WorldWideScience

Sample records for glass ceramic materials

  1. Oxygen diffusion in glasses and ceramic materials

    Kolitsch, A.; Richter, E.; Wolf, M.

    1978-10-01

    A survey is given on the published works to study oxygen diffusion in glasses and ceramic materials in the last years. In the first part methods are described for the measurement of oxygen diffusion coefficients and in the second part the published reports on oxygen diffusion in glasses, ceramic and other oxides are discussed. The most important results are summarized in different tables. (author)

  2. Glasses, ceramics, and composites from lunar materials

    Beall, George H.

    1992-01-01

    A variety of useful silicate materials can be synthesized from lunar rocks and soils. The simplest to manufacture are glasses and glass-ceramics. Glass fibers can be drawn from a variety of basaltic glasses. Glass articles formed from titania-rich basalts are capable of fine-grained internal crystallization, with resulting strength and abrasion resistance allowing their wide application in construction. Specialty glass-ceramics and fiber-reinforced composites would rely on chemical separation of magnesium silicates and aluminosilicates as well as oxides titania and alumina. Polycrystalline enstatite with induced lamellar twinning has high fracture toughness, while cordierite glass-ceramics combine excellent thermal shock resistance with high flexural strengths. If sapphire or rutile whiskers can be made, composites of even better mechanical properties are envisioned.

  3. Cordierite Glass-Ceramics for Dielectric Materials

    Siti Mazatul Azwa Saiyed Mohd Nurddin; Selamat, Malek; Ismail, Abdullah

    2007-01-01

    The objective of this project is to examine the potential of using Malaysian silica sand deposit as SiO2 raw material in producing cordierite glass-ceramics (2MgO-2Al2O3-5SiO2) for dielectric materials. Upgraded silica sands from Terengganu and ex-mining land in Perak were used in the test-works. The glass batch of the present work has a composition of 45.00% SiO2, 24.00% Al2O3, 15.00% MgO and 8.50% TiO2 as nucleation agent. From the differential thermal analysis results, the crystallization temperature was found to start around 900 deg. C. The glass samples were heat-treated at 900 deg. C and 1000 deg. C. The X-ray diffraction analysis (XRD) results showed glass-ceramics from Terengganu samples containing mainly cordierite and minor β-quartz crystals. However, glass-ceramics from ex-mining land samples contained mainly α-quartz and minor cordierite crystals. Glass-ceramics with different crystal phases exhibit different mechanical, dielectric and thermal properties. Based on the test works, both silica sand deposits, can be potentially used to produce dielectric material component

  4. Producing glass-ceramics from waste materials

    Boccaccini, A.R.; Rawlings, R.D. [Imperial College, London (United Kingdom)

    2002-10-01

    An overview is given of recent research at the Department of Materials of Imperial College, London, UK, concerning the production of useful glass-ceramic products from industrial waste materials. The new work, using controlled crystallisation to improve the properties of vitrified products, could help to solve the problem of what to do with increasing amounts of slag, fly ash and combustion dust. The results show, that it is possible to produce new materials with interesting magnetic and constructive properties.

  5. Application of ceramic and glass materials in nuclear power plants

    Hamnabard, Z.

    2008-01-01

    Ceramic and glass are high temperature materials that can be used in many fields of application in nuclear industries. First, it is known that nuclear fuel UO 2 is a ceramic material. Also, ability to absorb neutrons without forming long lived radio-nuclides make the non-oxide ceramics attractive as an absorbent for neutron radiation arising in nuclear power plants. Glass-ceramic materials are a new type of ceramic that produced by the controlled nucleation and crystallization of glass, and have several advantages such as very low or null porosity, uniformity of microstructure, high chemical resistance etc. over conventional powder processed ceramics. These ceramic materials are synthesized in different systems based on their properties and applications. In nuclear industries, those are resistant to leaching and radiation damage for thousands of years, Such as glass-ceramics designed for radioactive waste immobilization and machinable glass-ceramics are used. This article introduces requirements of different glass and ceramic materials used in nuclear power plants and have been focused on developments in properties and application of them

  6. Glass-ceramics as building materials

    Rincón, J. María

    1996-06-01

    Full Text Available Glass-ceramics are materials composed as any ceramic material by several crystalline phases embedded in an amorphous or vitreous matrix, but their manufacture process implies the controlled devitrification or nucleation and growth of phases from an original glass. The original shape of the original glass molded by conventional methods is carried out by using pressing and sintering followed by crystallization steps. By both processing routes are obtained transparent and/or opaque materials, with or without colours, which after adequate control and design of composition and microstructure have numerous domestic and architectonic applications. They can be used as pavements or wall coatings and in various decorative elements. In fact, their use is very extensive in east-European, American and Asian (Japan countries in constructions for covering large surfaces. The greater advantage of the glass-ceramic process is that due to the own process of vitrification allows the incorporation in their structure of a wide range of compositions from mining and industrial residues, such as red muds, ashes, fangos, scraps... which they can in this way not only be inertizated, but furthermore it be converted without risk for the environment into products useful in construction applications, offering to the architect and to the decorator a new range of "eco-materials" with multiple complementary possibilities of the already existing architectural materials in the market.

    Los productos o materiales vitrocerámicos se componen, como cualquier material de tipo cerámico, de una o varias fases cristalinas embebidas en una matriz amorfa o vítrea, pero cuyo proceso de fabricación implica la desvitrificación o nucleación y cristalización controlada de un vidrio original o de partida. En el proceso de obtención de estos materiales se puede conservar la forma original conferida al vidrio de partida por los métodos convencionales de moldeado de vidrios

  7. Valorization of sugarcane bagasse ash: producing glass-ceramic materials.

    Teixeira, S R; Magalhães, R S; Arenales, A; Souza, A E; Romero, M; Rincón, J M

    2014-02-15

    Some aluminosilicates, for example mullite and wollastonite, are very important in the ceramic and construction industries. The most significant glass-ceramic for building applications has wollastonite as the main crystal phase. In this work we report on the use of sugarcane bagasse ash (SCBA) to produce glass-ceramics with silicates as the major crystalline phases. The glasses (frits) were prepared by mixing ash, limestone (calcium and magnesium carbonates) and potassium carbonate as the fluxing agent. X-ray fluorescence was used to determine the chemical composition of the glasses and their crystallization was assessed by using thermal analysis (DTA/DSC/TGA) and X-ray diffraction. The results showed that glass-ceramic material can be produced with wollastonite as the major phase, at a temperature lower than 900 °C. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Proceedings of the national symposium on materials and processing: functional glass/glass-ceramics, advanced ceramics and high temperature materials

    Ghosh, A.; Sahu, A.K.; Viswanadham, C.S.; Ramanathan, S.; Hubli, R.C.; Kothiyal, G.P.

    2012-10-01

    With the development of materials science it is becoming increasingly important to process some novel materials in the area of glass, advanced ceramics and high temperature metals/alloys, which play an important role in the realization of many new technologies. Such applications demand materials with tailored specifications. Glasses and glass-ceramics find exotic applications in areas like radioactive waste storage, optical communication, zero thermal expansion coefficient telescopic mirrors, human safety gadgets (radiation resistance windows, bullet proof apparels, heat resistance components etc), biomedical (implants, hyperthermia treatment, bone cement, bone grafting etc). Advanced ceramic materials have been beneficial in biomedical applications due to their strength, biocompatibility and wear resistance. Non-oxide ceramics such as carbides, borides, silicides, their composites, refractory metals and alloys are useful as structural and control rod components in high temperature fission/ fusion reactors. Over the years a number of novel processing techniques like selective laser melting, microwave heating, nano-ceramic processing etc have emerged. A detailed understanding of the various aspects of synthesis, processing and characterization of these materials provides the base for development of novel technologies for different applications. Keeping this in mind and realizing the need for taking stock of such developments a National Symposium on Materials and Processing -2012 (MAP-2012) was planned. The topics covered in the symposium are ceramics, glass/glass-ceramics and metals and materials. Papers relevant to INIS are indexed separately

  9. Ceramic fiber-reinforced monoclinic celsian phase glass-ceramic matrix composite material

    Bansal, Narottam P. (Inventor); Dicarlo, James A. (Inventor)

    1994-01-01

    A hyridopolysilazane-derived ceramic fiber reinforced monoclinic celsian phase barium aluminum silicate glass-ceramic matrix composite material is prepared by ball-milling an aqueous slurry of BAS glass powder and fine monoclinic celsian seeds. The fibers improve the mechanical strength and fracture toughness and with the matrix provide superior dielectric properties.

  10. Immobilization of transuranic sludge in glass-ceramic materials

    Welch, J.M.; Schuman, R.P.; Flinn, J.E.

    1982-03-01

    Studies were performed to determine the effectiveness of glass-ceramic waste forms, particularly iron-enriched basalt, for immobilizing transuranic waste sludges from the Rocky Flats plant operations. Two sludges were used in the study - one was nonradioactive and the other contained approx. 2200 dps/mg of 241 Am. The glass-ceramic waste forms were produced from laboratory-scale melting operations with subsequent controlled cooling. The waste forms were examined to assess the microstructures which resulted from systematically varied compositions and controlled cooling sequences. Leach tests in deionized water were performed on small monolithic specimens of the various glass-ceramic materials. The test results showed a rather strong temperature dependence for leach rates. Also, for some of these materials, marked differences in the 241 Am leaching behavior were seen in measurements obtained on acidified versus neutral aliquots of the spent leachates. 8 figures, 12 tables

  11. Glass-ceramic material and method of making

    Meinhardt, Kerry D [Richland, WA; Vienna, John D [West Richland, WA; Armstrong, Timothy R [Pasco, WA; Pederson, Larry R [Kennewick, WA

    2002-08-13

    The present invention is a glass-ceramic material and method of making useful for joining at least two solid ceramic parts. The seal is a blend of M.sub.A O--M.sub.B O.sub.y --SiO.sub.2 that substantially matches a coefficient of thermal expansion of the solid electrolyte. According to the present invention, a series of glass ceramics in the M.sub.A O--M.sub.B O.sub.y --SiO.sub.2 system can be used to join or seal both tubular and planar ceramic solid oxide fuel cells, oxygen electrolyzers, and membrane reactors for the production of syngas, commodity chemicals and other products.

  12. Materials analyses of ceramics for glass furnace recuperators

    Weber, G.W.; Tennery, V.J.

    1979-11-01

    The use of waste heat recuperation systems offers significant promise for meaningful energy conservation in the process heat industries. This report details the analysis of candidate ceramic recuperator materials exposed to simulated industrial glass furnace hot flue gas environments. Several candidate structural ceramic materials including various types of silicon carbide, several grades of alumina, mullite, cordierite, and silicon nitride were exposed to high-temperature flue gas atmospheres from specially constructed day tank furnaces. Furnace charging, operation, and batch composition were selected to closely simulate industrial practice. Material samples were exposed in flues both with and without glass batch in the furnace for times up to 116 d at temperatures from 1150 to 1550/sup 0/C (2100 to 2800/sup 0/F). Exposed materials were examined by optical microscopy, scanning electron microscopy, energy dispersive x-ray analysis, x-ray diffraction, and x-ray fluorescence to identify material degradation mechanisms. The materials observations were summarized as: Silicon carbide exhibited enhanced corrosion at lower temperatures (1150/sup 0/C) when alkalies were deposited on the carbide from the flue gas and less corrosion at higher temperatures (1550/sup 0/C) when alkalies were not deposited on the carbide; alumina corrosion depended strongly upon purity and density and alumina contents less than 99.8% were unsatisfactory above 1400/sup 0/C; and mullite and cordierite are generally unacceptable for application in soda-lime glass melting environments at temperatures above 1100/sup 0/C.

  13. Development of glass/glass-ceramics materials and devices and their micro-structural studies

    Goswami, Madhumita; Sarkar, Arjun; Shingarvelan, Shobha; Kumar, Rakesh; Ananathanarayan, Arvind; Shrikhande, V.K.; Kothiyal, G.P.

    2009-01-01

    Materials and devices based on glass and glass-ceramics (GCs) find applications in various high pressure and vacuum applications. We have prepared different glasses/glass-ceramics with requisite thermal expansion coefficient, electrical, vacuum and wetting characteristics to fabricate hermetic seals with different metals/alloys as well as components for these applications. Some of these are, SiO 2 -Na 2 O-K 2 O-Al 2 O 3 -B 2O3 (BS) for matched type of seal fabricated with Kovar alloy, SiO 2 -Na 2 O-K 2 O-BaO-PbO(LS) for fabrication of compressive type seals with stainless steel and SS 446 alloys, P 2 O 5 -Na 2 O-B 2 O 3 -BaO-PbO(NAP) for fabrication of matched type of seal with relatively low melting metals/alloys like AI/Cu-Be and Li 2 O-ZnO-SiO 2 -P 2 O 5 -B 2 O 3 -Na 2 O (LZS) and Lithium aluminium silicate (LAS) glass-ceramics to fabricate matched and compression types feedtroughs/conductivity probes Magnesium aluminium silicate (MAS) machinable glass-ceramics is another development for high voltage and ultra high vacuum applications. Micro-structural studies have been carried out on these materials to understand the mechanism of their behaviour and have also been deployed in various systems and plants in DAE. (author)

  14. Machinable glass-ceramics forming as a restorative dental material.

    Chaysuwan, Duangrudee; Sirinukunwattana, Krongkarn; Kanchanatawewat, Kanchana; Heness, Greg; Yamashita, Kimihiro

    2011-01-01

    MgO, SiO(2), Al(2)O(3), MgF(2), CaF(2), CaCO(3), SrCO(3), and P(2)O(5) were used to prepare glass-ceramics for restorative dental materials. Thermal properties, phases, microstructures and hardness were characterized by DTA, XRD, SEM and Vickers microhardness. Three-point bending strength and fracture toughness were applied by UTM according to ISO 6872: 1997(E). XRD showed that the glass crystallized at 892°C (second crystallization temperature+20°C) for 3 hrs consisted mainly of calcium-mica and fluorapatite crystalline phases. Average hardness (3.70 GPa) closely matched human enamel (3.20 GPa). The higher fracture toughness (2.04 MPa√m) combined with the hardness to give a lower brittleness index (1.81 µm(-1/2)) which indicates that they have exceptional machinability. Bending strength results (176.61 MPa) were analyzed by Weibull analysis to determine modulus value (m=17.80). Machinability of the calcium mica-fluorapatite glass-ceramic was demonstrated by fabricating with CAD/CAM.

  15. Dense and porous glass and glass ceramics from natural and waste raw materials

    Marangoni, Mauro

    2016-01-01

    The main goal of the herewith presented research activities was to develop innovative processes and materials for building applications adapted to the needs of Saudi Arabia according to the information exchanged with the partners from KACST (King Abdulaziz City of Science and Technology). The research activity focused on the development of a wide range of ceramic components via sinter-crystallization of glasses produced from waste (fly ash, slag, sludge) with or without the addition of vit...

  16. Effect of additional materials on the properties of glass-ceramic produced from incinerator fly ashes.

    Cheng, T W

    2004-07-01

    There are 21 Metro-waste incinerators in Taiwan under construction and are expected to be finished at year 2003. It is estimated that these incinerators will produce about two million tons of incinerator ash. In order to reduce the volume and eliminate contamination problems, high temperature molten technology studies have been conducted. The purpose of this research was that of trying to control the chemical composition of the glass-ceramic produced from incinerator fly ash, in order to improve the characteristics of the glass-ceramic. The experimental results showed that the additional materials, Mg(OH)2 and waste glass cullet, can change glass-ceramic phases from gehlenite to augite, pigeonite, and diopside. The physical, mechanical and chemical resistance properties of the glass-ceramic also showed much better characteristics than prepared glass-ceramic using incinerator fly ash alone.

  17. Composite glass ceramics - a promising material for aviation

    М. В. Дмитрієв

    2000-12-01

    Full Text Available The analysis of the technical and technological characteristics of the composite ceramic as a material for electrical and structural parts in aircraft. The economic and technological advantages compared to ceramic pottery and proposed options for development of production in Ukraine

  18. COMPARISON OF BIOACTIVITY IN VITRO OF GLASS AND GLASS CERAMIC MATERIALS DURING SOAKING IN SBF AND DMEM MEDIUM

    GABRIELA LUTIŠANOVÁ

    2011-09-01

    Full Text Available This paper investigated the surface reactivity of two sets of glasses and glass ceramic materials belonging to the Li2O–SiO2–CaO–P2O5–CaF2 system. The in vitro bioactivity of coatings was evaluated using simulated body fluid (SBF and Dulbecco’s Modified Eagle’s Medium (DMEM soaking test in static regime for up to 28 days at 36.5°C in microincubator. The surface structure changes were examined by scanning electron microscopy (SEM and electron probe micro-analyzer (EPMA methods. The functional groups of the silicate and phosphates were identified by infrared spectroscopy (IR. The crystal phases of the glasses and glass ceramics were identified by X-ray diffraction analysis (XRD. The results suggest the bioactivity behavior for all compositions of glasses as well as glass ceramic samples after 28 days in the SBF and DMEM medium. The surface characterization and in vitro tests revealed a few variations in the reactivity of the different glasses and glass ceramic samples in their pristine form. The best results show the samples of glass and glass ceramic samples with higher content of fluorapatite (FA. The use of the acellular culture medium DMEM resulted in a delay at the start of precipitation.

  19. Glass and glass–ceramic coatings, versatile materials for industrial ...

    Unknown

    such as abrasion, impact etc as compared to other coating materials applied by thermal spraying in its different forms viz. ... in some systematic way information on glass and glass– ... the industries by proper maintenance of the machinery/.

  20. Aspects of bonding between resin luting cements and glass ceramic materials.

    Tian, Tian; Tsoi, James Kit-Hon; Matinlinna, Jukka P; Burrow, Michael F

    2014-07-01

    The bonding interface of glass ceramics and resin luting cements plays an important role in the long-term durability of ceramic restorations. The purpose of this systematic review is to discuss the various factors involved with the bond between glass ceramics and resin luting cements. An electronic Pubmed, Medline and Embase search was conducted to obtain laboratory studies on resin-ceramic bonding published in English and Chinese between 1972 and 2012. Eighty-three articles were included in this review. Various factors that have a possible impact on the bond between glass ceramics and resin cements were discussed, including ceramic type, ceramic crystal structure, resin luting cements, light curing, surface treatments, and laboratory test methodology. Resin-ceramic bonding has been improved substantially in the past few years. Hydrofluoric acid (HF) etching followed by silanizaiton has become the most widely accepted surface treatment for glass ceramics. However, further studies need to be undertaken to improve surface preparations without HF because of its toxicity. Laboratory test methods are also required to better simulate the actual oral environment for more clinically compatible testing. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  1. Application of the final flotation waste for obtaining the glass-ceramic materials

    Cocić Mira

    2017-01-01

    Full Text Available This work describes the investigation of the final flotation waste (FFW, originating from the RTB Bor Company (Serbia, as the main component for the production of glass-ceramic materials. The glass-ceramics was synthesized by the sintering of FFW, mixtures of FFW with basalt (10%, 20%, and 40%, and mixtures of FFW with tuff (20% and 40%. The sintering was conducted at the different temperatures and with the different time duration in order to find the optimal composition and conditions for crystallization. The increase of temperature, from 1100 to 1480°C, and sintering time, from 4 to 6h resulted in a higher content of hematite crystal in the obtained glass-ceramic (up to 44%. The glass-ceramics sintered from pure FFW (1080°C/36h has good mechanical properties, such as high propagation speed (4500 m/s and hardness (10800 MPa, as well as very good thermal stability. The glass-ceramics obtained from mixtures shows weaker mechanical properties compared to that obtained from pure FFW. The mixtures of FFW with tuff have a significantly lower bulk density compared to other obtained glass-ceramics. Our results indicate that FFW can be applied as a basis for obtaining the construction materials. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. 176010: Composition, genesis, application, and contribution to the environmental sustainability

  2. The effect of casting conditions on the biaxial flexural strength of glass-ceramic materials.

    Johnson, A; Shareef, M Y; Walsh, J M; Hatton, P V; van Noort, R; Hill, R G

    1998-11-01

    To assess the effect of mould and glass casting temperatures on the biaxial flexural strength (BFS) of two different types of castable glass-ceramic, using existing laboratory equipment and techniques. Two castable glass-ceramic materials were evaluated. One glass (LG3) is based on SiO2-Al2O3-P2O5-CaO-CaF2, and is similar in composition to glasses used in the manufacture of glass-ionomer cements. The other glass (SG3) is based on SiO2-K2O-Na2O-CaO-CaF2, and is a canasite-based material. Both materials were used to produce discs of 12 mm diameter and 2 mm thickness using the same lost-wax casting process as used for metal castings. Mould temperatures of between 500 degrees C and 1000 degrees C and glass casting temperatures of between 1100 degrees C and 1450 degrees C were evaluated. The cast discs were cerammed and the biaxial flexural strength determined with a Lloyd 2000 R tester. A significant difference was found for the BFS in the range of mould temperatures evaluated, with the optimum investment mould temperature being 590 degrees C for LG3 and 610 degrees C for SG3 (p = 0.0002 and p = 0.019, respectively). No significant differences were seen between any of the glass casting temperatures evaluated. The mould temperature for castable glass-ceramic materials produced using the lost-wax casting process can have a significant effect on BFS. The optimum mould temperature may differ slightly depending on the type of material being used. The glass casting temperature of these materials does not appear to have a significant effect on BFS.

  3. Low thermal expansion glass ceramics

    1995-01-01

    This book is one of a series reporting on international research and development activities conducted by the Schott group of companies With the series, Schott aims to provide an overview of its activities for scientists, engineers, and managers from all branches of industry worldwide where glasses and glass ceramics are of interest Each volume begins with a chapter providing a general idea of the current problems, results, and trends relating to the subjects treated This volume describes the fundamental principles, the manufacturing process, and applications of low thermal expansion glass ceramics The composition, structure, and stability of polycrystalline materials having a low thermal expansion are described, and it is shown how low thermal expansion glass ceramics can be manufactured from appropriately chosen glass compositions Examples illustrate the formation of this type of glass ceramic by utilizing normal production processes together with controlled crystallization Thus glass ceramics with thermal c...

  4. Chemical durability of glass and glass-ceramic materials, developed in laboratory scale, from industrial oil shale residue. Preliminary results

    Araujo Fonseca, M.V. de; Souza Santos, P. de

    1990-01-01

    Industrial developments frequently drive to the natural resources extinction. The recycling era has come out a long time ago and it has been evident that great part of industrial work's problems are related to the pollution and the raw materials extinction. These problems should be solved, with advantages, through industrial residues recycling. This study deals with glass and glass-ceramics materials obtained from oil shale (Irati Formation-Sao Mateus do Sul-Parana State) industrialization residues. The reached results show that a controled devitrification of retorted oil shale glass improves its performance related to chemical attack. The crystallinity caracterization of the oil shales glass-ceramic was made through X-ray diffraction. (author) [pt

  5. Transparent Glass-Ceramics Produced by Sol-Gel: A Suitable Alternative for Photonic Materials.

    Gorni, Giulio; Velázquez, Jose J; Mosa, Jadra; Balda, Rolindes; Fernández, Joaquin; Durán, Alicia; Castro, Yolanda

    2018-01-30

    Transparent glass-ceramics have shown interesting optical properties for several photonic applications. In particular, compositions based on oxide glass matrices with fluoride crystals embedded inside, known as oxyfluoride glass-ceramics, have gained increasing interest in the last few decades. Melt-quenching is still the most used method to prepare these materials but sol-gel has been indicated as a suitable alternative. Many papers have been published since the end of the 1990s, when these materials were prepared by sol-gel for the first time, thus a review of the achievements obtained so far is necessary. In the first part of this paper, a review of transparent sol-gel glass-ceramics is made focusing mainly on oxyfluoride compositions. Many interesting optical results have been obtained but very little innovation of synthesis and processing is found with respect to pioneering papers published 20 years ago. In the second part we describe the improvements in synthesis and processing obtained by the authors during the last five years. The main achievements are the preparation of oxyfluoride glass-ceramics with a much higher fluoride crystal fraction, at least double that reported up to now, and the first synthesis of NaGdF₄ glass-ceramics. Moreover, a new SiO₂ precursor was introduced in the synthesis, allowing for a reduction in the treatment temperature and favoring hydroxyl group removal. Interesting optical properties demonstrated the incorporation of dopant ions in the fluoride crystals, thus obtaining crystal-like spectra along with higher efficiencies with respect to xerogels, and hence demonstrating that these materials are a suitable alternative for photonic applications.

  6. Transparent Glass-Ceramics Produced by Sol-Gel: A Suitable Alternative for Photonic Materials

    Giulio Gorni

    2018-01-01

    Full Text Available Transparent glass-ceramics have shown interesting optical properties for several photonic applications. In particular, compositions based on oxide glass matrices with fluoride crystals embedded inside, known as oxyfluoride glass-ceramics, have gained increasing interest in the last few decades. Melt-quenching is still the most used method to prepare these materials but sol-gel has been indicated as a suitable alternative. Many papers have been published since the end of the 1990s, when these materials were prepared by sol-gel for the first time, thus a review of the achievements obtained so far is necessary. In the first part of this paper, a review of transparent sol-gel glass-ceramics is made focusing mainly on oxyfluoride compositions. Many interesting optical results have been obtained but very little innovation of synthesis and processing is found with respect to pioneering papers published 20 years ago. In the second part we describe the improvements in synthesis and processing obtained by the authors during the last five years. The main achievements are the preparation of oxyfluoride glass-ceramics with a much higher fluoride crystal fraction, at least double that reported up to now, and the first synthesis of NaGdF4 glass-ceramics. Moreover, a new SiO2 precursor was introduced in the synthesis, allowing for a reduction in the treatment temperature and favoring hydroxyl group removal. Interesting optical properties demonstrated the incorporation of dopant ions in the fluoride crystals, thus obtaining crystal-like spectra along with higher efficiencies with respect to xerogels, and hence demonstrating that these materials are a suitable alternative for photonic applications.

  7. Transparent Glass-Ceramics Produced by Sol-Gel: A Suitable Alternative for Photonic Materials

    Gorni, Giulio; Mosa, Jadra; Balda, Rolindes; Fernández, Joaquin; Durán, Alicia; Castro, Yolanda

    2018-01-01

    Transparent glass-ceramics have shown interesting optical properties for several photonic applications. In particular, compositions based on oxide glass matrices with fluoride crystals embedded inside, known as oxyfluoride glass-ceramics, have gained increasing interest in the last few decades. Melt-quenching is still the most used method to prepare these materials but sol-gel has been indicated as a suitable alternative. Many papers have been published since the end of the 1990s, when these materials were prepared by sol-gel for the first time, thus a review of the achievements obtained so far is necessary. In the first part of this paper, a review of transparent sol-gel glass-ceramics is made focusing mainly on oxyfluoride compositions. Many interesting optical results have been obtained but very little innovation of synthesis and processing is found with respect to pioneering papers published 20 years ago. In the second part we describe the improvements in synthesis and processing obtained by the authors during the last five years. The main achievements are the preparation of oxyfluoride glass-ceramics with a much higher fluoride crystal fraction, at least double that reported up to now, and the first synthesis of NaGdF4 glass-ceramics. Moreover, a new SiO2 precursor was introduced in the synthesis, allowing for a reduction in the treatment temperature and favoring hydroxyl group removal. Interesting optical properties demonstrated the incorporation of dopant ions in the fluoride crystals, thus obtaining crystal-like spectra along with higher efficiencies with respect to xerogels, and hence demonstrating that these materials are a suitable alternative for photonic applications. PMID:29385706

  8. Glass and Glass-Ceramic Materials from Simulated Composition of Lunar and Martian Soils: Selected Properties and Potential Applications

    Ray, C. S.; Sen, S.; Reis, S. T.; Kim, C. W.

    2005-01-01

    In-situ resource processing and utilization on planetary bodies is an important and integral part of NASA's space exploration program. Within this scope and context, our general effort is primarily aimed at developing glass and glass-ceramic type materials using lunar and martian soils, and exploring various applications of these materials for planetary surface operations. Our preliminary work to date have demonstrated that glasses can be successfully prepared from melts of the simulated composition of both lunar and martian soils, and the melts have a viscosity-temperature window appropriate for drawing continuous glass fibers. The glasses are shown to have the potential for immobilizing certain types of nuclear wastes without deteriorating their chemical durability and thermal stability. This has a direct impact on successfully and economically disposing nuclear waste generated from a nuclear power plant on a planetary surface. In addition, these materials display characteristics that can be manipulated using appropriate processing protocols to develop glassy or glass-ceramic magnets. Also discussed in this presentation are other potential applications along with a few selected thermal, chemical, and structural properties as evaluated up to this time for these materials.

  9. Low Thermal Expansion Glass Ceramics

    Bach, Hans

    2005-01-01

    This book appears in the authoritative series reporting the international research and development activities conducted by the Schott group of companies. This series provides an overview of Schott's activities for scientists, engineers, and managers from all branches of industry worldwide in which glasses and glass ceramics are of interest. Each volume begins with a chapter providing a general idea of the current problems, results, and trends relating to the subjects treated. This new extended edition describes the fundamental principles, the manufacturing process, and applications of low thermal expansion glass ceramics. The composition, structure, and stability of polycrystalline materials having a low thermal expansion are described, and it is shown how low thermal expansion glass ceramics can be manufactured from appropriately chosen glass compositions. Examples illustrate the formation of this type of glass ceramic by utilizing normal production processes together with controlled crystallization. Thus g...

  10. Exploring high-strength glass-ceramic materials for upcycling of industrial wastes

    Back, Gu-Seul; Park, Hyun Seo; Seo, Sung Mo; Jung, Woo-Gwang

    2015-11-01

    To promote the recycling of industrial waste and to develop value-added products using these resources, the possibility of manufacturing glass-ceramic materials of SiO2-CaO-Al2O3 system has been investigated by various heat treatment processes. Glass-ceramic materials with six different chemical compositions were prepared using steel industry slags and power plant waste by melting, casting and heat treatment. The X-ray diffraction results indicated that diopside and anorthite were the primary phases in the samples. The anorthite phase was formed in SiO2-rich material (at least 43 wt%). In CaO-rich material, the gehlenite phase was formed. By the differential scanning calorimetry analyses, it was found that the glass transition point was in the range of 973-1023 K, and the crystallization temperature was in the range of 1123-1223 K. The crystallization temperature increased as the content of Fe2O3 decreased. By the multi-step heat treatment process, the formation of the anorthite phase was enhanced. Using FactSage, the ratio of various phases was calculated as a function of temperature. The viscosities and the latent heats for the samples with various compositions were also calculated by FactSage. The optimal compositions for glass-ceramics materials were discussed in terms of their compressive strength, and micro-hardness.

  11. Inorganic glass ceramic slip rings

    Glossbrenner, E. W.; Cole, S. R.

    1972-01-01

    Prototypes of slip rings have been fabricated from ceramic glass, a material which is highly resistant to deterioration due to high temperature. Slip ring assemblies were not structurally damaged by mechanical tests and performed statisfactorily for 200 hours.

  12. Characterization of glass and glass ceramic nuclear waste forms

    Lutze, W.; Borchardt, J.; De, A.K.

    1979-01-01

    Characteristics of solidified nuclear waste forms, glass and glass ceramic compositions and the properties (composition, thermal stability, crystallization, phase behavior, chemical stability, mechanical stability, and radiation effects) of glasses and glass ceramics are discussed. The preparation of glass ceramics may be an optional step for proposed vitrification plants if tailored glasses are used. Glass ceramics exhibit some improved properties with respect to glasses. The overall leach resistance is similar to that of glasses. An increased leach resistance may become effective for single radionuclides being hosted in highly insoluble crystal phases mainly when higher melting temperatures are applicable in order to get more leach resistant residual glass phases. The development of glass ceramic is going on. The technological feasibility is still to be demonstrated. The potential gain of stability when using glass ceramics qualifies the material as an alternative nuclear waste form

  13. Crack propagation and the material removal mechanism of glass-ceramics by the scratch test.

    Qiu, Zhongjun; Liu, Congcong; Wang, Haorong; Yang, Xue; Fang, Fengzhou; Tang, Junjie

    2016-12-01

    To eliminate the negative effects of surface flaws and subsurface damage of glass-ceramics on clinical effectiveness, crack propagation and the material removal mechanism of glass-ceramics were studied by single and double scratch experiments conducted using an ultra-precision machine. A self-manufactured pyramid shaped single-grit tool with a small tip radius was used as the scratch tool. The surface and subsurface crack propagations and interactions, surface morphology and material removal mechanism were investigated. The experimental results showed that the propagation of lateral cracks to the surface and the interaction between the lateral cracks and radial cracks are the two main types of material peeling, and the increase of the scratch depth increases the propagation angle of the radial cracks and the interaction between the cracks. In the case of a double scratch, the propagation of lateral cracks and radial cracks between paired scratches results in material peeling. The interaction between adjacent scratches depends on the scratch depth and separation distance. There is a critical separation distance where the normalized material removal volume reaches its peak. These findings can help reduce surface flaws and subsurface damage induced by the grinding process and improve the clinical effectiveness of glass-ceramics used as biological substitute and repair materials. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Immobilization of heavy metals arising sludge galvanic, in glass ceramic material

    Felisberto, R.; Santos, M.C.; Basegio, T.; Bergmann, C.P.

    2016-01-01

    The use of galvanic sludge in the glass-ceramic formulation for immobilizing environmentally harmful materials is consolidated in more developed countries as raw material in the formulation of new materials. In this work, we have used galvanic sludge provided by a metallurgical company located in Vale dos Sinos, RS. The sludge was dried at 105°C and mixed with soda-lime glass in proportions of 1, 5, 10 and 20%, relative to the glass mass. Its composition was determined by FRX, and evaluated for leaching (NBR 10005) and solubilization (NBR 10006). The specimens (CPs) were burned at temperatures 750, 800 and 850°C, also submitted to the tests. The sludge, Class I - dangerous, presented Se content greater than provisions of NBR 10004. It was possible to immobilize the heavy metals at a temperature of 850°C for specimens of the F1 formulation, having been thus classified as Class II B Inert Residue. (author)

  15. Study of the Wavelength Dependence in Laser Ablation of Advanced Ceramics and Glass-Ceramic Materials in the Nanosecond Range.

    Sola, Daniel; Peña, Jose I

    2013-11-19

    In this work, geometrical dimensions and ablation yields as a function of the machining method and reference position were studied when advanced ceramics and glass-ceramic materials were machined with pulsed lasers in the nanosecond range. Two laser systems, emitting at 1064 and 532 nm, were used. It was shown that the features obtained depend on whether the substrate is processed by means of pulse bursts or by grooves. In particular, when the samples were processed by grooves, machined depth, removed volume and ablation yields reached their maximum, placing the sample out of focus. It was shown that these characteristics do not depend on the processing conditions, the wavelength or the optical configuration, and that this is intrinsic behavior of the processing method. Furthermore, the existence of a close relation between material hardness and ablation yields was demonstrated.

  16. Material interactions between system components and glass product melts in a ceramic melter

    Knitter, R.

    1989-07-01

    The interactions of the ceramic and metallic components of a ceramic melter for the vitrification of High Active Waste were investigated with simulated glass product melts in static crucible tests at 1000 0 C and 1150 0 C. Corrosion of the fusion-cast Al 2 O 3 -ZrO 2 -SiO 2 - and Al 2 O 3 -ZrO 2 -SiO 2 -Cr 2 O 3 -refractories (ER 1711 and ER 2161) is characterized by homogeneous chemical dissolution and diffusion through the glass matrix of the refractory. The resulting boundary compositions lead to characteristic modification and formation of phases, not only inside the refractory but also in the glass melt. The attack of the electrode material, a Ni-Cr-Fe-alloy Inconel 690, by the glass melt takes place via grain boundaries and leads to the oxidation of Cr and growth of Cr 2 O 3 -crystals at the boundary layer. Noble metals, added to the glass melt can form solid solutions with the alloy with varying compositions. (orig.) [de

  17. Fatigue resistance of 2 different CAD/CAM glass-ceramic materials used for single-tooth implant crowns.

    Çavuşoğlu, Yeliz; Sahin, Erdal; Gürbüz, Riza; Akça, Kivanç

    2011-10-01

    To evaluate the fatigue resistance of 2 different CAD/CAM in-office monoceramic materials with single-tooth implant-supported crowns in functional area. A metal experimental model with a dental implant was designed to receive in-office CAD/CAM-generated monoceramic crowns. Laterally positioned axial dynamic loading of 300 N at 2 Hz was applied to implant-supported crowns machined from 2 different glass materials for 100,000 cycle. Failures in terms of fracture, crack formation, and chipping were macroscopically recorded and microscopically evaluated. Four of 10 aluminasilicate glass-ceramic crowns fractured at early loading cycles, the rest completed loading with a visible crack formation. Crack formation was recorded for 2 of 10 leucite glass-ceramic crowns. Others completed test without visible damage but fractured upon removal. Lack in chemical adhesion between titanium abutment and dental cement likely reduces the fatigue resistance of machinable glass-ceramic materials. However, relatively better fractural strength of leucite glass-ceramics could be taken into consideration. Accordingly, progress on developmental changes in filler composition of glass-ceramics may be promising. Machinable glass-ceramics do not possess sufficient fatigue resistance for single-tooth implant crowns in functional area.

  18. The slag from ELCOGAS IGCC thermal power plant as raw material for the synthesis of glass-ceramic materials. Part 2: Synthesis and characterization of the glass-ceramic materials

    Aineto, M.; Acosta, A.; Rincon, J.M.A.; Romero, M. [University of Castilla La Mancha, Ciudad Real (Spain)

    2006-01-15

    There are here reported the result of the second phase of the investigation on the melting behavior of the slag and the process followed to synthesize glass-ceramic materials using this slag as raw component. Starting from a vitrifying mixture based on slag, glass cullet and precipitated calcium carbonate coming from sugar refining, we have obtained the parent glass named ECSCP, which exhibit a surface tendency of crystallization. Pressed specimens of 40 mm diameter and 7 mm height were conformed with the powdered ECSCP glass. The specimens were heat treated for crystalline phases development at temperatures between 800 and 1100{sup o}C during time intervals from 5 to 60 minutes. A series of wollastonite-anorthite-gehlenite glass-ceramics has been synthesized of different characteristics depending on the time and temperature of devitrification.

  19. Study of parameters of heat treatment in obtaining glass ceramic materials with addition of the industrial waste

    Kniess, C.T.; Prates, P.B.; Martins, G.J.M.; Riella, H.G.; Matsinhe, Jonas; Kuhnen, N.C.

    2012-01-01

    The production of materials from crystallization of glass, called glass ceramic, have proved interesting by the possibility of development of different microstructures, with reduced grain size and the presence of residual amorphous phase in different quantities. The method that uses the differential thermal analysis (DTA) provides research on the material properties over a wide temperature range, it's widely applied to crystallization processes of glass ceramic materials. Within this context, this paper aims to study the kinetics of nucleation and crystal growth in glass ceramic materials in the system SiO 2 - Al 2 O 3 -Li 2 O, obtained with the addition of mineral coal bottom ash as source of aluminosilicates, through the technique of differential thermal analysis. (author)

  20. Glass-ceramic coating material for the CO2 laser based sintering of thin films as caries and erosion protection.

    Bilandžić, Marin Dean; Wollgarten, Susanne; Stollenwerk, Jochen; Poprawe, Reinhart; Esteves-Oliveira, Marcella; Fischer, Horst

    2017-09-01

    The established method of fissure-sealing using polymeric coating materials exhibits limitations on the long-term. Here, we present a novel technique with the potential to protect susceptible teeth against caries and erosion. We hypothesized that a tailored glass-ceramic material could be sprayed onto enamel-like substrates to create superior adhesion properties after sintering by a CO 2 laser beam. A powdered dental glass-ceramic material from the system SiO 2 -Na 2 O-K 2 O-CaO-Al 2 O 3 -MgO was adjusted with individual properties suitable for a spray coating process. The material was characterized using X-ray fluorescence analysis (XRF), heating microscopy, dilatometry, scanning electron microscopy (SEM), grain size analysis, biaxial flexural strength measurements, fourier transform infrared spectroscopy (FTIR), and gas pycnometry. Three different groups of samples (each n=10) where prepared: Group A, powder pressed glass-ceramic coating material; Group B, sintered hydroxyapatite specimens; and Group C, enamel specimens (prepared from bovine teeth). Group B and C where spray coated with glass-ceramic powder. All specimens were heat treated using a CO 2 laser beam process. Cross-sections of the laser-sintered specimens were analyzed using laser scanning microscopy (LSM), energy dispersive X-ray analysis (EDX), and SEM. The developed glass-ceramic material (grain size d50=13.1mm, coefficient of thermal expansion (CTE)=13.310 -6 /K) could be spray coated on all tested substrates (mean thickness=160μm). FTIR analysis confirmed an absorption of the laser energy up to 95%. The powdered glass-ceramic material was successfully densely sintered in all sample groups. The coating interface investigation by SEM and EDX proved atomic diffusion and adhesion of the glass-ceramic material to hydroxyapatite and to dental enamel. A glass-ceramic material with suitable absorption properties was successfully sprayed and laser-sintered in thin films on hydroxyapatite as well as on

  1. Light scattering in glass-ceramics

    Hendy, S.C.

    2002-01-01

    Full text: Glass-ceramic materials with microstructures comprised of dispersed nanocrystallites in a residual glass matrix show promise for many new technological applications. In particular, transparent glass-ceramics offer low thermal expansion and stability, in addition to the prospect of novel non-linear optical properties that can arise from the nanocrystallites. Good transparency requires low optical scattering and low atomic absorption. Light scattering in the glass-ceramic arises primarily from the glass-crystallite interface. The attenuation due to scattering (turbidity) will depend upon the difference in refractive index of the two phases and the size and distribution of nanocrystallites in the glass. Here we consider models of glass-ceramic structure formation and look at scattering in these model structures to increase our understanding of the transparency of glass-ceramics

  2. Formulation and synthesis by melting process of titanate enriched glass-ceramics and ceramics

    Advocat, T.; Fillet, C.; Lacombe, J.; Bonnetier, A.; McGlinn, P.

    1999-01-01

    The main objective of this work is to provide containment for the separated radionuclides in stable oxide phases with proven resistance to leaching and irradiation damage and in consequence to obtain a glass ceramic or a ceramic material using a vitrification process. Sphene glass ceramic, zirconolite glass ceramic and zirconolite enriched ceramic have been fabricated and characterized by XRD, SEM/EDX and DTA

  3. Basaltic scorias from Romania - complex building material us for concrete, glazing tiles, ceramic glazes, glass ceramics, mineral wool

    Marica, S.; Cetean, V. [PROCEMA S.A., Bucharest (Romania)

    2002-07-01

    The most spectacular deposit of basaltic scoria from Romania is the Heghes Hill from Racos, locality situated in the central part of country. This deposit emerged as grains of various dimensions, as volcanic ash with specific porosity up to 30% and vacuolar basaltic rocks. All types of basaltic scorias have specific vacuolar appearance, red- brick or blackish - grey coloured, scoria textures and similar chemical composition with others basalts of the world. The physical and mechanical characteristics determined included the scorias in the Heghes Hill in the following categories : light rocks (2,98 g/ dmc), porous(11,04%), similar to expanded slag, slightly absorbing rocks (3,86%), with low compression strengths (1700 daN/cmp). Basaltic scoria from Heghes is a very good row material for the manufacture of concrete, for obtain decorative cutting tiles glazing with ceramic and basaltic glazes (up to 40%) varied the range of colours and for obtaining glass ceramic, mineral wool, crushing sand for road maintenance, heat -insulating bricks and shid -proof material. (orig.)

  4. Crystallization kinetics of magnetic glass-ceramics prepared by the processing of waste materials

    Francis, A.A.

    2006-01-01

    The objective of the present investigation was to study the feasibility of conversion of an intimate mixture of blast furnace slag and blast furnace flue dust generated by a single industrial company into magnetic glass-ceramic product. Blast furnace slag (BFS) and blast furnace flue dust (BFD) are generated at a rate of 300,000 and 30,000 tons/year, respectively, from iron and steel factory. The crystallization mechanisms of a composition containing BFS and BFD in a 50/50 proportion were investigated by differential thermal analysis (DTA), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The crystallization temperature was found to vary from 900 to 1100 deg. C and two phases appeared in the crystallized samples: pyroxene Ca(Mg, Fe, Al)(Si, Al) 2 O 6 and magnetite/maghemite. Heating rate and particle sizes effects on crystal growth of powdered samples were studied by DTA. The apparent activation energy of crystal growth using the particle size 180-315 μm was determined to be 355 and 329 kJ/mol for the first and second peak, respectively. The presence of sharp and broad crystallization peaks indicate simultaneous surface and internal crystallization mechanism. Good wear resistance and chemical durability particularly in alkaline environment, combine with good hardness and magnetic properties make this glass-ceramic material potentially useful for various industrial applications

  5. Life Prediction/Reliability Data of Glass-Ceramic Material Determined for Radome Applications

    Choi, Sung R.; Gyekenyesi, John P.

    2002-01-01

    Brittle materials, ceramics, are candidate materials for a variety of structural applications for a wide range of temperatures. However, the process of slow crack growth, occurring in any loading configuration, limits the service life of structural components. Therefore, it is important to accurately determine the slow crack growth parameters required for component life prediction using an appropriate test methodology. This test methodology also should be useful in determining the influence of component processing and composition variables on the slow crack growth behavior of newly developed or existing materials, thereby allowing the component processing and composition to be tailored and optimized to specific needs. Through the American Society for Testing and Materials (ASTM), the authors recently developed two test methods to determine the life prediction parameters of ceramics. The two test standards, ASTM 1368 for room temperature and ASTM C 1465 for elevated temperatures, were published in the 2001 Annual Book of ASTM Standards, Vol. 15.01. Briefly, the test method employs constant stress-rate (or dynamic fatigue) testing to determine flexural strengths as a function of the applied stress rate. The merit of this test method lies in its simplicity: strengths are measured in a routine manner in flexure at four or more applied stress rates with an appropriate number of test specimens at each applied stress rate. The slow crack growth parameters necessary for life prediction are then determined from a simple relationship between the strength and the applied stress rate. Extensive life prediction testing was conducted at the NASA Glenn Research Center using the developed ASTM C 1368 test method to determine the life prediction parameters of a glass-ceramic material that the Navy will use for radome applications.

  6. Celsian Glass-Ceramic Matrix Composites

    Bansal, Narottam P.; Dicarlo, James A.

    1996-01-01

    Glass-ceramic matrix reinforced fiber composite materials developed for use in low dielectric applications, such as radomes. Materials strong and tough, exhibit low dielectric properties, and endure high temperatures.

  7. Use of sugar-cane bagasse ash to produce glass-ceramic material in the system Ca O-SiO2-Na2O

    Teixeira, S.R.; Santos, G.T.A.; Magalhaes, R.S.; Rincon, J.Ma.; Romero, M.; Carvalho, C.L.

    2009-01-01

    A bottom ash was used as raw material to obtain glass which was crystallized to form glass-ceramic material. The characterization of the ash shows that it consists mainly of crystalline materials, predominantly quartz, with oxides of iron, potassium and aluminum as minor elements. The glass was obtained from the mixing of ash with calcium and sodium carbonates. The glass and the glass-ceramic were examined using differential thermal analysis (DTA), X-ray fluorescence (XRF), X-ray diffraction (XRD) and scanning electron microscopy (SEM). XRD and DTA data show that Wollastonita is the only crystalline phase present in the material crystallized at 1050 deg C. Part of the glass was synthesized at this temperature for one hour, resulting in a green/brown hard material glass-ceramic. The images of SEM show morphology of spherilithic growth indicating volumetric crystallization mechanism. (author)

  8. Metallizing of machinable glass ceramic

    Seigal, P.K.

    1976-02-01

    A satisfactory technique has been developed for metallizing Corning (Code 9658) machinable glass ceramic for brazing. Analyses of several bonding materials suitable for metallizing were made using microprobe analysis, optical metallography, and tensile strength tests. The effect of different cleaning techniques on the microstructure and the effect of various firing temperatures on the bonding interface were also investigated. A nickel paste, used for thick-film application, has been applied to obtain braze joints with strength in excess of 2000 psi

  9. Bioactive glasses and glass-ceramics

    de Aza, P. N.

    2007-04-01

    Full Text Available Since the late 1960´s, a great interest in the use of bioceramic materials for biomedical applications has been developed. In a previous paper, the authors reviewed crystalline bioceramic materials “sensus stricto”, it is to say, those ceramic materials, constituted for non-metallic inorganic compounds, crystallines and consolidates by thermal treatment of powders at high temperature. In the present review, the authors deal with those called bioactive glasses and glassceramics. Although all of them are also obtained by thermal treatment at high temperature, the first are amorphous and the second are obtained by devitrification of a glass, although the vitreous phase normally prevails on the crystalline phases. After an introduction to the concept of bioactive materials, a short historical review of the bioactive glasses development is made. Its preparation, reactivity in physiological media, mechanism of bonding to living tissues and mechanical strength of the bone-implant interface is also reported. Next, the concept of glass-ceramic and the way of its preparation are exposed. The composition, physicochemical properties and biological behaviour of the principal types of bioactive glasses and glass-ceramic materials: Bioglass®, Ceravital®, Cerabone®, Ilmaplant® and Bioverit® are also reviewed. Finally, a short review on the bioactive-glass coatings and bioactive-composites and most common uses of bioactive-glasses and glass-ceramics are carried out too.

    Desde finales de los años sesenta, se ha despertado un gran interés por el uso de los materiales biocerámicos para aplicaciones biomédicas. En un trabajo previo, los autores hicieron una revisión de los denominados materiales biocerámicos cristalinos en sentido estricto, es decir, de aquellos materiales, constituidos por compuestos inorgánicos no metálicos, cristalinos y consolidados mediante tratamientos térmicos a altas temperaturas. En el presente trabajo, los autores

  10. Characterization of a wollastonite glass-ceramic material prepared using sugar cane bagasse ash (SCBA) as one of the raw materials

    Teixeira, Silvio R., E-mail: rainho@fct.unesp.br [Universidade Estadual Paulista — UNESP, Faculdade de Ciências e Tecnologia — FCT, 19060-900 Presidente Prudente — SP (Brazil); Souza, Agda E. [Universidade Estadual Paulista — UNESP, Faculdade de Ciências e Tecnologia — FCT, 19060-900 Presidente Prudente — SP (Brazil); Carvalho, Claudio L.; Reynoso, Victor C.S. [Universidade Estadual Paulista — UNESP, Faculdade de Engenharia de Ilha Solteira — FEIS, 15385-000 Ilha Solteira – SP (Brazil); Romero, Maximina; Rincón, Jesús Ma. [Instituto de Ciencias de la Construccion Eduardo Torroja — IETCC, CSIC, 28033 Madrid (Spain)

    2014-12-15

    Glass-ceramic material prepared with sugar cane bagasse ash as one of the raw materials was characterized to determine some important properties for its application as a coating material. X-ray diffraction patterns showed that wollastonite-2M (CaSiO{sub 3}) was the major glass-ceramic phase. The Rietveld method was used to quantify the crystalline (60 wt.%) and vitreous (40 wt.%) phases in the glass-ceramic. The microstructure (determined by scanning electron microscopy) of this material had a marble appearance, showing a microporous network of elongated crystals with some areas with dendritic, feather-like ordering. Microhardness data gave a mean hardness value of 564.4 HV (Vickers-hardness), and light microscopy disclosed a greenish brown colored material with a vitreous luster. - Highlights: • We studied the properties of a glass-ceramic material obtained from sugarcane ash. • This material has the appearance and hardness of natural stones. • A refining method gave information about its amorphous and crystalline phases. • This material has potential to be used as coating plates for buildings.

  11. Characterization of a wollastonite glass-ceramic material prepared using sugar cane bagasse ash (SCBA) as one of the raw materials

    Teixeira, Silvio R.; Souza, Agda E.; Carvalho, Claudio L.; Reynoso, Victor C.S.; Romero, Maximina; Rincón, Jesús Ma.

    2014-01-01

    Glass-ceramic material prepared with sugar cane bagasse ash as one of the raw materials was characterized to determine some important properties for its application as a coating material. X-ray diffraction patterns showed that wollastonite-2M (CaSiO 3 ) was the major glass-ceramic phase. The Rietveld method was used to quantify the crystalline (60 wt.%) and vitreous (40 wt.%) phases in the glass-ceramic. The microstructure (determined by scanning electron microscopy) of this material had a marble appearance, showing a microporous network of elongated crystals with some areas with dendritic, feather-like ordering. Microhardness data gave a mean hardness value of 564.4 HV (Vickers-hardness), and light microscopy disclosed a greenish brown colored material with a vitreous luster. - Highlights: • We studied the properties of a glass-ceramic material obtained from sugarcane ash. • This material has the appearance and hardness of natural stones. • A refining method gave information about its amorphous and crystalline phases. • This material has potential to be used as coating plates for buildings

  12. Obtaining a glass-ceramic material from a steel slag mixed with glass cullet; Obtencion de un material vitroceramico a partir de una escoria de aceria mezclada con vidrio de desecho

    Oziel Mendez Guerrero, D.; Alicia Vazquez Mendez, B.; Alvarez Mendez, A.

    2011-07-01

    In this paper, the qualitative, quantitative and thermal characterization of a steel slag and glass cullet of high generation rate in northern Mexico were made in order to use these wastes as raw materials in the production of glass ceramics. The particle size was controlled at sizes = 75 micrometers and the major components of the slag were located in a phase equilibrium diagram for proposing a reaction temperature that leaded to the starting glass. Later, heat treatments were performed to obtain the glass ceramics. The materials were characterized by powder X-ray diffraction (XRD), differential thermal analysis coupled with thermal gravimetric analysis (DTA-TGA), reflected light optical microscopy (RLOM) and scanning electron microscopy (SEM). Subsequently, Vickers microhardness and chemical resistance tests were performed, which enabled us to propose an application of the glass ceramics. (Author) 18 refs.

  13. The shock behaviour of a SiO2-Li2O transparent glass-ceramic armour material

    Pickup, I.M.; Millett, J.C.F.; Bourne, N.K.

    2004-01-01

    The dynamic behaviour of a transparent glass-ceramic material, Transarm, developed by Alstom UK for the UK MoD has been studied. Plate impact experiments have been used to measure the materials Hugoniot characteristics and failure behaviour. Longitudinal stresses have been measured using embedded and back surface mounted Manganin gauges. Above a threshold stress of ca. 4 GPa, the longitudinal stress histories exhibit a significant secondary rise, prior to attaining their Hugoniot stress. Lateral stresses were also measured by embedding Manganin gauges in longitudinal cuts. Significant secondary rises in stress were observed when the applied longitudinal stress exceeded the 4 GPa threshold, indicating the presence of a failure front. The dynamic shear strength of the glass has been measured using the longitudinal and lateral data. Even though significant strength drops have been measured before and behind the failure front, the material has a high post-failure strength compared to non- crystalline glasses

  14. The Shock Behaviour of a SiO2-Li2O Transparent Glass-Ceramic Armour Material

    Pickup, I. M.; Millett, J. C. F.; Bourne, N. K.

    2004-07-01

    The dynamic behaviour of a transparent glass-ceramic material, Transarm, developed by Alstom UK for the UK MoD has been studied. Plate impact experiments have been used to measure the materials Hugoniot characteristics and failure behaviour. Longitudinal stresses have been measured using embedded and back surface mounted Manganin gauges. Above a threshold stress of ca. 4 GPa, the longitudinal stress histories exhibit a significant secondary rise, prior to attaining their Hugoniot stress. Lateral stresses were also measured by embedding Manganin gauges in longitudinal cuts. Significant secondary rises in stress were observed when the applied longitudinal stress exceeded the 4 GPa threshold, indicating the presence of a failure front. The dynamic shear strength of the glass has been measured using the longitudinal and lateral data. Even though significant strength drops have been measured before and behind the failure front, the material has a high post-failure strength compared to non- crystalline glasses.

