WorldWideScience

Sample records for glass clad ruby

  1. Ruby coloured lead glasses by generation of silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Gil, C. [Fundacion Centro Nacional del Vidrio, Pocillo, 1, 40100 La Granja de San Ildefonso (Segovia) (Spain); Villegas, M.A. [Centro Nacional de Investigaciones Metalurgicas (CENIM), Spanish Council for Scientific Research (CSIC), Avda. Gregorio del Amo, 8, 28040 Madrid (Spain)]. E-mail: mavillegas@cenim.csic.es

    2004-11-15

    Both yellow and red superficial ruby lead crystal glasses have been obtained by Ag{sup +} ion-exchange. For red ruby colouring lead glass substrates were previously doped with reducing oxides (arsenic, antimony, cerium and tin). The best experimental conditions for silver ion-exchange were determined. The optical absorption behaviour of the samples was studied to point out the influence of the parameters involved in the ion-exchange process. Moreover, other parameters affecting the final colouring of the glasses (kind of dopant, dopant concentration, etc.) were also analysed. The dopant percentage added to the lead crystal glass is the most important factor for developing superficial red ruby colouring. Antimony oxide doped lead glass ion-exchanged with silver showed the most intense red ruby colouring, even for a doping concentration lower than those of arsenic oxide doped samples able to enhance similar colour. Spectral saturation appeared for the highest doping concentration and for the most severe ion-exchange conditions. Chromatic coordinates were calculated from the corresponding transmission visible spectra. The colour purity showed by the samples obtained satisfies the ornamental requirements that motivated this research.

  2. Composite polymer: Glass edge cladding for laser disks

    Science.gov (United States)

    Powell, H.T.; Wolfe, C.A.; Campbell, J.H.; Murray, J.E.; Riley, M.O.; Lyon, R.E.; Jessop, E.S.

    1987-11-02

    Large neodymium glass laser disks for disk amplifiers such as those used in the Nova laser require an edge cladding which absorbs at 1 micrometer. This cladding prevents edge reflections from causing parasitic oscillations which would otherwise deplete the gain. Nova now utilizes volume-absorbing monolithic-glass claddings which are fused at high temperature to the disks. These perform quite well but are expensive to produce. Absorbing glass strips are adhesively bonded to the edges of polygonal disks using a bonding agent whose index of refraction matches that of both the laser and absorbing glass. Optical finishing occurs after the strips are attached. Laser disks constructed with such claddings have shown identical gain performance to the previous Nova disks and have been tested for hundreds of shots without significant degradation. 18 figs.

  3. Composite polymer-glass edge cladding for laser disks

    Science.gov (United States)

    Powell, Howard T.; Riley, Michael O.; Wolfe, Charles R.; Lyon, Richard E.; Campbell, John H.; Jessop, Edward S.; Murray, James E.

    1989-01-01

    Large neodymium glass laser disks for disk amplifiers such as those used in the Nova laser require an edge cladding which absorbs at 1 micrometer. This cladding prevents edge reflections from causing parasitic oscillations which would otherwise deplete the gain. Nova now utilizes volume-absorbing monolithic-glass claddings which are fused at high temperature to the disks. These perform quite well but are expensive to produce. Absorbing glass strips are adhesively bonded to the edges of polygonal disks using a bonding agent whose index of refraction matches that of both the laser and absorbing glass. Optical finishing occurs after the strips are attached. Laser disks constructed with such claddings have shown identical gain performance to the previous Nova disks and have been tested for hundreds of shots without significant degradation.

  4. Composite polymer/glass edge claddings for new Nova laser disks

    International Nuclear Information System (INIS)

    Powell, H.T.; Campbell, J.H.; Edwards, G.

    1987-01-01

    Large Nd:glass laser disks like those used in Nova require an edge cladding which absorbs at 1 μm. This cladding prevents Fresnel reflections from the edges from causing parasitic oscillations which would otherwise reduce the gain. The original Nova disks had a Cu/sup 2+/-doped phosphate glass cladding which was cast at high temperature around the circumference of the disk. Although the performance of this cladding is excellent, it was expensive to produce. Consequently, in parallel with their efforts to develop Pt inclusion-free laser glass, the authors developed a composite polymer/glass edge cladding that can be applied at greatly reduced cost. Laser disks constructed with the new cladding design show identical performance to the previous Nova disks and have been tested for hundreds of shots without degradation. The new cladding consists of absorbing glass strips which are bonded to the edges of polygonal-rather that elliptical-shaped disks. The bond is made by an --25-μm thick clear epoxy adhesive whose index of refraction matches both the laser and absorbing glass. By blending aromatic and aliphatic epoxy constituents, they achieved an index-of-refraction match within approximately +-0.003 between the epoxy and glass. The epoxy was also chosen based on its damage resistance to flashlamp light and its adhesive strength to glass. The present cladding is a major improvement over a previous experimental cladding utilizing silicone rubber as a coupling agent. Early prototypes constructed without using the presented techniques exhibited failures from both mechanisms. Delamination failures occurred which clearly showed both surface and bulk-mode parasitic oscillation. Requirements on the polymer, disk size, and Nd doping to prevent these problems are presented

  5. Thermal stress in the edge cladding of Nova glass laser disks

    International Nuclear Information System (INIS)

    Pitts, J.H.; Kong, M.K.; Gerhard, M.A.

    1987-01-01

    We calculated thermal stresses in Nova glass laser disks having light-absorbing edge cladding glass attached to the periphery with an epoxy adhesive. Our closed-form solutions indicated that, because the epoxy adhesive is only 25 μm across, it does not significantly affect the thermal stress in the disk or cladding glass. Our numerical results showed a peak tensile stress in the cladding glass of 24 MPa when the cladding glass had a uniform absorption coefficient of 7.5 cm -1 . This peak value is reduced to 19 MPa if surface parasitic oscillation heating is eliminated by tilting the disk edges. The peak tensile stresses exceed the typical 7 to 14-MPa working stress for glass; however, we have not observed any disk or cladding glass failures at peak Nova fluences of 20 J/cm 2 . We have observed delamination of the epoxy adhesive bond at fluences several times that which would occur on Nova. Replacement laser disks will incorporate cladding with a reduced absorption coefficient of 4.5 cm -1 . Recent experiments show that this reduced absorption coefficient is satisfactory

  6. Development of composite polymer-glass edge claddings for Nova Laser Disks

    International Nuclear Information System (INIS)

    Campbell, J.H.; Edwards, G.; Frick, F.A.; Gemmell, D.S.; Gim, B.M.; Jancaitis, K.S.; Jessop, E.S.; Kong, M.K.; Lyon, R.E.; Murray, J.E.; Patton, H.G.; Pitts, J.H.; Powell, H.T.; Riley, M.O.; Wallerstein, E.P.; Wolfe, C.R.; Woods, B.W.

    1988-01-01

    Large Nd:glass laser disks for disk amplifiers require an edge cladding which absorbs at 1 μ m. This cladding prevents edge reflections from causing parasitic oscillations that would otherwise deplete the gain. The authors have developed a composite polymer-glass edge cladding that consists of absorbing glass strips bonded to the edges of laser glass disks using an epoxy adhesive. The edge cladding must survive a fluence of approximately 20 J/cm 2 in a 0.5-ms pulse. Failure can occur either by decomposition of the polymer or by mechanical failure from thermal stresses which leads to bond delamination. An epoxy has been developed that gives the required damage resistance, refractive index match and processing characteristics. A slight tilt of the disk edges greatly reduces the threat from parasitic oscillations and a glass surface treatment is used to promote bond adhesion. Laser disks fabricated with this new cladding show identical gain performance to disks using conventional fused-glass cladding and have been tested for over 2000 shots (equivalent to about a 4-year lifetime on Nova) with out degradation

  7. Laser cladding of bioactive glass coatings.

    Science.gov (United States)

    Comesaña, R; Quintero, F; Lusquiños, F; Pascual, M J; Boutinguiza, M; Durán, A; Pou, J

    2010-03-01

    Laser cladding by powder injection has been used to produce bioactive glass coatings on titanium alloy (Ti6Al4V) substrates. Bioactive glass compositions alternative to 45S5 Bioglass were demonstrated to exhibit a gradual wetting angle-temperature evolution and therefore a more homogeneous deposition of the coating over the substrate was achieved. Among the different compositions studied, the S520 bioactive glass showed smoother wetting angle-temperature behavior and was successfully used as precursor material to produce bioactive coatings. Coatings processed using a Nd:YAG laser presented calcium silicate crystallization at the surface, with a uniform composition along the coating cross-section, and no significant dilution of the titanium alloy was observed. These coatings maintain similar bioactivity to that of the precursor material as demonstrated by immersion in simulated body fluid. Copyright 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  8. Ruby under a microscope learning Ruby internals through experiment

    CERN Document Server

    Shaughnessy, Pat

    2013-01-01

    How Ruby Works Under the HoodRuby is a powerful programming language with a focus on simplicity, but beneath its elegant syntax it performs countless unseen tasks.Ruby Under a Microscope gives you a hands-on look at Ruby's core, using extensive diagrams and thorough explanations to show you how Ruby is implemented (no C skills required). Author Pat Shaughnessy takes a scientific approach, laying out a series of experiments with Ruby code to take you behind the scenes of how programming languages work. You'll even find information on JRuby and Rubinius (two alternative implementations of Ruby),

  9. BioRuby: bioinformatics software for the Ruby programming language.

    Science.gov (United States)

    Goto, Naohisa; Prins, Pjotr; Nakao, Mitsuteru; Bonnal, Raoul; Aerts, Jan; Katayama, Toshiaki

    2010-10-15

    The BioRuby software toolkit contains a comprehensive set of free development tools and libraries for bioinformatics and molecular biology, written in the Ruby programming language. BioRuby has components for sequence analysis, pathway analysis, protein modelling and phylogenetic analysis; it supports many widely used data formats and provides easy access to databases, external programs and public web services, including BLAST, KEGG, GenBank, MEDLINE and GO. BioRuby comes with a tutorial, documentation and an interactive environment, which can be used in the shell, and in the web browser. BioRuby is free and open source software, made available under the Ruby license. BioRuby runs on all platforms that support Ruby, including Linux, Mac OS X and Windows. And, with JRuby, BioRuby runs on the Java Virtual Machine. The source code is available from http://www.bioruby.org/. katayama@bioruby.org

  10. Microstructures and tribological properties of laser cladded Ti-based metallic glass composite coatings

    International Nuclear Information System (INIS)

    Lan, Xiaodong; Wu, Hong; Liu, Yong; Zhang, Weidong; Li, Ruidi; Chen, Shiqi; Zai, Xiongfei; Hu, Te

    2016-01-01

    Metallic glass composite coatings Ti 45 Cu 41 Ni 9 Zr 5 and Ti 45 Cu 41 Ni 6 Zr 5 Sn 3 (at.%) on a Ti-30Nb-5Ta-7Zr (wt.%) (TNTZ) alloy were prepared by laser cladding. The microstructures of the coatings were characterized by means of X-ray diffractometry (XRD), scanning electron microscopy (SEM) equipped with energy dispersive X-ray analyzer (EDXA), and transmission electron microscopy (TEM). Results indicated that the coatings have an amorphous structure embedded with a few nanocrystalline phases and dendrites. A partial substitution of Ni by Sn can improve the glass forming ability of Ti-base metallic glass system, and induce the formation of nano-sized Ni 2 SnTi phase during the cyclic laser heating. The tribological behavior of both the substrate and the coatings was investigated in detail. A significant improvement in both the hardness and the wear resistance of the coatings was achieved with the addition of Sn. The relationship between the wear resistance and the microstructures of the coatings was discussed. - Highlights: •Ti-based metallic glass composite coatings were prepared by laser cladding. •The wear resistance is greatly improved by laser cladding of composite coatings. •Substitution of Ni by Sn increases GFA and wear resistance of the coatings. •A good balance of crystalline/amorphous phases improves the wear resistance. •Adhesive wear serves as the dominant wear mechanism of the composite coatings.

  11. Microstructures and tribological properties of laser cladded Ti-based metallic glass composite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Lan, Xiaodong; Wu, Hong, E-mail: wuhong927@126.com; Liu, Yong, E-mail: yonliu@csu.edu.cn; Zhang, Weidong; Li, Ruidi; Chen, Shiqi; Zai, Xiongfei; Hu, Te

    2016-10-15

    Metallic glass composite coatings Ti{sub 45}Cu{sub 41}Ni{sub 9}Zr{sub 5} and Ti{sub 45}Cu{sub 41}Ni{sub 6}Zr{sub 5}Sn{sub 3} (at.%) on a Ti-30Nb-5Ta-7Zr (wt.%) (TNTZ) alloy were prepared by laser cladding. The microstructures of the coatings were characterized by means of X-ray diffractometry (XRD), scanning electron microscopy (SEM) equipped with energy dispersive X-ray analyzer (EDXA), and transmission electron microscopy (TEM). Results indicated that the coatings have an amorphous structure embedded with a few nanocrystalline phases and dendrites. A partial substitution of Ni by Sn can improve the glass forming ability of Ti-base metallic glass system, and induce the formation of nano-sized Ni{sub 2}SnTi phase during the cyclic laser heating. The tribological behavior of both the substrate and the coatings was investigated in detail. A significant improvement in both the hardness and the wear resistance of the coatings was achieved with the addition of Sn. The relationship between the wear resistance and the microstructures of the coatings was discussed. - Highlights: •Ti-based metallic glass composite coatings were prepared by laser cladding. •The wear resistance is greatly improved by laser cladding of composite coatings. •Substitution of Ni by Sn increases GFA and wear resistance of the coatings. •A good balance of crystalline/amorphous phases improves the wear resistance. •Adhesive wear serves as the dominant wear mechanism of the composite coatings.

  12. Timely Rubies

    DEFF Research Database (Denmark)

    Brichet, Nathalia Sofie

    2018-01-01

    Based on anthropological fieldwork in Greenland, I explore how rubies as a natural resource create and organise forms of temporality in order for the stones to appear as a valuable good. I suggest that a circular argument is at play with regard to the Greenlandic rubies, namely that time creates ...... embedded in and generated through social practices. Accordingly, time in relation to mining does not so much present a philosophical challenge, but is rather just a “thing” that happens to be good to think a Greenlandic resource landscape through – as are rubies.......Based on anthropological fieldwork in Greenland, I explore how rubies as a natural resource create and organise forms of temporality in order for the stones to appear as a valuable good. I suggest that a circular argument is at play with regard to the Greenlandic rubies, namely that time creates...... valuable rubies and rubies create time. I further argue that this interdependence is an important self-fulfilling driver in creating a viable mining industry for gemstones in Greenland. A focus on temporality enables me to engage in this circularity and thereby explore one component in the work of making...

  13. MacRuby Ruby and Cocoa on OS X

    CERN Document Server

    Aimonetti, Matt

    2011-01-01

    Want to build native Mac OS X applications with a sleek, developer-friendly alternative to Objective-C? MacRuby is an ideal choice. This in-depth guide shows you how Apple's implementation of Ruby gives you access to all the features available to Objective-C programmers. You'll get clear, detailed explanations of MacRuby, including quick programming techniques such as prototyping. Perfect for programmers at any level, this book is packed with code samples and complete project examples. If you use Ruby, you can tap your skills to take advantage of Interface Builder, Cocoa libraries, the Objec

  14. Standard specification for architectural flat glass clad polycarbonate

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This specification covers the quality requirements for cut sizes of glass clad polycarbonate (GCP) for use in buildings as security, detention, hurricane/cyclic wind-resistant, and blast and ballistic-resistant glazing applications. 1.2 The values stated in inch-pound units are to be regarded as the standard. The values given in parentheses are for information only. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  15. The Ruby programming language

    CERN Document Server

    Flanagan, David

    2008-01-01

    This book begins with a quick-start tutorial to the language, and then explains the language in detail from the bottom up: from lexical and syntactic structure to datatypes to expressions and statements and on through methods, blocks, lambdas, closures, classes and modules. The book also includes a long and thorough introduction to the rich API of the Ruby platform, demonstrating -- with heavily-commented example code -- Ruby's facilities for text processing, numeric manipulation, collections, input/output, networking, and concurrency. An entire chapter is devoted to Ruby's metaprogramming capabilities. The Ruby Programming Language documents the Ruby language definitively but without the formality of a language specification. It is written for experienced programmers who are new to Ruby, and for current Ruby programmers who want to challenge their understanding and increase their mastery of the language.

  16. The Ruby UCSC API: accessing the UCSC genome database using Ruby.

    Science.gov (United States)

    Mishima, Hiroyuki; Aerts, Jan; Katayama, Toshiaki; Bonnal, Raoul J P; Yoshiura, Koh-ichiro

    2012-09-21

    The University of California, Santa Cruz (UCSC) genome database is among the most used sources of genomic annotation in human and other organisms. The database offers an excellent web-based graphical user interface (the UCSC genome browser) and several means for programmatic queries. A simple application programming interface (API) in a scripting language aimed at the biologist was however not yet available. Here, we present the Ruby UCSC API, a library to access the UCSC genome database using Ruby. The API is designed as a BioRuby plug-in and built on the ActiveRecord 3 framework for the object-relational mapping, making writing SQL statements unnecessary. The current version of the API supports databases of all organisms in the UCSC genome database including human, mammals, vertebrates, deuterostomes, insects, nematodes, and yeast.The API uses the bin index-if available-when querying for genomic intervals. The API also supports genomic sequence queries using locally downloaded *.2bit files that are not stored in the official MySQL database. The API is implemented in pure Ruby and is therefore available in different environments and with different Ruby interpreters (including JRuby). Assisted by the straightforward object-oriented design of Ruby and ActiveRecord, the Ruby UCSC API will facilitate biologists to query the UCSC genome database programmatically. The API is available through the RubyGem system. Source code and documentation are available at https://github.com/misshie/bioruby-ucsc-api/ under the Ruby license. Feedback and help is provided via the website at http://rubyucscapi.userecho.com/.

  17. The Ruby UCSC API: accessing the UCSC genome database using Ruby

    Science.gov (United States)

    2012-01-01

    Background The University of California, Santa Cruz (UCSC) genome database is among the most used sources of genomic annotation in human and other organisms. The database offers an excellent web-based graphical user interface (the UCSC genome browser) and several means for programmatic queries. A simple application programming interface (API) in a scripting language aimed at the biologist was however not yet available. Here, we present the Ruby UCSC API, a library to access the UCSC genome database using Ruby. Results The API is designed as a BioRuby plug-in and built on the ActiveRecord 3 framework for the object-relational mapping, making writing SQL statements unnecessary. The current version of the API supports databases of all organisms in the UCSC genome database including human, mammals, vertebrates, deuterostomes, insects, nematodes, and yeast. The API uses the bin index—if available—when querying for genomic intervals. The API also supports genomic sequence queries using locally downloaded *.2bit files that are not stored in the official MySQL database. The API is implemented in pure Ruby and is therefore available in different environments and with different Ruby interpreters (including JRuby). Conclusions Assisted by the straightforward object-oriented design of Ruby and ActiveRecord, the Ruby UCSC API will facilitate biologists to query the UCSC genome database programmatically. The API is available through the RubyGem system. Source code and documentation are available at https://github.com/misshie/bioruby-ucsc-api/ under the Ruby license. Feedback and help is provided via the website at http://rubyucscapi.userecho.com/. PMID:22994508

  18. The Ruby UCSC API: accessing the UCSC genome database using Ruby

    Directory of Open Access Journals (Sweden)

    Mishima Hiroyuki

    2012-09-01

    Full Text Available Abstract Background The University of California, Santa Cruz (UCSC genome database is among the most used sources of genomic annotation in human and other organisms. The database offers an excellent web-based graphical user interface (the UCSC genome browser and several means for programmatic queries. A simple application programming interface (API in a scripting language aimed at the biologist was however not yet available. Here, we present the Ruby UCSC API, a library to access the UCSC genome database using Ruby. Results The API is designed as a BioRuby plug-in and built on the ActiveRecord 3 framework for the object-relational mapping, making writing SQL statements unnecessary. The current version of the API supports databases of all organisms in the UCSC genome database including human, mammals, vertebrates, deuterostomes, insects, nematodes, and yeast. The API uses the bin index—if available—when querying for genomic intervals. The API also supports genomic sequence queries using locally downloaded *.2bit files that are not stored in the official MySQL database. The API is implemented in pure Ruby and is therefore available in different environments and with different Ruby interpreters (including JRuby. Conclusions Assisted by the straightforward object-oriented design of Ruby and ActiveRecord, the Ruby UCSC API will facilitate biologists to query the UCSC genome database programmatically. The API is available through the RubyGem system. Source code and documentation are available at https://github.com/misshie/bioruby-ucsc-api/ under the Ruby license. Feedback and help is provided via the website at http://rubyucscapi.userecho.com/.

  19. Phosphate-core silica-clad Er/Yb-doped optical fiber and cladding pumped laser.

    Science.gov (United States)

    Egorova, O N; Semjonov, S L; Velmiskin, V V; Yatsenko, Yu P; Sverchkov, S E; Galagan, B I; Denker, B I; Dianov, E M

    2014-04-07

    We present a composite optical fiber with a Er/Yb co-doped phosphate-glass core in a silica glass cladding as well as cladding pumped laser. The fabrication process, optical properties, and lasing parameters are described. The slope efficiency under 980 nm cladding pumping reached 39% with respect to the absorbed pump power and 28% with respect to the coupled pump power. Due to high doping level of the phosphate core optimal length was several times shorter than that of silica core fibers.

  20. Instant RubyMine assimilation

    CERN Document Server

    Jones, Dave

    2013-01-01

    Filled with practical, step-by-step instructions and clear explanations for the most important and useful tasks. Get the job done and learn as you go. A practical guide comprising of easy-to-follow recipes which provide concise and clear steps to help you enter the world of RubyMine.Instant RubyMine is ideal for you, if you are new to RubyMine or well acquainted with the technology. All you need is basic knowledge of writing in Ruby or Ruby on Rails.

  1. Rubis: an international strategy; Rubis: une strategie internationale

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2000-01-01

    In less than 4 years, the Rubis group moved from a role of a regional LPG distributor in North-Eastern France to a multinational company working in Europe, in the Maghreb and along the African East Coast. After a first acquisition in Morocco in 1997 with the setup of Lasfargaz (see article on its mounded storage in this issue), and following the take-over in 1998 and 1999 of IPEM in Italy, the group reinforces its positions in the Peninsula by acquiring Autogaz Meridionale (a marketer representing some 61,000 t/yr). Thus, Italy becomes the first development pole for Rubis. Meanwhile, the group is launching its activities in Madagascar, while stepping ahead in France. Overall, the Rubis group will sell some 500 000 t in 2000. (authors)

  2. 3D analysis of thermal and stress evolution during laser cladding of bioactive glass coatings.

    Science.gov (United States)

    Krzyzanowski, Michal; Bajda, Szymon; Liu, Yijun; Triantaphyllou, Andrew; Mark Rainforth, W; Glendenning, Malcolm

    2016-06-01

    Thermal and strain-stress transient fields during laser cladding of bioactive glass coatings on the Ti6Al4V alloy basement were numerically calculated and analysed. Conditions leading to micro-cracking susceptibility of the coating have been investigated using the finite element based modelling supported by experimental results of microscopic investigation of the sample coatings. Consecutive temperature and stress peaks are developed within the cladded material as a result of the laser beam moving along the complex trajectory, which can lead to micro-cracking. The preheated to 500°C base plate allowed for decrease of the laser power and lowering of the cooling speed between the consecutive temperature peaks contributing in such way to achievement of lower cracking susceptibility. The cooling rate during cladding of the second and the third layer was lower than during cladding of the first one, in such way, contributing towards improvement of cracking resistance of the subsequent layers due to progressive accumulation of heat over the process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Ruby on Rails for dummies

    CERN Document Server

    Burd

    2007-01-01

    Quickly create Web sites with this poweful tool Use this free and easy programming language for e-commerce sites and blogs If you need to build Web and database applications quickly but you don''t dream in computer code, take heart! Ruby on Rails was created for you, and this book will have you up and running in no time. The Ruby scripting language and the Rails framework let you create full-featured Web applications fast. It''s even fun! Discover how toInstall and run Ruby and RailsUse the RadRails IDECreate a blog with RubyConnect your Web site to a databaseBuild a shopping cartExplore Ruby'

  4. Remembering Ruby Special monograph edition: Remembering Ruby

    Directory of Open Access Journals (Sweden)

    Pam Johnson

    2012-05-01

    Full Text Available ‘Remembering Ruby’ is a tribute to Doctor Ruby Langford Ginibi, a remarkable woman and an important Australian writer. Winner of numerous awards for her contribution to literature, as well as to Australian culture, Ruby was an Aboriginal Elder of the Bundjalung nation and a tireless campaigner for the rights of her people. Ruby’s writing is passionate, sincere and heart-felt, as well as extraordinarily funny and articulate. She knew that getting people to listen to her story would be fundamental to naming the hidden history of Indigenous Australia and to changing cultural perceptions in a broader context. As an elder she took on the complex and demanding role of ‘edumacation’, as she called it, and her representations of life and culture continue to provide important reflections, from an Indigenous perspective, on the effects of ignorance, racism and colonisation in an Australian context. As Aboriginal mother, aunty, teacher and scholar her writing represents a particular Australian experience for a readership of people interested in human rights and equality the world over. This monograph, in honouring Ruby Langford Ginibi, is the written expression of an ongoing dialogue between the two authors about their experiences living in Australia and the way that Ruby has interconnected with us and influenced our experiences of growing up in an Australian cultural context. It also brings into focus the many ways that Ruby Langford Ginibi’s writing has been central to challenging and changing prevailing perspectives on the lives of Indigenous people over the last twenty-five years. An excellent communicator with a wicked sense of humour, Ruby’s tireless telling of the truth about the impacts of invasion on Indigenous people makes her an important cultural ambassador for all Australians. Ruby’s totem, the Willy Wagtail, is connected to being a messenger for her people and in writing ‘Remembering Ruby’ we aim to contribute to keeping

  5. Moessbauerspectroscopy on Gold Ruby Glass

    International Nuclear Information System (INIS)

    Haslbeck, S.

    2005-01-01

    In this thesis, the chemical states of gold and the physical mechanisms of the growing process of the particles under the influence of additional ingredients like tin, lead, antimony and selenium before, during and after the colouring process are investigated by using the Moessbauer spectroscopy on 197 Au, 119 Sn and 121 Sb, optical spectroscopy and X-ray-diffraction. Gold in an unnealed, colourless state of the glasses consists of monovalent forming linear bonds to two neighbouring oxygen atoms. The Lamb-Moessbauer factor of these gold oxide bondings is observed as 0.095 at 4.2 K. The gold in it's oxide state transforms to gold particles with a diameter of 3 nm to 60 nm. The size of the gold particles is quite definable within the optical spectra and certain sizes are also discernable within the Moessbauer spectra. One component of the Moessbauer spectra is assigned to the surface layer of the gold particles. By comparing this surface component with the amount of the bulk metallic core, one can calculate the size of the gold particles. In the Moessbauer spectra of the colourless glass one also can find parts of bulk metallic gold. Investigations with X-ray diffraction show that these are gold particles with a diameter of 100 nm to 300 nm and therefore have no additional colouring effect within the visible spectrum. The Moessbauer spectra on gold of the remelt glasses are similar to those which have been measured on the initial colourless glasses

  6. One-step synthesis and properties of monolithic photoluminescent ruby colored cuprous oxide antimony oxide glass nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Som, Tirtha [Glass Science and Technology Section, Glass Division, Central Glass and Ceramic Research Institute, Council of Scientific and Industrial Research (CSIR, India), 196, Raja S.C. Mullick Road, Kolkata 700032 (India); Karmakar, Basudeb, E-mail: basudebk@cgcri.res.in [Glass Science and Technology Section, Glass Division, Central Glass and Ceramic Research Institute, Council of Scientific and Industrial Research (CSIR, India), 196, Raja S.C. Mullick Road, Kolkata 700032 (India)

    2011-04-14

    Research highlights: > Single-step synthesis of Cu{sub 2}O, Cu{sub y}Sb{sub 2-x}(O,OH){sub 6-7} (y {<=} 2, x {<=} 1) and Cu nanocrystals co-doped novel antimony oxide glass hybrid nanocomposites. > Yellow and orange colored nanocomposites shows size-controlled band gap shift of Cu{sub 2}O. > Red nanocomposite exhibits surface plasmon resonance band due to metallic Cu. > They exhibit broad deep-red photoluminescence emission under various UV excitation wavelengths. - Abstract: Cuprous oxide (Cu{sub 2}O) antimony glass (K{sub 2}O-B{sub 2}O{sub 3}-Sb{sub 2}O{sub 3}) monolithic nanocomposites having brilliant yellow to ruby red color have been synthesized by a single-step melt-quench technique involving in situ thermochemical reduction of Cu{sup 2+} (CuO) by the reducing glass matrix without using any external reducing agent. The X-ray diffraction (XRD), infrared transmission and reflection spectra, and selected area electron diffraction analysis support the reduction of Cu{sup 2+} to Cu{sup +} with the formation of Cu{sub 2}O nanoclusters along with Cu{sub y}Sb{sub 2-x}(O,OH){sub 6-7} (y {<=} 2, x {<=} 1) nanocrystalline phases while Cu{sup 0} nanoclusters are formed at very high Cu concentration. The UV-vis spectra of the yellow and orange colored nanocomposites show size-controlled band gap shift of the semiconductor (Cu{sub 2}O) nanocrystallites embedded in the glasses while the red nanocomposite exhibits surface plasmon resonance band at 529 nm due to metallic Cu. Transmission electron microscopic image advocates the formation of nanocystallites (5-42 nm). Photoluminescence emission studies show broad red emission band around 626 nm under various excitation wavelengths from 210 to 270 nm.

  7. GSGG edge cladding development: Final technical report

    International Nuclear Information System (INIS)

    Izumitani, T.; Meissner, H.E.; Toratani, H.

    1986-01-01

    The objectives of this project have been: (1) Investigate the possibility of chemical etching of GSGG crystal slabs to obtain increased strength. (2) Design and construct a simplified mold assembly for casting cladding glass to the edges of crystal slabs of different dimensions. (3) Conduct casting experiments to evaluate the redesigned mold assembly and to determine stresses as function of thermal expansion coefficient of cladding glass. (4) Clad larger sizes of GGG slabs as they become available. These tasks have been achieved. Chemical etching of GSGG slabs does not appear possible with any other acid than H 3 PO 4 at temperatures above 300 0 C. A mold assembly has been constructed which allowed casting cladding glass around the edges of the largest GGG slabs available (10 x 20 x 160 mm) without causing breakage through the annealing step

  8. Laser cladding to select new glassy alloys

    International Nuclear Information System (INIS)

    Medrano, L.L.O.; Afonso, C.R.M.; Kiminami, C.S.; Gargarella, P.; Ramasco, B.

    2016-01-01

    A new experimental technique used to analyze the effect of compositional variation and cooling rate in the phase formation in a multicomponent system is the laser cladding. This work have evaluated the use of laser cladding to discover a new bulk metallic glass (BMG) in the Al-Co-Zr system. Coatings with composition variation have made by laser cladding using Al-Co-Zr alloys powders and the samples produced have been characterized by X ray diffraction, microscopy and energy-dispersive X-ray spectroscopy. The results did not show the composition variation as expected, because of incomplete melting during laser process. It was measured a composition variation tendency that allowed the glass forming investigation by the glass formation criterion λ+Δh 1/2 . The results have showed no glass formation in the coating samples, which prove a limited capacity of Zr-Co-Al system to form glass (author)

  9. High-efficiency ytterbium-free erbium-doped all-glass double cladding silicate glass fiber for resonantly-pumped fiber lasers.

    Science.gov (United States)

    Qiang, Zexuan; Geng, Jihong; Luo, Tao; Zhang, Jun; Jiang, Shibin

    2014-02-01

    A highly efficient ytterbium-free erbium-doped silicate glass fiber has been developed for high-power fiber laser applications at an eye-safe wavelength near 1.55 μm. Our preliminary experiments show that high laser efficiency can be obtained from a relatively short length of the gain fiber when resonantly pumped at 1535 nm in both core- and cladding-pumping configurations. With a core-pumping configuration as high as 75%, optical-to-optical efficiency and 4 W output power were obtained at 1560 nm from a 1 m long gain fiber. When using a cladding-pumping configuration, approximately 13 W output power with 67.7% slope efficiency was demonstrated from a piece of 2 m long fiber. The lengths of silicate-based gain fiber are much shorter than their silica-based counterparts used in other experiments, which is significantly important for high-power narrow-band and/or pulsed laser applications.

  10. Cladding glass ceramic for use in high powered lasers

    Science.gov (United States)

    Marker, Alexander J.; Campbell, John H.

    1998-01-01

    A Cu-doped/Fe-doped low expansion glass ceramic composition comprising in Wt. %: SiO{sub 2} 50--65; Al{sub 2}O{sub 3} 18--27; P{sub 2}O{sub 5} 0--10; Li{sub 2}O 2--6; Na{sub 2}O 0--2; K{sub 2}O 0--2; B{sub 2}O{sub 3} 0--1; MgO 0--4; ZnO 0--5; CaO 0--4; BaO 0--5; TiO{sub 2} 1--3; ZrO{sub 3} 1--3; As{sub 2}O{sub 3} 0--1.5; Sb{sub 2}O{sub 3} 0--1.5; CuO 0--3; and Fe{sub 2}O{sub 3} 0--1 wherein the total amount of SiO{sub 2}, Al{sub 2}O{sub 3} and P{sub 2}O{sub 5} is 80--89 wt. %, and said glass ceramic contains as a dopant 0.1--3 wt. % CuO, 0.1--1 wt. % Fe{sub 2}O{sub 3} or a combined CuO+Fe{sub 2}O{sub 3} amount of 0.1--4 wt. %. The glass ceramic composition is suitable for use as a cladding material for solid laser energy storage mediums as well as for use in beam attenuators for measuring laser energy level and beam blocks or beam dumps used for absorbing excess or unused laser energy.

  11. A function-based screen for seeking RubisCO active clones from metagenomes: novel enzymes influencing RubisCO activity.

    Science.gov (United States)

    Böhnke, Stefanie; Perner, Mirjam

    2015-03-01

    Ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) is a key enzyme of the Calvin cycle, which is responsible for most of Earth's primary production. Although research on RubisCO genes and enzymes in plants, cyanobacteria and bacteria has been ongoing for years, still little is understood about its regulation and activation in bacteria. Even more so, hardly any information exists about the function of metagenomic RubisCOs and the role of the enzymes encoded on the flanking DNA owing to the lack of available function-based screens for seeking active RubisCOs from the environment. Here we present the first solely activity-based approach for identifying RubisCO active fosmid clones from a metagenomic library. We constructed a metagenomic library from hydrothermal vent fluids and screened 1056 fosmid clones. Twelve clones exhibited RubisCO activity and the metagenomic fragments resembled genes from Thiomicrospira crunogena. One of these clones was further analyzed. It contained a 35.2 kb metagenomic insert carrying the RubisCO gene cluster and flanking DNA regions. Knockouts of twelve genes and two intergenic regions on this metagenomic fragment demonstrated that the RubisCO activity was significantly impaired and was attributed to deletions in genes encoding putative transcriptional regulators and those believed to be vital for RubisCO activation. Our new technique revealed a novel link between a poorly characterized gene and RubisCO activity. This screen opens the door to directly investigating RubisCO genes and respective enzymes from environmental samples.

  12. Single-step fabrication of stressed waveguides with tubular depressed-cladding in phosphate glasses using ultrafast vortex laser beams

    Directory of Open Access Journals (Sweden)

    Cheng Guanghua

    2013-11-01

    Full Text Available We report on the fabrication of the stressed optical waveguide with tubular depressed-refractive-index cladding in phosphate glasses by use of femtosecond vortex beam. Strained regions were emerged in domains surrounding the tubular track. Waveguiding occurs mainly within the tube induced by femtosecond laser.

  13. Three-dimensional bioactive glass implants fabricated by rapid prototyping based on CO(2) laser cladding.

    Science.gov (United States)

    Comesaña, R; Lusquiños, F; Del Val, J; López-Álvarez, M; Quintero, F; Riveiro, A; Boutinguiza, M; de Carlos, A; Jones, J R; Hill, R G; Pou, J

    2011-09-01

    Three-dimensional bioactive glass implants were produced by rapid prototyping based on laser cladding without using moulds. CO(2) laser radiation was employed to melt 45S5 and S520 bioactive glass particles and to deposit the material layer by layer following a desired geometry. Controlled thermal input and cooling rate by fine tuning of the processing parameters allowed the production of crack-free fully dense implants. Microstructural characterization revealed chemical composition stability, but crystallization during processing was extensive when 45S5 bioactive glass was used. Improved results were obtained using the S520 bioactive glass, which showed limited surface crystallization due to an expanded sintering window (the difference between the glass transition temperature and crystallization onset temperature). Ion release from the S520 implants in Tris buffer was similar to that of amorphous 45S5 bioactive glass prepared by casting in graphite moulds. Laser processed S520 scaffolds were not cytotoxic in vitro when osteoblast-like MC3T3-E1 cells were cultured with the dissolution products of the glasses; and the MC3T3-E1 cells attached and spread well when cultured on the surface of the materials. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  14. Hello Ruby adventures in coding

    CERN Document Server

    Liukas, Linda

    2015-01-01

    "Code is the 21st century literacy and the need for people to speak the ABCs of Programming is imminent." --Linda Liukas Meet Ruby--a small girl with a huge imagination. In Ruby's world anything is possible if you put your mind to it. When her dad asks her to find five hidden gems Ruby is determined to solve the puzzle with the help of her new friends, including the Wise Snow Leopard, the Friendly Foxes, and the Messy Robots. As Ruby stomps around her world kids will be introduced to the basic concepts behind coding and programming through storytelling. Learn how to break big problems into small problems, repeat tasks, look for patterns, create step-by-step plans, and think outside the box. With hands-on activities included in every chapter, future coders will be thrilled to put their own imaginations to work.

  15. Study and Behaviour of Prefabricated Composite Cladding

    Science.gov (United States)

    Sai Avinash, P.; Thiagarajan, N.; Santhi, A. S.

    2017-07-01

    The incessant population rise entailed for an expeditious construction at competitive prices that steered the customary path to the light weight structural components. This lead to construction of structural components using ferrocement. The load bearing structural cladding, sizing 3200x900x100 mm, is chosen for the study, which, is analyzed using the software ABAQUS 6.14 in accordance with the IS:875-87 Part1, IS:875-87 Part2, ACI 549R-97, ACI 318R-08 and NZS:3101-06 Part1 standards. The Ferrocement claddings (FCs) are fabricated to a scaled dimension of 400x115x38 mm. The light weight-high strength phenomena are corroborated by incorporating Glass Fibre Reinforced Polymer Laminates (GFRPL) of thickness 6mm, engineered with the aid of hand layup (wet layup) technique wielding epoxy resin, followed by curing under room temperature. The epoxy resin is employed for fastening ferrocement cladding with the Glass fiber reinforced polymer laminate, with the contemporary methodology. The compressive load carrying capacity of the amalgamated assembly, both in presence and absence of Glass Fibre Reinforced polymer laminates (GFRPL) on either side of Ferrocement cladding, has been experimented.

  16. Electra-Clad

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-05-04

    The study relates to the use of building-integrated photovoltaics. The Electra-Clad project sought to use steel-based cladding as a substrate for direct fabrication of a fully integrated solar panel of a design similar to the ICP standard glass-based panel. The five interrelated phases of the project are described. The study successfully demonstrated that the principles of the panel design are achievable and sound. But, despite intensive trials, a commercially realistic solar performance has not been achieved: the main failing was the poor solar conversion efficiency as the active area of the panel was increased in size. The problem lies with the coating used on the steel cladding substrates and it was concluded that a new type of coating will be required. ICP Solar Technologies UK carried out the work under contract to the DTI.

  17. Instant RubyMotion app development

    CERN Document Server

    Laborde, Gant

    2013-01-01

    Get to grips with a new technology, understand what it is and what it can do for you, and then get to work with the most important features and tasks. This book is a practical, task-based, step-by-step tutorial that will get you started with using RubyMotion to quickly and efficiently write iOS apps.To make the most of this book, you should understand the basics of programming concepts and have a basic understanding of a language similar to Ruby. If you are an Objective-C programmer, you'll learn the advantages of RubyMotion which can access the benefits of Cocoapods, but takes everything a st

  18. Ruby in a nutshell a desktop quick reference

    CERN Document Server

    Matsumoto, Yukihiro

    2002-01-01

    Ruby is an absolutely pure object-oriented scripting language written in C and designed with Perl and Python capabilities in mind. While its roots are in Japan, Ruby is slowly but surely gaining ground in the US. The goal of Yukihiro Matsumoto, creator of Ruby and author of this book, is to incorporate the strengths of languages like Perl, Python, Lisp and Smalltalk. Ruby is a genuine attempt to combine the best of everything in the scripting world. Since 1993, Ruby mailing lists have been established, Web pages have formed, and a community has grown around it. The language itself is very good at text processing and is notable for its broad object orientation. Ruby is portable and runs under GNU/Linux (and other Unices) as well as DOS, MS Windows and Mac. With Ruby in a Nutshell, Matsumoto offers a practical reference to the features of this new language including the command-line options, syntax, built-in variables, functions, and many commonly used classes and modules. This guide covers the current stable ...

  19. Stressed waveguides with tubular depressed-cladding inscribed in phosphate glasses by femtosecond hollow laser beams.

    Science.gov (United States)

    Long, Xuewen; Bai, Jing; Zhao, Wei; Stoian, Razvan; Hui, Rongqing; Cheng, Guanghua

    2012-08-01

    We report on the single-step fabrication of stressed optical waveguides with tubular depressed-refractive-index cladding in phosphate glasses by the use of focused femtosecond hollow laser beams. Tubelike low index regions appear under direct exposure due to material rarefaction following expansion. Strained compacted zones emerged in domains neighboring the tubular track of lower refractive index, and waveguiding occurs mainly within the tube core fabricated by the engineered femtosecond laser beam. The refractive index profile of the optical waveguide was reconstructed from the measured transmitted near-field intensity.

  20. From Java to Ruby things every manager should know

    CERN Document Server

    Tate, Bruce

    2006-01-01

    As a development team, you want to be productive. You want to write flexible, maintainable web applications. You want to use Ruby and Rails. But can you justify the move away from established platforms such as J2EE? Bruce Tate's From Java to Ruby has the answers, and it expresses them in a language that'll help persuade managers and executives who've seen it all. See when and where the switch makes sense, and see how to make it. If you're trying to adopt Ruby in your organization and need some help, this is the book for you. Based on a decision tree (a concept familiar to managers and executives,) Java to Ruby stays above the low-level technical debate to examine the real benefits and risks to adoption. Java to Ruby is packed with interviews of Ruby customers and developers, so you can see what types of projects are likely to succeed, and which ones are likely to fail. Ruby and Rails may be the answer, but first you need to be sure you're asking the right question. By addressing risk and fitness of purpose, J...

  1. Ion beam analysis of rubies and their simulants

    Energy Technology Data Exchange (ETDEWEB)

    Juncomma, U. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50202 (Thailand); Intarasiri, S., E-mail: saweat@gmail.com [Science and Technology Research Institute, Chiang Mai University, Chiang Mai 50202 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Bootkul, D. [Department of General Science (Gems and Jewelry), Faculty of Science, Srinakharinwirot University, Bangkok 10110 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Tippawan, U., E-mail: beary1001@gmail.com [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50202 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand)

    2014-07-15

    Ion beam analysis (IBA) is a set of well known powerful analytical techniques which use energetic particle beam as a probe. Among them, two techniques are suitable for gemological analysis, i.e., Particle Induced X-rays Emission (PIXE) and Ionoluminescence (IL). We combine these two techniques for the investigations of rubies and their simulants. The main objective is to find a reference fingerprint of these gemstones. The data are collected from several natural rubies, synthetic rubies, red spinels, almandine garnets and rubellite which very much resemble and are difficult to distinguish with the gemologist loupe. From our measurements, due to their different crystal structures and compositions, can be clearly distinguished by the IL and PIXE techniques. The results show that the PIXE spectra consist of a few dominant lines of the host matrix elements of each gemstone and some weaker lines due to trace elements of transition metals. PIXE can easily differentiate rubies from other stones by evaluating their chemical compositions. It is noticed that synthetic rubies generally contain fewer impurities, lower iron and higher chromium than the natural ones. Moreover, the IL spectrum of ruby is unique and different from those of others stones. The typical spectrum of ruby is centered at 694 nm, with small sidebands that can be ascribed to a Cr{sup 3+} emission spectrum which is dominated by an R-line at the extreme red end of the visible part of the electromagnetic spectrum. Although the spectrum of synthetic ruby is centered at the same wavelength, the peak is stronger due to higher concentration of Cr and lower concentration of Fe than for natural rubies. For spinel, the IL spectrum shows strong deformation where the R-line is split due to the presence of MgO. For rubellite, the peak center is shifted to 692 nm which might be caused by the replacement of Mn{sup 3+} at the Al{sup 3+} site of the host structure. It is noticed that almandine garnet is not luminescent due

  2. Maria Rubies I Garrofe (1932-1993)

    Science.gov (United States)

    Baste, Carme Amoros

    2004-01-01

    This article profiles educator Maria Rubies I Garrofe. Rubies was a woman committed to education and the reconstruction of her country, Spain, equipped solely with the force of her convictions and her faith in dialogue. It is difficult to separate her personal commitment from her educational, social and political commitment. From the very outset…

  3. Yb-doped phosphate double-cladding optical fiber for high-power laser applications

    Science.gov (United States)

    Mura, E.; Scarpignato, G. C.; Lousteau, J.; Boetti, N. G.; Abrate, S.; Milanese, D.

    2013-02-01

    A Yb-doped phosphate glass double cladding optical fiber was prepared using a custom designed glass composition (P2O5 - Al2O3 - Li2O - B2O3 - BaO - PbO - La2O3) for high-power amplifier and laser applications. The preform drawing method was followed, with the preform being fabricated using the rotational casting technique. This technique, previously developed for tellurite, fluoride or chalcogenide glass preforms is reported for the first time using rare earth doped phosphate glasses. The main challenge was to design an adequate numerical aperture between first and second cladding while maintaining similar thermo-mechanical properties in view of the fiber drawing process. The preform used for the fiber drawing was produced by rod-in-tube technique at a rotation speed of 3000 rpm. The rotational casting technique allowed the manufacturing of an optical fiber featuring high quality interfaces between core and internal cladding and between the internal and external cladding, respectively. Loss attenuation was measured using the cut-back method and lasing was demonstrated at 1022 nm by core pumping with a fiber pigtailed laser diode at the wavelength of 976 nm.

  4. High power operation of cladding pumped holmium-doped silica fibre lasers.

    Science.gov (United States)

    Hemming, Alexander; Bennetts, Shayne; Simakov, Nikita; Davidson, Alan; Haub, John; Carter, Adrian

    2013-02-25

    We report the highest power operation of a resonantly cladding-pumped, holmium-doped silica fibre laser. The cladding pumped all-glass fibre utilises a fluorine doped glass layer to provide low loss cladding guidance of the 1.95 µm pump radiation. The operation of both single mode and large-mode area fibre lasers was demonstrated, with up to 140 W of output power achieved. A slope efficiency of 59% versus launched pump power was demonstrated. The free running emission was measured to be 2.12-2.15 µm demonstrating the potential of this architecture to address the long wavelength operation of silica based fibre lasers with high efficiency.

  5. Marble-hosted ruby deposits of the Morogoro Region, Tanzania

    Science.gov (United States)

    Balmer, Walter A.; Hauzenberger, Christoph A.; Fritz, Harald; Sutthirat, Chakkaphan

    2017-10-01

    The ruby deposits of the Uluguru and Mahenge Mts, Morogoro Region, are related to marbles which represent the cover sequence of the Eastern Granulites in Tanzania. In both localities the cover sequences define a tectonic unit which is present as a nappe structure thrusted onto the gneissic basement in a north-western direction. Based on structural geological observations the ruby deposits are bound to mica-rich boudins in fold hinges where fluids interacted with the marble-host rock in zones of higher permeability. Petrographic observations revealed that the Uluguru Mts deposits occur within calcite-dominated marbles whereas deposits in the Mahenge Mts are found in dolomite-dominated marbles. The mineral assemblage describing the marble-hosted ruby deposit in the Uluguru Mts is characterised by corundum-dolomite-phlogopite ± spinel, calcite, pargasite, scapolite, plagioclase, margarite, chlorite, tourmaline whereas the assemblage corundum-calcite-plagioclase-phlogopite ± dolomite, pargasite, sapphirine, titanite, tourmaline is present in samples from the Mahenge Mts. Although slightly different in mineral assemblage it was possible to draw a similar ruby formation history for both localities. Two ruby forming events were distinguished by textural differences, which could also be modeled by thermodynamic T-XCO2 calculations using non-ideal mixing models of essential minerals. A first formation of ruby appears to have taken place during the prograde path (M1) either by the breakdown of diaspore which was present in the original sedimentary precursor rock or by the breakdown of margarite to corundum and plagioclase. The conditions for M1 metamorphism was estimated at ∼750 °C at 10 kbar, which represents granulite facies conditions. A change in fluid composition towards a CO2 dominated fluid triggered a second ruby generation to form. Subsequently, the examined units underwent a late greenschist facies overprint. In the framework of the East African Orogen we

  6. Watt-level ~2 μm laser output in Tm3+-doped tungsten tellurite glass double-cladding fiber.

    Science.gov (United States)

    Li, Kefeng; Zhang, Guang; Hu, Lili

    2010-12-15

    We report, for the first time to the best of our knowledge, a watt level cw fiber laser at ~2 μm from a piece of 40-cm-long newly developed highly thulium-doped (3.76 × 10(20) ions/cm(3)) tungsten tellurite glass double cladding fiber pumped by a commercial 800 nm laser diode. The maximum output power of the fiber laser reaches 1.12 W. The slope efficiency and the optical-optical efficiency with respect to the absorbed pump are 20% and 16%, respectively. The lasing threshold is 1.46 W, and the lasing wavelength is centered at 1937 nm.

  7. Gold nano-particles fixed on glass

    International Nuclear Information System (INIS)

    Worsch, Christian; Wisniewski, Wolfgang; Kracker, Michael; Rüssel, Christian

    2012-01-01

    Highlights: ► We produced wear resistant gold–ruby coatings on amorphous substrates. ► Thin sputtered gold layers were covered by or embedded in silica coatings. ► Annealing above T g of the substrate glass led to the formation of gold nano particles. ► A 1 1 1-texture of the gold particles is observed via XRD and EBSD. ► EBSD-patterns can be acquired from crystals covered by a thin layer of glass. - Abstract: A simple process for producing wear resistant gold nano-particle coatings on transparent substrates is proposed. Soda-lime-silica glasses were sputtered with gold and subsequently coated with SiO 2 using a combustion chemical vapor deposition technique. Some samples were first coated with silica, sputtered with gold and then coated with a second layer of silica. The samples were annealed for 20 min at either 550 or 600 °C. This resulted in the formation of round, well separated gold nano-particles with sizes from 15 to 200 nm. The color of the coated glass was equivalent to that of gold–ruby glasses. Silica/gold/silica coatings annealed at 600 °C for 20 min were strongly adherent and scratch resistant. X-ray diffraction and electron backscatter diffraction (EBSD) were used to describe the crystal orientations of the embedded particles. The gold particles are preferably oriented with their (1 1 1) planes perpendicular to the surface.

  8. Simply rails 2 the ultimate beginner's guide to Ruby on rails

    CERN Document Server

    Lenz, Patrick

    2008-01-01

    Want to learn all about Ruby on Rails 2.0, the web application framework that is inspiring developers around the world? The second edition of this practical, hands on book will: show you how to install Ruby on Rails on Windows, Mac, or Linux walk you, step by step, through the development of a Web 2.0 social news application, just like digg.com show you how to test, debug, benchmark, and deploy your Rails application Unlike other Rails books, this book doesn't assume that you are an experienced web developer, or that you've used Ruby before. An entire chapter is devoted to learning Ruby in a fun way, using the interactive Ruby console, so you can follow along at home. You'll be an accomplished Ruby programmer in no time! The example application that the book builds - a user-generated news web site - is built upon with each following chapter, and concepts such as sessions, cookies and basic AJAX usage are gradually introduced. Different aspects of Rails, such as user authentication, session cookies, and automa...

  9. Vanadium-rich ruby and sapphire within Mogok Gemfield, Myanmar: implications for gem color and genesis

    Science.gov (United States)

    Zaw, Khin; Sutherland, Lin; Yui, Tzen-Fu; Meffre, Sebastien; Thu, Kyaw

    2015-01-01

    Rubies and sapphires are of both scientific and commercial interest. These gemstones are corundum colored by transition elements within the alumina crystal lattice: Cr3+ yields red in ruby and Fe2+, Fe3+, and Ti4+ ionic interactions color sapphires. A minor ion, V3+ induces slate to purple colors and color change in some sapphires, but its role in coloring rubies remains enigmatic. Trace element and oxygen isotope composition provide genetic signatures for natural corundum and assist geographic typing. Here, we show that V can dominate chromophore contents in Mogok ruby suites. This raises implications for their color quality, enhancement treatments, geographic origin, exploration and exploitation and their comparison with rubies elsewhere. Precise LA-ICP-MS analysis of ruby and sapphire from Mogok placer and in situ deposits reveal that V can exceed 5,000 ppm, giving V/Cr, V/Fe and V/Ti ratios up to 26, 78, and 97 respectively. Such values significantly exceed those found elsewhere suggesting a localized geological control on V-rich ruby distribution. Our results demonstrate that detailed geochemical studies of ruby suites reveal that V is a potential ruby tracer, encourage comparisons of V/Cr-variation between ruby suites and widen the scope for geographic typing and genesis of ruby. This will allow more precise comparison of Asian and other ruby fields and assist confirmation of Mogok sources for rubies in historical and contemporary gems and jewelry.

  10. Practical reporting with Ruby and Rails

    CERN Document Server

    Berube, David

    2008-01-01

    Business intelligence and real time reporting mechanisms play a major role in any of today s forward looking business plans. With many of these solutions being moved to the Web, the popular Rails framework and its underlying Ruby language are playing a major role alongside web services in building the reporting solutions of tomorrow. Practical Reporting with Ruby and Rails is the first book to comprehensively introduce this popular framework, guiding readers through a wide ranging array of features. Note this isn t a staid guide to generating traditional reports, but rather it shows you how th

  11. Rubis on the move; Progression de Rubis

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1999-10-01

    Purchase in June of IPEM'S remnant parts (50%) in Italy, acquisition today of an Italian marketer (30,000 t per year), a distribution bought in Madagascar, the upcoming installation of 3 large mounted tanks at Jorf Lasfar (Morocco), an impressive growth of its GAZ'L automotive LP Gas network in commercial centers in France, a good growth in mini-bulk and creation of a 'Customer Care Center' by Vitogaz's headquarters. Such are the achievements announced by the Rubis group, along with the presentation of its good results for the first half of the year. (authors)

  12. Development of real-time radiation exposure dosimetry system using synthetic ruby for interventional radiology

    International Nuclear Information System (INIS)

    Hosokai, Yoshiyuki; Win, Thet Pe; Muroi, Kenzo; Matsumoto, Kenki; Takahashi, Kaito; Usui, Akihito; Saito, Haruo; Kozakai, Masataka

    2017-01-01

    Interventional radiology (IVR) tends to involve long procedures, consequently delivering high radiation doses to the patient. Radiation-induced injuries that occur because of the effect of the high radiation doses are a considerable problem for those performing IVR. For example, skin injuries can include skin erythema if the skin is exposed to radiation doses beyond the threshold level of 2 Gy. One of the reasons for this type of injury is that the local skin dose cannot be monitored in real time. Although there are systems employed to measure the exposure dose, some do not work in real time (such as thermoluminescence dosimeters and fluorescent glass dosimeters), while certain real-time measurement systems that enter the field of view (such as patient skin dosimeters and dosimeters using a nontoxic phosphor) interfere with IVR. However, synthetic ruby has been shown to emit light in response to radiation. The luminous wavelength is 693 nm. It is possible to monitor the radiation dose by detecting the emitted light. However, small synthetic rubies emit a tiny amount of light that is difficult to detect using common systems such as photodiodes. A large enough synthetic ruby to increase the quantity of emitted light would however enter the field of view and interfere with the IVR procedure. Additionally, although a photodiode system could reduce the system size, the data is susceptible to effects from the X-rays and outside temperature. Therefore, use of a sensitive photon counting system as used in nuclear medicine could potentially have a beneficial effect in detecting the weak light signal. A real-time radiation exposure dosimetry system for use in IVR should be sufficiently sensitive, not interfere with the IVR procedure, and ideally have the possibility of development into a system that can provide simultaneous multipoint measurements. This article discusses the development of a realtime radiation exposure dosimetry system for use in IVR that employs a small

  13. Laser cladding to select new glassy alloys; Uso do metodo de revestimento por laser na selecao de novas ligas vitreas

    Energy Technology Data Exchange (ETDEWEB)

    Medrano, L.L.O.; Afonso, C.R.M.; Kiminami, C.S.; Gargarella, P., E-mail: eomedranos@hotmail.com [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil). Departamento de Engenharia de Materiais; Vilar, R. [Instituto Superior Tecnico, Departamento de Engenharia Quimica, Lisboa (Portugal); Ramasco, B. [Whirlpool Latin America, Rio Claro, SP (Brazil)

    2016-07-01

    A new experimental technique used to analyze the effect of compositional variation and cooling rate in the phase formation in a multicomponent system is the laser cladding. This work have evaluated the use of laser cladding to discover a new bulk metallic glass (BMG) in the Al-Co-Zr system. Coatings with composition variation have made by laser cladding using Al-Co-Zr alloys powders and the samples produced have been characterized by X ray diffraction, microscopy and energy-dispersive X-ray spectroscopy. The results did not show the composition variation as expected, because of incomplete melting during laser process. It was measured a composition variation tendency that allowed the glass forming investigation by the glass formation criterion λ+Δh{sup 1/2}. The results have showed no glass formation in the coating samples, which prove a limited capacity of Zr-Co-Al system to form glass (author)

  14. Trace element fingerprinting of jewellery rubies by external beam PIXE

    International Nuclear Information System (INIS)

    Calligaro, T.; Poirot, J.-P.; Querre, G.

    1999-01-01

    External beam PIXE analysis allows the non-destructive in situ characterisation of gemstones mounted on jewellery pieces. This technique was used for the determination of the geographical origin of 64 rubies set on a high-valued necklace. The trace element content of these gemstones was measured and compared to that of a set of rubies of known sources. Multivariate statistical processing of the results allowed us to infer the provenance of rubies: one comes from Thailand/Cambodia deposit while the remaining are attributed to Burma. This highlights the complementary capabilities of PIXE and conventional geological observations

  15. Trace element fingerprinting of jewellery rubies by external beam PIXE

    Energy Technology Data Exchange (ETDEWEB)

    Calligaro, T. E-mail: calli@culture.nl; Poirot, J.-P.; Querre, G

    1999-04-02

    External beam PIXE analysis allows the non-destructive in situ characterisation of gemstones mounted on jewellery pieces. This technique was used for the determination of the geographical origin of 64 rubies set on a high-valued necklace. The trace element content of these gemstones was measured and compared to that of a set of rubies of known sources. Multivariate statistical processing of the results allowed us to infer the provenance of rubies: one comes from Thailand/Cambodia deposit while the remaining are attributed to Burma. This highlights the complementary capabilities of PIXE and conventional geological observations.

  16. CO2 laser-fabricated cladding light strippers for high-power fiber lasers and amplifiers.

    Science.gov (United States)

    Boyd, Keiron; Simakov, Nikita; Hemming, Alexander; Daniel, Jae; Swain, Robert; Mies, Eric; Rees, Simon; Andrew Clarkson, W; Haub, John

    2016-04-10

    We present and characterize a simple CO2 laser processing technique for the fabrication of compact all-glass optical fiber cladding light strippers. We investigate the cladding light loss as a function of radiation angle of incidence and demonstrate devices in a 400 μm diameter fiber with cladding losses of greater than 20 dB for a 7 cm device length. The core losses are also measured giving a loss of cladding light stripping of a 300 W laser diode with minimal heating of the fiber coating and packaging adhesives.

  17. Scientific legacy of Stanley Ruby

    International Nuclear Information System (INIS)

    Shenoy, G. K.

    2006-01-01

    Stanley L. Ruby (1924-2004) made major contributions to Moessbauer spectroscopy and was the first to suggest the feasibility of observing the Moessbauer effect using synchrotron radiation. In this article we recall his scientific legacy that have inspired his scientific colleagues.

  18. Study of the photo and cathodoluminescent properties of the rubi

    International Nuclear Information System (INIS)

    Martinez S, E.; Garcia H, M.; Ramos B, F.; Alvarez F, O.; Rivera M, T.; Azorin N, J.; Falcony G, C.

    1999-01-01

    In this work are presented the results of the study of the photoluminescence and cathodoluminescence properties of the rubi analysing its use in radiation dosimetry. The rubi presented a centered emission spectra in 697 nm when this was excited with UV at a wavelength 364 nm. X-ray analysis show a rhombohedric structure. While the analysis performed by EDS was obtained the composition (O= 63.13, Al= 36.75 and Cr= 0.12) weight percent, the cathodoluminescent spectra presented three peaks at 555, 600 and 630 nm, being the peak or maximum emission the 600 nm. The results showed the rubi is a promissory material for the radiations dosimetry. (Author)

  19. Effect of fusion mixture treatment on the surface of low grade natural ruby

    Energy Technology Data Exchange (ETDEWEB)

    Sakthivel, R., E-mail: velsak_r@yahoo.com; Pradhan, K.C.; Nayak, B.B.; Dash, Tapan; Sahu, R.K.; Mishra, B.K.

    2017-05-01

    Graphical abstract: The colour of low grade natural ruby is enhanced with fusion mixture treatment. Comparative optical absorption and photoluminesence properties of both untreated and treated ruby samples are studied. - Highlights: • Colour of the low grade natural ruby is improved with fusion mixture treatment. • Surface impurities are removed with fusion mixture. • Photoluminescence spectrum of ruby influenced by its Cr{sup 3+} concentration. • X-ray diffraction study confirms the presence of corundum phases in ruby samples. • Treated ruby looks brighter than untreated ruby due to variation in Cr{sup 3+} concentration. - Abstract: Improvement in aesthetic look of low grade natural ruby (gemstone) surface was clearly evident after fusion mixture treatment. Surface impurities of the gemstone were significantly reduced to give it a face lift. The processing consists of heat treatment (1000 °C) of the raw gemstone with fusion mixture (sodium and potassium carbonates), followed by hydrochloric acid digestion (90 °C) and ultrasonic cleaning.Both the untreated and the treated gemstone were characterized by X-ray diffraction, UV–vis spectroscopy (diffuse reflectance),photoluminescence and X-ray photoelectron spectroscopy. The paper consolidates the results of these studies and presents the effect of the typical chemical treatment (stated above) on the low grade natural ruby. While X-ray diffraction study identifies the occurrence of alumina phase in both the treated and the untreated gemstones, the UV–vis spectra exhibit strong characteristic absorption of Cr{sup 3+}at 400 and 550 nm wavelength for the treated gemstone in contrast to weak absorption observed for the untreated gemstone at such wavelengths, thus showing the beneficial effect of fusion mixture treatment. Peaks observed for the gemstone (for both treated and untreated samples) in the excitation spectra of photoluminescence show a good correlation with observed UV–vis (diffuse reflectance

  20. Bistable direction switching in an off-axis pumped continuous wave ruby laser

    Science.gov (United States)

    Afzal, R. Sohrab; Lawandy, N. M.

    1988-01-01

    A report is presented of the observation of hysteretic bistable direction switching in a single-mode CW ruby laser system. This effect is only observed when the pump beam which is focused into the ruby rod is misaligned with respect to the rod end faces. At low pump powers, the ruby lases in a mode nearly collinear with the pump axis. At a higher pump power the ruby switches to a mode that is collinear with the rod end faces and preserves the original polarization. The effect is large enough to switch the beam by an angle equal to twice the diffraction angle. The observations show that under steady-state pumping, a CW ruby laser can exhibit bistable operation in its output direction and power. A calculation using the heat equation with two concentric cylinders with one as a heat source (pump laser) and the outer wall of the other held at 77 K, gives an increase in core temperature of about 0.01 K. Therefore, the increase in temperature is not large enough to change the index of refraction to account for such large macroscopic effects.

  1. Ruby laser for treatment of tattoos: technical considerations affecting clinical use

    Science.gov (United States)

    Grove, Robert E.

    1990-06-01

    Recent clinical research on the use of ruby lasers for the treatment of tattoos and FIlk approval of a commercial system have renewed interest in this device. In this paper the principles of Q-switched ruby laser operation are reviewed, and potential sources of error in the estimation of delivered fluence are discussed.

  2. A Ruby API to query the Ensembl database for genomic features.

    Science.gov (United States)

    Strozzi, Francesco; Aerts, Jan

    2011-04-01

    The Ensembl database makes genomic features available via its Genome Browser. It is also possible to access the underlying data through a Perl API for advanced querying. We have developed a full-featured Ruby API to the Ensembl databases, providing the same functionality as the Perl interface with additional features. A single Ruby API is used to access different releases of the Ensembl databases and is also able to query multi-species databases. Most functionality of the API is provided using the ActiveRecord pattern. The library depends on introspection to make it release independent. The API is available through the Rubygem system and can be installed with the command gem install ruby-ensembl-api.

  3. Rapid middle Miocene extension and unroofing of the southern Ruby Mountains, Nevada

    Science.gov (United States)

    Colgan, Joseph P.; Howard, Keith A.; Fleck, Robert J.; Wooden, Joseph L.

