the matK sequences and the results suggest that the matK region can also be used in determining levels of ...

  14. Eco-technological process of glass-ceramic production from galvanic sludge and aluminium slag

    Directory of Open Access Journals (Sweden)

    Stanisavljević M.

    2010-01-01

    Full Text Available Methods of purification of waste water which are most commonly used in the Republic of Serbia belong to the type of conventional systems for purification such as chemical oxidation and reduction, neutralization, sedimentation, coagulation, and flocculation. Consequently, these methods generate waste sludge which, unless adequately stabilized, represents hazardous matter. The aluminium slag generated by melting or diecasting aluminium and its alloys is also hazardous matter. In this sense, this paper establishes ecological risk of galvanic waste sludge and aluminium slag and then describes the process of stabilization of these waste materials by means of transformation into a glass-ceramic structure through sintering. The obtained product was analyzed with Fourier Transform Infrared Spectroscopy (FT-IR and X-ray diffraction (XRD. The object of the paper is the eco-technological process of producing glass-ceramics from galvanic sludge and aluminium slag. The aim of the paper is to incorporate toxic metals from galvanic sludge and aluminium slag into the glass-ceramic product, in the form of solid solutions.

  15. Diversity and stratification of archaea in a hypersaline microbial mat.

    Science.gov (United States)

    Robertson, Charles E; Spear, John R; Harris, J Kirk; Pace, Norman R

    2009-04-01

    The Guerrero Negro (GN) hypersaline microbial mats have become one focus for biogeochemical studies of stratified ecosystems. The GN mats are found beneath several of a series of ponds of increasing salinity that make up a solar saltern fed from Pacific Ocean water pumped from the Laguna Ojo de Liebre near GN, Baja California Sur, Mexico. Molecular surveys of the laminated photosynthetic microbial mat below the fourth pond in the series identified an enormous diversity of bacteria in the mat, but archaea have received little attention. To determine the bulk contribution of archaeal phylotypes to the pond 4 study site, we determined the phylogenetic distribution of archaeal rRNA gene sequences in PCR libraries based on nominally universal primers. The ratios of bacterial/archaeal/eukaryotic rRNA genes, 90%/9%/1%, suggest that the archaeal contribution to the metabolic activities of the mat may be significant. To explore the distribution of archaea in the mat, sequences derived using archaeon-specific PCR primers were surveyed in 10 strata of the 6-cm-thick mat. The diversity of archaea overall was substantial albeit less than the diversity observed previously for bacteria. Archaeal diversity, mainly euryarchaeotes, was highest in the uppermost 2 to 3 mm of the mat and decreased rapidly with depth, where crenarchaeotes dominated. Only 3% of the sequences were specifically related to known organisms including methanogens. While some mat archaeal clades corresponded with known chemical gradients, others did not, which is likely explained by heretofore-unrecognized gradients. Some clades did not segregate by depth in the mat, indicating broad metabolic repertoires, undersampling, or both.

  16. Le tournant "matériel" dans la théorie néo-institutionnaliste

    DEFF Research Database (Denmark)

    Boxenbaum, Eva; Huault, Isabelle; Leca, Bernard

    2016-01-01

    Dans ce chapitre, nous rendons compte du tournant matériel qui s’amorce actuellement au sein de l’analyse institutionnelle, comme dans de nombreux autres domaines de la recherche en organisation (Jarzabkowski et Pinch, 2013). Pour cela, nous nous appuyons sur les acquis des Science and Technology...

  17. Targeting S-adenosylmethionine biosynthesis with a novel allosteric inhibitor of Mat2A

    Energy Technology Data Exchange (ETDEWEB)

    Quinlan, Casey L.; Kaiser, Stephen E.; Bolaños, Ben; Nowlin, Dawn; Grantner, Rita; Karlicek-Bryant, Shannon; Feng, Jun Li; Jenkinson, Stephen; Freeman-Cook, Kevin; Dann, Stephen G.; Wang, Xiaoli; Wells, Peter A.; Fantin, Valeria R.; Stewart, Al E.; Grant, Stephan K. (Pfizer)

    2017-05-29

    S-Adenosyl-L-methionine (SAM) is an enzyme cofactor used in methyl transfer reactions and polyamine biosynthesis. The biosynthesis of SAM from ATP and L-methionine is performed by the methionine adenosyltransferase enzyme family (Mat; EC 2.5.1.6). Human methionine adenosyltransferase 2A (Mat2A), the extrahepatic isoform, is often deregulated in cancer. We identified a Mat2A inhibitor, PF-9366, that binds an allosteric site on Mat2A that overlaps with the binding site for the Mat2A regulator, Mat2B. Studies exploiting PF-9366 suggested a general mode of Mat2A allosteric regulation. Allosteric binding of PF-9366 or Mat2B altered the Mat2A active site, resulting in increased substrate affinity and decreased enzyme turnover. These data support a model whereby Mat2B functions as an inhibitor of Mat2A activity when methionine or SAM levels are high, yet functions as an activator of Mat2A when methionine or SAM levels are low. The ramification of Mat2A activity modulation in cancer cells is also described.

  18. MatLab Programming for Engineers Having No Formal Programming Knowledge

    Science.gov (United States)

    Shaykhian, Linda H.; Shaykhian, Gholam Ali

    2007-01-01

    MatLab is one of the most widely used very high level programming languages for Scientific and engineering computations. It is very user-friendly and needs practically no formal programming knowledge. Presented here are MatLab programming aspects and not just the MatLab commands for scientists and engineers who do not have formal programming training and also have no significant time to spare for learning programming to solve their real world problems. Specifically provided are programs for visualization. Also, stated are the current limitations of the MatLab, which possibly can be taken care of by Mathworks Inc. in a future version to make MatLab more versatile.

  19. Database and Interim Glass Property Models for Hanford HLW Glasses

    International Nuclear Information System (INIS)

    Hrma, Pavel R; Piepel, Gregory F; Vienna, John D; Cooley, Scott K; Kim, Dong-Sang; Russell, Renee L

    2001-01-01

    The purpose of this report is to provide a methodology for an increase in the efficiency and a decrease in the cost of vitrifying high-level waste (HLW) by optimizing HLW glass formulation. This methodology consists in collecting and generating a database of glass properties that determine HLW glass processability and acceptability and relating these properties to glass composition. The report explains how the property-composition models are developed, fitted to data, used for glass formulation optimization, and continuously updated in response to changes in HLW composition estimates and changes in glass processing technology. Further, the report reviews the glass property-composition literature data and presents their preliminary critical evaluation and screening. Finally the report provides interim property-composition models for melt viscosity, for liquidus temperature (with spinel and zircon primary crystalline phases), and for the product consistency test normalized releases of B, Na, and Li. Models were fitted to a subset of the screened database deemed most relevant for the current HLW composition region

  20. Diazotrophic microbial mats

    NARCIS (Netherlands)

    Severin, I.; Stal, L.J.; Seckbach, J.; Oren, A.

    2010-01-01

    Microbial mats have been the focus of scientific research for a few decades. These small-scale ecosystems are examples of versatile benthic communities of microorganisms, usually dominated by phototrophic bacteria (e.g., Krumbein et al., 1977; Jørgensen et al., 1983). They develop as vertically

  1. A Thermal Physiological Comparison of Two HazMat Protective Ensembles With and Without Active Convective Cooling

    Science.gov (United States)

    Williamson, Rebecca; Carbo, Jorge; Luna, Bernadette; Webbon, Bruce W.

    1998-01-01

    Wearing impermeable garments for hazardous materials clean up can often present a health and safety problem for the wearer. Even short duration clean up activities can produce heat stress injuries in hazardous materials workers. It was hypothesized that an internal cooling system might increase worker productivity and decrease likelihood of heat stress injuries in typical HazMat operations. Two HazMat protective ensembles were compared during treadmill exercise. The different ensembles were created using two different suits: a Trelleborg VPS suit representative of current HazMat suits and a prototype suit developed by NASA engineers. The two life support systems used were a current technology Interspiro Spirolite breathing apparatus and a liquid air breathing system that also provided convective cooling. Twelve local members of a HazMat team served as test subjects. They were fully instrumented to allow a complete physiological comparison of their thermal responses to the different ensembles. Results showed that cooling from the liquid air system significantly decreased thermal stress. The results of the subjective evaluations of new design features in the prototype suit were also highly favorable. Incorporation of these new design features could lead to significant operational advantages in the future.

  2. Method for production of carbon nanofiber mat or carbon paper

    Science.gov (United States)

    Naskar, Amit K.

    2015-08-04

    Method for the preparation of a non-woven mat or paper made of carbon fibers, the method comprising carbonizing a non-woven mat or paper preform (precursor) comprised of a plurality of bonded sulfonated polyolefin fibers to produce said non-woven mat or paper made of carbon fibers. The preforms and resulting non-woven mat or paper made of carbon fiber, as well as articles and devices containing them, and methods for their use, are also described.

  3. Microbial mat ecosystems: Structure types, functional diversity, and biotechnological application

    Directory of Open Access Journals (Sweden)

    Cristina M. Prieto-Barajas

    2018-01-01

    Full Text Available Microbial mats are horizontally stratified microbial communities, exhibiting a structure defined by physiochemical gradients, which models microbial diversity, physiological activities, and their dynamics as a whole system. These ecosystems are commonly associated with aquatic habitats, including hot springs, hypersaline ponds, and intertidal coastal zones and oligotrophic environments, all of them harbour phototrophic mats and other environments such as acidic hot springs or acid mine drainage harbour non-photosynthetic mats. This review analyses the complex structure, diversity, and interactions between the microorganisms that form the framework of different types of microbial mats located around the globe. Furthermore, the many tools that allow studying microbial mats in depth and their potential biotechnological applications are discussed.

  4. Contributions of ectomycorrhizal fungal mats to forest soil respiration

    Science.gov (United States)

    C. Phillips; L.A. Kluber; J.P. Martin; B.A. Caldwell; B.J. Bond

    2012-01-01

    Distinct aggregations of fungal hyphae and rhizomorphs, or “mats”, formed by some genera of ectomycorrhizal (EcM) fungi are common features of soils in coniferous forests of the Pacific Northwest. We measured in situ respiration rates of Piloderma mats and neighboring non-mat soils in an old-growth Douglas-fir forest in western Oregon to investigate whether there was...

  5. High Tech Art: Chameleon Glass

    Science.gov (United States)

    1993-01-01

    Dichroic Glass is a technology wherein extremely thin films of metal are vacuum deposited on a glass surface. The coated glass shields spacecraft instruments from cosmic radiation and protects human vision from unfiltered sunlight in space. Because the coating process allows some wavelengths of light and color to reflect and others to pass through, a chameleon effect is produced. Murray Schwartz, a former aerospace engineer, has based his business KROMA on this NASA optical technology. He produces dichroic stained glass windows, mobiles and jewelry. The technique involves deposition of super thin layers of metal oxides applied one layer at a time in a specific order and thickness for the desired effect. His product line is unique and has been very successful.

  6. Photosynthetic Microbial Mats are Exemplary Sources of Diverse Biosignatures (Invited)

    Science.gov (United States)

    Des Marais, D. J.; Jahnke, L. L.

    2013-12-01

    Marine cyanobacterial microbial mats are widespread, compact, self-contained ecosystems that create diverse biosignatures and have an ancient fossil record. Within the mats, oxygenic photosynthesis provides organic substrates and O2 to the community. Both the absorption and scattering of light change the intensity and spectral composition of incident radiation as it penetrates a mat. Some phototrophs utilize infrared light near the base of the photic zone. A mat's upper layers can become highly reduced and sulfidic at night. Counteracting gradients of O2 and sulfide shape the chemical environment and provide daily-contrasting microenvironments separated on a scale of a few mm. Radiation hazards (UV, etc.), O2 and sulfide toxicity elicit motility and other physiological responses. This combination of benefits and hazards of light, O2 and sulfide promotes the allocation of various essential mat processes between light and dark periods and to various depths in the mat. Associated nonphotosynthetic communities, including anaerobes, strongly influence many of the ecosystem's overall characteristics, and their processes affect any biosignatures that enter the fossil record. A biosignature is an object, substance and/or pattern whose origin specifically requires a biological agent. The value of a biosignature depends not only on the probability of life creating it, but also on the improbability of nonbiological processes producing it. Microbial mats create biosignatures that identify particular groups of organisms and also reveal attributes of the mat ecosystem. For example, branched hydrocarbons and pigments can be diagnostic of cyanobacteria and other phototrophic bacteria, and isoprenoids can indicate particular groups of archea. Assemblages of lipid biosignatures change with depth due to changes in microbial populations and diagenetic transformations of organic matter. The 13C/12C values of organic matter and carbonates reflect isotopic discrimination by particular

  7. Crystallization study of Te–Bi–Se glasses

    Indian Academy of Sciences (India)

    Unknown

    Thermal stability; chalcogenide glasses; glass forming ability; glass transition temperature. 1. Introduction ... as well as their wide technological applications including threshold and ... are other important aspects such as ON-state current,.

  8. Water flow and solute transport in floating fen root mats

    Science.gov (United States)

    Stofberg, Sija F.; EATM van der Zee, Sjoerd

    2015-04-01

    Floating fens are valuable wetlands, found in North-Western Europe, that are formed by floating root mats when old turf ponds are colonized by plants. These terrestrialization ecosystems are known for their biodiversity and the presence of rare plant species, and the root mats reveal different vegetation zones at a small scale. The vegetation zones are a result of strong gradients in abiotic conditions, including groundwater dynamics, nutrients and pH. To prevent irreversible drought effects such as land subsidence and mineralization of peat, water management involves import of water from elsewhere to maintain constant surface water levels. Imported water may have elevated levels of salinity during dry summers, and salt exposure may threaten the vegetation. To assess the risk of exposure of the rare plant species to salinity, the hydrology of such root mats must be understood. Physical properties of root mats have scarcely been investigated. We have measured soil characteristics, hydraulic conductivity, vertical root mat movement and groundwater dynamics in a floating root mat in the nature reserve Nieuwkoopse Plassen, in the Netherlands. The root mat mostly consists of roots and organic material, in which the soil has a high saturated water content, and strongly varies in its stage of decomposition. We have found a distinct negative correlation between degree of decomposition and hydraulic conductivity, similar to observations for bogs in the literature. Our results show that the relatively young, thin edge of the root mat that colonizes the surface water has a high hydraulic conductivity and floats in the surface water, resulting in very small groundwater fluctuations within the root mat. The older part of the root mat, that is connected to the deeper peat layers is hydrologically more isolated and the material has a lower conductivity. Here, the groundwater fluctuates strongly with atmospheric forcing. The zones of hydraulic properties and vegetation, appear to

  9. Analysis of form deviation in non-isothermal glass molding

    Science.gov (United States)

    Kreilkamp, H.; Grunwald, T.; Dambon, O.; Klocke, F.

    2018-02-01

    Especially in the market of sensors, LED lighting and medical technologies, there is a growing demand for precise yet low-cost glass optics. This demand poses a major challenge for glass manufacturers who are confronted with the challenge arising from the trend towards ever-higher levels of precision combined with immense pressure on market prices. Since current manufacturing technologies especially grinding and polishing as well as Precision Glass Molding (PGM) are not able to achieve the desired production costs, glass manufacturers are looking for alternative technologies. Non-isothermal Glass Molding (NGM) has been shown to have a big potential for low-cost mass manufacturing of complex glass optics. However, the biggest drawback of this technology at the moment is the limited accuracy of the manufactured glass optics. This research is addressing the specific challenges of non-isothermal glass molding with respect to form deviation of molded glass optics. Based on empirical models, the influencing factors on form deviation in particular form accuracy, waviness and surface roughness will be discussed. A comparison with traditional isothermal glass molding processes (PGM) will point out the specific challenges of non-isothermal process conditions. Furthermore, the underlying physical principle leading to the formation of form deviations will be analyzed in detail with the help of numerical simulation. In this way, this research contributes to a better understanding of form deviations in non-isothermal glass molding and is an important step towards new applications demanding precise yet low-cost glass optics.

  10. Mechanical properties and fabrication of small boat using woven glass/sugar palm fibres reinforced unsaturated polyester hybrid composite

    International Nuclear Information System (INIS)

    Misri, S; Leman, Z; Sapuan, S M; Ishak, M R

    2010-01-01

    In recent years, sugar palm fibre has been found to have great potential to be used as fibre reinforcement in polymer matrix composites. This research investigates the mechanical properties of woven glass/sugar palm fibres reinforced unsaturated polyester hybrid composite. The composite specimens made of different layer of fibres such as strand mat, natural and hand woven of sugar palm fibres. The composites were fabricated using a compression moulding technique. The tensile and impact test was carried out in accordance to ASTM 5083 and ASTM D256 standard. The fibre glass boat is a familiar material used in boat industry. A lot of research on fabrication process such as lay-up, vacuum infusion mould and resin transfer mould has been conducted. Hybrid material of sugar palm fibre and fibre glass was used in fabricating the boat. This research investigates the method selection for fabrication of small boat application of natural fibre composites. The composite specimens made of different layer of fibres; woven glass fibre, strand mat, natural and hand woven of woven sugar palm fibres were prepared. The small boat were fabricated using a compression moulding and lay up technique. The results of the experiment showed that the tensile strength, tensile modulus, elongation at break value and impact strength were higher than the natural woven sugar palm fibre. The best method for fabricating the small boat was compression moulding technique. As a general conclusion, the usage of glass fibre had improved the tensile properties sugar palm fibre composites and compression moulding technique is suitable to be used in making a small boat application of natural fibre composites.

  11. Microbial mat structures in profile: The Neoproterozoic Sonia Sandstone, Rajasthan, India

    Science.gov (United States)

    Samanta, Pradip; Mukhopadhyay, Soumik; Mondal, Anudeb; Sarkar, Subir

    2011-01-01

    Ubiquitous microorganisms, especially cyanobacteria preferably grow on the sediment surface thereby producing microbial mats. In the absence of grazers and bioturbators, microbial mat is a unique feature of the Proterozoic. Most of the papers so far published described a wide variety of bed surface microbial mat structures with rare illustrations from sections perpendicular to bedding. Nonetheless, bed surface exposures are relatively rare in rock records. This limitation of bed surface exposures in rock records suggest that a study of microbial mats in bed-across sections is needed. The 60 m thick coastal marine interval of the Sonia Sandstone Formation is bounded between two terrestrial intervals, a transgressive lag at the base and an unconformity at the top, and has been chosen for exploration of microbial mat structures in bed-across sections. A wide variety of microbial mat-induced structures in bed-across sections are preserved within the coastal interval of the Sonia Sandstone. Though many of these structures are similar in some aspects with bed surface structures, some of those presented here are new. The palaeogeographic range of these microbial structures extends from supralittoral to neritic. Diagenetic alterations of microbial mats produce pyrite and those zones are suitable for the preservation of microbial remains. SEM and EDAX analyses show fossil preservation of filamentous microbial remains that confirm the presence of microbial mats within the coastal interval of the Sonia Sandstone. Effects of proliferation of microbial mats in the siliciclastic depositional setting are numerous. The mat-cover on sediment surfaces hinders reworking and/or erosion of the sediments thereby increases the net sedimentation rate. Successive deposition and preservation of thick microbial mat layer under reducing environments should have a great potential for hydrocarbon production and preservation and therefore these Proterozoic formations could be a target for

  12. Two-step activation of meiosis by the mat1 locus in Schizosaccharomyces pombe

    DEFF Research Database (Denmark)

    Willer, M; Hoffmann, Ulla-Lisbeth; Styrkársdóttir, U

    1995-01-01

    of meiosis is based largely on indirect observations, and a more precise investigation of these events was required to define the interaction between the mat1 genes. Here we resolve this issue using synthetic pheromones and P/M strains with mutations in either mat1-Pc or mat1-Mc. Our results suggest a model...... in which the mat1 locus plays two roles in controlling meiosis. In the first instance, the mat1-Pc and mat1-Mc functions are required to produce the mating pheromones and receptors that allow the generation of a pheromone signal. This signal is required to induce the expression of mat1-Pm and mat1-Mm...

  13. Storage of yerba maté in controlled atmosphere

    Directory of Open Access Journals (Sweden)

    Sarah Lemos Cogo Prestes

    2014-04-01

    Full Text Available The aim of this study was to evaluate the effect of controlled atmosphere in the change of color, chlorophyll degradation and phenolic compounds concentration in yerba maté thickly ground (“cancheada” and thinly milled (“socada”. Yerba maté samples from the towns of Arvorezinha (RS - Brazil and São Mateus do Sul (PR - Brazil were stored in four levels of oxygen (1, 3, 6 and 20.9kPa of O2 and four levels of carbon dioxide (0, 3, 6 and 18kPa of CO2 and then were analyzed, after nine months of storage. According to the results, the O2 partial pressure reduction decreased the loss of green coloration, kept a higher content of chlorophylls and of total phenolic compounds. In relation to the different levels of CO2, a response as remarkable as O2 was not observed. The yerba maté that was thickly ground (“cancheada” presented a better storage potential than the one thinly milled (“socada” in the storage with O2 and with CO2. The 1kPa of O2 condition kept the yerba maté greener and with a higher content of chlorophylls and of total phenolic compounds after nine months of storage. The CO2 partial pressure kept the yerba maté coloration greener and with a higher content of chlorophylls and of total phenolic compounds, regardless of the level used, in the maté from both cultivation areas.

  14. Cold-crucible fabrication of nuclear glasses

    International Nuclear Information System (INIS)

    Boen, R.

    2010-01-01

    Vitrification has stood the nuclear industry in good stead, for many years now, as a safe long-term conditioning technology for high-level waste. Major advances are nonetheless still being made, with the development of the cold-crucible technology, affording as it does new possibilities, in terms of volume reduction, and of extending the range of waste products amenable to incorporation. Indeed, by allowing higher melting temperatures to be achieved (1200 - 1400 C degrees), this process opens the way to a considerable increase in glass production capacities, and the fabrication of novel matrices, involving higher incorporation rates than current glasses. In the cold-crucible technology, materials put into the crucible are heated directly through induction. The crucible made of metal is cooled by water circulation. Where the glass comes into contact with the cold wall, a thin layer of solidified glass forms, with a thickness of 5-10 mm preventing the metal forming the crucible from coming into contact with the molten glass. A full scale pilot of the cold crucible was constructed at the La Hague vitrification workshop

  15. Critique de la dématérialisation

    OpenAIRE

    Robert , Pascal

    2004-01-01

    International audience; La notion de " dématérialisation " constitue actuellement l'une des pièces maîtresses de l'idéologie de la communication. Or, après enquête, nous constatons que la dématérialisation ne se rencontre ni dans les TIC ni dans les réseaux où se dévoilent en revanche un nouveau mode de matérialisation ainsi qu'un processus de virtualisation par changement d'échelle. Nous nous interrogeons donc sur la fonction sociale et politique que cette notion joue dans les discours qui l...

  16. Fabrication of nanofiber mats from electrospinning of functionalized polymers

    Science.gov (United States)

    Oktay, Burcu; Kayaman-Apohan, Nilhan; Erdem-Kuruca, Serap

    2014-08-01

    Electrospinning technique enabled us to prepare nanofibers from synthetic and natural polymers. In this study, it was aimed to fabricate electrospun poly(vinyl alcohol) (PVA) based nanofibers by reactive electrospinning process. To improve endurance of fiber toward to many solvents, PVA was functionalized with photo-crosslinkable groups before spinning. Afterward PVA was crosslinked by UV radiation during electrospinning process. The nanofiber mats were characterized by scanning electron microscopy (SEM). The results showed that homogenous, uniform and crosslinked PVA nanofibers in diameters of about 200 nm were obtained. Thermal stability of the nanofiber mat was investigated with thermal gravimetric analysis (TGA). Also the potential use of this nanofiber mats for tissue engineering was examined. Osteosarcoma (Saos) cells were cultured on the nanofiber mats.

  17. Fabrication of nanofiber mats from electrospinning of functionalized polymers

    International Nuclear Information System (INIS)

    Oktay, Burcu; Kayaman-Apohan, Nilhan; Erdem-Kuruca, Serap

    2014-01-01

    Electrospinning technique enabled us to prepare nanofibers from synthetic and natural polymers. In this study, it was aimed to fabricate electrospun poly(vinyl alcohol) (PVA) based nanofibers by reactive electrospinning process. To improve endurance of fiber toward to many solvents, PVA was functionalized with photo-crosslinkable groups before spinning. Afterward PVA was crosslinked by UV radiation during electrospinning process. The nanofiber mats were characterized by scanning electron microscopy (SEM). The results showed that homogenous, uniform and crosslinked PVA nanofibers in diameters of about 200 nm were obtained. Thermal stability of the nanofiber mat was investigated with thermal gravimetric analysis (TGA). Also the potential use of this nanofiber mats for tissue engineering was examined. Osteosarcoma (Saos) cells were cultured on the nanofiber mats

  18. Matting Of Hair Due To ′Sunsilk′ Shampoo

    Directory of Open Access Journals (Sweden)

    Nadeem Mohd

    1995-01-01

    Full Text Available Matting of hair been reported from time to time due to treatment of hair with detergent, shampoos, waving lotions, setting lotions and bleaches. A case of matting of hairs in a young girl due to a change in the brand of shampoo is reported.

  19. Regulation of electron transfer processes affects phototrophic mat structure and activity

    OpenAIRE

    Ha, Phuc T.; Renslow, Ryan S.; Atci, Erhan; Reardon, Patrick N.; Lindemann, Stephen R.; Fredrickson, James K.; Call, Douglas R.; Beyenal, Haluk

    2015-01-01

    Phototrophic microbial mats are among the most diverse ecosystems in nature. These systems undergo daily cycles in redox potential caused by variations in light energy input and metabolic interactions among the microbial species. In this work, solid electrodes with controlled potentials were placed under mats to study the electron transfer processes between the electrode and the microbial mat. The phototrophic microbial mat was harvested from Hot Lake, a hypersaline, epsomitic lake located ne...

  20. Evaluation of polyacrylonitrile electrospun nano-fibrous mats as leukocyte removal filter media.

    Science.gov (United States)

    Pourbaghi, Raha; Zarrebini, Mohammad; Semnani, Dariush; Pourazar, Abbasali; Akbari, Nahid; Shamsfar, Reihaneh

    2017-09-13

    Removal of leukocytes from blood products is the most effective means for elimination of undesirable side effects and prevention of possible reactions in recipients. Micro-fibrous mats are currently used for removal of leukocytes from blood. In this study, samples of electrospun nano-fibrous mats were produced. The performance of the produced electrospun nano-fibrous mats as means of leukocytes removal from fresh whole blood was both evaluated and compared with that of commercially available micro-fibrous mats. In order to produce the samples, polyacrylonitrile (PAN) nano-fibrous mats were made under different electrospinning conditions. Mean fiber diameter, pore characterization and surface roughness of the PAN nano-fibrous mats were determined using image processing technique. In order to evaluate the surface tension of the fabricated mats, water contact angle was measured. The leukocyte removal performance, erythrocytes recovery percent and hemolysis rate of the nano-fibrous mats were compared. The effectiveness of nano-fibrous mats in removing leukocyte was established using both scanning electron microscope and optical microscope. Results showed that for given weight, the fabricated nano-fibrous mats were not only more efficient but also more cost-effective than their commercial counterparts. Results confirmed that changes in mean fiber diameter, the number of layer and weight of each layer in the absence of any chemical reaction or physical surface modification, the fabricated nano-fibrous mats were able to remove 5-log of leukocytes. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2017. © 2017 Wiley Periodicals, Inc.

  1. Tritium application: self-luminous glass tube(SLGT)

    International Nuclear Information System (INIS)

    Kim, K.; Lee, S.K.; Chung, E.S.; Kim, K.S.; Kim, W.S.; Nam, G.J.

    2005-01-01

    To manufacture SLGTs (self-luminous glass tubes), 4 core technologies are needed: coating technology, tritium injection technology, laser sealing/cutting technology and tritium handling technology. The inside of the glass tubes is coated with greenish ZnS phosphor particles with sizes varying from 4∝5 [μm], and Cu, and Al as an activator and a co-dopant, respectively. We also found that it would be possible to produce a phosphor coated glass tube for the SLGT using the well established cold cathode fluorescent lamp (CCFL) bulb manufacturing technology. The conceptual design of the main process loop (PL) is almost done. A delicate technique will be needed for the sealing/cutting of the glass tubes. Instead of the existing torch technology, a new technology using a pulse-type laser is under investigation. The design basis of the tritium handling facilities is to minimize the operator's exposure to tritium uptake and the emission of tritium to the environment. To fulfill the requirements, major tritium handling components are located in the secondary containment such as the glove boxes (GBs) and/or the fume hoods. The tritium recovery system (TRS) is connected to a GB and PL to minimize the release of tritium as well as to remove the moisture and oxygen in the GB. (orig.)

  2. Light scattering in glass-ceramics

    International Nuclear Information System (INIS)

    Hendy, S.C.

    2002-01-01

    Full text: Glass-ceramic materials with microstructures comprised of dispersed nanocrystallites in a residual glass matrix show promise for many new technological applications. In particular, transparent glass-ceramics offer low thermal expansion and stability, in addition to the prospect of novel non-linear optical properties that can arise from the nanocrystallites. Good transparency requires low optical scattering and low atomic absorption. Light scattering in the glass-ceramic arises primarily from the glass-crystallite interface. The attenuation due to scattering (turbidity) will depend upon the difference in refractive index of the two phases and the size and distribution of nanocrystallites in the glass. Here we consider models of glass-ceramic structure formation and look at scattering in these model structures to increase our understanding of the transparency of glass-ceramics

  3. Crystallization of Yttrium and Samarium Aluminosilicate Glasses

    OpenAIRE

    Lago, Diana Carolina; Prado, Miguel Oscar

    2016-01-01

    Aluminosilicate glasses containing samarium and yttrium (SmAS and YAS glasses) exhibit high glass transition temperatures, corrosion resistance, and glass stability on heating which make them useful for technological applications. Yttrium aluminosilicate glass microspheres are currently being used for internal selective radiotherapy of liver cancer. During the preparation process, crystallization needs to be totally or partially avoided depending on the final application. Thus knowing the cry...

  4. Silicate glasses. Chapter 1

    International Nuclear Information System (INIS)

    Lutze, W.

    1988-01-01

    This chapter is a survey of world-wide research and development efforts in nuclear waste glasses and its production technology. The principal glasses considered are silicate glasses which contain boron, i.e. borosilicate glass. A historical overview of waste form development programs in nine countries is followed by a summary of the design criteria for borosilicate glass compositions glass compositions. In the sections on glass properties the waste form is characterized in terms of potential alterations under the influence of heat, thermal gradients, radiation, aqueous solutions and combinations thereof. The topics are phase transformations, mechanical properties, radiation effects and chemical durability. The results from studies of volcanic glasses, as natural analogues for borosilicate nuclear waste glasses in order to verify predictions obtained from short-term tests in the laboratory, have been compiled in a special section on natural analogues. A special section on advanced vitrification techniques summarizes the various actual and potential processing schemes and describes the facilities. The literature has been considered until 1985. (author). 430 refs.; 68 figs.; 29 tabs

  5. MAT@USC Candidates and Latino English Language Learners

    Science.gov (United States)

    Lomeli, Cynthia Leticia

    2012-01-01

    The purpose of this study was to further understand the perceptions of MAT@USC teacher candidates and how their perceptions and previous experiences affect the educational experiences of Latino English language learners. Three questions were developed to guide this study: (1) What are the perceptions of MAT@USC candidates in selected courses…

  6. Crafting glass vessels: current research on the ancient glass collections in the Freer Gallery of Art, Washington, D.C.

    Science.gov (United States)

    Nagel, Alexander; McCarthy, Blythe; Bowe, Stacy

    Our knowledge of glass production in ancient Egypt has been well augmented by the publication of recently excavated materials and glass workshops, but also by more recent materials analysis, and experiments of modern glass-makers attempting to reconstruct the production process of thin-walled coreformed glass vessels. From the mounting of a prefabricated core to the final glass product our understanding of this profession has much improved. The small but well preserved glass collection of the Freer Gallery of Art in Washington, D.C. is a valid tool for examining and studying the technology and production of ancient Egyptian core formed glass vessels. Charles Lang Freer (1854-1919) acquired most of the material from Giovanni Dattari in Cairo in 1909. Previously the glass had received only limited discussion, suggesting that most of these vessels were produced in the 18th Dynasty in the 15th and 14th centuries BCE, while others date from the Hellenistic period and later. In an ongoing project we conducted computed radiography in conjunction with qualitative x-ray fluorescence analysis on a selected group of vessels to understand further aspects of the ancient production process. This paper will provide an overview of our recent research and present our data-gathering process and preliminary results. How can the examinations of core formed glass vessels in the Freer Gallery contribute to our understanding of ancient glass production and technology? By focusing on new ways of looking at old assumptions using the Freer Gallery glass collections, we hope to increase understanding of the challenges of the production process of core-vessel technology as represented by these vessels.

  7. Energy Efficient Microwave Hybrid Processing of Lime for Cement, Steel, and Glass Industries

    Energy Technology Data Exchange (ETDEWEB)

    Fall, Morgana L; Yakovlev, Vadim; Sahi, Catherine; Baranova, Inessa; Bowers, Johnney G; Esquenazi\t, Gibran L

    2012-02-10

    In this study, the microwave materials interactions were studied through dielectric property measurements, process modeling, and lab scale microwave hybrid calcination tests. Characterization and analysis were performed to evaluate material reactions and energy usage. Processing parameters for laboratory scale and larger scale calcining experiments were developed for MAT limestone calcination. Early stage equipment design concepts were developed, with a focus on microwave post heating treatment. The retrofitting of existing rotary calcine equipment in the lime industry was assessed and found to be feasible. Ceralink sought to address some of the major barriers to the uptake of MAT identified as the need for (1) team approach with end users, technology partners, and equipment manufacturers, (2) modeling that incorporates kiln materials and variations to the design of industrial microwave equipment. This project has furthered the commercialization effort of MAT by working closely with an industrial lime manufacturer to educate them regarding MAT, identifying equipment manufacturer to supply microwave equipment, and developing a sophisticated MAT modeling with WPI, the university partner. MAT was shown to enhance calcining through lower energy consumption and faster reaction rates compared to conventional processing. Laboratory testing concluded that a 23% reduction in energy was possible for calcining small batches (5kg). Scale-up testing indicated that the energy savings increased as a function of load size and 36% energy savings was demonstrated (22 kg). A sophisticated model was developed which combines simultaneous microwave and conventional heating. Continued development of this modeling software could be used for larger scale calcining simulations, which would be a beneficial low-cost tool for exploring equipment design prior to actual building. Based on these findings, estimates for production scale MAT calcining benefits were calculated, assuming uptake of

  8. Late Byzantine mineral soda high alumina glasses from Asia Minor: a new primary glass production group.

    Directory of Open Access Journals (Sweden)

    Nadine Schibille

    Full Text Available The chemical characterisation of archaeological glass allows the discrimination between different glass groups and the identification of raw materials and technological traditions of their production. Several lines of evidence point towards the large-scale production of first millennium CE glass in a limited number of glass making factories from a mixture of Egyptian mineral soda and a locally available silica source. Fundamental changes in the manufacturing processes occurred from the eight/ninth century CE onwards, when Egyptian mineral soda was gradually replaced by soda-rich plant ash in Egypt as well as the Islamic Middle East. In order to elucidate the supply and consumption of glass during this transitional period, 31 glass samples from the assemblage found at Pergamon (Turkey that date to the fourth to fourteenth centuries CE were analysed by electron microprobe analysis (EPMA and by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS. The statistical evaluation of the data revealed that the Byzantine glasses from Pergamon represent at least three different glass production technologies, one of which had not previously been recognised in the glass making traditions of the Mediterranean. While the chemical characteristics of the late antique and early medieval fragments confirm the current model of glass production and distribution at the time, the elemental make-up of the majority of the eighth- to fourteenth-century glasses from Pergamon indicate the existence of a late Byzantine glass type that is characterised by high alumina levels. Judging from the trace element patterns and elevated boron and lithium concentrations, these glasses were produced with a mineral soda different to the Egyptian natron from the Wadi Natrun, suggesting a possible regional Byzantine primary glass production in Asia Minor.

  9. Mating-Type Genes and MAT Switching in Saccharomyces cerevisiae

    Science.gov (United States)

    Haber, James E.

    2012-01-01

    Mating type in Saccharomyces cerevisiae is determined by two nonhomologous alleles, MATa and MATα. These sequences encode regulators of the two different haploid mating types and of the diploids formed by their conjugation. Analysis of the MATa1, MATα1, and MATα2 alleles provided one of the earliest models of cell-type specification by transcriptional activators and repressors. Remarkably, homothallic yeast cells can switch their mating type as often as every generation by a highly choreographed, site-specific homologous recombination event that replaces one MAT allele with different DNA sequences encoding the opposite MAT allele. This replacement process involves the participation of two intact but unexpressed copies of mating-type information at the heterochromatic loci, HMLα and HMRa, which are located at opposite ends of the same chromosome-encoding MAT. The study of MAT switching has yielded important insights into the control of cell lineage, the silencing of gene expression, the formation of heterochromatin, and the regulation of accessibility of the donor sequences. Real-time analysis of MAT switching has provided the most detailed description of the molecular events that occur during the homologous recombinational repair of a programmed double-strand chromosome break. PMID:22555442

  10. Biodiversity of the microbial mat of the Garga hot spring.

    Science.gov (United States)

    Rozanov, Alexey Sergeevich; Bryanskaya, Alla Victorovna; Ivanisenko, Timofey Vladimirovich; Malup, Tatyana Konstantinovna; Peltek, Sergey Evgenievich

    2017-12-28

    Microbial mats are a good model system for ecological and evolutionary analysis of microbial communities. There are more than 20 alkaline hot springs on the banks of the Barguzin river inflows. Water temperature reaches 75 °C and pH is usually 8.0-9.0. The formation of microbial mats is observed in all hot springs. Microbial communities of hot springs of the Baikal rift zone are poorly studied. Garga is the biggest hot spring in this area. In this study, we investigated bacterial and archaeal diversity of the Garga hot spring (Baikal rift zone, Russia) using 16S rRNA metagenomic sequencing. We studied two types of microbial communities: (i) small white biofilms on rocks in the points with the highest temperature (75 °C) and (ii) continuous thick phototrophic microbial mats observed at temperatures below 70 °C. Archaea (mainly Crenarchaeota; 19.8% of the total sequences) were detected only in the small biofilms. The high abundance of Archaea in the sample from hot springs of the Baikal rift zone supplemented our knowledge of the distribution of Archaea. Most archaeal sequences had low similarity to known Archaea. In the microbial mats, primary products were formed by cyanobacteria of the genus Leptolyngbya. Heterotrophic microorganisms were mostly represented by Actinobacteria and Proteobacteria in all studied samples of the microbial mats. Planctomycetes, Chloroflexi, and Chlorobi were abundant in the middle layer of the microbial mats, while heterotrophic microorganisms represented mostly by Firmicutes (Clostridia, strict anaerobes) dominated in the bottom part. Besides prokaryotes, we detect some species of Algae with help of detection their chloroplasts 16 s rRNA. High abundance of Archaea in samples from hot springs of the Baikal rift zone supplemented our knowledge of the distribution of Archaea. Most archaeal sequences had low similarity to known Archaea. Metagenomic analysis of microbial communities of the microbial mat of Garga hot spring showed that

  11. Tritium application: self-luminous glass tube(SLGT)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K.; Lee, S.K.; Chung, E.S.; Kim, K.S.; Kim, W.S. [Nuclear Power Lab., Korea Electric Power Research Inst. (KEPRI), Daejeon (Korea); Nam, G.J. [Engineering Information Technology Center, Inst. for Advanced Engineering (IAE), Kyonggi-do (Korea)

    2005-07-01

    To manufacture SLGTs (self-luminous glass tubes), 4 core technologies are needed: coating technology, tritium injection technology, laser sealing/cutting technology and tritium handling technology. The inside of the glass tubes is coated with greenish ZnS phosphor particles with sizes varying from 4{proportional_to}5 [{mu}m], and Cu, and Al as an activator and a co-dopant, respectively. We also found that it would be possible to produce a phosphor coated glass tube for the SLGT using the well established cold cathode fluorescent lamp (CCFL) bulb manufacturing technology. The conceptual design of the main process loop (PL) is almost done. A delicate technique will be needed for the sealing/cutting of the glass tubes. Instead of the existing torch technology, a new technology using a pulse-type laser is under investigation. The design basis of the tritium handling facilities is to minimize the operator's exposure to tritium uptake and the emission of tritium to the environment. To fulfill the requirements, major tritium handling components are located in the secondary containment such as the glove boxes (GBs) and/or the fume hoods. The tritium recovery system (TRS) is connected to a GB and PL to minimize the release of tritium as well as to remove the moisture and oxygen in the GB. (orig.)

  12. Synthesis for Lunar Simulants: Glass, Agglutinate, Plagioclase, Breccia

    Science.gov (United States)

    Weinstein, Michael; Wilson, Stephen A.; Rickman, Douglas L.; Stoeser, Douglas

    2012-01-01

    The video describes a process for making glass for lunar regolith simulants that was developed from a patented glass-producing technology. Glass composition can be matched to simulant design and specification. Production of glass, pseudo agglutinates, plagioclase, and breccias is demonstrated. The system is capable of producing hundreds of kilograms of high quality glass and simulants per day.

  13. Protein and Bacterial Antifouling Behavior of Melt-Coextruded Nanofiber Mats.

    Science.gov (United States)

    Kim, Si-Eun; Zhang, Cong; Advincula, Abigail A; Baer, Eric; Pokorski, Jonathan K

    2016-04-13

    Antifouling surfaces are important for biomedical devices to prevent secondary infections and mitigate the effects of the foreign body response. Herein, we describe melt-coextruded poly(ε-caprolactone) (PCL) nanofiber mats grafted with antifouling polymers. Nonwoven PCL fiber mats are produced using a multilayered melt coextrusion process followed by high-pressure hydroentanglement to yield porous patches. The resulting fiber mats show submicrometer cross-sectional fiber dimensions and yield pore sizes that were nearly uniform, with a mean pore size of 1.6 ± 0.9 μm. Several antifouling polymers, including hydrophilic, zwitterionic, and amphipathic molecules, are grafted to the surface of the mats using a two-step procedure that includes photochemistry followed by the copper-catalyzed azide-alkyne cycloaddition reaction. Fiber mats are evaluated using separate adsorption tests for serum proteins and E. coli. The results indicate that poly(oligo(ethylene glycol) methyl ether methacrylate)-co-(trifluoroethyl methacrylate) (poly(OEGMEMA-co-TFEMA)) grafted mats exhibit approximately 85% less protein adhesion and 97% less E. coli adsorption when compared to unmodified PCL fibermats. In dynamic antifouling testing, the amphiphilic fluorous polymer surface shows the highest flux and highest rejection value of foulants. The work presented within has implications on the high-throughput production of antifouling microporous patches for medical applications.

  14. Flow of light energy in benthic photosynthetic microbial mats

    Energy Technology Data Exchange (ETDEWEB)

    Al-Najjar, Mohammad Ahmad A.

    2010-12-15

    The work in this thesis demonstrates the assessment of the energy budget inside microbial mat ecosystems, and the factors affecting light utilization efficiency. It presents the first balanced light energy budget for benthic microbial mat ecosystems, and shows how the budget and the spatial distribution of the local photosynthetic efficiencies within the euphotic zone depend on the absorbed irradiance (Jabs). The energy budget was dominated by heat dissipation on the expense of photosynthesis. The maximum efficiency of photosynthesis was at light limiting conditions When comparing three different marine benthic photosynthetic ecosystems (originated from Abu-Dhabi, Arctic, and Exmouth Gulf in Western Australia), differences in the efficiencies were calculated. The results demonstrated that the maximum efficiency depended on mat characteristics affecting light absorption and scattering; such as, photopigments ratio and distribution, and the structural organization of the photosynthetic organisms relative to other absorbing components of the ecosystem (i.e., EPS, mineral particles, detritus, etc.). The maximum efficiency decreased with increasing light penetration depth, and increased with increasing the accessory pigments (phycocyanin and fucoxanthin)/chlorophyll ratio. Spatial heterogeneity in photosynthetic efficiency, pigment distribution, as well as light acclimation in microbial mats originating from different geographical locations was investigated. We used a combined pigment imaging approach (variable chlorophyll fluorescence and hyperspectral imaging), and fingerprinting approach. For each mat, the photosynthetic activity was proportional to the local pigment concentration in the photic zone, but not for the deeper layers and between different mats. In each mat, yield of PSII and E1/2 (light acclimation) generally decreased in parallel with depth, but the gradients in both parameters varied greatly between samples. This mismatch between pigments concentration

  15. Intra-Laminar Fracture Toughness of Glass Fiber Reinforced Polymer By Using Theory, Experimentation and FEA

    Science.gov (United States)

    Firojkhan, Pathan; Tanpure, Kshitijit; Dawale, Ajinkya; Patil, Shital

    2018-04-01

    Fiber reinforced polymer (FRP) composites are widely use in aerospace, marine, auto-mobile and civil engineering applications because of their high strength-to-weight and stiffness-to-weight ratios, corrosion resistance and potentially high durability. The purpose of this research is to experimentally investigate the mechanical and fracture properties of glass-fiber reinforced polyester composite material, 450 g/m 2 randomly distributed glass-fiber mat also known as woven strand mat with polyester resin as a matrix. The samples have been produced by the conventional hand layup process and the specimens were prepared as per the ASTM standards. The tensile test was performed on the composite specimens using Universal testing machine (UTM) which are used for the finite element simulation of composite Layered fracture model. The mechanical properties were evaluated from the stress vs. strain curve obtained from the test result. Later, fracture tests were performed on the CT specimen. In case of CT specimen the load vs. Displacement plot obtained from the experimental results was used to determine the fracture properties of the composite. The failure load of CT specimen using FEA is simulated which gives the Stress intensity factor by using FEA. Good agreement between the FEA and experimental results was observed.

  16. Enhancing the mechanical properties of electrospun polyester mats by heat treatment

    Directory of Open Access Journals (Sweden)

    M. Kancheva

    2015-01-01

    Full Text Available Microfibrous materials with a targeted design based on poly(L-lactic acid (PLA and poly(ε-caprolactone (PCL were prepared by electrospinning and by combining electrospinning and electrospraying. Several approaches were used: (i electrospinning of a common solution of the two polymers, (ii simultaneous electrospinning of two separate solutions of PLA and PCL, (iii electrospinning of PLA solution in conjunction with electrospraying of PCL solution, and (iv alternating layer-by-layer deposition by electrospinning of separate PLA and PCL solutions. The mats were heated at the melting temperature of PCL (60°", thus achieving melting of PCL fibers/particles and thermal sealing of the fibers. The mats subjected to thermal treatment were characterized by greater mean fiber diameters and reduced values of the water contact angle compared to the pristine mats. Heat treatment of the mats affected their thermal stability and led to an increase in the crystallinity degree of PLA incorporated in the mats, whereas that of PCL was reduced. All mats were characterized by enhanced mechanical properties after thermal treatment as compared to the non-treated fibrous materials.

  17. Polyelectrolyte-Functionalized Nanofiber Mats Control the Collection and Inactivation of Escherichia coli

    Directory of Open Access Journals (Sweden)

    Katrina A. Rieger

    2016-04-01

    Full Text Available Quantifying the effect that nanofiber mat chemistry and hydrophilicity have on microorganism collection and inactivation is critical in biomedical applications. In this study, the collection and inactivation of Escherichia coli K12 was examined using cellulose nanofiber mats that were surface-functionalized using three polyelectrolytes: poly (acrylic acid (PAA, chitosan (CS, and polydiallyldimethylammonium chloride (pDADMAC. The polyelectrolyte functionalized nanofiber mats retained the cylindrical morphology and average fiber diameter (~0.84 µm of the underlying cellulose nanofibers. X-ray photoelectron spectroscopy (XPS and contact angle measurements confirmed the presence of polycations or polyanions on the surface of the nanofiber mats. Both the control cellulose and pDADMAC-functionalized nanofiber mats exhibited a high collection of E. coli K12, which suggests that mat hydrophilicity may play a larger role than surface charge on cell collection. While the minimum concentration of polycations needed to inhibit E. coli K12 was 800 µg/mL for both CS and pDADMAC, once immobilized, pDADMAC-functionalized nanofiber mats exhibited a higher inactivation of E. coli K12, (~97%. Here, we demonstrate that the collection and inactivation of microorganisms by electrospun cellulose nanofiber mats can be tailored through a facile polyelectrolyte functionalization process.

  18. Polyelectrolyte-Functionalized Nanofiber Mats Control the Collection and Inactivation of Escherichia coli

    Science.gov (United States)

    Rieger, Katrina A.; Porter, Michael; Schiffman, Jessica D.

    2016-01-01

    Quantifying the effect that nanofiber mat chemistry and hydrophilicity have on microorganism collection and inactivation is critical in biomedical applications. In this study, the collection and inactivation of Escherichia coli K12 was examined using cellulose nanofiber mats that were surface-functionalized using three polyelectrolytes: poly (acrylic acid) (PAA), chitosan (CS), and polydiallyldimethylammonium chloride (pDADMAC). The polyelectrolyte functionalized nanofiber mats retained the cylindrical morphology and average fiber diameter (~0.84 µm) of the underlying cellulose nanofibers. X-ray photoelectron spectroscopy (XPS) and contact angle measurements confirmed the presence of polycations or polyanions on the surface of the nanofiber mats. Both the control cellulose and pDADMAC-functionalized nanofiber mats exhibited a high collection of E. coli K12, which suggests that mat hydrophilicity may play a larger role than surface charge on cell collection. While the minimum concentration of polycations needed to inhibit E. coli K12 was 800 µg/mL for both CS and pDADMAC, once immobilized, pDADMAC-functionalized nanofiber mats exhibited a higher inactivation of E. coli K12, (~97%). Here, we demonstrate that the collection and inactivation of microorganisms by electrospun cellulose nanofiber mats can be tailored through a facile polyelectrolyte functionalization process. PMID:28773422

  19. Synthesis of CuAlO2 nanofibrous mats by electrospinning

    International Nuclear Information System (INIS)

    Zhao Shizhen; Li Miaoyu; Liu Xiaomin; Han Gaoyi

    2009-01-01

    Electrospinning as a versatile method for preparation of nanofibers has been used to fabricate the polyvinylalcohol nanofibers containing equal molar of aluminum nitrate and copper acetate. After pretreated at 400 deg. C, the composite fibrous mats were annealed at 1100 deg. C in air for 5 h and then the delafossite-structured p-type CuAlO 2 ceramics fibrous mats were obtained. The obtained CuAlO 2 ceramics fibrous mats were characterized by scanning electrical microscope, X-ray diffraction and diffuse reflectance spectroscopy. The direct energy gap of the prepared CuAlO 2 ceramics fibrous mats was measured to be about 3.38 eV. The CuAlO 2 behaved like semiconductors and the thermally activated energy was about 0.25 eV.

  20. Supporting Inquiry-based Learning with Google Glass (GPIM)

    NARCIS (Netherlands)

    Suarez, Angel; Ternier, Stefaan; Kalz, Marco; Specht, Marcus

    2015-01-01

    Wearable technology is a new genre of technology that is appearing to enhance learning in context. This manuscript introduces a Google Glass application to support Inquiry-based Learning (IBL). Applying Google Glass to IBL, we aim to transform the learning process into a more seamless, personal and

  1. Surgical Vision: Google Glass and Surgery.

    Science.gov (United States)

    Chang, Johnny Yau Cheung; Tsui, Lok Yee; Yeung, Keith Siu Kay; Yip, Stefanie Wai Ying; Leung, Gilberto Ka Kit

    2016-08-01

    Google Glass is, in essence, a smartphone in the form of a pair of spectacles. It has a display system, a bone conduction "speaker," video camera, and connectivity via WiFi or Bluetooth technologies. It can also be controlled by voice command. Seizing Google Glass' capabilities as windows of opportunity, surgeons have been the first group of doctors trying to incorporate the technology into their daily practices. Experiences from different groups have demonstrated Google Glass' potential in improving perioperative care, intraoperative communication and documentation, surgical outcome as well as surgical training. On the other hand, the device has technical limitations, notably suboptimal image qualities and a short battery life. Its operational functions also bring forth concerns on the protection of patient privacy. Nonetheless, the technological advances that this device embodies hold promises in surgical innovations. Further studies are required, and surgeons should explore, investigate, and embrace similar technologies with keen and informed anticipation. © The Author(s) 2016.

  2. Glass ... current issues

    International Nuclear Information System (INIS)

    Wright, A.F.; Dupuy, J.

    1985-01-01

    The objectives of the School were twofold. Firstly to inform participants of actual and developing technological applications of glassy materials in which fundamental science makes a strong contribution, and secondly to bring together scientists from the widely different backgrounds of glass science and technology to promote mutual understanding and collaboration. (orig.)

  3. Flakeboard thickness swelling. Part I, Stress relaxation in a flakeboard mat

    Science.gov (United States)

    R. L. Geimer; J. H. Kwon; J. Bolton

    1998-01-01

    The steam injection schedule best suited for dimensionally stabilizing a flake mat is one in which steam treatment is initiated before the press is closed and is continued at least until the mat attains target thickness. Experiments showed that resinless mats treated with 20 sec of steam at 600 kPa had maximum thickness swelling of 205% compared to 350% for resinless...

  4. Sequester of metals and mineralization of organic contaminants with microbial mats

    International Nuclear Information System (INIS)

    Bender, J.; Phillips, P.; Gould, J.P.

    1995-01-01

    Several recalcitrant organic contaminants are completely mineralized to simple products by microbial mats. Contaminants include chlordane, PCB, TNT, petroleum distillates, BM compounds and TCE in a mixed contaminant solution containing Zn. Degradation rates are relatively rapid under both dark and light conditions. In addition to complete degradation of organic materials, mats have been used to reduce selenate to elemental selenium, remove Pb, Cd, Cu, Zn, Co, Cr, Fe and Mn from water and sequester uranium (U 238 ) at a rate of 3.19 mg/m 2 /h. Results of three pilot projects, including field pond treatment of mine drainage and bioreactor treatment of BTEX compounds will be reported. Microbial mats are natural heterotrophic and autotrophic communities dominated by cyanobacteria (blue-green algae). They are self-organized laminated structures annealed fightly together by slimy secretions from various microbial components. The surface slime of the mats effectively immobilizes the ecosystem to a variety of substrates, thereby stabilizing the most efficient internal microbial structure. Cyanobacteria mats are generated for bioremediation applications by enriching a water surface with ensiled grass clippings together with mat inocula developed in the laboratory

  5. Development of continuous glass melting for production of Nd-doped phosphate glasses for the NIF and LMJ laser system

    International Nuclear Information System (INIS)

    Campbell, J. H.; Ficini-Dorn, G.; Hawley-Fedder, R.; McLean, M. J.; Suratwala, T.; Trombert, J. H.

    1998-01-01

    The NIF and LMJ laser systems require about 3380 and 4752 Nd-doped laser glass slabs, respectively. Continuous laser glass melting and forming will be used for the first time to manufacture these slabs. Two vendors have been chosen to produce the glass: Hoya Corporation and Schott Glass Technologies. The laser glass melting systems that each of these two vendors have designed, built and tested are arguably the most advanced in the world. Production of the laser glass will begin on a pilot scale in the fall of 1999

  6. Electrospun polyvinylpyrrolidone (PVP)/green tea extract composite nanofiber mats and their antioxidant activities

    Science.gov (United States)

    Pusporini, Pusporini; Edikresnha, Dhewa; Sriyanti, Ida; Suciati, Tri; Miftahul Munir, Muhammad; Khairurrijal, Khairurrijal

    2018-05-01

    Electrospinning was employed to make PVP (polyvinylpyrrolidone)/GTE (green tea extract) composite nanofiber mats. The electrospun PVP nanofiber mat as well as the PVP/GTE nanofiber mats were uniform. The average fiber diameter of PVP/GTE composite nanofiber mat decreased with increasing the GTE weight fraction (or decreasing the PVP weight fraction) in the PVP/GTE solution because the PVP/GTE solution concentration decreased. Then, the broad FTIR peak representing the stretching vibrations of O–H in hydroxyl groups of phenols and the stretching of N–H in amine groups of the GTE paste shifted to higher wavenumbers in the PVP/GTE composite nanofiber mats. These peak shifts implied that PVP and catechins of GTE in the PVP/GTE composite nanofiber mats had intermolecular interactions via hydrogen bonds between carbonyl groups of PVP and hydroxyl groups of catechins in GTE. Lastly, the antioxidant activity of the PVP/GTE composite nanofiber mat increased with reducing the average fiber diameter because the amount of catechins in the composite nanofiber mat increased with the increase of surface area due to the reduction of the average fiber diameter.

  7. MICROBIAL MATS - A JOINT VENTURE

    NARCIS (Netherlands)

    VANGEMERDEN, H

    Microbial mats characteristically are dominated by a few functional groups of microbes: cyanobacteria, colorless sulfur bacteria, purple sulfur bacteria, and sulfate-reducing bacteria. Their combined metabolic activities result in steep environmental microgradients, particularly of oxygen and

  8. Photosynthetic microbial mats today, on early Earth, (and on early Mars?)

    Science.gov (United States)

    Des Marais, D. J.

    2008-05-01

    Marine hypersaline cyanobacterial mats offer insights about their ancient ancestors, whose fossil record is 3.43 billion years old. Studies of mat microbiota have greatly expanded the known diversity of ancient microbial lineages. Their evolution was shaped by mat microenvironments, which can differ substantially from their surroundings. Oxygenic photosynthesis perhaps developed in microbial mats and probably triggered a major evolutionary transformation and diversification of the early biosphere. Gross primary production rates in cyanobacterial mats can rival the most productive ecosystems known. Sunlight changes in intensity and spectral composition as it penetrates mats, and counteracting gradients of O2 and sulfide shape the chemical microenvironment. A combination of benefits and hazards of light, O2 and sulfide promotes the allocation of the various essential mat processes between light and dark periods and to various depths in the mat. Close inspection has revealed surprises, for example: anoxygenic phototrophs inside cyanobacterial sheaths, record- high sulfate reduction rates in O2-saturated conditions, and high H2 fluxes into overlying waters. Diverse organic biomarker compounds have been documented that are amenable to long-term preservation. Such coordinated observations of populations, processes and products are making fundamental questions in ecology accessible. Cyanobacterial mats have robust fossil records in part because they populated stable continental platforms and margins, contributing to sediments having high preservation potential. Proterozoic cyanobacterial fossils and organic biomarkers are well documented. The 3.43 Ga Strelley Pool cherts, W. Australia, reveal diverse stromatolites that populated a partially restricted, low-energy shallow hypersaline basin. Molecular studies of extant bacteria hint that early chlorophyll-utilizing photosynthesizers required geochemical sources of reductants. Did these anoxygenic phototrophs once sustain an

  9. Fabrication and In Vitro/In Vivo Performance of Mucoadhesive Electrospun Nanofiber Mats Containing α-Mangostin.

    Science.gov (United States)

    Samprasit, Wipada; Rojanarata, Theerasak; Akkaramongkolporn, Prasert; Ngawhirunpat, Tanasait; Kaomongkolgit, Ruchadaporn; Opanasopit, Praneet

    2015-10-01

    This study aimed to fabricate mucoadhesive electrospun nanofiber mats containing α-mangostin for the maintenance of oral hygiene and reduction of the bacterial growth that causes dental caries. Synthesized thiolated chitosan (CS-SH) blended with polyvinyl alcohol (PVA) was selected as the mucoadhesive polymer. α-Mangostin was incorporated into the CS-SH/PVA solution and electrospun to obtain nanofiber mats. Scanning electron microscopy, differential scanning calorimetry, X-ray diffraction, and tensile strength testing were used to characterize the mats. The swelling degree and mucoadhesion were also determined. The nanofiber mats were further evaluated regarding their α-mangostin content, in vitro α-mangostin release, antibacterial activity, cytotoxicity, in vivo performance, and stability. The results indicated that the mats were in the nanometer range. The α-mangostin was well incorporated into the mats, with an amorphous form. The mats showed suitable tensile strength, swelling, and mucoadhesive properties. The loading capacity increased when the initial amount of α-mangostin was increased. Rapid release of α-mangostin from the mats was achieved. Additionally, a fast bacterial killing rate occurred at the lowest concentration of nanofiber mats when α-mangostin was added to the mats. The mats were less cytotoxic after use for 72 h. Moreover, in vivo testing indicated that the mats could reduce the number of oral bacteria, with a good mouth feel. The mats maintained the amount of α-mangostin for 6 months. The results suggest that α-mangostin-loaded mucoadhesive electrospun nanofiber mats may be a promising material for oral care and the prevention of dental caries.