  15. Effects of neutron irradiation on glass ceramics as pressure-less joining materials for SiC based components for nuclear applications

    Ferraris, M.; Casalegno, V.; Rizzo, S.; Salvo, M.; Van Staveren, T.O.; Matějíček, Jiří

    2012-01-01

    Roč. 429, 1-3 (2012), s. 166-172 ISSN 0022-3115 R&D Projects: GA MPO 2A-1TP1/101 Institutional research plan: CEZ:AV0Z20430508 Keywords : glass-ceramic * joining * SiC composites * fusion materials Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 1.211, year: 2012 http://www.sciencedirect.com/science/article/pii/S0022311512002668

  16. Modification of the surface properties of glass-ceramic materials at low-pressure RF plasma stream

    Tovstopyat, Alexander; Gafarov, Ildar; Galeev, Vadim; Azarova, Valentina; Golyaeva, Anastasia

    2018-05-01

    The surface roughness has a huge effect on the mechanical, optical, and electronic properties of materials. In modern optical systems, the specifications for the surface accuracy and smoothness of substrates are becoming even more stringent. Commercially available pre-polished glass-ceramic substrates were treated with the radio frequency (RF) inductively coupled (13.56 MHz) low-pressure plasma to clean the surface of the samples and decrease the roughness. Optical emission spectroscopy was used to investigate the plasma stream parameters and phase-shifted interferometry to investigate the surface of the specimen. In this work, the dependence of RF inductively coupled plasma on macroscopic parameters was investigated with the focus on improving the surfaces. The ion energy, sputtering rate, and homogeneity were investigated. The improvements of the glass-ceramic surfaces from 2.6 to 2.2 Å root mean square by removing the "waste" after the previous operations had been achieved.

  17. Wastes based glasses and glass-ceramics

    Barbieri, L.

    2001-12-01

    Full Text Available Actually, the inertization, recovery and valorisation of the wastes coming from municipal and industrial processes are the most important goals from the environmental and economical point of view. An alternative technology capable to overcome the problem of the dishomogeneity of the raw material chemical composition is the vitrification process that is able to increase the homogeneity and the constancy of the chemical composition of the system and to modulate the properties in order to address the reutilization of the waste. Moreover, the glasses obtained subjected to different controlled thermal treatments, can be transformed in semy-cristalline material (named glass-ceramics with improved properties with respect to the parent amorphous materials. In this review the tailoring, preparation and characterization of glasses and glass-ceramics obtained starting from municipal incinerator grate ash, coal and steel fly ashes and glass cullet are described.

    Realmente la inertización, recuperación y valorización de residuos que proceden de los procesos de incineración de residuos municipales y de residuos industriales son metas importantes desde el punto de vista ambiental y económico. Una tecnología alternativa capaz de superar el problema de la heterogeneidad de la composición química de los materiales de partida es el proceso de la vitrificación que es capaz de aumentar la homogeneidad y la constancia de la composición química del sistema y modular las propiedades a fin de la reutilización del residuo. En este artículo se presentan los resultados de vitrificación en que los vidrios fueron sometidos a tratamientos térmicos controlados diferentes, de manera que se transforman en materiales semicristalinos (también denominados vitrocerámicos con mejores propiedades respecto a los materiales amorfos originales. En esta revisión se muestra el diseño, preparación y caracterización de vidrios y vitrocerámicos partiendo de

  18. Micro-shear bond strength of different resin cements to ceramic/glass-polymer CAD-CAM block materials.

    Cekic-Nagas, Isil; Ergun, Gulfem; Egilmez, Ferhan; Vallittu, Pekka Kalevi; Lassila, Lippo Veli Juhana

    2016-10-01

    The aim of this study was to evaluate the effects of hydrofluoric acid treatment on bond strength of resin cements to three different types of ceramic/glass containing CAD-CAM block composite materials. CAD-CAM block materials of polymer infiltrated (Vita Enamic), resin nanoceramic (Lava Ultimate) and nanoceramic (Cerasmart) with a thickness of 1.5mm were randomly divided into two groups according to the surface treatment performed. In Group 1, specimens were wet-ground with silicon carbide abrasive papers up to no. 1000. In Group 2, 9.6% hydrofluoric acid gel was applied to ceramics. Three different resin cements (RelyX, Variolink Esthetic and G-CEM LinkAce) were applied to the tubes in 1.2-mm thick increments and light-cured for 40s using LED light curing unit. Half of the specimens (n=10) were submitted to thermal cycling (5000 cycles, 5-55°C). The strength measurements were accomplished with a universal testing machine (Lloyd Instruments) at a cross-head speed of 0.5mm/min until the failure occurs. Failure modes were examined using a stereomicroscope and scanning electron microscope. The data were analyzed with multivariate analysis of variance (MANOVA) and Tukey's post hoc tests (α=0.05). There were significant differences between ceramics and resin cements (pceramics (pceramic/glass-polymer materials might promote the bonding capacity of these systems. Copyright © 2016 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  19. Glass Ceramic Formulation Data Package

    Crum, Jarrod V.; Rodriguez, Carmen P.; McCloy, John S.; Vienna, John D.; Chung, Chul-Woo

    2012-01-01

    A glass ceramic waste form is being developed for treatment of secondary waste streams generated by aqueous reprocessing of commercial used nuclear fuel (Crum et al. 2012b). The waste stream contains a mixture of transition metals, alkali, alkaline earths, and lanthanides, several of which exceed the solubility limits of a single phase borosilicate glass (Crum et al. 2009; Caurant et al. 2007). A multi-phase glass ceramic waste form allows incorporation of insoluble components of the waste by designed crystallization into durable heat tolerant phases. The glass ceramic formulation and processing targets the formation of the following three stable crystalline phases: (1) powellite (XMoO4) where X can be (Ca, Sr, Ba, and/or Ln), (2) oxyapatite Yx,Z(10-x)Si6O26 where Y is alkaline earth, Z is Ln, and (3) lanthanide borosilicate (Ln5BSi2O13). These three phases incorporate the waste components that are above the solubility limit of a single-phase borosilicate glass. The glass ceramic is designed to be a single phase melt, just like a borosilicate glass, and then crystallize upon slow cooling to form the targeted phases. The slow cooling schedule is based on the centerline cooling profile of a 2 foot diameter canister such as the Hanford High-Level Waste canister. Up to this point, crucible testing has been used for glass ceramic development, with cold crucible induction melter (CCIM) targeted as the ultimate processing technology for the waste form. Idaho National Laboratory (INL) will conduct a scaled CCIM test in FY2012 with a glass ceramic to demonstrate the processing behavior. This Data Package documents the laboratory studies of the glass ceramic composition to support the CCIM test. Pacific Northwest National Laboratory (PNNL) measured melt viscosity, electrical conductivity, and crystallization behavior upon cooling to identify a processing window (temperature range) for melter operation and cooling profiles necessary to crystallize the targeted phases in the

  20. Use of glass-ceramic materials for the fixation of radioactive wastes

    Minaev, A.A.; Oziraner, S.N.; Prokhorova, N.P.

    1979-01-01

    This paper is concerned with the study of the crystallization of phosphate and silicate glasses. It was shown that temperature and time of storage influence considerably the crystallization of glasses and that crystallization very often increases their rates of leaching to a great extent. However, there are glasses in which crystallization does not result in leaching rate increase. It seems reasonable to use these materials for the fixation of radioactive wastes. The main reasons for the increase in the leaching rate during crystallization are the formation of porosity and soluble crystal phases

  1. Proceedings of the national conference on functional glasses/glass-ceramics and ceramics: souvenir

    2015-01-01

    This conference deals with issues relevant to functional glasses and glass ceramics which are technologically important materials for lasers, radioactive waste immobilization, radiation shielding, bio-glasses etc. It covers wide range of subjects and their applications right from managing the side effects of nuclear wastes and shielding the radiation, to sol-gel based bio-glass and its composites. Papers relevant to INIS are indexed separately

  2. Bioactive and inert dental glass-ceramics.

    Montazerian, Maziar; Zanotto, Edgar Dutra

    2017-02-01

    The global market for dental materials is predicted to exceed 10 billion dollars by 2020. The main drivers for this growth are easing the workflow of dentists and increasing the comfort of patients. Therefore, remarkable research projects have been conducted and are currently underway to develop improved or new dental materials with enhanced properties or that can be processed using advanced technologies, such as CAD/CAM or 3D printing. Among these materials, zirconia, glass or polymer-infiltrated ceramics, and glass-ceramics (GCs) are of great importance. Dental glass-ceramics are highly attractive because they are easy to process and have outstanding esthetics, translucency, low thermal conductivity, high strength, chemical durability, biocompatibility, wear resistance, and hardness similar to that of natural teeth, and, in certain cases, these materials are bioactive. In this review article, we divide dental GCs into the following two groups: restorative and bioactive. Most restorative dental glass-ceramics (RDGCs) are inert and biocompatible and are used in the restoration and reconstruction of teeth. Bioactive dental glass-ceramics (BDGCs) display bone-bonding ability and stimulate positive biological reactions at the material/tissue interface. BDGCs are suggested for dentin hypersensitivity treatment, implant coating, bone regeneration and periodontal therapy. Throughout this paper, we elaborate on the history, processing, properties and applications of RDGCs and BDGCs. We also report on selected papers that address promising types of dental glass-ceramics. Finally, we include trends and guidance on relevant open issues and research possibilities. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 619-639, 2017. © 2016 Wiley Periodicals, Inc.

  3. [Influence of La2O3 and Li2O on glass powder for infiltrating ZTA all-ceramic dental material formed by gel-casting].

    Jin, Qiong; Wang, Xiao-fei; Yang, Zheng-yu; Tong, Yi-ping; Zhu, Li; Ma, Jian-feng

    2012-10-01

    The influence of La2O3 and Li2O on glass powder was studied in this paper, which is to infiltrate ZTA all-ceramic dental material formed by gel-casting. The performance of different component was analyzed to optimize glass formula. Six groups of glass powder were designed and prepared by conventional melt-quenching method. ZTA ceramic blocks were covered with glass paste, which were formed by gel-casting and sintered in 1200 degrees centigrade, then infiltrated in 1150 degrees centigrade for twice to make glass/ZTA ceramic composites. By detecting differential thermal analysis and melting range of infiltration glass power, as well as flexural strength, linear shrinkage, SEM and EDS of glass/ZTA ceramic composites, the optimized glass group was determined out. Statistical analysis was performed using SPSS 13.0 software package by means of paired t test or one way ANOVA. The bending strength of group Li1 was (291.2±27.9) MPa, significantly higher than group Li2 and group La2(Pglass of group Li1 can lubricate ZTA ceramics well, their structure was compact and had a few small pores. Intergranular fracture existed on cross surface as well as transgranular fracture. The results showed that Li1(30%La2O3-15%Al2O3-15%SiO2-15%B2O3-5%Li2O) glass infiltrated ZTA ceramic composite had the best capability. Glass/ZTA composite material can be prepared by gel-casting and infiltrating way, and this process is simple and economically suitable for general dental laboratory.

  4. ION EXCHANGE IN GLASS-CERAMICS

    George Halsey Beall

    2016-08-01

    Full Text Available In the past few years ion-exchange in glasses has found a renewed interest with a lot of new development and research in industrial and academic labs and the commercialization of materials with outstanding mechanical properties. These glasses are now widely used in many electronic devices including hand-held displays and tablets. The exchange is generally conducted in a bath of molten salt below the transition temperature of the glass. The exchange at the surface of an alkali ion by a bigger one brings compressive stress at the surface. The mechanical properties are dependent on the stress level at the surface and the depth of penetration of the bigger ion. As compared to glasses, glass-ceramics have the interest to display a wide range of aspects (transparent to opaque and different mechanical properties (especially higher modulus and toughness. There has been little research on ion-exchange in glass-ceramics. In these materials the mechanisms are much more complex than in glasses because of their polyphasic nature: ion-exchange generally takes place mostly in one phase (crystalline phase or residual glass. The mechanism can be similar to what is observed in glasses with the replacement of an ion by another in the structure. But in some cases this ion-exchange leads to microstructural modifications (for example amorphisation or phase change.This article reviews these ion-exchange mechanisms using several transparent and opaque alumino-silicate glass-ceramics as examples. The effect of the ion exchange in the various glass-ceramics will be described, with particular emphasis on flexural strength.

  5. Exoelectron emission from magnesium borate glass ceramics

    Kawamoto, Takamichi; Yanagisawa, Hideo; Nakamichi, Hiroshi; Kikuchi, Riichi; Kawanishi, Masaharu.

    1986-01-01

    Thermally stimulated exoelectron emission (TSEE) of a magnesium borate glass ceramics was investigated for its application to dosemetric use. It has been found that the TSEE glow patterns of the magnesium borate glass ceramics as well as a Li 2 B 4 O 7 glass ceramics depend on the kind of the radiation used and that the heat resistance of the magnesium borate glass ceramics is higher than that of the Li 2 B 4 O 7 glass ceramics. Therefore, the TSEE glow patterns of the magnesium borate glass ceramics indicate a possibility to be used as the dose measurement for each kind of radiation in the mixed radiation field. (author)

  6. Magnetic Glass Ceramics by Sintering of Borosilicate Glass and Inorganic Waste

    Ponsot, In?s M. M. M.; Pontikes, Yiannis; Baldi, Giovanni; Chinnam, Rama K.; Detsch, Rainer; Boccaccini, Aldo R.; Bernardo, Enrico

    2014-01-01

    Ceramics and glass ceramics based on industrial waste have been widely recognized as competitive products for building applications; however, there is a great potential for such materials with novel functionalities. In this paper, we discuss the development of magnetic sintered glass ceramics based on two iron-rich slags, coming from non-ferrous metallurgy and recycled borosilicate glass. The substantial viscous flow of the glass led to dense products for rapid treatments at relatively low te...

  7. Ceramic fiber reinforced glass-ceramic matrix composite

    Bansal, Narottam P. (Inventor)

    1993-01-01

    A slurry of BSAS glass powders is cast into tapes which are cut to predetermined sizes. Mats of continuous chemical vapor deposition (CVD)-SiC fibers are alternately stacked with these matrix tapes. This tape-mat stack is warm-pressed to produce a 'green' composite which is heated to burn out organic constituents. The remaining interim material is then hot-pressed to form a BSAS glass-ceramic fiber-reinforced composite.

  8. A new bio-active glass ceramic

    Shamim, A.; Arif, I.; Suleman, M.; Hussain, K.; Shah, W.A.

    1995-01-01

    Since 1960 fine ceramics such as alumina have been used side by side with metallic materials for bone and joint replacement. They have high mechanical strength and are free from corrosion problem faced by metals. However they don't bond to the natural living bone and hence are called bio-inactive. This was followed by the development of bio-active glasses and glass-ceramics which bond to the natural bone but have low mechanical strength. In the present work a new bio-active glass-ceramic, based on CaO-SiO/sub 2/-P/sub 2/O/sub 3/-MgO composition, has been developed which has mechanical strength compared to that of a bio-inactive glass ceramic and also bonds strongly to the natural bone. X-ray diffraction analysis reveals wollastanite and apatite phases in the glass ceramic. A new bio-active cement has also been developed which can be used to join broken pieces of bone or by itself at a filler. (author)

  9. A low temperature co-fired ceramic power inductor manufactured using a glass-free ternary composite material system

    Li, Yuanxun; Xie, Yunsong; Xie, Ru; Chen, Daming; Han, Likun; Su, Hua

    2018-03-01

    A glass-free ternary composite material system (CMS) manufactured employing the low temperature ( 890 ° C ) co-fired ceramic (LTCC) technique is reported. This ternary CMS consists of silver, NiCuZn ferrite, and Zn2SiO4 ceramic. The reported device fabricated from this ternary CMS is a power inductor with a nominal inductance of 1.0 μH. Three major highlights were achieved from the device and the material study. First, unlike most other LTCC methods, no glass is required to be added in either of the dielectric materials in order to co-fire the NiCuZn ferrite, Zn2SiO4 ceramic, and silver. Second, a successfully co-fired silver, NiCuZn, and Zn2SiO4 device can be achieved by optimizing the thermal shrinkage properties of both NiCuZn and Zn2SiO4, so that they have a very similar temperature shrinkage profile. We have also found that strong non-magnetic elemental diffusion occurs during the densification process, which further enhances the success rate of manufacturing co-fired devices. Last but not least, elemental mapping suggests that strong magnetic elemental diffusion between NiCuZn and Zn2SiO4 has been suppressed during the co-firing process. The investigation of electrical performance illustrates that while the ordinary binary CMS based power inductor can deal with 400 mA DC, the ternary CMS based power inductor is able to handle higher DC currents, 700 mA and 620 mA DC, according to both simulation and experiment demonstrations, respectively.

  10. Immobilization of heavy metals arising sludge galvanic, in glass ceramic material; Imobilizacao de metais pesados oriundos de lodo galvanico em material vitreo

    Felisberto, R., E-mail: regina.felisberto@poa.ifrs.edu.br [Instituto Federal do Rio Grande do Sul (IFRS), Porto Alegre, RS (Brazil); Santos, M.C.; Basegio, T.; Bergmann, C.P. [Universidade Federal do Rio Grande do Sul (PPGEM/UFRGS), Porto Alegre, RS (Brazil)

    2016-07-01

    The use of galvanic sludge in the glass-ceramic formulation for immobilizing environmentally harmful materials is consolidated in more developed countries as raw material in the formulation of new materials. In this work, we have used galvanic sludge provided by a metallurgical company located in Vale dos Sinos, RS. The sludge was dried at 105°C and mixed with soda-lime glass in proportions of 1, 5, 10 and 20%, relative to the glass mass. Its composition was determined by FRX, and evaluated for leaching (NBR 10005) and solubilization (NBR 10006). The specimens (CPs) were burned at temperatures 750, 800 and 850°C, also submitted to the tests. The sludge, Class I - dangerous, presented Se content greater than provisions of NBR 10004. It was possible to immobilize the heavy metals at a temperature of 850°C for specimens of the F1 formulation, having been thus classified as Class II B Inert Residue. (author)

  11. Preparation and properties of Li2O-BaO-Al2O3 -SiO2 glass-ceramic materials

    Gamal A. Khater

    2014-12-01

    Full Text Available The crystallization of some glasses, based on celsian-spodumene glass-ceramics, was investigated by different techniques including differential thermal analysis, optical microscope, X-ray diffraction, indentation, microhardness, bending strengths, water absorption and density measurement. The batches were melted and then cast into glasses, which were subjected to heat treatment to induce controlled crystallization. The resulting crystalline materials were mainly composed of β-eucryptite solid solution, β-spodumene solid solution, hexacelsian and monoclinic celsian, exhibiting fine grains and uniform texture. It has been found that an increasing content of celsian phase in the glasses results in increased bulk crystallization. The obtained glass-ceramic materials are characterized by high values of hardness ranging between 953 and 1013 kg/mm2, zero water absorption and bending strengths values ranging between 88 and 126 MPa, which makes them suitable for many applications under aggressive mechanical conditions.

  12. Glass ceramic seals to inconel

    McCollister, Howard L.; Reed, Scott T.

    1983-11-08

    A glass ceramic composition prepared by subjecting a glass composition comprising, by weight, 65-80% SiO.sub.2, 8-16%, Li.sub.2 O, 2-8% , Al.sub.2 O.sub.3, 1-8% K.sub.2 O, 1-5% P.sub.2 O.sub.5 and 1.5-7% B.sub.2 O.sub.3, to the following processing steps of heating the glass composition to a temperature sufficient to crystallize lithium metasilicate therein, holding the glass composition at a temperature and for a time period sufficient to dissolve the lithium metasilicate therein thereby creating cristobalite nucleii, cooling the glass composition and maintaining the composition at a temperature and for a time period sufficient to recrystallize lithium metasilicate therein, and thermally treating the glass composition at a temperature and for a time period sufficient to cause growth of cristobalite and further crystallization of lithium metasilicate producing a glass ceramic composition having a specific thermal expansion coefficient and products containing said composition.

  13. Glass-ceramic materials of system MgO-Al2O3-SiO2 from rice husk ash

    Martín Hernández, María Isabel; Rincón López, Jesús María; Andreola, F.; Barbieri, L.; Bondioli, F.; Lancellotti, I.; Romero, Maximina

    2011-01-01

    This wok shows the results of a valorisation study to use rice husk ash as raw material to develop glass-ceramic materials. An original glass has been formulated in the base system MgO-Al2O3-SiO2 with addition of B2O3 and Na2O to facilitate the melting and poring processes. Glass characterization was carried out by determining its chemical composition. Sintering behaviour has been examined by Hot Stage Microscopy (HSM). Thermal stability and crystallization mechanism have been studied by Diff...

  14. Production and Characterization of Glass-Ceramic Materials for Potential Use in Dental Applications: Thermal and Mechanical Properties, Microstructure, and In Vitro Bioactivity

    Francesco Baino

    2017-12-01

    Full Text Available Multicomponent silicate glasses and their corresponding glass-ceramic derivatives were prepared and tested for potential applications in dentistry. The glasses were produced via a melting-quenching process, ground and sieved to obtain fine-grained powders that were pressed in the form of small cylinders and thermally treated to obtain sintered glass-ceramic samples. X-ray diffraction investigations were carried out on the materials before and after sintering to detect the presence of crystalline phases. Thermal analyses, mechanical characterizations (assessment of bending strength, Young’s modulus, Vickers hardness, fracture toughness, and in vitro bioactivity tests in simulated body fluid were performed. On the basis of the acquired results, different potential applications in the dental field were discussed for the proposed glass-ceramics. The use of such materials can be suggested for either restorative dentistry or dental implantology, mainly depending on their peculiar bioactive and mechanical properties. At the end of the work, the feasibility of a novel full-ceramic bilayered implant was explored and discussed. This implant, comprising a highly bioactive layer expected to promote osteointegration and another one mimicking the features of tooth enamel, can have an interesting potential for whole tooth substitution.

  15. Eu-activated fluorochlorozirconate glass-ceramic scintillators

    Johnson, J. A.; Schweizer, S.; Henke, B.; Chen, G.; Woodford, J.; Newman, P. J.; MacFarlane, D. R.

    2006-01-01

    Rare-earth-doped fluorochlorozirconate (FCZ) glass-ceramic materials have been developed as scintillators and their properties investigated as a function of dopant level. The paper presents the relative scintillation efficiency in comparison to single-crystal cadmium tungstate, the scintillation intensity as a function of x-ray intensity and x-ray energy, and the spatial resolution (modulation transfer function). Images obtained with the FCZ glass-ceramic scintillator and with cadmium tungstate are also presented. Comparison shows that the image quality obtained using the glass ceramic is close to that from cadmium tungstate. Therefore, the glass-ceramic scintillator could be used as an alternative material for image formation resulting from scintillation. Other inorganic scintillators such as single crystals or polycrystalline films have limitations in resolution or size, but the transparent glass-ceramic can be scaled to any shape or size with excellent resolution

  16. Glass-ceramic material of the Si-Ca-K system sintered from sugarcane bagasse ash

    Teixeira, S.R.; Silva, R.A.; Santos, G.C.; Santos, G.T.A.; Romero, M.; Rincon, J.Ma.; Reynoso, V.C.S.

    2009-01-01

    This study analyses the crystallization of glasses obtained from two samples of sugarcane bagasse ash - SCBA (named Cinza 07 and Cinza 08) mixed with carbonates (calcium and potassium). The glasses and their crystallization were examined using differential thermal analysis (DTA), X-ray fluorescence (XRF) and X-ray diffraction (XRD). The characterizations of the ashes show that they consist mainly of crystalline materials, predominantly quartz, with iron, potassium and aluminum oxides as minor elements. For the sample Cinza07 the DTA data presents broad and overlaid crystallization peaks, indicating crystallization of more than two different phases. The DTA results of samples with different grain-size distribution show that the crystallization peak intensities increase as the sample grain-size decreases, suggesting that surface crystallization actively participate on the mechanism of crystallization. For the sample Cinza 08 the DTA data presents two well defined peaks. In this case, the more intense peak was evaluated to obtain kinetic data (Eat= 355 kJ/mol) to the major phase (Wollastonita). (author)

  17. Preparation of basalt-based glass ceramics

    MIHOVIL LOGAR

    2003-06-01

    Full Text Available Local and conventional raw materials–massive basalt from the Vrelo locality on Kopaonik mountain–have been used as starting materials to test their suitability for the production of glass-ceramics. Crystallization phenomena of glasses of the fused basalt rocks were studied by X-ray phase analysis, optical microscopy and other techniques. Various heat treatments were used, and their influences, on controlling the microstructures and properties of the products were studied with the aim of developing high strength glass-ceramic materials. Diopside CaMg(SiO32 and hypersthene ((Mg,FeSiO3 were identifies as the crystalline phases. The final products contained considerable amounts of a glassy phase. The crystalline size was in range of 8–480 mm with plate or needle shape. Microhardness, crashing strength and wears resistence of the glass-ceramics ranged from 6.5–7.5, from 2000–6300 kg/cm2 and from 0.1–0.2 g/cm, respectively.

  18. Magnetic Glass Ceramics by Sintering of Borosilicate Glass and Inorganic Waste

    Inès M. M. M. Ponsot

    2014-07-01

    Full Text Available Ceramics and glass ceramics based on industrial waste have been widely recognized as competitive products for building applications; however, there is a great potential for such materials with novel functionalities. In this paper, we discuss the development of magnetic sintered glass ceramics based on two iron-rich slags, coming from non-ferrous metallurgy and recycled borosilicate glass. The substantial viscous flow of the glass led to dense products for rapid treatments at relatively low temperatures (900–1000 °C, whereas glass/slag interactions resulted in the formation of magnetite crystals, providing ferrimagnetism. Such behavior could be exploited for applying the obtained glass ceramics as induction heating plates, according to preliminary tests (showing the rapid heating of selected samples, even above 200 °C. The chemical durability and safety of the obtained glass ceramics were assessed by both leaching tests and cytotoxicity tests.

  19. Review of glass ceramic waste forms

    Rusin, J.M.

    1981-01-01

    Glass ceramics are being considered for the immobilization of nuclear wastes to obtain a waste form with improved properties relative to glasses. Improved impact resistance, decreased thermal expansion, and increased leach resistance are possible. In addition to improved properties, the spontaneous devitrification exhibited in some waste-containing glasses can be avoided by the controlled crystallization after melting in the glass-ceramic process. The majority of the glass-ceramic development for nuclear wastes has been conducted at the Hahn-Meitner Institute (HMI) in Germany. Two of their products, a celsian-based (BaAl 3 Si 2 O 8 ) and a fresnoite-based (Ba 2 TiSi 2 O 8 ) glass ceramic, have been studied at Pacific Northwest Laboratory (PNL). A basalt-based glass ceramic primarily containing diopsidic augite (CaMgSi 2 O 6 ) has been developed at PNL. This glass ceramic is of interest since it would be in near equilibrium with a basalt repository. Studies at the Power Reactor and Nuclear Fuel Development Corporation (PNC) in Japan have favored a glass-ceramic product based upon diopside (CaMgSi 2 O 6 ). Compositions, processing conditions, and product characterization of typical commercial and nuclear waste glass ceramics are discussed. In general, glass-ceramic waste forms can offer improved strength and decreased thermal expansion. Due to typcially large residual glass phases of up to 50%, there may be little improvement in leach resistance

  20. Glass-ceramics: Their production from wastes - a review

    Rawlings, R.D.; Wu, J.P.; Boccaccini, A.R. [University of London, London (United Kingdom). Imperial College of Science & Technology, Dept. of Medicine

    2006-02-15

    Glass-ceramics are polycrystalline materials of fine microstructure that are produced by the controlled crystallisation (devitrification) of a glass. Numerous silicate based wastes, such as coal combustion ash, slag from steel production, fly ash and filter dusts from waste incinerators, mud from metal hydrometallurgy, different types of sludge as well as glass cullet or mixtures of them have been considered for the production of glass-ceramics. Developments of glass-ceramics from waste using different processing methods are described comprehensively in this review, covering R&D work carried out worldwide in the last 40 years. Properties and applications of the different glass-ceramics produced are discussed. The review reveals that considerable knowledge and expertise has been accumulated on the process of transformation of silicate waste into useful glass-ceramic products. These glass-ceramics are attractive as building materials for usage as construction and architectural components or for other specialised technical applications requiring a combination of suitable thermo-mechanical properties. Previous attempts to commercialise glass-ceramics from waste and to scale-up production for industrial exploitation are also discussed.

  1. Leaching behavior of glass ceramic nuclear waste forms

    Lokken, R.O.

    1981-11-01

    Glass ceramic waste forms have been investigated as alternatives to borosilicate glasses for the immobilization of high-level radioactive waste at Pacific Northwest Laboratory (PNL). Three glass ceramic systems were investigated, including basalt, celsian, and fresnoite, each containing 20 wt % simulated high-level waste calcine. Static leach tests were performed on seven glass ceramic materials and one parent glass (before recrystallization). Samples were leached at 90 0 C for 3 to 28 days in deionized water and silicate water. The results, expressed in normalized elemental mass loss, (g/m 2 ), show comparable releases from celsian and fresnoite glass ceramics. Basalt glass ceramics demonstrated the lowest normalized elemental losses with a nominal release less than 2 g/m 2 when leached in polypropylene containers. The releases from basalt glass ceramics when leached in silicate water were nearly identical with those in deionized water. The overall leachability of celsian and fresnoite glass ceramics was improved when silicate water was used as the leachant

  2. Glass ceramic fibres

    Blaschek, O.; Paulitsch, P.

    1983-01-01

    As the correlation between mineralogical phase and chemical composition influences the type of application at different high temperatures, we studied the mineralogical phases of nine crystal glass fibres of the temperature ranges 1 150 degrees Celsius (Type 1), 1 400 degrees Celsius (Type 2) and 1 500 degrees Celsius (Type 3) at various high temperatures. The methods used in the study were microscopy, X-ray diffraction, transmission electron microscopy and differential thermal analysis. The investigations showed that mullite forms in glassy fibres of the system Al 2 O 3 . SiO 2 from 850 degrees Celsius to 990 degrees Celsius as 2/1 mullite; 3/2 mullite appeared above 990 degrees Celsius besides the crystallization of cristobalite. Fibres with 95 per cent Al 2 O 3 include the phases delta-Al 2 O 3 and alpha- Al 2 O 3 and mullite. Delta- Al 2 O 3 is stable up to 1 100 degrees Celsius. Alpha-Al 2 O 3 and mullite are only stable phases at 1 400 degrees Celsius. These different crystal phases influence the quality of the technical fibre according to the stability field of glass and crystals. This study has determined that it is possible to identify different fibres from different productions by their mineralogical compositions and to relate them to the high temperature application

  3. Abrasive wear behaviour of bio-active glass ceramics containing ...

    In this study, abrasive wear behaviour of bio-active glass ceramic materials produced with two different processes is studied. Hot pressing process and conventional casting and controlled crystallization process were used to produce bio-active ceramics. Fracture toughness of studied material was calculated by fracture ...

  4. Plutonium immobilization in glass and ceramics

    Knecht, D.A.; Murphy, W.M.

    1996-01-01

    The Materials Research Society Nineteenth Annual Symposium on the Scientific Basis for Nuclear Waste Management was held in Boston on November 27 to December 1, 1995. Over 150 papers were presented at the Symposium dealing with all aspects of nuclear waste management and disposal. Fourteen oral sessions and on poster session included a Plenary session on surplus plutonium dispositioning and waste forms. The proceedings, to be published in April, 1996, will provide a highly respected, referred compilation of the state of scientific development in the field of nuclear waste management. This paper provides a brief overview of the selected Symposium papers that are applicable to plutonium immobilization and plutonium waste form performance. Waste forms that were described at the Symposium cover most of the candidate Pu immobilization options under consideration, including borosilicate glass with a melting temperature of 1150 degrees C, a higher temperature (1450 degrees C) lanthanide glass, single phase ceramics, multi-phase ceramics, and multi-phase crystal-glass composites (glass-ceramics or slags). These Symposium papers selected for this overview provide the current status of the technology in these areas and give references to the relevant literature

  5. Plutonium immobilization in glass and ceramics

    Knecht, D.A. [Lockheed Martin Idaho Technologies, Idaho Falls (United States); Murphy, W.M. [Southwest Research Institute, San Antonio, TX (United States)

    1996-05-01

    The Materials Research Society Nineteenth Annual Symposium on the Scientific Basis for Nuclear Waste Management was held in Boston on November 27 to December 1, 1995. Over 150 papers were presented at the Symposium dealing with all aspects of nuclear waste management and disposal. Fourteen oral sessions and on poster session included a Plenary session on surplus plutonium dispositioning and waste forms. The proceedings, to be published in April, 1996, will provide a highly respected, referred compilation of the state of scientific development in the field of nuclear waste management. This paper provides a brief overview of the selected Symposium papers that are applicable to plutonium immobilization and plutonium waste form performance. Waste forms that were described at the Symposium cover most of the candidate Pu immobilization options under consideration, including borosilicate glass with a melting temperature of 1150 {degrees}C, a higher temperature (1450 {degrees}C) lanthanide glass, single phase ceramics, multi-phase ceramics, and multi-phase crystal-glass composites (glass-ceramics or slags). These Symposium papers selected for this overview provide the current status of the technology in these areas and give references to the relevant literature.

  6. Ceramic Laser Materials

    Guillermo Villalobos

    2012-02-01

    Full Text Available Ceramic laser materials have come a long way since the first demonstration of lasing in 1964. Improvements in powder synthesis and ceramic sintering as well as novel ideas have led to notable achievements. These include the first Nd:yttrium aluminum garnet (YAG ceramic laser in 1995, breaking the 1 KW mark in 2002 and then the remarkable demonstration of more than 100 KW output power from a YAG ceramic laser system in 2009. Additional developments have included highly doped microchip lasers, ultrashort pulse lasers, novel materials such as sesquioxides, fluoride ceramic lasers, selenide ceramic lasers in the 2 to 3 μm region, composite ceramic lasers for better thermal management, and single crystal lasers derived from polycrystalline ceramics. This paper highlights some of these notable achievements.

  7. Ceramic Laser Materials

    Sanghera, Jasbinder; Kim, Woohong; Villalobos, Guillermo; Shaw, Brandon; Baker, Colin; Frantz, Jesse; Sadowski, Bryan; Aggarwal, Ishwar

    2012-01-01

    Ceramic laser materials have come a long way since the first demonstration of lasing in 1964. Improvements in powder synthesis and ceramic sintering as well as novel ideas have led to notable achievements. These include the first Nd:yttrium aluminum garnet (YAG) ceramic laser in 1995, breaking the 1 KW mark in 2002 and then the remarkable demonstration of more than 100 KW output power from a YAG ceramic laser system in 2009. Additional developments have included highly doped microchip lasers, ultrashort pulse lasers, novel materials such as sesquioxides, fluoride ceramic lasers, selenide ceramic lasers in the 2 to 3 μm region, composite ceramic lasers for better thermal management, and single crystal lasers derived from polycrystalline ceramics. This paper highlights some of these notable achievements. PMID:28817044

  8. FIBROUS CERAMIC-CERAMIC COMPOSITE MATERIALS PROCESSING AND PROPERTIES

    Naslain , R.

    1986-01-01

    The introduction of continuous fibers in a ceramic matrix can improve its toughness, if the fiber-matrix bonding is weak enough, due to matrix microcracking and fiber pull-out. Ceramic-ceramic composite materials are processed according to liquid or gas phase techniques. The most important are made of glass, carbide, nitride or oxide matrices reinforced with carbon, SiC or Al2O3 fibers.

  9. Ceramic piezoelectric materials

    Kaszuwara, W.

    2004-01-01

    Ceramic piezoelectric materials conert reversibility electric energy into mechanical energy. In the presence of electric field piezoelectric materials exhibit deformations up to 0.15% (for single crystals up to 1.7%). The deformation energy is in the range of 10 2 - 10 3 J/m 3 and working frequency can reach 10 5 Hz. Ceramic piezoelectric materials find applications in many modern disciplines such as: automatics, micromanipulation, measuring techniques, medical diagnostics and many others. Among the variety of ceramic piezoelectric materials the most important appear to be ferroelectric materials such as lead zirconate titanate so called PZT ceramics. Ceramic piezoelectric materials can be processed by methods widely applied for standard ceramics, i.e. starting from simple precursors e.g. oxides. Application of sol-gel method has also been reported. Substantial drawback for many applications of piezoelectric ceramics is their brittleness, thus much effort is currently being put in the development of piezoelectric composite materials. Other important research directions in the field of ceramic piezoelectric materials composite development of lead free materials, which can exhibit properties similar to the PZT ceramics. Among other directions one has to state processing of single crystals and materials having texture or gradient structure. (author)

  10. Mechanical properties of zirconia reinforced lithium silicate glass-ceramic.

    Elsaka, Shaymaa E; Elnaghy, Amr M

    2016-07-01

    The aim of this study was to assess the mechanical properties of recently introduced zirconia reinforced lithium silicate glass-ceramic. Two types of CAD/CAM glass-ceramics (Vita Suprinity (VS); zirconia reinforced lithium silicate and IPS e.max CAD (IC); lithium disilicate) were used. Fracture toughness, flexural strength, elastic modulus, hardness, brittleness index, and microstructures were evaluated. Data were analyzed using independent t tests. Weibull analysis of flexural strength data was also performed. VS had significantly higher fracture toughness (2.31±0.17MPam(0.5)), flexural strength (443.63±38.90MPa), elastic modulus (70.44±1.97GPa), and hardness (6.53±0.49GPa) than IC (Pglass-ceramic revealed significantly a higher brittleness index (2.84±0.26μm(-1/2)) (lower machinability) than IC glass-ceramic (Pglass-ceramic revealed a lower probability of failure and a higher strength than IC glass-ceramic according to Weibull analysis. The VS zirconia reinforced lithium silicate glass-ceramic revealed higher mechanical properties compared with IC lithium disilicate glass-ceramic. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  11. Sintered gahnite–cordierite glass-ceramic based on raw materials ...

    Zn and Mg may replace each other in gahnite and cordierite structure. Densities of the ... glaze layers for floor tile and dental applications. In the crys- tallization of .... X-ray diffraction analysis of the present glass samples treated at 1250.

  12. Radiopaque strontium fluoroapatite glass-ceramics

    Wolfram eHöland

    2015-10-01

    Full Text Available The controlled precipitation of strontium fluoroapatite crystals, was studied in four base glass compositions derived from the SiO2 – Al2O3 – Y2O3 – SrO – Na2O – K2O/Rb2O/Cs2O – P2O5 – F system. The crystal phase formation of these glasses and the main properties of the glass-ceramics, such as thermal and optical properties and radiopacity were compared with a fifth, a reference glass-ceramic. The reference glass-ceramic was characterized as Ca-fluoroapatite glass-ceramic. The four strontium fluoroapatite glass-ceramics showed the following crystal phases: a Sr5(PO43F – leucite, KAlSi2O6 , b Sr5(PO43F – leucite, KAlSi2O6, and nano-sized NaSrPO4 c Sr5(PO43F – pollucite, CsAlSiO4 , and nano-sized NaSrPO4, d Sr5(PO43F – Rb-leucite, RbAlSi2O6, and nano-sized NaSrPO4.The proof of crystal phase formation was possible by X-ray diffraction (XRD. The microstructures, which were studied using scanning electron microscopy (SEM demonstrated a uniform distribution of the crystals in the glass matrix. The Sr-fluoroapatites were precipitated based on an internal crystallization process, and the crystals demonstrated a needlelike morphology. The study of the crystal growth of needlelike Sr-fluoroapatites gave a clear evidence of an Ostwald ripening mechanism.The formation of leucite, pollucite and Rb-leucite was based on a surface crystallization mechanism. Therefore, a twofold crystallization mechanism was successfully applied to develop these types of glass-ceramics. The main focus of this study was the controlled development of glass-ceramics exhibiting high radiopacity in comparison to the reference glass-ceramic. This goal could be achieved with all four glass-ceramics with the preferred development of the Sr-fluoroapatite – pollucite-type glass-ceramic. In addition to this main development, it was possible to control the thermal properties. Especially the Rb-leucite containing glass-ceramic showed the highest coefficient of thermal

  13. Glass/Ceramic Composites for Sealing Solid Oxide Fuel Cells

    Bansal, Narottam P.; Choi, Sung R.

    2007-01-01

    A family of glass/ceramic composite materials has been investigated for use as sealants in planar solid oxide fuel cells. These materials are modified versions of a barium calcium aluminosilicate glass developed previously for the same purpose. The composition of the glass in mole percentages is 35BaO + 15CaO + 5Al2O3 + 10B2O3 + 35SiO2. The glass seal was found to be susceptible to cracking during thermal cycling of the fuel cells. The goal in formulating the glass/ ceramic composite materials was to (1) retain the physical and chemical advantages that led to the prior selection of the barium calcium aluminosilicate glass as the sealant while (2) increasing strength and fracture toughness so as to reduce the tendency toward cracking. Each of the composite formulations consists of the glass plus either of two ceramic reinforcements in a proportion between 0 and 30 mole percent. One of the ceramic reinforcements consists of alumina platelets; the other one consists of particles of yttria-stabilized zirconia wherein the yttria content is 3 mole percent (3YSZ). In preparation for experiments, panels of the glass/ceramic composites were hot-pressed and machined into test bars.

  14. Low temperature sintering of fluorapatite glass-ceramics.

    Denry, Isabelle; Holloway, Julie A

    2014-02-01

    Fluorapatite glass-ceramics have been shown to be excellent candidates as scaffold materials for bone grafts, however, scaffold production by sintering is hindered by concurrent crystallization of the glass. Objective, our goal was to investigate the effect of Ca/Al ratio on the sintering behavior of Nb-doped fluorapatite-based glasses in the SiO2-Al2O3-P2O5-MgO-Na2O-K2O-CaO-CaF2 system. Methods, glass compositions with Ca/Al ratio of 1 (A), 2 (B), 4 (C) and 19 (D) were prepared by twice melting at 1525°C for 3h. Glasses were either cast as cylindrical ingots or ground into powders. Disk-shaped specimens were prepared by either sectioning from the ingots or powder-compacting in a mold, followed by heat treatment at temperatures ranging between 700 and 1050°C for 1h. The density was measured on both sintered specimens and heat treated discs as controls. The degree of sintering was determined from these measurements. Results and Significance XRD showed that fluorapatite crystallized in all glass-ceramics. A high degree of sintering was achieved at 775°C for glass-ceramic D (98.99±0.04%), and 900°C for glass-ceramic C (91.31±0.10). Glass-ceramics A or B were only partially sintered at 1000°C (63.6±0.8% and 74.1±1.5%, respectively). SEM revealed a unique microstructure of micron-sized spherulitic fluorapatite crystals in glass-ceramics C and D. Increasing the Ca/Al ratio promoted low temperature sintering of fluorapatite glass-ceramics, which are traditionally difficult to sinter. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  15. Initial Examination of Low Velocity Sphere Impact of Glass Ceramics

    Morrissey, Timothy G [ORNL; Fox, Ethan E [ORNL; Wereszczak, Andrew A [ORNL; Ferber, Mattison K [ORNL

    2012-06-01

    This report summarizes US Army TARDEC sponsored work at Oak Ridge National Laboratory (ORNL) involving low velocity (< 30 m/s or < 65 mph) sphere impact testing of two materials from the lithium aluminosilicate family reinforced with different amounts of ceramic particulate, i.e., glass-ceramic materials, SCHOTT Resistan{trademark}-G1 and SCHOTT Resistan{trademark}-L. Both materials are provided by SCHOTT Glass (Duryea, PA). This work is a follow-up to similar sphere impact studies completed by the authors on PPG's Starphire{reg_sign} soda-lime silicate glass and SCHOTT BOROFLOAT{reg_sign} borosilicate glass. A gas gun or a sphere-drop test setup was used to produce controlled velocity delivery of silicon nitride (Si{sub 3}N{sub 4}) spheres against the glass ceramic tile targets. Minimum impact velocities to initiate fracture in the glass-ceramics were measured and interpreted in context to the kinetic energy of impact and the elastic property mismatch between sphere and target material. Quasistatic spherical indentation was also performed on both glass ceramics and their contact damage responses were compared to those of soda-lime silicate and borosilicate glasses. Lastly, variability of contact damage response was assessed by performing spherical indentation testing across the area of an entire glass ceramic tile. The primary observations from this low velocity (< 30 m/s or < 65 mph) testing were: (1) Resistan{trademark}-L glass ceramic required the highest velocity of sphere impact for damage to initiate. Starphire{reg_sign} soda-lime silicate glass was second best, then Resistan{trademark}-G1 glass ceramic, and then BOROFLOAT{reg_sign} borosilicate glass. (2) Glass-ceramic Resistan{trademark}-L also required the largest force to initiate ring crack from quasi-static indentation. That ranking was followed, in descending order, by Starphire{reg_sign} soda-lime silicate glass, Resistan{trademark}-G1 glass ceramic, and BOROFLOAT{reg_sign} borosilicate glass

  16. Sintering behavior of LZSA glass-ceramics

    Oscar Rubem Klegues Montedo

    2009-06-01

    Full Text Available The LZSA glass-ceramic system (Li2O-ZrO2-SiO2-Al2O 3 shows interesting properties, such as good chemical resistance, low thermal expansion, high abrasion resistance, and a low dielectric constant. However, in order to obtain a high performance material for specific applications, the sintering behavior must be better understood so that the porosity may be reduced and other properties improved. In this context, a sintering investigation for a specific LZSA glass-ceramic system composition was carried out. A 18.8Li2O-8.3ZrO2-64.2SiO2-8.7Al 2O3 glass was prepared by melting the solids, quenching the melt in water, and grinding the resulting solid in order to obtain a powder (3.68 μm average particle diameter. Subsequently, the glass powder was characterized (chemical analysis and determination of thermal properties and the sintering behavior was investigated using optical non-contact dilatometry measurements. The results showed that the crystallization process strongly reduced the sintering in the temperature interval from 785 to 940 °C, and a maximum thermal shrinkage of 15.4% was obtained with operating conditions of 1020 °C and 180 minutes.

  17. Corrosion of Ceramic Materials

    Opila, Elizabeth J.; Jacobson, Nathan S.

    1999-01-01

    Non-oxide ceramics are promising materials for a range of high temperature applications. Selected current and future applications are listed. In all such applications, the ceramics are exposed to high temperature gases. Therefore it is critical to understand the response of these materials to their environment. The variables to be considered here include both the type of ceramic and the environment to which it is exposed. Non-oxide ceramics include borides, nitrides, and carbides. Most high temperature corrosion environments contain oxygen and hence the emphasis of this chapter will be on oxidation processes.

  18. Crack tip fracture toughness of base glasses for dental restoration glass-ceramics using crack opening displacements.

    Deubener, J; Höland, M; Höland, W; Janakiraman, N; Rheinberger, V M

    2011-10-01

    The critical stress intensity factor, also known as the crack tip toughness K(tip), was determined for three base glasses, which are used in the manufacture of glass-ceramics. The glasses included the base glass for a lithium disilicate glass-ceramic, the base glass for a fluoroapatite glass-ceramic and the base glass for a leucite glass-ceramic. These glass-ceramic are extensively used in the form of biomaterials in restorative dental medicine. The crack tip toughness was established by using crack opening displacement profiles under experimental conditions. The crack was produced by Vickers indentation. The crack tip toughness parameters determined for the three glass-ceramics differed quite significantly. The crack tip parameters of the lithium disilicate base glass and the leucite base glass were higher than that of the fluoroapatite base glass. This last material showed glass-in-glass phase separation. The discussion of the results clearly shows that the droplet glass phase is softer than the glass matrix. Therefore, the authors conclude that a direct relationship exists between the chemical nature of the glasses and the crack tip parameter. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Compatibility tests of materials for a prototype ceramic melter for defense glass-waste products

    Wicks, G.G.

    1979-01-01

    Objective is to evaluate the corrosion/erosion resistance of melter materials. Materials tested were Monofrox K3 and E, Serv, Inconel 690, Pt, and SnO. Results show that Inconel 690 is the leading electrode material and Monofrox K3 the leading refractory candidate. Melter lifetime is estimated to be 2 to 5 years for defense waste

  20. Low temperature sintering of fluorapatite glass-ceramics

    Denry, Isabelle; Holloway, Julie A.

    2014-01-01

    Fluorapatite glass-ceramics have been shown to be excellent candidates as scaffold materials for bone grafts, however, scaffold production by sintering is hindered by concurrent crystallization of the glass. Our goal was to investigate the effect of Ca/Al ratio on the sintering behavior of Nb-doped fluorapatite-based glasses in the SiO2-Al2O3-P2O5-MgO-Na2O-K2O-CaO-CaF2 system. Glass compositions with Ca/Al ratio of 1 (A), 2 (B), 4 (C) and 19 (D) were prepared by twice melting at 1525°C for 3h. Glasses were either cast as cylindrical ingots or ground into powders. Disc-shaped specimens were prepared by either sectioning from the ingots or powder-compacting in a mold, followed by heat treatment at temperatures ranging between 700 and 1050°C for 1h. The density was measured on both sintered specimens and heat treated discs as controls. The degree of sintering was determined from these measurements. XRD showed that fluorapatite crystallized in all glass-ceramics. A high degree of sintering was achieved at 775°C for glass-ceramic D (98.99±0.04%), and 900°C for glass-ceramic C (91.31±0.10). Glass-ceramics A or B were only partially sintered at 1000°C (63.6±0.8% and 74.1±1.5%, respectively). SEM revealed a unique microstructure of micron-sized spherulitic fluorapatite crystals in glass-ceramics C and D. Increasing the Ca/Al ratio promoted low temperature sintering of fluorapatite glass-ceramics, which are traditionally difficult to sinter. PMID:24252652

  1. Ceramic-glass-metal seal by microwave heating

    Meek, Thomas T.; Blake, Rodger D.

    1985-01-01

    A method for producing a ceramic-glass-metal seal by microwaving mixes a slurry of glass sealing material and coupling agent and applies same to ceramic and metal workpieces. The slurry and workpieces are then insulated and microwaved at a power, time and frequency sufficient to cause a liquid phase reaction in the slurry. The reaction of the glass sealing material forms a chemically different seal than that which would be formed by conventional heating because it is formed by diffusion rather than by wetting of the reactants.

  2. New ceramic materials

    Moreno, R.; Dominguez-Rodriguez, A.

    2010-01-01

    This article is to provide a new ceramic materials in which, with a control of their processing and thus their microstructural properties, you can get ceramic approaching ever closer to a metal, both in its structural behavior at low as at high temperatures. (Author) 30 refs.

  3. A new classification system for all-ceramic and ceramic-like restorative materials.

    Gracis, Stefano; Thompson, Van P; Ferencz, Jonathan L; Silva, Nelson R F A; Bonfante, Estevam A

    2015-01-01

    Classification systems for all-ceramic materials are useful for communication and educational purposes and warrant continuous revisions and updates to incorporate new materials. This article proposes a classification system for ceramic and ceramic-like restorative materials in an attempt to systematize and include a new class of materials. This new classification system categorizes ceramic restorative materials into three families: (1) glass-matrix ceramics, (2) polycrystalline ceramics, and (3) resin-matrix ceramics. Subfamilies are described in each group along with their composition, allowing for newly developed materials to be placed into the already existing main families. The criteria used to differentiate ceramic materials are based on the phase or phases present in their chemical composition. Thus, an all-ceramic material is classified according to whether a glass-matrix phase is present (glass-matrix ceramics) or absent (polycrystalline ceramics) or whether the material contains an organic matrix highly filled with ceramic particles (resin-matrix ceramics). Also presented are the manufacturers' clinical indications for the different materials and an overview of the different fabrication methods and whether they are used as framework materials or monolithic solutions. Current developments in ceramic materials not yet available to the dental market are discussed.

  4. Manufacture, characterisation and properties of novel fluorcanasite glass-ceramics.

    Pollington, Sarah; van Noort, Richard

    2012-11-01

    The aim of this study was to investigate the manufacture and characterisation of different compositions of fluorcanasite glass-ceramics with reduced fluorine content and to assess their mechanical and physical properties. Three compositional variations (S80, S81 and S82) of a fluorcanasite glass were investigated. Differential thermal analysis (DTA) and X-ray diffraction (XRD) identified crystallisation temperatures and phases. X-ray fluorescence (XRF) determined the element composition in the glass-ceramics. Different heat treatments [2 h nucleation and either 2 or 4 h crystallisation] were used for the glasses. Scanning electron microscopy (SEM) examined the microstructure of the cerammed glass. The chemical solubility, biaxial flexural strength, fracture toughness, hardness and brittleness index of S81 and S82 fluorcanasite were investigated with lithium disilicate (e.max CAD, Ivoclar Vivadent) as a commercial comparison. Statistical analysis was performed using one-way ANOVA with Tukey's multiple comparison tests (Pglasses. XRD analysis confirmed fluorcanasite formation with the S81 and S82 compositions, with the S82 (2+2h) showing the most prominent crystal structure. The chemical solubility of the glass-ceramics was significantly different, varying from 2565 ± 507 μg/cm(2) for the S81 (2+2 h) to 722 ± 177 μg/cm(2) for the S82 (2+2 h) to 37.4 ± 25.2 μg/cm(2) for the lithium disilicate. BFS values were highest for the S82 (2+2 h) composition (250 ± 26 MPa) and lithium disilicate (266 ± 37 MPa) glass-ceramics. The fracture toughness was higher for the S82 compositions, with the S82 (2+2h) attaining the highest value of 4.2 ± 0.3 MPa m(1/2)(P=0.01). The S82 (2+2 h) fluorcanasite glass-ceramic had the lowest brittleness index. The S82 (2+2 h) fluorcanasite glass-ceramic has acceptable chemical solubility, high biaxial flexural strength, fracture toughness and hardness. A novel glass-ceramic has been developed with potential as a restorative material. The

  5. Potentiality of a frit waste from ceramic sector as raw material to glass-ceramic material production; Potencialidad de un residuo de frita procedente del sector ceramico como materia prima para la produccion de material vitroceramico

    Barrachina Albert, E.; Llop Pla, J.; Notari Abad, M. D.; Carda Castello, J. B.

    2015-10-01

    This work consists of studying the devitrification capacity of a residue from sodium-calcium frit, using the vitreous powder sintering method, which follows the traditional ceramic processing route, including a specific heat treatment to generate the appearance of crystals from the original glass phase. Initially the frit residue has been characterized by instrumental techniques such as XRF, XRD and DTA/TG. Furthermore, the chemical analysis (XRF) has allowed the prediction of devitrification potentiality of this residue by theoretical approaches represented by Gingsberg, Raschin-Tschetverikov and Lebedeva ternary diagrams. Then, this residue was subjected to traditional ceramic method, by changing the grinding time, the pressing pressure and prepared samples were obtained at different temperatures. In this part, the techniques for measuring particle size by laser diffraction and XRD and SEM to evaluate the generated crystalline phases, were applied. Finally, it has been found that this frit residue works as glass-ceramic precursor, devitrifying in wollastonite crystals as majority phase and without being subjected to the melting step of the glass-ceramic typical method. (Author)

  6. Ceramic breeder materials

    Johnson, C.E.

    1990-01-01

    The breeding blanket is a key component of the fusion reactor because it directly involves tritium breeding and energy extraction, both of which are critical to development of fusion power. The lithium ceramics continue to show promise as candidate breeder materials. This promise was recognized by the International Thermonuclear Reactor (ITER) design team in its selection of ceramics as the first option for the ITER breeder material. Blanket design studies have indicated properties in the candidate materials data base that need further investigation. Current studies are focusing on tritium release behavior at high burnup, changes in thermophysical properties with burnup, compatibility between the ceramic breeder and beryllium multiplier, and phase changes with burnup. Laboratory and in-reactor tests, some as part of an international collaboration for development of ceramic breeder materials, are underway. 32 refs., 1 fig., 1 tab

  7. Coated ceramic breeder materials

    Tam, Shiu-Wing; Johnson, Carl E.