    2010-01-01

    Paleozoic rocks in the northern Ruby Mountains were metamorphosed during Mesozoic crustal shortening and Cenozoic magmatism, but equivalent strata in the southern Ruby Mountains were never buried deeper than stratigraphic depths prior to exhumation in the footwall of a west dipping brittle normal fault. In the southern Ruby Mountains, Miocene sedimentary rocks in the hanging wall of this fault date from 15.2 to 11.6 Ma and contain abundant detritus from the Paleozoic section. Apatite fission track and (U-Th)/He samples of the Eocene Harrison Pass pluton record rapid cooling that peaked ca. 17–15 Ma, while apatite fission track data from Jurassic plutons east and west of the southern Ruby Mountains indicate near-surface temperatures (pluton to be partially reset rather than to directly record fault slip. Our new data, together with published data on the distribution and composition of Miocene basin fill, suggest that rapid middle Miocene slip took place on the west dipping brittle detachment that bounds the Ruby Mountains and East Humboldt Range for 150 km along strike. This fault was thus active during a period of rapid extension (ca. 17–15 to 12–10 Ma) documented widely across the northern Basin and Range Province.

  4. Critical cladding radius for hybrid cladding modes

    Science.gov (United States)

    Guyard, Romain; Leduc, Dominique; Lupi, Cyril; Lecieux, Yann

    2018-05-01

    In this article we explore some properties of the cladding modes guided by a step-index optical fiber. We show that the hybrid modes can be grouped by pairs and that it exists a critical cladding radius for which the modes of a pair share the same electromagnetic structure. We propose a robust method to determine the critical cladding radius and use it to perform a statistical study on the influence of the characteristics of the fiber on the critical cladding radius. Finally we show the importance of the critical cladding radius with respect to the coupling coefficient between the core mode and the cladding modes inside a long period grating.

  5. Microstructured fibers with high lanthanum oxide glass core for nonlinear applications

    Science.gov (United States)

    Kobelke, J.; Schuster, K.; Litzkendorf, D.; Schwuchow, A.; Kirchhof, J.; Bartelt, H.; Tombelaine, V.; Leproux, P.; Couderc, V.; Labruyere, A.

    2009-05-01

    We demonstrate a low loss microstructured fiber (MOF) with a high nonlinear glass core and silica holey cladding. The substitution of mostly used silica as core material of microstructured fibers by lanthanum oxide glass promises a high nonlinear conversion efficiency for supercontinuum (SC) generation. The glass composition is optimized in terms of thermochemical and optical requirements. The glass for the MOF core has a high lanthanum oxide concentration (10 mol% La2O3) and a good compatibility with the silica cladding. This is performed by adding a suitable alumina concentration up to 20 mol%. The lanthanum oxide glass preform rods were manufactured by melting technique. Besides purity issues the material homogeneity plays an important role to achieve low optical loss. The addition of fluorides allows the better homogenization of the glass composition in the preform volume by refining. The minimum attenuation of an unstructured fiber drawn from this glass is about 0.6 dB/m. It is mostly caused by decreasing of scattering effects. The microstructured silica cladding allows the considerable shifting of dispersive behavior of the MOF for an optimal pump light conversion. The MOF shows zero dispersion wavelengths (ZDW) of 1140 nm (LP01 mode) and 970 nm (LP11 mode). The supercontinuum generation was investigated with a 1064 nm pump laser (650 ps). It shows a broad band emission between 500 nm and 2200 nm.

  6. Ultrafast direct laser writing of cladding waveguides in the 0.8CaSiO{sub 3}-0.2Ca{sub 3}(PO{sub 4}){sub 2} eutectic glass doped with Nd{sup 3+} ions

    Energy Technology Data Exchange (ETDEWEB)

    Martínez de Mendívil, J., E-mail: jon.martinez@uam.es; Lifante, G. [Departamento de Física de Materiales, C-04, Facultad de Ciencias, Universidad Autónoma de Madrid, 28.049 Madrid (Spain); Sola, D.; Peña, J. I. [Departamento de Ciencia y Tecnología de Materiales y Fluidos, Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza-CSIC, 50.018 Zaragoza (Spain); Vázquez de Aldana, J. R. [Grupo de Investigación en Microprocesado de Materiales con Láser, Departamento de Física Aplicada, Universidad de Salamanca, 37.008 Salamanca (Spain); Aza, A. H. de; Pena, P. [Instituto de Cerámica y Vidrio-CSIC, 28.049 Madrid (Spain)

    2015-01-28

    We report on tubular cladding optical waveguides fabricated in Neodymium doped Wollastonite-Tricalcium Phosphate glass in the eutectic composition. The glass samples were prepared by melting the eutectic powder mixture in a Pt-Rh crucible at 1600 °C and pouring it in a preheated brass mould. Afterwards, the glass was annealed to relieve the inner stresses. Cladding waveguides were fabricated by focusing beneath the sample surface using a pulsed Ti:sapphire laser with a pulsewidth of 120 fs working at 1 kHz. The optical properties of these waveguides have been assessed in terms of near-field intensity distribution and transmitted power, and these results have been compared to previously reported waveguides with double-line configuration. Optical properties have also been studied as function of the temperature. Heat treatments up to 700 °C were carried out to diminish colour centre losses where waveguide's modes and transmitted power were compared in order to establish the annealing temperature at which the optimal optical properties were reached. Laser experiments are in progress to evaluate the ability of the waveguides for 1064 nm laser light generation under 800 nm optical pumping.

  7. A short history of RubisCO: the rise and fall (?) of Nature's predominant CO2 fixing enzyme.

    Science.gov (United States)

    Erb, Tobias J; Zarzycki, Jan

    2018-02-01

    Ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) is arguably one of the most abundant proteins in the biosphere and a key enzyme in the global carbon cycle. Although RubisCO has been intensively studied, its evolutionary origins and rise as Nature's most dominant carbon dioxide (CO 2 )-fixing enzyme still remain in the dark. In this review we will bring together biochemical, structural, physiological, microbiological, as well as phylogenetic data to speculate on the evolutionary roots of the CO 2 -fixation reaction of RubisCO, the emergence of RubisCO-based autotrophic CO 2 -fixation in the context of the Calvin-Benson-Bassham cycle, and the further evolution of RubisCO into the 'RubisCOsome', a complex of various proteins assembling and interacting with the enzyme to improve its operational capacity (functionality) under different biological and environmental conditions. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Aesthetic value improvement of the ruby stone using heat treatment and its synergetic surface study

    International Nuclear Information System (INIS)

    Sahoo, Rakesh K.; Mohapatra, Birendra K.; Singh, Saroj K.; Mishra, Barada K.

    2015-01-01

    Highlights: • Natural ruby is heated at high temperature with metal oxide additives (PbO and ZnO) to enhance its aesthetic value. • Changes in surface characteristics of these natural rubies before and after heat treatment are compared. • The R-line peak splitting in the PL spectra and the contrary shift of the Al 2p peaks in the XPS spectra are explicated. - Abstract: The surface behavior of the natural ruby stones before and after heat treatment with metal oxide additives like: zinc oxide (ZnO) and lead oxide (PbO) have been studied. The surface appearance of the ruby stones processed with the metal oxides changed whereas the bulk densities of the stones remained within the range of 3.9–4.0 g/cm 3 . The cracks healing and pores filling by the metal oxides on the surface of the ruby have been examined using scanning electron microscopy. The chemical compositions based on the XPS survey scans are in good agreement with the expected composition. The phase and crystallinity of the ruby stones original and heat-treated were obtained from their X-ray diffraction patterns. The change in peak separation between R 1 and R 2 – peaks in photoluminescence spectra and the contrary binding energy shift of the Al 2p peaks in the X-ray photoelectron spectra have been explicated. Moreover, in this work we describe the change in surface chemical and physical characteristics of the ruby stone before and after heat treatment

  9. Fabrication of optical fiber of zinc tin borophosphate glass with zero photoelastic constant

    Science.gov (United States)

    Saitoh, Akira; Oba, Yuya; Takebe, Hiromichi

    2015-10-01

    An optical fiber made of zinc tin boro-phosphate glass having a zero photoelastic constant, good water durability, and excluding hazardous elements was drawn from a prepared preform for use in a fiber-type current sensor device. The proposed cladding compositions enable single-mode propagation for a wavelength of 1550 nm, which is estimated from the difference in the refractive index between the core and cladding compositions. The drawing conditions should be controlled since the multiple-component glass is very sensitive to changes in viscosity and crystal precipitation during the heat-treated stretching of the preform. The temperature dependence of viscosity in the core and cladding reveals the feasibility of drawing.

  10. All-Glass Fiber Amplifier Pumped by Ultra-High Brightness Pumps

    Science.gov (United States)

    2016-02-15

    coating can exceed its long-term damage threshold. Such a concern obviously does not apply to a fiber with gold protective coating [14]. Thus in... coated triple-clad fibers, we are developing triple-clad Yb fiber with gold coating for improved thermal management. 2.1 Pump laser The two...is still an acrylate coating outside the glass clad for fiber handling and protection . Calculation shows that the temperature of the fiber acrylate

  11. Structural cladding /clad structures

    DEFF Research Database (Denmark)

    Beim, Anne

    2012-01-01

    Structural Cladding /Clad Structures: Studies in Tectonic Building Practice A. Beim CINARK – Centre for Industrialized Architecture, Institute of Architectural Technology, The Royal Danish Academy of Fine Arts School of Architecture, Copenhagen, Denmark ABSTRACT: With point of departure in the pr......Structural Cladding /Clad Structures: Studies in Tectonic Building Practice A. Beim CINARK – Centre for Industrialized Architecture, Institute of Architectural Technology, The Royal Danish Academy of Fine Arts School of Architecture, Copenhagen, Denmark ABSTRACT: With point of departure...... to analyze, compare, and discuss how these various construction solutions point out strategies for development based on fundamentally different mindsets. The research questions address the following issues: How to learn from traditional construction principles: When do we see limitations of tectonic maneuver......, to ask for more restrictive building codes. As an example, in Denmark there are series of increasing demands in the current building legislations that are focused at enhancing the energy performance of buildings, which consequently foster rigid insulation standards and ask for improvement of air...

  12. Identification of Bloch-modes in hollow-core Photonic Crystal Fiber cladding

    DEFF Research Database (Denmark)

    Couny, F.; Benabid, F.; Roberts, John

    2007-01-01

    We report on the experimental visualization of the cladding Bloch-modes of a hollow-core photonic crystal fiber. Both spectral and spatial field information is extracted using the approach, which is based on measurement of the near-field and Fresnel-zone that results after propagation over a short...... length of fiber. A detailed study of the modes near the edges of the band gap shows that it is formed by the influence of three types of resonator: the glass interstitial apex, the silica strut which joins the neighboring apexes, and the air hole. The cladding electromagnetic field which survives...

  13. Faraday rotation influence factors in tellurite-based glass and fibers

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Qiuling; Wang, Qingwei [Henan University of Technology, School of Materials Science and Engineering, Zhengzhou, Henan (China); Wang, Hui; Chen, Qiuping [Politecnico di Torino, Department of Applied Science and Technology, Turin (Italy)

    2015-09-15

    The Faraday rotation influence factors in tellurite-based glass and fibers were studied by experiments and simulations. TeO{sub 2}-ZnO-Na{sub 2}O-BaO glass family was fabricated and characterized in terms of the thermal and magneto-optical properties. Two core-cladding pairs for two fibers were selected from fabricated glasses. The Verdet constants of the glasses and fibers were measured at different wavelengths using a homemade optical bench, and the Verdet constant of fiber was close to that of the bulk glass. The influence from external factors (wavelength, laser power and magnetic field) and internal factors (thermal expansion coefficient difference, refractive index and Verdet constant of core and cladding) on Faraday rotation in fibers was investigated and discussed, and the purpose of this study is to improve the Faraday rotation in tellurite fibers for MO device applications both from internal material property match and external parameter configuration in measurement. (orig.)

  14. Faraday rotation influence factors in tellurite-based glass and fibers

    International Nuclear Information System (INIS)

    Chen, Qiuling; Wang, Qingwei; Wang, Hui; Chen, Qiuping

    2015-01-01

    The Faraday rotation influence factors in tellurite-based glass and fibers were studied by experiments and simulations. TeO 2 -ZnO-Na 2 O-BaO glass family was fabricated and characterized in terms of the thermal and magneto-optical properties. Two core-cladding pairs for two fibers were selected from fabricated glasses. The Verdet constants of the glasses and fibers were measured at different wavelengths using a homemade optical bench, and the Verdet constant of fiber was close to that of the bulk glass. The influence from external factors (wavelength, laser power and magnetic field) and internal factors (thermal expansion coefficient difference, refractive index and Verdet constant of core and cladding) on Faraday rotation in fibers was investigated and discussed, and the purpose of this study is to improve the Faraday rotation in tellurite fibers for MO device applications both from internal material property match and external parameter configuration in measurement. (orig.)

  15. Mr.CAS-A minimalistic (pure) Ruby CAS for fast prototyping and code generation

    Science.gov (United States)

    Ragni, Matteo

    There are Computer Algebra System (CAS) systems on the market with complete solutions for manipulation of analytical models. But exporting a model that implements specific algorithms on specific platforms, for target languages or for particular numerical library, is often a rigid procedure that requires manual post-processing. This work presents a Ruby library that exposes core CAS capabilities, i.e. simplification, substitution, evaluation, etc. The library aims at programmers that need to rapidly prototype and generate numerical code for different target languages, while keeping separated mathematical expression from the code generation rules, where best practices for numerical conditioning are implemented. The library is written in pure Ruby language and is compatible with most Ruby interpreters.

  16. Mr.CAS—A minimalistic (pure Ruby CAS for fast prototyping and code generation

    Directory of Open Access Journals (Sweden)

    Matteo Ragni

    2017-01-01

    Full Text Available There are Computer Algebra System (CAS systems on the market with complete solutions for manipulation of analytical models. But exporting a model that implements specific algorithms on specific platforms, for target languages or for particular numerical library, is often a rigid procedure that requires manual post-processing. This work presents a Ruby library that exposes core CAS capabilities, i.e. simplification, substitution, evaluation, etc. The library aims at programmers that need to rapidly prototype and generate numerical code for different target languages, while keeping separated mathematical expression from the code generation rules, where best practices for numerical conditioning are implemented. The library is written in pure Ruby language and is compatible with most Ruby interpreters.

  17. Improvements of the ruby laser oscillator system for laser scattering

    International Nuclear Information System (INIS)

    Yamauchi, Toshihiko; Kumagai, Katsuaki; Kawakami, Tomohide; Matoba, Tohru; Funahashi, Akimasa

    1978-10-01

    A ruby laser oscillator system is used to measure electron temperatures of the Tokamak plasmas(JFT-2 and JFT-2a). Improvements have been made of the laser oscillator to obtain the correct values. Described are the improvements and the damages of a ruby rod and a KD*P crystal for Q-switching by laser beam. Improvement are the linear Xe lamp replaced by a helical Xe lamp and in the electrical circuit for Q-switching. The damage of an optical component by a laser beam should be clarified from the damage data; the cause is not found yet. (author)

  18. Single scan femtosecond laser transverse writing of depressed cladding waveguides enabled by three-dimensional focal field engineering.

    Science.gov (United States)

    Zhang, Qian; Yang, Dong; Qi, Jia; Cheng, Ya; Gong, Qihuang; Li, Yan

    2017-06-12

    We report single scan transverse writing of depressed cladding waveguides inside ZBLAN glass with the longitudinally oriented annular ring-shaped focal intensity distribution of the femtosecond laser. The entire region of depressed cladding at the cross section, where a negative change of refraction index is induced, can be modified simultaneously with the ring-shaped focal intensity profile. The fabricated waveguides exhibit good single guided mode.

  19. WE-DE-201-10: Pitfalls When Using Ruby as An Inorganic Scintillator Detector for Ir-192 Brachytherapy Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Kertzscher, G; Beddar, S [The University of Texas MD Anderson Cancer Center, Houston, TX (United States)

    2016-06-15

    Purpose: To study the promising potential of inorganic scintillator detectors (ISDs) and investigate various unwanted luminescence properties which may compromise their accuracy. Methods: The ISDs were comprised of a ruby crystal coupled to a polymethyl methacrylate (PMMA) fiber-optic cable and a charged coupled device camera. A new type of ISD was manufactured and included a long-pass filter that was sandwiched between the crystal and the fiber-optic cable. The purpose of the filter was to suppress the Cerenkov and fluorescence background light induced in the PMMA (the stem signal) from striking the ruby crystal, generating unwanted ruby excitation. A variety of experiments were performed to characterize the ruby based ISDs. The relative contribution of the induced ruby signal and the stem signal were quantified while exposing the detector and a bare fiber-optic cable to a high dose rate (HDR) brachytherapy (BT) source, respectively. The unwanted ruby excitation was quantified while irradiating the fiber-optic cable with the detector volume shielded. Other experiments addressed time-dependent luminescence properties and a comparison to other commonly used organic scintillator detectors (BCF-12, BCF-60). Results: When the BT source dwelled 0.5 cm away from the fiber-optic cable, the unwanted ruby excitation amounted to >5% of the total signal if the source-distance from the scintillator was >7 cm. However, the unwanted excitation was suppressed to <1% if the ISD incorporated an optic filter. The stem signal was suppressed with a 20 nm band-pass filter and was <3% as long as the source-distance was <7 cm. The ruby based ISDs generated signal up to 20(40) times that of BCF-12(BCF-60). Conclusion: The study presents solutions to unwanted luminescence properties of ruby based ISDs for HDR BT. An optic filter should be sandwiched between the scintillator volume and the fiber-optic cable to prevent the stem signal to excite the ruby crystal.

  20. Cold spray deposition of Ti{sub 2}AlC coatings for improved nuclear fuel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Maier, Benjamin R. [University of Wisconsin, Madison, WI (United States); Garcia-Diaz, Brenda L. [Savannah River National Laboratory, Aiken, SC (United States); Hauch, Benjamin [University of Wisconsin, Madison, WI (United States); Olson, Luke C.; Sindelar, Robert L. [Savannah River National Laboratory, Aiken, SC (United States); Sridharan, Kumar, E-mail: kumar@engr.wisc.edu [University of Wisconsin, Madison, WI (United States)

    2015-11-15

    Coatings of Ti{sub 2}AlC MAX phase compound have been successfully deposited on Zircaloy-4 (Zry-4) test flats, with the goal of enhancing the accident tolerance of LWR fuel cladding. Low temperature powder spray process, also known as cold spray, has been used to deposit coatings ∼90 μm in thickness using powder particles of <20 μm. X-ray diffraction analysis showed the phase-content of the deposited coatings to be identical to the powders indicating that no phase transformation or oxidation had occurred during the coating deposition process. The coating exhibited a high hardness of about 800 H{sub K} and pin-on-disk wear tests using abrasive ruby ball counter-surface showed the wear resistance of the coating to be significantly superior to the Zry-4 substrate. Scratch tests revealed the coatings to be well-adhered to the Zry-4 substrate. Such mechanical integrity is required for claddings from the standpoint of fretting wear resistance and resisting wear handling and insertion. Air oxidation tests at 700 °C and simulated LOCA tests at 1005 °C in steam environment showed the coatings to be significantly more oxidation resistant compared to Zry-4 suggesting that such coatings can potentially provide accident tolerance to nuclear fuel cladding. - Highlights: • Deposited Ti{sub 2}AlC coatings on Zircaloy-4 substrates with a low pressure powder spray process, also known as cold spray. • Coatings have high hardness and wear resistance for both damage resistance during rod insertion and fretting wear resistance. • The oxidation resistance of Ti{sub 2}AlC coated Zircaloy-4 at 700 °C and 1005 °C was significantly superior to uncoated Zircaloy. • Cold spray of Ti{sub 2}AlC demonstrates considerable promise as a near-term solution for accident tolerant Zr-alloy fuel claddings.

  1. Ruby-Helix: an implementation of helical image processing based on object-oriented scripting language.

    Science.gov (United States)

    Metlagel, Zoltan; Kikkawa, Yayoi S; Kikkawa, Masahide

    2007-01-01

    Helical image analysis in combination with electron microscopy has been used to study three-dimensional structures of various biological filaments or tubes, such as microtubules, actin filaments, and bacterial flagella. A number of packages have been developed to carry out helical image analysis. Some biological specimens, however, have a symmetry break (seam) in their three-dimensional structure, even though their subunits are mostly arranged in a helical manner. We refer to these objects as "asymmetric helices". All the existing packages are designed for helically symmetric specimens, and do not allow analysis of asymmetric helical objects, such as microtubules with seams. Here, we describe Ruby-Helix, a new set of programs for the analysis of "helical" objects with or without a seam. Ruby-Helix is built on top of the Ruby programming language and is the first implementation of asymmetric helical reconstruction for practical image analysis. It also allows easier and semi-automated analysis, performing iterative unbending and accurate determination of the repeat length. As a result, Ruby-Helix enables us to analyze motor-microtubule complexes with higher throughput to higher resolution.

  2. Populations of Phytophthora rubi Show Little Differentiation and High Rates of Migration Among States in the Western United States.

    Science.gov (United States)

    Tabima, Javier F; Coffey, Michael D; Zazada, Inga A; Grünwald, Niklaus J

    2018-04-11

    Population genetics is a powerful tool to understand patterns and evolutionary processes that are involved in plant-pathogen emergence and adaptation to agricultural ecosystems. We are interested in studying the population dynamics of Phytophthora rubi, the causal agent of Phytophthora root rot in raspberry. P. rubi is found in the western United States, where most of the fresh and processed raspberries are produced. We used genotyping-by-sequencing to characterize genetic diversity in populations of P. rubi sampled in the United States and other countries. Our results confirm that P. rubi is a monophyletic species with complete lineage sorting from its sister taxon P. fragariae. Overall, populations of P. rubi show low genetic diversity across the western United States. Demographic analyses suggest that populations of P. rubi from the western United States are the source of pathogen migration to Europe. We found no evidence for population differentiation at a global or regional (western United States) level. Finally, our results provide evidence of migration from California and Oregon into Washington. This report provides new insights into the evolution and structure of global and western United States populations of the raspberry pathogen P. rubi, indicating that human activity might be involved in moving the pathogen among regions and fields.

  3. Teaching Financial Literacy with Max and Ruby

    Science.gov (United States)

    Brown, Natalya; Ferguson, Kristen

    2017-01-01

    Teaching financial literacy is important at all stages of life, but is often neglected with elementary students. In this article, the authors describe a strategy for teaching financial literacy using the books about Max and Ruby by Rosemary Wells. These books can help introduce the five key concepts of financial literacy: scarcity, exchange,…

  4. Unusual ruby-sapphire transition in alluvial megacrysts, Cenozoic basaltic gem field, New England, New South Wales, Australia

    Science.gov (United States)

    Sutherland, Frederick L.; Graham, Ian T.; Harris, Stephen J.; Coldham, Terry; Powell, William; Belousova, Elena A.; Martin, Laure

    2017-05-01

    Rare ruby crystals appear among prevailing sapphire crystals mined from placers within basaltic areas in the New England gem-field, New South Wales, Australia. New England ruby (NER) has distinctive trace element features compared to those from ruby elsewhere in Australia and indeed most ruby from across the world. The NER suite includes ruby (up to 3370 ppm Cr), pink sapphire (up to 1520 ppm Cr), white sapphire (up to 910 ppm) and violet, mauve, purple, or bluish sapphire (up to 1410 ppm Cr). Some crystals show outward growth banding in this respective colour sequence. All four colour zones are notably high in Ga (up to 310 ppm) and Si (up to 1820 ppm). High Ga and Ga/Mg values are unusual in ruby and its trace element plots (laser ablation-inductively coupled plasma-mass spectrometry) and suggests that magmatic-metasomatic inputs were involved in the NER suite genesis. In situ oxygen isotope analyses (secondary ion mass spectrometry) across the NER suite colour range showed little variation (n = 22; δ18O = 4.4 ± 0.4, 2σ error), and are values typical for corundum associated with ultramafic/mafic rocks. The isolated NER xenocryst suite, corroded by basalt transport and with few internal inclusions, presents a challenge in deciphering its exact origin. Detailed consideration of its high Ga chemistry in relation to the known geology of the surrounding region was used to narrow down potential sources. These include Late Palaeozoic-Triassic fractionated I-type granitoid magmas or Mesozoic-Cenozoic felsic fractionates from basaltic magmas that interacted with early Palaeozoic Cr-bearing ophiolite bodies in the New England Orogen. Other potential sources may lie deeper within lower crust-mantle metamorphic assemblages, but need to match the anomalous high-Ga geochemistry of the New England ruby suite.

  5. Transparent form-active system with structural glass

    NARCIS (Netherlands)

    Nikolaou, M.S.N.; Veer, F.A.; Eigenraam, P.

    2015-01-01

    Free-form transparent wide-span spatial structures which have being constructed so far, are based on the concept of three sets of components, the structural components, usually steel elements to ensure both compressive and tensional capacity; the glass cladding elements for expressing transparency;

  6. Zinc Cadmium Selenide Cladded Quantum Dot Based Electroluminescent and Nonvolatile Memory Devices

    Science.gov (United States)

    Al-Amody, Fuad H.

    This dissertation presents electroluminescent (EL) and nonvolatile memory devices fabricated using pseudomorphic ZnCdSe-based cladded quantum dots (QDs). These dots were grown using our own in-school built novel reactor. The EL device was fabricated on a substrate of ITO (indium tin oxide) coated glass with the quantum dots sandwiched between anode and cathode contacts with a small barrier layer on top of the QDs. The importance of these cladded dots is to increase the quantum yield of device. This device is unique as they utilize quantum dots that are pseudomorphic (nearly lattice-matched core and the shell of the dot). In the case of floating quantum dot gate nonvolatile memory, cladded ZnCdSe quantum dots are deposited on single crystalline gate insulator (ZnMgS/ZnMgSe), which is grown using metal-organic chemical vapor deposition (MOCVD). The control gate dielectric layer of the nonvolatile memory is Si3N4 or SiO2 and is grown using plasma enhanced chemical vapor deposition (PECVD). The cladded dots are grown using an improved methodology of photo-assisted microwave plasma metal-organic chemical vapor deposition (PMP-MOCVD) enhanced reactor. The cladding composition of the core and shell of the dots was engineered by the help of ultraviolet light which changed the incorporation of zinc (and hence composition of ZnCdSe). This makes ZnxCd1--xSe-ZnyCd1--y Se QDs to have a low composition of zinc in the core than the cladding (x

  7. Effect of laser power on clad metal in laser-TIG combined metal cladding

    Science.gov (United States)

    Utsumi, Akihiro; Hino, Takanori; Matsuda, Jun; Tasoda, Takashi; Yoneda, Masafumi; Katsumura, Munehide; Yano, Tetsuo; Araki, Takao

    2003-03-01

    TIG arc welding has been used to date as a method for clad welding of white metal as bearing material. We propose a new clad welding process that combines a CO2 laser and a TIG arc, as a method for cladding at high speed. We hypothesized that this method would permit appropriate control of the melted quantity of base metal by varying the laser power. We carried out cladding while varying the laser power, and investigated the structure near the boundary between the clad layer and the base metal. Using the laser-TIG combined cladding, we found we were able to control appropriately the degree of dilution with the base metal. By applying this result to subsequent cladding, we were able to obtain a clad layer of high quality, which was slightly diluted with the base metal.

  8. Controlling X-ray beam trajectory with a flexible hollow glass fibre

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Yoshihito, E-mail: yotanaka@riken.jp [RIKEN, 1-1-1 Kouto, Sayo-cho, Hyogo 679-5148 (Japan); Kwansei Gakuin University, Gakuen, Sanda, Hyogo 669-1337 (Japan); Nakatani, Takashi; Onitsuka, Rena [Kwansei Gakuin University, Gakuen, Sanda, Hyogo 669-1337 (Japan); Sawada, Kei [RIKEN, 1-1-1 Kouto, Sayo-cho, Hyogo 679-5148 (Japan); Takahashi, Isao [Kwansei Gakuin University, Gakuen, Sanda, Hyogo 669-1337 (Japan)

    2014-01-01

    X-ray beam trajectory control has been performed by using a 1.5 m-long flexible hollow glass fibre. A two-dimensional scan of a synchrotron radiation beam was demonstrated for X-ray absorption mapping. A metre-length flexible hollow glass fibre with 20 µm-bore and 1.5 mm-cladding diameters for transporting a synchrotron X-ray beam and controlling the trajectory has been examined. The large cladding diameter maintains a moderate curvature to satisfy the shallow glancing angle of total reflection. The observed transmission efficiency was more than 20% at 12.4 keV. As a demonstration, a wide-area scan of a synchrotron radiation beam was performed to identify the elements for a fixed metal film through its absorption spectra.

  9. Bistable polarization switching in a continuous wave ruby laser

    Science.gov (United States)

    Lawandy, N. M.; Afzal, R. Sohrab

    1988-01-01

    Bistability in the output power, polarization state, and mode volume of an argon-ion laser pumped single mode ruby laser at 6943 A has been observed. The laser operates in a radially confined mode which exhibits hysteresis and bistability only when the pump polarization is parallel to the c-axis.

  10. Under the Radar: The First Woman in Radio Astronomy, Ruby Payne-Scott

    Science.gov (United States)

    Miller Goss, W.

    2012-05-01

    Under the Radar, the First Woman in Radio Astronomy, Ruby Payne-Scott W. Miller Goss, NRAO Socorro NM Ruby Payne-Scott (1912-1981) was an eminent Australian scientist who made major contributions to the WWII radar effort (CSIR) from 1941 to 1945. In late 1945, she pioneered radio astronomy efforts at Dover Heights in Sydney, Australia at a beautiful cliff top overlooking the Tasman Sea. Again at Dover Heights, Payne-Scott carried out the first interferometry in radio astronomy using an Australian Army radar antenna as a radio telescope at sun-rise, 26 January 1946. She continued these ground breaking activities until 1951. Ruby Payne-Scott played a major role in discovering and elucidating the properties of Type III bursts from the sun, the most common of the five classes of transient phenomena from the solar corona. These bursts are one of the most intensively studied forms of radio emission in all of astronomy. She is also one of the inventors of aperture synthesis in radio astronomy. I examine her career at the University of Sydney and her conflicts with the CSIR hierarchy concerning the rights of women in the work place, specifically equal wages and the lack of permanent status for married women. I also explore her membership in the Communist Party of Australia as well as her partially released Australian Scientific Intelligence Organization file. Payne-Scott’s role as a major participant in the flourishing radio astronomy research of the post war era remains a remarkable story. She had a number of strong collaborations with the pioneers of early radio astronomy in Australia: Pawsey, Mills, Christiansen, Bolton and Little. I am currently working on a popular version of the Payne-Scott story; “Making Waves, The Story of Ruby Payne-Scott: Australian Pioneer Radio Astronomer” will be published in 2013 by Springer in the Astronomers’ Universe Series.

  11. Laser cladding of turbine blades

    International Nuclear Information System (INIS)

    Shepeleva, L.; Medres, B.; Kaplan, W.D.; Bamberger, M.

    2000-01-01

    A comparative study of two different techniques for the application of wear-resistant coatings for contact surfaces of shroud shelves of gas turbine engine blades (GTE) has been conducted. Wear-resistant coatings were applied on In713 by laser cladding with direct injection of the cladding powder into the melt pool. Laser cladding was conducted with a TRUMPF-2500, CW-CO 2 laser. The laser cladding was compared with commercially available plasma cladding with wire. Both plasma and laser cladded zones were characterized by optical and scanning electron microscopy. It was found that the laser cladded zone has a higher microhardness value (650-820 HV) compared with that of the plasma treated material (420-440 HV). This is a result of the significant reduction in grain size in the case of laser cladding. Unlike the plasma cladded zones, the laser treated material is free of micropores and microcracks. (orig.)

  12. Evaluation of Aerogel Clad Optical Fibers Final Report CRADA No. TSB-1448-97

    Energy Technology Data Exchange (ETDEWEB)

    Maitland, Duncan [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Droege, M. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2018-01-22

    Fiber-optic based sensors will be needed for in situ monitoring of degradation products in various components of nuclear weapons. These sensors typically consist of a transducer located at the measurement site whose optical properties are modulated by interaction with the targeted degradation product. The interrogating light source and the detector for determining sensor response are located remotely. These two subsystems are connected by fiber optic cables. LLNL has developed a new technology, aerogel clad optical fibers, that have the advantage of accepting incident rays over a much wider angular range than normal glass clad fibers. These fibers are also capable of transmitting light more efficiently. These advantages can lead to a factor of 2-4 improvement in sensitivity and detection limit.

  13. Sand dune of Ruby, Arizona, an anthropogenically created biodiversity hotspot for wasps and their velvet ant parasitoids

    Science.gov (United States)

    Justin O. Schmidt

    2013-01-01

    A large artificial sand dune composed of finely crushed mine tailings was produced by deep mining operations at Ruby, Arizona. Today, the ghost town of Ruby is an important historical location and biodiversity refuge, with the newly formed dune forming the core of the refuge. The dune provides ideal nesting habitat for at least 13 species of sand-loving wasps,...

  14. Microstructure and Wear Resistance of Laser-Clad (Co, Ni61.2B26.2Si7.8Ta4.8 Coatings

    Directory of Open Access Journals (Sweden)

    Luan Zhang

    2017-10-01

    Full Text Available It has been reported that a quaternary Co61.2B26.2Si7.8Ta4.8 alloy is a good glass former and can be laser-clad to an amorphous composite coating with superior hardness and wear resistance. In this paper, alloys with varying Ni contents to substitute for Co are coated on the surface of #45 carbon steel using a 5-kW CO2 laser source for the purpose of obtaining protective coatings. In contrast to the quaternary case, the clad layers are characterized by a matrix of α-(Fe, Co, Ni solid solution plus CoB, Co3B, and Co3Ta types of precipitates. The cladding layer is divided into four regions: Near-surface dendrites, α-(Fe, Co, Ni solid solution plus dispersed particles in the middle zone, columnar bonding zone, and heat-affected area that consists of martensite. The hardness gradually decreases with increasing Ni content, and the maximum hardness occurs in the middle zone. Both the friction coefficient and wear volume are minimized in the alloy containing 12.2% Ni. Compared with the previous cobalt-based quaternary alloy Co61.2B26.2Si7.8Ta4.8, the addition of the Ni element reduces the glass-forming ability and henceforth the hardness and wear resistance of the clad layers.

  15. Hydrogeochemical and stream sediment reconnaissance basic data for Ruby Quadrangle, Alaska

    International Nuclear Information System (INIS)

    1981-01-01

    Field and laboratory data are presented for 693 water samples from the Ruby Quadrangle, Alaska. The samples were collected by Los Alamos National Laboratory; laboratory analysis and data reporting were performed by the Uranium Resource Evaluation Project at Oak Ridge, Tennessee

  16. Comparison of corrosion behavior between fusion cladded and explosive cladded Inconel 625/plain carbon steel bimetal plates

    International Nuclear Information System (INIS)

    Zareie Rajani, H.R.; Akbari Mousavi, S.A.A.; Madani Sani, F.

    2013-01-01

    Highlights: ► Both explosive and fusion cladding aggravate the corrosion resistance of Inconel 625. ► Fusion cladding is more detrimental to nonuniform corrosion resistance. ► Single-layered fusion coat does not show any repassivation ability. ► Adding more layers enhance the corrosion resistance of fusion cladding Inconel 625. ► High impact energy spoils the corrosion resistance of explosive cladding Inconel 625. -- Abstract: One of the main concerns in cladding Inconel 625 superalloy on desired substrates is deterioration of corrosion resistance due to cladding process. The present study aims to compare the effect of fusion cladding and explosive cladding procedures on corrosion behavior of Inconel 625 cladding on plain carbon steel as substrate. Also, an attempt has been made to investigate the role of load ratio and numbers of fusion layers in corrosion behavior of explosive and fusion cladding Inconel 625 respectively. In all cases, the cyclic polarization as an electrochemical method has been applied to assess the corrosion behavior. According to the obtained results, both cladding methods aggravate the corrosion resistance of Inconel 625. However, the fusion cladding process is more detrimental to nonuniform corrosion resistance, where the chemical nonuniformity of fusion cladding superalloy issuing from microsegregation, development of secondary phases and contamination of clad through dilution hinders formation of a stable passive layer. Moreover, it is observed that adding more fusion layers can enhance the nonuniform corrosion resistance of fusion cladding Inconel 625, though this resistance still remains weaker than explosive cladding superalloy. Also, the results indicate that raising the impact energy in explosive cladding procedure drops the corrosion resistance of Inconel 625.

  17. Visuaalantropoloogia - inimlik mõõde asjade maailmas / Jay Ruby ; interv. Peeter Linnap

    Index Scriptorium Estoniae

    Ruby, Jay

    2006-01-01

    Ameerika visuaalkultuuri teoreetik Jay Ruby on paari viimase aastakümne jooksul keskendunud pildilise kommunikatsiooni etnograafilisele käsitlemisele Ameerika maaühiskonnas. Peeter Linnapi intervjuu Jay Rubyga Tartu Kõrgemas Kunstikoolis 23. V

  18. Calcium rubies: a family of red-emitting functionalizable indicators suitable for two-photon Ca2+ imaging.

    Science.gov (United States)

    Collot, Mayeul; Loukou, Christina; Yakovlev, Aleksey V; Wilms, Christian D; Li, Dongdong; Evrard, Alexis; Zamaleeva, Alsu; Bourdieu, Laurent; Léger, Jean-François; Ropert, Nicole; Eilers, Jens; Oheim, Martin; Feltz, Anne; Mallet, Jean-Maurice

    2012-09-12

    We designed Calcium Rubies, a family of functionalizable BAPTA-based red-fluorescent calcium (Ca(2+)) indicators as new tools for biological Ca(2+) imaging. The specificity of this Ca(2+)-indicator family is its side arm, attached on the ethylene glycol bridge that allows coupling the indicator to various groups while leaving open the possibility of aromatic substitutions on the BAPTA core for tuning the Ca(2+)-binding affinity. Using this possibility we now synthesize and characterize three different CaRubies with affinities between 3 and 22 μM. Their long excitation and emission wavelengths (peaks at 586/604 nm) allow their use in otherwise challenging multicolor experiments, e.g., when combining Ca(2+) uncaging or optogenetic stimulation with Ca(2+) imaging in cells expressing fluorescent proteins. We illustrate this capacity by the detection of Ca(2+) transients evoked by blue light in cultured astrocytes expressing CatCh, a light-sensitive Ca(2+)-translocating channelrhodopsin linked to yellow fluorescent protein. Using time-correlated single-photon counting, we measured fluorescence lifetimes for all CaRubies and demonstrate a 10-fold increase in the average lifetime upon Ca(2+) chelation. Since only the fluorescence quantum yield but not the absorbance of the CaRubies is Ca(2+)-dependent, calibrated two-photon fluorescence excitation measurements of absolute Ca(2+) concentrations are feasible.

  19. Electron beam physical vapor deposition of thin ruby films for remote temperature sensing

    International Nuclear Information System (INIS)

    Li Wei; Coppens, Zachary J.; Greg Walker, D.; Valentine, Jason G.

    2013-01-01

    Thermographic phosphors (TGPs) possessing temperature-dependent photoluminescence properties have a wide range of uses in thermometry due to their remote access and large temperature sensitivity range. However, in most cases, phosphors are synthesized in powder form, which prevents their use in high resolution micro and nanoscale thermal microscopy. In the present study, we investigate the use of electron beam physical vapor deposition to fabricate thin films of chromium-doped aluminum oxide (Cr-Al 2 O 3 , ruby) thermographic phosphors. Although as-deposited films were amorphous and exhibited weak photoluminescence, the films regained the stoichiometry and α-Al 2 O 3 crystal structure of the combustion synthesized source powder after thermal annealing. As a consequence, the annealed films exhibit both strong photoluminescence and a temperature-dependent lifetime that decreases from 2.9 ms at 298 K to 2.1 ms at 370 K. Ruby films were also deposited on multiple substrates. To ensure a continuous film with smooth surface morphology and strong photoluminescence, we use a sapphire substrate, which is thermal expansion coefficient and lattice matched to the film. These thin ruby films can potentially be used as remote temperature sensors for probing the local temperatures of micro and nanoscale structures.

  20. RUBI -a Reference mUltiscale Boiling Investigation for the Fluid Science Laboratory

    Science.gov (United States)

    Schweizer, Nils; Stelzer, Marco; Schoele-Schulz, Olaf; Picker, Gerold; Ranebo, Hans; Dettmann, Jan; Minster, Olivier; Toth, Balazs; Winter, Josef; Tadrist, Lounes; Stephan, Peter; Grassi, Walter; di Marco, Paolo; Colin, Catherine; Piero Celata, Gian; Thome, John; Kabov, Oleg

    Boiling is a two-phase heat transfer process where large heat fluxes can be transferred with small driving temperature differences. The high performance of boiling makes the process very interesting for heat transfer applications and it is widely used in industry for example in power plants, refrigeration systems, and electronics cooling. Nevertheless, due to the large number of involved phenomena and their often highly dynamic nature a fundamental understanding and closed theoretical description is not yet accomplished. The design of systems incorporating the process is generally based on empirical correlations, which are commonly accompanied by large uncertainties and, thus, has to be verified by expensive test campaigns. Hence, strong efforts are currently made to develop applicable numerical tools for a reliable prediction of the boiling heat transfer performance and limits. In order to support and validate this development and, in particular as a precondition, to enhance the basic knowledge about boiling the comprehensive multi-scale experiment RUBI (Reference mUlti-scale Boiling Investigation) for the Fluid Science Laboratory on board the ISS is currently in preparation. The scientific objectives and requirements of RUBI have been defined by the members of the ESA topical team "Boiling and Multiphase Flow" and addresses fundamental aspects of boiling phenomena. The main objectives are the measurement of wall temperature and heat flux distribution underneath vapour bubbles with high spatial and tem-poral resolution by means of IR thermography accompanied by the synchronized high-speed observation of the bubble shapes. Furthermore, the fluid temperature in the vicinity and inside of the bubbles will be measured by a micro sensor array. Additional stimuli are the generation of an electric field above the heating surface and a shear flow created by a forced convection loop. The objective of these stimuli is to impose forces on the bubbles and investigate the

  1. Corrosion characteristics of K-claddings

    International Nuclear Information System (INIS)

    Park, J. Y.; Choi, B. K.; Jung, Y. H.; Jung, Y. H.

    2004-01-01

    The Improvement of the corrosion resistance of nuclear fuel claddings is the critical issue for the successful development of the high burn-up fuel. KAERI have developed the K-claddings having a superior corrosion resistance by controlling the alloying element addition and optimizing the manufacturing process. The comparative evaluation of the corrosion resistance for K-claddings and the foreign claddings was performed and the effect of the heat treatment on the corrosion behavior of K-claddings was also examined. Corrosion tests were carried out in the conditions of 360 .deg. C pure water, PWR-simulating loop and 400 .deg. C steam, From the results of the corrosion tests, it was found that the corrosion resistance of K-claddings is superior to those of Zry4 and A claddings and K6 showed a better corrosion resistance than K3. The corrosion behavior of K-cladding was strongly influenced by the final annealing rather than the intermediate annealing, and the corrosion resistance increased with decreasing the final annealing temperature

  2. RubyMotion iOS develoment essentials

    CERN Document Server

    Nalwaya, Abhishek

    2013-01-01

    This is a step-by-step book that builds on your knowledge by adding to an example app over the course of each chapter. Each topic uses example code that can be compiled and tested to show how things work practically instead of just telling you the theory. Complicated tasks are broken down into easy to follow steps with clear explanations of what each line of code is doing.Whether you are a novice to iOS development or looking for a simpler alternative to Objective-C; with RubyMotion iOS Development Essentials, you will become a pro at writing great iOS apps

  3. CASTI handbook of cladding technology. 2. ed.

    International Nuclear Information System (INIS)

    Smith, L.; Celant, M.

    2000-01-01

    This updated (2000) CASTI handbook covers all aspects of clad products - the different means of manufacture, properties and applications in various industries. Topics include: an introduction to cladding technology, clad plate, clad pipes, bends, clad fittings, specification requirements of clad products, welding clad products, clad product application and case histories from around the world. Unique to this book is the documentation of case histories of major cladding projects from around the world and how the technology of that day has withstood the demands of time. Filled with over 100 photos and graphics illustrating the various cladding technology examples and products, this book truly documents the most recent technologies in the field of cladding technology used worldwide

  4. Rheological evaluation of pretreated cladding removal waste

    International Nuclear Information System (INIS)

    McCarthy, D.; Chan, M.K.C.; Lokken, R.O.

    1986-01-01

    Cladding removal waste (CRW) contains concentrations of transuranic (TRU) elements in the 80 to 350 nCi/g range. This waste will require pretreatment before it can be disposed of as glass or grout at Hanford. The CRW will be pretreated with a rare earth strike and solids removal by centrifugation to segregate the TRU fraction from the non-TRU fraction of the waste. The centrifuge centrate will be neutralized with sodium hydroxide. This neutralized cladding removal waste (NCRW) is expected to be suitable for grouting. The TRU solids removed by centrifugation will be vitrified. The goal of the Rheological Evaluation of Pretreated Cladding Removal Waste Program was to evaluate those rheological and transport properties critical to assuring successful handling of the NCRW and TRU solids streams and to demonstrate transfers in a semi-prototypic pumping environment. This goal was achieved by a combination of laboratory and pilot-scale evaluations. The results obtained during these evaluations were correlated with classical rheological models and scaled-up to predict the performance that is likely to occur in the full-scale system. The Program used simulated NCRW and TRU solid slurries. Rockwell Hanford Operations (Rockwell) provided 150 gallons of simulated CRW and 5 gallons of simulated TRU solid slurry. The simulated CRW was neutralized by Pacific Northwest Laboratory (PNL). The physical and rheological properties of the NCRW and TRU solid slurries were evaluated in the laboratory. The properties displayed by NCRW allowed it to be classified as a pseudoplastic or yield-pseudoplastic non-Newtonian fluid. The TRU solids slurry contained very few solids. This slurry exhibited the properties associated with a pseudoplastic non-Newtonian fluid

  5. Methods for Detection of Phytophthora fragariae var. rubi on Raspberry

    Directory of Open Access Journals (Sweden)

    Mirjana Koprivica

    2009-01-01

    Full Text Available Phytophthora fragariae var. rubi (Wilcox & Duncan, a causal agent of raspberry root rot, is a serious soil-borne pathogen listed by EPPO as an A2 quarantine pest. Root samples were collected from badly diseased raspberry plants showing a variety of characteristic and often dramatic symptoms during surveys carried out in western Serbia in 2002. Identification of the causal agent was performed in collaboration work with the Scottish Crop Research Institute (S.C.R.I., Dundee, UK. Necrotic roots were plated on selective French bean agar (incorporating ampicilin, ryfamicin, bavistin and hymexasol. Detection of isolates was based on cultural and morphological features compared with referent cultures. DNA was extracted directly from the sampled roots using extraction buffer (200 mM Tris- HCl pH 8.5, 250 mM NaCl, 25 mM EDTA, 0.5% SDS, purified by multi spin separation columns [Thistle Scientific (Axygen] or in 24:1 mixture of chlorophorm- iso-amyl alcohol and amplified by nested PCR (ITS4 and DC6 for first round, DC1and DC5 for second round. Diluted DNA extracts were also amplified by conventional PCR with modified ”universal” Phytophthora primers (ITS 6, ITS 7 and ITS 8, Cooke et al., 2000 and digested with Msp1. Digestion patterns of the universal primers PCR product from infected roots matched those of Scottish strains. P. fragariae var. rubi occured on 8 out of 14 sites. Our results indicate that nested PCR (ITS4 and DC6 for first round, DC1 and DC5 for second round or digestion of the ”universal” Phytophthora primers PCR product for detection of P. fragariae var. rubi are more sensitive and less time-consuming and therefore recommended for use.

  6. Cladding creepdown model for FRAPCON-2

    International Nuclear Information System (INIS)

    Shah, V.N.; Tolli, J.E.

    1985-02-01

    This report presents a cladding deformation model developed to analyze cladding creepdown during steady state operation in both a pressurized water reactor (PWR) and a boiling water reactor (BWR). This model accounts for variations in zircaloy cladding heat treatment; cold worked and stress relieved material, typically used in a PWR, and fully recrystallized material, typically used in a BWR. The model calculates cladding creepdown as a function of hoop stress, fast neutron flux, exposure time, and temperature. This report also presents a comparison between cladding creep calculations by this model and corresponding measurements from the KWU/CE program, ORNL HOBBIE experiments, and EPRI/Westinghouse Engineering cooperative project. The comparisons show that the model calculates cladding creep strains well. The analyses of non-fueled rods by FRAPCON-2 show that the cladding creepdown model was correctly incorporated. Also, analysis of a PWR rod test case shows that the FRAPCON-2 code can analyze pellet-cladding mechanical interaction caused by cladding creepdown and fuel swelling

  7. Microstructure and Mechanical Properties of Laser Clad and Post-cladding Tempered AISI H13 Tool Steel

    Science.gov (United States)

    Telasang, Gururaj; Dutta Majumdar, Jyotsna; Wasekar, Nitin; Padmanabham, G.; Manna, Indranil

    2015-05-01

    This study reports a detailed investigation of the microstructure and mechanical properties (wear resistance and tensile strength) of hardened and tempered AISI H13 tool steel substrate following laser cladding with AISI H13 tool steel powder in as-clad and after post-cladding conventional bulk isothermal tempering [at 823 K (550 °C) for 2 hours] heat treatment. Laser cladding was carried out on AISI H13 tool steel substrate using a 6 kW continuous wave diode laser coupled with fiber delivering an energy density of 133 J/mm2 and equipped with a co-axial powder feeding nozzle capable of feeding powder at the rate of 13.3 × 10-3 g/mm2. Laser clad zone comprises martensite, retained austenite, and carbides, and measures an average hardness of 600 to 650 VHN. Subsequent isothermal tempering converted the microstructure into one with tempered martensite and uniform dispersion of carbides with a hardness of 550 to 650 VHN. Interestingly, laser cladding introduced residual compressive stress of 670 ± 15 MPa, which reduces to 580 ± 20 MPa following isothermal tempering. Micro-tensile testing with specimens machined from the clad zone across or transverse to cladding direction showed high strength but failure in brittle mode. On the other hand, similar testing with samples sectioned from the clad zone parallel or longitudinal to the direction of laser cladding prior to and after post-cladding tempering recorded lower strength but ductile failure with 4.7 and 8 pct elongation, respectively. Wear resistance of the laser surface clad and post-cladding tempered samples (evaluated by fretting wear testing) registered superior performance as compared to that of conventional hardened and tempered AISI H13 tool steel.

  8. 77 FR 21805 - Notice of Intent To Collect Fees on Public Land in Mesa County, CO (Ruby-Horsethief Stretch of...

    Science.gov (United States)

    2012-04-11

    ... public: The Ruby-Horsethief Business Plan (posted in November 2011) and the Ruby-Horsethief Environmental... Plan outlines operational goals of the area and the purpose of the fee program. The EA, Decision Record... related to the fee and permit. Both the Business Plan and the EA provide management direction for public...

  9. Aplicação de ethephon e qualidade da uva 'Rubi' em Porto Feliz-SP Ethephon on 'Rubi' grapevine quality in Porto Feliz, SP

    Directory of Open Access Journals (Sweden)

    Alessandro Rodrigues

    2010-09-01

    Full Text Available A produção de uvas de mesa é uma importante atividade econômica no Estado de São Paulo. A região de Porto Feliz, em clima Cwa, apresenta grande número de agricultores familiares dedicados a esta atividade. Condições climáticas e manejo da cultura durante a fase de amadurecimento determinam a qualidade dos bagos, sendo o uso de fitorreguladores uma ferramenta útil para o ajustamento de atributos da qualidade. Avaliaram-se sete concentrações de ethephon, aplicadas por imersão dos cachos no início da mudança de coloração dos bagos, sobre a qualidade de uva 'Rubi', durante os ciclos de 2007 e de 2008, em propriedade comercial localizada em Porto Feliz-SP. Os atributos de qualidade avaliados foram a coloração de bagos, teor de sólidos solúveis totais e desbagoamento pós-colheita, sendo determinado também o índice de velocidade de desbagoamento. Os dados coletados foram submetidos à análise de variância e de regressão. Em 2007, observaram-se maiores coloração e teor de sólidos solúveis totais, associados às maiores temperaturas registradas no período entre o início de maturação e a colheita. O uso de ethephon, independentemente da concentração utilizada, promoveu coloração mais avermelhada dos bagos de 'Rubi' nas duas safras. Não houve efeito do uso do ethephon sobre o teor de sólidos solúveis totais. Não foi possível inferir sobre o efeito do etephon no desbagoamento em função do elevado coeficiente de variação. Estudos básicos para avaliar o efeito de fatores climáticos, nutricionais e de manejo do vinhedo são necessários no desenvolvimento de coloração dos bagos da cultivar 'Rubi' em clima tropical.Grapevine production for fresh market is an important economic activity in the State of Sao Paulo, Brazil. The region of Porto Feliz is located in Cwa climate and concentrates several small producers. Climatic conditions and cultural practices during fruit maturation determine berry quality, and

  10. Zirconium-barrier cladding attributes

    International Nuclear Information System (INIS)

    Rosenbaum, H.S.; Rand, R.A.; Tucker, R.P.; Cheng, B.; Adamson, R.B.; Davies, J.H.; Armijo, J.S.; Wisner, S.B.

    1987-01-01

    This metallurgical study of Zr-barrier fuel cladding evaluates the importance of three salient attributes: (1) metallurgical bond between the zirconium liner and the Zircaloy substrate, (2) liner thickness (roughly 10% of the total cladding wall), and (3) softness (purity). The effect that each of these attributes has on the pellet-cladding interaction (PCI) resistance of the Zr-barrier fuel was studied by a combination of analytical model calculations and laboratory experiments using an expanding mandrel technique. Each of the attributes is shown to contribute to PCI resistance. The effect of the zirconium liner on fuel behavior during off-normal events in which steam comes in contact with the zirconium surface was studied experimentally. Simulations of loss-of-coolant accident (LOCA) showed that the behavior of Zr-barrier cladding is virtually indistinguishable from that of conventional Zircaloy cladding. If steam contacts the zirconium liner surface through a cladding perforation and the fuel rod is operated under normal power conditions, the zirconium liner is oxidized more rapidly than is Zircaloy, but the oxidation rate returns to the rate of Zircaloy oxidation when the oxide phase reaches the zirconium-Zircaloy metallurgical bond

  11. Rheology of Prepreg and Properties of Silica/bismaleimide Matrix Copper Clad Laminate

    Directory of Open Access Journals (Sweden)

    DAI Shankai

    2017-08-01

    Full Text Available The effects of the silica surface treated by coupling agents KH550, KH560 and KH570 on the rheological properties of bismaleimide (BMI resin system were investigated. The rigidity, coefficient of thermal expansion (CTE and thermal stability of the copper clad laminate (CCL were studied by DMA, TMA and TGA. The resin system containing silica surface treated by KH-560, comparing to KH550, KH570 and without surface treatment resin system has better rheological properties and low melt viscosity. The comprehensive properties of the copper clad laminate can be effectively improved by the introduction of silica in the resin system, exhibiting higher storage modulus and lower CTE compare to no silica in the CCL. When the silica mass fraction is 50%, the storage modulus is increased by 83% at 50℃, and the CTE below the glass transition temperature is decreased by 153%.

  12. Development of high performance cladding materials

    International Nuclear Information System (INIS)

    Park, Jeong Yong; Jeong, Y. H.; Park, S. Y.

    2010-04-01

    The irradiation test for HANA claddings conducted and a series of evaluation for next-HANA claddings as well as their in-pile and out-of pile performances tests were also carried out at Halden research reactor. The 6th irradiation test have been completed successfully in Halden research reactor. As a result, HANA claddings showed high performance, such as corrosion resistance increased by 40% compared to Zircaloy-4. The high performance of HANA claddings in Halden test has enabled lead test rod program as the first step of the commercialization of HANA claddings. DB has been established for thermal and LOCA-related properties. It was confirmed from the thermal shock test that the integrity of HANA claddings was maintained in more expanded region than the criteria regulated by NRC. The manufacturing process of strips was established in order to apply HANA alloys, which were originally developed for the claddings, to the spacer grids. 250 kinds of model alloys for the next-generation claddings were designed and manufactured over 4 times and used to select the preliminary candidate alloys for the next-generation claddings. The selected candidate alloys showed 50% better corrosion resistance and 20% improved high temperature oxidation resistance compared to the foreign advanced claddings. We established the manufacturing condition controlling the performance of the dual-cooled claddings by changing the reduction rate in the cold working steps

  13. Recent advances in phosphate laser glasses for high power applications

    International Nuclear Information System (INIS)

    Campbell, J.H.

    1996-01-01

    Recent advances in Nd-doped phosphate laser glasses for high-peak-power and high-average-power applications are reviewed. Compositional studies have progressed to the point that glasses can be tailored to have specific properties for specific applications. Non-radiative relaxation effects can be accurately modeled and empirical expressions have been developed to evaluate both intrinsic (structural) and extrinsic (contamination induced) relaxation effects. Losses due to surface scattering and bulk glass absorption have been carefully measured and can be accurately predicted. Improvements in processing have lead to high damage threshold (e.g. Pt inclusion free) and high thermal shock resistant glasses with improved edge claddings. High optical quality pieces up to 79 x 45 x 4cm 3 have been made and methods for continuous melting laser glass are under development

  14. What's a Nice Hummingbird Like You Doing at an AGU Meeting Like This? (or, Operation RubyThroat Meets The GLOBE Program)

    Science.gov (United States)

    Hilton, B.

    2003-12-01

    "Operation RubyThroat: The Hummingbird Project" is an international cross-disciplinary initiative that uses Ruby-throated Hummingbirds (Archilochus colubris) as a hook to excite K-12 students (and adults) about science learning. In 2002, Operation RubyThroat affiliated with The GLOBE Program as the first GLOBE protocol that involves animal behavior. Through Operation RubyThroat, students make observations about hummingbird phenology, behavior, and ecology and correlate their data against traditional GLOBE observations of atmosphere, climate, land cover, soils, hydrology, and phenology. Although Ruby-throated Hummingbirds (RTHUs) breed throughout the eastern half of the United States and southern Canada and may be the most common and most widely distributed of all 338 hummingbird species, little is known about how abiotic environmental factors affect their migration, nesting activities, and everyday behavior. Operation RubyThroat participants in the U.S. and Canada log early arrival dates of RTHUs during spring migration, note their presence throughout the breeding season, and report the last date RTHUs are seen in autumn. Conversely, participants in Mexico and all seven Central American countries (the region in which RTHUs spend their non-breeding months) watch for early arrivals in fall and late departures in spring. Participants also attempt to estimate numbers of RTHUs in local populations by counting the number of visits hummingbirds make to feeders and/or flowers in a 45-minute time block. Optional activities include observations of RTHU nesting behaviors and determining RTHU preferences for various species of native and exotic nectar sources. Participating schools are encouraged to establish Schoolyard Hummingbird Habitats in which to make their observations, but data may be collected in backyards or at local parks, nature centers, botanical gardens, and other sites where RTHUs occur. Adults not affiliated with K-12 schools are invited to become certified in

  15. Effects of spacers on blockage of coolant channels in clad melting accidents

    Energy Technology Data Exchange (ETDEWEB)

    Eggen, D. T.; Scale, T.; Hsieh, S. [Northwestern Univ., Evanston, IL (United States). The Technological Inst.

    1977-07-01

    The elements and configuration of these assemblies are representative of the current design for a GCFR. The fuel elements are stainless-steel clad, mixed-oxide spaced by a grid structure on 250 mm centers with a pitch of 9.5 mm, diameter, 7.2 mm, and cladding thickness, 0.5 m. Three series of experiments have been conducted to study the flow and disposition of molten cladding metal into a lower powered blanket region of the reactor following a loss of flow situation. The first two series used a simulant fuel-element bundle to simplify the experimental procedure and make visual observation possible. The 'fuel' was simulated by mullite rods 6.4 mm in diameter and 610 mm long. These were clad with a 50 Pb/50 Sn alloy tubing which was drawn onto the 'fuel'. The first series used cast spacers with webs of about 0.5-0.55 mm thickness placed 175 and 425 mm from the top end of the assembly. The second series used grid spacers fabricated of 0.25 mm alloy strips. This provided a more accurate representation of the hydraulic diameter. The bundle was encased in a hexagonal glass tube. The bundle was at 22/sup 0/C and the molten alloy was poured at a temperature of 260/sup 0/C (35/sup 0/C superheat). Motion pictures recorded the experiments and the bundle was sectioned for observation. The third set of experiments was done with a stainless steel bundle of 37 elements fabricated of mullite rods, 7.14 mm diameter. The stainless steel cladding had an O.D. of 8.41 mm. The element pitch was 11.1 mm. The grid spacers were prototypic. The experiment was conducted in an inert-gas tube furnace. The 'core fuel' cladding was melted in an induction furnace and the molten liquid flowed through the center seven element channels. X-ray pictures were taken after the tests and the bundle was sectioned for further study.

  16. BWR fuel clad behaviour following LOCA

    International Nuclear Information System (INIS)

    Chaudhry, S.M.; Vyas, K.N.; Dinesh Babu, R.

    1996-01-01

    Flow and pressure through the fuel coolant channel reduce rapidly following a loss of coolant accident. Due to stored energy and decay heat, fuel and cladding temperatures rise rapidly. Increase in clad temperature causes deterioration of mechanical properties of clad material. This coupled with increase of pressure inside the cladding due to accumulation of fission gases and de-pressurization of coolant causes the cladding to balloon. This phenomenon is important as it can reduce or completely block the flow passages in a fuel assembly causing reduction of emergency coolant flow. Behaviour of a BWR clad is analyzed in a design basis LOCA. Fuel and clad temperatures following a LOCA are calculated. Fission gas release and pressure is estimated using well established models. An elasto-plastic analysis of clad tube is carried out to determine plastic strains and corresponding deformations using finite-element technique. Analysis of neighbouring pins gives an estimate of flow areas available for emergency coolant flow. (author). 7 refs, 6 figs, 3 tabs

  17. Cladding Alloys for Fluoride Salt Compatibility

    Energy Technology Data Exchange (ETDEWEB)

    Muralidharan, Govindarajan [ORNL; Wilson, Dane F [ORNL; Walker, Larry R [ORNL; Santella, Michael L [ORNL; Holcomb, David Eugene [ORNL

    2011-06-01

    This report provides an overview of several candidate technologies for cladding nickel-based corrosion protection layers onto high-temperature structural alloys. The report also provides a brief overview of the welding and weld performance issues associated with joining nickel-clad nickel-based alloys. From the available techniques, two cladding technologies were selected for initial evaluation. The first technique is a line-of-sight method that would be useful for cladding large structures such as vessel interiors or large piping. The line-of-sight method is a laser-based surface cladding technique in which a high-purity nickel powder mixed into a polymer binder is first sprayed onto the surface, baked, and then rapidly melted using a high-power laser. The second technique is a vapor phase technique based on the nickel-carbonyl process that is suitable for cladding inaccessible surfaces such as the interior surfaces of heat exchangers. An initial evaluation for performed on the quality of nickel claddings processed using the two selected cladding techniques.

  18. Cladding Effects on Structural Integrity of Nuclear Components

    International Nuclear Information System (INIS)

    Sattari-Far, Iradi; Andersson, Magnus

    2006-06-01

    Based on this study, the following conclusions and recommendations can be made: Due to significant differences in the thermal and mechanical properties between the austenitic cladding and the ferritic base metal, residual stresses are induced in the cladding and the underlying base metal. These stresses are left in clad components even after Post-Weld Heat Treatment (PWHT). The different restraint conditions of the clad component have a minor influence on the magnitude of the cladding residual stresses in the cladding layer. The thickness of the clad object is the main impacting geometrical dimension in developing cladding residual stresses. A clad object having a base material thickness exceeding 10 times the cladding thickness would be practically sufficient to introduce cladding residual stresses of a thick reactor pressure vessel. For a clad component that received PWHT, the peak tensile stress is in the cladding layer, and the residual stresses in the underlying base material are negligible. However, for clad components not receiving PWHT, for instance the repair welding of the cladding, the cladding residual stresses of tensile type exist even in the base material. This implies a higher risk for underclad cracking for clad repairs that received no PWHT. For certain clad geometries, like nozzles, the profile of the cladding residual stresses depends on the clad thickness and position, and significant tensile stresses can also exist in the base material. Based on different measurements reported in the literature, a value of 150 GPa can be used as Young's Modulus of the austenitic cladding material at room temperature. The control measurements of small samples from the irradiated reactor pressure vessel head did not reveal a significant difference of Young's Modulus between the irradiated and the unirradiated cladding material condition. No significant differences between the axial and tangential cladding residual stresses are reported in the measurement of

  19. Initial Cladding Condition

    International Nuclear Information System (INIS)

    Siegmann, E.

    2000-01-01

    The purpose of this analysis is to describe the condition of commercial Zircaloy clad fuel as it is received at the Yucca Mountain Project (YMP) site. Most commercial nuclear fuel is encased in Zircaloy cladding. This analysis is developed to describe cladding degradation from the expected failure modes. This includes reactor operation impacts including incipient failures, potential degradation after reactor operation during spent fuel storage in pool and dry storage and impacts due to transportation. Degradation modes include cladding creep, and delayed hydride cracking during dry storage and transportation. Mechanical stresses from fuel handling and transportation vibrations are also included. This Analysis and Model Report (AMR) does not address any potential damage to assemblies that might occur at the YMP surface facilities. Ranges and uncertainties have been defined. This analysis will be the initial boundary condition for the analysis of cladding degradation inside the repository. In accordance with AP-2.13Q, ''Technical Product Development Planning'', a work plan (CRWMS M andO 2000c) was developed, issued, and utilized in the preparation of this document. There are constraints, caveats and limitations to this analysis. This cladding degradation analysis is based on commercial Pressurized Water Reactor (PWR) fuel with Zircaloy cladding but is applicable to Boiling Water Reactor (BWR) fuel. Reactor operating experience for both PWRs and BWRs is used to establish fuel reliability from reactor operation. It is limited to fuel exposed to normal operation and anticipated operational occurrences (i.e. events which are anticipated to occur within a reactor lifetime), and not to fuel that has been exposed to severe accidents. Fuel burnup projections have been limited to the current commercial reactor licensing environment with restrictions on fuel enrichment, oxide coating thickness and rod plenum pressures. The information provided in this analysis will be used in

  20. Mutation of Rubie, a novel long non-coding RNA located upstream of Bmp4, causes vestibular malformation in mice.

    Directory of Open Access Journals (Sweden)

    Kristina A Roberts

    Full Text Available The vestibular apparatus of the vertebrate inner ear uses three fluid-filled semicircular canals to sense angular acceleration of the head. Malformation of these canals disrupts the sense of balance and frequently causes circling behavior in mice. The Epistatic circler (Ecl is a complex mutant derived from wildtype SWR/J and C57L/J mice. Ecl circling has been shown to result from the epistatic interaction of an SWR-derived locus on chromosome 14 and a C57L-derived locus on chromosome 4, but the causative genes have not been previously identified.We developed a mouse chromosome substitution strain (CSS-14 that carries an SWR/J chromosome 14 on a C57BL/10J genetic background and, like Ecl, exhibits circling behavior due to lateral semicircular canal malformation. We utilized CSS-14 to identify the chromosome 14 Ecl gene by positional cloning. Our candidate interval is located upstream of bone morphogenetic protein 4 (Bmp4 and contains an inner ear-specific, long non-coding RNA that we have designated Rubie (RNA upstream of Bmp4 expressed in inner ear. Rubie is spliced and polyadenylated, and is expressed in developing semicircular canals. However, we discovered that the SWR/J allele of Rubie is disrupted by an intronic endogenous retrovirus that causes aberrant splicing and premature polyadenylation of the transcript. Rubie lies in the conserved gene desert upstream of Bmp4, within a region previously shown to be important for inner ear expression of Bmp4. We found that the expression patterns of Bmp4 and Rubie are nearly identical in developing inner ears.Based on these results and previous studies showing that Bmp4 is essential for proper vestibular development, we propose that Rubie is the gene mutated in Ecl mice, that it is involved in regulating inner ear expression of Bmp4, and that aberrant Bmp4 expression contributes to the Ecl phenotype.