  10. PNL vitrification technology development project glass formulation strategy for LLW vitrification

    International Nuclear Information System (INIS)

    Kim, D.; Hrma, P.R.; Westsik, J.H. Jr.

    1996-03-01

    This Glass Formulation Strategy describes development approaches to optimize glass compositions for Hanford's low-level waste vitrification between now and the projected low-level waste facility start-up in 2005. The objectives of the glass formulation task are to develop optimized glass compositions with satisfactory long-term durability, acceptable processing characteristics, adequate flexibility to handle waste variations, maximize waste loading to practical limits, and to develop methodology to respond to further waste variations

  11. Antibacterial electrospun chitosan-polyethylene oxide nanocomposite mats containing ZIF-8 nanoparticles.

    Science.gov (United States)

    Kohsari, Iraj; Shariatinia, Zahra; Pourmortazavi, Seied Mahdi

    2016-10-01

    Antimicrobial chitosan-polyethylene oxide (CS-PEO) nanofiber mats loaded with 3, 5 and 10% (w/w) of zeolitic imidazolate framework-8 nanoparticles (ZIF-8 NPs, ∼60nm diameter) were developed by electrospinning technique. The CS-PEO-GA-3% ZIF-8 NPs crosslinked with glutaraldehyde (GA) vapor was also prepared. The electrospun mats were characterized by various analysis including FE-SEM, EDAX, elemental mapping, FT-IR, contact angle, TGA/DSC as well as tensile strength analysis. The nanofibers had average diameters within the range ∼70-120nm. Antimicrobial activities of the CS-PEO and CS-PEO-3% ZIF-8 mats were evaluated by the viable cell-counting method for determining their effectiveness in reducing or halting the growth of Staphylococcus aureus and Escherichia coli bacteria so that the CS-PEO mat containing 3% ZIF-8 revealed 100% bactericidal activity against both kinds of bacteria. The crosslinked CS-PEO-GA-3% ZIF-8 NPs sample was less thermally stable but more hydrophilic than its related non-crosslinked mat reflecting there was no need to crosslink the fibers using a chemical crosslinker having adverse effects. The highest hydrophobicity and appropriate thermal and tensile properties of CS-PEO-3% ZIF-8 NPs among those of the mats including 5 and 10% ZIF-8 NPs suggested that the mentioned mat is the most suitable sample for food coating applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Carbon cycling and calcification in hypersaline microbial mats

    OpenAIRE

    Ludwig, Rebecca

    2004-01-01

    Phototrophic microbial mats are laminated aggregations of microorganisms that thrive in extreme and oligotrophic environments. Primary production rates by oxygenic phototrophs are extremely high. Primary producers supply heterotrophic mat members with organic carbon, which in turn regenerate CO2 needed for autotrophic carbon fixation. Another potential source of CO2 is calcification, which is known to shift the carbonate equilibrium towards CO2. This thesis investigated the carbon cycle of mi...

  13. Thermodynamics and phase transformations the selected works of Mats Hillert

    CERN Document Server

    Lilensten, Jean

    2006-01-01

    This book is a compendium of Mat Hillert's publications. Mat Hillert is a world specialist in metal alloy at the origin of a universal computing code used to calculate the diagrams of phase. This work is in English.

  14. Validity Study of a Jump Mat Compared to the Reference Standard Force Plate.

    Science.gov (United States)

    Rogan, Slavko; Radlinger, Lorenz; Imhasly, Caroline; Kneubuehler, Andrea; Hilfiker, Roger

    2015-12-01

    In the field of vertical jump diagnostics, force plates (FP) are the reference standard. Recently, despite a lack of evidence, jump mats have been used increasingly. Important factors in favor of jumping mats are their low cost and portability. This validity study compared the Haynl-Elektronik jump mat (HE jump mat) with the reference standard force plate. Ten healthy volunteers participated and each participant completed three series of five drop jumps (DJ). The parameters ground contact time (GCT) and vertical jump height (VJH) from the HE jump mat and the FP were used to evaluate the concurrent validity. The following statistical calculations were performed: Pearson's correlation (r), Bland-Altman plots (standard and for adjusted trend), and regression equations. The Bland-Altman plots suggest that the HE jump mat measures shorter contact times and higher jump heights than the FP. The trend-adjusted Bland-Altman plot shows higher mean differences and wider wing-spreads of confidence limits during longer GCT. During the VJH the mean differences and the wing-spreads of the confidence limits throughout the range present as relatively constant. The following regression equations were created, as close as possible to the true value: GCT = 5.920385 + 1.072293 × [value HE jump mat] and VJH = -1.73777 + 1.011156 × [value HE jump mat]. The HE jump mat can be recommended in relation to the validity of constraints. In this study, only a part of the quality criteria were examined. For the final recommendation it is advised to examine the HE jump mat on the other quality criteria (test-retest reliability, sensitivity change).

  15. Low-Light Anoxygenic Photosynthesis and Fe-S-Biogeochemistry in a Microbial Mat.

    Science.gov (United States)

    Haas, Sebastian; de Beer, Dirk; Klatt, Judith M; Fink, Artur; Rench, Rebecca McCauley; Hamilton, Trinity L; Meyer, Volker; Kakuk, Brian; Macalady, Jennifer L

    2018-01-01

    We report extremely low-light-adapted anoxygenic photosynthesis in a thick microbial mat in Magical Blue Hole, Abaco Island, The Bahamas. Sulfur cycling was reduced by iron oxides and organic carbon limitation. The mat grows below the halocline/oxycline at 30 m depth on the walls of the flooded sinkhole. In situ irradiance at the mat surface on a sunny December day was between 0.021 and 0.084 μmol photons m -2 s -1 , and UV light (97% sequence identity) of clones affiliated with Prosthecochloris , a genus within the green sulfur bacteria (GSB), which are obligate anoxygenic phototrophs. Typical photopigments of brown-colored GSB, bacteriochlorophyll e and (β-)isorenieratene, were abundant in mat samples and their absorption properties are well-adapted to harvest light in the available green and possibly even UV-A spectra. Sulfide from the water column (3-6 μmol L -1 ) was the main source of sulfide to the mat as sulfate reduction rates in the mats were very low (undetectable-99.2 nmol cm -3 d -1 ). The anoxic water column was oligotrophic and low in dissolved organic carbon (175-228 μmol L -1 ). High concentrations of pyrite (FeS 2 ; 1-47 μmol cm -3 ) together with low microbial process rates (sulfate reduction, CO 2 fixation) indicate that the mats function as net sulfide sinks mainly by abiotic processes. We suggest that abundant Fe(III) (4.3-22.2 μmol cm -3 ) is the major source of oxidizing power in the mat, and that abiotic Fe-S-reactions play the main role in pyrite formation. Limitation of sulfate reduction by low organic carbon availability along with the presence of abundant sulfide-scavenging iron oxides considerably slowed down sulfur cycling in these mats.

  16. Transition to Glass: Pilot Training for High-Technology Transport Aircraft

    Science.gov (United States)

    Wiener, Earl L.; Chute, Rebecca D.; Moses, John H.

    1999-01-01

    This report examines the activities of a major commercial air carrier between 1993 and late 1996 as it acquired an advanced fleet of high-technology aircraft (Boeing 757). Previously, the airline's fleet consisted of traditional (non-glass) aircraft, and this report examines the transition from a traditional fleet to a glass one. A total of 150 pilots who were entering the B-757 transition training volunteered for the study, which consisted of three query phases: (1) first day of transition training, (2) 3 to 4 months after transition training, and (3) 12 to 14 months after initial operating experience. Of these initial 150 pilots, 99 completed all three phases of the study, with each phase consisting of probes on attitudes and experiences associated with their training and eventual transition to flying the line. In addition to the three questionnaires, 20 in-depth interviews were conducted. Although the primary focus of this study was on the flight training program, additional factors such as technical support, documentation, and training aids were investigated as well. The findings generally indicate that the pilot volunteers were highly motivated and very enthusiastic about their training program. In addition, the group had low levels of apprehension toward automation and expressed a high degree of satisfaction toward their training. However, there were some concerns expressed regarding the deficiencies in some of the training aids and lack of a free-play flight management system training device.

  17. Micropatterned coculture of vascular endothelial and smooth muscle cells on layered electrospun fibrous mats toward blood vessel engineering.

    Science.gov (United States)

    Li, Huinan; Liu, Yaowen; Lu, Jinfu; Wei, Jiaojun; Li, Xiaohong

    2015-06-01

    A major challenge in vascular engineering is the establishment of proper microenvironment to guide the spatial organization, growth, and extracellular matrix (ECM) productions of cells found in blood vessels. In the current study, micropatterned fibrous mats with distinct ridges and grooves of different width were created to load smooth muscle cells (SMCs), which were assembled by stacking on vascular endothelial cell (EC)-loaded flat fibrous mats to mimic the in vivo-like organized structure of blood vessels. SMCs were mainly distributed in the ridges, and aligned fibers in the patterned regions led to the formation of elongated cell bodies, intense actin filaments, and expressions of collagen I and α-smooth muscle actin in a parallel direction with fibers. ECs spread over the flat fibrous mats and expressed collagen IV and laminin with a cobblestone-like feature. A z-stack scanning of fluorescently stained fibrous mats indicated that SMCs effectively infiltrated into fibrous scaffolds at the depth of around 200 μm. Compared with SMCs cultured alone, the coculture with ECs enhanced the proliferation, infiltration, and cytoskeleton elongation of SMCs on patterned fibrous mats. Although the coculture of SMCs made no significant difference in the EC growth, the coculture system on patterned fibrous scaffolds promoted ECM productions of both ECs and SMCs. Thus, this patterned fibrous configuration not only offers a promising technology in the design of tissue engineering scaffolds to construct blood vessels with durable mechanical properties, but also provides a platform for patterned coculture to investigate cell-matrix and cell-cell interactions in highly organized tissues. © 2014 Wiley Periodicals, Inc.

  18. Evaluation of 3D printed optofluidic smart glass prototypes.

    Science.gov (United States)

    Wolfe, Daniel; Goossen, K W

    2018-01-22

    Smart glass or smart windows are an innovative technology used for thermal management, energy efficiency, and privacy applications. Notable commercially available smart glass relies on an electric stimuli to modulate the glass from a transparent to a translucent mode of operation. However, the current market technologies, such as electrochromic, polymer dispersed liquid crystal, and suspended particle devices are expensive and suffer from solar absorption, poor transmittance modulation, and in some cases, continuous power consumption. The authors of this paper present a novel optofluidic smart glass prototype capable of modulating visible light transmittance from 8% to 85%.

  19. Connectivity of glass structure. Oxygen number

    Science.gov (United States)

    Medvedev, E. F.; Min'ko, N. I.

    2018-03-01

    With reference to mathematics, crystal chemistry and chemical technology of synthesis of glass structures in the solution (sol-gel technology), the paper is devoted to the study of the degree of connectivity of a silicon-oxygen backbone (fSi) and the oxygen number (R) [1]. It reveals logical contradictions and uncertainty of mathematical expressions of parameters, since fSi is not similar to the oxygen number. The connectivity of any structure is a result of various types of bonds: ion-covalent, donor-acceptor, hydrogen bonds, etc. Besides, alongside with SiO2, many glass compositions contain other glass-forming elements due to tetrahedral sites thus formed. The connectivity function of a glassy network with any set of glass-forming elements is roughly ensured by connectivity factor Y [2], which has monovalent elements loosening a glassy network. The paper considers the existence of various structural motives in hydrogen-impermeable glasses containing B2O3, Al2O3, PbO, Na2O, K2O and rare-earth elements. Hence, it also describes gradual nucleation, change of crystal forms, and structure consolidation in the process of substance intake from a matrix solution according to sol-gel technology. The crystal form varied from two-dimensional plates to three-dimensional and dendritical ones [3]. Alternative parameters, such as the oxygen number (O) and the structure connectivity factor (Y), were suggested. Functional dependence of Y=f(O) to forecast the generated structures was obtained for two- and multicomponent glass compositions.

  20. UV B-induced vertical migrations of cyanobacteria in a microbial mat

    International Nuclear Information System (INIS)

    Rebout, B.M.; Garcia-Pichel, F.

    1995-01-01

    Exposure to moderate doses of UV B (0.35 to 0.79 W m -2 s -1 or 0.98 to 2.2 μmol of photons m -2 s -1 at 310 nm) caused the surface layers of microbial mats from Solar Lake, Sinai, Egypt, to become visibly lighter green. Concurrent with the color change were rapid and dramatic reductions in gross photosynthesis and in the resultant high porewater oxygen concentrations in the surface layers of the mats. The depths at which both maximum gross photosynthesis and maximum oxygen concentrations occurred were displaced downward. In contrast, gross photosynthesis in the deeper layers of the mats increased in response to UV B incident upon the surface. The cessation of exposure to UV B partially reversed all of these changes. Taken together, these responses suggest that photoautotrophic members of the mat community, most likely the dominant cyanobacterium Microcoleus chthonoplastes, were migrating in response to the added UV B. The migration phenomenon was also observed in response to increases in visible radiation and UV A, but UV B was ca. 100-fold more effective than visible radiation and ca. 20-fold more effective than UV A in provoking the response. Migrating microorganisms within this mat are apparently able to sense UV B directly and respond behaviorally to limit their exposure to UV. Because of strong vertical gradients of light and dissolved substances in microbial mats, the migration and the resultant vertical redistribution of photosynthetic activity have important consequences for both the photobiology of the cyanobacteria and the net primary productivity of the mat ecosystem

  1. Damage assessment and progression in a polyisocyanurate-based continuous swirl mat composite

    Science.gov (United States)

    Worley, Darwell Carlton, II

    This research conducted in conjunction with Oak Ridge National Laboratories and the Automotive Composite Consortium, ACC, was motivated by the desire to reduce vehicle weight for increased efficiency. At present, there are no databases of failure mechanisms, experimental procedures to study failure, mathematical expressions for empirical or theoretical prediction of properties of a continuous swirl mat composite, CSMC. Therefore, to contribute to the increased utilization of this class of materials the following research was performed. This research enabled the failure mechanism to be formulated, development of a method to quantify failure based on ultrasonic attenuation maps, and the prediction of the fracture toughness parameter KIC. The use of scanning electron microscopy, light microscopy, and real-time tensile loading showed that the CSMC failed in a brittle mode. These techniques also provided imaging information as to how a dominant crack propagates in the presence of a continuously swirled E-glass mat reinforcement and voids. This evaluation enabled a reconstruction of failure in order to demonstrate a possible failure mechanism. The aforementioned techniques revealed that the dominant crack follows the fiber/matrix interface, but may be influenced by the presence of voids. Voids have the tendency of luring the growing crack away from the interface. A growing crack would, however, return to a fiber/matrix interface until complete failure occurred. Another aspect of this work was the quantification of progressive damage using ultrasound. Comparisons were made between ultrasonic attenuation maps for unloaded and sequentially loaded specimens. The sequential loads were applied at different percentages of the ultimate tensile strength, UTS. This technique provided attenuation maps for a series of specimens with a controlled degree of damage, which showed an increase in attenuation with an increase in percent UTS. Fracture toughness experiments yielded an

  2. Promoting physical activity with a school-based dance mat exergaming intervention: qualitative findings from a natural experiment.

    Science.gov (United States)

    Burges Watson, Duika; Adams, Jean; Azevedo, Liane B; Haighton, Catherine

    2016-07-20

    Physical activity is critical to improving health and well-being in children. Quantitative studies have found a decline in activity in the transition from primary to secondary education. Exergames (active video games) might increase physical activity in adolescents. In January 2011 exergame dance mat systems were introduced in to all secondary schools across two local authority districts in the UK. We performed a quasi-experimental evaluation of a natural experiment using a mixed methods design. The quantitative findings from this work have been previously published. The aim of this linked qualitative study was to explore the implementation of the dance mat scheme and offer insights into its uptake as a physical activity intervention. Embedded qualitative interviews at baseline and 12 month follow-up with purposively selected physical education teachers (n = 20) and 25 focus groups with a convenience sample of pupils (n = 120) from five intervention schools were conducted. Analysis was informed by sociology of translation approach. At baseline, participants (both teachers and pupils) reported different expectations about the dance mats and how they could be employed. Variation in use was seen at follow-up. In some settings they were frequently used to engage hard to reach groups of pupils. Overall, the dance mats were not used routinely to increase physical activity. However there were other unanticipated benefits to pupils such as improved reaction time, co-ordination and mathematic skills. The use of dance mats was limited in routine physical education classes because of contextual issues (school/government policy) technological failures (batteries/updates) and because of expectations about how and where they could be used. Our linked quantitative study (previously published) suggested that the dance mats were not particularly effective in increasing physical activity, but the qualitative results (reported here) show that the dance mats were not used

  3. Promoting physical activity with a school-based dance mat exergaming intervention: qualitative findings from a natural experiment

    Directory of Open Access Journals (Sweden)

    Duika Burges Watson

    2016-07-01

    Full Text Available Abstract Background Physical activity is critical to improving health and well-being in children. Quantitative studies have found a decline in activity in the transition from primary to secondary education. Exergames (active video games might increase physical activity in adolescents. In January 2011 exergame dance mat systems were introduced in to all secondary schools across two local authority districts in the UK. We performed a quasi-experimental evaluation of a natural experiment using a mixed methods design. The quantitative findings from this work have been previously published. The aim of this linked qualitative study was to explore the implementation of the dance mat scheme and offer insights into its uptake as a physical activity intervention. Methods Embedded qualitative interviews at baseline and 12 month follow-up with purposively selected physical education teachers (n = 20 and 25 focus groups with a convenience sample of pupils (n = 120 from five intervention schools were conducted. Analysis was informed by sociology of translation approach. Results At baseline, participants (both teachers and pupils reported different expectations about the dance mats and how they could be employed. Variation in use was seen at follow-up. In some settings they were frequently used to engage hard to reach groups of pupils. Overall, the dance mats were not used routinely to increase physical activity. However there were other unanticipated benefits to pupils such as improved reaction time, co-ordination and mathematic skills. The use of dance mats was limited in routine physical education classes because of contextual issues (school/government policy technological failures (batteries/updates and because of expectations about how and where they could be used. Conclusions Our linked quantitative study (previously published suggested that the dance mats were not particularly effective in increasing physical activity, but the qualitative

  4. Sol-gel processing of glasses and glass-ceramics for microelectronic packaging

    International Nuclear Information System (INIS)

    Sriram, M.A.; Kumta, P.N.

    1992-01-01

    In recent years considerable progress has been made in electronic packaging substrate technology. The future need of miniaturization of devices to increase the signal processing speeds calls for an increase in the device density requiring the substrates to be designed for better thermal, mechanical and electrical efficiency. Fast signal propagation with minimum delay requires the substrate to possess very low dielectric constant. Several glasses and glass-ceramic materials have been identified over the years which show good promise as candidate substrate materials. among these borophosphate and borophosphosilicate glass-ceramics have been recently identified to have the lowest dielectric constant. This paper reports that sol-gel processing has been used to synthesize borosilicate, borophosphosilicate and borophosphate glasses and glass-ceramics using inexpensive boron oxide and phosphorus pentoxide precursors. Preliminary results of the processing of these gels and the effect of volatility of boron alkoxide and its modification on the gel structure are described. X-ray diffraction, Differential thermal analyses and FTIR have been used to characterize the as-prepared and heat treated gels

  5. Large Area Sputter Coating on Glass

    Science.gov (United States)

    Katayama, Yoshihito

    Large glass has been used for commercial buildings, housings and vehicles for many years. Glass size for flat displays is getting larger and larger. The glass for the 8th generation is more than 5 m2 in area. Demand of the large glass is increasing not only in these markets but also in a solar cell market growing drastically. Therefore, large area coating is demanded to plus something else on glass more than ever. Sputtering and pyrolysis are the major coating methods on large glass today. Sputtering process is particularly popular because it can deposit a wide variety of materials in good coating uniformity on the glass. This paper describes typical industrial sputtering system and recent progress in sputtering technology. It also shows typical coated glass products in architectural, automotive and display fields and comments on their functions, film stacks and so on.

  6. Coastal microbial mats: the physiology of a small-scale ecosystem

    NARCIS (Netherlands)

    Stal, L.J.

    2001-01-01

    Coastal inter-tidal sandy sediments, salt marshes and mangrove forests often support the development of microbial mats. Microbial mats are complex associations of one or several functional groups of microorganisms and their formation usually starts with the growth of a cyanobacterial population on a

  7. Effect of stirring on striae in glass melts

    DEFF Research Database (Denmark)

    Jensen, Martin; Yue, Yuanzheng

    2012-01-01

    Chemical striae have often negative effect on the glass properties, and hence, elimination of striae has been a key issue in glass science and technology. To produce highly homogeneous glasses, it is necessary to stir melts during the melting process. To explore the physical origin of the stria...

  8. Cross-craft interactions between metal and glass working: slag additions to early Anglo-Saxon red glass

    Science.gov (United States)

    Peake, James R. N.; Freestone, Ian C.

    Opaque red glass has been extensively studied over the years, but its compositional complexity and variability means that the way in which it was manufactured is still not fully understood. Previous studies have suggested the use of metallurgical by-products in its manufacture, but until now the evidence has been limited. SEM-EDS analysis of glass beads from the early Anglo-Saxon cemetery complex at Eriswell, southeast England, has provided further insights into the production and technology of opaque red glass, which could only have been possible through invasive sampling. The matrix of the red glasses contains angular particles of slag, the main phases of which typically correspond to either fayalite (Fe2SiO4) or kirschsteinite (CaFeSiO4), orthosilicate (olivine-type) minerals characteristic of some copper- and iron-smelting slags. This material appears to have been added in part as a reducing agent, to promote the precipitation of sub-micrometer particles of the colorant phase, copper metal. Its use represents a sophisticated, if empirical, understanding of materials and can only have resulted through deliberate experimentation with metallurgical by-products by early glass workers. Slag also seems to have been added as a source of iron to colour `black' glass. The compositions of the opaque red glasses appear to be strongly paralleled by Merovingian beads from northern Europe and Anglo-Saxon beads from elsewhere in England, suggesting that this technology is likely to have been quite widespread.

  9. Complexity of Curved Glass Structures

    Science.gov (United States)

    Kosić, T.; Svetel, I.; Cekić, Z.

    2017-11-01

    Despite the increasing number of research on the architectural structures of curvilinear forms and technological and practical improvement of the glass production observed over recent years, there is still a lack of comprehensive codes and standards, recommendations and experience data linked to real-life curved glass structures applications regarding design, manufacture, use, performance and economy. However, more and more complex buildings and structures with the large areas of glass envelope geometrically complex shape are built every year. The aim of the presented research is to collect data on the existing design philosophy on curved glass structure cases. The investigation includes a survey about how architects and engineers deal with different design aspects of curved glass structures with a special focus on the design and construction process, glass types and structural and fixing systems. The current paper gives a brief overview of the survey findings.

  10. Glass-Graphite Composite Materials

    International Nuclear Information System (INIS)

    Mayzan, M.Z.H.; Lloyd, J.W.; Heath, P.G.; Stennett, M.C.; Hyatt, N.C.; Hand, R.J.

    2016-01-01

    A summary is presented of investigations into the potential of producing glass-composite materials for the immobilisation of graphite or other carbonaceous materials arising from nuclear power generation. The methods are primarily based on the production of base glasses which are subsequently sintered with powdered graphite or simulant TRISO particles. Consideration is also given to the direct preparation of glass-graphite composite materials using microwave technology. Production of dense composite wasteforms with TRISO particles was more successful than with powdered graphite, as wasteforms containing larger amounts of graphite were resistant to densification and the glasses tried did not penetrate the pores under the pressureless conditions used. Based on the results obtained it is concluded that the production of dense glassgraphite composite wasteforms will require the application of pressure. (author)

  11. Skills and Knowledge Needed to Serve as Mobile Technology Consultants for Information Organizations

    Science.gov (United States)

    Potnis, Devendra; Regenstreif-Harms, Reynard; Deosthali, Kanchan; Cortez, Ed; Allard, Suzie

    2016-01-01

    Libraries often lack the in-house information technology (IT) expertise required to (1) implement mobile applications and related technologies (MAT); (2) attain maximum return on investment including patron satisfaction for using MAT; and (3) reduce reliance on expensive IT consultants. Based on secondary analysis of the experiences and advice…

  12. Low-Light Anoxygenic Photosynthesis and Fe-S-Biogeochemistry in a Microbial Mat

    Directory of Open Access Journals (Sweden)

    Sebastian Haas

    2018-04-01

    Full Text Available We report extremely low-light-adapted anoxygenic photosynthesis in a thick microbial mat in Magical Blue Hole, Abaco Island, The Bahamas. Sulfur cycling was reduced by iron oxides and organic carbon limitation. The mat grows below the halocline/oxycline at 30 m depth on the walls of the flooded sinkhole. In situ irradiance at the mat surface on a sunny December day was between 0.021 and 0.084 μmol photons m-2 s-1, and UV light (<400 nm was the most abundant part of the spectrum followed by green wavelengths (475–530 nm. We measured a light-dependent carbon uptake rate of 14.5 nmol C cm-2 d-1. A 16S rRNA clone library of the green surface mat layer was dominated (74% by a cluster (>97% sequence identity of clones affiliated with Prosthecochloris, a genus within the green sulfur bacteria (GSB, which are obligate anoxygenic phototrophs. Typical photopigments of brown-colored GSB, bacteriochlorophyll e and (β-isorenieratene, were abundant in mat samples and their absorption properties are well-adapted to harvest light in the available green and possibly even UV-A spectra. Sulfide from the water column (3–6 μmol L-1 was the main source of sulfide to the mat as sulfate reduction rates in the mats were very low (undetectable-99.2 nmol cm-3 d-1. The anoxic water column was oligotrophic and low in dissolved organic carbon (175–228 μmol L-1. High concentrations of pyrite (FeS2; 1–47 μmol cm-3 together with low microbial process rates (sulfate reduction, CO2 fixation indicate that the mats function as net sulfide sinks mainly by abiotic processes. We suggest that abundant Fe(III (4.3–22.2 μmol cm-3 is the major source of oxidizing power in the mat, and that abiotic Fe-S-reactions play the main role in pyrite formation. Limitation of sulfate reduction by low organic carbon availability along with the presence of abundant sulfide-scavenging iron oxides considerably slowed down sulfur cycling in these mats.

  13. Glass containing radioactive nuclear waste

    International Nuclear Information System (INIS)

    Boatner, L.A.; Sales, B.C.

    1985-01-01

    Lead-iron phosphate glasses containing a high level of Fe 2 O 3 for use as a storage medium for high-level-radioactive nuclear waste. By combining lead-iron phosphate glass with various types of simulated high-level nuclear waste, a highly corrosion resistant, homogeneous, easily processed glass can be formed. For corroding solutions at 90 C, with solution pH values in the range between 5 and 9, the corrosion rate of the lead-iron phosphate nuclear waste glass is at least 10 2 to 10 3 times lower than the corrosion rate of a comparable borosilicate nuclear waste glass. The presence of Fe 2 O 3 in forming the lead-iron phosphate glass is critical. Lead-iron phosphate nuclear waste glass can be prepared at temperatures as low as 800 C, since they exhibit very low melt viscosities in the 800 to 1050 C temperature range. These waste-loaded glasses do not readily devitrify at temperatures as high as 550 C and are not adversely affected by large doses of gamma radiation in H 2 O at 135 C. The lead-iron phosphate waste glasses can be prepared with minimal modification of the technology developed for processing borosilicate glass nuclear waste forms. (author)

  14. Development of glass fibre reinforced composites using microwave heating technology

    Science.gov (United States)

    Köhler, T.; Vonberg, K.; Gries, T.; Seide, G.

    2017-10-01

    Fibre reinforced composites are differentiated by the used matrix material (thermoplastic versus duroplastic matrix) and the level of impregnation. Thermoplastic matrix systems get more important due to their suitability for mass production, their good shapeability and their high impact resistance. A challenge in the processing of these materials is the reduction of the melt flow paths of the thermoplastic matrix. The viscosity of molten thermoplastic material is distinctly higher than the viscosity of duroplastic material. An approach to reduce the flow paths of the thermoplastic melt is given by a commingling process. Composites made from commingling hybrid yarns consist of thermoplastic and reinforcing fibres. Fabrics made from these hybrid yarns are heated and consolidated by the use of heat pressing to form so called organic sheets. An innovative heating system is given by microwaves. The advantage of microwave heating is the volumetric heating of the material, where the energy of the electromagnetic radiation is converted into thermal energy inside the material. In this research project microwave active hybrid yarns are produced and examined at the Institute for Textile Technology of RWTH Aachen University (ITA). The industrial research partner Fricke und Mallah Microwave Technology GmbH, Peine, Germany develops an innovative pressing systems based on a microwave heating system. By implementing the designed microwave heating technology into an existing heat pressing process, FRTCs are being manufactured from glass and nanomodified polypropylene fibre woven fabrics. In this paper the composites are investigated for their mechanical and optical properties.

  15. Glass - the challenge for the 21st century

    Directory of Open Access Journals (Sweden)

    Beerkens, R.

    2008-12-01

    Full Text Available The International Commission on Glass (ICG invited international experts to take a look into the future of glass. The ICG organized a Top-level expert meeting on the “Future of Advanced Materials and Glass-Melting Technologies for the year 2020” in Brig (Switzerland, In March 2008, financed by the European Union within the framework of the EFONGA project. Two expert workshops were held in parallel and covered the topics “Advances in materials: glasses, glass-ceramics, ceramics” as well as “Innovation in glass melting technology: revolution or evolution”. Three months later, the 9th ESG Conference along with the Annual Meeting of the ICG, hosted by the Slovak Glass Society, was held in June 2008 in Trenčín, Slovakia. The conference was intended to deal not only with the state-of-the art in the areas (glass science and technology today concerned, but also to address the questions of future developments, applications and challenges in glass science and technology. Special attention was paid to the future role of the ICG (International Commission on Glass.

    La Comisión Internacional del Vidrio (ICG organizó un encuentro de expertos en Brig, Suiza, en marzo de 2008 para discutir acerca del futuro del vidrio. El Workshop “Materiales futuros y avanzados y tecnologías para el año 2020”, fue financiado por la UE a través del proyecto EFONGA. Se celebraron dos sesiones paralelas que cubrieron una serie importante de temas, bajo los títulos de “Avances en materiales: vidrios, vitrocerámicos, cerámicos” e “Innovaciones en tecnologías de fusión de vidrio: revolución o evolución”. Tres meses más tarde, en Trencin, Eslovaquia, se celebró la 9ª conferencia de la Sociedad Europea del Vidrio (ESG junto con la reunión anual de la ICG. La conferencia no solo trató el estado del arte en ciencia y tecnología del vidrio sino que abordó las cuestiones clave de futuros desarrollos, aplicaciones y desafíos del sector

  16. Accuracy of remote electrocardiogram interpretation with the use of Google Glass technology.

    Science.gov (United States)

    Jeroudi, Omar M; Christakopoulos, George; Christopoulos, George; Kotsia, Anna; Kypreos, Megan A; Rangan, Bavana V; Banerjee, Subhash; Brilakis, Emmanouil S

    2015-02-01

    We sought to investigate the accuracy of remote electrocardiogram (ECG) interpretation using Google Glass (Google, Mountain View, California). Google Glass is an optical head mounted display device with growing applications in medicine. We compared interpretation of 10 ECGs with 21 clinically important findings by faculty and fellow cardiologists by (1) viewing the electrocardiographic image at the Google Glass screen; (2) viewing a photograph of the ECG taken using Google Glass and interpreted on a mobile device; (3) viewing the original paper ECG; and (4) viewing a photograph of the ECG taken with a high-resolution camera and interpreted on a mobile device. One point was given for identification of each correct finding. Subjective rating of the user experience was also recorded. Twelve physicians (4 faculty and 8 fellow cardiologists) participated. The average electrocardiographic interpretation score (maximum 21 points) as viewed through the Google Glass, Google Glass photograph on a mobile device, on paper, and high-resolution photograph on a mobile device was 13.5 ± 1.8, 16.1 ± 2.6, 18.3 ± 1.7, and 18.6 ± 1.5, respectively (p = 0.0005 between Google Glass and mobile device, p = 0.0005 between Google Glass and paper, and p = 0.002 between mobile device and paper). Of the 12 physicians, 9 (75%) were dissatisfied with ECGs viewing on the prism display of Google Glass. In conclusion, further improvements are needed before Google Glass can be reliably used for remote electrocardiographic analysis. Published by Elsevier Inc.

  17. Alpha Matting with KL-Divergence Based Sparse Sampling.

    Science.gov (United States)

    Karacan, Levent; Erdem, Aykut; Erdem, Erkut

    2017-06-22

    In this paper, we present a new sampling-based alpha matting approach for the accurate estimation of foreground and background layers of an image. Previous sampling-based methods typically rely on certain heuristics in collecting representative samples from known regions, and thus their performance deteriorates if the underlying assumptions are not satisfied. To alleviate this, we take an entirely new approach and formulate sampling as a sparse subset selection problem where we propose to pick a small set of candidate samples that best explains the unknown pixels. Moreover, we describe a new dissimilarity measure for comparing two samples which is based on KLdivergence between the distributions of features extracted in the vicinity of the samples. The proposed framework is general and could be easily extended to video matting by additionally taking temporal information into account in the sampling process. Evaluation on standard benchmark datasets for image and video matting demonstrates that our approach provides more accurate results compared to the state-of-the-art methods.

  18. MAT-DB - A database for nuclear energy related materials data

    International Nuclear Information System (INIS)

    Over, H.H.

    2009-01-01

    The web-enabled materials database (Mat-DB) of JRC-IE has a long-term history in storing materials test data resulting from European and international research projects. The database structure and the user-guidance has bee permanently updated improved and optimized. The database is implemented in the secure ODIN portal: https://odin.jrc.ec.europa.eu of JRC-IE. This architecture guarantees fast access to confidential and public data and documentation which are stored in an inter-related document management database (DoMa). It is a part of JRC's nuclear knowledge management. Mat-DB hosts the whole pool of IAEA surveillance data of reactor pressure vessel materials from different nuclear power plants of the member states. Mat-DB contains also thousands of European GEN IV reactor systems related R and D materials data which are an important basis for the evaluating and extrapolating design data for candidate materials and setting up design rules covering high temperature exposure, irradiation and corrosion. Those data and rules would match also fusion related components. Mat-DB covers thermo-mechanical and thermo-physical properties data of engineering alloys at low, elevated and high temperatures for base materials and joints, including irradiated materials for nuclear fission and fusion applications, thermal barrier coated materials for gas turbines and properties of corroded materials. The corrosion part refers to weight gain/loss data of high temperature exposed engineering alloys and ceramic materials. For each test type the database structure reflects international test standards and recommendations. Mat-DB features an extensive library of evaluation programs for web-enabled assessment of uniaxial creep, fatigue, crack growth and high temperature corrosion properties. Evaluations can be performed after data retrieval or independently of Mat-DB by transferring other materials data in a given format to the programs. The fast evaluation processes help the user to

  19. Biomedical Applications of Antibacterial Nanofiber Mats Made of Electrospinning with Wire Electrodes

    Directory of Open Access Journals (Sweden)

    Yi-Jun Pan

    2016-02-01

    Full Text Available Twisted stainless steel wires are used as wire electrodes for electrospinning the polyvinyl alcohol (PVA/zinc citrate nanofiber mats. The morphology and diameter of the nanofibers in PVA/zinc citrate nanofiber mats are evaluated. We measured the antibacterial efficacy against Staphylococcus aureus (S. aureus and Escherichia coli (E. coli of the nanofiber mats. We also examined the cell adhesion affinity of mammalian tissue culture cells on these nanofiber mats. Our results indicate that an increase in zinc citrate increases the viscosity and electrical conductivity of PVA solution. In addition, increasing zinc citrate results in a smaller diameter of nanofibers that reaches below 100 nm. According to the antibacterial test results, increasing zinc citrate enlarges the inhibition zone of S. aureus but only has a bacteriostatic effect against E. coli. Finally, cell adhesion test results indicate that all nanofiber mats have satisfactory cell attachment regardless of the content of zinc citrate.

  20. Energy Efficient Glass Melting - The Next Generation Melter

    Energy Technology Data Exchange (ETDEWEB)

    David Rue

    2008-03-01

    The objective of this project is to demonstrate a high intensity glass melter, based on the submerged combustion melting technology. This melter will serve as the melting and homogenization section of a segmented, lower-capital cost, energy-efficient Next Generation Glass Melting System (NGMS). After this project, the melter will be ready to move toward commercial trials for some glasses needing little refining (fiberglass, etc.). For other glasses, a second project Phase or glass industry research is anticipated to develop the fining stage of the NGMS process.

  1. Organismal and spatial partitioning of energy and macronutrient transformations within a hypersaline mat

    Energy Technology Data Exchange (ETDEWEB)

    Mobberley, Jennifer M.; Lindemann, Stephen R.; Bernstein, Hans C.; Moran, James J.; Renslow, Ryan S.; Babauta, Jerome; Hu, Dehong; Beyenal, Haluk; Nelson, William C.

    2017-03-21

    Phototrophic mat communities are model ecosystems for studying energy cycling and elemental transformations because complete biogeochemical cycles occur over millimeter-to-centimeter scales. Characterization of energy and nutrient capture within hypersaline phototrophic mats has focused on specific processes and organisms, however little is known about community-wide distribution of and linkages between these processes. To investigate energy and macronutrient capture and flow through a structured community, the spatial and organismal distribution of metabolic functions within a compact hypersaline mat community from Hot Lake have been broadly elucidated through species-resolved metagenomics and geochemical, microbial diversity, and metabolic gradient measurements. Draft reconstructed genomes of abundant organisms revealed three dominant cyanobacterial populations differentially distributed across the top layers of the mat suggesting niche separation along light and oxygen gradients. Many organisms contained diverse functional profiles, allowing for metabolic response to changing conditions within the mat. Organisms with partial nitrogen and sulfur metabolisms were widespread indicating dependence upon metabolite exchange. In addition, changes in community spatial structure were observed over the diel. These results indicate that organisms within the mat community have adapted to the temporally dynamic environmental gradients in this hypersaline mat through metabolic flexibility and fluid syntrophic interactions, including shifts in spatial arrangements.

  2. Modification of PLGA Nanofibrous Mats by Electron Beam Irradiation for Soft Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    Jae Baek Lee

    2015-01-01

    Full Text Available Biodegradable poly(lactide-co-glycolide (PLGA has found widespread use in modern medical practice. However, the degradation rate of PLGA should be adjusted for specific biomedical applications such as tissue engineering, drug delivery, and surgical implantation. This study focused on the effect of electron beam radiation on nanofibrous PLGA mats in terms of physical properties and degradation behavior with cell proliferation. PLGA nanofiber mats were prepared by electrospinning, and electron beam was irradiated at doses of 50, 100, 150, 200, 250, and 300 kGy. PLGA mats showed dimensional integrity after electron beam irradiation without change of fiber diameter. The degradation behavior of a control PLGA nanofiber (0 kGy and electron beam-irradiated PLGA nanofibers was analyzed by measuring the molecular weight, weight loss, change of chemical structure, and fibrous morphology. The molecular weight of the PLGA nanofibers decreased with increasing electron beam radiation dose. The mechanical properties of the PLGA nanofibrous mats were decreased with increasing electron beam irradiation dose. Cell proliferation behavior on all electron beam irradiated PLGA mats was similar to the control PLGA mats. Electron beam irradiation of PLGA nanofibrous mats is a potentially useful approach for modulating the biodegradation rate of tissue-specific nonwoven nanofibrous scaffolds, specifically for soft tissue engineering applications.

  3. The nature of science and technology for pre-service chemistry teacher: A case of techno-chemistry experiment "From Stannum Metalicum to conductive glass"

    Science.gov (United States)

    Mudzakir, A.; Widhiyanti, T.; Hernani, Arifin, M.; Lestari, A. N.; Jauhariansyah, S.

    2017-08-01

    The study was conducted to address the problems related to low Indonesian students' scientific literacy as revealed in the PISA (Program for International Student Assessment) since 2000-2015. Science teachers (e.g. chemistry teacher) must recognize the nature of science (NOS) to assist their students in preparing an explanation of a phenomenon scientifically correctly. Teachers also need to understand critically about nature of technology (NOT) and it relationship with science as well as society. To integrate those two kinds of knowledge (NOS and NOT), we can conduct a techno-science activity, which integrate the technology to science course in pre-service teacher education program, so that they can improve their knowledge about nature of science and technology (NOST) and pedagogical content knowledge related to NOST. The purpose of this study was to construct an inquiry based laboratory activity worksheet for making conductive glass so that the pre-service teacher could explain how the structure of the semiconductor Fluor doped Tin Oxide (SnO2.F) affect their performance. This study we conducted, described how to design a pre-service chemistry teacher education course that can improve recognizing view of NOST by using a framework called model of educational reconstruction (MER). The scientific activities in the course were guided inquiry based techno-chemistry experiments involving "From Stannum Metallicum to Conductive Glass". Conductive glasses are interesting subject research for several reason. The application of this technology could be found on solar cell, OLED, and display panel. The doped Tin dioxide has been deposited on glass substrate using the spray pyrolysis technique at 400-550°C substrate temperature, 4-5 times, 20 cm gap between glass and sprayer and 450 angle to form a thin film which will act as electrical contact. The resistivity is about 0.5 - 15Ω. The product resulted on this study was rated by several expert to find if the worksheet could

  4. The contribution of microbial mats to the arsenic geochemistry of an ancient gold mine

    International Nuclear Information System (INIS)

    Drewniak, Lukasz; Maryan, Natalia; Lewandowski, Wiktor; Kaczanowski, Szymon; Sklodowska, Aleksandra

    2012-01-01

    The ancient Zloty Stok (SW Poland) gold mine is such an environment, where different microbial communities, able to utilize inorganic arsenic species As(III) and As(V), are found. The purpose of the present study was to (i) estimate prokaryotic diversity in the microbial mats in bottom sediments of this gold mine, (ii) identify microorganisms that can metabolize arsenic, and (iii) estimate their potential role in the arsenic geochemistry of the mine and in the environment. The oxidation/reduction experiments showed that the microbial mat community may significantly contribute to arsenic contamination in groundwater. The presence of both arsenite oxidizing and dissimilatory arsenate reducing bacteria in the mat was confirmed by the detection of arsenite oxidase and dissimilatory arsenate reductase genes, respectively. This work also demonstrated that microorganisms utilizing other compounds that naturally co-occur with arsenic are present within the microbial mat community and may contribute to the arsenic geochemistry in the environment. - Highlights: ► The microbial mats from this ancient gold mine are highly diverse community. ► As(III) oxidizing and As(V) reducing bacteria are present in the mats. ► As redox transformations are linked to the metabolism of microbial mats bacteria. ► Microbial mats play a crucial role in the As biogeochemical cycle within the mine. - The microbial mats from this ancient gold mine can mediate oxidation/reduction reaction of arsenic and in this way may significantly contribute to arsenic contamination in groundwater.

  5. Matérn-based nonstationary cross-covariance models for global processes

    KAUST Repository

    Jun, Mikyoung

    2014-01-01

    -covariance models, based on the Matérn covariance model class, that are suitable for describing prominent nonstationary characteristics of the global processes. In particular, we seek nonstationary versions of Matérn covariance models whose smoothness parameters

  6. Fracture Resistance, Surface Defects and Structural Strength of Glass

    OpenAIRE

    Rodichev, Y.M.; Veer, F.A.

    2010-01-01

    This paper poses the theory that the fracture resistance of basic float glass is dependent on it physicochemical properties and the surface defects fonned under the float glass production, glass processing and handling at the service conditions compose the aggregate basis for structural glass strength assessment. The effect of loading conditions, constructional and technological factors on the engineering strength of glass can be evaluated in certain cases using fracture mechanics with inform...

  7. Electrospun magnetic nanofibre mats – A new bondable biomaterial using remotely activated magnetic heating

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Yi [Department of Materials Engineering, University of British Columbia, Vancouver (Canada); Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai (China); Leung, Victor; Yuqin Wan, Lynn [Department of Materials Engineering, University of British Columbia, Vancouver (Canada); Dutz, Silvio [Institut für Biomedizinische Technik und Informatik, Technische Universität Ilmenau (Germany); Department of Nano Biophotonics, Leibniz Institute of Photonic Technology, Jena (Germany); Ko, Frank K., E-mail: frank.ko@ubc.ca [Department of Materials Engineering, University of British Columbia, Vancouver (Canada); Häfeli, Urs O., E-mail: urs.hafeli@ubc.ca [Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver (Canada)

    2015-04-15

    A solvothermal process was adopted to produce hydrophilic magnetite (Fe{sub 3}O{sub 4}) nanoparticles which were subsequently emulsified with a chloroform/methanol (70/30 v/v) solution of poly(caprolactone) (PCL) and then electrospun into a 0.2 mm thick PCL mat. The magnetic heating of the mats at a field amplitude of 25 kA/m and frequency of 400 kHz exhibited promising efficiency for magnetic hyperthermia, with a specific absorption rate of about 40 W/g for the magnetic mat. The produced heat was used to melt the magnetic mat onto the surrounding non-magnetic polymer mat from within, without destroying the nanostructure of the non-magnetic polymer more than 0.5 mm away. Magnetic nanofibre mats might thus be useful for internal heat sealing applications, and potentially also for thermotherapy.

  8. Investigation of needleless electrospun PAN nanofiber mats

    Science.gov (United States)

    Sabantina, Lilia; Mirasol, José Rodríguez; Cordero, Tomás; Finsterbusch, Karin; Ehrmann, Andrea

    2018-04-01

    Polyacrylonitrile (PAN) can be spun from a nontoxic solvent (DMSO, dimethyl sulfoxide) and is nevertheless waterproof, opposite to the biopolymers which are spinnable from aqueous solutions. This makes PAN an interesting material for electrospinning nanofiber mats which can be used for diverse biotechnological or medical applications, such as filters, cell growth, wound healing or tissue engineering. On the other hand, PAN is a typical base material for producing carbon nanofibers. Nevertheless, electrospinning PAN necessitates convenient spinning parameters to create nanofibers without too many membranes or agglomerations. Thus we have studied the influence of spinning parameters on the needleless electrospinning process of PAN dissolved in DMSO and the resulting nanofiber mats.

  9. The heterothallic sugarbeet pathogen Cercospora beticola contains exon fragments of both MAT genes that are homogenized by concerted evolution.

    Science.gov (United States)

    Bolton, Melvin D; de Jonge, Ronnie; Inderbitzin, Patrik; Liu, Zhaohui; Birla, Keshav; Van de Peer, Yves; Subbarao, Krishna V; Thomma, Bart P H J; Secor, Gary A

    2014-01-01

    Dothideomycetes is one of the most ecologically diverse and economically important classes of fungi. Sexual reproduction in this group is governed by mating type (MAT) genes at the MAT1 locus. Self-sterile (heterothallic) species contain one of two genes at MAT1 (MAT1-1-1 or MAT1-2-1) and only isolates of opposite mating type are sexually compatible. In contrast, self-fertile (homothallic) species contain both MAT genes at MAT1. Knowledge of the reproductive capacities of plant pathogens are of particular interest because recombining populations tend to be more difficult to manage in agricultural settings. In this study, we sequenced MAT1 in the heterothallic Dothideomycete fungus Cercospora beticola to gain insight into the reproductive capabilities of this important plant pathogen. In addition to the expected MAT gene at MAT1, each isolate contained fragments of both MAT1-1-1 and MAT1-2-1 at ostensibly random loci across the genome. When MAT fragments from each locus were manually assembled, they reconstituted MAT1-1-1 and MAT1-2-1 exons with high identity, suggesting a retroposition event occurred in a homothallic ancestor in which both MAT genes were fused. The genome sequences of related taxa revealed that MAT gene fragment pattern of Cercospora zeae-maydis was analogous to C. beticola. In contrast, the genome of more distantly related Mycosphaerella graminicola did not contain MAT fragments. Although fragments occurred in syntenic regions of the C. beticola and C. zeae-maydis genomes, each MAT fragment was more closely related to the intact MAT gene of the same species. Taken together, these data suggest MAT genes fragmented after divergence of M. graminicola from the remaining taxa, and concerted evolution functioned to homogenize MAT fragments and MAT genes in each species. Published by Elsevier Inc.

  10. Looking at plastic surgery through Google Glass: part 1. Systematic review of Google Glass evidence and the first plastic surgical procedures.

    Science.gov (United States)

    Davis, Christopher R; Rosenfield, Lorne K

    2015-03-01

    Google Glass has the potential to become a ubiquitous and translational technological tool within clinical plastic surgery. Google Glass allows clinicians to remotely view patient notes, laboratory results, and imaging; training can be augmented via streamed expert master classes; and patient safety can be improved by remote advice from a senior colleague. This systematic review identified and appraised every Google Glass publication relevant to plastic surgery and describes the first plastic surgical procedures recorded using Google Glass. A systematic review was performed using PubMed National Center for Biotechnology Information, Ovid MEDLINE, and the Cochrane Central Register of Controlled Trials, following modified Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Key search terms "Google" and "Glass" identified mutually inclusive publications that were screened for inclusion. Eighty-two publications were identified, with 21 included for review. Google Glass publications were formal articles (n = 3), editorial/commentary articles (n = 7), conference proceedings (n = 1), news reports (n = 3), and online articles (n = 7). Data support Google Glass' positive impact on health care delivery, clinical training, medical documentation, and patient safety. Concerns exist regarding patient confidentiality, technical issues, and limited software. The first plastic surgical procedure performed using Google Glass was a blepharoplasty on October 29, 2013. Google Glass is an exciting translational technology with the potential to positively impact health care delivery, medical documentation, surgical training, and patient safety. Further high-quality scientific research is required to formally appraise Google Glass in the clinical setting.

  11. Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS) Users' Workshop Presentations

    Science.gov (United States)

    Litt, Jonathan S. (Compiler)

    2018-01-01

    NASA Glenn Research Center hosted a Users' Workshop on the Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS) on August 21, 2017. The objective of this workshop was to update the user community on the latest features of T-MATS, and to provide a forum to present work performed using T-MATS. Presentations highlighted creative applications and the development of new features and libraries, and emphasized the flexibility and simulation power of T-MATS.

  12. Perfect simulation and moment properties for the Matérn type III process

    DEFF Research Database (Denmark)

    Møller, Jesper; Huber, Mark L.; Wolpert, Robert L.

    2010-01-01

    In a seminal work, Bertil Matérn introduced several types of processes for modeling repulsive point processes. In this paper an algorithm is presented for the perfect simulation of the Matérn III process within a bounded window in , fully accounting for edge effects. A simple upper bound on the m......In a seminal work, Bertil Matérn introduced several types of processes for modeling repulsive point processes. In this paper an algorithm is presented for the perfect simulation of the Matérn III process within a bounded window in , fully accounting for edge effects. A simple upper bound...

  13. Tracing biosignatures from the Recent to the Jurassic in sabkha-associated microbial mats

    Science.gov (United States)

    van der Land, Cees; Dutton, Kirsten; Andrade, Luiza; Paul, Andreas; Sherry, Angela; Fender, Tom; Hewett, Guy; Jones, Martin; Lokier, Stephen W.; Head, Ian M.

    2017-04-01

    Microbial mat ecosystems have been operating at the sediment-fluid interface for over 3400 million years, influencing the flux, transformation and preservation of carbon from the biosphere to the physical environment. These ecosystems are excellent recorders of rapid and profound changes in earth surface environments and biota as they often survive crisis-induced extreme paleoenvironmental conditions. Their biosignatures, captured in the preserved organic matter and the biominerals that form the microbialite rock, constitute a significant tool in understanding geobiological processes and the interactions of the microbial communities with sediments and with the prevailing physical chemical parameters, as well as the environmental conditions at a local and global scale. Nevertheless, the exact pathways of diagenetic organic matter transformation and early-lithification, essential for the accretion and preservation in the geological record as microbialites, are not well understood. The Abu Dhabi coastal sabkha system contains a vast microbial mat belt that is dominated by continuous polygonal and internally-laminated microbial mats across the upper and middle intertidal zones. This modern system is believed to be the best analogue for the Upper Jurassic Arab Formation, which is both a prolific hydrocarbon reservoir and source rock facies in the United Arab Emirates and in neighbouring countries. In order to characterise the processes that lead to the formation of microbialites we investigated the modern and Jurassic system using a multidisciplinary approach, including growth of field-sampled microbial mats under controlled conditions in the laboratory and field-based analysis of microbial communities, mat mineralogy and organic biomarker analysis. In this study, we focus on hydrocarbon biomarker data obtained from the surface of microbial mats actively growing in the intertidal zone of the modern system. By comparing these findings to data obtained from recently

  14. Compliant Glass Seals for SOFC Stacks

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Yeong -Shyung [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Choi, Jung-Pyung [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xu, Wei [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Stephens, Elizabeth V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Koeppel, Brian J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Stevenson, Jeffry W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lara-Curzio, Edgar [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-04-30

    This report summarizes results from experimental and modeling studies performed by participants in the Solid-State Energy Conversion Alliance (SECA) Core Technology Program, which indicate that compliant glass-based seals offer a number of potential advantages over conventional seals based on de-vitrifying glasses, including reduced stresses during stack operation and thermal cycling, and the ability to heal micro-damage induced during thermal cycling. The properties and composition of glasses developed and/or investigated in these studies are reported, along with results from long-term (up to 5,800h) evaluations of seals based on a compliant glass containing ceramic particles or ceramic fibers.

  15. Biogeochemistry of an iron-rich hypersaline microbial mat (Camargue, France).

    Science.gov (United States)

    Wieland, A; Zopfi, J; Benthien, M; Kühl, M

    2005-01-01

    In situ microsensor measurements were combined with biogeochemical methods to determine oxygen, sulfur, and carbon cycling in microbial mats growing in a solar saltern (Salin-de-Giraud, France). Sulfate reduction rates closely followed the daily temperature changes and were highest during the day at 25 degrees C and lowest during the night at 11 degrees C, most probably fueled by direct substrate interactions between cyanobacteria and sulfate-reducing bacteria. Sulfate reduction was the major mineralization process during the night and the contribution of aerobic respiration to nighttime DIC production decreased. This decrease of aerobic respiration led to an increasing contribution of sulfide (and iron) oxidation to nighttime O2 consumption. A peak of elemental sulfur in a layer of high sulfate reduction at low sulfide concentration underneath the oxic zone indicated anoxygenic photosynthesis and/or sulfide oxidation by iron, which strongly contributed to sulfide consumption. We found a significant internal carbon cycling in the mat, and sulfate reduction directly supplied DIC for photosynthesis. The mats were characterized by a high iron content of 56 micromol Fe cm(-3), and iron cycling strongly controlled the sulfur cycle in the mat. This included sulfide precipitation resulting in high FeS contents with depth, and reactions of iron oxides with sulfide, especially after sunset, leading to a pronounced gap between oxygen and sulfide gradients and an unusual persistence of a pH peak in the uppermost mat layer until midnight.

  16. rMATS: robust and flexible detection of differential alternative splicing from replicate RNA-Seq data.

    Science.gov (United States)

    Shen, Shihao; Park, Juw Won; Lu, Zhi-xiang; Lin, Lan; Henry, Michael D; Wu, Ying Nian; Zhou, Qing; Xing, Yi

    2014-12-23

    Ultra-deep RNA sequencing (RNA-Seq) has become a powerful approach for genome-wide analysis of pre-mRNA alternative splicing. We previously developed multivariate analysis of transcript splicing (MATS), a statistical method for detecting differential alternative splicing between two RNA-Seq samples. Here we describe a new statistical model and computer program, replicate MATS (rMATS), designed for detection of differential alternative splicing from replicate RNA-Seq data. rMATS uses a hierarchical model to simultaneously account for sampling uncertainty in individual replicates and variability among replicates. In addition to the analysis of unpaired replicates, rMATS also includes a model specifically designed for paired replicates between sample groups. The hypothesis-testing framework of rMATS is flexible and can assess the statistical significance over any user-defined magnitude of splicing change. The performance of rMATS is evaluated by the analysis of simulated and real RNA-Seq data. rMATS outperformed two existing methods for replicate RNA-Seq data in all simulation settings, and RT-PCR yielded a high validation rate (94%) in an RNA-Seq dataset of prostate cancer cell lines. Our data also provide guiding principles for designing RNA-Seq studies of alternative splicing. We demonstrate that it is essential to incorporate biological replicates in the study design. Of note, pooling RNAs or merging RNA-Seq data from multiple replicates is not an effective approach to account for variability, and the result is particularly sensitive to outliers. The rMATS source code is freely available at rnaseq-mats.sourceforge.net/. As the popularity of RNA-Seq continues to grow, we expect rMATS will be useful for studies of alternative splicing in diverse RNA-Seq projects.

  17. Regulation of mat responses by a differentiation MAPK pathway in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Sheelarani Karunanithi

    Full Text Available Fungal species exhibit diverse behaviors when presented with extracellular challenges. Pathogenic fungi can undergo cell differentiation and biofilm formation in response to fluctuating nutrient levels, and these responses are required for virulence. In the model fungal eukaryote Saccharomyces cerevisiae, nutrient limitation induces filamentous growth and biofilm/mat formation. Both responses require the same signal transduction (MAPK pathway and the same cell adhesion molecule (Flo11 but have been studied under different conditions. We found that filamentous growth and mat formation are aspects of a related response that is regulated by the MAPK pathway. Cells in yeast-form mats differentiated into pseudohyphae in response to nutrient limitation. The MAPK pathway regulated mat expansion (in the plane of the XY-axis and substrate invasion (downward in the plane of the Z-axis, which optimized the mat's response to extracellular nutrient levels. The MAPK pathway also regulated an upward growth pattern (in the plane of the Z-axis in response to nutrient limitation and changes in surface rigidity. Upward growth allowed for another level of mat responsiveness and resembled a type of colonial chemorepulsion. Together our results show that signaling pathways play critical roles in regulating social behaviors in which fungal cells participate. Signaling pathways may regulate similar processes in pathogens, whose highly nuanced responses are required for virulence.