    1987-01-01

    A breeder material for use in a breeder blanket of a nuclear reactor is disclosed. The breeder material comprises a core material of lithium containing ceramic particles which has been coated with a neutron multiplier such as Be or BeO, which coating has a higher thermal conductivity than the core material.

  8. Ceramics and glasses for radioactive waste storage

    Baudin, G.

    1984-06-01

    Borosilicate glasses are mainly choosen for the confinement of fission products; industrial plants are either in operation (AVM) or in construction. Studies of ceramics as a matrix haven't received real application [fr

  9. LSA glass-ceramic tiles made by powder pressing

    Figueira, F.C.; Bertan, F.M.; Riella, H.G.; Uggioni, E.; Bernardin, A.M.

    2009-01-01

    A low cost alternative for the production of glass-ceramic materials is the pressing of the matrix glass powders and its consolidation simultaneously with crystallization in a single stage of sintering. The main objective of this work was to obtain LSA glass ceramics with low thermal expansion, processed by pressing and sintering a ceramic frit powder. The raw materials were homogenized and melted (1480 deg C, 80min), and the melt was poured in water. The glass was chemically (XRF and AAS) and thermally (DTA, 10 deg C/min, air) characterized, and then ground (60min and 120min). The ground powders were characterized (laser diffraction) and compressed (35MPa and 45MPa), thus forming four systems. The compacts were dried (150 deg C, 24h) and sintered (1175 deg C and 1185 deg C, 10 deg C/min). Finally, the glass-ceramics were characterized by microstructural analysis (SEM and XRD), mechanical behavior (σbending) and thermal analysis (α). The best results for thermal expansion were those for the glass-ceramics processed with smaller particle size and greater compaction pressure. (author)

  10. Studies on Bi-Sr-Ca-Cu-O glasses and superconducting glass ceramics

    Singh, R.; Zacharias, E.

    1991-01-01

    Bi-Sr-Ca-Cu-O glasses and glass ceramics of various compositions were synthesised. The glass transition temperature varies from 396 to 422degC depending on the glass composition. The bulk glass ceramics of 4334, 4336, 2223 and 4246 compositions show superconductivity when the corresponding glass samples were heat-treated in air at 820degC for 3, 9, 12 and 24 h respectively. X-ray diffraction studies show that the superconducting phase present in all these compositions is Bi 2 Sr 2 Ca 1 Cu 2 O x . The 4334 glass ceramic is almost a single-phase material with a preferred orientation such that the c axis is normal to the sample surface. The 2223 glass ceramic has a higher T c (onset) than the other three compositions indicating the presence of high T c phase (110 K) also. ESR studies on the glass samples indicate the existence of Cu 2+ . The effect of heat treatment on ESR shows that the intensity of resonance decreases with increase in heat-treatment duration. This effect is more pronounced for the 4334 and 2223 compositions. The advantages of synthesizing superconducting materials by glass route are discussed in view of practical applications. (author). 9 refs., 6 figs

  11. Characterization of microstructure of Si3N4 whisker reinforced glass ceramic

    Han, Byoung Sung; Choi, Shung Shaon

    1993-01-01

    Glass ceramics, especially fiber-reinforced composite ceramics, have attracted a great deal of attention in improving the reliability of ceramic components because of the improvement in various mechanical properties. Through hot-pressing and sintering, 225 cordierite was transformed with glass ceramic and mullite phase. Particularly glass glain size increased with the increasing of the sintering temperature and the heat treatment enhance the toughness and hardness of materials. Like the increased sintering temperature, the roughness increased with increasing whisker vol.%. In case of whisker-rinforced glass ceramic, the fracture surface of samples has been associated with a whisker orientation of samples. (Author)

  12. Properties and Clinical Application of Three Types of Dental Glass-Ceramics and Ceramics for CAD-CAM Technologies

    Ritzberger, Christian; Apel, Elke; Höland, Wolfram; Peschke, Arnd; Rheinberger, Volker M.

    2010-01-01

    The main properties (mechanical, thermal and chemical) and clinical application for dental restoration are demonstrated for three types of glass-ceramics and sintered polycrystalline ceramic produced by Ivoclar Vivadent AG. Two types of glass-ceramics are derived from the leucite-type and the lithium disilicate-type. The third type of dental materials represents a ZrO2 ceramic. CAD/CAM technology is a procedure to manufacture dental ceramic restoration. Leucite-type glass-ceramics demonstrate high translucency, preferable optical/mechanical properties and an application as dental inlays, onlays and crowns. Based on an improvement of the mechanical parameters, specially the strength and toughness, the lithium disilicate glass-ceramics are used as crowns; applying a procedure to machine an intermediate product and producing the final glass-ceramic by an additional heat treatment. Small dental bridges of lithium disilicate glass-ceramic were fabricated using a molding technology. ZrO2 ceramics show high toughness and strength and were veneered with fluoroapatite glass-ceramic. Machining is possible with a porous intermediate product.

  13. Thermocouple and controlling cables of electric penetrations for nuclear power stations. hermetization with glass-ceramic and glass-fiber materials

    Kostyukov, N.S.; Golovko, T.A.; Okhotnikova, G.G.

    1996-01-01

    New perspective technology for hermetization of cable ends for fabrication of hermetical inlets for NPPs with inorganic materials is developed. On the basis of the studies dielectric inorganic materials, resistive to γ-radiation and fire, are selected for creation of hermetically sealed inlets. Principally new methods for fabrication of hermoinlets is developed on the basis of metallic modules with fibre circuitously and ceramic hermetization units

  14. Development and characterization of basalt-glass ceramics for the immobilization of transuranic wastes

    Lokken, R.O.; Chick, L.A.; Thomas, L.E.

    1982-09-01

    Basalt-based waste forms were developed for the immobilization of transuranic (TRU) contaminated wastes. The specific waste studied is a 3:1 blend of process sludge and incinerator ash. Various amounts of TRU blended waste were melted with Pomona basalt powder. The vitreous products were subjected to a variety of heat treatment conditions to form glass ceramics. The total crystallinity of the glass ceramic, ranging from 20 to 45 wt %, was moderately dependent on composition and heat treatment conditions. Three parent glasses and four glass ceramics with varied composition and heat treatment were produced for detailed phase characterization and leaching. Both parent glasses and glass ceramics were mainly composed of a continuous, glassy matrix phase. This glass matrix entered into solution during leaching in both types of materials. The Fe-Ti rich dispersed glass phase was not significantly degraded by leaching. The glass ceramics, however, exhibited four to ten times less elemental releases during leaching than the parent glasses. The glass ceramic matrix probably contains higher Fe and Na and lower Ca and Mg relative to the parent glass matrix. The crystallization of augite in the glass ceramics is believed to contribute to the improved leach rates. Leach rates of the basalt glass ceramic are compared to those of other TRU nuclear waste forms containing 239 Pu

  15. Radiopaque Strontium Fluoroapatite Glass-Ceramics

    Höland, Wolfram; Schweiger, Marcel; Dittmer, Marc; Ritzberger, Christian

    2015-01-01

    The controlled precipitation of strontium fluoroapatite crystals was studied in four base glass compositions derived from the SiO2–Al2O3–Y2O3–SrO–Na2O–K2O/Rb2O/Cs2O–P2O5–F system. The crystal phase formation of these glasses and the main properties of the glass-ceramics, such as thermal and optical properties and radiopacity were compared with a fifth, a reference glass-ceramic. The reference glass-ceramic was characterized as Ca-fluoroapatite glass-ceramic. The four strontium fluoroapatite glass-ceramics showed the following crystal phases: (a) Sr5(PO4)3F – leucite, KAlSi2O6, (b) Sr5(PO4)3F – leucite, KAlSi2O6, and nano-sized NaSrPO4, (c) Sr5(PO4)3F – pollucite, CsAlSi2O6, and nano-sized NaSrPO4, and (d) Sr5(PO4)3F – Rb-leucite, RbAlSi2O6, and nano-sized NaSrPO4. The proof of crystal phase formation was possible by X-ray diffraction. The microstructures, which were studied using scanning electron microscopy, demonstrated a uniform distribution of the crystals in the glass matrix. The Sr-fluoroapatites were precipitated based on an internal crystallization process, and the crystals demonstrated a needle-like morphology. The study of the crystal growth of needle-like Sr-fluoroapatites gave a clear evidence of an Ostwald ripening mechanism. The formation of leucite, pollucite, and Rb-leucite was based on a surface crystallization mechanism. Therefore, a twofold crystallization mechanism was successfully applied to develop these types of glass-ceramics. The main focus of this study was the controlled development of glass-ceramics exhibiting high radiopacity in comparison to the reference glass-ceramic. This goal could be achieved with all four glass-ceramics with the preferred development of the Sr-fluoroapatite – pollucite-type glass-ceramic. In addition to this main development, it was possible to control the thermal properties. Especially the Rb-leucite containing glass-ceramic showed the highest coefficient of thermal

  16. Radiopaque Strontium Fluoroapatite Glass-Ceramics.

    Höland, Wolfram; Schweiger, Marcel; Dittmer, Marc; Ritzberger, Christian

    2015-01-01

    The controlled precipitation of strontium fluoroapatite crystals was studied in four base glass compositions derived from the SiO2-Al2O3-Y2O3-SrO-Na2O-K2O/Rb2O/Cs2O-P2O5-F system. The crystal phase formation of these glasses and the main properties of the glass-ceramics, such as thermal and optical properties and radiopacity were compared with a fifth, a reference glass-ceramic. The reference glass-ceramic was characterized as Ca-fluoroapatite glass-ceramic. The four strontium fluoroapatite glass-ceramics showed the following crystal phases: (a) Sr5(PO4)3F - leucite, KAlSi2O6, (b) Sr5(PO4)3F - leucite, KAlSi2O6, and nano-sized NaSrPO4, (c) Sr5(PO4)3F - pollucite, CsAlSi2O6, and nano-sized NaSrPO4, and (d) Sr5(PO4)3F - Rb-leucite, RbAlSi2O6, and nano-sized NaSrPO4. The proof of crystal phase formation was possible by X-ray diffraction. The microstructures, which were studied using scanning electron microscopy, demonstrated a uniform distribution of the crystals in the glass matrix. The Sr-fluoroapatites were precipitated based on an internal crystallization process, and the crystals demonstrated a needle-like morphology. The study of the crystal growth of needle-like Sr-fluoroapatites gave a clear evidence of an Ostwald ripening mechanism. The formation of leucite, pollucite, and Rb-leucite was based on a surface crystallization mechanism. Therefore, a twofold crystallization mechanism was successfully applied to develop these types of glass-ceramics. The main focus of this study was the controlled development of glass-ceramics exhibiting high radiopacity in comparison to the reference glass-ceramic. This goal could be achieved with all four glass-ceramics with the preferred development of the Sr-fluoroapatite - pollucite-type glass-ceramic. In addition to this main development, it was possible to control the thermal properties. Especially the Rb-leucite containing glass-ceramic showed the highest coefficient of thermal expansion (CTE). These

  17. Cementation of Glass-Ceramic Posterior Restorations : A Systematic Review

    van den Breemer, Carline R. G.; Gresnigt, Marco M. M.; Cune, Marco S.

    2015-01-01

    Aim. The aim of this comprehensive review is to systematically organize the current knowledge regarding the cementation of glass-ceramic materials and restorations, with an additional focus on the benefits of Immediate Dentin Sealing (IDS). Materials and Methods. An extensive literature search

  18. Use of sugar-cane bagasse ash to produce glass-ceramic material in the system Ca O-SiO{sub 2}-Na{sub 2}O; Utilizacao de cinza de bagaco de cana para produzir material vitro-ceramico do sistema SiO{sub 2}-CaO-Na{sub 2}O

    Teixeira, S.R.; Santos, G.T.A.; Magalhaes, R.S., E-mail: rainho@fct.unesp.b [Universidade Estadual Paulista (DFQB/FCT/UNESP), Presidente Prudente, SP (Brazil). Fac. de Ciencias e Tecnologia. Dept. de Fisica, Quimica e Biologia; Rincon, J.Ma.; Romero, M. [Consejo Superior de Investigaciones Cientificas (IETCC/CSIC), Madri (Spain). Inst. de Ciencias de la Construccion Eduardo Torroja; Carvalho, C.L. [Universidade Estadual Paulista (FEIS/UNESP), Ilha Solteira, SP (Brazil). Faculdade de Engenharia

    2009-07-01

    A bottom ash was used as raw material to obtain glass which was crystallized to form glass-ceramic material. The characterization of the ash shows that it consists mainly of crystalline materials, predominantly quartz, with oxides of iron, potassium and aluminum as minor elements. The glass was obtained from the mixing of ash with calcium and sodium carbonates. The glass and the glass-ceramic were examined using differential thermal analysis (DTA), X-ray fluorescence (XRF), X-ray diffraction (XRD) and scanning electron microscopy (SEM). XRD and DTA data show that Wollastonita is the only crystalline phase present in the material crystallized at 1050 deg C. Part of the glass was synthesized at this temperature for one hour, resulting in a green/brown hard material glass-ceramic. The images of SEM show morphology of spherilithic growth indicating volumetric crystallization mechanism. (author)

  19. Precision diamond grinding of ceramics and glass

    Smith, S.; Paul, H.; Scattergood, R.O.

    1988-12-01

    A new research initiative will be undertaken to investigate the effect of machine parameters and material properties on precision diamond grinding of ceramics and glass. The critical grinding depth to initiate the plastic flow-to-brittle fracture regime will be directly measured using plunge-grind tests. This information will be correlated with machine parameters such as wheel bonding and diamond grain size. Multiaxis grinding tests will then be made to provide data more closely coupled with production technology. One important aspect of the material property studies involves measuring fracture toughness at the very short crack sizes commensurate with grinding damage. Short crack toughness value`s can be much less than the long-crack toughness values measured in conventional fracture tests.

  20. Facing slag glass and slag glass ceramic produced from thermal power plant ash

    Buruchenko, A.E.; Kolesnikov, A.A.; Lukoyanov, A.G.

    1990-10-01

    Evaluates properties of fly ash and slags from the Krasnoyarsk coal-fired power plants and their utilization for glass and ceramic glass production. Composition of a mixture of fly ash and slag was: silica 40-55%, aluminium oxides 10-40%, ferric trioxide 6-14%, calcium oxides 20-35%, magnesium oxides 3-6%, potassium oxides 0.3-1.5%, sodium oxides 0.2-05%, sulfur trioxide 0.9-5.0%. The analyzed fly ash and slags from the Krasnoyarsk plant were an economic waste material for glass production. Properties of sand, clay and other materials used in glass production and properties of glass and ceramic glass produced on the basis of fly ash and slags are analyzed. Economic aspects of fly ash and slag utilization are also evaluated. 3 refs.

  1. Corrosion resistant ceramic materials

    Kaun, T.D.

    1996-07-23

    Ceramic materials are disclosed which exhibit stability in severely-corrosive environments having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200--550 C or organic salt (including SO{sub 2} and SO{sub 2}Cl{sub 2}) at temperatures of 25--200 C. These sulfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components. 1 fig.

  2. Corrosion resistant ceramic materials

    Kaun, Thomas D.

    1996-01-01

    Ceramic materials which exhibit stability in severely-corrosive environments having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200.degree.-550.degree. C. or organic salt (including SO.sub.2 and SO.sub.2 Cl.sub.2) at temperatures of 25.degree.-200.degree. C. These sulfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components.

  3. The slag from ELCOGAS IGCC thermal power plant as raw material for the synthesis of glass-ceramic materials. Part I: Thermal behavior of the IGCC slag and synthesis of the parent glass.

    Aineto, M.; Acosta, A. [University of Castilla La Mancha, Ciudad Real (Spain)

    2005-12-01

    We report here the results of the first phase of investigation on the melting behavior of the IGCC slag, and the use of this slag as raw component to produce glass ceramics. The vitrifying mixture named ECSCP, is composed of 40% slag, 30% glass cullet and 30% precipitated calcium carbonate obtained as a by-product in a sugar refining plant. This mixture was melted at 1450{sup o}C to obtain the ECSCP parent glass, that was then characterized and its crystallization kinetics studied by thermal analysis. The ECSCP glass exhibit a surface mechanism of crystallization, and will be used to produce anorthite/wollastonite glass ceramics in the second part of the investigation.

  4. Bonding silicon nitride using glass-ceramic

    Dobedoe, R.S.

    1995-01-01

    Silicon nitride has been successfully bonded to itself using magnesium-aluminosilicate glass and glass-ceramic. For some samples, bonding was achieved using a diffusion bonder, but in other instances, following an initial degassing hold, higher temperatures were used in a nitrogen atmosphere with no applied load. For diffusion bonding, a small applied pressure at a temperature below which crystallisation occurs resulted in intimate contact. At slightly higher temperatures, the extent of the reaction at the interface and the microstructure of the glass-ceramic joint was highly sensitive to the bonding temperature. Bonding in a nitrogen atmosphere resulted in a solution-reprecipitation reaction. A thin layer of glass produced a ''dry'', glass-free joint, whilst a thicker layer resulted in a continuous glassy join across the interface. The chromium silicide impurities within the silicon nitride react with the nucleating agent in the glass ceramic, which may lead to difficulty in producing a fine glass-ceramic microstructure. Slightly lower temperatures in nitrogen resulted in a polycrystalline join but the interfacial contact was poor. It is hoped that one of the bonds produced may be developed to eventually form part of a graded joint between silicon nitride and a high temperature nickel alloy. (orig.)

  5. Method of sintering ceramic materials

    Holcombe, Cressie E.; Dykes, Norman L.

    1992-01-01

    A method for sintering ceramic materials is described. A ceramic article is coated with layers of protective coatings such as boron nitride, graphite foil, and niobium. The coated ceramic article is embedded in a container containing refractory metal oxide granules and placed within a microwave oven. The ceramic article is heated by microwave energy to a temperature sufficient to sinter the ceramic article to form a densified ceramic article having a density equal to or greater than 90% of theoretical density.

  6. Production of glass or glass-ceramic to metal seals with the application of pressure

    Kelly, Michael D.; Kramer, Daniel P.

    1987-11-10

    In a process for preparing a glass or glass-ceramic to metal seal comprising contacting the glass with the metal and heat-treating the glass and metal under conditions whereby the glass to metal seal is effected and, optionally, the glass is converted to a glass-ceramic, an improvement comprises carrying out the heat-treating step using hot isostatic pressing.

  7. Evaluation of the reuse of glass and ceramic blocks in the development of a ceramic products

    Rodrigues, R.A.; Silva, L.A.; Martins, B.E.D.B.S.; Felippe, C.E.C.; Almeida, V.C.

    2010-01-01

    The ceramic industry has enormous potential to absorb wastes. The main objective of this study was to evaluate the feasibility of reusing leftovers ceramic blocks, from construction and, with shards of glass in the development of a ceramic product. The ceramic pieces were prepared with different compositions of glass by the method of pressing conformation and heating at 1000 and 1100 deg C. The conformed pieces were tested for linear shrinkage, water absorption, porosity, and tensile strength. The techniques for characterization were X-ray fluorescence, X-ray diffraction and scanning electron microscopy, the results show that the ceramic material produced has a high flexural strength and low values of water absorption. (author)

  8. Thermal expansion at low temperatures of glass-ceramics and glasses

    White, G K [National Measurement Lab., Sydney (Australia)

    1976-08-01

    The linear thermal expansion coefficient, ..cap alpha.., has been measured from 2 to 32 K and from 55 to 90 K for a machineable glass-ceramic, an 'ultra-low expansion' titanium silicate glass (Corning ULE), and ceramic glasses (Cer-Vit and Zerodur), and for glassy carbon. ..cap alpha.. is negative for the ultra-low expansion materials below 100 K, as for pure vitreous silica. Comparative data are reported for ..cap alpha..-quartz , ..cap alpha..-cristobalite, common opal, and vitreous silica.

  9. Polyphase ceramic and glass-ceramic forms for immobilizing ICPP high-level nuclear waste

    Harker, A.B.; Flintoff, J.F.

    1984-01-01

    Polyphase ceramic and glass-ceramic forms have been consolidated from simulated Idaho Chemical Processing Plant wastes by hot isostatic pressing calcined waste and chemical additives by 1000 0 C or less. The ceramic forms can contain over 70 wt% waste with densities ranging from 3.5 to 3.85 g/cm 3 , depending upon the formulation. Major phases are CaF 2 , CaZrTi 207 , CaTiO 3 , monoclinic ZrO 2 , and amorphous intergranular material. The relative fraction of the phases is a function of the chemical additives (TiO 2 , CaO, and SiO 2 ) and consolidation temperature. Zirconolite, the major actinide host, makes the ceramic forms extremely leach resistant for the actinide simulant U 238 . The amorphous phase controls the leach performance for Sr and Cs which is improved by the addition of SiO 2 . Glass-ceramic forms were also consolidated by HIP at waste loadings of 30 to 70 wt% with densities of 2.73 to 3.1 g/cm 3 using Exxon 127 borosilicate glass frit. The glass-ceramic forms contain crystalline CaF 2 , Al 203 , and ZrSi 04 (zircon) in a glass matrix. Natural mineral zircon is a stable host for 4+ valent actinides. 17 references, 3 figures, 5 tables

  10. Carbon glass-ceramics and their radiation resistance

    Virgil'ev, Yu. S.

    1995-01-01

    Structural carbon materials (SCMs) hold great promise for use in numerous plasma-facing components of fusion reactors. One possible candidate for this use is carbon glass-ceramic. Therefore, it is not surprising that there is considerable interest in studying its properties and their variations upon exposure to different radiations, such as neutrons, high-energy electrons, and light ions (H + , D + , and He + ). Here, the authors summarize data accumulated to date on the structure and properties of commercial carbon glass-ceramics and their behavior under irradiation with neutrons, electrons, and some ions

  11. Elaboration of optical glass-ceramic for frequency doubling

    Vigouroux, H.

    2012-01-01

    The High power laser development required the need of materials with nonlinear properties. Glass materials can be considered as ideal materials as they can be transparent and elaborated in very large dimension. Precipitation of non-centro symmetric crystalline particles in bulk glass leads to a material with bulk nonlinear properties. This glass-ceramic should be then easily integrated in such laser facilities. In this thesis, the results concerning the precipitation of the phase LiNbO 3 in the glassy-matrix 35 Li 2 O - 25 Nb 2 O 5 - 40 SiO 2 are detailed. The crystallization mechanism of this phase is studied through thermal analysis, optical and electronic microscopy as well as in-situ analyses. These studies reveal glass-ceramics are obtained through a precipitation of the lithium niobate crystalline phase in spherulite shape. The nonlinear optical properties are investigated on this materials and an original, isotropic Second Harmonic Generation Signal (SHG) is registered in the bulk glass-ceramic. A complete study using a multi-scale approach allows the correlation between the spherulite structure and the nonlinear optical properties. A mechanism at the origin of the SHG signal is proposed. This leads to a new approach for transparent inorganic materials development for isotropic SHG conversion. (author) [fr

  12. Investigation of Thermal Expansion of a Glass Ceramic Material with an Extra-Low Thermal Linear Expansion Coefficient

    Kompan, T. A.; Korenev, A. S.; Lukin, A. Ya.

    2008-10-01

    The artificial material sitall CO-115M was developed purposely as a material with an extra-low thermal expansion. The controlled crystallization of an aluminosilicate glass melt leads to the formation of a mixture of β-spodumen, β-eucryptite, and β-silica anisotropic microcrystals in a matrix of residual glass. Due to the small size of the microcrystals, the material is homogeneous and transparent. Specific lattice anharmonism of these microcrystal materials results in close to zero average thermal linear expansion coefficient (TLEC) of the sitall material. The thermal expansion coefficient of this material was measured using an interferometric method in line with the classical approach of Fizeau. To obtain the highest accuracy, the registration of light intensity of the total interference field was used. Then, the parameters of the interference pattern were calculated. Due to the large amount of information in the interference pattern, the error of the calculated fringe position was less than the size of a pixel of the optical registration system. The thermal expansion coefficient of the sitall CO-115M and its temperature dependence were measured. The TLEC value of about 3 × 10-8 K-1 to 5 × 10-8 K-1 in the temperature interval from -20 °C to +60 °C was obtained. A special investigation was carried out to show the homogeneity of the material.

  13. Hardness of basaltic glass-ceramics

    Jensen, Martin; Smedskjær, Morten Mattrup; Estrup, Maja

    2009-01-01

    The dependence of the hardness of basaltic glass-ceramics on their degree of crystallisation has been explored by means of differential scanning calorimetry, optical microscopy, x-ray diffraction, and Vickers indentation. Different degrees of crystallisation in the basaltic glasses were achieved...... by varying the temperature of heat treatment. The predominant crystalline phase in the glass was identified as augite. It was found that the hardness of the glass phase decreased slightly with an increase in the degree of crystallisation, while that of the augite phase drastically decreased....

  14. Apatite glass-ceramics: a review

    Duminis, Tomas; Shahid, Saroash; Hill, Robert Graham

    2016-12-01

    This article is a review of the published literature on apatite glass-ceramics (GCs). Topics covered include crystallization mechanisms of the various families of the apatite GCs and an update on research and development on apatite GCs for applications in orthopedics, dentistry, optoelectronics and nuclear waste management. Most apatite GCs crystallize through a homogenous nucleation and crystallization mechanism, which is aided by a prior liquid-liquid phase separation. Careful control of the base glass composition and heat-treatment conditions, which determine the nature and morphology of the crystal phases in the GC can produce GC materials with exceptional thermal, mechanical, optical and biological properties. The GCs reviewed for orthopedic applications exhibit suitable mechanical properties and can chemically bond to bone and stimulate its regeneration. The most commercially successful apatite GCs are those developed for dental veneering. These materials exhibit excellent translucency and clinical esthetics, and mimic the natural tooth mineral. Due to the ease of solid solution of the apatite lattice, rare earth doped apatite GCs are discussed for potential applications in optoelectronics and nuclear waste management. One of the drawbacks of the commercial apatite GCs used in orthopedics is the lack of resorbability, therefore the review provides a direction for future research in the field.

  15. Boundary surface and microstructure analysis of ceramic materials

    Woltersdorf, J.; Pippel, E.

    1992-01-01

    The article introduces the many possibilities of high voltage (HVEM) and high resolution electron microscopy (HREM) for boundary surface and microstructure analysis of ceramic materials. The investigations are limited to ceramic long fibre composites and a ceramic fibre/glass matrix system. (DG) [de

  16. Glass Ceramics Composites Fabricated from Coal Fly Ash and Waste Glass

    Angjusheva, B.; Jovanov, V.; Srebrenkoska, V.; Fidancevska, E.

    2014-01-01

    Great quantities of coal ash are produced in thermal power plants which present a double problem to the society: economical and environmental. This waste is a result of burning of coal at temperatures between 1100-14500C. Fly ash available as fine powder presents a source of important oxides SiO2, Al2O3, Fe2O3, MgO, Na2O, but also consist of small amount of ecologically hazardous oxides such as Cr2O3, NiO, MnO. The combination of the fly ash with waste glass under controlled sintering procedure gave bulk glass-ceramics composite material. The principle of this procedure is presented as a multi barrier concept. Many researches have been conducted the investigations for utilization of fly ash as starting material for various glass–ceramics production. Using waste glass ecologically hazardous components are fixed at the molecular level in the silicate phase and the fabricated new glass-ceramic composites possess significantly higher mechanical properties. The aim of this investigation was to fabricate dense glass ceramic composites using fly ash and waste glass with the potential for its utilization as building material

  17. Zirconia toughened mica glass ceramics for dental restorations.

    Gali, Sivaranjani; K, Ravikumar; Murthy, B V S; Basu, Bikramjit

    2018-03-01

    The objective of the present study is to understand the role of yttria stabilized zirconia (YSZ) in achieving the desired spectrum of clinically relevant mechanical properties (hardness, elastic modulus, fracture toughness and brittleness index) and chemical solubility of mica glass ceramics. The glass-zirconia mixtures with varying amounts of YSZ (0, 5, 10, 15 and 20wt.%) were ball milled, compacted and sintered to obtain pellets of glass ceramic-YSZ composites. Phase analysis was carried out using X-ray diffraction and microstructural characterization with SEM revealed the crystal morphology of the composites. Mechanical properties such as Vickers hardness, elastic modulus, indentation fracture toughness and chemical solubility were assessed. Phase analysis of sintered pellets of glass ceramic-YSZ composites revealed the characteristic peaks of fluorophlogopite (FPP) and tetragonal zirconia. Microstructural investigation showed plate and lath-like interlocking mica crystals with embedded zirconia. Vickers hardness of 9.2GPa, elastic modulus of 125GPa, indentation toughness of 3.6MPa·m 1/2 , and chemical solubility of 30μg/cm 2 (well below the permissible limit) were recorded with mica glass ceramics containing 20wt.% YSZ. An increase in hardness and toughness of the glass ceramic-YSZ composites with no compromise on their brittleness index and chemical solubility has been observed. Such spectrum of properties can be utilised for developing a machinable ceramic for low stress bearing inlays, onlays and veneers. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  18. Elaboration of new ceramic composites containing glass fibre production wastes

    Rozenstrauha, I.; Sosins, G.; Krage, L.; Sedmale, G.; Vaiciukyniene, D.

    2013-01-01

    Two main by-products or waste from the production of glass fibre are following: sewage sludge containing montmorillonite clay as sorbent material and ca 50 % of organic matter as well as waste glass from aluminium borosilicate glass fibre with relatively high softening temperature (> 600 degree centigrade). In order to elaborate different new ceramic products (porous or dense composites) the mentioned by-products and illitic clay from two different layers of Apriki deposit (Latvia) with illite content in clay fraction up to 80-90 % was used as a matrix. The raw materials were investigated by differential-thermal (DTA) and XRD analysis. Ternary compositions were prepared from mixtures of 15 - 35 wt % of sludge, 20 wt % of waste glass and 45 - 65 wt % of clay and the pressed green bodies were thermally treated in sintering temperature range from 1080 to 1120 degree centigrade in different treatment conditions. Materials produced in temperature range 1090 - 1100 degree centigrade with the most optimal properties - porosity 38 - 52 %, water absorption 39 -47 % and bulk density 1.35 - 1.67 g/cm 3 were selected for production of porous ceramics and materials showing porosity 0.35 - 1.1 %, water absorption 0.7 - 2.6 % and bulk density 2.1 - 2.3 g/cm 3 - for dense ceramic composites. Obtained results indicated that incorporation up to 25 wt % of sewage sludge is beneficial for production of both ceramic products and glass-ceramic composites according to the technological properties. Structural analysis of elaborated composite materials was performed by scanning electron microscopy(SEM). By X-ray diffraction analysis (XRD) the quartz, diopside and anorthite crystalline phases were detected. (Author)

  19. CaO-Al2O3 glass-ceramic as a joining material for SiC based components: A microstructural study of the effect of Si-ion irradiation

    Casalegno, Valentina; Kondo, Sosuke; Hinoki, Tatsuya; Salvo, Milena; Czyrska-Filemonowicz, Aleksandra; Moskalewicz, Tomasz; Katoh, Yutai; Ferraris, Monica

    2018-04-01

    The aim of this work was to investigate and discuss the microstructure and interface reaction of a calcia-alumina based glass-ceramic (CA) with SiC. CA has been used for several years as a glass-ceramic for pressure-less joining of SiC based components. In the present work, the crystalline phases in the CA glass-ceramic and at the CA/SiC interface were investigated and the absence of any detectable amorphous phase was assessed. In order to provide a better understanding of the effect of irradiation on the joining material and on the joints, Si ion irradiation was performed both on bulk CA and CA joined SiC. CA glass-ceramic and CA joined SiC were both irradiated with 5.1 MeV Si2+ ions to 3.3 × 1020 ions/m2 at temperatures of 400 and 800 °C at DuET facility, Kyoto University. This corresponds to a damage level of 5 dpa for SiC averaged over the damage range. This paper presents the results of a microstructural analysis of the irradiated samples as well as an evaluation of the dimensional stability of the CA glass-ceramic and its irradiation temperature and/or damage dependence.

  20. Synthesis of nucleated glass-ceramics using oil shale fly ash

    Luan Jingde; Li Aimin; Su Tong; Cui Xiaobo

    2010-01-01

    Nucleated glass-ceramics materials were produced from oil shale fly ash obtained from Huadian thermal power plant in China with the addition of analytic reagent CaO. On basis of differential thermal analysis (DTA) results, the nucleation and crystallization temperature of two parent glass samples with different alkalinity (Ak=m CaO /m SiO 2 ) were identified as Tn 1 = 810 deg. C, Tc 1 = 956 deg. C and Tn 2 = 824 o C, Tc 2 = 966 deg. C, respectively. X-ray diffraction (XRD) analysis of the produced nucleated glass-ceramics materials revealed that there was a coexistence phenomenon of multi-crystalline phase and the main crystalline phase was anorthite ([Ca,Na][AI,Si] 2 Si 2 O 8 ). The microstructure of the glass-ceramics materials was examined by scanning electron microscope (SEM). SEM observation indicated that there was an increase in the quantity of sphere-shaped crystals when crystallization time increased. Furthermore, the increase of alkalinity caused more amorphous phase occurring in glass-ceramics materials. Through the tests of physical and mechanical properties, the glass-ceramics materials with more crystalline phase and fine microstructure had high density, fine performance of resisting compression (328.92 MPa) and negligible water absorption. Through chemical resistance tests, the glass-ceramics samples showed strong corrosion resistance. Overall results indicated that it was a feasible attempt to produce nucleated glass-ceramics materials for building and decorative materials from oil shale fly ash.

  1. Crystallization of high-strength nano-scale leucite glass-ceramics.

    Theocharopoulos, A; Chen, X; Wilson, R M; Hill, R; Cattell, M J

    2013-11-01

    Fine-grained, high strength, translucent leucite dental glass-ceramics are synthesized via controlled crystallization of finely milled glass powders. The objectives of this study were to utilize high speed planetary milling of an aluminosilicate glass for controlled surface crystallization of nano-scale leucite glass-ceramics and to test the biaxial flexural strength. An aluminosilicate glass was synthesized, attritor or planetary milled and heat-treated. Glasses and glass-ceramics were characterized using particle size analysis, X-ray diffraction and scanning electron microscopy. Experimental (fine and nanoscale) and commercial (Ceramco-3, IPS Empress Esthetic) leucite glass-ceramics were tested using the biaxial flexural strength (BFS) test. Gaussian and Weibull statistics were applied. Experimental planetary milled glass-ceramics showed an increased leucite crystal number and nano-scale median crystal sizes (0.048-0.055 μm(2)) as a result of glass particle size reduction and heat treatments. Experimental materials had significantly (p0.05) strength difference. All other groups' mean BFS and characteristic strengths were found to be significantly different (pglass-ceramics with high flexural strength. These materials may help to reduce problems associated with brittle fracture of all-ceramic restorations and give reduced enamel wear. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  2. Optical and spectroscopic properties of Eu-doped tellurite glasses and glass ceramics

    Stambouli, W.; Elhouichet, H.; Gelloz, B.; Férid, M.

    2013-01-01

    Tellurite glasses doped with trivalent europium were prepared by the conventional melt quenching technique, in the chemical composition of (85−x) TeO 2 +5La 2 O 3 +10TiO 2 +xEu 2 O 3 by varying the concentration of the rare-earth ion in the order 0.5, 1 and 1.5 mol%. Using Judd–Ofelt analysis, we calculated intensity parameters (Ω 2 and Ω 4 ), spontaneous emission probabilities, the radiative lifetime, luminescence branching factors, the quantum yield of luminescence, and the stimulated emission cross-sections for 5 D 0 → 7 F 2 transition. The change in optical properties with the variation of Eu 3+ ion concentration have been discussed and compared with other glasses. The luminescence intensity ratio, quantum efficiency and emission cross-section values support that the TeEu1.5 tellurite glass is a suitable candidate for red laser source applications. Optical properties for Eu 3+ doped tellurite glass, heated for different temperature, were investigated. Crystalline phases for α-TeO 2 , γ-TeO 2 and TiTe 3 O 8 system were determined by the XRD method. The effect of heat treatment on luminescence properties in the tellurite glass was discussed. By using Eu 3+ as a probe, the local structure of rare-earth ion in tellurite glass, vitro-ceramic and ceramic glass has been investigated. The evaluated J–O intensity parameters have been used to calculate different radiative and laser characteristic parameters of the 5 D 0 excited level. The large magnitudes of stimulated emission cross-section (σ e ), branching ratio (β) and Gain bandwidth (σ e ×Δλ eff ) obtained for 5 D 0 → 7 F 2 (613 nm) transition for ceramic glass indicate that the present glass ceramic is promising host material for Eu 3+ doped fiber amplifiers. The measured lifetime of 5 D 0 excited state increases with increase of the heat treatment which further indicate that some Eu 3+ ions were successfully embedded in the crystal phase and prove the low phonon energy environment of Eu 3+ ions

  3. Molybdenum sealing glass-ceramic composition

    Eagan, R.J.

    1976-01-01

    A glass-ceramic composition is described having low hydrogen and helium permeability properties, along with high fracture strength, and a thermal coefficient of expansion similar to that of molybdenum. The composition is adaptable for hermetically sealing to molybdenum at temperatures between 900 and about 950 0 C to form a hermetically sealed insulator body

  4. Cementation of Glass-Ceramic Posterior Restorations: A Systematic Review

    van den Breemer, Carline R. G.; Gresnigt, Marco M. M.; Cune, Marco S.

    2015-01-01

    Aim. The aim of this comprehensive review is to systematically organize the current knowledge regarding the cementation of glass-ceramic materials and restorations, with an additional focus on the benefits of Immediate Dentin Sealing (IDS). Materials and Methods. An extensive literature search concerning the cementation of single-unit glass-ceramic posterior restorations was conducted in the databases of MEDLINE (Pubmed), CENTRAL (Cochrane Central Register of Controlled Trials), and EMBASE. To be considered for inclusion, in vitro and in vivo studies should compare different cementation regimes involving a “glass-ceramic/cement/human tooth” complex. Results and Conclusions. 88 studies were included in total. The in vitro data were organized according to the following topics: (micro)shear and (micro)tensile bond strength, fracture strength, and marginal gap and integrity. For in vivo studies survival and quality of survival were considered. In vitro studies showed that adhesive systems (3-step, etch-and-rinse) result in the best (micro)shear bond strength values compared to self-adhesive and self-etch systems when luting glass-ceramic substrates to human dentin. The highest fracture strength is obtained with adhesive cements in particular. No marked clinical preference for one specific procedure could be demonstrated on the basis of the reviewed literature. The possible merits of IDS are most convincingly illustrated by the favorable microtensile bond strengths. No clinical studies regarding IDS were found. PMID:26557651

  5. Glass ceramic-to-metal seals

    Not Available

    1982-04-19

    A glass ceramic composition prepared by subjecting a glass composition comprising, by weight, 65 to 80% SiO/sub 2/, 8 to 16% Li/sub 2/O, 2 to 8% Al/sub 2/O/sub 3/, 1 to 8% K/sub 2/O, 1 to 5% P/sub 2/O/sub 5/ and 1.5 to 7% B/sub 2/O/sub 3/, to the following processing steps of heating the glass composition to a temperature sufficient to crystallize lithium metasilicate therein, holding the glass composition at a temperature and for a time period sufficient to dissolve the lithium metasilicate therein thereby creating cristobalite nucleii, cooling the glass composition and maintaining the composition at a temperature and for a time period sufficient to recrystallize lithium metasilicate therein, and thermally treating the glass composition at a temperature and for a time period sufficient to caus growth of cristobalite and further crystallization of lithium metasilicate producing a glass ceramic composition having a specific thermal expansion coefficient and products containing said composition.

  6. Joining Dental Ceramic Layers With Glass

    Saied, MA; Lloyd, IK; Haller, WK; Lawn, BR

    2011-01-01

    Objective Test the hypothesis that glass-bonding of free-form veneer and core ceramic layers can produce robust interfaces, chemically durable and aesthetic in appearance and, above all, resistant to delamination. Methods Layers of independently produced porcelains (NobelRondo™ Press porcelain, Nobel BioCare AB and Sagkura Interaction porcelain, Elephant Dental) and matching alumina or zirconia core ceramics (Procera alumina, Nobel BioCare AB, BioZyram yttria stabilized tetragonal zirconia polycrystal, Cyrtina Dental) were joined with designed glasses, tailored to match thermal expansion coefficients of the components and free of toxic elements. Scanning electron microprobe analysis was used to characterize the chemistry of the joined interfaces, specifically to confirm interdiffusion of ions. Vickers indentations were used to drive controlled corner cracks into the glass interlayers to evaluate the toughness of the interfaces. Results The glass-bonded interfaces were found to have robust integrity relative to interfaces fused without glass, or those fused with a resin-based adhesive. Significance The structural integrity of the interfaces between porcelain veneers and alumina or zirconia cores is a critical factor in the longevity of all-ceramic dental crowns and fixed dental prostheses. PMID:21802131

  7. Glass ceramic ZERODUR enabling nanometer precision

    Jedamzik, Ralf; Kunisch, Clemens; Nieder, Johannes; Westerhoff, Thomas

    2014-03-01

    The IC Lithography roadmap foresees manufacturing of devices with critical dimension of digit nanometer asking for nanometer positioning accuracy requiring sub nanometer position measurement accuracy. The glass ceramic ZERODUR® is a well-established material in critical components of microlithography wafer stepper and offered with an extremely low coefficient of thermal expansion (CTE), the tightest tolerance available on market. SCHOTT is continuously improving manufacturing processes and it's method to measure and characterize the CTE behavior of ZERODUR® to full fill the ever tighter CTE specification for wafer stepper components. In this paper we present the ZERODUR® Lithography Roadmap on the CTE metrology and tolerance. Additionally, simulation calculations based on a physical model are presented predicting the long term CTE behavior of ZERODUR® components to optimize dimensional stability of precision positioning devices. CTE data of several low thermal expansion materials are compared regarding their temperature dependence between - 50°C and + 100°C. ZERODUR® TAILORED 22°C is full filling the tight CTE tolerance of +/- 10 ppb / K within the broadest temperature interval compared to all other materials of this investigation. The data presented in this paper explicitly demonstrates the capability of ZERODUR® to enable the nanometer precision required for future generation of lithography equipment and processes.

  8. Long-term behavior of glass-ceramic zirconolite

    Martin, Ch.

    2003-01-01

    This work is a part of the investigation of new containment matrices considered for specific conditioning of radionuclides after separation. The aim was to demonstrate the long-term aqueous corrosion resistance of the glass-ceramic zirconolite considered for the conditioning of plutonium and the minor actinides. This material is composed of crystals of zirconolite (CaZrTi 2 O 7 ) dispersed in a residual vitreous phase. It appears that glass-ceramic zirconolite presents a better kinetic behavior than the nuclear glass R 7T7. This is mainly due to a more important rate decrease that occurs more rapidly, that induces a quantity of glass altered at least 10 times as small as for R 7T7 glass. This high slowdown of the alteration rate is attributed to the formation of an alteration film that has been the subject of a specific study. We have demonstrated that the rate decrease was controlled as for the R7T7 glass by the amorphous phase of the alteration film forming a diffusion barrier for reactive species. It seems that the porosity is not the single parameter that explains the protective effect of the gel. The main differences compared with R7T7 glass are that silicon does not control the alteration of the material and that the gel is composed of two distinct phases. We have in particular identified a dense phase enriched in titanium and neodymium that probably influences deeply the kinetics. (author)

  9. The recycling of incinerated sewage sludge ash as a raw material for CaO-Al2O3-SiO2-P2O5 glass-ceramic production.

    Zhang, Zhikun; Zhang, Lei; Yin, Yulei; Liang, Xuanye; Li, Aimin

    2015-01-01

    In this paper, the recycling of incinerated sewage sludge ash (ISSA) into glass-ceramic materials by a two-stage sintering cycle of nucleation stage and crystallization stage without any pressure and binder is presented. The parent glasses were subjected to the following nucleation/crystallization temperature and time level: (A) 790°C, 1.0 h/870°C, 1.0-3.0 h; (B) 790°C, 1.0 h/945°C, 1.0-3.0 h and (C) 790°C, 1.0 h/1065°C, 1.0-3.0 h. X-ray power diffraction analysis results revealed that multiple crystalline phases coexisted in the glass-ceramic materials and the crystalline phase compositions were more affected by crystallization temperature than crystallization time. Scanning electron microscopy analysis showed an interlocking microstructure of glass phases and crystals with different sizes and spatial distribution. The glass-ceramics crystallized at 945°C for 2.0 h exhibited optimal properties of density of 2.88±0.08 g/cm3, compression strength of 247±12 MPa, bending strength of 118±14 MPa and water absorption of 0.42±0.04. The leaching concentrations of heavy metals were far lower than the limits required by the regulatory standard of EPA. This paper provides a feasible, low-cost and promising method to produce ISSA-based glass-ceramics and highlights the principal characteristics that must be taken into account to use ISSA correctly in glass-ceramics.

  10. Reduced wear of enamel with novel fine and nano-scale leucite glass-ceramics.

    Theocharopoulos, Antonios; Chen, Xiaohui; Hill, Robert; Cattell, Michael J

    2013-06-01

    Leucite glass-ceramics used to produce all-ceramic restorations can suffer from brittle fracture and wear the opposing teeth. High strength and fine crystal sized leucite glass-ceramics have recently been reported. The objective of this study is to investigate whether fine and nano-scale leucite glass-ceramics with minimal matrix microcracking are associated with a reduction in in vitro tooth wear. Human molar cusps (n=12) were wear tested using a Bionix-858 testing machine (300,000 simulated masticatory cycles) against experimental fine crystal sized (FS), nano-scale crystal sized (NS) leucite glass-ceramics and a commercial leucite glass-ceramic (Ceramco-3, Dentsply, USA). Wear was imaged using Secondary Electron Imaging (SEI) and quantified using white-light profilometry. Both experimental groups were found to produce significantly (pceramic) loss than the FS group. Increased waviness and damage was observed on the wear surfaces of the Ceramco-3 glass-ceramic disc/tooth group in comparison to the experimental groups. This was also indicated by higher surface roughness values for the Ceramco-3 glass-ceramic disc/tooth group. Fine and nano-sized leucite glass-ceramics produced a reduction in in vitro tooth wear. The high strength low wear materials of this study may help address the many problems associated with tooth enamel wear and restoration failure. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Waste Not, Want Not: An Inexpensive Glass-Ceramic from Waste

    Wu, J. P.; Rawlings, R. D.; Boccaccini, A. R.; Dlouhý, Ivo; Chlup, Zdeněk

    2006-01-01

    Roč. 85, č. 5 (2006), s. 29-32 ISSN 0002-7812 R&D Projects: GA ČR(CZ) GA106/05/0495 Institutional research plan: CEZ:AV0Z20410507 Keywords : glass ceramic s * fracture toughness * flexural strength Subject RIV: JH - Ceramic s, Fire-Resistant Materials and Glass Impact factor: 0.210, year: 2006 http://www. ceramic bulletin.org/2006-05.asp

  12. [Cytocompatibility of two porous bioactive glass-ceramic in vitro].

    Zhang, Yan; Jiang, Xinquan; Zhang, Xiuli; Wang, Deping; Zhen, Lei

    2013-06-01

    To compare the cytocompatibility of two kinds porous bioactive glass-ceramic made by same raw materials. Apatite/wollastonite bioactive glass-ceramic (4006) were prepared by sol-gel method, and bioactive glass (45S5) were prepared by melting method. Bone marrow stromal cells (BMSCs) were cultivated, differentiated and proliferated into osteoblasts, from a rabbit's marrow in the differentiatiofn culture medium with active function. The viability of BMSCs cultivated with extraction of these two kinds of biomaterial, which could represent the cytotoxicity effect of 4006 and 45S5 against BMSCs, was evaluated by the MTp assay. BMSCs were seeded and cocultivated with two kinds of biomaterial scaffolds respectively in vitro. The proliferation and biological properties of cells adhered to scaffolds were observed by inverted phase contrast microscope, scanning electron microscope (SEM), and environmental scanning electron microscope (ESEM), and a suitable cell amount for seeding on the scaffold was searched. There was no difference on the viability of BMSCs only cultured for one day by complete extract of 4006 and culture medium (P>0.05), but there was significant difference between them when the cells had been cultured for 3 days(Pglass-ceramic has good bioactivity and cytocompatibility. Therefore, it may have the potential to be a new cell vehicle for bone tissue engineering. And the suitable seeding cell amount of apatite/wollastonite bioactive glass-ceramic should be 2x10(7) cells.mL-1 or even more than that.

  13. EPR of radiation defects in lithium-oxyfluoride glass ceramics

    Fedotovs, A; Rogulis, U; Sarakovskis, A; Dimitrocenko, L, E-mail: andris-f@navigator.l [Institute of Solid State Physics, University of Latvia, Kengaraga st. 8, LV-1063, Riga (Latvia)

    2010-11-01

    We studied oxyfluoride composites based on lithium silicate glasses with yttrium fluorides and rare-earth dopants. The electron paramagnetic resonance (EPR) has been used to obtain information about radiation induced defects in these materials. Spectra have been measured before and after X-ray irradiation at room temperature and at liquid nitrogen temperature. Fluoride crystallites within samples were created by means of thermal treatment at specific temperatures. EPR spectra of radiation induced defects in oxyfluoride glass ceramics, in which crystallites have not been yet created, show no explicit hfs interaction of fluorine nuclei. However, in glass ceramics, which already contains fluoride crystallites, the hfs characteristic to fluorine nuclei appears in the EPR spectra. EPR hyperfine structure could be explained within a model of an F-type centre in YF{sub 3} crystalline phase.

  14. EPR of radiation defects in lithium-oxyfluoride glass ceramics

    Fedotovs, A.; Rogulis, U.; Sarakovskis, A.; Dimitrocenko, L.

    2010-11-01

    We studied oxyfluoride composites based on lithium silicate glasses with yttrium fluorides and rare-earth dopants. The electron paramagnetic resonance (EPR) has been used to obtain information about radiation induced defects in these materials. Spectra have been measured before and after X-ray irradiation at room temperature and at liquid nitrogen temperature. Fluoride crystallites within samples were created by means of thermal treatment at specific temperatures. EPR spectra of radiation induced defects in oxyfluoride glass ceramics, in which crystallites have not been yet created, show no explicit hfs interaction of fluorine nuclei. However, in glass ceramics, which already contains fluoride crystallites, the hfs characteristic to fluorine nuclei appears in the EPR spectra. EPR hyperfine structure could be explained within a model of an F-type centre in YF3 crystalline phase.

  15. Structure of aluminosilicate melts produced from granite rocks for the manufacturing of petrurgical glass-ceramics construction materials

    Simakin, A. G.

    2001-12-01

    Full Text Available The aluminosilicate melt is a partly ordered phase and is the origin of glass for producing glassceramics and petrurgical materials. They are well extended used as construction materials for pavings and coatings. Its structure can be described in the terms of the aluminosilica tetrahedras coordination so-called Q speciation. The proportions of tetrahedra with different degree of connectivity with others (from totally connected to free has been studied by NMR and IR methods for sodium-silicate melts. Medium range structure can be characterized by the sizes of irreducible rings composed of the aluminosilica tetrahedra. Systematic increase of the four member rings proportion in the sequence of the Ab-An glasses were observed. The water dissolution in sodium-silicate glass affects the Q speciation. Cations network-modifiers positions in the melt structure are important to know since these cations stabilize particular structure configurations. Modification of the distribution of Na coordination in the sodium-silicate glass at water dissolution was determined by NMR spectroscopy. The observed modification of the hydrous aluminosilicate melt structure resulted in the shift of the eutectic composition in the granite system with decreasing of the crystallization field of feldspars. The feldspar growth rates show practically no dependence on the water content in the concentration range 2-4 wt.%. Likewise, the solved water has a little influence on the crystal growth rate of the lithium silicate phase in lithium containing glasses in accordance with estimated enhancing of the diffusion transport.

    Los fundidos de alumino-silicato son una fase parcialmente ordenada. Su estructura puede ser descrita en términos de la coordinación de tetraedros de alúmina-sílice también denominados especies Q. La proporción de tetraedros con diferente grado de conectividad entre si se ha investigado por espectroscopias de RMN e IR en fundidos de silicatos

  16. Crystallization behaviors and seal application of basalt based glass-ceramics

    Ateş, A.; Önen, U.; Ercenk, E.; Yılmaz, Ş.

    2017-02-01

    Basalt based glass-ceramics were prepared by conventional melt-quenching technique and subsequently converted to glass-ceramics by a controlled nucleation and crystallization process. Glass materials were obtained by melt at 1500°C and quenched in cold water. The powder materials were made by milling and spin coating. The powders were applied on the 430 stainless steel interconnector material, and heat treatment was carried out. The interface characteristics between the glass-ceramic layer and interconnector were investigated by using X-ray diffraction analysis (XRD) and scanning electron microscopy (SEM). The results showed that the basalt base glass-ceramic sealant material exhibited promising properties to use for SOFC.

  17. Incorporation of flat glass in red ceramic

    Caldas, T.C.C.; Morais, A.S.C.; Pereira, P.S.; Monteiro, S.N.; Vieira, C.M.F.

    2011-01-01

    This work have as objective evaluate the effect of incorporation of up to 10% by weight of powdered flat glass , from civil industry, in red ceramic. The bodies were obtained by uniaxial pressing at 20 MPa and fired at temperatures of 850 ° C and 1050 ° C. The parameters studied were linear firing shrinkage, apparent density, water absorption and flexural rupture stress for the evaluation of the mechanical physical properties. The microstructure was observed by scanning electron microscopy and phase identification was performed by X-ray diffraction. The results showed that the waste changes the microstructure and properties of red ceramics. (author)

  18. Glass-ceramics with multibarrier structure obtained from industrial waste

    Berzina, L.; Cimdins, R.; Rozenstrauha, I. [Riga Tech. Univ. (Latvia). Fac. of Chem. Technol.; Bossert, J. [Technisches Inst.: Materialwissenschaft, Friedrich-Schiller-Univ., Jena (Germany); Kravtchenko, I. [Inst. for Problems of Material Science, Kiev (Ukraine)

    1997-12-31

    Recycling problem for various kind of waste is solved by processing the waste to ecological depositable products with multibarrier structure. In order to form a multibarrier structure the ecologically incompatible substances may be diluted and chemically bound until their recycling products gain a structure like natural mineral or glass (I. barrier). After that, remineralized materials are converted into a new product by melting or powder technology using an ecological compatible type of waste as a matrix phase (II. barrier). Waste which are treated this way could be applied to produce ceramic building materials and goods such as floor tiles, stone pavement and casting products. Industrial waste from the metallurgical factory in Latvia ``Liepajas metalurgs`` are metallurgical slag, filter dust, etching waste and sewage used in technologies. The main constituents of chemical compositions of these waste are: Fe, Ca, Si, Mg, Al, Mn etc. In some types of waste a small amount of ecologically risky elements such as Cr, Ni, Zr, Sn and Pb can occur. The combination of metallurgical waste with peat ashes from Riga thermal power station, oil shale ashes or glass waste under controlled sintering procedure gives bulk materials with surface or/and bulkcrystallization. The structure of glass-ceramics built this way may prevent the migration of ecologically risky elements into environment due to corrosion or friction. Physical-chemical properties and thermal behaviour (DTA, dilatometry, melting) of waste define the range of sintering for production of glass-ceramics (powder technology) and decorative glass-ceramic materials (melting and powder technology). (orig.) 5 refs.

  19. Electrical and thermal properties of lead titanate glass ceramics

    Shankar, J.; Deshpande, V.K.