  1. [Agrobacterium rubi strains from blueberry plants are highly diverse].

    Science.gov (United States)

    Abrahamovich, Eliana; López, Ana C; Alippi, Adriana M

    2014-01-01

    The diversity of a collection of Agrobacterium rubi strains isolated from blueberries from different regions of Argentina was studied by conventional microbiological tests and molecular techniques. Results from biochemical and physiological reactions, as well as from rep-PCR and RFLP analysis of PCR-amplified 23S rDNA showed high phenotypic and genotypic intraspecific variation. Copyright © 2014 Asociación Argentina de Microbiología. Publicado por Elsevier España. All rights reserved.

  2. Unirradiated cladding rip-propagation tests

    International Nuclear Information System (INIS)

    Hu, W.L.; Hunter, C.W.

    1981-04-01

    The size of cladding rips which develop when a fuel pin fails can affect the subassembly cooling and determine how rapidly fuel escapes from the pin. The object of the Cladding Rip Propagation Test (CRPT) was to quantify the failure development of cladding so that a more realistic fuel pin failure modeling may be performed. The test results for unirradiated 20% CS 316 stainless steel cladding show significantly different rip propagation behavior at different temperatures. At room temperature, the rip growth is stable as the rip extension increases monotonically with the applied deformation. At 500 0 C, the rip propagation becomes unstable after a short period of stable rip propagation. The rapid propagation rate is approximately 200 m/s, and the critical rip length is 9 mm. At test temperatures above 850 0 C, the cladding exhibits very high failure resistances, and failure occurs by multiple cracking at high cladding deformation. 13 figures

  3. Cladding Effects on Structural Integrity of Nuclear Components

    Energy Technology Data Exchange (ETDEWEB)

    Sattari-Far, Iradi; Andersson, Magnus [lnspecta Technology AB, Stockholm (Sweden)

    2006-06-15

    Based on this study, the following conclusions and recommendations can be made: Due to significant differences in the thermal and mechanical properties between the austenitic cladding and the ferritic base metal, residual stresses are induced in the cladding and the underlying base metal. These stresses are left in clad components even after Post-Weld Heat Treatment (PWHT). The different restraint conditions of the clad component have a minor influence on the magnitude of the cladding residual stresses in the cladding layer. The thickness of the clad object is the main impacting geometrical dimension in developing cladding residual stresses. A clad object having a base material thickness exceeding 10 times the cladding thickness would be practically sufficient to introduce cladding residual stresses of a thick reactor pressure vessel. For a clad component that received PWHT, the peak tensile stress is in the cladding layer, and the residual stresses in the underlying base material are negligible. However, for clad components not receiving PWHT, for instance the repair welding of the cladding, the cladding residual stresses of tensile type exist even in the base material. This implies a higher risk for underclad cracking for clad repairs that received no PWHT. For certain clad geometries, like nozzles, the profile of the cladding residual stresses depends on the clad thickness and position, and significant tensile stresses can also exist in the base material. Based on different measurements reported in the literature, a value of 150 GPa can be used as Young's Modulus of the austenitic cladding material at room temperature. The control measurements of small samples from the irradiated reactor pressure vessel head did not reveal a significant difference of Young's Modulus between the irradiated and the unirradiated cladding material condition. No significant differences between the axial and tangential cladding residual stresses are reported in the

  4. Capturing reflected cladding modes from a fiber Bragg grating with a double-clad fiber coupler.

    Science.gov (United States)

    Baiad, Mohamad Diaa; Gagné, Mathieu; Lemire-Renaud, Simon; De Montigny, Etienne; Madore, Wendy-Julie; Godbout, Nicolas; Boudoux, Caroline; Kashyap, Raman

    2013-03-25

    We present a novel measurement scheme using a double-clad fiber coupler (DCFC) and a fiber Bragg grating (FBG) to resolve cladding modes. Direct measurement of the optical spectra and power in the cladding modes is obtained through the use of a specially designed DCFC spliced to a highly reflective FBG written into slightly etched standard photosensitive single mode fiber to match the inner cladding diameter of the DCFC. The DCFC is made by tapering and fusing two double-clad fibers (DCF) together. The device is capable of capturing backward propagating low and high order cladding modes simply and efficiently. Also, we demonstrate the capability of such a device to measure the surrounding refractive index (SRI) with an extremely high sensitivity of 69.769 ± 0.035 μW/RIU and a resolution of 1.433 × 10(-5) ± 8 × 10(-9) RIU between 1.37 and 1.45 RIU. The device provides a large SRI operating range from 1.30 to 1.45 RIU with sufficient discrimination for all individual captured cladding modes. The proposed scheme can be adapted to many different types of bend, temperature, refractive index and other evanescent wave based sensors.

  5. Study of laser cladding nuclear valve parts

    International Nuclear Information System (INIS)

    Shi Shihong; Wang Xinlin; Huang Guodong

    1998-12-01

    The mechanism of laser cladding is discussed by using heat transfer model of laser cladding, heat conduction model of laser cladding and convective transfer mass model of laser melt-pool. Subsequently the laser cladding speed limit and the influence of laser cladding parameters on cladding layer structure is analyzed. A 5 kW with CO 2 transverse flow is used in the research for cladding treatment of sealing surface of stop valve parts of nuclear power stations. The laser cladding layer is found to be 3.0 mm thick. The cladding surface is smooth and has no such defects as crack, gas pore, etc. A series of comparisons with plasma spurt welding and arc bead welding has been performed. The results show that there are higher grain grade and hardness, lower dilution and better performances of resistance to abrasion, wear and of anti-erosion in the laser cladding layer. The new technology of laser cladding can obviously improve the quality of nuclear valve parts. Consequently it is possible to lengthen the service life of nuclear valve and to raise the safety and reliability of the production system

  6. Making waves the story of Ruby Payne-Scott : Australian pioneer radio astronomer

    CERN Document Server

    Goss, M

    2013-01-01

    This book is an abbreviated, partly re-written version of "Under the Radar - The First Woman in Radio Astronomy: Ruby Payne-Scott." It addresses a general readership interested in historical and sociological aspects of astronomy and presents the biography of Ruby Payne-Scott (1912 – 1981). As the first female radio astronomer (and one of the first people in the world to consider radio astronomy), she made classic contributions to solar radio physics. She also played a major role in the design of the Australian government's Council for Scientific and Industrial Research radars, which were in turn of vital importance in the Southwest Pacific Theatre in World War II. These radars were used by military personnel from Australia, the United States and New Zealand. From a sociological perspective, her career offers many examples of the perils of being a female academic in the first half of the 20th century. Written in an engaging style and complemented by many historical photographs, this book offers fascinating...

  7. Advances in Trace Element “Fingerprinting” of Gem Corundum, Ruby and Sapphire, Mogok Area, Myanmar

    Directory of Open Access Journals (Sweden)

    F. Lin Sutherland

    2014-12-01

    Full Text Available Mogok gem corundum samples from twelve localities were analyzed for trace element signatures (LA-ICP-MS method and oxygen isotope values (δ18O, by laser fluorination. The study augmented earlier findings on Mogok gem suites that suggested the Mogok tract forms a high vanadium gem corundum area and also identified rare alluvial ruby and sapphire grains characterised by unusually high silicon, calcium and gallium, presence of noticeable boron, tin and niobium and very low iron, titanium and magnesium contents. Oxygen isotope values (δ18O for the ruby and high Si-Ca-Ga corundum (20‰–25‰ and for sapphire (10‰–20‰ indicate typical crustal values, with values >20‰ being typical of carbonate genesis. The high Si-Ca-Ga ruby has high chromium (up to 3.2 wt % Cr and gallium (up to 0. 08 wt % Ga compared to most Mogok ruby (<2 wt % Cr; <0.02 wt % Ga. In trace element ratio plots the Si-Ca-Ga-rich corundum falls into separate fields from the typical Mogok metamorphic fields. The high Ga/Mg ratios (46–521 lie well within the magmatic range (>6, and with other features suggest a potential skarn-like, carbonate-related genesis with a high degree of magmatic fluid input The overall trace element results widen the range of different signatures identified within Mogok gem corundum suites and indicate complex genesis. The expanded geochemical platform, related to a variety of metamorphic, metasomatic and magmatic sources, now provides a wider base for geographic typing of Mogok gem corundum suites. It allows more detailed comparisons with suites from other deposits and will assist identification of Mogok gem corundum sources used in jewelry.

  8. Two Octaves Supercontinuum Generation in Lead-Bismuth Glass Based Photonic Crystal Fiber

    Directory of Open Access Journals (Sweden)

    Ryszard Buczynski

    2014-06-01

    Full Text Available In this paper we report a two octave spanning supercontinuum generation in a bandwidth of 700–3000 nm in a single-mode photonic crystal fiber made of lead-bismuth-gallate glass. To our knowledge this is the broadest supercontinuum reported in heavy metal oxide glass based fibers. The fiber was fabricated using an in-house synthesized glass with optimized nonlinear, rheological and transmission properties in the range of 500–4800 nm. The photonic cladding consists of 8 rings of air holes. The fiber has a zero dispersion wavelength (ZDW at 1460 nm. Its dispersion is determined mainly by the first ring of holes in the cladding with a relative hole size of 0.73. Relative hole size of the remaining seven rings is 0.54, which allows single mode performance of the fiber in the infrared range and reduces attenuation of the fundamental mode. The fiber is pumped into anomalous dispersion with 150 fs pulses at 1540 nm. Observed spectrum of 700–3000 nm was generated in 2 cm of fiber with pulse energy below 4 nJ. A flatness of 5 dB was observed in 950–2500 nm range.

  9. Stress measurements in a magnesium oxide single crystal under constant load using the R-line shifts in a ruby sphere on a Raman microscope

    International Nuclear Information System (INIS)

    Banini, G.K.

    2005-01-01

    Using a Renishaw Raman Microscope and a constructed mechanical apparatus, a novel method for determining the stress in the contact region between a ruby indenter and an MgO crystal under static contact lead is described. The experiment was performed under normal laboratory conditions at the Cavendish Laboratory, University of Cambridge, UK. Manual focusing using the white light on the microscope was made onto the ruby sphere and by replacing the light with a HeNe laser, luminescence frequency in the R-lines of chromium ions at the relaxed (unstressed) positions could be determined. The MgO crystal was then quasi-statically loaded by the ruby sphere, while in the mechanical loading apparatus, and placed on the Renishaw. Manual focusing onto the ruby sphere was made through the MgO and the shift in R-lines from the relaxed positions determined. Literature values of stress coefficients in ruby were used to convert the shifts determined in the R-lines into hydrostatic and non-hydrostatic stresses at precise intervals across the contact region. It was revealed that large stresses hydrostatic occur in the contact region during quasi-static loading and these can be quantified for transparent solids (au)

  10. Diffusion in cladding materials

    International Nuclear Information System (INIS)

    Anand, M.S.; Pande, B.M.; Agarwala, R.P.

    1992-01-01

    Aluminium has been used as a cladding material in most research reactors because its low neutron absorption cross section and ease of fabrication. However, it is not suitable for cladding in power reactors and as such zircaloy-2 is normally used as a clad because it can withstand high temperature. It has low neutron absorption cross section, good oxidation, corrosion, creep properties and possesses good mechanical strength. With the passage of time, further development in this branch of science took place and designers started looking for better neutron economy and less hydrogen pickup in PHW reactors. The motion of fission products in the cladding material could pose a problem after long operation. In order to understand their behaviour under reactor environment, it is essential to study first the diffusion under normal conditions. These studies will throw light on the interaction of defects with impurities which would in turn help in understanding the mechanism of diffusion. In this article, it is intended to discuss the diffusion behaviour of impurities in cladding materials.(i.e. aluminium, zircaloy-2, zirconium-niobium alloy etc.). (author). 94 refs., 4 figs., 3 tabs

  11. Cladding creepdown under compression

    International Nuclear Information System (INIS)

    Hobson, D.O.

    1977-01-01

    Light-water power reactors use Zircaloy tubing as cladding to contain the UO 2 fuel pellets. In-service operating conditions impose an external hydrostatic force on the cladding, causing it to creep down into eventual contact with the fuel. Knowledge of the rate of such creepdown is of great importance to modelers of fuel element performance. An experimental system was devised for studying creepdown that meets several severe requirements by providing (1) correct stress state, (2) multiple positions for measuring radial displacement of the cladding surface, (3) high-precision data, and (4) an experimental configuration compact enough to fit in-reactor. A microcomputer-controlled, eddy-current monitoring system was developed for this study and has proven highly successful in measuring cladding deformation with time at temperatures of 371 0 C (700 0 F) and higher, and at pressures as high as 21 MPa

  12. Growth of ruby crystals by the heat exchanger method, phase 1: NSF small business innovation research

    Science.gov (United States)

    Schmid, F.; Khattak, C. P.

    1980-03-01

    Conditions for the growth of large, uniformly doped laser crystals by the heat exchanger method are explored. Determination of the melt point, selection of crucible material and establishment of furnace operating parameters are discussed. The melt point of ruby was found to be 2040 plus or minus 10 C. Molybdenum crucibles can be used to contain ruby in vacuum as well as under argon atmospheres at desired superheat temperatures over extended periods required for crystal growth. Thermodynamic analysis was conducted and vapor pressures of volatile species calculated. Experimentally, volatilization of chromium oxides was suppressed by using welded covers on crucibles and operating under an argon pressure in the furnace.

  13. Chemical compatibility between cladding alloys and advanced fuels

    International Nuclear Information System (INIS)

    Fee, D.C.; Johnson, C.E.

    1975-05-01

    The National Advanced Fuels Program requires chemical, mechanical, and thermophysical properties data for cladding alloys. The compatibility behavior of cladding alloys with advanced fuels is critically reviewed. in carbide fuel pins, the principal compatibility problem is cladding carburization, diffusion of carbon into the cladding matrix accompanied by carbide precipitation. Carburization changes the mechanical properties of the cladding alloy. The extent of carburization increases in sodium (versus gas) bonded fuels. The depth of carburization increases with increasing sesquicarbide (M 2 C 3 ) content of the fuel. In nitride fuel pins, the principal compatibility problem is cladding nitriding, diffusion of nitrogen into the cladding matrix accompanied by nitride precipitation. Nitriding changes the mechanical properties of the cladding alloy. In both carbide and nitride fuel pins, fission products do not migrate appreciably to the cladding and do not appear to contribute to cladding attack. 77 references. (U.S.)

  14. Design and test of the borosilicate glass burnable poison rod for Qinshan nuclear power plant core

    International Nuclear Information System (INIS)

    Huang Jinhua; Sun Hanhong

    1988-08-01

    Material for the burnable poison of Qinshan Nuclear Power Plant core is GG-17 borosilicate glass. The chemical composition and physico-chemical properties of GG-17 is very close to Pyrex-7740 glass used by Westinghouse. It is expected from the results of the experiments that the borosilicate glass burnable poison rod can be successfully used in Qinshan Nuclear Power Plant due to good physical, mechanical, corrosion-resistant and irradiaton properties for both GG-17 glass and cold-worked stainless steel cladding. Change of material for burnable poison from boron-bearing stainless steel to borosilicate glass will bring about much more economic benefit to Qinshan Naclear Power Plant

  15. Review and evaluation of cladding attack of LMFBR fuel

    International Nuclear Information System (INIS)

    Koizumi, M.; Nagai, S.; Furuya, H.; Muto, T.

    1977-01-01

    The behavior of cladding inner wall corrosion during irradiation was evaluated in terms of fuel density, fuel form, O/M ratio, plutonium concentration, cladding composition, cladding pretreatment, cladding inner diameter, burnup and cladding inner wall temperature. Factors which influence the corrosion are O/M ratio (oxygen to metal ratio), burn up, cladding inner diameter and cladding inner wall temperature. Maximum cladding inner wall corrosion depth was formulated as a function of O/M ratio, burn up and cladding inner wall temperature

  16. Ceramic Coatings for Clad (The C3 Project): Advanced Accident-Tolerant Ceramic Coatings for Zr-Alloy Cladding

    Energy Technology Data Exchange (ETDEWEB)

    Sickafus, Kurt E. [Univ. of Tennessee, Knoxville, TN (United States); Wirth, Brian [Univ. of Tennessee, Knoxville, TN (United States); Miller, Larry [Univ. of Tennessee, Knoxville, TN (United States); Weber, Bill [Univ. of Tennessee, Knoxville, TN (United States); Zhang, Yanwen [Univ. of Tennessee, Knoxville, TN (United States); Patel, Maulik [Univ. of Tennessee, Knoxville, TN (United States); Motta, Arthur [Pennsylvania State Univ., University Park, PA (United States); Wolfe, Doug [Pennsylvania State Univ., University Park, PA (United States); Fratoni, Max [Univ. of California, Berkeley, CA (United States); Raj, Rishi [Univ. of Colorado, Boulder, CO (United States); Plunkett, Kenneth [Univ. of Colorado, Boulder, CO (United States); Was, Gary [Univ. of Michigan, Ann Arbor, MI (United States); Hollis, Kendall [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Nelson, Andy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stanek, Chris [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Comstock, Robert [Westinghouse Electric Corporation, Pittsburgh, PA (United States); Partezana, Jonna [Westinghouse Electric Corporation, Pittsburgh, PA (United States); Whittle, Karl [Univ. of Sheffield (United Kingdom); Preuss, Michael [Univ. of Manchester (United Kingdom); Withers, Philip [Univ. of Manchester (United Kingdom); Wilkinson, Angus [Univ. of Oxford (United Kingdom); Donnelly, Stephen [Univ. of Huddersfield (United Kingdom); Riley, Daniel [Australian Nuclear Science and Technology Organisation, Syndney (Australia)

    2017-02-14

    The goal of this NEUP-IRP project is to develop a fuel concept based on an advanced ceramic coating for Zr-alloy cladding. The coated cladding must exhibit demonstrably improved performance compared to conventional Zr-alloy clad in the following respects: During normal service, the ceramic coating should decrease cladding oxidation and hydrogen pickup (the latter leads to hydriding and embrittlement). During a reactor transient (e.g., a loss of coolant accident), the ceramic coating must minimize or at least significantly delay oxidation of the Zr-alloy cladding, thus reducing the amount of hydrogen generated and the oxygen ingress into the cladding. The specific objectives of this project are as follows: To produce durable ceramic coatings on Zr-alloy clad using two possible routes: (i) MAX phase ceramic coatings or similar nitride or carbide coatings; and (ii) graded interface architecture (multilayer) ceramic coatings, using, for instance, an oxide such as yttria-stabilized zirconia (YSZ) as the outer protective layer. To characterize the structural and physical properties of the coated clad samples produced in 1. above, especially the corrosion properties under simulated normal and transient reactor operating conditions. To perform computational analyses to assess the effects of such coatings on fuel performance and reactor neutronics, and to perform fuel cycle analyses to assess the economic viability of modifying conventional Zr-alloy cladding with ceramic coatings. This project meets a number of the goals outlined in the NEUP-IRP call for proposals, including: Improve the fuel/cladding system through innovative designs (e.g. coatings/liners for zirconium-based cladding) Reduce or eliminate hydrogen generation Increase resistance to bulk steam oxidation Achievement of our goals and objectives, as defined above, will lead to safer light-water reactor (LWR) nuclear fuel assemblies, due to improved cladding properties and built-in accident resistance, as well as

  17. Measurements of the parametric decay of CO2 laser radiation into plasma waves at quarter critical density using ruby laser Thomson scattering

    International Nuclear Information System (INIS)

    Schuss, J.J.; Chu, T.K.; Johnson, L.C.

    1977-11-01

    We report the results of small-angle ruby laser Thomson scattering measurements of the parametric excitation of plasma waves by CO 2 laser radiation at quarter-critical density in a laser-heated gas target plasma. From supplementary data obtained from interferometry and large-angle ruby laser scattering we infer that the threshold conditions for a convective decay are satisfied

  18. Clad Treatment in KARMA Code and Library

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong-yeup; Lee, Hae-chan; Woo, Hae-seuk [KEPCO Nuclear Fuel Co., Daejeon (Korea, Republic of)

    2016-05-15

    Zirconium is the main components in clad materials. The subgroup parameters of zirconium were generated with effective cross section which obtained by using flux distribution in clad region. It decreases absorption reaction rate differences with reference MCNP results. Use of composite nuclide is acceptable to increase efficiency but should be limited to specific target composition. Therefore, the use of the composite nuclide of Zircaloy-2 should be limited when HANA clad material is used for clad. Either using explicit components or generating composite nuclide for HANA is suggested. This paper investigates the clad analysis model for KARMA whether current method is applicable to HANA clad material.

  19. Ho3+-doped AlF3-TeO2-based glass fibers for 2.1 µm laser applications

    Science.gov (United States)

    Wang, S. B.; Jia, Z. X.; Yao, C. F.; Ohishi, Y.; Qin, G. S.; Qin, W. P.

    2017-05-01

    Ho3+-doped AlF3-TeO2-based glass fibers based on AlF3-BaF2-CaF2-YF3-SrF2-MgF2-TeO2 glasses are fabricated by using a rod-in-tube method. The glass rod including a core and a thick cladding layer is prepared by using a suction method, where the thick cladding layer is used to protect the core from the effect of surface crystallization during the fiber drawing. By inserting the glass rod into a glass tube, the glass fibers with relatively low loss (~2.3 dB m-1 @ 1560 nm) are prepared. By using a 38 cm long Ho3+-doped AlF3-TeO2-based glass fiber as the gain medium and a 1965 nm fiber laser as the pump source, 2065 nm lasing is obtained for a threshold pump power of ~220 mW. With further increasing the pump power to ~325 mW, the unsaturated output power of the 2065 nm laser is about 82 mW and the corresponding slope efficiency is up to 68.8%. The effects of the gain fiber length on the lasing threshold, the slope efficiency, and the operating wavelength are also investigated. Our experimental results show that Ho3+-doped AlF3-TeO2-based glass fibers are promising gain media for 2.1 µm laser applications.

  20. Design of Matched Cladding Fiber with UV-sensitive Cladding for Minimization of Claddingmode Losses in Fiber Bragg Gratings

    DEFF Research Database (Denmark)

    Nielsen, Mads Lønstrup; Berendt, Martin Ole; Bjarklev, Anders Overgaard

    2000-01-01

    The effect on the Bragg-grating-induced cladding-mode coupling of varying the extent of the photosensitive region in a step-index fiber is analyzed. We introduce a figure of merit for the suppression of cladding-mode loss and compare different matched cladding fiber designs. It is found to be adv......The effect on the Bragg-grating-induced cladding-mode coupling of varying the extent of the photosensitive region in a step-index fiber is analyzed. We introduce a figure of merit for the suppression of cladding-mode loss and compare different matched cladding fiber designs. It is found...... to be advantageous to increase the extent of the photosensitive region. However, no significant improvement is obtained by extending the photosensitive region more than approximately 10 mu m into the cladding. This result is not in agreement with a simple analysis that neglects UV absorption, which suggests...... that the radius of the photosensitive region should be close to twice as large. (C) 2000 Academic Press....

  1. Surface and bulk 3D analysis of natural and processed ruby using electron probe micro analyzer and X-ray micro CT scan

    Energy Technology Data Exchange (ETDEWEB)

    Sahoo, Rakesh K., E-mail: rakesh.materialscience@gmail.com; Singh, Saroj K.; Mishra, B.K.

    2016-08-15

    Highlights: • Firm linking between two advance techniques: Micro-CT and EPMA for mineral analysis. • Attempt to identify and differentiate the treated gem stone from natural counterpart. • 3D structural and surface elemental analysis of the natural gem stone. - Abstract: The change in surface compositional and bulk structural characteristics of the natural ruby stone, before and after heat treatment with lead oxide has been analyzed using two advance characterization techniques like: X-ray micro CT scan (μ-CT) and electron probe micro analyzer (EPMA). The analytical correlation between these two techniques in identification as well as in depth study of the ores and minerals before and after processing has been presented. Also, we describe the aesthetic enhancement of a low quality defective ruby stone by lead oxide filling and the sequential analysis of this ruby stone before and after treatment using these two advanced techniques to identify and to confirm the change in its aesthetic value. The cracks healing and pores filling by the metal oxide on the surface of the ruby have been analyzed using μ-CT and EPMA. Moreover, in this work we describe the advance characterization of the repaired gem stones especially ruby stones. This work will light up the path for in-depth understanding of diffusion mechanism and abstract information of impurity particles inside the minerals. Based on these observations, EPMA and micro CT are shown to be powerful tools for the identification as well as research in gem stones.

  2. Nuclear-powered pacemaker fuel cladding study

    International Nuclear Information System (INIS)

    Shoup, R.L.

    1976-07-01

    The fabrication of fuel capsules with refractory metal and alloy clads used in nuclear-powered cardiac pacemakers precludes the expedient dissolution of the clad in inorganic acid solutions. An experiment to measure penetration rates of acids on commonly used fuel pellet clads indicated that it is not impossible, but that it would be very difficult to dissolve the multiple cladding. This work was performed because of a suggestion that a 238 PuO 2 -powered pacemaker could be transformed into a terrorism weapon

  3. Analysis of corrosion behavior of KOFA cladding

    International Nuclear Information System (INIS)

    Lee, Chan Bock; Kim, Ki Hang; Seo, Keum Seok; Chung, Jin Gon

    1994-01-01

    The corrosion behavior of KOFA cladding was analyzed using the oxide measurement data of KOFA fuel irradiated up to the fuel rod burnup of 35,000 MWD/MTU for two cycles in Kori-2. Even though KOFA cladding is a standard Zircaloy-4 manufactured by Westinghouse according to the Siemens/KWU's HCW (Highly Cold Worked) standard Zircaloy-4 specification, it was expected that in-pile corrosion behavior of KOFA cladding would not be equivalent to that of Siemens/KWU's cladding due to the differences in such manufacturing processes as cold work and heat treatment. The analysis of measured KOFA cladding oxidation showed that oxidation of KOFA cladding is at least 19 % lower than the design analysis based upon Siemens/KWU's HCW standard Zircaloy-4 cladding. Lower corrosion of KOFA cladding seems to result from the differences in the manufacturing processes and chemical composition although the burnup and oxide layer thickness of the measured fuel rods is relatively low and the amount of the oxidation data base is small

  4. Microstructure and property of Fe–Co–B–Si–C–Nb amorphous composite coating fabricated by laser cladding process

    International Nuclear Information System (INIS)

    Zhu, Y.Y.; Li, Z.G.; Li, R.F.; Li, M.; Daze, X.L.; Feng, K.; Wu, Y.X.

    2013-01-01

    Laser cladding of Fe 34 Co 34 B 20 Si 5 C 3 Nb 4 on a low carbon steel substrate was conducted using coaxial powder feeding method. Microstructure, phase and microhardness were investigated by scanning electronic microscopy, transmission electron microscopy, X-ray diffraction, electron probe micro-analysis and microhardness tester. Amorphous coating with NbC particles embedded in the matrix was formed. Differential scanning calorimetry curve showed that the glass transition temperature (T g ) and the onset crystallization temperature (T x ) were 799 K and 850 K, respectively. The supercooled liquid region (ΔT x = T x − T g ) was as large as 51 K, which implied the high thermal stability of the supercooled liquid against crystallization. Due to the NbC particles embedded in the amorphous matrix, the mean value of the microhardness of the coating prepared by laser cladding was higher than that of the bulk metallic glass formed by the copper mold casting method. The contribution of NbC particles to the total microhardness was theoretically estimated. The estimated hardness of the composite coating agreed well with the tested value.

  5. Infinite projected entangled-pair state algorithm for ruby and triangle-honeycomb lattices

    Science.gov (United States)

    Jahromi, Saeed S.; Orús, Román; Kargarian, Mehdi; Langari, Abdollah

    2018-03-01

    The infinite projected entangled-pair state (iPEPS) algorithm is one of the most efficient techniques for studying the ground-state properties of two-dimensional quantum lattice Hamiltonians in the thermodynamic limit. Here, we show how the algorithm can be adapted to explore nearest-neighbor local Hamiltonians on the ruby and triangle-honeycomb lattices, using the corner transfer matrix (CTM) renormalization group for 2D tensor network contraction. Additionally, we show how the CTM method can be used to calculate the ground-state fidelity per lattice site and the boundary density operator and entanglement entropy (EE) on an infinite cylinder. As a benchmark, we apply the iPEPS method to the ruby model with anisotropic interactions and explore the ground-state properties of the system. We further extract the phase diagram of the model in different regimes of the couplings by measuring two-point correlators, ground-state fidelity, and EE on an infinite cylinder. Our phase diagram is in agreement with previous studies of the model by exact diagonalization.

  6. Development of Cr Electroplated Cladding Tube for preventing Fuel-Cladding Chemical Interaction (FCCI)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jun Hwan; Woo, Je Woong; Kim, Sung Ho; Cheon, Jin Sik; Lee, Byung Oon; Lee, Chan Bock [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    Metal fuel has been selected as a candidate fuel in the SFR because of its superior thermal conductivity as well as enhanced proliferation resistance in connection with the pyroprocessing. However, metal fuel suffers eutectic reaction (Fuel Cladding Chemical Interaction, FCCI) with the fuel cladding made of stainless steel at reactor operating temperature so that cladding thickness gradually reduces to endanger reactor safety. In order to mitigate FCCI, barrier concept has been proposed between the fuel and the cladding in designing fuel rod. Regarding this, KAERI has initiated barrier cladding development to prevent interdiffusion process as well as enhance the SFR fuel performance. Previous study revealed that Cr electroplating has been selected as one of the most promising options because of its technical and economic viability. This paper describes the development status of the Cr electroplating technology for the usage of fuel rod in SFR. This paper summarizes the status of Cr electroplating technology to prevent FCCI in metal fuel rod. It has been selected for the ease of practical application at the tube inner surface. Technical scoping, performance evaluation and optimization have been carried out. Application to the tube inner surface and in-pile test were conducted which revealed as effective.

  7. Laser surface cladding:a literature survey

    OpenAIRE

    Gedda, Hans

    2000-01-01

    This work consists of a literature survey of a laser surface cladding in order to investigate techniques to improve the cladding rate for the process. The high local heat input caused by the high power density of the laser generates stresses and the process is consider as slow when large areas are processed. To avoid these disadvantages the laser cladding process velocity can be increased three or four times by use of preheated wire instead of the powder delivery system. If laser cladding is ...

  8. All fiber cladding mode stripper with uniform heat distribution and high cladding light loss manufactured by CO2 laser ablation

    Science.gov (United States)

    Jebali, M. A.; Basso, E. T.

    2018-02-01

    Cladding mode strippers are primarily used at the end of a fiber laser cavity to remove high-power excess cladding light without inducing core loss and beam quality degradation. Conventional manufacturing methods of cladding mode strippers include acid etching, abrasive blasting or laser ablation. Manufacturing of cladding mode strippers using laser ablation consist of removing parts of the cladding by fused silica ablation with a controlled penetration and shape. We present and characterize an optimized cladding mode stripper design that increases the cladding light loss with a minimal device length and manufacturing time. This design reduces the localized heat generation by improving the heat distribution along the device. We demonstrate a cladding mode stripper written on a 400um fiber with cladding light loss of 20dB, with less than 0.02dB loss in the core and minimal heating of the fiber and coating. The manufacturing process of the designed component is fully automated and takes less than 3 minutes with a very high throughput yield.

  9. Development of advanced zirconium fuel cladding

    International Nuclear Information System (INIS)

    Jeong, Young Hwan; Park, S. Y.; Lee, M. H.

    2007-04-01

    This report includes the manufacturing technology developed for HANA TM claddings, a series of their characterization results as well as the results of their in-pile and out-of pile performances tests which were carried out to develop some fuel claddings for a high burn-up (70,000MWd/mtU) which are competitive in the world market. Some of the HANA TM claddings, which had been manufactured based on the results from the 1st and 2nd phases of the project, have been tested in a research reactor in Halden of Norway for an in-pile performance qualification. The results of the in-pile test showed that the performance of the HANA TM claddings for corrosion and creep was better than 50% compared to that of Zircaloy-4 or A cladding. It was also found that the out-of pile performance of the HANA TM claddings for such as LOCA and RIA in some accident conditions corrosion creep, tensile, burst and fatigue was superior or equivalent to that of the Zircaloy-4 or A cladding. The project also produced the other many data which were required to get a license for an in-pile test of HANA TM claddings in a commercial reactor. The data for the qualification or characterization were provided for KNFC to assist their activities to get the license for the in-pile test of HANA TM Lead Test Rods(LTR) in a commercial reactor

  10. Ytterbium-Phosphate Glass for Microstructured Fiber Laser

    Directory of Open Access Journals (Sweden)

    Ryszard Stępień

    2014-06-01

    Full Text Available In the paper, we report on the development of a synthesis and melting method of phosphate glasses designed for active microstructured fiber manufacturing. Non-doped glass synthesized in a P2O5-Al2O3-BaO-ZnO-MgO-Na2O oxide system served as the matrix material; meanwhile, the glass was doped with 6 mol% (18 wt% of Yb2O3, as fiber core. The glasses were well-fitted in relation to optical (refractive index and thermal proprieties (thermal expansion coefficient, rheology. The fiber with the Yb3+-doped core, with a wide internal photonic microstructure for a laser pump, as well as with a high relative hole size in the photonic outer air-cladding, was produced. The laser built on the basis of this fiber enabled achieving 8.07 W of output power with 20.5% slope efficiency against the launched pump power, in single-mode operation M2 = 1.59, from a 53 cm-long cavity.

  11. Modelling cladding response to changing conditions

    Energy Technology Data Exchange (ETDEWEB)

    Tulkki, Ville; Ikonen, Timo [VTT Technical Research Centre of Finland ltd (Finland)

    2016-11-15

    The cladding of the nuclear fuel is subjected to varying conditions during fuel reactor life. Load drops and reversals can be modelled by taking cladding viscoelastic behaviour into account. Viscoelastic contribution to the deformation of metals is usually considered small enough to be ignored, and in many applications it merely contributes to the primary part of the creep curve. With nuclear fuel cladding the high temperature and irradiation as well as the need to analyse the variable load all emphasise the need to also inspect the viscoelasticity of the cladding.

  12. Laser cladding with powder

    NARCIS (Netherlands)

    Schneider, M.F.; Schneider, Marcel Fredrik

    1998-01-01

    This thesis is directed to laser cladding with powder and a CO2 laser as heat source. The laser beam intensity profile turned out to be an important pa6 Summary rameter in laser cladding. A numerical model was developed that allows the prediction of the surface temperature distribution that is

  13. Friction Surface Cladding of AA1050 on AA2024-T351; influence of clad layer thickness and tool rotation rate

    NARCIS (Netherlands)

    Liu, Shaojie; Bor, Teunis Cornelis; Geijselaers, Hubertus J.M.; Akkerman, Remko

    2015-01-01

    Friction Surfacing Cladding (FSC) is a recently developed solid state process to deposit thin metallic clad layers on a substrate. The process employs a rotating tool with a central opening to supply clad material and support the distribution and bonding of the clad material to the substrate. The

  14. Whole genome sequences of the raspberry and strawberry pathogens Phytophthora rubi and P. fragariae

    Science.gov (United States)

    Phytophthora rubi and P. fragariae are two closely related oomycete plant pathogens that exhibit strong morphological and physiological similarities, but are specialized to infect different hosts of economic importance, namely raspberry and strawberry. Here, we report the draft genome sequences of t...

  15. Modelling of pellet-clad interaction during power ramps

    International Nuclear Information System (INIS)

    Zhou, G.; Lindback, J.E.; Schutte, H.C.; Jernkvist, L.O.; Massih, A.R.; Massih, A.R.

    2005-01-01

    A computational method to describe the pellet-clad interaction phenomenon is presented. The method accounts for the mechanical contact between fragmented pellets and the zircaloy clad, as well as for chemical reaction of fission products with zircaloy during power ramps. Possible pellet-clad contact states, soft, hard and friction, are taken into account in the computational algorithm. The clad is treated as an elastic-plastic-viscoplastic material with irradiation hardening. Iodine-induced stress corrosion cracking is described by using a fracture mechanics-based model for crack propagation. This integrated approach is used to evaluate two power ramp experiments made on boiling water reactor fuel rods in test reactors. The influence of the pellet-clad coefficient of friction on clad deformation is evaluated and discussed. Also, clad deformations, pellet-clad gap size and fission product gas release for one of the ramped rods are calculated and compared with measured data. (authors)

  16. Pigmented guinea pig skin irradiated with Q-switched ruby laser pulses. Morphologic and histologic findings

    Energy Technology Data Exchange (ETDEWEB)

    Dover, J.S.; Margolis, R.J.; Polla, L.L.; Watanabe, S.; Hruza, G.J.; Parrish, J.A.; Anderson, R.R.

    1989-01-01

    Q-switched ruby laser pulses cause selective damage to cutaneous pigmented cells. Repair of this selective damage has not been well described. Therefore, using epilated pigmented and albino guinea pig skin, we studied the acute injury and tissue repair caused by 40-ns, Q-switched ruby laser pulses. Gross observation and light and electron microscopy were performed. No specific changes were evident in the albino guinea pigs. In pigmented animals, with radiant exposures of 0.4 J/cm2 or greater, white spots confined to the 2.5-mm exposure sites developed immediately and faded over 20 minutes. Delayed depigmentation occurred at seven to ten days, followed by full repigmentation by four to eight weeks. Regrowing hairs in sites irradiated at and above 0.4 J/cm2 remained white for at least four months. Histologically, vacuolation of pigment-laden cells was seen immediately in the epidermis and the follicular epithelium at exposures of 0.3 J/cm2 and greater. Melanosomal disruption was seen immediately by electron microscopy at and above 0.3 J/cm2. Over the next seven days, epidermal necrosis was followed by regeneration of a depigmented epidermis. By four months, melanosomes and melanin pigmentation had returned; however, hair follicles remained depigmented and devoid of melanocytes. This study demonstrates that selective melanosomal disruption caused by Q-switched ruby laser pulses leads to transient cutaneous depigmentation and persistent follicular depigmentation. Potential exists for selective treatment of pigmented epidermal and dermal lesions with this modality.

  17. Analyses on Silicide Coating for LOCA Resistant Cladding

    Energy Technology Data Exchange (ETDEWEB)

    Sweidan, Faris B.; Lee, You Ho; Ryu, Ho Jin [KAIST, Daejeon (Korea, Republic of)

    2015-10-15

    A particular focus of accident-tolerant fuel has been cladding due to the rapid high-temperature oxidation of zirconium-based cladding with the evolution of H2 when steam is a reactant. Some key features of the coated cladding include high-temperature resistance to oxidation, lower processing temperatures, and a high melting point of the coating. Zirconium alloys exhibit a reasonably high melting temperature, so a coating for the cladding is appealing if the coating increases the high-temperature resistance to oxidation. In this case, the cladding is protected from complete oxidation. The cladding coating involves the application of zirconium silicide onto Zr-based cladding. Zirconium silicide coating is expected to produce a glassy layer that becomes more protective at elevated temperature. For this reason, silicide coatings on cladding offer the potential for improved reliability at normal operating temperatures and at the higher transient temperatures encountered during accidents. Although ceramic coatings are brittle and may have weak points to be used as coating materials, several ceramic coatings were successful and showed adherent behavior and high resistance to oxidation. In this study, the oxidation behavior of zirconium silicide and its oxidation kinetics are analyzed. Zirconium silicide is a new suggested material to be used as coatings on existing Zr-based cladding alloys, the aim of this study is to evaluate if zirconium silicide is applicable to be used, so they can be more rapidly developed using existing cladding technology with some modifications. These silicide coatings are an attractive alternative to the use of coatings on zirconium claddings or to the lengthy development of monolithic ceramic or ceramic composite claddings and coatings.

  18. Analyses on Silicide Coating for LOCA Resistant Cladding

    International Nuclear Information System (INIS)

    Sweidan, Faris B.; Lee, You Ho; Ryu, Ho Jin

    2015-01-01

    A particular focus of accident-tolerant fuel has been cladding due to the rapid high-temperature oxidation of zirconium-based cladding with the evolution of H2 when steam is a reactant. Some key features of the coated cladding include high-temperature resistance to oxidation, lower processing temperatures, and a high melting point of the coating. Zirconium alloys exhibit a reasonably high melting temperature, so a coating for the cladding is appealing if the coating increases the high-temperature resistance to oxidation. In this case, the cladding is protected from complete oxidation. The cladding coating involves the application of zirconium silicide onto Zr-based cladding. Zirconium silicide coating is expected to produce a glassy layer that becomes more protective at elevated temperature. For this reason, silicide coatings on cladding offer the potential for improved reliability at normal operating temperatures and at the higher transient temperatures encountered during accidents. Although ceramic coatings are brittle and may have weak points to be used as coating materials, several ceramic coatings were successful and showed adherent behavior and high resistance to oxidation. In this study, the oxidation behavior of zirconium silicide and its oxidation kinetics are analyzed. Zirconium silicide is a new suggested material to be used as coatings on existing Zr-based cladding alloys, the aim of this study is to evaluate if zirconium silicide is applicable to be used, so they can be more rapidly developed using existing cladding technology with some modifications. These silicide coatings are an attractive alternative to the use of coatings on zirconium claddings or to the lengthy development of monolithic ceramic or ceramic composite claddings and coatings

  19. Interaction between thorium and potential clad materials

    International Nuclear Information System (INIS)

    Kale, G.B.; Gawde, P.S.; Sengupta, Pranesh

    2005-01-01

    Thorium based fuels are being used for nuclear reactors. The structural stability of fuel-clad assemblies in reactor systems depend upon the nature of interdiffusion reaction between fuel-cladding materials. Interdiffusion reaction thorium and various cladding materials is presented in this paper. (author)

  20. 16 CFR 23.23 - Misuse of the words “ruby,” “sapphire,” “emerald,” “topaz,” “stone,” “birthstone,” “gemstone,” etc.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Misuse of the words âruby,â âsapphire,â... PEWTER INDUSTRIES § 23.23 Misuse of the words “ruby,” “sapphire,” “emerald,” “topaz,” “stone,” “birthstone,” “gemstone,” etc. (a) It is unfair or deceptive to use the unqualified words “ruby,” “sapphire...

  1. Fractional CO2 laser is as effective as Q-switched ruby laser for the initial treatment of a traumatic tattoo.

    Science.gov (United States)

    Seitz, Anna-Theresa; Grunewald, Sonja; Wagner, Justinus A; Simon, Jan C; Paasch, Uwe

    2014-12-01

    Q-switched laser treatments are considered the standard method for removing both regular and traumatic tattoos. Recently, the removal of tattoo ink using ablative fractional lasers has been reported. Ablative fractional CO2 laser and q-switched ruby laser treatments were used in a split-face mode to compare the safety and efficacy of the two types of laser in removing a traumatic tattoo caused by the explosion of a firework. A male patient suffering from a traumatic tattoo due to explosive deposits in his entire face was subjected to therapy. A series of eleven treatments were performed. The right side of the face was always treated using an ablative fractional CO2 laser, whereas the left side was treated only using a q-switched ruby laser. After a series of eleven treatments, the patient demonstrated a significant lightening on both sides of his traumatic tattoo, with no clinical difference. After the first six treatments, the patient displayed greater lightening on the right side of his face, whereas after another five treatments, the left side of the patient's face appeared lighter. No side effects were reported. In the initial stage of removing the traumatic tattoo, the ablative fractional laser treatment appeared to be as effective as the standard ruby laser therapy. However, from the 6th treatment onward, the ruby laser therapy was more effective. Although ablative fractional CO2 lasers have the potential to remove traumatic tattoos, they remain a second-line treatment option.

  2. Energetic improvement with micro turbines of biogas generated in Rubis WWTP; Aprovechamiento energetico con microturbinas del biogas generado en la EDAR de Rubi

    Energy Technology Data Exchange (ETDEWEB)

    Moragas, L.; Robuste, J.; Vicente, M.; Pozo, A.; Blasco, M.

    2009-07-01

    The WWTP of Rubi (Barcelona, Spain) treats 22.950 m{sup 3}/day by activated sludge system, with mesophilic anaerobic digestion of primary and secondary sludges with a capacity of 3.500 m{sup 3}. Generated biogas is applied by means of indirect heating to digesters at 37 degree centigrade. To improve the energetic performance 2 micro turbines of 65 kW each were installed, with a 29% of unitary electric performance. After 5 months a third turbine was installed to generate more energy in peak hours. this solutions has shown to be very flexible, with reasonable technology and costs. (Author)

  3. Cladding embrittlement during postulated loss-of-coolant accidents.

    Energy Technology Data Exchange (ETDEWEB)

    Billone, M.; Yan, Y.; Burtseva, T.; Daum, R.; Nuclear Engineering Division

    2008-07-31

    The effect of fuel burnup on the embrittlement of various cladding alloys was examined with laboratory tests conducted under conditions relevant to loss-of-coolant accidents (LOCAs). The cladding materials tested were Zircaloy-4, Zircaloy-2, ZIRLO, M5, and E110. Tests were performed with specimens sectioned from as-fabricated cladding, from prehydrided (surrogate for high-burnup) cladding, and from high-burnup fuel rods which had been irradiated in commercial reactors. The tests were designed to determine for each cladding material the ductile-to-brittle transition as a function of steam oxidation temperature, weight gain due to oxidation, hydrogen content, pre-transient cladding thickness, and pre-transient corrosion-layer thickness. For short, defueled cladding specimens oxidized at 1000-1200 C, ring compression tests were performed to determine post-quench ductility at {le} 135 C. The effect of breakaway oxidation on embrittlement was also examined for short specimens oxidized at 800-1000 C. Among other findings, embrittlement was found to be sensitive to fabrication processes--especially surface finish--but insensitive to alloy constituents for these dilute zirconium alloys used as cladding materials. It was also demonstrated that burnup effects on embrittlement are largely due to hydrogen that is absorbed in the cladding during normal operation. Some tests were also performed with longer, fueled-and-pressurized cladding segments subjected to LOCA-relevant heating and cooling rates. Recommendations are given for types of tests that would identify LOCA conditions under which embrittlement would occur.

  4. 75 FR 66779 - Ruby Lake National Wildlife Refuge, Elko and White Pine Counties, NV; Comprehensive Conservation...

    Science.gov (United States)

    2010-10-29

    ... emanating from the base of the Ruby Mountains provide life-sustaining water to the 39,926-acre refuge. The marsh is surrounded by 22,926 acres of meadows, grasslands, alkali playa, and shrub-steppe uplands...

  5. LASER SURFACE CLADDING FOR STRUCTURAL REPAIR

    OpenAIRE

    SANTANU PAUL

    2018-01-01

    Laser cladding is a powder deposition technique, which is used to deposit layers of clad material on a substrate to improve its surface properties. It has widespread application in the repair of dies and molds used in the automobile industry. These molds and dies are subjected to cyclic thermo-mechanical loading and therefore undergo localized damage and wear. The final clad quality and integrity is influenced by various physical phenomena, namely, melt pool morphology, microst...

  6. Cladding using a 15 kW CO2 laser

    International Nuclear Information System (INIS)

    Vesely, E.J.; Verma, S.K.

    1989-01-01

    Laser alloying or cladding differs little in principle from the traditional forms of weld overlays, but lasers as a heat source offer some distinct advantages. With the selective heating attainable using high power lasers, good metallurgical bond of the clad layer, minimal dilution and typically, a very fine homogeneous microstructure can be obtained in the clad layer. This is a review of work in laser cladding using the 15 kW CO 2 laser. The authors discuss the ability of the laser clad surface to increase the high temperature oxidation resistance of a low-alloy carbon steel (4140). Examples of clads subjected to high- temperature thermal cycling of nickel-20% aluminum and TaC + 4140 clad low-alloy steel and straight high-temperature oxidation of Stellite 6-304L cladding on a 4140 substrate are given

  7. Electrically heated ex-reactor pellet-cladding interaction (PCI) simulations utilizing irradiated Zircaloy cladding

    International Nuclear Information System (INIS)

    Barner, J.O.; Fitzsimmons, D.E.

    1985-02-01

    In a program sponsored by the Fuel Systems Research Branch of the US Nuclear Regulatory Commission, a series of six electrically heated fuel rod simulation tests were conducted at Pacific Northwest Laboratory. The primary objective of these tests was to determine the susceptibility of irradiated pressurized-water reactor (PWR) Zircaloy-4 cladding to failures caused by pellet-cladding mechanical interaction (PCMI). A secondary objective was to acquire kinetic data (e.g., ridge growth or relaxation rates) that might be helpful in the interpretation of in-reactor performance results and/or the modeling of PCMI. No cladding failures attributable to PCMI occurred during the six tests. This report describes the testing methods, testing apparatus, fuel rod diametral strain-measuring device, and test matrix. Test results are presented and discussed

  8. Laser cladding technology to small diameter pipes

    International Nuclear Information System (INIS)

    Fujimagari, H.; Hagiwara, M.; Kojima, T.

    2000-01-01

    A laser cladding method which produces a highly corrosion-resistant material coating layers (cladding) on the austenitic stainless steel (type 304 SS) pipe inner surface was developed to prevent SCC (stress corrosion cracking) occurrence. This technology is applicable to a narrow and long distance area from operators, because of the good accessibility of the YAG (yttrium-aluminum-garnet) laser beam that can be transmitted through an optical fiber. In this method a mixed paste metallic powder and heating-resistive organic solvent are firstly placed on the inner surface of a small pipe, and then a YAG laser beam transmitted through an optical fiber irradiates to the pasted area. A mixed paste will be melted and form a cladding layer subsequently. A cladding layer shows as excellent corrosion resistance property. This laser cladding (LC) method had already applied to several domestic nuclear power plants and had obtained a good reputation. This report introduces the outline of laser cladding technology, the developed equipment for practical application in the field, and the circumstance in actual plant application. (orig.)

  9. Fuel assembly and fuel cladding tube

    International Nuclear Information System (INIS)

    Tsutsumi, Shinro; Ito, Ken-ichi; Inagaki, Masatoshi; Nakajima, Junjiro.

    1996-01-01

    A fuel cladding tube is a zirconium liner tube formed by lining a pure zirconium layer on the inner side of a zirconium alloy tube. The fuel cladding tube is formed by extrusion molding of a composite billet formed by inserting a pure zirconium billet into a zirconium alloy billet. Accordingly, the pure zirconium layer and the zirconium alloy tube are strongly joined by metal bond. The fuel cladding tube has an external oxide film on the outer surface of the zirconium alloy tube and an internal oxide film on the inner side of the pure zirconium layer. The external oxide film has a thickness preferably of about 1μm. The internal oxide film has a thickness of not more than 10μm, preferably, from 1 to 5μm. With such a constitution, flaws to be formed on both inner and outer surfaces of the cladding tube upon assembling a fuel assembly can be reduced thereby enabling to reduce the amount of hydrogen absorbed to the cladding tube. (I.N.)

  10. Structure and properties of barium tin boro-phosphate glass systems with very low photoelastic constant

    Science.gov (United States)

    Itadani, M.; Tricot, G.; Doumert, B.; Takebe, H.; Saitoh, A.

    2017-08-01

    Glasses in the BaO-SnO-P2O5-B2O3 system were prepared and evaluated in order to formulate preform glasses suitable for the fabrication of fiber cores with a very low photoelastic constant. A first glass system (I: xBaO-(60-x)SnO-40P2O5) was designed with a constant P2O5 content and various BaO contents (0-40 mol. %). Introduction of 3 mol. % of B2O3 to enhance the glass stability leads to the second glass system (II: x'BaO-(57-x')SnO-40P2O5-3B2O3) with 33-38 mol. % BaO. The structure of both systems was investigated by 1D/2D magic-angle spinning nuclear magnetic resonance, Raman, and Fourier transform infrared spectroscopic techniques. 31P NMR showed the presence of Q2 and Q1 units in the first system and correlation 11B/31P NMR indicated that boron enters into the network as B(OP)4 structural units. The photoelastic constant was determined and the stability of the best formulations as well as their refractive index dispersion was established. The drawing temperature and isothermal heating time (without crystal precipitation) parameters were also accurately measured by using experimental time-temperature-transition. Considering that the refractive indices of the core and the cladding materials must match, detailed core and cladding compositions for a fiber enabling single-mode waveguide transmission were proposed.

  11. Accident tolerant fuel cladding development: Promise, status, and challenges

    Science.gov (United States)

    Terrani, Kurt A.

    2018-04-01

    The motivation for transitioning away from zirconium-based fuel cladding in light water reactors to significantly more oxidation-resistant materials, thereby enhancing safety margins during severe accidents, is laid out. A review of the development status for three accident tolerant fuel cladding technologies, namely coated zirconium-based cladding, ferritic alumina-forming alloy cladding, and silicon carbide fiber-reinforced silicon carbide matrix composite cladding, is offered. Technical challenges and data gaps for each of these cladding technologies are highlighted. Full development towards commercial deployment of these technologies is identified as a high priority for the nuclear industry.

  12. Mechanical Property and Oxidation Behavior of ATF cladding developed in KAERI

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun-Gil; Kim, Il-Hyun; Jung, Yang-Il; Park, Dong-Jun; Park, Jung-Hwan; Park, Jeong-Yong; Koo, Yang-Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    To realize the coating cladding, coating material (Cr-based alloy) as well as coating technology (3D laser coating and arc ion plating combined with vacuum annealing) can be developed to meet the fuel cladding criteria. The coated Zr cladding can be produced after the optimization of coating technologies. The coated cladding sample showed the good oxidation/corrosion and adhesion properties without the spalling and/or severe interaction with the Zr alloy cladding from the various tests. Thus, it is known that the mechanical property and oxidation behavior of coated cladding concept developed in KAERI is reasonable for applying the ATF cladding in LWRs. At the present time various ATF concepts have been proposed and developing in many countries. The ATF concepts with potentially improved accident performance can be summarized to the coating cladding, Mo-Zr cladding, FeCrAl cladding, and SiCf/SiC cladding. Regarding the cladding performance, ATF cladding concepts will be evaluated with respect to the accident scenarios and normal operations of LWRs as well as to the fuel cladding fabrication.

  13. Pulsed Laser Cladding of Ni Based Powder

    Science.gov (United States)

    Pascu, A.; Stanciu, E. M.; Croitoru, C.; Roata, I. C.; Tierean, M. H.

    2017-06-01

    The aim of this paper is to optimize the operational parameters and quality of one step Metco Inconel 718 atomized powder laser cladded tracks, deposited on AISI 316 stainless steel substrate by means of a 1064 nm high power pulsed laser, together with a Precitec cladding head manipulated by a CLOOS 7 axes robot. The optimization of parameters and cladding quality has been assessed through Taguchi interaction matrix and graphical output. The study demonstrates that very good cladded layers with low dilution and increased mechanical proprieties could be fabricated using low laser energy density by involving a pulsed laser.

  14. Protective claddings for high strength chromium alloys

    Science.gov (United States)

    Collins, J. F.

    1971-01-01

    The application of a Cr-Y-Hf-Th alloy as a protective cladding for a high strength chromium alloy was investigated for its effectiveness in inhibiting nitrogen embrittlement of a core alloy. Cladding was accomplished by a combination of hot gas pressure bonding and roll cladding techniques. Based on bend DBTT, the cladding alloy was effective in inhibiting nitrogen embrittlement of the chromium core alloy for up to 720 ks (200hours) in air at 1422 K (2100 F). A significant increase in the bend DBTT occurred with longer time exposures at 1422 K or short time exposures at 1589 K (2400 F).

  15. Polarization characteristics of double-clad elliptical fibers.

    Science.gov (United States)

    Zhang, F; Lit, J W

    1990-12-20

    A scalar variational analysis based on a Gaussian approximation of the fundamental mode of a double-clad elliptical fiber with a depressed inner cladding is studied. The polarization properties and graphic results are presented; they are given in terms of three parameters: the ratio of the major axis to the minor axis of the core, the ratio of the inner cladding major axis to the core major axis, and the difference between the core index and the inner cladding index. The variations of both the spot size and the field intensity with core ellipticity are examined. It is shown that high birefringence and dispersion-free orthogonal polarization modes can be obtained within the single-mode region and that the field intensity distribution may be more confined to the fiber center than in a single-clad elliptical fiber.

  16. Polarization effects in silicon-clad optical waveguides

    Science.gov (United States)

    Carson, R. F.; Batchman, T. E.

    1984-01-01

    By changing the thickness of a semiconductor cladding layer deposited on a planar dielectric waveguide, the TE or TM propagating modes may be selectively attenuated. This polarization effect is due to the periodic coupling between the lossless propagating modes of the dielectric slab waveguide and the lossy modes of the cladding layer. Experimental tests involving silicon claddings show high selectivity for either polarization.

  17. Clad Degradation - FEPs Screening Arguments

    International Nuclear Information System (INIS)

    E. Siegmann

    2004-01-01

    The purpose of this report is to document the screening of the cladding degradation features, events, and processes (FEPs) for commercial spent nuclear fuel (CSNF). This report also addresses the effect of some FEPs on both the cladding and the CSNF, DSNF, and HLW waste forms where it was considered appropriate to address the effects on both materials together. This report summarizes the work of others to screen clad degradation FEPs in a manner consistent with, and used in, the Total System Performance Assessment-License Application (TSPA-LA). This document was prepared according to ''Technical Work Plan for Waste Form Degradation Modeling, Testing, and Analyses in Support of LA'' (BSC 2004a [DIRS 167796])

  18. Analysis of coaxial laser micro cladding processing conditions

    OpenAIRE

    Tarasova, Tatiana Vasilievna; Gvozdeva, Galina Olegovna; Nowotny, Steffen; Ableyeva, Riana R.; Dolzhikova, Evgenia Yu

    2018-01-01

    The laser build-up cladding is a well-known technique for repair, coatings and additive manufacturing tasks. Modern equipment for the laser cladding enables material to be deposited with the lateral resolution of about 100 μm and to manufacture miniature precise parts. However, the micro cladding regimes are unknown. Determination of these regimes is an expensive task as a well-known relation between laser cladding parameters and melt pool dimensions are changing by technology micro-miniaturi...

  19. Impact of reactor water chemistry on cladding performance

    Energy Technology Data Exchange (ETDEWEB)

    Cox, B. [University of Toronto, Centre for Nuclear Engineering, Toronto, Ontario (Canada)

    1997-07-01

    Water chemistry may have a major impact on fuel cladding performance in PWRs. If the saturation temperature on the surface of fuel cladding is exceeded, either because of the thermal hydraulics of the system, or because of crud deposition, then LiOH concentration can occur within thick porous oxide films on the cladding. This can degrade the protective film and accelerate the corrosion rate of the cladding. If sufficient boric acid is also present in the coolant then these effects may be mitigated. This is normally the case through most of any reactor fuel cycle. Extensive surface boiling may disrupt this equilibrium because of the volatility of boric acid in steam. Under such conditions severe cladding corrosion can ensue. The potential for such effects on high burnup cladding in CANDU reactors, where bone acid is not present in the primary coolant, is discussed. (author)

  20. Impact of reactor water chemistry on cladding performance

    International Nuclear Information System (INIS)

    Cox, B.

    1997-01-01

    Water chemistry may have a major impact on fuel cladding performance in PWRs. If the saturation temperature on the surface of fuel cladding is exceeded, either because of the thermal hydraulics of the system, or because of crud deposition, then LiOH concentration can occur within thick porous oxide films on the cladding. This can degrade the protective film and accelerate the corrosion rate of the cladding. If sufficient boric acid is also present in the coolant then these effects may be mitigated. This is normally the case through most of any reactor fuel cycle. Extensive surface boiling may disrupt this equilibrium because of the volatility of boric acid in steam. Under such conditions severe cladding corrosion can ensue. The potential for such effects on high burnup cladding in CANDU reactors, where bone acid is not present in the primary coolant, is discussed. (author)

  1. Some proposed mechanisms for internal cladding corrosion

    International Nuclear Information System (INIS)

    Bradbury, M.H.; Pickering, S.; Whitlow, W.H.

    1977-01-01

    In spite of extensive research during recent years, a comprehensive model for internal cladding corrosion in fast reactor oxide fuel pins has not yet been established. In this paper, a model is proposed which accounts for many of the features normally associated with this type of corrosion. The model is composed of a number of parts which describe the chronological sequence of events at the fuel/cladding interface. The corrosion reaction is visualised as being primarily chemical in character, involving the cladding steel, the fuel and the more aggressive fission products, notably caesium in the presence of oxygen. The model attempts to explain how corrosion starts, how it depends on the oxygen potential, why it occurs non-uniformly; also covered are phase changes within the cladding steel and morphological features such as the intergranular form of attack and the distribution of corrosion products in the fuel/cladding gap. (author)

  2. Some proposed mechanisms for internal cladding corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Bradbury, M H; Pickering, S; Whitlow, W H [EURATOM (United Kingdom)

    1977-04-01

    In spite of extensive research during recent years, a comprehensive model for internal cladding corrosion in fast reactor oxide fuel pins has not yet been established. In this paper, a model is proposed which accounts for many of the features normally associated with this type of corrosion. The model is composed of a number of parts which describe the chronological sequence of events at the fuel/cladding interface. The corrosion reaction is visualised as being primarily chemical in character, involving the cladding steel, the fuel and the more aggressive fission products, notably caesium in the presence of oxygen. The model attempts to explain how corrosion starts, how it depends on the oxygen potential, why it occurs non-uniformly; also covered are phase changes within the cladding steel and morphological features such as the intergranular form of attack and the distribution of corrosion products in the fuel/cladding gap. (author)

  3. Nuclear fuel cladding material

    International Nuclear Information System (INIS)

    Nakahigashi, Shigeo.

    1982-01-01

    Purpose: To largely improve the durability and the safety of fuel cladding material. Constitution: Diffusion preventive layers, e.g., aluminum or the like are covered on both sides of a zirconium alloy base layer of thin material, and corrosion resistant layers, e.g., copper or the like are covered thereon. This thin plate material is intimately wound in a circularly tubular shape in a plurality of layers to form a fuel cladding tube. With such construction, corrosion of the tube due to fuel and impurity can be prevented by the corrosion resistant layers, and the diffusion of the corrosion resistant material to the zirconium alloy can be prevented by the diffusion preventive layers. Since a plurality of layers are cladded, even if the corrosion resistant layers are damaged or cracked due to stress corrosion, only one layer is damaged or cracked, but the other layers are not affected. (Sekiya, K.)

  4. Deep-probe metal-clad waveguide biosensors

    DEFF Research Database (Denmark)

    Skivesen, Nina; Horvath, Robert; Thinggaard, S.

    2007-01-01

    Two types of metal-clad waveguide biosensors, so-called dip-type and peak-type, are analyzed and tested. Their performances are benchmarked against the well-known surface-plasmon resonance biosensor, showing improved probe characteristics for adlayer thicknesses above 150-200 nm. The dip-type metal-clad...... waveguide sensor is shown to be the best all-round alternative to the surface-plasmon resonance biosensor. Both metal-clad waveguides are tested experimentally for cell detection, showing a detection linut of 8-9 cells/mm(2). (c) 2006 Elsevier B.V. All rights reserved....

  5. Coexistence of both gyroid chiralities in individual butterfly wing scales of Callophrys rubi

    OpenAIRE

    Winter, Benjamin; Butz, Benjamin; Dieker, Christel; Schröder-Turk, Gerd E.; Mecke, Klaus; Spiecker, Erdmann

    2015-01-01

    Arthropod biophotonic nanostructures provide a plethora of complex geometries. Although the variety of geometric forms observed reflects those found in amphiphilic self-assembly, the biological formation principles are more complex. This paper addresses the chiral single gyroid in the Green Hairstreak butterfly Callophrys rubi, robustly showing that the formation process produces both the left- and right-handed enantiomers but with distinctly different likelihood. An interpretation excludes t...

  6. Laser cladding of Zr on Mg for improved corrosion properties

    International Nuclear Information System (INIS)

    Subramanian, R.; Sircar, S.; Mazumder, J.

    1989-01-01

    This paper reports the results of laser cladding of Mg-2wt%Zr, and Mg-5wt%Zr powder mixture onto magnesium. The microstructure of the laser clad was studied. From the microstructural study, the epitaxial regrowth of the clad region on the underlying substrate was observed. Martensite plates of different size were observed in transmission electron microscope for MG-2wt%Zr and Mg-5wt%Zr laser clad. The corrosion properties of the laser clad were evaluated in sea water (3.5% NaCl). The position of the laser claddings in the galvanic series of metals in sea water, the anodic polarization characteristics of the laser claddings and the protective nature and the stability of the passivating film formed have been determined. The formation of pits on the surface of the laser clad subjected to corrosion is reported. The corrosion properties of the laser claddings are compared with that of the commercially used magnesium alloy AZ91B

  7. Oxidation properties of laser clad Nb-Al alloys

    International Nuclear Information System (INIS)

    Tewari, S.K.; Mazumder, J.