  18. Fermentation couples Chloroflexi and sulfate-reducing bacteria to Cyanobacteria in hypersaline microbial mats

    Directory of Open Access Journals (Sweden)

    Jackson Z Lee

    2014-02-01

    Full Text Available Past studies of hydrogen cycling in hypersaline microbial mats have shown an active nighttime cycle, with production largely from Cyanobacteria and consumption from sulfate-reducing bacteria (SRB. However, the mechanisms and magnitude of hydrogen cycling have not been extensively studied. Two mats types near Guerrero Negro, Mexico -- permanently submerged Microcoleus microbial mats (GN-S, and intertidal Lyngbya microbial mats (GN-I -- were used in microcosm diel manipulation experiments with 3-(3,4-dichlorophenyl-1,1-dimethylurea (DCMU, molybdate, ammonium addition, and physical disruption to understand the processes responsible for hydrogen cycling between mat microbes. Across microcosms, H2 production occurred under dark anoxic conditions with simultaneous production of a suite of organic acids. H2 production was not significantly affected by inhibition of nitrogen fixation, but rather appears to result from constitutive fermentation of photosynthetic storage products by oxygenic phototrophs. Comparison to accumulated glycogen and to CO2 flux indicated that, in the GN-I mat, fermentation released almost all of the carbon fixed via photosynthesis during the preceding day, primarily as organic acids. Across mats, although oxygenic and anoxygenic phototrophs were detected, cyanobacterial [NiFe]-hydrogenase transcripts predominated. Molybdate inhibition experiments indicated that SRBs from a wide distribution of dsrA phylotypes were responsible for H2 consumption. Incubation with 13C-acetate and nanoSIMS (secondary ion mass-spectrometry indicated higher uptake in both Chloroflexi and SRBs relative to other filamentous bacteria. These manipulations and diel incubations confirm that Cyanobacteria were the main fermenters in Guerrero Negro mats and that the net flux of nighttime fermentation byproducts (not only hydrogen was largely regulated by the interplay between Cyanobacteria, SRBs, and Chloroflexi.

  19. Photosynthetic and Behavioral Versatility of the Cyanobacterium Oscillatoria-Boryana in a Sulfide-Rich Microbial Mat

    DEFF Research Database (Denmark)

    CASTENHOLZ, RW; JØRGENSEN, BB; DAMELIO, E.

    1991-01-01

    and predominant population which was spread over the mat surface during darkness and on overcast days ( 300 W m-2), O. boryana disappeared almost entirely from the mat surface to a position of about 1 mm below the surface pellicle of the mat. O2, sulfide, and pH microelectrodes inserted into excised mat cores...... photosynthesis of O. boryana occurred. This capability was confirmed for O. boryana by [C-14]-photoincorporation and sulfide-microelectrode experiments. Forced exposure to high irradiance levels (500-700 W m-2) was inhibitory to oxygenic photosynthesis in O. boryana, but these intensities impinging on mats...

  20. Technical Status Report: Preliminary Glass Formulation Report for INEEL HAW

    International Nuclear Information System (INIS)

    Peeler, D.; Reamer, I.; Vienna, J.; Crum, J.A.

    1998-03-01

    This study was performed by a team comprising experts in glass chemistry, glass technology, and statistics at both SRTC and PNNL. This joint effort combined the strengths of each discipline and site to quickly develop a glass formulation for specific INEEL HAW

  1. On-site Raman analysis of ancient glasses and stained-glass windows: modeling, procedure, lixiviation and characterization

    International Nuclear Information System (INIS)

    Tournie, Aurelie

    2009-01-01

    The aim of this study is to estimate the possibilities of Raman spectrometry to identify on site old glasses (objects, stained-glass windows...) whatever been their preserving state. The efficiency of Raman analysis depends strongly of the structural organization of glasses and then of their technological history. In order to differentiate the great silicate family compounds from their Raman analysis, a methodology has been developed: data acquisition and spectrum processing, Raman parameters extraction and classification of these glasses. This approach has then been extended to crystalline phosphates and silicates. Beforehand, correlations between crystallo-chemical parameters and vibrational signatures have been considered. The old glasses are often recovered by a corrosion layer which induces important changes on the Raman signature. Four layers have been identified and characterized by a multi-scale study: leached porous layer, transition zone, cracked zone and sound glass. The results show that only an analytical chemistry approach (databases of Raman signatures) is not sufficient and that a solid chemistry and physics approach is required to explain the spectral answers and extract the relevant parameters from glasses preserving [fr

  2. Temperature dependent transport and dielectric properties of cadmium titanate nanofiber mats

    Directory of Open Access Journals (Sweden)

    Z. Imran

    2013-03-01

    Full Text Available We investigate electrical and dielectric properties of cadmium titanate (CdTiO3 nanofiber mats prepared by electrospinning. The nanofibers were polycrystalline having diameter ∼50 nm-200 nm, average length ∼100 μm and crystallite size ∼25 nm. Alternating current impedance measurements were carried out from 318 K – 498 K. The frequency of ac signal was varied from 2 – 105 Hz. The complex impedance plots revealed two depressed semicircular arcs indicating the bulk and interface contribution to overall electrical behavior of nanofiber mats. The bulk resistance was found to increase with decrease in temperature exhibiting typical semiconductor like behavior. The modulus analysis shows the non-Debye type conductivity relaxation in nanofiber mats. The ac conductivity spectrum obeyed the Jonscher power law. Analysis of frequency dependent ac conductivity revealed presence of the correlated barrier hopping (CBH in nanofiber mats over the entire temperature range.

  3. A niche for cyanobacteria producing chlorophyll f within a microbial mat.

    Science.gov (United States)

    Ohkubo, Satoshi; Miyashita, Hideaki

    2017-10-01

    Acquisition of additional photosynthetic pigments enables photosynthetic organisms to survive in particular niches. To reveal the ecological significance of chlorophyll (Chl) f, we investigated the distribution of Chl and cyanobacteria within two microbial mats. In a 7-mm-thick microbial mat beneath the running water of the Nakabusa hot spring, Japan, Chl f was only distributed 4.0-6.5 mm below the surface, where the intensity of far-red light (FR) was higher than that of photosynthetically active radiation (PAR). In the same mat, two ecotypes of Synechococcus and two ecotypes of Chl f-producing Leptolyngbya were detected in the upper and deeper layers, respectively. Only the Leptolyngbya strains could grow when FR was the sole light source. These results suggest that the deeper layer of the microbial mat was a habitat for Chl f-producing cyanobacteria, and Chl f enabled them to survive in a habitat with little PAR.

  4. Sway Area and Velocity Correlated With MobileMat Balance Error Scoring System (BESS) Scores.

    Science.gov (United States)

    Caccese, Jaclyn B; Buckley, Thomas A; Kaminski, Thomas W

    2016-08-01

    The Balance Error Scoring System (BESS) is often used for sport-related concussion balance assessment. However, moderate intratester and intertester reliability may cause low initial sensitivity, suggesting that a more objective balance assessment method is needed. The MobileMat BESS was designed for objective BESS scoring, but the outcome measures must be validated with reliable balance measures. Thus, the purpose of this investigation was to compare MobileMat BESS scores to linear and nonlinear measures of balance. Eighty-eight healthy collegiate student-athletes (age: 20.0 ± 1.4 y, height: 177.7 ± 10.7 cm, mass: 74.8 ± 13.7 kg) completed the MobileMat BESS. MobileMat BESS scores were compared with 95% area, sway velocity, approximate entropy, and sample entropy. MobileMat BESS scores were significantly correlated with 95% area for single-leg (r = .332) and tandem firm (r = .474), and double-leg foam (r = .660); and with sway velocity for single-leg (r = .406) and tandem firm (r = .601), and double-leg (r = .575) and single-leg foam (r = .434). MobileMat BESS scores were not correlated with approximate or sample entropy. MobileMat BESS scores were low to moderately correlated with linear measures, suggesting the ability to identify changes in the center of mass-center of pressure relationship, but not higher-order processing associated with nonlinear measures. These results suggest that the MobileMat BESS may be a clinically-useful tool that provides objective linear balance measures.

  5. Laboratory testing of LITCO glasses

    International Nuclear Information System (INIS)

    Ellison, A.; Wolf, S.; Buck, E.; Luo, J.S.; Dietz, N.; Bates, J.K.; Ebert, W.L.

    1995-01-01

    The purpose of this program is to measure, the intermediate and long-term durability of glasses developed by Lockheed Idaho Technology Co. (LITCO) for the immobilization of calcined radioactive wastes. The objective is to use accelerated corrosion tests as an aid in developing durable waste form compositions. This is a report of tests performed on two LITCO glass compositions, Formula 127 and Formula 532. The main avenue for release of radionuclides into the environment in a geologic repository is the reaction of a waste glass with ground water, which alters the glass and releases its components into solution. These stages in glass corrosion are analyzed by using accelerated laboratory tests in which the ratio of sample surface area to solution volume, SA/V, is varied. At low SA/V, the solution concentrations of glass corrosion products remain low and the reaction approaches the forward rate. At higher SA/V the solution approaches saturation levels for glass corrosion products. At very high SA/V the solution is rapidly saturated in glass corrosion products and secondary crystalline phases precipitate. Tests at very high SA/V provide information about the composition of the solution at saturation or, when no solution is recovered, the identities and the order of appearance of secondary crystalline phases. Tests were applied to Formula 127 and Formula 532 glasses to provide information about the interim and long-term stages in glass corrosion

  6. Transferability of glass lens molding

    Science.gov (United States)

    Katsuki, Masahide

    2006-02-01

    Sphere lenses have been used for long time. But it is well known that sphere lenses theoretically have spherical aberration, coma and so on. And, aspheric lenses attract attention recently. Plastic lenses are molded easily with injection machines, and are relatively low cost. They are suitable for mass production. On the other hand, glass lenses have several excellent features such as high refractive index, heat resistance and so on. Many aspheric glass lenses came to be used for the latest digital camera and mobile phone camera module. It is very difficult to produce aspheric glass lenses by conventional process of curve generating and polishing. For the solution of this problem, Glass Molding Machine was developed and is spreading through the market. High precision mold is necessary to mold glass lenses with Glass Molding Machine. The mold core is ground or turned by high precision NC aspheric generator. To obtain higher transferability of the mold core, the function of the molding machine and the conditions of molding are very important. But because of high molding temperature, there are factors of thermal expansion and contraction of the mold and glass material. And it is hard to avoid the factors. In this session, I introduce following items. [1] Technology of glass molding and the machine is introduced. [2] The transferability of glass molding is analyzed with some data of glass lenses molded. [3] Compensation of molding shape error is discussed with examples.

  7. FY 1999 report on the results of the development of recycling technology of waste architectural materials, glass, etc. Development of the simple glass coloring/decoloring technology; 1999 nendo kenchiku haizai glass nado recycle gijutsu kaihatsu seika hokokusho. Kan'igata glass chakudasshoku gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    For the purpose of increasing the ratio of recycling of waste architectural materials, glass, etc., the development was proceeded with of easy coloring of colorless glass by light irradiation and decoloring of it by heat treatment. The important point for technical development is to develop glass materials which are colored by light and decolored by heat at a level of technique with practicality and to develop coloring/decoloring device. Studies were made in the following three fields: 1) optimization of coloring/decoloring conditions for coloring/decoloring occurring from defects (color centers) under light irradiation; 2) optimization of coloring/decoloring conditions occurring from colorless ions and particulate formation under light irradiation; 3) development of a visible drawing device. In 1), bottle, sheet glass, and soda-lime silicate glass are colored brown by X-ray/UV radiation, but the coloring is bad in stability. However, it was found that the addition of silver oxide improved stability. In 2), it was recognized that when the glass containing a trace of Mn was melted in the reducing atmosphere, it became colorless, and when radiated by X-ray and heat-treated at approximately 200 degrees C, it was colored bluish violet which was vivid and stable. (NEDO)

  8. Bioactive glasses materials, properties and applications

    CERN Document Server

    Ylänen, Heimo

    2011-01-01

    Due to their biocompatibility and bioactivity, bioactive glasses are used as highly effective implant materials throughout the human body to replace or repair damaged tissue. As a result, they have been in continuous use since shortly after their invention in the late 1960s and are the subject of extensive research worldwide.Bioactive glasses provides readers with a detailed review of the current status of this unique material, its properties, technologies and applications. Chapters in part one deal with the materials and mechanical properties of bioactive glass, examining topics such

  9. Cantera Integration with the Toolbox for Modeling and Analysis of Thermodynamic Systems (T-MATS)

    Science.gov (United States)

    Lavelle, Thomas M.; Chapman, Jeffryes W.; May, Ryan D.; Litt, Jonathan S.; Guo, Ten-Huei

    2014-01-01

    NASA Glenn Research Center (GRC) has recently developed a software package for modeling generic thermodynamic systems called the Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS). T-MATS is a library of building blocks that can be assembled to represent any thermodynamic system in the Simulink (The MathWorks, Inc.) environment. These elements, along with a Newton Raphson solver (also provided as part of the T-MATS package), enable users to create models of a wide variety of systems. The current version of T-MATS (v1.0.1) uses tabular data for providing information about a specific mixture of air, water (humidity), and hydrocarbon fuel in calculations of thermodynamic properties. The capabilities of T-MATS can be expanded by integrating it with the Cantera thermodynamic package. Cantera is an object-oriented analysis package that calculates thermodynamic solutions for any mixture defined by the user. Integration of Cantera with T-MATS extends the range of systems that may be modeled using the toolbox. In addition, the library of elements released with Cantera were developed using MATLAB native M-files, allowing for quicker prototyping of elements. This paper discusses how the new Cantera-based elements are created and provides examples for using T-MATS integrated with Cantera.

  10. Energy conservation in the EC glass industry

    Energy Technology Data Exchange (ETDEWEB)

    Waal, H. de [TNO Institute of Applied Physics, Delft (Netherlands)

    1994-12-31

    The data presented in this survey are based mainly on a recent study, performed by the Energy Technology Support Unit ETSU. Harwell Laboratory, United Kingdom, in the context of the EC-Thermie programme. Also, use has been made of a paper `Glass Manufacture, energy and CO{sub 2}-emissions`, presented by G.J. Copley of the British Glass Manufacturers Confederation, Sheffield, United Kingdom, presented at the Thermie Seminar in Wiesbaden, 1992. A third source of information has been the data collected by the CPIV, the European Glass Manufacturers Federation on the present and future economic situation of the EC Glass Industry. (orig.)

  11. Aspects of the ecology of mat-forming lichens

    Directory of Open Access Journals (Sweden)

    P. D. Crittenden

    2000-03-01

    Full Text Available Lichen species in the genera Cladonia (subgenus Cladina, Cetraria, Stereocaulon and Alectoria are important vegetation components on well-drained terrain and on elevated micro-sites in peatlands in boreal-Arctic regions. These lichens often form closed mats, the component thalli in which grow vertically upwards at the apices and die off in the older basal regions; they are therefore only loosely attached to the underlying soil. This growth habit is relatively unusual in lichens being found in <0.5% of known species. It might facilitate internal nutrienr recycling and higher growth rates and, together with the production of allelochemicals, it might underlie the considerable ecological success of mat-forming lichens; experiments to critically assess the importance of these processes are required. Mat-forming lichens can constitute in excess of 60% of the winter food intake of caribou and reindeer. Accordingly there is a pressing need for data on lichen growth rates, measured as mass increment, in order to help determine the carrying capacity of winter ranges for rhese herbivores and to better predict recovery rates following grazing. Trampling during the snow-free season fragments lichen thalli; mat-forming lichens regenerate very successfully from thallus fragments provided trampling does nor re-occur. Frequent recurrence of trampling creates disturbed habitats from which lichens will rapidly become eliminated consistent with J.P. Grime's CSR strategy theory. Such damage to lichen ground cover has occurred where reindeer or caribou are unable to migrate away from their winter range such as on small islands or where political boundaries have been fenced; it can also occur on summer range that contains a significant lichen component and on winter range where numbers of migrarory animals become excessive. Species of Stereocaulon, and other genera that contain cyanobacteria (most notably Peltigera and Nephroma, are among the principal agents of

  12. Effects of tacky mat contamination on bond degradation for Chemlok/liner and NBR/liner bonds

    Science.gov (United States)

    Padilla, A. M.

    1989-01-01

    Tacky mats are placed by the rubber lay-up areas for the solid rocket motor segments. These mats dust off the shoes prior to entering the platform where the lay-up work is performed. The possibility exists that a tacky mat could be touched with gloved hands prior to handling the uncured nitride butadiene rubber (NBR). Tests were run to determine if NBR were accidentally touched would there be any degradation of the liner/NBR bond. The tacky mats were judged solely on the basis of bond degradation caused by either direct or indirect contamination. Test results all indicate that there was no notable NBR/Chemlok or liner/NBR bond degradation on samples that came into contact with the tacky mat material. Testing procedures are described. The tacky mat adhesive composition does not contain fluorocarbons or release agents that would affect bonding.

  13. Effect of the addition of Na2O on the thermal properties and chemical durability of glasses of iron and uranium phosphates

    International Nuclear Information System (INIS)

    Arboleda Zuluaga, P.A; Rodriguez, D.S; Gonzalez Oliver, C; Rincon Lopez, J.M; Soldera, F

    2012-01-01

    A series of glass compositions including (54,6-73,5P 2 O 5 .14-22Fe 2 O 3.x Na 2 O.2,8-4,25 UO 2 ) %mol. x=0-28,4 were studied in function of sodium oxide content for the thermal properties and chemical durability. By means differential dilatometer measurements was possible establish the variation of Tg, and α Tsoft and analysis of the kinetics of sintering by means of High Temperature Microscopy (MAT) and dilatometric data of pressed pellets. The presence of modifier oxides in the structure of iron phosphate glasses causes slightly onset sintering anticipation in almost 25 o C The chemical durability was estimated performing the named Product Consistency Test (PCT-B) focused on determining the resistance of glasses for nuclear wastes. These glasses exhibit good chemical durability but it is significant impaired by the addition of x≥6wt%Na 2 O. It is aimed to achieve more stable compositions and get glass matrixes able to contain more uranium oxides allowing evaluating the potential application of these iron phosphate glasses for special, industrial and nuclear waste immobilization

  14. Improvement of database on glass dissolution

    International Nuclear Information System (INIS)

    Hayashi, Maki; Sasamoto, Hiroshi; Yoshikawa, Hideki

    2008-03-01

    In geological disposal system, high-level radioactive waste (HLW) glass is expected to retain radionuclide for the long term as the first barrier to prevent radionuclide release. The advancement of its performance assessment technology leads to the reliability improvement of the safety assessment of entire geological disposal system. For this purpose, phenomenological studies for improvement of scientific understanding of dissolution/alteration mechanisms, and development of robust dissolution/alteration model based on the study outcomes are indispensable. The database on glass dissolution has been developed for supporting these studies. This report describes improvement of the prototype glass database. Also, this report gives an example of the application of the database for reliability assessment of glass dissolution model. (author)

  15. Lessons Learned From Google Glass: Telemedical Spark or Unfulfilled Promise?

    Science.gov (United States)

    Yu, Jonathan; Ferniany, William; Guthrie, Barton; Parekh, Selene G; Ponce, Brent

    2016-04-01

    Wearable devices such as Google Glass could potentially be used in the health care setting to expand access and improve quality of care. This study aims to assess the demographics of Google Glass users in health care and determine the obstacles to using Google Glass by surveying those who are known to use the device. A 48-question survey was designed to assess demographics of users, technological limitations of Google Glass, and obstacles to implementation of the device. The physicians surveyed worked in various fields of health care, with 50% of the respondents being surgeons. Potential participants were found using an Internet search for physicians using Google Glass in their practice. Outcome measures were divided into demographic information of users, technological limitations of the device, and administrative obstacles. A 43.6% response rate was observed. The majority of users were male, assistant professors, in academic hospitals, and in the United States. Numerous technological limitations were observed by the majority, including device ergonomics, display location, video quality, and audio quality. Patient confidentiality and data security were the major concerns among administrative obstacles. Despite the potential of Google Glass, numerous obstacles exist that limit its use in health care. While Google Glass has been discontinued, the results of this study may be used to guide future designs of wearable devices. © The Author(s) 2015.

  16. Growth, composition and metal removal potential of a Phormidium bigranulatum-dominated mat at elevated levels of cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Dhananjay [Plant Molecular Biology and Plant Physiology Lab, Lab no. 114, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110 067 (India); Yadav, Arpana [Laboratory of Algal Biology, Department of Botany, Banaras Hindu University, Varanasi 221 005 (India); Gaur, J.P., E-mail: gaurjp@yahoo.co.in [Laboratory of Algal Biology, Department of Botany, Banaras Hindu University, Varanasi 221 005 (India)

    2012-07-15

    Prompted by the fact that interaction of metals with cyanobacterial mats has been little studied, the present study evaluates the response of a cyanobacterial mat, dominated by Phormidium bigranulatum, to elevated concentrations of Cd{sup 2+} in the medium. The mat failed to grow at 7 {mu}M of Cd{sup 2+} when the metal as also the mat inoculum were simultaneously added to the medium right in the beginning of the experiment due to marked sensitivity of P. bigranulatum, the main constituent of the mat, to high concentrations of Cd{sup 2+}. However, the mat previously grown in Cd{sup 2+}-free medium for a time period of 1-4 weeks grew successfully when exposed to media containing very high concentrations of Cd{sup 2+}. Four-week-old mat could grow at 250 {mu}M of Cd{sup 2+}, which has been found toxic to many cyanobacteria and algae by previous researchers. Greater tolerance of older mats to Cd{sup 2+} may be due to greater proportion of exopolysaccharides, which are well known to sequester metal ions extracellularly, in them. Whereas the relative proportion of P. bigranulatum declined at high concentrations of the test metal that of green algae increased due most likely to their tolerance to Cd{sup 2+}. Air bubbles were seen entrapped in the mat due obviously to photosynthetic activity. Elevated concentrations of Cd{sup 2+} reduced the number of air bubbles in the mat. Decline in number of air bubbles at high concentrations of metal ions was more prominent in the case of younger mat than in the older one. The present study also evaluated changes in species composition of mats of different age that were subsequently grown in Cd{sup 2+} enriched culture medium. Younger mats showed change in species composition at very low concentrations of Cd{sup 2+}, but older mats showed little changes even at very high concentrations of the test metal. Hence older mats more strongly resisted to changes in its species composition than the younger ones upon exposure to high

  17. Luminescence of Eu(3+) doped SiO2 Thin Films and Glass Prepared by Sol-gel Technology

    Science.gov (United States)

    Castro, Lymari; Jia, Weiyi; Wang, Yanyun; Santiago, Miguel; Liu, Huimin

    1998-01-01

    Trivalent europium ions are an important luminophore for lighting and display. The emission of (5)D0 to (7)F2 transition exhibits a red color at about 610 nm, which is very attractive and fulfills the requirement for most red-emitting phosphors including lamp and cathode ray phosphorescence materials. Various EU(3+) doped phosphors have been developed, and luminescence properties have been extensively studied. On the other hand, sol-gel technology has been well developed by chemists. In recent years, applications of this technology to optical materials have drawn a great attention. Sol-gel technology provides a unique way to obtain homogeneous composition distribution and uniform doping, and the processing temperature can be very low. In this work, EU(3+) doped SiO2 thin films and glasses were prepared by sol-gel technology and their spectroscopic properties were investigated.

  18. Electrospun chitosan-based nanocomposite mats reinforced with chitin nanocrystals for wound dressing

    CSIR Research Space (South Africa)

    Naseria, N

    2014-08-01

    Full Text Available The aim of this study was to develop electrospun chitosan/polyethylene oxide-based randomly oriented fiber mats reinforced with chitin nanocrystals (ChNC) for wound dressing. Microscopy studies showedporous mats of smooth and beadless fibers...

  19. Feasibility Study for a Structurally Efficient, Multi-Modal Shelter Concept Utilizing Advanced Technology Production Techniques

    Science.gov (United States)

    1974-02-01

    II I~ x p:1 ns ion P roc cuurc Longitudin:-11 Section, Container Mod·c Configuration r Ex p :m s i on Pro c c d u r e Longitudinal Section...No . I II. I I I. IV. v. VI. VII. VIII. IX. X . XI. XII. XIII. XIV. XV . XVI. XVII . XVIII . XIX. XX. XXI. XXII . XXI II. XXIV...mat e rial s and examples from these categories . Glass Fibers Glass Mi c r os pheres As bestos Carbon Graphite Ce llulose Cotton Jute Rayo n

  20. Microbial Mats on the Orkney Islands Revisited: Microenvironment and Microbial Community Composition

    DEFF Research Database (Denmark)

    Wieland, A.; Kühl, M.; McGowan, L.

    2003-01-01

    of these sediments. High amounts of algal lipids and slightly higher numbers (genera, abundances) of cyanobacteria were found in Waulkmill Bay mats. However, overall only a few genera and low numbers of unicellular and filamentous cyanobacteria were present in mats from Waulkmill and Swanbister beach, as deduced...... fragment length polymorphism) analysis in Swanbister beach mats, the depth distribution of different populations of purple and sulfate-reducing bacteria could be related to the microenvironmental conditions. Oxygen, but also sulfide and other (inorganic and organic) sulfur compounds, seems to play...

  1. Forming Glasses from Se and Te

    Directory of Open Access Journals (Sweden)

    Pierre Lucas

    2009-10-01

    Full Text Available Despite being close neighbors on the Periodic Table, selenium and tellurium present a totally different abilities to form glasses. Se is a very good glass former, and gives rise to numerous glass compositions which are popular for their transparency in the infrared range and their stability against crystallization. These glasses can be shaped into sophisticated optical devices such as optical fibers, planar guides or lenses. Nevertheless, their transparencies are limited at about 12 μm (depending on the thickness of the optical systems due to the relatively small mass of the Se element. On the other hand, tellurium is heavier and its use in substitution for Se permits to shift the IR cutoff beyond 20 μm. However, the semimetallic nature of Te limits its glass formation ability and this glass family is known to be unstable and consequently has found application as phase change material in the Digital Versatile Disk (DVD technology. In this paper, after a review of selenide glasses and their applications, it will be shown how, in a recent past, it has been possible to stabilize tellurium glasses by introducing new elements like Ga or I in their compositions.

  2. Multi-megajoule Nd: glass fusion laser design

    International Nuclear Information System (INIS)

    Manes, K.R.

    1986-01-01

    New technologies make multi-megajoule glass lasers economically feasible. Laser architectures using harmonic switchout, target plane holographic injection, phase conjugation, continuous apodization and higher amplifier efficiencies have been devised. A plan for a multi-megajoule laser which can be built for an acceptable cost relies on manufacturing economies of scale and the demonstration of the new technologies presented here. These include continuous pour glass production, rapid harmonic crystal growth, switching of large blocks of power using larger capcaitors packed more economically and by using large identical parts counts

  3. Determination of 210Po in tea, mat and their infusions and its annual intake by Syrians

    International Nuclear Information System (INIS)

    Al-Masri, M.S.; Nashawati, A.; Amin, Y.; Al-Akel, B.

    2004-01-01

    Polonium-210 was determined in 34 kinds of imported tea and 9 kinds of mat collected from the Syrian local market. The 210 Po concentration was found to vary from 5.5 to 39 Bq x kg -1 and 47 to 82 Bq x kg -1 in tea and mat samples, respectively. In addition 210 Po was also determined in tea and mat infusions where different infusion conditions have been examined: amount, temperature and infusion time. The results have shown that the amount of 210 Po transferred from tea and mat leaves to the aqueous extract ranged from 9 to 21% and 3 to 15%, respectively. The annual intake of 210 Po by Syrians due to tea consumption and mat infusions was calculated and found to be 9 Bq and 151 Bq for tea and mat respectively: washing of mat with warm water is recommended before preparation the infusions to decrease the annual intake of 210 Po. (author)

  4. Methylmercury enters an aquatic food web through acidophilic microbial mats in Yellowstone National Park, Wyoming.

    Science.gov (United States)

    Boyd, Eric S; King, Susan; Tomberlin, Jeffery K; Nordstrom, D Kirk; Krabbenhoft, David P; Barkay, Tamar; Geesey, Gill G

    2009-04-01

    Microbial mats are a visible and abundant life form inhabiting the extreme environments in Yellowstone National Park (YNP), WY, USA. Little is known of their role in food webs that exist in the Park's geothermal habitats. Eukaryotic green algae associated with a phototrophic green/purple Zygogonium microbial mat community that inhabits low-temperature regions of acidic (pH approximately 3.0) thermal springs were found to serve as a food source for stratiomyid (Diptera: Stratiomyidae) larvae. Mercury in spring source water was taken up and concentrated by the mat biomass. Monomethylmercury compounds (MeHg(+)), while undetectable or near the detection limit (0.025 ng l(-1)) in the source water of the springs, was present at concentrations of 4-7 ng g(-1) dry weight of mat biomass. Detection of MeHg(+) in tracheal tissue of larvae grazing the mat suggests that MeHg(+) enters this geothermal food web through the phototrophic microbial mat community. The concentration of MeHg(+) was two to five times higher in larval tissue than mat biomass indicating MeHg(+) biomagnification occurred between primary producer and primary consumer trophic levels. The Zygogonium mat community and stratiomyid larvae may also play a role in the transfer of MeHg(+) to species in the food web whose range extends beyond a particular geothermal feature of YNP.

  5. DWPF Glass Melter Technology Manual: Volume 4

    Energy Technology Data Exchange (ETDEWEB)

    Iverson, D.C.

    1993-12-31

    This document details information about the design of a glass melter to be used at the Defense Waste Processing Facility located at the Savannah River Plant. Information contained in this document consists solely of a machine drawing and parts list and purchase orders with specifications of equipment used in the development of the melter.

  6. DWPF Glass Melter Technology Manual: Volume 4

    International Nuclear Information System (INIS)

    Iverson, D.C.

    1993-01-01

    This document details information about the design of a glass melter to be used at the Defense Waste Processing Facility located at the Savannah River Plant. Information contained in this document consists solely of a machine drawing and parts list and purchase orders with specifications of equipment used in the development of the melter

  7. Immobilization of Uranium Silicides in Sintered Glass

    International Nuclear Information System (INIS)

    Mateos, P.; Russo, D.O.; Heredia, A.D.; Sanfilippo, M.

    2003-01-01

    High activity nuclear spent fuels vitrification by fusion is a well known technology which has industrial scale in France, England, Japan, EEUU. Borosilicates glasses are used in this process.Sintered glasses are an alternative to the immobilization task in which there is also a wide experience around the world.The available technics are: cold pressing and sintering , hot-pressing and hot isostatic pressing.This work compares Borosilicates and Iron silicates sintered glasses behaviour when different ammounts of nuclear simulated waste is added

  8. Research on the Properties of the Waste Glass Concrete Composite Foundation

    Science.gov (United States)

    Jia, Shilong; Chen, Kaihui; Chen, Zhongliang

    2018-02-01

    The composite foundation of glass concrete can not only reuse the large number of waste glass, but also improve the bearing capacity of weak foundation and soil with special properties. In this paper, the engineering properties of glass concrete composite foundation are studied based on the development situation of glass concrete and the technology of composite foundation.

  9. Enhancement of the in-plane shear properties of carbon fiber composites containing carbon nanotube mats

    Science.gov (United States)

    Kim, Hansang

    2015-01-01

    The in-plane shear property of carbon fiber laminates is one of the most important structural features of aerospace and marine structures. Fiber-matrix debonding caused by in-plane shear loading is the major failure mode of carbon fiber composites because of the stress concentration at the interfaces. In this study, carbon nanotube mats (CNT mat) were incorporated in two different types of carbon fiber composites. For the case of woven fabric composites, mechanical interlocking between the CNTs and the carbon fibers increased resistance to shear failure. However, not much improvement was observed for the prepreg composites as a result of incorporation of the CNT mats. The reinforcement mechanism of the CNT mat layer was investigated by a fractographic study using scanning electron microscopy. In addition, the CNT mat was functionalized by three different methods and the effectiveness of the functionalization methods was determined and the most appropriate functionalization method for the CNT mat was air oxidation.

  10. DWPF Glass Melter Technology Manual: Volume 3

    Energy Technology Data Exchange (ETDEWEB)

    Iverson, D.C.

    1993-12-31

    This document details information about the design of a glass melter to be used at the Defense Waste Processing Facility located at the Savannah River Site. Topics discussed include: Information collected during testing, equipment, materials, design basis, feed tubes, and an evaluation of the performance of various components. Information is conveyed using many diagrams and photographs.

  11. DWPF Glass Melter Technology Manual: Volume 3

    International Nuclear Information System (INIS)

    Iverson, D.C.

    1993-01-01

    This document details information about the design of a glass melter to be used at the Defense Waste Processing Facility located at the Savannah River Site. Topics discussed include: Information collected during testing, equipment, materials, design basis, feed tubes, and an evaluation of the performance of various components. Information is conveyed using many diagrams and photographs

  12. Exploring Technology-Enhanced Learning Using Google Glass to Offer Students a Unique Instructor's Point of View Live Laboratory Demonstration

    Science.gov (United States)

    Man, Fung Fun

    2016-01-01

    Technology-enhanced learning (TEL) is fast gaining momentum among educational institutions all over the world. The usual way in which laboratory instructional videos are filmed takes the third-person view. However, such videos are not as realistic and sensorial. With the advent of Google Glass and GoPro cameras, a more personal and effective way…

  13. Russian Army Mat as a Code System Controlling Behaviour in the Russian army

    Directory of Open Access Journals (Sweden)

    Vadim Mikhailin

    2004-09-01

    Full Text Available This text is to be a shortened, restructured and based on somewhat another factological foundation version of my article “Russkii mat kak muzhskoi obstsennyi kod: problema proiskhozhdeniia i evoliutsiia statusa”, published in # 43 of Novoe Literaturnoe Obozrenie. Tracing the genesis of mat to the specific modes of behaviour, peculiar to the archaic male warrior bands, I’m going to show that the military milieu (and some other, structurally close to it social strata, has always been – and remain – absolutely adequate for the mat speaking. Moreover, mat has always carried on within these strata rather specific function connected with creating of one’s identity as a military, and its use offers various and sometimes the only possible means of impact at one’s equal or subordinate (or even superior. As a matter of fact, mat is a basis for a whole code system, controlling different military behaviour practices. The problems of the freshers’ adaptation and of the national specificities in the late Soviet and modern Russian army are to be considered with special respect.

  14. Fabrication and Characterization of Electrospun Polycaprolactone Blended with Chitosan-Gelatin Complex Nanofibrous Mats

    Directory of Open Access Journals (Sweden)

    Yongfang Qian

    2014-01-01

    Full Text Available Design and fabrication of nanofibrous scaffolds should mimic the native extracellular matrix. This study is aimed at investigating electrospinning of polycaprolactone (PCL blended with chitosan-gelatin complex. The morphologies were observed from scanning electron microscope. As-spun blended mats had thinner fibers than pure PCL. X-ray diffraction was used to analyze the degree of crystallinity. The intensity at two peaks at 2θ of 21° and 23.5° gradually decreased with the percentage of chitosan-gelatin complex increasing. Moreover, incorporation of the complex could obviously improve the hydrophilicity of as-spun blended mats. Mechanical properties of as-spun nanofibrous mats were also tested. The elongation at break of fibrous mats increased with the PCL content increasing and the ultimate tensile strength varied with different weight ratios. The as-spun mats had higher tensile strength when the weight ratio of PCL to CS-Gel was 75/25 compared to pure PCL. Both as-spun PCL scaffolds and PCL/CS-Gel scaffolds supported the proliferation of porcine iliac endothelial cells, and PCL/CS-Gel had better cell viability than pure PCL. Therefore, electrospun PCL/Chitosan-gelatin nanofibrous mats with weight ratio of 75/25 have better hydrophilicity mechanical properties, and cell proliferation and thus would be a promising candidate for tissue engineering scaffolds.

  15. Wet water glass production plant

    Directory of Open Access Journals (Sweden)

    Stanković Mirjana S.

    2003-01-01

    Full Text Available The IGPC Engineering Department designed basic projects for a wet hydrate dissolution plant, using technology developed in the IGPC laboratories. Several projects were completed: technological, machine, electrical, automation. On the basis of these projects, a production plant of a capacity of 75,000 t/y was manufactured, at "Zeolite Mira", Mira (VE, Italy, in 1997. and 1998, increasing detergent zeolite production, from 50,000 to 100,000 t/y. Several goals were realized by designing a wet hydrate dissolution plant. The main goal was increasing the detergent zeolite production. The technological cycle of NaOH was closed, and no effluents emitted, and there is no pollution (except for the filter cake. The wet water glass production process is fully automatized, and the product has uniform quality. The production process can be controlled manually, which is necessary during start - up, and repairs. By installing additional process equipment (centrifugal pumps and heat exchangers technological bottlenecks were overcome, and by adjusting the operation of autoclaves, and water glass filters and also by optimizing the capacities of process equipment.

  16. Potash - a key raw material of glass batch for Bohemian glasses from 14th-17th centuries?

    Czech Academy of Sciences Publication Activity Database

    Cílová, Z.; Woitsch, Jiří

    2012-01-01

    Roč. 39, č. 2 (2012), s. 371-380 ISSN 0305-4403 R&D Projects: GA AV ČR KJB900580701 Institutional research plan: CEZ:AV0Z90580513 Keywords : Wood ash * Potash * Medieval glass * Chemical composition * Glass batch * archaeological experiment * Reconstruction of technology Subject RIV: AC - Archeology, Anthropology, Ethnology Impact factor: 1.889, year: 2012 http://www.sciencedirect.com/science/article/pii/S0305440311003505

  17. Glass optimization for vitrification of Hanford Site low-level tank waste

    International Nuclear Information System (INIS)

    Feng, X.; Hrma, P.R.; Westsik, J.H. Jr.

    1996-03-01

    The radioactive defense wastes stored in 177 underground single-shell tanks (SST) and double-shell tanks (DST) at the Hanford Site will be separated into low-level and high-level fractions. One technology activity underway at PNNL is the development of glass formulations for the immobilization of the low-level tank wastes. A glass formulation strategy has been developed that describes development approaches to optimize glass compositions prior to the projected LLW vitrification facility start-up in 2005. Implementation of this strategy requires testing of glass formulations spanning a number of waste loadings, compositions, and additives over the range of expected waste compositions. The resulting glasses will then be characterized and compared to processing and performance specifications yet to be developed. This report documents the glass formulation work conducted at PNL in fiscal years 1994 and 1995 including glass formulation optimization, minor component impacts evaluation, Phase 1 and Phase 2 melter vendor glass development, liquidus temperature and crystallization kinetics determination. This report also summarizes relevant work at PNNL on high-iron glasses for Hanford tank wastes conducted through the Mixed Waste Integrated Program and work at Savannah River Technology Center to optimize glass formulations using a Plackett-Burnam experimental design

  18. Preface - BraMat 2017

    Science.gov (United States)

    Munteanu, Daniel

    2018-04-01

    The main goal of the BraMat 2017 Conference was, as for the previous editions, to stimulate an international exchange of information in the field of materials science and engineering and to establish future research directions. The main topics of this edition included: ​Metallic materials (Section I), Biomaterials (Section II), Ceramics, polymers and composite materials (Section III), Surface engineering (Section IV), Nanomaterials (Section V), Welding engineering (Section VI), Safety engineering (Section VII), and Magnesium science and engineering (Section VIII).

  19. Localized electron transfer rates and microelectrode-based enrichment of microbial communities within a phototrophic microbial mat

    Directory of Open Access Journals (Sweden)

    Jerome eBabauta

    2014-01-01

    Full Text Available Phototrophic microbial mats frequently exhibit sharp, light-dependent redox gradients that regulate microbial respiration on specific electron acceptors as a function of depth. In this work, a benthic phototrophic microbial mat from Hot Lake, a hypersaline, epsomitic lake located near Oroville in north-central Washington, was used to develop a microscale electrochemical method to study local electron transfer processes within the mat. To characterize the physicochemical variables influencing electron transfer, we initially quantified redox potential, pH and dissolved oxygen gradients by depth in the mat under photic and aphotic conditions. We further demonstrated that power output of a mat fuel cell was light-dependent. To study local electron transfer processes, we deployed a microscale electrode (microelectrode with tip size ~20 µm. To enrich a subset of microorganisms capable of interacting with the microelectrode, we anodically polarized the microelectrode in the mat. Subsequently, to characterize the microelectrode-associated community and compare it to the neighboring mat community, we performed amplicon sequencing of the V1-V3 region of the 16S gene. Differences in Bray-Curtis beta diversity, illustrated by large changes in relative abundance at the phylum level, suggested successful enrichment of specific mat community members on the microelectrode surface. The microelectrode-associated community exhibited substantially reduced alpha diversity and elevated relative abundances of Prosthecochloris, Loktanella, Catellibacterium, other unclassified members of Rhodobacteraceae, Thiomicrospira, and Limnobacter, compared with the community at an equivalent depth in the mat. Our results suggest that local electron transfer to an anodically polarized microelectrode selected for a specific microbial population, with substantially more abundance and diversity of sulfur-oxidizing phylotypes compared with the neighboring mat community.

  20. Localized electron transfer rates and microelectrode-based enrichment of microbial communities within a phototrophic microbial mat.

    Science.gov (United States)

    Babauta, Jerome T; Atci, Erhan; Ha, Phuc T; Lindemann, Stephen R; Ewing, Timothy; Call, Douglas R; Fredrickson, James K; Beyenal, Haluk

    2014-01-01

    Phototrophic microbial mats frequently exhibit sharp, light-dependent redox gradients that regulate microbial respiration on specific electron acceptors as a function of depth. In this work, a benthic phototrophic microbial mat from Hot Lake, a hypersaline, epsomitic lake located near Oroville in north-central Washington, was used to develop a microscale electrochemical method to study local electron transfer processes within the mat. To characterize the physicochemical variables influencing electron transfer, we initially quantified redox potential, pH, and dissolved oxygen gradients by depth in the mat under photic and aphotic conditions. We further demonstrated that power output of a mat fuel cell was light-dependent. To study local electron transfer processes, we deployed a microscale electrode (microelectrode) with tip size ~20 μm. To enrich a subset of microorganisms capable of interacting with the microelectrode, we anodically polarized the microelectrode at depth in the mat. Subsequently, to characterize the microelectrode-associated community and compare it to the neighboring mat community, we performed amplicon sequencing of the V1-V3 region of the 16S gene. Differences in Bray-Curtis beta diversity, illustrated by large changes in relative abundance at the phylum level, suggested successful enrichment of specific mat community members on the microelectrode surface. The microelectrode-associated community exhibited substantially reduced alpha diversity and elevated relative abundances of Prosthecochloris, Loktanella, Catellibacterium, other unclassified members of Rhodobacteraceae, Thiomicrospira, and Limnobacter, compared with the community at an equivalent depth in the mat. Our results suggest that local electron transfer to an anodically polarized microelectrode selected for a specific microbial population, with substantially more abundance and diversity of sulfur-oxidizing phylotypes compared with the neighboring mat community.

  1. Black Mats, Spring-Fed Streams, and Late-Glacial-Age Recharge in the Southern Great Basin

    Science.gov (United States)

    Quade, Jay; Forester, R.M.; Pratt, W.L.; Carter, C.

    1998-01-01

    Black mats are prominent features of the late Pleistocene and Holocene stratigraphic record in the southern Great Basin. Faunal, geochemical, and sedimentological evidence shows that the black mats formed in several microenvironments related to spring discharge, ranging from wet meadows to shallow ponds. Small land snails such as Gastrocopta tappaniana and Vertigo berryi are the most common mollusk taxa present. Semiaquatic and aquatic taxa are less abundant and include Catinellids, Fossaria parva, Gyraulus parvus, and others living today in and around perennial seeps and ponds. The ostracodes Cypridopsis okeechobi and Scottia tumida, typical of seeps and low-discharge springs today, as well as other taxa typical of springs and wetlands, are common in the black mats. Several new species that lived in the saturated subsurface also are present, but lacustrine ostracodes are absent. The ??13C values of organic matter in the black mats range from -12 to -26???, reflecting contributions of tissue from both C3 (sedges, most shrubs and trees) and C4 (saltbush, saltgrass) plants. Carbon-14 dates on the humate fraction of 55 black mats fall between 11,800 to 6300 and 2300 14C yr B.P. to modern. The total absence of mats in our sample between 6300 and 2300 14C yr B.P. likely reflects increased aridity associated with the mid-Holocene Altithermal. The oldest black mats date to 11,800-11,600 14C yr B.P., and the peak in the 14C black mat distribution falls at ???10,000 14C yr B.P. As the formation of black mats is spring related, their abundance reflects refilling of valley aquifers starting no later than 11,800 and peaking after 11,000 14C yrB.P. Reactivation of spring-fed channels shortly before 11,200 14C yr B.P. is also apparent in the stratigraphic records from the Las Vegas and Pahrump Valleys. This age distribution suggests that black mats and related spring-fed channels in part may have formed in response to Younger Dryas (YD)-age recharge in the region. However, the

  2. Increasing Mechanical Properties of 2-D-Structured Electrospun Nylon 6 Non-Woven Fiber Mats

    Directory of Open Access Journals (Sweden)

    Chunhui Xiang

    2016-04-01

    Full Text Available Tensile strength, Young’s modulus, and toughness of electrospun nylon 6 non-woven fiber mats were improved by increasing individual nanofiber strength and fiber–fiber load sharing. Single-walled carbon nanotubes (CNTs were used as reinforcement to increase the strength of the electrospun nylon 6 nanofibers. Young’s modulus, tensile strength, and toughness of the nylon 6 non-woven fiber mats electrospun from 20 wt % solutions increased 51%, 87%, and 136%, respectively, after incorporating 1 wt % CNTs into the nylon 6 nanofibers. Three methods were investigated to enhance fiber–fiber load sharing: increasing friction between fibers, thermal bonding, and solvent bonding. The addition of beaded nylon 6 nanofibers into the non-woven fiber mats to increase fiber-fiber friction resulted in a statistically significantly increase in Young’s modulus over comparable smooth non-woven fiber mats. After annealing, tensile strength, elongation, and toughness of the nylon 6 non-woven fiber mats electrospun from 20 wt % + 10 wt % solutions increased 26%, 28%, and 68% compared to those from 20 wt % solutions. Solvent bonding with formic acid vapor at room temperature for 30 min caused increases of 56%, 67%, and 39% in the Young’s modulus, tensile strength, and toughness of non-woven fiber mats, respectively. The increases attributed to increased individual nanofiber strength and solvent bonding synergistically resulted in the improvement of Young’s modulus of the electrospun nylon 6 non-woven fiber mats.

  3. Transforming Polar Research with Google Glass Augmented Reality (Invited)

    Science.gov (United States)

    Ruthkoski, T.

    2013-12-01

    Augmented reality is a new technology with the potential to accelerate the advancement of science, particularly in geophysical research. Augmented reality is defined as a live, direct or indirect, view of a physical, real-world environment whose elements are augmented (or supplemented) by computer-generated sensory input such as sound, video, graphics or GPS data. When paired with advanced computing techniques on cloud resources, augmented reality has the potential to improve data collection techniques, visualizations, as well as in-situ analysis for many areas of research. Google is currently a pioneer of augmented reality technology and has released beta versions of their wearable computing device, Google Glass, to a select number of developers and beta testers. This community of 'Glass Explorers' is the vehicle from which Google shapes the future of their augmented reality device. Example applications of Google Glass in geophysical research range from use as a data gathering interface in harsh climates to an on-site visualization and analysis tool. Early participation in the shaping of the Google Glass device is an opportunity for researchers to tailor this new technology to their specific needs. The purpose of this presentation is to provide geophysical researchers with a hands-on first look at Google Glass and its potential as a scientific tool. Attendees will be given an overview of the technical specifications as well as a live demonstration of the device. Potential applications to geophysical research in polar regions will be the primary focus. The presentation will conclude with an open call to participate, during which attendees may indicate interest in developing projects that integrate Google Glass into their research. Application Mockup: Penguin Counter Google Glass Augmented Reality Device

  4. Engineering and Scientific Applications: Using MatLab(Registered Trademark) for Data Processing and Visualization

    Science.gov (United States)

    Sen, Syamal K.; Shaykhian, Gholam Ali

    2011-01-01

    MatLab(TradeMark)(MATrix LABoratory) is a numerical computation and simulation tool that is used by thousands Scientists and Engineers in many countries. MatLab does purely numerical calculations, which can be used as a glorified calculator or interpreter programming language; its real strength is in matrix manipulations. Computer algebra functionalities are achieved within the MatLab environment using "symbolic" toolbox. This feature is similar to computer algebra programs, provided by Maple or Mathematica to calculate with mathematical equations using symbolic operations. MatLab in its interpreter programming language form (command interface) is similar with well known programming languages such as C/C++, support data structures and cell arrays to define classes in object oriented programming. As such, MatLab is equipped with most of the essential constructs of a higher programming language. MatLab is packaged with an editor and debugging functionality useful to perform analysis of large MatLab programs and find errors. We believe there are many ways to approach real-world problems; prescribed methods to ensure foregoing solutions are incorporated in design and analysis of data processing and visualization can benefit engineers and scientist in gaining wider insight in actual implementation of their perspective experiments. This presentation will focus on data processing and visualizations aspects of engineering and scientific applications. Specifically, it will discuss methods and techniques to perform intermediate-level data processing covering engineering and scientific problems. MatLab programming techniques including reading various data files formats to produce customized publication-quality graphics, importing engineering and/or scientific data, organizing data in tabular format, exporting data to be used by other software programs such as Microsoft Excel, data presentation and visualization will be discussed.

  5. Phenotypic variation and characterization of mutant matting in shiitake

    International Nuclear Information System (INIS)

    Ibrahim Mahmood; Azhar Mohamad

    2016-01-01

    Shiitake (Lentinula edodes) is an edible mushroom that has many uses such as: pharmaceutical, nutraceutical and cosmeceutical industries. In this study, we will induce Shiitake to create the genetic variation via exposing the spores of shiitake to gamma (γ) ray at different doses (0-700 Gy) then make the matting between two different monokaryon mycelium (MM). potato dextrose agar (PDA), this media will be used for spore germination and monokaryon mycelium subculturing during this study. The compatibility of the matting will be observed macroscopically (observing on the plates of PDA) and microscopically (by observing the clamps test under the microscope (Olympus brand)). The finding of this study, there is no significant changing in the growth performance of irradiated monokaryon mycelium in comparing with non-irradiated mycelium. From 108 matting only 15 were compatibles. This study, the physical mutagen will be used followed by mating as a normal stage of life cycle for creating potential strain of shiitake with alteration in phenotypic characterization of dikaryon mycelium (DM) as a compatible mating for two MM. (author)

  6. Silicates materials of high vacuum technology

    CERN Document Server

    Espe, Werner

    2013-01-01

    Materials of High Vacuum Technology, Volume 2: Silicates covers silicate insulators of special importance to vacuum technology. The book discusses the manufacture, composition, and physical and chemical properties of technical glasses, quartz glass, quartzware, vycor glass, ceramic materials, mica, and asbestos.

  7. GLASS PLATES FOR MOTOR VEHICLES AND OTHER MEANS OF TRANSPORT

    Directory of Open Access Journals (Sweden)

    Camelia CĂPĂŢÎNĂ

    2012-05-01

    Full Text Available At present, the majority of high quality glass plate is used in vehicle industry. The paper presents the technological process for obtaining glass plate, used in vehicle industry. Besides the usual attributes of high quality plane glass, those used in vehicle industry must not result in sharp and cutting splinters when broken, being dangerous for the passengers. This quality, due to which it is called safety glass, is obtained by various methods.

  8. Recycle Glass in Foam Glass Production

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund; König, Jakob; Yue, Yuanzheng

    The foam glass industry turn recycle glass into heat insulating building materials. The foaming process is relative insensitive to impurities in the recycle glass. It is therefore considered to play an important role in future glass recycling. We show and discuss trends of use of recycled glasses...... in foam glass industry and the supply sources and capacity of recycle glass....

  9. Plutonium dioxide dissolution in glass

    International Nuclear Information System (INIS)

    Vienna, J.D.; Alexander, D.L.; Li, Hong

    1996-09-01

    In the aftermath of the Cold War, the U.S. Department of Energy's (DOE) Office of Fissile Materials Disposition (OFMD) is charged with providing technical support for evaluation of disposition options for excess fissile materials manufactured for the nation's defense. One option being considered for the disposition of excess plutonium (Pu) is immobilization by vitrification. The vitrification option entails immobilizing Pu in a host glass and waste package that are criticality-safe (immune to nuclear criticality), proliferation-resistant, and environmentally acceptable for long-term storage or disposal. To prove the technical and economic feasibility of candidate vitrification options it is necessary to demonstrate that PuO 2 feedstock can be dissolved in glass in sufficient quantity. The OFMD immobilization program has set a Pu solubility goal of 10 wt% in glass. The life cycle cost of the vitrification options are strongly influenced by the rate at which PUO 2 dissolves in glass. The total number of process lines needed for vitrification of 50 t of Pu in 10 years is directly dependent upon the time required for Pu dissolution in glass. The objective of this joint Pacific Northwest National Laboratory (PNNL) - Savannah River Technology Center (SRTC) study was to demonstrate a high Pu solubility in glass and to identify on a rough scale the time required for Pu dissolution in the glass. This study was conducted using a lanthanide borosilicate (LaBS) glass composition designed at the SRTC for the vitrification of actinides

  10. Plutonium dioxide dissolution in glass

    Energy Technology Data Exchange (ETDEWEB)

    Vienna, J.D.; Alexander, D.L.; Li, Hong [and others

    1996-09-01

    In the aftermath of the Cold War, the U.S. Department of Energy`s (DOE) Office of Fissile Materials Disposition (OFMD) is charged with providing technical support for evaluation of disposition options for excess fissile materials manufactured for the nation`s defense. One option being considered for the disposition of excess plutonium (Pu) is immobilization by vitrification. The vitrification option entails immobilizing Pu in a host glass and waste package that are criticality-safe (immune to nuclear criticality), proliferation-resistant, and environmentally acceptable for long-term storage or disposal. To prove the technical and economic feasibility of candidate vitrification options it is necessary to demonstrate that PuO{sub 2} feedstock can be dissolved in glass in sufficient quantity. The OFMD immobilization program has set a Pu solubility goal of 10 wt% in glass. The life cycle cost of the vitrification options are strongly influenced by the rate at which PUO{sub 2} dissolves in glass. The total number of process lines needed for vitrification of 50 t of Pu in 10 years is directly dependent upon the time required for Pu dissolution in glass. The objective of this joint Pacific Northwest National Laboratory (PNNL) - Savannah River Technology Center (SRTC) study was to demonstrate a high Pu solubility in glass and to identify on a rough scale the time required for Pu dissolution in the glass. This study was conducted using a lanthanide borosilicate (LaBS) glass composition designed at the SRTC for the vitrification of actinides.

  11. The heterothallic sugarbeet pathogen Cercospora beticola contains exon fragments of both MAT genes that are homogenized by concerted evolution

    NARCIS (Netherlands)

    Bolton, M.D.; Jonge, de R.; Inderbitzin, P.; Liu, Z.; Birla, K.; Peer, Van de Y.; Subbarao, K.; Thomma, B.P.H.J.; Secor, G.

    2014-01-01

    Dothideomycetes is one of the most ecologically diverse and economically important classes of fungi. Sexual reproduction in this group is governed by mating type (MAT) genes at the MAT1 locus. Self-sterile (heterothallic) species contain one of two genes at MAT1 (MAT1-1-1 or MAT1-2-1) and only

  12. Glass-ceramics with multibarrier structure obtained from industrial waste

    Energy Technology Data Exchange (ETDEWEB)

    Berzina, L.; Cimdins, R.; Rozenstrauha, I. [Riga Tech. Univ. (Latvia). Fac. of Chem. Technol.; Bossert, J. [Technisches Inst.: Materialwissenschaft, Friedrich-Schiller-Univ., Jena (Germany); Kravtchenko, I. [Inst. for Problems of Material Science, Kiev (Ukraine)

    1997-12-31

    Recycling problem for various kind of waste is solved by processing the waste to ecological depositable products with multibarrier structure. In order to form a multibarrier structure the ecologically incompatible substances may be diluted and chemically bound until their recycling products gain a structure like natural mineral or glass (I. barrier). After that, remineralized materials are converted into a new product by melting or powder technology using an ecological compatible type of waste as a matrix phase (II. barrier). Waste which are treated this way could be applied to produce ceramic building materials and goods such as floor tiles, stone pavement and casting products. Industrial waste from the metallurgical factory in Latvia ``Liepajas metalurgs`` are metallurgical slag, filter dust, etching waste and sewage used in technologies. The main constituents of chemical compositions of these waste are: Fe, Ca, Si, Mg, Al, Mn etc. In some types of waste a small amount of ecologically risky elements such as Cr, Ni, Zr, Sn and Pb can occur. The combination of metallurgical waste with peat ashes from Riga thermal power station, oil shale ashes or glass waste under controlled sintering procedure gives bulk materials with surface or/and bulkcrystallization. The structure of glass-ceramics built this way may prevent the migration of ecologically risky elements into environment due to corrosion or friction. Physical-chemical properties and thermal behaviour (DTA, dilatometry, melting) of waste define the range of sintering for production of glass-ceramics (powder technology) and decorative glass-ceramic materials (melting and powder technology). (orig.) 5 refs.

  13. Mechanical Properties of Natural Jute Fabric/Jute Mat Fiber Reinforced Polymer Matrix Hybrid Composites

    Directory of Open Access Journals (Sweden)

    Elsayed A. Elbadry

    2012-01-01

    Full Text Available Recycled needle punched jute fiber mats as a first natural fiber reinforcement system and these jute mats used as a core needle punched with recycled jute fabric cloths as skin layers as a second natural fiber reinforcement system were used for unsaturated polyester matrix composites via modifying the hand lay-up technique with resin preimpregnation into the jute fiber in vacuum. The effect of skin jute fabric on the tensile and bending properties of jute mat composites was investigated for different fiber weight contents. Moreover, the notch sensitivity of these composites was also compared by using the characteristic distance do calculated by Finite Element Method (FEM. The results showed that the tensile and flexural properties of jute mat composites increased by increasing the fiber weight content and by adding the jute fabric as skin layers. On the other hand, by adding the skins, the characteristic distance decreased and, therefore, the notch sensitivity of the composites increased. The fracture behavior investigated by SEM showed that extensive fiber pull-out mechanism was revealed at the tension side of jute mat composites under the bending load and by adding the jute cloth, the failure mode of jute mat was changed to fiber bridge mechanism.

  14. Electron microscopy study of microbial mat in the North Fiji basin hydrothermal vent

    Science.gov (United States)

    Park, H.; Kim, J. W.; Lee, J. W.

    2017-12-01

    Hydrothermal vent systems consisting of hydrothermal vent, hydrothermal sediment and microbial mat are widely spread around the ocean, particularly spreading axis, continental margin and back-arc basin. Scientists have perceived that the hydrothermal systems, which reflect the primeval earth environment, are one of the best places to reveal the origin of life and extensive biogeochemical process of microbe-mineral interaction. In the present study multiline of analytical methods (X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM)) were utilized to investigate the mineralogy/chemistry of microbe-mineral interaction in hydrothermal microbial mat. Microbial mat samples were recovered by Canadian scientific submersible ROPOS on South Pacific North Fiji basin KIOST hydrothermal vent expedition 1602. XRD analysis showed that red-colored microbial mat contains Fe-oxides and Fe-oxyhydroxides. Various morphologies of minerals in the red-colored microbial mat observed by SEM are mainly showed sheath shaped, resembled with Leptothrix microbial structure, stalks shaped, similar with Marioprofundus microbial structure and globule shaped microbial structures. They are also detected with DNA analysis. The cross sectional observation of microbial structures encrusted with Fe-oxide and Fe-oxyhydroxide at a nano scale by Transmission Electron Microscopy (TEM) and Focused Ion Beam (FIB) technique was developed to verify the structural/biogeochemical properties in the microbe-mineral interaction. Systematic nano-scale measurements on the biomineralization in the microbial mat leads the understandings of biogeochemical environments around the hydrothermal vent.

  15. The Role of Glass in Interior Architecture: Aesthetics, Community, and Privacy

    Science.gov (United States)

    Ziff, Matthew

    2004-01-01

    Advances in glass technologies are being applied in contemporary interior architecture. Glass forms and surfaces are appearing in settings and applications that offer vivid aesthetic experiences for users, but create ambiguous messages concerning community and privacy. Where a modernist application of glass may have been directed toward creating a…

  16. The ichthyofauna of drifting macrophyte mats in the Ivinhema River, upper Paraná River basin, Brazil

    Science.gov (United States)

    Bulla, C. K.; Gomes, Luiz Carlos; Miranda, Leandro E.; Agostinho, A. A.