    2011-01-01

    Glass samples with composition of (50-X)PbO-(25+X)TiO 2 -25B 2 O 3 (where X=0, 5, 10 and 12.5 mol%) were prepared using conventional quenching technique. The glass transition temperature, T g and crystallization temperature T c were determined from the DTA. These glass samples were converted to glass ceramics by following two stage heat treatment schedule. The glass ceramic samples were characterized by XRD, SEM and dielectric constant measurements. The XRD results revealed the formation of ferroelectric lead titanate (PT) as a major crystalline phase in the glass ceramics. The density increases and the CTE decreases for all glass ceramics with increase in X (mol%). This may be attributed to increase in PT phase. The SEM results which show rounded crystallites of lead titanate, also supports other results. Hysteresis loops observed at room temperature confirms the ferroelectric nature of glass ceramics. The optimized glass ceramic sample exhibits high dielectric constant which is of technical importance. -- Research Highlights: →Lead titanate glass ceramics prepared by conventional quenching technique. →Lead titanate is a major crystalline phase in the glass ceramics. →The ferroelectric nature of glass ceramics is confirmed by the hysteresis study. →The high value of ε observed at room temperature is quite promising in the study.

  20. Analysis of leachants from strontium chlorapatite glass ceramics

    Vijayalakshmi, S.; Ushalakshmi, K.; Annapoorani, S.; Sriram, S.; Uma Maheshwari, R.; Deivanayaki, R.; Sekar, J.K.; Sankaran, K.

    2013-01-01

    Strontium chlorapatite glass ceramics is being tried out as one of the candidate matrices for immobilizing pyrochemical salt waste produced in the nuclear industry. To find-out the suitability of such material for immobilising the waste, leaching of various constituents of the ceramics in water is required. Therefore, in Chemistry Group of IGCAR experiments are being carried out with simulated salt waste (chlorides of Li, Na, K, Cs, Ba, Nd and Ce) of pyrochemical reprocessing method for studying the utilisation of strontium chlorapatite glass ceramics towards the immobilization of radioactive waste. Leaching behaviour study requires the determination of alkali, alkaline earth and rare earth elements in the leachant solutions of the glass ceramic material. Apart from cations, leaching study of anions especially chloride is required as the chloride salts are used in pyrochemical experiments. Considering the good sensitivity of alkali elements in Flame-AES method, all the alkali elements were determined by flame-AES. Ba, Sr and rare earth elements in the leachant solutions were determined using ICP-OES. Chloride was determined using ISE and IC. Standardisation of instrumental techniques and the application of various techniques for the sample analysis will be discussed in the paper. (author)

  1. Glass enamel and glass-ceramic coatings for chemical apparatus

    Es'kov, A.S.; Oleinik, M.I.; Shabrova, E.A.

    1984-01-01

    Among the known anticorrosion coatings used in chemical engineering, glass enamel base coatings are distinguished by such advantages as a high degree of continuity and chemical resistance. The paper describes basic principles for the creation of acid and alkali resistant glass enamel and ceramic coatings for chemical apparatus. As the result of investgations, glass enamel coatings with increased electrical conductivity and also experimental production compositions of chemical, temperature and radiation resistant coatings for protection of chemical equipment of 12Kh18N10T stainless steel have been developed. The coatings have successfully passed testing under service conditions. A new type of coating is short-term glass enamel, which may be recommended for use in chemical machinery manufacturing and other branches of industry in oxidation-free heating and forming of stainless steels

  2. Different in vitro behavior of two Ca3(PO42 based biomaterials, a glass-ceramic and a ceramic, having the same chemical composition

    M. Cristina Guerrero-Lecuona

    2015-09-01

    The reactivity in simulated body fluid and Tris–HCl solutions was studied. Both materials showed bioactive behavior, but the glass-ceramic dissolved faster, releasing large proportion of Ca and P ions, which afterwards nucleated and precipitated. However, the ceramic was more stable under the same conditions in these solutions. Glass-ceramic composite has a more open structure and allowed the faster formation of a bone-like apatite layer than the ceramic.

  3. Structural analysis and thermal behavior of diopside-fluorapatite-wollastonite-based glasses and glass-ceramics.

    Kansal, Ishu; Tulyaganov, Dilshat U; Goel, Ashutosh; Pascual, Maria J; Ferreira, José M F

    2010-11-01

    Glass-ceramics in the diopside (CaMgSi2O6)-fluorapatite (Ca5(PO4)3F)-wollastonite (CaSiO3) system are potential candidates for restorative dental and bone implant materials. The present study describes the influence of varying SiO2/CaO and CaF2/P2O5 molar ratio on the structure and thermal behavior of glass compositions in the CaO-MgO-SiO2-P2O5-Na2O-CaF2 system. The structural features and properties of the glasses were investigated by nuclear magnetic resonance (NMR), infrared spectroscopy, density measurements and dilatometry. Sintering and crystallization behavior of the glass powders were studied by hot-stage microscopy and differential thermal analysis, respectively. The microstructure and crystalline phase assemblage in the sintered glass powder compacts were studied under non-isothermal heating conditions at 825 °C. X-ray diffraction studies combined with the Rietveld-reference intensity ratio (R.I.R) method were employed to quantify the amount of amorphous and crystalline phases in the glass-ceramics, while scanning electron microscopy was used to shed some light on the microstructure of resultant glass-ceramics. An increase in CaO/SiO2 ratio degraded the sinterability of the glass powder compacts, resulting in the formation of akermanite as the major crystalline phase. On the other hand, an increase in P2O5/CaF2 ratio improved the sintering behavior of the glass-ceramics, while varying the amount of crystalline phases, i.e. diopside, fluorapatite and wollastonite. Copyright © 2010. Published by Elsevier Ltd.

  4. Fatigue failure load of two resin-bonded zirconia-reinforced lithium silicate glass-ceramics: Effect of ceramic thickness.

    Monteiro, Jaiane Bandoli; Riquieri, Hilton; Prochnow, Catina; Guilardi, Luís Felipe; Pereira, Gabriel Kalil Rocha; Borges, Alexandre Luiz Souto; de Melo, Renata Marques; Valandro, Luiz Felipe

    2018-06-01

    To evaluate the effect of ceramic thickness on the fatigue failure load of two zirconia-reinforced lithium silicate (ZLS) glass-ceramics, adhesively cemented to a dentin analogue material. Disc-shaped specimens were allocated into 8 groups (n=25) considering two study factors: ZLS ceramic type (Vita Suprinity - VS; and Celtra Duo - CD), and ceramic thickness (1.0; 1.5; 2.0; and 2.5mm). A trilayer assembly (ϕ=10mm; thickness=3.5mm) was designed to mimic a bonded monolithic restoration. The ceramic discs were etched, silanized and luted (Variolink N) into a dentin analogue material. Fatigue failure load was determined using the Staircase method (100,000 cycles at 20Hz; initial fatigue load ∼60% of the mean monotonic load-to-failure; step size ∼5% of the initial fatigue load). A stainless-steel piston (ϕ=40mm) applied the load into the center of the specimens submerged in water. Fractographic analysis and Finite Element Analysis (FEA) were also performed. The ceramic thickness influenced the fatigue failure load for both ZLS materials: Suprinity (716N up to 1119N); Celtra (404N up to 1126N). FEA showed that decreasing ceramic thickness led to higher stress concentration on the cementing interface. Different ZLS glass-ceramic thicknesses influenced the fatigue failure load of the bonded system (i.e. the thicker the glass ceramic is, the higher the fatigue failure load will be). Different microstructures of the ZLS glass-ceramics might affect the fatigue behavior. FEA showed that the thicker the glass ceramic is, the lower the stress concentration at the tensile surface will be. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Inc. All rights reserved.

  5. Influence of ceramic thickness and ceramic materials on fracture resistance of posterior partial coverage restorations.

    Bakeman, E M; Rego, N; Chaiyabutr, Y; Kois, J C

    2015-01-01

    This study evaluated the influence of ceramic thickness and ceramic materials on fracture resistance of posterior partial coverage ceramic restorations. Forty extracted molars were allocated into four groups (n=10) to test for two variables: 1) the thickness of ceramic (1 mm or 2 mm) and 2) the ceramic materials (a lithium disilicate glass-ceramic [IPS e.max] or leucite-reinforced glass ceramic [IPS Empress]). All ceramic restorations were luted with resin cement (Variolink II) on the prepared teeth. These luted specimens were loaded to failure in a universal testing machine, in the compression mode, with a crosshead speed of 1.0 mm/min. The data were analyzed using two-way analysis of variance and the Tukey Honestly Significantly Different multiple comparison test (α =0.05). The fracture resistance revealed a significant effect for materials (pceramic was not significant (p=0.074), and the interaction between the thickness of ceramic and the materials was not significant (p=0.406). Mean (standard deviation) fracture resistance values were as follows: a 2-mm thickness of a lithium disilicate bonded to tooth structure (2505 [401] N) revealed a significantly higher fracture resistance than did a 1-mm thickness of leucite-reinforced (1569 [452] N) and a 2-mm thickness of leucite-reinforced ceramic bonded to tooth structure (1716 [436] N) (pceramic at 1-mm thickness (2105 [567] N) and at 2-mm thickness. Using a lithium disilicate glass ceramic for partial coverage restoration significantly improved fracture resistance compared to using a leucite-reinforced glass ceramic. The thickness of ceramic had no significant effect on fracture resistance when the ceramics were bonded to the underlying tooth structure.

  6. Ceramic and glass radioactive waste forms

    Readey, D.W.; Cooley, C.R. (comps.)

    1977-01-01

    This report contains 14 individual presentations and 6 group reports on the subject of glass and polycrystalline ceramic radioactive waste forms. It was the general consensus that the information available on glass as a waste form provided a good basis for planning on the use of glass as an initial waste form, that crystalline ceramic forms could also be good waste forms if much more development work were completed, and that prediction of the chemical and physical stability of the waste form far into the future would be much improved if the basic synergistic effects of low temperature, radiation and long times were better understood. Continuing development of the polycrystalline ceramic forms was recommended. It was concluded that the leach rate of radioactive species from the waste form is an important criterion for evaluating its suitability, particularly for the time period before solidified waste is permanently placed in the geologic isolation of a Federal repository. Separate abstracts were prepared for 12 of the individual papers; the remaining two were previously abstracted.

  7. EFFECTS OF INCORPORATING NATURAL MINERALS ON PRODUCTION AND BIOACTIVITY OF BIOACTIVE GLASS CERAMICS

    Franco Matias Stabile

    2016-07-01

    Full Text Available Two glass-ceramics composition were produced from natural minerals. Quartzes and feldspars were pre-selected on the basis of their purities studied by X-ray diffraction (XRD and chemical analysis. Prepared compositions of glasses precursors were two different theoretical leucite (KAlSi₂O₆ /Bioglass 45S5 (L/Bg ratios. Transformations of raw materials mixtures and glass precursors were studied by differential thermal analyses. On the basis of thermal analysis results, glass ceramics were produced and characterized by XRD. Glass-ceramics were composed of two major crystalline phases, leucite and sodium calcium silicate. Bioactivity tests were performed submerging the glass-ceramics into simulated body fluid (SBF for different periods (1, 5 and 10 days. Bioactive behavior was monitored by XRD and scanning electron microscopy (SEM. Studied samples were found to be bioactive, in which hydroxyapatite layer was developed within 5 days of contact with SBF.

  8. Cracking phenomena in lithium-di-silicate glass ceramics

    Unknown

    Abstract. Lithium-di-silicate glass ceramic (Li2O, SiO2) with uniformly oriented crystals was placed on a. Vickers indentation with extrusion axis horizontally parallel to the base axis. The material was rotated through. 0°– 90° and at each angle a 20 N load was applied to ascertain the crack path. It was observed that the crack.

  9. A review of glass-ceramics for the immobilization of nuclear fuel recycle wastes

    Hayward, P.J.

    1987-01-01

    This report reviews the status of the Canadian, German, U.S., Japanese, U.S.S.R. and Swedish programs for the development of glass-ceramic materials for immobilizing the high-level radioactive wastes arising from the recycling of used nuclear fuel. The progress made in these programs is described, with emphasis on the Canadian program for the development of sphene-based glass-ceramics. The general considerations of product performance and process feasibility for glass-ceramics as a category of waste form material are discussed. 137 refs

  10. Inward Cationic Diffusion and Percolation Transition in Glass-Ceramics

    Smedsklaer, Morten Mattrup; Yue, Yuanzheng; Mørup, Steen

    2010-01-01

    We show the quantitative correlation between the degree of crystallization and the cationic diffusion extent in iron-containing diopside glass–ceramics at the glass transition temperature. We find a critical degree of crystallization, above which the diffusion extent sharply drops with the degree...... of crystallization. Below the critical value, the diffusion extent decreases only slightly with the degree of crystallization. No cationic diffusion is observed in the fully crystalline materials. The critical value might be associated with a percolation transition from an interconnected to a disconnected glass...

  11. Glass-ceramic hermetic seals to high thermal expansion metals

    Kramer, D.P.; Massey, R.T.

    1987-04-28

    A process for forming glass-ceramic materials from an alkaline silica-lithia glass composition comprising 60-72 mole-% SiO/sub 2/, 18-27 mole-% Li/sub 2/O, 0-5 mole-% Al/sub 2/O/sub 3/, 0-6 mole-% K/sub 2/O, 0-3 mole-% B/sub 2/O/sub 3/, and 0.5-2.5 mole-% P/sub 2/O/sub 5/, which comprises heating said glass composition at a first temperature within the 950-1050/degree/C range for 5-60 minutes, and then at a devitrification temperature within the 700-900/degree/C range for about 5-300 minutes to obtain a glass-ceramic having a thermal expansion coefficient of up to 210 x 10/sup /minus/7///degree/C. These ceramics form strong, hermetic seals with high expansion metals such as stainless steel alloys. An intermediate nucleation heating step conducted at a temperature within the range of 675-750/degree/C for 10-120 minutes may be employed between the first stage and the devitrification stage. 1 fig., 2 tabs.

  12. Sol-gel processing of glasses and glass-ceramics for microelectronic packaging

    Sriram, M.A.; Kumta, P.N.

    1992-01-01

    In recent years considerable progress has been made in electronic packaging substrate technology. The future need of miniaturization of devices to increase the signal processing speeds calls for an increase in the device density requiring the substrates to be designed for better thermal, mechanical and electrical efficiency. Fast signal propagation with minimum delay requires the substrate to possess very low dielectric constant. Several glasses and glass-ceramic materials have been identified over the years which show good promise as candidate substrate materials. among these borophosphate and borophosphosilicate glass-ceramics have been recently identified to have the lowest dielectric constant. This paper reports that sol-gel processing has been used to synthesize borosilicate, borophosphosilicate and borophosphate glasses and glass-ceramics using inexpensive boron oxide and phosphorus pentoxide precursors. Preliminary results of the processing of these gels and the effect of volatility of boron alkoxide and its modification on the gel structure are described. X-ray diffraction, Differential thermal analyses and FTIR have been used to characterize the as-prepared and heat treated gels

  13. Sinter recrystalization and properties evaluation of glass-ceramic from waste glass bottle and magnesite for extended application

    As'mau Ibrahim Gebi

    2016-12-01

    Full Text Available In a bid to address environmental challenges associated with the management of waste Coca cola glass bottle, this study set out to develop glass ceramic materials using waste coca cola glass bottles and magnesite from Sakatsimta in Adamawa state. A reagent grade chrome (coloring agent were used to modify the composition of the coca cola glass bottle;  X-ray fluorescence(XRF, X-ray diffraction (XRD and Thermo gravimetric analysis (TGA were used to characterize raw materials, four batches GC-1= Coca cola glass frit +1%Cr2O3, GC-2=97% Coca cola glass frit+ 2% magnesite+1%Cr2O3, GC-3=95% Coca cola glass frit+ 4%magnesite+1%Cr2O3, GC-4=93%Coca cola glass frit+ 6%magnesite+ 1%Cr2O3 were formulated and prepared. Thermal Gradient Analysis (TGA results were used as a guide in selection of three temperatures (7000C, 7500C and 8000C used for the study, three particle sizes -106+75, -75+53, -53µm and 2 hr sintering time were also used, the sinter crystallization route of glass ceramic production was adopted. The samples were characterized by X-ray diffraction (XRD and Scanning Electron Microscope (SEM, the density, porosity, hardness and flexural strength of the resulting glass ceramics were also measured. The resulting glass ceramic materials composed mainly of wollastonite, diopside and anorthite phases depending on composition as indicated by XRD and SEM, the density of the samples increased with increasing sintering temperature and decreasing particle size. The porosity is minimal and it decreases with increasing sintering temperature and decreasing particle size. The obtained glass ceramic materials possess appreciable hardness and flexural strength with GC-3 and GC-4 having the best combination of both properties.

  14. Plasma spraying of bioactive glass-ceramics containing bovine bone

    Annamária Dobrádi

    2017-06-01

    Full Text Available Natural bone derived glass-ceramics are promising biomaterials for implants. However, due to their price and weak mechanical properties they are preferably applied as coatings on load bearing implants. This paper describes result obtained by plasma spraying of bioactive glass-ceramics containing natural bone onto selected implant materials, such as stainless steel, alumina, and titanium alloy. Adhesion of plasma sprayed coating was tested by computed X-ray tomography and SEM of cross sections. The results showed defect free interface between the coating and substrate, without cracks or gaps. Dissolution rate of the coating in simulated body fluid (SBF was readily controlled by the bone additives (phase composition, as well as microstructure. The SBF treatment of the plasma sprayed coating did not influence the boundary between the coating and substrate.

  15. Glass ceramic toughened with tetragonal zirconia

    Keefer, Keith D.; Michalske, Terry A.

    1986-01-01

    A phase transformation-toughened glass ceramic and a process for making it are disclosed. A mixture of particulate network-forming oxide, network-modifying oxide, and zirconium oxide is heated to yield a homogeneous melt, and this melt is then heat-treated to precipitate an appreciable quantity of tetragonal zirconia, which is retained at ambient temperature to form a phase transformation-toughened glass ceramic. Nucleating agents and stabilizing agents may be added to the mixture to facilitate processing and improve the ceramic's properties. Preferably, the mixture is first melted at a temperature from 1200.degree. to 1700.degree. C. and is then heat-treated at a temperature within the range of 800.degree. to 1200.degree. C. in order to precipitate tetragonal ZrO.sub.2. The composition, as well as the length and temperature of the heat-treatment, must be carefully controlled to prevent solution of the precipitated tetragonal zirconia and subsequent conversion to the monoclinic phase.

  16. Non-destructive thermo-mechanical behavior assessment of glass-ceramics for dental applications

    Kordatos, E. Z.; Abdulkadhim, Z.; Feteira, A. M.

    2017-05-01

    Every year millions of people seek dental treatment to either repair damaged, unaesthetic and dysfunctional teeth or replace missing natural teeth. Several dental materials have been developed to meet the stringent requirements in terms of mechanical properties, aesthetics and chemical durability in the oral environment. Glass-ceramics exhibit a suitable combination of these properties for dental restorations. This research is focused on the assessment of the thermomechanical behavior of bio-ceramics and particularly lithium aluminosilicate glass-ceramics (LAS glass-ceramics). Specifically, methodologies based on Infrared Thermography (IRT) have been applied in order the structure - property relationship to be evaluated. Non-crystallized, partially crystallized and fully crystallized glass-ceramic samples have been non-destructively assessed in order their thermo-mechanical behavior to be associated with their micro-structural features.

  17. Systematic approach to preparing ceramic-glass composites with high translucency for dental restorations.

    Yoshimura, Humberto N; Chimanski, Afonso; Cesar, Paulo F

    2015-10-01

    Ceramic composites are promising materials for dental restorations. However, it is difficult to prepare highly translucent composites due to the light scattering that occurs in multiphase ceramics. The objective of this work was to verify the effectiveness of a systematic approach in designing specific glass compositions with target properties in order to prepare glass infiltrated ceramic composites with high translucency. First it was necessary to calculate from literature data the viscosity of glass at the infiltration temperature using the SciGlass software. Then, a glass composition was designed for targeted viscosity and refractive index. The glass of the system SiO2-B2O3-Al2O3-La2O3-TiO2 prepared by melting the oxide raw materials was spontaneously infiltrated into porous alumina preforms at 1200°C. The optical properties were evaluated using a refractometer and a spectrophotometer. The absorption and scattering coefficients were calculated using the Kubelka-Munk model. The light transmittance of prepared composite was significantly higher than a commercial ceramic-glass composite, due to the matching of glass and preform refractive indexes which decreased the scattering, and also to the decrease in absorption coefficient. The proposed systematic approach was efficient for development of glass infiltrated ceramic composites with high translucency, which benefits include the better aesthetic performance of the final prosthesis. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  18. [Recostruction of Extensive Acetabular Defects by Bioactive Glass Ceramics in Re-operations of Total Endoprostheses.].

    Urban, K; Sponer, P

    1998-01-01

    The authors made 37 revisions on account of aseptic loosening of total endoprostheses of the hip joint using bioactive glass ceramics BAS-0 of Lasak Co. Prague. For reconstruction of large defects of the acetabulum they used a combination of different types of anti-protrusion metal baskets and granules from this material. In some instances the glass ceramic material was combined with autologous spongiosa. The longest follow-up period is over 4 years. In no instance loosening of the glass ceramic material occurred or its expulsion. All reconstructed sockets of hip joints were burdened by the patients from the third month after surgery. Harris Hip Score before operation was on average 52. During the last checkups of the patients it reached the level of 86. The authors mention complications associated with the procedure. The advantages and disadvantages of the procedure are discussed. Key words: bioactive glass ceramics, reconstruction of acetabular defect, aseptic loosening of endoprosthesis.

  19. Solidification of HLLW by glass-ceramic process

    Oguino, N.; Masuda, S.; Tsunoda, N.; Yamanaka, T.; Ninomiya, M.; Sakane, T.; Nakamura, S.; Kawamura, S.

    1979-01-01

    The compositions of glass-ceramics for the solidification of HLLW were studied, and the glass-ceramics in the diopside system was concluded to be the most suitable. Compared with the properties of HLW borosilicate glasses, those of diopside glass-ceramic were thought to be almost equal in leach rate and superior in thermal stability and mechanical strength. It was also found that the glass in this system can be crystallized simply by pouring it into a thermally insulated canister and then allowing it to cool to room temperature. 2 figures, 5 tables

  20. CAD/CAM glass ceramics for single-tooth implant crowns: a finite element analysis.

    Akça, Kvanç; Cavusoglu, Yeliz; Sagirkaya, Elcin; Aybar, Buket; Cehreli, Murat Cavit

    2013-12-01

    To evaluate the load distribution of CAD/CAM mono-ceramic crowns supported with single-tooth implants in functional area. A 3-dimensional numerical model of a soft tissue-level implant was constructed with cement-retained abutment to support glass ceramic machinable crown. Implant-abutment complex and the retained crown were embedded in a Ø 1.5 × 1.5 cm geometric matrix for evaluation of mechanical behavior of mono-ceramic CAD/CAM aluminosilicate and leucite glass crown materials. Laterally positioned axial load of 300 N was applied on the crowns. Resulting principal stresses in the mono-ceramic crowns were evaluated in relation to different glass ceramic materials. The highest compressive stresses were observed at the cervical region of the buccal aspect of the crowns and were 89.98 and 89.99 MPa, for aluminosilicate and leucite glass ceramics, respectively. The highest tensile stresses were observed at the collar of the lingual part of the crowns and were 24.54 and 25.39 MPa, respectively. Stresses induced upon 300 N static loading of CAD/CAM aluminosalicate and leucite glass ceramics are below the compressive strength of the materials. Impact loads may actuate the progress to end failure of mono-ceramic crowns supported by metallic implant abutments.

  1. Factors controlling crystallization of miserite glass-ceramic.

    Muhammed, Fenik K; Moorehead, Robert; van Noort, Richard; Pollington, Sarah

    2015-12-01

    The purpose of this study was to investigate a range of variables affecting the synthesis of a miserite glass-ceramic (GC). Miserite glass was synthesized by the melt quench technique. The crystallization kinetics of the glass were determined using Differential Thermal Analysis (DTA). The glasses were ground with dry ball-milling and then sieved to different particle sizes prior to sintering. These particle sizes were submitted to heat treatment regimes in a high temperature furnace to form the GC. The crystal phases of the GC were analyzed by X-ray diffraction (XRD). Scanning electron microscopy (SEM) was used to examine the microstructure of the cerammed glass. XRD analysis confirmed that the predominant crystalline phase of the GC was miserite along with a minor crystalline phase of cristobalite only when the particle size is <20 μm and the heat treatment at 1000°C was carried out for 4h and slowly cooled at the furnace rate. For larger particle sizes and faster cooling rates, a pseudowollastonite crystalline phase was produced. Short sintering times produced either a pseudowollastonite or xonotolite crystalline phase. The current study has shown that particle size and heat treatment schedules are major factors in controlling the synthesis of miserite GC. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  2. Dynamic fatigue of a machinable glass-ceramic

    Smyth, K. K.; Magida, M. B.

    1983-01-01

    To assess the stress-corrosion susceptibility of a machinable glass-ceramic, its dynamic fatigue behavior was investigated by measuring its strength as a function of stress rate. Fracture mechanics techniques were used to analyze the results for the purpose of making lifetime predictions for components of this material. This material was concluded to have only moderate resistance (N = 30) to stress corrosion in ambient conditions. The effects of specimen size on strength were assessed for the material used in this study; it was concluded that the Weibull edge-flaw scaling law adequately describes the observed strength-size relation.

  3. Effect of furnace type and ceramming heat treatment conditions on the biaxial flexural strength of a canasite glass-ceramic.

    Johnson, A; Shareef, M Y; van Noort, R; Walsh, J M

    2000-07-01

    To assess the effect of different heat treatment conditions when using two different furnace types on the biaxial flexural strength (BFS) of a fluorcanasite castable glass-ceramic. Two furnace types, one a programmable furnace (PF), the other a dental laboratory burnout furnace (DLF), were used with various ceramming times to determine their effect on the BFS of a fluorcanasite castable glass-ceramic. The glass-ceramic material was cast to produce discs of 12 mm diameter and 2 mm thickness using the lost wax casting process (n = 80). After casting, both furnace types were used to ceram the discs. Half the discs were not de-vested from the casting ring before ceramming but cerammed in situ (DLF) and half were de-vested before ceramming (PF). All the discs were given a nucleation heat treatment at 520 degrees C for 1 h and then cerammed at 860 degrees C using four heat soak times (0.5, 1, 2 and 3 h). The DLF furnace had a rate of climb of 13 degrees C/min and the PF furnace had a rate of climb of 5 degrees C/min to 520 degrees C and 3 degrees C/min to 860 degrees C. After ceramming the discs were de-vested and the BFS determined using a Lloyd 2000R tester. The maximum BFS values seen for both furnace types were almost identical (280 MPa), but were achieved at different heat soak times (1 h DLF, and 2 h PF). The only significant differences in BFS values for the two furnaces were between the 0.5 and 2 h heat soak times (p < or = 0.05). Individual differences were seen between results obtained from each furnace type/heat soak times evaluated (p < or = 0.05). Already available dental laboratory burnout furnaces can be used to ceram fluorcanasite glass-ceramic castings to the same BFS values as more expensive and slower specialist programmable furnaces.

  4. Radiometric measurement of ceramic material moisture

    Kominek, A.; Sojka, J.; Votava, P.

    1975-01-01

    Water content measurement using a neutron moisture meter has a long tradition in the CSSR. The method of water content determination using neutron and gamma radiation was developed by the Research Institute of Building Materials in Brno for a number of materials, as e.g. coke, brown coal semi-coke, anthracite, glass sand, dolomite, soda, gravel, aggregates, cement sludge, slag, brick clay, intermediate products of the ceramics industry, refractory building materials, etc. The water content measurement of ceramic materials for the manufacture of wall tiles was performed in a special equipment by detection of the slowed-down neutrons with an accuracy of +-0.6% water (within the range from 5 to 11%) and of materials for the manufacture of floor tiles by means of neutron and gamma radiation with an accuracy of +-0.4% water (within the range from 5 to 8%). (author)

  5. Modelling the crystallisation of alkaline earth boroaluminosilicate glass ceramics

    Svenson, Mouritz Nolsøe; Agersted, Karsten; Holm, Paul Martin

    2014-01-01

    To investigate the potential use of a thermochemical software package (FactSage 6.2), in the design of alkaline earth boroaluminosilicate glass ceramics, experimental and modelled results on four glass ceramics were compared. Initially large discrepancies were found. These are described and related...

  6. Microwave sintering of ceramic materials

    Karayannis, V. G.

    2016-11-01

    In the present study, the potential of microwave irradiation as an innovative energy- efficient alternative to conventional heating technologies in ceramic manufacturing is reviewed, addressing the advantages/disadvantages, while also commenting on future applications of possible commercial interest. Ceramic materials have been extensively studied and used due to several advantages they exhibit. Sintering ceramics using microwave radiation, a novel technology widely employed in various fields, can be an efficient, economic and environmentally-friendlier approach, to improve the consolidation efficiency and reduce the processing cycle-time, in order to attain substantial energy and cost savings. Microwave sintering provides efficient internal heating, as energy is supplied directly and penetrates the material. Since energy transfer occurs at a molecular level, heat is generated throughout the material, thus avoiding significant temperature gradients between the surface and the interior, which are frequently encountered at high heating rates upon conventional sintering. Thus, rapid, volumetric and uniform heating of various raw materials and secondary resources for ceramic production is possible, with limited grain coarsening, leading to accelerated densification, and uniform and fine-grained microstructures, with enhanced mechanical performance. This is particularly important for manufacturing large-size ceramic products of quality, and also for specialty ceramic materials such as bioceramics and electroceramics. Critical parameters for the process optimization, including the electromagnetic field distribution, microwave-material interaction, heat transfer mechanisms and material transformations, should be taken into consideration.

  7. Immobilization of radioactive wastes in glasses and ceramics

    Zanotto, E.D.

    1983-01-01

    A large amount of radioactive liquid wastes arises from the reprocessing of spent nuclear fuels to recover uranium and plutonium. Immobilization of such wastes in solid form and disposal of the solidified wastes in safe places, to prevent contamination of the human environment, are topics of considerable interest for both the scientific community and the public in general. The great majority of materials candidate for the encapsulation of radioactive wastes are inorganic non-metalic, such as glasses, glass-ceramics, special cements, calcined ceramics and few more. Among these materials, certain glasses have received special attention, and are being studied for over twenty years. It is estimated that about US$2 billion have already been spent in these studies. The disposal (long term storage) of these solid wastes may be possible in deep geological formations, salt mines, the ocean bed, by evacuation to the outer space, etc. A brief review on the several options avaiable for encapsulation and disposal of high level radioactive liquid wastes is presented, along with the relative merits and disadvantages of the candidate materials for encapsulation. A few suggestions for the solution of the Brazilian problem are advanced. (Author) [pt

  8. Durability of feldspathic veneering ceramic on glass-infiltrated alumina ceramics after long-term thermocycling.

    Mesquita, A M M; Ozcan, M; Souza, R O A; Kojima, A N; Nishioka, R S; Kimpara, E T; Bottino, M A

    2010-01-01

    This study compared the bond strength durability of a feldspathic veneering ceramic to glass-infiltrated reinforced ceramics in dry and aged conditions. Disc shaped (thickness: 4 mm, diameter: 4 mm) of glass-infiltrated alumina (In-Ceram Alumina) and glass-infiltrated alumina reinforced by zirconia (In-Ceram Zirconia) core ceramic specimens (N=48, N=12 per groups) were constructed according to the manufacturers' recommendations. Veneering ceramic (VITA VM7) was fired onto the core ceramics using a mold. The core-veneering ceramic assemblies were randomly divided into two conditions and tested either immediately after specimen preparation (Dry) or following 30000 thermocycling (5-55 ºC±1; dwell time: 30 seconds). Shear bond strength test was performed in a universal testing machine (cross-head speed: 1 mm/min). Failure modes were analyzed using optical microscope (x20). The bond strength data (MPa) were analyzed using ANOVA (α=0.05). Thermocycling did not decrease the bond strength results for both In-Ceram Alumina (30.6±8.2 MPa; P=0.2053) and In-Ceram zirconia (32.6±9 MPa; P=0.3987) core ceramic-feldspathic veneering ceramic combinations when compared to non-aged conditions (28.1±6.4 MPa, 29.7±7.3 MPa, respectively). There were also no significant differences between adhesion of the veneering ceramic to either In-Ceram Alumina or In-Ceram Zirconia ceramics (P=0.3289). Failure types were predominantly a mixture of adhesive failure between the veneering and the core ceramic together with cohesive fracture of the veneering ceramic. Long-term thermocycling aging conditions did not impair the adhesion of the veneering ceramic to the glass-infiltrated alumina core ceramics tested.

  9. Glass-ceramic joint and method of joining

    Meinhardt, Kerry D [Richland, WA; Vienna, John D [West Richland, WA; Armstrong, Timothy R [Clinton, TN; Pederson, Larry R [Kennewick, WA

    2003-03-18

    The present invention is a glass-ceramic material and method of making useful for joining a solid ceramic component and at least one other solid component. The material is a blend of M1-M2-M3, wherein M1 is BaO, SrO, CaO, MgO, or combinations thereof, M2 is Al.sub.2 O.sub.3, present in the blend in an amount from 2 to 15 mol %, M3 is SiO.sub.2 with up to 50 mol % B.sub.2 O.sub.3 that substantially matches a coefficient of thermal expansion of the solid electrolyte. According to the present invention, a series of glass ceramics in the M1-Al.sub.2 O.sub.3 -M3 system can be used to join or seal both tubular and planar solid oxide fuel cells, oxygen electrolyzers, and membrane reactors for the production of syngas, commodity chemicals and other products.

  10. Predictive Surface Roughness Model for End Milling of Machinable Glass Ceramic

    Reddy, M Mohan; Gorin, Alexander [School of Engineering and Science, Curtin University of Technology, Sarawak (Malaysia); Abou-El-Hossein, K A, E-mail: mohan.m@curtin.edu.my [Mechanical and Aeronautical Department, Nelson Mandela Metropolitan University, Port Elegebeth, 6031 (South Africa)

    2011-02-15

    Advanced ceramics of Machinable glass ceramic is attractive material to produce high accuracy miniaturized components for many applications in various industries such as aerospace, electronics, biomedical, automotive and environmental communications due to their wear resistance, high hardness, high compressive strength, good corrosion resistance and excellent high temperature properties. Many research works have been conducted in the last few years to investigate the performance of different machining operations when processing various advanced ceramics. Micro end-milling is one of the machining methods to meet the demand of micro parts. Selecting proper machining parameters are important to obtain good surface finish during machining of Machinable glass ceramic. Therefore, this paper describes the development of predictive model for the surface roughness of Machinable glass ceramic in terms of speed, feed rate by using micro end-milling operation.

  11. Predictive Surface Roughness Model for End Milling of Machinable Glass Ceramic

    Reddy, M Mohan; Gorin, Alexander; Abou-El-Hossein, K A

    2011-01-01

    Advanced ceramics of Machinable glass ceramic is attractive material to produce high accuracy miniaturized components for many applications in various industries such as aerospace, electronics, biomedical, automotive and environmental communications due to their wear resistance, high hardness, high compressive strength, good corrosion resistance and excellent high temperature properties. Many research works have been conducted in the last few years to investigate the performance of different machining operations when processing various advanced ceramics. Micro end-milling is one of the machining methods to meet the demand of micro parts. Selecting proper machining parameters are important to obtain good surface finish during machining of Machinable glass ceramic. Therefore, this paper describes the development of predictive model for the surface roughness of Machinable glass ceramic in terms of speed, feed rate by using micro end-milling operation.

  12. Development of glass ceramics for the incorporation of fission products

    De, A.K.; Luckscheiter, B.; Lutze, W.; Malow, G.; Schiewer, E.

    1976-01-01

    Spontaneous devitrification of fission-product-containing borosilicate glasses can be avoided by controlled crystallization after melting. Glass ceramics have been developed from a vitrified simulated waste and further improvement of product properties was achieved. In particular perovskite, h-celsian, diopside and eucryptite glass ceramics were prepared. These contained leach resistant host phases which exhibited considerable enrichment of long-lived fission products. All products showed increased impact resistance, but the thermal expansion was only slightly improved

  13. Assessing the Validity of the Simplified Potential Energy Clock Model for Modeling Glass-Ceramics

    Jamison, Ryan Dale [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Grillet, Anne M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Stavig, Mark E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Strong, Kevin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Dai, Steve Xunhu [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-10-01

    Glass-ceramic seals may be the future of hermetic connectors at Sandia National Laboratories. They have been shown capable of surviving higher temperatures and pressures than amorphous glass seals. More advanced finite-element material models are required to enable model-based design and provide evidence that the hermetic connectors can meet design requirements. Glass-ceramics are composite materials with both crystalline and amorphous phases. The latter gives rise to (non-linearly) viscoelastic behavior. Given their complex microstructures, glass-ceramics may be thermorheologically complex, a behavior outside the scope of currently implemented constitutive models at Sandia. However, it was desired to assess if the Simplified Potential Energy Clock (SPEC) model is capable of capturing the material response. Available data for SL 16.8 glass-ceramic was used to calibrate the SPEC model. Model accuracy was assessed by comparing model predictions with shear moduli temperature dependence and high temperature 3-point bend creep data. It is shown that the model can predict the temperature dependence of the shear moduli and 3- point bend creep data. Analysis of the results is presented. Suggestions for future experiments and model development are presented. Though further calibration is likely necessary, SPEC has been shown capable of modeling glass-ceramic behavior in the glass transition region but requires further analysis below the transition region.

  14. Bioactivity of thermal plasma synthesized bovine hydroxyapatite/glass ceramic composites

    Yoganand, C P; Selvarajan, V; Rouabhia, Mahmoud; Cannillo, Valeria; Sola, Antonella

    2010-01-01

    Bone injuries and failures often require the inception of implant biomaterials. Research in this area is receiving increasing attention worldwide. A variety of artificial bone materials, such as metals, polymeric materials, composites and ceramics, are being explored to replace diseased bones. Calcium phosphate ceramics are currently used as biomaterials for many applications in both dentistry and orthopedics. Bioactive silicate-based glasses show a higher bioactive behaviour than calcium phosphate materials. It is very interesting to study the mixtures of HA and silicate-based glasses. In the present study; natural bovine hydroxyapatite / SiO 2 -CaO-MgO glass composites were produced using the Transferred arc plasma (TAP) melting method. TAP melting route is a brisk process of preparation of glass-ceramics in which the raw materials are melted in the plasma and crystallization of the melt occurs while cooling down at a much faster rate in relatively short processing times compared to the conventional methods of manufacture of glass ceramics/composites. It is well known that; one essential step to the understanding of the biological events occurring at the bone tissue/material interface is the biological investigation by in vitro tests. Cell lines are commonly used for biocompatibility tests, and are very efficient because of their reproducibility and culture facility. In this study, we report the results of a study on the response of primary cultures of human fibroblast cells to TAP melted bioactive glass ceramics.

  15. Ceramic Surface Treatment with a Single-component Primer: Resin Adhesion to Glass Ceramics.

    Prado, Mayara; Prochnow, Catina; Marchionatti, Ana Maria Estivalete; Baldissara, Paolo; Valandro, Luiz Felipe; Wandscher, Vinicius Felipe

    2018-04-19

    To evaluate the microshear bond strength (μSBS) of composite cement bonded to two machined glass ceramics and its durability, comparing conventional surface conditioning (hydrofluoric acid + silane) to a one-step primer (Monobond Etch & Prime). Machined slices of lithium disilicate ceramic (LDC) (IPS e.max CAD) and feldspathic ceramic (FC) (VITA Mark II) glass ceramics were divided into two groups (n = 10) according to two factors: 1. surface treatment: HF+S (ca 5% hydrofluoric acid [IPS Ceramic Etching GEL] + silane coupling agent [SIL; Monobond Plus]) or MEP (single-component ceramic conditioner; Monobond Etch & Prime); 2. storage condition: baseline (without aging; tested 24 h after cementing) or aged (70 days of water storage + 12,000 thermal cycles). Composite cement (Multilink Automix, Ivoclar Vivadent) was applied to starch matrices on the treated ceramic surfaces and photoactivated. A μSBS test was performed (0.5 mm/min) and the failure pattern was determined. Contact angle and micromorphological analyses were also performed. Data were analyzed with Student's t-test (α = 5%). For both ceramic materials, HF+S resulted in higher mean μSBS (MPa) at baseline (LDC: HF+S 21.2 ± 2.2 > MEP 10.4 ± 2.4; FC: HF+S 19.6 ± 4.3 > MEP 13.5 ± 5.4) and after aging (LDC: HF+S 14.64 ± 2.31 > MEP 9 ± 3.4; FC HF+S: 14.73 ± 3.33 > MEP 11.1 ± 3.3). HF+S resulted in a statistically significant decrease in mean μSBS after aging (p = 0.0001), while MEP yielded no significant reduction. The main failure type was adhesive between composite cement and ceramic. HF+S resuted in the lowest contact angle. Hydrofluoric acid + silane resulted in higher mean μSBS than Monobond Etch & Prime for both ceramics; however, Monobond Etch & Prime had stable bonding after aging.

  16. Crystallization and properties of a spodumene-willemite glass ceramic

    Hu, A.M.; Li, M.; Dali, D.L. Mao; Liang, K.M.

    2005-01-01

    Spodumene-willemite glass ceramics were produced by replacement of Al 2 O 3 in lithium aluminium silicate by ZnO. With replacement of Al 2 O 3 by ZnO, the batch melting temperature, glass transition temperature (T g ) and crystallization temperature (T p ) all decreased. The main crystalline phases precipitated were eucriptite, β-spodumene and willemite (Zn 2 SiO 4 ). All compositions of glass ceramics showed bulk crystallization. As ZnO content increased, the grain sizes and thermal expansion coefficients increased, while the flexural strength and fracture toughness of the glass-ceramics increased first, and then decreased. The mechanical properties were correlated with crystallization and morphology of glass ceramics

  17. [Machinable property of a novel dental mica glass-ceramic].

    Chen, Ji-hua; Li, Na; Ma, Xin-pei; Zhao, Ying-hua; Sun, Xiang; Li, Guang-xin

    2007-12-01

    To investigate the machinability of a novel dental mica glass-ceramic and analyze the effect of heat-treatment on its ductile machinable behavior. The drilling and turning experiment were used to measure the machinabilities of the control group (feldspar ceramic: Vita Mark II) and 7 experiment groups treated with different crystallization techniques. The microstructures were analyzed using scanning electron microscopy (SEM) and X-ray diffraction (XRD). The average drilling depths in 30 s of the experimental groups ranged from (0.5 +/- 0.1) mm to (7.1 +/- 0.8) mm. There were significant differences between the control [(0.8 +/- 0.1) mm] and the experimental groups (P machining at a high velocity and cut depth. The crystal portion of this group is only about 40%. This material has a satisfactory machinability. The mechanism could be attributed to a combination of the interlocked structure of mica crystals and the low viscosity of glassy phase.

  18. In vivo bone tissue response to a canasite glass-ceramic.

    da Rocha Barros, V M; Salata, L A; Sverzut, C E; Xavier, S P; van Noort, R; Johnson, A; Hatton, P V

    2002-07-01

    The aim of this study was to determine the biocompatibility and osteoconductive potential of a high-strength canasite glass ceramic. Glass-ceramic rods were produced using the lost-wax casting technique and implanted in the mid-shafts rabbit femurs. Implants were harvested at 4, 13 and 22 weeks and prepared for light and electron microscopy. Hydroxyapatite was used as a control material. Hydroxyapatite implants were surrounded by new mineralised bone tissue after 4 weeks of implantation. The amount of bone surrounding the implant increased slightly at 13 weeks. In contrast, canasite glass and glass ceramic implants were almost entirely surrounded by soft tissue during all the time periods. Close contact between bone and canasite glass-ceramic implant without the intervening fibrous tissue was observed in only a few regions. The canasite formulation evaluated was not osteoconductive and appeared to degrade in the biological environment. It was therefore concluded that the canasite formulation used was unsuitable for use as implant. Further work is required to improve the biocompatibility of these materials with bone tissue. It is possible that this could be achieved by reducing the solubility of the glass and glass ceramic.

  19. Glass-ceramic composition for hermetic seals

    Ballard, C.P. Jr.

    1979-01-01

    The invention relates to a glass-ceramic composition having a high fracture strength adaptable for hermetically sealing to chromium bearing iron or nickel base alloys at temperatures of between about 950 0 C to about 1100 0 C to form a hermetically sealed insulator body, comprising from about 55 to about 65 weight percent SiO 2 , from about 0 to about 5 weight percent Al 2 O 3 , from about 6 to about 11 weight % Li 2 O, from about 25 to about 32 weight percent BaO, from about 0.5 to about 1.0 weight percent CoO and from about 1.5 to about 3.5 weight percent P 2 O 5

  20. Glass-ceramic composition for hermetic seals

    Ballard, Jr., Clifford P.

    1979-01-01

    The invention relates to a glass-ceramic composition having a high fracture strength adaptable for hermetically sealing to chromium bearing iron or nickel base alloys at temperatures of between about 950.degree. C to about 1100.degree. C to form a hermetically sealed insulator body, comprising from about 55 to about 65 weight percent SiO.sub.2, from about 0 to about 5 weight percent Al.sub.2 O.sub.3, from about 6 to about 11 weight % Li.sub.2 O, from about 25 to about 32 weight percent BaO, from about 0.5 to about 1.0 weight percent CoO and from about 1.5 to about 3.5 weight percent P.sub.2 O.sub.5.

  1. Bioactive type glass-ceramics within incorporated aluminium

    Volzone, C.; Stabile, F.M.; Ortiga, J.

    2012-01-01

    Bioactive glass-ceramics are used as biomaterials for the reparation of bone tissue. They are prepared, generally, by bioglass of specific composition for each particular use. The aluminium addition in the formulation at very small quantities influences on the structural properties. Two glass-ceramics obtained by P 2 O 5 -Na 2 O-CaO-SiO 2 formulation within aluminium (0.5 % in Al 2 O 3 base) added through a reactive alumina and purified feldspar were analyzed. The results showed structural differences between both glass-ceramics. (author)

  2. Glass-Ceramic Material from the SiO{sub 2}-Al{sub 2}O{sub 3}-CaO System Using Sugar-Cane Bagasse Ash (SCBA)

    Teixeira, S R; Magalhaes, R S; Souza, A E; Santos, G T A; Silva, R A [Universidade Estadual Paulista - Unesp/FCT - Presidente Prudente, SP (Brazil); Romero, M; Ma Rincon, J, E-mail: rainho@fct.unesp.br [Instituto Eduardo Torroja de Ciencias de la Construccion - IETCC/CSIC, Madrid (Spain)

    2011-10-29

    Brazil is the world's largest producer of alcohol and sugar from sugarcane. Currently, sugarcane bagasse is burned in boilers to produce steam and electrical energy, producing a huge volume of ash. The major component of the ash is SiO{sub 2}, and among the minor components there are some mineralizing agents or fluxing. Published works have shown the potential of transforming silicate-based residues into glass-ceramic products of great utility. This work reports the research results of SCBA use to produce glass-ceramics with wollastonite, rankinite and gehlenite as the major phases. These silicates have important applications as building industry materials, principally wollastonite, due to their special properties: high resistance to weathering, zero water absorption, and hardness among others. The glasses (frits) were prepared mixing ash, calcium carbonate and sodium or potassium carbonates as flux agents, in different concentrations. X-ray fluorescence was used to determine the chemical composition of the glasses and their crystallization was assessed by using thermal analysis (DTA/DSC/TGA) and X-ray diffraction. The crystallization kinetics was evaluated using the Kissinger method, giving activation energies ranging from 200 to 600 kJ/mol.

  3. Emerging Ceramic-based Materials for Dentistry

    Denry, I.; Kelly, J.R.

    2014-01-01

    Our goal is to give an overview of a selection of emerging ceramics and issues for dental or biomedical applications, with emphasis on specific challenges associated with full-contour zirconia ceramics, and a brief synopsis on new machinable glass-ceramics and ceramic-based interpenetrating phase composites. Selected fabrication techniques relevant to dental or biomedical applications such as microwave sintering, spark plasma sintering, and additive manufacturing are also reviewed. Where appropriate, the authors have added their opinions and guidance. PMID:25274751

  4. Method for Waterproofing Ceramic Materials

    Cagliostro, Domenick E. (Inventor); Hsu, Ming-Ta S. (Inventor)

    1998-01-01

    Hygroscopic ceramic materials which are difficult to waterproof with a silane, substituted silane or silazane waterproofing agent, such as an alumina containing fibrous, flexible and porous, fibrous ceramic insulation used on a reentry space vehicle, are rendered easy to waterproof if the interior porous surface of the ceramic is first coated with a thin coating of silica. The silica coating is achieved by coating the interior surface of the ceramic with a silica precursor converting the precursor to silica either in-situ or by oxidative pyrolysis and then applying the waterproofing agent to the silica coated ceramic. The silica precursor comprises almost any suitable silicon containing material such as a silane, silicone, siloxane, silazane and the like applied by solution, vapor deposition and the like. If the waterproofing is removed by e.g., burning, the silica remains and the ceramic is easily rewaterproofed. An alumina containing TABI insulation which absorbs more that five times its weight of water, absorbs less than 10 wt. % water after being waterproofed according to the method of the invention.

  5. Evaluation of machinability and flexural strength of a novel dental machinable glass-ceramic.

    Qin, Feng; Zheng, Shucan; Luo, Zufeng; Li, Yong; Guo, Ling; Zhao, Yunfeng; Fu, Qiang

    2009-10-01

    To evaluate the machinability and flexural strength of a novel dental machinable glass-ceramic (named PMC), and to compare the machinability property with that of Vita Mark II and human enamel. The raw batch materials were selected and mixed. Four groups of novel glass-ceramics were formed at different nucleation temperatures, and were assigned to Group 1, Group 2, Group 3 and Group 4. The machinability of the four groups of novel glass-ceramics, Vita Mark II ceramic and freshly extracted human premolars were compared by means of drilling depth measurement. A three-point bending test was used to measure the flexural strength of the novel glass-ceramics. The crystalline phases of the group with the best machinability were identified by X-ray diffraction. In terms of the drilling depth, Group 2 of the novel glass-ceramics proves to have the largest drilling depth. There was no statistical difference among Group 1, Group 4 and the natural teeth. The drilling depth of Vita MK II was statistically less than that of Group 1, Group 4 and the natural teeth. Group 3 had the least drilling depth. In respect of the flexural strength, Group 2 exhibited the maximum flexural strength; Group 1 was statistically weaker than Group 2; there was no statistical difference between Group 3 and Group 4, and they were the weakest materials. XRD of Group 2 ceramic showed that a new type of dental machinable glass-ceramic containing calcium-mica had been developed by the present study and was named PMC. PMC is promising for application as a dental machinable ceramic due to its good machinability and relatively high strength.

  6. Magnetic properties of the ferrimagnetic glass-ceramics for hyperthermia

    Bretcanu, O.; Verne, E.; Coeisson, M.; Tiberto, P.; Allia, P.

    2006-01-01

    Magnetic materials play a key-role in magnetic induction hyperthermia for the treatment of cancer. In this paper, we analyse the magnetic properties of ferrimagnetic glass-ceramics with the composition in the system SiO 2 -Na 2 O-CaO-P 2 O 5 -FeO-Fe 2 O 3 , as a function of the melting temperature. These materials were obtained by melting of commercial reagents in the temperature range of 1400-1550 o C. Room-temperature magnetic measurements were performed by means of a vibrating sample magnetometer at room temperature. The power loss was determined from calorimetric measurements, using a magnetic induction furnace. The highest power loss (61 W/g) has been obtained for samples melted at 1500 o C. The heat generation of the ferrimagnetic glass-ceramics prepared by two different synthesis methods (traditional melting and coprecipitation-derived) will be compared. These materials are expected to be useful in the localised treatment of cancer

  7. Melting of glass by direct induction heating in ceramic container

    Ooka, Kazuo; Oguino, Naohiko; Kawanishi, Nobuo

    1981-01-01

    The direct induction melting, a process of glass melting by high frequency induction heating, was found to be the effective way of glass melting, especially desirable for the vitrification of High Level Radioactive Liquid Wastes, HLLW. A test instrument in the cold level was equipped with a high frequency oscillator of 65 kW anode output. The direct induction melting was successfully performed with two frequencies of 400 kHz and 3 MHz, and the operation conditions were determined in the five cases of ceramic pot inner diameters of 170, 200, 230, 280 and 325 mm. The start-up of the direct induction melting was carried out by induction heating using a silicon carbide rod which was inserted in raw material powders in the ceramic pot. After the raw material powders partly melted down and the direct induction in the melt began, the start-up rod was removed out of the melt. At this stage, the direct induction melting was successively performed by adjusting the output power of the oscillator and by supplying the raw materials. It was also found that the capacity of this type of melting was reasonably large and the operation could be remotely controlled. Both applied frequencies of 400 kHz and 3 MHz was found to be successful with this melting system, especially in the case of lower frequency which proved more preferable for the in-cell work. (author)

  8. Mechanical performance of a biocompatible biocide soda-lime glass-ceramic.

    López-Esteban, S; Bartolomé, J F; Dí Az, L A; Esteban-Tejeda, L; Prado, C; López-Piriz, R; Torrecillas, R; Moya, J S

    2014-06-01

    A biocompatible soda-lime glass-ceramic in the SiO2-Na2O-Al2O3-CaO-B2O3 system containing combeite and nepheline as crystalline phases, has been obtained at 750°C by two different routes: (i) pressureless sintering and (ii) Spark Plasma Sintering. The SPS glass-ceramic showed a bending strength, Weibull modulus, and toughness similar values to the cortical human bone. This material had a fatigue limit slightly superior to cortical bone and at least two times higher than commercial dental glass-ceramics and dentine. The in vitro studies indicate that soda-lime glass-ceramic is fully biocompatible. The in vivo studies in beagle jaws showed that implanted SPS rods presented no inflammatory changes in soft tissues surrounding implants in any of the 10 different cases after four months implantation. The radiological analysis indicates no signs of osseointegration lack around implants. Moreover, the biocide activity of SPS glass-ceramic versus Escherichia coli, was found to be >4log indicating that it prevents implant infections. Because of this, the SPS new glass-ceramic is particularly promising for dental applications (inlay, crowns, etc). Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Microstructure and spectroscopic investigations of calcium zinc bismuth phosphate glass ceramics doped with manganese ions

    Suneel Kumar, A.; Sambasiva Rao, M. V.; Chinna Ram, G.; Krishna Rao, D.

    2018-01-01

    Multi-component 10CaF2-20ZnO-(15 - x)Bi2O3-55P2O5:xMnO (0 ≤ x ≤ 2.5) glass ceramics were synthesised by melt quenching technique and heat treatment. The prepared glass ceramics were characterised by XRD, DTA, EDS and SEM. Spectroscopic studies such as optical absorption, EPR, FTIR and Raman were also carried out on these glass ceramics. The XRD and SEM studies have indicated that ceramic samples contain well defined and randomly distributed grains of different crystalline phases. The observed increase of enthalpy from DTA patterns up to 1 mol% of MnO indicates that the crystallisation starts initially from the surface of the material then gradually it is extended to the volume of the material and this influence is meagre at higher concentrations of MnO. The absorption spectra of manganese doped glass ceramics have exhibited two types of conventional bands; one due to Mn2+ ions and other due to Mn3+ ions. The EPR spectra of MnO doped glass ceramics showed a resonance signal around g2 = 2.023 with a six line hyperfine structure and another signal at about g1 = 4.314. The relative intensity and half-width of these two signals are observed to increase with the increase in the concentration of manganese ions up to 1 mol% beyond this concentration it is found to decrease. Such observation indicates the conversion of part of Mn2+ ions into Mn3+ ions in the glass ceramic matrix. The observed increase in the intensity of symmetrical structural units at the expense of asymmetrical structural units from the FTIR and Raman spectra at higher concentration of MnO indicating that Mn2+ ions occupy the network forming positions in the glass ceramic structure.