    1992-01-01

    This paper reports on laser cladding parameters for non-equilibrium synthesis for several ternary and complex Nb-Al base alloys containing Ti, Cr, Si, Ni, B and C that have been established. Phase transformations occurring below 1500 degrees C have been determined using differential thermal analysis. Ductility of the clads is qualitatively evaluated from the extent of cracking around the microhardness indentations. Oxidation resistance of the clads in flowing air is measured at 800 degrees C, 1200 degrees C and 1400 degrees C and parabolic rate constants are calculated. Microstructure of the clads is studied using optical and scanning electron microscopes. X-ray diffraction and EDX techniques are used for identification of the oxides formed and the phases formed in as clad material. Oxide morphology is studied using SEM. Effect of alloying additions on the ductility and oxidation resistance of the laser clad Nb-Al alloys is discussed. The results are compared with those reported in literature for similar alloys produced by conventional processing methods

  8. Mechanisms of fuel-cladding chemical interaction: US interpretation

    International Nuclear Information System (INIS)

    Adamson, M.G.

    1977-01-01

    Proposed mechanisms of fuel-cladding chemical interaction (FCCI) in LMFBR fuel pins are reviewed and examined in terms of in-pile and out-of-pile data. From this examination several factors are identified which may govern the occurrence of localized deep intergranular penetrations of Type-316SS cladding. Using a plausible mechanistic hypothesis for FCCI, first steps have been taken towards developing a quantitative, physically-meaningful, mathematical method of predicting cladding wastage in operating fuel pins. Both kinetic and thermodynamic aspects of FCCI are considered in the development of this prediction method, together with a fuel chemistry model that describes the evolution of thermochemical conditions at the fuel-cladding gap. On the basis of results from recent fuel pin and laboratory tests a thermal transport mechanism has been proposed to explain the thermal gradient-induced migration of Fe, Cr, and Ni from cladding into the fuel. This mechanism involves chemical transport of the metallic cladding components (as tellurides) in liquid Cs-Te. (author)

  9. Mechanisms of fuel-cladding chemical interaction: US interpretation

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, M G [General Electric Company, Vallecitos Nuclear Center, Pleasanton, CA (United States)

    1977-04-01

    Proposed mechanisms of fuel-cladding chemical interaction (FCCI) in LMFBR fuel pins are reviewed and examined in terms of in-pile and out-of-pile data. From this examination several factors are identified which may govern the occurrence of localized deep intergranular penetrations of Type-316SS cladding. Using a plausible mechanistic hypothesis for FCCI, first steps have been taken towards developing a quantitative, physically-meaningful, mathematical method of predicting cladding wastage in operating fuel pins. Both kinetic and thermodynamic aspects of FCCI are considered in the development of this prediction method, together with a fuel chemistry model that describes the evolution of thermochemical conditions at the fuel-cladding gap. On the basis of results from recent fuel pin and laboratory tests a thermal transport mechanism has been proposed to explain the thermal gradient-induced migration of Fe, Cr, and Ni from cladding into the fuel. This mechanism involves chemical transport of the metallic cladding components (as tellurides) in liquid Cs-Te. (author)

  10. Fundamentals and industrial applications of high power laser beam cladding

    International Nuclear Information System (INIS)

    Bruck, G.J.

    1988-01-01

    Laser beam cladding has been refined such that clad characteristics are precisely determined through routine process control. This paper reviews the state of the art of laser cladding optical equipment, as well as the fundamental process/clad relationships that have been developed for high power processing. Major categories of industrial laser cladding are described with examples chose to highlight particular process attributes

  11. Flaw behavior in mechanically loaded clad plates

    International Nuclear Information System (INIS)

    Iskander, S.K.; Robinson, G.C.; Oland, C.B.

    1989-01-01

    A small crack near the inner surface of clad nuclear reactor pressure vessels is an important consideration in the safety assessment of the structural integrity of the vessel. Four-point bend tests on large plate specimens, conforming to ASTM specification for pressure vessel plates, alloy steels, quenched and tempered, Mn-Mo and Mn-Mo-Ni (A533) grade B six clad and two unclad with stainless steels 308, 309 and 312 weld wires, were performed to determine the effect of cladding upon the propagation of small surface cracks subjected to stress states. Results indicated that the tough surface layer composed of cladding and/or heat-affected zone has enhanced the load-bearing capacity of plates under conditions where unclad plates have ruptured. The results are interpreted in terms of fracture mechanics. The behavior of flaws in clad reactor pressure vessels is examined in the light of the test results. 11 refs., 8 figs., 2 tabs

  12. Analysis of pellet cladding mechanical interaction using computational simulation

    Energy Technology Data Exchange (ETDEWEB)

    Berretta, José R.; Suman, Ricardo B.; Faria, Danilo P.; Rodi, Paulo A., E-mail: jose.berretta@marinha.mil.br [Centro Tecnológico da Marinha em São Paulo (CTMSP), São Paulo, SP (Brazil); Giovedi, Claudia, E-mail: claudia.giovedi@labrisco.usp.br [Universidade de Sao Paulo (LabRisco/USP), São Paulo, SP (Brazil). Laboratório de Análise, Avaliação e Gerenciamento de Riscos

    2017-07-01

    During the operation of Pressurized Water Reactors (PWR), specifically under power transients, the fuel pellet experiences many phenomena, such as swelling and thermal expansion. These dimensional changes in the fuel pellet can enable occurrence of contact it and the cladding along the fuel rod. Thus, pellet cladding mechanical interaction (PCMI), due this contact, induces stress increase at the contact points during a period, until the accommodation of the cladding to the stress increases. This accommodation occurs by means of the cladding strain, which can produce failure, if the fuel rod deformation is permanent or the burst limit of the cladding is reached. Therefore, the mechanical behavior of the cladding during the occurrence of PCMI under power transients shall be investigated during the fuel rod design. Considering the Accident Tolerant Fuel program which aims to develop new materials to be used as cladding in PWR, one important design condition to be evaluated is the cladding behavior under PCMI. The purpose of this paper is to analyze the effects of the PCMI on a typical PWR fuel rod geometry with stainless steel cladding under normal power transients using computational simulation (ANSYS code). The PCMI was analyzed considering four geometric situations at the region of interaction between pellet and cladding. The first case, called “perfect fuel model” was used as reference for comparison. In the second case, it was considered the occurrence of a pellet crack with the loss of a chip. The goal for the next two cases was that a pellet chip was positioned into the gap of pellet-cladding, in the situations described in the first two cases. (author)

  13. Pellet-clad interaction in water reactor fuels

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The aim of this seminar is was to draw up a comprehensive picture of the pellet clad interaction and its impact on the fuel rod. This document is a detailed abstract of the papers presented during the following five sessions: industrial goals, fuel material behaviour in PCI situation, cladding behaviour relevant to PCI, in pile rod behaviour and modelling of the mechanical interaction between pellet and cladding. (A.L.B.)

  14. Pellet-clad interaction in water reactor fuels

    International Nuclear Information System (INIS)

    2004-01-01

    The aim of this seminar is was to draw up a comprehensive picture of the pellet clad interaction and its impact on the fuel rod. This document is a detailed abstract of the papers presented during the following five sessions: industrial goals, fuel material behaviour in PCI situation, cladding behaviour relevant to PCI, in pile rod behaviour and modelling of the mechanical interaction between pellet and cladding. (A.L.B.)

  15. Determination of plastic anisotropy of zirconium alloys cladding

    International Nuclear Information System (INIS)

    Yamshchikov, N.V.; Prasolov, P.F.; Shestak, V.E.

    1991-01-01

    Method for determining plastic anisotropy of zurconium alloy cladding is described. It is based on consideration of material as a combination of transversal crystallites with known distribution over orientations. Such approach enables to describe cladding resistance to plastic deformation at arbitrary stressed state, using the results of texture investigations and uniaxial tests of samples, cut out of claddings along three directions. Plastic anisotropy of fuel element claddings 9.15 and 13.6 mm in diameter up to several percents of plastic deformation is shown

  16. Cladding modes of optical fibers: properties and applications

    International Nuclear Information System (INIS)

    Ivanov, Oleg V; Nikitov, Sergei A; Gulyaev, Yurii V

    2006-01-01

    One of the new methods of fiber optics uses cladding modes for controlling propagation of radiation in optical fibers. This paper reviews the results of studies on the propagation, excitation, and interaction of cladding modes in optical fibers. The resonance between core and cladding modes excited by means of fiber Bragg gratings, including tilted ones, is analyzed. Propagation of cladding modes in microstructured fibers is considered. The most frequently used method of exciting cladding modes is described, based on the application of long-period fiber gratings. Examples are presented of long-period gratings used as sensors and gain equalizers for fiber amplifiers, as well as devices for coupling light into and out of optical fibers. (instruments and methods of investigation)

  17. Neutron-induced helium implantation in GCFR cladding

    International Nuclear Information System (INIS)

    Yamada, H.; Poeppel, R.B.; Sevy, R.H.

    1980-10-01

    The neutron-induced implantation of helium atoms on the exterior surfaces of the cladding of a prototypic gas-cooled fast reactor (GCFR) has been investigated analytically. A flux of recoil helium particles as high as 4.2 x 10 10 He/cm 2 .s at the cladding surface has been calculated at the peak power location in the core of a 300-MWe GCFR. The calculated profile of the helium implantation rates indicates that although some helium is implanted as deep as 20 μm, more than 99% of helium particles are implanted in the first 2-μm-deep layer below the cladding surface. Therefore, the implanted helium particles should mainly affect surface properties of the GCFR cladding

  18. Fuel-cladding chemical interaction

    International Nuclear Information System (INIS)

    Gueneau, C.; Piron, J.P.; Dumas, J.C.; Bouineau, V.; Iglesias, F.C.; Lewis, B.J.

    2015-01-01

    The chemistry of the nuclear fuel is very complex. Its chemical composition changes with time due to the formation of fission products and depends on the temperature level history within the fuel pellet and the clad during operation. Firstly, in thermal reactors, zircaloy oxidation from reaction with UO 2 fuel under high-temperature conditions will be addressed. Then other fuel-cladding interaction phenomena occurring in fast reactors will be described. Large thermal gradients existing between the centre and the periphery of the pellet induce the radial redistribution of the fuel constituents. The fuel pellet can react with the clad by different corrosion processes which can involve actinide and/or fission product transport via gas, liquid or/and solid phases. All these phenomena are briefly described in the case of different kinds of fuels (oxide, carbide, nitride, metallic) to be used in fast reactors. The way these phenomena are taken into account in fuel performance codes is presented. (authors)

  19. Structural Glass Systems under Fire: Overview of Design Issues, Experimental Research, and Developments

    OpenAIRE

    Bedon, Chiara

    2017-01-01

    Architectural design concepts incorporating glass beams, panels, or generally load-carrying elements and stiffeners for buildings, claddings, windows, and partitions are largely considered in modern high-rise constructions. A multitude of aspects, including motivations related to transparency, aesthetics, illumination, and energy conservation, progressively increased the use and interest for such a still rather innovative constructional material. However, compared to other traditional materia...

  20. Influence of texture on fracture toughness of zircaloy cladding

    International Nuclear Information System (INIS)

    Grigoriev, V.; Andersson, Stefan

    1997-06-01

    The correlation between texture and fracture toughness of Zircaloy 2 cladding has been investigated in connection with axial cracks in fuel rods. The texture of the cladding determines the anisotropy of plasticity of the cladding which, in turn, should influence the strain conditions at the crack-tip. Plastic strains in the cladding under uniaxial tension were characterised by means of the anisotropy constants F, G and H calculated according to Hill's theory. Test temperatures between 20 and 300 deg C do not influence the F, G and H values. Any significant effect of hydrogen (about 500 wtppm) on the anisotropy constants F, G and H has not been revealed at a test temperature of 300 deg C. The results, obtained for stress-relieved and recrystallized cladding with different texture, show an obvious influence of texture on the fracture toughness of Zircaloy cladding. A higher fracture toughness has been found for cladding with more radial texture

  1. Influence of texture on fracture toughness of zircaloy cladding

    Energy Technology Data Exchange (ETDEWEB)

    Grigoriev, V. [Studsvik Material AB, Nykoeping (Sweden); Andersson, Stefan [Royal Inst. of Tech., Stockholm (Sweden)

    1997-06-01

    The correlation between texture and fracture toughness of Zircaloy 2 cladding has been investigated in connection with axial cracks in fuel rods. The texture of the cladding determines the anisotropy of plasticity of the cladding which, in turn, should influence the strain conditions at the crack-tip. Plastic strains in the cladding under uniaxial tension were characterised by means of the anisotropy constants F, G and H calculated according to Hill`s theory. Test temperatures between 20 and 300 deg C do not influence the F, G and H values. Any significant effect of hydrogen (about 500 wtppm) on the anisotropy constants F, G and H has not been revealed at a test temperature of 300 deg C. The results, obtained for stress-relieved and recrystallized cladding with different texture, show an obvious influence of texture on the fracture toughness of Zircaloy cladding. A higher fracture toughness has been found for cladding with more radial texture. With a 2 page summary in Swedish. 32 refs, 18 figs.

  2. Clad Degradation- Summary and Abstraction for LA

    International Nuclear Information System (INIS)

    D. Stahl

    2004-01-01

    The purpose of this model report is to develop the summary cladding degradation abstraction that will be used in the Total System Performance Assessment for the License Application (TSPA-LA). Most civilian commercial nuclear fuel is encased in Zircaloy cladding. The model addressed in this report is intended to describe the postulated condition of commercial Zircaloy-clad fuel as a function of postclosure time after it is placed in the repository. Earlier total system performance assessments analyzed the waste form as exposed UO 2 , which was available for degradation at the intrinsic dissolution rate. Water in the waste package quickly became saturated with many of the radionuclides, limiting their release rate. In the total system performance assessments for the Viability Assessment and the Site Recommendation, cladding was analyzed as part of the waste form, limiting the amount of fuel available at any time for degradation. The current model is divided into two stages. The first considers predisposal rod failures (most of which occur during reactor operation and associated activities) and postdisposal mechanical failure (from static loading of rocks) as mechanisms for perforating the cladding. Other fuel failure mechanisms including those caused by handling or transportation have been screened out (excluded) or are treated elsewhere. All stainless-steel-clad fuel, which makes up a small percentage of the overall amount of fuel to be stored, is modeled as failed upon placement in the waste packages. The second stage of the degradation model is the splitting of the cladding from the reaction of water or moist air and UO 2 . The splitting has been observed to be rapid in comparison to the total system performance assessment time steps and is modeled to be instantaneous. After the cladding splits, the rind buildup inside the cladding widens the split, increasing the diffusion area from the fuel rind to the waste package interior. This model report summarizes the

  3. Thermodynamics of pellet-cladding interaction

    International Nuclear Information System (INIS)

    Kyoh, Bunkei; Fuji, Kensho

    1987-01-01

    Equilibrium thermodynamic calculations are performed on the U-Zr-Cs-I-O system that is assumed to exist in the fuel-cladding gap of light water reactor (LWR) fuel under pellet-cladding interaction (PCI) failure condition. For this purpose a computer program called SOLGASMIX-PV for the calculation of complex multi-component equilibria is used, and the results of postirradiation examination are interpreted. The analysis of the thermodynamics of the system U-Zr-Cs-I-O indicates that cesium and iodine are assumed to be released from fuel pellet into the fuel-cladding gap as CsI, therefore, the Cs/I ratio in fuel-cladding bonding zone is one. The important condensed phases in this region are UO 2 , U 3 O 8 , Cs 2 U 2 O 7 , Cs 2 U 15 O 46 , ZrO 2 and CsI, and the major gaseous species are CsI, I 2 and I. Under this situation where Cs/I ratio is one, cesium-zirconate is not present. If, however, cesium rich phase is partially present then cesium will be associated with zirconium, possibly as Cs 2 ZrO 3 . (author)

  4. A pellet-clad interaction failure criterion

    International Nuclear Information System (INIS)

    Howl, D.A.; Coucill, D.N.; Marechal, A.J.C.

    1983-01-01

    A Pellet-Clad Interaction (PCI) failure criterion, enabling the number of fuel rod failures in a reactor core to be determined for a variety of normal and fault conditions, is required for safety analysis. The criterion currently being used for the safety analysis of the Pressurized Water Reactor planned for Sizewell in the UK is defined and justified in this paper. The criterion is based upon a threshold clad stress which diminishes with increasing fast neutron dose. This concept is consistent with the mechanism of clad failure being stress corrosion cracking (SCC); providing excess corrodant is always present, the dominant parameter determining the propagation of SCC defects is stress. In applying the criterion, the SLEUTH-SEER 77 fuel performance computer code is used to calculate the peak clad stress, allowing for concentrations due to pellet hourglassing and the effect of radial cracks in the fuel. The method has been validated by analysis of PCI failures in various in-reactor experiments, particularly in the well-characterised power ramp tests in the Steam Generating Heavy Water Reactor (SGHWR) at Winfrith. It is also in accord with out-of-reactor tests with iodine and irradiated Zircaloy clad, such as those carried out at Kjeller in Norway. (author)

  5. Experimental approach for adhesion strength of ATF cladding

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Donghyun; Kim, Hyochan; Yang, Yongsik; In, Wangkee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Haksung [Hanyang University, Seoul (Korea, Republic of)

    2016-10-15

    The quality of a coating depends on the quality of its adhesion bond strength between the coating and the underlying substrate. Therefore, it is essential to evaluate the adhesion properties of the coating. There are many available test methods for the evaluation of coatings adhesion bond strength. Considering these restrictions of the coated cladding, the scratch test is useful for evaluation of adhesion properties compared to other methods. The purpose of the present study is to analyze the possibility of adhesion bond strength evaluation of ATF coated cladding by scratch testing on coatings cross sections. Experimental approach for adhesion strength of ATF coated cladding was investigated in the present study. The scratch testing was chosen as a testing method. Uncoated zircaloy-4 tube was employed as a reference and plasma spray and arc ion coating were selected as a ATF coated claddings for comparison. As a result, adhesion strengths of specimens affect the measured normal and tangential forces. For the future, the test will be conducted for CrAl coated cladding by laser coating, which is the most promising ATF cladding. Computational analysis with finite element method will also be conducted to analyze a stress distribution in the cladding tube.

  6. Research on laser cladding control system based on fuzzy PID

    Science.gov (United States)

    Zhang, Chuanwei; Yu, Zhengyang

    2017-12-01

    Laser cladding technology has a high demand for control system, and the domestic laser cladding control system mostly uses the traditional PID control algorithm. Therefore, the laser cladding control system has a lot of room for improvement. This feature is suitable for laser cladding technology, Based on fuzzy PID three closed-loop control system, and compared with the conventional PID; At the same time, the laser cladding experiment and friction and wear experiment were carried out under the premise of ensuring the reasonable control system. Experiments show that compared with the conventional PID algorithm in fuzzy the PID algorithm under the surface of the cladding layer is more smooth, the surface roughness increases, and the wear resistance of the cladding layer is also enhanced.

  7. Method for decontaminating stainless cladding tubes

    International Nuclear Information System (INIS)

    Komatsu, Fumiaki.

    1986-01-01

    Purpose: To form an oxide film over the surface of stainless cladding tubes and to efficiently remove radioactive materials from the steel surface together with the oxide layer by the use of an acid water solution. Method: After the removal of water from cladding tubes that have passed through the re-processing process, an oxide film is formed on the surface of the cladding tubes by heating over 400 deg C in an oxidizing atmosphere and thereafter washed again in an acid water solution. When the cladding tubes are thus oxidized once, the stainless base metal itself is oxidized, an oxide layer of several 10 μm or more being formed thereon. In consequence, since the oxide layer is far inferior in corrosion resistance to stainless metals, a pickling liquid easily penetrates into the stainless metal through the oxide layer, thereby remarkably promoting the peeling of the layer from the base metal surface and also improving the residual radioactive material removing efficiency together. (Takahashi, M.)

  8. CREEP STRAIN CORRELATION FOR IRRADIATED CLADDING

    International Nuclear Information System (INIS)

    P. Macheret

    2001-01-01

    In an attempt to predict the creep deformation of spent nuclear fuel cladding under the repository conditions, different correlations have been developed. One of them, which will be referred to as Murty's correlation in the following, and whose expression is given in Henningson (1998), was developed on the basis of experimental points related to unirradiated Zircaloy cladding (Henningson 1998, p. 56). The objective of this calculation is to adapt Murty's correlation to experimental points pertaining to irradiated Zircaloy cladding. The scope of the calculation is provided by the range of experimental parameters characterized by Zircaloy cladding temperature between 292 C and 420 C, hoop stress between 50 and 630 MPa, and test time extending to 8000 h. As for the burnup of the experimental samples, it ranges between 0.478 and 64 MWd/kgU (i.e., megawatt day per kilogram of uranium), but this is not a parameter of the adapted correlation

  9. Duplex stainless steel surface bay laser cladding

    International Nuclear Information System (INIS)

    Amigo, V.; Pineda, Y.; Segovia, F.; Vicente, A.

    2004-01-01

    Laser cladding is one of the most promising techniques to restore damaged surfaces and achieve properties similar to those of the base metal. In this work, duplex stainless steels have been cladded by a nickel alloy under different processing conditions. The influence of the beam speed and defocusing variables ha been evaluated in the microstructure both of the cladding and heat affected zone, HAZ. These results have been correlated to mechanical properties by means of microhardness measurements from cladding area to base metal through the interface. This technique has shown to be very appropriate to obtain controlled mechanical properties as they are determined by the solidification microstructure, originated by the transfer of mass and heat in the system. (Author) 21 refs

  10. Corrosion behaviour of cladded nickel base alloys

    International Nuclear Information System (INIS)

    Brandl, W.; Ruczinski, D.; Nolde, M.; Blum, J.

    1995-01-01

    As a consequence of the high cost of nickel base alloys their use as surface layers is convenient. In this paper the properties of SA-as well as RES-cladded NiMo 16Cr16Ti and NiCr21Mo14W being produced in single and multi-layer technique are compared and discussed with respect to their corrosion behaviour. Decisive criteria describing the qualities of the claddings are the mass loss, the susceptibility against intergranular corrosion and the pitting corrosion resistance. The results prove that RES cladding is the most suitable technique to produce corrosion resistant nickel base coatings. The corrosion behaviour of a two-layer RES deposition shows a better resistance against pitting than a three layer SAW cladding. 7 refs

  11. Influence of chromium concentration on the optical-electronic properties of ruby microstructures

    International Nuclear Information System (INIS)

    Cossolino, L C; Zanatta, A R

    2010-01-01

    Films of amorphous aluminium nitride (AlN) were prepared by conventional radio frequency sputtering of an Al + Cr target in a plasma of pure nitrogen. The Cr-to-Al relative area determines the Cr content, which remained in the ∼0-3.5 at% concentration range in this study. Film deposition was followed by thermal annealing of the samples up to 1050 0 C in an atmosphere of oxygen and by spectroscopic characterization through energy dispersive x-ray spectrometry, photoluminescence and optical transmission measurements. According to the experimental results, the optical-electronic properties of the Cr-containing AlN films are highly influenced by both the Cr concentration and the temperature of the thermal treatments. In fact, thermal annealing at 1050 0 C induces the development of structures that, because of their typical size and distinctive spectral characteristics, were designated by ruby microstructures (RbMSs). These RbMSs are surrounded by a N-rich environment in which Cr 3+ ions exhibit luminescent features not present in other Cr 3+ -containing systems such as ruby, emerald or alexandrite. The light emissions shown by the RbMSs and surroundings were investigated according to the Cr concentration and temperature of measurement, allowing the identification of several Cr 3+ -related luminescent lines. The main characteristics of these luminescent lines and corresponding excitation-recombination processes are presented and discussed in view of a detailed spectroscopic analysis.

  12. Laboratory model for the study and treatment of traumatic tattoos with the Q-switched ruby laser

    Science.gov (United States)

    Silverman, Richard T.; Lach, Elliot

    1994-09-01

    The outcome of laser tattoo removal is dependent on the type of laser and characteristics of the tattoo. A rabbit model was developed to study the Q-switched ruby laser in the treatment of traumatic tattooing. On the backs of white New Zealand rabbits, three 3 cm patches were dermabraded and dressed with carbon black and antibiotic ointment. After a healing period of eight weeks, pre-treatment biopsies were obtained, and the rabbits were treated with the Q- switched ruby laser at various fluence settings with a pulse width of 34 nsec. At set intervals, further biopsies were obtained and studied with light and electron microscopic analysis, and photodocumentation was performed. Grossly, clearance of the tattooed areas was noted in the laser treated specimens. More effective clearance was observed with higher fluence treatment. No infections occurred, and hair regrowth was noted in all cases, though the rate seemed to be altered by laser treatment.

  13. Stone cladding engineering

    National Research Council Canada - National Science Library

    Camposinhos, Rui de Sousa

    2014-01-01

    .... Straightforward formulae are provided for computing action on cladding, with special emphasis on the effect of seismic forces, including an extensive general methodology applied to non-structural elements...

  14. Electron beam cladding of titanium on stainless steel plate

    International Nuclear Information System (INIS)

    Tomie, Michio; Abe, Nobuyuki; Yamada, Masanori; Noguchi, Shuichi.

    1990-01-01

    Fundamental characteristics of electron beam cladding was investigated. Titanium foil of 0.2mm thickness was cladded on stainless steel plate of 3mm thickness by scanning electron beam. Surface roughness and cladded layer were analyzed by surface roughness tester, microscope, scanning electron microscope and electron probe micro analyzer. Electron beam conditions were discussed for these fundamental characteristics. It is found that the energy density of the electron beam is one of the most important factor for cladding. (author)

  15. Pin clad strains in Phenix

    International Nuclear Information System (INIS)

    Languille, A.

    1979-07-01

    The Phenix reactor has operated for 4 years in a satisfactory manner. The first 2 sub-assembly loadings contained pins clad in solution treated 316. The principal pin strains are: diametral strain (swelling and irradiation creep), ovality and spiral bending of the pin (interaction of wire and pin cluster and wrapper). A pin cluster irradiated to a dose of 80 dpa F reached a pin diameter strain of 5%. This strain is principally due to swelling (low fission gas pressure). The principal parameters governing the swelling are instantaneous dose, time and temperature for a given type of pin cladding. Other types of steel are or will be irradiated in Phenix. In particular, cold-worked titanium stabilised 316 steel should contribute towards a reduction in the pin clad strains and increase the target burn-up in this reactor. (author)

  16. Potential for cladding thermal failure in LWRs during high temperature transients

    International Nuclear Information System (INIS)

    El Genk, M.S.

    1979-01-01

    The temperature increase in the fuel and the cladding during a PCM accident produces film boiling at the cladding surface which may induce zircaloy cladding failure, due to embrittlement, and fuel melting at the centerline of the fuel pellets. Molten fuel may extrude through radial cracks in the fuel and relocate in the fuel-cladding gap. Contact of extruded molten fuel with the cladding, which is at high temperature during film boiling, may induce cladding thermal failure due to melting. An assessment of central fuel melting and molten fuel extrusion into the fuel-cladding gap during a PCM accident is presented. The potential for thermal failure of the zircaloy cladding upon being contacted by molten fuel during such an accident is also analyzed and compared with the applicable experimental evidence

  17. Photodissociation of H2+ by a ruby laser with ion energy analysis of ejected H+

    International Nuclear Information System (INIS)

    Ozenne, J.B.; Pham, D.; Tadjeddine, M.; Durup, J.

    1974-01-01

    The kinetic energy released in the photodissociation of H 2 + by a ruby laser beam has been measured. The spectrum of the dissociation kinetic energy of H + +H shows several vibrational levels, and after deconvolution due to the energetic and angular resolution of the apparatus, gives a population of those vibrational levels, close to theoretical population [fr

  18. Explosion Clad for Upstream Oil and Gas Equipment

    Science.gov (United States)

    Banker, John G.; Massarello, Jack; Pauly, Stephane

    2011-01-01

    Today's upstream oil and gas facilities frequently involve the combination of high pressures, high temperatures, and highly corrosive environments, requiring equipment that is thick wall, corrosion resistant, and cost effective. When significant concentrations of CO2 and/or H2S and/or chlorides are present, corrosion resistant alloys (CRA) can become the material of choice for separator equipment, piping, related components, and line pipe. They can provide reliable resistance to both corrosion and hydrogen embrittlement. For these applications, the more commonly used CRA's are 316L, 317L and duplex stainless steels, alloy 825 and alloy 625, dependent upon the application and the severity of the environment. Titanium is also an exceptional choice from the technical perspective, but is less commonly used except for heat exchangers. Explosion clad offers significant savings by providing a relatively thin corrosion resistant alloy on the surface metallurgically bonded to a thick, lower cost, steel substrate for the pressure containment. Developed and industrialized in the 1960's the explosion cladding technology can be used for cladding the more commonly used nickel based and stainless steel CRA's as well as titanium. It has many years of proven experience as a reliable and highly robust clad manufacturing process. The unique cold welding characteristics of explosion cladding reduce problems of alloy sensitization and dissimilar metal incompatibility. Explosion clad materials have been used extensively in both upstream and downstream oil, gas and petrochemical facilities for well over 40 years. The explosion clad equipment has demonstrated excellent resistance to corrosion, embrittlement and disbonding. Factors critical to insure reliable clad manufacture and equipment design and fabrication are addressed.

  19. Explosion Clad for Upstream Oil and Gas Equipment

    International Nuclear Information System (INIS)

    Banker, John G.; Massarello, Jack; Pauly, Stephane

    2011-01-01

    Today's upstream oil and gas facilities frequently involve the combination of high pressures, high temperatures, and highly corrosive environments, requiring equipment that is thick wall, corrosion resistant, and cost effective. When significant concentrations of CO 2 and/or H 2 S and/or chlorides are present, corrosion resistant alloys (CRA) can become the material of choice for separator equipment, piping, related components, and line pipe. They can provide reliable resistance to both corrosion and hydrogen embrittlement. For these applications, the more commonly used CRA's are 316L, 317L and duplex stainless steels, alloy 825 and alloy 625, dependent upon the application and the severity of the environment. Titanium is also an exceptional choice from the technical perspective, but is less commonly used except for heat exchangers. Explosion clad offers significant savings by providing a relatively thin corrosion resistant alloy on the surface metallurgically bonded to a thick, lower cost, steel substrate for the pressure containment. Developed and industrialized in the 1960's the explosion cladding technology can be used for cladding the more commonly used nickel based and stainless steel CRA's as well as titanium. It has many years of proven experience as a reliable and highly robust clad manufacturing process. The unique cold welding characteristics of explosion cladding reduce problems of alloy sensitization and dissimilar metal incompatibility. Explosion clad materials have been used extensively in both upstream and downstream oil, gas and petrochemical facilities for well over 40 years. The explosion clad equipment has demonstrated excellent resistance to corrosion, embrittlement and disbonding. Factors critical to insure reliable clad manufacture and equipment design and fabrication are addressed.

  20. A Novel Method of Modeling the Deformation Resistance for Clad Sheet

    International Nuclear Information System (INIS)

    Hu Jianliang; Yi Youping; Xie Mantang

    2011-01-01

    Because of the excellent thermal conductivity, the clad sheet (3003/4004/3003) of aluminum alloy is extensively used in various heat exchangers, such as radiator, motorcar air conditioning, evaporator, and so on. The deformation resistance model plays an important role in designing the process parameters of hot continuous rolling. However, the complex behaviors of the plastic deformation of the clad sheet make the modeling very difficult. In this work, a novel method for modeling the deformation resistance of clad sheet was proposed by combining the finite element analysis with experiments. The deformation resistance model of aluminum 3003 and 4004 was proposed through hot compression test on the Gleeble-1500 thermo-simulation machine. And the deformation resistance model of clad sheet was proposed through finite element analysis using DEFORM-2D software. The relationship between cladding ratio and the deformation resistance was discussed in detail. The results of hot compression simulation demonstrate that the cladding ratio has great effects on the resistance of the clad sheet. Taking the cladding ratio into consideration, the mathematical model of the deformation resistance for clad sheet has been proved to have perfect forecasting precision of different cladding ratio. Therefore, the presented model can be used to predict the rolling force of clad sheet during the hot continuous rolling process.

  1. High-power and highly efficient diode-cladding-pumped holmium-doped fluoride fiber laser operating at 2.94 microm.

    Science.gov (United States)

    Jackson, Stuart D

    2009-08-01

    A high-power diode-cladding-pumped Ho(3+), Pr(3+)-doped fluoride glass fiber laser is demonstrated. The laser produced a maximum output power of 2.5 W at a slope efficiency of 32% using diode lasers emitting at 1,150 nm. The long-emission wavelength of 2.94 microm measured at maximum pump power, which is particularly suited to medical applications, indicates that tailoring of the proportion of Pr(3+) ions can provide specific emission wavelengths while providing sufficient de-excitation of the lower laser level.

  2. Study on process of laser cladded nuclear valve parts

    International Nuclear Information System (INIS)

    Zhang Chunliang

    2000-01-01

    The microstructure and performances of the Co-base alloy coatings that are formed by laser cladding, plasma spurt welding and arc surfacing on the nuclear valve-sealing surface have been studied and compared. The combination costs of laser cladding, plasma spurt welding and arc, surfacing have been analyzed and compared. The results showed that the laser cladding processing has the advantages of high efficiency, low energy cost, a little machining allowance, high rate of finished products and low combination cost, compared with plasma spurt welding processing and arc surfacing processing. The laser cladding technology can improve the qualities of nuclear valve parts and increase their service life. Therefore, the laser cladding processing is a new technology with developing potential

  3. Oxide thickness measurement technique for duplex-layer Zircaloy-4 cladding

    International Nuclear Information System (INIS)

    McClelland, R.G.; O'Leary, P.M.

    1992-01-01

    Siemens Nuclear Power Corporation (SNP) is investigating the use of duplex-layer Zircaloy-4 tubing to improve the waterside corrosion resistance of cladding for high-burnup pressurized water reactor (PWR) fuel designs. Standard SNP PWR cladding is typically 0.762-mm (0.030-in.)-thick Zircaloy-4. The SNP duplex cladding is nominally 0.660-mm (0.026-in.)-thick Zircalloy-4 with an ∼0.102-mm (0.004-in.) outer layer of another, more corrosion-resistant, zirconium-based alloy. It is common industry practice to monitor the in-reactor corrosion behavior of Zircaloy cladding by using an eddy-current 'lift-off' technique to measure the oxide thickness on the outer surface of the fuel cladding. The test program evaluated three different cladding samples, all with the same outer diameter and wall thickness: Zircaloy-4 and duplex clad types D2 and D4

  4. Investigations on dry sliding of laser cladded aluminum bronze

    Directory of Open Access Journals (Sweden)

    Freiße Hannes

    2016-01-01

    Full Text Available The aim of this study was to investigate the tribological behaviour of laser cladded aluminum bronze tool surfaces for dry metal forming. In a first part of this work a process window for cladding aluminum bronze on steel substrate was investigated to ensure a low dilution. Therefore, the cladding speed, the powder feed rate, the laser power and the distance between the process head and the substrate were varied. The target of the second part was to investigate the influence of different process parameters on the tribological behaviour of the cladded tracks. The laser claddings were carried out on both aluminum bronze and cold work tool steel as substrate materials. Two different particle sizes of the cladding powder material were used. The cladding speed was varied and a post-processing laser remelting treatment was applied. It is shown that the tribological behaviour of the surface in a dry oscillating ball-on-plate test is highly dependent on the substrate material. In the third part a deep drawing tool was additively manufactured by direct laser deposition. Furthermore, the tool was applied to form circular cups with and without lubrication.

  5. Mechanical modelling of transient- to- failure SFR fuel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Feria, F.; Herranz, L. E.

    2014-07-01

    The response of Sodium Fast Reactor (SFR) fuel rods to transient accident conditions is an important safety concern. During transients the cladding strain caused by the stress due to pellet cladding mechanical interaction (PCMI) can lead to failure. Due to the fact that SFR fuel rods are commonly clad with strengthened material made of stainless steel (SS), cladding is usually treated as an elastic-perfectly-plastic material. However, viscoplastic behaviour can contribute to mechanical strain at high temperature (> 1000 K). (Author)

  6. Fuel cladding behavior under rapid loading conditions

    Science.gov (United States)

    Yueh, K.; Karlsson, J.; Stjärnsäter, J.; Schrire, D.; Ledergerber, G.; Munoz-Reja, C.; Hallstadius, L.

    2016-02-01

    A modified burst test (MBT) was used in an extensive test program to characterize fuel cladding failure behavior under rapid loading conditions. The MBT differs from a normal burst test with the use of a driver tube to simulate the expansion of a fuel pellet, thereby producing a partial strain driven deformation condition similar to that of a fuel pellet expansion in a reactivity insertion accident (RIA). A piston/cylinder assembly was used to pressurize the driver tube. By controlling the speed and distance the piston travels the loading rate and degree of sample deformation could be controlled. The use of a driver tube with a machined gauge section localizes deformation and allows for continuous monitoring of the test sample diameter change at the location of maximum hoop strain, during each test. Cladding samples from five irradiated fuel rods were tested between 296 and 553 K and loading rates from 1.5 to 3.5/s. The test rods included variations of Zircaloy-2 with different liners and ZIRLO, ranging in burn-up from 41 to 74 GWd/MTU. The test results show cladding ductility is strongly temperature and loading rate dependent. Zircaloy-2 cladding ductility degradation due to operational hydrogen pickup started to recover at approximately 358 K for test condition used in the study. This recovery temperature is strongly loading rate dependent. At 373 K, ductility recovery was small for loading rates less than 8 ms equivalent RIA pulse width, but longer than 8 ms the ductility recovery increased exponentially with increasing pulse width, consistent with literature observations of loading rate dependent brittle-to-ductile (BTD) transition temperature. The cladding ductility was also observed to be strongly loading rate/pulse width dependent for BWR cladding below the BTD temperature and Pressurized Water Reactor (PWR) cladding at both 296 and 553 K.

  7. Experimental assessment of fuel-cladding interactions

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Elizabeth Sooby [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-06-29

    A range of fuel concepts designed to better tolerate accident scenarios and reactor transients are currently undergoing fundamental development at national laboratories as well as university and industrial partners. Pellet-clad mechanical and chemical interaction can be expected to affect fuel failure rates experienced during steady state operation, as well as dramatically impact the response of the fuel form under loss of coolant and other accident scenarios. The importance of this aspect of fuel design prompted research initiated by AFC in FY14 to begin exploratory efforts to characterize this phenomenon for candidate fuelcladding systems of immediate interest. Continued efforts in FY15 and FY17 aimed to better understand and simulate initial pellet-clad interaction with little-to-no pressure on the pellet-clad interface. Reported here are the results from 1000 h heat treatments at 400, 500, and 600°C of diffusion couples pairing UN with a FeCrAl alloy, SiC, and Zr-based cladding candidate sealed in evacuated quartz ampoules. No gross reactions were observed, though trace elemental contaminants were identified.

  8. Clad buffer rod sensors for liquid metals

    International Nuclear Information System (INIS)

    Jen, C.-K.; Ihara, I.

    1999-01-01

    Clad buffer rods, consisting of a core and a cladding, have been developed for ultrasonic monitoring of liquid metal processing. The cores of these rods are made of low ultrasonic-loss materials and the claddings are fabricated by thermal spray techniques. The clad geometry ensures proper ultrasonic guidance. The lengths of these rods ranges from tens of centimeters to 1m. On-line ultrasonic level measurements in liquid metals such as magnesium at 700 deg C and aluminum at 960 deg C are presented to demonstrate their operation at high temperature and their high ultrasonic performance. A spherical concave lens is machined at the rod end for improving the spatial resolution. High quality ultrasonic images have been obtained in the liquid zinc at 600 deg C. High spatial resolution is needed for the detection of inclusions in liquid metals during processing. We also show that the elastic properties such as density, longitudinal and shear wave velocities of liquid metals can be measured using a transducer which generates and receives both longitudinal and shear waves and is mounted at the end of a clad buffer rod. (author)

  9. Method of processing spent fuel cladding tubes

    International Nuclear Information System (INIS)

    Nakatsuka, Masafumi; Ouchi, Atsuhiro; Imahashi, Hiromichi.

    1986-01-01

    Purpose: To decrease the residual activity of spent fuel cladding tubes in a short period of time and enable safety storage with simple storage equipments. Constitution: Spent fuel cladding tubes made of zirconium alloys discharged from a nuclear fuel reprocessing step are exposed to a grain boundary embrittling atmosphere to cause grain boundary destruction. This causes grain boundary fractures to the zirconium crystal grains as the matrix of nuclear fuels and then precipitation products precipitated to the grain boundary fractures are removed. The zirconium constituting the nuclear fuel cladding tube and other ingredient elements contained in the precipitation products are separated in this removing step and they are separately stored respectively. As a result, zirconium constituting most part of the composition of the spent nuclear fuel cladding tubes can be stored safely at a low activity level. (Takahashi, M.)

  10. Conditioning of high activity solid waste: fuel claddings and dissolution residues

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    This chapter reports on experimental studies of embedding into matrix material, the melting and conversion of zircaloy, and waste properties and characterization. Methods are developed for embedding the waste scrap into a solid and resistant matrix material in order to confine the radioactivity and to prevent it from dispersion. The matrix materials investigated are lead alloys, ceramics and compacted graphite or aluminium powder. The treatment of fuel hulls by melting or chemical conversion is described. Cemented hulls are characterized and the pyrophoricity of zircaloy fines is investigated. Topics considered include the embedding of hulls into graphite and aluminium, the embedding of hulls and dissolution residues into alumino-ceramics, the solidification of alpha-bearing wastes into a ceramic matrix, and the conditioning of cladding waste by eutectoidic melting and by embedding in glass

  11. Method and etchant to join Ag-clad BSSCO superconducting tape

    Science.gov (United States)

    Balachandran, U.; Iyer, A.N.; Huang, J.Y.

    1999-03-16

    A method of removing a silver cladding from high temperature superconducting material clad in silver (HTS) is disclosed. The silver clad HTS is contacted with an aqueous solution of HNO{sub 3} followed by an aqueous solution of NH{sub 4}OH and H{sub 2}O{sub 2} for a time sufficient to remove the silver cladding from the superconducting material without adversely affecting the superconducting properties of the superconducting material. A portion of the silver cladding may be masked with a material chemically impervious to HNO{sub 3} and to a combination of NH{sub 4}OH and H{sub 2}O{sub 2} to preserve the Ag coating. A silver clad superconductor is disclosed, made in accordance with the method discussed. 3 figs.

  12. Study on modes of energy action in laser-induction hybrid cladding

    International Nuclear Information System (INIS)

    Huang Yongjun; Zeng Xiaoyan

    2009-01-01

    The shape and microstructure in laser-induction hybrid cladding were investigated, in which the cladding material was provided by means of three different methods including the powder feeding, cold pre-placed coating (CPPC) and thermal pre-placed coating (TPPC). Moreover, the modes of energy action in laser-induction hybrid cladding were also studied. The results indicate that the cladding material supplying method has an important influence on the shape and microstructure of coating. The influence is decided by the mode of energy action in laser-induction hybrid cladding. During the TPPC hybrid cladding of Ni-based alloy, the laser and induction heating are mainly performed on coating. During the CPPC hybrid cladding of Ni-based alloy, the laser and induction heating are mainly performed on coating and substrate surface, respectively. In powder feeding hybrid cladding, a part of laser is absorbed by the powder particles directly, while the other part of laser penetrating powder cloud radiates on the molten pool. Meanwhile, the induction heating is entirely performed on the substrate. In addition, the wetting property on the interface is improved and the metallurgical bond between the coating and substrate is much easier to form. Therefore, the powder feeding laser-induction hybrid cladding has the highest cladding efficiency and the best bond property among three hybrid cladding methods.

  13. Cladding Alloys for Fluoride Salt Compatibility Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Muralidharan, Govindarajan [ORNL; Wilson, Dane F [ORNL; Santella, Michael L [ORNL; Holcomb, David Eugene [ORNL

    2011-05-01

    This interim report provides an overview of several candidate technologies for cladding nickel-based corrosion protection layers onto high-temperature structural alloys. The report also provides a brief overview of the welding and weld performance issues associated with joining nickel-clad nickel-based alloys. From the available techniques, two cladding technologies were selected for initial evaluation. The first technique is a line-of-sight method that would be useful for coating large structures such as vessel interiors or large piping. The line-of-sight method is a laser-based surface cladding technique in which a high-purity nickel powder mixed into a polymer binder is first sprayed onto the surface, baked, and then rapidly melted using a high power laser. The second technique is a vapor phase technique based on the nickel-carbonyl process that is suitable for coating inaccessible surfaces such as the interior surfaces of heat exchangers. The final project report will feature an experimental evaluation of the performance of the two selected cladding techniques.

  14. Clad fiber capacitor and method of making same

    Science.gov (United States)

    Tuncer, Enis

    2012-12-11

    A clad capacitor and method of manufacture includes assembling a preform comprising a ductile, electrically conductive fiber; a ductile, electrically insulating cladding positioned on the fiber; and a ductile, electrically conductive sleeve positioned over the cladding. One or more preforms are then bundled, heated and drawn along a longitudinal axis to decrease the diameter of the ductile components of the preform and fuse the preform into a unitized strand.

  15. Cladding axial elongation models for FRAP-T6

    International Nuclear Information System (INIS)

    Shah, V.N.; Carlson, E.R.; Berna, G.A.

    1983-01-01

    This paper presents a description of the cladding axial elongation models developed at the Idaho National Engineering Laboratory (INEL) for use by the FRAP-T6 computer code in analyzing the response of fuel rods during reactor transients in light water reactors (LWR). The FRAP-T6 code contains models (FRACAS-II subcode) that analyze the structural response of a fuel rod including pellet-cladding-mechanical-interaction (PCMI). Recently, four models were incorporated into FRACAS-II to calculate cladding axial deformation: (a) axial PCMI, (b) trapped fuel stack, (c) fuel relocation, and (d) effective fuel thermal expansion. Comparisons of cladding axial elongation measurements from two experiments with the corresponding FRAP-T6 calculations are presented

  16. Reflectivity of the gyroid biophotonic crystals in the ventral wing scales of the Green Hairstreak butterfly, Callophrys rubi

    NARCIS (Netherlands)

    Michielsen, K.; De Raedt, H.; Stavenga, D. G.

    2010-01-01

    We present a comparison of the computer simulation data of gyroid nanostructures with optical measurements (reflectivity spectra and scattering diagrams) of ventral wing scales of the Green Hairstreak butterfly, Callophrys rubi. We demonstrate that the omnidirectional green colour arises from the

  17. Exogenous gibberellins inhibit coffee (Coffea arabica cv. Rubi) seed germination and cause cell death in the embryo

    NARCIS (Netherlands)

    Silva, Da E.A.A.; Toorop, P.E.; Nijsse, J.; Bewley, J.D.; Hilhorst, H.W.M.

    2005-01-01

    The mechanism of inhibition of coffee (Coffea arabica cv. Rubi) seed germination by exogenous gibberellins (GAs) and the requirement of germination for endogenous GA were studied. Exogenous GA4+7 inhibited coffee seed germination. The response to GA4+7 showed two sensitivity thresholds: a lower one

  18. Evolution of transmission spectra of double cladding fiber during etching

    Science.gov (United States)

    Ivanov, Oleg V.; Tian, Fei; Du, Henry

    2017-11-01

    We investigate the evolution of optical transmission through a double cladding fiber-optic structure during etching. The structure is formed by a section of SM630 fiber with inner depressed cladding between standard SMF-28 fibers. Its transmission spectrum exhibits two resonance dips at wavelengths where two cladding modes have almost equal propagation constants. We measure transmission spectra with decreasing thickness of the cladding and show that the resonance dips shift to shorter wavelengths, while new dips of lower order modes appear from long wavelength side. We calculate propagation constants of cladding modes and resonance wavelengths, which we compare with the experiment.

  19. Rectangular-cladding silicon slot waveguide with improved nonlinear performance

    Science.gov (United States)

    Huang, Zengzhi; Huang, Qingzhong; Wang, Yi; Xia, Jinsong

    2018-04-01

    Silicon slot waveguides have great potential in hybrid silicon integration to realize nonlinear optical applications. We propose a rectangular-cladding hybrid silicon slot waveguide. Simulation result shows that, with a rectangular-cladding, the slot waveguide can be formed by narrower silicon strips, so the two-photon absorption (TPA) loss in silicon is decreased. When the cladding material is a nonlinear polymer, the calculated TPA figure of merit (FOMTPA) is 4.4, close to the value of bulk nonlinear polymer of 5.0. This value confirms the good nonlinear performance of rectangular-cladding silicon slot waveguides.

  20. N and Cr ion implantation of natural ruby surfaces and their characterization

    Energy Technology Data Exchange (ETDEWEB)

    Rao, K. Sudheendra; Sahoo, Rakesh K.; Dash, Tapan [CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013 (India); Magudapathy, P.; Panigrahi, B.K. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Nayak, B.B.; Mishra, B.K. [CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013 (India)

    2016-04-15

    Highlights: • Cr and N ion implantation on natural rubies of low aesthetic quality. • Cr-ion implantation improves colour tone from red to deep red (pigeon eye red). • N-ion implantation at fluence of 3 × 10{sup 17} causes blue coloration on surface. • Certain extent of amorphization is observed in the case of N-ion implantation. - Abstract: Energetic ions of N and Cr were used to implant the surfaces of natural rubies (low aesthetic quality). Surface colours of the specimens were found to change after ion implantation. The samples without and with ion implantation were characterized by diffuse reflectance spectra in ultra violet and visible region (DRS-UV–Vis), field emission scanning electron microscopy (FESEM), selected area electron diffraction (SAED) and nano-indentation. While the Cr-ion implantation produced deep red surface colour (pigeon eye red) in polished raw sample (without heat treatment), the N-ion implantation produced a mixed tone of dark blue, greenish blue and violet surface colour in the heat treated sample. In the case of heat treated sample at 3 × 10{sup 17} N-ions/cm{sup 2} fluence, formation of colour centres (F{sup +}, F{sub 2}, F{sub 2}{sup +} and F{sub 2}{sup 2+}) by ion implantation process is attributed to explain the development of the modified surface colours. Certain degree of surface amorphization was observed to be associated with the above N-ion implantation.

  1. Development of high performance cladding

    International Nuclear Information System (INIS)

    Kiuchi, Kiyoshi

    2003-01-01

    The developments of superior next-generation light water reactor are requested on the basis of general view points, such as improvement of safety, economics, reduction of radiation waste and effective utilization of plutonium, until 2030 year in which conventional reactor plants should be renovate. Improvements of stainless steel cladding for conventional high burn-up reactor to more than 100 GWd/t, developments of manufacturing technology for reduced moderation-light water reactor (RMWR) of breeding ratio beyond 1.0 and researches of water-materials interaction on super critical pressure-water cooled reactor are carried out in Japan Atomic Energy Research Institute. Stable austenite stainless steel has been selected for fuel element cladding of advanced boiling water reactor (ABWR). The austenite stain less has the superiority for anti-irradiation properties, corrosion resistance and mechanical strength. A hard spectrum of neutron energy up above 0.1 MeV takes place in core of the reduced moderation-light water reactor, as liquid metal-fast breeding reactor (LMFBR). High performance cladding for the RMWR fuel elements is required to get anti-irradiation properties, corrosion resistance and mechanical strength also. Slow strain rate test (SSRT) of SUS 304 and SUS 316 are carried out for studying stress corrosion cracking (SCC). Irradiation tests in LMFBR are intended to obtain irradiation data for damaged quantity of the cladding materials. (M. Suetake)

  2. Innovative coating of nanostructured vanadium carbide on the F/M cladding tube inner surface for mitigating the fuel cladding chemical interactions

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yong [Univ. of Florida, Gainesville, FL (United States); Phillpot, Simon [Univ. of Florida, Gainesville, FL (United States)

    2017-11-29

    Fuel cladding chemical interactions (FCCI) have been acknowledged as a critical issue in a metallic fuel/steel cladding system due to the formation of low melting intermetallic eutectic compounds between the fuel and cladding steel, resulting in reduction in cladding wall thickness as well as a formation of eutectic compounds that can initiate melting in the fuel at lower temperature. In order to mitigate FCCI, diffusion barrier coatings on the cladding inner surface have been considered. In order to generate the required coating techniques, pack cementation, electroplating, and electrophoretic deposition have been investigated. However, these methods require a high processing temperature of above 700 oC, resulting in decarburization and decomposition of the martensites in a ferritic/martensitic (F/M) cladding steel. Alternatively, organometallic chemical vapor deposition (OMCVD) can be a promising process due to its low processing temperature of below 600 oC. The aim of the project is to conduct applied and fundamental research towards the development of diffusion barrier coatings on the inner surface of F/M fuel cladding tubes. Advanced cladding steels such as T91, HT9 and NF616 have been developed and extensively studied as advanced cladding materials due to their excellent irradiation and corrosion resistance. However, the FCCI accelerated by the elevated temperature and high neutron exposure anticipated in fast reactors, can have severe detrimental effects on the cladding steels through the diffusion of Fe into fuel and lanthanides towards into the claddings. To test the functionality of developed coating layer, the diffusion couple experiments were focused on using T91 as cladding and Ce as a surrogate lanthanum fission product. By using the customized OMCVD coating equipment, thin and compact layers with a few micron between 1.5 µm and 8 µm thick and average grain size of 200 nm and 5 µm were successfully obtained at the specimen coated between 300oC and

  3. Preliminary study of mechanical behavior for Cr coated Zr-4 Fuel Cladding

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Do-Hyoung; Kim, Hak-Sung [Hanyang Univ., Seoul (Korea, Republic of); Kim, Hyo-Chan; Yang, Yong-Sik [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    To decrease the oxidation rate of Zr-based alloy components, many concepts of accident tolerant fuel (ATF) such as Mo-Zr cladding, SiC/SiCf cladding and iron-based alloy cladding are under development. One of the promised concept is the coated cladding which can remarkably increase the corrosion and wear resistance. Recently, KAERI is developing the Cr coated Zircaloy cladding as accident tolerance cladding. To coat the Cr powder on the Zircaloy, 3D laser coating technology has been employed because it is possible to make a coated layer on the tubular cladding surface by controlling the 3-diminational axis. Therefore, for this work, the mechanical integrity of Cr coated Zircaloy should be evaluated to predict the safety of fuel cladding during the operating or accident of nuclear reactor. In this work, the mechanical behavior of the Cr coated Zircaloy cladding has been studied by using finite element analysis (FEA). The ring compression test (RCT) of fuel cladding was simulated to evaluate the validity of mechanical properties of Zr-4 and Cr, which were referred from the literatures and experimental reports. In this work, the mechanical behavior of the Cr coated Zircaloy cladding has been studied by using finite element analysis (FEA). The ring compression test (RCT) of fuel cladding was simulated to evaluate the validity of mechanical properties of Zr-4 and Cr. The pellet-clad mechanical interaction (PCMI) properties of Cr coated Zr-4 cladding were investigated by thermo-mechanical finite element analysis (FEA) simulation. The mechanical properties of Zr-4 and Cr was validated by simulation of ring compression test (RCT) of fuel cladding.

  4. Application of Coating Technology for Accident Tolerant Fuel Cladding

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun-Gil; Kim, Il-Hyun; Jung, Yang-Il; Park, Dong-Jun; Park, Jeong-Yong; Koo, Yang-Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    To commercialize the ATF cladding concepts, various factors are considered, such as safety under normal and accident conditions, economy for the fuel cycle, and developing development challenges, and schedule. From the proposed concepts, it is known that the cladding coating, FeCrAl alloy, and Zr-Mo claddings are considered as a near/mid-term application, whereas the SiC material is considered as a long-term application. Among them, the benefit of cladding coating on Zr-based alloys is the fuel cycle economy regarding the manufacturing, neutron cross section, and high tritium permeation characteristics. However, the challenge of cladding coating on Zr-based alloys is the lower oxidation resistance and mechanical strength at high-temperature than other concepts. Another important point is the adhesion property between the Zr-based alloy and coating materials. As an improved coating technology compared to a previous study, a 3D laser coating technology supplied with Cr powders is considered to make a coated cladding because it is possible to make a coated layer on the tubular cladding surface by controlling the 3-diminational axis. We are systematically studying the laser beam power, inert gas flow, cooling of the cladding tube, and powder control as key points to develop 3D laser coating technology. After Cr-coating on the Zr-based cladding, ring compression and ring tensile tests were performed to evaluate the adhesion property between a coated layer and Zr-based alloy tube at room temperature (RT), and a high-temperature oxidation test was conducted to evaluate the oxidation behavior at 1200 .deg. C of the coated tube samples. A 3D laser coating method supplied with Cr powders was developed to decrease the high-temperature oxidation rate in a steam environment through a systematic study for various coating parameters, and a Cr-coated Zircaloy-4 cladding tube of 100 mm in length to the axial direction can be successfully manufactured.

  5. Effects of cold worked and fully annealed claddings on fuel failure behaviour

    International Nuclear Information System (INIS)

    Saito, Shinzo; Hoshino, Hiroaki; Shiozawa, Shusaku; Yanagihara, Satoshi

    1979-12-01

    Described are the results of six differently heat-treated Zircaloy clad fuel rod tests in NSRR experiments. The purpose of the test is to examine the extent of simulating irradiated claddings in mechanical properties by as-cold worked ones and also the effect of fully annealing on the fuel failure bahaviour in a reactivity initiated accident (RIA) condition. As-cold worked cladding does not properly simulated the embrittlement of the irradiated one in a RIA condition, because the cladding is fully annealed before the fuel failure even in the short transient. Therefore, the fuel behaviour such as fuel failure threshold energy, failure mechanism, cladding deformation and cladding oxidation of the fully annealed cladding fuel, as well as that of the as-cold worked cladding fuel, are not much different from that of the standard stress-relieved cladding fuel. (author)

  6. High-beam quality, high-efficiency laser based on fiber with heavily Yb(3+)-doped phosphate core and silica cladding.

    Science.gov (United States)

    Egorova, O N; Semjonov, S L; Medvedkov, O I; Astapovich, M S; Okhrimchuk, A G; Galagan, B I; Denker, B I; Sverchkov, S E; Dianov, E M

    2015-08-15

    We have fabricated and tested a composite fiber with an Yb(3+)-doped phosphate glass core and silica cladding. Oscillation with a slope efficiency of 74% was achieved using core pumping at 976 nm with fiber lengths of 48-90 mm in a simple laser configuration, where the cavity was formed by a high-reflectivity Bragg grating and the cleaved fiber end. The measured M(2) factors were as low as 1.05-1.22 even though the fiber was multimode at the lasing wavelength.

  7. Long-range plasmonic waveguides with hyperbolic cladding

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia E.; Shalaginov, Mikhail Y.; Ishii, Satoshi

    2015-01-01

    waveguides. We show that the proposed structures support long-range surface plasmon modes, which exist when the permittivity of the core matches the transverse effective permittivity component of the metamaterial cladding. In this regime, the surface plasmon polaritons of each cladding layer are strongly...

  8. Comparison of fiber lasers based on distributed side-coupled cladding-pumped fibers and double-cladding fibers.

    Science.gov (United States)

    Huang, Zhihe; Cao, Jianqiu; Guo, Shaofeng; Chen, Jinbao; Xu, Xiaojun

    2014-04-01

    We compare both analytically and numerically the distributed side-coupled cladding-pumped (DSCCP) fiber lasers and double cladding fiber (DCF) lasers. We show that, through optimization of the coupling and absorbing coefficients, the optical-to-optical efficiency of DSCCP fiber lasers can be made as high as that of DCF lasers. At the same time, DSCCP fiber lasers are better than the DCF lasers in terms of thermal management.

  9. Fuel cladding mechanical interaction during power ramps

    International Nuclear Information System (INIS)

    Guerin, Y.

    1985-01-01

    Mechanical interaction between fuel and cladding may occur as a consequence of two types of phenomenon: i) fuel swelling especially at levels of caesium accumulation, and ii) thermal differential expansion during power changes. Slow overpower ramps which may occur during incidental events are of course one of the circumstances responsible for this second type of fuel cladding mechanical interaction (FCMI). Experiments and analysis of this problem that have been done at C.E.A. allow to determine the main parameters which will fix the level of stress and the risk of damage induced by the fuel in the cladding during overpower transients

  10. Measurement and removal of cladding light in high power fiber systems

    Science.gov (United States)

    Walbaum, Till; Liem, Andreas; Schreiber, Thomas; Eberhardt, Ramona; Tünnermann, Andreas

    2018-02-01

    The amount of cladding light is important to ensure longevity of high power fiber components. However, it is usually measured either by adding a cladding light stripper (and thus permanently modifying the fiber) or by using a pinhole to only transmit the core light (ignoring that there may be cladding mode content in the core area). We present a novel noninvasive method to measure the cladding light content in double-clad fibers based on extrapolation from a cladding region of constant average intensity. The method can be extended to general multi-layer radially symmetric fibers, e.g. to evaluate light content in refractive index pedestal structures. To effectively remove cladding light in high power systems, cladding light strippers are used. We show that the stripping efficiency can be significantly improved by bending the fiber in such a device and present respective experimental data. Measurements were performed with respect to the numerical aperture as well, showing the dependency of the CLS efficiency on the NA of the cladding light and implying that efficiency data cannot reliably be given for a certain fiber in general without regard to the properties of the guided light.

  11. Q-switched ruby laser irradiation of normal human skin. Histologic and ultrastructural findings.

    Science.gov (United States)

    Hruza, G J; Dover, J S; Flotte, T J; Goetschkes, M; Watanabe, S; Anderson, R R

    1991-12-01

    The Q-switched ruby laser is used for treatment of tatoos. The effects of Q-switched ruby laser pulses on sun-exposed and sun-protected human skin, as well as senile lentigines, were investigated with clinical observation, light microscopy, and transmission electron microscopy. A pinpricklike sensation occurred at radiant exposures as low as 0.2 J/cm2. Immediate erythema, delayed edema, and immediate whitening occurred with increasing radiant exposure. The threshold for immediate whitening varied inversely with skin pigmentation, ranging from a mean of 1.4 J/cm2 in lentigines to 3.1 J/cm2 in sun-protected skin. Transmission electron microscopy showed immediate alteration of mature melanosomes and nuclei within keratinocytes and melanocytes, but stage I and II melanosomes were unaffected. Histologically, immediate injury was confined to the epidermis. There was minimal inflammatory response 1 day after exposure. After 1 week, subthreshold exposures induced hyperpigmentation, with epidermal hyperplasia and increased melanin staining noted histologically. At higher radiant exposures, hypopigmentation occurred with desquamation of a pigmented scale/crust. All sites returned to normal skin color and texture without scarring within 3 to 6 months. These observations suggest that the human skin response to selective photothermolysis of pigmented cells is similar to that reported in animal models, including low radiant exposure stimulation of melanogenesis and high radiant exposure lethal injury to pigmented epidermal cells.

  12. Research Progress on Laser Cladding Amorphous Coatings on Metallic Substrates

    Directory of Open Access Journals (Sweden)

    CHEN Ming-hui

    2017-01-01

    Full Text Available The microstructure and property of amorphous alloy as well as the limitations of the traditional manufacturing methods for the bulk amorphous alloy were briefly introduced in this paper.Combined with characteristics of the laser cladding technique,the research status of the laser cladding Fe-based,Zr-based,Ni-based,Cu-based and Al-based amorphous coatings on the metal substrates were mainly summarized.The effects of factors such as laser processing parameter,micro-alloying element type and content and reinforcing phase on the laser cladding amorphous coatings were also involved.Finally,the main problems and the future research directions of the composition design and control of the laser-cladded amorphous coating,the design and optimization of the laser cladding process,and the basic theory of the laser cladding amorphous coatings were also put forward finally.

  13. Method for automatic filling of nuclear fuel rod cladding tubes

    International Nuclear Information System (INIS)

    Bezold, H.

    1979-01-01

    Prior to welding the zirconium alloy cladding tubes with end caps, they are automatically filled with nuclear fuel tablets and ceramic insulating tablets. The tablets are introduced into magazine drums and led through a drying oven to a discharging station. The empty cladding tubes are removed from this discharging station and filled with tablets. A filling stamp pushes out the columns of tablets in the magazine tubes of the magazine drum into the cladding tube. Weight and measurement of length determine the filled state of the cladding tube. The cladding tubes are then led to the welding station via a conveyor belt. (DG) [de

  14. DEVELOPMENT OF LASER CLADDING WEAR-RESISTANT COATING ON TITANIUM ALLOYS

    OpenAIRE

    RUILIANG BAO; HUIJUN YU; CHUANZHONG CHEN; BIAO QI; LIJIAN ZHANG

    2006-01-01

    Laser cladding is an advanced surface modification technology with broad prospect in making wear-resistant coating on titanium alloys. In this paper, the influences of laser cladding processing parameters on the quality of coating are generalized as well as the selection of cladding materials on titanium alloys. The microstructure characteristics and strengthening mechanism of coating are also analyzed. In addition, the problems and precaution measures in the laser cladding are pointed out.

  15. Production of gold and ruby-red lustres in Gubbio (Umbria, Italy) during the Renaissance period

    Science.gov (United States)

    Padeletti, G.; Fermo, P.

    The aim of this work is to gain a further insight into the knowledge of the production process of lustre-decorated ancient majolicas. Lustre is a sophisticated technique employed in the decoration of majolicas as used in central Italy during the Renaissance period. It consists of a beautiful iridescent gold or ruby-red thin metallic film, containing silver, copper and other substances and obtained in a reducing atmosphere on a previously glazed ceramic. Nowadays, it is not possible to replicate the outstanding results obtained by the ancient ceramicists, since the original recipes were lost. It is quite interesting to study lustre-production technology by means of analytical techniques now employed for advanced research on materials (XRD, ETAAS, ICP-OES, TEM-EDX-SAED and UV-Vis). In this work, we have focussed our attention on ceramic fragments decorated with both gold and ruby-red lustres, which were difficult to obtain due to complex reduction conditions required and which were a prerogative of Gubbio production. The two lustre colours differ in their chemical composition as well in their nanostructure. The presence of bismuth was disclosed and it was ascertained to be a distinctive feature of the Italian production.