    2011-01-01

    We describe the fish assemblages associated with drifting macrophyte mats and consider their possible role as dispersal vectors in the Ivinhema River, a major tributary of the upper Paraná River, Brazil. Fish associated with drifting mats were sampled in the main river channel during January and March 2005, when the wind and/or the increased water level were sufficient to transport macrophyte stands. Fish in the drifting mats were sampled with a floating sieve (4 m long x 2 m wide x 0.6 m high, and 2 mm mesh size). In the laboratory, larvae, juvenile, and adult fish were counted and identified to the lowest possible taxonomic level. In four drifting macrophyte mats we captured 218 individuals belonging to at least 28 species, 17 families, and 6 orders. Aphyocharax dentatus, Serrasalmus spp., and Trachelyopterus galeatus were the most abundant taxa associated with the mats, but species richness ranged from 6 to 24 species per mat. In addition, 85% of the total number of individuals caught was larvae and juveniles. Although preliminary and based on limited samples, this study of drifting macrophyte mats was the first one in the last unregulated stretch of the Paraná River remaining inside Brazilian territory, and alerts us to the potential role of macrophytes mats as dispersers of fish species in the region.

  17. Vulnerability of R-MAT networks with communities

    Directory of Open Access Journals (Sweden)

    Nikolay Alexandrovich Kinash

    2016-06-01

    Full Text Available A generator R-MAT for modeling networks with different laws of link constructions within and between communities has been developed. Network attack simulations have been performed and pertinent robustness of diverse network combinations has been concluded.

  18. Investigation of lead-iron-phosphate glass for SRP waste

    International Nuclear Information System (INIS)

    Jantzen, C.M.

    1986-10-01

    The search for a host solid for the immobilization of nuclear waste has focused on various vitreous waste forms. Recently, lead-iron-phosphate (LIP) glasses have been proposed for solidification of all types of HLLW. Investigation of this glass for vitrification of SRP waste demonstrated that the phosphate glass is incompatible with the current borosilicate glass technology. The durability of LIP glasses in deionized water was comparable to current borosilicate waste glass formulations, and the LIP glass has a low melt temperature. However, many of the defense waste constituents have low solubility in the phosphate melt, producing an inhomogeneous product. Also, the LIP melt is highly corrosive which prevents the use of current melter materials, in particular Inconel 690, and thus requires more exotic materials of construction such as platinum

  19. Anti-fatigue mats, low back pain, and electromyography: An interventional study.

    Science.gov (United States)

    Aghazadeh, Javad; Ghaderi, Mahmoud; Azghani, Mahmood-Reza; Khalkhali, Hamid-Reza; Allahyari, Teimour; Mohebbi, Iraj

    2015-01-01

    Increasing bilateral gluteus medius co-activation has been identified as one of the most important factors in developing low back pain due to prolonged standing in healthy people. This study aims to investigate the impact of an anti-fatigue mat on the bilateral gluteus medius co-activation pattern and to report the low back pain subjectively in 2 different standing positions on the normal rigid surface and on the anti-fatigue mat. While carrying out an easy simulated profession, 16 participants who had no low back pain background were requested to stand for 2 h in each position, with and without using the anti-fatigue floor mat, respectively. At the beginning of standing process and at every 15 min until the time of 120 min lapses, electric activities for the bilateral gluteus medius co-activation and subjective pain level in low back area were collected by the surface electromyogeraphy (EMG) and the visual analogue scale (VAS), respectively in each position. The obtained findings revealed that the anti-fatigue mat significantly decreased subjective pain level in low back area among 15 participants (p 0.05). The findings obtained under this study related to the impact of the anti-fatigue mat upon the low back pain based on the increase of > 10 mm on the VAS threshold, which showed that this intervention had no significant impact upon decreasing the number of patients suffering from the low back pain and also minimizing the bilateral gluteus medius co-activation in both pain developer groups (p > 0.05). However, 73% of the participants preferred to apply it. It seems that the anti-fatigue mat may be useful in reducing the low back pain although it objectively didn't significantly change the gluteus medius co-activation pattern related to the low back pain. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  20. Microbial Diversity and Lipid Abundance in Microbial Mats from a Sulfidic, Saline, Warm Spring in Utah, USA

    Science.gov (United States)

    Gong, J.; Edwardson, C.; Mackey, T. J.; Dzaugis, M.; Ibarra, Y.; Course 2012, G.; Frantz, C. M.; Osburn, M. R.; Hirst, M.; Williamson, C.; Hanselmann, K.; Caporaso, J.; Sessions, A. L.; Spear, J. R.

    2012-12-01

    The microbial diversity of Stinking Springs, a sulfidic, saline, warm spring northeast of the Great Salt Lake was investigated. The measured pH, temperature, salinity, and sulfide concentration along the flow path ranged from 6.64-7.77, 40-28° C, 2.9-2.2%, and 250 μM to negligible, respectively. Five sites were selected along the flow path and within each site microbial mats were dissected into depth profiles based on the color and texture of the mat layers. Genomic DNA was extracted from each layer, and the 16S rRNA gene was amplified and sequenced on the Roche 454 Titanium platform. Fatty acids were also extracted from the mat layers and analyzed by liquid chromatography and mass spectrometry. The mats at Stinking Springs were classified into roughly two morphologies with respect to their spatial distribution: loose, sometimes floating mats proximal to the spring source; and thicker, well-laminated mats distal to the spring source. Loosely-laminated mats were found in turbulent stream flow environments, whereas well-laminated mats were common in less turbulent sheet flows. Phototrophs, sulfur oxidizers, sulfate reducers, methanogens, other bacteria and archaea were identified by 16S rRNA gene sequences. Diatoms, identified by microscopy and lipid analysis were found to increase in abundance with distance from the source. Methanogens were generally more abundant in deeper mat laminae. Photoheterotrophs were found in all mat layers. Microbial diversity increased significantly with depth at most sites. In addition, two distinct microbial streamers were identified and characterized at the two fast flowing sites. These two streamer varieties were dominated by either cyanobacteria or flavobacteria. Overall, our genomic and lipid analysis suggest that the physical and chemical environment is more predictive of the community composition than mat morphology. Site Map

  1. Development of Advanced Sensor Technologies for the United States Glass Industry - Final Report - 07/20/1995 - 08/19/1999; FINAL

    International Nuclear Information System (INIS)

    Conner, B. L.; Cannon, C.

    1999-01-01

    The glass industry, with support from the U.S. Department of Energy (DOE), undertook a project to significantly improve temperature measurement in glass melters, thereby reducing energy usage through improved process control. AccuTru International determined that a new kind of protective sheath would improve the life and range of applications of the temperature measuring thermocouples. In cooperation with Corning, Inc., the University of Missouri-Rolla ceramics department conducted tests on a proprietary alumina sheath technology, which shows significant promise. In addition, AccuTru obtained DOE funding to develop a self-verifying sensor. The new sensor, with alumina sheath, was tested at a Corning facility, and the results exceeded expectations. Areas for additional development efforts were identified

  2. Formulation and Characterization of Waste Glasses with Varying Processing Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong-Sang; Schweiger, M. J.; Rodriguez, Carmen P.; Lepry, William C.; Lang, Jesse B.; Crum, Jarrod V.; Vienna, John D.; Johnson, Fabienne; Marra, James C.; Peeler, David K.

    2011-10-17

    This report documents the preliminary results of glass formulation and characterization accomplished within the finished scope of the EM-31 technology development tasks for WP-4 and WP-5, including WP-4.1.2: Glass Formulation for Next Generation Melter, WP-5.1.2.3: Systematic Glass Studies, and WP-5.1.2.4: Glass Formulation for Specific Wastes. This report also presents the suggested studies for eventual restart of these tasks. The initial glass formulation efforts for the cold crucible induction melter (CCIM), operating at {approx}1200 C, with selected HLW (AZ-101) and LAW (AN-105) successfully developed glasses with significant increase of waste loading compared to that is likely to be achieved based on expected reference WTP formulations. Three glasses formulated for AZ-101HLW and one glass for AN-105 LAW were selected for the initial CCIM demonstration melter tests. Melter tests were not performed within the finished scope of the WP-4.1.2 task. Glass formulations for CCIM were expanded to cover additional HLWs that have high potential to successfully demonstrate the unique advantages of the CCIM technologies based on projected composition of Hanford wastes. However, only the preliminary scoping tests were completed with selected wastes within the finished scope. Advanced glass formulations for the reference WTP melter, operating at {approx}1200 C, were initiated with selected specific wastes to determine the estimated maximum waste loading. The incomplete results from these initial formulation efforts are summarized. For systematic glass studies, a test matrix of 32 high-aluminum glasses was completed based on a new method developed in this study.

  3. Formulation and Characterization of Waste Glasses with Varying Processing Temperature

    International Nuclear Information System (INIS)

    Kim, Dong-Sang; Schweiger, M.J.; Rodriguez, Carmen P.; Lepry, William C.; Lang, Jesse B.; Crum, Jarrod V.; Vienna, John D.; Johnson, Fabienne; Marra, James C.; Peeler, David K.

    2011-01-01

    This report documents the preliminary results of glass formulation and characterization accomplished within the finished scope of the EM-31 technology development tasks for WP-4 and WP-5, including WP-4.1.2: Glass Formulation for Next Generation Melter, WP-5.1.2.3: Systematic Glass Studies, and WP-5.1.2.4: Glass Formulation for Specific Wastes. This report also presents the suggested studies for eventual restart of these tasks. The initial glass formulation efforts for the cold crucible induction melter (CCIM), operating at ∼1200 C, with selected HLW (AZ-101) and LAW (AN-105) successfully developed glasses with significant increase of waste loading compared to that is likely to be achieved based on expected reference WTP formulations. Three glasses formulated for AZ-101HLW and one glass for AN-105 LAW were selected for the initial CCIM demonstration melter tests. Melter tests were not performed within the finished scope of the WP-4.1.2 task. Glass formulations for CCIM were expanded to cover additional HLWs that have high potential to successfully demonstrate the unique advantages of the CCIM technologies based on projected composition of Hanford wastes. However, only the preliminary scoping tests were completed with selected wastes within the finished scope. Advanced glass formulations for the reference WTP melter, operating at ∼1200 C, were initiated with selected specific wastes to determine the estimated maximum waste loading. The incomplete results from these initial formulation efforts are summarized. For systematic glass studies, a test matrix of 32 high-aluminum glasses was completed based on a new method developed in this study.

  4. A laser-based technology for fabricating a soda-lime glass based microfluidic device for circulating tumour cell capture.

    Science.gov (United States)

    Nieto, Daniel; Couceiro, Ramiro; Aymerich, Maria; Lopez-Lopez, Rafael; Abal, Miguel; Flores-Arias, María Teresa

    2015-10-01

    We developed a laser-based technique for fabricating microfluidic microchips on soda-lime glass substrates. The proposed methodology combines a laser direct writing, as a manufacturing tool for the fabrication of the microfluidics structures, followed by a post-thermal treatment with a CO2 laser. This treatment will allow reshaping and improving the morphological (roughness) and optical qualities (transparency) of the generated microfluidics structures. The use of lasers commonly implemented for material processing makes this technique highly competitive when compared with other glass microstructuring approaches. The manufactured chips were tested with tumour cells (Hec 1A) after being functionalized with an epithelial cell adhesion molecule (EpCAM) antibody coating. Cells were successfully arrested on the pillars after being flown through the device giving our technology a translational application in the field of cancer research. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Processing of high-temperature simulated waste glass in a continuous ceramic melter

    International Nuclear Information System (INIS)

    Barnes, S.M.; Brouns, R.A.; Hanson, M.S.

    1980-01-01

    Recent operations have demonstrated that high-melting-point glasses and glass-ceramics can be successfully processed in joule-heated, ceramic-lined melters with minor modifications to the existing technology. Over 500 kg of simulated waste glasses have been processed at temperatures up to 1410 0 C. The processability of the two high-temperature waste forms tested is similar to existing borosilicate waste glasses. High-temperature waste glass formulations produced in the bench-scale melter exhibit quality comparing favorably to standard waste glass formulations

  6. MAT2B promotes adipogenesis by modulating SAMe levels and activating AKT/ERK pathway during porcine intramuscular preadipocyte differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Cunzhen; Chen, Xiaochang; Wu, Wenjing; Wang, Wusu; Pang, Weijun; Yang, Gongshe, E-mail: gsyang999@hotmail.com

    2016-05-15

    Intramuscular fat (IMF) has been demonstrated as one of the crucial factors of livestock meat quality. The MAT2B protein with MAT2α catalyzes the formation of methyl donor S- adenosylmethionine (SAMe) to mediate cell metabolism including proliferation and apoptosis. However, the regulatory effect of MAT2B on IMF deposition is still unclear. In this study, the effect of MAT2B on adipogenesis and its potential mechanism during porcine intramuscular preadipocyte differentiation was studied. The results showed that overexpression of MAT2B promoted adipogenesis and significantly up-regulated the mRNA and protein levels of adipogenic marker genes including FASN, PPARγ and aP2, consistently, knockdown of MAT2B inhibited lipid accumulation and down-regulated the mRNA and protein levels of the above genes. Furthermore, flow cytometry and EdU-labeling assay indicated that MAT2B regulate adipogenesis was partly due to influence intracellular SAMe levels and further affect cell clonal expansion. Also, increased expression of MAT2B activated the phosphorylations of AKT and ERK1/2, whereas knockdown of MAT2B blocked AKT signaling and repressed the phosphorylation of ERK1/2. Moreover, the inhibitory effect of LY294002 (a specific PI3K inhibitor) on the activities of AKT and ERK1/2 was partially recovered by overexpression of MAT2B in porcine intramuscular adipocytes. Finally, Co-IP experiments showed that MAT2B can directly interact with AKT. Taken together, our findings suggested that MAT2B acted as a positive regulator through modifying SAMe levels as well as activating AKT/ERK signaling pathway to promote porcine intramuscular adipocyte differentiation. - Highlights: • MAT2B up-regulates the expression of adipogenic marker genes and promotes porcine intramuscular preadipocyte differentiation. • MAT2B influences intracellular SAMe levels and further affects cell clonal expansion. • MAT2B interacts with AKT and activates AKT/ERK signaling pathway.

  7. DWPF Glass Melter Technology Manual: Volume 1

    International Nuclear Information System (INIS)

    Iverson, D.C.

    1993-01-01

    This document details information about the design of a glass melter to be used at the Defense Waste Processing Facility located at the Savannah River Site. Topics include: melter overview, design basis, materials, vessel configuration, insulation, refractory configuration, electrical isolation, electrodes, riser and pour spout heater design, dome heaters, feed tubes, drain valves, differential pressure pouring, and melter test results. Information is conveyed using many diagrams and photographs

  8. Tagging target genes of the mat1-2-1 transcription factor in Fusarium verticillioides (Gibberella fujikuroi MP-A)

    NARCIS (Netherlands)

    Keszthelyi, A.; Jeney, A.; Kerenyi, Z.; Mendes, O.; Waalwijk, C.; Hornok, L.

    2007-01-01

    Mating type in filamentous ascomycetes is controlled by idiomorphic alleles, named MAT1-1 and MAT1-2, which contain 1-3 genes. Of these genes MAT1-1-1 and MAT1-2-1 encode putative transcription factors and are thus considered to be the major regulators of sexual communication and mating. Fungi with

  9. Modeling the pullout characteristics of welded wire mats embedded in silty sand

    International Nuclear Information System (INIS)

    Sampaco, C.L.; Anderson, L.R.; Nielson, M.R.

    1994-01-01

    This paper is an outgrowth of the on-going research on discrete finite element modeling of welded wire mesh reinforced soil structures such as the welded wire and RSE walls. The stiffness characteristics of the wire mesh-soil interfaces are modeled by a nonlinear hyperbolic relationship between the applied pullout stress and the associated mat placement. The relevant parameters are estimated from laboratory pullout tests that were conducted for welded wire mats embedded on silty sand. Since the bulk of the pullout resistance of welded wire mesh reinforcements is derived from the bearing resistance of the transverse wires that constitute the test mats. This feature permits proper evaluation of actual interface parameters for the actual reinforced soil structures in which the actual lengths of the mats are longer (i.e. more transverse members) than the specimen used in the laboratory pullout tests. The resulting pullout stress-displacement formulations are then verified by comparing the predicted pullout resistance to the existing specifications and design methods for estimated the pullout capacities of grid reinforcements. 22 refs., 13 figs

  10. Chapitre 4. Matériaux de construction et de décoration

    OpenAIRE

    Harlé-Sambet, Yvonne; Cabart, Hubert; Charmoillaux, Julie; Girard, Ghislaine

    2017-01-01

    Si la brique apparaît comme le matériau le plus utilisé lors de la construction du château, on est cependant frappé par la variété des autres matériaux mis en œuvre. Les murs les plus anciens du logis est (XIIe siècle) ainsi que les fondations et le soubassement du château de brique (fin XIIIe siècle) sont constitués de maçonneries de galets liés au mortier. Le galet est en effet le matériau le plus fréquemment utilisé à toutes les époques dans les constructions du bas-Dauphiné. Cependant à B...

  11. Characteristics of diffusion zone in changing glass-metal composite processing conditions

    Science.gov (United States)

    Lyubimova, O. N.; Morkovin, A. V.; Andreev, V. V.

    2018-03-01

    The influence of manufacturing technology on the characteristics of the glass and steel contact zone in manufacturing new structural material - glass-metal composite is studied theoretically and experimentally. Different types of structures in the contact zone and its dimensions affect the strength characteristics of the composite. Knowledge about changing the width of the glass and steel contact zone after changing such parameters of the technological regime as temperature, holding time and use of solders will allow one to control the structure and characteristics of the glass-metal composite. Experimental measurements of the width of the diffusion zone in the glass-metal composite for different regimes and their statistical processing according to the full factor experiment are presented in this article. The results of analysis of some mechanical characteristics of the diffusion zone are presented: microhardness and modulus of elasticity for samples, prepared according to different processing regimes.

  12. Timescales of Growth Response of Microbial Mats to Environmental Change in an Ice-Covered Antarctic Lake

    Directory of Open Access Journals (Sweden)

    Anne D. Jungblut

    2013-01-01

    Full Text Available Lake Vanda is a perennially ice-covered, closed-basin lake in the McMurdo Dry Valleys, Antarctica. Laminated photosynthetic microbial mats cover the floor of the lake from below the ice cover to >40 m depth. In recent decades, the water level of Lake Vanda has been rising, creating a “natural experiment” on development of mat communities on newly flooded substrates and the response of deeper mats to declining irradiance. Mats in recently flooded depths accumulate one lamina (~0.3 mm per year and accrue ~0.18 µg chlorophyll-a cm−2 y−1. As they increase in thickness, vertical zonation becomes evident, with the upper 2-4 laminae forming an orange-brown zone, rich in myxoxanthophyll and dominated by intertwined Leptolyngbya trichomes. Below this, up to six phycobilin-rich green/pink-pigmented laminae form a subsurface zone, inhabited by Leptolyngbya, Oscillatoria and Phormidium morphotypes. Laminae continued to increase in thickness for several years after burial, and PAM fluorometry indicated photosynthetic potential in all pigmented laminae. At depths that have been submerged for >40 years, mats showed similar internal zonation and formed complex pinnacle structures that were only beginning to appear in shallower mats. Chlorophyll-a did not change over time and these mats appear to represent resource-limited “climax” communities. Acclimation of microbial mats to changing environmental conditions is a slow process, and our data show how legacy effects of past change persist into the modern community structure.

  13. Proceedings of the national symposium on materials and processing: functional glass/glass-ceramics, advanced ceramics and high temperature materials

    International Nuclear Information System (INIS)

    Ghosh, A.; Sahu, A.K.; Viswanadham, C.S.; Ramanathan, S.; Hubli, R.C.; Kothiyal, G.P.

    2012-10-01

    With the development of materials science it is becoming increasingly important to process some novel materials in the area of glass, advanced ceramics and high temperature metals/alloys, which play an important role in the realization of many new technologies. Such applications demand materials with tailored specifications. Glasses and glass-ceramics find exotic applications in areas like radioactive waste storage, optical communication, zero thermal expansion coefficient telescopic mirrors, human safety gadgets (radiation resistance windows, bullet proof apparels, heat resistance components etc), biomedical (implants, hyperthermia treatment, bone cement, bone grafting etc). Advanced ceramic materials have been beneficial in biomedical applications due to their strength, biocompatibility and wear resistance. Non-oxide ceramics such as carbides, borides, silicides, their composites, refractory metals and alloys are useful as structural and control rod components in high temperature fission/ fusion reactors. Over the years a number of novel processing techniques like selective laser melting, microwave heating, nano-ceramic processing etc have emerged. A detailed understanding of the various aspects of synthesis, processing and characterization of these materials provides the base for development of novel technologies for different applications. Keeping this in mind and realizing the need for taking stock of such developments a National Symposium on Materials and Processing -2012 (MAP-2012) was planned. The topics covered in the symposium are ceramics, glass/glass-ceramics and metals and materials. Papers relevant to INIS are indexed separately

  14. MatMCNP: A Code for Producing Material Cards for MCNP

    Energy Technology Data Exchange (ETDEWEB)

    DePriest, Kendall Russell [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Saavedra, Karen C. [American Structurepoint, Inc., Indianapolis, IN (United States)

    2014-09-01

    A code for generating MCNP material cards (MatMCNP) has been written and verified for naturally occurring, stable isotopes. The program allows for material specification as either atomic or weight percent (fractions). MatMCNP also permits the specification of enriched lithium, boron, and/or uranium. In addition to producing the material cards for MCNP, the code calculates the atomic (or number) density in atoms/barn-cm as well as the multiplier that should be used to convert neutron and gamma fluences into dose in the material specified.

  15. Using glass as a shielding material

    International Nuclear Information System (INIS)

    Yousef, S.

    2002-04-01

    Different theoretical and technological concepts and problems in using glass as a shielding material was discussed, some primarily designs for different types of radiation shielding windows were illustrated. (author)

  16. Using glass as a shielding material

    International Nuclear Information System (INIS)

    Yousef, S.

    2003-01-01

    Different theoretical and technological concepts and problems in using glass as a shielding material was discussed, some primarily designs for different types of radiation shielding windows were illustrated. (author)

  17. Accuracy of Jump-Mat Systems for Measuring Jump Height.

    Science.gov (United States)

    Pueo, Basilio; Lipinska, Patrycja; Jiménez-Olmedo, José M; Zmijewski, Piotr; Hopkins, Will G

    2017-08-01

    Vertical-jump tests are commonly used to evaluate lower-limb power of athletes and nonathletes. Several types of equipment are available for this purpose. To compare the error of measurement of 2 jump-mat systems (Chronojump-Boscosystem and Globus Ergo Tester) with that of a motion-capture system as a criterion and to determine the modifying effect of foot length on jump height. Thirty-one young adult men alternated 4 countermovement jumps with 4 squat jumps. Mean jump height and standard deviations representing technical error of measurement arising from each device and variability arising from the subjects themselves were estimated with a novel mixed model and evaluated via standardization and magnitude-based inference. The jump-mat systems produced nearly identical measures of jump height (differences in means and in technical errors of measurement ≤1 mm). Countermovement and squat-jump height were both 13.6 cm higher with motion capture (90% confidence limits ±0.3 cm), but this very large difference was reduced to small unclear differences when adjusted to a foot length of zero. Variability in countermovement and squat-jump height arising from the subjects was small (1.1 and 1.5 cm, respectively, 90% confidence limits ±0.3 cm); technical error of motion capture was similar in magnitude (1.7 and 1.6 cm, ±0.3 and ±0.4 cm), and that of the jump mats was similar or smaller (1.2 and 0.3 cm, ±0.5 and ±0.9 cm). The jump-mat systems provide trustworthy measurements for monitoring changes in jump height. Foot length can explain the substantially higher jump height observed with motion capture.

  18. Mekh-mat entrance examinations problems

    CERN Document Server

    Vardi, I

    2000-01-01

    This paper provides a complete solution set to 25 ``killer problems'' given to Jewish candidates to the Mekh--mat at Moscow State University during the 1970's and 1980's. Typically, the problems are at the mathematical olympiad level and some feature interesting theorems. However, a number of the problems are flawed, or even completely wrong. The paper therefore includes an evaluation of the problems in the style of a referee report.

  19. Rapid spectrofluorometric screening of poly-hydroxyalkanoate-producing bacteria from microbial mats.

    Science.gov (United States)

    Berlanga, Mercedes; Montero, M T; Fernández-Borrell, Jordi; Guerrero, Ricardo

    2006-06-01

    Microbial mat ecosystems are characterized by both seasonal and diel fluctuations in several physicochemical variables, so that resident microorganisms must frequently adapt to the changing conditions of their environment. It has been pointed out that, under stress conditions, bacterial cells with higher contents of poly-hydroxyalkanoates (PHA) survive longer than those with lower PHA content. In the present study, PHA-producing strains from Ebro Delta microbial mats were selected using the Nile red dying technique and the relative accumulation of PHA was monitored during further laboratory cultivation. The number of heterotrophic isolates in trypticase soy agar (TSA) was ca. 107 colony-forming units/g microbial mat. Of these, 100 randomly chosen colonies were replicated on mineral salt agar limited in nitrogen, and Nile red was added to the medium to detect PHA. Orange fluorescence, produced upon binding of the dye to polymer granules in the cell, was detected in approximately 10% of the replicated heterotrophic isolates. The kinetics of PHA accumulation in Pseudomonas putida, and P. oleovorans were compared with those of several of the environmental isolates spectrofluorometry. PHA accumulation, measured as relative fluorescence intensity, resulted in a steady-state concentration after 48 h of incubation in all strains assayed. At 72 h, the maximum fluorescence intensity of each strain incubated with glucose and fructose was usually similar. MAT-28 strain accumulated more PHA than the other isolates. The results show that data obtained from environmental isolates can highly improve studies based on modeling-simulation programs, and that microbial mats constitute an excellent source for the isolation of PHA-producing strains with industrial applications.

  20. Full-Scale Evaluation of DuraDeck (registered trademark) and MegaDeck (trademark) Matting Systems

    Science.gov (United States)

    2013-07-01

    plates studded with threaded bolts were placed ERDC/GSL TR-13-27 10 underneath two pre-drilled corners of the panel. The plates were positioned so...metal plates studded with threaded ERDC/GSL TR-13-27 4 Figure 1. DuraDeck® mat panel, top surface. Figure 2. DuraDeck® mat panel, bottom surface...ERDC/GSL TR-13-27 5 bolts , as shown in Figure 3, underneath the mat corners and then installing special connector nuts from the top surface

  1. Three-dimensional printing of transparent fused silica glass

    Science.gov (United States)

    Kotz, Frederik; Arnold, Karl; Bauer, Werner; Schild, Dieter; Keller, Nico; Sachsenheimer, Kai; Nargang, Tobias M.; Richter, Christiane; Helmer, Dorothea; Rapp, Bastian E.

    2017-04-01

    Glass is one of the most important high-performance materials used for scientific research, in industry and in society, mainly owing to its unmatched optical transparency, outstanding mechanical, chemical and thermal resistance as well as its thermal and electrical insulating properties. However, glasses and especially high-purity glasses such as fused silica glass are notoriously difficult to shape, requiring high-temperature melting and casting processes for macroscopic objects or hazardous chemicals for microscopic features. These drawbacks have made glasses inaccessible to modern manufacturing technologies such as three-dimensional printing (3D printing). Using a casting nanocomposite, here we create transparent fused silica glass components using stereolithography 3D printers at resolutions of a few tens of micrometres. The process uses a photocurable silica nanocomposite that is 3D printed and converted to high-quality fused silica glass via heat treatment. The printed fused silica glass is non-porous, with the optical transparency of commercial fused silica glass, and has a smooth surface with a roughness of a few nanometres. By doping with metal salts, coloured glasses can be created. This work widens the choice of materials for 3D printing, enabling the creation of arbitrary macro- and microstructures in fused silica glass for many applications in both industry and academia.

  2. Research on Glass Frit Deposition Based on the Electrospray Process

    Directory of Open Access Journals (Sweden)

    Yifang Liu

    2016-04-01

    Full Text Available In this paper, the electrospray technology is used to easily deposit the glass frit into patterns at a micro-scale level. First, far-field electrospray process was carried out with a mixture of glass frit in the presence of ethanol. A uniform, smooth, and dense glass frit film was obtained, verifying that the electrospray technology was feasible. Then, the distance between the nozzle and the substrate was reduced to 2 mm to carry out near-field electrospray. The experimental process was improved by setting the range of the feed rate of the substrate to match both the concentration and the flow rate of the solution. Spray diameter could be less at the voltage of 2 kV, in which the glass frit film was expected to reach the minimum line width. A uniform glass frit film with a line width within the range of 400–500 μm was prepared when the speed of the substrate was 25 mm/s. It indicates that electrospray is an efficient technique for the patterned deposition of glass frit in wafer-level hermetic encapsulation.

  3. Millimeter-Wave Measurements of High Level and Low Level Activity Glass Melts

    International Nuclear Information System (INIS)

    Woskov, Paul

    2005-01-01

    EMSP supported research of millimeter-wave technology for nuclear waste glass melter monitoring has been very productive in establishing this field and showing great progress. This work has garnered significant recognition, winning an R and D 100 Award for viscosity monitoring, a Best Paper Award by the American Ceramic Society for nuclear waste glass monitoring, investment by the Glass Plus industry consortium to test this technology for glass fiber manufacture, investment by Savannah River Technology Center in purchasing key hardware components for additional tests, and Japanese initiated exchange visits between MIT and the vitrification facilities at Japanese Atomic Energy Research Institute (JAERI) in Tokai to review this technology. There are also potentially important spin offs to other areas including nuclear and fossil fuel power production, and National Institute of Health sponsored research as indicated below. Consequently, this work has the potential of becoming a major inter nationally recognized EMSP success story. A summary of the main accomplishments follows. The readers are referred to the cited reference publications for more details, many of which were EMSP supported by this work

  4. Wastes based glasses and glass-ceramics

    Directory of Open Access Journals (Sweden)

    Barbieri, L.

    2001-12-01

    Full Text Available Actually, the inertization, recovery and valorisation of the wastes coming from municipal and industrial processes are the most important goals from the environmental and economical point of view. An alternative technology capable to overcome the problem of the dishomogeneity of the raw material chemical composition is the vitrification process that is able to increase the homogeneity and the constancy of the chemical composition of the system and to modulate the properties in order to address the reutilization of the waste. Moreover, the glasses obtained subjected to different controlled thermal treatments, can be transformed in semy-cristalline material (named glass-ceramics with improved properties with respect to the parent amorphous materials. In this review the tailoring, preparation and characterization of glasses and glass-ceramics obtained starting from municipal incinerator grate ash, coal and steel fly ashes and glass cullet are described.

    Realmente la inertización, recuperación y valorización de residuos que proceden de los procesos de incineración de residuos municipales y de residuos industriales son metas importantes desde el punto de vista ambiental y económico. Una tecnología alternativa capaz de superar el problema de la heterogeneidad de la composición química de los materiales de partida es el proceso de la vitrificación que es capaz de aumentar la homogeneidad y la constancia de la composición química del sistema y modular las propiedades a fin de la reutilización del residuo. En este artículo se presentan los resultados de vitrificación en que los vidrios fueron sometidos a tratamientos térmicos controlados diferentes, de manera que se transforman en materiales semicristalinos (también denominados vitrocerámicos con mejores propiedades respecto a los materiales amorfos originales. En esta revisión se muestra el diseño, preparación y caracterización de vidrios y vitrocerámicos partiendo de

  5. Glass consistency and glass performance

    International Nuclear Information System (INIS)

    Plodinec, M.J.; Ramsey, W.G.

    1994-01-01

    Glass produced by the Defense Waste Processing Facility (DWPF) will have to consistently be more durable than a benchmark glass (evaluated using a short-term leach test), with high confidence. The DWPF has developed a Glass Product Control Program to comply with this specification. However, it is not clear what relevance product consistency has on long-term glass performance. In this report, the authors show that DWPF glass, produced in compliance with this specification, can be expected to effectively limit the release of soluble radionuclides to natural environments. However, the release of insoluble radionuclides to the environment will be limited by their solubility, and not glass durability

  6. Evaluation of a Novel Temperature Sensing Probe for Monitoring and Controlling Glass Temperature in a Joule-Heated Glass Melter

    International Nuclear Information System (INIS)

    Watkins, A. D.; Musick, C. A.; Cannon, C.; Carlson, N. M.; Mullenix, P.D.; Tillotson, R. D.

    1999-01-01

    A self-verifying temperature sensor that employs advanced contact thermocouple probe technology was tested in a laboratory-scale, joule-heated, refractory-lined glass melter used for radioactive waste vitrification. The novel temperature probe monitors melt temperature at any given level of the melt chamber. The data acquisition system provides the real-time temperature for molten glass. Test results indicate that the self-verifying sensor is more accurate and reliable than classic platinum/rhodium thermocouple and sheath assemblies. The results of this test are reported as well as enhancements being made to the temperature probe. To obtain more reliable temperature measurements of the molten glass for improving production efficiency and ensuring consistent glass properties, optical sensing was reviewed for application in a high temperature environment

  7. Simulated Carbon Cycling in a Model Microbial Mat.

    Science.gov (United States)

    Decker, K. L.; Potter, C. S.

    2006-12-01

    We present here the novel addition of detailed organic carbon cycling to our model of a hypersaline microbial mat ecosystem. This ecosystem model, MBGC (Microbial BioGeoChemistry), simulates carbon fixation through oxygenic and anoxygenic photosynthesis, and the release of C and electrons for microbial heterotrophs via cyanobacterial exudates and also via a pool of dead cells. Previously in MBGC, the organic portion of the carbon cycle was simplified into a black-box rate of accumulation of simple and complex organic compounds based on photosynthesis and mortality rates. We will discuss the novel inclusion of fermentation as a source of carbon and electrons for use in methanogenesis and sulfate reduction, and the influence of photorespiration on labile carbon exudation rates in cyanobacteria. We will also discuss the modeling of decomposition of dead cells and the ultimate release of inorganic carbon. The detailed modeling of organic carbon cycling is important to the accurate representation of inorganic carbon flux through the mat, as well as to accurate representation of growth models of the heterotrophs under different environmental conditions. Because the model ecosystem is an analog of ancient microbial mats that had huge impacts on the atmosphere of early earth, this MBGC can be useful as a biological component to either early earth models or models of other planets that potentially harbor life.

  8. An investigation of electrospun Henna leaves extract-loaded chitosan based nanofibrous mats for skin tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Yousefi, Iman, E-mail: iman_yousefi@ut.ac.ir [School of Chemical Engineering, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Medical Biomaterials Research Center (MBRC), Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Pakravan, Mehdi [Department of Chemical Engineering, Ecole Polytechnique de Montreal, Montreal, Quebec (Canada); Rahimi, Hoda [Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of); Bahador, Abbas; Farshadzadeh, Zahra [Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Haririan, Ismael, E-mail: haririan@tums.ac.ir [Medical Biomaterials Research Center (MBRC), Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Department of Pharmaceutical Biomaterial, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Department of Pharmaceutics, School of Pharmacy, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2017-06-01

    Wound healing characteristics of some plant extracts have been well known for many years, and they have been utilized for such applications in traditional way. Recently electrospun nanofibrous mats showed promising properties for tissue engineering and especially for skin repair. It is expected that incorporation of plant extracts into such structures could provide higher performance and synergistic effect for biomedical and wound healing applications. The final purpose of this study is to fabricate chitosan based nanofiber mats loaded with a traditional plant extract of Lawsonia inermis (Henna) leaves to enhance the antibacterial efficacy and wound healing of the precursor nanofibers. The morphology, structure, mechanical properties and swelling and weight loss degree of the electrospun nanofibers have been investigated in this study. Antibacterial activity, cell biocompatibility evaluations and in vivo wound healing activity of the abovementioned mats were also studied. The FESEM images of Henna leaves extract-loaded nanofibers proved that homogeneous, smooth and defect free nanofibers of 64–87 nm in diameter have been prepared. Presence of Henna extract in the electrospun fibers was approved by Fourier Transform Infrared spectroscopy. Incorporation of Henna extract into the nanofiber mats exhibited significant synergistic antibacterial activity against bacterial cells. It was well supported by the results of cell viability and proliferation of human foreskin fibroblast cells on the prepared scaffolds. Therefore, the results of this work showed that Henna leaves extract incorporated chitosan nonwoven mats have a great potential to be used as the biodegradable, biobased and antibacterial wound healing dressings. - Highlights: • Henna leaves extract were successfully loaded into chitosan based nanofiber mats. • These mats demonstrated significant synergistic antibacterial activity. • Combined properties of chitosan nanofibers and Henna promoted cell

  9. An investigation of electrospun Henna leaves extract-loaded chitosan based nanofibrous mats for skin tissue engineering

    International Nuclear Information System (INIS)

    Yousefi, Iman; Pakravan, Mehdi; Rahimi, Hoda; Bahador, Abbas; Farshadzadeh, Zahra; Haririan, Ismael

    2017-01-01

    Wound healing characteristics of some plant extracts have been well known for many years, and they have been utilized for such applications in traditional way. Recently electrospun nanofibrous mats showed promising properties for tissue engineering and especially for skin repair. It is expected that incorporation of plant extracts into such structures could provide higher performance and synergistic effect for biomedical and wound healing applications. The final purpose of this study is to fabricate chitosan based nanofiber mats loaded with a traditional plant extract of Lawsonia inermis (Henna) leaves to enhance the antibacterial efficacy and wound healing of the precursor nanofibers. The morphology, structure, mechanical properties and swelling and weight loss degree of the electrospun nanofibers have been investigated in this study. Antibacterial activity, cell biocompatibility evaluations and in vivo wound healing activity of the abovementioned mats were also studied. The FESEM images of Henna leaves extract-loaded nanofibers proved that homogeneous, smooth and defect free nanofibers of 64–87 nm in diameter have been prepared. Presence of Henna extract in the electrospun fibers was approved by Fourier Transform Infrared spectroscopy. Incorporation of Henna extract into the nanofiber mats exhibited significant synergistic antibacterial activity against bacterial cells. It was well supported by the results of cell viability and proliferation of human foreskin fibroblast cells on the prepared scaffolds. Therefore, the results of this work showed that Henna leaves extract incorporated chitosan nonwoven mats have a great potential to be used as the biodegradable, biobased and antibacterial wound healing dressings. - Highlights: • Henna leaves extract were successfully loaded into chitosan based nanofiber mats. • These mats demonstrated significant synergistic antibacterial activity. • Combined properties of chitosan nanofibers and Henna promoted cell

  10. Influence of layer-by-layer assembled electrospun poly (L-lactic acid) nanofiber mats on the bioactivity of endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Keke; Zhang, Xiazhi; Yang, Wufeng; Liu, Xiaoyan; Jiao, Yanpeng, E-mail: tjiaoyp@jnu.edu.cn; Zhou, Changren

    2016-12-30

    Highlights: • Layer-by-layer assembled PLLA nanofiber mats were successfully prepared. • The modified PLLA nanofiber mats enhanced the adhesion, proliferation of endothelial cells. • The modified PLLA nanofiber mats had inhibited the inflammatory response to some extent. - Abstract: Electrospun poly(L-lactic acid) (PLLA) nanofiber mats were successfully modified by deposition of multilayers with chitosan (CS), heparin (Hep) and graphene oxide (GO) through electrostatic layer-by-layer (LBL) self-assembly method. In this study, the surface properties of PLLA nanofiber mats before and after modification were investigated via scanning electron microscope (SEM), atomic force microscopy (AFM), attenuated total reflectance fourier transformation infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS) and water contact angle measurement. In addition, the cytocompatibility of the modified PLLA nanofiber mats were investigated by testing endothelial cells compatibility, including cell attachment, cell proliferation and cell cycle. The results revealed that the surfaces of modified PLLA nanofiber mats become much rougher, stifiness and the hydrophilicity of the LBL modified PLLA nanofiber mats were improved compared to original PLLA one. Moreover, the modified PLLA nanofiber mats had promoted the endothelial cells viability attachment significantly. Besides, we studied the PLLA nanofiber mats on the expression of necrosis factor (TNF-α), interleukine-1β (IL-1β), monocyte chemoattractant protein-1 (MCP-1) and vascular cell adhesion molecule-1 (VCAM-1) in endothelial cells. The results showed that modified PLLA nanofiber mats had inhibited the inflammatory response to some extent.

  11. Halloysite nanotube-based electrospun ceramic nanofibre mat: a novel support for zeolite membranes

    Science.gov (United States)

    Chen, Zhuwen; Zeng, Jiaying; Lv, Dong; Gao, Jinqiang; Zhang, Jian; Bai, Shan; Li, Ruili; Hong, Mei; Wu, Jingshen

    2016-12-01

    Some key parameters of supports such as porosity, pore shape and size are of great importance for fabrication and performance of zeolite membranes. In this study, we fabricated millimetre-thick, self-standing electrospun ceramic nanofibre mats and employed them as a novel support for zeolite membranes. The nanofibre mats were prepared by electrospinning a halloysite nanotubes/polyvinyl pyrrolidone composite followed by a programmed sintering process. The interwoven nanofibre mats possess up to 80% porosity, narrow pore size distribution, low pore tortuosity and highly interconnected pore structure. Compared with the commercial α-Al2O3 supports prepared by powder compaction and sintering, the halloysite nanotube-based mats (HNMs) show higher flux, better adsorption of zeolite seeds, adhesion of zeolite membranes and lower Al leaching. Four types of zeolite membranes supported on HNMs have been successfully synthesized with either in situ crystallization or a secondary growth method, demonstrating good universality of HNMs for supporting zeolite membranes.

  12. Controls on O2 Production in Cyanobacterial Mats and Implications for Earth's Oxygenation

    Science.gov (United States)

    Dick, Gregory J.; Grim, Sharon L.; Klatt, Judith M.

    2018-05-01

    Cyanobacterial mats are widely assumed to have been globally significant hot spots of biogeochemistry and evolution during the Archean and Proterozoic, but little is known about their quantitative contributions to global primary productivity or Earth's oxygenation. Modern systems show that mat biogeochemistry is the outcome of concerted activities and intimate interactions between various microbial metabolisms. Emerging knowledge of the regulation of oxygenic and sulfide-driven anoxygenic photosynthesis by versatile cyanobacteria, and their interactions with sulfur-oxidizing bacteria and sulfate-reducing bacteria, highlights how ecological and geochemical processes can control O2 production in cyanobacterial mats in unexpected ways. This review explores such biological controls on O2 production. We argue that the intertwined effects of light availability, redox geochemistry, regulation and competition of microbial metabolisms, and biogeochemical feedbacks result in emergent properties of cyanobacterial mat communities that are all critical yet largely overlooked mechanisms to potentially explain the protracted nature of Earth's oxygenation.

  13. Mechanical properties of hybrid kenaf/glass reinforced epoxy composite for passenger car bumper beam

    International Nuclear Information System (INIS)

    Davoodi, M.M.; Sapuan, S.M.; Ahmad, D.; Ali, Aidy; Khalina, A.; Jonoobi, Mehdi

    2010-01-01

    It is estimated that the annual world car production rate will reach 76 million vehicles per year by 2020. New regulations such as the EU End of Life Vehicles (ELV) regulations are forcing car manufacturers to consider the environmental impact of their production and possibly shift from the use of synthetic materials to the use of agro-based materials. Poor mechanical properties and certain manufacturing limitations currently limit the use of agro-based materials to non-structural and semi-structural automotive components. The hybridization of natural fiber with glass fiber provides a method to improve the mechanical properties over natural fibers alone. This research is focused on a hybrid of kenaf/glass fiber to enhance the desired mechanical properties for car bumper beams as automotive structural components with modified sheet molding compound (SMC). A specimen without any modifier is tested and compared with a typical bumper beam material called glass mat thermoplastic (GMT). The results indicate that some mechanical properties such as tensile strength, Young's modulus, flexural strength and flexural modulus are similar to GMT, but impact strength is still low, and shows the potential for utilization of hybrid natural fiber in some car structural components such as bumper beams.

  14. 1998 Annual Study Report. Standardization of methods for evaluating properties of new glass at high temperature; 1998 nendo seika hokokusho. New glass koon bussei no hyoka hoho no hyojunka

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    High-temperature properties of glass melts, e.g., density, volume expansion coefficient, surface tension, viscosity, specific heat, thermal and electrical conductivity, redox equilibrium and gas solubility, are basic factors that must be considered in high quality glass melting technology and computer simulation of the glass tank furnace. The structure of the glass melts is also important for understanding these properties. This R and D program is aimed at proposing the international standards for the methods of measuring these high-temperature properties of the melts. The 1988 efforts are directed to the measuring technologies for density, volume expansion coefficient, surface tension, viscosity, specific heat, thermal and electrical conductivity, redox equilibrium, gas solubility and melt structures of soda-lime-silica glass melts. The R and D for measuring methods for high-temperature melts through international cooperation and establishment of the international standards for these methods are proposed in the joint CGR/HVG/TNO/GPF conference, which provides the arena for information exchange by glass manufacturers. (NEDO)

  15. Improve Data Mining and Knowledge Discovery through the use of MatLab

    Science.gov (United States)

    Shaykahian, Gholan Ali; Martin, Dawn Elliott; Beil, Robert

    2011-01-01

    Data mining is widely used to mine business, engineering, and scientific data. Data mining uses pattern based queries, searches, or other analyses of one or more electronic databases/datasets in order to discover or locate a predictive pattern or anomaly indicative of system failure, criminal or terrorist activity, etc. There are various algorithms, techniques and methods used to mine data; including neural networks, genetic algorithms, decision trees, nearest neighbor method, rule induction association analysis, slice and dice, segmentation, and clustering. These algorithms, techniques and methods used to detect patterns in a dataset, have been used in the development of numerous open source and commercially available products and technology for data mining. Data mining is best realized when latent information in a large quantity of data stored is discovered. No one technique solves all data mining problems; challenges are to select algorithms or methods appropriate to strengthen data/text mining and trending within given datasets. In recent years, throughout industry, academia and government agencies, thousands of data systems have been designed and tailored to serve specific engineering and business needs. Many of these systems use databases with relational algebra and structured query language to categorize and retrieve data. In these systems, data analyses are limited and require prior explicit knowledge of metadata and database relations; lacking exploratory data mining and discoveries of latent information. This presentation introduces MatLab(TradeMark)(MATrix LABoratory), an engineering and scientific data analyses tool to perform data mining. MatLab was originally intended to perform purely numerical calculations (a glorified calculator). Now, in addition to having hundreds of mathematical functions, it is a programming language with hundreds built in standard functions and numerous available toolboxes. MatLab's ease of data processing, visualization and

  16. Element analysis on Japanese ancient glass by PIXE method

    International Nuclear Information System (INIS)

    Koizumi, Y.; Kobayashi, K.

    2001-01-01

    The authors analyzed ancient glasses using PIXE (particle induced X-ray emission) method associated with the accelerator used for the trace analysis of environments and organisms. They examined whether the material properties of the glasses made by ancient technology have correlation with those of each era or each region both in and out of Japan. The alkali lime glasses excavated from Japanese ancient ruins are classified as soda lime glasses and potash lime glasses, and intermediate glasses containing both are also detected. As for the glasses between the late Yayoi period and the early Tumulus period in eastern Japan, glass beads were mostly classified as potash lime glasses. In the mid and late Tumulus periods, soda lime glasses and the glasses with an intermediate composition increased in addition to potash lime glasses. In the analysis of the glass beads excavated from the ruins of the late Yayoi period to the early Tumult period in Tsushima, potash lime glasses and soda lime glasses coexisted in the same period. Most of the coloring components of deep-blue system mostly found in eastern Japan were manganese and iron, and the coloring components such as blue, green, sky blue, etc. were copper. Yellow was the color expressed with lead or lead - iron. The coloring materials were common regardless of the classification of glasses based on main components. (A.O.)

  17. Magnetoacoustic Tomography with Magnetic Induction (MAT-MI) for Imaging Electrical Conductivity of Biological Tissue: A Tutorial Review

    Science.gov (United States)

    Li, Xu; Yu, Kai; He, Bin

    2016-01-01

    Magnetoacoustic tomography with magnetic induction (MAT-MI) is a noninvasive imaging method developed to map electrical conductivity of biological tissue with millimeter level spatial resolution. In MAT-MI, a time-varying magnetic stimulation is applied to induce eddy current inside the conductive tissue sample. With the existence of a static magnetic field, the Lorentz force acting on the induced eddy current drives mechanical vibrations producing detectable ultrasound signals. These ultrasound signals can then be acquired to reconstruct a map related to the sample’s electrical conductivity contrast. This work reviews fundamental ideas of MAT-MI and major techniques developed in these years. First, the physical mechanisms underlying MAT-MI imaging are described including the magnetic induction and Lorentz force induced acoustic wave propagation. Second, experimental setups and various imaging strategies for MAT-MI are reviewed and compared together with the corresponding experimental results. In addition, as a recently developed reverse mode of MAT-MI, magneto-acousto-electrical tomography with magnetic induction (MAET-MI) is briefly reviewed in terms of its theory and experimental studies. Finally, we give our opinions on existing challenges and future directions for MAT-MI research. With all the reported and future technical advancement, MAT-MI has the potential to become an important noninvasive modality for electrical conductivity imaging of biological tissue. PMID:27542088

  18. The Varian MAT-250 mass spectrometer. Steady isotopes laboratory; Espectrometro de masas Varian MAT-250. Laboratorio de isotopos estables

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez M, V.; Tavera D, M.L. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1997-07-01

    This work treats over the performance and applications of the Varian Mat-250 mass spectrometer which is in the environmental isotope laboratory. It can be applied over topics such as: ions formation, acceleration and collimation, ions separation, ions detection, data transformation, sampling, {delta} notation. (Author)

  19. Comparison of glass surfaces as a countertop material to existing surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Turo, Laura A.; Winschell, Abigail E.

    2011-09-01

    Gleen Glass, a small production glass company that creates countertops, was selected for the Technology Assistance Program through Pacific Northwest National Laboratory. Gleen Glass was seeking material property analysis comparing glass as a countertop material to current surfaces (i.e. marble, granite and engineered stone). With samples provided from Gleen Glass, testing was done on granite, marble, and 3 different glass surfaces ('Journey,' 'Pebble,' and 'Gleen'). Results showed the glass surfaces have a lower density, lower water absorption, and are stronger in compressive and flexural tests as compared to granite and marble. Thermal shock tests showed the glass failed when objects with a high thermal mass are placed directly on them, whereas marble and granite did not fracture under these conditions.

  20. Spatial patterns and links between microbial community composition and function in cyanobacterial mats

    KAUST Repository

    Alnajjar, Mohammad Ahmad; Ramette, Alban; Kü hl, Michael; Hamza, Waleed; Klatt, Judith M.; Polerecky, Lubos

    2014-01-01

    We imaged reflectance and variable fluorescence in 25 cyanobacterial mats from four distant sites around the globe to assess, at different scales of resolution, spatial variabilities in the physiological parameters characterizing their photosynthetic capacity, including the absorptivity by chlorophyll a (Achl), maximum quantum yield of photosynthesis (Ymax), and light acclimation irradiance (Ik). Generally, these parameters significantly varied within individual mats on a sub-millimeter scale, with about 2-fold higher variability in the vertical than in the horizontal direction. The average vertical profiles of Ymax and Ik decreased with depth in the mat, while Achl exhibited a sub-surface maximum. The within-mat variability was comparable to, but often larger than, the between-sites variability, whereas the within-site variabilities (i.e., between samples from the same site) were generally lowest. When compared based on averaged values of their photosynthetic parameters, mats clustered according to their site of origin. Similar clustering was found when the community composition of the mats' cyanobacterial layers were compared by automated ribosomal intergenic spacer analysis (ARISA), indicating a significant link between the microbial community composition and function. Although this link is likely the result of community adaptation to the prevailing site-specific environmental conditions, our present data is insufficient to identify the main factors determining these patterns. Nevertheless, this study demonstrates that the spatial variability in the photosynthetic capacity and light acclimation of benthic phototrophic microbial communities is at least as large on a sub-millimeter scale as it is on a global scale, and suggests that this pattern of variability scaling is similar for the microbial community composition. © 2014 Al-Najjar, Ramette, Kühl, Hamza, Klatt and Polerecky.

  1. Spatial patterns and links between microbial community composition and function in cyanobacterial mats

    KAUST Repository

    Alnajjar, Mohammad Ahmad

    2014-08-06

    We imaged reflectance and variable fluorescence in 25 cyanobacterial mats from four distant sites around the globe to assess, at different scales of resolution, spatial variabilities in the physiological parameters characterizing their photosynthetic capacity, including the absorptivity by chlorophyll a (Achl), maximum quantum yield of photosynthesis (Ymax), and light acclimation irradiance (Ik). Generally, these parameters significantly varied within individual mats on a sub-millimeter scale, with about 2-fold higher variability in the vertical than in the horizontal direction. The average vertical profiles of Ymax and Ik decreased with depth in the mat, while Achl exhibited a sub-surface maximum. The within-mat variability was comparable to, but often larger than, the between-sites variability, whereas the within-site variabilities (i.e., between samples from the same site) were generally lowest. When compared based on averaged values of their photosynthetic parameters, mats clustered according to their site of origin. Similar clustering was found when the community composition of the mats\\' cyanobacterial layers were compared by automated ribosomal intergenic spacer analysis (ARISA), indicating a significant link between the microbial community composition and function. Although this link is likely the result of community adaptation to the prevailing site-specific environmental conditions, our present data is insufficient to identify the main factors determining these patterns. Nevertheless, this study demonstrates that the spatial variability in the photosynthetic capacity and light acclimation of benthic phototrophic microbial communities is at least as large on a sub-millimeter scale as it is on a global scale, and suggests that this pattern of variability scaling is similar for the microbial community composition. © 2014 Al-Najjar, Ramette, Kühl, Hamza, Klatt and Polerecky.

  2. A Process for the Creation of T-MATS Propulsion System Models from NPSS data

    Science.gov (United States)

    Chapman, Jeffryes W.; Lavelle, Thomas M.; Litt, Jonathan S.; Guo, Ten-Huei

    2014-01-01

    A modular thermodynamic simulation package called the Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS) has been developed for the creation of dynamic simulations. The T-MATS software is designed as a plug-in for Simulink (Math Works, Inc.) and allows a developer to create system simulations of thermodynamic plants (such as gas turbines) and controllers in a single tool. Creation of such simulations can be accomplished by matching data from actual systems, or by matching data from steady state models and inserting appropriate dynamics, such as the rotor and actuator dynamics for an aircraft engine. This paper summarizes the process for creating T-MATS turbo-machinery simulations using data and input files obtained from a steady state model created in the Numerical Propulsion System Simulation (NPSS). The NPSS is a thermodynamic simulation environment that is commonly used for steady state gas turbine performance analysis. Completion of all the steps involved in the process results in a good match between T-MATS and NPSS at several steady state operating points. Additionally, the T-MATS model extended to run dynamically provides the possibility of simulating and evaluating closed loop responses.

  3. A Modeling Comparison of Methanogenesis from Noncompetitive vs Competitive Substrates in a Simulated Hypersaline Microbial Mat

    Science.gov (United States)

    Decker, K. L.; Potter, C.; Hoehler, T.

    2005-12-01

    The well-documented assumption about methanogens that co-occur in hypersaline mat communities with sulfate-reducing bacteria (SRB) is that they rely entirely on non-competitive substrates for methanogenesis. The reason for this is that during sulfate reduction, sulfur-reducing bacteria efficiently utilize H2, leaving a concentration too low for methanogenesis. Early results from recent work on a hypersaline microbial mat from salt evaporation ponds of Guerrero Negro, Baja, Mexico cast doubt that methanogenesis only occurs via non-competitive substrates, because it shows an excess of H2 in the mat rather than a paucity. We explore the use of our simulation model of the microbial biogeochemistry of a hypersaline mat (named MBGC) to compare methane production rates in a 1 cm thick mat when the methanogens use competitive substrates versus noncompetitive substrates. In the `non-competitive substrate' version of the model, methanogens rely exclusively on methylated amines that are accumulated as compatible solutes in cyanobacteria and released after lysis. In contrast, the `competitive substrate' models examine methanogen use of substrates (such as H2 + acetate) with different SRB population sizes (from absent to low). The comparison of these models of methane and sulfide biogeochemistry of a hypersaline mat has both ecological and geobiological significance, as one hypothesis of Archean microbial mats is that they existed in a low sulfate environment.

  4. Float glass innovation in the flat glass industry

    CERN Document Server

    Uusitalo, Olavi

    2014-01-01

    A thorough industry analysis is of utmost importance for a study on the impact of technological changes on industry structure. This book evaluates the consequences of a vaguely chosen level of an industry analysis. Too broad a definition of the industry may disaggregate sub-industries, processing industries and international aspects. This is illustrated by revisiting an industry study upon which the dominant design model was based. Readers will see and understand the consequences of too broadly defined industries together with quantitative research approach can have. The book argues that the nature of the industry should define the level of the analysis. This is done by revisiting the flat glass industry study, on which Anderson and Tushman’s (1990) dominant design model is partly based. In their study Anderson and Tushman defined the flat glass industry based on four-digit SIC codes. It is argued that this definition was too broad and it disaggregated important sub-industries, processing industries and int...

  5. Reefs under Siege—the Rise, Putative Drivers, and Consequences of Benthic Cyanobacterial Mats

    Directory of Open Access Journals (Sweden)

    Amanda K. Ford

    2018-02-01

    Full Text Available Benthic cyanobacteria have commonly been a small but integral component of coral reef ecosystems, fulfilling the critical function of introducing bioavailable nitrogen to an inherently oligotrophic environment. Though surveys may have previously neglected benthic cyanobacteria, or grouped them with more conspicuous benthic groups, emerging evidence strongly indicates that they are becoming increasingly prevalent on reefs worldwide. Some species can form mats comprised by a diverse microbial consortium which allows them to exist across a wide range of environmental conditions. This review evaluates the putative driving factors of increasing benthic cyanobacterial mats, including climate change, declining coastal water quality, iron input, and overexploitation of key consumer and ecosystem engineer species. Ongoing global environmental change can increase growth rates and toxin production of physiologically plastic benthic cyanobacterial mats, placing them at a considerable competitive advantage against reef-building corals. Once established, strong ecological feedbacks [e.g., inhibition of coral recruitment, release of dissolved organic carbon (DOC] reinforce reef degradation. The review also highlights previously overlooked implications of mat proliferation, which can extend beyond reef health and affect human health and welfare. Though identifying (opportunistic consumers of mats remains a priority, their perceived low palatability implies that herbivore management alone may be insufficient to control their proliferation and must be accompanied by local measures to improve water quality and watershed management.