  10. Transparent ceramic lamp envelope materials

    Wei, G C [OSRAM SYLVANIA, 71 Cherry Hill Drive, Beverly, MA 01915 (United States)

    2005-09-07

    Transparent ceramic materials with optical qualities comparable to single crystals of similar compositions have been developed in recent years, as a result of the improved understanding of powder-processing-fabrication- sintering-property inter-relationships. These high-temperature materials with a range of thermal and mechanical properties are candidate envelopes for focused-beam, short-arc lamps containing various fills operating at temperatures higher than quartz. This paper reviews the composition, structure and properties of transparent ceramic lamp envelope materials including sapphire, small-grained polycrystalline alumina, aluminium oxynitride, yttrium aluminate garnet, magnesium aluminate spinel and yttria-lanthana. A satisfactory thermal shock resistance is required for the ceramic tube to withstand the rapid heating and cooling cycles encountered in lamps. Thermophysical properties, along with the geometry, size and thickness of a transparent ceramic tube, are important parameters in the assessment of its resistance to fracture arising from thermal stresses in lamps during service. The corrosive nature of lamp-fill liquid and vapour at high temperatures requires that all lamp components be carefully chosen to meet the target life. The wide range of new transparent ceramics represents flexibility in pushing the limit of envelope materials for improved beamer lamps.

  11. Production of highly porous glass-ceramics from metallurgical slag, fly ash and waste glass

    Mangutova Bianka V.

    2004-01-01

    Full Text Available Glass-ceramics composites were produced based on fly-ash obtained from coal power stations, metallurgical slag from ferronickel industry and waste glass from TV monitors, windows and flasks. Using 50% waste flask glass in combination with fly ash and 20% waste glass from TV screens in combination with slag, E-modulus and bending strength values of the designed systems are increased (system based on fly ash: E-modulus from 6 to 29 GPa, and bending strength from 9 to 75 MPa. The polyurethane foam was used as a pore creator which gave the material porosity of 70(5% (fly ash-glass composite and a porosity of 65( 5% (slag-glass composite. E-modulus values of the designed porous systems were 3.5(1.2 GPa and 8.1(3 GPa, while the bending strength values were 6.0(2 MPa and 13.2(3.5 MPa, respectively. These materials could be used for the production of tiles, wall bricks, as well as for the construction of air diffusers for waste water aeration.

  12. Flight-vehicle materials, structures, and dynamics - Assessment and future directions. Vol. 3 - Ceramics and ceramic-matrix composites

    Levine, Stanley R. (Editor)

    1992-01-01

    The present volume discusses ceramics and ceramic-matrix composites in prospective aerospace systems, monolithic ceramics, transformation-toughened and whisker-reinforced ceramic composites, glass-ceramic matrix composites, reaction-bonded Si3N4 and SiC composites, and chemical vapor-infiltrated composites. Also discussed are the sol-gel-processing of ceramic composites, the fabrication and properties of fiber-reinforced ceramic composites with directed metal oxidation, the fracture behavior of ceramic-matrix composites (CMCs), the fatigue of fiber-reinforced CMCs, creep and rupture of CMCs, structural design methodologies for ceramic-based materials systems, the joining of ceramics and CMCs, and carbon-carbon composites.

  13. Barium halide nanocrystals in fluorozirconate based glass ceramics for scintillation application

    Selling, J.

    2007-01-01

    Europium (Eu)-activated barium halide nanocrystals in fluorozirconate based glass ceramics represent a promising class of Xray scintillators. The scintillation in these glass ceramics is mainly caused by the emission of divalent Eu incorporated in hexagonal BaCl 2 nanocrystals which are formed in the glass matrix upon appropriate annealing. Experiments with cerium (Ce)-activated fluorozironate glass ceramics showed that Ce is an interesting alternative. In order to get a better understanding of the scintillation mechanism in Eu- or Ce-activated barium halide nanocrystals, an investigation of the processes in the corresponding bulk material is essential. The objective of this thesis is the investigation of undoped, Eu-, and Ce-doped barium halides by X-ray excited luminescence (XL), pulse height, and scintillation decay spectra. That will help to figure out which of these crystals has the most promising scintillation properties and would be the best nanoparticles for the glass ceramics. Furthermore, alternative dopants like samarium (Sm) and manganese (Mn) were also investigated. Besides the above-mentioned optical investigation electron paramagnetic resonance (EPR) and Moessbauer measurements were carried out in order to complete the picture of Eu-doped barium halides. The EPR data of Eu-doped BaI 2 is anticipated to yield more information about the crystal field and crystal structure that will help to understand the charge carrier process during the scintillation process. The main focus of the Moessbauer investigations was set on the Eu-doped fluorochlorozirconate glass ceramics. The results of this investigation should help to improve the glass ceramics. The Eu 2+ /Eu 3+ ratio in the glass ceramics should be determined and optimize favor of the Eu 2+ . We also want to distinguish between Eu 2+ in the glass matrix and Eu 2+ in the nanocrystals. For a better understanding of Moessbauer spectroscopy on Eu also measurements on Eu in a CaF 2 host lattice were carried

  14. Wear characteristics of polished and glazed lithium disilicate ceramics opposed to three ceramic materials.

    Saiki, Osamu; Koizumi, Hiroyasu; Akazawa, Nobutaka; Kodaira, Akihisa; Okamura, Kentaro; Matsumura, Hideo

    2016-01-01

    This study compared the wear characteristics of a heat-pressed lithium disilicate ceramic material opposed to feldspathic porcelain, a lithium disilicate glass ceramic, and zirconia materials. Ceramic plate specimens were prepared from feldspathic porcelain (EX-3 nA1B), lithium disilicate glass ceramics (e.max CAD MO1/C14), and zirconia (Katana KT 10) and then ground or polished. Rounded rod specimens were fabricated from heat-pressed lithium disilicate glass ceramic (e.max press LT A3) and then glazed or polished. A sliding wear testing apparatus was used for wear testing. Wear of glazed rods was greater than that of polished rods when they were abraded with ground zirconia, ground porcelain, polished porcelain, or polished lithium disilicate ceramics. For both glazed and polished rods, wear was greater when the rods were abraded with ground plates. The findings indicate that application of a polished surface rather than a glazed surface is recommended for single restorations made of heat-pressed lithium disilicate material. In addition, care must be taken when polishing opposing materials, especially those used in occlusal contact areas. (J Oral Sci 58, 117-123, 2016).

  15. Proof test diagrams for Zerodur glass-ceramic

    Tucker, D. S.

    1991-01-01

    Proof test diagrams for Zerodur glass-ceramics are calculated from available fracture mechanics data. It is shown that the environment has a large effect on minimum time-to-failure as predicted by proof test diagrams.

  16. Cladding glass ceramic for use in high powered lasers

    Marker, Alexander J.; Campbell, John H.

    1998-01-01

    A Cu-doped/Fe-doped low expansion glass ceramic composition comprising in Wt. %: SiO{sub 2} 50--65; Al{sub 2}O{sub 3} 18--27; P{sub 2}O{sub 5} 0--10; Li{sub 2}O 2--6; Na{sub 2}O 0--2; K{sub 2}O 0--2; B{sub 2}O{sub 3} 0--1; MgO 0--4; ZnO 0--5; CaO 0--4; BaO 0--5; TiO{sub 2} 1--3; ZrO{sub 3} 1--3; As{sub 2}O{sub 3} 0--1.5; Sb{sub 2}O{sub 3} 0--1.5; CuO 0--3; and Fe{sub 2}O{sub 3} 0--1 wherein the total amount of SiO{sub 2}, Al{sub 2}O{sub 3} and P{sub 2}O{sub 5} is 80--89 wt. %, and said glass ceramic contains as a dopant 0.1--3 wt. % CuO, 0.1--1 wt. % Fe{sub 2}O{sub 3} or a combined CuO+Fe{sub 2}O{sub 3} amount of 0.1--4 wt. %. The glass ceramic composition is suitable for use as a cladding material for solid laser energy storage mediums as well as for use in beam attenuators for measuring laser energy level and beam blocks or beam dumps used for absorbing excess or unused laser energy.

  17. Glass material oxidation and dissolution system: Converting miscellaneous fissile materials to glass

    Forsberg, C.W.; Ferrada, J.J.

    1996-01-01

    The cold war and the development of nuclear energy have resulted in significant inventories of miscellaneous fissile materials (MFMs). MFMs include (1) plutonium scrap and residue, (2) miscellaneous spent nuclear fuel (SNF), (3) certain hot cell wastes, and (4) many one-of-a-kind materials. Major concerns associated with the long-term management of these materials include: safeguards and nonproliferation issues; health, environment, and safety concerns. waste management requirements; and high storage costs. These issues can be addressed by converting the MFMs to glass for secure, long-term storage or repository disposal; however, conventional glass-making processes require oxide-like feed materials. Converting MFMs to oxide-like materials with subsequent vitrification is a complex and expensive process. A new vitrification process has been invented, the Glass Material Oxidation and Dissolution System (GMODS), which directly converts metals, ceramics, and amorphous solids to glass; oxidizes organics with the residue converted to glass; and converts chlorides to borosilicate glass and a secondary sodium chloride (NaCl) stream. Laboratory work has demonstrated the conversion of cerium (a plutonium surrogate), uranium, Zircaloy, stainless steel, multiple oxides, and other materials to glass. However, significant work is required to develop GMODS further for applications at an industrial scale. If implemented, GMODS will provide a new approach to manage these materials

  18. Nanocrystalline ceramic materials

    Siegel, Richard W.; Nieman, G. William; Weertman, Julia R.

    1994-01-01

    A method for preparing a treated nanocrystalline metallic material. The method of preparation includes providing a starting nanocrystalline metallic material with a grain size less than about 35 nm, compacting the starting nanocrystalline metallic material in an inert atmosphere and annealing the compacted metallic material at a temperature less than about one-half the melting point of the metallic material.

  19. Electronic Conductivity of Vanadium-Tellurite Glass-Ceramics

    Kjeldsen, Jonas; Yue, Yuanzheng; Bragatto, Caio B.

    2013-01-01

    In this paper, we investigate the electronic conductivity of 2TeO2-V2O5 glass-ceramics with crystallinity ranging from 0 to 100 wt.%, i.e., from entirely amorphous to completely crystalline. The glass is prepared by the melt quenching technique, and the crystal is prepared by subsequent heat...... spectroscopy. We find similar activation energies for both glass and crystal, implying that they have similar conduction mechanisms, i.e., thermally activated hopping. The electronic conductivity of 2TeO2-V2O5 glass is about one order of magnitude higher than that of the corresponding crystal......, and a percolation phenomenon occurs at a glass fraction of 61 wt.%, increasing from a lower conductivity in the crystal to a higher conductivity in the glass. We explain the behavior of electronic conduction in the 2TeO2-V2O5 glass-ceramics by considering constriction effects between particles as well...

  20. [In vitro drug release behavior of carrier made of porous glass ceramics].

    Wang, De-ping; Huang, Wen-hai; Zhou, Nai

    2002-09-01

    To conduct the in vitro test on drug release of rifampin encapsulated in a carrier made of porous phosphate glass ceramics and to analyze main factors which affect the drug release rate. A certain quantitative of rifampin was sealed in a hollow cylindrical capsule which consisted of chopped calcium phosphate crystal fiber obtained from glass crystallization. The rifampin concentration was measured in the simulated physiological solution in which the capsule soaked. Rifampin could be released in a constant rate from the porous glass ceramic carrier in a long time. The release rate was dependent on the size of crystal fiber and the wall thickness of the capsule. This kind of calcium phosphate glass ceramics can be a candidate of the carrier materials used as long term drug therapy after osteotomy surgery.

  1. Barium boron silicate glass-ceramic for use as sealant in planar SOFC

    Silva, M.J.; Castanho, S.R.H. Mello; Reis, S.T.

    2012-01-01

    Glass-ceramic seals play an important role in the performance of the solid oxide fuel cell (SOFC). In this work glass-ceramic seals are discussed from the point of view of the thermal behavior of the glass and the electrochemical parameters obtained from polarization curves such as corrosion current densities (i corr ), and corrosion potential (E corr ). A seal material must have a combination of thermal-mechanical and electrochemical properties in order to seal cell components and stacks and prevent side reactions. It must be stable in oxidizing and reducing atmospheres and withstand thermal cycles between room temperature and the cell operating temperature (800 to 900°C). Glass-ceramics in the system BaO- B 2 O 3 -Al 2 O 3 -SiO 2 were investigated and compared from the point of view of sealing ability. Dilatometric analysis, thermal stability against crystallization, microstructure and electrochemical durability are discussed. (author)

  2. Effect of binder burnout on the sealing performance of glass ceramics for solid oxide fuel cells

    Ertugrul, Tugrul Y.; Celik, Selahattin; Mat, Mahmut D.

    2013-11-01

    The glass ceramics composite sealants are among few materials suitable for the solid oxide fuel cells (SOFC) due to their high operating temperatures (600 °C-850 °C). The glass ceramics chemically bond to both the metallic interconnector and the ceramic electrolyte and provide a gas tight connection. A careful and several stages manufacturing procedure is required to obtain a gas tight sealing. In this study, effects of binder burnout process on the sealing performance are investigated employing commercially available glass ceramic powders. The glass ceramic laminates are produced by mixing glass ceramic powders with the organic binders and employing a tape casting method. The laminates are sandwiched between the metallic interconnectors of an SOFC cell. The burnout and subsequent sealing quality are analyzed by measuring leakage rate and final macrostructure of sealing region. The effects of heating rate, dead weight load, solid loading, carrier gas and their flow rates are investigated. It is found that sealing quality is affected from all investigated parameters. While a slower heating rate is required for a better burnout, the mass flow rate of sweep gas must be adequate for removal of the burned gas. The leakage rate is reduced to 0.1 ml min-1 with 2 °C min-1 + 1 °C min-1 heating rate, 86.25% solid loading, 200 N dead weight load and 500 ml min-1 sweep gas flow rate.

  3. Diopside-Fluorapatite-Wollastonite Based Bioactive Glasses and Glass-ceramics =

    Kansal, Ishu

    Bioactive glasses and glass-ceramics are a class of biomaterials which elicit special response on their surface when in contact with biological fluids, leading to strong bonding to living tissue. This particular trait along with good sintering ability and high mechanical strength make them ideal materials for scaffold fabrication. The work presented in this thesis is directed towards understanding the composition-structure-property relationships in potentially bioactive glasses designed in CaO-MgO-P2O5-SiO2-F system, in some cases with added Na2O. The main emphasis has been on unearthing the influence of glass composition on molecular structure, sintering ability and bioactivity of phosphosilicate glasses. The parent glass compositions have been designed in the primary crystallization field of the pseudo-ternary system of diopside (CaO•MgO•2SiO2) - fluorapatite (9CaO•3P2O5•CaF2) - wollastonite (CaO•SiO2), followed by studying the impact of compositional variations on the structure-property relationships and sintering ability of these glasses. All the glasses investigated in this work have been synthesized via melt-quenching route and have been characterized for their molecular structure, sintering ability, chemical degradation and bioactivity using wide array of experimental tools and techniques. It has been shown that in all investigated glass compositions the silicate network was mainly dominated by Q2 units while phosphate in all the glasses was found to be coordinated in orthophosphate environment. The glass compositions designed in alkali-free region of diopside - fluorapatite system demonstrated excellent sintering ability and good bioactivity in order to qualify them as potential materials for scaffold fabrication while alkali-rich bioactive glasses not only hinder the densification during sintering but also induce cytotoxicity in vitro, thus, are not ideal candidates for in vitro tissue engineering. One of our bioglass compositions with low sodium

  4. Flash sintering of ceramic materials

    Dancer, C. E. J.

    2016-10-01

    During flash sintering, ceramic materials can sinter to high density in a matter of seconds while subjected to electric field and elevated temperature. This process, which occurs at lower furnace temperatures and in shorter times than both conventional ceramic sintering and field-assisted methods such as spark plasma sintering, has the potential to radically reduce the power consumption required for the densification of ceramic materials. This paper reviews the experimental work on flash sintering methods carried out to date, and compares the properties of the materials obtained to those produced by conventional sintering. The flash sintering process is described for oxides of zirconium, yttrium, aluminium, tin, zinc, and titanium; silicon and boron carbide, zirconium diboride, materials for solid oxide fuel applications, ferroelectric materials, and composite materials. While experimental observations have been made on a wide range of materials, understanding of the underlying mechanisms responsible for the onset and latter stages of flash sintering is still elusive. Elements of the proposed theories to explain the observed behaviour include extensive Joule heating throughout the material causing thermal runaway, arrested by the current limitation in the power supply, and the formation of defect avalanches which rapidly and dramatically increase the sample conductivity. Undoubtedly, the flash sintering process is affected by the electric field strength, furnace temperature and current density limit, but also by microstructural features such as the presence of second phase particles or dopants and the particle size in the starting material. While further experimental work and modelling is still required to attain a full understanding capable of predicting the success of the flash sintering process in different materials, the technique non-etheless holds great potential for exceptional control of the ceramic sintering process.

  5. Bone bonding ability of some borate bio-glasses and their corresponding glass-ceramic derivatives

    Fatma H. Margha

    2012-12-01

    Full Text Available Ternary borate glasses from the system Na2O·CaO·B2O3 together with soda-lime-borate samples containing 5 wt.% of MgO, Al2O3, SiO2 or P2O5 were prepared. The obtained glasses were converted to their glass-ceramic derivatives by controlled heat treatment. X-ray diffraction was employed to investigate the separated crystalline phases in glass-ceramics after heat treatment of the glassy samples. The glasses and corresponding glass-ceramics after immersion in water or diluted phosphate solution for extended times were characterized by the grain method (adopted by several authors and recommended by ASTM and Fourier-transform infrared spectra to justify the formation of hydroxyapatite as an indication of the bone bonding ability. The influence of glass composition on bioactivity potential was discussed too.

  6. Rare earth ion controlled crystallization of mica glass-ceramics

    Garai, Mrinmoy; Karmakar, Basudeb, E-mail: basudebk@cgcri.res.in

    2016-09-05

    In understanding the effects of rare earth ions to control the crystallization and microstructure of alkaline boroaluminosilicate system, the CeO{sub 2}, Nd{sub 2}O{sub 3}, Sm{sub 2}O{sub 3} and Gd{sub 2}O{sub 3} doped K{sub 2}O−MgO−B{sub 2}O{sub 3}−Al{sub 2}O{sub 3}−SiO{sub 2}−F glasses were synthesized by melt-quenching at 1550 °C. Higher density (2.82–3.06 g cm{sup −3}) and thermal stability (glass phase) is experiential on addition of rare earth content, which also affects in increasing the glass transition temperature (T{sub g}) and crystallization temperature (T{sub c}). Decrease of thermal expansion in glasses with rare earth ion content is maintained by the stabilization of glass matrix owing to their large cationic field strength. A significant change in the non-isothermal DSC thermogram observed at 750–1050 °C is attributed to fluorophlogopite crystallization. Opaque glass-ceramics were prepared from such glasses by single step heat-treatment at 1050 °C; and the predominant crystalline phases are identified as fluorophlogopite mica, KMg{sub 3}(AlSi{sub 3}O{sub 10})F{sub 2} by XRD and EDX analysis. The compact glass-ceramic microstructure by the agglomeration of fluorophlogopite mica crystallites (crystal size ∼ 100–500 nm, FESEM) is achieved in attendance of rare earth ion; and such microstructure controlled the variation of density, thermal expansion and microhardness value. Higher thermal expansion (11.11–14.08 × 10{sup −6}/K at 50–800 °C and 50–900 °C) of such glass-ceramics approve that these rare earth containing glasses can be useful for high temperature vacuum sealing application with metal or solid electrolyte. The increase of Vickers microhardness (5.27–5.61 GPa) in attendance of rare earth ions is attributed to the compact crystallinity of fluorophlogopite mica glass-ceramic microstructure. - Highlights: • Synthesis of rare earth oxide doped alkaline boroaluminosilicate glasses. • Development of opaque

  7. Rare earth ion controlled crystallization of mica glass-ceramics

    Garai, Mrinmoy; Karmakar, Basudeb

    2016-01-01

    In understanding the effects of rare earth ions to control the crystallization and microstructure of alkaline boroaluminosilicate system, the CeO_2, Nd_2O_3, Sm_2O_3 and Gd_2O_3 doped K_2O−MgO−B_2O_3−Al_2O_3−SiO_2−F glasses were synthesized by melt-quenching at 1550 °C. Higher density (2.82–3.06 g cm"−"3) and thermal stability (glass phase) is experiential on addition of rare earth content, which also affects in increasing the glass transition temperature (T_g) and crystallization temperature (T_c). Decrease of thermal expansion in glasses with rare earth ion content is maintained by the stabilization of glass matrix owing to their large cationic field strength. A significant change in the non-isothermal DSC thermogram observed at 750–1050 °C is attributed to fluorophlogopite crystallization. Opaque glass-ceramics were prepared from such glasses by single step heat-treatment at 1050 °C; and the predominant crystalline phases are identified as fluorophlogopite mica, KMg_3(AlSi_3O_1_0)F_2 by XRD and EDX analysis. The compact glass-ceramic microstructure by the agglomeration of fluorophlogopite mica crystallites (crystal size ∼ 100–500 nm, FESEM) is achieved in attendance of rare earth ion; and such microstructure controlled the variation of density, thermal expansion and microhardness value. Higher thermal expansion (11.11–14.08 × 10"−"6/K at 50–800 °C and 50–900 °C) of such glass-ceramics approve that these rare earth containing glasses can be useful for high temperature vacuum sealing application with metal or solid electrolyte. The increase of Vickers microhardness (5.27–5.61 GPa) in attendance of rare earth ions is attributed to the compact crystallinity of fluorophlogopite mica glass-ceramic microstructure. - Highlights: • Synthesis of rare earth oxide doped alkaline boroaluminosilicate glasses. • Development of opaque fluorophlogopite mica glass-ceramics by single-step heat treatment. • Nanocrystalline glass-ceramic

  8. Microstructural analysis of clayey ceramic incorporated with fluorescent lamp glass

    Morais, A.S.C.; Caldas, T.C.C.; Pereira, P.S.; Monteiro, S.N.; Vieira, C.M.F.

    2011-01-01

    This study aims to evaluate the effect of the incorporation of glass powder fluorescent lamp, from a decontamination process, in the microstructure of clayey ceramic. Formulations were prepared with incorporation of the waste in amounts of up to 10 wt.% into the clayey body. Specimens were prepared by uniaxial mold-press at 20 MPa and then fired at 850 and 1050°C. After firing, the microstructure of the ceramics was evaluated by optical microscopy (OM), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The results showed that the incorporation of glass powder into the clayey body changes the microstructure of the ceramics. (author)

  9. Natural Radioactivity in Ceramic Materials

    Abu Khadra, S.A.; Kamel, N.H.

    2005-01-01

    Ceramics are one of the most important types of the industrial building materials. The raw materials of the ceramic are made of a mixture of clay, feldspar, silica, talc kaolin minerals together with zirconium silicates (ZrSiO4).The ceramic raw materials and the final products contain naturally occurring radionuclide mainly U-238 and, Th-232 series, and the radioactive isotope of potassium K-40. Six raw ceramic samples were obtained from the Aracemco Company at Egypt together with a floor tile sample (final product) for measuring radioactive concentration levels., The activity of the naturally U-238, Th-232, and K-40 were determined as (Bq/kg) using gamma spectroscopy (Hyperactive pure germanium detector). Concentration of U and Th were determined in (ppm) using spectrophotometer technique by Arsenazo 111 and Piridy l-Azo -Resorcinol (PAR) indicators. Sequential extraction tests were carried out in order to determine the quantity of the radionuclide associated with various fractions as exchangeable, carbonate, acid soluble and in the residue. The results evaluated were compared to the associated activity indices (AI) that were defined by former USSR and West Germany

  10. [An experimental study of the wear behavior of dental feldspathic glass-ceramic and lithium disilicate glass-ceramic].

    Tian, Bei-min; Zhang, Shao-feng; He, Lin; Guo, Jia-wen; Yu, Jin-tao; Wu, Xiao-hong

    2013-11-01

    To investigate the tribology characteristics of two ceramic materials in vitro:feldspathic glass-ceramic (veneer porcelain) and lithium disilicate glass-ceramic (heat-pressed ceramic), and to evaluate the wear resistance of different ceramic materials from the dynamic chewing perspective. Wear tests were performed in simulated oral environment with stainless steel ball antagonists (r = 3 mm), veneer porcelain (CERAMCO 3) and heat-pressed ceramic (IPS e.max Press HT type) in the chewing simulator. The tribological tests were carried out under artificial saliva lubrication condition in room temperature with a vertical load of 10 N for 1.2×10(6) cycles (f = 1.5 Hz, uniform circular motion, revolving speed = 90 r/min, radius = 0.5 mm). The wear volumes were measured using three-dimensional profiling, and surface microscopic morphology were observed using scanning electron microscopy at time point of 200 000, 400 000, 600 000, 800 000, 1 000 000, and 1 200 000 cycles. In a simulated oral environment, the wear rates of veneer porcelain were (0.001 20 ± 0.00 018) , (0.000 10 ± 0.000 03) , (0.000 50 ± 0.000 05), (0.000 10 ± 0.000 02) , (0.004 10 ± 0.000 38) , and (0.019 00 ± 0.003 53) (×10(-4) mm(3)/cycles) at 200 000, 400 000, 600 000, 800 000, 1 000 000, 1 200 000 cycles. The wear rates of heat-pressed ceramic were (0.139 50 ± 0.030 94), (0.124 40 ± 0.031 20), (0.054 80 ± 0.005 38), (0.038 80 ± 0.006 10), (0.011 10 ± 0.003 75), (0.198 90 ± 0.045 80) (×10(-4) mm(3)/cycles) at 200 000, 400 000, 600 000, 800 000, 1 000 000, 1 200 000 cycles. Three stages were observed in the wear loss process of the two materials: running-in stage, steady wear stage and severe wear stage. In running-in and steady wear stage, the shallow wear tracks of veneer porcelain were produced by the fatigue effect.While in severe wear stage, the wear tracks turned into ploughing. In running-in stage, the surface of heat-pressed ceramic was characterized by dense and shallow ploughing

  11. Dynamic fatigue testing of Zerodur glass-ceramic

    Tucker, Dennis S.

    1988-01-01

    The inherent brittleness of glass invariably leads to a large variability in strength data and a time dependence in strength. Leading rate plays a large role in strength values. Glass is found to be weaker when supporting loads over long periods of time as compared to glass which undergoes rapid leading. These properties complicate the structural design allowables for the utilization of glass components in an application such as Advanced X-ray Astrophysics Facility (AXAF). The test methodology to obtain parameters which can be used to predict the reliability and life time of Zerodur glass-ceramic which is to be used for the mirrors in the AXAF is described.

  12. Glasses and ceramics for immobilisation of radioactive wastes for disposal

    Johnson, K.D.B.; Marples, J.A.C.

    1979-05-01

    The U.K. Research Programme on Radioactive Waste Management includes the development of processes for the conversion of high level liquid reprocessing wastes from thermal and fast reactors to borosilicate glasses. The properties of these glasses and their behaviour under storage and disposal conditions have been examined. Methods for immobilising activity from other wastes by conversion to glass or ceramic forms is described. The U.K. philosophy of final solutions to waste management and disposal is presented. (author)

  13. Ceramic cutting tools materials, development and performance

    Whitney, E Dow

    1994-01-01

    Interest in ceramics as a high speed cutting tool material is based primarily on favorable material properties. As a class of materials, ceramics possess high melting points, excellent hardness and good wear resistance. Unlike most metals, hardness levels in ceramics generally remain high at elevated temperatures which means that cutting tip integrity is relatively unaffected at high cutting speeds. Ceramics are also chemically inert against most workmetals.

  14. Immobilization of INEL low-level radioactive wastes in ceramic containment materials

    Seymour, W.C.; Kelsey, P.V.

    1978-11-01

    INEL low-level radioactive wastes have an overall chemical composition that lends itself to self-containment in a ceramic-based material. Fewer chemical additives would be needed to process the wastes than to process high-level wastes or use a mixture containment method. The resulting forms of waste material could include a basalt-type glass or glass ceramic and a ceramic-type brick. Expected leach resistance is discussed in relationshp to data found in the literature for these materials and appears encouraging. An overview of possible processing steps for the ceramic materials is presented

  15. Glass-Ceramic Waste Forms for Uranium and Plutonium Residues Wastes - 13164

    Stewart, Martin W.A.; Moricca, Sam A.; Zhang, Yingjie; Day, R. Arthur; Begg, Bruce D.; Scales, Charlie R.; Maddrell, Ewan R.; Hobbs, Jeff

    2013-01-01

    A program of work has been undertaken to treat plutonium-residues wastes at Sellafield. These have arisen from past fuel development work and are highly variable in both physical and chemical composition. The principal radiological elements present are U and Pu, with small amounts of Th. The waste packages contain Pu in amounts that are too low to be economically recycled as fuel and too high to be disposed of as lower level Pu contaminated material. NNL and ANSTO have developed full-ceramic and glass-ceramic waste forms in which hot-isostatic pressing is used as the consolidation step to safely immobilize the waste into a form suitable for long-term disposition. We discuss development work on the glass-ceramic developed for impure waste streams, in particular the effect of variations in the waste feed chemistry glass-ceramic. The waste chemistry was categorized into actinides, impurity cations, glass formers and anions. Variations of the relative amounts of these on the properties and chemistry of the waste form were investigated and the waste form was found to be largely unaffected by these changes. This work mainly discusses the initial trials with Th and U. Later trials with larger variations and work with Pu-doped samples further confirmed the flexibility of the glass-ceramic. (authors)

  16. Internal Friction in L.A.S. Type Glass and Glass-Ceramics

    Arnault , L.; RiviÈre , A.

    1996-01-01

    Internal friction measurements have been performed on glass and glass-ceramics of the Li2O-Al2O3-SiO2 type by isothermal mechanical spectroscopy. Experiments were carried out over a large frequency range (10-4Hz - 31.6 Hz) for various temperatures between 260K and 850K. For the glass, a relaxation peak is observed at low temperature (276K for 1Hz). This peak does not appear in the glass-ceramics ; however, for each of them, two other peaks were observed : the first one at about 343K (1Hz) and...

  17. Elastic modulus measurements of LDEF glasses and glass-ceramics using a speckle technique

    Wiedlocher, D.E.; Kinser, D.L.

    1992-01-01

    Elastic moduli of five glass types and the glass-ceramic Zerodur, exposed to a near-earth orbit environment on the Long Duration Exposure Facility (LDEF), were compared to that of unexposed samples. A double exposure speckle photography technique utilizing 633 nm laser light was used in the production of the speckle pattern. Subsequent illumination of a double exposed negative using the same wavelength radiation produces Young's fringes from which the in-plane displacements are measured. Stresses imposed by compressive loading produced measurable strains in the glasses and glass-ceramic

  18. Sol–Gel-Derived Glass-Ceramic Photorefractive Films for Photonic Structures

    Anna Lukowiak

    2017-02-01

    Full Text Available Glass photonics are widespread, from everyday objects around us to high-tech specialized devices. Among different technologies, sol–gel synthesis allows for nanoscale materials engineering by exploiting its unique structures, such as transparent glass-ceramics, to tailor optical and electromagnetic properties and to boost photon-management yield. Here, we briefly discuss the state of the technology and show that the choice of the sol–gel as a synthesis method brings the advantage of process versatility regarding materials composition and ease of implementation. In this context, we present tin-dioxide–silica (SnO2–SiO2 glass-ceramic waveguides activated by europium ions (Eu3+. The focus is on the photorefractive properties of this system because its photoluminescence properties have already been discussed in the papers presented in the bibliography. The main findings include the high photosensitivity of sol–gel 25SnO2:75SiO2 glass-ceramic waveguides; the ultraviolet (UV-induced refractive index change (Δn ~ −1.6 × 10−3, the easy fabrication process, and the low propagation losses (0.5 ± 0.2 dB/cm, that make this glass-ceramic an interesting photonic material for smart optical applications.

  19. Synthesis of glass-ceramics using glass cullet and vitrified industrial by-products

    Karamberi, A.; Orkopoulos, K.; Moutsatsou, A. [National Technical University of Athens, Athens (Greece)

    2007-07-01

    This study concerns the recycling of inorganic waste materials for the production of glass-ceramics and the evaluation of the developed physical properties. Four industrial by-products were selected due to their mass production: (I) two high calcium lignite fly ashes, (ii) slag derived from the production of Fe-Ni and, (iii) steel slag. In order to examine the role of the SiO{sub 2} in the crystallization process, glass cullet and Egyptian sand were added. Thermal treatment, at 1450{sup o}C, enables the production of glasses using mixtures of these materials at appropriate proportions. The crystallization was achieved by heating at 900, 950 and 1000{sup o}C. The produced materials were examined concerning their structure by X-ray diffraction and scanning electron microscopy (SEM-EDS). The results showed that the crystalline phase is greatly depending on the structure of the raw material and the thermal process, influencing accordingly the hardness of the final products.

  20. An 8-year evaluation of sintered ceramic and glass ceramic inlays processed by the Cerec CAD/CAM system

    Pallesen, U.; Dijken van, J.W.V.

    2000-01-01

    The purpose of this study was to evaluate Cerec CAD/CAM inlays processed of two industrially made machinable ceramics during an 8-yr follow-up period. Each of 16 patients received two similar ceramic inlays. Half the number of the inlays were made of a feldspathic (Vita Mark II) and the other...... of a glass ceramic (Dicor MGC) block. The inlays were luted with a dual resin composite and evaluated clinically using modified USPHS criteria at baseline, 8 months, 2, 3, 5, 6 and 8 yr, and indirectly using models. At baseline, 84% of the inlays were estimated as optimal and 16% as acceptable. Postoperative...... sensitivity was reported by one patient for 8 months. Of the 32 inlays evaluated during the 8 yr, 3 failed due to fracture of the material. No secondary caries was found adjacent to the inlays. No significant differences in the clinical performance were found between inlays made of the two ceramics. It can...

  1. Dental ceramics: a review of new materials and processing methods.

    Silva, Lucas Hian da; Lima, Erick de; Miranda, Ranulfo Benedito de Paula; Favero, Stéphanie Soares; Lohbauer, Ulrich; Cesar, Paulo Francisco

    2017-08-28

    The evolution of computerized systems for the production of dental restorations associated to the development of novel microstructures for ceramic materials has caused an important change in the clinical workflow for dentists and technicians, as well as in the treatment options offered to patients. New microstructures have also been developed by the industry in order to offer ceramic and composite materials with optimized properties, i.e., good mechanical properties, appropriate wear behavior and acceptable aesthetic characteristics. The objective of this literature review is to discuss the main advantages and disadvantages of the new ceramic systems and processing methods. The manuscript is divided in five parts: I) monolithic zirconia restorations; II) multilayered dental prostheses; III) new glass-ceramics; IV) polymer infiltrated ceramics; and V) novel processing technologies. Dental ceramics and processing technologies have evolved significantly in the past ten years, with most of the evolution being related to new microstructures and CAD-CAM methods. In addition, a trend towards the use of monolithic restorations has changed the way clinicians produce all-ceramic dental prostheses, since the more aesthetic multilayered restorations unfortunately are more prone to chipping or delamination. Composite materials processed via CAD-CAM have become an interesting option, as they have intermediate properties between ceramics and polymers and are more easily milled and polished.

  2. Dental ceramics: a review of new materials and processing methods

    Lucas Hian da SILVA

    2017-08-01

    Full Text Available Abstract The evolution of computerized systems for the production of dental restorations associated to the development of novel microstructures for ceramic materials has caused an important change in the clinical workflow for dentists and technicians, as well as in the treatment options offered to patients. New microstructures have also been developed by the industry in order to offer ceramic and composite materials with optimized properties, i.e., good mechanical properties, appropriate wear behavior and acceptable aesthetic characteristics. The objective of this literature review is to discuss the main advantages and disadvantages of the new ceramic systems and processing methods. The manuscript is divided in five parts: I monolithic zirconia restorations; II multilayered dental prostheses; III new glass-ceramics; IV polymer infiltrated ceramics; and V novel processing technologies. Dental ceramics and processing technologies have evolved significantly in the past ten years, with most of the evolution being related to new microstructures and CAD-CAM methods. In addition, a trend towards the use of monolithic restorations has changed the way clinicians produce all-ceramic dental prostheses, since the more aesthetic multilayered restorations unfortunately are more prone to chipping or delamination. Composite materials processed via CAD-CAM have become an interesting option, as they have intermediate properties between ceramics and polymers and are more easily milled and polished.

  3. Ultra low and negative expansion glass–ceramic materials ...

    Unknown

    Clay and Traditional Ceramics Division, Central Glass and Ceramic Research Institute, Kolkata 700 032, India ... The batch composition was modified with the addition of lithium carbonate, hydrated ... dustrial waste due to their great technological advantage ..... applications of glass ceramic the present glass composi-.

  4. Plutonium disposition via immobilization in ceramic or glass

    Gray, L.W.; Kan, T.; Shaw, H.F.; Armantrout, A.

    1997-03-05

    The management of surplus weapons plutonium is an important and urgent task with profound environmental, national, and international security implications. In the aftermath of the Cold War, Presidential Policy Directive 13, and various analyses by renown scientific, technical, and international policy organizations have brought about a focused effort within the Department of Energy to identify and implement paths for the long term disposition of surplus weapons- usable plutonium. The central goal of this effort is to render surplus weapons plutonium as inaccessible and unattractive for reuse in nuclear weapons as the much larger and growing stock of plutonium contained in spent fuel from civilian reactors. One disposition option being considered for surplus plutonium is immobilization, in which the plutonium would be incorporated into a glass or ceramic material that would ultimately be entombed permanently in a geologic repository for high-level waste.

  5. Emerging ceramic-based materials for dentistry.

    Denry, I; Kelly, J R

    2014-12-01

    Our goal is to give an overview of a selection of emerging ceramics and issues for dental or biomedical applications, with emphasis on specific challenges associated with full-contour zirconia ceramics, and a brief synopsis on new machinable glass-ceramics and ceramic-based interpenetrating phase composites. Selected fabrication techniques relevant to dental or biomedical applications such as microwave sintering, spark plasma sintering, and additive manufacturing are also reviewed. Where appropriate, the authors have added their opinions and guidance. © International & American Associations for Dental Research.

  6. Fe-Doped Sol-Gel Glasses and Glass-Ceramics for Magnetic Hyperthermia

    Francesco Baino

    2018-01-01

    Full Text Available This work deals with the synthesis and characterization of novel Fe-containing sol-gel materials obtained by modifying the composition of a binary SiO2-CaO parent glass with the addition of Fe2O3. The effect of different processing conditions (calcination in air vs. argon flowing on the formation of magnetic crystalline phases was investigated. The produced materials were analyzed from thermal (hot-stage microscopy, differential thermal analysis, and differential thermal calorimetry and microstructural (X-ray diffraction viewpoints to assess both the behavior upon heating and the development of crystalline phases. N2 adsorption–desorption measurements allowed determining that these materials have high surface area (40–120 m2/g and mesoporous texture with mesopore size in the range of 18 to 30 nm. It was assessed that the magnetic properties can actually be tailored by controlling the Fe content and the environmental conditions (oxidant vs. inert atmosphere during calcination. The glasses and glass-ceramics developed in this work show promise for applications in bone tissue healing which require the use of biocompatible magnetic implants able to elicit therapeutic actions, such as hyperthermia for bone cancer treatment.

  7. Thermodynamics of non-bridging oxigen in silica bio-compatible glass-ceramics

    Koga, N.; Strnad, Z.; Šesták, Jaroslav; Strnad, J.

    2003-01-01

    Roč. 71, - (2003), s. 927-937 ISSN 1418-2874 R&D Projects: GA AV ČR IAA4010101 Institutional research plan: CEZ:AV0Z1010914 Keywords : bio-compatible * bone-like apatite * glass-ceramics * mimetic material * thermodynamics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.598, year: 2002

  8. Interfacial characterization of ceramic core materials with veneering porcelain for all-ceramic bi-layered restorative systems.

    Tagmatarchis, Alexander; Tripodakis, Aris-Petros; Filippatos, Gerasimos; Zinelis, Spiros; Eliades, George

    2014-01-01

    The aim of the study was to characterize the elemental distribution at the interface between all-ceramic core and veneering porcelain materials. Three groups of all-ceramic cores were selected: A) Glass-ceramics (Cergo, IPS Empress, IPS Empress 2, e-max Press, Finesse); B) Glass-infiltrated ceramics (Celay Alumina, Celay Zirconia) and C) Densely sintered ceramics (Cercon, Procera Alumina, ZirCAD, Noritake Zirconia). The cores were combined with compatible veneering porcelains and three flat square test specimens were produced for each system. The core-veneer interfaces were examined by scanning electron microscopy and energy dispersive x-ray microanalysis. The glass-ceramic systems showed interfacial zones reach in Si and O, with the presence of K, Ca, Al in core and Ca, Ce, Na, Mg or Al in veneer material, depending on the system tested. IPS Empress and IPS Empress 2 demonstrated distinct transitional phases at the core-veneer interface. In the glassinfiltrated systems, intermixing of core (Ce, La) with veneer (Na, Si) elements occurred, whereas an abrupt drop of the core-veneer elemental concentration was documented at the interfaces of all densely sintered ceramics. The results of the study provided no evidence of elemental interdiffusion at the core-veneer interfaces in densely sintered ceramics, which implies lack of primary chemical bonding. For the glass-containing systems (glassceramics and glass-infiltrated ceramics) interdiffusion of the glass-phase seems to play a critical role in establishing a primary bonding condition between ceramic core and veneering porcelain.

  9. Comparison of the corrosion behaviors of the glass-bonded sodalite ceramic waste form and reference HLW glasses

    Ebert, W. L.; Lewis, M. A.

    1999-01-01

    A glass-bonded sodalite ceramic waste form is being developed for the long-term immobilization of salt wastes that are generated during spent nuclear fuel conditioning activities. A durable waste form is prepared by hot isostatic pressing (HIP) a mixture of salt-loaded zeolite powders and glass frit. A mechanistic description of the corrosion processes is being developed to support qualification of the CWF for disposal. The initial set of characterization tests included two standard tests that have been used extensively to study the corrosion behavior of high level waste (HLW) glasses: the Material Characterization Center-1 (MCC-1) Test and the Product Consistency Test (PCT). Direct comparison of the results of tests with the reference CWF and HLW glasses indicate that the corrosion behaviors of the CWF and HLW glasses are very similar

  10. A comparative study of progressive wear of four dental monolithic, veneered glass-ceramics.

    Zhang, Zhenzhen; Yi, Yuanping; Wang, Xuesong; Guo, Jiawen; Li, Ding; He, Lin; Zhang, Shaofeng

    2017-10-01

    This study evaluated the wear performance and wear mechanisms of four dental glass-ceramics, based on the microstructure and mechanical properties in the progressive wear process. Bar (N = 40, n = 10) and disk (N = 32, n = 8) specimens were prepared from (A) lithium disilicate glass-ceramic (LD), (B) leucite reinforced glass-ceramic (LEU), (C) feldspathic glass-ceramic (FEL), and (D) fluorapatite glass-ceramic (FLU). The bar specimens were tested for three-point flexural strength, hardness, fracture toughness and elastic modulus. The disk specimens paired with steatite antagonists were tested in a pin-on-disk tribometer with 10N up to 1000,000 wear cycles. The wear analysis of glass-ceramics was performed using a 3D profilometer after every 200,000 wear cycles. Wear loss of steatite antagonists was calculated by measuring the weight and density using sensitive balance and Archimedes' method. Wear morphologies and microstructures were analyzed by scanning electron microscopy (SEM). The crystalline phase compositions were determined using X-ray diffraction (XRD). One-way analysis of variance (ANOVA) was used to analyze the data. Multiple pair-wise comparison of means was performed by Tukey's post-hoc test. LD showed the highest fracture toughness, flexural strength, elastic modulus and crystallinity, followed by LEU and FEL, and FLU showed the lowest. However, the hardness of LD was lower than all the other three types of ceramics. For steatite antagonists, LD produced the least wear loss of antagonist, followed by LEU and FEL, and FLU had the most wear loss. For glass-ceramic materials, LD exhibited similar wear loss as LEU, but more than FLU and FEL did. Moreover, fracture occurred on the wear surface of FLU. In the progressive wear process, veneering porcelains showed better wear resistance but fluorapatite veneering porcelains appeared fracture surface. Monolithic lithium disilicate glass-ceramics with higher mechanical properties showed more wear loss, however

  11. A Glass Ceramic Derived from High TiO2-Containing Slag – Microstructure Development and Mechanical Behaviour

    Wu, J. P.; Rawlings, R. D.; Boccaccini, A. R.; Dlouhý, Ivo; Chlup, Zdeněk

    2006-01-01

    Roč. 89, č. 8 (2006), s. 2426-2433 ISSN 1551-2916 R&D Projects: GA ČR(CZ) GA106/06/0724; GA ČR(CZ) GA106/05/0495 Institutional research plan: CEZ:AV0Z20410507 Keywords : glass ceramic s * fracture toughness * flexural strength Subject RIV: JH - Ceramic s, Fire-Resistant Materials and Glass

  12. Development of abrasion resistant glass-ceramics from industrial waste products. Final report

    von Roode, M.

    1983-05-26

    Slag-ceramics were produced from glass compositions using pelletized slag as the major ingredient. The abrasion resistance, fracture toughness and microstructure of the prepared glass and glass-ceramics were evaluated. Glas-ceramics with good abrasion resistance were obtained when iron oxide in conjunction with carbon was used as a nucleating agent. 5 figs., 11 tabs.

  13. Comparison of mechanical properties of three machinable ceramics with an experimental fluorophlogopite glass ceramic.

    Leung, Brian T W; Tsoi, James K H; Matinlinna, Jukka P; Pow, Edmond H N

    2015-09-01

    Fluorophlogopite glass ceramic (FGC) is a biocompatible, etchable, and millable ceramic with fluoride releasing property. However, its mechanical properties and reliability compared with other machinable ceramics remain undetermined. The purpose of this in vitro study was to compare the mechanical properties of 3 commercially available millable ceramic materials, IPS e.max CAD, Vitablocs Mark II, and Vita Enamic, with an experimental FGC. Each type of ceramic block was sectioned into beams (n=15) of standard dimensions of 2×2×15 mm. Before mechanical testing, specimens of the IPS e.max CAD group were further fired for final crystallization. Flexural strength was determined by the 3-point bend test with a universal loading machine at a cross head speed of 1 mm/min. Hardness was determined with a hardness tester with 5 Vickers hardness indentations (n=5) using a 1.96 N load and a dwell time of 15 seconds. Selected surfaces were examined by scanning electron microscopy and energy-dispersive x-ray spectroscopy. Data were analyzed by the 1-way ANOVA test and Weibull analysis (α=.05). Weibull parameters, including the Weibull modulus (m) as well as the characteristic strength at 63.2% (η) and 10.0% (B10), were obtained. A significant difference in flexural strength (PVita Enamic (145.95 ±12.65 MPa)>Vitablocs Mark II (106.67 ±18.50 MPa), and FGC (117.61 ±7.62 MPa). The Weibull modulus ranged from 6.93 to 18.34, with FGC showing the highest Weibull modulus among the 4 materials. The Weibull plot revealed that IPS e.max CAD>Vita Enamic>FGC>Vitablocs Mark II for the characteristic strength at both 63.2% (η) and 10.0% (B10). Significant difference in Vickers hardness among groups (PVitablocs Mark II (594.74 ±25.22 H(V))>Vita Enamic (372.29 ±51.23 H(V))>FGC (153.74 ±23.62 H(V)). The flexural strength and Vickers hardness of IPS e.max CAD were significantly higher than those of the 3 materials tested. The FGC's flexural strength was comparable with Vitablocs Mark II

  14. The effect of aqueous media on the mechanical properties of fluorapatite-mullite glass-ceramics.

    Mollazadeh, S; Ajalli, Siamak; Kashi, Tahereh S Jafarzadeh; Yekta, Bijan Eftekhai; Javadpour, Jafar; Jafari, S; Youssefi, Abbas; Fazel, Akbar

    2015-11-01

    To verify the effects of alternating thermal changes in aqueous media and chemical composition on mechanical properties of apatite-mullite glass-ceramics and to investigate concentration of ions eluted from glass-ceramics in aqueous media. The glass compositions were from SiO2Al2O3P2O5CaOTiO2BaOZrO2CaF2 system. Glass-ceramics were prepared by heat-treating at 1100°C for 3h samples alternately immersed in water at 5 and 60°C. The 3-point bending strength (n=10) were determined using 3×4×25mm/bar and a universal testing machine, at a cross-head speed of 0.1mm/min. Vickers micro hardness were evaluated by applying a total of 15-20 indentations under a 100g load for 30s. Concentrations of ions eluted from glass-ceramics immersed in 60±5°C double distilled water were determined by ion chromatography. The toxicity of glass-ceramics was assessed by seeding the osteosarcoma cells (MG63) on powder for different days and their cell proliferation assessment was investigated by MTT assay. The data were analyzed using one way analysis of variance and the means were compared by Tukey's test (5% significance level). The highest flexural strength and hardness values after thermal changes belonged to TiO2 and ZrO2 containing glass-ceramics which contained lower amount of released ions. BaO containing glass-ceramic and sample with extra amount of silica showed the highest amount of reduction in their mechanical strength values. These additives enhanced the concentration of eluted ions in aqueous media. MTT results showed that glass-ceramics were almost equivalent concerning their in-vitro biological behavior. Thermal changes and chemical compositions had significant effects on flexural strength and Vickers micro-hardness values. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  15. A Novel Technique for the Connection of Ceramic and Titanium Implant Components Using Glass Solder Bonding

    Enrico Mick

    2015-07-01

    Full Text Available Both titanium and ceramic materials provide specific advantages in dental implant technology. However, some problems, like hypersensitivity reactions, corrosion and mechanical failure, have been reported. Therefore, the combining of both materials to take advantage of their pros, while eliminating their respective cons, would be desirable. Hence, we introduced a new technique to bond titanium and ceramic materials by means of a silica-based glass ceramic solder. Cylindrical compound samples (Ø10 mm × 56 mm made of alumina toughened zirconia (ATZ, as well as titanium grade 5, were bonded by glass solder on their end faces. As a control, a two-component adhesive glue was utilized. The samples were investigated without further treatment, after 30 and 90 days of storage in distilled water at room temperature, and after aging. All samples were subjected to quasi-static four-point-bending tests. We found that the glass solder bonding provided significantly higher bending strength than adhesive glue bonding. In contrast to the glued samples, the bending strength of the soldered samples remained unaltered by the storage and aging treatments. Scanning electron microscopy (SEM and energy-dispersive X-ray (EDX analyses confirmed the presence of a stable solder-ceramic interface. Therefore, the glass solder technique represents a promising method for optimizing dental and orthopedic implant bondings.

  16. Glass-Graphite Composite Materials

    Mayzan, M.Z.H.; Lloyd, J.W.; Heath, P.G.; Stennett, M.C.; Hyatt, N.C.; Hand, R.J.

    2016-01-01

    A summary is presented of investigations into the potential of producing glass-composite materials for the immobilisation of graphite or other carbonaceous materials arising from nuclear power generation. The methods are primarily based on the production of base glasses which are subsequently sintered with powdered graphite or simulant TRISO particles. Consideration is also given to the direct preparation of glass-graphite composite materials using microwave technology. Production of dense composite wasteforms with TRISO particles was more successful than with powdered graphite, as wasteforms containing larger amounts of graphite were resistant to densification and the glasses tried did not penetrate the pores under the pressureless conditions used. Based on the results obtained it is concluded that the production of dense glassgraphite composite wasteforms will require the application of pressure. (author)

  17. Strength and microstructure of IPS Empress 2 glass-ceramic after different treatments.

    Oh, S C; Dong, J K; Lüthy, H; Schärer, P

    2000-01-01

    This investigation was designed to determine whether heat pressing and/or simulated heat treatments affect the flexure strength and microstructure of the lithium disilicate glass-ceramic of the IPS Empress 2 system. Four groups of the lithium disilicate glass-ceramic were prepared as follows: group 1 = as-received material; group 2 = heat-pressed material; group 3 = heat-pressed and stimulated initial heat-treated material; and group 4 = heat-pressed and simulated heat-treated material with full firings for a final restoration. Three-point bending tests and scanning electron microscopy (SEM) analysis were conducted. The flexure strength of group 2 was significantly higher than that of group 1. However, there were no significant differences in strength among groups 2, 3, and 4, or between groups 1 and 4. The SEM micrographs of the lithium disilicate glass-ceramic showed a closely packed, multidirectionally interlocking microstructure of numerous lithium disilicate crystals protruding from the glass matrix. The crystals in the glass matrix of the heat-pressed materials (groups 2, 3, and 4) were a little more homogeneous and about 2 times bigger than those of the as-received material (group 1). These changes of the microstructure were greatest between groups 1 and 2. However, there were no marked differences among groups 2, 3, and 4. Although there were significant increases in the strength and some changes of the microstructure after the heat-pressing operation, the combination of heat pressing and simulated subsequent heat treatments did not produce an increase of strength of IPS Empress 2 glass-ceramic.

  18. [Quantitative determination of glass content in monazite glass-ceramics by IR technique].

    He, Yong; Zhang, Bao-min

    2003-04-01

    Monazite glass-ceramics consist of both monazite and metaphoshate glass phases. The absorption bands of both phases do not overlap each other, and the absorption intensities of bands 1,275 and 616 cm-1 vary with the glass contents. The correlation coefficient between logarithmic absorbance ratio of the two bands and glass contents was r = 0.9975 and its regression equation was y = 48.356 + 25.93x. The absorbance ratio of bands 952 and 616 cm-1 also varied with different ratios of Ce2O3/La2O3 in synthetic monazites, with r = 0.9917 and a regression equation y = 0.2211 exp (0.0221x). High correlation coefficients show that the IR technique could find new application in the quantitative analysis of glass content in phosphate glass-ceramics.

  19. Enhanced Luminescent Properties in Tm3+/Dy3+ Co-doped Transparent Phosphate Glass Ceramic

    Yao L. Q.; Chen G. H.; Zhong H. J.; Cui S. C.; Li F.; Gan J.Y.

    2016-01-01

    Novel Tm3+/Dy3+ co-doped phosphate glass and glass ceramic samples for white light emitting diodes were prepared by melt quenching method. Under 353 nm excitation, the colors of the luminescence of the glass and glass ceramic samples are white. The CIE chromaticity coordinates (0.338, 0.328) of the emission from the glass ceramic is close to the standard white-light illumination (0.333, 0.333). Compared to the glass, the fluorescence intensity in the glass ceramic is greatly enhanced.

  20. High temperature fracture of ceramic materials

    Wiederhorn, S.M.