  16. Development of laser surface cladding through energy transmission over optical fiber

    International Nuclear Information System (INIS)

    Hirano, Kenji; Morishige, Norio; Irisawa, Toshio

    1990-01-01

    Much attention has recently been paid to laser cladding techniques as an approach in controlling the composition and structure of the metal surface. If YAG laser is used as the cladding method, the flexibility of laser cladding process increases extremely because YAG laser beam is transmitted through an optical fiber, and enabling cladding on pipes installed in actual plants. So experiments on YAG laser cladding through energy transmission over an optical fiber were performed to prevent stress corrosion cracking in austenitic stainless steel pipes. In order to build a cladding layer, mixed metal powder were pre-placed on the inner surface of the pipe using organic binder and the pre-placed powder beds were melted with YAG laser beam transmitted using an optical fiber. This paper introduces the method of building a cladding layer on pipes in actual nuclear plants. (author)

  17. The ballooning of fuel cladding tubes: theory and experiment

    International Nuclear Information System (INIS)

    Shewfelt, R.S.W.

    1988-01-01

    Under some conditions, fuel clad ballooning can result in considerable strain before rupture. If ballooning were to occur during a loss-of-coolant accident (LOCA), the resulting substantial blockage of the sub-channel would restrict emergency core cooling. However, circumferential temperature gradients that would occur during a LOCA may significantly limit the average strain at failure. Understandably, the factors that control ballooning and rupture of fuel clad are required for the analysis of a LOCA. Considerable international effort has been spent on studying the deformation of Zircaloy fuel cladding under conditions that would occur during a LOCA. This effort has established a reasonable understanding of the factors that control the ballooning, failure time, and average failure strain of fuel cladding. In this paper, both the experimental and theoretical studies of the fuel clad ballooning are reviewed. (author)

  18. Reduction of Bragg-grating-induced coupling to cladding modes

    DEFF Research Database (Denmark)

    Berendt, Martin Ole; Bjarklev, Anders Overgaard; Soccolich, C.E.

    1999-01-01

    gratings in a depressed-cladding fiber are compared with simulations. The model gives good agreement with the measured transmission spectrum and accounts for the pronounced coupling to asymmetrical cladding modes, even when the grating is written with the smallest possible blaze. The asymmetry causing...... this is accounted for by the unavoidable attenuation of the UV light. It is found for the considered fiber designs that a high numerical-aperture fiber increases the spectral separation between the Bragg resonance and the onset of cladding-mode losses. A depressed-cladding fiber reduces the coupling strength......We discuss fiber designs that have been suggested for the reduction of Bragg-grating induced coupling to cladding modes. The discussion is based on a theoretical approach that includes the effect of asymmetry in the UV-induced index grating, made by UV-side writing. Experimental results from...

  19. Laser Cladding of Ultra-Thin Nickel-Based Superalloy Sheets

    Directory of Open Access Journals (Sweden)

    Tobias Gabriel

    2017-03-01

    Full Text Available Laser cladding is a well-established process to apply coatings on metals. However, on substrates considerably thinner than 1 mm it is only rarely described in the literature. In this work 200 µm thin sheets of nickel-based superalloy 718 are coated with a powder of a cobalt-based alloy, Co–28Cr–9W–1.5Si, by laser cladding. The process window is very narrow, therefore, a precisely controlled Yb fiber laser was used. To minimize the input of energy into the substrate, lines were deposited by setting single overlapping points. In a design of experiments (DoE study, the process parameters of laser power, laser spot area, step size, exposure time, and solidification time were varied and optimized by examining the clad width, weld penetration, and alloying depth. The microstructure of the samples was investigated by optical microscope (OM and scanning electron microscopy (SEM, combined with electron backscatter diffraction (EBSD and energy dispersive X-ray spectroscopy (EDX. Similarly to laser cladding of thicker substrates, the laser power shows the highest influence on the resulting clad. With a higher laser power, the clad width and alloying depth increase, and with a larger laser spot area the weld penetration decreases. If the process parameters are controlled precisely, laser cladding of such thin sheets is manageable.

  20. Laser Cladding of Ultra-Thin Nickel-Based Superalloy Sheets.

    Science.gov (United States)

    Gabriel, Tobias; Rommel, Daniel; Scherm, Florian; Gorywoda, Marek; Glatzel, Uwe

    2017-03-10

    Laser cladding is a well-established process to apply coatings on metals. However, on substrates considerably thinner than 1 mm it is only rarely described in the literature. In this work 200 µm thin sheets of nickel-based superalloy 718 are coated with a powder of a cobalt-based alloy, Co-28Cr-9W-1.5Si, by laser cladding. The process window is very narrow, therefore, a precisely controlled Yb fiber laser was used. To minimize the input of energy into the substrate, lines were deposited by setting single overlapping points. In a design of experiments (DoE) study, the process parameters of laser power, laser spot area, step size, exposure time, and solidification time were varied and optimized by examining the clad width, weld penetration, and alloying depth. The microstructure of the samples was investigated by optical microscope (OM) and scanning electron microscopy (SEM), combined with electron backscatter diffraction (EBSD) and energy dispersive X-ray spectroscopy (EDX). Similarly to laser cladding of thicker substrates, the laser power shows the highest influence on the resulting clad. With a higher laser power, the clad width and alloying depth increase, and with a larger laser spot area the weld penetration decreases. If the process parameters are controlled precisely, laser cladding of such thin sheets is manageable.

  1. Cladding properties under simulated fuel pin transients

    International Nuclear Information System (INIS)

    Hunter, C.W.; Johnson, G.D.

    1975-01-01

    A description is given of the HEDL fuel pin testing program utilizing a recently developed Fuel Cladding Transient Tester (FCTT) to generate the requisite mechanical property information on irradiated and unirradiated fast reactor fuel cladding under temperature ramp conditions. The test procedure is described, and data are presented

  2. Formation of anomalous eutectic in Ni-Sn alloy by laser cladding

    Science.gov (United States)

    Wang, Zhitai; Lin, Xin; Cao, Yongqing; Liu, Fencheng; Huang, Weidong

    2018-02-01

    Ni-Sn anomalous eutectic is obtained by single track laser cladding with the scanning velocity from 1 mm/s to 10 mm/s using the Ni-32.5 wt.%Sn eutectic powders. The microstructure of the cladding layer and the grain orientations of anomalous eutectic were investigated. It is found that the microstructure is transformed from primary α-Ni dendrites and the interdendritic (α-Ni + Ni3Sn) eutectic at the bottom of the cladding layer to α-Ni and β-Ni3Sn anomalous eutectic at the top of the cladding layer, whether for single layer or multilayer laser cladding. The EBSD maps and pole figures indicate that the spatially structure of α-Ni phase is discontinuous and the Ni3Sn phase is continuous in anomalous eutectic. The transformation from epitaxial growth columnar at bottom of cladding layer to free nucleation equiaxed at the top occurs, i.e., the columnar to equiaxed transition (CET) at the top of cladding layer during laser cladding processing leads to the generation of anomalous eutectic.

  3. Characteristics of Ni-based coating layer formed by laser and plasma cladding processes

    International Nuclear Information System (INIS)

    Xu Guojian; Kutsuna, Muneharu; Liu Zhongjie; Zhang Hong

    2006-01-01

    The clad layers of Ni-based alloy were deposited on the SUS316L stainless plates by CO 2 laser and plasma cladding processes. The smooth clad bead was obtained by CO 2 laser cladding process. The phases of clad layer were investigated by an optical microscope, scanning electron microscopy (SEM), X-ray diffractometer (XRD), electron probe microanalysis (EPMA) and energy-dispersive spectrometer (EDS). The microstructures of clad layers belonged to a hypereutectic structure. Primary phases consist of boride CrB and carbide Cr 7 C 3 . The eutectic structure consists of Ni + CrB or Ni + Cr 7 C 3 . Compared with the plasma cladding, the fine microstructures, low dilutions, high Vickers hardness and excellent wear resistance were obtained by CO 2 laser cladding. All that show the laser cladding process has a higher efficiency and good cladding quality

  4. A transgressão do fantastico em Murilo Rubião

    OpenAIRE

    Fabio Dobashi Furuzato

    2002-01-01

    Resumo: Este trabalho é dividido em três partes. Na primeira, investigamos o percurso da obra do contista mineiro Murilo Eugênio Rubião (1916-1991), juntamente com a sua recepção crítica. Na segunda, partindo da afirmação de que Murilo seja o precursor do fantástico moderno em nossa prosa de ficção, realizamos um estudo teórico sobre este gênero literário. Na terceira parte, buscamos descrever todos os contos do autor, em função de um determinado conceito de fantástico. Por fim, levantamos um...

  5. Optimization of metal-clad waveguide sensors

    DEFF Research Database (Denmark)

    Skivesen, N.; Horvath, R.; Pedersen, H.C.

    2005-01-01

    The present paper deals with the optimization of metal-clad waveguides for sensor applications to achieve high sensitivity for adlayer and refractive index measurements. By using the Fresnel reflection coefficients both the angular shift and the width of the resonances in the sensorgrams are taken...... into account. Our optimization shows that it is possible for metal-clad waveguides to achieve a sensitivity improvement of 600% compared to surface-plasmon-resonance sensors....

  6. Test system to simulate transient overpower LMFBR cladding failure

    International Nuclear Information System (INIS)

    Barrus, H.G.; Feigenbutz, L.V.

    1981-01-01

    One of the HEDL programs has the objective to experimentally characterize fuel pin cladding failure due to cladding rupture or ripping. A new test system has been developed which simulates a transient mechanically-loaded fuel pin failure. In this new system the mechanical load is prototypic of a fuel pellet rapidly expanding against the cladding due to various causes such as fuel thermal expansion, fuel melting, and fuel swelling. This new test system is called the Fuel Cladding Mechanical Interaction Mandrel Loading Test (FCMI/MLT). The FCMI/MLT test system and the method used to rupture cladding specimens very rapidly to simulate a transient event are described. Also described is the automatic data acquisition and control system which is required to control the startup, operation and shutdown of the very fast tests, and needed to acquire and store large quantities of data in a short time

  7. Recent trend of titanium-clad steel plate/sheet (NKK)

    International Nuclear Information System (INIS)

    Kimura, Hideto

    1997-01-01

    The roll-bonding process for titanium-clad steel production enabled the on-line manufacturing and quality control of the products which are usually applied for the production of steel plate and sheet by the steel producers. The recent trend of roll-bonded titanium-clad steel which has an excellent corrosion resistance together with the advantage in cost-saving are mainly described in this article as to the demand, production technique and new application aspects. Though the predominant usage of titanium-clad steel plate has been in power-generating plants, enlargeing utilization in the chemical plants such as terephthalic acid production plants is leading the growth in the market of titanium-clad steel plate. Also, the application of titanium-clad steel plates and sheets for the lining the marine structures is expected as one of the best solution to long-term surface protection for their outstanding corrosion resistance against sea water. (author)

  8. The prediction problems of VVER fuel element cladding failure theory

    International Nuclear Information System (INIS)

    Pelykh, S.N.; Maksimov, M.V.; Ryabchikov, S.D.

    2016-01-01

    Highlights: • Fuel cladding failure forecasting is based on the fuel load history and the damage distribution. • The limit damage parameter is exceeded, though limit stresses are not reached. • The damage parameter plays a significant role in predicting the cladding failure. • The proposed failure probability criterion can be used to control the cladding tightness. - Abstract: A method for forecasting of VVER fuel element (FE) cladding failure due to accumulation of deformation damage parameter, taking into account the fuel assembly (FA) loading history and the damage parameter distribution among FEs included in the FA, has been developed. Using the concept of conservative FE groups, it is shown that the safety limit for damage parameter is exceeded for some FA rearrangement, though the limits for circumferential and equivalent stresses are not reached. This new result contradicts the wide-spread idea that the damage parameter value plays a minor role when estimating the limiting state of cladding. The necessary condition of rearrangement algorithm admissibility and the criterion for minimization of the probability of cladding failure due to damage parameter accumulation have been derived, for using in automated systems controlling the cladding tightness.

  9. Scientific communications: Re-Os sulfide (bornite, chalcopyrite, and pyrite) systematics of the carbonate-hosted copper deposits at ruby creek, southern brooks range, Alaska

    Science.gov (United States)

    Selby, D.; Kelley, K.D.; Hitzman, M.W.; Zieg, J.

    2009-01-01

    New Re-Os data for chalcopyrite, bornite, and pyrite from the carbonate-hosted Cu deposit at Ruby Creek (Bornite), Alaska, show extremely high Re abundances (hundreds of ppb, low ppm) and contain essentially no common Os. The Re-Os data provide the first absolute ages of ore formation for the carbonate-hosted Ruby Creek Cu-(Co) deposit and demonstrate that the Re-Os systematics of pyrite, chalcopyrite, and bornite are unaffected by greenschist metamorphism. The Re-Os data show that the main phase of Cu mineralization pre dominantly occurred at 384 ?? 4.2 Ma, with an earlier phase possibly at ???400 Ma. The Re-Os data are consistent with the observed paragenetic sequence and coincide with zircon U-Pb ages from igneous rocks within the Ambler metallogenic belt, some of which are spatially and genetically associated with regional volcanogenic massive sulfide deposits. The latter may suggest a temporal link between regional magmatism and hydrothermal mineralization in the Ambler district. The utility of bornite and chalcopyrite, in addition to pyrite, contributes to a new understanding of Re-Os geochronology and permits a refinement of the genetic model for the Ruby Creek deposit. ?? 2009 Society of Economices Geologists, Inc.

  10. Fuel-cladding mechanical interaction effects in fast reactor mixed oxide fuel

    Energy Technology Data Exchange (ETDEWEB)

    Boltax, A [Westinghouse Electric Corporation, Advanced Reactor Division, Madison, PA (United States); Biancheria, A

    1977-04-01

    Thermal and fast reactor irradiation experiments on mixed oxide fuel pins under steady-state and power change conditions reveal evidence for significant fuel-cladding mechanical interaction (FCMI) effects. Analytical studies with the LIFE-III fuel performance code indicate that high cladding stresses can be produced by general and local FCMI effects. Also, evidence is presented to show that local cladding strains can be caused by the accumulation of cesium at the fuel-cladding interface. Although it is apparent that steady-state FCMI effects have not given rise to cladding breaches in current fast reactors, it is anticipated that FCMI may become more important in the future because of interest in: higher fuel burnups; increased power ramp rates; load follow operation; and low swelling cladding alloys. (author)

  11. Fuel-cladding mechanical interaction effects in fast reactor mixed oxide fuel

    International Nuclear Information System (INIS)

    Boltax, A.; Biancheria, A.

    1977-01-01

    Thermal and fast reactor irradiation experiments on mixed oxide fuel pins under steady-state and power change conditions reveal evidence for significant fuel-cladding mechanical interaction (FCMI) effects. Analytical studies with the LIFE-III fuel performance code indicate that high cladding stresses can be produced by general and local FCMI effects. Also, evidence is presented to show that local cladding strains can be caused by the accumulation of cesium at the fuel-cladding interface. Although it is apparent that steady-state FCMI effects have not given rise to cladding breaches in current fast reactors, it is anticipated that FCMI may become more important in the future because of interest in: higher fuel burnups; increased power ramp rates; load follow operation; and low swelling cladding alloys. (author)

  12. Tailoring nonlinearity and dispersion of photonic crystal fibers using hybrid cladding

    International Nuclear Information System (INIS)

    Zhao-lun, Liu; Lan-tian, Hou; Wei, Wang

    2009-01-01

    We present a hybrid cladding photonic crystal fiber for shaping high nonlinear and flattened dispersion in a wide range of wavelengths. The new structure adopts hybrid cladding with different pitches, air-holes diameters and air-holes arrayed fashions. The full-vector finite element method with perfectly matched layer is used to investigate the characteristics of the hybrid cladding photonic crystal fiber such as nonlinearity and dispersion properties. The influence of the cladding structure parameters on the nonlinear coefficient and geometric dispersion is analyzed. High nonlinear coefficient and the dispersion properties of fibers are tailored by adjusting the cladding structure parameters. A novel hybrid cladding photonic crystal fiber with high nonlinear coefficient and dispersion flattened which is suited for super continuum generation is designed. (author)

  13. Multilayer cladding with hyperbolic dispersion for plasmonic waveguides

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia; Shalaginov, Mikhail Y.; Ishii, Satoshi

    2015-01-01

    We study the properties of plasmonic waveguides with a dielectric core and multilayer metal-dielectric claddings that possess hyperbolic dispersion. The waveguides hyperbolic multilayer claddings show better performance in comparison to conventional plasmonic waveguides. © OSA 2015....

  14. Early implementation of SiC cladding fuel performance models in BISON

    Energy Technology Data Exchange (ETDEWEB)

    Powers, Jeffrey J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-18

    SiC-based ceramic matrix composites (CMCs) [5–8] are being developed and evaluated internationally as potential LWR cladding options. These development activities include interests within both the DOE-NE LWR Sustainability (LWRS) Program and the DOE-NE Advanced Fuels Campaign. The LWRS Program considers SiC ceramic matrix composites (CMCs) as offering potentially revolutionary gains as a cladding material, with possible benefits including more efficient normal operating conditions and higher safety margins under accident conditions [9]. Within the Advanced Fuels Campaign, SiC-based composites are a candidate ATF cladding material that could achieve several goals, such as reducing the rates of heat and hydrogen generation due to lower cladding oxidation rates in HT steam [10]. This work focuses on the application of SiC cladding as an ATF cladding material in PWRs, but these work efforts also support the general development and assessment of SiC as an LWR cladding material in a much broader sense.

  15. Hydrogen permeation in FeCrAl alloys for LWR cladding application

    Science.gov (United States)

    Hu, Xunxiang; Terrani, Kurt A.; Wirth, Brian D.; Snead, Lance L.

    2015-06-01

    FeCrAl, an advanced oxidation-resistant iron-based alloy class, is a highly prevalent candidate as an accident-tolerant fuel cladding material. Compared with traditional zirconium alloy fuel cladding, increased tritium permeation through FeCrAl fuel cladding to the primary coolant is expected, raising potential safety concerns. In this study, the hydrogen permeability of several FeCrAl alloys was obtained using a static permeation test station, which was calibrated and validated using 304 stainless steel. The high hydrogen permeability of FeCrAl alloys leads to concerns with respect to potentially significant tritium release when used for fuel cladding in LWRs. The total tritium inventory inside the primary coolant of a light water reactor was quantified by applying a 1-dimensional steady state tritium diffusion model to demonstrate the dependence of tritium inventory on fuel cladding type. Furthermore, potential mitigation strategies for tritium release from FeCrAl fuel cladding were discussed and indicate the potential for application of an alumina layer on the inner clad surface to serve as a tritium barrier. More effort is required to develop a robust, economical mitigation strategy for tritium permeation in reactors using FeCrAl clad fuel assemblies.

  16. POST CRITICAL HEAT TRANSFER AND FUEL CLADDING OXIDATION

    Directory of Open Access Journals (Sweden)

    Vojtěch Caha

    2016-12-01

    Full Text Available The knowledge of heat transfer coefficient in the post critical heat flux region in nuclear reactor safety is very important. Although the nuclear reactors normally operate at conditions where critical heat flux (CHF is not reached, accidents where dryout occur are possible. Most serious postulated accidents are a loss of coolant accident or reactivity initiated accident which can lead to CHF or post CHF conditions and possible disruption of core integrity. Moreover, this is also influenced by an oxide layer on the cladding surface. The paper deals with the study of mathematical models and correlations used for heat transfer calculation, especially in post dryout region, and fuel cladding oxidation kinetics of currently operated nuclear reactors. The study is focused on increasing of accuracy and reliability of safety limit calculations (e.g. DNBR or fuel cladding temperature. The paper presents coupled code which was developed for the solution of forced convection flow in heated channel and oxidation of fuel cladding. The code is capable of calculating temperature distribution in the coolant, cladding and fuel and also the thickness of an oxide layer.

  17. Stress determination in thermally grown alumina scales using ruby luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Renusch, D.; Veal, B.W.; Koshelev, I.; Natesan, K.; Grimsditch [Argonne National Lab., IL (United States); Hou, P.Y. [Lawrence Berkeley Lab., CA (United States)

    1996-06-01

    By exploiting the strain dependence of the ruby luminescence line, we have measured the strain in alumina scales thermally grown on Fe-Cr- Al alloys. Results are compared and found to be reasonably consistent with strains determined using x rays. Oxidation studies were carried out on alloys Fe - 5Cr - 28Al and Fe - 18Cr - 10Al (at.%). Significantly different levels of strain buildup were observed in scales on these alloys. Results on similar alloys containing a ``reactive element`` (Zr or Hf) in dilute quantity are also presented. Scales on alloys containing a reactive element (RE) can support significantly higher strains than scales on RE-free alloys. With the luminescence technique, strain relief associated with spallation thresholds is readily observed.

  18. Advanced ceramic cladding for water reactor fuel

    International Nuclear Information System (INIS)

    Feinroth, H.

    2000-01-01

    Under the US Department of Energy's Nuclear Energy Research Initiatives (NERI) program, continuous fiber ceramic composites (CFCCs) are being developed as cladding for water reactor fuel elements. The purpose is to substantially increase the passive safety of water reactors. A development effort was initiated in 1991 to fabricate CFCC-clad tubes using commercially available fibers and a sol-gel process developed by McDermott Technologies. Two small-diameter CFCC tubes were fabricated using pure alumina and alumina-zirconia fibers in an alumina matrix. Densities of approximately 60% of theoretical were achieved. Higher densities are required to guarantee fission gas containment. This NERI work has just begun, and only preliminary results are presented herein. Should the work prove successful, further development is required to evaluate CFCC cladding and performance, including in-pile tests containing fuel and exploring a marriage of CFCC cladding materials with suitable advanced fuel and core designs. The possibility of much higher temperature core designs, possibly cooled with supercritical water, and achievement of plant efficiencies ge50% would be examined

  19. Corrosion behavior of duplex and reference cladding in NPP Grohnde

    International Nuclear Information System (INIS)

    Besch, O.A.; Yagnik, S.K.; Eucken, C.M.; Bradley, E.R.

    1996-01-01

    The Nuclear Fuel Industry Research (NFIR) Group undertook a lead test assembly (LTA) program in NPP Grohnde PWR in Germany to assess the corrosion performance of duplex and reference cladding. Two identical 16 by 16 LTAs, each containing 32 peripheral test rods, completed four reactor cycles, reaching a peak rod burnup of 46 MWd/kgU. The results from poolside examinations performed at the end of each cycle, together with power histories and coolant chemistry, are reported. Five different cladding materials were characterized during fabrication. The corrosion performance of the cladding materials was tracked in long-term tests in high-pressure, high-temperature autoclaves. The relative ranking of corrosion behavior in such tests corresponded well with the in-reactor corrosion performance. The extent and distribution of hydriding in duplex and reference specimens during the autoclave testing has been characterized. The in-reactor corrosion data indicate that the low-tin Zircaloy-4 reference cladding, R2, had an improved corrosion resistance compared to high-tin Zircaloy-4 reference cladding, R1. Two types of duplex cladding, D1 (Zr-2.5% Nb) and D2 (Zr-0.4% Fe-0.5% Sn), showed an even further improvement in corrosion resistance compared to R2 cladding. The third duplex cladding, D3 (Zr-4 + 1.0% Nb), had significantly less corrosion resistance, which was inferior to R1. The in-reactor and out-reactor corrosion performances have been ranked

  20. Fuel cladding mechanical properties for transient analysis

    International Nuclear Information System (INIS)

    Johnson, G.D.; Hunter, C.W.; Hanson, J.E.

    1976-01-01

    Out-of-pile simulated transient tests have been conducted on irradiated fast-reactor fuel pin cladding specimens at heating rates of 10 0 F/s (5.6 0 K/s) and 200 0 F/s (111 0 K/s) to generate mechanical property information for use in describing cladding behavior during off-normal events. Mechanical property data were then analyzed, applying the Larson-Miller Parameter to the effects of heating rate and neutron fluence. Data from simulated transient tests on TREAT-tested fuel pins demonstrate that Plant Protective System termination of 3$/s transients prevents significant damage to cladding. The breach opening produced during simulated transient testing is shown to decrease in size with increasing neutron fluence

  1. Irradiation effects on mechanical properties of fuel element cladding from thermal reactors

    International Nuclear Information System (INIS)

    Chatterjee, S.

    2005-01-01

    During reactor operation, UO 2 expands more than the cladding tube (Zirconium alloys for thermal reactors), is hotter, cracks and swells. The fuel therefore will interact with the cladding, resulting in straining of the later. To minimize the possibility of rupture of the cladding, ideally it should have good ductility as well as high strength. However, the ductility reduces with increase in fuel element burn-up. Increased burn-up also increases swelling of the fuel, leading to increased contact pressure between the fuel and the cladding tube. This would cause strains to be concentrated over localized regions of the cladding. For fuel elements burnup exceeding 40 GWd/T, the contribution of embrittlement due to hydriding, and the increased possibility of embrittlement due to stress corrosion cracking, also need to be considered. In addition to the tensile properties, the other mechanical properties of interest to the performance of cladding tube in an operating fuel element are creep rate and fatigue endurance. Irradiation is reported to have insignificant effect on high cycle endurance limit, and fatigue from fuel element vibration is most unlikely, to be life limiting. Even though creep rates due to irradiation are reported to increase by an order of magnitude, the cladding creep ductility would be so high that creep type failures in fuel element would be most improbable. Thus, the most important limiting aspect of mechanical performance of fuel element cladding has been recognized as the tensile ductility resulting from the stress conditions experienced by the cladding. Some specific fission products of threshold amount (if) deposited on the cladding, and hydride morphology (e.g. hydride lenses). The presentation will brief about irradiation damage in cladding materials and its significance, background of search for better Zirconium alloys as cladding materials, and elaborate on the types of mechanical tests need to be conducted for the evaluation of claddings

  2. Oxidation during reflood of reactor core with melting cladding

    Energy Technology Data Exchange (ETDEWEB)

    Siefken, L.J.; Allison, C.M.; Davis, K.L. [and others

    1995-09-01

    Models were recently developed and incorporated into the SCDAP/RELAP5 code for calculating the oxidation of fuel rods during cladding meltdown and reflood. Experiments have shown that a period of intense oxidation may occur when a hot partially oxidized reactor core is reflooded. This paper offers an explanation of the cladding meltdown and oxidation processes that cause this intense period of oxidation. Models for the cladding meltdown and oxidation processes are developed. The models are assessed by simulating a severe fuel damage experiment that involved reflood. The models for cladding meltdown and oxidation were found to improve calculation of the temperature and oxidation of fuel rods during the period in which hot fuel rods are reflooded.

  3. Semipolar III-nitride laser diodes with zinc oxide cladding.

    Science.gov (United States)

    Myzaferi, Anisa; Reading, Arthur H; Farrell, Robert M; Cohen, Daniel A; Nakamura, Shuji; DenBaars, Steven P

    2017-07-24

    Incorporating transparent conducting oxide (TCO) top cladding layers into III-nitride laser diodes (LDs) improves device design by reducing the growth time and temperature of the p-type layers. We investigate using ZnO instead of ITO as the top cladding TCO of a semipolar (202¯1) III-nitride LD. Numerical modeling indicates that replacing ITO with ZnO reduces the internal loss in a TCO clad LD due to the lower optical absorption in ZnO. Lasing was achieved at 453 nm with a threshold current density of 8.6 kA/cm 2 and a threshold voltage of 10.3 V in a semipolar (202¯1) III-nitride LD with ZnO top cladding.

  4. Computer analysis of elongation of the WWER fuel rod claddings

    International Nuclear Information System (INIS)

    Scheglov, A.; Proselkov, V.

    2008-01-01

    In this paper description of mechanisms influencing changes of the WWER fuel cladding length and axial forces influencing fuel and cladding are presented. It is shown that shortening of the fuel claddings in case of high burnup can be explained by the change of the fuel and cladding reference state caused by reduction of the fuel rod power level - during reactor outages. It is noted that the presented calculated data are to be reviewed and interpreted as the preliminary results; further work is needed for their confirmation. (authors)

  5. CLAD DEGRADATION - FEPS SCREENING ARGUMENTS

    International Nuclear Information System (INIS)

    R. Schreiner

    2004-01-01

    The purpose of this report is to evaluate and document the screening of the clad degradation features, events, and processes (FEPs) with respect to modeling used to support the Total System Performance Assessment-License Application (TSPA-LA). This report also addresses the effect of certain FEPs on both the cladding and the commercial spent nuclear fuel (CSNF), DOE-owned spent nuclear fuel (DSNF), and defense high-level waste (DHLW) waste forms, as appropriate to address the effects on multiple materials and both components (FEPs 2.1.09.09.0A, 2.1.09.11.0A, 2.1.11.05.0A, 2.1.12.02.0A, and 2.1.12.03.0A). These FEPs are expected to affect the repository performance during the postclosure regulatory period of 10,000 years after permanent closure. Table 1-1 provides the list of cladding FEPs, including their screening decisions (include or exclude). The primary purpose of this report is to identify and document the analysis, screening decision, and TSPA-LA disposition (for included FEPs) or screening argument (for excluded FEPs) for these FEPs related to clad degradation. In some cases, where a FEP covers multiple technical areas and is shared with other FEP reports, this report may provide only a partial technical basis for the screening of the FEP. The full technical basis for shared FEPs is addressed collectively by the sharing FEP reports. The screening decisions and associated TSPA-LA dispositions or screening arguments from all of the FEP reports are cataloged in a project-specific FEPs database

  6. Cladding failure model III (CFM III). A simple model for iodine induced stress corrosion cracking of zirconium-lined barrier and standard zircaloy cladding

    International Nuclear Information System (INIS)

    Tasooji, A.; Miller, A.K.

    1984-01-01

    A previously developed unified model (SCCIG*) for predicting iodine induced SCC in standard Zircaloy cladding was modified recently into the ''SCCIG-B'' model which predicts the stress corrosion cracking behaviour of zirconium lined barrier cladding. Several published papers have presented the capability of these models for predicting various observed behaviours related to SCC. A closed form equation, called Cladding Failure Model III (CMFIII), has been derived from the SCCIG-B model. CFMIII takes the form of an explicit equation for the radial crack growth rate dc/dt as a function of hoop strain, crack depth, temperature, and surface iodine concentration in irradiated cladding (both barrier and standard Zircaloy). CMFIII has approximately the same predictive capabilities as the physically based SCCIG and/or SCCIG-B models but is computationally faster and more convenient and can be easily utilized in fuel performance codes for predicting the behaviour of barrier and standard claddings in reactor operations. (author)

  7. CO2 laser cladding of VERSAlloyTM on carbon steel with powder feeding

    International Nuclear Information System (INIS)

    Kim, Jae-Do; Kweon, Jin-Wook

    2007-01-01

    Laser cladding processing with metal powder feeding has been experimented on carbon steel with VERSAlloy TM . A special device for the metal powder feeding was designed and manufactured. By adopting proper cladding parameters, good clad layers and sound metallurgical bonding with the base metal were obtained. Analysis indicates that the micro hardness of clad layer and the heat-affected zone increased with increasing of cladding speed. The experimental results showed that VERSAlloy TM cladded well with carbon steel

  8. Fuel clad chemical interactions in fast reactor MOX fuels

    Energy Technology Data Exchange (ETDEWEB)

    Viswanathan, R., E-mail: rvis@igcar.gov.in

    2014-01-15

    Clad corrosion being one of the factors limiting the life of a mixed-oxide fast reactor fuel element pin at high burn-up, some aspects known about the key elements (oxygen, cesium, tellurium, iodine) in the clad-attack are discussed and many Fuel–Clad-Chemical-Interaction (FCCI) models available in the literature are also discussed. Based on its relatively superior predictive ability, the HEDL (Hanford Engineering Development Laboratory) relation is recommended: d/μm = ({0.507 ⋅ [B/(at.% fission)] ⋅ (T/K-705) ⋅ [(O/M)_i-1.935]} + 20.5) for (O/M){sub i} ⩽ 1.98. A new model is proposed for (O/M){sub i} ⩾ 1.98: d/μm = [B/(at.% fission)] ⋅ (T/K-800){sup 0.5} ⋅ [(O/M){sub i}-1.94] ⋅ [P/(W cm{sup −1})]{sup 0.5}. Here, d is the maximum depth of clad attack, B is the burn-up, T is the clad inner surface temperature, (O/M){sub i} is the initial oxygen-to-(uranium + plutonium) ratio, and P is the linear power rating. For fuels with [n(Pu)/n(M = U + Pu)] > 0.25, multiplication factors f are recommended to consider the potential increase in the depth of clad-attack.

  9. Annealing studies of zircaloy-2 cladding at 580-8500C

    International Nuclear Information System (INIS)

    Hindle, E.D.

    1978-05-01

    For fuel element cladding it is important to determine if prior metallurgical condition combined with irradiation damage can influence high temperature deformation, because studies of such deformation are required to produce data for the cladding ballooning models which are used in analysing loss-of-coolant accidents (LOCA). If the behaviour of all cladding conditions during a LOCA can be represented by, say, the annealed condition, then much experimental work on a multiplicity of cladding conditions can be avoided. By examining the metallographic structure and hardness, the present study determines the time required in the range 580 to 850 0 C for returning Zircaloy cladding to the annealed condition, so that for any transient, a point can be specified where the material should have annealed. An equation has been derived to give this information. (author)

  10. High performance fuel technology development : Development of high performance cladding materials

    International Nuclear Information System (INIS)

    Park, Jeongyong; Jeong, Y. H.; Park, S. Y.

    2012-04-01

    The superior in-pile performance of the HANA claddings have been verified by the successful irradiation test and in the Halden research reactor up to the high burn-up of 67GWD/MTU. The in-pile corrosion and creep resistances of HANA claddings were improved by 40% and 50%, respectively, over Zircaloy-4. HANA claddings have been also irradiated in the commercial reactor up to 2 reactor cycles, showing the corrosion resistance 40% better than that of ZIRLO in the same fuel assembly. Long-term out-of-pile performance tests for the candidates of the next generation cladding materials have produced the highly reliable test results. The final candidate alloys were selected and they showed the corrosion resistance 50% better than the foreign advanced claddings, which is beyond the original target. The LOCA-related properties were also improved by 20% over the foreign advanced claddings. In order to establish the optimal manufacturing process for the inner and outer claddings of the dual-cooled fuel, 18 different kinds of specimens were fabricated with various cold working and annealing conditions. Based on the performance tests and various out-of-pile test results obtained from the specimens, the optimal manufacturing process was established for the inner and outer cladding tubes of the dual-cooled fuel

  11. Combining 1,4-dimethoxybenzene, the major flower volatile of wild strawberry Fragaria vesca, with the aggregation pheromone of the strawberry blossom weevil Anthonomus rubi improves attraction

    DEFF Research Database (Denmark)

    Wibe, Atle; Borg-Karlson, Anna Karin; Cross, Jerry

    2014-01-01

    The aggregation pheromone of strawberry blossom weevil [Anthonomus rubi Herbst (Col.: Curculionidae)], a 1:4:1 blend of Grandlure I, II and racemic lavadulol, has been available for pest monitoring for several years but shows low attractancy. Attempts to control A.rubi using the pheromone alone...... were also unsuccessful. This paper reports the finding that addition of the major flower volatile from wild strawberry flowers [Fragaria vesca L. (Rosaceae)], 1,4-dimethoxybenzene (comprising 98% of the volatiles emitted from wild strawberry flowers), to the aggregation pheromone increased trap catches...... pest of strawberry....

  12. In-pile test results of HANA claddings in Halden research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Jong Hyuk; Choi, Byoung Kwon; Jeong, Yong Hwan; Jung, Yun Ho [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2005-07-01

    It is a kind of facing tasks in the nuclear industry to develop advanced claddings for high burn-up fuel which is safer and more economical than the existing conventional ones. Since 1997, taking an initiative in KAERI, the Zr cladding development team has carried out the R and D activities for the development of the advanced claddings to be used in the high burn-up fuel (>70,000 MWD.MTU). The team had produced the advanced claddings (HANA, High-performance Alloy for Nuclear Application) from the patented composition and manufacturing process in the international collaboration with U.S. and Japan. Now, the HANA claddings have being demonstrated their good performances from the out-of-pile tests including the corrosion, creep, burst, tensile, microstructures LOCA, RIA, wear, and so on. In parallel to the out-of-pile performance tests, the HANA claddings are being undertaken to evaluate their in-pile properties in Halden research reactor. In this study, it is included the test overviews, conditions, and results of the HANA claddings in the Halden reactor.

  13. Formation of highly toxic hydrogen cyanide upon ruby laser irradiation of the tattoo pigment phthalocyanine blue

    Science.gov (United States)

    Schreiver, Ines; Hutzler, Christoph; Laux, Peter; Berlien, Hans-Peter; Luch, Andreas

    2015-08-01

    Since laser treatment of tattoos is the favored method for the removing of no longer wanted permanent skin paintings, analytical, biokinetics and toxicological data on the fragmentation pattern of commonly used pigments are urgently required for health safety reasons. Applying dynamic headspace—gas chromatography with mass spectrometric detection (DHS—GC/MS) and comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GCxGC—ToF-MS), we identified 1,2-benzene dicarbonitrile, benzonitrile, benzene, and the poisonous gas hydrogen cyanide (HCN) as main fragmentation products emerging dose-dependently upon ruby laser irradiation of the popular blue pigment copper phthalocyanine in suspension. Skin cell viability was found to be significantly compromised at cyanide levels of ≥1 mM liberated during ruby laser irradiation of >1.5 mg/ml phthalocyanine blue. Further, for the first time we introduce pyrolysis-GC/MS as method suitable to simulate pigment fragmentation that may occur spontaneously or during laser removal of organic pigments in the living skin of tattooed people. According to the literature such regular tattoos hold up to 9 mg pigment/cm2 skin.

  14. Laser direct fabrication of silver conductors on glass boards

    International Nuclear Information System (INIS)

    Li Xiangyou; Zeng Xiaoyan; Li Huiling; Qi Xiaojing

    2005-01-01

    Laser micro-cladding has been used to fabricate metal conductors, according to a designed electronic circuit, directly onto glass boards which had been coated with a silver-containing electronic paste. The electronic pastes, composed of silver powders, inorganic binders and organic medium, thus formed the conductive metal pattern (i.e. electric circuit) along the path of the laser allowing the rest of the layer to be removed subsequently by an organic solvent. Firing in a furnace at 600 deg. C resulted in conductive lines with resistivity of about 10 -5 Ω cm and with adhesive strength of the order of magnitude of megapascals

  15. O tema do amor em “Bruma (A Estrela Vermelha”, de Murilo Rubião

    Directory of Open Access Journals (Sweden)

    Ilma Socorro Gonçalves Vieira

    2014-12-01

    Full Text Available Este artigo apresenta uma análise da manifestação do amor no conto “Bruma (a estrela vermelha”, de Murilo Rubião, como sugestão de um processo individual marcado pelo anseio inconsciente de alcançar a plenitude humana. O entendimento é de que o tema do amor se apresenta associado ao do ciúme e que as inquietações vividas e narradas pelo protagonista sugerem um paradoxal sentimento que se oculta, ao mesmo tempo em que se revela, no discurso e nas imagens presentes na narrativa. A base da análise consiste na hermenêutica simbólica, conforme as pesquisas de Gilbert Durand acerca das estruturas antropológicas do imaginário, juntamente com estudos na perspectiva da semiótica das paixões, desenvolvidos por Greimas e Fontanille, além dos trabalhos de Jorge Schwartz – voltado à investigação dos traços distintivos da poética muriliana –, de Suzana Cánovas – a respeito do universo fantástico de Rubião – e de Salma Silva – sobre as formas sob as quais o tema do amor pode se apresentar no texto literário.

  16. Secondary hydriding of defected zircaloy-clad fuel rods

    International Nuclear Information System (INIS)

    Olander, D.R.; Vaknin, S.

    1993-01-01

    The phenomenon of secondary hydriding in LWR fuel rods is critically reviewed. The current understanding of the process is summarized with emphasis on the sources of hydrogen in the rod provided by chemical reaction of water (steam) introduced via a primary defect in the cladding. As often noted in the literature, the role of hydrogen peroxide produced by steam radiolysis is to provide sources of hydrogen by cladding and fuel oxidation that are absent without fission-fragment irradiation of the gas. Quantitative description of the evolution of the chemical state inside the fuel rod is achieved by combining the chemical kinetics of the reactions between the gas and the fuel and cladding with the transport by diffusion of components of the gas in the gap. The chemistry-gas transport model provides the framework into which therate constants of the reactions between the gases in the gap and the fuel and cladding are incorporated. The output of the model calculation is the H 2 0/H 2 ratio in the gas and the degree of claddingand fuel oxidation as functions of distance from the primary defect. This output, when combined with a criterion for the onset of massive hydriding of the cladding, can provide a prediction of the time and location of a potential secondary hydriding failure. The chemistry-gas transport model is the starting point for mechanical and H-in-Zr migration analyses intended to determine the nature of the cladding failure caused by the development of the massive hydride on the inner wall

  17. Design optimization of multi-layer Silicon Carbide cladding for light water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Youho, E-mail: euo@unm.edu [Department of Nuclear Engineering, University of New Mexico, MSC01 1120 1 University of New Mexico, Albuquerque, NM 87131 (United States); NO, Hee Cheon, E-mail: hcno@kaist.ac.kr [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Lee, Jeong Ik, E-mail: jeongiklee@kaist.ac.kr [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of)

    2017-01-15

    Highlights: • SiC cladding designs are optimized with a multi-layer structural analysis code. • Layer radial thickness fraction that minimizes cladding fracture probability exists. • The demonstrated procedure is applicable for multi-layer SiC cladding design. • Duplex SiC with the inner composite fraction ∼0.4 is optimal in a reference case. • Increasing composite thermal conductivity markedly decreases SiC cladding stress. - Abstract: A parametric study that demonstrates a methodology for determining the optimum bilayer composition in a duplex SiC cladding is discussed. The structural performance of multi-layer SiC cladding design is significantly affected by radial thickness fraction of each layer. This study shows that there exists an optimal composite/monolith radial thickness fraction that minimizes failure probability for a duplex SiC cladding in steady-state operation. An exemplary reference case study shows that the duplex cladding with the inner composite fraction ∼0.4 and the outer CVD-SiC fraction ∼0.6 is found to be the optimal SiC cladding design for the current PWRs with the reference material choice for CVD-SiC and fiber reinforced composite. A marginal increase in the composite fraction from the presented optimal designs may lead to increase structural integrity by introducing some unquantified merits such as increasing damage tolerance. The major factors that affect the optimum cladding designs are temperature gradients and internal gas pressure. Clad wall thickness, thermal conductivity, and Weibull modulus are among the key design parameters/material properties.

  18. Fuel-cladding chemical interaction in mixed-oxide fuels

    International Nuclear Information System (INIS)

    Lawrence, L.A.; Weber, J.W.; Devary, J.L.

    1978-10-01

    The character and extent of fuel-cladding chemical interaction (FCCI) was established for UO 2 -25 wt% PuO 2 clad with 20% cold worked Type 316 stainless steel irradiated at high cladding temperatures to peak burnups greater than 8 atom %. The data base consists of 153 data sets from fuel pins irradiated in EBR-II with peak burnups to 9.5 atom %, local cladding inner surface temperatures to 725 0 C, and exposure times to 415 equivalent full power days. As-fabricated oxygen-to-metal ratios (O/M) ranged from 1.938 to 1.984 with the bulk of the data in the range 1.96 to 1.98. HEDL P-15 pins provided data at low heat rates, approx. 200 W/cm, and P-23 series pins provided data at higher heat rates, approx. 400 W/cm. A design practice for breeder reactors is to consider an initial reduction of 50 microns in cladding thickness to compensate for possible FCCI. This approach was considered to be a conservative approximation in the absence of a comprehensive design correlation for extent of interaction. This work provides to the designer a statistically based correlation for depth of FCCI which reflects the influences of the major fuel and operating parameters on FCCI

  19. Probabilistic assessment of spent-fuel cladding breach

    International Nuclear Information System (INIS)

    Foadian, H.; Rashid, Y.R.; Seager, K.D.

    1991-01-01

    A methodology for determining the probability spent-fuel cladding breach due to normal and accident class B cask transport conditions is introduced. This technique uses deterministic stress analysis results as well as probabilistic cladding material properties, initial flaws, and breach criteria. Best estimates are presented for the probability distributions of irradiated Zircaloy properties such as ductility and fracture toughness, and for fuel rod initial conditions such as manufacturing flaws and PCI part-wall cracks. Example analyses are used to illustrate the implementation of this methodology for a BWR (GE 7 x 7) and a PWR (B ampersand W 15 x 15) assembly. The cladding breach probabilities for each assembly are tabulated for regulatory normal and accident transport conditions including fire

  20. Probabilistic assessment of spent-fuel cladding breach

    International Nuclear Information System (INIS)

    Foadian, H.; Rashid, Y.R.; Seager, K.D.

    1992-01-01

    In this paper a methodology for determining the probability of spent-fuel cladding breach due to normal and accident class B cask transport conditions is introduced. This technique uses deterministic stress analysis results as well as probabilistic cladding material properties, initial flaws, and breach criteria. Best estimates are presented for the probability distributions of irradiated Zircaloy properties such as ductility and fracture toughness, and for fuel rod initial conditions such as manufacturing flaws and PCI part-wall cracks. Example analyses are used to illustrate the implementation of this methodology for a BWR (GE 7 x 7) and a PWR (B and W 15 x 15) assembly. The cladding breach probabilities for each assembly are tabulated for regulatory normal and accident transport conditions including fire

  1. Stainless steel clad for light water reactor fuels. Final report

    International Nuclear Information System (INIS)

    Rivera, J.E.; Meyer, J.E.

    1980-07-01

    Proper reactor operation and design guidelines are necessary to assure fuel integrity. The occurrence of fuel rod failures for operation in compliance with existing guidelines suggests the need for more adequate or applicable operation/design criteria. The intent of this study is to develop such criteria for light water reactor fuel rods with stainless steel clad and to indicate the nature of uncertainties in its development. The performance areas investigated herein are: long term creepdown and fuel swelling effects on clad dimensional changes and on proximity to clad failure; and short term clad failure possibilities during up-power ramps

  2. Cladding failure probability modeling for risk evaluations of fast reactors

    International Nuclear Information System (INIS)

    Mueller, C.J.; Kramer, J.M.

    1987-01-01

    This paper develops the methodology to incorporate cladding failure data and associated modeling into risk evaluations of liquid metal-cooled fast reactors (LMRs). Current US innovative designs for metal-fueled pool-type LMRs take advantage of inherent reactivity feedback mechanisms to limit reactor temperature increases in response to classic anticipated-transient-without-scram (ATWS) initiators. Final shutdown without reliance on engineered safety features can then be accomplished if sufficient time is available for operator intervention to terminate fission power production and/or provide auxiliary cooling prior to significant core disruption. Coherent cladding failure under the sustained elevated temperatures of ATWS events serves as one indicator of core disruption. In this paper we combine uncertainties in cladding failure data with uncertainties in calculations of ATWS cladding temperature conditions to calculate probabilities of cladding failure as a function of the time for accident recovery

  3. The characteristics of anodic coating of Al-alloy claddings

    International Nuclear Information System (INIS)

    Yang Yong; Zou Benhui; Guo Hong; Du Yanhua; Bai Zhiyong; Cai Zhenfang

    2014-01-01

    Aluminum alloy claddings of research reactor fuel elements should be corroded by sodium hydroxide solution and anodized in sulfuric acid solution, but there are often some uneven color phenomena on surfaces, and sometimes regions of 'black and white stripes' appear. In order to study the relationship of colorful stripes on coatings and the surface morphology of aluminum alloy claddings corroded by sodium hydroxide solution, surface microstructures and second phase particles of the aluminum alloy claddings, which were corroded by sodium hydroxide solution, are investigated metallographically and via SEM analysis; Meanwhile, thickness, microstructure, chemical composition and construction of anodic oxidation coatings on aluminum coatings are analyzed. It is shown that: 1) the darker the surface color of corroded aluminum alloy claddings is, the darker of anodic oxidation coating; 2) there are many micro-pores on anodized oxidation coatings, which is much similar to that of corroded aluminum alloy claddings according to the morphology and distribution. So, it can be deduced that the surface morphology of anodic coatings is inherited from the corroded surfaces. (authors)

  4. Recent Progress In Infrared Chalcogenide Glass Fibers

    Science.gov (United States)

    Bornstein, A.; Croitoru, N.; Marom, E.

    1984-10-01

    Chalcogenide glasses containing elements like As, Ge, Sb and Se have been prepared. A new technique of preparing the raw material and subsequently drawing fibers has been devel-oped in order to avoid the forming of oxygen compounds. The fibers have been drawn by cru-cible and rod method from oxygen free raw material inside an Ar atmosphere glove box. The fibers drawn to date with air and glass cladding have a diameter of 50-500 pm and length of several meterd. Preliminary attenuation measurements indicate that the attentuation is better than 0.1 dB/cm and it is not affected even when the fiber is bent to 2 cm circular radius. The fibes were testes a CO laser beam and were not damaged at power densities below 10 kW/2cm2 CW &100 kw/cm using short pulses 75 n sec. The transmitted power density was 0.8 kW/cm2 which is an appropriate value to the needed for cutting and ablation of human tissues.

  5. Repository emplacement costs for Al-clad high enriched uranium spent fuel

    International Nuclear Information System (INIS)

    McDonell, W.R.; Parks, P.B.

    1994-01-01

    A range of strategies for treatment and packaging of Al-clad high-enriched uranium (HEU) spent fuels to prevent or delay the onset of criticality in a geologic repository was evaluated in terms of the number of canisters produced and associated repository costs incurred. The results indicated that strategies in which neutron poisons were added to consolidated forms of the U-Al alloy fuel generally produced the lowest number of canisters and associated repository costs. Chemical processing whereby the HEU was removed from the waste form was also a low cost option. The repository costs generally increased for isotopic dilution strategies, because of the substantial depleted uranium added. Chemical dissolution strategies without HEU removal were also penalized because of the inert constituents in the final waste glass form. Avoiding repository criticality by limiting the fissile mass content of each canister incurred the highest repository costs

  6. The role of cladding material for performance of LWR control assemblies

    International Nuclear Information System (INIS)

    Dewes, P.; Roppelt, A.

    2000-01-01

    The lifetime of control assemblies in LWRs can be limited presently by mechanical failure of the absorber cladding. The major cause of failure is mechanical interaction of the absorber with the cladding due to irradiation induced dimensional changes such as absorber swelling and cladding creep, resulting in cracking of the clad. Such failures occurred in both BWRs and PWRs. Experience and in-reactor tests revealed that cracking can be avoided principally by two ways: First, if strain rates and hence, stresses in the cladding are kept low (well below the yield strength), significant strains can be tolerated. This is the case for the cladding of PWR control assemblies with slowly swelling Ag-In-Cd absorber. Recent examinations of highly exposed PWR control assemblies confirmed the design correlation up to the presently used strain limit. Second, in such cases where strongly swelling absorber material like boron carbide is still preferred, materials which are resistant against irradiation assisted stress corrosion cracking (IASCC) can be used. The influence of material composition and condition on IASCC was studied in-reactor using tubular samples of various stainless steels and Ni-base alloys stressed by swelling mandrels. In several programme steps high purity materials with special features had been identified as resistant to IASCC. Another process of cladding damage which may occur in PWRs is wear caused by friction of the control rods in the surrounding guide structure. For replacement control assemblies this problem is solved by coating of the cladding. There exists meanwhile excellent experience of up to 18 operation cycles with coated claddings. (author)

  7. A model for hydrogen pickup for BWR cladding materials

    International Nuclear Information System (INIS)

    Hede, G.; Kaiser, U.

    2001-01-01

    It has been observed that rod elongation is driven by the hydrogen pickup but not by corrosion as such. Based on this a non-destructive method to determine clad hydrogen concentration has been developed. The method is based on the observation that there are three different mechanisms behind the rod growth: the effect of neutron irradiation on the Zircaloy microstructure, the volume increase of the cladding as an effect of hydride precipitation and axial pellet-cladding-mechanical-interaction (PCMI). The derived correlation is based on the experience of older cladding materials, inspected at hot-cell laboratories, that obtained high hydrogen levels (above 500 ppm) at lower burnup (assembly burnup below 50 MWd/kgU). Now this experience can be applied, by interpolation, on more modern cladding materials with a burnup beyond 50 MWd/kgU by analysis of the rod growth database of the respective cladding materials. Hence, the method enables an interpolation rather than an extrapolation of present day hydrogen pickup database, which improves the reliability and accuracy. Further, one can get a good estimate of the hydrogen pickup during an ongoing outage based on a non-destructive method. Finally, rod growth measurements are normally performed for a large population of rods, hence giving a good statistics compared to examination of a few rods at a hot cell. (author)

  8. Development Status of Accident Tolerant Fuel Cladding for LWRs

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun-Gil; Kim, Il-Hyun; Jung, Yang-Il; Park, Dong-Jun; Park, Jung-Hwan; Yang, Jae-Ho; Koo, Yang-Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Hydrogen explosions and the release of radionuclides are caused by severe damage of current nuclear fuels, which are composed of fuel pellets and fuel cladding, during an accident. To reduce the damage to the public, the fuels have to enhance their integrity under an accident environment. Enhanced accident tolerance fuels (ATFs) can tolerate a loss of active cooling in the reactor core for a considerably longer time period during design-basis and beyond design-basis events while maintaining or improving the fuel performance during normal operations as well as operational transients, in comparison with the current UO{sub 2}-Zr alloy system used in the LWR. Surface modified Zr cladding as a new concept was suggested to apply an enhanced ATF cladding. The aim of the partial ODS treatment is to increase the high-temperature strength to suppress the ballooning/rupture behavior of fuel cladding during an accident event. The target of the surface coating is to increase the corrosion resistance during normal operation and increase the oxidation resistance during an accident event. The partial ODS treatment of Zircaloy-4 cladding can be produced using a laser beam scanning method with Y2O3 powder, and the surface Cr-alloy and Cr/FeCrAl coating on Zircaloy-4 cladding can be obtained after the development of 3D laser coating and arc ion plating technologies.

  9. Out-of-pile test of zirconium cladding simulating reactivity initiated accident

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. H.; Lee, M. H.; Choi, B. K.; Bang, J. K.; Jung, Y. H. [KAERI, Taejon (Korea, Republic of)

    2004-07-01

    Mechanical properties of zirconium cladding such as Zircaloy-4 and advanced cladding were evaluated by ring tension test to simulate Reactivity-Initiated Accident (RIA) as an out-pile test. Cladding was hydrided by means of charging hydrogen up to 1000ppm to simulate high-burnup situation, finally fabricated to circumferential tensile specimen. Ring tension test was carried out from 0.01 to 1/sec to keep pace with actual RIA event. The results showed that mechanical strength of zirconium cladding increased at the value of 7.8% but ductility decreased at the 34% as applied strain rate and absorbed hydrogen increased. Further activities regarding out-of-pile testing plans for simulated high-burnup cladding were discussed in this paper.

  10. State-of-the-technology review of fuel-cladding interaction

    International Nuclear Information System (INIS)

    Bailey, W.J.; Wilson, C.L.; MacGowan, L.J.; Pankaskie, P.J.

    1977-12-01

    A literature survey and a summarization of postulated fuel-cladding-interaction mechanisms and associated supportive data are reported. The results of that activity are described in the report and include comments on experience with power-ramped fuel, fuel-cladding mechanical interaction, stress-corrosion cracking and fission-product embrittlement, potential remedial actions, fuel-cladding-interaction mechanistic considerations, other ongoing programs, and related patents of interest. An assessment of the candidate fuel concepts to be evaluated as part of this program is provided

  11. YAG laser cladding to heat exchanger flange in actual plant

    International Nuclear Information System (INIS)

    Toshio, Kojima

    2001-01-01

    This paper is a sequel to ''Development of YAG Laser Cladding Technology to Heat Exchanger Flange'' presented in ICONE-8. A YAG Laser cladding technology is a permanent repairing and preventive maintenance method for heat exchanger's flange (channel side) seating surface which is degraded by the corrosion in long term operation. The material of this flange is carbon steel, and that of cladding wire is type 316 stainless steel so as to have high corrosion resistance. In former paper above, the soundness of cladding layers were presented to be verified. This channel side flange is bolted with tube sheet (shell side) through metal gasket. As the tube sheet side is already cladded a corrosion resistant material, it needs to apply the repairing and preventive maintenance method to only channel side. In 2000 this technology had been performed to the actual heat exchanger (Residual Heat Removal Heat Exchanger; RHR Hx) flange in domestic nuclear power plant. This paper described the outline, special equipment, and our total evaluation for this actual laser cladding work. And also several technical subjects which we should solve and/or improve for the next project was presented. (author)

  12. Application of YAG laser cladding to the flange seating surface

    International Nuclear Information System (INIS)

    Nakanishi, Koki; Ninomiya, Kazuyuki; Nezaki, Koji

    1999-01-01

    Stainless cladding on carbon steel is usually conducted by shielded metal arc welding (SMAW) or gas tungsten arc welding (GTAW). YAG ( Yttrium-Aluminum-Garnet) laser welding is superior to these methods of welding in the following respects : (1) The heat affected zone (HAZ) is narrower and there is less distortion. (2) YAG laser cladding has the required chemical compositions, even with possibly fewer welding layers under controlled dilution. (3) Greater welding speed. YAG laser cladding application to vessel flange seating surfaces was examined in this study and the results are discussed. The following objectives were carried out : (1) Determination of welding conditions for satisfactory cladding layers and (2) whether cladding would be adequately possible at a cornered section of a stair-like plate, assuming actual flange shape. (3) Measurement of welding distortion and heat affected zone in carbon steel. The welding conditions for producing no-crack deposit with low dilution in carbon steel were clarified and welding by which cladding at cornered section would be possible was achieved. welding distortion by YAG laser was found less than with GTAW and HAZ made by first layer welding could be tempered appropriately by second layer welding. (author)

  13. Cladding failure probability modeling for risk evaluations of fast reactors

    International Nuclear Information System (INIS)

    Mueller, C.J.; Kramer, J.M.

    1987-01-01

    This paper develops the methodology to incorporate cladding failure data and associated modeling into risk evaluations of liquid metal-cooled fast reactors (LMRs). Current U.S. innovative designs for metal-fueled pool-type LMRs take advantage of inherent reactivity feedback mechanisms to limit reactor temperature increases in response to classic anticipated-transient-without-scram (ATWS) initiators. Final shutdown without reliance on engineered safety features can then be accomplished if sufficient time is available for operator intervention to terminate fission power production and/or provide auxiliary cooling prior to significant core disruption. Coherent cladding failure under the sustained elevated temperatures of ATWS events serves as one indicator of core disruption. In this paper we combine uncertainties in cladding failure data with uncertainties in calculations of ATWS cladding temperature conditions to calculate probabilities of cladding failure as a function of the time for accident recovery. (orig.)

  14. Cladding failure margins for metallic fuel in the integral fast reactor

    International Nuclear Information System (INIS)

    Bauer, T.H.; Fenske, G.R.; Kramer, J.M.

    1987-01-01

    The reference fuel for Integral Fast Reactor (IFR) is a ternary U-Pu-Zr alloy with a low swelling austenitic or ferritic stainless steel cladding. It is known that low melting point eutectics may form in such metallic fuel-cladding systems which could contribute to cladding failure under accident conditions. This paper will present recent measurements of cladding eutectic penetration rates for the ternary IFR alloy and will compare these results with earlier eutectic penetration data for other fuel and cladding materials. A method for calculating failure of metallic fuel pins is developed by combining cladding deformation equations with a large strain analysis where the hoop stress is calculated using the instantaneous wall thickness as determined from correlations of the eutectic penetration-rate data. This method is applied to analyze the results of in-reactor and out-of-reactor fuel pin failure tests on uranium-fissium alloy EBR-II Mark-II driver fuel

  15. Hygrothermal performance of ventilated wooden cladding

    Energy Technology Data Exchange (ETDEWEB)

    Nore, Kristine

    2009-10-15

    This project contributes to more accurate design guidelines for high-performance building envelopes by analysis of hygrothermal performance of ventilated wooden cladding. Hygrothermal performance is defined by cladding temperature and moisture conditions, and subsequently by risk of degradation. Wood cladding is the most common facade material used in rural and residential areas in Norway. Historically, wooden cladding design varied in different regions in Norway. This was due to both climatic variations and the logistical distance to materials and craftspeople. The rebuilding of Norwegian houses in the 1950s followed central guidelines where local climate adaptation was often not evaluated. Nowadays we find some technical solutions that do not withstand all climate exposures. The demand for thermal comfort and also energy savings has changed hygrothermal condition of the building envelopes. In well-insulated wall assemblies, the cladding temperature is lower compared to traditional walls. Thus the drying out potential is smaller, and the risk of decay may be higher. The climate change scenario indicates a warmer and wetter future in Norway. Future buildings should be designed to endure harsher climate exposure than at present. Is there a need for refined climate differentiated design guidelines for building enclosures? As part of the Norwegian research programme 'Climate 2000', varieties of wooden claddings have been investigated on a test house in Trondheim. The aim of this investigation was to increase our understanding of the relation between microclimatic conditions and the responding hygrothermal performance of wooden cladding, according to orientation, design of ventilation gap, wood material quality and surface treatment. The two test facades, facing east and west have different climate exposure. Hourly measurements of in total 250 sensors provide meteorological data; temperature, radiation, wind properties, relative humidity, and test house data

  16. Inspection system for Zircaloy clad fuel rods

    International Nuclear Information System (INIS)

    Yancey, M.E.; Porter, E.H.; Hansen, H.R.

    1975-10-01

    A description is presented of the design, development, and performance of a remote scanning system for nondestructive examination of fuel rods. Characteristics that are examined include microcracking of fuel rod cladding, fuel-cladding interaction, cladding thickness, fuel rod diameter variation, and fuel rod bowing. Microcracking of both the inner and outer fuel rod surfaces and variations in wall thickness are detected by using a pulsed eddy current technique developed by Argonne National Laboratory (ANL). Fuel rod diameter variation and fuel rod bowing are detected by using two linear variable differential transformers (LVDTs) and a signal conditioning system. The system's mechanical features include variable scanning speeds, a precision indexing system, and a servomechanism to maintain proper probe alignment. Initial results indicate that the system is a very useful mechanism for characterizing irradiated fuel rods

  17. Potential effects of gallium on cladding materials

    International Nuclear Information System (INIS)

    Wilson, D.F.; Beahm, E.C.; Besmann, T.M.; DeVan, J.H.; DiStefano, J.R.; Gat, U.; Greene, S.R.; Rittenhouse, P.L.; Worley, B.A.

    1997-10-01

    This paper identifies and examines issues concerning the incorporation of gallium in weapons derived plutonium in light water reactor (LWR) MOX fuels. Particular attention is given to the more likely effects of the gallium on the behavior of the cladding material. The chemistry of weapons grade (WG) MOX, including possible consequences of gallium within plutonium agglomerates, was assessed. Based on the calculated oxidation potentials of MOX fuel, the effect that gallium may have on reactions involving fission products and possible impact on cladding performance were postulated. Gallium transport mechanisms are discussed. With an understanding of oxidation potentials and assumptions of mechanisms for gallium transport, possible effects of gallium on corrosion of cladding were evaluated. Potential and unresolved issues and suggested research and development (R and D) required to provide missing information are presented

  18. Stress corrosion testing of irradiated cladding tubes

    International Nuclear Information System (INIS)

    Lunde, L.; Olshausen, K.D.

    1980-01-01

    Samples from two fuel rods with different cladding have been stress corrosion tested by closed-end argon-iodine pressurization at 320 0 C. The fuel rods with stress relieved and recrystallized Zircaloy-2 had received burnups of 10.000 and 20.000 MWd/ton UO 2 , respectively. It was found that the SCC failure stress was unchanged or slightly higher for the irradiated than for the unirradiated control tubes. The tubes failed consistently in the end with the lowest irradiation dose. The diameter increase of the irradiated cladding during the test was 1.1% for the stress-relieved samples and 0.24% for the recrystallized samples. SEM examination revealed no major differences between irradiated and unirradiated cladding. A ''semi-ductile'' fracture zone in recrystallized material is described in some detail. (author)

  19. Fuel compliance model for pellet-cladding mechanical interaction

    International Nuclear Information System (INIS)

    Shah, V.N.; Carlson, E.R.

    1985-01-01

    This paper describes two aspects of fuel pellet deformation that play significant roles in determining maximum cladding hoop strains during pellet-cladding mechanical interaction: compliance of fragmented fuel pellets and influence of the pellet end-face design on the transmission of axial compressive force in the fuel stack. The latter aspect affects cladding ridge formation and explains several related observations that cannot be explained by the hourglassing model. An empirical model, called the fuel compliance model and representing the above aspects of fuel deformation, has been developed using the results from two Halden experiments and incorporated into the FRAP-T6 fuel performance code

  20. WWER water chemistry related to fuel cladding behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Kysela, J; Zmitko, M [Nuclear Research Inst. plc., Rez (Czech Republic); Vrtilkova, V [Nuclear Fuel Inst., Prague (Czech Republic)

    1997-02-01

    Operational experience in WWER primary water chemistry and corrosion related to the fuel cladding is reviewed. Insignificant corrosion of fuel cladding was found which is caused by good corrosion resistance of Zr1Nb material and relatively low coolant temperature at WWER-440 reactor units. The differences in water chemistry control is outlined and an attention to the question of compatibility of Zircaloys with WWER water chemistry is given. Some results of research and development in field of zirconium alloy corrosion behaviour are discussed. Experimental facility for in-pile and out-of-pile cladding material corrosion testing is shown. (author). 14 refs, 5 figs, 3 tabs.

  1. Ruby lidar observations and trajectory analysis of stratospheric aerosols injected by the volcanic eruptions of El Chichon

    Science.gov (United States)

    Uchino, O.; Tabata, T.; Akita, I.; Okada, Y.; Naito, K.

    1985-01-01

    Large amounts of aerosol particles and gases were injected into the lower stratosphere by the violet volcanic eruptions of El Chichon on March 28, and April 3 and 4, 1982. Observational results obtained by a ruby lidar at Tsukuba (36.1 deg N, 140.1 deg E) are shown, and some points of latitude dispersion processes of aerosols are discussed.

  2. The influence of residual stresses on small through-clad cracks in pressure vessels

    International Nuclear Information System (INIS)

    deLorenzi, H.G.; Schumacher, B.I.