  6. Total mercury and methyl-mercury contents and accumulation in polar microbial mats.

    Science.gov (United States)

    Camacho, Antonio; Rochera, Carlos; Hennebelle, Raphaëlle; Ferrari, Christophe; Quesada, Antonio

    2015-03-15

    Although polar regions are considered isolated and pristine areas, the organisms that inhabit these zones are exposed to global pollution. Heavy metals, such as mercury, are global pollutants and can reach almost any location on Earth. Mercury may come from natural, volcanic or geological sources, or result from anthropogenic sources, in particular industrial or mining activities. In this study, we have investigated one of the most prominent biological non-marine communities in both polar regions, microbial mats, in terms of their Hg and methyl-mercury (MeHg) concentrations and accumulation capacities. The main hypotheses posed argued on the importance of different factors, and to test them, we have measured Hg concentrations in microbial mats that were collected from 6 locations in different ecological situations. For this purpose, the direct anthropogenic impacts, volcanic influences, proximity to the seashore, latitudinal gradients and C contents were investigated. Our results show that, other than the direct anthropogenic influence, none of the other hypotheses alone satisfactorily explains the Hg content in microbial mats. In contrast, the MeHg contents were noticeably different between the investigated locations, with a higher proportion of MeHg on the McMurdo Ice Shelf (Antarctica) and a lower proportion on Ward Hunt Island (High Arctic). Furthermore, our results from in situ experiments indicated that the microbial mats from South Shetland Islands could quickly accumulate (48 h) Hg when Hg dissolved salts were supplied. Over short-term periods, these mats do not transform Hg into MeHg under field conditions. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Development Of Glass Matrices For HLW Radioactive Wastes

    International Nuclear Information System (INIS)

    Jantzen, C.

    2010-01-01

    Vitrification is currently the most widely used technology for the treatment of high level radioactive wastes (HLW) throughout the world. Most of the nations that have generated HLW are immobilizing in either borosilicate glass or phosphate glass. One of the primary reasons that glass has become the most widely used immobilization media is the relative simplicity of the vitrification process, e.g. melt waste plus glass forming frit additives and cast. A second reason that glass has become widely used for HLW is that the short range order (SRO) and medium range order (MRO) found in glass atomistically bonds the radionuclides and governs the melt properties such as viscosity, resistivity, sulphate solubility. The molecular structure of glass controls contaminant/radionuclide release by establishing the distribution of ion exchange sites, hydrolysis sites, and the access of water to those sites. The molecular structure is flexible and hence accounts for the flexibility of glass formulations to waste variability. Nuclear waste glasses melt between 1050-1150 C which minimizes the volatility of radioactive components such as Tc 99 , Cs 137 , and I 129 . Nuclear waste glasses have good long term stability including irradiation resistance. Process control models based on the molecular structure of glass have been mechanistically derived and have been demonstrated to be accurate enough to control the world's largest HLW Joule heated ceramic melter in the US since 1996 at 95% confidence.

  8. Phase 2B experimental design for the INEEL glass composition variation study

    International Nuclear Information System (INIS)

    Peeler, D.

    2000-01-01

    The U.S. Department of Energy's (DOE's) Offices of Science and Technology (through the Tanks Focus Area [TFA]) and Waste Management are sponsoring a partnership among Idaho National Engineering and Environmental Laboratory (INEEL), Pacific Northwest National Laboratory (PNNL), and the Savannah River Technology Center (SRTC) for a collaborative glass composition variation study (CVS). The purpose of the CVS is to investigate property - composition relationships within a glass-composition region compatible with the expected range of Idaho Nuclear Technology and Engineering Center (INTEC) high-activity wastes (HAWs). The CVS has been conducted in phases to allow INEEL, PNNL, and SRTC researchers to adjust the glass composition region of interest as flowsheet options are refined and/or waste-stream compositions become more defined

  9. Diatom-driven recolonization of microbial mat-dominated siliciclastic tidal flat sediments.

    Science.gov (United States)

    Pan, Jerónimo; Cuadrado, Diana G; Bournod, Constanza N

    2017-10-01

    Modern microbial mats and biofilms play a paramount role in sediment biostabilization. When sporadic storms affect tidal flats of Bahía Blanca Estuary, the underlying siliciclastic sediment is exposed by physical disruption of the mat, and in a few weeks' lapse, a microbial community re-establishes. With the objective of studying colonization patterns and the ecological succession of microorganisms at the scale of these erosional structures, these were experimentally made and their biological recolonization followed for 8 weeks, with replication in winter and spring. Motile pennate diatoms led the initial colonization following two distinct patterns: a dominance by Cylindrotheca closterium in winter and by naviculoid and nitzschioid diatoms in spring. During the first 7 days, cell numbers increased 2- to 17-fold. Cell densities further increased exhibiting sigmoidal community growth, reaching 2.9-8.9 × 106 cells cm-3 maxima around day 30; centric diatoms maintained low densities throughout. In 56 days after removal of the original mat, filamentous cyanobacteria that dominate mature mats did not establish a significant biomass, leading to the rejection of the hypothesis that cyanobacteria would drive the colonization. The observed dominance of pennate diatoms is attributed to extrinsic factors determined by tidal flooding, and intrinsic ones, e.g. motility, nutrient affinity and high growth rate. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. COMPETITION BETWEEN ANOXYGENIC PHOTOTROPHIC BACTERIA AND COLORLESS SULFUR BACTERIA IN A MICROBIAL MAT

    NARCIS (Netherlands)

    VISSCHER, PT; VANDENENDE, FP; SCHAUB, BEM; VANGEMERDEN, H

    The populations of chemolithoautotrophic (colorless) sulfur bacteria and anoxygenic phototrophic bacteria were enumerated in a marine microbial mat. The highest population densities were found in the 0-5 mm layer of the mat: 2.0 X 10(9) cells CM-3 sediment, and 4.0 X 10(7) cells cm-3 sediment for

  11. Estimation of axial stiffness of plant fibres from compaction of non-woven mats

    DEFF Research Database (Denmark)

    Gamstedt, E. K.; Bommier, E.; Madsen, Bo

    2014-01-01

    -plane randomly oriented fibre mats. The model by Toll is used to relate the load-displacement curve from the test to the Young modulus of the fibre, taking into account the natural variability in fibre cross section. Several tests have been performed on hemp fibre mats and compared with results from single...

  12. Perfect simulation and moment properties for the Matérn type III process

    DEFF Research Database (Denmark)

    Møller, Jesper; Huber, Mark L.; Wolpert, Robert L.

    In a seminal work, Bertil Matérn introduced several types of processes for modeling repulsive point processes. In this paper an algorithm is presented for the perfect simulation of the Mat´ern III process within a bounded window in Rd fully accounting for edge effects. A simple upper bound...

  13. Functional and Expression Analyses of the Pneumocystis MAT Genes Suggest Obligate Sexuality through Primary Homothallism within Host Lungs

    Directory of Open Access Journals (Sweden)

    S. Richard

    2018-02-01

    Full Text Available Fungi of the genus Pneumocystis are obligate parasites that colonize mammals’ lungs and are host species specific. Pneumocystis jirovecii and Pneumocystis carinii infect, respectively, humans and rats. They can turn into opportunistic pathogens in immunosuppressed hosts, causing severe pneumonia. Their cell cycle is poorly known, mainly because of the absence of an established method of culture in vitro. It is thought to include both asexual and sexual phases. Comparative genomic analysis suggested that their mode of sexual reproduction is primary homothallism involving a single mating type (MAT locus encompassing plus and minus genes (matMc, matMi, and matPi; Almeida et al., mBio 6:e02250-14, 2015. Thus, each strain would be capable of sexual reproduction alone (self-fertility. However, this is a working hypothesis derived from computational analyses that is, in addition, based on the genome sequences of single isolates. Here, we tested this hypothesis in the wet laboratory. The function of the P. jirovecii and P. carinii matMc genes was ascertained by restoration of sporulation in the corresponding mutant of fission yeast. Using PCR, we found the same single MAT locus in all P. jirovecii isolates and showed that all three MAT genes are often concomitantly expressed during pneumonia. Extensive homology searches did not identify other types of MAT transcription factors in the genomes or cis-acting motifs flanking the MAT locus that could have been involved in MAT switching or silencing. Our observations suggest that Pneumocystis sexuality through primary homothallism is obligate within host lungs to complete the cell cycle, i.e., produce asci necessary for airborne transmission to new hosts.

  14. Gro2mat: a package to efficiently read gromacs output in MATLAB.

    Science.gov (United States)

    Dien, Hung; Deane, Charlotte M; Knapp, Bernhard

    2014-07-30

    Molecular dynamics (MD) simulations are a state-of-the-art computational method used to investigate molecular interactions at atomic scale. Interaction processes out of experimental reach can be monitored using MD software, such as Gromacs. Here, we present the gro2mat package that allows fast and easy access to Gromacs output files from Matlab. Gro2mat enables direct parsing of the most common Gromacs output formats including the binary xtc-format. No openly available Matlab parser currently exists for this format. The xtc reader is orders of magnitudes faster than other available pdb/ascii workarounds. Gro2mat is especially useful for scientists with an interest in quick prototyping of new mathematical and statistical approaches for Gromacs trajectory analyses. © 2014 Wiley Periodicals, Inc. Copyright © 2014 Wiley Periodicals, Inc.

  15. Safety Protocols at MAT Lab

    International Nuclear Information System (INIS)

    Wadawale, A.; Chopade, S.; Chaudhury, K.; Pal, M.K.; Kushwah, N.; Shah, A.Y.; Kedarnath, G.; Priyadarsini, K.I.; Jain, V.K.

    2017-01-01

    MAT Lab of Chemistry Division, BARC (A Class 10000 Clean room laboratory) has been in operation since 2004 for process development of ultra-purification of several strategically important materials (Ga, As, Sb, In, CsI and Ge) and synthesis of their organometallic compounds. Of these, work related to purification of As, Sb, and In, has been discontinued. Due to high toxicity and pyrophoric nature of some of the compounds, stringent safety regulations were formulated and subsequently implemented by the division

  16. Distinctive fungal and bacterial communities are associated with mats formed by ectomycorrhizal fungi

    Science.gov (United States)

    Laurel A. Kluber; Jane E. Smith; David D. Myrold

    2011-01-01

    The distinct rhizomorphic mats formed by ectomycorrhizal Piloderma fungi are common features of the organic soil horizons of coniferous forests of the Pacific Northwest. These mats have been found to cover 25-40% of the forest floor in some Douglas-fir stands, and are associated with physical and biochemical properties that distinguish them from...

  17. Glass Ceramic Formulation Data Package

    International Nuclear Information System (INIS)

    Crum, Jarrod V.; Rodriguez, Carmen P.; McCloy, John S.; Vienna, John D.; Chung, Chul-Woo

    2012-01-01

    A glass ceramic waste form is being developed for treatment of secondary waste streams generated by aqueous reprocessing of commercial used nuclear fuel (Crum et al. 2012b). The waste stream contains a mixture of transition metals, alkali, alkaline earths, and lanthanides, several of which exceed the solubility limits of a single phase borosilicate glass (Crum et al. 2009; Caurant et al. 2007). A multi-phase glass ceramic waste form allows incorporation of insoluble components of the waste by designed crystallization into durable heat tolerant phases. The glass ceramic formulation and processing targets the formation of the following three stable crystalline phases: (1) powellite (XMoO4) where X can be (Ca, Sr, Ba, and/or Ln), (2) oxyapatite Yx,Z(10-x)Si6O26 where Y is alkaline earth, Z is Ln, and (3) lanthanide borosilicate (Ln5BSi2O13). These three phases incorporate the waste components that are above the solubility limit of a single-phase borosilicate glass. The glass ceramic is designed to be a single phase melt, just like a borosilicate glass, and then crystallize upon slow cooling to form the targeted phases. The slow cooling schedule is based on the centerline cooling profile of a 2 foot diameter canister such as the Hanford High-Level Waste canister. Up to this point, crucible testing has been used for glass ceramic development, with cold crucible induction melter (CCIM) targeted as the ultimate processing technology for the waste form. Idaho National Laboratory (INL) will conduct a scaled CCIM test in FY2012 with a glass ceramic to demonstrate the processing behavior. This Data Package documents the laboratory studies of the glass ceramic composition to support the CCIM test. Pacific Northwest National Laboratory (PNNL) measured melt viscosity, electrical conductivity, and crystallization behavior upon cooling to identify a processing window (temperature range) for melter operation and cooling profiles necessary to crystallize the targeted phases in the

  18. Enhanced dechlorination of trichloroethylene using electrospun polymer nanofibrous mats immobilized with iron/palladium bimetallic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Hui [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620 (China); College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China); Huang, Yunpeng; Shen, Mingwu; Guo, Rui; Cao, Xueyan [College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China); Shi, Xiangyang, E-mail: xshi@dhu.edu.cn [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620 (China); College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China); CQM - Centro de Quimica da Madeira, Universidade da Madeira, Campus da Penteada, 9000-390 Funchal (Portugal)

    2012-04-15

    Fe/Pd bimetallic nanoparticles (NPs) have held great promise for treating trichloroethylene (TCE)-contaminated groundwater, without the accumulation of chlorinated intermediates. However, the conventionally used colloidal Fe/Pd NPs usually aggregate rapidly, resulting in a reduced reactivity. To reduce the particle aggregation, we employed electrospun polyacrylic acid (PAA)/polyvinyl alcohol (PVA) polymer nanofibers as a nanoreactor to immobilize Fe/Pd bimetallic NPs. In the study, the water-stable PAA/PVA nanofibrous mats were complexed with Fe (III) ions via the binding with the free carboxyl groups of PAA for subsequent formation and immobilization of zero-valent iron (ZVI) NPs. Fe/Pd bimetallic NPs were then formed by the partial reduction of Pd(II) ions with ZVI NPs. The formed electrospun nanofibrous mats containing Fe/Pd bimetallic NPs with a diameter of 2.8 nm were characterized by scanning electron microscopy, energy-dispersive spectroscopy, transmission electron microscopy, thermogravimetric analysis, and inductively coupled plasma-atomic emission spectroscopy. The Fe/Pd NP-containing electrospun PAA/PVA nanofibrous mats exhibited higher reactivity than that of the ZVI NP-containing mats or colloidal Fe/Pd NPs in the dechlorination of trichloroethylene (TCE), which was used as a model contaminant. With the high surface area to volume ratio, high porosity, and great reusability of the fibrous mats immobilized with the bimetallic NPs, the composite nanofibrous mats should be amenable for applications in remediation of various environmental contaminants.

  19. Enhanced dechlorination of trichloroethylene using electrospun polymer nanofibrous mats immobilized with iron/palladium bimetallic nanoparticles

    International Nuclear Information System (INIS)

    Ma, Hui; Huang, Yunpeng; Shen, Mingwu; Guo, Rui; Cao, Xueyan; Shi, Xiangyang

    2012-01-01

    Fe/Pd bimetallic nanoparticles (NPs) have held great promise for treating trichloroethylene (TCE)-contaminated groundwater, without the accumulation of chlorinated intermediates. However, the conventionally used colloidal Fe/Pd NPs usually aggregate rapidly, resulting in a reduced reactivity. To reduce the particle aggregation, we employed electrospun polyacrylic acid (PAA)/polyvinyl alcohol (PVA) polymer nanofibers as a nanoreactor to immobilize Fe/Pd bimetallic NPs. In the study, the water-stable PAA/PVA nanofibrous mats were complexed with Fe (III) ions via the binding with the free carboxyl groups of PAA for subsequent formation and immobilization of zero-valent iron (ZVI) NPs. Fe/Pd bimetallic NPs were then formed by the partial reduction of Pd(II) ions with ZVI NPs. The formed electrospun nanofibrous mats containing Fe/Pd bimetallic NPs with a diameter of 2.8 nm were characterized by scanning electron microscopy, energy-dispersive spectroscopy, transmission electron microscopy, thermogravimetric analysis, and inductively coupled plasma-atomic emission spectroscopy. The Fe/Pd NP-containing electrospun PAA/PVA nanofibrous mats exhibited higher reactivity than that of the ZVI NP-containing mats or colloidal Fe/Pd NPs in the dechlorination of trichloroethylene (TCE), which was used as a model contaminant. With the high surface area to volume ratio, high porosity, and great reusability of the fibrous mats immobilized with the bimetallic NPs, the composite nanofibrous mats should be amenable for applications in remediation of various environmental contaminants.

  20. Vitamin E-loaded silk fibroin nanofibrous mats fabricated by green process for skin care application.

    Science.gov (United States)

    Sheng, Xiaoyue; Fan, Linpeng; He, Chuanglong; Zhang, Kuihua; Mo, Xiumei; Wang, Hongsheng

    2013-05-01

    In the present study, we reported fabrication and skin benefit of a novel vitamin E (VE)-loaded silk fibroin (SF) nanofibrous mats. RRR-α-Tocopherol polyethylene glycol 1000 succinate (VE TPGS), a water-soluble derivative of VE, was incorporated into SF nanofiber successfully by aqua solution electrospinning for the first time. Morphology of the composite nanofibers changed with the different amount of VE TPGS: a ribbon-like shape for lower loading dose of VE TPGS, while a round shape for higher loading dose (more than 4% (wt/wt) based on the weight of SF). After treated with 75% (v/v) ethanol vapor, the composite nanofibrous mats showed an excellent water-resistant ability. In vitro study disclosed a sustained release behavior of VE TPGS disassociated from the nanofibrous mats. The mouse skin fibroblasts (L929 cells) cultured on the VE-loaded SF nanofibrous mats spread and proliferated much better than on cover slips. Moreover, the incorporation of VE TPGS was found strengthening the ability of SF nanofibrous mats on protecting the cells against oxidation stress induced by tert-butyl hydroperoxide. Our data presented impressive skin benefits of this VE-loaded SF nanofibrous mats, suggesting a promising applicative potential of this novel product on personal skin care, tissue regeneration and other related area. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Community Structure of Lithotrophically-Driven Hydrothermal Microbial Mats from the Mariana Arc and Back-Arc

    Directory of Open Access Journals (Sweden)

    Kevin W. Hager

    2017-08-01

    Full Text Available The Mariana region exhibits a rich array of hydrothermal venting conditions in a complex geological setting, which provides a natural laboratory to study the influence of local environmental conditions on microbial community structure as well as large-scale patterns in microbial biogeography. We used high-throughput amplicon sequencing of the bacterial small subunit (SSU rRNA gene from 22 microbial mats collected from four hydrothermally active locations along the Mariana Arc and back-arc to explore the structure of lithotrophically-based microbial mat communities. The vent effluent was classified as iron- or sulfur-rich corresponding with two distinct community types, dominated by either Zetaproteobacteria or Epsilonproteobacteria, respectively. The Zetaproteobacterial-based communities had the highest richness and diversity, which supports the hypothesis that Zetaproteobacteria function as ecosystem engineers creating a physical habitat within a chemical environment promoting enhanced microbial diversity. Gammaproteobacteria were also high in abundance within the iron-dominated mats and some likely contribute to primary production. In addition, we also compare sampling scale, showing that bulk sampling of microbial mats yields higher diversity than micro-scale sampling. We present a comprehensive analysis and offer new insights into the community structure and diversity of lithotrophically-driven microbial mats from a hydrothermal region associated with high microbial biodiversity. Our study indicates an important functional role of for the Zetaproteobacteria altering the mat habitat and enhancing community interactions and complexity.

  2. Formation and stability of aluminum-based metallic glasses in Al-Fe-Gd alloys

    International Nuclear Information System (INIS)

    He, Y.; Poon, S.J.; Shiflet, G.J.

    1988-01-01

    Metallic glasses, a class of amorphous alloys made by rapid solidification, have been studied quite extensively for almost thirty years. It has been recognized for a long time that metallic glasses are usually very strong and ductile, and exhibit high corrosion resistance relative to crystalline alloys with the same compositions. Recently, metallic glasses containing as much as 90 atomic percent aluminum have been discovered independently by two groups. This discovery has both scientific and technological implications. The formability of these new glasses have been found to be unusual. Studies of mechanical properties in these new metallic glasses show that many of them have tensile strengths over 800MPa, greatly exceeding the strongest commercial aluminum alloys. The high strengths of aluminum-rich metallic glasses can be of significant importance in obtaining high strength low density materials. Therefore, from both scientific and technological standpoints, it is important to understand the formation and thermal stability of these metallic glasses. Al-Fe-Gd alloys were chosen for a more detailed study since they exhibit high tensile strengths

  3. The Sclerotinia sclerotiorum Mating Type Locus (MAT) Contains a 3.6-kb Region That Is Inverted in Every Meiotic Generation

    Science.gov (United States)

    Maruthachalam, Karunakaran; Wu, Bo-Ming; Subbarao, Krishna V.

    2013-01-01

    Sclerotinia sclerotiorum is a fungal plant pathogen and the causal agent of lettuce drop, an economically important disease of California lettuce. The structure of the S. sclerotiorum mating type locus MAT has previously been reported and consists of two idiomorphs that are fused end-to-end as in other homothallics. We investigated the diversity of S. sclerotiorum MAT using a total of 283 isolates from multiple hosts and locations, and identified a novel MAT allele that differed by a 3.6-kb inversion and was designated Inv+, as opposed to the previously known S. sclerotiorum MAT that lacked the inversion and was Inv-. The inversion affected three of the four MAT genes: MAT1-2-1 and MAT1-2-4 were inverted and MAT1-1-1 was truncated at the 3’-end. Expression of MAT genes differed between Inv+ and Inv- isolates. In Inv+ isolates, only one of the three MAT1-2-1 transcript variants of Inv- isolates was detected, and the alpha1 domain of Inv+ MAT1-1-1 transcripts was truncated. Both Inv- and Inv+ isolates were self-fertile, and the inversion segregated in a 1∶1 ratio regardless of whether the parent was Inv- or Inv+. This suggested the involvement of a highly regulated process in maintaining equal proportions of Inv- and Inv+, likely associated with the sexual state. The MAT inversion region, defined as the 3.6-kb MAT inversion in Inv+ isolates and the homologous region of Inv- isolates, was flanked by a 250-bp inverted repeat on either side. The 250-bp inverted repeat was a partial MAT1-1-1 that through mediation of loop formation and crossing over, may be involved in the inversion process. Inv+ isolates were widespread, and in California and Nebraska constituted half of the isolates examined. We speculate that a similar inversion region may be involved in mating type switching in the filamentous ascomycetes Chromocrea spinulosa, Sclerotinia trifoliorum and in certain Ceratocystis species. PMID:23457637

  4. DWPF GLASS BEADS AND GLASS FRIT TRANSPORT DEMONSTRATION

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, D; Bradley Pickenheim, B

    2008-11-24

    DWPF is considering replacing irregularly shaped glass frit with spherical glass beads in the Slurry Mix Evaporator (SME) process to decrease the yield stress of the melter feed (a non-Newtonian Bingham Plastic). Pilot-scale testing was conducted on spherical glass beads and glass frit to determine how well the glass beads would transfer when compared to the glass frit. Process Engineering Development designed and constructed the test apparatus to aid in the understanding and impacts that spherical glass beads may have on the existing DWPF Frit Transfer System. Testing was conducted to determine if the lines would plug with the glass beads and the glass frit slurry and what is required to unplug the lines. The flow loop consisted of vertical and horizontal runs of clear PVC piping, similar in geometry to the existing system. Two different batches of glass slurry were tested: a batch of 50 wt% spherical glass beads and a batch of 50 wt% glass frit in process water. No chemicals such as formic acid was used in slurry, only water and glass formers. The glass beads used for this testing were commercially available borosilicate glass of mesh size -100+200. The glass frit was Frit 418 obtained from DWPF and is nominally -45+200 mesh. The spherical glass beads did not have a negative impact on the frit transfer system. The transferring of the spherical glass beads was much easier than the glass frit. It was difficult to create a plug with glass bead slurry in the pilot transfer system. When a small plug occurred from setting overnight with the spherical glass beads, the plug was easy to displace using only the pump. In the case of creating a man made plug in a vertical line, by filling the line with spherical glass beads and allowing the slurry to settle for days, the plug was easy to remove by using flush water. The glass frit proved to be much more difficult to transfer when compared to the spherical glass beads. The glass frit impacted the transfer system to the point

  5. DWPF GLASS BEADS AND GLASS FRIT TRANSPORT DEMONSTRATION

    International Nuclear Information System (INIS)

    Adamson, D.; Pickenheim, Bradley

    2008-01-01

    DWPF is considering replacing irregularly shaped glass frit with spherical glass beads in the Slurry Mix Evaporator (SME) process to decrease the yield stress of the melter feed (a non-Newtonian Bingham Plastic). Pilot-scale testing was conducted on spherical glass beads and glass frit to determine how well the glass beads would transfer when compared to the glass frit. Process Engineering Development designed and constructed the test apparatus to aid in the understanding and impacts that spherical glass beads may have on the existing DWPF Frit Transfer System. Testing was conducted to determine if the lines would plug with the glass beads and the glass frit slurry and what is required to unplug the lines. The flow loop consisted of vertical and horizontal runs of clear PVC piping, similar in geometry to the existing system. Two different batches of glass slurry were tested: a batch of 50 wt% spherical glass beads and a batch of 50 wt% glass frit in process water. No chemicals such as formic acid was used in slurry, only water and glass formers. The glass beads used for this testing were commercially available borosilicate glass of mesh size -100+200. The glass frit was Frit 418 obtained from DWPF and is nominally -45+200 mesh. The spherical glass beads did not have a negative impact on the frit transfer system. The transferring of the spherical glass beads was much easier than the glass frit. It was difficult to create a plug with glass bead slurry in the pilot transfer system. When a small plug occurred from setting overnight with the spherical glass beads, the plug was easy to displace using only the pump. In the case of creating a man made plug in a vertical line, by filling the line with spherical glass beads and allowing the slurry to settle for days, the plug was easy to remove by using flush water. The glass frit proved to be much more difficult to transfer when compared to the spherical glass beads. The glass frit impacted the transfer system to the point

  6. Effect of different glasses in glass bonded zeolite

    International Nuclear Information System (INIS)

    Lewis, M.A.; Ackerman, J.P.; Verma, S.

    1995-01-01

    A mineral waste form has been developed for chloride waste salt generated during the pyrochemical treatment of spent nuclear fuel. The waste form consists of salt-occluded zeolite powders bound within a glass matrix. The zeolite contains the salt and immobilizes the fission products. The zeolite powders are hot pressed to form a mechanically stable, durable glass bonded zeolite. Further development of glass bonded zeolite as a waste form requires an understanding of the interaction between the glass and the zeolite. Properties of the glass that enhance binding and durability of the glass bonded zeolite need to be identified. Three types of glass, boroaluminosilicate, soda-lime silicate, and high silica glasses, have a range of properties and are now being investigated. Each glass was hot pressed by itself and with an equal amount of zeolite. MCC-1 leach tests were run on both. Soda-lime silicate and high silica glasses did not give a durable glass bonded zeolite. Boroaluminosilicate glasses rich in alkaline earths did bind the zeolite and gave a durable glass bonded zeolite. Scanning electron micrographs suggest that the boroaluminosilicate glasses wetted the zeolite powders better than the other glasses. Development of the glass bonded zeolite as a waste form for chloride waste salt is continuing

  7. Comment on "Performance of a spin based insulated gate field effect transistor" [cond-mat/0603260] [cond-mat/0603260

    OpenAIRE

    Bandyopadhyay, S.; Cahay, M.

    2006-01-01

    In a recent e-print [cond-mat/0603260] Hall and Flatte claim that a particular spin based field effect transistor (SPINFET), which they have analyzed, will have a lower threshold voltage, lower switching energy and lower leakage current than a comparable metal oxide semiconductor field effect transistor (MOSFET). Here, we show that all three claims of HF are invalid.

  8. Rapid reactivation of cyanobacterial photosynthesis and migration upon rehydration of desiccated marine microbial mats

    Directory of Open Access Journals (Sweden)

    Arjun eChennu

    2015-12-01

    Full Text Available Desiccated cyanobacterial mats are the dominant biological feature in the Earth's arid zones. While the response of desiccated cyanobacteria to rehydration is well documented for terrestrial systems, information about the response in marine systems is lacking. We used high temporal resolution hyperspectral imaging, liquid chromatography, pulse-amplitude fluorometry, oxygen microsensors and confocal laser microscopy to study this response in a desiccated microbial mat from Exmouth Gulf, Australia. During the initial 15 minutes after rehydration chlorophyll a concentrations increased 2-5 fold and cyanobacterial photosynthesis was re-established. Although the mechanism behind this rapid increase of chlorophyll a remains unknown, we hypothesize that it involves resynthesis from a precursor stored in desiccated cyanobacteria. The subsequent phase (15 min – 48 h involved migration of the reactivated cyanobacteria towards the mat surface, which led, together with a gradual increase in chlorophyll a, to a further increase in photosynthesis. We conclude that the response involving an increase in chlorophyll a and recovery of photosynthetic activity within minutes after rehydration is common for cyanobacteria from desiccated mats of both terrestrial and aquatic origin. However the response of upward migration and its triggering factor appears to be mat-specific and likely linked to other factors.

  9. Rapid Reactivation of Cyanobacterial Photosynthesis and Migration upon Rehydration of Desiccated Marine Microbial Mats

    KAUST Repository

    Chennu, Arjun

    2015-12-24

    Desiccated cyanobacterial mats are the dominant biological feature in the Earth’s arid zones. While the response of desiccated cyanobacteria to rehydration is well-documented for terrestrial systems, information about the response in marine systems is lacking. We used high temporal resolution hyperspectral imaging, liquid chromatography, pulse-amplitude fluorometry, oxygen microsensors, and confocal laser microscopy to study this response in a desiccated microbial mat from Exmouth Gulf, Australia. During the initial 15 min after rehydration chlorophyll a concentrations increased 2–5 fold and cyanobacterial photosynthesis was re-established. Although the mechanism behind this rapid increase of chlorophyll a remains unknown, we hypothesize that it involves resynthesis from a precursor stored in desiccated cyanobacteria. The subsequent phase (15 min–48 h) involved migration of the reactivated cyanobacteria toward the mat surface, which led, together with a gradual increase in chlorophyll a, to a further increase in photosynthesis. We conclude that the response involving an increase in chlorophyll a and recovery of photosynthetic activity within minutes after rehydration is common for cyanobacteria from desiccated mats of both terrestrial and marine origin. However, the response of upward migration and its triggering factor appear to be mat-specific and likely linked to other factors.

  10. Rapid Reactivation of Cyanobacterial Photosynthesis and Migration upon Rehydration of Desiccated Marine Microbial Mats

    KAUST Repository

    Chennu, Arjun; Grinham, Alistair; Polerecky, Lubos; de Beer, Dirk; Alnajjar, Mohammad Ahmad

    2015-01-01

    Desiccated cyanobacterial mats are the dominant biological feature in the Earth’s arid zones. While the response of desiccated cyanobacteria to rehydration is well-documented for terrestrial systems, information about the response in marine systems is lacking. We used high temporal resolution hyperspectral imaging, liquid chromatography, pulse-amplitude fluorometry, oxygen microsensors, and confocal laser microscopy to study this response in a desiccated microbial mat from Exmouth Gulf, Australia. During the initial 15 min after rehydration chlorophyll a concentrations increased 2–5 fold and cyanobacterial photosynthesis was re-established. Although the mechanism behind this rapid increase of chlorophyll a remains unknown, we hypothesize that it involves resynthesis from a precursor stored in desiccated cyanobacteria. The subsequent phase (15 min–48 h) involved migration of the reactivated cyanobacteria toward the mat surface, which led, together with a gradual increase in chlorophyll a, to a further increase in photosynthesis. We conclude that the response involving an increase in chlorophyll a and recovery of photosynthetic activity within minutes after rehydration is common for cyanobacteria from desiccated mats of both terrestrial and marine origin. However, the response of upward migration and its triggering factor appear to be mat-specific and likely linked to other factors.

  11. Diatom, cyanobacterial and microbial mats as indicators of hydrocarbon contaminated Arctic streams and waters

    Energy Technology Data Exchange (ETDEWEB)

    Ziervogel, H.; Selann, J.; Adeney, B. [EBA Engineering Consultants Ltd., Edmonton, AB (Canada); Nelson, J.A. [J.B. Services, Sarnia, ON (Canada); Murdock, E. [Nunavut Power, Iqaluit (Canada)

    2003-07-01

    An environmental assessment conducted at Repulse Bay, Nunavut in the summer of 2001 revealed a recent diesel spill flowing from the groundwater into a creek. The spill had not been reported. When Arctic surface waters mix with hydrocarbon impacted groundwater and sediments, distinctive mats of diatom, cyanobacteria and other bacteria are formed. These mats have the potential for phytoremediation of hydrocarbons. This paper explained the apparent dominance of mats in contaminated Arctic waters and why they promote biodegradation of hydrocarbons. Hydrocarbon-contaminated soils and groundwater are generally anaerobic. The higher dissolved carbon dioxide in polluted soils and groundwater can benefit photosynthetic cyanobacteria and diatom found in oligotrophic, lower alkalinity Arctic waters. The anaerobic and aerobic bacteria can potentially take advantage of the hydrogen substrate and the nitrogen fixing abilities of the cyanobacteria. Zooplankton predators may be killed off by the toxicity of the polluted groundwater. The paper provides examples where a microbial mat reduced the sulfate content of a hydrocarbon-impacted Arctic stream by 100 ppm, and where a pond covered in a benthic microbial mat showed no evidence of hydrocarbons in the water overlying sediments contaminated with hydrocarbons at concentrations measured at 30,000 ppm. 19 refs., 3 tabs., 8 figs.

  12. Les humains sont-ils des entités matérielles ?

    Directory of Open Access Journals (Sweden)

    Tauveron Matthias

    2012-07-01

    Full Text Available Nous étudions la sémantique des noms d’humains dans le lexique français. Dans la littérature, ces noms ont un positionnement indéterminé ou ambigu par rapport au critère concret/abstrait. Ce fait est regrettable car ce critère est considéré comme fondamental. Nous montrons leur positionnement particulier vis-à-vis de ce critère au travers de l’étude de métaphores attestées en corpus dans divers textes écrits. Nous suivons l’optique de Lakoff et Johnson en considérant que la métaphore est un révélateur des catégories de pensée. Dans cet esprit, la question est de savoir si les humains sont des entités matérielles ou non. L’étude est menée sur deux paramètres définitoires des entités matérielles : la masse et la spatialité. Nous apportons des caractérisations lexicales de ces deux propriétés. La masse est envisagée généralement, autour des noms, adjectifs et verbes relevés dans les dictionnaires. Nous proposons une synthèse des divers paramètres dénotant la spatialité dans la littérature, sous la forme de six points indépendants (forme, intérieur/extérieur, sous-parties, changement de posture, localisation, déplacement. L’étude de la spatialité est menée systématiquement dans ces directions grâce à des tests issus des caractérisations lexicales de ces aspects. Les tests font voir que, si les humains sont dotés d’une certaine dimension matérielle (qu’ils partagent ainsi avec les objets concrets, ils ont également au moins trois autres dimensions qui font qu’ils ne se réduisent pas à des objets matériels. Nous montrons ainsi que l’humain est, dans le lexique français, doté d’une multiplicité ontologique : en plus d’une dimension matérielle, il dispose d’une dimension psychologique, une dimension praxéologique et une dimension sociale. De plus, l’étude des métaphores montre que la dimension matérielle est souvent réduite voire anéantie par rapport aux

  13. Intrinsic luminescence of un-doped borate glasses

    International Nuclear Information System (INIS)

    Kindrat, I.I.; Padlyak, B.V.; Drzewiecki, A.

    2017-01-01

    The nature of intrinsic luminescence in the un-doped borate glasses of different compositions has been investigated using spectroscopic methods including photoluminescence, optical absorption, electron paramagnetic resonance (EPR), and thermally stimulated luminescence (TSL). The un-doped borate glasses with Li 2 B 4 O 7 , LiKB 4 O 7 , CaB 4 O 7 , and LiCaBO 3 basic compositions were obtained from corresponding polycrystalline compounds in the air with usage the standard technology of glasses. Three different broad emission bands in the UV–Visible spectral range have been observed under different wavelength of photoexcitation. The luminescence kinetics of the observed emission bands have been registered and analysed. The nature and possible mechanisms of the intrinsic luminescence in the investigated borate glasses are considered and discussed based on the obtained results and referenced data.

  14. Counting viruses and bacteria in photosynthetic microbial mats

    NARCIS (Netherlands)

    Carreira, C; Staal, M.; Middelboe, M.; Brussaard, C.P.D.

    2015-01-01

    Viral abundances in benthic environments are the highest found in aquatic systems. Photosynthetic microbial mats represent benthic environments with high microbial activity and possibly high viral densities, yet viral abundances have not been examined in such systems. Existing extraction procedures

  15. Production and Consumption of Hydrogen in Hot Spring Microbial Mats Dominated by a Filamentous Anoxygenic Photosynthetic Bacterium

    Science.gov (United States)

    Otaki, Hiroyo; Everroad, R. Craig; Matsuura, Katsumi; Haruta, Shin

    2012-01-01

    Microbial mats containing the filamentous anoxygenic photosynthetic bacterium Chloroflexus aggregans develop at Nakabusa hot spring in Japan. Under anaerobic conditions in these mats, interspecies interaction between sulfate-reducing bacteria as sulfide producers and C. aggregans as a sulfide consumer has been proposed to constitute a sulfur cycle; however, the electron donor utilized for microbial sulfide production at Nakabusa remains to be identified. In order to determine this electron donor and its source, ex situ experimental incubation of mats was explored. In the presence of molybdate, which inhibits biological sulfate reduction, hydrogen gas was released from mat samples, indicating that this hydrogen is normally consumed as an electron donor by sulfate-reducing bacteria. Hydrogen production decreased under illumination, indicating that C. aggregans also functions as a hydrogen consumer. Small amounts of hydrogen may have also been consumed for sulfur reduction. Clone library analysis of 16S rRNA genes amplified from the mats indicated the existence of several species of hydrogen-producing fermentative bacteria. Among them, the most dominant fermenter, Fervidobacterium sp., was successfully isolated. This isolate produced hydrogen through the fermentation of organic carbon. Dispersion of microbial cells in the mats resulted in hydrogen production without the addition of molybdate, suggesting that simultaneous production and consumption of hydrogen in the mats requires dense packing of cells. We propose a cyclic electron flow within the microbial mats, i.e., electron flow occurs through three elements: S (elemental sulfur, sulfide, sulfate), C (carbon dioxide, organic carbon) and H (di-hydrogen, protons). PMID:22446313

  16. Smart monitoring of fluid intake and bladder voiding using pressure sensitive mats.

    Science.gov (United States)

    Cohen-McFarlane, Madison; Green, James R; Knoefel, Frank; Goubran, Rafik

    2016-08-01

    Pressure sensitive mats have been used in noninvasive smart monitoring for a variety of problems including breathing rate monitoring, sleep monitoring, mobility, and weight. This paper describes a proof of concept application of pressure mats to monitor fluid intake/output (fluid cycle) events during the night. The ability to more accurately track such events has potential implications for monitoring those individuals who have nocturia, a condition where a person wakes at night to urinate. Data were collected from a healthy young female subject instructed to drink as much water as was comfortable (700mL) and lie in a supine position on a mattress located directly on three pressure mats. This was compared to an initial data set collected immediately after voiding but before drinking, 30 minutes after drinking, 60 minutes after drinking and a final data set after again voiding the bladder. The additional pressure from the 700mL of water was detectible and tracked over the course of the hour-long testing session under idealized conditions. This provides a proof-of-concept that nocturnal fluid intake and bladder voiding events can be tracked using non-invasive pressure-sensitive mats, however additional testing and development is required to achieve a deployable monitoring system.

  17. Toward Molecular Engineering of Polymer Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Freed, Karl F. [Univ. of Chicago, IL (United States); Xu, Wen-Sheng [Univ. of Chicago, IL (United States); Dudowicz, Jacek B. [Univ. of Chicago, IL (United States); Douglas, Jack F. [National Inst. of Standards and Technology (NIST), Boulder, CO (United States)

    2017-04-05

    Glass formation has been central to fabrication technologies since the dawn of civilization. Glasses not only encompass window panes, the insulation in our homes, the optical fibers supplying our cable TV, and vessels for eating and drinking, but they also include a vast array of ‘‘plastic’’ polymeric materials. Glasses find applications in high technology (e.g., producing microelectronic materials, etc., amorphous semiconductors), and recent advances have created ‘‘plastic metallic glasses’’ that are promising for fabricating everyday structural materials. Many commercially relevant systems, such as microemulsions and colloidal suspensions, have complex molecular structures and thus solidify by glass formation. Despite the importance of understanding the fundamental nature of glass formation for the synthesis of new materials, a predictive molecular theory has been lacking. Much of our understanding of glass formation derives from the analysis of experimental data, a process that has uncovered a number of interesting universal behaviors, namely, relations between properties that are independent of molecular details. However, these empirically derived relations and their limitations remain to be understood on the basis of theories, and, more importantly, there is strong need for theories of the explicit variation with molecular system to enable the rational design and tailoring of new materials. We have recently developed the generalized entropy theory, the only analytic, theory that enables describing the dependence of the properties of glass-formation on monomer molecular structures. These properties include the two central quantities of glass formation, the glass transition temperature and the glass fragility parameter, material dependent properties that govern how a material may be processed (e.g., by extrusion, ink jet, molding, etc.) Our recent works, which are further described below, extend the studies of glass formation in polymer systems

  18. Millimeter Wavelength Observations of Galactic Sources with the Mobile Anisotropy Telescope (MAT)

    Science.gov (United States)

    Cruz, K. L.; Caldwell, R.; Devlin, M. J.; Dorwart, W. B.; Herbig, T.; Miller, A. D.; Nolta, M. R.; Page, L. A.; Puchalla, J. L.; Torbet, E.; Tran, H. T.

    1999-12-01

    The Mobile Anisotropy Telescope (MAT) has completed two observing seasons (1997 and 1998) in Chile from the Cerro Toco site. Although the primary goal of MAT was to measure anisotropy in the Cosmic Microwave Background (CMB) radiation, the chosen observation scheme also allowed daily viewing of the Galactic Plane. We present filtered maps at 30, 40 and 144 GHz of a region of the Galactic Plane which contains several millimeter-bright regions including the Carinae nebula and IRAS 11097-6102. We report the best fit brightness temperatures as well as the total flux densities in the MAT beams (0.9, 0.6 and 0.2 degrees FWHM) . The data are calibrated with respect to Jupiter whose flux is known to better than 8% in all frequency bands. This work was funded by the National Science Foundation and the Packard Foundation.

  19. Mats and LaSpec: High-precision experiments using ion traps and lasers at Fair

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, D.; Lallena, A.M.; Blaum, K.; Bohm, C.; Cakirli, R.B.; Crespo Lopez-Urrutia, J.R.; Eliseev, S.; Ketelaer, J.; Kreim, M.S.; Kowalska, M.; Litvinov, Y.A.; Nagy, S.; Neidherr, D.; Repp, J.; Roux, C.; Schabinger, B.; Ullrich, J.; Nortershauser, W.; Eberhardt, K.; Geppert, C.; Kramer, J.; Krieger, A.; Sanchez, R.; Ahammed, M.; Das, P.; Ray, A.; Algora, A.; Rubio, B.; Tain, J.L.; Audi, G.; Lunney, D.; Naimi, S.; Aysto, J.; Jokinen, A.; Kolhinen, V.; Moore, I.; Beck, D.; Block, M.; Geissel, H.; Heinz, S.; Herfurth, F.; Litvinov, Y.A.; Minaya-Ramirez, E.; Plab, W.R.; Quint, W.; Scheidenberger, C.; Winkler, M.; Bender, M.; Billowes, J.; Campbell, P.; Flanagan, K.T.; Schwarz, S.; Bollen, G.; Ferrer, R.; George, S.; Kester, O.; Brodeur, M.; Brunner, T.; Delheij, P.; Dilling, J.; Ettenauer, S.; Lapierre, A.; Bushaw, B.A.; Cano-Ott, D.; Martinez, T.; Cortes, G.; Gomez-Hornillos, M.B.; Dax, A.; Herlert, A.; Yordanov, D.; De, A.; Dickel, T.; Geissel, H.; Jesch, C.; Kuhl, T.; Petrick, M.; PlaB, W.R.; Scheidenberger, C.; Garcia-Ramos, J.E.; Gartzke, E.; Habs, D.; Szerypo, J.; Thirolf, P.G.; Weber, C.; Gusev, Y.; Nesterenko, D.; Novikov, Y.N.; Popov, A.; Seliverstov, M.; Vasiliev, A.; Vorobjev, G.; Heenen, P.H.; Marx, G.; Schweikhard, L.; Ziegler, F.; Hobein, M.; Schuch, R.; Solders, A.; Suhonen, M.; Huber, G.; Wendt, K.; Huyse, M.; Koudriavtsev, I.; Neyens, G.; Van Duppen, P.; Le Blanc, F.; Matos, M.; Reinhard, P.G.; Schneider, D.

    2010-05-15

    Nuclear ground state properties including mass, charge radii, spins and moments can be determined by applying atomic physics techniques such as Penning-trap based mass spectrometry and laser spectroscopy. The MATS and LaSpec setups at the low-energy beamline at FAIR will allow us to extend the knowledge of these properties further into the region far from stability. With MATS (Precision Measurements of very short-lived nuclei using an Advanced Trapping System for highly-charged ions) at FAIR we aim to apply several techniques to very short-lived radionuclides: High-accuracy mass measurements, in-trap conversion electron and alpha spectroscopy, and trap-assisted spectroscopy. The experimental setup of MATS is a unique combination of an electron beam ion trap for charge breeding, ion traps for beam preparation, and a high-precision Penning trap system for mass measurements and decay studies. For the mass measurements, MATS offers both a high accuracy and a high sensitivity. A relative mass uncertainty of 10{sup -9} can be reached by employing highly-charged ions and a non-destructive Fourier-Transform Ion-Cyclotron-Resonance (FT-ICR) detection technique on single stored ions. Decay studies in ion traps will become possible with MATS. Laser spectroscopy of radioactive isotopes and isomers is an efficient and model-independent approach for the determination of nuclear ground and isomeric state properties. Hyperfine structures and isotope shifts in electronic transitions exhibit readily accessible information on the nuclear spin, magnetic dipole and electric quadrupole moments as well as root-mean-square charge radii. The accuracy of laser-spectroscopic-determined nuclear properties is very high while requirements concerning production rates are moderate. This Technical Design Report describes a new Penning trap mass spectrometry setup as well as a number of complementary experimental devices for laser spectroscopy. Since MATS and LaSpec require high-quality low

  20. Mats and LaSpec: High-precision experiments using ion traps and lasers at Fair

    International Nuclear Information System (INIS)

    Rodriguez, D.; Lallena, A.M.; Blaum, K.; Bohm, C.; Cakirli, R.B.; Crespo Lopez-Urrutia, J.R.; Eliseev, S.; Ketelaer, J.; Kreim, M.S.; Kowalska, M.; Litvinov, Y.A.; Nagy, S.; Neidherr, D.; Repp, J.; Roux, C.; Schabinger, B.; Ullrich, J.; Nortershauser, W.; Eberhardt, K.; Geppert, C.; Kramer, J.; Krieger, A.; Sanchez, R.; Ahammed, M.; Das, P.; Ray, A.; Algora, A.; Rubio, B.; Tain, J.L.; Audi, G.; Lunney, D.; Naimi, S.; Aysto, J.; Jokinen, A.; Kolhinen, V.; Moore, I.; Beck, D.; Block, M.; Geissel, H.; Heinz, S.; Herfurth, F.; Litvinov, Y.A.; Minaya-Ramirez, E.; Plab, W.R.; Quint, W.; Scheidenberger, C.; Winkler, M.; Bender, M.; Billowes, J.; Campbell, P.; Flanagan, K.T.; Schwarz, S.; Bollen, G.; Ferrer, R.; George, S.; Kester, O.; Brodeur, M.; Brunner, T.; Delheij, P.; Dilling, J.; Ettenauer, S.; Lapierre, A.; Bushaw, B.A.; Cano-Ott, D.; Martinez, T.; Cortes, G.; Gomez-Hornillos, M.B.; Dax, A.; Herlert, A.; Yordanov, D.; De, A.; Dickel, T.; Geissel, H.; Jesch, C.; Kuhl, T.; Petrick, M.; PlaB, W.R.; Scheidenberger, C.; Garcia-Ramos, J.E.; Gartzke, E.; Habs, D.; Szerypo, J.; Thirolf, P.G.; Weber, C.; Gusev, Y.; Nesterenko, D.; Novikov, Y.N.; Popov, A.; Seliverstov, M.; Vasiliev, A.; Vorobjev, G.; Heenen, P.H.; Marx, G.; Schweikhard, L.; Ziegler, F.; Hobein, M.; Schuch, R.; Solders, A.; Suhonen, M.; Huber, G.; Wendt, K.; Huyse, M.; Koudriavtsev, I.; Neyens, G.; Van Duppen, P.; Le Blanc, F.; Matos, M.; Reinhard, P.G.; Schneider, D.

    2010-01-01

    Nuclear ground state properties including mass, charge radii, spins and moments can be determined by applying atomic physics techniques such as Penning-trap based mass spectrometry and laser spectroscopy. The MATS and LaSpec setups at the low-energy beamline at FAIR will allow us to extend the knowledge of these properties further into the region far from stability. With MATS (Precision Measurements of very short-lived nuclei using an Advanced Trapping System for highly-charged ions) at FAIR we aim to apply several techniques to very short-lived radionuclides: High-accuracy mass measurements, in-trap conversion electron and alpha spectroscopy, and trap-assisted spectroscopy. The experimental setup of MATS is a unique combination of an electron beam ion trap for charge breeding, ion traps for beam preparation, and a high-precision Penning trap system for mass measurements and decay studies. For the mass measurements, MATS offers both a high accuracy and a high sensitivity. A relative mass uncertainty of 10 -9 can be reached by employing highly-charged ions and a non-destructive Fourier-Transform Ion-Cyclotron-Resonance (FT-ICR) detection technique on single stored ions. Decay studies in ion traps will become possible with MATS. Laser spectroscopy of radioactive isotopes and isomers is an efficient and model-independent approach for the determination of nuclear ground and isomeric state properties. Hyperfine structures and isotope shifts in electronic transitions exhibit readily accessible information on the nuclear spin, magnetic dipole and electric quadrupole moments as well as root-mean-square charge radii. The accuracy of laser-spectroscopic-determined nuclear properties is very high while requirements concerning production rates are moderate. This Technical Design Report describes a new Penning trap mass spectrometry setup as well as a number of complementary experimental devices for laser spectroscopy. Since MATS and LaSpec require high-quality low-energy beams

  1. DEVELOPMENT OF GLASS MATRICES FOR HLW RADIOACTIVE WASTES

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C.

    2010-03-18

    Vitrification is currently the most widely used technology for the treatment of high level radioactive wastes (HLW) throughout the world. Most of the nations that have generated HLW are immobilizing in either borosilicate glass or phosphate glass. One of the primary reasons that glass has become the most widely used immobilization media is the relative simplicity of the vitrification process, e.g. melt waste plus glass forming frit additives and cast. A second reason that glass has become widely used for HLW is that the short range order (SRO) and medium range order (MRO) found in glass atomistically bonds the radionuclides and governs the melt properties such as viscosity, resistivity, sulphate solubility. The molecular structure of glass controls contaminant/radionuclide release by establishing the distribution of ion exchange sites, hydrolysis sites, and the access of water to those sites. The molecular structure is flexible and hence accounts for the flexibility of glass formulations to waste variability. Nuclear waste glasses melt between 1050-1150 C which minimizes the volatility of radioactive components such as Tc{sup 99}, Cs{sup 137}, and I{sup 129}. Nuclear waste glasses have good long term stability including irradiation resistance. Process control models based on the molecular structure of glass have been mechanistically derived and have been demonstrated to be accurate enough to control the world's largest HLW Joule heated ceramic melter in the US since 1996 at 95% confidence.

  2. Introduction to the crystallization phenomenon in nuclear glass

    International Nuclear Information System (INIS)

    Jacquet Francillon, N.

    1997-01-01

    Crystallization is a subject for concern because of its potentially detrimental effects on the technological feasibility of high-temperature melting, and on the chemical durability of the material at intermediate and low temperatures during interim storage or after disposal. The tendency of glass to crystallize depends to a large extent on the composition of the frit and/or of the waste to be solidified. It depends too of the thermal history of the glass generally, the knowledge is mainly upon determination of the time-temperature-transition (TTT) curves, crystal identification and quantification techniques, and their effects on the durability of the glass matrix. French experience is presented. Only a few authors addressed the long-term development of crystalline phases, notably at temperatures below the vitreous transition temperature Tg. Some recommendations for glass crystallization studies are made but glass crystallization after disposal is acceptable provided some conditions are met. (author)

  3. Multifunctional ZnO/Nylon 6 nanofiber mats by an electrospinning–electrospraying hybrid process for use in protective applications

    Directory of Open Access Journals (Sweden)

    Narendiran Vitchuli, Quan Shi, Joshua Nowak, Kathryn Kay, Jane M Caldwell, Frederick Breidt, Mohamed Bourham, Marian McCord and Xiangwu Zhang

    2011-01-01

    Full Text Available ZnO/Nylon 6 nanofiber mats were prepared by an electrospinning–electrospraying hybrid process in which ZnO nanoparticles were dispersed on the surface of Nylon 6 nanofibers without becoming completely embedded. The prepared ZnO/Nylon 6 nanofiber mats were evaluated for their abilities to kill bacteria or inhibit their growth and to catalytically detoxify chemicals. Results showed that these ZnO/Nylon 6 nanofiber mats had excellent antibacterial efficiency (99.99% against both the Gram-negative Escherichia coli and Gram-positive Bacillus cereus bacteria. In addition, they exhibited good detoxifying efficiency (95% against paraoxon, a simulant of highly toxic chemicals. ZnO/Nylon 6 nanofiber mats were also deposited onto nylon/cotton woven fabrics and the nanofiber mats did not significantly affect the moisture vapor transmission rates and air permeability values of the fabrics. Therefore, ZnO/Nylon 6 nanofiber mats prepared by the electrospinning–electrospraying hybrid process are promising material candidates for protective applications.

  4. Multifunctional ZnO/Nylon 6 nanofiber mats by an electrospinning-electrospraying hybrid process for use in protective applications

    Energy Technology Data Exchange (ETDEWEB)

    Vitchuli, Narendiran; Shi Quan; McCord, Marian; Zhang Xiangwu [Fiber and Polymer Science Program, Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, NC 27695-8301 (United States); Nowak, Joshua; Bourham, Mohamed [Department of Nuclear Engineering, North Carolina State University, Raleigh, NC 27695-7909 (United States); Kay, Kathryn [Department of Microbiology, North Carolina State University, Raleigh, NC 27695-7610 (United States); Caldwell, Jane M; Breidt, Frederick, E-mail: bourham@ncsu.edu, E-mail: mmccord@ncsu.edu, E-mail: xiangwu_zhang@ncsu.edu [Department of Food Science, North Carolina Agricultural Research Service, North Carolina State University, Raleigh, NC 27695-7624 (United States)

    2011-10-15

    ZnO/Nylon 6 nanofiber mats were prepared by an electrospinning-electrospraying hybrid process in which ZnO nanoparticles were dispersed on the surface of Nylon 6 nanofibers without becoming completely embedded. The prepared ZnO/Nylon 6 nanofiber mats were evaluated for their abilities to kill bacteria or inhibit their growth and to catalytically detoxify chemicals. Results showed that these ZnO/Nylon 6 nanofiber mats had excellent antibacterial efficiency (99.99%) against both the Gram-negative Escherichia coli and Gram-positive Bacillus cereus bacteria. In addition, they exhibited good detoxifying efficiency (95%) against paraoxon, a simulant of highly toxic chemicals. ZnO/Nylon 6 nanofiber mats were also deposited onto nylon/cotton woven fabrics and the nanofiber mats did not significantly affect the moisture vapor transmission rates and air permeability values of the fabrics. Therefore, ZnO/Nylon 6 nanofiber mats prepared by the electrospinning-electrospraying hybrid process are promising material candidates for protective applications.

  5. Plutonium recovery from spent glass fiber paper fine air filter

    International Nuclear Information System (INIS)

    Rovnyj, S.I.; Guzhavin, V.I.; Pyatin, N.P.; Evlanov, D.S.

    2002-01-01

    Investigations into the realizing technology of plutonium recovery from waste glass paper filters of fine purification were conducted. Two process schemes involving the nitro-fluoro-acid treatment of glass paper in the mixture of nitric and hydrofluoric acids and the previous alkali treatment of glass paper with the following nitro-fluoro-acid leaching of plutonium from pulp by the mixture of nitric and hydrofluoric acids were developed. Alkali, nitrate solutions and insoluble precipitants were analyzed for plutonium content [ru

  6. Within-mat variability in anatoxin-a and homoanatoxin-a production among benthic Phormidium (cyanobacteria) strains.

    Science.gov (United States)

    Wood, Susanna A; Smith, Francine M J; Heath, Mark W; Palfroy, Thomas; Gaw, Sally; Young, Roger G; Ryan, Ken G

    2012-10-01

    Benthic Phormidium mats can contain high concentrations of the neurotoxins anatoxin-a and homoanatoxin-a. However, little is known about the co-occurrence of anatoxin-producing and non-anatoxin-producing strains within mats. There is also no data on variation in anatoxin content among toxic genotypes isolated from the same mat. In this study, 30 Phormidium strains were isolated from 1 cm(2) sections of Phormidium-dominated mats collected from three different sites. Strains were grown to stationary phase and their anatoxin-a, homoanatoxin-a, dihydroanatoxin-a and dihydrohomoanatoxin-a concentrations determined using liquid chromatography-mass spectrometry. Each strain was characterized using morphological and molecular (16S rRNA gene sequences) techniques. Eighteen strains produced anatoxin-a, dihydroanatoxin-a or homoanatoxin-a. Strains isolated from each mat either all produced toxins, or were a mixture of anatoxin and non-anatoxin-producing genotypes. Based on morphology these genotypes could not be separated. The 16S rRNA gene sequence comparisons showed a difference of at least 17 nucleotides among anatoxin and non-anatoxin-producing strains and these formed two separate sub-clades during phylogenetic analysis. The total anatoxin concentration among toxic strains varied from 2.21 to 211.88 mg kg(-1) (freeze dried weight), representing a 100 fold variation in toxin content. These data indicate that both the relative abundance of anatoxin and non-anatoxin-producing genotypes, and variations in anatoxin producing capability, can influence the overall toxin concentration of benthic Phormidium mat samples.

  7. Unravelling core microbial metabolisms in the hypersaline microbial mats of Shark Bay using high-throughput metagenomics

    Energy Technology Data Exchange (ETDEWEB)

    Ruvindy, Rendy; White III, Richard Allen; Neilan, Brett Anthony; Burns, Brendan Paul

    2015-05-29

    Modern microbial mats are potential analogues of some of Earth’s earliest ecosystems. Excellent examples can be found in Shark Bay, Australia, with mats of various morphologies. To further our understanding of the functional genetic potential of these complex microbial ecosystems, we conducted for the first time shotgun metagenomic analyses. We assembled metagenomic nextgeneration sequencing data to classify the taxonomic and metabolic potential across diverse morphologies of marine mats in Shark Bay. The microbial community across taxonomic classifications using protein-coding and small subunit rRNA genes directly extracted from the metagenomes suggests that three phyla Proteobacteria, Cyanobacteria and Bacteriodetes dominate all marine mats. However, the microbial community structure between Shark Bay and Highbourne Cay (Bahamas) marine systems appears to be distinct from each other. The metabolic potential (based on SEED subsystem classifications) of the Shark Bay and Highbourne Cay microbial communities were also distinct. Shark Bay metagenomes have a metabolic pathway profile consisting of both heterotrophic and photosynthetic pathways, whereas Highbourne Cay appears to be dominated almost exclusively by photosynthetic pathways. Alternative non-rubisco-based carbon metabolism including reductive TCA cycle and 3-hydroxypropionate/4-hydroxybutyrate pathways is highly represented in Shark Bay metagenomes while not represented in Highbourne Cay microbial mats or any other mat forming ecosystems investigated to date. Potentially novel aspects of nitrogen cycling were also observed, as well as putative heavy metal cycling (arsenic, mercury, copper and cadmium). Finally, archaea are highly represented in Shark Bay and may have critical roles in overall ecosystem function in these modern microbial mats.