    1979-01-01

    A review is presented of fracture mechanisms and methods of lifetime prediction in ceramic materials. Techniques of lifetime prediction are based on the science of fracture mechanics. Application of these techniques to structural ceramics is limited by our incomplete understanding of fracture mechanisms in these materials, and by the occurrence of flaw generation in these materials at elevated temperatures. Research on flaw generation and fracture mechanisms is recommended as a way of improving the reliability of structural ceramics

  1. Thermal properties and crystallization of lithium–mica glass and glass-ceramics

    Nia, A. Faeghi

    2013-01-01

    Highlights: • Two groups of Li–mica glass-ceramics, have been compared. • By controlling the glass composition, crystalline lepidolite was obtained. • The T p of Li–mica was through the previous virgilite and eucryptite phase. - Abstract: The purpose of this study was the synthesis of two groups of Li–mica glass-ceramics denoted by lepidolite (Al 2.5 F 2 KLi 1.5 O 10 Si 3 ) and Li-phlogopite (LiMg 3 AlSi 3 O 10 F 2 ). The studied system was SiO 2 –Al 2 O 3 –MgO–K 2 O–Li 2 O. A total of 3 compositions were prepared. Bulk casted glasses and sintered glass-ceramics of Li-phlogopite and lepidolite systems, were prepared. Eucryptite and virgilite were two prior phases of lepidolite and Li-phlogopite crystallization. It was shown that the obtained glass-ceramics have lower TEC than corresponding glasses. Sinterability of lepidolite glass-ceramic was shown that improved by increasing the Al 2 O 3 content in glass composition. TEC and microhardness values were α = 6.08 × 10 −6 /°C, 755 ± 11.1, α = 7.86 × 10 −6 /°C, 739 ± 7.4 and α = 5.05 × 10 −6 /°C, 658 ± 6.2 HV for Li-lep, Klep1 and Klep2 glasses, respectively

  2. Irradiation conditions for fiber laser bonding of HAp-glass ceramics with bovine cortical bone.

    Tadano, Shigeru; Yamada, Satoshi; Kanaoka, Masaru

    2014-01-01

    Orthopedic implants are widely used to repair bones and to replace articulating joint surfaces. It is important to develop an instantaneous technique for the direct bonding of bone and implant materials. The aim of this study was to develop a technique for the laser bonding of bone with an implant material like ceramics. Ceramic specimens (10 mm diameter and 1 mm thickness) were sintered with hydroxyapatite and MgO-Al2O3-SiO2 glass powders mixed in 40:60 wt% proportions. A small hole was bored at the center of a ceramic specimen. The ceramic specimen was positioned onto a bovine bone specimen and a 5 mm diameter area of the ceramic specimen was irradiated using a fiber laser beam (1070-1080 nm wavelength). As a result, the bone and the ceramic specimens bonded strongly under the irradiation conditions of a 400 W laser power and a 1.0 s exposure time. The maximum shear strength was 5.3 ± 2.3 N. A bonding substance that penetrated deeply into the bone specimen was generated around the hole in the ceramic specimen. On using the fiber laser, the ceramic specimen instantaneously bonded to the bone specimen. Further, the irradiation conditions required for the bonding were investigated.

  3. Development and testing of matrices for the encapsulation of glass and ceramic nuclear waste forms

    Wald, J.W.; Brite, D.W.; Gurwell, W.E.; Buckwalter, C.Q.; Bunnell, L.R.; Gray, W.J.; Blair, H.T.; Rusin, J.M.

    1982-02-01

    This report details the results of research on the matrix encapsulation of high level wastes at PML over the past few years. The demonstrations and tests described were designed to illustrate how the waste materials are effected when encapsulated in an inert matrix. Candidate materials evaluated for potential use as matrices for encapslation of pelletized ceramics or glass marbles were categorized into four groups: metals, glasses, ceramics, and graphite. Two processing techniques, casting and hot pressing, were investigated as the most promising methods of formation or densification of the matrices. The major results reported deal with the development aspects. However, chemical durability tests (leach tests) of the matrix materials themselves and matrix-waste form composites are also reported. Matrix waste forms can provide a low porosity, waste-free barrier resulting in increased leach protection, higher impact strength and improved thermal conductivity compared to unencapsulated glass or ceramic waste materials. Glass marbles encapsulated in a lead matrix offer the most significant improvement in waste form stability of all combinations evaluated. This form represents a readily demonstrable process that provides high thermal conductivity, mechanical shock resistance, radiation shielding and increased chemical durability through both a chemical passivation mechanism and as a physical barrier. Other durable matrix waste forms evaluated, applicable primarily to ceramic pellets, involved hot-pressed titanium or TiO 2 materials. In the processing of these forms, near 100% dense matrices were obtained. The matrix materials had excellent compatibility with the waste materials and superior potential chemical durability. Cracking of the hot-pressed ceramic matrix forms, in general, prevented the realization of their optimum properties

  4. Microstructural and Wear Behavior Characterization of Porous Layers Produced by Pulsed Laser Irradiation in Glass-Ceramics Substrates.

    Sola, Daniel; Conde, Ana; García, Iñaki; Gracia-Escosa, Elena; de Damborenea, Juan J; Peña, Jose I

    2013-09-09

    In this work, wear behavior and microstructural characterization of porous layers produced in glass-ceramic substrates by pulsed laser irradiation in the nanosecond range are studied under unidirectional sliding conditions against AISI316 and corundum counterbodies. Depending on the optical configuration of the laser beam and on the working parameters, the local temperature and pressure applied over the interaction zone can generate a porous glass-ceramic layer. Material transference from the ball to the porous glass-ceramic layer was observed in the wear tests carried out against the AISI316 ball counterface whereas, in the case of the corundum ball, the wear volume loss was concentrated in the porous layer. Wear rate and friction coefficient presented higher values than expected for dense glass-ceramics.

  5. Microstructural and Wear Behavior Characterization of Porous Layers Produced by Pulsed Laser Irradiation in Glass-Ceramics Substrates

    Jose I. Peña

    2013-09-01

    Full Text Available In this work, wear behavior and microstructural characterization of porous layers produced in glass-ceramic substrates by pulsed laser irradiation in the nanosecond range are studied under unidirectional sliding conditions against AISI316 and corundum counterbodies. Depending on the optical configuration of the laser beam and on the working parameters, the local temperature and pressure applied over the interaction zone can generate a porous glass-ceramic layer. Material transference from the ball to the porous glass-ceramic layer was observed in the wear tests carried out against the AISI316 ball counterface whereas, in the case of the corundum ball, the wear volume loss was concentrated in the porous layer. Wear rate and friction coefficient presented higher values than expected for dense glass-ceramics.

  6. Distorting the ceramic familiar: materiality and non-ceramic intervention, Conference, Keramik Museum, Germany

    Livingstone, Andrew

    2009-01-01

    Invited conference speaker, Westerwald Keramik Museum, August 2009. Paper title: Distorting the ceramic familiar: materiality and non-ceramic intervention.\\ud \\ud This paper will examine the integration of non-ceramic media into the discourse of ceramics.

  7. In vitro biocompatibility of a ferrimagnetic glass-ceramic for hyperthermia application

    Bretcanu, Oana; Miola, Marta [Applied Science and Technology Department, Institute of Materials Physics and Engineering, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino (Italy); Bianchi, Claudia L. [Department of Chemistry, University of Milan, Via Golgi 19, 20133 Milan (Italy); Marangi, Ida; Carbone, Roberta [Department of Experimental Oncology, European Institute of Oncology, Milan, Italy. (Italy); Corazzari, Ingrid [Department of Chemistry, University of Torino, Via Pietro Giuria 7, 10125 Torino (Italy); “G. Scansetti” Interdepartmental Centre for Studies on Asbestos and other Toxic Particulates, Via Pietro Giuria 7, 10125 Torino (Italy); Cannas, Mario [Department of Medical Science, Human Anatomy, University of Eastern Piedmont, Novara (Italy); Verné, Enrica, E-mail: enrica.verne@polito.it [Applied Science and Technology Department, Institute of Materials Physics and Engineering, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino (Italy)

    2017-04-01

    Ferrimagnetic glass-ceramics containing magnetite crystals were developed for hyperthermia applications of solid neoplastic tissue. The present work is focused on in vitro evaluation of the biocompatibility of these materials, before and after soaking in a simulated body fluid (SBF). X-ray diffraction, scanning electron microscopy, atomic absorption spectrophotometry, X-ray photoelectron spectrometry and pH measurements were employed in glass-ceramic characterisation. The free-radical mediated reactivity of the glass-ceramic was evaluated by Electron Paramagnetic Resonance (EPR) spin trapping. Cell adhesion and proliferation tests were carried out by using 3T3 murine fibroblasts. Cytotoxicity was performed by qualitative evaluation of human bone osteosarcoma cells U2OS cell line. The results show that almost two times more 3T3 cells proliferated on the samples pre-treated in SBF, compared with the untreated specimens. Moreover a decrease of confluence was observed at 48 and 72 h for U2OS cells exposed to the untreated glass-ceramic, while the powder suspensions of glass-ceramic pre-treated in SBF did not influence the cell morphology up to 72 h of exposition. The untreated glass-ceramic exhibited Fenton-like reactivity, as well as reactivity towards formate molecule. After pre-treatment with SBF the reactivity towards formate was completely suppressed. The concentration of iron released into the SBF solution was below 0.1 ppm at 37 °C, during one month of soaking. The different in vitro behaviour of the samples before and after SBF treatment has been correlated to the bioactive glass-ceramic surface modifications as detected by morphological, structural and compositional analyses. - Highlights: • In vitro characterization of a ferrimagnetic glass-ceramic has been performed, before and after treatment in SBF. • The SBF pre-treatment stimulates the cellular function and acts as a surface activation process, increasing cells activity. • Pre-treatment with SBF

  8. The influence of glass composition on crystalline phase stability in glass-ceramic wasteforms

    Maddrell, Ewan; Thornber, Stephanie; Hyatt, Neil C.

    2015-01-01

    Highlights: • Crystalline phase formation shown to depend on glass matrix composition. • Zirconolite forms as the sole crystalline phase only for most aluminous glasses. • Thermodynamics indicate that low silica activity glasses stabilise zirconolite. - Abstract: Zirconolite glass-ceramic wasteforms were prepared using a suite of Na 2 O–Al 2 O 3 –B 2 O 3 –SiO 2 glass matrices with variable Al:B ratios. Zirconolite was the dominant crystalline phase only for the most alumina rich glass compositions. As the Al:B ratio decreased zirconolite was replaced by sphene, zircon and rutile. Thermodynamic data were used to calculate a silica activity in the glass melt below which zirconolite is the favoured crystalline phase. The concept of the crystalline reference state of glass melts is then utilised to provide a physical basis for why silica activity varies with the Al:B ratio

  9. Glass binder development for a glass-bonded sodalite ceramic waste form

    Riley, Brian J.; Vienna, John D.; Frank, Steven M.; Kroll, Jared O.; Peterson, Jacob A.

    2017-01-01

    This paper discusses work to develop Na_2O-B_2O_3-SiO_2 glass binders for immobilizing LiCl-KCl eutectic salt waste in a glass-bonded sodalite waste form following electrochemical reprocessing of used metallic nuclear fuel. In this paper, five new glasses with ~20 mass% Na_2O were designed to generate waste forms with high sodalite. The glasses were then used to produce ceramic waste forms with a surrogate salt waste. The waste forms made using these new glasses were formulated to generate more sodalite than those made with previous baseline glasses for this type of waste. The coefficients of thermal expansion for the glass phase in the glass-bonded sodalite waste forms made with the new binder glasses were closer to the sodalite phase in the critical temperature region near and below the glass transition temperature than previous binder glasses used. Finally, these improvements should result in lower probability of cracking in the full-scale monolithic ceramic waste form, leading to better long-term chemical durability.

  10. Microstructure and properties of ceramic materials

    Yen Tungsheng

    1984-01-01

    Ceramics materials study is an important field in modern materials science. Each side presented 19 papers most of which were recent investigations giving rather extensive coverage of microstructure and properties of new materials. (Auth.)

  11. Effects of crystal refining on wear behaviors and mechanical properties of lithium disilicate glass-ceramics.

    Zhang, Zhenzhen; Guo, Jiawen; Sun, Yali; Tian, Beimin; Zheng, Xiaojuan; Zhou, Ming; He, Lin; Zhang, Shaofeng

    2018-05-01

    The purpose of this study is to improve wear resistance and mechanical properties of lithium disilicate glass-ceramics by refining their crystal sizes. After lithium disilicate glass-ceramics (LD) were melted to form precursory glass blocks, bar (N = 40, n = 10) and plate (N = 32, n = 8) specimens were prepared. According to the differential scanning calorimetry (DSC) of precursory glass, specimens G1-G4 were designed to form lithium disilicate glass-ceramics with different crystal sizes using a two-step thermal treatment. In the meantime, heat-pressed lithium disilicate glass-ceramics (GC-P) and original ingots (GC-O) were used as control groups. Glass-ceramics were characterized using X-ray diffraction (XRD) and were tested using flexural strength test, nanoindentation test and toughness measurements. The plate specimens were dynamically loaded in a chewing simulator with 350 N up to 2.4 × 10 6 loading cycles. The wear analysis of glass-ceramics was performed using a 3D profilometer after every 300,000 wear cycles. Wear morphologies and microstructures were analyzed by scanning electron microscopy (SEM). One-way analysis of variance (ANOVA) was used to analyze the data. Multiple pairwise comparisons of means were performed by Tukey's post-hoc test. Materials with different crystal sizes (p properties. Specifically, G3 with medium-sized crystals presented the highest flexural strength, hardness, elastic modulus and fracture toughness. G1 and G2 with small-sized crystals showed lower flexural strength, whereas G4, GC-P, and GC-O with large-sized crystals exhibited lower hardness and elastic modulus. The wear behaviors of all six groups showed running-in wear stage and steady wear stage. G3 showed the best wear resistance while GC-P and GC-O exhibited the highest wear volume loss. After crystal refining, lithium disilicate glass-ceramic with medium-sized crystals showed the highest wear resistance and mechanical properties. Copyright © 2018

  12. Barium halide nanocrystals in fluorozirconate based glass ceramics for scintillation application

    Selling, J.

    2007-07-01

    Europium (Eu)-activated barium halide nanocrystals in fluorozirconate based glass ceramics represent a promising class of Xray scintillators. The scintillation in these glass ceramics is mainly caused by the emission of divalent Eu incorporated in hexagonal BaCl{sub 2} nanocrystals which are formed in the glass matrix upon appropriate annealing. Experiments with cerium (Ce)-activated fluorozironate glass ceramics showed that Ce is an interesting alternative. In order to get a better understanding of the scintillation mechanism in Eu- or Ce-activated barium halide nanocrystals, an investigation of the processes in the corresponding bulk material is essential. The objective of this thesis is the investigation of undoped, Eu-, and Ce-doped barium halides by X-ray excited luminescence (XL), pulse height, and scintillation decay spectra. That will help to figure out which of these crystals has the most promising scintillation properties and would be the best nanoparticles for the glass ceramics. Furthermore, alternative dopants like samarium (Sm) and manganese (Mn) were also investigated. Besides the above-mentioned optical investigation electron paramagnetic resonance (EPR) and Moessbauer measurements were carried out in order to complete the picture of Eu-doped barium halides. The EPR data of Eu-doped BaI{sub 2} is anticipated to yield more information about the crystal field and crystal structure that will help to understand the charge carrier process during the scintillation process. The main focus of the Moessbauer investigations was set on the Eu-doped fluorochlorozirconate glass ceramics. The results of this investigation should help to improve the glass ceramics. The Eu{sup 2+}/Eu{sup 3+} ratio in the glass ceramics should be determined and optimize favor of the Eu{sup 2+}. We also want to distinguish between Eu{sup 2+} in the glass matrix and Eu{sup 2+} in the nanocrystals. For a better understanding of Moessbauer spectroscopy on Eu also measurements on Eu in a

  13. Wear of MgO-CaO-SiO2-P2O5-F-Based Glass Ceramics Compared to Selected Dental Ceramics

    Jongee Park

    2007-01-01

    Full Text Available Wear of a glass-ceramic produced through controlled crystallization of a glass in the MgO-CaO-SiO2-P2O5-F system has been evaluated and compared to various commercial dental ceramics including IPS Empress 2, Cergo Pressable Ceramic, Cerco Ceram, and Super porcelain EX-3. Wear tests were performed in accord with the ASTM G99 for wear testing with a pin-on-disk apparatus. The friction coefficient and specific wear rate of the materials investigated were determined at a load of 10 N and at ambient laboratory conditions. Microhardness of the materials was also measured to elucidate the appropriateness of these materials for dental applications.

  14. Elaboration of new ceramic composites containing glass fibre production wastes

    Rozenstrauha, I.

    2013-04-01

    Full Text Available Two main by-products or waste from the production of glass fibre are following: sewage sludge containing montmorillonite clay as sorbent material and ca 50% of organic matter as well as waste glass from aluminiumborosilicate glass fibre with relatively high softening temperature (> 600 ºC. In order to elaborate different new ceramic products (porous or dense composites the mentioned by-products and illitic clay from two different layers of Apriki deposit (Latvia with illite content in clay fraction up to 80-90% was used as a matrix. The raw materials were investigated by differential-thermal (DTA and XRD analysis. Ternary compositions were prepared from mixtures of 15–35 wt % of sludge, 20 wt % of waste glass and 45–65 wt % of clay and the pressed green bodies were thermally treated in sintering temperature range from 1080 to 1120 ºC in different treatment conditions. Materials produced in temperature range 1090–1100 ºC with the most optimal properties - porosity 38-52%, water absorption 39–47% and bulk density 1.35–1.67 g/cm3 were selected for production of porous ceramics and materials showing porosity 0.35–1.1%, water absorption 0.7–2.6 % and bulk density 2.1–2.3 g/cm3 - for dense ceramic composites. Obtained results indicated that incorporation up to 25 wt % of sewage sludge is beneficial for production of both ceramic products and glass-ceramic composites according to the technological properties. Structural analysis of elaborated composite materials was performed by scanning electron microscopy(SEM. By X-ray diffraction analysis (XRD the quartz, diopside and anorthite crystalline phases were detected.Durante la obtención de ciertas fibras de vidrio se generan dos subproductos o residuos principalmente: Lodo de arcilla montmorillonítica capaz de adsorber el 50 % de materia orgánica y un vidrio silicato alumínico con temperatura de reblandecimiento relativamente alta (> 600 ºC. Con el fin de elaborar nuevos

  15. Measurement of Emissivity of Porous Ceramic Materials

    BÜYÜKALACA, Orhan

    1998-01-01

    In this study, measurements of spectral and total emissivities of seven different porous ceramic materials and one ceramic fibre material are reported. Measurements were made for wavelength range from 1.2 µm to 20 µm and temperature range from 200 °C to 700 °C. It was found that total emissivity increases with increase of pore size but decreases with increase of temperature. The results showed all the porous ceramic materials tested to be much better than ceramic fibre in terms of total em...

  16. Mixture for producing fracture-resistant, fiber-reinforced ceramic material by microwave heating

    Meek, T.T.; Blake, R.D.

    1985-04-03

    A fracture-resistant, fiber-reinforced ceramic substrate is produced by a method which involves preparing a ceramic precursor mixture comprising glass material, a coupling agent, and resilient fibers, and then exposing the mixture to microwave energy. The microwave field orients the fibers in the resulting ceramic material in a desired pattern wherein heat later generated in or on the substrate can be dissipated in a desired geometric pattern parallel to the fiber pattern. Additionally, the shunt capacitance of the fracture-resistant, fiber-reinforced ceramic substrate is lower which provides for a quicker transit time for electronic pulses in any conducting pathway etched into the ceramic substrate.

  17. A Glass-Ceramic Waste Forms for the Immobilization of Rare Earth Oxides from the Pyroprocessing Waste salt

    Ahn, Byung-Gil; Park, Hwan-Seo; Kim, Hwan-Young; Kim, In-Tae

    2008-01-01

    The fission product of rare earth (RE) oxide wastes are generates during the pyroprocess . Borosilicate glass or some ceramic materials such as monazite, apatite or sodium zirconium phosphate (NZP) have been a prospective host matrix through lots of experimental results. Silicate glasses have long been the preferred waste form for the immobilization of HLW. In immobilization of the RE oxides, the developed process on an industrial scale involves their incorporation into a glass matrix, by melting under 1200 ∼ 1300 .deg. C. Instead of the melting process, glass powder sintering is lower temperature (∼ 900 .deg. C) required for the process which implies less demanding conditions for the equipment and a less evaporation of volatile radionuclides. This study reports the behaviors, direct vitrification of RE oxides with glass frit, glass powder sintering of REceramic with glass frit, formation of RE-apatite (or REmonazite) ceramic according to reaction temperature, and the leach resistance of the solidified waste forms

  18. Study of structural, electrical, and dielectric properties of phosphate-borate glasses and glass-ceramics

    Melo, B. M. G.; Graça, M. P. F., E-mail: mpfg@ua.pt; Prezas, P. R.; Valente, M. A. [Physics Department (I3N), Aveiro University, Campus Universitário de Santiago, Aveiro (Portugal); Almeida, A. F.; Freire, F. N. A. [Mechanics Engineering Department, Ceará Federal University, Fortaleza (Brazil); Bih, L. [Equipe Physico-Chimie la Matière Condensée, Faculté des Sciences de Meknès, Meknès (Morocco)

    2016-08-07

    In this work, phosphate-borate based glasses with molar composition 20.7P{sub 2}O{sub 5}–17.2Nb{sub 2}O{sub 5}–13.8WO{sub 3}–34.5A{sub 2}O–13.8B{sub 2}O{sub 3}, where A = Li, Na, and K, were prepared by the melt quenching technique. The as-prepared glasses were heat-treated in air at 800 °C for 4 h, which led to the formation of glass-ceramics. These high chemical and thermal stability glasses are good candidates for several applications such as fast ionic conductors, semiconductors, photonic materials, electrolytes, hermetic seals, rare-earth ion host solid lasers, and biomedical materials. The present work endorses the analysis of the electrical conductivity of the as-grown samples, and also the electrical, dielectric, and structural changes established by the heat-treatment process. The structure of the samples was analyzed using X-Ray powder Diffraction (XRD), Raman spectroscopy, and density measurements. Both XRD and Raman analysis confirmed crystals formation through the heat-treatment process. The electrical ac and dc conductivities, σ{sub ac} and σ{sub dc}, respectively, and impedance spectroscopy measurements as function of the temperature, varying from 200 to 380 K, were investigated for the as-grown and heat-treated samples. The impedance spectroscopy was measured in the frequency range of 100 Hz–1 MHz.

  19. Ceramic composites: Enabling aerospace materials

    Levine, S. R.

    1992-01-01

    Ceramics and ceramic matrix composites (CMC) have the potential for significant impact on the performance of aerospace propulsion and power systems. In this paper, the potential benefits are discussed in broad qualitative terms and are illustrated by some specific application case studies. The key issues in need of resolution for the potential of ceramics to be realized are discussed.

  20. Development of a low-permeability glass--ceramic to seal to molybdenum

    Eagan, R.J.

    1975-03-01

    This report describes the development of low-permeability glass-ceramics which can be sealed directly to molybdenum for the purpose of producing long-life vacuum tubes. Low permeability to helium and thermal expansion match to molybdenum are the bases upon which particular glass-ceramic compositions were selected and developed. The fabrication of tube envelopes using glass-ceramics is simplified when compared to conventional ceramic/metal tubes and these melting and sealing techniques are presented

  1. Glass-ceramic materials of system MgO-Al{sub 2}O{sub 3}-SiO{sub 2} from rice husk ash; Materiales vitroceramicos del sistema MgO-Al2O3-SiO2 a partir de ceniza de cascara de arroz

    Martin, M. I.; Rincon, J. M.; Andreola, F.; Barbieri, L.; Bondioli, F.; Lancellotti, I.; Romero, M.

    2011-07-01

    This wok shows the results of a valorisation study to use rice husk ash as raw material to develop glass-ceramic materials. An original glass has been formulated in the base system MgO-Al{sub 2}O{sub 3}-SiO{sub 2} with addition of B{sub 2}O{sub 3} and Na{sub 2}O to facilitate the melting and poring processes. Glass characterization was carried out by determining its chemical composition. Sintering behaviour has been examined by Hot Stage Microscopy (HSM). Thermal stability and crystallization mechanism have been studied by Differential Thermal Analysis (DTA). Mineralogy analyses of the glass-ceramic materials were carried out using X-ray Diffraction (XRD). Results show that it is possible to use ash rice husk to produce glass-ceramic materials by a sinter crystallization process, with nepheline (Na{sub 2}O-Al{sub 2}O{sub 3}-SiO{sub 2}) as major crystalline phase in the temperature interval 700-950 degree centigrade and forsterite (2MgO-SiO{sub 2}) at temperatures above 950 degree centigrade. (Author) 15 refs.

  2. Microstructure, mechanical, and in vitro properties of mica glass-ceramics with varying fluorine content.

    Molla, Atiar Rahaman; Basu, Bikramjit

    2009-04-01

    The design and development of glass ceramic materials provide us the unique opportunity to study the microstructure development with changes in either base glass composition or heat treatment conditions as well as to understand processing-microstructure-property (mechanical/biological) relationship. In the present work, it is demonstrated how various crystal morphology can develop when F(-) content in base glass (K(2)O-B(2)O(3)-Al(2)O(3)-SiO(2)-MgO-F) is varied in the range of 1.08-3.85% and when all are heat treated at varying temperatures of 1000-1120 degrees C. For some selected heat treatment temperature, the heat treatment time is also varied over 4-24 h. It was established that with increase in fluoride content in the glass composition, the crystal volume fraction of the glass-ceramic decreases. Using 1.08% fluoride, more than 80% crystal volume fraction could be achieved in the K(2)O-B(2)O(3)-Al(2)O(3)-SiO(2)-MgO-F system. It was observed that with lower fluoride content glass-ceramic, if heated at 1040 degrees C for 12 h, an oriented microstructure with 'envelop like' crystals can develop. For glass ceramics with higher fluorine content (2.83% or 3.85%), hexagonal-shaped crystals are formed. Importantly, high hardness of around 8 GPa has been measured in glass ceramics with maximum amount of crystals. The three-point flexural strength and elastic modulus of the glass-ceramic (heat treated at 1040 degrees C for 24 h) was 80 MPa and 69 GPa of the sample containing 3.85% fluorine, whereas, similar properties obtained for the sample containing 1.08% F(-) was 94 MPa and 57 GPa, respectively. Further, in vitro dissolution study of the all three glass-ceramic composition in artificial saliva (AS) revealed that leached fluoride ion concentration was 0.44 ppm, when the samples were immersed in AS for 8 weeks. This was much lower than the WHO recommended safety limits of 1.5 ppm. Among all the investigated glass-ceramic samples, the glass ceramic with 3.85% F

  3. Fractographic features of glass-ceramic and zirconia-based dental restorations fractured during clinical function.

    Oilo, Marit; Hardang, Anne D; Ulsund, Amanda H; Gjerdet, Nils R

    2014-06-01

    Fractures during clinical function have been reported as the major concern associated with all-ceramic dental restorations. The aim of this study was to analyze the fracture features of glass-ceramic and zirconia-based restorations fractured during clinical use. Twenty-seven crowns and onlays were supplied by dentists and dental technicians with information about type of cement and time in function, if available. Fourteen lithium disilicate glass-ceramic restorations and 13 zirconia-based restorations were retrieved and analyzed. Fractographic features were examined using optical microscopy to determine crack initiation and crack propagation of the restorations. The material comprised fractured restorations from one canine, 10 incisors, four premolars, and 11 molars. One crown was not categorized because of difficulty in orientation of the fragments. The results revealed that all core and veneer fractures initiated in the cervical margin and usually from the approximal area close to the most coronally placed curvature of the margin. Three cases of occlusal chipping were found. The margin of dental all-ceramic single-tooth restorations was the area of fracture origin. The fracture features were similar for zirconia, glass-ceramic, and alumina single-tooth restorations. Design features seem to be of great importance for fracture initiation. © 2014 Eur J Oral Sci.

  4. Production of highly porous glass-ceramics from metallurgical slag, fly ash and waste glass

    Mangutova Bianka V.; Fidancevska Emilija M.; Milosevski Milosav I.; Bossert Joerg H.

    2004-01-01

    Glass-ceramics composites were produced based on fly-ash obtained from coal power stations, metallurgical slag from ferronickel industry and waste glass from TV monitors, windows and flasks. Using 50% waste flask glass in combination with fly ash and 20% waste glass from TV screens in combination with slag, E-modulus and bending strength values of the designed systems are increased (system based on fly ash: E-modulus from 6 to 29 GPa, and bending strength from 9 to 75 MPa). The polyurethane f...

  5. Wear behavior of human enamel against lithium disilicate glass ceramic and type III gold.

    Lee, Ahreum; Swain, Michael; He, Lihong; Lyons, Karl

    2014-12-01

    The wear behavior of human enamel that opposes different prosthetic materials is still not clear. The purpose of this in vitro study was to investigate and compare the friction and wear behavior of human tooth enamel that opposes 2 indirect restorative materials: lithium disilicate glass ceramic and Type III gold. Friction-wear tests on human enamel (n=5) that opposes lithium disilicate glass ceramic (n=5) and Type III gold (n=5) were conducted in a ball-on-flat configuration with a reciprocating wear testing apparatus. The wear pairs were subjected to a normal load of 9.8 N, a reciprocating amplitude of approximately 200 μm, and a reciprocating frequency of approximately 1.6 Hz for up to 1100 cycles per test under distilled water lubrication. The frictional force of each cycle was recorded, and the corresponding friction coefficient for different wear pairs was calculated. After wear testing, the wear scars on the enamel specimens were examined under a scanning electron microscope. Type III gold had a significantly lower steady-state friction coefficient (P=.009) and caused less wear damage on enamel than lithium disilicate glass ceramic. Enamel that opposed lithium disilicate glass ceramic exhibited cracks, plow furrows, and surface loss, which indicated abrasive wear as the prominent wear mechanism. In comparison, the enamel wear scar that opposed Type III gold had small patches of gold smear adhered to the surface, which indicated a predominantly adhesive wear mechanism. A lower friction coefficient and better wear resistance were observed when human enamel was opposed by Type III gold than by lithium disilicate glass ceramic in vitro. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  6. A comparison of the microstructure and properties of the IPS Empress 2 and the IPS Empress glass-ceramics.

    Höland, W; Schweiger, M; Frank, M; Rheinberger, V

    2000-01-01

    The aim of this report is to analyze the microstructures of glass-ceramics of the IPS Empress 2 and IPS Empress systems by scanning electron microscopy. The main properties of the glass-ceramics were determined and compared to each other. The flexural strength of the pressed glass-ceramic (core material) was improved by a factor of more than three for IPS Empress 2 (lithium disilicate glass-ceramic) in comparison with IPS Empress (leucite glass-ceramic). For the fracture toughness, the K(IC) value was measured as 3.3 +/- 0.3 MPa. m(0.5) for IPS Empress 2 and 1.3 +/- 0.1 MPa. m(0.5) for IPS Empress. Abrasion behavior, chemical durability, and optical properties such as translucency of all glass-ceramics fulfill the dental standards. The authors concluded that IPS Empress 2 can be used to fabricate 3-unit bridges up to the second premolar. Copyright 2000 John Wiley & Sons, Inc.

  7. CRYSTALLIZATION KINETICS OF GLASS-CERAMICS BY DIFFERENTIAL THERMAL ANALYSIS

    A. NOZAD

    2011-06-01

    Full Text Available The crystallization behavior of fluorphlogopite, a glass-ceramic in the MgO–SiO2–Al2O3–K2O–B2O3–F system, was studied by substitution of Li2O for K2O in the glass composition. DTA, XRD and SEM were used for the study of crystallization behavior, formed phases and microstructure of the resulting glass-ceramics. Crystallization kinetics of the glass was investigated under non-isothermal conditions, using the formal theory of transformations for heterogeneous nucleation. The crystallization results were analyzed, and both the activation energy of crystallization process as well as the crystallization mechanism were characterized. Calculated kinetic parameters indicated that the appropriate crystallization mechanism was bulk crystallization for base glass and the sample with addition of Li2O. Non-isothermal DTA experiments showed that the crystallization activation energies of base glasses was in the range of 234-246 KJ/mol and in the samples with addition of Li2O was changed to the range of 317-322 KJ/mol.

  8. Surface characterization of ceramic materials

    Somorjai, G.A.; Salmeron, M.

    1976-01-01

    In recent years several techniques have become available to characterize the structure and chemical composition of surfaces of ceramic materials. These techniques utilize electron scattering and scattering of ions from surfaces. Low-energy electron diffraction is used to determine the surface structure, Auger electron spectroscopy and other techniques of electron spectroscopy (ultraviolet and photoelectron spectroscopies) are employed to determine the composition of the surface. In addition the oxidation state of surface atoms may be determined using these techniques. Ion scattering mass spectrometry and secondary ion mass spectrometry are also useful in characterizing surfaces and their reactions. These techniques, their applications and the results of recent studies are discussed. 12 figures, 52 references, 2 tables

  9. Glass ceramic obtained by tailings and tin mine waste reprocessing from Llallagua, Bolivia

    Arancibia, Jony Roger Hans; Villarino, Cecilia; Alfonso, Pura; Garcia-Valles, Maite; Martinez, Salvador; Parcerisa, David

    2014-05-01

    In Bolivia Sn mining activity produces large tailings of SiO2-rich residues. These tailings contain potentially toxic elements that can be removed into the surface water and produce a high environmental pollution. This study determines the thermal behaviour and the viability of the manufacture of glass-ceramics from glass. The glass has been obtained from raw materials representative of the Sn mining activities from Llallagua (Bolivia). Temperatures of maximum nucleation rate (Tn) and crystallization (Tcr) were calculated from the differential thermal analyses. The final mineral phases were determined by X-ray diffraction and textures were observed by scanning electron microscopy. Crystalline phases are nefeline occurring with wollastonite or plagioclase. Tn for nepheline is between 680 ºC and 700 ºC, for wollastonite, 730 ºC and for plagioclase, 740 ºC. Tcr for nefeline is between 837 and 965 ºC; for wollastonite, 807 ºC and for plagioclase, 977 ºC. In order to establish the mechanical characteristics and efficiency of the vitrification process in the fixation of potentially toxic elements the resistance to leaching and micro-hardness were determined. The obtained contents of the elements leached from the glass ceramic are well below the limits established by the European legislation. So, these analyses confirm that potentially toxic elements remain fixed in the structure of mineral phases formed in the glass-ceramic process. Regarding the values of micro-hardness results show that they are above those of a commercial glass. The manufacture of glass-ceramics from mining waste reduces the volume of tailings produced for the mining industry and, in turn enhances the waste, transforming it into a product with industrial application. Acknowledgements: This work was partly financed by the project AECID: A3/042750/11, and the SGR 2009SGR-00444.

  10. Cr3+ and Cr4+ luminescence in glass ceramic silica

    Martines, Marco A.U.; Davolos, Marian R.; Jafelicci, Miguel Junior; Souza, Dione F. de; Nunes, Luiz A.O.

    2008-01-01

    This paper reports on the effect of glass ceramic silica matrix on [CrO 4 ] 4- and Cr 2 O 3 NIR and visible luminescence. Chromium-containing silica was obtained by precipitation from water-glass and chromium nitrate acid solution with thermal treatment at 1000 deg. C. From XRD results silica and silica-chromium samples are crystalline. The chromium emission spectrum presents two main broad bands: one in the NIR region (1.1-1.7μm) and other in the visible region (0.6-0.7μm) assigned to Cr 4+ and to Cr 3+ , respectively. This thermal treated glass ceramic silica-chromium sample stabilizes the [CrO 4 ] 4- where Cr 4+ substitutes for Si 4+ and also hexacoordinated Cr 3+ group probably as segregated phase in the system. It can be pointed out that luminescence spectroscopy is a powerful tool for detecting the two chromium optical centers in the glass ceramic silica

  11. Glass/ceramic coatings for implants

    Tomsia, Antoni P [Pinole, CA; Saiz, Eduardo [Berkeley, CA; Gomez-Vega, Jose M [Nagoya, JP; Marshall, Sally J [Larkspur, CA; Marshall, Grayson W [Larkspur, CA

    2011-09-06

    Glass coatings on metals including Ti, Ti6A14V and CrCo were prepared for use as implants. The composition of the glasses was tailored to match the thermal expansion of the substrate metal. By controlling the firing atmosphere, time, and temperature, it was possible to control the reactivity between the glass and the alloy and to fabricate coatings (25-150 .mu.m thick) with excellent adhesion to the substrate. The optimum firing temperatures ranged between 800 and 840.degree. C. at times up to 1 min in air or 15 min in N.sub.2. The same basic technique was used to create multilayered coatings with concentration gradients of hydroxyapatite (HA) particles and SiO.sub.2.

  12. Glass ceramics for sealing to high-thermal-expansion metals

    Wilder, J.A. Jr.

    1980-10-01

    Glass ceramics were studied, formulated in the Na 2 O CaO.P 2 O 5 , Na 2 O.BaOP 2 O 5 , Na 2 O.Al 2 O 3 .P 2 O 5 , and Li 2 O.BaO.P 2 O 5 systems to establish their suitability for sealing to high thermal expansion metals, e.g. aluminum, copper, and 300 series stainless steels. Glass ceramics in Na 2 O.CaO.P 2 O 5 and Na 2 O.BaO.P 2 O 5 systems have coefficients of thermal expansion in the range 140 x 10 -1 per 0 C less than or equal to α less than or equal to 225 x 10 -7 per 0 C and fracture toughness values generally greater than those of phosphate glasses; they are suitable for fabricating seals to high thermal expansion metals. Crystal phases include NaPo 3 , (NaPO 3 ) 3 , NaBa(PO 3 ) 3 , and NaCa(PO 3 ) 3 . Glass ceramics formed in the Na 2 O.Al 2 O 3 .P 2 O 5 systems have coefficients of thermal expansion greater than 240 x 10 -7 per 0 C, but they have extensive microcracking. Due to their low thermal expansion values (α less than or equal to 120 x 10 -7 per 0 C), glass ceramics in the Li 2 O.BaO.P 2 O 5 system are unsuitable for sealing to high thermal expansion metals

  13. The effect of spark plasma sintering on lithium disilicate glass-ceramics.

    Al Mansour, Fatima; Karpukhina, Natalia; Grasso, Salvatore; Wilson, Rory M; Reece, Mike J; Cattell, Michael J

    2015-10-01

    To evaluate the effects of spark plasma sintering (SPS) on the microstructure of lithium disilicate glass-ceramics. IPS e.max CAD glass-ceramic samples were processed using spark plasma sintering (SPS) and conventionally sintered (CS) as a comparison. Specimens were sintered at varying temperatures (T1: 840°C, T2: 820°C, T3: 800°C), heating rates (HR1: 150°C/min, HR2: 300°C/min, HR3: 500°C/min) and pressures (P1: 15MPa, P2: 50MPa, P3: 70MPa). IPS e.max Press glass powder samples were densified at 750 and 800°C (50 or 200MPa pressure). Samples were characterized using XRD, HTXRD, and SEM and quantitative image analysis. There was a significant increase in median crystal size (MCS) between the CS and the SPS T1 groups. A statistical difference (p>0.05) in MCS between SPS T1 and SPS T2 groups was observed. The SPS HR3 sample produced a smaller MCS than the CS, SPS HR1 and HR2 groups (pglass samples resulted in fine fibrils or graduated lithium disilicate crystals. The effects of SPS were used to refine the microstructure of IPS e.max CAD lithium disilicate glass-ceramics. Densification by SPS of IPS e.max Press glass resulted in textured and fine nano-crystalline microstructures. SPS generated glass-ceramic microstructures may have unique properties and could be useful in the production of CAD/CAM materials for dentistry. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  14. Partial replacement of the feldspar waste of flat glass ceramics for masses in white

    Porto, V.S.; Araujo, A.M.B.; Morais, C.R.S.; Cavalcanti, M.S.L.

    2012-01-01

    In all the industrial production process requires the consumption of raw materials exaggerated the traditional scarcity of incurring the same. To reverse this situation, one of the possible actions is the search for alternative technologies that aim to replace these materials by waste that exhibit similar characteristics. This study aims to verify the possibility of partially replacing feldspar by waste flat glass ceramic mass for white, since this type of waste, when subjected to high temperatures can act as a flux. For this research, initially the raw materials were characterized using the techniques of energy dispersive spectroscopy X-ray (EDX) and X-ray diffraction. Then, test pieces were prepared to be burned at temperatures between 1000 and 1250 ° C, which were submitted to tests of porosity to absorb water. The results are within the standards required by the standards established for ceramic products, which confirms the feasibility of such waste to act as a flux in ceramic white masses. (author)

  15. The characterization of ceramic alumina prepared by using additive glass beads

    Suprapedi; Muljadi; Sardjono, Priyo

    2018-01-01

    The ceramic alumina has been made by using additive glass bead (5 and 10 % wt.). There are two kinds of materials, such as : gamma Alumina and glass bead. Synthesis of alumina was done by ball milling for 24 hours, then the mixed powder was dried in drying oven at 100 °C for 6 hours. Furthermore, the dried powder was mixed by using 2 % of PVA and continued with compacted to form a pellet with pressure of 50 MPA. The next step is sintering process with variation temperature of 1150, 1200, 1250, 1300 and 1400 °C and holding time for 2 hours. The characterization conducted are consist of test density, hardness, shrinkage, and microstructure. The results show that ceramic alumina with addition of 10 % wt. glass bead has the higher value of density, hardness and shrinkage than addition of 5% wt. glass bead. The highest characterization of ceramic alumina with addition 10 % glass bead was achieved at sintering temperature of 1400 °C with density 3.68 g/cm3, hardness vickers 780.40 Hv and shrinkage 15.23 %. The XRD results show that it was founds a corrundum (alpha Alumina) as dominant phase and mullite as minor phase.

  16. Bonding strength of glass-ceramic trabecular-like coatings to ceramic substrates for prosthetic applications.

    Chen, Qiang; Baino, Francesco; Pugno, Nicola M; Vitale-Brovarone, Chiara

    2013-04-01

    A new approach based on the concepts of quantized fracture mechanics (QFM) is presented and discussed in this paper to estimate the bonding strength of trabecular-like coatings, i.e. glass-ceramic scaffolds mimicking the architecture of cancellous bone, to ceramic substrates. The innovative application of glass-derived scaffolds as trabecular-like coatings is proposed in order to enhance the osteointegration of prosthetic ceramic devices. The scaffolds, prepared by polymeric sponge replication, are joined to alumina substrates by a dense glass-ceramic coating (interlayer) and the so-obtained 3-layer constructs are investigated from micro-structural, morphological and mechanical viewpoints. In particular, the fracture strengths of three different crack propagation modes, i.e. glass-derived scaffold fracture, interface delamination or mixed fracture, are predicted in agreement with those of experimental mechanical tests. The approach proposed in this work could have interesting applications towards an ever more rational design of bone tissue engineering biomaterials and coatings, in view of the optimization of their mechanical properties for making them actually suitable for clinical applications. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Estimation of local mechanical properties of highly porous ceramic materials

    Marcián, P.; Majer, Z.; Dlouhý, Ivo; Florian, Z.

    2012-01-01

    Roč. 106, č. 3 (2012), S476-S477 ISSN 0009-2770 R&D Projects: GA ČR(CZ) GA101/09/1821 Institutional support: RVO:68081723 Keywords : cellular structures * tensile test * microCT * image processing * FEM Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 0.453, year: 2012 http://chemicke-listy.cz/docs/full/2012_s3_s405-s441.pdf

  18. Mechanical properties of molybdenum-sealing glass-ceramics

    Swearengen, J.C.; Eagan, R.J.

    1975-07-01

    Elastic constants, thermal expansion, strength, and fracture toughness were determined for a molybdenum-sealing glass-ceramic containing approximately 31 volume percent Zn 2 SiO 4 crystals in a glass matrix. The microstructure was studied for two different crystallization treatments and moderate changes in composition. Mechanical properties of the composite were compared with the properties of the constituent phases through application of mixture theory and by fractographic observations. The reinforcing effects of the crystal phase at room temperature are evident in comparison with the properties of the residual glass but not necessarily in comparison with the parent glass. Fracture toughness of the composite depends primarily upon additive properties of the separate phases instead of by interactive effects such as microcracks. (U.S.)

  19. High-temperature materials and structural ceramics

    1990-01-01

    This report gives a survey of research work in the area of high-temperature materials and structural ceramics of the KFA (Juelich Nuclear Research Center). The following topics are treated: (1) For energy facilities: ODS materials for gas turbine blades and heat exchangers; assessment of the remaining life of main steam pipes, material characterization and material stress limits for First-Wall components; metallic and graphitic materials for high-temperature reactors. (2) For process engineering plants: composites for reformer tubes and cracking tubes; ceramic/ceramic joints and metal/ceramic and metal/metal joints; Composites and alloys for rolling bearing and sliding systems up to application temperatures of 1000deg C; high-temperature corrosion of metal and ceramic material; porous ceramic high-temperature filters and moulding coat-mix techniques; electrically conducting ceramic material (superconductors, fuel cells, solid electrolytes); high-temperature light sources (high-temperature chemistry); oil vapor engines with caramic components; ODS materials for components in diesel engines and vehicle gas turbines. (MM) [de

  20. Electrical characterization of strontium titanate borosilicate glass ceramics system with bismuth oxide addition using impedance spectroscopy

    Thakur, O.P.; Kumar, Devendra; Parkash, Om; Pandey, Lakshman

    2003-01-01

    The ac electrical data, measured in the frequency range 0.1 kHz-1 MHz, were used to study the electrical response of strontium titanate borosilicate glass ceramic system with bismuth oxide addition. Complex plane plots from these electrical data for various glass ceramic samples reveal contributions from simultaneously operating polarization mechanisms to overall dielectric behavior. The complex modulus (M * ) representation of electrical data for various glass ceramic samples were found to be more informative. Equivalent circuit models, which represent the electrical behavior of glass ceramic samples, were determined using complex non-linear least square (CNLS) fitting. An attempt has been made to understand the dielectric behavior of various glass ceramics in terms of contributions arising from different polarization processes occurring at glassy matrix, crystalline phases, glass to crystal interface region and blocking electrodes. Glass ceramics containing SrTiO 3 and TiO 2 (rutile) phases show thermally stable dielectric behavior

  1. High-frequency characteristics of glass/ceramic composite and alumina multilayer structures

    Niwa, K.; Suzuki, H.; Yokoyama, H.; Kamechara, N.; Tsubone, K.; Tanisawa, H.; Sugiki, H.

    1990-01-01

    This paper reports the transmission characteristics of glass/ceramic composite (borosilicate glass/alumina) and alumina multilayer structures examined. The triplate stripline formed in the glass/ceramic multilayer shows low conductor and dielectric loss. Alumina multilayer, however, has twice the transmission loss at 10 GHz, because the resistivity of W in the alumina multilayer is higher than the Cu in the glass/ceramic multilayer. Crosstalk between striplines in the glass/ceramics is less than -80 dB up to 11 GHz and 9 GHz for alumina

  2. Magnetic properties of Fe-Nd silica glass ceramics

    Nayak, Manjunath T.; Desa, J. A. Erwin; Babu, P. D.

    2018-04-01

    Soda lime silica glass ceramics containing iron and neodymium have been synthesized. The XRD pattern revealed that the glass samples devitrified into multiple phases. Fe2O3 as an initial component converted into Fe3O4 in the sample during the synthesis, and was the main contributor to the magnetic property of the sample. The inclusion of Nd was found to enhance the magnetization of the sample at 5K. The coercivity of the sample increased with decrease in temperature from room to 5K.

  3. Bioactive Glass and Glass-Ceramic Scaffolds for Bone Tissue Engineering

    Aldo R. Boccaccini

    2010-07-01

    Full Text Available Traditionally, bioactive glasses have been used to fill and restore bone defects. More recently, this category of biomaterials has become an emerging research field for bone tissue engineering applications. Here, we review and discuss current knowledge on porous bone tissue engineering scaffolds on the basis of melt-derived bioactive silicate glass compositions and relevant composite structures. Starting with an excerpt on the history of bioactive glasses, as well as on fundamental requirements for bone tissue engineering scaffolds, a detailed overview on recent developments of bioactive glass and glass-ceramic scaffolds will be given, including a summary of common fabrication methods and a discussion on the microstructural-mechanical properties of scaffolds in relation to human bone (structure-property and structure-function relationship. In addition, ion release effects of bioactive glasses concerning osteogenic and angiogenic responses are addressed. Finally, areas of future research are highlighted in this review.

  4. Tungstate-based glass-ceramics for the immobilization of radio cesium

    Drabarek, Elizabeth; McLeod, Terry I.; Hanna, John V.; Griffith, Christopher S.; Luca, Vittorio

    2009-02-01

    The preparation of tungstate-containing glass-ceramic composites (GCC) for the potential immobilization of radio cesium has been considered. The GCC materials were prepared by blending two oxide precursor compositions in various proportions. These included a preformed Cs-containing hexagonal tungsten bronze (HTB) phase (Cs 0.3Ti 0.2W 0.8O 3, P6 3/ mcm) and a blend of silica and other oxides. The use of the HTB phase was motivated on the assumption that a HTB-based adsorbent could be used to remove cesium directly from aqueous high level liquid waste feeds. In the absence of the HTB, glass-ceramics were relatively easily prepared from the Cs-containing glass-forming oxide blend. On melting the mixture a relative complex GCC phase assemblage formed. The principal components of this phase assemblage were determined using X-ray powder diffraction, 133Cs MAS-NMR, and cross-sectional SEM and included glass, various zeolites, scheelite (CaWO 4) and a range of other oxide phases and Cs-containing aluminosilicate. Importantly, under no circumstance was cesium partitioned into the glass phase irrespective of whether or not the composition included the preformed Cs-containing HTB compound. For compositions containing the HTB, cesium was partitioned into one of four major phases including zeolite; Cs-silica-tungstate bronze, pollucite (CsAlSi 2O 6), and an aluminosilicate with an Al/Si ratio close to one. The leach resistance of all materials was evaluated and related to the cesium distribution within the GCC phase assemblages. In general, the GCCs prepared from the HTB had superior durability compared with materials not containing tungsten. Indeed the compositions in many cases had leach resistances comparable to the best ceramics or glass materials.

  5. Surface depression of glass and surface swelling of ceramics induced by ion implantation

    Ikeyama, Masami; Saitoh, Kazuo; Nakao, Setsuo; Niwa, Hiroaki; Tanemura, Seita; Miyagawa, Yoshiko; Miyagawa, Souji

    1994-01-01

    By the measurement of the change of the surface shapes of the glass and ceramics in which ion implantation was performed, it was clarified that glass surface was depressed, and ceramic surface swelled. These depression and swelling changed according to the kinds of ions, energy and the amount to be implanted and the temperature of samples. It became clear that the depression of glass surface was nearly proportional to the range of flight of the implanted ions, and the swelling of ceramic surface showed different state in the silicon nitride with strong covalent bond and the alumina and sapphire with strong ionic bond. For the improvement of the mechanical characteristics of solid materials such as hardness, strength, toughness, wear resistance, oxidation resistance and so on, attention has been paid to the surface reforming by high energy ion implantation at MeV level. The change of shapes of base materials due to ion implantation is not always negligible. The experiment was carried out on sintered silicon nitride and alumina, polished sapphire single crystals and quartz glass. The experimental method and the results are reported. (K.I.)

  6. New ceramic materials; Nuevos materiales ceramicos

    Moreno, R.; Dominguez-Rodriguez, A.

    2010-07-01

    This article is to provide a new ceramic materials in which, with a control of their processing and thus their microstructural properties, you can get ceramic approaching ever closer to a metal, both in its structural behavior at low as at high temperatures. (Author) 30 refs.

  7. Conversion of plutonium-containing materials into borosilicate glass using the glass material oxidation and dissolution system

    Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

    1996-01-01

    The end of the cold war has resulted in excess plutonium-containing materials (PCMs) in multiple chemical forms. Major problems are associated with the long-term management of these materials: safeguards and nonproliferation issues; health, environment, and safety concerns; waste management requirements; and high storage costs. These issues can be addressed by conversion of the PCMs to glass: however, conventional glass processes require oxide-like feed materials. Conversion of PCMs to oxide-like materials followed by vitrification is a complex and expensive process. A new vitrification process has been invented, the Glass Material Oxidation and Dissolution System (GMODS) to allow direct conversion of PCMs to glass. GMODS directly converts metals, ceramics, and amorphous solids to glass; oxidizes organics with the residue converted to glass; and converts chlorides to borosilicate glass and a secondary sodium chloride stream. Laboratory work has demonstrated the conversion of cerium (a plutonium surrogate), uranium (a plutonium surrogate), Zircaloy, stainless steel, multiple oxides, and other materials to glass. Equipment options have been identified for processing rates between 1 and 100,000 t/y. Significant work, including a pilot plant, is required to develop GMODS for applications at an industrial scale

  8. Zero expansion glass ceramic ZERODUR® roadmap for advanced lithography

    Westerhoff, Thomas; Jedamzik, Ralf; Hartmann, Peter

    2013-04-01

    The zero expansion glass ceramic ZERODUR® is a well-established material in microlithography in critical components as wafer- and reticle-stages, mirrors and frames in the stepper positioning and alignment system. The very low coefficient of thermal expansion (CTE) and its extremely high CTE homogeneity are key properties to achieve the tight overlay requirements of advanced lithography processes. SCHOTT is continuously improving critical material properties of ZERODUR® essential for microlithography applications according to a roadmap driven by the ever tighter material specifications broken down from the customer roadmaps. This paper will present the SCHOTT Roadmap for ZERODUR® material property development. In the recent years SCHOTT established a physical model based on structural relaxation to describe the coefficient of thermal expansion's temperature dependence. The model is successfully applied for the new expansion grade ZERODUR® TAILORED introduced to the market in 2012. ZERODUR® TAILORED delivers the lowest thermal expansion of ZERODUR® products at microlithography tool application temperature allowing for higher thermal stability for tighter overlay control in IC production. Data will be reported demonstrating the unique CTE homogeneity of ZERODUR® and its very high reproducibility, a necessary precondition for serial production for microlithography equipment components. New data on the bending strength of ZERODUR® proves its capability to withstand much higher mechanical loads than previously reported. Utilizing a three parameter Weibull distribution it is possible to derive minimum strength values for a given ZERODUR® surface treatment. Consequently the statistical uncertainties of the earlier approach based on a two parameter Weibull distribution have been eliminated. Mechanical fatigue due to stress corrosion was included in a straightforward way. The derived formulae allows calculating life time of ZERODUR® components for a given stress

  9. Bi4Sr3Ca3Cu4O16 galss and superconducting glass ceramics

    Zheng, H.; Mackenzie, J.D.

    1988-01-01

    Bi 4 Sr 3 Ca 3 Cu 4 O 16 glass has been successfully fabricated by the melting process. Glass transition temperature, crystallization temperature, and liquid temperature of the glass are 434, 478, and 833 0 C, respectively. After the glass is heat treated at 800 0 C, a glass ceramic is formed. A comparison of the x-ray-diffraction pattern of the superconducting Bi 4 Sr 3 Ca 3 Cu 4 O/sub 16+//sub x/ ceramic to the Bi 4 Sr 3 Ca 3 Cu 4 O 16 glass ceramic revealed preferred orientation in the glass ceramic crystals. The superconducting transition temperatures T/sub c//sub (onset)/ and T/sub c//sub (zero)/ of the glass ceramics are 100 and 45 K, respectively

  10. New generation Li+ NASICON glass-ceramics for solid state Li+ ion battery applications

    Sharma, Neelakshi; Dalvi, Anshuman

    2018-04-01

    Lithiumion conducting NASICON glass-ceramics have been prepared by a novel planetary ball milling assisted synthesis route. Structural, thermal and electrical investigations have been carried out on the novel composites composed of LiTi(PO4)3 (LTP) and 50[Li2SO4]-50[Li2O-P2O5] ionic glass reveal interesting results. Composites were prepared keeping the concentration of the ionic glass fixed at 20 wt%. X-ray diffraction and diffe rential thermal analysis confirm the glass-ceramic formation. Moreover, the structure of LTP remains intact during the glass -ceramic formation. Electrical conductivity of the glass-ceramic composite is found to be higher than that of the pristine glass (50LSLP) and LTP. The bulk and grain boundary conductivities of LTP exhibit improvement in composite. Owing to high ionic conductivity and thermal stability, novel glass -ceramic seems to be a promising candidate for all solid-state battery applications.