    1984-01-01

    The influence of cladding residual stresses on the crack driving force for shallow cracks in the wall of a nuclear pressure vessel is investigated. Thermo-elastic-plastic analyses were carried out on long axial through-clad and sub-clad flaws on the inside of the vessel. The depth of the flaws were one and three times the cladding thickness, respectively. An analysis of a semielliptical axial through-clad flaw was also performed. It was assumed that the residual stresses arise due to the difference in the thermal expansion between the cladding and the base material during the cool down from stress relieving temperature to room temperature and due to the subsequent proof test before the vessel is put into service. The variation of the crack tip opening displacement during these loadings and during a subsequent thermal shock on the inside wall is described. The analyses for the long axial flaws suggest that the crack driving force is smaller for this type of flaw if the residual stresses in the cladding are taken into account than if one assumes that the cladding has no residual stresses. However, the analysis of the semielliptical flaw shows significantly different results. Here the crack driving force is higher than when the residual stresses are not taken into account and is maximum in the cladding at or near the clad/base material interface. This suggests that the crack would propagate along the clad/base material interface before it would penetrate deeper into the wall. The elastic-plastic behavior found in the analyses show that the cladding and the residual stresses in the cladding should be taken into acocunt when evaluating the severity of shallow surface cracks on the inside of a nuclear pressure vessel

  3. Temporal migration patterns between natal locations of ruby-throated hummingbirds (Archilochus colubris) and their Gulf Coast stopover site.

    Science.gov (United States)

    Zenzal, Theodore J; Contina, Andrea J; Kelly, Jeffrey F; Moore, Frank R

    2018-01-01

    Autumn latitudinal migrations generally exhibit one of two different temporal migration patterns: type 1 where southern populations migrate south before northern populations, or type 2 where northern populations overtake southern populations en route . The ruby-throated hummingbird ( Archilochus colubris ) is a species with an expansive breeding range, which allows opportunities to examine variation in the timing of migration. Our objective was to determine a relationship between natal origin of ruby-throated hummingbirds and arrival at a Gulf coast stopover site; and if so, what factors, such as differences in body size across the range as well as the cost of migration, might drive such a pattern. To carry out our objectives, we captured hummingbirds at a coastal stopover site during autumn migration, at which time we collected feathers from juveniles for analysis of hydrogen stable isotopes. Using the hydrogen stable isotope gradient of precipitation across North America and published hydrogen isotope values of feathers from populations of breeding ruby-throated hummingbirds, we assigned migrants to probable natal latitudes. Our results confirm that individuals from across the range (30-50° N) stopover along the Gulf of Mexico and there is a positive relationship between arrival day and latitude, suggesting a type 1 migration pattern. We also found no relationship between fuel load (proxy for migration cost) or fat-free body mass (proxy for body size) and natal latitude. Our results, coupled with previous work on the spatial migration patterns of hummingbirds, show a type 1 chain migration pattern. While the mechanisms we tested do not seem to influence the evolution of migratory patterns, other factors such as resource availability may play a prominent role in the evolution of this migration system.

  4. Fluorescence of Pentavalent Chromium in SiO2 Sol-Gel Glasses

    Science.gov (United States)

    Jia, Weiyi; Castro, Lymari; Wang, Yanyun; Liu, Huimin

    1998-01-01

    Chromium ions are very attractive to optical spectroscopy and laser physics. It is well known that the first laser in the history is a ruby laser activated with Cr(3+). It was found in early nineties that Cr(4+) was also an interesting lasing ion in the near infrared, and various Cr(4+) lasers have been developed. Very recently, it was reported that Cr(2+) doped in CdSe crystals showed lasing action in the infrared. The above achievement have stimulated an interest in searching for Cr(5+) and investigating its optical properties. Cr(5+) is isoelectronic with Ti(3+) and V(4+), having electron configuration 3d1. Ti(3+) is the active center of commercial cw and femtosecond sapphire lasers, tunable in the range 680-1100 nm. V(4+) doped in YAlO3 and Al2O3 showed broad band emission near 635 nm. Although EPR results of Cr(5+) were reported, the optical properties were less studied. Herren et al. reported an observation of luminescence from Cr doped in SiO2 sol-gel glass. The luminescence spectrum was assigned to pentavalent ions in their first paper, and later it was identified to be the emission from the charge transfer transition of Cr(6+). The first observation of photoluminescence from octahedrally coordinated Cr(5+) in BaCaMg aluminate glasses was reported very recently. In this work, we report luminescence results of Cr doped SiO2 sol-gel glasses. The fluorescence spectra are very different from Herrens' results, and we believe it originates from pentavalent Cr.

  5. Influence Of The Laser Cladding Strategies On The Mechanical Properties Of Inconel 718

    International Nuclear Information System (INIS)

    Lamikiz, A.; Tabernero, I.; Ukar, E.; Lopez de Lacalle, L. N.; Delgado, J.

    2011-01-01

    This work presents different experimental results of the mechanical properties of Inconel registered 718 test parts built-up by laser cladding. Recently, turbine manufacturers for aeronautical sector have presented high interest on laser cladding processes. This process allows building fully functional structures on superalloys, such as Inconel registered 718, with high flexibility on complex shapes. However, there is limited data on mechanical properties of the laser cladding structures. Moreover, the available data do not include the influence of process parameters and laser cladding strategies. Therefore, a complete study of the influence of the laser cladding parameters and mainly, the variation of the tensile strength with the laser cladding strategy is presented. The results show that there is a high directionality of mechanical properties, depending on the strategies of laser cladding process. In other words, the test parts show a fiber -like structure that should be considered on the laser cladding strategy selection.

  6. Examination of Zircaloy-clad spent fuel after extended pool storage

    International Nuclear Information System (INIS)

    Bradley, E.R.; Bailey, W.J.; Johnson, A.B. Jr.; Lowry, L.M.

    1981-09-01

    This report presents the results from metallurgical examinations of Zircaloy-clad fuel rods from two bundles (0551 and 0074) of Shippingport PWR Core 1 blanket fuel after extended water storage. Both bundles were exposed to water in the reactor from late 1957 until discharge. The estimated average burnups were 346 GJ/kgU (4000 MWd/MTU) for bundle 0551 and 1550 GJ/kgU (18,000 MWd/MTU) for bundle 0074. Fuel rods from bundle 0551 were stored in deionized water for nearly 21 yr prior to examination in 1980, representing the world's oldest pool-stored Zircaloy-clad fuel. Bundle 0074 has been stored in deionized water since reactor discharge in 1964. Data from the current metallurgical examinations enable a direct assessment of extended pool storage effects because the metallurgical condition of similar fuel rods was investigated and documented soon after reactor discharge. Data from current and past examinations were compared, and no significant degradation of the Zircaloy cladding was indicated after almost 21 yr in water storage. The cladding dimensions and mechanical properties, fission gas release, hydrogen contents of the cladding, and external oxide film thicknesses that were measured during the current examinations were all within the range of measurements made on fuel bundles soon after reactor discharge. The appearance of the external surfaces and the microstructures of the fuel and cladding were also similar to those reported previously. In addition, no evidence of accelerated corrosion or hydride redistribution in the cladding was observed

  7. Temperature measurements of the aluminium claddings of fuel elements in nuclear reactor

    International Nuclear Information System (INIS)

    Chen Daolong

    1986-01-01

    A method for embedding the sheathed thermocouples in the aluminium claddings of some fuel elements of experimental reactors by ultrasonic welding technique is described. The measurement results of the cladding temperature of fuel elements in reactors are given. By means of this method, the joint between the sheathed thermocouples and the cladding of fuel elements can be made very tight, there are no bulges on the cladding surfaces, and the sheathed thermocouples are embedded strongly and reliably. Therefore an essential means is provided for acquiring the stable and dynamic state data of the cladding temperature of in-core fuel elements

  8. Robust cladding light stripper for high-power fiber lasers using soft metals.

    Science.gov (United States)

    Babazadeh, Amin; Nasirabad, Reza Rezaei; Norouzey, Ahmad; Hejaz, Kamran; Poozesh, Reza; Heidariazar, Amir; Golshan, Ali Hamedani; Roohforouz, Ali; Jafari, S Naser Tabatabaei; Lafouti, Majid

    2014-04-20

    In this paper we present a novel method to reliably strip the unwanted cladding light in high-power fiber lasers. Soft metals are utilized to fabricate a high-power cladding light stripper (CLS). The capability of indium (In), aluminum (Al), tin (Sn), and gold (Au) in extracting unwanted cladding light is examined. The experiments show that these metals have the right features for stripping the unwanted light out of the cladding. We also find that the metal-cladding contact area is of great importance because it determines the attenuation and the thermal load on the CLS. These metals are examined in different forms to optimize the contact area to have the highest possible attenuation and avoid localized heating. The results show that sheets of indium are very effective in stripping unwanted cladding light.

  9. Development of Preliminary HT9 Cladding Tube for Sodium-cooled Fast Reactor (SFR)

    International Nuclear Information System (INIS)

    Kim, Jun Hwan; Baek, Jong Hyuk; Heo, Hyeong Min; Park, Sang Gyu; Kim, Sung Ho; Lee, Chan Bock

    2013-01-01

    To achieve manufacturing technology of the fuel cladding tube in order to keep pace with the predetermined schedule in developing SFR fuel, KAERI has launched in developing fuel cladding tube in cooperation with a domestic steelmaking company. After fabricating medium-sized 1.1 ton HT9 ingot, followed by the multiple processes of hot and cold working, preliminary samples of HT9 seamless cladding tube having 7.4mm in outer diameter, 0.56mm in thickness, and 3m in length were fabricated. The objective of this study is to summarize the brief development status of the HT9 cladding tubes. Mechanical properties like axial tension, biaxial burst, pressurized creep and sodium compatibility of the cladding tubes were carried out to set up the performance evaluation technology to test the prototype FMS cladding tube which is going to be manufactured in next stage. As a part of developing fuel cladding for the Sodium-cooled Fast Reactor (SFR), preliminary HT9 cladding tube was fabricated in cooperation with a domestic steelmaking company. Microstructure as well as mechanical tests like axial tensile test, biaxial burst test, and pressurized creep test of the fuel cladding were carried out. Performance of the domestic HT9 tube was revealed to be similar in the previously fabricated foreign HT9 tube. Further prototype FMS cladding tube is going to be manufactured in next year based on this experience. Various test items like mechanical test, sodium compatibility test, microstructural analysis, basic property, cladding performance under transient situation, and performance under ion and neutron irradiation are going be performed in the future to set up the relevant technology for the licensing of the SFR cladding tube

  10. Laser cladding: repairing and manufacturing metal parts and tools

    Science.gov (United States)

    Sexton, Leo

    2003-03-01

    Laser cladding is presently used to repair high volume aerospace, automotive, marine, rail or general engineering components where excessive wear has occurred. It can also be used if a one-off high value component is either required or has been accidentally over-machined. The ultimate application of laser cladding is to build components up from nothing, using a laser cladding system and a 3D CAD drawing of the component. It is thus emerging that laser cladding can be classified as a special case of Rapid Prototyping (RP). Up to this point in time RP was seen, and is still seen, as in intermediately step between the design stage of a component and a finished working product. This can now be extended so that laser cladding makes RP a one-stop shop and the finished component is made from tool-steel or some alloy-base material. The marriage of laser cladding with RP is an interesting one and offers an alternative to traditional tool builders, re-manufacturers and injection mould design/repair industries. The aim of this paper is to discuss the emergence of this new technology, along with the transference of the process out of the laboratory and into the industrial workplace and show it is finding its rightful place in the manufacturing/repair sector. It will be shown that it can be used as a cost cutting, strategic material saver and consequently a green technology.

  11. Fuel cladding tube and fuel rod for BWR type reactor

    International Nuclear Information System (INIS)

    Urata, Megumu; Mitani, Shinji.

    1995-01-01

    A fuel cladding tube has grooves fabricated, on the surface thereof, with a predetermined difference between crest and bottom (depth of the groove) in the circumferential direction. The cross sectional shape thereof is sinusoidal. The distribution of the grain size of iron crud particles in coolants is within a range about from 2μm to 12μm. If the surface roughness of the fuel cladding tube (depth of the groove) is determined greater than 1.6μm and less than 12.5, iron cruds in coolants can be positively deposited on the surface of the fuel cladding tube. In addition, once deposited iron cruds can be prevented from peeling from the surface of the fuel cladding tube. With such procedures, iron cruds deposited and radioactivated on the fuel cladding tube can be prevented from peeling, to prevent and reduce the increase of radiation dose on the surface of the pipelines without providing any additional device. (I.N.)

  12. Experimental Setup with Transient Behavior of Fuel Cladding of SFR

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Sang Hun; Kim, Jun Hwan; Kim, June-Hyung; Ryu, Woo Seog; Park, Sang Gyu; Kim, Sung Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Nowadays, in Korea, advanced cladding such as FC92 is developed and its transient behaviors are required for the safety analysis of SFR. Design and safety analyses of sodium-cooled fast reactor (SFR) require understanding fuel pin responses to a wide range of off-normal events. In a loss-of-flow (LOF) or transient over-power (TOP), the temperature of the cladding is rapidly increased above its steady-state service temperature. Transient tests have been performed in sections of fuel pin cladding and a large data base has been established for austenitic stainless steel such as 20% cold-worked 316 SS and ferritic/martensitic steels such as HT9. This paper summarizes the technical status of transient testing facilities and their results. Previous researches showed the transient behaviors of HT9 cladding. For the safety analyses in SFR in Korea, simulated transient tests with newly developed FC92 as well as HT9 cladding are being carried out.

  13. Characteristics of hydride precipitation and reorientation in spent-fuel cladding

    International Nuclear Information System (INIS)

    Chung, H. M.; Strain, R. V.; Billone, M. C.

    2000-01-01

    The morphology, number density, orientation, distribution, and crystallographic aspects of Zr hydrides in Zircaloy fuel cladding play important roles in fuel performance during all phases before and after discharge from the reactor, i.e., during normal operation, transient and accident situations in the reactor, temporary storage in a dry cask, and permanent storage in a waste repository. In the past, partly because of experimental difficulties, hydriding behavior in irradiated fuel cladding has been investigated mostly by optical microscopy (OM). In the present study, fundamental metallurgical and crystallographic characteristics of hydride precipitation and reorientation were investigated on the microscopic level by combined techniques of OM and transmission electron and scanning electron microscopy (TEM and SEM) of spent-fuel claddings discharged from several boiling and pressurized water reactors (BWRs and PWRs). Defueled sections of standard and Zr-lined Zircaloy-2 fuel claddings, irradiated to fluences of ∼3.3 x 10 21 n cm -2 and ∼9.2 x 10 21 n cm -2 (E > 1 MeV), respectively, were obtained from spent fuel rods discharged from two BWRs. Sections of standard and low-tin Zircaloy-4 claddings, irradiated to fluences of ∼4.4 x 10 21 n cm -2 , ∼5.9 x 10 21 n cm -2 , and ∼9.6 x 10 21 n cm -2 (E > 1 MeV) in three PWRs, were also obtained. Microstructural characteristics of hydrides were analyzed in as-irradiated condition and after gas-pressurization-burst or expanding-mandrel tests at 292-325 C in Ar for some of the spent-fuel claddings. Analyses were also conducted of hydride habit plane, morphology, and reorientation characteristics on unirradiated Zircaloy-4 cladding that contained dense radial hydrides. Reoriented hydrides in the slowly cooled unirradiated cladding were produced by expanding-mandrel loading

  14. Oxidation resistant chromium coating on Zircaloy-4 for accident tolerant fuel cladding

    International Nuclear Information System (INIS)

    Park, Jung-Hwan; Kim, Eui-Jung; Jung, Yang-Il; Park, Dong-Jun; Kim, Hyun-Gil; Park, Jeong-Yong; Koo, Yang-Hyun

    2015-01-01

    The attributes of such a fuel are approved reaction kinetics with steam, a slower hydrogen generation rate, and good cladding thermo-mechanical properties. Many researchers have tried to modify zirconium alloys to improve their oxidation resistance in the early stages of the ATF development. Corrosion resistant coating on cladding is one of the candidate technologies to improve the oxidation resistance of zirconium cladding. By applying coating technology to zirconium cladding, it is easy to obtain corrosion resistance without a change in the base materials. Among the surface coating methods, arc ion plating (AIP) is a coating technology to improve the adhesion owing to good throwing power, and a dense deposit (Fig. 1). Owing to these advantages, AIP has been widely used to efficiently form protective coatings on cutting tools, dies, bearings, etc. In this study, The AIP technique for the protection of zirconium claddings from the oxidation in a high-temperature steam environment was studied. The homogeneous Cr film with a high adhesive ability to the cladding was deposited by AIP and acted as a protection layer to enhance the corrosion resistance of the zirconium cladding. It was concluded that the AIP technology is effective for coating a protective layer on claddings

  15. Oxidation resistant chromium coating on Zircaloy-4 for accident tolerant fuel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jung-Hwan; Kim, Eui-Jung; Jung, Yang-Il; Park, Dong-Jun; Kim, Hyun-Gil; Park, Jeong-Yong; Koo, Yang-Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    The attributes of such a fuel are approved reaction kinetics with steam, a slower hydrogen generation rate, and good cladding thermo-mechanical properties. Many researchers have tried to modify zirconium alloys to improve their oxidation resistance in the early stages of the ATF development. Corrosion resistant coating on cladding is one of the candidate technologies to improve the oxidation resistance of zirconium cladding. By applying coating technology to zirconium cladding, it is easy to obtain corrosion resistance without a change in the base materials. Among the surface coating methods, arc ion plating (AIP) is a coating technology to improve the adhesion owing to good throwing power, and a dense deposit (Fig. 1). Owing to these advantages, AIP has been widely used to efficiently form protective coatings on cutting tools, dies, bearings, etc. In this study, The AIP technique for the protection of zirconium claddings from the oxidation in a high-temperature steam environment was studied. The homogeneous Cr film with a high adhesive ability to the cladding was deposited by AIP and acted as a protection layer to enhance the corrosion resistance of the zirconium cladding. It was concluded that the AIP technology is effective for coating a protective layer on claddings.

  16. Method of evaluation of stress corrosion cracking susceptibility of clad fuel tubes

    International Nuclear Information System (INIS)

    Takase, Iwao; Yoshida, Toshimi; Ikeda, Shinzo; Masaoka, Isao; Nakajima, Junjiro.

    1986-01-01

    Purpose: To determine, by an evaluation in out-pile test, the stress corrosion cracking susceptibility of clad fuel tubes in the reactor environment. Method: A plurality of electrodes are mounted in the circumferential direction on the entire surface of cladding tubes. Of the electrodes, electrodes at two adjacent places are used as measuring terminals and electrodes at another two places adjacent thereto are used as constant-current terminals. With a specific current flowing in the constant-current terminals, measurements are made of a potential difference between the terminals to be measured, and from a variation in the potential difference the depth of cracking of the cladding tube surface is presumed to determine the stress corrosion cracking susceptibility of the cladding tube. To check the entire surface of the cladding tube, the cladding tube is moved by each block in the circumferential direction by a contact changeover system, repeating the measurements of the potential difference. Contact type electrodes are secured with an insulator and held in uniform contact with the cladding tube by a spring. It is detachable by use of a locking system and movable as desired. Thus the stress corrosion cracking susceptibility can be determined without mounting the cladding tube through and also a fuel failure can be prevented. (Horiuchi, T.)

  17. Transparent conducting oxide clad limited area epitaxy semipolar III-nitride laser diodes

    KAUST Repository

    Myzaferi, A.

    2016-08-11

    The bottom cladding design of semipolar III-nitride laser diodes is limited by stress relaxation via misfit dislocations that form via the glide of pre-existing threading dislocations (TDs), whereas the top cladding is limited by the growth time and temperature of the p-type layers. These design limitations have individually been addressed by using limited area epitaxy (LAE) to block TD glide in n-type AlGaN bottom cladding layers and by using transparent conducting oxide (TCO) top cladding layers to reduce the growth time and temperature of the p-type layers. In addition, a TCO-based top cladding should have significantly lower resistivity than a conventional p-type (Al)GaN top cladding. In this work, LAE and indium-tin-oxide cladding layers are used simultaneously in a (202⎯⎯1) III-nitride laser structure. Lasing was achieved at 446 nm with a threshold current density of 8.5 kA/cm2 and a threshold voltage of 8.4 V.

  18. Mechanical Properties of Advanced Gas-Cooled Reactor Stainless Steel Cladding After Irradiation

    Science.gov (United States)

    Degueldre, Claude; Fahy, James; Kolosov, Oleg; Wilbraham, Richard J.; Döbeli, Max; Renevier, Nathalie; Ball, Jonathan; Ritter, Stefan

    2018-05-01

    The production of helium bubbles in advanced gas-cooled reactor (AGR) cladding could represent a significant hazard for both the mechanical stability and long-term storage of such materials. However, the high radioactivity of AGR cladding after operation presents a significant barrier to the scientific study of the mechanical properties of helium incorporation, said cladding typically being analyzed in industrial hot cells. An alternative non-active approach is to implant He2+ into unused AGR cladding material via an accelerator. Here, a feasibility study of such a process, using sequential implantations of helium in AGR cladding steel with decreasing energy is carried out to mimic the buildup of He (e.g., 50 appm) that would occur for in-reactor AGR clad in layers of the order of 10 µm in depth, is described. The implanted sample is subsequently analyzed by scanning electron microscopy, nanoindentation, atomic force and ultrasonic force microscopies. As expected, the irradiated zones were affected by implantation damage (steel cladding is retained despite He2+ implantation.

  19. An allowable cladding peak temperature for spent nuclear fuels in interim dry storage

    Science.gov (United States)

    Cha, Hyun-Jin; Jang, Ki-Nam; Kim, Kyu-Tae

    2018-01-01

    Allowable cladding peak temperatures for spent fuel cladding integrity in interim dry storage were investigated, considering hydride reorientation and mechanical property degradation behaviors of unirradiated and neutron irradiated Zr-Nb cladding tubes. Cladding tube specimens were heated up to various temperatures and then cooled down under tensile hoop stresses. Cool-down specimens indicate that higher heat-up temperature and larger tensile hoop stress generated larger radial hydride precipitation and smaller tensile strength and plastic hoop strain. Unirradiated specimens generated relatively larger radial hydride precipitation and plastic strain than did neutron irradiated specimens. Assuming a minimum plastic strain requirement of 5% for cladding integrity maintenance in interim dry storage, it is proposed that a cladding peak temperature during the interim dry storage is to keep below 250 °C if cladding tubes are cooled down to room temperature.

  20. Prediction of cladding life in waste package environments

    International Nuclear Information System (INIS)

    McCoy, J.K.; Doering, T.W.

    1994-01-01

    Fuel cladding can potentially provide longer containment or slower release of radionuclides from spent fuel after geologic disposal. To predict the amount of benefit that cladding can provide, we surveyed degradation modes and developed a model for creep rupture by diffusion-controlled cavity growth, the mechanism that several authors have concluded is the most important. In this mechanism, voids nucleate on the grain boundaries and grow by diffusion of vacancies along the grain boundaries to the voids. When a certain fraction of the grain boundary area is covered with voids, the material fails. An analytic expression for cladding lifetime is developed. Besides materials constants, the predicted lifetime depends on the temperature history, the hoop stress in the cladding, the spacing between void nuclei, and the micro-structure. The inclusion of microstructure is a significant new feature of the model; this feature is used to help avoid excessive conservatism. The model is applied in a sample calculation for disposal of spent fuel, and the practice of using temperature limits to evaluate repository designs is examined

  1. Semi-empirical corrosion model for Zircaloy-4 cladding

    International Nuclear Information System (INIS)

    Nadeem Elahi, Waseem; Atif Rana, Muhammad

    2015-01-01

    The Zircaloy-4 cladding tube in Pressurize Water Reactors (PWRs) bears corrosion due to fast neutron flux, coolant temperature, and water chemistry. The thickness of Zircaloy-4 cladding tube may be decreased due to the increase in corrosion penetration which may affect the integrity of the fuel rod. The tin content and inter-metallic particles sizes has been found significantly in the magnitude of oxide thickness. In present study we have developed a Semiempirical corrosion model by modifying the Arrhenius equation for corrosion as a function of acceleration factor for tin content and accumulative annealing. This developed model has been incorporated into fuel performance computer code. The cladding oxide thickness data obtained from the Semi-empirical corrosion model has been compared with the experimental results i.e., numerous cases of measured cladding oxide thickness from UO 2 fuel rods, irradiated in various PWRs. The results of the both studies lie within the error band of 20μm, which confirms the validity of the developed Semi-empirical corrosion model. Key words: Corrosion, Zircaloy-4, tin content, accumulative annealing factor, Semi-empirical, PWR. (author)

  2. Delayed hydride cracking of Zircaloy-4 fuel cladding

    International Nuclear Information System (INIS)

    Pizarro, Luis M.; Fernandez, Silvia; Lafont, Claudio; Mizrahi, Rafael; Haddad, Roberto

    2007-01-01

    Crack propagation rates, grown by the delayed hydride cracking mechanism, were measured in Zircaloy-4 fuel cladding, according to a Coordinated Research Project (CRP) sponsored by the International Atomic Energy Agency (IAEA). During the first stage of the program a Round Robin Testing was performed on fuel cladding samples provided by Studsvik (Sweden), of the type used in PWR reactors. Crack growth in the axial direction is obtained through the specially developed 'pin load testing' (PLT) device. In these tests, crack propagation rates were determined at 250 C degrees on several samples of the material described above, obtaining a mean value of about 2.5 x 10 -8 m s -1 . The results were analyzed and compared satisfactorily with those obtained by the other laboratories participating in the CRP. At the present moment, similar tests on CANDU and Atucha I type fuel cladding are being performed. It is thought that the obtained results will give valuable information concerning the analysis of possible failures affecting fuel cladding under reactor operation. (author) [es

  3. Laser cladding of quasicrystalline alloys

    International Nuclear Information System (INIS)

    Audebert, F.; Sirkin, H.; Colaco, R.; Vilar, R.

    1998-01-01

    Quasicrystals are a new class of ordinated structures with metastable characteristics room temperature. Quasicrystalline phases can be obtained by rapid quenching from the melt of some alloys. In general, quasicrystals present properties which make these alloys promising for wear and corrosion resistant coatings applications. During the last years, the development of quasicrystalline coatings by means of thermal spray techniques has been impulsed. However, no references have been found of their application by means of laser techniques. In this work four claddings of quasicrystalline compositions formed over aluminium substrate, produced by a continuous CO 2 laser using simultaneous powders mixture injection are presented. The claddings were characterized by X ray diffraction, scanning electron microscopy and Vickers microhardness. (Author) 18 refs

  4. Cladding for transverse-pumped solid-state laser

    Science.gov (United States)

    Byer, Robert L. (Inventor); Fan, Tso Y. (Inventor)

    1989-01-01

    In a transverse pumped, solid state laser, a nonabsorptive cladding surrounds a gain medium. A single tranverse mode, namely the Transverse Electromagnetic (TEM) sub 00 mode, is provided. The TEM sub 00 model has a cross sectional diameter greater than a transverse dimension of the gain medium but less than a transverse dimension of the cladding. The required size of the gain medium is minimized while a threshold for laser output is lowered.

  5. ZIRCONIUM-CLADDING OF THORIUM

    Science.gov (United States)

    Beaver, R.J.

    1961-11-21

    A method of cladding thorium with zirconium is described. The quality of the bond achieved between thorium and zirconium by hot-rolling is improved by inserting and melting a thorium-zirconium alloy foil between the two materials prior to rolling. (AEC)

  6. Hydrogenation and high temperature oxidation of Zirconium claddings

    International Nuclear Information System (INIS)

    Novotny, T.; Perez-Feró, E.; Horváth, M.

    2015-01-01

    In the last few years a new series of experiments started for supporting the new LOCA criteria, considering the proposals of US NRC. The effects which can cause the embrittlement of VVER fuel claddings were reviewed and evaluated in the framework of the project. The purpose of the work was to determine how the fuel cladding’s hydrogen uptake under normal operating conditions, effect the behavior of the cladding under LOCA conditions. As a first step a gas system equipment with gas valves and pressure gauge was built, in which the zirconium alloy can absorb hydrogen under controlled conditions. In this apparatus E110 (produced by electrolytic method, currently used at Paks NPP) and E110G (produced by a new technology) alloys were hydrogenated to predetermined hydrogen contents. According the results of ring compression tests the E110G alloys lose their ductility above 3200 ppm hydrogen content. This limit can be applied to determine the ductile-brittle transition of the nuclear fuel claddings. After the hydrogenation, high temperature oxidation experiments were carried out on the E110G and E110 samples at 1000 °C and 1200 °C. 16 pieces of E110G and 8 samples of E110 with 300 ppm and 600 ppm hydrogen content were tested. The oxidation of the specimens was performed in steam, under isothermal conditions. Based on the ring compression tests load-displacement curves were recorded. The main objective of the compression tests was to determine the ductile-brittle transition. These results were compared to the results of our previous experiments where the samples did not contain hydrogen. The original claddings showed more ductile behavior than the samples with hydrogen content. The higher hydrogen content resulted in a more brittle mechanical behavior. However no significant difference was observed in the oxidation kinetics of the same cladding types with different hydrogen content. The experiments showed that the normal operating hydrogen uptake of the fuel claddings

  7. A regression model for zircaloy cladding in-reactor creepdown: Database, development, and assessment

    International Nuclear Information System (INIS)

    Shah, V.N.; Tolli, J.E.; Lanning, D.

    1987-01-01

    The paper presents a cladding deformation model developed to analyze cladding creepdown during steady state operation in a PWR and a BWR. This model accounts for variation in the zircaloy cladding heat treatments - cold worked and stress relieved material typically used in a PWR and fully recrystallized material typically used in a BWR. This model calculates cladding creepdown as a function of hoop stress, fast neutron flux, exposure time, and temperature. The paper also presents a comparison between cladding creep calculations by the creepdown model and corresponding test results from the KWU/CE program. ORNL HOBBIE experiments, and EPRI/Westinghouse Engineering cooperative project. The comparisons show that the creepdown model calculates cladding creep strains reasonably well. (orig./HP)

  8. Crystalline Chromium Doped Aluminum Oxide (RUBY) Use as a Luminescent Screen for Proton Beams

    International Nuclear Information System (INIS)

    Brown, K. A.; Gassner, D. M.

    1999-01-01

    In the search for a better luminescent screen material, the authors tested pieces of mono-crystalline chromium doped aluminum oxide (more commonly known as a ruby) using a 24 GeV proton beam. Due to the large variations in beam intensity and species which are run at the Alternating Gradient Synchrotron (AGS), they hope to find a material which can sufficiently luminesce, is compatible in vacuum, and maintain its performance level over extended use. Results from frame grabbed video camera images using a variety of neutral density filters are presented

  9. Study of cladding toughness in a pressure vessel steel water reactor

    International Nuclear Information System (INIS)

    Soulat, P.; Al Mundheri, M.

    1984-12-01

    Toughness of cladding and pressure vessel steel were determined at different temperatures in order to appreciate the participation of cladding resistance against crack propagation. The toughness of cladding is comparable with typical results on austenitic welds. The test on covered CT specimens shows the possibility of having a relatively good prevision of the behaviour of a coated structure

  10. Raman probes based on optically-poled double-clad fiber and coupler

    DEFF Research Database (Denmark)

    Brunetti, Anna Chiara; Margulis, Walter; Rottwitt, Karsten

    2012-01-01

    of a sample of dimethyl sulfoxide (DMSO), when illuminating the waveguide with 1064nm laser light. The Raman signal is collected in the inner cladding, from which it is retrieved with either a bulk dichroic mirror or a double-clad fiber coupler. The coupler allows for a substantial reduction of the fiber......Two fiber Raman probes are presented, one based on an optically-poled double-clad fiber and the second based on an optically-poled double-clad fiber coupler respectively. Optical poling of the core of the fiber allows for the generation of enough 532nm light to perform Raman spectroscopy...

  11. Corrosion effect of fast reactor fuel claddings on their mechanical properties

    International Nuclear Information System (INIS)

    Davydov, E.F.; Krykov, F.N.; Shamardin, V.K.

    1985-01-01

    Fast reactor fuel cladding corrosion effect on its mechanical properties was investigated. UO 2 fuel elements were irradiated in the BOP-60 reactor at the linear heat rate of 42 kw/m. Fuel cladding is made of stainless steel OKh16N15M3BR. Calculated maximum cladding temperature is 920 K. Neutron fluence in the central part of fuel elements is 6.3x10 26 m+H- 2 . To investigate the strength changes temperature dependence of corrossion depth, cladding strength reduction factors was determined. Samples plasticity reduction with corrosion layer increase is considered to be a characteristic feature

  12. Real-time laser cladding control with variable spot size

    Science.gov (United States)

    Arias, J. L.; Montealegre, M. A.; Vidal, F.; Rodríguez, J.; Mann, S.; Abels, P.; Motmans, F.

    2014-03-01

    Laser cladding processing has been used in different industries to improve the surface properties or to reconstruct damaged pieces. In order to cover areas considerably larger than the diameter of the laser beam, successive partially overlapping tracks are deposited. With no control over the process variables this conduces to an increase of the temperature, which could decrease mechanical properties of the laser cladded material. Commonly, the process is monitored and controlled by a PC using cameras, but this control suffers from a lack of speed caused by the image processing step. The aim of this work is to design and develop a FPGA-based laser cladding control system. This system is intended to modify the laser beam power according to the melt pool width, which is measured using a CMOS camera. All the control and monitoring tasks are carried out by a FPGA, taking advantage of its abundance of resources and speed of operation. The robustness of the image processing algorithm is assessed, as well as the control system performance. Laser power is decreased as substrate temperature increases, thus maintaining a constant clad width. This FPGA-based control system is integrated in an adaptive laser cladding system, which also includes an adaptive optical system that will control the laser focus distance on the fly. The whole system will constitute an efficient instrument for part repair with complex geometries and coating selective surfaces. This will be a significant step forward into the total industrial implementation of an automated industrial laser cladding process.

  13. Residual stresses in weld-clad reactor pressure vessel steel

    International Nuclear Information System (INIS)

    Bertram, W.

    1975-01-01

    Cladding of low alloy nuclear reactor pressure vessel steel with austenitic stainless steel introduces in heavy section components high residual stresses which may cause microcrack formation in stress relief heat treatment. In this investigation an attempt is made to contribute to the solution of the stress relief cracking problem by determining quantitatively the magnitude and distribution of the residual stresses after cladding and after subsequent stress relief heat treatment. The distribution of residual stresses was determined on the basis of a combined experimental-mathematical procedure. Heavy section plate specimens of low alloy steel as base material were given an austenitic monolayer-cladding using the techniques of strip electrode and plasma hot wire cladding, respectively. A number of plates was stress relief heat treated. Starting from the cladded surface the thickness of the plates was reduced by subsequent removal of layers of material. The elastic strain reaction to the removal of each layer was measured by strain gauges. From the data obtained the biaxial residual stress distribution was computed as a function of thickness using relations which are derived for this particular case. In summary, lower residual stresses are caused by reduced thickness of the components. As the heat input, is decreased at identical base material thickness, the residual stresses are lowered also. The height of the tensile residual stress peak, however, remains approximataly constant. In stress relief annealed condition the residual stresses in the cladding are in tension; in the base material the residual stresses are negligibly small

  14. Study on the improvement of nuclear fuel cladding reliability

    International Nuclear Information System (INIS)

    Rheem, Karp Soon; Han, Jung Ho; Jeong, Yong Hwan; Lee, Deok Hyun

    1987-12-01

    In order to improve the nuclear fuel cladding reliability for high burn-up fuels, the corrosion resistance of laser beam surface treated and β-quenched zircaloys and the mechanical characteristics including fatigue, burst, and out-of-pile PCMI characteristics of heat treated zircaloys were investigated. In addition, the inadiation characteristics of Ko-Ri reactor fuel claddings was examined. It was found that the wasteside corrosion resistance of commercial zircaloys was improved remarkably by laser beam surface treatment. The out-of-pile transient cladding failures were investigated in terms of hoop stress versus time-to-failures by means of mandrel loading units at 25 deg C and 325 deg C. Fatigue characteristics of the β-quenched and as-received zircaloy cladding were investigated by using an internal oil pressurization method which can simulate the load-following operation cycle. The results were in good agreement with the existing data obtained by conventional methods for commercial zircaloys. Burst tests were performed with commercial and the β-quenched zircaloys in high pressure argon gas atmosphere as a function of burst temperature. The burst stress decreased linearly in the α phase region up to 600 deg C and hereafter the decrement of the burst stress decreased gradually with temperature in the β-phase region. For the first time, the burst characteristic of the irradiated zircaloy-4 cladding tubes released from Ko-Ri nuclear power unit 1 was investigated, and attempts were made to trace the cause of cladding failures by examining the failed structure and fret marks by debris. (Author)

  15. Annealing studies of Zircaloy-2 cladding at 580-850 deg C

    International Nuclear Information System (INIS)

    Hindle, E.D.

    1983-01-01

    For fuel rod cladding it is important to determine if prior metallurgical condition combined with irradiation damage can influence high temperature deformation, because studies of such deformation are required to produce data for the cladding ballooning models which are used in analysing loss-of-coolant (LOCA). If the behaviour of all cladding conditions during a LOCA can be represented by, say, the annealed condition, then a great deal of experimental work on a multiplicity of cladding conditions can be avoided. By examining the metallographic structure and hardness, the present study determines the time required in the range 580 to 850 deg C for returning Zircaloy cladding to the annealed condition, so that for any transient a point can be specified where the material should have annealed. An equation has been derived to give this information. (author)

  16. Kilowatt-level cladding light stripper for high-power fiber laser.

    Science.gov (United States)

    Yan, Ping; Sun, Junyi; Huang, Yusheng; Li, Dan; Wang, Xuejiao; Xiao, Qirong; Gong, Mali

    2017-03-01

    We designed and fabricated a high-power cladding light stripper (CLS) by combining a fiber-etched CLS with a cascaded polymer-recoated CLS. The etched fiber reorganizes the numerical aperture (NA) distribution of the cladding light, leading to an increase in the leakage power and a flatter distribution of the leakage proportion in the cascaded polymer-recoated fiber. The index distribution of the cascaded polymer-recoated fiber is carefully designed to ensure an even leakage of cladding light. More stages near the index of 1.451 are included to disperse the heat. The CLS is capable of working consistently under 1187 W of cladding light with an attenuation of 26.59 dB, and the highest local temperature is less than 35°C.

  17. Technical basis for storage of Zircaloy-clad spent fuel in inert gases

    International Nuclear Information System (INIS)

    Johnson, A.B. Jr.; Gilbert, E.R.

    1983-09-01

    The technical bases to establish safe conditions for dry storage of Zircaloy-clad fuel are summarized. Dry storage of fuel with zirconium alloy cladding has been licensed in Canada, the Federal Republic of Germany, and Switzerland. Dry storage demonstrations, hot cell tests, and modeling have been conducted using Zircaloy-clad fuel. The demonstrations have included irradiated boiling water reactor, pressurized heavy-water reactor, and pressurized water reactor fuel assemblies. Irradiated fuel has been emplaced in and retrieved from metal casks, dry wells, silos, and a vault. Dry storage tests and demonstrations have involved about 15,000 fuel rods, and about 5600 rods have been monitored during dry storage in inert gases with maximum cladding temperatures ranging from 50 to 570 0 C. Although some tests and demonstrations are still in progress, there is currently no evidence that any rods exposed to inert gases have failed (one PWR rod exposed to an air cover gas failed at about 270 0 C). Based on this favorable experience, it is concluded that there is sufficient information on fuel rod behavior, storage conditions, and potential cladding failure mechanisms to support licensing of dry storage in the US. This licensing position includes a requirement for inert cover gases and a maximum cladding temperature guideline of 380 0 C for Zircaloy-clad fuel. Using an inert cover gas assures that even if fuel with cladding defects were placed in dry storage, or if defects develop during storage, the defects would not propagate. Tests and demonstrations involving Zircaloy-clad rods and assemblies with maximum cladding temperatures above 400 0 C are in progress. When the results from these tests have been evaluated, the viability of higher temperature limits should be examined. Acceptable conditions for storage in air and dry storage of consolidated fuel are issues yet to be resolved

  18. Analysis of the stress raising action of flaws in laser clad deposits

    International Nuclear Information System (INIS)

    Alam, M.M.; Kaplan, A.F.H.; Tuominen, J.; Vuoristo, P.; Miettinen, J.; Poutala, J.; Näkki, J.; Junkala, J.; Peltola, T.; Barsoum, Z.

    2013-01-01

    Highlights: ► Laser clad defects are 0D-pores/inclusions, 1D-clad waviness or 2D-planar defects. ► Surface pore of laser clad bar initiates fatigue cracks. ► Side edge surface pores are more critical than in-clad surface pores. ► Smaller notch radius and angle of as-laser clad surface raises stress significantly. ► Planar inner defects grow faster towards surface. - Abstract: Fatigue cracking of laser clad cylindrical and square section bars depends upon a variety of factors. This paper presents Finite Element Analysis (FEA) of the different macro stress fields generated as well as stress raisers created by laser cladding defects for four different fatigue load conditions. As important as the defect types are their locations and orientations, categorized into zero-, one- and two-dimensional defects. Pores and inclusions become critical close to surfaces. The performance of as-clad surfaces can be governed by the sharpness of surface notches and planar defects like hot cracks or lack-of-fusion (LOF) are most critical if oriented vertically, transverse to the bar axis. The combination of the macro stress field with the defect type and its position and orientation determines whether it is the most critical stress raiser. Based on calculated cases, quantitative and qualitative charts were developed as guidelines to visualize the trends of different combinations

  19. Iodine induced stress corrosion cracking of zircaloy cladding tubes

    International Nuclear Information System (INIS)

    Brunisholz, L.; Lemaignan, C.

    1984-01-01

    Iodine is considered as one of the major fission products responsible for PCI failure of Zry cladding by stress corrosion cracking (SCC). Usual analysis of SCC involves both initiation and growth as sequential processes. In order to analyse initiation and growth independently and to be able to apply the procedures of fracture mechanics to the design of cladding, with respect to SCC, stress corrosion tests of Zry cladding tubes were undertaken with a small fatigue crack (approx. 200 μm) induced in the inner wall of each tube before pressurization. Details are given on the techniques used to induce the fatigue crack, the pressurization test procedure and the results obtained on stress releaved or recrystallized Zry 4 tubings. It is shown that the Ksub(ISCC) values obtained during these experiments are in good agreement with those obtained from large DCB fracture mechanics samples. Conclusions will be drawn on the applicability of linear elastic fracture mechanics (LEFM) to cladding design and related safety analysis. The work now underway is aimed at obtaining better understanding of the initiation step. It includes the irradiation of Zry samples with heavy ions to simulate the effect of recoil fragments implanted in the inner surface of the cladding, that could create a brittle layer of about 10 μm

  20. Mechanical performance of SiC three-layer cladding in PWRs

    Energy Technology Data Exchange (ETDEWEB)

    Angelici Avincola, Valentina, E-mail: valentina.avincola@kit.edu [Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Guenoun, Pierre, E-mail: pguenoun@mit.edu [Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139 (United States); Shirvan, Koroush, E-mail: kshirvan@mit.edu [Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139 (United States)

    2016-12-15

    Highlights: • FEA calculations of the stress distribution in SiC three-layer cladding. • Simulation of SiC mechanical performance under operation and accident conditions. • Failure probability analysis of SiC in steady-state and accident conditions. - Abstract: The silicon carbide cladding concept is currently under investigation with regard to increasing the accident tolerance and economic performance of light-water reactor fuels. In this work, the stress fields in the multi-layered silicon carbide cladding for LWR fuels are calculated using the commercial finite element analysis software ADINA. The material properties under irradiation are implemented as a function of temperature. The cladding is studied under operating and accident conditions, specifically for the loss-of-coolant accident (LOCA). During the LOCA, the blowdown and the reflood phases are modeled, including the quench waterfront. The calculated stresses along the cladding thickness show a high sensitivity to the assumptions regarding material properties. The resulting stresses are compared with experimental data and the probability of failure is calculated considering a Weibull model.

  1. Performance of refractory alloy-clad fuel pins

    International Nuclear Information System (INIS)

    Dutt, D.S.; Cox, C.M.; Millhollen, M.K.

    1984-12-01

    This paper discusses objectives and basic design of two fuel-cladding tests being conducted in support of SP-100 technology development. Two of the current space nuclear power concepts use conventional pin type designs, where a coolant removes the heat from the core and transports it to an out-of-core energy conversion system. An extensive irradiation testing program was conducted in the 1950's and 1960's to develop fuel pins for space nuclear reactors. The program emphasized refractory metal clad uranium nitride (UN), uranium carbide (UC), uranium oxide (UO 2 ), and metal matrix fuels (UCZr and BeO-UO 2 ). Based on this earlier work, studies presented here show that UN and UO 2 fuels in conjunction with several refractory metal cladding materials demonstrated high potential for meeting space reactor requirements and that UC could serve as an alternative but higher risk fuel

  2. Laser cladding of Colmonoy 6 powder on AISI316L austenitic stainless steel

    International Nuclear Information System (INIS)

    Zhang, H.; Shi, Y.; Kutsuna, M.; Xu, G.J.

    2010-01-01

    Stainless steels are widely used in nuclear power plant due to their good corrosion resistance, but their wear resistance is relatively low. Therefore, it is very important to improve this property by surface treatment. This paper investigates cladding Colmonoy 6 powder on AISI316L austenitic stainless steel by CO 2 laser. It is found that preheating is necessary for preventing cracking in the laser cladding procedure and 450 o C is the proper preheating temperature. The effects of laser power, traveling speed, defocusing distance, powder feed rate on the bead height, bead width, penetration depth and dilution are investigated. The friction and wear test results show that the friction coefficient of specimens with laser cladding is lower than that of specimens without laser cladding, and the wear resistance of specimens has been increased 53 times after laser cladding, which reveals that laser cladding layer plays roles on wear resistance. The microstructures of laser cladding layer are composed of Ni-rich austenitic, boride and carbide.

  3. Cladding of Advanced Al Alloys Employing Friction Stir Welding

    NARCIS (Netherlands)

    van der Stelt, A.A.; Bor, Teunis Cornelis; Geijselaers, Hubertus J.M.; Akkerman, Remko; van den Boogaard, Antonius H.

    2013-01-01

    In this paper an advanced solid state cladding process, based on Friction Stir Welding, is presented. The Friction Surface Cladding (FSC) technology enables the deposition of a solid-state coating using filler material on a substrate with good metallurgical bonding. A relatively soft AA1050 filler

  4. Characterization of SiC–SiC composites for accident tolerant fuel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Deck, C.P., E-mail: Christian.Deck@ga.com; Jacobsen, G.M.; Sheeder, J.; Gutierrez, O.; Zhang, J.; Stone, J.; Khalifa, H.E.; Back, C.A.

    2015-11-15

    Silicon carbide (SiC) is being investigated for accident tolerant fuel cladding applications due to its high temperature strength, exceptional stability under irradiation, and reduced oxidation compared to Zircaloy under accident conditions. An engineered cladding design combining monolithic SiC and SiC–SiC composite layers could offer a tough, hermetic structure to provide improved performance and safety, with a failure rate comparable to current Zircaloy cladding. Modeling and design efforts require a thorough understanding of the properties and structure of SiC-based cladding. Furthermore, both fabrication and characterization of long, thin-walled SiC–SiC tubes to meet application requirements are challenging. In this work, mechanical and thermal properties of unirradiated, as-fabricated SiC-based cladding structures were measured, and permeability and dimensional control were assessed. In order to account for the tubular geometry of the cladding designs, development and modification of several characterization methods were required.

  5. Manipulation of Zeeman coherence in solids at room temperature: Ramsey interference in the coherent-population-trapping spectrum of ruby

    International Nuclear Information System (INIS)

    Kolesov, Roman; Scully, Marlan O.; Kocharovskaya, Olga

    2006-01-01

    Coherent population trapping (CPT) in a three-level atomic medium pumped by two subsequent short optical pulses is considered under the condition of negligible population decay from the excited optical state. It is shown that the amount of atomic population transferred to the excited state by the combined action of the pulses strongly depends on the phase of the ground-state coherence excited by the first pulse at the arrival time of the second pulse. Oscillatory behavior of optical excitation efficiency on the time delay between the pulses is predicted. It is also shown that saturating optical pulses can produce population inversion in a resonantly pumped quasi-two-level system. A class of solid materials in which the predicted phenomena can be observed at room temperature is found. It includes some rare-earth and transition-metal doped dielectric crystals where Orbach relaxation between ground-state Zeeman states is suppressed: ruby, alexandrite, and several others. On the basis of the theoretical predictions, experimental observation of Ramsey fringes in CPT spectrum of ruby is reported

  6. Analysis of fuel cladding chemical interaction in mixed oxide fuel pins

    International Nuclear Information System (INIS)

    Weber, J.W.; Dutt, D.S.

    1976-01-01

    An analysis is presented of the observed interaction between mixed oxide 75 wt percent UO 2 --25 wt percent PuO 2 fuel and 316--20 percent CW stainless steel cladding in LMFBR type fuel pins irradiated in EBR-II. A description is given of the test pins and their operating conditions together with, metallographic observations and measurements of the fuel/cladding reaction, and a correlation equation is developed relating depth of cladding attack to temperature and burnup. Some recent data on cladding reaction in fuel pins with low initial O/M in the fuel are given and compared with the correlation equation curves

  7. Pressurized water reactor fuel performance problems connected with fuel cladding corrosion processes

    International Nuclear Information System (INIS)

    Dobrevski, I.; Zaharieva, N.

    2008-01-01

    Generally, Pressurized Water Reactor (WWER, PWR) Fuel Element Performance is connected with fuel cladding corrosion and crud deposition processes. By transient to extended fuel cycles in nuclear power reactors, aiming to achieve higher burnup and better fuel utilization, the role of these processes increases significantly. This evolution modifies the chemical and electrochemical conditions in the reactor primary system, including change of fuel claddings' environment. The higher duty cores are always attended with increased boiling (sub-cooled nucleate boiling) mainly on the feed fuel assemblies. This boiling process on fuel cladding surfaces can cause different consequences on fuel element cladding's environment characteristics. In the case of boiling at the cladding surfaces without or with some cover of corrosion product deposition, the behavior of gases dissolved in water phase is strongly influenced by the vapor generation. The increase of vapor partial pressure will reduce the partial pressures of dissolved gases and will cause their stripping out. By these circumstances the concentrations of dissolved gases in cladding wall water layer can dramatically decrease, including also the case by which all dissolved gases to be stripped out. On the other hand it is known that the hydrogen is added to primary coolant in order to avoid the production of oxidants by radiolysis of water. It is clear that if boiling strips out dissolved hydrogen, the creation of oxidizing conditions at the cladding surfaces will be favored. In this case the local production of oxidants will be a result from local processes of water radiolysis, by which not only both oxygen (O 2 ) and hydrogen (H 2 ) but also hydrogen peroxide (H 2 O 2 ) will be produced. While these hydrogen and oxygen will be stripped out preferentially by boiling, the bigger part of hydrogen peroxide will remain in wall water phase and will act as the most important factor for creation of oxidizing conditions in fuel

  8. Crack resistance curves determination of tube cladding material

    Energy Technology Data Exchange (ETDEWEB)

    Bertsch, J. [Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland)]. E-mail: johannes.bertsch@psi.ch; Hoffelner, W. [Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland)

    2006-06-30

    Zirconium based alloys have been in use as fuel cladding material in light water reactors since many years. As claddings change their mechanical properties during service, it is essential for the assessment of mechanical integrity to provide parameters for potential rupture behaviour. Usually, fracture mechanics parameters like the fracture toughness K {sub IC} or, for high plastic strains, the J-integral based elastic-plastic fracture toughness J {sub IC} are employed. In claddings with a very small wall thickness the determination of toughness needs the extension of the J-concept beyond limits of standards. In the paper a new method based on the traditional J approach is presented. Crack resistance curves (J-R curves) were created for unirradiated thin walled Zircaloy-4 and aluminium cladding tube pieces at room temperature using the single sample method. The procedure of creating sharp fatigue starter cracks with respect to optical recording was optimized. It is shown that the chosen test method is appropriate for the determination of complete J-R curves including the values J {sub 0.2} (J at 0.2 mm crack length), J {sub m} (J corresponding to the maximum load) and the slope of the curve.

  9. Optical Cladding Waveguides in Dielectric Crystals Produced by Femtosecond Laser Inscription

    Directory of Open Access Journals (Sweden)

    Chen Feng

    2013-11-01

    Full Text Available In this work, the recent progress of our research on optical cladding waveguides in dielectric crystals produced by femtosecond laser inscription has been overviewed. With different scales at cross sections, the cladding waveguides support guidance from single mode to highly multi-modes, and work for wavelength till mid-infrared regimes. Applications of the fabricated cladding structures as new integrated light sources are introduced.

  10. Core temperature in super-Gaussian pumped air-clad photonic ...

    Indian Academy of Sciences (India)

    In this paper we investigate the core temperature of air-clad photonic crystal fiber (PCF) lasers pumped by a super-Gaussian (SG) source of order four. The results are compared with conventional double-clad fiber (DCF) lasers pumped by the same super-Gaussian and by top-hat pump profiles.

  11. Study on microstructure and high temperature wear resistance of laser cladded nuclear valve clack

    International Nuclear Information System (INIS)

    Zhang Chunliang; Chen Zichen

    2002-01-01

    Laser cladding of Co-base alloy on the nuclear valve-sealing surface are performed with a 5 kW CO 2 transverse flowing laser. The microstructure and the high temperature impact-slide wear resistance of the laser cladded coating and the plasma cladded coating are studied. The results show that the microstructure, the dilution rate and the high temperature impact-slide wear resistance of the laser cladded coating have obvious advantages over the spurt cladding processing

  12. Bragg Gratings, Photosensitivity, and Poling in Glass Fibers and Waveguides: Applications and Fundamentals. Technical Digest Series, Volume 17

    Science.gov (United States)

    1998-05-26

    Figure 2 shows LE spectra in preform B which is composed uniquely by cladding material. The excitation of luminescence has been achieved by...Ge02 concentration, i.e. larger than 20 mol%. Figure 3 shows LE spectra for various luminescence wavelengths collected from preform C. In that...doped fluoride glasses, F. Smektala, R. Sramek, J. Lucas, Laboratoire des Verres et Ceramiques, Universite de Rennes I, 35000 Rennes, France; W. Xie, P

  13. Development of Silicide Coating on Molybdenum Alloy Cladding

    International Nuclear Information System (INIS)

    Lim, Woojin; Ryu, Ho Jin

    2015-01-01

    The molybdenum alloy is considered as one of the accident tolerant fuel (ATF) cladding materials due to its high temperature mechanical properties. However, molybdenum has a weak oxidation resistance at elevated temperatures. To modify the oxidation resistance of molybdenum cladding, silicide coating on the cladding is considered. Molybdenum silicide layers are oxidized to SiO 2 in an oxidation atmosphere. The SiO 2 protective layer isolates the substrate from the oxidizing atmosphere. Pack cementation deposition technique is widely adopted for silicide coating for molybdenum alloys due to its simple procedure, homogeneous coating quality and chemical compatibility. In this study, the pack cementation method was conducted to develop molybdenum silicide layers on molybdenum alloys. It was found that the Mo 3 Si layer was deposited on substrate instead of MoSi 2 because of short holding time. It means that through the extension of holding time, MoSi 2 layer can be formed on molybdenum substrate to enhance the oxidation resistance of molybdenum. The accident tolerant fuel (ATF) concept is to delay the process following an accident by reducing the oxidation rate at high temperatures and to delay swelling and rupture of fuel claddings. The current research for Atf can be categorized into three groups: First, modification of existing zirconium-based alloy cladding by improving the high temperature oxidation resistance and strength. Second, replacing Zirconium based alloys with alternative metallic materials such as refractory elements with high temperature oxidation resistance and strength. Third, designing alternative fuel structures using ceramic and composite systems

  14. Elastic plastic analysis of fuel element assemblies - hexagonal claddings and fuel rods

    International Nuclear Information System (INIS)

    Mamoun, M.M.; Wu, T.S.; Chopra, P.S.; Rardin, D.C.

    1979-01-01

    Analytical studies have been conducted to investigate the structural, thermal, and mechanical behavior of fuel rods, claddings and fuel element assemblies of several designs for a conceptual Safety Test Facility (STF). One of the design objectives was to seek a geometrical configuration for a clad by maximizing the volume fraction of fuel and minimizing the resultant stresses set-up in the clad. The results of studies conducted on various geometrical configurations showed that the latter design objective can be achieved by selecting a clad of an hexagonal geometry. The analytical studies necessitated developing solutions for determining the stresses, strains, and displacements experienced by fuel rods and an hexagonal cladding subjected to thermal fuel-bowing loads acting on its internal surface, the external pressure of the coolant, and elevated temperatures. This paper presents some of the initially formulated analytical methods and results. It should be emphasized that the geometrical configuration considered in this paper may not necessarily be similar to that of the final design. Several variables have been taken into consideration including cladding thickness, the dimensions of the fuel rod, the temperature of the fuel and cladding, the external pressure of the cooling fluid, and the mechanical strength properties of fuel and cladding. A finite-element computer program, STRAW Code, has also been employed to generate several numerical results which have been compared with those predicted by employing the initially formulated solutions. The theoretically predicted results are in good agreement with those of the STRAW Code. (orig.)

  15. Asymptotic Method for Cladding Stress Evaluation in PCMI

    International Nuclear Information System (INIS)

    Kim, Hyungkyu; Kim, Jaeyong; Yoon, Kyungho; Lee, Kanghee; Kang, Heungseok

    2014-01-01

    A PCMI (Pellet Cladding Mechanical Interaction) failure was first reported in the GETR (General Electric Test Reactor) at Vacellitos in 1963, and such failures are still occurring. Since the high stress values in the cladding tube has been of a crucial concern in PCMI studies, there have been many researches on the stress analysis of a cladding tube pressed by a pellet. Typical works can be found in some references. It has often been assumed, however, that the cracks in the pellet were equally spaced and the pellet was a rigid body. In addition, the friction coefficient was arbitrarily chosen so that a slipping between the pellets and cladding tube could not be logically defined. Moreover, the stress intensification due to the sharp edge of a pellet fragment has never been realistically considered. These problems above drove us to launch a framework of a PCMI study particularly on stress analysis technology to improve the present analysis method incorporating the actual PCMI conditions such as the stress intensification, arbitrary distribution of the pellet cracks, material properties (esp. pellet) and slipping behavior of the pellet/cladding interface. As a first step of this work, this paper introduces an asymptotic method that was originally developed for a stress analysis in the vicinity of a sharp notch of a homogeneous body. The intrinsic reason for applying this method is to simulate the stress singularity that is expected to take place at the sharp edge of a pellet fragment due to cracking during irradiation. As a first attempt of this work, an eigenvalue problem is formulated in the case of adhered contact, and the generalized stress intensity factors are defined and evaluated. Although some works obviously remain to be accomplished, for the present framework on the PCMI analysis (e. g., slipping behaviour, contact force etc.), it was addressed that the asymptotic method can produce the stress values that cause the cladding tube failure in PCMI more

  16. Fabrication of oxide dispersion strengthened ferritic clad fuel pins

    International Nuclear Information System (INIS)

    Zirker, L.R.; Bottcher, J.H.; Shikakura, S.; Tsai, C.L.

    1991-01-01

    A resistance butt welding procedure was developed and qualified for joining ferritic fuel pin cladding to end caps. The cladding are INCO MA957 and PNC ODS lots 63DSA and 1DK1, ferritic stainless steels strengthened by oxide dispersion, while the end caps are HT9 a martensitic stainless steel. With adequate parameter control the weld is formed without a residual melt phase and its strength approaches that of the cladding. This welding process required a new design for fuel pin end cap and weld joint. Summaries of the development, characterization, and fabrication processes are given for these fuel pins. 13 refs., 6 figs., 1 tab

  17. Clad-coolant chemical interaction

    International Nuclear Information System (INIS)

    Iglesias, F.C.; Lewis, B.J.; Desgranges, C.; Toffolon, C.

    2015-01-01

    This paper provides an overview of the kinetics for zircaloy clad oxidation behaviour in steam and air during reactor accident conditions. The generation of chemical heat from metal/water reaction is considered. Low-temperature oxidation of zircaloy due to water-side corrosion is further described. (authors)

  18. BISON Fuel Performance Analysis of FeCrAl cladding with updated properties

    Energy Technology Data Exchange (ETDEWEB)

    Sweet, Ryan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); George, Nathan M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, Kurt A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wirth, Brian [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-08-30

    In order to improve the accident tolerance of light water reactor (LWR) fuel, alternative cladding materials have been proposed to replace zirconium (Zr)-based alloys. Of these materials, there is a particular focus on iron-chromium-aluminum (FeCrAl) alloys due to much slower oxidation kinetics in high-temperature steam than Zr-alloys. This should decrease the energy release due to oxidation and allow the cladding to remain integral longer in the presence of high temperature steam, making accident mitigation more likely. As a continuation of the development for these alloys, suitability for normal operation must also be demonstrated. This research is focused on modeling the integral thermo-mechanical performance of FeCrAl-cladded fuel during normal reactor operation. Preliminary analysis has been performed to assess FeCrAl alloys (namely Alkrothal 720 and APMT) as a suitable fuel cladding replacement for Zr-alloys, using the MOOSE-based, finite-element fuel performance code BISON and the best available thermal-mechanical and irradiation-induced constitutive properties. These simulations identify the effects of the mechanical-stress and irradiation response of FeCrAl, and provide a comparison with Zr-alloys. In comparing these clad materials, fuel rods have been simulated for normal reactor operation and simple steady-state operation. Normal reactor operating conditions target the cladding performance over the rod lifetime (~4 cycles) for the highest-power rod in the highest-power fuel assembly under reactor power maneuvering. The power histories and axial temperature profiles input into BISON were generated from a neutronics study on full-core reactivity equivalence for FeCrAl using the 3D full core simulator NESTLE. Evolution of the FeCrAl cladding behavior over time is evaluated by using steady-state operating conditions such as a simple axial power profile, a constant cladding surface temperature, and a constant fuel power history. The fuel rod designs and

  19. The effect of laser process parameters on microstructure and dilution rate of cladding coatings

    Science.gov (United States)

    Bin, Liu; Heping, Liu; Xingbin, Jing; Yuxin, Li; Peikang, Bai

    2018-02-01

    In order to broaden the range of application of Q235 steel, it is necessary to repair the surface of steel. High performance 316L stainless steel coating was successfully obtained on Q235 steel by laser cladding technology. The effect of laser cladding parameters on the geometrical size and appearance of single cladding layer was investigated. The experimental results show that laser current has an important influence on the surface morphology of single channel cladding. When the current is from 155A to 165A, the cladding coating becomes smooth. The laser current has an effect on the geometric cross section size and dilution rate of single cladding. The results revealed that with the rising of laser current, the width, height and depth of layer increase gradually. With the rising of laser current, the dilution rate of cladding layer is gradually increasing.

  20. Corrosion behaviour of zircaloy 4 fuel rod cladding in EDF power plants

    Energy Technology Data Exchange (ETDEWEB)

    Romary, H; Deydier, D [EDF, Direction de l` Equipment SEPTEN, Villeurbanne (France)

    1997-02-01

    Since the beginning of the French nuclear program, a surveillance of fuel has been carried out in order to evaluate the fuel behaviour under irradiation. Until now, nuclear fuels provided by suppliers have met EDF requirements concerning fuel behaviour and reliability. But, the need to minimize the costs and to increase the flexibility of the power plants led EDF to the definition of new targets: optimization of the core management and fuel cycle economy. The fuel behaviour experience shows that some of these new requirements cannot be fully fulfilled by the present standard fuel due to some technological limits. Particularly, burnup enhancement is limited by the oxidation and the hydriding of the Zircaloy 4 fuel rod cladding. Also, fuel suppliers and EDF need to have a better knowledge of the Zy-4 cladding behaviour in order to define the existing margins and the limiting factors. For this reason, in-reactor fuel characterization programs have been set up by fuel suppliers and EDF for a few years. This paper presents the main results and conclusions of EDF experience on Zy-4 in-reactor corrosion behaviour. Data obtained from oxide layer or zirconia thickness measurements show that corrosion performance of Zy-4 fuel rod cladding, as irradiated until now in EDF reactors, is satisfactory but not sufficient to meet the future needs. The fuel suppliers propose in order to improve the corrosion resistance of fuel rod cladding, low tin Zy-4 cladding and then optimized Zy-4 cladding. Irradiation of these claddings are ongoing. The available corrosion data show the better in-reactor corrosion resistance of optimized Zy-4 fuel rod cladding compared to the standard Zy-4 cladding. The scheduled fuel surveillance program will confirm if the optimized Zy-4 fuel rod cladding will meet the requirements for the future high burnup and high flexibility fuel. (author). 10 refs, 19 figs, 4 tabs.

  1. Fabrication and testing of U–7Mo monolithic plate fuel with Zircaloy cladding

    Energy Technology Data Exchange (ETDEWEB)

    Pasqualini, E.E. [Laboratorio de Nanotecnología Nuclear, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Av. General Paz 1499, B1650KNA, San Martín, Prov. Buenos Aires (Argentina); Robinson, A.B. [Idaho National Laboratory, P. O. Box 1625, Idaho Falls, ID, 83415-6188 (United States); Porter, D.L., E-mail: Douglas.Porter@inl.gov [Idaho National Laboratory, P. O. Box 1625, Idaho Falls, ID, 83415-6188 (United States); Wachs, D.M. [Idaho National Laboratory, P. O. Box 1625, Idaho Falls, ID, 83415-6188 (United States); Finlay, M.R. [Australian Nuclear Science and Technology Organisation, PMB 1, Menai, NSW, 2234 (Australia)

    2016-10-15

    Nuclear fuel designs are being developed to replace highly enriched fuel used in research and test reactors with fuels of low enrichment. In the most challenging cases, U–(7–10 wt%)Mo monolithic plate fuels are proposed. One of the considered designs includes aluminum-alloy cladding, which provides some challenges in fabrication and fuel/cladding interaction during service. Zircaloy cladding, specifically Zry–4, was investigated as an alternative cladding, and development of a fabrication method was performed by researchers with the Comisión Nacionalde Energia Atómica (CNEA) in Argentina, resulting in test fuel plates (Zry–4 clad U–7Mo) which were subsequently tested in the Advanced Test Reactor in Idaho. Because Zry–4 and U–(7–10)Mo have similar high-temperature mechanical properties, fabrication was simplified in that the fuel foil and cladding could be co-rolled and bonded. The challenge was to prevent a thermal-expansion mismatch, which could destroy the fuel/cladding bond before complete bonding was achieved; the solution was to prevent the composites from cooling significantly during or between roll passes. The final product performed very well in-reactor, showing good bonding, very little fuel/cladding interaction—either from fabrication or in-reactor testing—and little swelling, especially no detectable heterogeneous bubble formation at the fuel/cladding interface tested to a fission density of up to 2.7E+21 (average) fissions/cm{sup 3}, 3.8E+21 (peak).