  8. Sewage, green algal mats anchored by lugworms, and the effects on Turbellaria and small Polychaeta

    Science.gov (United States)

    Reise, Karsten

    1983-06-01

    On sandy tidal flats at the Island of Sylt (North Sea) ephemeral mats of green algae covered wide areas in the vicinity of sewage outflows. Algae became anchored in the feeding funnels of lugworms ( Arenicola marina) and thus were able to resist displacement by tidal currents. Below the algal mats anoxic conditions extend to the sediment surface. After about one month a rough sea removed all algae. Polychaetes endured this short-term environmental deterioration, while the more sensitive Turbellaria decreased in abundance and species richness. Diatom-feeders were affected most, predators to a medium extent, and bacteria-feeders the least affected. Rare and very abundant species were more affected than moderately abundant ones. None of the turbellarian species increased in abundance and none colonized the algal mats above the sediment. In a semicontrolled experiment with daily hand-removal of drift algae from a 100-m2 plot within an extensive field of algal mats, this cleaned "island" served as a refuge to Turbellaria escaping from their algal covered habitat. Here abundance doubled relative to initial conditions and was 5-times higher than below algal mats.

  9. Crack-resistant Al2O3-SiO2 glasses.

    Science.gov (United States)

    Rosales-Sosa, Gustavo A; Masuno, Atsunobu; Higo, Yuji; Inoue, Hiroyuki

    2016-04-07

    Obtaining "hard" and "crack-resistant" glasses have always been of great important in glass science and glass technology. However, in most commercial glasses both properties are not compatible. In this work, colorless and transparent xAl2O3-(100-x)SiO2 glasses (30 ≤ x ≤ 60) were fabricated by the aerodynamic levitation technique. The elastic moduli and Vickers hardness monotonically increased with an increase in the atomic packing density as the Al2O3 content increased. Although a higher atomic packing density generally enhances crack formation in conventional oxide glasses, the indentation cracking resistance increased by approximately seven times with an increase in atomic packing density in binary Al2O3-SiO2 glasses. In particular, the composition of 60Al2O3 • 40SiO2 glass, which is identical to that of mullite, has extraordinary high cracking resistance with high elastic moduli and Vickers hardness. The results indicate that there exist aluminosilicate compositions that can produce hard and damage-tolerant glasses.

  10. Influence of layer-by-layer assembled electrospun poly (L-lactic acid) nanofiber mats on the bioactivity of endothelial cells

    Science.gov (United States)

    Wu, Keke; Zhang, Xiazhi; Yang, Wufeng; Liu, Xiaoyan; Jiao, Yanpeng; Zhou, Changren

    2016-12-01

    Electrospun poly(L-lactic acid) (PLLA) nanofiber mats were successfully modified by deposition of multilayers with chitosan (CS), heparin (Hep) and graphene oxide (GO) through electrostatic layer-by-layer (LBL) self-assembly method. In this study, the surface properties of PLLA nanofiber mats before and after modification were investigated via scanning electron microscope (SEM), atomic force microscopy (AFM), attenuated total reflectance fourier transformation infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS) and water contact angle measurement. In addition, the cytocompatibility of the modified PLLA nanofiber mats were investigated by testing endothelial cells compatibility, including cell attachment, cell proliferation and cell cycle. The results revealed that the surfaces of modified PLLA nanofiber mats become much rougher, stifiness and the hydrophilicity of the LBL modified PLLA nanofiber mats were improved compared to original PLLA one. Moreover, the modified PLLA nanofiber mats had promoted the endothelial cells viability attachment significantly. Besides, we studied the PLLA nanofiber mats on the expression of necrosis factor (TNF-α), interleukine-1β (IL-1β), monocyte chemoattractant protein-1 (MCP-1) and vascular cell adhesion molecule-1 (VCAM-1) in endothelial cells. The results showed that modified PLLA nanofiber mats had inhibited the inflammatory response to some extent.

  11. Retro reflective glass mosaic; Mosaico Vitreo Retrorreflectante

    Energy Technology Data Exchange (ETDEWEB)

    Belda, A.; Orts, M. J.; Viciano, F.; Lucas, F.

    2012-07-01

    Salquisa and Alttoglass have developed a very innovative product : the retro reflective glass mosaic. This new product can be used in both horizontal and vertical signposting and also in interior design and architecture. This particular product has many advantages compare to the traditional methods used for signposting, design or architecture. One of them is that the product is mainly made of glass therefore it can last much longer than paints for example. The used of glass mosaic for civil engineering it is opened up especially for signposting and it contributes to improve visibility at night not only in standard conditions but also in the hard ones such as wind, fog or rain at nighttimes. Higher visibility = higher security. We should remember that a high percentage of accidents occur under rain conditions at night. The glass mosaic is presented in a mesh which allows the use in both plane and curve surfaces in signposting, interior design and architecture. The retro reflective effect last under the water therefore the mosaic can be fixed in ornamental and decorative fountains, swimming pools, etc. Furthermore, the retro reflective effect can also be applied on big size ceramic tiles. This project was developed along with the Institute of Ceramic Technology (ITC), it was supported by the Center for Industrial Technological Development (CDTI) and it is also patented. (Author)

  12. Development of AZS refractories for the glass industry

    International Nuclear Information System (INIS)

    Guzman, A.M.; Rodriguez, P.

    2004-01-01

    Refractory materials can support high temperatures, thermal strength and the contact with aggressive environments, for this reason they are widely used in the cement, glass and steel industry. Commercial AZS (alumina-zirconia-silica) refractories are a good alternative in refractory materials for the glass industry' because they can support the aggressive conditions during liquid processing of glass. However, another problem encountered in glass industry is contamination by refractory' material that fall into the molten glass, which can produce a series of defects in the final product. This research was conducted to develop new formulations of AZS refractories with different amounts of ZrO 2 with the purpose of improving the characteristics, properties and the work conditions in the glass melting furnaces and, at the same time, lower the costs this type of refractories. The results obtained indicate that the composition with low content of ZrO 2 can provide better properties than the commercial product, with some modifications in the particle size distribution. Copyright (2004) AD-TECH - International Foundation for the Advancement of Technology Ltd

  13. Risk assessment of medically assisted reproduction and advanced maternal ages in the development of Prader-Willi syndrome due to UPD(15)mat.

    Science.gov (United States)

    Matsubara, K; Murakami, N; Fukami, M; Kagami, M; Nagai, T; Ogata, T

    2016-05-01

    Recent studies have suggested that disomic oocyte-mediated uniparental disomy 15 (UPD(15)mat) is increased in patients with Prader-Willi syndrome (PWS) born after medically assisted reproduction (MAR). However, it remains unknown whether the increase is primarily due to MAR procedure itself or advanced maternal childbearing ages as a predisposing factor for the disomic oocyte production. To examine this matter, we studied 122 naturally conceived PWS patients (PWS-NC group) and 13 MAR-conceived patients (PWS-MAR group). The relative frequency of disomic oocyte-mediated UPD(15)mat was significantly higher in PWS-MAR group than in PWS-NC group (7/13 vs 20/122, p = 0.0045), and the maternal childbearing ages were significantly higher in PWS-MAR group than in PWS-NC group [median (range), 38 (26-45) vs 30 (19-42), p = 0.0015]. However, the logistic regression analysis revealed no significant association between the occurrence of disomic oocyte-mediated UPD(15)mat and MAR, after adjusting for childbearing age (p = 0.25). Consistent with this, while the frequency of assisted reproductive technology (ART)-conceived livebirths was higher in the PWS patients than in the Japanese general population (6.4% vs 1.1%, p = 0.00018), the distribution of childbearing ages was significantly skewed to the increased ages in the PWS patients (p < 2.2 × 10(-16) ). These results argue against a positive association of MAR procedure itself with the development of UPD(15)mat. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Environmental controls on photosynthetic microbial mat distribution and morphogenesis on a 3.42 Ga clastic-starved platform.

    Science.gov (United States)

    Tice, Michael M

    2009-12-01

    Three morphotypes of microbial mats are preserved in rocks deposited in shallow-water facies of the 3.42 Ga Buck Reef chert (BRC). Morphotype alpha consists of fine anastomosing and bifurcating carbonaceous laminations, which loosely drape underlying detrital grains or form silica-filled lenses. Morphotype beta consists of meshes of fine carbonaceous strands intergrown with detrital grains and dark laminations, which loosely drape coarse detrital grains. Morphotype gamma consists of fine, even carbonaceous laminations that tightly drape underlying detrital grains. Preservation of nearly uncompacted mat morphologies and detrital grains deposited during mat growth within a well-characterized sedimentary unit makes quantitative correlation between morphology and paleoenvironment possible. All mats are preserved in the shallowest-water interval of those rocks deposited below normal wave base and above storm wave base. This interval is bounded below by a transgressive lag formed during regional flooding and above by a small condensed section that marks a local relative sea-level maximum. Restriction of all mat morphotypes to the shallowest interval of the storm-active layer in the BRC ocean reinforces previous interpretations that these mats were constructed primarily by photosynthetic organisms. Morphotypes alpha and beta dominate the lower half of this interval and grew during deposition of relatively coarse detrital carbonaceous grains, while morphotype gamma dominates the upper half and grew during deposition of fine detrital carbonaceous grains. The observed mat distribution suggests that either light intensity or, more likely, small variations in ambient current energy acted as a first-order control on mat morphotype distribution. These results demonstrate significant environmental control on biological morphogenetic processes independent of influences from siliciclastic sedimentation.

  15. Chitosan-rectorite nanospheres immobilized on polystyrene fibrous mats via alternate electrospinning/electrospraying techniques for copper ions adsorption

    Science.gov (United States)

    Tu, Hu; Huang, Mengtian; Yi, Yang; Li, Zhenshun; Zhan, Yingfei; Chen, Jiajia; Wu, Yang; Shi, Xiaowen; Deng, Hongbing; Du, Yumin

    2017-12-01

    Chitosan (CS), as a kind of well characterized biopolymer, has been used for heavy metal adsorption due to its low cost and high efficacy. However, when used directly, chitosan particles had small surface area and weak mechanical strength which is unfavorable to metal adsorption and reused. Besides, it cannot be easily recycled that may cause a secondary pollution. In this paper, CS and layered silicate rectorite (REC) were fully mixed and the mixtures were subsequently electrosprayed nano-sized spheres, which were immobilized on the surface of electrospun polystyrene (PS) mats for metal adsorption. The morphology analysis taken from SEM confirmed that CS-REC nanospheres were loaded on the surface of PS fibrous mats. Small Angle X-ray diffraction patterns showed that the interlayer distance of REC in composite mats was enlarged by the intercalation of CS chains; such structure meant bigger surface area which was helpful for metal adsorption. The data of contact angle implied that PS mats coated with CS-REC nanospheres exhibited better hydrophilicity than PS mats, which was conductive to adsorption rate. Besides, the copper ions adsorption of composite mats was tested at different conditions including the adsorption time, the initial pH and the initial concentration of copper ion. The results demonstrated that PS mats coated with CS-REC nanospheres had the adsorption capacity up to 134 mg/g. In addition, the addition of REC containing Ca2+ could also improve the metal adsorption because of cation exchange. The desorption assay indicated that PS mats immobilized with CS and CS-REC still kept high adsorption ability which retained 74% and 78% after three adsorption-desorption cycles.

  16. Nanofiber mat spinal cord dressing-released glutamate impairs blood-spinal cord barrier

    Directory of Open Access Journals (Sweden)

    Dorota Sulejczak

    2016-12-01

    Full Text Available An excessive glutamate level can result in excitotoxic damage and death of central nervous system (CNS cells, and is involved in the pathogenesis of many CNS diseases. It may also be related to a failure of the blood-spinal cord barrier (BSCB. This study was aimed at examining the effects of extended administration of monosodium glutamate on the BSCB and spinal cord cells in adult male Wistar rats. The glutamate was delivered by subarachnoidal application of glutamate-carrying electrospun nanofiber mat dressing at the lumbar enlargement level. Half of the rats with the glutamate-loaded mat application were treated systemically with the histone deacetylase inhibitor valproic acid. A group of intact rats and a rat group with subarachnoidal application of an ‘empty’ (i.e., carrying no glutamate nanofiber mat dressing served as controls. All the rats were euthanized three weeks later and lumbar fragments of their spinal cords were harvested for histological, immunohistochemical and ultrastructural studies. The samples from controls revealed normal parenchyma and BSCB morphology, whereas those from rats with the glutamate-loaded nanofiber mat dressing showed many intraparenchymal microhemorrhages of variable sizes. The capillaries in the vicinity of the glutamate-carrying dressing (in the meninges and white matter alike were edematous and leaky, and their endothelial cells showed degenerative changes: extensive swelling, enhanced vacuo­lization and the presence of vascular intraluminal projections. However, endothelial tight junctions were generally well preserved. Some endothelial cells were dying by necrosis or apoptosis. The adjacent parenchyma showed astrogliosis with astrocytic hypertrophy and swelling of perivascular astrocytic feet. Neurons in the parenchyma revealed multiple symptoms of degeneration, including, inter alia, perikaryal, dendritic and axonal swelling, and destruction of organelles. All the damage symptoms were slightly less

  17. Glasses impregnated with lead for radiation shielding

    International Nuclear Information System (INIS)

    Abd El Monem, A.M.; Kansouh, W.A.; Megahid, R.M.; Ismail, A.L.; Awad, E.M.

    2005-01-01

    The attenuation properties of glasses with different concentration of lead have been investigated for the attenuation of gamma-rays from cesium-137 and for total gamma rays using a beam of neutrons and gamma rays emitted from californium-252 source. Measurements have been performed using a gamma-ray spectrometer with Nal(T1) detector for gamma-rays emitted from 137 Cs and a neutron/gamma spectrometer with stilbene scintillator for measurement of total gamma-rays from 252 Cf neutron source. The latter applied the pulse shape discrimination technique to distinguish between recoil proton and recoil electron pulses. The obtained results given the form displayed pulse height spectra and attenuation relations which were used to derive the linear attenuation coefficient (μ), and the mass attenuation coefficient (mu/p) of the investigated glasses. In addition, calculations were performed to determine the attenuation properties of glass shields under investigation using XCOM code given by the others. A comparison of the shielding properties of these glasses with some standard shielding materials indicated that, the investigated glasses process the shielding advantages required for different nuclear technology applications

  18. Study of optical properties of Erbium doped Tellurite glass-polymer composite

    Science.gov (United States)

    Sushama, D.

    2014-10-01

    Chalcogenide glasses have wide applications in optical device technology. But it has some disadvantages like thermal instability. Among them Tellurite glasses exhibits high thermal Stability. Doping of rare earth elements into the Tellurite glasses improve its optical properties. To improve its mechanical properties composites of this Tellurite glasses with polymer are prepared. Bulk samples of Er2O3 doped TeO2-WO3-La2O3 Tellurite glasses are prepared from high purity oxide mixtures, melting in an alumina crucible in air atmosphere. Composites of this Tellurite glasses with polymer are prepared by powder mixing method and the thin films of these composites are prepared using polymer press. Variations in band gap of these composites are studied from the UV/Vis/NIR absorption.

  19. Phylogenetic Evidence for the Existence of Novel Thermophilic Bacteria in Hot Spring Sulfur-Turf Microbial Mats in Japan

    Science.gov (United States)

    Yamamoto, Hiroyuki; Hiraishi, Akira; Kato, Kenji; Chiura, Hiroshi X.; Maki, Yonosuke; Shimizu, Akira

    1998-01-01

    So-called sulfur-turf microbial mats, which are macroscopic white filaments or bundles consisting of large sausage-shaped bacteria and elemental sulfur particles, occur in sulfide-containing hot springs in Japan. However, no thermophiles from sulfur-turf mats have yet been isolated as cultivable strains. This study was undertaken to determine the phylogenetic positions of the sausage-shaped bacteria in sulfur-turf mats by direct cloning and sequencing of 16S rRNA genes amplified from the bulk DNAs of the mats. Common clones with 16S rDNA sequences with similarity levels of 94.8 to 99% were isolated from sulfur-turf mat samples from two geographically remote hot springs. Phylogenetic analysis showed that the phylotypes of the common clones formed a major cluster with members of the Aquifex-Hydrogenobacter complex, which represents the most deeply branching lineage of the domain bacteria. Furthermore, the bacteria of the sulfur-turf mat phylotypes formed a clade distinguishable from that of other members of the Aquifex-Hydrogenobacter complex at the order or subclass level. In situ hybridization with clone-specific probes for 16S rRNA revealed that the common phylotype of sulfur-turf mat bacteria is that of the predominant sausage-shaped bacteria. PMID:9572936

  20. Characterizing Microbial Mat Morphology with Structure from Motion Techniques in Ice-Covered Lake Joyce, McMurdo Dry Valleys, Antarctica

    Science.gov (United States)

    Mackey, T. J.; Leidman, S. Z.; Allen, B.; Hawes, I.; Lawrence, J.; Jungblut, A. D.; Krusor, M.; Coleman, L.; Sumner, D. Y.

    2015-12-01

    Structure from Motion (SFM) techniques can provide quantitative morphological documentation of otherwise inaccessible benthic ecosystems such as microbial mats in Lake Joyce, a perennially ice-covered lake of the Antarctic McMurdo Dry Valleys (MDV). Microbial mats are a key ecosystem of MDV lakes, and diverse mat morphologies like pinnacles emerge from interactions among microbial behavior, mineralization, and environmental conditions. Environmental gradients can be isolated to test mat growth models, but assessment of mat morphology along these gradients is complicated by their inaccessibility: the Lake Joyce ice cover is 4-5 m thick, water depths containing diverse pinnacle morphologies are 9-14 m, and relevant mat features are cm-scale. In order to map mat pinnacle morphology in different sedimentary settings, we deployed drop cameras (SeaViewer and GoPro) through 29 GPS referenced drill holes clustered into six stations along a transect spanning 880 m. Once under the ice cover, a boom containing a second GoPro camera was unfurled and rotated to collect oblique images of the benthic mats within dm of the mat-water interface. This setup allowed imaging from all sides over a ~1.5 m diameter area of the lake bottom. Underwater lens parameters were determined for each camera in Agisoft Lens; images were reconstructed and oriented in space with the SFM software Agisoft Photoscan, using the drop camera axis of rotation as up. The reconstructions were compared to downward facing images to assess accuracy, and similar images of an object with known geometry provided a test for expected error in reconstructions. Downward facing images identify decreasing pinnacle abundance in higher sedimentation settings, and quantitative measurements of 3D reconstructions in KeckCAVES LidarViewer supplement these mat morphological facies with measurements of pinnacle height and orientation. Reconstructions also help isolate confounding variables for mat facies trends with measurements

  1. Glass-based integrated optical splitters: engineering oriented research

    Science.gov (United States)

    Hao, Yinlei; Zheng, Weiwei; Yang, Jianyi; Jiang, Xiaoqing; Wang, Minghua

    2010-10-01

    Optical splitter is one of most typical device heavily demanded in implementation of Fiber To The Home (FTTH) system. Due to its compatibility with optical fibers, low propagation loss, flexibility, and most distinguishingly, potentially costeffectiveness, glass-based integrated optical splitters made by ion-exchange technology promise to be very attractive in application of optical communication networks. Aiming at integrated optical splitters applied in optical communication network, glass ion-exchange waveguide process is developed, which includes two steps: thermal salts ion-exchange and field-assisted ion-diffusion. By this process, high performance optical splitters are fabricated in specially melted glass substrate. Main performance parameters of these splitters, including maximum insertion loss (IL), polarization dependence loss (PDL), and IL uniformity are all in accordance with corresponding specifications in generic requirements for optic branching components (GR-1209-CORE). In this paper, glass based integrated optical splitters manufacturing is demonstrated, after which, engineering-oriented research work results on glass-based optical splitter are presented.

  2. Influence of the sintering temperature in the microstructure of foam glass obtained from waste glass

    International Nuclear Information System (INIS)

    Pokorny, A.; Vicenzi, J.; Bergmann, C.P.

    2012-01-01

    In this work, foam glasses were produced from grounded soda-lime glass and a synthetic carbonate, used as a foaming agent, with a similar composition to a dolomite lime, added with different oxides (SiO 2 , Al 2 O 3 , Fe 2 O 3 , MnO 2 , Na 2 O, K 2 O, TiO 2 and P 2 O 5 ). The objective was to evaluate the influence of sintering temperature on the properties and microstructure of the obtained material. In addition, the effect of addition of the oxides in the expansion of the ceramic bodies was evaluated. The ceramic bodies were formulated with 3 weight percent of synthetic carbonate, uniaxially pressed and fired within the temperature range from 700 deg C to 950 deg C, with a heating rate of 150K/h. The technological characterization of the ceramic bodies involved the determination of the volumetric expansion and their microstructures have been characterized by optical microscopy and scanning electron microscopy. The experimental results have shown foam glass can be obtained from grounded soda-lime glass, using synthetic carbonate, with the introduction of the different oxides, as foaming agent. (author)

  3. Benchscale Assessment of the Efficacy of a Reactive Core Mat to Isolate PAH-spiked Aquatic Sediments.

    Science.gov (United States)

    Meric, Dogus; Barbuto, Sara; Sheahan, Thomas C; Shine, James P; Alshawabkeh, Akram N

    2014-01-01

    This paper describes the results of a benchscale testing program to assess the efficacy of a reactive core mat (RCM) for short term isolation and partial remediation of contaminated, subaqueous sediments. The 1.25 cm thick RCM (with a core reactive material such as organoclay with filtering layers on top and bottom) is placed on the sediment, and approximately 7.5 - 10 cm of overlying soil is placed on the RCM for stability and protection. A set of experiments were conducted to measure the sorption characteristics of the mat core (organoclay) and sediment used in the experiments, and to determine the fate of semi-volatile organic contaminants and non-reactive tracers through the sediment and reactive mat. The experimental study was conducted on naphthalene-spiked Neponset River (Milton, MA) sediment. The results show nonlinear sorption behavior for organoclay, with sorption capacity increasing with increasing naphthalene concentration. Neponset River sediment showed a notably high sorption capacity, likely due to the relatively high organic carbon fraction (14%). The fate and transport experiments demonstrated the short term efficiency of the reactive mat to capture the contamination that is associated with the post-capping period during which the highest consolidation-induced advective flux occurs, driving solid particles, pore fluid and soluble contaminants toward the reactive mat. The goal of the mat placement is to provide a physical filtering and chemically reactive layer to isolate contamination from the overlying water column. An important finding is that because of the high sorption capacity of the Neponset River sediment, the physical filtering capability of the mat is as critical as its chemical reactive capacity.

  4. Thermodynamics and phase transformations: the selected works of Mats Hillert

    International Nuclear Information System (INIS)

    Agren, J.; Brechet, Y.; Hutchinson, Ch.; Purdy, G.

    2006-01-01

    For over half a century, Mats Hillert has contributed greatly to the science of materials. He is widely known and respected as an innovator and an educator, a scientist with an enormous breadth of interest and depth of insight. In acknowledgment of his many contributions, a conference was held in Stockholm in December 2004 to mark his eightieth birthday. This volume was conceived prior to, and publicly announced during the conference. The difficult choice of twenty-four papers from a publication list of more than three hundred was carried out in consultation with Mats. He also suggested or approved the scientists who would be invited to write a brief introduction to each paper. A brief reading of the topics of the selected papers and their introductions reveals something of their range and depth. Several early selections (for example, those on 'The Role of Interfacial Energy during Solid State Phase Transformations', and 'A Solid-Solution Model for Inhomogeneous Systems') contained seminal material that established Mats as a leading figure in the study of phase transformations in solids. Others established his presence in the areas of solidification and computational thermodynamics. A review of his full publication list shows that he has consistently built upon those early foundational papers, and maintained a dominant position in those fields. Although many of his contributions have been of a theoretical nature, he has always maintained a close contact with experiment, and indeed, he has designed numerous critical experiments. This volume represents a judicious sampling of Mats Hillert's extensive body of work; it is necessarily incomplete, but it is hoped and expected that it will prove useful to students of materials science and engineering at all levels, and that it will inspire the further study and appreciation of his many contributions. (authors)

  5. Microbial mat-induced sedimentary structures in siliciclastic sediments

    Indian Academy of Sciences (India)

    This paper addresses macroscopic signatures of microbial mat-related structures within the. 1.6Ga-old Chorhat Sandstone ... Sandstone differentiated in facies superposed one over the other and their respective structural assemblages (b). may be ..... within the classification of primary sedimentary struc- tures; J. Sed. Res.

  6. Effects of Elevated Carbon Dioxide and Salinity on the Microbial Diversity in Lithifying Microbial Mats

    Directory of Open Access Journals (Sweden)

    Steven R. Ahrendt

    2014-03-01

    Full Text Available Atmospheric levels of carbon dioxide (CO2 are rising at an accelerated rate resulting in changes in the pH and carbonate chemistry of the world’s oceans. However, there is uncertainty regarding the impact these changing environmental conditions have on carbonate-depositing microbial communities. Here, we examine the effects of elevated CO2, three times that of current atmospheric levels, on the microbial diversity associated with lithifying microbial mats. Lithifying microbial mats are complex ecosystems that facilitate the trapping and binding of sediments, and/or the precipitation of calcium carbonate into organosedimentary structures known as microbialites. To examine the impact of rising CO2 and resulting shifts in pH on lithifying microbial mats, we constructed growth chambers that could continually manipulate and monitor the mat environment. The microbial diversity of the various treatments was compared using 16S rRNA gene pyrosequencing. The results indicated that elevated CO2 levels during the six month exposure did not profoundly alter the microbial diversity, community structure, or carbonate precipitation in the microbial mats; however some key taxa, such as the sulfate-reducing bacteria Deltasulfobacterales, were enriched. These results suggest that some carbonate depositing ecosystems, such as the microbialites, may be more resilient to anthropogenic-induced environmental change than previously thought.

  7. The effect Mat Pilates practice on muscle mass in elderly women

    Directory of Open Access Journals (Sweden)

    Leliz Cristina Sampaio Queiroz

    2016-01-01

    Full Text Available Objective: to verify that the Mat Pilates practice increases muscle mass in elderly women. Methods: quasi-experimental study with primary data collection and with a convenience sample. The muscle mass of 43 elderly was evaluated for 11 weeks, by calculating the arm muscle area, before and after the intervention. Results:statistically significant difference was observed (p<0.002 between the average value of the arm muscle area, before (35.56cm2 and after the exercises (42.72cm2. Conclusion: mat Pilates program generates positive effect on increasing the muscle mass of elderly.

  8. Contradicción, coherencia y compromiso: Matías Usero Torrente

    Directory of Open Access Journals (Sweden)

    Tezanos Gandarillas, Marisa

    2001-06-01

    Full Text Available The current article studies the figure of Matías Usero Torrente. His thought is considered by the author as a preceding of the principals ideas that emphasized about the relations between State and Society during the sixties in Spain.

    En el presente artículo se analiza la figura de Matías Usero Torrente. Su pensamiento es considerado por la autora del estudio como antecesor de las principales ideas que sobre las relaciones de la Iglesia con el Estado y la Sociedad cristalizaron en la década de los 60 en España.

  9. Sol–Gel-Derived Glass-Ceramic Photorefractive Films for Photonic Structures

    Directory of Open Access Journals (Sweden)

    Anna Lukowiak

    2017-02-01

    Full Text Available Glass photonics are widespread, from everyday objects around us to high-tech specialized devices. Among different technologies, sol–gel synthesis allows for nanoscale materials engineering by exploiting its unique structures, such as transparent glass-ceramics, to tailor optical and electromagnetic properties and to boost photon-management yield. Here, we briefly discuss the state of the technology and show that the choice of the sol–gel as a synthesis method brings the advantage of process versatility regarding materials composition and ease of implementation. In this context, we present tin-dioxide–silica (SnO2–SiO2 glass-ceramic waveguides activated by europium ions (Eu3+. The focus is on the photorefractive properties of this system because its photoluminescence properties have already been discussed in the papers presented in the bibliography. The main findings include the high photosensitivity of sol–gel 25SnO2:75SiO2 glass-ceramic waveguides; the ultraviolet (UV-induced refractive index change (Δn ~ −1.6 × 10−3, the easy fabrication process, and the low propagation losses (0.5 ± 0.2 dB/cm, that make this glass-ceramic an interesting photonic material for smart optical applications.

  10. Distribution and Composition of Thiotrophic Mats in the Hypoxic Zone of the Black Sea (150-170 m Water Depth, Crimea Margin).

    Science.gov (United States)

    Jessen, Gerdhard L; Lichtschlag, Anna; Struck, Ulrich; Boetius, Antje

    2016-01-01

    At the Black Sea chemocline, oxygen- and sulfide-rich waters meet and form a niche for thiotrophic pelagic bacteria. Here we investigated an area of the Northwestern Black Sea off Crimea close to the shelf break, where the chemocline reaches the seafloor at around 150-170 m water depth, to assess whether thiotrophic bacteria are favored in this zone. Seafloor video transects were carried out with the submersible JAGO covering 20 km(2) on the region between 110 and 200 m depth. Around the chemocline we observed irregular seafloor depressions, covered with whitish mats of large filamentous bacteria. These comprised 25-55% of the seafloor, forming a belt of 3 km width around the chemocline. Cores from the mats obtained with JAGO showed higher accumulations of organic matter under the mats compared to mat-free sediments. The mat-forming bacteria were related to Beggiatoa-like large filamentous sulfur bacteria based on 16S rRNA sequences from the mat, and visual characteristics. The microbial community under the mats was significantly different from the surrounding sediments and enriched with taxa affiliated with polymer degrading, fermenting and sulfate reducing microorganisms. Under the mats, higher organic matter accumulation, as well as higher remineralization and radiotracer-based sulfate reduction rates were measured compared to outside the mat. Mat-covered and mat-free sediments showed similar degradability of the bulk organic matter pool, suggesting that the higher sulfide fluxes and subsequent development of the thiotrophic mats in the patches are consequences of the accumulation of organic matter rather than its qualitative composition. Our observations suggest that the key factors for the distribution of thiotrophic mat-forming communities near to the Crimean shelf break are hypoxic conditions that (i) repress grazers, (ii) enhance the accumulation and degradation of labile organic matter by sulfate-reducers, and (iii) favor thiotrophic filamentous bacteria

  11. Spectroscopic study of silicate glass structure. Application to the case of iron and magnesium

    International Nuclear Information System (INIS)

    Rossano, Stephanie

    2008-01-01

    During the last 10 years, I focused my research topics on silicate glass structure. More specifically I have been interested by two main components of natural and technological silicate glasses, Fe and Mg. Using solid state spectroscopic methods adapted to the disordered nature of glass coupled to molecular dynamics simulation and modeling or ab initio calculation, I have studied the environment of iron and magnesium and their impact on glass properties. Information on the distribution of environments in glasses have been extracted. (author)

  12. Formation of superhydrophobic soda-lime glass surface using femtosecond laser pulses

    International Nuclear Information System (INIS)

    Ahsan, Md. Shamim; Dewanda, Fadia; Lee, Man Seop; Sekita, Hitoshi; Sumiyoshi, Tetsumi

    2013-01-01

    Highlights: ► We formed superhydrophobic soda-lime glass surface by femtosecond laser pulses. ► Periodic microstructures are printed on the glass surface for superhydrophobicity. ► The contact angle of water droplet on the microstructured glass surface is 155°. ► The transparency of superhydrophobic glass is higher than 77% in visible spectrum. ► We explain the formation mechanism of superhydrophobic soda-lime glass surface. - Abstract: This paper demonstrates the fabrication of superhydrophobic soda-lime glass surface by engineering periodic microgratings with self-formed periodic micro-ripples inside the microgratings using a single beam femtosecond laser. The wetting property of the microstructured surface is improved from hydrophobic to superhydrophobic, presenting a water droplet contact angle ranges from 152° to 155°. The microstructured glass surface shows excellent transparency, which is higher than 77% in the visible spectrum. We strongly believe that our proposed technology can achieve superhydrophobic glass surfaces over a large area for applications in diverse fields.

  13. Bacterial and archaeal diversity in two hot spring microbial mats from the geothermal region of Tengchong, China.

    Science.gov (United States)

    Pagaling, Eulyn; Grant, William D; Cowan, Don A; Jones, Brian E; Ma, Yanhe; Ventosa, Antonio; Heaphy, Shaun

    2012-07-01

    We investigated the bacterial and archaeal diversity in two hot spring microbial mats from the geothermal region of Tengchong in the Yunnan Province, China, using direct molecular analyses. The Langpu (LP) laminated mat was found by the side of a boiling pool with temperature of 60-65 °C and a pH of 8.5, while the Tengchong (TC) streamer mat consisted of white streamers in a slightly acidic (pH 6.5) hot pool outflow with a temperature of 72 °C. Four 16S rRNA gene clone libraries were constructed and restriction enzyme analysis of the inserts was used to identify unique sequences and clone frequencies. From almost 200 clones screened, 55 unique sequences were retrieved. Phylogenetic analysis showed that the LP mat consisted of a diverse bacterial population [Cyanobacteria, Chloroflexi, Chlorobia, Nitrospirae, 'Deinococcus-Thermus', Proteobacteria (alpha, beta and delta subdivisions), Firmicutes, Bacteroidetes and Actinobacteria], while the archaeal population was dominated by methanogenic Euryarchaeota and Crenarchaeota. In contrast, the TC streamer mat consisted of a bacterial population dominated by Aquificae, while the archaeal population also contained Korarchaeota as well as Crenarchaeota and methanogenic Euryarchaeota. These mats harboured clone sequences affiliated to unidentified lineages, suggesting that they are a potential source for discovering novel bacteria and archaea.

  14. Design of a smart textile mat to study pressure distribution on multiple foam material configurations

    NARCIS (Netherlands)

    Donselaar, van R.; Chen, W.

    2011-01-01

    In this paper, we present a design of a smart textile pressure mat to study the pressure distribution with multiple foam material configurations for neonatal monitoring at Neonatal Intensive Care Units (NICU). A smart textile mat with 64 pressure sensors has been developed including software at the

  15. Matting of Hair Due to Halo-egg Shampoo

    Directory of Open Access Journals (Sweden)

    Z M Mani

    1983-01-01

    Full Text Available A case of hair matting in an 18 year old female is reported. The hair got densely entangled immediately after washing the hair with ′Halo Egg′ shampoo. The hair was disentangled completely after prolonged dipping of the hair in arachis oil frr 5 days.

  16. Diversity of nitrogen-fixing bacteria in cyanobacterial mats

    NARCIS (Netherlands)

    Severin, I.; Acinas, S.G.; Stal, L.J.

    2010-01-01

    The structure of the microbial community and the diversity of the functional gene for dinitrogenase reductase and its transcripts were investigated by analyzing >1400 16S rRNA gene and nifH sequences from two microbial mats situated in the intertidal zone of the Dutch barrier island Schiermonnikoog.

  17. The descent into glass formation in polymer fluids.

    Science.gov (United States)

    Freed, Karl F

    2011-03-15

    Glassy materials have been fundamental to technology since the dawn of civilization and remain so to this day: novel glassy systems are currently being developed for applications in energy storage, electronics, food, drugs, and more. Glass-forming fluids exhibit a universal set of transitions beginning at temperatures often in excess of twice the glass transition temperature T(g) and extending down to T(g), below which relaxation becomes so slow that systems no longer equilibrate on experimental time scales. Despite the technological importance of glasses, no prior theory explains this universal behavior nor describes the huge variations in the properties of glass-forming fluids that result from differences in molecular structure. Not surprisingly, the glass transition is currently regarded by many as the deepest unsolved problem in solid state theory. In this Account, we describe our recently developed theory of glass formation in polymer fluids. Our theory explains the origin of four universal characteristic temperatures of glass formation and their dependence on monomer-monomer van der Waals energies, conformational energies, and pressure and, perhaps most importantly, on molecular details, such as monomer structure, molecular weight, size of side groups, and so forth. The theory also provides a molecular explanation for fragility, a parameter that quantifies the rate of change with temperature of the viscosity and other dynamic mechanical properties at T(g). The fragility reflects the fluid's thermal sensitivity and determines the manner in which glass-formers can be processed, such as by extrusion, casting, or inkjet spotting. Specifically, the theory describes the change in thermodynamic properties and fragility of polymer glasses with variations in the monomer structure, the rigidity of the backbone and side groups, the cohesive energy, and so forth. The dependence of the structural relaxation time at lower temperatures emerges from the theory as the Vogel

  18. Study of optical properties of Erbium doped Tellurite glass-polymer composite

    Energy Technology Data Exchange (ETDEWEB)

    Sushama, D., E-mail: sushasukumar@gmail.com [Research Awardee, LAMP, Dept. of Physics, Nit, Calicut, India and Dept. of Physics, M.S.M. College, Kayamkulam, Kerala (India)

    2014-10-15

    Chalcogenide glasses have wide applications in optical device technology. But it has some disadvantages like thermal instability. Among them Tellurite glasses exhibits high thermal Stability. Doping of rare earth elements into the Tellurite glasses improve its optical properties. To improve its mechanical properties composites of this Tellurite glasses with polymer are prepared. Bulk samples of Er{sub 2}O{sub 3} doped TeO{sub 2}‐WO{sub 3}‐La{sub 2}O{sub 3} Tellurite glasses are prepared from high purity oxide mixtures, melting in an alumina crucible in air atmosphere. Composites of this Tellurite glasses with polymer are prepared by powder mixing method and the thin films of these composites are prepared using polymer press. Variations in band gap of these composites are studied from the UV/Vis/NIR absorption.

  19. Study of optical properties of Erbium doped Tellurite glass-polymer composite

    International Nuclear Information System (INIS)

    Sushama, D.

    2014-01-01

    Chalcogenide glasses have wide applications in optical device technology. But it has some disadvantages like thermal instability. Among them Tellurite glasses exhibits high thermal Stability. Doping of rare earth elements into the Tellurite glasses improve its optical properties. To improve its mechanical properties composites of this Tellurite glasses with polymer are prepared. Bulk samples of Er 2 O 3 doped TeO 2 ‐WO 3 ‐La 2 O 3 Tellurite glasses are prepared from high purity oxide mixtures, melting in an alumina crucible in air atmosphere. Composites of this Tellurite glasses with polymer are prepared by powder mixing method and the thin films of these composites are prepared using polymer press. Variations in band gap of these composites are studied from the UV/Vis/NIR absorption

  20. Glass-Industry of the Future; Industrial Partnerships: Advancing Energy and Environmental Goals

    International Nuclear Information System (INIS)

    DOE Office of Industrial Technologies

    2001-01-01

    This tri-fold brochure describe the partnering activities of the Office of Industrial Technologies' (OIT) Industries of the Future (IOF) for Glass. Information on what works for the Glass industry, examples of successful partnerships, and benefits of partnering with OIT are included

  1. The Use of Maltodextrin Matrices to Control the Release of Minerals from Fortified Maté

    Directory of Open Access Journals (Sweden)

    Miguel E. Schmalko

    2012-04-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE The aim of this research was to study the sensorial acceptance of a fortified food containing different minerals (calcium, magnesium and iron and to determine the actual quantities present (bioaccessibility when extracted in maté. A sensorial analysis was performed to compare sensorial quality of fortified and non-fortified maté. Although panelists identified differences between the fortified and non-fortified maté, only 3% of them commented on an unpleasant flavor. Sequential extraction assays were performed simulating maté consumption under laboratory conditions. Profile concentration diminished sharply after the second extraction. Magnesium was found to be completely extracted in the first 500 mL. Calcium and Iron were extracted in a very low percentage (29% and 25%, respectively. The outlet rate of the minerals was fitted to two models, and a good fitness (p < 0:001 in all cases was obtained.

  2. Marine Microbial Mats and the Search for Evidence of Life in Deep Time and Space

    Science.gov (United States)

    Des Marais, David J.

    2011-01-01

    Cyanobacterial mats in extensive seawater evaporation ponds at Guerrero Negro, Baja California, Mexico, have been excellent subjects for microbial ecology research. The studies reviewed here have documented the steep and rapidly changing environmental gradients experienced by mat microorganisms and the very high rates of biogeochemical processes that they maintained. Recent genetic studies have revealed an enormous diversity of bacteria as well as the spatial distribution of Bacteria, Archaea and Eukarya. These findings, together with emerging insights into the intimate interactions between these diverse populations, have contributed substantially to our understanding of the origins, environmental impacts, and biosignatures of photosynthetic microbial mats. The biosignatures (preservable cells, sedimentary fabrics, organic compounds, minerals, stable isotope patterns, etc.) potentially can serve as indicators of past life on early Earth. They also can inform our search for evidence of any life on Mars. Mars exploration has revealed evidence of evaporite deposits and thermal spring deposits; similar deposits on Earth once hosted ancient microbial mat ecosystems.

  3. Laser properties of an improved average-power Nd-doped phosphate glass

    International Nuclear Information System (INIS)

    Payne, S.A.; Marshall, C.D.; Bayramian, A.J.

    1995-01-01

    The Nd-doped phosphate laser glass described herein can withstand 2.3 times greater thermal loading without fracture, compared to APG-1 (commercially-available average-power glass from Schott Glass Technologies). The enhanced thermal loading capability is established on the basis of the intrinsic thermomechanical properties (expansion, conduction, fracture toughness, and Young's modulus), and by direct thermally-induced fracture experiments using Ar-ion laser heating of the samples. This Nd-doped phosphate glass (referred to as APG-t) is found to be characterized by a 29% lower gain cross section and a 25% longer low-concentration emission lifetime

  4. Specialty glass development for radiation shielding windows and nuclear waste immobilization

    International Nuclear Information System (INIS)

    Mandal, S.; Ghorui, S.; Roy Chowdhury, A.; Sen, R.; Chakraborty, A.K.; Sen, S.; Maiti, H.S.

    2015-01-01

    The technology of two important varieties of specialty glasses, namely high density Radiation Shielding Window (RSW) glass and specialty glass beads of borosilicate composition have been successfully developed in CGCRI with an aim to meet the countries requirement. Radiation Shielding Windows used in nuclear installations, are viewing devices, which allow direct viewing into radioactive areas while still providing adequate protection to the operating personnel. The glass blocks are stabilized against damage from radiation by introducing cerium in definite proportions. Considering the essentially of developing an indigenous technology to make the country self-sufficient for this critical item, CGCRI has taken up a major programme to develop high lead containing glasses required for RSWs under a MoD with BARC. On the other hand, the specialty glass bead of specific composition and properties is a critical material required for management of radioactive waste in a closed nuclear fuel cycle that is followed by India. During reprocessing of the spent nuclear fuel, high level radio-active liquid waste (HLW) is produced containing unwanted radio isotopes some of which remain radioactive for thousands of years. The need is to immobilize them within a molecular structure so that they will not come out and be released to the ambience and thereby needs to be resolved if nuclear power is to make a significant contribution to the country's power requirement. Borosilicate glass has emerged as the material of choice for immobilization due to its unique random network structure

  5. Characterization of enameled glass excavated from Laem Pho, southern Thailand

    Science.gov (United States)

    Dhanmanonda, W.; Won-in, K.; Tancharakorn, S.; Tantanuch, W.; Thongleurm, C.; Kamwanna, T.; Dararutana, P.

    2012-07-01

    Laem Pho in Surat Thani, southern province of Thailand is one of the most important historic site on the eastern shore of the Gulf of Thailand. In this work, the enameled glass fragments which looked-like Islamic glass mainly excavated from this site were analyzed using SEM-EDS, PIXE and μ-XRF, in order to understand the chemical composition by comparing the archaeological data and topology. The structure of the enameled decoration was also studied. The resulting data indicated that high-magnesia alkali-lime silicate glass was produced. The presence of transition metals such as copper, iron and manganese were affected on the glass colorations. Typological classifications, technological observations and comparative studies serve to clarify the development and cultural inter-relationships of various glass objects along the trade and exchange networks in ancient maritime.

  6. Characterization of enameled glass excavated from Laem Pho, southern Thailand

    International Nuclear Information System (INIS)

    Dhanmanonda, W; Won-in, K; Tancharakorn, S; Tantanuch, W; Thongleurm, C; Kamwanna, T; Dararutana, P

    2012-01-01

    Laem Pho in Surat Thani, southern province of Thailand is one of the most important historic site on the eastern shore of the Gulf of Thailand. In this work, the enameled glass fragments which looked-like Islamic glass mainly excavated from this site were analyzed using SEM-EDS, PIXE and μ-XRF, in order to understand the chemical composition by comparing the archaeological data and topology. The structure of the enameled decoration was also studied. The resulting data indicated that high-magnesia alkali-lime silicate glass was produced. The presence of transition metals such as copper, iron and manganese were affected on the glass colorations. Typological classifications, technological observations and comparative studies serve to clarify the development and cultural inter-relationships of various glass objects along the trade and exchange networks in ancient maritime.

  7. On the Evaluation of the Mechanical Behaviour of Structural Glass Elements

    OpenAIRE

    Costa, S.; Miranda, M.; Varum, H.; Teixeira-Dias, F.

    2005-01-01

    Glass can be considered to be a high-technology engineering material with a multifunctional potential for structural applications. However, the conventional approach to the use of glass is often based only on its proper-ties of transparency and isolation. It is thus highly appropriate and necessary to study the mechanical behaviour of this material and to develop adequate methods and models leading to its characterisation. It is evident that the great potential of growth for structural glass ...

  8. Clinical manifestation, serology marker & microscopic agglutination test (MAT) to mortality in human leptospirosis

    Science.gov (United States)

    Perdhana, S. A. P.; Susilo, R. S. B.; Arifin; Redhono, D.; Sumandjar, T.

    2018-03-01

    Leptospirosis is a potentially fatal zoonosis that is endemic in many tropical regions and causes large epidemics after heavy rainfall and flooding. Severe disease is estimated 5–15% of all human infections. Its mortality rate is 5-40%. MAT, isolation of the organism, or leptospiral DNA in PCR are used to confirm Leptospirosis. This cross-sectional analytic study recruited 26 hospitalized leptospirosis patients admitted to Dr. Moewardi Hospital Surakarta. The diagnosis was based on clinical, laboratory and epidemiological findings. The onset of the disease was the date when the first symptom started, and the end of the analysis was the date when the patient died or discharged. Modified Faine’s score ≥ 25 tend to die (45.5%) while modified Faine’s score 20 – 24 tend to heal (60%) (OR 1.250; CI 0.259-6.029; p=1.0). Seropositive IgM predicts mortality 7.8 times higher than seronegative IgM (OR 7.800; CI 1.162-52.353; p=0.038). MAT positive predict mortality 10.667 times higher than MAT negative (OR 10.667; CI 1.705-66.720; p=0.015). Clinical manifestation, MAT, and serologic marker are all correlated with mortality in Leptospirosis. However, statistically, clinical manifestation has an insignificant correlation.

  9. Impacts of Canada's minimum age for tobacco sales (MATS) laws on youth smoking behaviour, 2000-2014.

    Science.gov (United States)

    Callaghan, Russell Clarence; Sanches, Marcos; Gatley, Jodi; Cunningham, James K; Chaiton, Michael Oliver; Schwartz, Robert; Bondy, Susan; Benny, Claire

    2018-01-13

    Recently, the US Institute of Medicine has proposed that raising the minimum age for tobacco purchasing/sales to 21 years would likely lead to reductions in smoking behavior among young people. Surprisingly few studies, however, have assessed the potential impacts of minimum-age tobacco restrictions on youth smoking. To estimate the impacts of Canadian minimum age for tobacco sales (MATS) laws on youth smoking behaviour. A regression-discontinuity design, using seven merged cycles of the Canadian Community Health Survey, 2000-2014. Survey respondents aged 14-22 years (n=98 320). Current Canadian MATS laws are 18 years in Alberta, Saskatchewan, Manitoba, Quebec, the Yukon and Northwest Territories, and 19 years of age in the rest of the country. Current, occasional and daily smoking status; smoking frequency and intensity; and average monthly cigarette consumption. In comparison to age groups slightly younger than the MATS, those just older had significant and abrupt increases immediately after the MATS in the prevalence of current smokers (absolute increase: 2.71%; 95% CI 0.70% to 4.80%; P=0.009) and daily smokers (absolute increase: 2.43%; 95% CI 0.74% to 4.12%; P=0.005). Average past-month cigarette consumption within age groups increased immediately following the MATS by 18% (95% CI 3% to 39%; P=0.02). There was no evidence of significant increases in smoking intensity for daily or occasional smokers after release from MATS restrictions. The study provides relevant evidence supporting the effectiveness of Canadian MATS laws for limiting smoking among tobacco-restricted youth. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  10. Premixing hydrogen burners for surface refinement of glass; Vormischende Wasserstoffbrenner zur Oberflaechenbearbeitung von Glas

    Energy Technology Data Exchange (ETDEWEB)

    Goerisch, Matthias [Linde AG, Linde Gas Deutschland, Nuernberg (Germany)

    2013-02-15

    As a result, inter alia, of unceasing globalisation, European glass producers in practically all sectors - flat glass, container glass, crystal glass and special glasses - are faced with ever tougher competition from Asia. In the 2012 to 2015 period and beyond, the principal focuses in the manufacture of glass products will again be on reducing overall production costs and increasing process efficiency wherever possible, on greater productivity and on enhanced product (surface) quality. To meet these challenges in the field of surface refinement and flame polishing of glass products as efficiently as possible, Linde AG/Linde Gases Division has developed premixing Hydropox {sup registered} burner technology for hydrogen/oxygen fuels. (orig.)

  11. Crack-resistant Al2O3–SiO2 glasses

    Science.gov (United States)

    Rosales-Sosa, Gustavo A.; Masuno, Atsunobu; Higo, Yuji; Inoue, Hiroyuki

    2016-01-01

    Obtaining “hard” and “crack-resistant” glasses have always been of great important in glass science and glass technology. However, in most commercial glasses both properties are not compatible. In this work, colorless and transparent xAl2O3–(100–x)SiO2 glasses (30 ≤ x ≤ 60) were fabricated by the aerodynamic levitation technique. The elastic moduli and Vickers hardness monotonically increased with an increase in the atomic packing density as the Al2O3 content increased. Although a higher atomic packing density generally enhances crack formation in conventional oxide glasses, the indentation cracking resistance increased by approximately seven times with an increase in atomic packing density in binary Al2O3–SiO2 glasses. In particular, the composition of 60Al2O3•40SiO2 glass, which is identical to that of mullite, has extraordinary high cracking resistance with high elastic moduli and Vickers hardness. The results indicate that there exist aluminosilicate compositions that can produce hard and damage-tolerant glasses. PMID:27053006

  12. Smart-Glasses: Exposing and Elucidating the Ethical Issues.

    Science.gov (United States)

    Hofmann, Bjørn; Haustein, Dušan; Landeweerd, Laurens

    2017-06-01

    The objective of this study is to provide an overview over the ethical issues relevant to the assessment, implementation, and use of smart-glasses. The purpose of the overview is to facilitate deliberation, decision making, and the formation of knowledge and norms for this emerging technology. An axiological question-based method for human cognitive enhancement including an extensive literature search on smart-glasses is used to identify relevant ethical issues. The search is supplemented with relevant ethical issues identified in the literature on human cognitive enhancement (in general) and in the study of the technical aspects of smart-glasses. Identified papers were subject to traditional content analysis: 739 references were identified of which 247 were regarded as relevant for full text examinations, and 155 were included in the study. A wide variety of ethical issues with smart-glasses have been identified, such as issues related to privacy, safety, justice, change in human agency, accountability, responsibility, social interaction, power and ideology. Smart-glasses are envisioned to change individual human identity and behavior as well as social interaction. Taking these issues into account appears to be relevant when developing, deliberating, deciding on, implementing, and using smart-glasses.

  13. Discourses of Technology

    DEFF Research Database (Denmark)

    Sommer, Jannek K.; Knudsen, Gry Høngsmark

    In this poster we address consumption of technology from the perspective of failure. A large body of studies of consumption of technology have focused on consumer acceptance (Kozinets, 2008). These studies have identified particular narratives about social and economic progress, and pleasure...... (Kozinets, 2008) as drivers of consumer acceptance of new technology. Similarly, Giesler (2008) has conceptualized consumer acceptance of technology as a form of marketplace drama, in which market ideologies are negotiated between consumers and media discourses. We suggest to study discourses around failed...... technology products to explore the negotiation of the familiar and alien that makes consumers reject or embrace a new technology. Thus, this particular project sets out to analyze consumer discourses surrounding the Google Glass video “How it Feels [through Google Glass]” on YouTube, because we want...

  14. Preservation in microbial mats: mineralization by a talc-like phase of a fish embedded in a microbial sarcophagus

    Science.gov (United States)

    Iniesto, Miguel; Zeyen, Nina; López-Archilla, Ana; Bernard, Sylvain; Buscalioni, Ángela; Guerrero, M. Carmen; Benzerara, Karim

    2015-09-01

    Microbial mats have been repeatedly suggested to promote early fossilization of macroorganisms. Yet, experimental simulations of this process remain scarce. Here, we report results of 5 year-long experiments performed onfish carcasses to document the influence of microbial mats on mineral precipitation during early fossilization. Carcasses were initially placed on top of microbial mats. After two weeks, fishes became coated by the mats forming a compact sarcophagus, which modified the microenvironment close to the corpses. Our results showed that these conditions favoured the precipitation of a poorly crystalline silicate phase rich in magnesium. This talc-like mineral phase has been detected in three different locations within the carcasses placed in microbial mats for more than 4 years: 1) within inner tissues, colonized by several bacillary cells; 2) at the surface of bones of the upper face of the corpse buried in the mat; and 3) at the surface of several bones such as the dorsal fin which appeared to be gradually replaced by the Mg-silicate phase. This mineral phase has been previously shown to promote bacteria fossilization. Here we provide first experimental evidence that such Mg-rich phase can also be involved in exceptional preservation of animals.

  15. Mechanical and electro-rheological properties of electrospun poly(vinyl alcohol) nanofibre mats filled with carbon black nanoparticles

    International Nuclear Information System (INIS)

    Chuangchote, Surawut; Sirivat, Anuvat; Supaphol, Pitt

    2007-01-01

    The present contribution reports, for the first time, the mechanical and electro-rheological properties of electrospun poly(vinyl alcohol) (PVA) nanofibre mats with or without the incorporation of carbon black (CB) nanoparticles. The effects of sonication and the addition of CB on morphological appearance, average diameter of the as-spun fibre mats, and that of the individual fibres, were thoroughly investigated. Incorporation of CB (1-10% based on the weight of PVA) in 10% w/v PVA solution did not affect the morphology and average diameter of the obtained fibres (∼160 nm), but it affected both the mechanical and the electro-rheological properties of the as-spun PVA/CB fibre mats, in which the mats became more rigid with the addition and increasing amount of CB

  16. Glass: a candidate engineered material for management of high level nuclear waste

    International Nuclear Information System (INIS)

    Mishra, R.K.; Kaushik, C.P.

    2011-01-01

    While the commercial importance of glass is generally recognized, a few people are aware of extremely wide range of glass formulations that can be made and of the versatility of this engineered material. Some of the recent developments in the field of glass leading to various technological applications include glass fiber reinforcement of cement to give new building materials, substrates for microelectronics circuitry in form of semiconducting glasses, nuclear waste immobilization and specific medical applications. The present paper covers fundamental understanding of glass structure and its application for immobilization of high level radioactive liquid waste. High level radioactive liquid waste (HLW) arising during reprocessing of spent fuel are immobilized in sodium borosilicate glass matrix developed indigenously. Glass compositions are modified according to the composition of HLW to meet the criteria of desirable properties in terms. These glass matrices have been characterized for different properties like homogeneity, chemical durability, thermal stability and radiation stability. (author)

  17. The effects of Mat Pilates and Reformer Pilates in patients with Multiple Sclerosis: A randomized controlled study.

    Science.gov (United States)

    Bulguroglu, I; Guclu-Gunduz, A; Yazici, G; Ozkul, C; Irkec, C; Nazliel, B; Batur-Caglayan, H Z

    2017-01-01

    Pilates is an exercise method which increases strength and endurance of core muscles and improves flexibility, dynamic postural control and balance. To analyze and compare the effects of Mat and Reformer Pilates methods in Patients with Multiple Sclerosis (MS). Thirty-eight patients with MS were included in the study. Participants were randomly divided into 3 groups as Mat Pilates, Reformer Pilates and control groups. The subjects in the Pilates groups did Mat or Reformer Pilates for 8 weeks, 2 days a week. The control group did breathing and relaxation exercises at home. Balance, functional mobility, core stability, fatigue severity and quality of life were evaluated. Balance, functional mobility, core stability, fatigue severity and quality of life improved after Pilates in Mat and Reformer Pilates groups (p  0.05). When the gain obtained in the Pilates groups is compared, it has been observed that progress has been more in trunk flexor muscle strength in the Reformer Pilates group (p  0.05). As a result, patients with MS have seen similar benefits in Reformer Pilates and Mat Pilates methods.

  18. Earth's Earliest Ecosystems in the C: The Use of Microbial Mats to Demonstrate General Principles of Scientific Inquiry and Microbial Ecology

    Science.gov (United States)

    Bebout, Brad M.; Bucaria, Robin

    2006-01-01

    Microbial mats are living examples of the most ancient biological communities on Earth. As Earth's earliest ecosystems, they are centrally important to understanding the history of life on our planet and are useful models for the search for life elsewhere. As relatively compact (but complete) ecosystems, microbial mats are also extremely useful for educational activities. Mats may be used to demonstrate a wide variety of concepts in general and microbial ecology, including the biogeochemical cycling of elements, photosynthesis and respiration, and the origin of the Earth's present oxygen containing atmosphere. Microbial mats can be found in a number of common environments accessible to teachers, and laboratory microbial mats can be constructed using materials purchased from biological supply houses. With funding from NASA's Exobiology program, we have developed curriculum and web-based activities centered on the use of microbial mats as tools for demonstrating general principles in ecology, and the scientific process. Our web site (http://microbes.arc.nasa.gov) includes reference materials, lesson plans, and a "Web Lab", featuring living mats maintained in a mini-aquarium. The site also provides information as to how research on microbial mats supports NASA's goals, and various NASA missions. A photo gallery contains images of mats, microscopic views of the organisms that form them, and our own research activities. An animated educational video on the web site uses computer graphic and video microscopy to take students on a journey into a microbial mat. These activities are targeted to a middle school audience and are aligned with the National Science Standards.

  19. Bagging system, soil stabilization mat, and tent frame for a lunar base

    Science.gov (United States)

    1990-01-01

    Georgia Tech's School of Textile and Fiber Engineering and School of Mechanical Engineering participated in four cooperative design efforts this year. Each of two interdisciplinary teams designed a system consisting of a lunar regolith bag and an apparatus for filling this bag. The third group designed a mat for stabilization of lunar soil during takeoff and landing, and a method for packaging and deploying this mat. Finally, the fourth group designed a sunlight diffusing tent to be used as a lunar worksite. Summaries of these projects are given.

  20. Bruno Taut and the Glass House

    DEFF Research Database (Denmark)

    Beim, Anne

    1997-01-01

    The Paper presents a tectonic analysis of the Glass House of Bruno Taut,  exhibited at the 1925 Wrkbund Exposition in Cologne, 1925. This is discussed in correlation with the cultural ideas and artistic inspiration he was influenced by and the innovative technological development that ruled...