  11. Marginal Integrity of Glass Ionomer and All Ceramic Restorations

    2015-06-01

    North Carolina), scanned by the CEREC Omnicam , and milled by CEREC inLab MC XL system. 15 List of Procedures in Chronological Order 1. The...Fuji II LC, GC America, Alsip, Illinois). Forty lithium disilicate porcelain ceramic inlays will be milled from CEREC Block PC (Sirona, Charlotte...evolution of the CEREC system. Journal of the American Dental Association, 137, 7s-13s. Mount G.J. (1991). Adhesion of glass-ionomer cement in the clinical

  12. Interaction of HEPES buffer with glass-ceramic scaffold: Can HEPES replace TRIS in SBF?

    Rohanová, Dana; Horkavcová, Diana; Paidere, Laine; Boccaccini, Aldo Roberto; Bozděchová, Pavlína; Bezdička, Petr

    2018-01-01

    An international standard (ISO: 23317:2014) exists for the in vitro testing of inorganic biomaterials in simulated body fluid (SBF). This standard uses TRIS buffer to maintain neutral pH in SBF, but in our previous paper, we showed that the interaction of a tested glass-ceramic material with TRIS can produce false-positive results. In this study, we evaluated whether the HEPES buffer, which also belongs to the group of Good´s buffers, would be more suitable for SBF. We compared its suitability in two media: SBF with HEPES and demineralized water with HEPES. The tested scaffold (45S5 bioactive glass-based) was exposed to the media under a static-dynamic arrangement (solutions were replaced on a daily basis) for 15 days. Leachate samples were collected daily for the analysis of Ca 2+ ions and Si (AAS), (PO 4 ) 3- ions (UV-VIS), and to measure pH. The glass-ceramic scaffold was analyzed by SEM/EDS, XRD, and WD-XRF before and after 0.3, 1, 3, 7, 11, and 15 days of exposure. Our results confirmed the rapid selective dissolution of the glass-ceramic crystalline phase (Combeite) containing Ca 2+ ions due to the presence of HEPES, hydroxyapatite supersaturation being reached within 24 h in both solutions. These new results suggest that, like TRIS, HEPES buffer is not suitable for the in vitro testing of highly reactive inorganic biomaterials (glass, glass-ceramics). The ISO standard for such tests requires revision, but HEPES is not a viable alternative to TRIS buffer. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 143-152, 2018. © 2016 Wiley Periodicals, Inc.

  13. Dielectric behaviour of (Ba,Sr)TiO3 perovskite borosilicate glass ceramics

    Yadav, Avadhesh Kumar; Gautam, C.R.

    2013-01-01

    Various perovskite (Ba,Sr)TiO 3 borosilicate glasses were prepared by rapid melt-quench technique in the glass system ((Ba 1-x Sr x ).TiO 3 )-(2SiO 2 .B 2 O 3 )-(K 2 O)-(La 2 O 3 ). On the basis of differential thermal analysis results, glasses were converted into glass ceramic samples by regulated heat treatment schedules. The dielectric behaviour of crystallized barium strontium titanate borosilicate glass ceramic samples shows diffuse phase transition. The study depicts the dielectric behaviour of glass ceramic sample BST5K1L0.2S814. The double relaxation was observed in glass ceramic samples corresponding 80/20% Ba/Sr due to change in crystal structure from orthorhombic to tetragonal and tetragonal to cubic with variation of temperature. The highest value of dielectric constant was found to be 48289 for the glass ceramic sample BST5K1L0.2S814. The high value of dielectric constant attributed to space charge polarization between the glassy phase and perovskite phase. Due to very high value of dielectric constant, such glass ceramics are used for high energy storage devices. La 2 O 3 acts as nucleating agent for crystallization of glass to glass ceramics and enhances the dielectric constant and retarded dielectric loss. Such glass ceramics can be used in high energy storage devices such as barrier layer capacitors, multilayer capacitors etc. (author)

  14. Mechanochemically synthesized kalsilite based bioactive glass-ceramic composite for dental vaneering

    Kumar, Pattem Hemanth; Singh, Vinay Kumar; Kumar, Pradeep

    2017-08-01

    Kalsilite glass-ceramic composites have been prepared by a mechanochemical synthesis process for dental veneering application. The aim of the present study is to prepare bioactive kalsilite composite material for application in tissue attachment and sealing of the marginal gap between fixed prosthesis and tooth. Mechanochemical synthesis is used for the preparation of microfine kalsilite glass-ceramic. Low temperature frit and bioglass have been prepared using the traditional quench method. Thermal, microstructural and bioactive properties of the composite material have been examined. The feasibility of the kalsilite to be coated on the base commercial opaque as well as the bioactive behavior of the coated specimen has been confirmed. This study indicates that the prepared kalsilite-based composites show similar structural, morphological and bioactive behavior to that of commercial VITA VMK95 Dentin 1M2.

  15. Improvement of the stability of hydroxyapatite through glass ceramic reinforcement.

    Ha, Na Ra; Yang, Zheng Xun; Hwang, Kyu Hong; Kim, Tae Suk; Lee, Jong Kook

    2010-05-01

    Hydroxyapatite has achieved significant application in orthopedic and dental implants due to its excellent biocompatibility. Sintered hydroxyapatites showed significant dissolution, however, after their immersion in water or simulated body fluid (SBF). This grain boundary dissolution, even in pure hydroxyapatites, resulted in grain separation at the surfaces, and finally, in fracture. In this study, hydroxyapatite ceramics containing apatite-wollastonite (AW) or calcium silicate (SG) glass ceramics as additives were prepared to prevent the dissolution. AW and SG glass ceramics were added at 0-7 wt% and powder-compacted uniaxially followed by firing at moisture conditions. The glass phase was incorporated into the hydroxyapatite to act as a sintering aid, followed by crystallization, to improve the mechanical properties without reducing the biocompatibility. As seen in the results of the dissolution test, a significant amount of damage was reduced even after more than 14 days. TEM and SEM showed no decomposition of HA to the secondary phase, and the fracture toughness increased, becoming even higher than that of the commercial hydroxyapatite.

  16. Composite metal foil and ceramic fabric materials

    Webb, Brent J.; Antoniak, Zen I.; Prater, John T.; DeSteese, John G.

    1992-01-01

    The invention comprises new materials useful in a wide variety of terrestrial and space applications. In one aspect, the invention comprises a flexible cloth-like material comprising a layer of flexible woven ceramic fabric bonded with a layer of metallic foil. In another aspect, the invention includes a flexible fluid impermeable barrier comprising a flexible woven ceramic fabric layer having metal wire woven therein. A metallic foil layer is incontinuously welded to the woven metal wire. In yet another aspect, the invention includes a material comprising a layer of flexible woven ceramic fabric bonded with a layer of an organic polymer. In still another aspect, the invention includes a rigid fabric structure comprising a flexible woven ceramic fabric and a resinous support material which has been hardened as the direct result of exposure to ultraviolet light. Inventive methods for producing such material are also disclosed.

  17. Wear behavior of pressable lithium disilicate glass ceramic.

    Peng, Zhongxiao; Izzat Abdul Rahman, Muhammad; Zhang, Yu; Yin, Ling

    2016-07-01

    This article reports effects of surface preparation and contact loads on abrasive wear properties of highly aesthetic and high-strength pressable lithium disilicate glass-ceramics (LDGC). Abrasive wear testing was performed using a pin-on-disk device in which LDGC disks prepared with different surface finishes were against alumina pins at different contact loads. Coefficients of friction and wear volumes were measured as functions of initial surface finishes and contact loads. Wear-induced surface morphology changes in both LDGC disks and alumina pins were characterized using three-dimensional laser scanning microscopy, scanning electron microscopy, and energy dispersive X-ray spectroscopy. The results show that initial surface finishes of LDGC specimens and contact loads significantly affected the friction coefficients, wear volumes and wear-induced surface roughness changes of the material. Both wear volumes and friction coefficients of LDGC increased as the load increased while surface roughness effects were complicated. For rough LDGC surfaces, three-body wear was dominant while for fine LDGC surfaces, two-body abrasive wear played a key role. Delamination, plastic deformation, and brittle fracture were observed on worn LDGC surfaces. The adhesion of LDGC matrix materials to alumina pins was also discovered. This research has advanced our understanding of the abrasive wear behavior of LDGC and will provide guidelines for better utilization and preparation of the material for long-term success in dental restorations. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 968-978, 2016. © 2015 Wiley Periodicals, Inc.

  18. The production of advanced glass ceramic HLW forms using cold crucible induction melter

    Rutledge, V.J.; Maio, V.

    2013-01-01

    Cold Crucible Induction Melters (CCIM) will favorably change how High-Level radioactive Waste (from nuclear fuel recovery) is treated in a near future. Unlike the existing Joule-Heated Melters (JHM) currently in operation for the glass-based immobilization of High-Level Waste (HLW), CCIM offers unique material features that will increase melt temperatures, increase throughput, increase mixing, increase loading in the waste form, lower melter foot prints, eliminate melter corrosion and lower costs. These features not only enhance the technology for producing HLW forms, but also provide advantageous attributes to the waste form by allowing more durable alternatives to glass. It is concluded that glass ceramic waste forms that are tailored to immobilize fission products of HLW can be can be made from the HLW processed with the CCIM. The advantageous higher temperatures reached with the CCIM and unachievable with JHM allows the lanthanides, alkali, alkaline earths, and molybdenum to dissolve into a molten glass. Upon controlled cooling they go into targeted crystalline phases to form a glass ceramic waste form with higher waste loadings than achievable with borosilicate glass waste forms. Natural cooling proves to be too fast for the formation of all targeted crystalline phases

  19. Development of new ceramic materials from the waste of serpentinite and red clay

    Presotto, P.; Mymrine, V.

    2012-01-01

    The objective of this work is to develop new ceramic materials using serpentine and glass waste and clay red. The raw materials were characterized through morphological, granulometric, mineralogical and chemical analysis. Six formulations have been developed based on the serpentine and red clay, which three of the six compositions have been adjusted with the addition of residual glass. The ceramic bodies were formed by uniaxial pressing and subjected to burn in an electric oven at temperatures of 1100 ° C, 1200 ° C, 1250 ° C and 1300 ° C. The ceramic samples obtained this way were characterized according to their physical properties (specific mass and linear retraction) and the mechanical (three points bending strength). The final properties varied according to the proportions of raw materials and firing temperature. In general, the different formulations fit the standards for traditional ceramics such as tiles and ceramic blocks. (author)

  20. Industrial waste as a source for fabrication of composite ceramics-glass with a controlled porosity

    Adziski R.

    2008-01-01

    Full Text Available Metallurgical slag with granulation (-0.125+0.063mm and 20 wt% waste TV glass were used for obtaining a glass ceramic composite with a controlled porosity. This material obtained by sintering at 950oC/2h possessed thermal stability, integral porosity of 43.6% and E-modulus and bending strength of 12 GPa and 39 MPa, respectively. The composite was characterized with a permeability of 0.47 Da and generation of air bubbles with size of 1-4 mm in a water medium.

  1. Radiation effects in glass and glass-ceramic waste forms for the immobilization of CANDU UO2 fuel reprocessing waste

    Tait, J.C.

    1993-05-01

    AECL has investigated three waste forms for the immobilization of high-level liquid wastes that would arise if used CANDU fuels were reprocessed at some time in the future to remove fissile materials for the fabrication of new power reactor fuel. These waste forms are borosilicate glasses, aluminosilicate glasses and titanosilicate glass-ceramics. This report discusses the potential effects of alpha, beta and gamma radiation on the releases of radionuclides from these waste forms as a result of aqueous corrosion by groundwaters that would be present in an underground waste disposal vault. The report discusses solid-state damage caused by radiation-induced atomic displacements in the waste forms as well as irradiation of groundwater solutions (radiolysis), and their potential effects on waste-form corrosion and radionuclide release. The current literature on radiation effects on borosilicate glasses and in ceramics is briefly reviewed, as are potential radiation effects on specialized waste forms for the immobilization of 129 I, 85 Kr and 14 C. (author). 104 refs., 9 tabs., 5 figs

  2. Toward Modeling Limited Plasticity in Ceramic Materials

    Grinfeld, Michael; Schoenfeld, Scott E; Wright, Tim W

    2008-01-01

    The characteristic features of many armor-related ceramic materials are the anisotropy on the micro-scale level and the very limited, though non-vanishing, plasticity due to limited number of the planes for plastic slip...

  3. Bioactivity and cytotoxicity of glass and glass-ceramics based on the 3CaO·P₂O₅--SiO₂--MgO system.

    Daguano, Juliana K M F; Rogero, Sizue O; Crovace, Murilo C; Peitl, Oscar; Strecker, Kurt; Dos Santos, Claudinei

    2013-09-01

    The mechanical strength of bioactive glasses can be improved by controlled crystallization, turning its use as bulk bone implants viable. However, crystallization may affect the bioactivity of the material. The aim of this study was to develop glass-ceramics of the nominal composition (wt%) 52.75(3CaO·P₂O₅)-30SiO₂-17.25MgO, with different crystallized fractions and to evaluate their in vitro cytotoxicity and bioactivity. Specimens were heat-treated at 700, 775 and 975 °C, for 4 h. The major crystalline phase identified was whitlockite, an Mg-substituted tricalcium phosphate. The evaluation of the cytotoxicity was carried out by the neutral red uptake methodology. Ionic exchanges with the simulated body fluid SBF-K9 acellular solution during the in vitro bioactivity tests highlight the differences in terms of chemical reactivity between the glass and the glass-ceramics. The effect of crystallinity on the rates of hydroxycarbonate apatite (HCA) formation was followed by Fourier transformed infrared spectroscopy. Although all glass-ceramics can be considered bioactive, the glass-ceramic heat-treated at 775 °C (V775-4) presented the most interesting result, because the onset for HCA formation is at about 24 h and after 7 days the HCA layer dominates completely the spectrum. This occurs probably due to the presence of the whitlockite phase (3(Ca,Mg)O·P₂O₅). All samples were considered not cytotoxic.

  4. Progress in development of a source term for sphene glass-ceramic dissolution under vault conditions

    Hayward, P.J.; Tait, J.C.; George, I.M.; Carmichael, A.A.; Ross, J.M.P.

    1986-01-01

    This report describes the results of ongoing leaching experiments, involving aluminosilicate glass and sphene (CaTiSiO/sub 5/) ceramics, doped with /sup 22/Na or /sup 45/Ca, and leached in a simulated Ca-NA-Cl brine at 25 0 or 100 0 C. The experiments are designed to aid development of separate models for the dissolution of the glass and the ceramic phase in a sphene glass-ceramic, and to help evaluate a composite model for the dissolution of the glass-ceramic

  5. In Vitro Comparison of the Bond Strength between Ceramic Repair Systems and Ceramic Materials and Evaluation of the Wettability.

    Kocaağaoğlu, Hasan; Manav, Taha; Albayrak, Haydar

    2017-04-01

    When fracture of an all-ceramic restoration occurs, it can be necessary to repair without removing the restoration. Although there are many studies about the repair of metal-ceramic restorations, there are few about all-ceramic restorations. The aim of this study was to evaluate the shear bond strength between ceramic repair systems and esthetic core materials and to evaluate the wettability of all-ceramic core materials. Disk-like specimens (N = 90) made of three dental ceramic infrastructure materials (zirconia ceramic, alumina ceramic, glass ceramic) were polished with silicon carbide paper, prepared for bonding (abrasion with 30 μm diamond rotary cutting instrument). Thirty specimens of each infrastructure were obtained. Each infrastructure group was divided into three subgroups; they were bonded using 3 repair systems: Bisco Intraoral Repair Kit, Cimara & Cimara Zircon Repair System, and Clearfil Repair System. After 1200 thermocycles, shear bond strength was measured in a universal testing machine at a 0.5 mm/min crosshead speed. In addition, the contact angle values of the infrastructures after surface treatments were examined for wettability. Data were analyzed by using ANOVA and Tukey post hoc tests. Although there were no significant differences among the repair systems (p > 0.05) in the glass ceramic and zirconia groups, a significant difference was found among the repair systems in alumina infrastructure (p 0.05); however, a statistically significant difference was found among the repair systems (p < 0.05). No difference was found among the infrastructures and repair systems in terms of contact angle values. Cimara & Cimara Zircon Repair System had higher bond strength values than the other repair systems. Although no difference was found among the infrastructures and repair systems, contact wettability angle was decreased by surface treatments compared with polished surfaces. © 2015 by the American College of Prosthodontists.

  6. Interpenetrating network ceramic-resin composite dental restorative materials.

    Swain, M V; Coldea, A; Bilkhair, A; Guess, P C

    2016-01-01

    This paper investigates the structure and some properties of resin infiltrated ceramic network structure materials suitable for CAD/CAM dental restorative applications. Initially the basis of interpenetrating network materials is defined along with placing them into a materials science perspective. This involves identifying potential advantages of such structures beyond that of the individual materials or simple mixing of the components. Observations from a number of recently published papers on this class of materials are summarized. These include the strength, fracture toughness, hardness and damage tolerance, namely to pointed and blunt (spherical) indentation as well as to burr adjustment. In addition a summary of recent results of crowns subjected to simulated clinical conditions using a chewing simulator are presented. These results are rationalized on the basis of existing theoretical considerations. The currently available ceramic-resin IPN material for clinical application is softer, exhibits comparable strength and fracture toughness but with substantial R-curve behavior, has lower E modulus and is more damage tolerant than existing glass-ceramic materials. Chewing simulation observations with crowns of this material indicate that it appears to be more resistant to sliding/impact induced cracking although its overall contact induced breakage load is modest. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  7. Consolidated waste forms: glass marbles and ceramic pellets

    Treat, R.L.; Rusin, J.M.

    1982-05-01

    Glass marbles and ceramic pellets have been developed at Pacific Northwest Laboratory as part of the multibarrier concept for immobilizing high-level radioactive waste. These consolidated waste forms served as substrates for the application of various inert coatings and as ideal-sized particles for encapsulation in protective matrices. Marble and pellet formulations were based on existing defense wastes at Savannah River Plant and proposed commercial wastes. To produce marbles, glass is poured from a melter in a continuous stream into a marble-making device. Marbles were produced at PNL on a vibratory marble machine at rates as high as 60 kg/h. Other marble-making concepts were also investigated. The marble process, including a lead-encapsulation step, was judged as one of the more feasible processes for immobilizing high-level wastes. To produce ceramic pellets, a series of processing steps are required, which include: spray calcining - to dry liquid wastes to a powder; disc pelletizing - to convert waste powders to spherical pellets; sintering - to densify pellets and cause desired crystal formation. These processing steps are quite complex, and thereby render the ceramic pellet process as one of the least feasible processes for immobilizing high-level wastes

  8. Scintillation and optical properties of TiO2-ZnO-Al2O3-B2O3 glasses and glass-ceramics

    Usui, Yuki; Okada, Go; Kawaguchi, Noriaki; Masai, Hirokazu; Yanagida, Takayuki

    2018-04-01

    13TiO2-xZnO-17Al2O3-(70 - x)B2O3 (x = 17, 26, and 35) glasses were prepared by a melt-quenching method, and the obtained glass samples were heated at temperatures 30 °C above the glass transition temperature of corresponding glass in order to obtain glass-ceramics. The obtained glass-ceramic samples were confirmed to have anatase (x = 17) and rutile (x = 26 and 35) phases from X-ray diffraction analysis. Then, the scintillation and optical properties were evaluated and discussed the difference between the glass-ceramic and glass samples. In the scintillation spectra under X-ray irradiation, a broad emission peak was observed around 450 nm in all the samples, and the new peak around 500 nm appeared in the anatase-precipitated glass-ceramic. The intensities of the glass-ceramic samples were enhanced in comparison with the corresponding glasses because the glass-ceramics includes TiO2 crystallites with defect centers which act as effective emission centers. The scintillation decay curves of the glass and glass-ceramic samples were approximated by one and a sum of two exponential decay functions, respectively. The faster component of glass and glass-ceramic samples would be caused by the host emission, and the slower component of glass-ceramic sample would be ascribed to the emission of Ti3+.

  9. Quantum efficiencies of near-infrared emission from Ni2+-doped glass-ceramics

    Suzuki, Takenobu; Arai, Yusuke; Ohishi, Yasutake

    2008-01-01

    A systematic method to evaluate potentials of Ni 2+ -doped transparent glass-ceramics as a new broadband optical gain media is presented. At first, near-infrared emission of various ceramics were investigated to explore the suitable crystalline phase to be grown in the glass-ceramics. The quantum efficiency of Ni 2+ near-infrared emission estimated by the Struck-Fonger analysis was higher than 95% for spinel-type structure gallate crystals MgGa 2 O 4 and LiGa 5 O 8 at room temperature. Transparent glass-ceramics containing Ni 2+ :LiGa 5 O 8 could be prepared and the quantum efficiency for the glass-ceramics was measured to be about 10%. This value shows a potential of Ni-doped transparent glass-ceramics as a broadband gain media

  10. Synthesis, characterization and bioactivity of a calcium-phosphate glass-ceramics obtained by the sol-gel processing method

    Jmal, Nouha, E-mail: jmalnouha@gmail.com; Bouaziz, Jamel

    2017-02-01

    In this work, a calcium-phosphate glass-ceramics was successfully obtained by heat treatment of a mixture of 26.52 in wt.% of fluorapatite (Fap) and 73.48 in wt.% of 77S (77 SiO{sub 2}−14 CaO−9 P{sub 2}O{sub 5} in wt.%) gel. The calcium phosphate-glass-ceramics was prepared by sol-gel process with tetraethyl orthosilicate (TEOS), triethyl phosphate (TEP), calcium nitrate and fluorapatite. The synthesized powders were characterized by some commonly used tools such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), {sup 31}P magic angle spinning nuclear magnetic resonance (MAS-NMR), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and thin-film X-ray diffraction (TF-XRD). The obtained results seemed to confirm the nucleation and growth of hydroxyapatite (Hap) nano-phase in the glass. Moreover, an in-vitro evaluation of the glass-ceramic was performed. In addition, to assess its bioactive capacity, it was soaked in simulated body fluid (SBF) at different time intervals. The SEM, EDS and TF-XRD analyses showed the deposition of hydroxyapatite on the surface of the specimens after three days of immersion in SBF solution. The mechanical properties of the obtained material such as rupture strength, Vickers hardness and elastic modulus were measured. In addition, the friction coefficient of calcium phosphate-glass-ceramics was tested. The values of the composite of rupture strength (24 MPa), Vickers hardness (214 Hv), Young's modulus (52.3 GPa), shear modulus (19 GPa) and friction coefficient (0.327) were obtained. This glass-ceramics can have useful applications in dental prostheses. Indeed, this material may have promising applications for implants because of its content of fluorine, the effective protector against dental caries. - Highlights: • A novel three phases Fap-Hap-glass-ceramics is prepared by sol–gel route. • Results showed a nucleation and growth of hydroxyapatite nano-phase in the glass.

  11. Synthesis, characterization and bioactivity of a calcium-phosphate glass-ceramics obtained by the sol-gel processing method

    Jmal, Nouha; Bouaziz, Jamel

    2017-01-01

    In this work, a calcium-phosphate glass-ceramics was successfully obtained by heat treatment of a mixture of 26.52 in wt.% of fluorapatite (Fap) and 73.48 in wt.% of 77S (77 SiO 2 −14 CaO−9 P 2 O 5 in wt.%) gel. The calcium phosphate-glass-ceramics was prepared by sol-gel process with tetraethyl orthosilicate (TEOS), triethyl phosphate (TEP), calcium nitrate and fluorapatite. The synthesized powders were characterized by some commonly used tools such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), 31 P magic angle spinning nuclear magnetic resonance (MAS-NMR), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and thin-film X-ray diffraction (TF-XRD). The obtained results seemed to confirm the nucleation and growth of hydroxyapatite (Hap) nano-phase in the glass. Moreover, an in-vitro evaluation of the glass-ceramic was performed. In addition, to assess its bioactive capacity, it was soaked in simulated body fluid (SBF) at different time intervals. The SEM, EDS and TF-XRD analyses showed the deposition of hydroxyapatite on the surface of the specimens after three days of immersion in SBF solution. The mechanical properties of the obtained material such as rupture strength, Vickers hardness and elastic modulus were measured. In addition, the friction coefficient of calcium phosphate-glass-ceramics was tested. The values of the composite of rupture strength (24 MPa), Vickers hardness (214 Hv), Young's modulus (52.3 GPa), shear modulus (19 GPa) and friction coefficient (0.327) were obtained. This glass-ceramics can have useful applications in dental prostheses. Indeed, this material may have promising applications for implants because of its content of fluorine, the effective protector against dental caries. - Highlights: • A novel three phases Fap-Hap-glass-ceramics is prepared by sol–gel route. • Results showed a nucleation and growth of hydroxyapatite nano-phase in the glass. • Fap-Hap-glass-ceramics

  12. Dynamic properties of ceramic materials

    Grady, D.E.

    1995-02-01

    The present study offers new data and analysis on the transient shock strength and equation-of-state properties of ceramics. Various dynamic data on nine high strength ceramics are provided with wave profile measurements, through velocity interferometry techniques, the principal observable. Compressive failure in the shock wave front, with emphasis on brittle versus ductile mechanisms of deformation, is examined in some detail. Extensive spall strength data are provided and related to the theoretical spall strength, and to energy-based theories of the spall process. Failure waves, as a mechanism of deformation in the transient shock process, are examined. Strength and equation-of-state analysis of shock data on silicon carbide, boron carbide, tungsten carbide, silicon dioxide and aluminum nitride is presented with particular emphasis on phase transition properties for the latter two. Wave profile measurements on selected ceramics are investigated for evidence of rate sensitive elastic precursor decay in the shock front failure process

  13. Synthesis, characterization of CaF2 doped silicate glass-ceramics.

    Riaz, Madeeha; Zia, Rehana; Mirza, Ambreen; Hussain, Tousif; Bashir, Farooq; Anjum, Safia

    2017-06-01

    This paper reports the fabrication and characterization of silicate glass-ceramics doped with (0-12mol%) CaF 2 . TGA-DSC analysis was carried out to determine the crystallization temperature and stability of glass measured by two glass parameters; Hruby parameter K H =(T x -T g )/(T L -T x ) and Weinberg parameter K W =(T c -T g )/T L . It was found that with CaF 2 doping improved sinterability at low temperature and provided stability to the glass. The XRD pattern exhibits a single phase of combeite and doping of CaF 2 cause increase in crystallite size. Microstructure of samples was also improved with CaF 2 addition, pores were significantly reduced. After 15days immersion in simulated body fluid all samples developed apatite layer onto its surface. Hence, the addition of CaF 2 provided bioactive glass-ceramic material having a low processing temperature. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Ceramic transactions: Nucleation and crystallization in liquids and glasses. Volume 30

    Weinberg, M.C.

    1993-01-01

    The collection of papers presented herein were presented at the Nucleation and Crystallization symposium at the Glass and Optical Materials Division Meeting of the American Ceramic Society, held August 16-19, 1992, at Stone Mountain, Georgia. This symposium was the fourth in a series held approximately every ten years. It was similar to the third symposium in that a combination of review and research papers were presented. The three major topics of this meeting were nucleation, crystallization, and crystallized glass applications, as in the third symposium. On the other hand, the present meeting had certain distinct aspects that set it apart form previous symposia. First and foremost, there was the participation of a number of scientists and engineers from diverse disciplines, such as ceramic engineering, theoretical and experimental chemistry, metallurgy, astrophysics, and glass and polymer science. Second, the outlook was somewhat broader than in previous symposia, especially with regard to the topic of nucleation. Finally, on the last day of the meeting, a panel discussion was held on the topic of nucleation. During this session, assessments were given of the experimental and theoretical triumphs and deficiencies regarding crystal nucleation fro the melt. Papers of interest cover zirconate glasses and glasses for immobilization of radioactive wastes

  15. Prospects of ceramic tritium breeder materials

    Roth, E.; Roux, N.; Conservatoire National des Arts et Metiers; CEA Centre d'Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette

    1989-01-01

    In this paper the authors examine the prospects of the main ceramics proposed as breeder materials for fusion reactors, i.e. Li-2O, Li-2ZrO-3, LiAlO-2, Li-4SiO-4. To do so they review terms of reference of contemplated blankets for NET, ITER and DEMO, and the proposed blanket concepts and materials. Issues respective to the use of each breeder material are examined, and from this review it is concluded that ceramics are the most favorable breeder materials whose use can be contemplated as well for a driver blanket for NET or ITER and for a DEMO blanket. Ceramics are then compared between themselves and it is seen that, subject to the confirmation of recent experimental results, lithium zirconate could be used with advantage in any of the present blanket concepts, except in those employing lithium at its natural isotopic abundance, in which case only Li-2O can be used. However in specific cases, or in parts of a blanket, other ceramics may be profitably employed. As a general conclusion suggestions are made to further improve ceramic breeder performances, and it is recommended to intensify also work on problems that have to be solved in order to operate ceramic breeder blankets e.g. tritium extraction and recovery systems and conditions of beryllium use. (author). 37 refs.; 12 tabs

  16. Investigation of TLD properties of metal alloy oxides, glass, ceramics and various papers

    Erkol, A.Y.; Yasar, S.; Karakelle, B.; Yasar, D.

    1995-01-01

    A large number of materials exhibit radiothermoluminescence and they are extensively used for radiation process control. In this work, the thermoluminescence (TL) properties of metal alloy oxides, glass, ceramics and various papers are investigated in order to evaluate their possible usage as TL detectors or indicators in dose measurement. TL glow curves and the effect of absorbed dose on TL response are measured for materials locally available. The fading effect are also examined. The use of these materials as a dose indicator are shown to be promising. (author)

  17. Investigation of TLD properties of metal alloy oxides, glass, ceramics and various papers

    Erkol, A.Y.; Yasar, S.; Karakelle, B.; Yasar, D.

    1995-01-01

    A large number of materials exhibit radiothermoluminescence and they are extensively used for radiation process control. In this work, the thermoluminescence (TL) properties of metal alloy oxides, glass, ceramics and various papers are investigated in order to evaluate their possible usage as TL detectors or indicators in dose measurement. TL glow curves and the effect of absorbed dose on TL response are measured for materials locally available. The fading effect is also examined. The use of these materials as a dose indicator is shown to be promising. (author)

  18. Effect of Ti(+4) on in vitro bioactivity and antibacterial activity of silicate glass-ceramics.

    Riaz, Madeeha; Zia, Rehana; Saleemi, Farhat; Hussain, Tousif; Bashir, Farooq; Ikhram, Hafeez

    2016-12-01

    A novel glass-ceramic series in (48-x) SiO2-36 CaO-4 P2O5-12 Na2O-xTiO2 (where x=0, 3.5, 7, 10.5 and 14mol %) system was synthesized by crystallization of glass powders, obtained by melt quenching technique. The differential scanning calorimetric analysis (DSC) was used to study the non-isothermal crystallization kinetics of the as prepared glasses. The crystallization behaviour of glasses was analyzed under non-isothermal conditions, and qualitative phase analysis of glass-ceramics was made by X-ray diffraction. The in vitro bioactivity of synthesized glass-ceramics was studied in stimulated body fluid at 37°C under static condition for 24days. The formation of hydroxyl-carbonated apatite layer; evident of bioactivity of the material, was elucidated by XRD, FTIR, AAS, SEM and EDX analysis. The result showed that partial substitution of TiO2 with SiO2 negatively influenced bioactivity; it decreased with increase in concentration of TiO2. As Ti(+4) having stronger field strength as compared to Si(+4) so its replacement became the cause for reduction in degradation that in turn improved the chemical stability. The compressive strength was also enhanced with progress addition of TiO2 in the system. The antibacterial properties were examined against Staphylococcus Epidermidis. Strong antibacterial efficacy was observed with the addition of TiO2 in the system. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Augite-anorthite glass-ceramics from residues of basalt quarry and ceramic wastes

    Gamal A. Khater

    2015-06-01

    Full Text Available Dark brown glasses were prepared from residues of basalt quarries and wastes of ceramic factories. Addition of CaF2, Cr2O3 and their mixture CaF2-Cr2O3 were used as nucleation catalysts. Generally, structures with augite and anorthite as major phases and small amount of magnetite and olivine phases were developed through the crystallization process. In the samples heat treated at 900 °C the dominant phase is augite, whereas the content of anorthite usually overcomes the augite at higher temperature (1100 °C. Fine to medium homogenous microstructures were detected in the prepared glass-ceramic samples. The coefficient of thermal expansion and microhardness measurements of the glass-ceramic samples were from 6.16×10-6 to 8.96×10-6 °C-1 (in the 20–500 °C and 5.58 to 7.16 GP, respectively.

  20. Glass ceramics for incinerator ash immobilization

    Malinina, G.A.; Stefanovsky, O.I. [SIA Radon, 7th Rostovskii lane 2/14, Moscow 119121 (Russian Federation); Stefanovsky, S.V., E-mail: profstef@mtu-net.ru [SIA Radon, 7th Rostovskii lane 2/14, Moscow 119121 (Russian Federation)

    2011-09-01

    Calcined solid radioactive waste (incinerator slag) surrogate and either Na{sub 2}Si{sub 2}O{sub 5} or Na{sub 2}B{sub 4}O{sub 7} (borax) at various mass ratios were melted in silicon carbide crucibles in a resistive furnace at temperatures of up to 1775 K (slag without additives). Portions of the melts were poured onto a metal plate; the residues were slowly cooled in turned-off furnace. Both quenched and slowly cooled materials were composed of the same phases. At high slag contents in silicate-based materials nepheline and britholite were found to be major phases. Britholite formed at higher slag content (85 wt.%) became major phase in the vitrified slag. In the system with borax at low slag contents (25 and 50 wt.%) material are composed of predominant vitreous and minor calcium silicate larnite type phase Ca{sub 2}SiO{sub 4} where Ca{sup 2+} ions are replaced by different cations. The materials containing slag in amount of 75 wt.% and more are chemically durable. The changes in the structure of anionic motif of quenched samples depending on slag loading were studied by IR spectroscopy.

  1. Glass ceramics for incinerator ash immobilization

    Malinina, G.A.; Stefanovsky, O.I.; Stefanovsky, S.V.

    2011-01-01

    Calcined solid radioactive waste (incinerator slag) surrogate and either Na 2 Si 2 O 5 or Na 2 B 4 O 7 (borax) at various mass ratios were melted in silicon carbide crucibles in a resistive furnace at temperatures of up to 1775 K (slag without additives). Portions of the melts were poured onto a metal plate; the residues were slowly cooled in turned-off furnace. Both quenched and slowly cooled materials were composed of the same phases. At high slag contents in silicate-based materials nepheline and britholite were found to be major phases. Britholite formed at higher slag content (85 wt.%) became major phase in the vitrified slag. In the system with borax at low slag contents (25 and 50 wt.%) material are composed of predominant vitreous and minor calcium silicate larnite type phase Ca 2 SiO 4 where Ca 2+ ions are replaced by different cations. The materials containing slag in amount of 75 wt.% and more are chemically durable. The changes in the structure of anionic motif of quenched samples depending on slag loading were studied by IR spectroscopy.

  2. Radioactive wastes immobilization in glasses and ceramics

    Zanotto, E.D.

    1983-01-01

    A review on the several options available for encapsulation and disposal of high level radioactive liquid wastes is presented, along with the relative merits and disadvantages of each material to be encapsulated. Some of the main fields requiring further advancements in both scientific and technological research are discussed and a few suggestions for the solution of the brazilian problem are given. (Author) [pt

  3. Effect of CASP glass doping on sintering and dielectric properties of SBN ceramics

    Chen Guohua; Qi Bing

    2009-01-01

    16CaO-29Al 2 O 3 -34SiO 2 -13PbO-4B 2 O 3 -2ZnO-2P 2 O 5 (CASP) glass doped-Sr 0.5 Ba 0.5 Nb 2 O 6 (SBN50) ceramics have been synthesized by solid-state ceramic route. The effects of CASP glass on the firing, microstructure and dielectric characterization of SBN50 ceramics are investigated. The densities of the ceramic samples firstly increase and then slightly decrease with increasing CASP glass content. The appropriate amount of doping glass is 2%. The SBN50 ceramics doped with CASP glass can be sintered at a relatively low temperature, 1200 deg. C. X-ray diffraction analysis shows the single phase (tetragonal tungsten bronze type structure) is preserved for all the samples. The diffuse character of the ceramic system increases and the dielectric constant at phase transition temperature (T c ) markedly decreases as CASP glass content increases. Interestingly, the CASP glass addition drastically alters the microstructure of the sintered ceramics. The isotropic grains in the pure SBN50 ceramics transform to rod like grains after the addition of CASP glass. The grain size of SBN phase is found to obviously increase with increase in CASP glass doping level

  4. The electronic conduction of glass and glass ceramics containing various transition metal oxides

    Yoshida, T.; Matsuno, Y.

    1980-01-01

    Nb 2 O 5 -V 2 O 5 -P 2 O 5 glasses containing only Group Va oxides have been investigated to elucidate their electronic conduction and structure, as compared with other glasses obtained by the addition of various transition metal oxides to vanadium phosphate. The P 2 O 5 introduction for Nb 2 O 5 in this glass with the same amount of V 2 O 5 increased the conductivity about two times. Glass ceramics having high conductivity increased by two orders of magnitude and the activation energy for conduction decreased from about 0.5 to 0.2 eV. The crystals were confirmed to be (V,Nb) 2 O 5 and Nb phosphate, one of which was highly conductive and developed a pillar-like shape with a length of more than 20 μm. (orig.)

  5. Advanced Ceramic Materials for Future Aerospace Applications

    Misra, Ajay

    2015-01-01

    With growing trend toward higher temperature capabilities, lightweight, and multifunctionality, significant advances in ceramic matrix composites (CMCs) will be required for future aerospace applications. The presentation will provide an overview of material requirements for future aerospace missions, and the role of ceramics and CMCs in meeting those requirements. Aerospace applications will include gas turbine engines, aircraft structure, hypersonic and access to space vehicles, space power and propulsion, and space communication.

  6. Solution exchange corrosion testing with the glass-zeolite ceramic waste form in demineralized water at 900C

    Simpson, L. J.

    1998-01-01

    A ceramic waste form of glass-bonded zeolite is being developed for the long-term disposition of fission products and transuranic elements in wastes from the U.S. Department of Energy's spent nuclear fuel conditioning activities. Solution exchange corrosion tests were performed on the ceramic waste form and its potential base constituents of glass, zeolite 5A, and sodalite as part of an effort to qualify the ceramic waste form for acceptance into the Civilian Radioactive Waste Management System. Solution exchange tests were performed at 90 C by replacing 80 to 90% of the leachate with fresh demineralized water after set time intervals. The results from these tests provide information about corrosion mechanisms and the ability of the ceramic waste form and its constituent materials to retain waste components. The results from solution exchange tests indicate that radionuclides will be preferentially retained in the zeolites without the glass matrix and in the ceramic waste form, with respect to cations like Li, K, and Na. Release results have been compared for simulated waste from candidate ceramic waste forms with zeolite 5A and its constituent materials to determine the corrosion behavior of each component

  7. Preparation and leaching property of Nd-doped zirconolite-based glass-ceramic

    Wu Lang; Xu Dong; Teng Yuancheng; Li Yuxiang; Liu Zongqiang

    2014-01-01

    Nd-doped zirconolite-based glass-ceramics were prepared by melting-heat treatment technique. The effects of heat treatment processing on phase structure of the glass-ceramics were investigated. The leaching properties of the glass-ceramics were also evaluated by static leaching experiments (product consistency test, PCT). The results show that glass transformation temperature (T g ) and crystallization temperature of the glass-ceramics are about 580℃ and 740℃, respectively. CaTiO 3 phase forms easily when the glass-ceramics were prepared by two-step method, i.e. the glass was prepared first, and then it was heat-treated at the crystallization temperatures. 2M-zirconolite phase can be obtained by one-step method, i.e. the heat-treatment immediately followed by the melting process. In addition, the zirconolite crystals exhibit a dendritic shape. The normalized mass loss of B and Na in the glass-ceramics remains almost unchanged (about 1 mg/m 2 ) after 14 days, while the normalized mass loss of Nd reaches stable value (about 0.2 mg/m 2 ) after 28 days. The normalized mass loss of B, Na, and Nd in the glass-ceramics is an order of magnitude lower than that of borosilicate glasses, respectively. (authors)

  8. Does 8-methacryloxyoctyl trimethoxy silane (8-MOTS) improve initial bond strength on lithium disilicate glass ceramic?

    Maruo, Yukinori; Nishigawa, Goro; Yoshihara, Kumiko; Minagi, Shogo; Matsumoto, Takuya; Irie, Masao

    2017-03-01

    Dental ceramic surfaces are modified with silane coupling agents, such as γ-methacryloxypropyl trimethoxy silane (γ-MPTS), to improve bond strength. For bonding between lithium disilicate glass ceramic and resin cement, the objective was to investigate if 8-methacryloxyoctyl trimethoxy silane (8-MOTS) could yield a similar performance as the widely used γ-MPTS. One hundred and ten lithium disilicate glass ceramic specimens were randomly divided into 11 groups (n=10) according to pretreatment regime. All specimens were pretreated with a different solution composed of one or a combination of these agents: 10 or 20wt% silane coupling agent of γ-MPTS or 8-MOTS, followed by a hydrolysis solution of acetic acid or 10-methacryloyloxydecyl dihydrogen phosphate (10-MDP). Each pretreated surface was luted to a stainless steel rod of 3.6mm diameter and 2.0mm height with resin cement. Shear bond strength between ceramic and cement was measured after 24-h storage in 37°C distilled water. 8-MOTS produced the same bonding performance as γ-MPTS. Both silane coupling agents significantly increased the bond strength of resin cement, depending on their concentration. When activated by 10-MDP hydrolysis solution, 20wt% concentration produced the highest values (γ-MPTS: 24.9±5.1MPa; 8-MOTS: 24.6±7.4MPa). Hydrolysis with acetic acid produced lower bond strengths than with 10-MDP. Silane coupling pretreatment with 8-MOTS increased the initial bond strength between lithium disilicate glass ceramic and resin cement, rendering the same bonding effect as the conventional γ-MPTS. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  9. Effect of sintering temperature on the microstructure and properties of foamed glass-ceramics prepared from high-titanium blast furnace slag and waste glass

    Chen, Chang-hong; Feng, Ke-qin; Zhou, Yu; Zhou, Hong-ling

    2017-08-01

    Foamed glass-ceramics were prepared via a single-step sintering method using high-titanium blast furnace slag and waste glass as the main raw materials The influence of sintering temperature (900-1060°C) on the microstructure and properties of foamed glass-ceramics was studied. The results show that the crystal shape changed from grainy to rod-shaped and finally turned to multiple shapes as the sintering temperature was increased from 900 to 1060°C. With increasing sintering temperature, the average pore size of the foamed glass-ceramics increased and subsequently decreased. By contrast, the compressive strength and the bulk density decreased and subsequently increased. An excessively high temperature, however, induced the coalescence of pores and decreased the compressive strength. The optimal properties, including the highest compressive strength (16.64 MPa) among the investigated samples and a relatively low bulk density (0.83 g/cm3), were attained in the case of the foamed glass-ceramics sintered at 1000°C.

  10. Eco-technological process of glass-ceramic production from galvanic sludge and aluminium slag

    Stanisavljević M.

    2010-01-01

    Full Text Available Methods of purification of waste water which are most commonly used in the Republic of Serbia belong to the type of conventional systems for purification such as chemical oxidation and reduction, neutralization, sedimentation, coagulation, and flocculation. Consequently, these methods generate waste sludge which, unless adequately stabilized, represents hazardous matter. The aluminium slag generated by melting or diecasting aluminium and its alloys is also hazardous matter. In this sense, this paper establishes ecological risk of galvanic waste sludge and aluminium slag and then describes the process of stabilization of these waste materials by means of transformation into a glass-ceramic structure through sintering. The obtained product was analyzed with Fourier Transform Infrared Spectroscopy (FT-IR and X-ray diffraction (XRD. The object of the paper is the eco-technological process of producing glass-ceramics from galvanic sludge and aluminium slag. The aim of the paper is to incorporate toxic metals from galvanic sludge and aluminium slag into the glass-ceramic product, in the form of solid solutions.

  11. Effect of a novel bioactive glass-ceramic on dentinal tubule occlusion: an in vitro study.

    Zhong, Y; Liu, J; Li, X; Yin, W; He, T; Hu, D; Liao, Y; Yao, X; Wang, Y

    2015-03-01

    This in vitro study aimed to assess the ability and efficacy of HX-BGC, a novel bioactive glass-ceramic (SiO2-P2 O5-CaO-Na2 O-SrO), to reduce dentine tubule permeability. Dentine discs from human third molars were etched and randomly allocated into five groups: Group 1--distilled water; Group 2--Sensodyne Repair toothpaste (containing NovaMin®); Group 3--HX-BGC toothpaste (containing 7.5% HX-BGC); Group 4--control toothpaste (without HX-BGC); and Group 5--HX-BGC powder. Specimens were treated daily by brushing with an electric toothbrush for 20 seconds. Between daily treatments (7 days total), specimens were immersed in artificial saliva for 24 hours. Dentine permeability was measured at baseline, after the first treatment, after the first 24-hour immersion in artificial saliva and at the end of day 7. Dentine morphology and surface deposits were observed by scanning electron microscopy after one day and 7 days of treatment, respectively. Sensodyne Repair and bioactive glass-ceramic toothpaste significantly and immediately lowered dentine permeability. The HX-BGC powder group showed the highest reduction in dentine permeability after 7 days of treatment. The novel bioactive glass-ceramic material HX-BGC is effective in reducing dentine permeability by occluding open dentine tubules, indicating that HX-BGC may be a potential treatment for dentine hypersensitivity. © 2015 Australian Dental Association.

  12. Use of sludge as ceramic materials

    Morais, L.C.; Vianna, R.S.C.; Campos, V.; Rosa, A.H.; Buechler, P.M.

    2009-01-01

    Nowadays, with increase amounts of sludge derived from the treatment of domestic sewage put pressure into research on systems for the adequate use of these materials. The aim of the present work is to study the use of sludge ash, from sintering and calcinated process, as a raw material for the ceramic industry. Using the sewage sludge ashes as ceramic raw material there will be no contamination of soil and underground water. Metals and toxic compounds like Al, Fe, Ba, Cr, Cu, Mn and Zn oxides were analyzed and characterized by X-ray fluorescence (XRF), scanning electron microscopy (SEM) and plasma emission spectroscopy (ICP-OES). The leached material was chemically analyzed where the integration of oxides into the ceramic matrix of sludge ash was observed. Residual decomposition was analyzed by TG, DTG and DTA curves. (author)

  13. History and trends of bioactive glass-ceramics.

    Montazerian, Maziar; Dutra Zanotto, Edgar

    2016-05-01

    The interest around bioactive glass-ceramics (GCs) has grown significantly over the last two decades due to their appropriate biochemical and mechanical properties. The intense research effort in this field has led to some new commercial products for biomedical applications. This review article begins with the basic concepts of GC processing and development via controlled heat treatments of monolithic pieces or sinter-crystallization of powdered glasses. We then go on to describe the processing, properties, and applications of some commercial bioactive GCs and discuss selected valuable reported researches on several promising types of bioactive GCs. The article finishes with a section on open relevant research directions for bioactive GC development. © 2016 Wiley Periodicals, Inc.

  14. Glass-ceramics frits for high mechanical resistance glazes

    Gajek, M.; Lis, J.; Partyka, J.; Wojczyk, M.

    2004-01-01

    The obtaining and application of glass-ceramics frits for glazes were discussed by many authors. This glazes are characterized by raised mechanical parameters and chemical resistance. Factors, that determines crystallization process are initial composition, heat treatment and nucleation agents. The kind of crystalline phases, crystal habit and the content of residual glass phase play the decisive role in the strengthening of the glaze. In this paper are shown results of investigation over controlled crystallization in the ternary systems; Li 2 O-Al 2 O 3 -SiO 2 , CaO-Al 2 O 3 -SiO 2 , ZnO-Al 2 O 3 -SiO 2 , MgO-Al 2 O 3 -SiO 2 , with or without nucleation agents. (author)

  15. Role of SrO on the bioactivity behavior of some ternary borate glasses and their glass ceramic derivatives

    Abdelghany, A. M.; Ouis, M. A.; Azooz, M. A.; ElBatal, H. A.; El-Bassyouni, G. T.

    2016-01-01

    Borate glasses containing SrO substituting both CaO and NaO were prepared and characterized for their bioactivity or bone bonding ability. Glass ceramic derivatives were prepared by thermal heat treatment process. FTIR, XRD and SEM measurements for the prepared glass and glass-ceramics before and after immersion in sodium phosphate solution for one and two weeks were carried out. The appearance of two IR peaks within the range 550-680 cm-1 after immersion in phosphate solution indicates the formation of hydroxyapatite or equivalent Sr phosphate layer. X-ray diffraction data agree with the FTIR spectral analysis. The solubility test was carried out for both glasses and glass ceramics derivatives in the same phosphate solution. The introduction of SrO increases the solubility for both glasses and glass ceramics and this is assumed to be due to the formation of Sr phosphate which is more soluble than calcium phosphate (hydroxyapatite). SEM images reveal varying changes in the surfaces of glass ceramics after immersion according to the SrO content.

  16. Role of SrO on the bioactivity behavior of some ternary borate glasses and their glass ceramic derivatives.

    Abdelghany, A M; Ouis, M A; Azooz, M A; ElBatal, H A; El-Bassyouni, G T

    2016-01-05

    Borate glasses containing SrO substituting both CaO and NaO were prepared and characterized for their bioactivity or bone bonding ability. Glass ceramic derivatives were prepared by thermal heat treatment process. FTIR, XRD and SEM measurements for the prepared glass and glass-ceramics before and after immersion in sodium phosphate solution for one and two weeks were carried out. The appearance of two IR peaks within the range 550-680cm(-1) after immersion in phosphate solution indicates the formation of hydroxyapatite or equivalent Sr phosphate layer. X-ray diffraction data agree with the FTIR spectral analysis. The solubility test was carried out for both glasses and glass ceramics derivatives in the same phosphate solution. The introduction of SrO increases the solubility for both glasses and glass ceramics and this is assumed to be due to the formation of Sr phosphate which is more soluble than calcium phosphate (hydroxyapatite). SEM images reveal varying changes in the surfaces of glass ceramics after immersion according to the SrO content. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Structural, thermal, and optical properties of Er3+/Yb3+ co-doped oxyhalide tellurite glasses, glass-ceramics and ceramics

    Joshi, C.; Rai, R.N.; Rai, S.B.

    2012-01-01

    Glass-ceramics and ceramics containing nano-crystals of different phases doped with Er 3+ /Yb 3+ ions have been successfully prepared by heat treatment of the precursor oxyhalide glasses synthesized by the melt-quench method. X-ray diffraction patterns and transmission electron microscopy (TEM) images verify the precipitation of nano-crystals. Emission of Er 3+ enhances several times when Yb 3+ ion is added with the matrix. The Stark splitting and the intensity of different emission bands increase to a great extent when we approach to ceramics from glasses via glass-ceramics. The intensity of the blue and green emission bands increases much faster than the red and NIR emission bands. Intense upconversion emission observed by the naked eye has been quantified in terms of standard chromaticity diagram (CIE). Power dependence study shows that the upconversion of NIR radiation to visible radiation takes place mainly via photon avalanche (PA) process.

  18. Wear of human enamel opposing monolithic zirconia, glass ceramic, and composite resin: an in vitro study.

    Sripetchdanond, Jeerapa; Leevailoj, Chalermpol

    2014-11-01

    Demand is increasing for ceramic and composite resin posterior restorations. However, ceramics are recognized for their high abrasiveness to opposing dental structure. The purpose of this study was to investigate the wear of enamel as opposed to dental ceramics and composite resin. Twenty-four test specimens (antagonists), 6 each of monolithic zirconia, glass ceramic, composite resin, and enamel, were prepared into cylindrical rods. Enamel specimens were prepared from 24 extracted human permanent molar teeth. Enamel specimens were abraded against each type of antagonist with a pin-on-disk wear tester under a constant load of 25 N at 20 rpm for 4800 cycles. The maximum depth of wear (Dmax), mean depth of wear (Da), and mean surface roughness (Ra) of the enamel specimens were measured with a profilometer. All data were statistically analyzed by 1-way ANOVA, followed by the Tukey test (α=.05). A paired t test was used to compare the Ra of enamel at baseline and after testing. The wear of both the enamel and antagonists was evaluated qualitatively with scanning electron microscopic images. No significant differences were found in enamel wear depth (Dmax, Da) between monolithic zirconia (2.17 ±0.80, 1.83 ±0.75 μm) and composite resin (1.70 ±0.92, 1.37 ±0.81 μm) or between glass ceramic (8.54 ±2.31, 7.32 ±2.06 μm) and enamel (10.72 ±6.31, 8.81 ±5.16 μm). Significant differences were found when the enamel wear depth caused by monolithic zirconia and composite resin was compared with that of glass ceramic and enamel (Pglass ceramic, and enamel (Pglass ceramic and enamel. All test materials except composite resin similarly increased the enamel surface roughness after wear testing. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  19. Photon CT scanning of advanced ceramic materials

    Sawicka, B.D.; Ellingson, W.A.

    1987-02-01

    Advanced ceramic materials are being developed for high temperature applications in advanced heat engines and high temperature heat recovery systems. Small size flaws (10 - 200 μm) and small nonuniformities in density distributions (0.1 -2%) present as long-range density gradients, are critical in most ceramics and their detection is of crucial importance. Computed tomographic (CT) imaging provides a means of obtaining a precise two-dimensional density map of a cross section through an object from which accurate information about small flaws and small density gradients can be obtained. With the use of high energy photon sources high contrast CT images can be obtained for both low and high density ceramics. In the present paper we illustrate the applicability of the photon CT technique to the examination of advanced ceramics. CT images of sintered alumina tiles are presented from which data on high-density inclusions, cracks and density gradients have been extracted

  20. Preparation of mica/apatite glass-ceramics biomaterials

    Liu Yong; Sheng Xiaoxian; Dan Xiaohong; Xiang Qijun

    2006-01-01

    Glass-ceramics have become more and more important biomaterials. In this work mica glass/apatite composites with various compositions were prepared by casting and subsequent heat treatments. The effects of composition, phase constitution and crystallinity on mechanical properties, including elastic modulus and transverse rupture strength (TRS), were investigated by using X-ray diffraction analyses (XRD), scanning electron microscopy (SEM) and mechanical tests. Results show that addition of apatite composition in mica glass accelerates the crystallization process and induces the formation of fluoroapatite phase, and the nucleation of apatite crystals occurs before that of mica crystals. The fuoroapatite in this work is needle-like, which is almost the same to that in human bone. The transverse rupture strength increases with the content of fluoroapatite and the crystallinity increasing, except that at a low apatite content the mechanical properties are lower than those of mica glass under the same processing conditions. The transverse rupture strength and elastic modulus obtained in this work fall in the range of those of human bone. SBF immersion test demonstrates good bioactivity of this biomaterial

  1. Processing of high-temperature simulated waste glass in a continuous ceramic melter

    Barnes, S.M.; Brouns, R.A.; Hanson, M.S.