  2. Oxidation Behavior of FeCrAl -coated Zirconium Cladding prepared by Laser Coating

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Il-Hyun; Kim, Hyun-Gil; Choi, Byung-Kwan; Park, Jeong-Yong; Koo, Yang-Hyun; Kim, Jin-Seon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    From the recent research trends, the ATF cladding concepts for enhanced accident tolerance are divided as follows: Mo-Zr cladding to increase the high temperature strength, cladding coating to increase the high temperature oxidation resistance, FeCrAl alloy and SiC/SiCf material to increase the oxidation resistance and strength at high temperature. To commercialize the ATF cladding concepts, various factors are considered, such as safety under normal and accident conditions, economy for the fuel cycle, and developing development challenges, and schedule. From the proposed concepts, it is known that the cladding coating, FeCrAl alloy, and Zr-Mo claddings are considered as a near/mid-term application, whereas the SiC material is considered as a long-term application. Among them, the benefit of cladding coating on Zr-based alloys is the fuel cycle economy regarding the manufacturing, neutron cross section, and high tritium permeation characteristics. However, the challenge of cladding coating on Zr-based alloys is the lower oxidation resistance and mechanical strength at high-temperature than other concepts. Another important point is the adhesion property between the Zr-based alloy and coating materials. A laser coating method supplied with FeCrAl powders was developed to decrease the high-temperature oxidation rate in a steam environment through a systematic study for various coating parameters, and a FeCrAl-coated Zircaloy-4 cladding tube of 100 mm in length to the axial direction can be successfully manufactured.

  3. Finite Element Analysis of Laser Engineered Net Shape (LENS™) Tungsten Clad Squeeze Pins

    Science.gov (United States)

    Sakhuja, Amit; Brevick, Jerald R.

    2004-06-01

    In the aluminum high-pressure die-casting and indirect squeeze casting processes, local "squeeze" pins are often used to minimize internal solidification shrinkage in heavy casting sections. Squeeze pins frequently fail in service due to molten aluminum adhering to the H13 tool steel pins ("soldering"). A wide variety of coating materials and methods have been developed to minimize soldering on H13. However, these coatings are typically very thin, and experience has shown their performance on squeeze pins is highly variable. The LENS™ process was employed in this research to deposit a relatively thick tungsten cladding on squeeze pins. An advantage of this process was that the process parameters could be precisely controlled in order to produce a satisfactory cladding. Two fixtures were designed and constructed to enable the end and outer diameter (OD) of the squeeze pins to be clad. Analyses were performed on the clad pins to evaluate the microstructure and chemical composition of the tungsten cladding and the cladding-H13 substrate interface. A thermo-mechanical finite element analysis (FEA) was performed to assess the stress distribution as a function of cladding thickness on the pins during a typical casting thermal cycle. FEA results were validated via a physical test, where the clad squeeze pins were immersed into molten aluminum. Pins subjected to the test were evaluated for thermally induced cracking and resistance to soldering of the tungsten cladding.

  4. Finite element analysis of laser engineered net shape (LENSTM) tungsten clad squeeze pins

    International Nuclear Information System (INIS)

    Sakhuja, Amit; Brevick, Jerald R.

    2004-01-01

    In the aluminum high-pressure die-casting and indirect squeeze casting processes, local 'squeeze' pins are often used to minimize internal solidification shrinkage in heavy casting sections. Squeeze pins frequently fail in service due to molten aluminum adhering to the H13 tool steel pins ('soldering'). A wide variety of coating materials and methods have been developed to minimize soldering on H13. However, these coatings are typically very thin, and experience has shown their performance on squeeze pins is highly variable. The LENS TM process was employed in this research to deposit a relatively thick tungsten cladding on squeeze pins. An advantage of this process was that the process parameters could be precisely controlled in order to produce a satisfactory cladding. Two fixtures were designed and constructed to enable the end and outer diameter (OD) of the squeeze pins to be clad. Analyses were performed on the clad pins to evaluate the microstructure and chemical composition of the tungsten cladding and the cladding-H13 substrate interface. A thermo-mechanical finite element analysis (FEA) was performed to assess the stress distribution as a function of cladding thickness on the pins during a typical casting thermal cycle. FEA results were validated via a physical test, where the clad squeeze pins were immersed into molten aluminum. Pins subjected to the test were evaluated for thermally induced cracking and resistance to soldering of the tungsten cladding

  5. Deep surface rolling for fatigue life enhancement of laser clad aircraft aluminium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, W., E-mail: wyman.zhuang@dsto.defence.gov.au [Aerospace Division, Defence Science and Technology Organisation, 506 Lorimer Street, Fishermans Bend, Victoria 3207 (Australia); Liu, Q.; Djugum, R.; Sharp, P.K. [Aerospace Division, Defence Science and Technology Organisation, 506 Lorimer Street, Fishermans Bend, Victoria 3207 (Australia); Paradowska, A. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW 2232 (Australia)

    2014-11-30

    Highlights: • Deep surface rolling as a post-repair enhancement technology was applied to the laser cladded 7075-T651 aluminium alloy specimens that simulated corrosion damage blend-out repair. • The residual stresses induced by the deep surface rolling process were measured. • The deep surface rolling process can introduce deep and high magnitude compressive residual stresses beyond the laser clad and substrate interface. • Spectrum fatigue test showed the fatigue life was significantly increased by deep surface rolling. - Abstract: Deep surface rolling can introduce deep compressive residual stresses into the surface of aircraft metallic structure to extend its fatigue life. To develop cost-effective aircraft structural repair technologies such as laser cladding, deep surface rolling was considered as an advanced post-repair surface enhancement technology. In this study, aluminium alloy 7075-T651 specimens with a blend-out region were first repaired using laser cladding technology. The surface of the laser cladding region was then treated by deep surface rolling. Fatigue testing was subsequently conducted for the laser clad, deep surface rolled and post-heat treated laser clad specimens. It was found that deep surface rolling can significantly improve the fatigue life in comparison with the laser clad baseline repair. In addition, three dimensional residual stresses were measured using neutron diffraction techniques. The results demonstrate that beneficial compressive residual stresses induced by deep surface rolling can reach considerable depths (more than 1.0 mm) below the laser clad surface.

  6. Deep surface rolling for fatigue life enhancement of laser clad aircraft aluminium alloy

    International Nuclear Information System (INIS)

    Zhuang, W.; Liu, Q.; Djugum, R.; Sharp, P.K.; Paradowska, A.

    2014-01-01

    Highlights: • Deep surface rolling as a post-repair enhancement technology was applied to the laser cladded 7075-T651 aluminium alloy specimens that simulated corrosion damage blend-out repair. • The residual stresses induced by the deep surface rolling process were measured. • The deep surface rolling process can introduce deep and high magnitude compressive residual stresses beyond the laser clad and substrate interface. • Spectrum fatigue test showed the fatigue life was significantly increased by deep surface rolling. - Abstract: Deep surface rolling can introduce deep compressive residual stresses into the surface of aircraft metallic structure to extend its fatigue life. To develop cost-effective aircraft structural repair technologies such as laser cladding, deep surface rolling was considered as an advanced post-repair surface enhancement technology. In this study, aluminium alloy 7075-T651 specimens with a blend-out region were first repaired using laser cladding technology. The surface of the laser cladding region was then treated by deep surface rolling. Fatigue testing was subsequently conducted for the laser clad, deep surface rolled and post-heat treated laser clad specimens. It was found that deep surface rolling can significantly improve the fatigue life in comparison with the laser clad baseline repair. In addition, three dimensional residual stresses were measured using neutron diffraction techniques. The results demonstrate that beneficial compressive residual stresses induced by deep surface rolling can reach considerable depths (more than 1.0 mm) below the laser clad surface

  7. The quest for safe and reliable fuel cladding materials

    Energy Technology Data Exchange (ETDEWEB)

    Pino, Eddy S.; Abe, Alfredo Y., E-mail: eddypino132@hotmail.com [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Giovedi, Claudia, E-mail: claudia.giovedi@labrisco.usp.br [Universidade de Sao Paulo (POLI/USP), Sao Paulo, SP (Brazil). Lab. de Analise, Avaliacao e Gerenciamento de Risco

    2015-07-01

    The tragic Fukushima Daiichi Nuclear Plant accident of March, 2011, has brought great unrest and challenge to the nuclear industry, which, in collaboration with universities and nuclear research institutes, is making great efforts to improve the safety in nuclear reactors developing accident tolerant fuels (ATF). This involves the study of different materials to be applied as cladding and, also, the improvement in the fuel properties in order to enhance the fuel performance and safety, specifically under accident conditions. Related to the cladding, iron based alloys and silicon carbide (SiC) materials have been studied as a good alternative. In the case of austenitic stainless steel, there is the advantage that the austenitic stainless steel 304 was used as cladding material in the first PWR (Pressurized Water Reactor) registering a good performance. Then, alternated cladding materials such as iron based alloys (304, 310, 316, 347) should be used to replace the zirconium-based alloys in order to improve safety. In this paper, these cladding materials are evaluated in terms of their physical and chemical properties; among them, strength and creep resistance, thermal conductivity, thermal stability and corrosion resistance. Additionally, these properties are compared with those of conventional zirconium-based alloys, the most used material in actual PWR, to assess the advantages and disadvantages of each material concerning to fuel performance and safety contribution. (author)

  8. The quest for safe and reliable fuel cladding materials

    International Nuclear Information System (INIS)

    Pino, Eddy S.; Abe, Alfredo Y.; Giovedi, Claudia

    2015-01-01

    The tragic Fukushima Daiichi Nuclear Plant accident of March, 2011, has brought great unrest and challenge to the nuclear industry, which, in collaboration with universities and nuclear research institutes, is making great efforts to improve the safety in nuclear reactors developing accident tolerant fuels (ATF). This involves the study of different materials to be applied as cladding and, also, the improvement in the fuel properties in order to enhance the fuel performance and safety, specifically under accident conditions. Related to the cladding, iron based alloys and silicon carbide (SiC) materials have been studied as a good alternative. In the case of austenitic stainless steel, there is the advantage that the austenitic stainless steel 304 was used as cladding material in the first PWR (Pressurized Water Reactor) registering a good performance. Then, alternated cladding materials such as iron based alloys (304, 310, 316, 347) should be used to replace the zirconium-based alloys in order to improve safety. In this paper, these cladding materials are evaluated in terms of their physical and chemical properties; among them, strength and creep resistance, thermal conductivity, thermal stability and corrosion resistance. Additionally, these properties are compared with those of conventional zirconium-based alloys, the most used material in actual PWR, to assess the advantages and disadvantages of each material concerning to fuel performance and safety contribution. (author)

  9. Hollow cylindrical plasma filament waveguide with discontinuous finite thickness cladding

    International Nuclear Information System (INIS)

    Alshershby, Mostafa; Hao Zuoqiang; Lin Jingquan

    2013-01-01

    We have explored here a hollow cylindrical laser plasma multifilament waveguide with discontinuous finite thickness cladding, in which the separation between individual filaments is in the range of several millimeters and the waveguide cladding thickness is in the order of the microwave penetration depth. Such parameters give a closer representation of a realistic laser filament waveguide sustained by a long stable propagation of femtosecond (fs) laser pulses. We report how the waveguide losses depend on structural parameters like normalized plasma filament spacing, filament to filament distance or pitch, normal spatial frequency, and radius of the plasma filament. We found that for typical plasma parameters, the proposed waveguide can support guided modes of microwaves in extremely high frequency even with a cladding consisting of only one ring of plasma filaments. The loss of the microwave radiation is mainly caused by tunneling through the discontinuous finite cladding, i.e., confinement loss, and is weakly dependent on the plasma absorption. In addition, the analysis indicates that the propagation loss is fairly large compared with the loss of a plasma waveguide with a continuous infinite thickness cladding, while they are comparable when using a cladding contains more than one ring. Compared to free space propagation, this waveguide still presents a superior microwave transmission to some distance in the order of the filamentation length; thus, the laser plasma filaments waveguide may be a potential channel for transporting pulsed-modulated microwaves if ensuring a long and stable propagation of fs laser pulses.

  10. Evolutionary developments of advanced PWR nuclear fuels and cladding materials

    International Nuclear Information System (INIS)

    Kim, Kyu-Tae

    2013-01-01

    Highlights: • PWR fuel and cladding materials development processes are provided. • Evolution of PWR advanced fuel in U.S.A. and in Korea is described. • Cutting-edge design features against grid-to-rod fretting and debris are explained. • High performance data of advanced grids, debris filters and claddings are given. -- Abstract: The evolutionary developments of advanced PWR fuels and cladding materials are explained with outstanding design features of nuclear fuel assembly components and zirconium-base cladding materials. The advanced PWR fuel and cladding materials development processes are also provided along with verification tests, which can be used as guidelines for newcomers planning to develop an advanced fuel for the first time. The up-to-date advanced fuels with the advanced cladding materials may provide a high level of economic utilization and reliable performance even under current and upcoming aggressive operating conditions. To be specific, nuclear fuel vendors may achieve high fuel burnup capability of between 45,000 and 65,000 MWD/MTU batch average, overpower thermal margin of as much as 15% and longer cycle length up to 24 months on the one hand and fuel failure rates of around 10 −6 on the other hand. However, there is still a need for better understanding of grid-to-rod fretting wear mechanisms leading to major PWR fuel defects in the world and subsequently a driving force for developing innovative spacer grid designs with zero fretting wear-induced fuel failure

  11. The significance of cladding material on the integrity of nuclear pressure vessels with cracks

    International Nuclear Information System (INIS)

    Sattari-Far, Iradj.

    1989-05-01

    The significance of the austenitic cladding layer is reviewed in this literature study. The cladding induced stresses are generally not considered when evaluating the severity of flaws in reactor pressure vessels. It has been shown that this emission may be misleading. The necessity to consider the cladding induced stresses is also emphasized in the latest edition of ASME XI. Contrary to what is commonly assumed, the austenitic cladding displays a charpy V transition region with a low ductility. The interface material (HAZ) is the most influenced region by irradiation, and a transition shift of over 100 degree C may be expected. Because of the significant difference in the thermal expansion coefficients of the cladding and the base metal, cladding induced stresses can be set up. Even after PWHT, residual stresses of yield magnitude remain in the cladding and the HAZ at ambient temperature. The cladding induced stresses are temperature dependent and decrease as the temperature increases. The cladding induced stresses have a significant influence on small defects near the inside surface of a pressure vessel. For semielliptical surface cracks, the maximum CTOD-value along the crack front is not found at the deepest point, but in the cladding/base metal interface, having a magnitude three times higher than the value in the deepest point. It implies that this type of crack would propagate along the clad/base material interface. At some point in time, the crack will reach a geometry which may cause such a severe condition at the deepest point that it will start to grow in the depth direction as well. The initiation and growth behaviour of such cracks need to be investigated to be able to assess the significance of cladding on the integrity of nuclear pressure vessels. (author) (50 figs., 33 refs.)

  12. Development and application of preventive maintenance technique for pipes using laser cladding method

    International Nuclear Information System (INIS)

    Hatakenaka, Hiroaki; Yamadera, Masao; Shiraiwa, Takanori.

    1995-01-01

    A laser cladding method which produces a highly corrosion-resisting coating (cladding) on the surface of the material was developed for the purpose of preventing stress corrosion cracking (SCC) in the austenitic stainless steel (Type 304). In this method, metallic powder paste is applied on the inner surface of pipes, and then a YAG laser beam is irradiated to the paste, which melts and forms a clad with excellent corrosion resistance. Recently, the laser cladding method was practically and successfully applied to the actual nuclear power plant in Japan. This report describes this laser cladding technique, the equipment, and actual works in the field. (author)

  13. Inpile (in PWR) testing of cladding materials

    International Nuclear Information System (INIS)

    Hahn, R.; Jeong, Y. H.; Baek, B. J.; Kim, K. H.; Kim, S. J.; Choi, B. K.; Kim, J. M.

    1999-04-01

    As an introduction, the reasons to perform inpile tests are depicted. An overview over general inpile test procedure is given, and test details which are necessary for the development of new alloys for high burnup claddings, like sample geometries and measuring techniques for inpile corrosion testing, are described in detail. Tests for the creep and length change behavior of cladding tubes are described briefly. Finally, conclusions are drawn and literature citations for further test details are given. (author). 9 refs., 2 tabs., 17 figs

  14. Modelling of pellet-cladding interaction in PWR's

    International Nuclear Information System (INIS)

    Esteves, A.M.; Silva, A.T. e.

    1992-01-01

    The pellet-cladding interaction that can occur in a PWR fuel rod design is modelled with the computer codes FRAPCON-1 and ANSYS. The fuel performance code FRAPCON-1 analyses the fuel rod irradiation behavior and generates the initial conditions for the localized fuel rod thermal and mechanical modelling in two and three-dimensional finite elements with ANSYS. In the mechanical modelling, a pellet fragment is placed in the fuel rod gap. Two types of fuel rod cladding materials are considered: Zircaloy and austenitic stainless steel. (author)

  15. Fracture properties of hydrided Zircaloy-4 cladding in recrystallization and stress-relief anneal conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Hsiao-Hung, E-mail: hhhsu@iner.gov.tw [Institute of Nuclear Energy Research (INER), Lungtan Township, Taoyuan County 325, Taiwan (China); Institute of Materials Engineering, National Taiwan Ocean University, Keelung 202, Taiwan (China); Tsay, Leu-Wen [Institute of Materials Engineering, National Taiwan Ocean University, Keelung 202, Taiwan (China)

    2012-03-15

    In this work, the stress-relieved (SRA) and recrystallized (RXA) Zircaloy-4 cladding specimens were hydrogen-charged to the target concentration of 300 wppm and then manufactured into X-specimens for fracture toughness test. The hydrogen embrittlement susceptibility of Zircaloy-4 cladding specimens in both SRA and RXA conditions were investigated. At the hydrogen concentration level of 300 wppm, J-integral values for RXA cladding were higher than those for SRA cladding at both 25 Degree-Sign C and 300 Degree-Sign C. The formation of brittle zirconium hydrides had a significant impact on the fracture toughness of Zircaloy-4 cladding in both SRA and RXA states, especially at 25 Degree-Sign C. Among all the tests, SRA cladding tested at 25 Degree-Sign C exhibited a great loss of the fracture toughness. The micrographic and fractographic observations further demonstrated that the fracture toughness of Zircaloy-4 cladding would be improved by the coarse grains in RXA cladding, but degraded by zirconium hydrides precipitated along the grain boundary.

  16. Research on Microstructure and Property of TiC-Co Composite Material Made by Laser Cladding

    Science.gov (United States)

    Zhang, Wei

    The experiment of laser cladding on the surface of 2Cr13 steel was made. Titanium carbide (TiC) powder and Co-base alloy powder were used as cladding material. The microstructure and property of laser cladding layer were tested. The research showed that laser cladding layer had better properties such as minute crystals, deeper layer, higher hardness and good metallurgical bonding with base metal. The structure of cladding was supersaturated solid solution with dispersed titanium carbide. The average hardness of cladding zone was 660HV0.2. 2Cr13 steel was widely used in the field of turbine blades. Using laser cladding, the good wear layer would greatly increase the useful life of turbine blades.

  17. Melanosomes are a primary target of Q-switched ruby laser irradiation in guinea pig skin

    Energy Technology Data Exchange (ETDEWEB)

    Polla, L.L.; Margolis, R.J.; Dover, J.S.; Whitaker, D.; Murphy, G.F.; Jacques, S.L.; Anderson, R.R.

    1987-09-01

    The specific targeting of melanosomes may allow for laser therapy of pigmented cutaneous lesions. The mechanism of selective destruction of pigmented cells by various lasers, however, has not been fully clarified. Black, brown, and albino guinea pigs were exposed to optical pulses at various radiant exposure doses from a Q-switched, 40 nsec, 694 nm ruby laser. Biopsies were analyzed by light and electron microscopy (EM). Albino animals failed to develop clinical or microscopic evidence of cutaneous injury after irradiation. In both black and brown animals, the clinical threshold for gross change was 0.4 J/cm2, which produced an ash-white spot. By light microscopy, alterations appeared at 0.3 J/cm2 and included separation at the dermoepidermal junction, and the formation of vacuolated epidermal cells with a peripheral cytoplasmic condensation of pigment. By EM, enlarged melanosomes with a central lucent zone were observed within affected epidermal cells at 0.3 J/cm2. At 0.8 and 1.2 J/cm2, individual melanosomes were more intensely damaged and disruption of melanosomes deep in the hair papillae was observed. Dermal-epidermal blisters were formed precisely at the lamina lucida, leaving basal cell membranes and hemidesmosomes intact. Possible mechanisms for melanosomal injury are discussed. These observations show that the effects of the Q-switched ruby laser are melanin-specific and melanin-dependent, and may be useful in the selective destruction of pigmented as well as superficial cutaneous lesions.

  18. The fuel-cladding interfacial friction coefficient in water-cooled reactor fuel rods

    International Nuclear Information System (INIS)

    Smith, E.

    1979-01-01

    A central problem in the development of cladding failure criteria and of effective operational, design or material remedies is to know whether the cladding stress is enhanced significantly near cladding ridges, pellet chips or fuel pellet cracks; the latter may also be coincident with cladding ridges at pellet-pellet interfaces. As regards the fuel pellet crack source of cladding stress concentration, the magnitude of the uranium dioxide-Zircaloy interfacial friction coefficient μ governs the magnitude and distribution of the enhanced cladding stress. Considerable discussion, particularly at a Post-Conference Seminar associated with the SMIRT 4 Conference, has focussed on the value of μ, the author taking the view that it is unlikely to be large (< 0.5). The reasoning behind this view is as follows. A fuel pellet should fracture during a power ramp when the tensile hoop stress within the pellet exceeds the fuel's fracture stress. Since the preferred position for a fuel pellet crack to form is at the fuel-cladding interface midway between existing fuel cracks, where the interfacial shear stress changes sign, the pellet segment size after a power ramp provides a limit to the magnitude of the interfacial shear stresses and consequently to the value of μ. With this argument as a basis, the author's early work used the Gittus fuel rod model, in which there is a symmetric distribution of fuel pellet cracks and symmetric interfacial slippage, to show that μ < 0.5 if it is assumed that the average hoop stress within the cladding attains yield levels. It was therefore suggested that a high interfacial friction coefficient is unlikely to be operative during a power ramp; this result was used to support the view that interfacial friction effects do not play a dominant role in stress corrosion crack formation within the cladding. (orig.)

  19. Finite-width plasmonic waveguides with hyperbolic multilayer cladding

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia; Shalaginov, Mikhail Y.; Ishii, Satoshi

    2015-01-01

    Engineering plasmonic metamaterials with anisotropic optical dispersion enables us to tailor the properties of metamaterial-based waveguides. We investigate plasmonic waveguides with dielectric cores and multilayer metal-dielectric claddings with hyperbolic dispersion. Without using any homogeniz......Engineering plasmonic metamaterials with anisotropic optical dispersion enables us to tailor the properties of metamaterial-based waveguides. We investigate plasmonic waveguides with dielectric cores and multilayer metal-dielectric claddings with hyperbolic dispersion. Without using any...

  20. Effects of the inner mould material on the aluminium–316L stainless steel explosive clad pipe

    International Nuclear Information System (INIS)

    Guo, Xunzhong; Tao, Jie; Wang, Wentao; Li, Huaguan; Wang, Chen

    2013-01-01

    Highlights: ► Different mould materials were adopted to evaluate the effect of the constraint on the clad quality. ► The interface characteristics of clad pipe were analyzed for the different clad pipe. ► The clad pipes possess excellent bonding quality. - Abstract: The clad pipe played an important part in the pipeline system of the nuclear power industry. To prepare the clad pipe with even macrosize and excellent bonding quality, in this work, different mould materials were adopted to evaluate the effect of the constraint on the clad quality of the bimetal pipe prepared by explosive cladding. The experiment results indicated that, the dimension uniformity and bonding interface of clad pipe were poor by using low melting point alloy as mould material; the local bulge or the cracking of the clad pipe existed when the SiC powder was utilized. When the steel mould was adopted, the outer diameter of the clad pipe was uniform from head to tail. In addition, the metallurgical bonding was formed. Furthermore, the results of shear test, bending test and flattening test showed that the bonding quality was excellent. Therefore, the Al–316L SS clad pipe could endure the second plastic forming

  1. Embedded cladding surface thermocouples on Zircaloy-sheathed heater rods

    International Nuclear Information System (INIS)

    Wilkins, S.C.

    1977-06-01

    Titanium-sheathed Type K thermocouples embedded in the cladding wall of zircaloy-sheathed heater rods are described. These thermocouples constitute part of a program intended to characterize the uncertainty of measurements made by surface-mounted cladding thermocouples on nuclear fuel rods. Fabrication and installation detail, and laboratory testing of sample thermocouple installations are included

  2. Scientific basis for storage criteria for interim dry storage of aluminum-clad fuels

    International Nuclear Information System (INIS)

    Sindelar, R.L.; Peacock, H.B. Jr.; Lam, P.S.; Iyer, N.C.; Louthan, M.R. Jr.; Murphy, J.R.

    1996-01-01

    An engineered system for dry storage of aluminum-clad foreign and domestic research reactor spent fuel owned by the US Department of Energy is being considered to store the fuel up to a nominal period of 40 years prior to ultimate disposition. Scientifically-based criteria for environmental limits to drying and storing the fuels for this system are being developed to avoid excessive degradation in sealed and non-sealed (open to air) dry storage systems. These limits are based on consideration of degradation modes that can cause loss of net section of the cladding, embrittlement of the cladding, distortion of the fuel, or release of fuel and fission products from the fuel/clad system. Potential degradation mechanisms include corrosion mechanisms from exposure to air and/or sources of humidity, hydrogen blistering of the aluminum cladding, distortion of the fuel due to creep, and interdiffusion of the fuel and fission products with the cladding. The aluminum-clad research reactor fuels are predominantly highly-enriched aluminum uranium alloy fuel which is clad with aluminum alloys similar to 1100, 5052, and 6061 aluminum. In the absence of corrodant species, degradation due to creep and diffusion mechanisms limit the maximum fuel storage temperature to 200 C. The results of laboratory scale corrosion tests indicate that this fuel could be stored under air up to 200 C at low relative humidity levels (< 20%) to limit corrosion of the cladding and fuel (exposed to the storage environment through assumed pre-existing pits in the cladding). Excessive degradation of fuels with uranium metal up to 200 C can be avoided if the fuel is sufficiently dried and contained in a sealed system; open storage can be achieved if the temperature is controlled to avoid excessive corrosion even in dry air

  3. Gamma radiation induced cytological abnormalities in Lycopersicon esculentum Mill. var. pusa ruby

    Energy Technology Data Exchange (ETDEWEB)

    Jayabalan, N.; Rao, G.R.

    1987-03-01

    Healthy dry seeds of pusa ruby variety of Lycopersicon esculentum Mill. were irradiated with gamma rays at 10 KR, 20 KR, 30 KR, 40 KR and 50 KR dose levels. Meiotic studies were made in treated plants as well as in control plants. At metaphase I, meiotic abnormalities like clumping and stickiness of chromosomes, univalents, multivalents, fragments and irregular grouping of chromosomes were observed. At anaphase I, there were laggards and unequal grouping of chromosomes at poles. Germination percentage and pollen fertility were also studied. Pollen sterility seems to be the cumulative result of various abnormal meiotic stages as well as of physiological and genetic damages induced probably by breakage of chromosomes. The frequency of meiotic abnormalities with reference to the effect of radiation doses is discussed.

  4. Simulation of a pellet-clad mechanical interaction with ABAQUS and its verification

    International Nuclear Information System (INIS)

    Cheon, J.-S.; Lee, B.-H.; Koo, Y.-H.; Sohn, D.-S.; Oh, J.-Y.

    2003-01-01

    Pellet-clad mechanical interaction (PCMI) during power transients for MOX fuel is modelled by a FE method. The PCMI model predicts well clad elongation during power ramp and relaxation during power hold except the fuel behaviour during a power decrease. Higher fiction factor results in the earlier occurrence of PCMI and more enhanced clad elongation. The relaxation is dependent on the irradiation creep rate of the pellet and axial compressive force. Verification of the PCMI model was done using recent MOX experimental data. Temperature and clad elongation for the fuel rod can be evaluated in a reasonable way

  5. High slope efficiency and high refractive index change in direct-written Yb-doped waveguide lasers with depressed claddings.

    Science.gov (United States)

    Palmer, Guido; Gross, Simon; Fuerbach, Alexander; Lancaster, David G; Withford, Michael J

    2013-07-15

    We report the first Yb:ZBLAN and Yb:IOG10 waveguide lasers fabricated by the fs-laser direct-writing technique. Pulses from a Titanium-Sapphire laser oscillator with 5.1 MHz repetition rate were utilized to generate negative refractive index modifications in both glasses. Multiple modifications were aligned in a depressed cladding geometry to create a waveguide. For Yb:ZBLAN we demonstrate high laser slope efficiency of 84% with a maximum output power of 170 mW. By using Yb:IOG10 a laser performance of 25% slope efficiency and 72 mW output power was achieved and we measured a remarkably high refractive index change exceeding Δn = 2.3 × 10(-2).

  6. General considerations on the oxide fuel-cladding chemical interaction

    International Nuclear Information System (INIS)

    Pascard, R.

    1977-01-01

    Since the very first experimental irradiations in thermal reactors, performed in view of the future Rapsodie fuel general study, corrosion cladding anomalies were observed. After 10 years of Rapsodie and more than two years of Phenix, performance brought definite confirmation of the chemical reactions between the irradiated fuel and cladding. That is the reason for which the fuel designers express an urgent need for determining the corrosion rates. Semi-empirical laws and mechanisms describing corrosion processes are proposed. Erratic conditions for appearance of the oxide-cladding corrosion are stressed upon. Obviously such a problem can be fully appreciated only by a statistical approach based on a large number of observations on the true LMFBR fuel pins

  7. Laser cladding of Ti-6Al-4V with various carbide powders

    International Nuclear Information System (INIS)

    Folkes, J.A.; Shibata, K.

    1994-01-01

    Laser cladding Ti-6Al-4V can be achieved with various weight percentages of different carbide powders. The microstructure and morphology of the clad layer is determined by the cladding powder composition, for a given set of laser parameters, such that 10 and 20 wt% Cr 3 C 2 results in a β + TiC clad microstructure; 10 and 20 wt% WC results in an α + TiC clad microstructure (plus some original WC); and Mo 2 C gives an α + β + TiC or β + TiC structure, depending on the weight percentage of Mo 2 C. The morphology of the TiC in all cases is dendritic or feathery, depending on the carbide content. The microstructure observed in all cases agreed well with that theoretically predicted from the energetics of carbide formation and β-stabilizing properties of each element

  8. The influence of hydride on fracture toughness of recrystallized Zircaloy-4 cladding

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Hsiao-Hung, E-mail: 175877@mail.csc.com.tw [Institute of Nuclear Energy Research (INER), Lungtan Township, Taoyuan County 32546, Taiwan, ROC (China); China Steel Corporation, Hsiao Kang District, Kaohsiung 81233, Taiwan, ROC (China); Chiang, Ming-Feng [China Steel Corporation, Hsiao Kang District, Kaohsiung 81233, Taiwan, ROC (China); Chen, Yen-Chen [Institute of Nuclear Energy Research (INER), Lungtan Township, Taoyuan County 32546, Taiwan, ROC (China)

    2014-04-01

    In this work, RXA cladding tubes were hydrogen-charged to target hydrogen content levels between 150 and 800 wppm (part per million by weight). The strings of zirconium hydrides observed in the cross sections are mostly oriented in the circumferential direction. The fracture toughness of hydrided RXA Zircaloy-4 cladding was measured to evaluate its hydride embrittlement susceptibility. With increasing hydrogen content, the fracture toughness of hydrided RXA cladding decreases at both 25 °C and 300 °C. Moreover, highly localized hydrides (forming a hydride rim) aggravate the degradation of the fracture properties of RXA Zircaloy-4 cladding at both 25 °C and 300 °C. Brittle features in the form of quasi-cleavages and secondary cracks were observed on the fracture surface of the hydride rim, even for RXA cladding tested at 300 °C.

  9. Management of cladding hulls and fuel hardware

    International Nuclear Information System (INIS)

    1985-01-01

    The reprocessing of spent fuel from power reactors based on chop-leach technology produces a solid waste product of cladding hulls and other metallic residues. This report describes the current situation in the management of fuel cladding hulls and hardware. Information is presented on the material composition of such waste together with the heating effects due to neutron-induced activation products and fuel contamination. As no country has established a final disposal route and the corresponding repository, this report also discusses possible disposal routes and various disposal options under consideration at present

  10. 5.4W cladding-pumped Nd:YAG silica fiber laser

    OpenAIRE

    Yoo, S.; Webb, A.S.; Standish, R.J.; May-Smith, T.C.; Sahu, J.K.

    2012-01-01

    We report on the spectroscopy and laser characteristics of Nd-doped fiber, fabricated by rod-in-tube from Nd:YAG as a core material with silica cladding. A cladding-pumped CW laser operation at 1058nm with 52% slope-efficiency is demonstrated.

  11. Performance of IN-706 and PE-16 cladding in mixed-oxide fuel pins

    International Nuclear Information System (INIS)

    Makenas, B.J.; Lawrence, L.A.; Jensen, B.W.

    1982-05-01

    Iron-nickel base, precipitation-strengthened alloys, IN-706 and PE-16, advanced alloy cladding considered for breeder reactor applications, were irradiated in mixed-oxide fuel pins in the HEDL-P-60 subassembly in EBR-II. Initial selection of candidate advanced alloys was done using only nonfueled materials test results. However, to establish the performance characteristics of the candidate cladding alloys, i.e., dimensional stability and structural integrity under conditions of high neutron flux, elevated temperature, and applied stress, it was necessary to irradiate fuel pins under typical operating conditions. Fuel pins were clad with solution treated IN-706 and PE-16 and irradiated to peak fluences of 6.1 x 10 22 n/cm 2 (E > .1 MeV) and 8.8 x 10 22 n/cm 2 (E > .1 MeV) respectively. Fabrication and operating parameters for the fuel pins with the advanced cladding alloy candidates are summarized. Irradiation of HEDL-P-60 was interrupted with the breach of a pin with IN-706 cladding at 5.1 at % and the test was terminated with cladding breach in a pin with PE-16 cladding at 7.6 at %

  12. Prediction of failure of highly irradiated Zircaloy clad tubes under reactivity initiated accidents

    International Nuclear Information System (INIS)

    Jernkvist, L.O.

    2003-01-01

    This paper deals with failure of irradiated Zircaloy tubes under the heat-up stage of a reactivity initiated accident (RIA). More precisely, by use of a model for plastic strain localization and necking failure, we theoretically analyse the effects of local surface defects on clad ductility and survivability under RIA. The results show that even very shallow surface defects, e.g. arising from a non-uniform or partially spilled oxide layer, have a strong limiting effect on clad ductility. Moreover, in presence of surface defects, the ability of the clad tube to expand radially without necking failure is found to be extremely sensitive to the stress biaxiality ratio σ zz /σ θθ , which is here assumed to be in the range from 0 to 1. The results of our analysis are compared with clad ductility data available in literature, and their consequences for clad failure prediction under RIA are discussed. In particular, the results raise serious concerns regarding the applicability of failure criteria, which are based on clad strain energy density. These criteria do not capture the observed sensitivity to stress biaxiality on clad failure propensity. (author)

  13. Glass-ceramic optical fiber containing Ba2TiSi2O8 nanocrystals for frequency conversion of lasers.

    Science.gov (United States)

    Fang, Zaijin; Xiao, Xusheng; Wang, Xin; Ma, Zhijun; Lewis, Elfed; Farrell, Gerald; Wang, Pengfei; Ren, Jing; Guo, Haitao; Qiu, Jianrong

    2017-03-30

    A glass-ceramic optical fiber containing Ba 2 TiSi 2 O 8 nanocrystals fabricated using a novel combination of the melt-in-tube method and successive heat treatment is reported for the first time. For the melt-in-tube method, fibers act as a precursor at the drawing temperature for which the cladding glass is softened while the core glass is melted. It is demonstrated experimentally that following heat treatment, Ba 2 TiSi 2 O 8 nanocrystals with diameters below 10 nm are evenly distributed throughout the fiber core. Comparing to the conventional rod-in-tube method, the melt-in-tube method is superior in terms of controllability of crystallization to allow for the fabrication of low loss glass-ceramic fibers. When irradiated using a 1030 nm femtosecond laser, an enhanced green emission at a wavelength of 515 nm is observed in the glass-ceramic fiber, which demonstrates second harmonic generation of a laser action in the fabricated glass-ceramic fibers. Therefore, this new glass-ceramic fiber not only provides a highly promising development for frequency conversion of lasers in all optical fiber based networks, but the melt-in-tube fabrication method also offers excellent opportunities for fabricating a wide range of novel glass-ceramic optical fibers for multiple future applications including fiber telecommunications and lasers.

  14. Heat accumulation regime of femtosecond laser writing in fused silica and Nd:phosphate glass

    Energy Technology Data Exchange (ETDEWEB)

    Bukharin, M.A. [Moscow Institute of Physics and Technology, Moscow Region (Russian Federation); Optosystems Ltd., Troitsk, Moscow (Russian Federation); Khudyakov, D.V. [Optosystems Ltd., Troitsk, Moscow (Russian Federation); Physics Instrumentation Center of the General Physics Institute, Troitsk, Moscow (Russian Federation); Vartapetov, S.K. [Physics Instrumentation Center of the General Physics Institute, Troitsk, Moscow (Russian Federation)

    2015-04-01

    We investigated refractive index induced by direct femtosecond laser writing inside fused silica and Nd:phosphate glass in heat accumulation regime. Spatial profile and magnitude of induced refractive index were investigated at various pulse repetition rates and translation velocities. It was shown that the magnitude of induced refractive index significantly rises with decreasing in time interval between successive laser pulses below the time for thermal diffusion. Going from nonthermal regime to heat accumulation regime, we achieved induced refractive index growth from 4 x 10{sup -3} up to 6.5 x 10{sup -3} in fused silica and from -6 x 10{sup -3} to -9 x 10{sup -3} in Nd:phosphate glass. Aspect ratio of treated area decreased from 2.1 down to less than 1.5 without correcting optical elements. It was shown that in heat accumulation regime, the treated area was surrounded by region of alternatively changed refractive index with significant magnitude up to -2 x 10{sup -3}. Wide regions of decreased refractive index enable fabrication of depressed cladding waveguides. We demonstrated low-loss (0.3 dB/cm) tubular waveguide inside fused silica. For orthogonal polarizations of guiding light, we achieved a small difference between losses as 0.1 dB/cm using highly symmetric written tracks forming the cladding. The desired structure was simulated with the beam propagation method, and the results were in good agreement with experiment data. (orig.)

  15. On LMFBR corrosion. Part II: Consideration of the in-reactor fuel-cladding system

    International Nuclear Information System (INIS)

    Bradbury, M.H.; Pickering, S.; Walker, C.T.; Whitlow, W.H.

    1976-05-01

    The scientific and technological aspects of LMFBR cladding corrosion are discussed in detail. Emphasis is placed on the influence of the irradiation environment and the effect of fuel and filler-gas impurities on the corrosion process. These studies are complemented by a concise review of out-of-pile simulation experiments that endeavour to clarify the role of the aggressive fission products cesium, tellurium and iodine. The principal models for cladding corrosion are presented and critically assessed. Areas of uncertainty are exposed and some pertinent experiments are suggested. Consideration is also given to some new observations regarding the role of stress in fuel-cladding reactions and the formation of ferrite in the corrosion zone of the cladding during irradiation. Finally, two technological solutions to the problem of cladding corrosion are proposed. These are based on the use of an oxygen buffer in the fuel and the application of a protective coating to the inner surface of the cladding

  16. Single-mode fiber laser based on core-cladding mode conversion.

    Science.gov (United States)

    Suzuki, Shigeru; Schülzgen, Axel; Peyghambarian, N

    2008-02-15

    A single-mode fiber laser based on an intracavity core-cladding mode conversion is demonstrated. The fiber laser consists of an Er-doped active fiber and two fiber Bragg gratings. One Bragg grating is a core-cladding mode converter, and the other Bragg grating is a narrowband high reflector that selects the lasing wavelength. Coupling a single core mode and a single cladding mode by the grating mode converter, the laser operates as a hybrid single-mode laser. This approach for designing a laser cavity provides a much larger mode area than conventional large-mode-area step-index fibers.

  17. Reflood behavior at low initial clad temperature in Slab Core Test Facility Core-II

    International Nuclear Information System (INIS)

    Akimoto, Hajime; Sobajima, Makoto; Abe, Yutaka; Iwamura, Takamichi; Ohnuki, Akira; Okubo, Tsutomu; Murao, Yoshio; Okabe, Kazuharu; Adachi, Hiromichi.

    1990-07-01

    In order to study the reflood behavior with low initial clad temperature, a reflood test was performed using the Slab Core Test Facility (SCTF) with initial clad temperature of 573 K. The test conditions of the test are identical with those of SCTF base case test S2-SH1 (initial clad temperature 1073 K) except the initial clad temperature. Through the comparison of results from these two tests, the following conclusions were obtained. (1) The low initial clad temperature resulted in the low differential pressures through the primary loops due to smaller steam generation in the core. (2) The low initial clad temperature caused the accumulated mass in the core to be increased and the accumulated mass in the downcomer to be decreased in the period of the lower plenum injection with accumulator (before 50s). In the later period of the cold leg injection with LPCI (after 100s), the water accumulation rates in the core and the downcomer were almost the same between both tests. (3) The low initial clad temperature resulted in the increase of the core inlet mass flow rate in the lower plenum injection period. However, the core inlet mass flow rate was almost the same regardless of the initial clad temperature in the later period of the cold leg injection period. (4) The low initial clad temperature resulted in the low turnaround temperature, high temperature rise and fast bottom quench front propagation. (5) In the region apart from the quench front, low initial clad temperature resulted in the lower heat transfer. In the region near the quench front, almost the same heat transfer coefficient was observed between both tests. (6) No flow oscillation with a long period was observed in the SCTF test with low initial clad temperature of 573 K, while it was remarkable in the Cylindrical Core Test Facility (CCTF) test which was performed with the same initial clad temperature. (J.P.N.)

  18. Magnetostrictive clad steel plates for high-performance vibration energy harvesting

    Science.gov (United States)

    Yang, Zhenjun; Nakajima, Kenya; Onodera, Ryuichi; Tayama, Tsuyoki; Chiba, Daiki; Narita, Fumio

    2018-02-01

    Energy harvesting technology is becoming increasingly important with the appearance of the Internet of things. In this study, a magnetostrictive clad steel plate for harvesting vibration energy was proposed. It comprises a cold-rolled FeCo alloy and cold-rolled steel joined together by thermal diffusion bonding. The performances of the magnetostrictive FeCo clad steel plate and conventional FeCo plate cantilevers were compared under bending vibration; the results indicated that the clad steel plate construct exhibits high voltage and power output compared to a single-plate construct. Finite element analysis of the cantilevers under bending provided insights into the magnetic features of a clad steel plate, which is crucial for its high performance. For comparison, the experimental results of a commercial piezoelectric bimorph cantilever were also reported. In addition, the cold-rolled FeCo and Ni alloys were joined by thermal diffusion bonding, which exhibited outstanding energy harvesting performance. The larger the plate volume, the more the energy generated. The results of this study indicated not only a promising application for the magnetostrictive FeCo clad steel plate as an efficient energy harvester, related to small vibrations, but also the notable feasibility for the formation of integrated units to support high-power trains, automobiles, and electric vehicles.

  19. Validation and evaluation of common large-area display set (CLADS) performance specification

    Science.gov (United States)

    Hermann, David J.; Gorenflo, Ronald L.

    1998-09-01

    Battelle is under contract with Warner Robins Air Logistics Center to design a Common Large Area Display Set (CLADS) for use in multiple Command, Control, Communications, Computers, and Intelligence (C4I) applications that currently use 19- inch Cathode Ray Tubes (CRTs). Battelle engineers have built and fully tested pre-production prototypes of the CLADS design for AWACS, and are completing pre-production prototype displays for three other platforms simultaneously. With the CLADS design, any display technology that can be packaged to meet the form, fit, and function requirements defined by the Common Large Area Display Head Assembly (CLADHA) performance specification is a candidate for CLADS applications. This technology independent feature reduced the risk of CLADS development, permits life long technology insertion upgrades without unnecessary redesign, and addresses many of the obsolescence problems associated with COTS technology-based acquisition. Performance and environmental testing were performed on the AWACS CLADS and continues on other platforms as a part of the performance specification validation process. A simulator assessment and flight assessment were successfully completed for the AWACS CLADS, and lessons learned from these assessments are being incorporated into the performance specifications. Draft CLADS specifications were released to potential display integrators and manufacturers for review in 1997, and the final version of the performance specifications are scheduled to be released to display integrators and manufacturers in May, 1998. Initial USAF applications include replacements for the E-3 AWACS color monitor assembly, E-8 Joint STARS graphics display unit, and ABCCC airborne color display. Initial U.S. Navy applications include the E-2C ACIS display. For these applications, reliability and maintainability are key objectives. The common design will reduce the cost of operation and maintenance by an estimated 3.3M per year on E-3 AWACS

  20. Thermal stress intensity factor for an axial crack in a clad cylinder

    International Nuclear Information System (INIS)

    Kuo, An Yu; Deardorf, A.F.; Riccardella, P.C.

    1993-01-01

    Many clad pressure vessels have been found to have cracks running through the inside surface cladding and into the base material. Although Young's moduli and Poisson's ratios of the clad and base materials are about the same for most of the industrial applications, coefficients of thermal expansion of the two dissimilar materials, clad and base materials, are usually quite different. For example, low alloy ferritic steel is a common base material for reactor pressure vessels (RPV) and the vessels are usually clad with austenitic stainless steel. Young's moduli for the low alloy steel and stainless steel at 350 F are 29,000 ksi and 28,000 ksi, respectively, while their coefficients of thermal expansion are 7.47x10 -6 in/in and 9.50x10 -6 in/in-degree F, respectively. The mismatch in coefficients of thermal expansion will cause high residual thermal stress even when the entire vessel is at a uniform temperature. This residual stress is one of the primary reasons why so many cracks have been found in the cladded components. In performing reactor pressure vessel integrity evaluation, such as computing probability of brittle fracture of the RPV, it is necessary to calculate stress intensity factors for cracks, which initiate from the clad material and run into the base metal. This paper presents a convenient method of calculating stress intensity factor for an axial crack emanating from the inside surface of a cladded cylinder under thermal loading. A J-integral like line integral was derived and used to calculate the stress intensity factors from finite element stress solutions of the problem

  1. Deposition of Co-Ti alloy on mild steel substrate using laser cladding

    International Nuclear Information System (INIS)

    Alemohammad, Hamidreza; Esmaeili, Shahrzad; Toyserkani, Ehsan

    2007-01-01

    Laser cladding of a Co-Ti alloy on a mild steel substrate is studied. Premixed powders with the composition of 85 wt% cobalt and 15 wt% titanium are pre-placed on the substrate and a moving laser beam at different velocities is used to produce clad layers well bounded to the substrate. Characteristics of the clad are investigated using optical microscopy, X-ray diffraction (XRD), energy dispersive spectroscopy (EDS) and microhardness tests. The results reveal that the intermetallic phase TiCo 3 and β (i.e. fcc) cobalt are formed in the clad layer. The clad layer can also have major dilution from the substrate depending on the laser scanning velocity. It is observed that a finer microstructure is achievable with higher laser velocities whereas higher hardness is achieved using lower velocities. The latter is due to the formation of a larger fraction of TiCo 3 phase

  2. In-pile cladding tests at NRI Rez and PIE capabilities and experience

    International Nuclear Information System (INIS)

    Zmitko, M.

    2002-01-01

    In-pile cladding corrosion test facilities and relevant post-irradiation capabilities at NRI Rez plc are overviewed. Basic information about the research rector LVR-15 and in-pile water loops is given. An experience in the field of Zr-alloy cladding corrosion testing and investigation of cladding corrosion behaviour is demonstrated for two experimental programmes conducted at NRI Rez in the past period. The first example describes results obtained at studying of corrosion behaviour of advanced Zr-alloys under PWR conditions with a special concern to a high lithium content and subcooled surface boiling. The second example informs about completion of the experimental programme supported by the IAEA which is focused on investigation of Zircaloy-4 cladding behaviour under VVER water chemistry, thermal-hydraulic and irradiation conditions with the main to obtain experimental data for an assessment of the Zircaloy-4 cladding compatibility with VVER conditions. (author)

  3. Deposition of Co-Ti alloy on mild steel substrate using laser cladding

    Energy Technology Data Exchange (ETDEWEB)

    Alemohammad, Hamidreza [University of Waterloo, Department of Mechanical and Mechatronics Engineering, 200 University Avenue West, Waterloo, ON N2L 3G1 (Canada)], E-mail: shalemoh@engmail.uwaterloo.ca; Esmaeili, Shahrzad [University of Waterloo, Department of Mechanical and Mechatronics Engineering, 200 University Avenue West, Waterloo, ON N2L 3G1 (Canada); Toyserkani, Ehsan [University of Waterloo, Department of Mechanical and Mechatronics Engineering, 200 University Avenue West, Waterloo, ON N2L 3G1 (Canada)

    2007-05-15

    Laser cladding of a Co-Ti alloy on a mild steel substrate is studied. Premixed powders with the composition of 85 wt% cobalt and 15 wt% titanium are pre-placed on the substrate and a moving laser beam at different velocities is used to produce clad layers well bounded to the substrate. Characteristics of the clad are investigated using optical microscopy, X-ray diffraction (XRD), energy dispersive spectroscopy (EDS) and microhardness tests. The results reveal that the intermetallic phase TiCo{sub 3} and {beta} (i.e. fcc) cobalt are formed in the clad layer. The clad layer can also have major dilution from the substrate depending on the laser scanning velocity. It is observed that a finer microstructure is achievable with higher laser velocities whereas higher hardness is achieved using lower velocities. The latter is due to the formation of a larger fraction of TiCo{sub 3} phase.

  4. Reflectivity of the gyroid biophotonic crystals in the ventral wing scales of the Green Hairstreak butterfly, Callophrys rubi

    OpenAIRE

    Michielsen, K.; De Raedt, H.; Stavenga, D. G.

    2009-01-01

    We present a comparison of the computer simulation data of gyroid nanostructures with optical measurements (reflectivity spectra and scattering diagrams) of ventral wing scales of the Green Hairstreak butterfly, Callophrys rubi. We demonstrate that the omnidirectional green colour arises from the gyroid cuticular structure grown in the domains of different orientation. We also show that this three-dimensional structure, operating as a biophotonic crystal, gives rise to various polarization ef...

  5. Modeling the geometric formation and powder deposition mass in laser induction hybrid cladding

    International Nuclear Information System (INIS)

    Huang, Yong Jun; Yuan, Sheng Fa

    2012-01-01

    A new laser induction hybrid cladding technique on cylinder work piece is presented. Based on a series of laser induction hybrid experiments by off axial powder feeding, the predicting models of individual clad geometric formation and powder catchment were developed in terms of powder feeding rate, laser special energy and induction energy density using multiple regression analysis. In addition, confirmation tests were performed to make a comparison between the predicting results and measured ones. Via the experiments and analysis, the conclusions can be lead to that the process parameters have crucial influence on the clad geometric formation and powder catchment, and that the predicting model reflects well the relationship between the clad geometric formation and process parameters in laser induction hybrid cladding

  6. Corrosion Resistance of Laser Clads of Inconel 625 and Metco 41C

    Science.gov (United States)

    Němeček, Stanislav; Fidler, Lukáš; Fišerová, Pavla

    The present paper explores the impact of laser cladding parameters on the corrosion behaviour of the resulting surface. Powders of Inconel 625 and austenitic Metco 41C steel were deposited on steel substrate. It was confirmed that the level of dilution has profound impact on the corrosion resistance and that dilution has to be minimized. However, the chemical composition of the cladding is altered even in the course of the cladding process, a fact which is related to the increase in the substrate temperature. The cladding process was optimized to achieve maximum corrosion resistance. The results were verified and validated using microscopic observation, chemical analysis and corrosion testing.

  7. Laser performance and modeling of RE3+:YAG double-clad crystalline fiber waveguides

    Science.gov (United States)

    Li, Da; Lee, Huai-Chuan; Meissner, Stephanie K.; Meissner, Helmuth E.

    2018-02-01

    We report on laser performance of ceramic Yb:YAG and single crystal Tm:YAG double-clad crystalline fiber waveguide (CFW) lasers towards the goal of demonstrating the design and manufacturing strategy of scaling to high output power. The laser component is a double-clad CFW, with RE3+:YAG (RE = Yb, Tm respectively) core, un-doped YAG inner cladding, and ceramic spinel or sapphire outer cladding. Laser performance of the CFW has been demonstrated with 53.6% slope efficiency and 27.5-W stable output power at 1030-nm for Yb:YAG CFW, and 31.6% slope efficiency and 46.7-W stable output power at 2019-nm for Tm:YAG CFW, respectively. Adhesive-Free Bond (AFB®) technology enables a designable refractive index difference between core and inner cladding, and designable core and inner cladding sizes, which are essential for single transverse mode CFW propagation. To guide further development of CFW designs, we present thermal modeling, power scaling and design of single transverse mode operation of double-clad CFWs and redefine the single-mode operation criterion for the double-clad structure design. The power scaling modeling of double-clad CFW shows that in order to achieve the maximum possible output power limited by the physical properties, including diode brightness, thermal lens effect, and simulated Brillion scattering, the length of waveguide is in the range of 0.5 2 meters. The length of an individual CFW is limited by single crystal growth and doping uniformity to about 100 to 200 mm lengths, and also by availability of starting crystals and manufacturing complexity. To overcome the limitation of CFW lengths, end-to-end proximity-coupling of CFWs is introduced.

  8. Ultrasonic spot welding of Al/Mg/Al tri-layered clad sheets

    International Nuclear Information System (INIS)

    Macwan, A.; Patel, V.K.; Jiang, X.Q.; Li, C.; Bhole, S.D.; Chen, D.L.

    2014-01-01

    Highlights: • The optimal welding condition is achieved at 100 J and 0.1 s. • Failure load first increases and then decreases with increasing welding energy. • The highest failure load after welding is close to that of the clad sheets. • At low energy levels failure occurs in the mode of interfacial failure. • At high energy levels failure takes place at the edge of nugget region. - Abstract: Solid-state ultrasonic spot welding (USW) was used to join Al/Mg/Al tri-layered clad sheets, aiming at exploring weldability and identifying failure mode in relation to the welding energy. It was observed that the application of a low welding energy of 100 J was able to achieve the optimal welding condition during USW at a very short welding time of 0.1 s for the tri-layered clad sheets. The optimal lap shear failure load obtained was equivalent to that of the as-received Al/Mg/Al tri-layered clad sheets. With increasing welding energy, the lap shear failure load initially increased and then decreased after reaching a maximum value. At a welding energy of 25 J, failure occurred in the mode of interfacial failure along the center Al/Al weld interface due to insufficient bonding. At a welding energy of 50 J, 75 J and 100 J, failure was also characterized by the interfacial failure mode, but it occurred along the Al/Mg clad interface rather than the center Al/Al weld interface, suggesting stronger bonding of the Al/Al weld interface than that of the Al/Mg clad interface. The overall weld strength of the Al/Mg/Al tri-layered clad sheets was thus governed by the Al/Mg clad interface strength. At a welding energy of 125 J and 150 J, thinning of weld nugget and extensive deformation at the edge of welding tip caused failure at the edge of nugget region, leading to a lower lap shear failure load

  9. Advanced LWR Nuclear Fuel Cladding Development

    International Nuclear Information System (INIS)

    Bragg-Sitton, S.; Griffith, G.

    2012-01-01

    The Advanced Light Water Reactor (LWR) Nuclear Fuel Development Research and Development (R and D) Pathway encompasses strategic research focused on improving reactor core economics and safety margins through the development of an advanced fuel cladding system. To achieve significant operating improvements while remaining within safety boundaries, significant steps beyond incremental improvements in the current generation of nuclear fuel are required. Fundamental enhancements are required in the areas of nuclear fuel composition, cladding integrity, and fuel/cladding interaction to allow improved fuel economy via power uprates and increased fuel burn-up allowance while potentially improving safety margin through the adoption of an 'accident tolerant' fuel system that would offer improved coping time under accident scenarios. In a staged development approach, the LWRS program will engage stakeholders throughout the development process to ensure commercial viability of the investigated technologies. Applying minimum performance criteria, several of the top-ranked materials and fabrication concepts will undergo a rigorous series of mechanical, thermal and chemical characterization tests to better define their properties and operating potential in a relatively low-cost, nonnuclear test series. A reduced number of options will be recommended for test rodlet fabrication and in-pile nuclear testing under steady-state, transient and accident conditions. (author)

  10. Cladding failure by local plastic instability

    International Nuclear Information System (INIS)

    Kramer, J.M.; Deitrich, L.W.

    1977-01-01

    Cladding failure is one of the major considerations in analysis of fast-reactor fuel pin behavior during hypothetical accident transients since time, location and nature of failure govern the early post-failure material motion and reactivity feedback. Out-of-Pile transient burst tests of both irradiated and unirradiated fast-reactor cladding show that local plastic instability, or bulging, often precedes rupture. To investigate the details of cladding bulging, a perturbation analysis of the equations governing the large deformation of a cylindrical shell has been developed. The overall deformation history is assumed to consist of a small perturbation epsilon of the radial displacement superimposed on large axisymmetric displacements. Computations have been carried out using high temperature properties of stainless steel in conjunction with various constitutive theories, including a generalization of the Endochronic Theory of Plasticity in which both time-independent and time-dependent plastic strains are modeled. Although the results of the calculations are all qualitatively similar, it appears that modeling of both time-independent and time-dependent plastic strains is necessary to interpret the transient burst test results. Sources for bulge formation that have been considered include initial geometric imperfections and thermal perturbations due to either eccentric fuel pellets or non-symmetric cooling. (Auth.)

  11. Air-clad fibers: pump absorption assisted by chaotic wave dynamics?

    DEFF Research Database (Denmark)

    Mortensen, Niels Asger

    2007-01-01

    Wave chaos is a concept which has already proved its practical usefulness in design of double-clad fibers for cladding-pumped fiber lasers and fiber amplifiers. In general, classically chaotic geometries will favor strong pump absorption and we address the extent of chaotic wave dynamics in typical...

  12. Modelling of ultrasonic nondestructive testing of cracks in claddings

    International Nuclear Information System (INIS)

    Bostroem, Anders; Zagbai, Theo

    2006-05-01

    Nondestructive testing with ultrasound is a standard procedure in the nuclear power industry. To develop and qualify the methods extensive experimental work with test blocks is usually required. This can be very time-consuming and costly and it also requires a good physical intuition of the situation. A reliable mathematical model of the testing situation can, therefore, be very valuable and cost-effective as it can reduce experimental work significantly. A good mathematical model enhances the physical intuition and is very useful for parametric studies, as a pedagogical tool, and for the qualification of procedures and personnel. The present project has been concerned with the modelling of defects in claddings. A cladding is a layer of material that is put on for corrosion protection, in the nuclear power industry this layer is often an austenitic steel that is welded onto the surface. The cladding is usually anisotropic and to some degree it is most likely also inhomogeneous, particularly in that the direction of the anisotropy is varying. This degree of inhomogeneity is unknown but probably not very pronounced so for modelling purposes it may be a valid assumption to take the cladding to be homogeneous. However, another important complicating factor with claddings is that the interface between the cladding and the base material is often corrugated. This corrugation can have large effects on the transmission of ultrasound through the interface and can thus greatly affect the detectability of defects in the cladding. In the present project the only type of defect that is considered is a planar crack that is situated inside the cladding. The investigations are, furthermore, limited to two dimensions, and the crack is then only a straight line. The crack can be arbitrarily oriented and situated, but it must not intersect the interface to the base material. The crack can be surface-breaking, and this is often the case of most practical interest, but it should then be

  13. A New Material Constitutive Model for Predicting Cladding Failure

    Energy Technology Data Exchange (ETDEWEB)

    Rashid, Joe; Dunham, Robert [ANATECH Corp., San Diego, CA (United States); Rashid, Mark [University of California Davis, Davis, CA (United States); Machiels, Albert [EPRI, Palo Alto, CA (United States)

    2009-06-15

    An important issue in fuel performance and safety evaluations is the characterization of the effects of hydrides on cladding mechanical response and failure behavior. The hydride structure formed during power operation transforms the cladding into a complex multi-material composite, with through-thickness concentration profile that causes cladding ductility to vary by more than an order of magnitude between ID and OD. However, current practice of mechanical property testing treats the cladding as a homogeneous material characterized by a single stress-strain curve, regardless of its hydride morphology. Consequently, as irradiation conditions and hydrides evolution change, new material property testing is required, which results in a state of continuous need for valid material property data. A recently developed constitutive model, treats the cladding as a multi-material composite in which the metal and the hydride platelets are treated as separate material phases with their own elastic-plastic and fracture properties and interacting at their interfaces with appropriate constraint conditions between them to ensure strain and stress compatibility. An essential feature of the model is a multi-phase damage formulation that models the complex interaction between the hydride phases and the metal matrix and the coupled effect of radial and circumferential hydrides on cladding stress-strain response. This gives the model the capability of directly predicting cladding failure progression during the loading event and, as such, provides a unique tool for constructing failure criteria analytically where none could be developed by conventional material testing. Implementation of the model in a fuel behavior code provides the capability to predict in-reactor operational failures due to PCI or missing pellet surfaces (MPS) without having to rely on failure criteria. Even, a stronger motivation for use of the model is in the transportation accidents analysis of spent fuel

  14. Oxidation behavior of laser-clad NiAlCrHf alloys

    International Nuclear Information System (INIS)

    Ribaudo, C.R.

    1991-01-01

    Laser cladding is the process where a mechanical mixture of powders is rapidly melted and fused to a solid substrate using a CO 2 laser. The effects of laser cladding upon scale retention on NiAlCrHf alloys after cyclic and isothermal exposure to air were investigated. The stress developed in the scale during cooling after exposure was estimated using a thermoelastic model. Additions of up to ∼2 1/2 wt % Hf increasingly promote retention of scales grown at 1,200C. Laser-clad samples containing ∼2 1/2 wt % Hf retained almost-intact scales. The improvement in scale retention is due to improved toughness in scales containing hafnia-rich polycrystallites possibly via microcracking initiated by anisotropic thermal contraction of the hafnia. Laser cladding provides a large concentration of ∼1 μm Hf-rich particles that are precursors of the hafnia in the scale as well as a fine-dendrite spacing that reduced the mean free distance between particles

  15. Production and quality control of fuel cladding tubes for LWRs

    International Nuclear Information System (INIS)

    Matsuda, Katsuhiko; Hagi, Shigeki; Anada, Hiroyuki; Abe, Hideaki; Hyodo, Shigetoshi

    1994-01-01

    This paper reviews the recent fabrication technology and corrosion resistance study of fuel cladding tubes for LWRs conducted by Sumitomo Metal Industries Ltd. started the research on zircaloy in 1957. In 1980, the factory exclusively for the production of cladding tubes was founded, and the mass production system on full scale was established. Thereafter, the various improvement of the production technology, the development of new products, and the heightening of the performance mainly on the corrosion resistance have been tested and studied. Recently, the works in the production processes were almost automated, and the installation of the production lines advanced, and the stabilization of product quality and the rationalization of costs are promoted. Moreover, the development of the zircaloy cladding tubes having high corrosion resistance has been advanced to cope with the long term cycle operation of LWRs hereafter. The features of zircaloy cladding tubes, the manufacturing processes, the improvement of the manufacturing technology, the improvement of the corrosion resistance and so on are reported. (K.I.)

  16. Pellet Cladding Mechanical Interaction Modeling Using the Extended Finite Element Method

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, Benjamin W.; Jiang, Wen; Dolbow, John E.; Peco, Christian

    2016-09-01

    As a brittle material, the ceramic UO2 used as light water reactor fuel experiences significant fracturing throughout its life, beginning with the first rise to power of fresh fuel. This has multiple effects on the thermal and mechanical response of the fuel/cladding system. One such effect that is particularly important is that when there is mechanical contact between the fuel and cladding, cracks that extending from the outer surface of the fuel into the volume of the fuel cause elevated stresses in the adjacent cladding, which can potentially lead to cladding failure. Modeling the thermal and mechanical response of the cladding in the vicinity of these surface-breaking cracks in the fuel can provide important insights into this behavior to help avoid operating conditions that could lead to cladding failure. Such modeling has traditionally been done in the context of finite-element-based fuel performance analysis by modifying the fuel mesh to introduce discrete cracks. While this approach is effective in capturing the important behavior at the fuel/cladding interface, there are multiple drawbacks to explicitly incorporating the cracks in the finite element mesh. Because the cracks are incorporated in the original mesh, the mesh must be modified for cracks of specified location and depth, so it is difficult to account for crack propagation and the formation of new cracks at other locations. The extended finite element method (XFEM) has emerged in recent years as a powerful method to represent arbitrary, evolving, discrete discontinuities within the context of the finite element method. Development work is underway by the authors to implement XFEM in the BISON fuel performance code, and this capability has previously been demonstrated in simulations of fracture propagation in ceramic nuclear fuel. These preliminary demonstrations have included only the fuel, and excluded the cladding for simplicity. This paper presents initial results of efforts to apply XFEM to

  17. The Influence of Different Interstock Lengths of Minneola Tanjelo on Photosynthetic Parameters and Fruit Yield of Star Ruby Grapefruit

    Directory of Open Access Journals (Sweden)

    Bilge Yılmaz

    2014-05-01

    Full Text Available In this study, Minneola Tangelo hybrid, a cross of grapefruit and mandarin (Duncan grapefruit x Dancy mandarin, used as interstock to Star Ruby grapefruit with different lengths. Effects of different interstock lengths on fruit yield and quality, plant development and photosynthetic parameters were investigated. According to the results, different interstock lengths significantly affected fruit yield and size. The highest fruit yield was determined in T-M20-S whereas the lowest was on T-M5-S. The highest fruit size were determined in Star Ruby fruits on T-M5-S and T-M40-S whereas the lowest on T-M20-S and T-S (control. T-M40-S and T-M20-S treatments markedly reduced stem diameter and tree canopy in comparison to other treatments and control. Usage of different interstock lengths did not significantly affected some of fruit quality traits, net photosynthetic rate, stomatal conductance, leaf transpiration rate, leaf water usage efficiency and leaf chlorophyll concentration. In regards to seasonal changes, net photosynthetic rate were higher in spring and summer seasons then winter and fall seasons.