  1. Through the Looking Glass: Real-Time Video Using 'Smart' Technology Provides Enhanced Intraoperative Logistics.

    Science.gov (United States)

    Baldwin, Andrew C W; Mallidi, Hari R; Baldwin, John C; Sandoval, Elena; Cohn, William E; Frazier, O H; Singh, Steve K

    2016-01-01

    In the setting of increasingly complex medical therapies and limited physician resources, the recent emergence of 'smart' technology offers tremendous potential for improved logistics, efficiency, and communication between medical team members. In an effort to harness these capabilities, we sought to evaluate the utility of this technology in surgical practice through the employment of a wearable camera device during cardiothoracic organ recovery. A single procurement surgeon was trained for use of an Explorer Edition Google Glass (Google Inc., Mountain View, CA) during the recovery process. Live video feed of each procedure was securely broadcast to allow for members of the home transplant team to remotely participate in organ assessment. Primary outcomes involved demonstration of technological feasibility and validation of quality assurance through group assessment. The device was employed for the recovery of four organs: a right single lung, a left single lung, and two bilateral lung harvests. Live video of the visualization process was remotely accessed by the home transplant team, and supplemented final verification of organ quality. In each case, the organs were accepted for transplant without disruption of standard procurement protocols. Media files generated during the procedures were stored in a secure drive for future documentation, evaluation, and education purposes without preservation of patient identifiers. Live video streaming can improve quality assurance measures by allowing off-site members of the transplant team to participate in the final assessment of donor organ quality. While further studies are needed, this project suggests that the application of mobile 'smart' technology offers not just immediate value, but the potential to transform our approach to the practice of medicine.

  2. Experimental weed control of Najas marina ssp. intermedia and Elodea nuttallii in lakes using biodegradable jute matting

    Directory of Open Access Journals (Sweden)

    Markus A. Hoffmann

    2013-10-01

    Full Text Available The use of jute matting in managing the invasive aquatic macrophyte species Elodea nuttallii (Planch. H. St. John and Najas marina ssp. intermedia (Wolfg. ex Gorski Casper (Najas intermedia was studied in laboratory experiments and field trials. Four German lakes with predominant population of Najas intermedia or Elodea nuttalli were chosen for the experiment and areas between 150 and 300 m² were covered with jute textile. The effect of the matting on the growth of invasive and non-invasive macrophytes was determined through comparison with control transects. Biodegradable jute matting successfully suppressed the invasive macrophyte Najas intermedia and significantly reduced the growth of Elodea nuttalli in lakes. The results indicate that the capability of the matting to inhibit the growth of Elodea nuttallii and Najas intermedia depends on the mesh size of the jute weaving and that environmental conditions can affect its efficiency. Various indigenous species like Charales or Potamogeton pusillus L. were able to grow through the jute fabric and populate the treated areas. Until the end of the vegetation period, none of the invasive species were able to penetrate the covering and establish a stable population; in fact, in the subsequent year the jute matting affected only the spread of Najas intermedia. Jute matting proved to be an easy-to-use and cheap method to control the growth of Elodea nuttallii and Najas intermedia.

  3. Out-of-plane ultimate shear strength of RC mat-slab foundations

    International Nuclear Information System (INIS)

    Kumagai, Hitoshi; Nukui, Yasushi; Imamura, Akira; Terayama, Takeshi; Hagiwara, Tetsuya; Kojima, Isao

    2011-01-01

    There have been few studies on the out-of-plane shear in RC mat-slab foundations, and the reasonable method has been demanded to estimate ultimate shear strength of RC mat-slab foundations in the nuclear facilities. In the previous study, the out-of-plane loading tests on the 20 square slab specimens had been performed to collect the fundamental data. In this study, the test results were successfully predicted by 3D non-linear Finite Element Analysis. It has been confirmed that the ultimate shear stress in the slab specimen can be estimated by the Arakawa's formula, which is commonly used to estimate the shear strength of RC beams. (author)

  4. An acceptance model for smart glasses based tourism augmented reality

    Science.gov (United States)

    Obeidy, Waqas Khalid; Arshad, Haslina; Huang, Jiung Yao

    2017-10-01

    Recent mobile technologies have revolutionized the way people experience their environment. Although, there is only limited research on users' acceptance of AR in the cultural tourism context, previous researchers have explored the opportunities of using augmented reality (AR) in order to enhance user experience. Recent AR research lack works that integrates dimensions which are specific to cultural tourism and smart glass specific context. Hence, this work proposes an AR acceptance model in the context of cultural heritage tourism and smart glasses capable of performing augmented reality. Therefore, in this paper we aim to present an AR acceptance model to understand the AR usage behavior and visiting intention for tourists who use Smart Glass based AR at UNESCO cultural heritage destinations in Malaysia. Furthermore, this paper identifies information quality, technology readiness, visual appeal, and facilitating conditions as external variables and key factors influencing visitors' beliefs, attitudes and usage intention.

  5. Polyamorphism in metalic glass.

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, H. W.; Liu, H. Z.; Cheng, Y. Q.; Wen, J.; Lee, P.L.; Luo, W.K.; Shastri, S.D.; Ma, E.; X-Ray Science Division; Johns Hopkins Univ.; Chinese Academy of Sciences

    2007-03-01

    A metal, or an alloy, can often exist in more than one crystal structure. The face-centered-cubic and body-centered-cubic forms of iron (or steel) are a familiar example of such polymorphism. When metallic materials are made in the amorphous form, is a parallel 'polyamorphism' possible? So far, polyamorphic phase transitions in the glassy state have been observed only in glasses involving directional and open (such as tetrahedral) coordination environments. Here, we report an in situ X-ray diffraction observation of a pressure-induced transition between two distinct amorphous polymorphs in a Ce{sub 55}Al{sub 45} metallic glass. The large density difference observed between the two polyamorphs is attributed to their different electronic and atomic structures, in particular the bond shortening revealed by ab initio modeling of the effects of f-electron delocalization. This discovery offers a new perspective of the amorphous state of metals, and has implications for understanding the structure, evolution and properties of metallic glasses and related liquids. Our work also opens a new avenue towards technologically useful amorphous alloys that are compositionally identical but with different thermodynamic, functional and rheological properties due to different bonding and structural characteristics.

  6. Clinical evaluation of the Byk LIA-mat CA125 II assay: discussion of a reference value.

    Science.gov (United States)

    Bonfrer, J M; Korse, C M; Verstraeten, R A; van Kamp, G J; Hart, G A; Kenemans, P

    1997-03-01

    The Byk LIA-mat CA125 II assay was compared with the Centocor IRMA CA125 II. Serum samples studied (n = 1012) were obtained from 652 apparently healthy females, 61 pregnant women, and 299 patients with benign and malignant gynecological tumors. The CA125 II assay value at the 95th percentile of the total healthy group was 29 kU/L for the LIA-mat and 32 kU/L for the Centocor assay. For the LIA-mat assay the 95th percentile was 31 kU/L (Centocor 36 kU/L) for the group 55 years of age. By using ROC curves we found the optimal pretreatment Byk LIA-mat CA125 II value differentiating between benign and malignant ovarian tumors to be 95 kU/L. Pretreatment CA125 values > 1000 kU/L were detected in serum samples of patients with advanced epithelial ovarian cancer.

  7. Electrochromic Glasses.

    Science.gov (United States)

    1980-07-31

    this glass and that dipole-dipole correlations contribute to the "ferroelectric-like" character of this amorphous system. The TeO2 -W03 glasses can only...shows the dielectric constant and Fig. I(b) glass from pure TeO2 ot pure WO. In addition, glass the tan 8 of the WO glass as a function of temperature... glasses containing WO, in various glass forming nitworks of LifO-B1O0, Na:O-BzO,, and TeO2 were prepared from reagent grade oxides at 800 C - 9SO C in

  8. Physicochemical characterization of different trademarks of compound Yerba Maté and their herbs

    OpenAIRE

    Scipioni,Griselda Patricia; Ferreyra,Darío Jorge; Schmalko,Miguel Eduardo

    2007-01-01

    The objectives of this study were to evaluate the physicochemical characteristics of the main herbs used in the mixture of yerba maté with other aromatic herbs and the characterization of the trademarks of compound yerba maté. Moisture, water extract, total ash, acid-insoluble ash and caffeine concentration were determined. Results showed higher values of moisture content, total and aci-insoluble ash and lower water extracts in the herbs. Determinations were carried out in nine trademarks of ...

  9. Distribution and Composition of Thiotrophic Mats in the Hypoxic Zone of the Black Sea (150–170 m Water Depth, Crimea Margin)

    Science.gov (United States)

    Jessen, Gerdhard L.; Lichtschlag, Anna; Struck, Ulrich; Boetius, Antje

    2016-01-01

    At the Black Sea chemocline, oxygen- and sulfide-rich waters meet and form a niche for thiotrophic pelagic bacteria. Here we investigated an area of the Northwestern Black Sea off Crimea close to the shelf break, where the chemocline reaches the seafloor at around 150–170 m water depth, to assess whether thiotrophic bacteria are favored in this zone. Seafloor video transects were carried out with the submersible JAGO covering 20 km2 on the region between 110 and 200 m depth. Around the chemocline we observed irregular seafloor depressions, covered with whitish mats of large filamentous bacteria. These comprised 25–55% of the seafloor, forming a belt of 3 km width around the chemocline. Cores from the mats obtained with JAGO showed higher accumulations of organic matter under the mats compared to mat-free sediments. The mat-forming bacteria were related to Beggiatoa-like large filamentous sulfur bacteria based on 16S rRNA sequences from the mat, and visual characteristics. The microbial community under the mats was significantly different from the surrounding sediments and enriched with taxa affiliated with polymer degrading, fermenting and sulfate reducing microorganisms. Under the mats, higher organic matter accumulation, as well as higher remineralization and radiotracer-based sulfate reduction rates were measured compared to outside the mat. Mat-covered and mat-free sediments showed similar degradability of the bulk organic matter pool, suggesting that the higher sulfide fluxes and subsequent development of the thiotrophic mats in the patches are consequences of the accumulation of organic matter rather than its qualitative composition. Our observations suggest that the key factors for the distribution of thiotrophic mat-forming communities near to the Crimean shelf break are hypoxic conditions that (i) repress grazers, (ii) enhance the accumulation and degradation of labile organic matter by sulfate-reducers, and (iii) favor thiotrophic filamentous bacteria

  10. Melting, solidification, remelting, and separation of glass and metal

    International Nuclear Information System (INIS)

    Ebadian, M.A.; Xin, R.C.; Liu, Y.Z.

    1998-01-01

    Several high-temperature vitrification technologies have been developed for the treatment of a wide range of mixed waste types in both the low-level waste and transuranic (TRU) mixed waste categories currently in storage at DOE sites throughout the nation. The products of these processes are an oxide slag phase and a reduced metal phase. The metal phase has the potential to be recycled within the DOE Complex. Enhanced slag/metal separation methods are needed to support these processes. This research project involves an experimental investigation of the melting, solidification, remelting, and separation of glass and metal and the development of an efficient separation technology. The ultimate goal of this project is to find an efficient way to separate the slag phase from the metal phase in the molten state. This two-year project commenced in October 1995 (FY96). In the first fiscal year, the following tasks were accomplished: (1) A literature review and an assessment of the baseline glass and metal separation technologies were performed. The results indicated that the baseline technology yields a high percentage of glass in the metal phase, requiring further separation. (2) The main melting and solidification system setup was established. A number of melting and solidification tests were conducted. (3) Temperature distribution, solidification patterns, and flow field in the molten metal pool were simulated numerically for the solidification processes of molten aluminum and iron steel. (4) Initial designs of the laboratory-scale DCS and CS technologies were also completed. The principal demonstration separation units were constructed. (5) An application for a patent for an innovative liquid-liquid separation technology was submitted and is pending

  11. Finishing of display glass for mobile electronics using 3M Trizact diamond tile abrasive pads

    Science.gov (United States)

    Zheng, Lianbin; Fletcher, Tim; Na, Tee Koon; Sventek, Bruce; Romero, Vince; Lugg, Paul S.; Kim, Don

    2010-10-01

    This paper will describe a new method being used during the finishing of glass displays for mobile electronics including mobile hand held devices and notebook computers. The new method consists of using 3M TrizactTM Diamond Tile Abrasive Pads. TrizactTM Diamond Tile is a structured fixed abrasive grinding technology developed by 3M Company. The TrizactTM Diamond Tile structured abrasive pad consists of an organic (polymeric binder) - inorganic (abrasive mineral, i.e., diamond) composite that is used with a water-based coolant. TrizactTM Diamond Tile technology can be applied in both double and single side grinding applications. A unique advantage of TrizactTM Diamond Tile technology is the combination of high stock removal and low sub-surface damage. Grinding results will be presented for both 9 micron and 20 micron grades of TrizactTM Diamond Tile abrasive pads used to finish several common display glasses including Corning GorillaTM glass and Soda Lime glass.

  12. Testing the utility of matK and ITS DNA regions for discrimination of Allium species

    Science.gov (United States)

    Molecular phylogenetic analysis of the genus Allium L. has been mainly based on the nucleotide sequences of ITS region. In 2009 matK and rbcL were accepted as a two-locus DNA barcode to classify plant species by the Consortium for the Barcode of Life (CBOL) Plant Working Group. MatK region has been ...

  13. A Matérn model of the spatial covariance structure of point rain rates

    KAUST Repository

    Sun, Ying; Bowman, Kenneth P.; Genton, Marc G.; Tokay, Ali

    2014-01-01

    It is challenging to model a precipitation field due to its intermittent and highly scale-dependent nature. Many models of point rain rates or areal rainfall observations have been proposed and studied for different time scales. Among them, the spectral model based on a stochastic dynamical equation for the instantaneous point rain rate field is attractive, since it naturally leads to a consistent space–time model. In this paper, we note that the spatial covariance structure of the spectral model is equivalent to the well-known Matérn covariance model. Using high-quality rain gauge data, we estimate the parameters of the Matérn model for different time scales and demonstrate that the Matérn model is superior to an exponential model, particularly at short time scales.

  14. A Matérn model of the spatial covariance structure of point rain rates

    KAUST Repository

    Sun, Ying

    2014-07-15

    It is challenging to model a precipitation field due to its intermittent and highly scale-dependent nature. Many models of point rain rates or areal rainfall observations have been proposed and studied for different time scales. Among them, the spectral model based on a stochastic dynamical equation for the instantaneous point rain rate field is attractive, since it naturally leads to a consistent space–time model. In this paper, we note that the spatial covariance structure of the spectral model is equivalent to the well-known Matérn covariance model. Using high-quality rain gauge data, we estimate the parameters of the Matérn model for different time scales and demonstrate that the Matérn model is superior to an exponential model, particularly at short time scales.

  15. Formation of superhydrophobic soda-lime glass surface using femtosecond laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Ahsan, Md. Shamim, E-mail: shamim@kaist.ac.kr [Photonics Application Lab, Department of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro (373-1 Guseong-dong), Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Electronics and Communication Engineering Discipline, School of Science, Engineering and Technology, Khulna University, Khulna-9208 (Bangladesh); Dewanda, Fadia, E-mail: fdewanda@kaist.ac.kr [Photonics Application Lab, Department of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro (373-1 Guseong-dong), Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Lee, Man Seop, E-mail: leems1502@kaist.ac.kr [Photonics Application Lab, Department of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro (373-1 Guseong-dong), Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Sekita, Hitoshi, E-mail: sekita@cyber-laser.com [Cyber Laser Inc., 7-7 Sinkawasaki, KBIC 101 205, Saiwai-ku, Kawasaki 212-0032 (Japan); Sumiyoshi, Tetsumi, E-mail: sumiy@cyber-laser.com [Cyber Laser Inc., 7-7 Sinkawasaki, KBIC 101 205, Saiwai-ku, Kawasaki 212-0032 (Japan)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer We formed superhydrophobic soda-lime glass surface by femtosecond laser pulses. Black-Right-Pointing-Pointer Periodic microstructures are printed on the glass surface for superhydrophobicity. Black-Right-Pointing-Pointer The contact angle of water droplet on the microstructured glass surface is 155 Degree-Sign . Black-Right-Pointing-Pointer The transparency of superhydrophobic glass is higher than 77% in visible spectrum. Black-Right-Pointing-Pointer We explain the formation mechanism of superhydrophobic soda-lime glass surface. - Abstract: This paper demonstrates the fabrication of superhydrophobic soda-lime glass surface by engineering periodic microgratings with self-formed periodic micro-ripples inside the microgratings using a single beam femtosecond laser. The wetting property of the microstructured surface is improved from hydrophobic to superhydrophobic, presenting a water droplet contact angle ranges from 152 Degree-Sign to 155 Degree-Sign . The microstructured glass surface shows excellent transparency, which is higher than 77% in the visible spectrum. We strongly believe that our proposed technology can achieve superhydrophobic glass surfaces over a large area for applications in diverse fields.

  16. Diversity of Mat-Forming Fungi in Relation to Soil Properties, Disturbance, and Forest Ecotype at Crater Lake National Park, Oregon, USA

    Directory of Open Access Journals (Sweden)

    James M. Trappe

    2012-04-01

    Full Text Available In forest ecosystems, fungal mats are functionally important in nutrient and water uptake in litter and wood decomposition processes, in carbon resource allocation, soil weathering and in cycling of soil resources. Fungal mats can occur abundantly in forests and are widely distributed globally. We sampled ponderosa pine/white fir and mountain hemlock/noble fir communities at Crater Lake National Park for mat-forming soil fungi. Fungus collections were identified by DNA sequencing. Thirty-eight mat-forming genotypes were identified; members of the five most common genera (Gautieria, Lepiota, Piloderma, Ramaria, and Rhizopogon comprised 67% of all collections. The mycorrhizal genera Alpova and Lactarius are newly identified as ectomycorrhizal mat-forming taxa, as are the saprotrophic genera Flavoscypha, Gastropila, Lepiota and Xenasmatella. Twelve typical mat forms are illustrated, representing both ectomycorrhizal and saprotrophic fungi that were found. Abundance of fungal mats was correlated with higher soil carbon to nitrogen ratios, fine woody debris and needle litter mass in both forest ecotypes. Definitions of fungal mats are discussed, along with some of the challenges in defining what comprises a fungal “mat”.

  17. Laser cutting sandwich structure glass-silicon-glass wafer with laser induced thermal-crack propagation

    Science.gov (United States)

    Cai, Yecheng; Wang, Maolu; Zhang, Hongzhi; Yang, Lijun; Fu, Xihong; Wang, Yang

    2017-08-01

    Silicon-glass devices are widely used in IC industry, MEMS and solar energy system because of their reliability and simplicity of the manufacturing process. With the trend toward the wafer level chip scale package (WLCSP) technology, the suitable dicing method of silicon-glass bonded structure wafer has become necessary. In this paper, a combined experimental and computational approach is undertaken to investigate the feasibility of cutting the sandwich structure glass-silicon-glass (SGS) wafer with laser induced thermal-crack propagation (LITP) method. A 1064 nm semiconductor laser cutting system with double laser beams which could simultaneously irradiate on the top and bottom of the sandwich structure wafer has been designed. A mathematical model for describing the physical process of the interaction between laser and SGS wafer, which consists of two surface heating sources and two volumetric heating sources, has been established. The temperature stress distribution are simulated by using finite element method (FEM) analysis software ABAQUS. The crack propagation process is analyzed by using the J-integral method. In the FEM model, a stationary planar crack is embedded in the wafer and the J-integral values around the crack front edge are determined using the FEM. A verification experiment under typical parameters is conducted and the crack propagation profile on the fracture surface is examined by the optical microscope and explained from the stress distribution and J-integral value.

  18. Plutonium immobilization in glass and ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Knecht, D.A. [Lockheed Martin Idaho Technologies, Idaho Falls (United States); Murphy, W.M. [Southwest Research Institute, San Antonio, TX (United States)

    1996-05-01

    The Materials Research Society Nineteenth Annual Symposium on the Scientific Basis for Nuclear Waste Management was held in Boston on November 27 to December 1, 1995. Over 150 papers were presented at the Symposium dealing with all aspects of nuclear waste management and disposal. Fourteen oral sessions and on poster session included a Plenary session on surplus plutonium dispositioning and waste forms. The proceedings, to be published in April, 1996, will provide a highly respected, referred compilation of the state of scientific development in the field of nuclear waste management. This paper provides a brief overview of the selected Symposium papers that are applicable to plutonium immobilization and plutonium waste form performance. Waste forms that were described at the Symposium cover most of the candidate Pu immobilization options under consideration, including borosilicate glass with a melting temperature of 1150 {degrees}C, a higher temperature (1450 {degrees}C) lanthanide glass, single phase ceramics, multi-phase ceramics, and multi-phase crystal-glass composites (glass-ceramics or slags). These Symposium papers selected for this overview provide the current status of the technology in these areas and give references to the relevant literature.

  19. Plutonium immobilization in glass and ceramics

    International Nuclear Information System (INIS)

    Knecht, D.A.; Murphy, W.M.

    1996-01-01

    The Materials Research Society Nineteenth Annual Symposium on the Scientific Basis for Nuclear Waste Management was held in Boston on November 27 to December 1, 1995. Over 150 papers were presented at the Symposium dealing with all aspects of nuclear waste management and disposal. Fourteen oral sessions and on poster session included a Plenary session on surplus plutonium dispositioning and waste forms. The proceedings, to be published in April, 1996, will provide a highly respected, referred compilation of the state of scientific development in the field of nuclear waste management. This paper provides a brief overview of the selected Symposium papers that are applicable to plutonium immobilization and plutonium waste form performance. Waste forms that were described at the Symposium cover most of the candidate Pu immobilization options under consideration, including borosilicate glass with a melting temperature of 1150 degrees C, a higher temperature (1450 degrees C) lanthanide glass, single phase ceramics, multi-phase ceramics, and multi-phase crystal-glass composites (glass-ceramics or slags). These Symposium papers selected for this overview provide the current status of the technology in these areas and give references to the relevant literature

  20. Silicate Based Glass Formulations for Immobilization of U.S. Defense Wastes Using Cold Crucible Induction Melters

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Gary L.; Kim, Dong-Sang; Schweiger, Michael J.; Marra, James C.; Lang, Jesse B.; Crum, Jarrod V.; Crawford, Charles L.; Vienna, John D.

    2014-05-22

    The cold crucible induction melter (CCIM) is an alternative technology to the currently deployed liquid-fed, ceramic-lined, Joule-heated melter for immobilizing of U.S. tank waste generated from defense related reprocessing. In order to accurately evaluate the potential benefits of deploying a CCIM, glasses must be developed specifically for that melting technology. Related glass formulation efforts have been conducted since the 1990s including a recent study that is first documented in this report. The purpose of this report is to summarize the silicate base glass formulation efforts for CCIM testing of U.S. tank wastes. Summaries of phosphate based glass formulation and phosphate and silicate based CCIM demonstration tests are reported separately (Day and Ray 2013 and Marra 2013, respectively). Combined these three reports summarize the current state of knowledge related to waste form development and process testing of CCIM technology for U.S. tank wastes.

  1. Relaxations in spin glasses: Similarities and differences from ordinary glasses

    International Nuclear Information System (INIS)

    Ngai, K.L.; Rajagopal, A.K.; Huang, C.Y.

    1984-01-01

    Relaxation phenomena have become a major concern in the physics of spin glasses. There are certain resemblances of these relaxation properties to those of ordinary glasses. In this work, we compare the relaxation properties of spin glasses near the freezing temperature with those of glasses near the glass transition temperature. There are similarities between the two types of glasses. Moreover, the relaxation properties of many glasses and spin glasses are in conformity with two coupled ''universality'' relations predicted by a recent model of relaxations in condensed matter

  2. Evaluating carbon stores at the earth-atmosphere interface: moss and lichen mats of subarctic Alaska

    Science.gov (United States)

    Robert J. Smith; Sarah Jovan; Bruce. McCune

    2015-01-01

    A fundamental goal of the forest inventory in interior Alaska is to accurately estimate carbon pools in a way that sheds light on the feedbacks between forests and climate. In boreal forests, moss and lichen mats often serve as the interface between soils and the atmosphere, therefore characterizing the biomass and composition of mats is essential for understanding how...

  3. Testing of Large-Scale ICV Glasses with Hanford LAW Simulant

    Energy Technology Data Exchange (ETDEWEB)

    Hrma, Pavel R.; Kim, Dong-Sang; Vienna, John D.; Matyas, Josef; Smith, Donald E.; Schweiger, Michael J.; Yeager, John D.

    2005-03-01

    Preliminary glass compositions for immobilizing Hanford low-activity waste (LAW) by the in-container vitrification (ICV) process were initially fabricated at crucible- and engineering-scale, including simulants and actual (radioactive) LAW. Glasses were characterized for vapor hydration test (VHT) and product consistency test (PCT) responses and crystallinity (both quenched and slow-cooled samples). Selected glasses were tested for toxicity characteristic leach procedure (TCLP) responses, viscosity, and electrical conductivity. This testing showed that glasses with LAW loading of 20 mass% can be made readily and meet all product constraints by a far margin. Glasses with over 22 mass% Na2O can be made to meet all other product quality and process constraints. Large-scale testing was performed at the AMEC, Geomelt Division facility in Richland. Three tests were conducted using simulated LAW with increasing loadings of 12, 17, and 20 mass% Na2O. Glass samples were taken from the test products in a manner to represent the full expected range of product performance. These samples were characterized for composition, density, crystalline and non-crystalline phase assemblage, and durability using the VHT, PCT, and TCLP tests. The results, presented in this report, show that the AMEC ICV product with meets all waste form requirements with a large margin. These results provide strong evidence that the Hanford LAW can be successfully vitrified by the ICV technology and can meet all the constraints related to product quality. The economic feasibility of the ICV technology can be further enhanced by subsequent optimization.

  4. The Varian MAT-250 mass spectrometer. Steady isotopes laboratory

    International Nuclear Information System (INIS)

    Hernandez M, V.; Tavera D, M.L.

    1997-01-01

    This work treats over the performance and applications of the Varian Mat-250 mass spectrometer which is in the environmental isotope laboratory. It can be applied over topics such as: ions formation, acceleration and collimation, ions separation, ions detection, data transformation, sampling, δ notation. (Author)

  5. FY 1999 results of the regional consortium R and D project/the regional consortium energy R and D. 1st year. Development of the energy-saving type production technology of high-purity/transparent silica glass; 1999 nendo kojundo tomei sekiei glass no sho energy gata seizo gijutsu no kaihatsu seika hokokusho. 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    For the purpose of achieving the remarkable energy conservation, high accuracy and low cost in the production of high-purity/transparent silica glass, the developmental research was conducted on slip casting method. In the development of technology to synthesize silica powder by the sol-gel method, monodisperse - polydisperse high-purity colloidal silica was obtained. In the development of technology to make silica power ultra-highly pure, a process was found out in which silica particles can be obtained by applying moderate amounts of ammonium bicarbonate and aqueous ammonia to the solution of silicic acid for heating. In the slip cast forming, a high-density forming body with a mean particle size of 1.5{mu}m was obtained. In the trial manufacture of reflector model, a translucent silica glass sintered body was obtained by transcribing the gypsum type dimensional shape in high purity. Besides, experimental researches were conducted on the examination of gypsum type/resin type and evaluation of physical properties, heat deterioration characteristics of the actual multi-layer film and trial manufacture of the heat resistant film, analysis/evaluation of trace impurities inside silica glass, conditions for the manufacture of dense silica glass sheets, etc. (NEDO)

  6. Bioactive and inert dental glass-ceramics.

    Science.gov (United States)

    Montazerian, Maziar; Zanotto, Edgar Dutra

    2017-02-01

    The global market for dental materials is predicted to exceed 10 billion dollars by 2020. The main drivers for this growth are easing the workflow of dentists and increasing the comfort of patients. Therefore, remarkable research projects have been conducted and are currently underway to develop improved or new dental materials with enhanced properties or that can be processed using advanced technologies, such as CAD/CAM or 3D printing. Among these materials, zirconia, glass or polymer-infiltrated ceramics, and glass-ceramics (GCs) are of great importance. Dental glass-ceramics are highly attractive because they are easy to process and have outstanding esthetics, translucency, low thermal conductivity, high strength, chemical durability, biocompatibility, wear resistance, and hardness similar to that of natural teeth, and, in certain cases, these materials are bioactive. In this review article, we divide dental GCs into the following two groups: restorative and bioactive. Most restorative dental glass-ceramics (RDGCs) are inert and biocompatible and are used in the restoration and reconstruction of teeth. Bioactive dental glass-ceramics (BDGCs) display bone-bonding ability and stimulate positive biological reactions at the material/tissue interface. BDGCs are suggested for dentin hypersensitivity treatment, implant coating, bone regeneration and periodontal therapy. Throughout this paper, we elaborate on the history, processing, properties and applications of RDGCs and BDGCs. We also report on selected papers that address promising types of dental glass-ceramics. Finally, we include trends and guidance on relevant open issues and research possibilities. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 619-639, 2017. © 2016 Wiley Periodicals, Inc.

  7. Validation Assessment of a Glass-to-Metal Seal Finite-Element Model

    Energy Technology Data Exchange (ETDEWEB)

    Jamison, Ryan Dale [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Buchheit, Thomas E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Emery, John M [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Romero, Vicente J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Stavig, Mark E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Newton, Clay S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brown, Arthur [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-10-01

    Sealing glasses are ubiquitous in high pressure and temperature engineering applications, such as hermetic feed-through electrical connectors. A common connector technology are glass-to-metal seals where a metal shell compresses a sealing glass to create a hermetic seal. Though finite-element analysis has been used to understand and design glass-to-metal seals for many years, there has been little validation of these models. An indentation technique was employed to measure the residual stress on the surface of a simple glass-to-metal seal. Recently developed rate- dependent material models of both Schott 8061 and 304L VAR stainless steel have been applied to a finite-element model of the simple glass-to-metal seal. Model predictions of residual stress based on the evolution of material models are shown. These model predictions are compared to measured data. Validity of the finite- element predictions is discussed. It will be shown that the finite-element model of the glass-to-metal seal accurately predicts the mean residual stress in the glass near the glass-to-metal interface and is valid for this quantity of interest.

  8. Commercial Ion Exchange Resin Vitrification in Borosilicate Glass

    International Nuclear Information System (INIS)

    Cicero-Herman, C.A.; Workman, P.; Poole, K.; Erich, D.; Harden, J.

    1998-05-01

    Bench-scale studies were performed to determine the feasibility of vitrification treatment of six resins representative of those used in the commercial nuclear industry. Each resin was successfully immobilized using the same proprietary borosilicate glass formulation. Waste loadings varied from 38 to 70 g of resin/100 g of glass produced depending on the particular resin, with volume reductions of 28 percent to 68 percent. The bench-scale results were used to perform a melter demonstration with one of the resins at the Clemson Environmental Technologies Laboratory (CETL). The resin used was a weakly acidic meth acrylic cation exchange resin. The vitrification process utilized represented a approximately 64 percent volume reduction. Glass characterization, radionuclide retention, offgas analyses, and system compatibility results will be discussed in this paper

  9. Effects of various polishing media and techniques on the surface finish and behavior of laser glasses

    International Nuclear Information System (INIS)

    Landingham, R.L.; Casey, A.W.; Lindahl, R.O.

    1978-01-01

    The advance of high-power laser technology is dependent on the rate of advancement in laser glass forming and surface preparation. The threshold damage of glass surfaces continues to be a weak link in the overall advancement of laser technology. Methods were developed and used in the evaluation of existing glass surface preparation techniques. Modified procedures were evaluated to reduce surface contamination and subsurface defects. Polishing rates were monitored under controlled polishing conditions (purity, pH, particle size distribution, particle concentration, etc.). Future work at LLL for this ongoing investigation is described

  10. Recycling of inorganic waste in monolithic and cellular glass-based materials for structural and functional applications.

    Science.gov (United States)

    Rincón, Acacio; Marangoni, Mauro; Cetin, Suna; Bernardo, Enrico

    2016-07-01

    The stabilization of inorganic waste of various nature and origin, in glasses, has been a key strategy for environmental protection for the last decades. When properly formulated, glasses may retain many inorganic contaminants permanently, but it must be acknowledged that some criticism remains, mainly concerning costs and energy use. As a consequence, the sustainability of vitrification largely relies on the conversion of waste glasses into new, usable and marketable glass-based materials, in the form of monolithic and cellular glass-ceramics. The effective conversion in turn depends on the simultaneous control of both starting materials and manufacturing processes. While silica-rich waste favours the obtainment of glass, iron-rich wastes affect the functionalities, influencing the porosity in cellular glass-based materials as well as catalytic, magnetic, optical and electrical properties. Engineered formulations may lead to important reductions of processing times and temperatures, in the transformation of waste-derived glasses into glass-ceramics, or even bring interesting shortcuts. Direct sintering of wastes, combined with recycled glasses, as an example, has been proven as a valid low-cost alternative for glass-ceramic manufacturing, for wastes with limited hazardousness. The present paper is aimed at providing an up-to-date overview of the correlation between formulations, manufacturing technologies and properties of most recent waste-derived, glass-based materials. © 2016 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

  11. Drug-loaded electrospun mats of poly(vinyl alcohol) fibres and their release characteristics of four model drugs

    Science.gov (United States)

    Taepaiboon, Pattama; Rungsardthong, Uracha; Supaphol, Pitt

    2006-05-01

    Mats of PVA nanofibres were successfully prepared by the electrospinning process and were developed as carriers of drugs for a transdermal drug delivery system. Four types of non-steroidal anti-inflammatory drug with varying water solubility property, i.e. sodium salicylate (freely soluble in water), diclofenac sodium (sparingly soluble in water), naproxen (NAP), and indomethacin (IND) (both insoluble in water), were selected as model drugs. The morphological appearance of the drug-loaded electrospun PVA mats depended on the nature of the model drugs. The 1H-nuclear magnetic resonance results confirmed that the electrospinning process did not affect the chemical integrity of the drugs. Thermal properties of the drug-loaded electrospun PVA mats were analysed by differential scanning calorimetry and thermogravimetric analysis. The molecular weight of the model drugs played a major role on both the rate and the total amount of drugs released from the as-prepared drug-loaded electrospun PVA mats, with the rate and the total amount of the drugs released decreasing with increasing molecular weight of the drugs. Lastly, the drug-loaded electrospun PVA mats exhibited much better release characteristics of the model drugs than drug-loaded as-cast films.

  12. Estimation of axial stiffness of plant fibres from compaction of non-woven mats

    International Nuclear Information System (INIS)

    Gamstedt, E K; Bommier, E; Madsen, B

    2014-01-01

    Plant fibres are known to show a large variability in stiffness, which makes it time-consuming to experimentally characterize this property by conventional tensile testing. In this work, an alternative method is used, where the average fibre stiffness is back-calculated from compaction tests of in-plane randomly oriented fibre mats. The model by Toll is used to relate the load–displacement curve from the test to the Young modulus of the fibre, taking into account the natural variability in fibre cross section. Several tests have been performed on hemp fibre mats and compared with results from single-fibre tensile testing. The average back-calculated Young's modulus of the fibres was 45 GPa, whereas the average value from tensile testing ranged from 30 to 60 GPa. The straightforward compaction test can be useful in ranking of fibre stiffness, provided that the mat is composed of well-separated fibres and not of twisted yarns. (paper)

  13. Innovative hydrogen storage in hollow glass-microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Keding, M.; Schmid, G.; Tajmar, M. [Austrian Research Centers, Vienna (Austria)

    2009-07-01

    Hydrogen storage technologies are becoming increasingly important for a number of future applications. The Austrian Research Centers (ARC) are developing a unique hydrogen storage system that combines the advantages of both hollow glass microsphere and chemical compound hydrogen storage, but eliminates their respective drawbacks. Water is utilized as a functional liquid to carry the hollow glass microspheres that are loaded with up to 700 bar of hydrogen gas. Sodium borohydride (NaBH{sub 4}) is then injected together with the glass microspheres into a reaction chamber where the water reacts catalytically with the NaBH{sub 4} producing hydrogen and heat. The heat is then utilized to release the hydrogen from the hollow glass microspheres providing a double hydrogen generation process without any external energy or heat during storage or gas release. The paper described this hydrogen storage system with particular reference to microspheres, the coating process, the experimental facility and NaBH{sub 4} test results. It was concluded that hydrogen storage and production on demand is possible with microspheres and sodium borohydride solution. 9 refs., 16 figs.

  14. Expansion rate and geometry of floating vegetation mats on the margins of thermokarst lakes, northern Seward Peninsula, Alaska, USA

    Science.gov (United States)

    Parsekian, A.D.; Jones, Benjamin M.; Jones, M.; Grosse, G.; Walter, Anthony K.M.; Slater, L.

    2011-01-01

    Investigations on the northern Seward Peninsula in Alaska identified zones of recent (<50years) permafrost collapse that led to the formation of floating vegetation mats along thermokarst lake margins. The occurrence of floating vegetation mat features indicates rapid degradation of near-surface permafrost and lake expansion. This paper reports on the recent expansion of these collapse features and their geometry is determined using geophysical and remote sensing measurements. The vegetation mats were observed to have an average thickness of 0.57m and petrophysical modeling indicated that gas content of 1.5-5% enabled floatation above the lake surface. Furthermore, geophysical investigation provides evidence that the mats form by thaw and subsidence of the underlying permafrost rather than terrestrialization. The temperature of the water below a vegetation mat was observed to remain above freezing late in the winter. Analysis of satellite and aerial imagery indicates that these features have expanded at maximum rates of 1-2myr-1 over a 56year period. Including the spatial coverage of floating 'thermokarst mats' increases estimates of lake area by as much as 4% in some lakes. ?? 2011 John Wiley & Sons, Ltd.

  15. Effects of filamentous macroalgae mats on growth and survival of eelgrass, Zostera marina, seedlings

    DEFF Research Database (Denmark)

    Rasmussen, Jonas; Olesen, Birgit; Krause-Jensen, Dorte

    2012-01-01

    A laboratory experiment was conducted to assess the effect of filamentous algae mats on the performance of seedlings of the eelgrass, Zostera marina. The seedlings were covered by three levels (3, 6 and 9 cm) of natural (Chaetomorpha linum) and imitation algae mats and it was hypothesized that th...

  16. Mechanical failure and glass transition in metallic glasses

    International Nuclear Information System (INIS)

    Egami, T.

    2011-01-01

    Research highlights: → We review the recent results of molecular dynamics simulations on metallic glasses. → They show the equivalence of mechanical failure and glass transition. → We discuss the microscopic mechanism behind this equivalence. → We show that the density of defects in metallic glasses is as high as a quarter. → Our concepts about the defect state in glasses need to be changed. - Abstract: The current majority view on the phenomenon of mechanical failure in metallic glasses appears to be that it is caused by the activity of some structural defects, such as free-volumes or shear transformation zones, and the concentration of such defects is small, only of the order of 1%. However, the recent results compel us to revise this view. Through molecular dynamics simulation it has been shown that mechanical failure is the stress-induced glass transition. According to our theory the concentration of the liquid-like sites (defects) is well over 20% at the glass transition. We suggest that the defect concentration in metallic glasses is actually very high, and percolation of such defects causes atomic avalanche and mechanical failure. In this article we discuss the glass transition, mechanical failure and viscosity from such a point of view.

  17. Feasibility of Augmented Reality in Clinical Simulations: Using Google Glass With Manikins.

    Science.gov (United States)

    Chaballout, Basil; Molloy, Margory; Vaughn, Jacqueline; Brisson Iii, Raymond; Shaw, Ryan

    2016-03-07

    Studies show that students who use fidelity-based simulation technology perform better and have higher retention rates than peers who learn in traditional paper-based training. Augmented reality is increasingly being used as a teaching and learning tool in a continual effort to make simulations more realistic for students. The aim of this project was to assess the feasibility and acceptability of using augmented reality via Google Glass during clinical simulation scenarios for training health science students. Students performed a clinical simulation while watching a video through Google Glass of a patient actor simulating respiratory distress. Following participation in the scenarios students completed two surveys and were questioned if they would recommend continued use of this technology in clinical simulation experiences. We were able to have students watch a video in their field of vision of a patient who mimicked the simulated manikin. Students were overall positive about the implications for being able to view a patient during the simulations, and most students recommended using the technology in the future. Overall, students reported perceived realism with augmented reality using Google Glass. However, there were technical and usability challenges with the device. As newer portable and consumer-focused technologies become available, augmented reality is increasingly being used as a teaching and learning tool to make clinical simulations more realistic for health science students. We found Google Glass feasible and acceptable as a tool for augmented reality in clinical simulations.

  18. PREPARATION AND CHARACTERIZATION OF POROUS WALLED HOLLOW GLASS MICROSPHERES

    Energy Technology Data Exchange (ETDEWEB)

    Raszewski, F; Erich Hansen, E; Ray Schumacher, R; David Peeler, D

    2008-04-21

    Porous-walled hollow glass microspheres (PWHGMs) of a modified alkali borosilicate composition have been successfully fabricated by combining the technology of producing hollow glass microspheres (HGMs) with the knowledge associated with porous glasses. HGMs are first formed by a powder glass--flame process, which are then transformed to PWHGMs by heat treatment and subsequent treatment in acid. Pore diameter and pore volume are most influenced by heat treatment temperature. Pore diameter is increased by a factor of 10 when samples are heat treated prior to acid leaching; 100 {angstrom} in non-heat treated samples to 1000 {angstrom} in samples heat treated at 600 C for 8 hours. As heat treatment time is increased from 8 hours to 24 hours there is a slight shift increase in pore diameter and little or no change in pore volume.

  19. Community phylogenetic analysis of moderately thermophilic cyanobacterial mats from China, the Philippines and Thailand.

    Science.gov (United States)

    Hongmei, Jing; Aitchison, Jonathan C; Lacap, Donnabella C; Peerapornpisal, Yuwadee; Sompong, Udomluk; Pointing, Stephen B

    2005-08-01

    Most community molecular studies of thermophilic cyanobacterial mats to date have focused on Synechococcus occurring at temperatures of approximately 50-65 degrees C. These reveal that molecular diversity exceeds that indicated by morphology, and that phylogeographic lineages exist. The moderately thermophilic and generally filamentous cyanobacterial mat communities occurring at lower temperatures have not previously been investigated at the community molecular level. Here we report community diversity in mats of 42-53 degrees C recovered from previously unstudied geothermal locations. Separation of 16S rRNA gene-defined genotypes from community DNA was achieved by DGGE. Genotypic diversity was greater than morphotype diversity in all mats sampled, although genotypes generally corresponded to observed morphotypes. Thirty-six sequences were recovered from DGGE bands. Phylogenetic analyses revealed these to form novel thermophilic lineages distinct from their mesophilic counterparts, within Calothrix, Cyanothece, Fischerella, Phormidium, Pleurocapsa, Oscillatoria and Synechococcus. Where filamentous cyanobacterial sequences belonging to the same genus were recovered from the same site, these were generally closely affiliated. Location-specific sequences were observed for some genotypes recovered from geochemically similar yet spatially separated sites, thus providing evidence for phylogeographic lineages that evolve in isolation. Other genotypes were more closely affiliated to geographically remote counterparts from similar habitats suggesting that adaptation to certain niches is also important.

  20. Mechanism study of selective heavy metal ion removal with polypyrrole-functionalized polyacrylonitrile nanofiber mats

    International Nuclear Information System (INIS)

    Wang, Jianqiang; Luo, Chao; Qi, Genggeng; Pan, Kai; Cao, Bing

    2014-01-01

    Graphical abstract: - Highlights: • PAN/PPy core/shell nanofiber used for Cr(VI) removal. • Adsorption mechanisms were investigated. • Selective adsorption performances were investigated. - Abstract: Polyacrylonitrile/polypyrrole (PAN/PPy) core/shell nanofiber mat was prepared through electrospinning followed by a simple chemical oxidation method. The polypyrrole-functionalized nanofiber mats showed selective adsorption performance for anions. The interaction between heavy metal anions and polypyrrole (especially the interaction between Cr 2 O 7 2− and polypyrrole) during the adsorption process was studied. The results showed that the adsorption process included two steps: one was the anion exchange process between the Cl − and Cr(VI), and the other was the redox process for the Cr(VI) ions. The adsorption amount was related to the protonation time of the PAN/PPy nanofiber mat and increased as protonation time increased. Meanwhile, the Cr(VI) ions were reduced to Cr(III) through the reaction with amino groups of polypyrrole (from secondary amines to tertiary amines). PAN/PPy nanofiber mat showed high selectivity for Cr(VI), and the adsorption performance was nearly unaffected by other co-existing anions (Cl − , NO 3 − , and SO 4 2− ) except for PO 4 3− for the pH change

  1. The long-term acceleration of waste glass corrosion: A preliminary review

    International Nuclear Information System (INIS)

    Kielpinski, A.L.

    1995-07-01

    Whereas a prior conception of glass dissolution assumed a relatively rapid initial dissolution which then slowed to a smaller, fairly constant longer-term rate, some recent work suggests that these two stages are followed by a third phase of dissolution, in which the dissolution rate is accelerated with respect to what had previously been thought of as the final long-term rate. The goals of the present study are to compile experimental data which may have a bearing on this phenomena, and to provide an initial assessment of these data. The Savannah River Technology Center (SRTC) is contracted to develop glass formulation models for vitrification of Hanford low-level waste (LLW), in support of the Hanford Tank Waste Remediation System Technology Development Program. The phenomenon of an increase in corrosion rate, following a period characterized by a low corrosion rate, has been observed by a number of researchers on a number of waste glass compositions. Despite inherent ambiguities arising from SA/V (glass surface area to solution volume ratio) and other effects, valid comparisons can be made in which accelerated corrosion was observed in one test, but not in another. Some glass compositions do not appear to attain a plateau region; it may be that the observation of continued, non-negligible corrosion in these glasses represents a passage from the initial rate to the accelerated rate. The long-term corrosion is a function of the interaction between the glass and its environment, including the leaching solution and the surrounding materials. Reaction path modeling and stability field considerations have been used with some success to predict the changes in corrosion rate over time, due to these interactions. The accelerated corrosion phenomenon highlights the need for such integrated corrosion modeling and the scenario-specific nature of a particular glass composition's durability

  2. Defining the Glass Composition Limits for SRS Contaminated Soils

    International Nuclear Information System (INIS)

    Cicero, C.A.; Bickford, D.F.; Crews, W.O.

    1995-01-01

    Contaminated soil resulting from the excavation, repair, and decommissioning of facilities located at the Savannah River Site (SRS) is currently being disposed of by shallow land burial or is being stored when considered only hazardous. Vitrification of this waste is being investigated, since it will bind the hazardous and radioactive species in a stable and durable glass matrix, which will reduce the risk of ground water contamination. However, the composition limits for producing durable glass have to be determined before the technology can be applied. Glass compositions, consisting of SRS soil and glass forming additives, were tested on a crucible-scale in three ternary phase systems. Nine different glass compositions were produced, with waste loadings ranging from 43 to 58 weight percent. These were characterized using varoius chemical methods and tested for durability in both alkaline and acidic environments. All nine performed well in alkaline environments, but only three met the strictest criteria for the acidic environment tests. Although the glasses did not meet all of the limits for the acidic tests, the test was performed on very conservative size samples, so the results were also conservative. Therefore, enough evidence was found to provide proof that SRS soil can be vitrified in a durable glass matrix

  3. Poly(L-lactide)/halloysite nanotube electrospun mats as dual-drug delivery systems and their therapeutic efficacy in infected full-thickness burns.

    Science.gov (United States)

    Zhang, Xiazhi; Guo, Rui; Xu, Jiqing; Lan, Yong; Jiao, Yanpeng; Zhou, Changren; Zhao, Yaowu

    2015-11-01

    In this study, poly(L-lactide) (PLLA)/halloysite nanotube (HNT) electrospun mats were prepared as a dual-drug delivery system. HNTs were used to encapsulate polymyxin B sulphate (a hydrophilic drug). Dexamethasone (a hydrophobic drug) was directly dissolved in the PLLA solution. The drug-loaded HNTs with optimised encapsulation efficiency were then mixed with the PLLA solution for subsequent electrospinning to form composite dual-drug-loaded fibre mats. The structure, morphology, degradability and mechanical properties of the electrospun composite mats were characterised in detail. The results showed that the HNTs were uniformly distributed in the composite PLLA mats. The HNTs content in the mats could change the morphology and average diameter of the electrospun fibres. The HNTs improved both the tensile strength of the PLLA electrospun mats and their degradation ratio. The drug-release kinetics of the electrospun mats were investigated using ultraviolet-visible spectrophotometry. The HNTs/PLLA ratio could be varied to adjust the release of polymyxin B sulphate and dexamethasone. The antibacterial activity in vitro of the mats was evaluated using agar diffusion and turbidimetry tests, which indicated the antibacterial efficacy of the dual-drug delivery system against Gram-positive and -negative bacteria. Healing in vivo of infected full-thickness burns and infected wounds was investigated by macroscopic observation, histological observation and immunohistochemical staining. The results indicated that the electrospun mats were capable of co-loading and co-delivering hydrophilic and hydrophobic drugs, and could potentially be used as novel antibacterial wound dressings. © The Author(s) 2015.

  4. The Harris and Beath footprinting mat: diagnostic validity and clinical use.

    Science.gov (United States)

    Silvino, N; Evanski, P M; Waugh, T R

    1980-09-01

    Pain on the plantar aspect of the forefoot is a common malady whose specific cause is often difficult to diagnose. Using the Berkemann Laboratory version of the original mat of Harris and Beath, and a calibration curve, the patterns on a footprint can be translated into their actual pressure values withhin the range of 0.27 kg/cm2 to 4.80 kg/cm2. Using the procedure presented here, inexperienced subjects were able to estimate the pressure values of random prints of unknown pressure within a standard deviation of 0.28 kg/cm2 from their actual values. The mat is valuable for diagnosis of pressure metatarsalgia and other disorders of the foot. The specificity was 0.77, sensitivity was 0.57, with the sum being equal to 1.34. These results indicate that there is a relatively large population of normal people wit excessive localized pressure under their metatarsal heads who do not complain of pain. The apparently low sensitivty of the mat in this study does not seem to be a limitation, but is an indication of the haziness involved in the differential diagnosis of forefoot pain. Pressure metatarsalgia can be quantitated by analysis of the Harris footprint.

  5. Zirconium Hydroxide-coated Nanofiber Mats for Nerve Agent Decontamination.

    Science.gov (United States)

    Kim, Sohee; Ying, Wu Bin; Jung, Hyunsook; Ryu, Sam Gon; Lee, Bumjae; Lee, Kyung Jin

    2017-03-16

    Diverse innovative fabrics with specific functionalities have been developed for requirements such as self-decontamination of chemical/biological pollutants and toxic nerve agents. In this work, Zr(OH) 4 -coated nylon-6,6 nanofiber mats were fabricated for the decontamination of nerve agents. Nylon-6,6 fabric was prepared via the electrospinning process, followed by coating with Zr(OH) 4 , which was obtained by the hydrolysis of Zr(OBu) 4 by a sol-gel reaction on nanofiber surfaces. The reaction conditions were optimized by varying the amounts of Zr(OBu) 4 ,the reaction time, and the temperature of the sol-gel reaction. The composite nanofibers show high decontamination efficiency against diisopropylfluorophosphate, which is a nerve agent analogue, due to its high nucleophilicity that aids in the catalysis of the hydrolysis of the phosphonate ester bonds. Composite nanofiber mats have a large potential and can be applied in specific fields such as military and medical markets. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Biocompatibility of plasma-treated poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nanofiber mats modified by silk fibroin for bone tissue regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Unalan, Irem [Biomedical Technologies Department, Graduate School of Natural and Applied Sciences, Dokuz Eylul University, Izmir (Turkey); Colpankan, Oylum [Metallurgical and Materials Engineering Department, Faculty of Engineering, Dokuz Eylul University, Izmir (Turkey); Albayrak, Aylin Ziylan, E-mail: aylin.albayrak@deu.edu.tr [Metallurgical and Materials Engineering Department, Faculty of Engineering, Dokuz Eylul University, Izmir (Turkey); Gorgun, Cansu [Biomedical Technologies Department, Graduate School of Natural and Applied Sciences, Ege University, Izmir (Turkey); Urkmez, Aylin Sendemir [Biomedical Technologies Department, Graduate School of Natural and Applied Sciences, Ege University, Izmir (Turkey); Bioengineering Department, Faculty of Engineering, Ege University, Izmir (Turkey)

    2016-11-01

    The objective of this study was to produce biocompatible plasma-treated and silk-fibroin (SF) modified poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) nanofiber mats. The mats were plasma-treated using O{sub 2} or N{sub 2} gas to increase their hydrophilicity followed by SF immobilization for the improvement of biocompatibility. Contact angle measurements and SEM showed increased hydrophilicity and no disturbed morphology, respectively. Cell proliferation assay revealed that SF modification together with N{sub 2} plasma (PS/N{sub 2}) promoted higher osteoblastic (SaOs-2) cell viability. Although, O{sub 2} plasma triggered more mineral formation on the mats, it showed poor cell viability. Consequently, the PS/N{sub 2} nanofiber mats would be a potential candidate for bone tissue engineering applications. - Highlights: • N{sub 2}-plasma treated and silk fibroin modified mats do not show hydrophobic recovery. • Biomineralization is better on O{sub 2}-plasma treated and silk fibroin modified mats. • SaOS-2 cells like to proliferate on N{sub 2}-plasma treated surfaces.

  7. Microbial mat of the thermal springs Kuchiger Republic of Buryatia: species composition, biochemical properties and electrogenic activity in biofuel cell

    Science.gov (United States)

    Aleksandrovich Yuriev, Denis; Viktorovna Zaitseva, Svetlana; Olegovna Zhdanova, Galina; Yurievich Tolstoy, Mikhail; Dondokovna Barkhutova, Darima; Feodorovna Vyatchina, Olga; Yuryevna Konovalova, Elena; Iosifovich Stom, Devard

    2018-02-01

    Electrogenic, molecular and some other properties of a microbial mat isolated from the Kuchiger hot spring (Kurumkansky District, Republic of Buryatia) were studied. Molecular analysis showed that representatives of Proteobacteria (85.5 % of the number of classified bacterial sequences) prevailed in the microbial mat of the Kuchiger springs, among which sulfur bacteria of the genus Thiothrix were the most numerous. In the microbial mat there were bacteria from the families Rhodocyclaceae, Comamonadaceae and Flavobacteriaceae. Phylum Bacteroidetes, Cyanobacteria/Chloroplast, Fusobacteria, Fibrobacteres, Acidobacteria, Chlorobi, Spirochaetes, Verrucomicrobia, Firmicutes, Deinococcus-Thermus, Chloroflexi and Actinobacteria are also noted in the composition of the microbial mat. Under the experimental conditions using Kuchiger-mat 16 as bioagents, glucose and peptone as substrates, the power of BFC was 240 and 221 mW / m2, respectively. When replacing the substrate with sodium acetate, the efficiency of the BFC was reduced by a factor of 10 (20 mW / m2). The prospects of using a microbial mat “Kuchiger-16” as an electrogen in BFC when utilizing alkaline waste water components to generate electricity are discussed.

  8. Fluorescence line-narrowing studies of Nd:glass laser materials

    International Nuclear Information System (INIS)

    Riseberg, L.A.; Brecher, C.

    The increasing importance of Nd glass lasers in laser fusion technology has emphasized the inadequacy in the understanding of the optical properties of rare earth ions in glasses. Indeed, it has been difficult to generate models for the performance of these devices, and the selection of host glasses could be done by little more than a trial-and-error approach. The technique of laser-induced fluorescence line-narrowing developed within the last few years provides a new and powerful tool for the study of these systems. In this technique, a laser excites within the inhomogeneously broadened absorption bands a selected subgroup of the ions in the system, namely those whose absorption energy is resonant with the laser. If the excitation does not migrate among the entire collection of ions prior to fluorescence, the fluorescence that is observed is only from the group that was excited and is narrowed. This permits the selective study of classes of ion sites within the ensemble. The concept is indicated schematically. By the use of a tunable laser, such as a dye laser, it is possible to vary the class of sites, defined by energy, that is excited and thereby study the important spectroscopic properties and their variations, unclouded by the averaging that occurs under excitation of the entire system. Furthermore, it is then possible to use the spectroscopic information to infer a description of the variation of the microscopic environment, and a rationalization of the effects of compositional changes. Use of a pulsed dye laser and time-resolved detection permits the study of the dynamics, including, for example, the energy transfer among ions of different energies within the inhomogeneously-broadened spectrum. The goal of this project has been to apply such studies to glasses of interest to glass laser technology, providing information for device modeling, and establishing design criteria for glass selection

  9. Influence of iron ions on the structural properties of some inorganic glasses

    International Nuclear Information System (INIS)

    Music, S.; Gotic, M.; Popovic, S.; Grzeta, B.

    1987-01-01

    The effects of iron on the structural properties of Zn-borosilicate glass and Pb-metaphosphate glass were studied using x-ray diffraction, 57 Fe Moessbauer spectroscopy and IR spectroscopy. At high concentration of iron the crystallization of zinc ferrite in the glass matrix takes place. X-ray diffraction and 57 Fe Moessbauer spectroscopy showed that the amount of zinc ferrite in Zn-borosilicate glass decreases. In Pb-metaphosphate glass doped with high concentration of α-Fe 2 O 3 , the crystallization of Fe 3 (PO 4 ) 2 is pronounced. The assignments of IR band positions and the corresponding interpretation are given. The importance of this study for the technology of vitrification of high-level radioactive wastes is emphasized. (author) 31 refs.; 6 figs,.; 6 tabs

  10. Linking phylogenetic and functional diversity to nutrient spiraling in microbial mats from Lower Kane Cave (USA).

    Science.gov (United States)

    Engel, Annette Summers; Meisinger, Daniela B; Porter, Megan L; Payn, Robert A; Schmid, Michael; Stern, Libby A; Schleifer, K H; Lee, Natuschka M

    2010-01-01

    Microbial mats in sulfidic cave streams offer unique opportunities to study redox-based biogeochemical nutrient cycles. Previous work from Lower Kane Cave, Wyoming, USA, focused on the aerobic portion of microbial mats, dominated by putative chemolithoautotrophic, sulfur-oxidizing groups within the Epsilonproteobacteria and Gammaproteobacteria. To evaluate nutrient cycling and turnover within the whole mat system, a multidisciplinary strategy was used to characterize the anaerobic portion of the mats, including application of the full-cycle rRNA approach, the most probable number method, and geochemical and isotopic analyses. Seventeen major taxonomic bacterial groups and one archaeal group were retrieved from the anaerobic portions of the mats, dominated by Deltaproteobacteria and uncultured members of the Chloroflexi phylum. A nutrient spiraling model was applied to evaluate upstream to downstream changes in microbial diversity based on carbon and sulfur nutrient concentrations. Variability in dissolved sulfide concentrations was attributed to changes in the abundance of sulfide-oxidizing microbial groups and shifts in the occurrence and abundance of sulfate-reducing microbes. Gradients in carbon and sulfur isotopic composition indicated that released and recycled byproduct compounds from upstream microbial activities were incorporated by downstream communities. On the basis of the type of available chemical energy, the variability of nutrient species in a spiraling model may explain observed differences in microbial taxonomic affiliations and metabolic functions, thereby spatially linking microbial diversity to nutrient spiraling in the cave stream ecosystem.

  11. Effect of the flexibility of the base mat on seismic response of a PWR-reactor building

    International Nuclear Information System (INIS)

    Waas, G.; Riggs, H.R.

    1983-01-01

    The flexibility of the base mat influences the stiffness and the radiation damping of foundations, In this paper its effect on the seismic response of an axisymmetric PWR-reactor building is investigated. The base mat of the building is stiffened by cylindrical concrete walls and by a rigid block in the center. Soft and stiff soil conditions are considered. The structure and its foundation are modelled by axisymmetric shell and volume elements with Fourier expansions in the circumferential direction. The soil is treated as a horizontally layered viscoelastic medium. Soil and structure are coupled along nodal rings. The stiffness matrix of the soil is computed using an explicit semi-analytic solution for displacements caused by ring loads acting on the surface or within a layered medium. The analysis is performed in the frequency domain, and the response in the time domain is computed by the fast Fourier transformation. The earthquake response is computed with and without including the flexibility of the relatively stiff base mat. The comparison shows that including the flexibility of the mat has hardly any effect on the resonant frequencies and the damping of the fundamental rocking and vertical modes. This is the case for soft and stiff soil conditions. However, the flexibility of the mat strongly affects the first structural deformation mode, in which the external and internal structures deflect in opposite directions. (orig./HP)

  12. High-Level Waste Glass Formulation Model Sensitivity Study 2009 Glass Formulation Model Versus 1996 Glass Formulation Model

    International Nuclear Information System (INIS)

    Belsher, J.D.; Meinert, F.L.

    2009-01-01

    This document presents the differences between two HLW glass formulation models (GFM): The 1996 GFM and 2009 GFM. A glass formulation model is a collection of glass property correlations and associated limits, as well as model validity and solubility constraints; it uses the pretreated HLW feed composition to predict the amount and composition of glass forming additives necessary to produce acceptable HLW glass. The 2009 GFM presented in this report was constructed as a nonlinear optimization calculation based on updated glass property data and solubility limits described in PNNL-18501 (2009). Key mission drivers such as the total mass of HLW glass and waste oxide loading are compared between the two glass formulation models. In addition, a sensitivity study was performed within the 2009 GFM to determine the effect of relaxing various constraints on the predicted mass of the HLW glass.

  13. Effect of salinity on nitrogenase activity and composition of the active diazotrophic community in intertidal microbial mats

    NARCIS (Netherlands)

    Severin, I.; Confurius-Guns, V.; Stal, L.J.

    2012-01-01

    Microbial mats are often found in intertidal areas experiencing a large range of salinities. This study investigated the effect of changing salinities on nitrogenase activity and on the composition of the active diazotrophic community ( transcript libraries) of three types of microbial mats situated

  14. Effect of natural fiber types and sodium silicate coated on natural fiber mat/PLA composites: Tensile properties and rate of fire propagation

    Science.gov (United States)

    Thongpin, C.; Srimuk, J.; hipkam, N.; Wachirapong, P.

    2015-07-01

    In this study, 3 types of natural fibres, i.e. jute, sisal and abaca, were plain weaved to fibre mat. Before weaving, the fibres were treated with 5% NaOH to remove hemi cellulose and lignin. The weaving was performed by hand using square wooden block fit with nails for weaving using one and two types of natural fibres as weft and warp fibre to produce natural fibre mat. The fibre mat was also impregnated in sodium silicate solution extracted from rich husk ash. The pH of the solution was adjusted to pH 7 using H2SO4 before impregnation. After predetermined time, sodium silicate was gelled and deposited on the mat. The fabric mat and sodium silicate coated mat were then impregnated with PLA solution to produce prepreg. Dried pepreg was laminated with PLA sheet using compressing moulding machine to obtain natural fibre mat/PLA composite. The composite containing abaca aligned in longitudinal direction with respect to tension force enhanced Young's modulus more than 300%. Fibre mat composites with abaca aligned in longitudinal direction also showed tensile strength enhancement nearly 400% higher than neat PLA. After coating with sodium silicate, the tensile modulus of the composites was found slightly increased. The silicate coating was disadvantage on tensile strength of the composite due to the effect of sodium hydroxide solution that was used as solvent for silicate extraction from rice husk ash. However, sodium silicate could retard rate of fire propagation about 50%compare to neat PLA and about 10% reduction compared to fibre mat composites without sodium silicate coated fibre mat.

  15. Effect of natural fiber types and sodium silicate coated on natural fiber mat/PLA composites: Tensile properties and rate of fire propagation

    International Nuclear Information System (INIS)

    Thongpin, C; Srimuk, J; Hipkam, N; Wachirapong, P

    2015-01-01

    In this study, 3 types of natural fibres, i.e. jute, sisal and abaca, were plain weaved to fibre mat. Before weaving, the fibres were treated with 5% NaOH to remove hemi cellulose and lignin. The weaving was performed by hand using square wooden block fit with nails for weaving using one and two types of natural fibres as weft and warp fibre to produce natural fibre mat. The fibre mat was also impregnated in sodium silicate solution extracted from rich husk ash. The pH of the solution was adjusted to pH 7 using H 2 SO 4 before impregnation. After predetermined time, sodium silicate was gelled and deposited on the mat. The fabric mat and sodium silicate coated mat were then impregnated with PLA solution to produce prepreg. Dried pepreg was laminated with PLA sheet using compressing moulding machine to obtain natural fibre mat/PLA composite. The composite containing abaca aligned in longitudinal direction with respect to tension force enhanced Young's modulus more than 300%. Fibre mat composites with abaca aligned in longitudinal direction also showed tensile strength enhancement nearly 400% higher than neat PLA. After coating with sodium silicate, the tensile modulus of the composites was found slightly increased. The silicate coating was disadvantage on tensile strength of the composite due to the effect of sodium hydroxide solution that was used as solvent for silicate extraction from rice husk ash. However, sodium silicate could retard rate of fire propagation about 50%compare to neat PLA and about 10% reduction compared to fibre mat composites without sodium silicate coated fibre mat. (paper)

  16. Color and dichroism of silver-stained glasses

    International Nuclear Information System (INIS)

    Molina, Gloria; Murcia, Sonia; Molera, Judit; Roldan, Clodoaldo; Crespo, Daniel; Pradell, Trinitat

    2013-01-01

    Yellow decorations in glasses have been produced since the beginning of the fourteenth century by incorporating metallic silver nanoparticles into the glass (from a few to some tens of nanometers). The optical response of the glass-particles composite is determined by the surface plasmon resonance absorption and scattering of the nanometric metallic particles. Generally, the same color is perceived in reflection and in transmission although dichroic effects are occasionally observed. As silver-stained glasses were designed to be observed in transmission, tuning the transmission color from yellow to red was of technological interest. The relationship between the color observed both in transmission and reflection and the composition and nanostructure of regular (yellow) and dichroic (yellow and red) silver stains from the Renaissance (late fifteenth and sixteenth century, respectively) is related to the presence of a layer (of about 10–20 μm thick) of metallic silver nanoparticles (from few to 100 nm in size). The correlation between the colors observed and the silver stain nanostructure is studied with particular emphasis on the origin of the dichroic behavior. The optical response is computed and compared to the experimental data. Differences in the synthesis parameters responsible for the colors and for the dichroic behavior of the silver stain glasses are proposed. This is essential for the replication of the glass pieces which are required as replacements in the restoration/conservation of the windows but is also of broader interest

  17. Color and dichroism of silver-stained glasses

    Energy Technology Data Exchange (ETDEWEB)

    Molina, Gloria [Universitat Politecnica de Catalunya, Center for Research in NanoEngineering (Spain); Murcia, Sonia [Universidad de Valencia, Instituto de Ciencia de los Materiales (Spain); Molera, Judit [Universitat de Vic, GRTD, Escola Politecnica Superior (Spain); Roldan, Clodoaldo [Universidad de Valencia, Instituto de Ciencia de los Materiales (Spain); Crespo, Daniel; Pradell, Trinitat, E-mail: Trinitat.Pradell@upc.edu [Universitat Politecnica de Catalunya, Center for Research in NanoEngineering (Spain)

    2013-09-15

    Yellow decorations in glasses have been produced since the beginning of the fourteenth century by incorporating metallic silver nanoparticles into the glass (from a few to some tens of nanometers). The optical response of the glass-particles composite is determined by the surface plasmon resonance absorption and scattering of the nanometric metallic particles. Generally, the same color is perceived in reflection and in transmission although dichroic effects are occasionally observed. As silver-stained glasses were designed to be observed in transmission, tuning the transmission color from yellow to red was of technological interest. The relationship between the color observed both in transmission and reflection and the composition and nanostructure of regular (yellow) and dichroic (yellow and red) silver stains from the Renaissance (late fifteenth and sixteenth century, respectively) is related to the presence of a layer (of about 10-20 {mu}m thick) of metallic silver nanoparticles (from few to 100 nm in size). The correlation between the colors observed and the silver stain nanostructure is studied with particular emphasis on the origin of the dichroic behavior. The optical response is computed and compared to the experimental data. Differences in the synthesis parameters responsible for the colors and for the dichroic behavior of the silver stain glasses are proposed. This is essential for the replication of the glass pieces which are required as replacements in the restoration/conservation of the windows but is also of broader interest.

  18. Solid state laser technology for inertial confinement fusion: A collection of articles from ''Energy and Technology Review''

    International Nuclear Information System (INIS)

    1988-06-01

    This paper contains reprinted articles that record several milestones in laser research at LLNL. ''Neodymium-Glass Laser Research and Development at LLNL'' recounts the history of the Laser Program and our work on neodymium-glass lasers. ''Nova Laser Technology'' describes the capabilities of the Nova laser and some of its uses. ''Building Nova: Industry Relations and Technology Transfer'' illustrates the Laboratory's commitment to work with US industry in technology development. ''Managing the Nova Laser Project'' details the organization and close monitoring of costs and schedules during the construction of the Nova laser facility. The article ''Optical Coatings by the Sol-Gel Process,'' describes our chemical process for making the damage-resistant, antireflective silica coatings used on the Nova laser glass. The technical challenges in designing and fabricating the KDP crystal arrays used to convert the light wave frequency of the Nova lasers are reported in ''Frequency Conversion of the Nova Laser.'' Two articles, ''Eliminating Platinum Inclusions in Laser Glass'' and ''Detecting Microscopic Inclusions in Optical Glass,'' describe how we dealt with the problem of damaging metal inclusions in the Nova laser glass. The last article reprinted here, ''Auxilliary Target Chamber for Nova,'' discusses the diversion of two of Nova's ten beamlines into a secondary chamber for the purpose of increasing our capacity for experimentation

  19. Hot slumping glass technology for the grazing incidence optics of future missions with particular reference to IXO

    Science.gov (United States)

    Ghigo, M.; Basso, S.; Bavdaz, M.; Conconi, P.; Citterio, O.; Civitani, M.; Friedrich, P.; Gallieni, D.; Guldimann, B.; Martelli, F.; Negri, R.; Pagano, G.; Pareschi, G.; Parodi, G.; Proserpio, L.; Salmaso, B.; Scaglione, F.; Spiga, D.; Tagliaferri, G.; Terzi, L.; Tintori, M.; Vongehr, M.; Wille, E.; Winter, A.; Zambra, A.

    2010-07-01

    The mirrors of the International X-ray Observatory (IXO) consist of a large number of high quality segments delivering a spatial resolution better than 5 arcsec. A study concerning the slumping of thin glass foils for the IXO mirrors is under development in Europe, funded by ESA and led by the Brera Observatory. We are investigating two approaches, the "Direct" and "Indirect" slumping technologies, being respectively based on the use of convex and concave moulds. In the first case during the thermal cycle the optical surface of the glass is in direct contact with the mould surface, while in the second case it is the rear side of the foil which touches the master. Both approaches present pros and cons and aim of this study is also to make an assessment of both processes and to perform a trade-off between the two. The thin plates are made of D263glass produced by Schott. Each plate is 0.4 mm thick, with a reflecting area of 200 mm x 200 mm; the mould are made of Fused Silica. After the thermal cycle the slumped MPs are characterized to define their optical quality and microroughness. The adopted integration process foresees the bonding of the slumped foils to a rigid backplane by means of reinforcing ribs. During the bonding process the plates are constrained to stay in close contact to the surface of the master (i.e. the same mould used for the hot slumping process) by the application of a vacuum pump suction. In this way spring-back deformations and low frequency errors still present on the foil profile after slumping can be corrected. In this paper we present the preliminary results concerning achieved during the first part of the project.

  20. Phototrophs in high-iron-concentration microbial mats: physiological ecology of phototrophs in an iron-depositing hot spring

    Science.gov (United States)

    Pierson, B. K.; Parenteau, M. N.; Griffin, B. M.

    1999-01-01

    At Chocolate Pots Hot Springs in Yellowstone National Park the source waters have a pH near neutral, contain high concentrations of reduced iron, and lack sulfide. An iron formation that is associated with cyanobacterial mats is actively deposited. The uptake of [(14)C]bicarbonate was used to assess the impact of ferrous iron on photosynthesis in this environment. Photoautotrophy in some of the mats was stimulated by ferrous iron (1.0 mM). Microelectrodes were used to determine the impact of photosynthetic activity on the oxygen content and the pH in the mat and sediment microenvironments. Photosynthesis increased the oxygen concentration to 200% of air saturation levels in the top millimeter of the mats. The oxygen concentration decreased with depth and in the dark. Light-dependent increases in pH were observed. The penetration of light in the mats and in the sediments was determined. Visible radiation was rapidly attenuated in the top 2 mm of the iron-rich mats. Near-infrared radiation penetrated deeper. Iron was totally oxidized in the top few millimeters, but reduced iron was detected at greater depths. By increasing the pH and the oxygen concentration in the surface sediments, the cyanobacteria could potentially increase the rate of iron oxidation in situ. This high-iron-content hot spring provides a suitable model for studying the interactions of microbial photosynthesis and iron deposition and the role of photosynthesis in microbial iron cycling. This model may help clarify the potential role of photosynthesis in the deposition of Precambrian banded iron formations.

  1. Ultrasound-guided central venous access using Google Glass.

    Science.gov (United States)

    Wu, Teresa S; Dameff, Christian J; Tully, Jeffrey L

    2014-12-01

    The use of ultrasound during invasive bedside procedures is quickly becoming the standard of care. Ultrasound machine placement during procedures often requires the practitioner to turn their head during the procedure to view the screen. Such turning has been implicated in unintentional hand movements in novices. Google Glass is a head-mounted computer with a specialized screen capable of projecting images and video into the view of the wearer. Such technology may help decrease unintentional hand movements. Our aim was to evaluate whether or not medical practitioners at various levels of training could use Google Glass to perform an ultrasound-guided procedure, and to explore potential advantages of this technology. Forty participants of varying training levels were randomized into two groups. One group used Google Glass to perform an ultrasound-guided central line. The other group used traditional ultrasound during the procedure. Video recordings of eye and hand movements were analyzed. All participants from both groups were able to complete the procedure without difficulty. Google Glass wearers took longer to perform the procedure at all training levels (medical student year 1 [MS1]: 193 s vs. 77 s, p > 0.5; MS4: 197s vs. 91s, p ≤ 0.05; postgraduate year 1 [PGY1]: 288s vs. 125 s, p > 0.5; PGY3: 151 s vs. 52 s, p ≤ 0.05), and required more needle redirections (MS1: 4.4 vs. 2.0, p > 0.5; MS4: 4.8 vs. 2.8, p > 0.5; PGY1: 4.4 vs. 2.8, p > 0.5; PGY3: 2.0 vs. 1.0, p > 0.5). In this study, it was possible to perform ultrasound-guided procedures with Google Glass. Google Glass wearers, on average, took longer to gain access, and had more needle redirections, but less head movements were noted. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. The Potential of Thermophotovoltaic Heat Recovery for the Glass Industry

    Science.gov (United States)

    Bauer, T.; Forbes, I.; Penlington, R.; Pearsall, N.

    2003-01-01

    This paper aims to provide an overview of heat recovery by thermophotovoltaics (TPV) from industrial high-temperature processes and uses the glass industry in the UK as an example. The work is part of a study of potential industrial applications of TPV in the UK being carried out by the Northumbria Photovoltaics Applications Centre. The paper reviews the relevant facts about TPV technology and the glass industry and identifies locations of use for TPV. These are assessed in terms of glass sector, furnace type, process temperature, impact on the existing process, power scale and development effort of TPV. Knowledge of these factors should contribute to the design of an optimum TPV system. The paper estimates possible energy savings and reductions of CO2 emissions using TPV in the glass industry.

  3. Development of a Twin-spool Turbofan Engine Simulation Using the Toolbox for Modeling and Analysis of Thermodynamic Systems (T-MATS)

    Science.gov (United States)

    Zinnecker, Alicia M.; Chapman, Jeffryes W.; Lavelle, Thomas M.; Litt, Johathan S.

    2014-01-01

    The Toolbox for Modeling and Analysis of Thermodynamic Systems (T-MATS) is a tool that has been developed to allow a user to build custom models of systems governed by thermodynamic principles using a template to model each basic process. Validation of this tool in an engine model application was performed through reconstruction of the Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) (v2) using the building blocks from the T-MATS (v1) library. In order to match the two engine models, it was necessary to address differences in several assumptions made in the two modeling approaches. After these modifications were made, validation of the engine model continued by integrating both a steady-state and dynamic iterative solver with the engine plant and comparing results from steady-state and transient simulation of the T-MATS and C-MAPSS models. The results show that the T-MATS engine model was accurate within 3 of the C-MAPSS model, with inaccuracy attributed to the increased dimension of the iterative solver solution space required by the engine model constructed using the T-MATS library. This demonstrates that, given an understanding of the modeling assumptions made in T-MATS and a baseline model, the T-MATS tool provides a viable option for constructing a computational model of a twin-spool turbofan engine that may be used in simulation studies.

  4. Bactericidal antibody against a representative epidemiological meningococcal serogroup B panel confirms that MATS underestimates 4CMenB vaccine strain coverage.

    Science.gov (United States)

    Frosi, Giacomo; Biolchi, Alessia; Lo Sapio, Morena; Rigat, Fabio; Gilchrist, Stefanie; Lucidarme, Jay; Findlow, Jamie; Borrow, Ray; Pizza, Mariagrazia; Giuliani, Marzia Monica; Medini, Duccio

    2013-10-09

    4CMenB (Bexsero), a vaccine developed against invasive meningococcal disease caused by capsular group B strains (MenB), was recently licensed for use by the European Medicines Agency. Assessment of 4CMenB strain coverage in specific epidemiologic settings is of primary importance to predict vaccination impact on the burden of disease. The Meningococcal Antigen Typing System (MATS) was developed to predict 4CMenB strain coverage, using serum bactericidal antibody assay with human complement (hSBA) data from a diverse panel of strains not representative of any specific epidemiology. To experimentally validate the accuracy of MATS-based predictions against strains representative of a specific epidemiologic setting. We used a stratified sampling method to identify a representative sample from all MenB disease isolates collected from England and Wales in 2007-2008, tested the strains in the hSBA assay with pooled sera from infant and adolescent vaccinees, and compared these results with MATS. MATS predictions and hSBA results were significantly associated (P=0.022). MATS predicted coverage of 70% (95% CI, 55-85%) was largely confirmed by 88% killing in the hSBA (95% CI, 72-95%). MATS had 78% accuracy and 96% positive predictive value against hSBA. MATS is a conservative predictor of strain coverage by the 4CMenB vaccine in infants and adolescents. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  5. Optimized Synthesis of Foam Glass from Recycled CRT Panel Glass

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund; König, Jakob; Yue, Yuanzheng

    Most of the panel glass from cathode ray tubes (CRTs) is landfilled today. Instead of landfilling, the panel glass can be turned into new environment-friendly foam glass. Low density foam glass is an effective heat insulating material and can be produced just by using recycle glass and foaming...... additives. In this work we recycle the CRT panel glass to synthesize the foam glass as a crucial component of building and insulating materials. The synthesis conditions such as foaming temperature, duration, glass particle size, type and concentrations of foaming agents, and so on are optimized...... by performing systematic experiments. In particular, the concentration of foaming agents is an important parameter that influences the size of bubbles and the distribution of bubbles throughout the sample. The foam glasses are characterised regarding density and open/closed porosity. Differential scanning...

  6. Product development strategy with quality function deployment approach: A case study in automotive battery

    Directory of Open Access Journals (Sweden)

    Heru Darmawan

    2017-12-01

    Full Text Available Customer satisfaction is one of the main factors in determining the competitiveness of every industry. Along with the technological advances, it will impact on the increasingly intense competition in the business of providing great opportunities to the consumer to find a quality product at competi-tive rates. The purpose of this study is to develop the quality of automotive battery products that meet consumer needs by using Quality Function Deployment (QFD method. The application is then analyzed and its results produced a proposal for product development according to the weight and priority development on product attributes that are considered important by customers. There are two main priorities that are most desired by customers, among others for improving the quality of products maintenance free battery in automotive battery industry with quality function deployment according to consumers. Consumers need a car battery with a good durability and great performance, low price, and environment friendly features, which can be achieved by using absorbent glass mat and expanded machine technology. Based on relative weight in House of Quality, Ab-sorbent Glass Mat receives the highest percentage of technical priority that is equal to 31% whereas technology expanded gets the second highest percentage of technical priority that is equal to 19%. It means that both technologies are more important to develop this product. Therefore, the maintenance free battery products are expected to be attractive for consumers and extensive marketing.

  7. Community structure and function of high-temperature chlorophototrophic microbial mats inhabiting diverse geothermal environments

    DEFF Research Database (Denmark)

    Klatt, Christian G.; Inskeep, William P.; Herrgard, Markus

    2013-01-01

    Six phototrophic microbial mat communities from different geothermal springs (YNP) were studied using metagenome sequencing and geochemical analyses. The primary goals of this work were to determine differences in community composition of high-temperature phototrophic mats distributed across...... the Yellowstone geothermal ecosystem, and to identify metabolic attributes of predominant organisms present in these communities that may correlate with environmental attributes important in niche differentiation. Random shotgun metagenome sequences from six phototrophic communities (average 53Mbp/site) were...

  8. Thermal fracture and pump limit of Nd: glass

    International Nuclear Information System (INIS)

    Wang Mingzhe; Ma Wen; Tan Jichun; Zhang Yongliang; Li Mingzhong; Jing Feng

    2011-01-01

    Based on published fracture experiments and 3D transient finite-element analyses, and taking the first principal stress as the criterion and the Griffith crack theory to determine the critical fracture stress, a Weibull statistical model is established to predict the fracture possibility of Nd: glass with certain pump parameters. Other issues which limit the pump power are also presented. The results show that the fracture limit of laser medium depends on the optical polishing technology. For a short pulse and high energy Nd: glass laser, taking America's polishing technology in the 1990s as reference,the pump saturation limits the pump power to 18 kW/cm 2 when the repetition rate is lower than 1 Hz, while the thermal fracture limits the pump power when the repetition rate is higher than 10 Hz. (authors)

  9. Numerical Study on the Seismic Response of Structure with Consideration of the Behavior of Base Mat Uplift

    Directory of Open Access Journals (Sweden)

    Guo-Bo Wang

    2017-01-01

    Full Text Available The foundation might be separated from the supporting soil if the earthquake is big enough, which is known as base mat uplift. This paper proposed a simplified calculation model in which spring element is adopted to simulate the interaction between soil and structure. The load-deformation curve (F-D curve of the spring element can be designated to represent the base mat uplift, in which the pressure can be applied while tensile forces are not allowed. Key factors, such as seismic wave types, seismic wave excitation directions, seismic wave amplitudes, soil shear velocities, structure stiffness, and the ratio of structure height to width (H/B, were considered in the analysis. It is shown that (1 seismic wave type has significant influence on structure response due to different frequency components it contained; (2 the vertical input of seismic wave greatly affected structure response in vertical direction, while it has little impacts in horizontal direction; (3 base mat uplift is easier to take place in soil with higher shear velocity; (4 structure H/B value has complicated influence on base mat uplift. The outcome of this research is assumed to provide some references for the seismic design of the structure due to base mat uplift.

  10. Photocatalytic and antibacterial properties of a TiO2/nylon-6 electrospun nanocomposite mat containing silver nanoparticles

    International Nuclear Information System (INIS)

    Pant, Hem Raj; Pandeya, Dipendra Raj; Nam, Ki Taek; Baek, Woo-il; Hong, Seong Tshool; Kim, Hak Yong

    2011-01-01

    Silver-impregnated TiO 2 /nylon-6 nanocomposite mats exhibit excellent characteristics as a filter media with good photocatalytic and antibacterial properties and durability for repeated use. Silver nanoparticles (NPs) were successfully embedded in electrospun TiO 2 /nylon-6 composite nanofibers through the photocatalytic reduction of silver nitrate solution under UV-light irradiation. TiO 2 NPs present in nylon-6 solution were able to cause the formation of a high aspect ratio spider-wave-like structure during electrospinning and facilitated the UV photoreduction of AgNO 3 to Ag. TEM images, UV-visible and XRD spectra confirmed that monodisperse Ag NPs (approximately 4 nm in size) were deposited selectively upon the TiO 2 NPs of the prepared nanocomposite mat. The antibacterial property of a TiO 2 /nylon-6 composite mat loaded with Ag NPs was tested against Escherichia coli, and the photoactive property was tested against methylene blue. All of the results showed that TiO 2 /nylon-6 nanocomposite mats loaded with Ag NPs are more effective than composite mats without Ag NPs. The prepared material has potential as an economically friendly photocatalyst and water filter media because it allows the NPs to be reused.

  11. Chemical engineering and thermodynamics using Mat lab

    International Nuclear Information System (INIS)

    Kim Heon; Kim, Moon Gap; Lee, Hak Yeong; Yeo, Yeong Gu; Ham, Seong Won

    2002-02-01

    This book consists of twelve chapters and four appendixes about chemical engineering and thermodynamics using Mat lab, which deals with introduction, energy budget, entropy, thermodynamics process, generalization on any fluid, engineering equation of state for PVT properties, deviation of the function, phase equilibrium of pure fluid, basic of multicomponent, phase equilibrium of compound by state equation, activity model and reaction system. The appendixes is about summary of computer program, related mathematical formula and material property of pure component.

  12. Matted-fiber divertor tagets for sputter resistance

    International Nuclear Information System (INIS)

    Gierszewski, P.J.; Todreas, N.E.; Mikic, B.; Yang, T.F.

    1981-06-01

    Reductions in net sputtering yields can be obtained by altering the surface topography to maximize redeposition of sputtered atoms. A simple analysis is used to indicate a potential reduction by a factor of 2 to 5 for matted fiber divertor targets, relatively independent of incident, reflected and sputtered atom distributions. The fiber temperature is also shown to be acceptable, even up to 10 MW/m 2 , for reasonably combinations of materials, fiber diameter and fiber spacing

  13. Evaluation of lead-iron-phosphate glass as a high-level waste form

    International Nuclear Information System (INIS)

    Chick, L.A.; Bunnell, L.R.; Strachan, D.M.; Kissinger, H.E.; Hodges, F.N.

    1986-09-01

    The lead-iron-phosphate (Pb-Fe-P) glass developed at Oak Ridge National Laboratory was evaluated for its potential as an improvement over the current reference nuclear waste form, borosilicate (B-Si) glass. The evaluation was conducted as part of the Second Generation HLW Technology Subtask of the Nuclear Waste Treatment Program at Pacific Northwest Laboratory. The purpose of this work was to investigate possible alternatives to B-Si glass as second-generation waste forms. While vitreous Pb-Fe-P glass appears to have substantially better chemical durability than B-Si glass, severe crystallization or devitrification leading to deteriorated chemical durability would result if this glass were poured into large canisters as is the procedure with B-Si glass. Cesium leach rates from this crystallized material are orders of magnitude greater than those from B-Si glass. Therefore, to realize the potential performance advantages of the Pb-Fe-P material in a nuclear waste form, the processing method would have to cool the material rapidly to retain its vitreous structure

  14. Coastal Microbial Mat Diversity along a Natural Salinity Gradient

    NARCIS (Netherlands)

    Bolhuis, H.; Fillinger, L.; Stal, L.J.

    2013-01-01

    The North Sea coast of the Dutch barrier island of Schiermonnikoog is covered by microbial mats that initiate a succession of plant communities that eventually results in the development of a densely vegetated salt marsh. The North Sea beach has a natural elevation running from the low water mark to

  15. Flavours – det smakar doft : Upplevelsen av mat och vin i kombination

    OpenAIRE

    Hult, Jonas; Lagnetoft, David; Nygren, Nadia

    2011-01-01

    Inledning: Den vetenskapliga förankringen om mat och vin i kombination är låg. Upplevelsenav en måltid involverar alla de mänskliga sinnena, vilket således har gjort den svår att mäta.Hur stor roll spelar egentligen grundsmakerna och krävs det ytterligare element för att lyfta enkombination av mat och vin till högre höjder?Bakgrund: Förutom smaklökarna på tungan som bildar den grundläggande uppfattningen avdet vi stoppar i munnen, är det främst munkänsla och flavours som bidrar till helheten ...

  16. The effect of chromium oxide on the properties of simulated nuclear waste glasses

    International Nuclear Information System (INIS)

    Vojtech, O.; Sussmilch, J.; Urbanec, Z.

    1996-02-01

    A study of the effect of chromium on the properties of selected glasses was performed in the frame of a Contract between Battelle, Pacific Northwest Laboratories and Nuclear Research Institute, ReZ. In the period from July 1994 to June 1995 two borosilicate glasses of special composition were prepared according to the PNL procedure and their physical and structural characteristics of glasses were studied. This Final Report contains a vast documentation on the properties of all glasses studied. For the preparation of the respective technology more detailed study of physico-chemical properties and crystallinity of investigated systems would be desirable

  17. Recycling of Glass

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Damgaard, Anders

    2011-01-01

    Glass is used for many purposes, but in the waste system glass is predominantly found in terms of beverage and food containers with a relatively short lifetime before ending up in the waste. Furthermore there is a large amount of flat glass used in building materials which also ends up in the waste...... system; this glass though has a long lifetime before ending up in the waste. Altogether these product types add up to 82% of the production of the European glass industry (IPCC, 2001). Recycling of glass in terms of cleaning and refilling of bottles as well as the use of broken glass in the production...... of new glass containers is well established in the glass industry. This chapter describes briefly howglass is produced and howwaste glass is recycled in the industry. Quality requirements and use of recycled products are discussed, as are the resource and environmental issues of glass recycling....

  18. Context, Biogeochemistry, and Morphology of Diverse and Spatially Extensive Microbial Mats, Little Ambergris Cay, Turks and Caicos Islands, B.W.I.

    Science.gov (United States)

    Present, T. M.; Trower, L.; Stein, N.; Alleon, J.; Bahniuk, A.; Gomes, M. L.; Lingappa, U.; Metcalfe, K.; Orzechowski, E. A.; Riedman, L. A.; Sanders, C. B.; Morris, D. K.; O'Reilly, S.; Sibert, E. C.; Thorpe, M.; Tarika, M.; Fischer, W. W.; Knoll, A. H.; Grotzinger, J. P.

    2017-12-01

    Little Ambergris Cay (21.3° N, 71.7° W) was the site of an integrated geobiological study conducted in July 2016 and August 2017. The cay ( 6 km x 1.6 km) is developed on a broad bank influenced by strong easterly trade winds (avg. 7.5 m/s), where convergent ooid shoals culminate in a linear shoal extending almost 25 km westward from the cay. Lithified upper shoreface to eolian ooid grainstones form a 2 m high bedrock rim that protects an extensive interior tidal marsh with well-developed microbial mats. Local breaches in the rim allow tidal flows to inundate interior bays floored by microbial mats. Three mat types were observed based on texture: dark toned "blister mat" that flanks the bays where they intersect with the bedrock rim; light-toned "polygonal mat" that covers broad tracts of the bay and is exposed at low tide; and lighter-toned "EPS mat" that is generally submerged even at low tide. The millimeter-to decimeter-thick layered mats overlie laterally extensive ooid sands, generally unlithified except for a few hardgrounds. The mats and underlying sediments were sampled by vibracoring, push coring, and piezometers. Biogeochemical analyses include groundwater salinity, pH, DIC, alkalinity, cation composition, DNA content, photosynthetic efficiency, C and S isotope composition, lipid biomarkers, and taphonomic state. Groundwater and interstitial water chemical analyses were integrated with hydrologic observations of tidal channels' level and flow. Visible light UAV images from 350 m standoff distance were processed to generate a 15 cm/pixel mosaic of the island that was used in combination with a DGPS survey, multispectral Landsat images (m-scale resolution) and Worldview satellite images (30 cm resolution) to map the island's topography, mats, and sedimentologic facies. A UAV-based VNIR hyperspectral camera was used to quantify pigment concentrations in the mats at cm-resolution over decameter scales. Sub-cm-scale bed textures, including those expressed

  19. Dynamics of bacterial populations during bench-scale bioremediation of oily seawater and desert soil bioaugmented with coastal microbial mats.

    Science.gov (United States)

    Ali, Nidaa; Dashti, Narjes; Salamah, Samar; Sorkhoh, Naser; Al-Awadhi, Husain; Radwan, Samir

    2016-03-01

    This study describes a bench-scale attempt to bioremediate Kuwaiti, oily water and soil samples through bioaugmentation with coastal microbial mats rich in hydrocarbonoclastic bacterioflora. Seawater and desert soil samples were artificially polluted with 1% weathered oil, and bioaugmented with microbial mat suspensions. Oil removal and microbial community dynamics were monitored. In batch cultures, oil removal was more effective in soil than in seawater. Hydrocarbonoclastic bacteria associated with mat samples colonized soil more readily than seawater. The predominant oil degrading bacterium in seawater batches was the autochthonous seawater species Marinobacter hydrocarbonoclasticus. The main oil degraders in the inoculated soil samples, on the other hand, were a mixture of the autochthonous mat and desert soil bacteria; Xanthobacter tagetidis, Pseudomonas geniculata, Olivibacter ginsengisoli and others. More bacterial diversity prevailed in seawater during continuous than batch bioremediation. Out of seven hydrocarbonoclastic bacterial species isolated from those cultures, only one, Mycobacterium chlorophenolicum, was of mat origin. This result too confirms that most of the autochthonous mat bacteria failed to colonize seawater. Also culture-independent analysis of seawater from continuous cultures revealed high-bacterial diversity. Many of the bacteria belonged to the Alphaproteobacteria, Flavobacteria and Gammaproteobacteria, and were hydrocarbonoclastic. Optimal biostimulation practices for continuous culture bioremediation of seawater via mat bioaugmentation were adding the highest possible oil concentration as one lot in the beginning of bioremediation, addition of vitamins, and slowing down the seawater flow rate. © 2016 The Author. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  20. Spatial structure and activity of sedimentary microbial communities underlying a Beggiatoa spp. mat in a Gulf of Mexico hydrocarbon seep.

    Directory of Open Access Journals (Sweden)

    Karen G Lloyd

    Full Text Available BACKGROUND: Subsurface fluids from deep-sea hydrocarbon seeps undergo methane- and sulfur-cycling microbial transformations near the sediment surface. Hydrocarbon seep habitats are naturally patchy, with a mosaic of active seep sediments and non-seep sediments. Microbial community shifts and changing activity patterns on small spatial scales from seep to non-seep sediment remain to be examined in a comprehensive habitat study. METHODOLOGY/PRINCIPAL FINDINGS: We conducted a transect of biogeochemical measurements and gene expression related to methane- and sulfur-cycling at different sediment depths across a broad Beggiatoa spp. mat at Mississippi Canyon 118 (MC118 in the Gulf of Mexico. High process rates within the mat ( approximately 400 cm and approximately 10 cm from the mat's edge contrasted with sharply diminished activity at approximately 50 cm outside the mat, as shown by sulfate and methane concentration profiles, radiotracer rates of sulfate reduction and methane oxidation, and stable carbon isotopes. Likewise, 16S ribosomal rRNA, dsrAB (dissimilatory sulfite reductase and mcrA (methyl coenzyme M reductase mRNA transcripts of sulfate-reducing bacteria (Desulfobacteraceae and Desulfobulbaceae and methane-cycling archaea (ANME-1 and ANME-2 were prevalent at the sediment surface under the mat and at its edge. Outside the mat at the surface, 16S rRNA sequences indicated mostly aerobes commonly found in seawater. The seep-related communities persisted at 12-20 cm depth inside and outside the mat. 16S rRNA transcripts and V6-tags reveal that bacterial and archaeal diversity underneath the mat are similar to each other, in contrast to oxic or microoxic habitats that have higher bacterial diversity. CONCLUSIONS/SIGNIFICANCE: The visual patchiness of microbial mats reflects sharp discontinuities in microbial community structure and activity over sub-meter spatial scales; these discontinuities have to be taken into account in geochemical and

  1. Rapid prototyping of 2D glass microfluidic devices based on femtosecond laser assisted selective etching process

    Science.gov (United States)

    Kim, Sung-Il; Kim, Jeongtae; Koo, Chiwan; Joung, Yeun-Ho; Choi, Jiyeon

    2018-02-01

    Microfluidics technology which deals with small liquid samples and reagents within micro-scale channels has been widely applied in various aspects of biological, chemical, and life-scientific research. For fabricating microfluidic devices, a silicon-based polymer, PDMS (Polydimethylsiloxane), is widely used in soft lithography, but it has several drawbacks for microfluidic applications. Glass has many advantages over PDMS due to its excellent optical, chemical, and mechanical properties. However, difficulties in fabrication of glass microfluidic devices that requires multiple skilled steps such as MEMS technology taking several hours to days, impedes broad application of glass based devices. Here, we demonstrate a rapid and optical prototyping of a glass microfluidic device by using femtosecond laser assisted selective etching (LASE) and femtosecond laser welding. A microfluidic droplet generator was fabricated as a demonstration of a microfluidic device using our proposed prototyping. The fabrication time of a single glass chip containing few centimeter long and complex-shaped microfluidic channels was drastically reduced in an hour with the proposed laser based rapid and simple glass micromachining and hermetic packaging technique.

  2. Enhanced Piezoelectricity in a Robust and Harmonious Multilayer Assembly of Electrospun Nanofiber Mats and Microbead-Based Electrodes.

    Science.gov (United States)

    Kim, Young Won; Lee, Han Bit; Yeon, Si Mo; Park, Jeanho; Lee, Hye Jin; Yoon, Jonghun; Park, Suk Hee

    2018-02-14

    Here, we present a simple yet highly efficient method to enhance the output performance of a piezoelectric device containing electrospun nanofiber mats. Multiple nanofiber mats were assembled together to harness larger piezoelectric sources in the as-spun fibers, thereby providing enhanced voltage and current outputs compared to those of a single-mat device. In addition to the multilayer assembly, microbead-based electrodes were integrated with the nanofiber mats to deliver a complexed compression and tension force excitation to the piezoelectric layers. A vacuum-packing process was performed to attain a tight and well-organized assembly of the device components even though the total thickness was several millimeters. The integrated piezoelectric device exhibited a maximum voltage and current of 10.4 V and 2.3 μA, respectively. Furthermore, the robust integrity of the device components could provide high-precision sensitivity to perceive small pressures down to approximately 100 Pa while retaining a linear input-output relationship.

  3. Mechanism study of selective heavy metal ion removal with polypyrrole-functionalized polyacrylonitrile nanofiber mats

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jianqiang; Luo, Chao [Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029 (China); Qi, Genggeng [Department of Materials Science and Engineering, Cornell University, Ithaca, NY (United States); Pan, Kai, E-mail: pankai@mail.buct.edu.cn [Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029 (China); Department of Materials Science and Engineering, Cornell University, Ithaca, NY (United States); Cao, Bing, E-mail: bcao@mail.buct.edu.cn [Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029 (China)

    2014-10-15

    Graphical abstract: - Highlights: • PAN/PPy core/shell nanofiber used for Cr(VI) removal. • Adsorption mechanisms were investigated. • Selective adsorption performances were investigated. - Abstract: Polyacrylonitrile/polypyrrole (PAN/PPy) core/shell nanofiber mat was prepared through electrospinning followed by a simple chemical oxidation method. The polypyrrole-functionalized nanofiber mats showed selective adsorption performance for anions. The interaction between heavy metal anions and polypyrrole (especially the interaction between Cr{sub 2}O{sub 7}{sup 2−} and polypyrrole) during the adsorption process was studied. The results showed that the adsorption process included two steps: one was the anion exchange process between the Cl{sup −} and Cr(VI), and the other was the redox process for the Cr(VI) ions. The adsorption amount was related to the protonation time of the PAN/PPy nanofiber mat and increased as protonation time increased. Meanwhile, the Cr(VI) ions were reduced to Cr(III) through the reaction with amino groups of polypyrrole (from secondary amines to tertiary amines). PAN/PPy nanofiber mat showed high selectivity for Cr(VI), and the adsorption performance was nearly unaffected by other co-existing anions (Cl{sup −}, NO{sub 3}{sup −}, and SO{sub 4}{sup 2−}) except for PO{sub 4}{sup 3−} for the pH change.

  4. Glass-Metal Joining in Nuclear Environment: the State of the Art

    International Nuclear Information System (INIS)

    Jacobs, M.

    2007-01-01

    Full text of publication follows: In the ITER fusion machine and in material testing fission reactors, it is not possible to avoid the use of non-metallic materials like glass for example. There is therefore a need to apply metal to glass joints. This problem arose already at the beginning of the 19. century when the electric light bulb was invented. Nowadays this type of glass-metal joint is very successful and widely used in the electronic industry. In the case of ITER and material testing reactors, glass-metal joints are necessary for the fixation of the optical windows and optical fibres to a metal structure to perform diagnostics. These types of joints are still difficult to make and their behaviour is not fully understood. A joint between glass and metal for a nuclear or fusion application has indeed to resist high temperatures and high neutron fluences, while keeping a good mechanical strength and remaining leak tight. These characteristics are difficult to obtain under these severe conditions. This paper presents an overview of the different joining technologies that can be used to join glass to metal in a severe nuclear environment. The working mechanism of the technologies are explained, together with their respective advantages and drawbacks. Three different types of joining are discussed: fastening, liquid phase joining and solid phase joining. Fastening is a mechanical attachment technique, not achieving easily hermetic seals. Liquid and solid phase joining on the other hand form a real bond, what makes the joint much stronger. The most important technologies using liquid phase joining are adhesive bonding, fusion welding and brazing. In the case of the solid phase joining the choices are ultrasonic torsion welding, diffusion bonding and electrostatic bonding. If it is usually not possible to join the glass directly to the metal, an interlayer must be used. One speaks then of indirect joining. The paper will conclude with a discussion on the best

  5. Development and characterization of cefazolin loaded zinc oxide nanoparticles composite gelatin nanofiber mats for postoperative surgical wounds

    International Nuclear Information System (INIS)

    Rath, Goutam; Hussain, Taqadus; Chauhan, Gaurav; Garg, Tarun; Goyal, Amit Kumar

    2016-01-01

    Systemic antibiotic therapy in post-operative wound care remain controversial leading to escalation in levels of multi-resistant bacteria with unwanted morbidity and mortality. Recently zinc (Zn) because of multiple biophysiological functions, gain considerable interest for wound care. Based on our current understanding, the present study was designed with an intent to produce improve therapeutic approaches for post-operative wound management using composite multi-functional antibiotic carrier. The study involved the fabrication, characterization and pre-clinical evaluation of cefazolin nanofiber mats loaded with zinc oxide (ZnO) and comparing co-formulated mats with individual component, enable a side by side comparison of the benefits of our intervention. Minimum inhibitory concentration (MIC) of the drug, ZnO nanoparticles (ZnONPs) and drug-ZnONP mixture against Staphylococcus aureus was determined using micro dilution assay. The fabricated nanofibers were then evaluated for in-vitro antimicrobial activity and the mechanism of inhibition was predicted by scanning electron microscopy (SEM). Further these nanofiber mats were evaluated in-vivo for wound healing efficacy in Wistar rats. Study revealed that the average diameter of the nanofibers is around 200–900 nm with high entrapment efficiency and display sustained drug release behavior. The combination of ZnO and cefazolin in 1:1 weight ratio showed higher anti-bacterial activity of 1.9 ± 0.2 μg/ml. Transmission electron microscopy of bacterial cells taken from the zone of inhibition revealed the phenomenon of cell lysis in tested combination related to cell wall disruption. Further composite medicated nanofiber mats showed an accelerated wound healing as compared to plain cefazolin and ZnONP loaded mats. Macroscopical and histological evaluations demonstrated that ZnONP hybrid cefazolin nanofiber showed enhanced cell adhesion, epithelial migration, leading to faster and more efficient collagen synthesis

  6. NEW ERBIUM DOPED ANTIMONY GLASSES FOR LASER AND GLASS AMPLIFICATION

    Directory of Open Access Journals (Sweden)

    B. Tioua

    2015-07-01

    Full Text Available Because of the special spectroscopic properties of the rare earth ions, rare earth doped glasses are widely used in bulk and fiber lasers or amplifiers. The modelling of lasers and searching for new laser transitions require a precise knowledge of the spectroscopic properties of rare earth ions in different host glasses. In this poster will offer new doped erbium glasses synthesized in silicate crucibles were obtained in the combination Sb2O3-WO3-Na2O. Several properties are measured and correlated with glass compositions. The absorption spectral studies have been performed for erbium doped glasses. The intensities of various absorption bands of the doped glasses are measured and the Judd-Ofelt parameters have been computed. From the theory of Judd-Ofelt, various radiative properties, such as transition probability, branching ratio and radiative life time for various emission levels of these doped glasses have been determined and reported. These results confirm the ability of antimony glasses for glass amplification.

  7. Influence of Glass Property Restrictions on Hanford HLW Glass Volume

    International Nuclear Information System (INIS)

    Kim, Dong-Sang; Vienna, John D.

    2001-01-01

    A systematic evaluation of Hanford High-Level Waste (HLW) loading in alkali-alumino-borosilicate glasses was performed. The waste feed compositions used were obtained from current tank waste composition estimates, Hanford's baseline retrieval sequence, and pretreatment processes. The waste feeds were sorted into groups of like composition by cluster analysis. Glass composition optimization was performed on each cluster to meet property and composition constraints while maximizing waste loading. Glass properties were estimated using property models developed for Hanford HLW glasses. The impacts of many constraints on the volume of HLW glass to be produced at Hanford were evaluated. The liquidus temperature, melting temperature, chromium concentration, formation of multiple phases on cooling, and product consistency test response requirements for the glass were varied one- or many-at-a-time and the resultant glass volume was calculated. This study shows clearly that the allowance of crystalline phases in the glass melter can significantly decrease the volume of HLW glass to be produced at Hanford.

  8. Towards optimization of nuclear waste glass: Constraints, property models, and waste loading

    International Nuclear Information System (INIS)

    Hrma, P.

    1994-04-01

    Vitrification of both low- and high-level wastes from 177 tanks at Hanford poses a great challenge to glass makers, whose task is to formulate a system of glasses that are acceptable to the federal repository for disposal. The enormous quantity of the waste requires a glass product of the lowest possible volume. The incomplete knowledge of waste composition, its variability, and lack of an appropriate vitrification technology further complicates this difficult task. A simple relationship between the waste loading and the waste glass volume is presented and applied to the predominantly refractory (usually high-activity) and predominantly alkaline (usually low-activity) waste types. Three factors that limit waste loading are discussed, namely product acceptability, melter processing, and model validity. Glass formulation and optimization problems are identified and a broader approach to uncertainties is suggested

  9. Determination of the specific surface energy of oxides and glasses in the solid-state

    International Nuclear Information System (INIS)

    Andryushechkin, S.; Karpman, M.

    2000-01-01

    The production and application of coatings on glasses are used widely in technology. The coatings on glass are used for the regulation of optical, decorative, conducting and other technological and physical properties of glass. In particular, it is important to mention the application of glass fibres for the development of composite materials. However, the specific surface energy of glass and, consequently, its adhesion characteristics are relatively low. The values of these characteristics can be changed by the application of different metallic and nonmetallic coatings is characterised by high surface energy. To produce metallic coatings with the required adhesion strength of glass, it is necessary to have information on the specific surface energy of inorganic glass of different chemical composition. The determination of the relationships between the properties and composition of glass is one of the fundamental problems. At present, a large amount of investigations have been carried out into the investigations of the properties of glass in relation to its composition. However, the problem of establishment of relationships between the properties and composition of glass are especially difficult when examining multicomponent systems (technical glass). It is therefore, in to analyse in each case the properties of not the entire system has a whole but the variation of the properties with temperature of the individual components included in the system, the subsequent application of the additivity principle. The large majority of the glasses represent combinations of oxides of the elements of groups I-III and oxides of the transition metals, forming the mixtures, solid solutions of chemical compounds in the glass production process. Thus, analysis of the characteristics of oxides of the alkali, alkali-earth and transition metals makes it possible to obtain initial data for the evaluation of the surface energy, density, molecular mass of glass containing these oxides

  10. Phase transitions and glass transition in a hyperquenched silica–alumina glass

    DEFF Research Database (Denmark)

    Zhang, Y.F.; Zhao, D.H.; Yue, Yuanzheng

    2017-01-01

    We investigate phase transitions, glass transition, and dynamic behavior in the hyperquenched 69SiO2–31Al2O3 (mol%) glass (SA glass). Upon reheating, the SA glass exhibits a series of thermal responses. Subsequent to the sub-Tg enthalpy release, the glass undergoes a large jump in isobaric heat...... capacity (ΔCp) during glass transition, implying the fragile nature of the SA glass. The mullite starts to form before the end of glass transition, indicating that the SA glass is extremely unstable against crystallization. After the mullite formation, the remaining glass phase exhibits an increased Tg...... and a suppressed ΔCp. The formation of cristobalite at 1553 K indicates the dominance of silica in the remaining glass matrix. The cristobalite gradually re-melts as the isothermal heat-treatment temperature is raised from 1823 to 1853 K, which is well below the melting point of cristobalite, while the amount...

  11. Polymer solution, fiber mat, and nanofiber membrane-electrode-assembly therewith, and method of fabricating same

    DEFF Research Database (Denmark)

    2016-01-01

    of fibers. The fibers may further include particles of a catalyst. The fiber mat may be used to form an electrode or a membrane. In a further aspect, a fuel cell membrane-electrode-assembly has an anode electrode, a cathode electrode, and a membrane disposed between the anode electrode and the cathode...... electrode. Each of the anode electrode, the cathode electrode and the membrane may be formed with a fiber mat....

  12. Analysis of early medieval glass beads - Glass in the transition period

    Energy Technology Data Exchange (ETDEWEB)

    Smit, Ziga, E-mail: ziga.smit@ijs.si [Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, SI-1000 Ljubljana (Slovenia); Jozef Stefan Institute, Jamova 39, P.O.B. 3000, SI-1001 Ljubljana (Slovenia); Knific, Timotej [National Museum of Slovenia, Presernova 20, SI-1000 Ljubljana (Slovenia); Jezersek, David [Jozef Stefan Institute, Jamova 39, P.O.B. 3000, SI-1001 Ljubljana (Slovenia); Istenic, Janka [National Museum of Slovenia, Presernova 20, SI-1000 Ljubljana (Slovenia)

    2012-05-01

    Glass beads from graves excavated in Slovenia and dated archaeologically to the 7th-10th century AD were analysed by the combined PIXE-PIGE method. The results indicate two groups of glass; natron glass made in the Roman tradition and glass made with alkalis from the ash of halophytic plants, which gradually replaced natron glass after c. 800 AD. The alkalis used in the second group of glass seem to be in close relation to a variant of the Venetian white glass that appeared several centuries later. The origin of this glass may be traced to glass production in Mesopotamia and around the Aral Sea. All the mosaic beads with eye decoration, as well as most of the drawn-segmented and drawn-cut beads analysed, are of plant-ash glass, which confirms their supposed oriental origin.

  13. The Abundance of Toxic Genotypes Is a Key Contributor to Anatoxin Variability in Phormidium-Dominated Benthic Mats

    Directory of Open Access Journals (Sweden)

    Susanna A. Wood

    2017-10-01

    Full Text Available The prevalence of benthic proliferations of the anatoxin-producing cyanobacterium Phormidium are increasing in cobble-bed rivers worldwide. Studies to date have shown high spatial and temporal variability in anatoxin concentrations among mats. In this study we determined anatoxin quotas (toxins per cell in field samples and compared these results to the conventionally-used concentrations (assessed per dry weight of mat. Three mats were selected at sites in two rivers and were sampled every 2–3 h for 24–26 h. The samples were lyophilized and ground to a fine homogenous powder. Two aliquots of known weights were analyzed for anatoxin congeners using liquid chromatography-mass spectrometry, or digital droplet PCR with Phormidium-specific anaC primers to measure absolute quantities of gene copies. Anatoxin concentrations in the mats varied 59- and 303-fold in the two rivers over the study periods. A similar pattern was observed among gene copies (53- and 2828-fold. When converted to anatoxin quotas there was markedly less variability (42- and 16-fold, but significantly higher anatoxin quotas were observed in mats from the second river (p < 0.001, Student’s t-test. There were no obvious temporal patterns with high and low anatoxin concentrations or quotas measured at each sampling time and across the study period. These results demonstrate that variability in anatoxin concentrations among mats is primarily due to the abundance of toxic genotypes. No consistent modulation in anatoxin production was observed during the study, although significant differences in anatoxin quotas among rivers suggest that site-specific physiochemical or biological factors may influence anatoxin production.

  14. Effect of salinity on carbon and sulfur cycles in Umm Alhool sabkha microbial mat ecosystem in Qatar

    KAUST Repository

    Alnajjar, Mohammad Ahmad

    2012-10-19

    Microbial mats are only present under extreme conditions, where grazing by higher organisms is limited. Therefore, microbial mats may provide insight into extraterrestrial life, due to their adaptations to extreme temperatures, desiccation or salinity. They are faced with a diurnal cycle with variable length based on their location, which exposes them to extreme salinity conditions (i.e., water withdrawal and high evaporation). Cyanobacteria in the photic zone of a mat ecosystem supply the other microorganism with the required organic material to produce energy and grow. Subsequently, this will reproduce the nutrients needed by the phototrophs through elemental re-mineralization. In this work, we investigated the effect of water salinity that covers the microbial mat ecosystem of Umm Alhool sabkha, Qatar, regarding the most important processes within microbial mats: photosynthesis and sulfate reduction (SR). Our results showed that both photosynthetic and sulfate reduction rates decreased with increasing the salinity. The microbial community structure, assessed by 454 pyro-sequencing, revealed that the cyanobacterial community structure changed in response to the change in salinity. This was not the case for the sulfate reducer community structure, which stayed as it is in the mats incubated at different salinities. Therefore, we speculate that salinity affects the photosynthetic community structure, and consequently affects the photosynthetic activity of the whole ecosystem. However, sulfate reduction rates decreased due to less organic material supply from the upper layers and not due to change in microbial community structure of SR. Other factors such as the activity of the enzymes could also have an effect on SRR, but it was not investigated in this study.

  15. VocMat projekt - uudsed e-õppe võimalused turismiasjalistele / Heli Tooman

    Index Scriptorium Estoniae

    Tooman, Heli, 1949-

    2008-01-01

    Turismivaldkonna spetsialistidele mõeldud koolitusprojektist VocMat (Vocational Management Training for the Tourism Industry). Projekti partneriteks Eestis on Ettevõtluse Arendamise Sihtasutuse Turismiarenduskeskus ja Tartu Ülikooli Pärnu kolledzh. Lisa: Kokkuvõte

  16. Biocidal Activity of Plasma Modified Electrospun Polysulfone Mats Functionalized with Polyethyleneimine-Capped Silver Nanoparticles

    KAUST Repository

    Schiffman, Jessica D.

    2011-11-01

    The incorporation of silver nanoparticles (AgNPs) into polymeric nanofibers has attracted a great deal of attention due to the strong antimicrobial activity that the resulting fibers exhibit. However, bactericidal efficacy of AgNP-coated electrospun fibrous mats has not yet been demonstrated. In this study, polysulfone (PSf) fibers were electrospun and surface-modified using an oxygen plasma treatment, which allowed for facile irreversible deposition of cationically charged polyethyleneimine (PEI)-AgNPs via electrostatic interactions. The PSf-AgNP mats were characterized for relative silver concentration as a function of plasma treatment time using ICP-MS and changes in contact angle. Plasma treatment of 60 s was the shortest time required for maximum loss of bacteria (Escherichia coli) viability. Time-dependent bacterial cytotoxicity studies indicate that the optimized PSf-AgNP mats exhibit a high level of inactivation against both Gram negative bacteria, Escherichia coli, and Gram positive bacteria, Bacillus anthracis and Staphylococcus aureus. © 2011 American Chemical Society.

  17. Dense and porous glass and glass ceramics from natural and waste raw materials

    OpenAIRE

    Marangoni, Mauro

    2016-01-01

    The main goal of the herewith presented research activities was to develop innovative processes and materials for building applications adapted to the needs of Saudi Arabia according to the information exchanged with the partners from KACST (King Abdulaziz City of Science and Technology). The research activity focused on the development of a wide range of ceramic components via sinter-crystallization of glasses produced from waste (fly ash, slag, sludge) with or without the addition of vit...

  18. Investigation of waste glass pouring behavior over a knife edge

    International Nuclear Information System (INIS)

    Ebadian, M.A.

    1998-01-01

    The development of vitrification technology for converting radioactive waste into a glass solid began in the early 1960s. Some problems encountered in the vitrification process are still waiting for a solution. One of them is wicking. During pouring, the glass stream flows down the wall of the pour spout until it reaches an angled cut in the wall. At this point, the stream is supposed to break cleanly away from the wall of the pour spout and fall freely into the canister. However, the glass stream is often pulled toward the wall and does not always fall into the canister, a phenomenon known as wicking. Phase 1 involves the assembly, construction, and testing of a melter capable of supplying molten glass at operational flow rates over a break-off point knife edge. Phase 2 will evaluate the effects of glass and pour spout temperatures as well as glass flow rates on the glass flow behavior over the knife edge. Phase 3 will identify the effects on wicking resulting from varying the knife edge diameter and height as well as changing the back-cut angle of the knife edge. The following tasks were completed in FY97: Design the experimental system for glass melting and pouring; Acquire and assemble the melter system; and Perform initial research work

  19. Large red cyanobacterial mats (Spirulina subsalsa Oersted ex Gomont in the shallow sublittoral of the southern Baltic

    Directory of Open Access Journals (Sweden)

    Piotr Balazy

    2014-06-01

    Full Text Available We report the first observation of large red cyanobacterial mats in the southern Baltic Sea. The mats (up to 2.5 m in diameter were observed by SCUBA divers at 7.7 m depth on loamy sediments in the Gulf of Gdańsk in mid-November 2013. The main structure of the mat was formed by cyanobacteria Spirulina subsalsa Oersted ex Gomont; a number of other cyanobacteria, diatoms and nematode species were also present. After a few days in the laboratory, the red trichomes of S. subsalsa started to turn blue-green in colour, suggesting the strong chromatic acclimation abilities of this species.

  20. The development of stromatolitic features from laminated microbial mats in the coastal sabkha of Abu Dhabi (UAE)

    Science.gov (United States)

    Paul, Andreas; Lessa Andrade, Luiza; Dutton, Kirsten E.; Sherry, Angela; Court, Wesley M.; Van der Land, Cees; Lokier, Stephen W.; Head, Ian M.

    2017-04-01

    Stromatolitic features are documented from both marine and terrestrial environments worldwide. These features form through a combination of trapping and binding of allochthonous grains, and through microbially mediated and/or controlled precipitation of carbonate minerals. The combined effects of these processes result in the continuous vertical and lateral growth of stromatolites. While the Abu Dhabi coastal sabkha is well known for a vast microbial mat belt that is dominated by continuous polygonal and internally-laminated microbial mats, no stromatolitic features have been reported from this area so far. In this study, we report evidence for stromatolitic features from the coastal sabkha of Abu Dhabi, based on observations in an intertidal but permanently submerged pool. This pool lies embedded within the laminated microbial mat zone, and is marked by the development of true laminated stromatolite at its margins and microbial build-ups at its centre. In order to characterise processes that lead to the formation of these stromatolitic features, and to develop a conceptual model that describes their development in the context of variations in sea level, tidal energy and other environmental factors, we employ a multitude of environmental, sedimentological, mineralogical and geochemical methods. These methods include the analysis of water data in terms of temporal variations in temperature, salinity, dissolved oxygen and water level, the analysis of petrographic thin sections of both lithified and unlithified features as well as an analysis of the stromatolites' mineralogical composition, and the amounts of incorporated organic carbon and calcium carbonate. Initial results suggest that the development of the observed stromatolitic features in the coastal sabkha of Abu Dhabi is the result of a complex interplay between simultaneous erosion of laminated microbial mat, and biotic/abiotic lithification processes. Initially, the location of this pool was characterised by