  18. Influence of pellet-clad-gap-size on LWR fuel rod performance

    International Nuclear Information System (INIS)

    Brzoska, B.; Fuchs, H.P.; Garzarolli, F.; Manzel, R.

    1979-01-01

    The as-fabricated pellet-clad-gap size varies due to fabricational tolerances of the cladding inner diameter and the pellet outer diameter. The consequences of these variations on the fuel rod behaviour are analyzed using the KWU fuel rod code CARO. The code predictions are compared with experimental results of special pathfinder test fuel rods irradiated in the OBRIGHEIM nuclear power plant. These test fuel rods include gap sizer in the range of 140 μm to 270 μm, prepressurization between 13 bar to 36 bar and Helium and Argon fill gases irradiated up to a local burnup of 35 MWd/kg(U). Post irradiation examination were performed at different burnups. CARC calculations have been performed with special emphasis in cladding creep down, fission gas release and pellet clad gap closure. (orig.)

  19. Prevention of nuclear fuel cladding materials corrosion

    International Nuclear Information System (INIS)

    Yang, K.R.; Yang, J.C.; Lee, I.C.; Kang, H.D.; Cho, S.W.; Whang, C.K.

    1983-01-01

    The only way which could be performed by the operator of nuclear power plant to minimizing the degradation of nuclear fuel cladding material is to control the water quality of primary coolant as specified standard conditions which dose not attack the cladding material. If the water quality of reactor coolant does not meet far from the specification, the failure will occure not only cladding material itself but construction material of primary system which contact with the coolant. The corrosion product of system material are circulate through the whole primary system with the coolant and activated by the neutron near the reactor core. The activated corrosion products and fission products which released from fuel rod to the coolant, so called crud, will repeate deposition and redeposition continuously on the fuel rod and construction material surface. As a result we should consider heat transfer problem. In this study following activities were performed; 1. The crud sample was taken from the spent fuel rod surface of Kori unit one and analized for radioactive element and non radioactive chemical species. 2. The failure mode of nuclear fuel cladding material was estimated by the investigation of releasing type of fission products from the fuel rod to the reactor coolant using the iodine isotopes concentration of reactor coolants. 3. A study was carried out on the sipping test results of spent fuel and a discussion was made on the water quality control records through the past three cycle operation period of Kori unit one plant. (Author)

  20. Cladding tube manufacturing technology

    International Nuclear Information System (INIS)

    Hahn, R.; Jeong, Y. H.; Baek, B. J.; Kim, K. H.; Kim, S. J.; Choi, B. K.; Kim, J. M.

    1999-04-01

    This report gives an overview of the manufacturing routine of PWR cladding tubes. The routine essentially consists of a series of deformation and annealing processes which are necessary to transform the ingot geometry to tube dimensions. By changing shape, microstructure and structure-related properties are altered simultaneously. First, a short overview of the basics of that part of deformation geometry is given which is related to tube reducing operations. Then those processes of the manufacturing routine which change the microstructure are depicted, and the influence of certain process parameters on microstructure and material properties are shown. The influence of the resulting microstructure on material properties is not discussed in detail, since it is described in my previous report A lloy Development for High Burnup Cladding . Because of their paramount importance still up to now, and because manufacturing data and their influence on properties for other alloys are not so well established or published, the descriptions are mostly related to Zry4 tube manufacturing, and are only in short for other alloys. (author). 9 refs., 46 figs

  1. Cladding tube manufacturing technology

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, R. [Kraftwerk Union AG, Mulheim (Germany); Jeong, Y.H.; Baek, B.J.; Kim, K.H.; Kim, S.J.; Choi, B.K.; Kim, J.M. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1999-04-01

    This report gives an overview of the manufacturing routine of PWR cladding tubes. The routine essentially consists of a series of deformation and annealing processes which are necessary to transform the ingot geometry to tube dimensions. By changing shape, microstructure and structure-related properties are altered simultaneously. First, a short overview of the basics of that part of deformation geometry is given which is related to tube reducing operations. Then those processes of the manufacturing routine which change the microstructure are depicted, and the influence of certain process parameters on microstructure and material properties are shown. The influence of the resulting microstructure on material properties is not discussed in detail, since it is described in my previous report 'Alloy Development for High Burnup Cladding.' Because of their paramount importance still up to now, and because manufacturing data and their influence on properties for other alloys are not so well established or published, the descriptions are mostly related to Zry4 tube manufacturing, and are only in short for other alloys. (author). 9 refs., 46 figs.

  2. Allowable peak heat-up cladding temperature for spent fuel integrity during interim-dry storage

    Directory of Open Access Journals (Sweden)

    Ki-Nam Jang

    2017-12-01

    Full Text Available To investigate allowable peak cladding temperature and hoop stress for maintenance of cladding integrity during interim-dry storage and subsequent transport, zirconium alloy cladding tubes were hydrogen-charged to generate 250 ppm and 500 ppm hydrogen contents, simulating spent nuclear fuel degradation. The hydrogen-charged specimens were heated to four peak temperatures of 250°C, 300°C, 350°C, and 400°C, and then cooled to room temperature at cooling rates of 0.3 °C/min under three tensile hoop stresses of 80 MPa, 100 MPa, and 120 MPa. The cool-down specimens showed that high peak heat-up temperature led to lower hydrogen content and that larger tensile hoop stress generated larger radial hydride fraction and consequently lower plastic elongation. Based on these out-of-pile cladding tube test results only, it may be said that peak cladding temperature should be limited to a level < 250°C, regardless of the cladding hoop stress, to ensure cladding integrity during interim-dry storage and subsequent transport.

  3. Microstructure of laser cladded martensitic stainless steel

    CSIR Research Space (South Africa)

    Van Rooyen, C

    2006-08-01

    Full Text Available and martensite with 10% ferrite for Material B. Table 7 - Proposed martensitic stainless steel alloys for laser cladding Material C* Cr Ni Mn Si Mo Co Ms (ºC)* Cr eq Ni eq Material A 0.4 13 - 1 0.5 2.5 5.5 120 16.5 12.5 Material B 0.2 15 2 1 0.7 2.5 5.5 117... dilution, low heat input, less distortion, increased mechanical and corrosion properties excellent repeatability and control of process parameters. Solidification of laser cladded martensitic stainless steel is primarily austenitic. Microstructures...

  4. Laser and Pressure Resistance Weld of Thin-Wall Cladding for LWR Accident-Tolerant Fuels

    Science.gov (United States)

    Gan, J.; Jerred, N.; Perez, E.; Haggard, D. C.

    2018-02-01

    FeCrAl alloy with typical composition of approximately Fe-15Cr-5Al is considered a primary candidate cladding material for light water reactor accident-tolerant fuel because of its superior resistance to oxidation in high-temperature steam compared with Zircaloy cladding. Thin-walled FeCrAl cladding at 350 μm wall thickness is required, and techniques for joining endplug to cladding need to be developed. Fusion-based laser weld and solid-state joining with pressure resistance weld were investigated in this study. The results of microstructural characterization, mechanical property evaluation by tensile testing, and hydraulic pressure burst testing of the welds for the cladding-endplug specimen are discussed.

  5. Fundamental metallurgical aspects of axial splitting in zircaloy cladding

    International Nuclear Information System (INIS)

    Chung, H. M.

    2000-01-01

    Fundamental metallurgical aspects of axial splitting in irradiated Zircaloy cladding have been investigated by microstructural characterization and analytical modeling, with emphasis on application of the results to understand high-burnup fuel failure under RIA situations. Optical microscopy, SEM, and TEM were conducted on BWR and PWR fuel cladding tubes that were irradiated to fluence levels of 3.3 x 10 21 n cm -2 to 5.9 x 10 21 n cm -2 (E > 1 MeV) and tested in hot cell at 292--325 C in Ar. The morphology, distribution, and habit planes of macroscopic and microscopic hydrides in as-irradiated and posttest cladding were determined by stereo-TEM. The type and magnitude of the residual stress produced in association with oxide-layer growth and dense hydride precipitation, and several synergistic factors that strongly influence axial-splitting behavior were analyzed. The results of the microstructural characterization and stress analyses were then correlated with axial-splitting behavior of high-burnup PWR cladding reported for simulated-RIA conditions. The effects of key test procedures and their implications for the interpretation of RIA test results are discussed

  6. Technology readiness level (TRL) assessment of cladding alloys for advanced nuclear fuels

    International Nuclear Information System (INIS)

    Shepherd, Daniel

    2015-01-01

    Reliable fuel claddings are essential for the safe, sustainable and economic operation of nuclear stations. This paper presents a worldwide TRL assessment of advanced claddings for Gen III and IV reactors following an extensive literature review. Claddings include austenitic, ferritic/martensitic (F/M), reduced activation (RA) and oxide dispersion strengthened (ODS) steels as well as advanced iron-based alloys (Kanthal alloys). Also assessed are alloys of zirconium, nickel (including Hastelloy R ), titanium, chromium, vanadium and refractory metals (Nb, Mo, Ta and W). Comparison is made with Cf/C and SiCf/SiC composites, MAX phase ceramics, cermets and TRISO fuel particle coatings. The results show in general that the higher the maximum operating temperature of the cladding, the lower the TRL. Advanced claddings were found to have lower TRLs than the corresponding fuel materials, and therefore may be the limiting factor in the deployment of advanced fuels and even possibly the entire reactor in the case of Gen IV. (authors)

  7. Statistical mechanical analysis of LMFBR fuel cladding tubes

    International Nuclear Information System (INIS)

    Poncelet, J.-P.; Pay, A.

    1977-01-01

    The most important design requirement on fuel pin cladding for LMFBR's is its mechanical integrity. Disruptive factors include internal pressure from mixed oxide fuel fission gas release, thermal stresses and high temperature creep, neutron-induced differential void-swelling as a source of stress in the cladding and irradiation creep of stainless steel material, corrosion by fission products. Under irradiation these load-restraining mechanisms are accentuated by stainless steel embrittlement and strength alterations. To account for the numerous uncertainties involved in the analysis by theoretical models and computer codes statistical tools are unavoidably requested, i.e. Monte Carlo simulation methods. Thanks to these techniques, uncertainties in nominal characteristics, material properties and environmental conditions can be linked up in a correct way and used for a more accurate conceptual design. First, a thermal creep damage index is set up through a sufficiently sophisticated clad physical analysis including arbitrary time dependence of power and neutron flux as well as effects of sodium temperature, burnup and steel mechanical behavior. Although this strain limit approach implies a more general but time consuming model., on the counterpart the net output is improved and e.g. clad temperature, stress and strain maxima may be easily assessed. A full spectrum of variables are statistically treated to account for their probability distributions. Creep damage probability may be obtained and can contribute to a quantitative fuel probability estimation

  8. Behavior of high burnup fuel rod cladding during long-term dry storage in CASTOR casks

    International Nuclear Information System (INIS)

    Schaberg, A.; Spilker, H.; Goll, W.

    2000-01-01

    Short-time creep and rupture tests were performed to assess the strain potential of cladding of high burnt rods under conditions of dry storage. The tests comprised optimized Zr y-4 cladding samples from fuel rods irradiated to burnups of up to 64 MWd/kg U and were carried out at temperatures of 573 and 643 K at cladding stresses of about 400 and 600 MPa. The stresses, much higher than those occurring in a fuel rod, were chosen to reach circumferential elongations of about 2% within an envisaged testing time of 3-4 days. The creep tests were followed by a low temperature test at 423 K and 100 MPa to assess the long-term behavior of the cladding ductility especially with regard to the effect of a higher hydrogen content in the cladding due to the high burnup. The creep tests showed considerable uniform plastic elongations at these high burnups. It was demonstrated that around 600 K a uniform plastic strain of a least 2% is reached without cladding failure. The low temperature tests at 423 K for up to 5 days revealed no cladding failure under these conditions of reduced cladding ductility. It can be concluded that the increased hydrogen content has no adverse effect on cladding performance. (Authors)

  9. Laser cladding of a Mg based Mg–Gd–Y–Zr alloy with Al–Si powders

    International Nuclear Information System (INIS)

    Chen, Erlei; Zhang, Kemin; Zou, Jianxin

    2016-01-01

    Graphical abstract: A Mg based Mg–Gd–Y–Zr alloy was treated by laser cladding with Al–Si powders at different laser scanning speeds. The laser clad layer mainly contains Mg_2Si, Mg_1_7Al_1_2 and Al_2(Gd,Y) phases distributed in the Mg matrix. After laser cladding, the corrosion resistance of the Mg alloy was significantly improved together with increased microhardness in the laser clad layers. - Highlights: • A Mg based Mg–Gd–Y–Zr alloy was laser clad with Al–Si powders. • The microstructure and morphology vary with the depth of the clad layer and the laser scanning speed. • Hardness and corrosion resistance were significantly improved after laser cladding. - Abstract: In the present work, a Mg based Mg–Gd–Y–Zr alloy was subjected to laser cladding with Al–Si powders at different laser scanning speeds in order to improve its surface properties. It is observed that the laser clad layer mainly contains Mg_2Si, Mg_1_7Al_1_2 and Al_2(Gd,Y) phases distributed in the Mg matrix. The depth of the laser clad layer increases with decreasing the scanning speed. The clad layer has graded microstructures and compositions. Both the volume fraction and size of Mg_2Si, Mg_1_7Al_1_2 and Al_2(Gd,Y) phases decreases with the increasing depth. Due to the formation of these hardening phases, the hardness of clad layer reached a maximum value of HV440 when the laser scanning speed is 2 mm/s, more than 5 times of the substrate (HV75). Besides, the corrosion properties of the untreated and laser treated samples were all measured in a NaCl (3.5 wt.%) aqueous solution. The corrosion potential was increased from −1.77 V for the untreated alloy to −1.13 V for the laser clad alloy with scanning rate of 2 mm/s, while the corrosion current density was reduced from 2.10 × 10"−"5 A cm"−"2 to 1.64 × 10"−"6 A cm"−"2. The results show that laser cladding is an efficient method to improve surface properties of Mg–Rare earth alloys.

  10. Surface improvement for inside surface of small diameter pipes by laser cladding technique

    International Nuclear Information System (INIS)

    Irisawa, Toshio; Morishige, Norio; Umemoto, Tadahiro; Ono, Kazumichi; Hamaoka, Tadashi; Tanaka, Atsushi

    1991-01-01

    A laser cladding technique has been used for surface improvement in controlling the composition of a metal surface. Recent high power YAG laser development gives an opportunity to use this laser cladding technique for various applications. A YAG laser beam can be transmitted through an optical fiber for a long distance and through narrow spaces. YAG laser cladding was studied for developing alloy steel to prevent stress corrosion cracking in austenitic stainless steel piping. In order to make a cladding layer, mixed metal powder was on the inside surface of the piping using an organic binder. Subsequently the powder beds were melted with a YAG laser beam transmitted through an optical fiber. This paper introduces the Laser cladding technique for surface improvement for the inside surface of a small diameter pipe. (author)

  11. Microscopic Analysis and Electrochemical Behavior of Fe-Based Coating Produced by Laser Cladding

    Directory of Open Access Journals (Sweden)

    Jinlin Chen

    2017-10-01

    Full Text Available The effect of laser cladding on the surface microstructure and corrosion properties of coated/uncoated specimens were investigated. Fe-based alloy coating was produced on 35CrMo steel by laser cladding. The phase composition, microstructure, interface element distribution, microhardness and corrosion resistance of the cladding coating were measured. The results show that the cladding layer is mainly composed of α-Fe phases, the microstructure presents a gradient distribution, and a good metallurgical bond is formed at the boundary with the substrate. Microhardness profiles show that the average microhardness of the cladding coating is about 2.1 times higher than that of the uncoated specimen. In addition, the electrochemical results show that the coated specimen exhibits far better corrosion resistance than to the uncoated specimen.

  12. In-reactor measurement of clad strain: effect of power history

    International Nuclear Information System (INIS)

    Fehrenbach, P.J.; Morel, P.A.

    1980-01-01

    A series of experimental irradiations has been undertaken at CRNL to measure directly the in-reactor deformation of fuel elements while they are operating at power. Power histories have been chosen to allow investigation of power, time at power and burnup on pellet-clad interaction for element linear powers to 60kW/m. Results are presented which indicate that irradiation of a fresh fuel element at high power is effective in minimizing clad hoop stresses during subsequent ramps or cycles to that power. The effectiveness of this preconditioning appears to be due primarily to fuel densification rather than stress relaxation in the clad. (auth)

  13. Estimation of penetration depth of fission products in cladding Hull

    International Nuclear Information System (INIS)

    Kim, Hee Moon; Jung, Yang Hong; Yoo, Byong Ok; Choo, Yong Sun; Hong, Kwon Pyo

    2005-01-01

    A disposal and a reprocessing for spent fuel rod with high burnup need de-cladding procedure. Pellet in this rod has been separated from a cladding hull to reduce a radioactivity of hull by chemical and mechanical methods. But fission products and actinides(U,Pu) still remain inside of cladding hull by chemical bonding and fission spike, which is called as 'contamination'. More specific removal of this contamination would have been considered. In this study, the sorts of fission products and penetration depth in hull were observed by EPMA test. To analyze this behavior, SRIM 2000 code was also used as energies of fission products and an oxide thickness of hull

  14. In-reactor cladding breach of EBR-II driver-fuel elements

    International Nuclear Information System (INIS)

    Seidel, B.R.; Einziger, R.E.

    1977-01-01

    Knowledge of performance and minimum useful element lifetime of Mark-II driver-fuel elements is required to maintain a high plant operating capacity factor with maximum fuel utilization. To obtain such knowledge, intentional cladding breach has been obtained in four run-to-cladding-breach Mark-II experimental driver-fuel subassemblies operating under normal conditions in EBR-II. Breach and subsequent fission-product release proved benign to reactor operations. The breaches originated on the outer surface of the cladding in the root of the restrainer dimples and were intergranular. The Weibull distribution of lifetime accurately predicts the observed minimum useful element lifetime of 10 at.% burnup, with breach ensuing shortly thereafter

  15. Study of lanthanum aluminum silicate glasses for passive and active optical fibers

    Science.gov (United States)

    Schuster, K.; Litzkendorf, D.; Grimm, S.; Kobelke, J.; Schwuchow, A.; Ludwig, A.; Leich, M.; Jetschke, S.; Dellith, J.; Auguste, J.-L.; Leparmentier, S.; Humbert, G.; Werner, G.

    2013-03-01

    We report on SiO2-Al2O3-La2O3 glasses - with and without Yb2O3 - suitable for nonlinear and fiber laser applications. We also present successful supercontinuum generation and fiber laser operation around 1060 nm in step-index fibers. We have optimized the glass compositions in terms of thermal and optical requirements for both a high La2O3 (24 mol%) and Yb2O3(6 mol%) concentration. The aluminum concentration was adjusted to about 21 mol% Al2O3 to increase the solubility of lanthanum and ytterbium in the glass beyond possible MCVD based techniques. The glasses have been characterized by dilatometrical methods to find transition temperatures from 860 to 880°C and thermal expansion coefficients between 4.1 and 7.0 × 10-6 K-1. Structured step index fibers with a SiO2-Al2O3-La2O3 core and silica cladding have been realized showing a fiber loss minimum of about 500 dB/km at 1200 nm wavelength. The chromatic dispersion could be adjusted to shift the zero dispersion wavelength (ZDW) close to the pump wavelength of 1550 nm in a supercontinuum generation setup. First fiber laser experiments show an efficiency of about 41 % with a remarkably reduced photodarkening compared to MCVD based fibers.

  16. Interim report on the creepdown of Zircaloy fuel cladding

    International Nuclear Information System (INIS)

    Hobson, D.O.; Dodd, C.V.

    1977-01-01

    This report describes the creepdown phenomenon in Zircaloy fuel cladding and the methods by which it will be measured and analyzed. Instrumentation for monitoring radial deformation in the cladding is described in detail--in terms of theory, design, and stability. The programs that control the microcomputer are listed, both to document the level of sophistication of the instrumentation and to indicate the flexibility of the test equipment

  17. Gamma radiation induced cytological abnormalities in Lycopersicon esculentum Mill. var. pusa ruby

    International Nuclear Information System (INIS)

    Jayabalan, N.; Rao, G.R.

    1987-01-01

    Healthy dry seeds of pusa ruby variety of Lycopersicon esculentum Mill. were irradiated with gamma rays at 10 KR, 20 KR, 30 KR, 40 KR and 50 KR dose levels. Meiotic studies were made in treated plants as well as in control plants. At metaphase I, meiotic abnormalities like clumping and stickiness of chromosomes, univalents, multivalents, fragments and irregular grouping of chromosomes were observed. At anaphase I, there were laggards and unequal grouping of chromosomes at poles. Germination percentage and pollen fertility were also studied. Pollen sterility seems to be the cumulative result of various abnormal meiotic stages as well as of physiological and genetic damages induced probably by breakage of chromosomes. The frequency of meiotic abnormalities with reference to the effect of radiation doses is discussed. (author)

  18. Progress and Challenges of Ultrasonic Testing for Stress in Remanufacturing Laser Cladding Coating

    Directory of Open Access Journals (Sweden)

    Xiao-Ling Yan

    2018-02-01

    Full Text Available Stress in laser cladding coating is an important factor affecting the safe operation of remanufacturing components. Ultrasonic testing has become a popular approach in the nondestructive evaluation of stress, because it has the advantages of safety, nondestructiveness, and online detection. This paper provides a review of ultrasonic testing for stress in remanufacturing laser cladding coating. It summarizes the recent research outcomes on ultrasonic testing for stress, and analyzes the mechanism of ultrasonic testing for stress. Remanufacturing laser cladding coating shows typical anisotropic behaviors. The ultrasonic testing signal in laser cladding coating is influenced by many complex factors, such as microstructure, defect, temperature, and surface roughness, among others. At present, ultrasonic testing for stress in laser cladding coating can only be done roughly. This paper discusses the active mechanism of micro/macro factors in the reliability of stress measurement, as well as the impact of stress measurement on the quality and safety of remanufacturing components. Based on the discussion, this paper proposes strategies to nondestructively, rapidly, and accurately measure stress in remanufacturing laser cladding coating.

  19. Laser cladding of copper with molybdenum for wear resistance enhancement in electrical contacts

    International Nuclear Information System (INIS)

    Ng, K.W.; Man, H.C.; Cheng, F.T.; Yue, T.M.

    2007-01-01

    Laser cladding of Mo on Cu has been attempted with the aim of enhancing the wear resistance and hence increasing the service life of electrical contacts made of Cu. In order to overcome the difficulties arising from the large difference in thermal properties and the low mutual solubility between Cu and Mo, Ni was introduced as an intermediate layer between Mo and Cu. The Ni and Mo layers were laser clad one after the other to form a sandwich layer of Mo/Ni/Cu. Excellent bonding between the clad layer and the Cu substrate was ensured by strong metallurgical bonding. The hardness of the surface of the clad layer is seven times higher than that of the Cu substrate. Pin-on-disc wear tests consistently showed that the abrasive wear resistance of the clad layer was also improved by a factor of seven as compared with untreated Cu substrate. The specific electrical contact resistance of the clad surface was about 5.6 x 10 -7 Ω cm 2

  20. Microstructural and wear characteristics of cobalt free, nickel base intermetallic alloy deposited by laser cladding

    International Nuclear Information System (INIS)

    Awasthi, Reena; Kumar, Santosh; Viswanadham, C.S.; Srivastava, D.; Dey, G.K.; Limaye, P.K.

    2011-01-01

    This paper describes the microstructural and wear characteristics of Ni base intermetallic hardfacing alloy (Tribaloy-700) deposited on stainless steel-316 L substrate by laser cladding technique. Cobalt base hardfacing alloys have been most commonly used hardfacing alloys for application involving wear, corrosion and high temperature resistance. However, the high cost and scarcity of cobalt led to the development of cobalt free hardfacing alloys. Further, in the nuclear industry, the use of cobalt base alloys is limited due to the induced activity of long lived radioisotope 60 Co formed. These difficulties led to the development of various nickel and iron base alloys to replace cobalt base hardfacing alloys. In the present study Ni base intermetallic alloy, free of Cobalt was deposited on stainless steel- 316 L substrate by laser cladding technique. Traditionally, welding and thermal spraying are the most commonly employed hardfacing techniques. Laser cladding has been explored for the deposition of less diluted and fusion-bonded Nickel base clad layer on stainless steel substrate with a low heat input. The laser cladding parameters (Laser power density: 200 W/mm 2 , scanning speed: 430 mm/min, and powder feed rate: 14 gm/min) resulted in defect free clad with minimal dilution of the substrate. The microstructure of the clad layer was examined by Optical microscopy, Scanning electron microscopy, with energy dispersive spectroscopy. The phase analysis was performed by X-ray diffraction technique. The clad layer exhibited sharp substrate/clad interface in the order of planar, cellular, and dendritic from the interface upwards. Dilution of clad with Fe from substrate was very low passing from ∼ 15% at the interface (∼ 40 μm) to ∼ 6% in the clad layer. The clad layer was characterized by the presence of hexagonal closed packed (hcp, MgZn 2 type) intermetallic Laves phase dispersed in the eutectic of Laves and face centered cubic (fcc) gamma solid solution. The

  1. Metal-clad waveguide characterization for contact-based light transmission into tissue

    Science.gov (United States)

    Chininis, Jeffrey; Whiteside, Paul; Hunt, Heather K.

    2016-02-01

    As contemporary laser dermatology procedures, like tattoo removal and skin resurfacing, become more popular, the complications of their operation are also becoming more prevalent. Frequent incidences of over-exposure, ocular injury, and excessive thermal damage represent mounting concerns for those seeking such procedures; moreover, each of these problems is a direct consequence of the standard, free-space method of laser transmission predominantly used in clinical settings. Therefore, an alternative method of light transmission is needed to minimize these problems. Here, we demonstrate and characterize an alternative method that uses planar waveguides to deliver light into sample tissue via direct contact. To do this, slab substrates made from glass were clad in layers of titanium and silver, constraining the light within the waveguide along the waveguide's length. By creating active areas on the waveguide surface, the propagating light could then optically tunnel into the tissue sample, when the waveguide was brought into contact with the tissue. SEM and EDS were used to characterize the metal film thickness and deposition rates onto the glass substrates. Laser light from a Q-switched Nd:YAG source operating at 532nm was coupled into the waveguide and transmitted into samples of pig skin. The amount of light transmitted was measured using photoacoustics techniques, in conjunction with a photodiode and integrating sphere. Transmitting light into tissue in this manner effectively resolves or circumvents the complications caused by free-space propagation methods as it reduces the operating distance to 0, which prevents hazardous back-reflections and allows for the ready incorporation of contact cooling technologies.

  2. Development of advanced claddings for suppressing the hydrogen emission in accident conditions. Development of advanced claddings for suppressing the hydrogen emission in the accident condition

    International Nuclear Information System (INIS)

    Park, Jeong-Yong; KIM, Hyun-Gil; JUNG, Yang-Il; PARK, Dong-Jun; KOO, Yang-Hyun

    2013-01-01

    The development of accident-tolerant fuels can be a breakthrough to help solve the challenge facing nuclear fuels. One of the goals to be reached with accident-tolerant fuels is to reduce the hydrogen emission in the accident condition by improving the high-temperature oxidation resistance of claddings. KAERI launched a new project to develop the accident-tolerant fuel claddings with the primary objective to suppress the hydrogen emission even in severe accident conditions. Two concepts are now being considered as hydrogen-suppressed cladding. In concept 1, the surface modification technique was used to improve the oxidation resistance of Zr claddings. Like in concept 2, the metal-ceramic hybrid cladding which has a ceramic composite layer between the Zr inner layer and the outer surface coating is being developed. The high-temperature steam oxidation behaviour was investigated for several candidate materials for the surface modification of Zr claddings. From the oxidation tests carried out in 1 200 deg. C steam, it was found that the high-temperature steam oxidation resistance of Cr and Si was much higher than that of zircaloy-4. Al 3 Ti-based alloys also showed extremely low-oxidation rate compared to zircaloy-4. One important part in the surface modification is to develop the surface coating technology where the optimum process needs to be established depending on the surface layer materials. Several candidate materials were coated on the Zr alloy specimens by a laser beam scanning (LBS), a plasma spray (PS) and a PS followed by LBS and subject to the high-temperature steam oxidation test. It was found that Cr and Si coating layers were effective in protecting Zr-alloys from the oxidation. The corrosion behaviour of the candidate materials in normal reactor operation condition such as 360 deg. C water will be investigated after the screening test in the high-temperature steam. The metal-ceramic hybrid cladding consisted of three major parts; a Zr liner, a

  3. Review and perspective: Sapphire optical fiber cladding development for harsh environment sensing

    Science.gov (United States)

    Chen, Hui; Buric, Michael; Ohodnicki, Paul R.; Nakano, Jinichiro; Liu, Bo; Chorpening, Benjamin T.

    2018-03-01

    The potential to use single-crystal sapphire optical fiber as an alternative to silica optical fibers for sensing in high-temperature, high-pressure, and chemically aggressive harsh environments has been recognized for several decades. A key technological barrier to the widespread deployment of harsh environment sensors constructed with sapphire optical fibers has been the lack of an optical cladding that is durable under these conditions. However, researchers have not yet succeeded in incorporating a high-temperature cladding process into the typical fabrication process for single-crystal sapphire fibers, which generally involves seed-initiated fiber growth from the molten oxide state. While a number of advances in fabrication of a cladding after fiber-growth have been made over the last four decades, none have successfully transitioned to a commercial manufacturing process. This paper reviews the various strategies and techniques for fabricating an optically clad sapphire fiber which have been proposed and explored in published research. The limitations of current approaches and future prospects for sapphire fiber cladding are discussed, including fabrication methods and materials. The aim is to provide an understanding of the past research into optical cladding of sapphire fibers and to assess possible material systems for future research on this challenging problem for harsh environment sensors.

  4. Spent fuel cladding containment credit test

    International Nuclear Information System (INIS)

    Wilson, C.N.

    1983-01-01

    As an initial step in addressing the effectiveness of breached cladding as a barrier to radionuclide release from the repository during the post-containment period, preliminary scoping tests have been initiated which compare radionuclide releases from spent fuel specimens with artificially induced cladding defects of various severities. The artificially induced defects are all more severe than the typical in-reactor type breaches which are expected to be the principal type of breach entering the repository for terminal storage. These preliminary scoping tests being conducted by Westinghouse Hanford Company for the Lawrence Livermore National Laboratory Waste Package Development Program in support of the Tuff repository project at the Nevada Test Site are described. Also included in this presentation are selected initial results from these tests. 22 figures

  5. Report on Reactor Physics Assessment of Candidate Accident Tolerant Fuel Cladding Materials in LWRs

    Energy Technology Data Exchange (ETDEWEB)

    Powers, Jeffrey J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); George, Nathan [Univ. of Tennessee, Knoxville, TN (United States); Maldonado, G. Ivan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Worrall, Andrew [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-08-28

    This work focuses on ATF concepts being researched at Oak Ridge National Laboratory (ORNL), expanding on previous studies of using alternate cladding materials in pressurized water reactors (PWRs). The neutronic performance of two leading alternate cladding materials were assessed in boiling water reactors (BWRs): iron-chromium-aluminum (FeCrAl) cladding, and silicon carbide (SiC)-based composite cladding. This report fulfills ORNL Milestone M3FT-15OR0202332 within the fiscal year 2015 (FY15)

  6. Study of pellet clad interaction defects in Dresden-3 fuel rods

    International Nuclear Information System (INIS)

    Pasupathi, V.; Perrin, J.S.

    1979-01-01

    During Cycle-3 operation of Dresden-3, fuel rod failures occurred following a transient power increase. Ten fuel rods from five of the leaking fuel assemblies were examined at Battelle's Columbus Laboratory and General Electric-Vallecitos Nuclear Center. Examinations consisted of nondestructive and destructive methods including metallography and scanning electron microscopy (SEM). Results showed the cause of fuel rod failure to be pellet clad interaction involving stress corrosion cracking. Results of SEM studies of the cladding crack surfaces and deposits on clad inner surfaces were in agreement with those reported by other investigators

  7. 5  W output power from a double-clad hybrid fiber with Yb-doped phosphate core and silicate cladding.

    Science.gov (United States)

    Wang, Longfei; He, Dongbing; Zhang, Lei; Yu, Chunlei; Feng, Suya; Wang, Meng; Chen, Danping; Hu, Lili

    2017-08-01

    For the first time, to the best of our knowledge, we report on the realization of a laser from a Yb-doped phosphate core/silicate cladding double-clad hybrid fiber. 5 W output power was extracted with 14.6% slope efficiency and a laser spectrum of a 1027 nm central wavelength from a 20 cm long single-mode fiber with a ∼10  μm core diameter in a 20%-4% laser cavity. The laser efficiency can be significantly enhanced by correspondingly adjusting and optimizing the laser oscillator.

  8. Chemical Dissolution of Simulant FCA Cladding and Plates

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Pierce, R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); O' Rourke, P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-11-08

    The Savannah River Site (SRS) has received some fast critical assembly (FCA) fuel from the Japan Atomic Energy Agency (JAEA) for disposition. Among the JAEA FCA fuel are approximately 7090 rectangular Stainless Steel clad fuel elements. Each element has an internal Pu-10.6Al alloy metal wafer. The thickness of each element is either 1/16 inch or 1/32 inch. The dimensions of each element ranges from 2 inches x 1 inch to 2 inches x 4 inches. This report discusses the potential chemical dissolution of the FCA clad material or stainless steel. This technology uses nitric acid-potassium fluoride (HNO3-KF) flowsheets of H-Canyon to dissolve the FCA elements from a rack of materials. Historically, dissolution flowsheets have aimed to maximize Pu dissolution rates while minimizing stainless steel dissolution (corrosion) rates. Because the FCA cladding is made of stainless steel, this work sought to accelerate stainless steel dissolution.

  9. Treatment of stainless steels and zircaloy cladding hulls

    International Nuclear Information System (INIS)

    Jenkins, I.L.; Taylor, R.F.

    1978-01-01

    Results are reported on the fissile material content and the distribution of alpha and beta-gamma emitters in both types of cladding. Apart from very small amounts of residual fuel, fissile material is present as a deposit formed during the dissolution of fuel and also as material driven into the cladding by fission recoil. Alpha-emitters penetrate to depths of 1-2 μm into both S.S. and Zircaloy claddings. The surface deposits on individual hulls can be effectively removed by refluxing with nitric acid or by cleaning with nitric acid in an ultrasonic bath. The physical structural and handling behavior of hull assemblies are examined as being of key importance to the establishment of an efficient cleaning process. The reference leaching target is to extract residual fuel fragments and to remove surface deposits. Preferred routes for compaction, drumming, and encapsulation are briefly reviewed with regard to achieving a final package volume half that of the original hulls with associated hardware

  10. Analysis of clad motion observed in loss of flow accident simulation experiments

    International Nuclear Information System (INIS)

    Henkel, P.R.

    1987-01-01

    The clad motion observed in the first two STAR experiments is analysed. The movies reveal that at moderate temperatures molten cladding does not wet fresh fuel (within an argon gas atmosphere). The prevailing flow regime consists of single waves contacting the fuel pins and entrained drops. Entrainment is possible already at gas velocities of order 40-50 m/s. A multichannel clad motion model is presented that accounts for both flow modes. (author)

  11. Order of magnitude cost appraisal for selected aspects of clad waste management

    International Nuclear Information System (INIS)

    Zima, G.E.

    1977-02-01

    A simple formula, incorporating the fixed charge rate principle, is applied to a clad waste management exercise involving densification, canning, transportation and salt disposal. For the purpose of comparison with the bulk of published nuclear waste management costs, cost and fixed charge rate data appropriate to roughly the period 1970 to 1973 are used. Within the context of this order of magnitude appraisal, densification displays some cost advantage, reflected principally in the transportation cost. Dependent on the degree of densification, above a certain clad waste generation rate the transportation savings may be expected to exceed reasonable densification costs. There is no explicit consideration of the decontamination step in this appraisal. The limited accessibility of surface effect decontamination to internal transuranic and activation product contamination suggests a quite small influence of decontamination on the transportation and disposal costs. Decontamination may, however, have a significant effect on the ease of establishing a practicable containment envelope of high reliability throughout the clad waste history. A brief comparison is made of clad waste management costs with the major costs of the nuclear power economy. This comparison implies a virtually unlimited technical latitude for clad waste treatment in accommodating the public safety without significant perturbation of nuclear power costs. It is submitted that clad waste management optimization will be under the primal constraint of maximizing thelong term public safety, with economic analysis useful only as a discriminator between waste handling alternatives of sensibly equivalent containment qualities. Some areas of clad waste treatment meriting increased attention are noted

  12. Characteristics of Ni-Cr-Fe laser clad layers on EA4T steel

    Science.gov (United States)

    Chen, Wenjing; Chen, Hui; Wang, Yongjing; Li, Congchen; Wang, Xiaoli

    2017-07-01

    The Ni-Cr-Fe metal powder was deposited on EA4T steel by laser cladding technology. The microstructure and chemical composition of the cladding layer were analyzed by optical microscopy (OM), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The bonding ability between the cladding layer and the matrix was measured. The results showed that the bonding between the cladding layer and the EA4T steel was metallurgical bonding. The microstructure of cladding layer was composed of planar crystals, columnar crystals and dendrite, which consisted of Cr2Ni3, γ phase, M23C6 and Ni3B phases. When the powder feeding speed reached 4 g/min, the upper bainite occurred in the heat affected zone (HAZ). Moreover, the tensile strength of the joint increased, while the yield strength and the ductility decreased.

  13. Bragg grating induced cladding mode coupling due to asymmetrical index modulation in depressed cladding fibers

    DEFF Research Database (Denmark)

    Berendt, Martin Ole; Grüne-Nielsen, Lars; Soccolich, C.F.

    1998-01-01

    to reduce this problem. None of these designs seems to give complete solutions. In particular, the otherwise promising depressed cladding design gives a pronounced coupling to one LP01 mode, this has been referred to as a Ghost grating. To find the modes of the fiber we have established a numerical mode......UV-written Bragg gratings find wide spread use as wavelength selective components. In reflection high extinction ratios are routinely obtained. However, coupling to cladding modes gives excess loss on the short wavelength side of the main reflection. Different fiber-designs have been proposed......-solver based on the staircase-approximation method. The Bragg grating causes coupling between the fundamental LP01 mode and higher order LP1p modes that satisfy phase-matching. The coupling strength is determined by the overlap integral of the LP01, the LP1p mode, and the UV-induced index perturbation. For LP0...

  14. An internal conical mandrel technique for fracture toughness measurements on nuclear fuel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Sainte Catherine, C.; Le Boulch, D.; Carassou, S. [CEA Saclay, DEN/DMN, Bldg 625 P, Gif-Sur-Yvette, F-91191 (France); Lemaignan, C. [CEA Grenoble, 17 rue des Martyrs, Grenoble, F-38054 (France); Ramasubramanian, N. [ECCATEC Inc., 92 Deburn Drive, Toronto, Ontario (Canada)

    2006-07-01

    An understanding of the limiting stress level for crack initiation and propagation in a fuel cladding material is a fundamental requirement for the development of water reactor clad materials. Conventional tests, in use to evaluate fracture properties, are of limited help, because they are adapted from ASTM standards designed for thick materials, which differ significantly from fuel cladding geometry (small diameter thin-walled tubing). The Internal Conical Mandrel (ICM) test described here is designed to simulate the effect of fuel pellet diametrical increase on a cladding with an existing axial through-wall crack. It consists in forcing a cone, having a tapered increase in diameter, inside the Zircaloy cladding with an initial axial crack. The aim of this work is to quantify the crack initiation and propagation criteria for fuel cladding material. The crack propagation is monitored by a video system for obtaining crack extension {delta}a. A finite-element (FE) simulation of the ICM test is performed in order to derive J integrals. A node release technique is applied during the FE simulation for crack propagation and the J-resistance curves (J-{delta}a) are generated. This paper presents the test methodology, the J computation validation, and results for cold-worked stress relieved Zircaloy-4 cladding at 20 deg. and 300 deg. C and also for Al 7050-T7651 aluminum alloy tubing at 20 deg. C. (authors)

  15. Potential for fuel melting and cladding thermal failure during a PCM event in LWRs

    International Nuclear Information System (INIS)

    El-Genk, M.S.; Croucher, D.W.

    1979-01-01

    The primary concern in nuclear reactor safety is to ensure that no conceivable accident, whether initiated by a failure of the reactor system or by incorrect operation, will lead to a dangerous release of radiation to the environment. A number of hypothesized off-normal power or cooling conditions, generally termed as power-cooling-mismatch (PCM) accidents, are considered in the safety analysis of light water reactors (LWRs). During a PCM accident, film boiling may occur at the cladding surface and cause a rapid temperature increase in the fuel and the cladding, perhaps producing embrittlement of the zircaloy cladding by oxidation. Molten fuel may be produced at the center of the pellets, extrude radially through open cracks in the outer, unmelted portion of the pellet and relocate in the fuel-cladding gap. If the amount of extruded molten fuel is sufficient to establish contact with the cladding, which is at a high temperature during film boiling, the zircaloy cladding may melt. The present work assesses the potential for central fuel melting and thermal failure of the zircaloy cladding due to melting upon being contacted by extruded molten UO 2 -fuel during a PCM event

  16. Gap conductance in Zircaloy-clad LWR fuel rods

    International Nuclear Information System (INIS)

    Ainscough, J.B.

    1982-04-01

    This report describes the procedures currently used to calculate fuel-cladding gap conductance in light water reactor fuel rods containing pelleted UO 2 in Zircaloy cladding, under both steady-state and transient conditions. The relevant theory is discussed together with some of the approximations usually made in performance modelling codes. The state of the physical property data which are needed for heat transfer calculations is examined and some of the relevant in- and out-of-reactor experimental work on fuel rod conductance is reviewed

  17. Irradiation experience with HT9-clad metallic fuel

    International Nuclear Information System (INIS)

    Pahl, R.G.; Lahm, C.E.; Tsai, H.; Billone, M.C.

    1991-01-01

    The safe and reliable performance of metallic fuel is currently under study and demonstration in the Integral Fast Reactor program. In-reactor tests of HT9-clad metallic fuel have now reached maturity and have all shown good performance characteristics to burnups exceeding 17.5 at. % in the lead assembly. Because this low-swelling tempered martensitic alloy is the cladding of choice for high fluence applications, the experimental observations and performance modelling efforts reported in this paper play an important role in demonstrating reliability

  18. Facility for in-reactor creep testing of fuel cladding

    International Nuclear Information System (INIS)

    Kohn, E.; Wright, M.G.

    1976-11-01

    A biaxial stress creep test facility has been designed and developed for operation in the WR-1 reactor. This report outlines the rationale for its design and describes its construction and the operating experience with it. The equipment is optimized for the determination of creep data on CANDU fuel cladding. Typical results from Zr-2.5 wt% Nb fuel cladding are used to illustrate the accuracy and reliability obtained. (author)

  19. Pump radiation distribution in multi-element first cladding laser fibres

    International Nuclear Information System (INIS)

    Mel'kumov, Mikhail A; Bufetov, Igor' A; Bubnov, M M; Shubin, Aleksei V; Semenov, S L; Dianov, Evgenii M

    2005-01-01

    Pump radiation transfer is studied experimentally in multi-element first cladding laser fibres. A model of this process is proposed, which is in good agreement with experimental results. An all-fibre single-mode cw ytterbium laser based on a three-element first cladding fibre with an output power of 100W is fabricated. (lasers)

  20. A study of friction and axial effects in pellet-clad mechanical interaction

    International Nuclear Information System (INIS)

    Harriague, Santiago; Mayer, J.E.

    1982-01-01

    An analysis is made of the effect of friction and axial forces along the fuel rod in the pellet-cladding mechanical interaction in a commercial reactor under a power-up ramp. The effect of different pellet and rod shapes on their behaviour was also determined. A linear thermoelastic computer program was used in order to obtain the stiffness matrix of a compound structure from the stiffness of its components. Pellet-cladding displacements, localized deformations of the cladding in the interfaces between pellets, as well as pellet and cladding axial deformations were determined for different power axial profiles as well as for pellets with and without dishing and with height/diameter ratios of 1.7, 1 and 0.5. (M.E.L.) [es

  1. 3D Finite Element Simulation of Pellet-Cladding Mechanical Interaction

    International Nuclear Information System (INIS)

    Seo, Sang Kyu; Lee, Sung Uk; Lee, Eun Ho; Yang, Dong Yol; Kim, Hyo Chan; Yang, Dong Yol

    2016-01-01

    In a nuclear power plant, the fuel assembly, which is composed of fuel rods, burns, and the high temperature can generate power. The fuel rod consists of pellets and a cladding that covers the pellets. It is important to understand the pellet-cladding mechanical interaction with regard to nuclear safety. This paper proposes simulation of the PCMI. The gap between the pellets and the cladding, and the contact pressure are very important for conducting thermal analysis. Since the gap conductance is not known, it has to be determined by a suitable method. This paper suggests a solution. In this study, finite element (FE) contact analysis is conducted considering thermal expansion of the pellets. As the contact causes plastic deformation, this aspect is considered in the analysis. A 3D FE module is developed to analyze the PCMI using FORTRAN 90. The plastic deformation due to the contact between the pellets and the cladding is the major physical phenomenon. The simple analytical solution of a cylinder is proposed and compared with the fuel rod performance code results

  2. Laser cladding of a Mg based Mg–Gd–Y–Zr alloy with Al–Si powders

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Erlei [School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620 (China); Zhang, Kemin, E-mail: zhangkm@sues.edu.cn [School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620 (China); Zou, Jianxin [National Engineering Research Center of Light Alloys Net Forming & School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2016-03-30

    Graphical abstract: A Mg based Mg–Gd–Y–Zr alloy was treated by laser cladding with Al–Si powders at different laser scanning speeds. The laser clad layer mainly contains Mg{sub 2}Si, Mg{sub 17}Al{sub 12} and Al{sub 2}(Gd,Y) phases distributed in the Mg matrix. After laser cladding, the corrosion resistance of the Mg alloy was significantly improved together with increased microhardness in the laser clad layers. - Highlights: • A Mg based Mg–Gd–Y–Zr alloy was laser clad with Al–Si powders. • The microstructure and morphology vary with the depth of the clad layer and the laser scanning speed. • Hardness and corrosion resistance were significantly improved after laser cladding. - Abstract: In the present work, a Mg based Mg–Gd–Y–Zr alloy was subjected to laser cladding with Al–Si powders at different laser scanning speeds in order to improve its surface properties. It is observed that the laser clad layer mainly contains Mg{sub 2}Si, Mg{sub 17}Al{sub 12} and Al{sub 2}(Gd,Y) phases distributed in the Mg matrix. The depth of the laser clad layer increases with decreasing the scanning speed. The clad layer has graded microstructures and compositions. Both the volume fraction and size of Mg{sub 2}Si, Mg{sub 17}Al{sub 12} and Al{sub 2}(Gd,Y) phases decreases with the increasing depth. Due to the formation of these hardening phases, the hardness of clad layer reached a maximum value of HV440 when the laser scanning speed is 2 mm/s, more than 5 times of the substrate (HV75). Besides, the corrosion properties of the untreated and laser treated samples were all measured in a NaCl (3.5 wt.%) aqueous solution. The corrosion potential was increased from −1.77 V for the untreated alloy to −1.13 V for the laser clad alloy with scanning rate of 2 mm/s, while the corrosion current density was reduced from 2.10 × 10{sup −5} A cm{sup −2} to 1.64 × 10{sup −6} A cm{sup −2}. The results show that laser cladding is an efficient method to improve

  3. Manufacturing process for the metal ceramic hybrid fuel cladding tube

    International Nuclear Information System (INIS)

    Jung, Yang Il; Kim, Sun Han; Park, Jeong Yong

    2012-01-01

    For application in LWRs with suppressed hydrogen release, a metal-ceramic hybrid cladding tube has been proposed. The cladding consists of an inner zirconium tube and outer SiC fiber matrix SiC ceramic composite. The inner zirconium allows the matrix to remain fully sealed even if the ceramic matrix cracks through. The outer SiC composite can increase the safety margin by taking the merits of the SiC itself. However, it is a challenging task to fabricate the metal-ceramic hybrid tube. Processes such as filament winding, matrix impregnation, and surface costing are additionally required for the existing Zr based fuel cladding tubes. In the current paper, the development of the manufacturing process will be introduced

  4. Manufacturing process for the metal ceramic hybrid fuel cladding tube

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Yang Il; Kim, Sun Han; Park, Jeong Yong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-10-15

    For application in LWRs with suppressed hydrogen release, a metal-ceramic hybrid cladding tube has been proposed. The cladding consists of an inner zirconium tube and outer SiC fiber matrix SiC ceramic composite. The inner zirconium allows the matrix to remain fully sealed even if the ceramic matrix cracks through. The outer SiC composite can increase the safety margin by taking the merits of the SiC itself. However, it is a challenging task to fabricate the metal-ceramic hybrid tube. Processes such as filament winding, matrix impregnation, and surface costing are additionally required for the existing Zr based fuel cladding tubes. In the current paper, the development of the manufacturing process will be introduced.

  5. Evaluation of fast experimental reactor claddings, (2)

    International Nuclear Information System (INIS)

    Miura, Makoto; Nagaki, Hiroshi; Koyama, Masahiro; Tanaka, Yasumasa

    1974-01-01

    Thin-walled fine tubes of Type 316 austenitic stainless steel are used for fuel cladding in Joyo (experimental FBR). The material exhibits the change of the mechanical properties in long-time annealing at high temperature, resulting from the precipitation of carbide in structure. In this connection, the experiment and the results on the changes of the microstructure and mechanical properties (proof stress and hardness) are described. The test specimens are the fuel cladding tubes produced for trial for Joyo core and those for FFTF core made in the U.S.A. They were heated between 400 0 and 850 0 C for 1000 hr in vacuum. (Mori, K.)

  6. Report of the advanced neutron source (ANS) aluminum cladding corrosion workshop

    International Nuclear Information System (INIS)

    Hanson, G.H.; Gibson, G.W.; Griess, J.C.; Pawel, R.E.; Pace, N.E.; Ryskamp, J.M.

    1989-02-01

    The Advanced Neutron Source (ANS) Corrosion Workshop on aluminum cladding corrosion in reactor environments is summarized. The Workshop was held to examine the aluminum cladding oxidation studies being conducted in support of the ANS design. This report was written principally to provide a record of the ideas and judgments expressed by the workshop attendees. The ANS operating heat flux is significantly higher than that in existing reactors, and early experiments indicate that there may be an aluminum cladding oxidation problem unique to higher heat fluxes or associated cladding temperatures that, if not solved, may limit the operation of the ANS to unacceptably low power levels. A brief description of the information presented by each speaker is included along with a compilation of the most significant ideas and recommended research areas. The appendixes contain a copy of the workshop agenda and a list of attendees

  7. Optical absorption and fluorescent behaviour of titanium ions in ...

    Indian Academy of Sciences (India)

    Unknown

    Titanium in normal melting conditions in air atmosphere present as Ti4+ ion in basic silicate ... exchange of electrons in between M → L → M coopera- ... glass even for higher concentration of titania than 0⋅1% ... glass composition originates from different points of .... The development of photosensitive copper ruby, silver.

  8. Modelling anelastic contribution to nuclear fuel cladding creep and stress relaxation

    Energy Technology Data Exchange (ETDEWEB)

    Tulkki, Ville, E-mail: ville.tulkki@vtt.fi; Ikonen, Timo

    2015-10-15

    In fuel behaviour modelling accurate description of the cladding mechanical response is important for both operational and safety considerations. While accuracy is desired, a certain level of simplicity is needed as both computational resources and detailed information on properties of particular cladding may be limited. Most models currently used in the integral codes divide the mechanical response into elastic and viscoplastic contributions. These have difficulties in describing both creep and stress relaxation, and often separate models for the two phenomena are used. In this paper we implement anelastic contribution to the cladding mechanical model, thus enabling consistent modelling of both creep and stress relaxation. We show that the model based on assumption of viscoelastic behaviour can be used to explain several experimental observations in transient situations and compare the model to published set of creep and stress relaxation experiments performed on similar samples. Based on the analysis presented we argue that the inclusion of anelastic contribution to the cladding mechanical models provides a way to improve the simulation of cladding behaviour during operational transients.

  9. Advances in appendage joining techniques for PHWR fuel cladding

    International Nuclear Information System (INIS)

    Desai, P.B.; Ray, T.K.; Date, V.G.; Purushotham, D.S.C.

    1995-01-01

    This paper describes work carried out at the BARC on the development of a technique to join tiny appendages (spacers and bearing pads) to thin cladding (before loading of UO 2 pellets) by resistance welding for PHWR fuel assemblies. The work includes qualifying the process for production environment, designing prototype equipment for regular production and quality monitoring. In the first phase of development, welding of appendages on UO 2 loaded elements was successfully developed, and is being used in production. Welding of appendages on to empty clad tubes is a superior technique for several reasons. Many problems associated with development of welding on empty tubes were resolved. work was initiated, in the second phase of the development task, to select a suitable technique to join appendages on empty clad tubes without any collapse of thin clad. Several alternatives were reviewed and assessed such as laser, full face welding, shim welding and shrink fitting ring spacers. Selection of a method using a mandrel and a modified electrode geometry was fully developed. Results were optimized and process development successfully completed. Appropriate weld monitoring techniques were also reviewed for their adaptation. This technique is useful for 19, 22 as well as 37 element assemblies. (author)

  10. Compatibility Behavior of the Ferritic-Martensitic Steel Cladding under the Liquid Sodium Environment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jun Hwan; Baek, Jong Hyuk; Kim, Sung Ho; Lee, Chan Bock [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    Fuel cladding is a component which confines uranium fuel to transport energy into the coolant as well as protect radioactive species from releasing outside. Sodium-cooled Fast Reactor (SFR) has been considered as one of the most probable next generation reactors in Korea because it can maximize uranium resource as well as reduce the amount of PWR spent fuel in conjunction with pyroprocessing. Sodium has been selected as the coolant of the SFR because of its superior fast neutron efficiency as well as thermal conductivity, which enables high power core design. However, it is reported that the fuel cladding materials like austenitic and ferritic stainless steel react sodium coolant so that the loss of the thickness, intergranular attack, and carburization or decarburization process may happen to induce the change of the mechanical property of the cladding. This study aimed to evaluate material property of the cladding material under the liquid sodium environment. Ferritic-martensitic steel (FMS) coupon and cladding tube were exposed at the flowing sodium then the microstructural and mechanical property were evaluated. mechanical property of the cladding was evaluated using the ring tension test

  11. Sliding wear studies of microwave clad versus unclad surface of stainless steel 304

    Directory of Open Access Journals (Sweden)

    Akshata M. K.

    2018-01-01

    Full Text Available Small and large scale (gas power plant, hydro power plant, automobile industries are suffering by failure of component. Sometimes, it is also observed that the component which was failed due to these reasons are very much costly and replacement of those also very difficult due to the complex geometry. By using Microwave hybrid heating, WC-12Co based clads were developed on austenitic stainless steel (SS304. Microwave clads were developed by introducing the preplaced, preheated powder for a duration of 15 min to microwave radiation at 2.45GHz frequency and 900 W power in domestic microwave applicator. By using optical microscope and scanning electron microscope (SEM, the developed clads were characterized. By using pin-on-disk, wear performance of the WC-12Co based clads and unclad samples were tested. It is observed that developed clad samples performed superior wear resistance than unclad samples.

  12. Implications and control of fuel-cladding chemical interaction for LMFBR fuel pin design

    International Nuclear Information System (INIS)

    Roake, W.E.

    1977-01-01

    Fuel-cladding-chemical-interaction (FCCI) is typically incorporated into the design of an LMFBR fuel pin as a wastage allowance. Several interrelated factors are considered during the evolution of an LMFBR fuel pin design. Those which are indirectly affected by FCCI include: allowable pin power, fuel restructuring, fission gas migration and release from the fuel, fuel cracking, fuel swelling, in-reactor cladding creep, cladding swelling, and the cladding mechanical strain. Chemical activity of oxygen is the most readily controlled factor in FCCI. Two methods are being investigated: control of total oxygen inventory by limiting fuel O/M, and control of oxygen activity with buffer metals

  13. Implications and control of fuel-cladding chemical interaction for LMFBR fuel pin design

    Energy Technology Data Exchange (ETDEWEB)

    Roake, W E [Westinghouse-Hanford Co., Richland, WA (United States)

    1977-04-01

    Fuel-cladding-chemical-interaction (FCCI) is typically incorporated into the design of an LMFBR fuel pin as a wastage allowance. Several interrelated factors are considered during the evolution of an LMFBR fuel pin design. Those which are indirectly affected by FCCI include: allowable pin power, fuel restructuring, fission gas migration and release from the fuel, fuel cracking, fuel swelling, in-reactor cladding creep, cladding swelling, and the cladding mechanical strain. Chemical activity of oxygen is the most readily controlled factor in FCCI. Two methods are being investigated: control of total oxygen inventory by limiting fuel O/M, and control of oxygen activity with buffer metals.

  14. Creep collapse of TAPS fuel cladding

    International Nuclear Information System (INIS)

    Chaudhry, S.M.; Anand, A.K.

    1975-01-01

    Densification of UO 2 can cause axial gaps between fuel pelets and cladding in unsupported (internally) at these regions. An analysis is carried out regarding the possibility of creep collapse in these regions. The analysis is based on Timoshenko's theory of collapse. At various times during the residence of fuel in reactor following parameters are calculated : (1) inelastic collapse of perfectly circular tubes (2) plastic instability in oval tubes (3) effect of creep on ovality. Creep is considered to be a non-linear combination of the following : (a) thermal creep (b) intresenic creep (c) stress aided radiation enhanced (d) stress free growth (4) Critical pressure ratio. The results obtained are compared with G.E. predictions. The results do not predict collapse of TAPS fuel cladding for five year residence time. (author)

  15. Capture of Tritium Released from Cladding in the Zirconium Recycle Process

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, Barry B [ORNL; Bruffey, Stephanie H [ORNL; DelCul, Guillermo Daniel [ORNL; Walker, Trenton Baird [ORNL

    2016-08-31

    Zirconium may be recovered from the Zircaloy® cladding of used nuclear fuel (UNF) for recycle or to reduce the quantities of high-level waste destined for a geologic repository. Recovery of zirconium using a chlorination process is currently under development at the Oak Ridge National Laboratory. The approach is to treat the cladding with chlorine gas to convert the zirconium in the alloy (~98 wt % of the alloy mass) to zirconium tetrachloride. A significant fraction of the tritium (0–96%) produced in nuclear fuel during irradiation may be found in zirconium-based cladding and could be released from the cladding when the solid matrix is destroyed by the chlorination reaction. To prevent uncontrolled release of radioactive tritium to other parts of the plant or to the environment, a method to recover the tritium may be required. The focus of this effort was to (1) identify potential methods for the recovery of tritium from the off-gas of the zirconium recycle process, (2) perform scoping tests on selected recovery methods using nonradioactive gas simulants, and (3) select a process design appropriate for testing on radioactive gas streams generated by the engineering-scale zirconium recycle demonstrations on radioactive used cladding.

  16. Capture of Tritium Released from Cladding in the Zirconium Recycle Process

    Energy Technology Data Exchange (ETDEWEB)

    Bruffey, Stephanie H [ORNL; Spencer, Barry B [ORNL; DelCul, Guillermo Daniel [ORNL

    2016-08-31

    This report is issued as the first revision to FCRD-MRWFD-2016-000297. Zirconium may be recovered from the Zircaloy® cladding of used nuclear fuel (UNF) for recycle or to reduce the quantities of high-level waste destined for a geologic repository. Recovery of zirconium using a chlorination process is currently under development at the Oak Ridge National Laboratory. The approach is to treat the cladding with chlorine gas to convert the zirconium in the alloy (~98 wt % of the alloy mass) to zirconium tetrachloride. A significant fraction of the tritium (0–96%) produced in nuclear fuel during irradiation may be found in zirconium-based cladding and could be released from the cladding when the solid matrix is destroyed by the chlorination reaction. To prevent uncontrolled release of radioactive tritium to other parts of the plant or to the environment, a method to recover the tritium may be required. The focus of this effort was to (1) identify potential methods for the recovery of tritium from the off-gas of the zirconium recycle process, (2) perform scoping tests on selected recovery methods using non-radioactive gas simulants, and (3) select a process design appropriate for testing on radioactive gas streams generated by the engineering-scale zirconium recycle demonstrations on radioactive used cladding.

  17. Laser Cladding of Embedded Sensors for Thermal Barrier Coating Applications

    Directory of Open Access Journals (Sweden)

    Yanli Zhang

    2018-05-01

    Full Text Available The accurate real-time monitoring of surface or internal temperatures of thermal barrier coatings (TBCs in hostile environments presents significant benefits to the efficient and safe operation of gas turbines. A new method for fabricating high-temperature K-type thermocouple sensors on gas turbine engines using coaxial laser cladding technology has been developed. The deposition of the thermocouple sensors was optimized to provide minimal intrusive features to the TBC, which is beneficial for the operational reliability of the protective coatings. Notably, this avoids a melt pool on the TBC surface. Sensors were deposited onto standard yttria-stabilized zirconia (7–8 wt % YSZ coated substrates; subsequently, they were embedded with second YSZ layers by the Atmospheric Plasma Spray (APS process. Morphology of cladded thermocouples before and after embedding was optimized in terms of topography and internal homogeneity, respectively. The dimensions of the cladded thermocouple were in the order of 200 microns in thickness and width. The thermal and electrical response of the cladded thermocouple was tested before and after embedding in temperatures ranging from ambient to approximately 450 °C in a furnace. Seebeck coefficients of bared and embedded thermocouples were also calculated correspondingly, and the results were compared to that of a commercial standard K-type thermocouple, which demonstrates that laser cladding is a prospective technology for manufacturing microsensors on the surface of or even embedded into functional coatings.

  18. First results on the effect of fuel-cladding eccentricity

    International Nuclear Information System (INIS)

    Panka, I.; Kereszturi, A.

    2009-01-01

    In the traditional fuel-behaviour or hot channel calculations it is assumed that the fuel pellet is centered within the clad. However, in the real life the pellet could be positioned asymmetrically within the clad, which leads to asymmetric gap conductance and therefore it is worthwhile to investigate the magnitude of the effect on maximal fuel temperature and surface heat flux. In this paper our first experiences are presented on this topic. (Authors)

  19. Investigations of chemical reactions between U-Zr alloy and FBR cladding materials

    International Nuclear Information System (INIS)

    Ishii, Tetsuya; Ukai, Shigeharu

    2005-07-01

    U-Pu-Zr alloys are candidate materials for commercial FBR fuel. However, informations about chemical reactions with cladding materials developed by JNC for commercial FBR have not been well obtained. In this work, the reaction zones formed in four diffusion couples U-10wt.%Zr/PNC-FMS, U-10wt.%Zr/9Cr-ODS, U-10wt.%Zr/12Cr-ODS, and U-10wt.%Zr/Fe at about 1013K have been examined and following results were obtained. 1) At about 1013K, in the U-10wt.%Zr/Fe couple, the liquid phase zones were obtained. In the other couples U-10wt.%Zr/PNC-FMS, U-10wt.%Zr/9Cr-ODS and U-10wt.%Zr/12Cr-ODS, no liquid phase zones were obtained. The obtained chemical reaction zones in the later 3 couples were similar to the reported ones obtained in U-Zr/Fe couples without liquid phase formation. In comparison with the reaction zones obtained in the U-10wt.%Zr/Fe couple, the reaction zones inside cladding materials obtained in the PNC-FMS, 9Cr-ODS, and 12Cr-ODS couples were thin. 2) From the investigations of relationship between the obtained depths of the chemical reaction zones inside cladding materials and composition of the cladding materials, it was considered that the depth of chemical reaction zone would depend on the Cr content of the cladding materials and the depth would decrease with increasing Cr content, resulting in prevention of liquid phase formation. 3) From the investigations of the mechanisms of chemical reactions between U-Pu-Zr/cladding materials, it was considered that the same effect of Cr obtained in the U-Zr/cladding materials would be expected in U-Pu-Zr/cladding materials. Those seemed to indicate that the threshold temperatures of liquid phase formation for U-Pu-Zr/PNC-FMS, U-Pu-Zr/9Cr-ODS, and U-Pu-Zr/12Cr-ODS might be higher than that for U-Pu-Zr/Fe. (author)

  20. Fracture toughness measurements on a glass bonded sodalite high-level waste form

    International Nuclear Information System (INIS)

    DiSanto, T.; Goff, K. M.; Johnson, S. G.; O'Holleran, T. P.

    1999-01-01

    The electrometallurgical treatment of metallic spent nuclear fuel produces two high-level waste streams; cladding hulls and chloride salt. Argonne National Laboratory is developing a glass bonded sodalite waste form to immobilize the salt waste stream. The waste form consists of 75 Vol.% crystalline sodalite (containing the salt) with 25 Vol.% of an ''intergranular'' glassy phase. Microindentation fracture toughness measurements were performed on representative samples of this material using a Vickers indenter. Palmqvist cracking was confirmed by post-indentation polishing of a test sample. Young's modulus was measured by an acoustic technique. Fracture toughness, microhardness, and Young's modulus values are reported, along with results from scanning electron microscopy studies