    1980-01-01

    Recent operations have demonstrated that high-melting-point glasses and glass-ceramics can be successfully processed in joule-heated, ceramic-lined melters with minor modifications to the existing technology. Over 500 kg of simulated waste glasses have been processed at temperatures up to 1410 0 C. The processability of the two high-temperature waste forms tested is similar to existing borosilicate waste glasses. High-temperature waste glass formulations produced in the bench-scale melter exhibit quality comparing favorably to standard waste glass formulations

  2. Direct conversion of radioactive and chemical waste containing metals, ceramics, amorphous solids, and organics to glass

    Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

    1994-01-01

    The Glass Material Oxidation and Dissolution System (CMODS) is a new process for direct conversion of radioactive, mixed, and chemical wastes to glass. The wastes can be in the chemical forms of metals, ceramics, amorphous solids, and organics. GMODS destroys organics and it incorporates heavy metals and radionuclides into a glass. Processable wastes may include miscellaneous spent fuels (SF), SF hulls and hardware, plutonium wastes in different forms, high-efficiency particulate air (HEPA) filters, ion-exchange resins, failed equipment, and laboratory wastes. Thermodynamic calculations indicate theoretical feasibility. Small-scale laboratory experiments (< 100 g per test) have demonstrated chemical laboratory feasibility for several metals. Additional work is needed to demonstrate engineering feasibility

  3. [Microstructure and mechanical property of a new IPS-Empress 2 dental glass-ceramic].

    Luo, Xiao-ping; Watts, D C; Wilson, N H F; Silsons, N; Cheng, Ya-qin

    2005-03-01

    To investigate the microstructure and mechanical properties of a new IPS-Empress 2 dental glass-ceramic. AFM, SEM and XRD were used to analyze the microstructure and crystal phase of IPS-Empress 2 glass-ceramic. The flexural strength and fracture toughness were tested using 3-point bending method and indentation method respectively. IPS-Empress 2 glass-ceramic mainly consisted of lithium disilicate crystal, lithium phosphate and glass matrix, which formed a continuous interlocking structure. The crystal phases were not changed before and after hot-pressed treatment. AFM showed nucleating agent particles of different sizes distributed on the highly polished ceramic surface. The strength and fracture toughness were 300 MPa and 3.1 MPam(1/2). The high strength and fracture toughness of IPS-Empress 2 glass ceramic are attributed to the fine lithium disilicate crystalline, interlocking microstructure and crack deflection.

  4. Sodium aluminum-iron phosphate glass-ceramics for immobilization of lanthanide oxide wastes from pyrochemical reprocessing of spent nuclear fuel

    Stefanovsky, S. V.; Stefanovsky, O. I.; Kadyko, M. I.; Nikonov, B. S.

    2018-03-01

    Sodium aluminum (iron) phosphate glass ceramics containing of up to 20 wt.% rare earth (RE) oxides simulating pyroprocessing waste were produced by melting at 1250 °C followed by either quenching or slow cooling to room temperature. The iron-free glass-ceramics were composed of major glass and minor phosphotridymite and monazite. The iron-bearing glass-ceramics were composed of major glass and minor monazite and Na-Al-Fe orthophosphate at low waste loadings (5-10 wt.%) and major orthophosphate and minor monazite as well as interstitial glass at high waste loadings (15-20 wt.%). Slowly cooled samples contained higher amount of crystalline phases than quenched ones. Monazite is major phase for REs. Leach rates from the materials of major elements (Na, Al, Fe, P) are 10-5-10-7 g cm-2 d-1, RE elements - lower than 10-5 g cm-2 d-1.

  5. Dynamic fatigue of a lithia-alumina-silica glass-ceramic

    Tucker, Dennis S.

    1990-01-01

    A dynamic fatigue study was performed on a Li2O-Al2O3-SiO2 glass-ceramic in order to assess its susceptibility to delayed failure. Fracture mechanics techniques were used to analyze the results for the purpose of making lifetime predictions for optical elements made from this material. The material has reasonably good resistance (N = 20) to stress corrosion in ambient conditions. Analysis also indicated the elements should survive applied stresses incurred during grinding and polishing operations.

  6. In Vitro Evaluation of Some Types of Ferrimagnetic Glass Ceramics

    S. A. M. Abdel-Hameed

    2014-01-01

    Full Text Available The present study aimed at studying the acceleration of the bioactive layer on the surface of ferrimagnetic glass ceramic with a basic composition 40Fe2O3–15P2O5–20SiO2–5TiO2 through the addition of 20% of different types of metal oxides like MgO or CaO or MnO or CuO or ZnO or CeO2. SEM, EDAX, and ICP were applied to present the results of the study. SEM and EDAX measurements indicated the presence of apatite layer formed on the surface of the prepared glass ceramics after immersion in SBF within 7 to 30 days. The investigation of the results clarified that the addition of CaO or ZnO accelerated the formation of apatite on the surfaces of the samples in the simulated body fluid faster than other metal oxides. Inductive coupled plasma (ICP analysis shows the evolution of ion extraction by the simulated body fluid solution (SBF with time in relation to the elemental composition.

  7. Bending strength of glass-ceramics based on 3CaO.P2O5-SiO2-MgO glass system

    Daguano, J.K.M.F.; Suzuki, P.A.; Santos, C.; Fernandes, M.H.V.; Elias, C.N.

    2009-01-01

    In this work, the Modulus of Rupture of bioactive glass-ceramic based on 3CaO.P 2 O 5 -SiO 2 -MgO system was investigated, aiming its use in bone-restorations. The mechanical property was correlated with microstructural and crystallographic features of this material. High-purity starting-powders, CaCO 3 , SiO 2 , MgO, Ca (H 2 PO 4 ).H 2 O, were used in this study. The powders were mixed in a stoichiometric ratio, using planetary ball-mill. The suspensions were dried, sieved and melted at 1600 deg C, for 4h. The casting ones were cooled quickly until annealing temperature 700 deg C, in which remained for 2h, with controlled cooling-rate until ambient temperature. Bulks of glass were heat-treated with temperatures varying between 700 deg C and 1100 deg C, for 4h, being after that, cooled at 3 deg C/min. Bioactive glass and glass-ceramic were characterized by HRXRD (high resolution X-ray diffraction), where whitlockite was main phase. The microstructure was analyzed by scanning electronic microscopy. Modulus of Rupture was determined by four-point bending testing using specimens of 1.5 x 2 x 25 mm and glasses presented strength near to 70MPa, while glass ceramics treated at 975 deg C-4h, presented bending strength of 120MPa. (author)

  8. Characterization of cutting soda-lime glass sludge for the formulation of red ceramic products

    Filogonio, P.H.C.; Reis, A.S.; Louzada, D.M.; Della, V.P.

    2014-01-01

    Considering previous works that have demonstrated the feasibility of soda-lime glass incorporation into red ceramics, this paper aims to determine the potential for incorporation of cutting soda-lime glass sludge in red ceramic manufacturing. Therefore, the waste was characterized by X-ray fluorescence, X-ray diffraction, particle size distribution and thermal behavior. The results confirm the chemical and mineralogical similarity between waste and soda-lime glass. Because of this similarity, it is concluded that the soda-lime glass waste has the capability to be used in the manufacturing of red ceramics. (author)

  9. The Production of Advanced Glass Ceramic HLW Forms using Cold Crucible Induction Melter

    Veronica J Rutledge; Vince Maio

    2013-10-01

    Cold Crucible Induction Melters (CCIMs) will favorably change how High-Level radioactive Waste (from nuclear fuel recovery) is treated in the 21st century. Unlike the existing Joule-Heated Melters (JHMs) currently in operation for the glass-based immobilization of High-Level Waste (HLW), CCIMs offer unique material features that will increase melt temperatures, increase throughput, increase mixing, increase loading in the waste form, lower melter foot prints, eliminate melter corrosion and lower costs. These features not only enhance the technology for producing HLW forms, but also provide advantageous attributes to the waste form by allowing more durable alternatives to glass. This paper discusses advantageous features of the CCIM, with emphasis on features that overcome the historical issues with the JHMs presently utilized, as well as the benefits of glass ceramic waste forms over borosilicate glass waste forms. These advantages are then validated based on recent INL testing to demonstrate a first-of-a-kind formulation of a non-radioactive ceramic-based waste form utilizing a CCIM.

  10. Foam Glass for Construction Materials

    Petersen, Rasmus Rosenlund

    2016-01-01

    Foaming is commonly achieved by adding foaming agents such as metal oxides or metal carbonates to glass powder. At elevated temperature, the glass melt becomes viscous and the foaming agents decompose or react to form gas, causing a foamy glass melt. Subsequent cooling to room temperature, result...... in a solid foam glass. The foam glass industry employs a range of different melt precursors and foaming agents. Recycle glass is key melt precursors. Many parameters influence the foaming process and optimising the foaming conditions is very time consuming. The most challenging and attractive goal is to make...... low density foam glass for thermal insulation applications. In this thesis, it is argued that the use of metal carbonates as foaming agents is not suitable for low density foam glass. A reaction mechanism is proposed to justify this result. Furthermore, an in situ method is developed to optimise...

  11. AFM Surface Roughness and Topography Analysis of Lithium Disilicate Glass Ceramic

    M. Pantić

    2015-12-01

    Full Text Available The aim of this study is presenting AFM analysis of surface roughness of Lithium disilicate glass ceramic (IPS e.max CAD under different finishing procedure (techniques: polishing, glazing and grinding. Lithium disilicate glass ceramics is all-ceramic dental system which is characterized by high aesthetic quality and it can be freely said that properties of material provide all prosthetic requirements: function, biocompatibility and aesthetic. Experimental tests of surface roughness were investigated on 4 samples with dimensions: 18 mm length, 14 mm width and 12 mm height. Contact surfaces of three samples were treated with different finishing procedure (polishing, glazing and grinding, and the contact surface of the raw material is investigated as a fourth sample. Experimental measurements were done using the Atomic Force Microscopy (AFM of NT-MDT manufacturers, in the contact mode. All obtained results of different prepared samples are presented in the form of specific roughness parameters (Rа, Rz, Rmax, Rq and 3D surface topography.

  12. Crystallization and dielectric properties of PbTiO3 based glass ceramics

    Shankar, J.; Rani, G. Neeraja; Deshpande, V. K.

    2018-04-01

    Glass samples with composition (50 - X) PbO - (25 + X) TiO2 - 25 B2O3 (where X = 0, 5, 10 and 12.5 mol %) were prepared using conventional quenching technique. These glass samples were converted to glass ceramics by following two stage heat treatment schedule. The XRD results in the glass ceramics revealed the formation of tetragonal lead titanate as a major crystalline phase. The SEM results show rounded crystallite of lead titanate. The ferroelectric nature of all the glass ceramic samples is confirmed by P - E hysteresis measurements. The extended heat treatment of glass ceramic samples at 593K for 10 h exhibited saturated hysteresis loops with higher values of remnant polarization.

  13. Synthesis, characterization, bioactivity and antibacterial studies of silver doped calcium borosilicate glass-ceramics

    Kumar, Alesh; Mariappan, C. R.

    2018-04-01

    Bioactive glass-ceramics 45.8 mol% SiO- 45.8 CaO - 8.4 B2O3 doped with Ag2O were synthesized by sol-gel method. The glass-ceramic nature of samples was confirmed by X-ray diffraction (XRD) and transmission electron microscopy (TEM) analysis. Fourier transform infrared (FT-IR) spectra reveal the probable stretching and bending vibration modes of silicate and borate groups. UV-Visible spectra reveal the presence of Ag+ ions and metallic Ag in the glass matrix for Ag2O doped ceramic sample. Biocompatibility of the glass nature of samples was studied by soaking of samples in Dulbecco's Modified Eagle's Medium (DMEM) with subsequent XRD studies. It was found that bone-like apatite formation on the glasses after soaked in DMEM. Antibacterial studies of glass ceramics powder against gram positive and negative microorganisms were carried out.

  14. Synthesis and Structural Studies of Er3+ Containing Lead Cadmium Fluoroborate Glasses and Glass-Ceramics

    Silva Maurício A.P.

    2002-01-01

    Full Text Available The vitreous domain was established in the PbF2-CdF2-B2O 3 system from melting and quenching experiments. Er3+ containing glasses were prepared and glass ceramics were obtained by selected heat-treatments. Lead fluoride was identified (beta-PbF2 as the crystalline phase. Structural studies were performed in some glassy and partially crystallized samples by means of X-ray Diffraction (XRD and Extended X-ray Absorption Fine Structure (EXAFS measurements. The role of Cd2+ and Pb2+ atoms on the glass network formation and also on the crystallization behavior was put forward by these techniques. After crystallization Er3+ atoms segregated in the crystal phase.

  15. Microstructures and luminescent properties of Ce-doped transparent mica glass-ceramics

    Taruta, Seiichi; Iwasaki, Yoshitomo; Nishikiori, Hiromasa; Yamakami, Tomohiko; Yamaguchi, Tomohiro; Kitajima, Kunio; Okada, Kiyoshi

    2012-01-01

    Highlights: ► Ce-doped transparent glass-ceramics and their parent glasses. ► TEM and STEM images for the microstructures. ► Each mica crystal did not contain Ce uniformly. ► Emission due to Ce 3+ ions in the glass phase and/or Ce 3+ ions in the mica crystals. - Abstract: Transparent mica glass-ceramics were prepared by heating parent glasses that had been doped with 0.5–15 mol% CeO 2 . During the melting and heat treatment, Ce 4+ ions in the specimens were reduced to Ce 3+ ions, and one or both of these ion species were then replaced with Li + ions in the interlayers of the separated mica crystals. However, scanning transmission electron microscope (STEM) and Z-contrast imaging revealed that the mica crystals did not contain the same amount of Ce. On excitation at 254 nm, the parent glasses and glass-ceramics emitted blue light, which originated from the 5d to 4f transition of the Ce 3+ ions. The emission of the glass-ceramic containing a smaller amount of Ce was attributed to the Ce 3+ ions in both the glass phase and the mica crystals, whereas that of the glass-ceramics containing a larger amount of Ce was caused mainly by Ce 3+ ions in the mica crystals. The dependence of the emission band of the parent glasses on the amount of Ce was a unique feature of the Ce-doped transparent mica glass-ceramics and was not observed in previous studies of Eu-doped parent glasses and mica glass-ceramics.

  16. Numerical Modelling of the Compressive and Tensile Response of Glass and Ceramic under High Pressure Dynamic Loading

    Clegg, Richard A.; Hayhurst, Colin J.

    1999-06-01

    Ceramic materials, including glass, are commonly used as ballistic protection materials. The response of a ceramic to impact, perforation and penetration is complex and difficult and/or expensive to instrument for obtaining detailed physical data. This paper demonstrates how a hydrocode, such as AUTODYN, can be used to aid in the understanding of the response of brittle materials to high pressure impact loading and thus promote an efficient and cost effective design process. Hydrocode simulations cannot be made without appropriate characterisation of the material. Because of the complexitiy of the response of ceramic materials this often requires a number of complex material tests. Here we present a methodology for using the results of flyer plate tests, in conjunction with numerical simulations, to derive input to the Johnson-Holmquist material model for ceramics. Most of the research effort in relation to the development of hydrocode material models for ceramics has concentrated on the material behaviour under compression and shear. While the penetration process is dominated by these aspects of the material response, the final damaged state of the material can be significantly influenced by the tensile behaviour. Modelling of the final damage state is important since this is often the only physical information which is available. In this paper we present a unique implementation, in a hydrocode, for improved modelling of brittle materials in the tensile regime. Tensile failure initiation is based on any combination of principal stress or strain while the post-failure tensile response of the material is controlled through a Rankine plasticity damaging failure surface. The tensile failure surface can be combined with any of the traditional plasticity and/or compressive damage models. Finally, the models and data are applied in both traditional grid based Lagrangian and Eulerian solution techniques and the relativley new SPH (Smooth Particle Hydrodynamics) meshless

  17. Tests with ceramic waste form materials made by pressureless consolidation

    Lewis, M. A.; Hash, M. C.; Hebden, A. S.; Ebert, W. L.

    2002-01-01

    A multiphase waste form referred to as the ceramic waste form (CWF) will be used to immobilize radioactively contaminated salt wastes recovered after the electrometallurgical treatment of spent sodium-bonded nuclear fuel. The CWF is made by first occluding salt in zeolite and then encapsulating the zeolite in a borosilicate binder glass. A variety of surrogate CWF materials were made using pressureless consolidation (PC) methods for comparison with CWF consolidated using a hot isostatic press (HIP) method and to study the effects of glass/zeolite batching ratio and processing conditions on the physical and chemical properties of the resulting materials. The data summarized in this report will also be used to support qualification of the PC CWF for disposal in the proposed federal high-level radioactive waste repository at Yucca Mountain. The phase composition and microstructure of HIP CWF and PC CWF are essentially identical: both are composed of about 70% sodalite, 25% binder glass, and a 5% total of inclusion phases (halite, nepheline, and various oxides and silicates). The primary difference is that PC CWF materials have higher porosities than HIP CWFs. The product consistency test (PCT) that was initially developed to monitor homogeneous glass waste forms was used to measure the chemical durabilities of the CWF materials. Series of replicate tests with several PC CWF materials indicate that the PCT can be conducted with the same precision with CWF materials as with borosilicate glasses. Short-term (7-day) PCTs were used to evaluate the repeatability of making the PC CWF and the effects of the glass/zeolite mass ratio, process temperature, and processing time on the chemical durability. Long-term (up to 1 year) PCTs were used to compare the durabilities of HIP and PC CWFs and to estimate the apparent solubility limit for the PC CWF that is needed for modeling. The PC and HIP CWF materials had similar disabilities, based on the release of silicon in long

  18. Status quo of ceramic material for metal halide discharge lamps

    Kappen, Theo G M M

    2005-01-01

    Polycrystalline alumina is an excellent ceramic material for use as the envelope for metal halide discharge lamps. Although this material was introduced in the mid-1960s, and is thus already known for several decades, recent years have seen considerable effort aimed at further development of these ceramic envelope materials. Developments are not only in the field of ceramic shaping technologies, but are also concentrated on the material properties of the ceramic material itself. Optical, mechanical as well as the chemical properties of the ceramic envelope are strongly controlled by the shape as well as the microstructure of the ceramics used

  19. Stress Corrosion of Ceramic Materials.

    1986-08-01

    rupture directly, or are hydrolyzed by the water in the environment. This type of reaction is known to be important to the corrosion of glass in basic...covered .ith silanol groups so that the surface is virtually uncharged. As the pH is increased, the surface gradually hydrolyzes forming silanolate...is plotted assuming a decay distance of 0.3 nm. The data on lecithin is obtained by a non-fracture technique in which the layer spacing is determined

  20. Effect of elasticity on stress distribution in CAD/CAM dental crowns: Glass ceramic vs. polymer-matrix composite.

    Duan, Yuanyuan; Griggs, Jason A

    2015-06-01

    Further investigations are required to evaluate the mechanical behaviour of newly developed polymer-matrix composite (PMC) blocks for computer-aided design/computer-aided manufacturing (CAD/CAM) applications. The purpose of this study was to investigate the effect of elasticity on the stress distribution in dental crowns made of glass-ceramic and PMC materials using finite element (FE) analysis. Elastic constants of two materials were determined by ultrasonic pulse velocity using an acoustic thickness gauge. Three-dimensional solid models of a full-coverage dental crown on a first mandibular molar were generated based on X-ray micro-CT scanning images. A variety of load case-material property combinations were simulated and conducted using FE analysis. The first principal stress distribution in the crown and luting agent was plotted and analyzed. The glass-ceramic crown had stress concentrations on the occlusal surface surrounding the area of loading and the cemented surface underneath the area of loading, while the PMC crown had only stress concentration on the occlusal surface. The PMC crown had lower maximum stress than the glass-ceramic crown in all load cases, but this difference was not substantial when the loading had a lateral component. Eccentric loading did not substantially increase the maximum stress in the prosthesis. Both materials are resistant to fracture with physiological occlusal load. The PMC crown had lower maximum stress than the glass-ceramic crown, but the effect of a lateral loading component was more pronounced for a PMC crown than for a glass-ceramic crown. Knowledge of the stress distribution in dental crowns with low modulus of elasticity will aid clinicians in planning treatments that include such restorations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Remedial processing of oil shale fly ash (OSFA) and its value-added conversion into glass-ceramics.

    Zhang, Zhikun; Zhang, Lei; Li, Aimin

    2015-12-01

    Recently, various solid wastes such as sewage sludge, coal fly ash and slag have been recycled into various products such as sintered bricks, ceramics and cement concrete. Application of these recycling approaches is much better and greener than conventional landfills since it can solve the problems of storage of industrial wastes and reduce exploration of natural resources for construction materials to protect the environment. Therefore, in this study, an attempt was made to recycle oil shale fly ash (OSFA), a by-product obtained from the extracting of shale oil in the oil shale industry, into a value-added glass-ceramic material via melting and sintering method. The influence of basicity (CaO/SiO2 ratio) by adding calcium oxide on the performance of glass-ceramics was studied in terms of phase transformation, mechanical properties, chemical resistances and heavy metals leaching tests. Crystallization kinetics results showed that the increase of basicity reduced the activation energies of crystallization but did not change the crystallization mechanism. When increasing the basicity from 0.2 to 0.5, the densification of sintering body was enhanced due to the promotion of viscous flow of glass powders, and therefore the compression strength and bending strength of glass-ceramics were increased. Heavy metals leaching results indicated that the produced OSFA-based glass-ceramics could be taken as non-hazardous materials. The maximum mechanical properties of compression strength of 186 ± 3 MPa, bending strength of 78 ± 6 MPa, good chemical resistances and low heavy metals leaching concentrations showed that it could be used as a substitute material for construction applications. The proposed approach will be one of the potential sustainable solutions in reducing the storage of oil shale fly ash as well as converting it into a value-added product. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Synthesis and ceramic processing of alumina and zirconia based composites infiltrated with glass phase for dental applications

    Duarte, Daniel Gomes

    2009-01-01

    The interest for the use of ceramic materials for dental applications started due to the good aesthetic appearance promoted by the similarity to natural teeth. However, the fragility of traditional ceramics was a limitation for their use in stress conditions. The development of alumina and zirconia based materials, that associate aesthetic results, biocompatibility and good mechanical behaviour, makes possible the employment of ceramics for fabrication of dental restorations. The incorporation of vitreous phase in these ceramics is an alternative to minimize the ceramic retraction and to improve the adhesion to resin-based cements, necessary for the union of ceramic frameworks to the remaining dental structure. In the dentistry field, alumina and zirconia ceramic infiltrated with glassy phase are represented commercially by the In-Ceram systems. Considering that the improvement of powder's synthesis routes and of techniques of ceramic processing contributes for good performance of these materials, the goal of the present work is the study of processing conditions of alumina and/or 3 mol% yttria-stabilized zirconia ceramics infiltrated with aluminum borosilicate lanthanum glass. The powders, synthesized by hydroxide coprecipitation route, were pressed by uniaxial compaction and pre-sintered at temperature range between 950 and 1650 degree C in order to obtain porous ceramics bodies. Vitreous phase incorporation was performed by impregnation of aluminum borosilicate lanthanum powder, also prepared in this work, followed by heat treatment between 1200 and 1400 degree C .Ceramic powders were characterized by thermogravimetry, X-ray diffraction, scanning and transmission electron microscopy, gaseous adsorption (BET) and laser diffraction. Sinterability of alumina and /or stabilized zirconia green pellets was evaluated by dilatometry. Pre-sintered ceramics were characterized by apparent density measurements (Archimedes method), X-ray diffraction and scanning electron

  3. Formation of apatite layers on modified canasite glass-ceramics in simulated body fluid.

    Miller, C A; Kokubo, T; Reaney, I M; Hatton, P V; James, P F

    2002-03-05

    Canasite glass-ceramics were modified by either increasing the concentration of calcium in the glass, or by the addition of P2O5. Samples of these novel materials were placed in simulated body fluid (SBF), along with a control material (commercial canasite), for periods ranging from 12 h to 28 days. After immersion, surface analysis was performed using thin film X-ray diffraction, Fourier transform infrared reflection spectroscopy, and scanning electron microscopy equipped with energy dispersive X-ray detectors. The concentrations of sodium, potassium, calcium, silicon, and phosphorus in the SBF solution were measured using inductively coupled plasma emission spectroscopy. No apatite was detected on the surface of commercial canasite, even after 28 days of immersion in SBF. A crystalline apatite layer was formed on the surface of a P2O5-containing canasite after 5 days, and after 3 days for calcium-enriched canasite. Ion release data suggested that the mechanism for apatite deposition was different for P2O5 and non-P2O5-containing glass-ceramics. Copyright 2001 John Wiley & Sons, Inc.

  4. Glass-ceramic coated Mg-Ca alloys for biomedical implant applications.

    Rau, J V; Antoniac, I; Fosca, M; De Bonis, A; Blajan, A I; Cotrut, C; Graziani, V; Curcio, M; Cricenti, A; Niculescu, M; Ortenzi, M; Teghil, R

    2016-07-01

    Biodegradable metals and alloys are promising candidates for biomedical bone implant applications. However, due to the high rate of their biodegradation in human body environment, they should be coated with less reactive materials, such, for example, as bioactive glasses or glass-ceramics. Fort this scope, RKKP composition glass-ceramic coatings have been deposited on Mg-Ca(1.4wt%) alloy substrates by Pulsed Laser Deposition method, and their properties have been characterized by a number of techniques. The prepared coatings consist of hydroxyapatite and wollastonite phases, having composition close to that of the bulk target material used for depositions. The 100μm thick films are characterized by dense, compact and rough morphology. They are composed of a glassy matrix with various size (from micro- to nano-) granular inclusions. The average surface roughness is about 295±30nm due to the contribution of micrometric aggregates, while the roughness of the fine-texture particulates is approximately 47±4nm. The results of the electrochemical corrosion evaluation tests evidence that the RKKP coating improves the corrosion resistance of the Mg-Ca (1.4wt%) alloy in Simulated Body Fluid. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Treatment of copper industry waste and production of sintered glass-ceramic.

    Coruh, Semra; Ergun, Osman Nuri; Cheng, Ta-Wui

    2006-06-01

    Copper waste is iron-rich hazardous waste containing heavy metals such as Cu, Zn, Co, Pb. The results of leaching tests show that the concentration of these elements exceeds the Turkish and EPA regulatory limits. Consequently, this waste cannot be disposed of in its present form and therefore requires treatment to stabilize it or make it inert prior to disposal. Vitrification was selected as the technology for the treatment of the toxic waste under investigation. During the vitrification process significant amounts of the toxic organic and inorganic chemical compounds could be destroyed, and at the same time, the metal species are immobilized as they become an integral part of the glass matrix. The copper flotation waste samples used in this research were obtained from the Black Sea Copper Works of Samsun, Turkey. The samples were vitrified after being mixed with other inorganic waste and materials. The copper flotation waste and their glass-ceramic products were characterized by X-ray analysis (XRD), scanning electron microscopy and by the toxicity characteristic leaching procedure test. The products showed very good chemical durability. The glass-ceramics fabricated at 850 degrees C/2 h have a large application potential especially as construction and building materials.

  6. Evaluation of the potential of waste fondant glass in formulations of ceramic pasta

    Soares Filho, J.E.; Santos, L.L. dos; Nascimento, R.M. do; Feitosa, A.O.; Dutra, R.P.S.

    2014-01-01

    An increasing amount of waste generated and deposited on the environment, many unspecified decomposition with time, as is the case of the glass. Thinking about it, the purpose of this study is to evaluate the power of the flux residue on glass formulations porcelains, as a flux to feldspar replacement. This study was performed in comparison with a standard formulation. The raw materials were characterized in the diffraction X-ray fluorescence and X-ray thermal differential analysis, and determination of the technological properties of water absorption, linear contraction, ignition loss, apparent porosity and apparent specific gravity in the formulation standard and replacement of feldspar in different percentages of waste and processing conditions. Specimens of the formulations were subjected to assay of three points. Results indicate that the residue glass has the potential of being used as a flux material in the composition of the ceramic body reduces the apparent porosity and according to the technology of water absorption property. The ceramic mass standard was classified as semi-stoneware, the BIIa group, and after the addition of the residue in any of the three percentages evaluated was classified as sandstone, belonging to the group BIb.(author)

  7. Flexural resistance of Cerec CAD/CAM system ceramic blocks. Part 2: Outsourcing materials.

    Sedda, Maurizio; Vichi, Alessandro; Del Siena, Francesco; Louca, Chris; Ferrari, Marco

    2014-02-01

    To test different Cerec CAD/CAM system ceramic blocks, comparing mean flexural strength (sigma), Weibull modulus (m), and Weibull characteristic strength (sigma0) in an ISO standardized set-up. Following the recent ISO Standard (ISO 6872:2008), 11 types of ceramic blocks were tested: IPS e.max CAD MO, IPS e.max CAD LT and IPS e.max CAD HT (lithium disilicate glass-ceramic); In-Ceram SPINELL, In-Ceram Alumina and In-Ceram Zirconia (glass-infiltrated materials); inCoris AL and In-Ceram AL (densely sintered alumina); In-Ceram YZ, IPS e.max Zir-CAD and inCoris ZI (densely sintered zirconia). Specimens were cut out from ceramic blocks, finished, crystallized/infiltrated/sintered, polished, and tested in a three-point bending test apparatus. Flexural strength, Weibull characteristic strength, and Weibull modulus were obtained. A statistically significant difference was found (P ceramic (sigma = 272.6 +/- 376.8 MPa, m = 6.2 +/- 11.3, sigma0 = 294.0 +/- 394.1 MPa) and densely sintered alumina (sigma = 441.8 +/- 541.6 MPa, m = 11.9 +/- 19.0, sigma0 = 454.2 +/- 565.2 MPa). No statistically significant difference was found (P = 0.254) in glass infiltrated materials (sigma = 376.9 +/- 405.5 MPa, m = 7.5 +/- 11.5, sigma0 = 393.7 +/- 427.0 MPa). No statistically significant difference was found (P = 0.160) in densely sintered zirconia (sigma = 1,060.8 +/- 1,227.8 MPa, m = 5.8 +/- 7.4, sigma0 = 1,002.4 +/- 1,171.0 MPa). Not all the materials tested fulfilled the requirements for the clinical indications recommended by the manufacturer.

  8. Ultrafine Ceramic Grains Embedded in Metallic Glass Matrix: Achieving Superior Wear Resistance via Increase in Both Hardness and Toughness.

    Yang, Lina; Wen, Mao; Dai, Xuan; Cheng, Gang; Zhang, Kan

    2018-05-09

    As structural materials, crystalline or metallic glass materials have attracted scientific and practical interests. However, some mechanisms involving critical size and shear bands have adverse effects on their mechanical properties. Here, we counter these two effects by introducing a special structure with ultrafine ceramic grains (with a diameter of ∼2.0 nm) embedded into a metallic glass matrix, wherein the grains are mainly composed of a Ta-W-N solid solution structure in nature, surrounded by a W-based amorphous matrix that contains Ta and N atoms. Such a structure is in situ formed during preparation, which combines the merits of both phases to achieve simultaneous increase in hardness and toughness relative to references (pure TaN and W) and thus superior wear resistance. Even more remarkable, a favorable variation of increased hardness but reduced elasticity modulus can be induced by this structure. Intrinsically, ultrafine ceramic grains (free of dislocations), embedded in the metallic glass matrix, could prevent shear band propagation within the glass matrix and further improve the hardness of the matrix material. In return, such glass matrix allows for stiffness neutralization and structural relaxation to reduce the elasticity modulus of ceramic grains. This study will offer a new guidance to fabricate ultrahigh-performance metal-based composites.

  9. Silanated Surface Treatment: Effects on the Bond Strength to Lithium Disilicate Glass-Ceramic.

    Baratto, Samantha Schaffer Pugsley; Spina, Denis Roberto Falcão; Gonzaga, Carla Castiglia; Cunha, Leonardo Fernandes da; Furuse, Adilson Yoshio; Baratto Filho, Flares; Correr, Gisele Maria

    2015-10-01

    The aim of this study was to evaluate the effect of silanization protocols on the bond strength of two resin cements to a lithium disilicate glass-ceramic. Thirty-two ceramic discs were assigned to 2 groups (n=16): G1 - dual-cured resin cement and G2 - light-cured resin cement. Four subgroups were evaluated according to the used silanization protocol. The glass-ceramic was etched with 10% hydrofluoric acid for 20 s and silane was applied for 1 min, as follows: CTL - according to the manufacturer's instructions; HA - dried with hot air; NWA - washed and dried with water and air at room temperature; HWA - washed and dried with hot water and hot air. Thereafter, adhesive was applied and light-cured for 20 s. Silicon molds were used to prepare resin cement cylinders (1x1 mm) on the ceramic surface. The specimens were stored in deionized water at 37 °C for 48 h and subjected to a micro-shear test. The data were submitted to statistical analysis (?#61537;=0.05). Group G1 showed higher bond strengths than G2, except for the CTL and NWA subgroups. Differences as function of the silanization protocol were only observed in G1: HWA (25.13±6.83)≥HA (22.95±7.78)≥CTL(17.44±7.24) ≥NWA(14.63±8.76). For G2 there was no difference among the subgroups. In conclusion, the silanization protocol affected the resin cement/ceramic bond strengths, depending on the material. Washing/drying with hot water and/or hot air increased only the bond strength of the dual-cured resin cement.

  10. An evaluation of the processing conditions, structure, and properties (biaxial flexural strength and antibacterial efficacy) of sintered strontium-zinc-silicate glass ceramics.

    Looney, Mark; Shea, Helen O'; Gunn, Lynda; Crowley, Dolores; Boyd, Daniel

    2013-05-01

    The use of artificial bone grafts has increased in order to satisfy a growing demand for bone replacement materials. Initial mechanical stability of synthetic bone grafts is very advantageous for certain clinical applications. Coupled with the advantage of mechanical strength, a material with inherent antibacterial properties would be very beneficial. A series of strontium-doped zinc silicate (Ca-Sr-Na-Zn-Si) glass ceramics have been characterized in terms of their crystalline structure, biaxial flexural strength and antibacterial efficacy based on the identification of optimum sintering conditions. All three glass ceramics, namely, BT110, BT111, and BT112 were found to be fully crystalline, with BT111 and BT112 comprising of biocompatible crystalline phases. The biaxial flexural strengths of the three glass ceramics ranged from 70 to 149 MPa and were shown to be superior to those of clinically established ceramics in dry conditions and following incubation in simulated physiological conditions. The bacteriostatic effect for each glass ceramic was also established, where BT112 showed an inhibitory effect against three of the most common bacteria found at implantation sites, namely, Enterococcus faecalis, methicillin-resistant Staphylococcus aureus (MRSA), and Pseudomonas aeruginosa. The results of the evaluation suggest that the materials studied offer advantages over current clinical materials and indicate the potential suitability of the glass ceramics as therapeutic bone grafts.

  11. Ceramic materials on perovskite-type structure for electronic applications

    Surowiak, Z.

    2003-01-01

    Ceramic materials exhibiting the perovskite-type structure constitute among others, resource base for many fields of widely understood electronics (i.e., piezoelectronics, accustoelectronics, optoelectronics, computer science, tele- and radioelectronics etc.). Most often they are used for fabrication of different type sensors (detectors), transducers, ferroelectric memories, limiters of the electronic current intensity, etc., and hence they are numbered among so-called intelligent materials. Prototype structure of this group of materials is the structure of the mineral called perovskite (CaTiO 3 ). By means of right choice of the chemical composition of ABO 3 and deforming the regular perovskite structure (m3m) more than 5000 different chemical compounds and solid solutions exhibiting the perovskite-type structure have been fabricated. The concept of perovskite functional ceramics among often things ferroelectric ceramics, pyroelectric ceramics, piezoelectric ceramics, electrostrictive ceramics, posistor ceramics, superconductive ceramics and ferromagnetic ceramics. New possibilities of application of the perovskite-type ceramics are opened by nanotechnology. (author)

  12. Variation in Pockels constants of silicate glass-ceramics prepared by perfect surface crystallization

    Takano, Kazuya; Takahashi, Yoshihiro; Miyazaki, Takamichi; Terakado, Nobuaki; Fujiwara, Takumi

    2018-01-01

    We investigated the Pockels effect in polycrystalline materials consisting of highly oriented polar fresnoite-type Sr2TiSi2O8 fabricated using perfectly surface-crystallized glass-ceramics (PSC-GCs). The chemical composition of the precursor glass was shown to significantly affect the crystallized texture, e.g., the crystal orientation and appearance of amorphous nanoparasites in the domains, resulting in variations in the Pockels constants. Single crystals exhibiting spontaneous polarization possessed large structural anisotropy, leading to a strong dependence of the nonlinear-optical properties on the direction of polarized light. This study suggests that variations in the Pockels constants (r13 and r33) and tuning of the r13/r33 ratio can be realized in PSC-GC materials.

  13. Ceramic nanostructure materials, membranes and composite layers

    Burggraaf, A.J.; Keizer, Klaas; van Hassel, B.A.

    1989-01-01

    Synthesis methods to obtain nanoscale materials will be briefly discussed with a focus on sol-gel methods. Three types of nanoscale composites (powders, membranes and ion implanted layers) will be discussed and exemplified with recent original research results. Ceramic membranes with a thickness of

  14. Stress Corrosion of Ceramic Materials.

    1983-10-01

    Scientifique Continentale du Verre , Charleroi, Belgium, 1962. Dunning, J.M., Effects of Aqueous Chemical Environments on Crack Propagation in Quartz, this volume...Symposium on Mechanical Strength of Glass and Ways of Improving It. Florence, Italy, September 25-29, 1961. Union Scientifique Continentale du Verre ...F-0e38 UNCLSIFIEDF/G 112 N moflfllh....h... I fflfflfflffl..fNDf EIEEEEEEE % le 1111.0 L4 5 .8 _ = g 13 2 . LL IMI 11111= _"A 2.2 MICROCOPY

  15. Glass Ceramic Waste Forms for Combined CS+LN+TM Fission Products Waste Streams

    Crum, Jarrod V.; Turo, Laura A.; Riley, Brian J.; Tang, Ming; Kossoy, Anna; Sickafus, Kurt E.

    2010-01-01

    In this study, glass ceramics were explored as an alternative waste form for glass, the current baseline, to be used for immobilizing alkaline/alkaline earth + lanthanide (CS+LN) or CS+LN+transition metal (TM) fission-product waste streams generated by a uranium extraction (UREX+) aqueous separations type process. Results from past work on a glass waste form for the combined CS+LN waste streams showed that as waste loading increased, large fractions of crystalline phases precipitated upon slow cooling.(1) The crystalline phases had no noticeable impact on the waste form performance by the 7-day product consistency test (PCT). These results point towards the development of a glass ceramic waste form for treating CS+LN or CS+LN+TM combined waste streams. Three main benefits for exploring glass ceramics are: (1) Glass ceramics offer increased solubility of troublesome components in crystalline phases as compared to glass, leading to increased waste loading; (2) The crystalline network formed in the glass ceramic results in higher heat tolerance than glass; and (3) These glass ceramics are designed to be processed by the same melter technology as the current baseline glass waste form. It will only require adding controlled canister cooling for crystallization into a glass ceramic waste form. Highly annealed waste form (essentially crack free) with up to 50X lower surface area than a typical High-Level Waste (HLW) glass canister. Lower surface area translates directly into increased durability. This was the first full year of exploring glass ceramics for the Option 1 and 2 combined waste stream options. This work has shown that dramatic increases in waste loading are achievable by designing a glass ceramic waste form as an alternative to glass. Table S1 shows the upper limits for heat, waste loading (based on solubility), and the decay time needed before treatment can occur for glass and glass ceramic waste forms. The improvements are significant for both combined waste

  16. Glass Ceramic Waste Forms for Combined CS+LN+TM Fission Products Waste Streams

    Crum, Jarrod V.; Turo, Laura A.; Riley, Brian J.; Tang, Ming; Kossoy, Anna; Sickafus, Kurt E.

    2010-09-23

    In this study, glass ceramics were explored as an alternative waste form for glass, the current baseline, to be used for immobilizing alkaline/alkaline earth + lanthanide (CS+LN) or CS+LN+transition metal (TM) fission-product waste streams generated by a uranium extraction (UREX+) aqueous separations type process. Results from past work on a glass waste form for the combined CS+LN waste streams showed that as waste loading increased, large fractions of crystalline phases precipitated upon slow cooling.[1] The crystalline phases had no noticeable impact on the waste form performance by the 7-day product consistency test (PCT). These results point towards the development of a glass ceramic waste form for treating CS+LN or CS+LN+TM combined waste streams. Three main benefits for exploring glass ceramics are: (1) Glass ceramics offer increased solubility of troublesome components in crystalline phases as compared to glass, leading to increased waste loading; (2) The crystalline network formed in the glass ceramic results in higher heat tolerance than glass; and (3) These glass ceramics are designed to be processed by the same melter technology as the current baseline glass waste form. It will only require adding controlled canister cooling for crystallization into a glass ceramic waste form. Highly annealed waste form (essentially crack free) with up to 50X lower surface area than a typical High-Level Waste (HLW) glass canister. Lower surface area translates directly into increased durability. This was the first full year of exploring glass ceramics for the Option 1 and 2 combined waste stream options. This work has shown that dramatic increases in waste loading are achievable by designing a glass ceramic waste form as an alternative to glass. Table S1 shows the upper limits for heat, waste loading (based on solubility), and the decay time needed before treatment can occur for glass and glass ceramic waste forms. The improvements are significant for both combined waste

  17. Real time neutron diffraction and NMR of the Empress II glass-ceramic system.

    O'Donnell, M D; Hill, R G; Karpukhina, N; Law, R V

    2011-10-01

    This study reports real time neutron diffraction on the Empress II glass-ceramic system. The commercial glass-ceramics was characterized by real time neutron diffraction, ³¹P and ²⁹Si solid-state MAS-NMR, DSC and XRD. On heating, the as-received glass ceramic contained lithium disilicate (Li₂Si₂O₅), which melted with increasing temperature. This was revealed by neutron diffraction which showed the Bragg peaks for this phase had disappeared by 958°C in agreement with thermal analysis. On cooling lithium metasilicate (Li₂SiO₃) started to form at around 916°C and a minor phase of cristobalite at around 852°C. The unit cell volume of both Li-silicate phases increased linearly with temperature at a rate of +17×10⁻³ ų.°C⁻¹. Room temperature powder X-ray diffraction (XRD) of the material after cooling confirms presence of the lithium metasilicate and cristobalite as the main phases and shows, in addition, small amount of lithium disilicate and orthophosphate. ³¹P MAS-NMR reveals presence of the lithiorthophosphate (Li₃PO₄) before and after heat treatment. The melting of lithium disilicate on heating and crystallisation of lithium metasilicate on cooling agree with endothermic and exotermic features respectively observed by DSC. ²⁹Si MAS-NMR shows presence of lithium disilicate phase in the as-received glass-ceramic, though not in the major proportion, and lithium metasilicate in the material after heat treatment. Both phases have significantly long T₁ relaxation time, especially the lithium metasilicate, therefore, a quantitative analysis of the ²⁹Si MAS-NMR spectra was not attempted. Significance. The findings of the present work demonstrate importance of the commercially designed processing parameters in order to preserve desired characteristics of the material. Processing the Empress II at a rate slower than recommended 60°C min⁻¹ or long isothermal hold at the maximal processing temperature 920°C can cause

  18. Magnesium-phosphate-glass cements with ceramic-type properties

    Sugama, T.; Kukacka, L.E.

    1982-09-23

    Rapid setting magnesium phosphate (Mg glass) cementitious materials consisting of magnesium phosphate cement paste, polyborax and water-saturated aggregate, exhibits rapid setting and high early strength characteristics. The magnesium glass cement is prepared from a cation-leachable powder and a bivalent metallic ion-accepting liquid such as an aqueous solution of diammonium phosphate and ammonium polyphosphate. The cation-leachable powder includes a mixture of two different magnesium oxide powders processed and sized differently which when mixed with the bivalent metallic ion-accepting liquid provides the magnesium glass cement consisting primarily of magnesium ortho phosphate tetrahydrate, with magnesium hydroxide and magnesium ammonium phosphate hexahydrate also present. The polyborax serves as a set-retarder. The resulting magnesium mono- and polyphosphate cements are particularly suitable for use as a cementing matrix in rapid repair systems for deteriorated concrete structures as well as construction materials and surface coatings for fireproof structures.

  19. Magnesium phosphate glass cements with ceramic-type properties

    Sugama, Toshifumi; Kukacka, Lawrence E.

    1984-03-13

    Rapid setting magnesium phosphate (Mg glass) cementitious materials consisting of magnesium phosphate cement paste, polyborax and water-saturated aggregate exhibiting rapid setting and high early strength characteristics. The magnesium glass cement is prepared from a cation-leachable powder and a bivalent metallic ion-accepting liquid such as an aqueous solution of diammonium phosphate and ammonium polyphosphate. The cation-leachable powder includes a mixture of two different magnesium oxide powders processed and sized differently which when mixed with the bivalent metallic ion-accepting liquid provides the magnesium glass cement consisting primarily of magnesium ortho phosphate tetrahydrate, with magnesium hydroxide and magnesium ammonium phosphate hexahydrate also present. The polyborax serves as a set-retarder. The resulting magnesium mono- and polyphosphate cements are particularly suitable for use as a cementing matrix in rapid repair systems for deteriorated concrete structures as well as construction materials and surface coatings for fireproof structures.

  20. Combinatorial synthesis of ceramic materials

    Lauf, Robert J.; Walls, Claudia A.; Boatner, Lynn A.

    2006-11-14

    A combinatorial library includes a gelcast substrate defining a plurality of cavities in at least one surface thereof; and a plurality of gelcast test materials in the cavities, at least two of the test materials differing from the substrate in at least one compositional characteristic, the two test materials differing from each other in at least one compositional characteristic.

  1. The role of ceramics, cement and glass in the immobilization of radioactive wastes

    Glasser, F.P.

    1985-01-01

    A brief account is given of the constitution and origin of nuclear waste. The immobilization of wastes is discussed: borosilicate glasses are considered as possible matrices; ceramic forms are dealt with in more detail. The principles of the use of ceramics are explained, with examples of different ceramic structures; cements are mentioned as being suitable for wet, medium- to low-active wastes. The effects of radiation on cement, ceramic and glass waste forms are indicated. The account concludes with 'summary and future progress'. (U.K.)

  2. Study of glass ceramic material on the base of ash group simulating slag of plasma shaft furnace for high temperature reprocessing of radioactive wastes

    Aloj, A.S.; Dmitriev, S.A.; Stefanovskij, S.V.

    1997-01-01

    Using the methods of X-ray diffraction, differential thermal and micro-probe analysis it is shown that the processes of minerals formation and homogenization in ash residue based charge under the heating up to 1450 deg C take place with a high rate and completely finish during 10 minutes. Homogeneous materials containing besides glassy phase crystalline phases and metallic shots are formed in this process. The products obtained with fluxes (dolomite and clay) additions are more homogeneous than a flux-less fused slag. Losses of α-radioactive nuclides during the melting of ash residue at 1300 deg C do not exceed 1.5% and is likely attributed with the products of uranium decay. Hydrolytic stability of the slags estimated from the rate of α-radioactive elements lixiviation is on the level of (1.4-5.7)x10 -4 g/(cm 2 x day) at 95 deg C

  3. Advanced ceramic materials for next-generation nuclear applications

    Marra, John

    2011-10-01

    The nuclear industry is at the eye of a 'perfect storm' with fuel oil and natural gas prices near record highs, worldwide energy demands increasing at an alarming rate, and increased concerns about greenhouse gas (GHG) emissions that have caused many to look negatively at long-term use of fossil fuels. This convergence of factors has led to a growing interest in revitalization of the nuclear power industry within the United States and across the globe. Many are surprised to learn that nuclear power provides approximately 20% of the electrical power in the US and approximately 16% of the world-wide electric power. With the above factors in mind, world-wide over 130 new reactor projects are being considered with approximately 25 new permit applications in the US. Materials have long played a very important role in the nuclear industry with applications throughout the entire fuel cycle; from fuel fabrication to waste stabilization. As the international community begins to look at advanced reactor systems and fuel cycles that minimize waste and increase proliferation resistance, materials will play an even larger role. Many of the advanced reactor concepts being evaluated operate at high-temperature requiring the use of durable, heat-resistant materials. Advanced metallic and ceramic fuels are being investigated for a variety of Generation IV reactor concepts. These include the traditional TRISO-coated particles, advanced alloy fuels for 'deep-burn' applications, as well as advanced inert-matrix fuels. In order to minimize wastes and legacy materials, a number of fuel reprocessing operations are being investigated. Advanced materials continue to provide a vital contribution in 'closing the fuel cycle' by stabilization of associated low-level and high-level wastes in highly durable cements, ceramics, and glasses. Beyond this fission energy application, fusion energy will demand advanced materials capable of withstanding the extreme environments of high

  4. Advanced ceramic materials for next-generation nuclear applications

    Marra, John [Savannah River National Laboratory Aiken, SC 29802 (United States)

    2011-10-29

    The nuclear industry is at the eye of a 'perfect storm' with fuel oil and natural gas prices near record highs, worldwide energy demands increasing at an alarming rate, and increased concerns about greenhouse gas (GHG) emissions that have caused many to look negatively at long-term use of fossil fuels. This convergence of factors has led to a growing interest in revitalization of the nuclear power industry within the United States and across the globe. Many are surprised to learn that nuclear power provides approximately 20% of the electrical power in the US and approximately 16% of the world-wide electric power. With the above factors in mind, world-wide over 130 new reactor projects are being considered with approximately 25 new permit applications in the US. Materials have long played a very important role in the nuclear industry with applications throughout the entire fuel cycle; from fuel fabrication to waste stabilization. As the international community begins to look at advanced reactor systems and fuel cycles that minimize waste and increase proliferation resistance, materials will play an even larger role. Many of the advanced reactor concepts being evaluated operate at high-temperature requiring the use of durable, heat-resistant materials. Advanced metallic and ceramic fuels are being investigated for a variety of Generation IV reactor concepts. These include the traditional TRISO-coated particles, advanced alloy fuels for 'deep-burn' applications, as well as advanced inert-matrix fuels. In order to minimize wastes and legacy materials, a number of fuel reprocessing operations are being investigated. Advanced materials continue to provide a vital contribution in 'closing the fuel cycle' by stabilization of associated low-level and high-level wastes in highly durable cements, ceramics, and glasses. Beyond this fission energy application, fusion energy will demand advanced materials capable of withstanding the extreme

  5. Exoelectron emission from surface layer of Li2B4O7 glass ceramics

    Kawamoto, Takamichi; Katsube, Shizuko; Yanagisawa, Hideo; Kikuchi, Riichi; Kawanishi, Masaharu.

    1984-01-01

    The thermally stimulated exoelectron emission (TESS) of Li 2 B 4 O 7 glass ceramics was investigated for its application to the dosimetric use. It has been found the TSEE glow patterns of Li 2 B 4 O 7 glass ceramics and of the thin layer of LiF evaporated on Li 2 B 4 O 7 glass ceramics depend on the kind of radiations irradiated. The TSEE glow pattern of the duplicated structure sample indicated a possibility of determining the dose of each kind of radiation separately in the mixed radiation field. (author)

  6. Novel low-temperature sintering ceramic substrate based on indialite/cordierite glass ceramics

    Varghese, Jobin; Vahera, Timo; Ohsato, Hitoshi; Iwata, Makoto; Jantunen, Heli

    2017-10-01

    In this paper, a novel low-temperature sintering substrate for low temperature co-fired ceramic applications based on indialite/cordierite glass ceramics with Bi2O3 as a sintering aid showing low permittivity (εr) and ultralow dielectric loss (tan δ) is described. The fine powder of indialite was prepared by the crystallization of cordierite glass at 1000 °C/1 h. The optimized sintering temperature was 900 °C with 10 wt % Bi2O3 addition. The relative density achieved was 97%, and εr and tan δ were 6.10 and 0.0001 at 1 MHz, respectively. The composition also showed a moderately low temperature coefficient of relative permittivity of 118 ppm/°C at 1 MHz. The obtained linear coefficient of thermal expansion was 3.5 ppm/°C in the measured temperature range of 100 to 600 °C. The decreasing trend in dielectric loss, the low relative permittivity at 1 MHz, and the low thermal expansion of the newly developed composition make it an ideal choice for radio frequency applications.

  7. Properties and performance of polysiloxane-derived ceramic matrix in heat resistant composites reinforced with R-glass or fine ceramic fibres

    Černý, Martin; Glogar, Petr; Sucharda, Zbyněk; Machovič, V.

    2005-01-01

    Roč. 49, č. 3 (2005), s. 145-152 ISSN 0862-5468 R&D Projects: GA ČR(CZ) GA106/02/0177; GA ČR(CZ) GP106/02/P025 Institutional research plan: CEZ:AV0Z30460519 Keywords : polysiloxane resin * fibre-reinforced composite * mechanical properties Subject RIV: JH - Ceramic s, Fire-Resistant Materials and Glass Impact factor: 0.463, year: 2005

  8. Multifunctional bioactive glass and glass-ceramic biomaterials with antibacterial properties for repair and regeneration of bone tissue.

    Fernandes, João S; Gentile, Piergiorgio; Pires, Ricardo A; Reis, Rui L; Hatton, Paul V

    2017-09-01

    Bioactive glasses (BGs) and related glass-ceramic biomaterials have been used in bone tissue repair for over 30years. Previous work in this field was comprehensively reviewed including by their inventor Larry Hench, and the key features and properties of BGs are well understood. More recently, attention has focused on their modification to further enhance the osteogenic behaviour, or further compositional changes that may introduce additional properties, such as antimicrobial activity. Evidence is emerging that BGs and related glass-ceramics may be modified in such a way as to simultaneously introduce more than one desirable property. The aim of this review is therefore to consider the evidence that these more recent inorganic modifications to glass and glass-ceramic biomaterials are effective, and whether or not these new compositions represent sufficiently versatile systems to underpin the development of a new generation of truly multifunctional biomaterials to address pressing clinical needs in orthopaedic and dental surgery. Indeed, a number of classical glass compositions exhibited antimicrobial activity, however the structural design and the addition of specific ions, i.e. Ag + , Cu + , and Sr 2+ , are able to impart a multifunctional character to these systems, through the combination of, for example, bioactivity with bactericidal activity. In this review we demonstrate the multifunctional potential of bioactive glasses and related glass-ceramics as biomaterials for orthopaedic and craniofacial/dental applications. Therefore, it considers the evidence that the more recent inorganic modifications to glass and glass-ceramic biomaterials are able to impart antimicrobial properties alongside the more classical bone bonding and osteoconduction. These properties are attracting a special attention nowadays that bacterial infections are an increasing challenge in orthopaedics. We also focus the manuscript on the versatility of these systems as a basis to underpin

  9. The effect of TiO2 concentration on properties of apatite-mullite glass-ceramics for dental use.

    Fathi, Hawa M; Johnson, Anthony

    2016-02-01

    The aim of this study was to evaluate the effect of TiO2 concentration on the properties of apatite-mullite glass-ceramics namely strength and the chemical solubility to comply with the ISO standard recommendations for dental ceramics (BS EN ISO 6872-2008). Ten novel glass-ceramic materials were produced based on the general formula (4.5SiO2-3Al2O3-1.5P2O5-3CaO-CaF2-xTiO2) where x varied from 0.5 to 5 wt%. Glass with no TiO2 added (HG1T0.0) was used as a reference. Discs of 12 mm diameter and 1.6 mm (±0.2 mm) thickness were prepared for both biaxial flexural strength (BFS) and chemical solubility testing, in accordance with the BS EN ISO 6872-2008 for dental ceramics. All produced materials were investigated using differential thermal analysis (DTA), X-ray diffraction (XRD), and scanning electron microscopy (SEM). Energy dispersive X-ray analysis (EDS) was also carried out on some samples to identify the element composition of samples. Increasing the concentration of TiO2 from 0.5 wt% to 2 wt% significantly (Pceramic only up to 2.5 wt% concentration. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  10. Fabrication and characterization of glass–ceramics materials developed from steel slag waste

    He, Feng; Fang, Yu; Xie, Junlin; Xie, Jun

    2012-01-01

    Highlights: ► Steelmaking slag (SS) is one of the most common industrial wastes. ► Glass–ceramics produced from SS is observed to have good properties. ► A large volume of raw SS can be recycled. ► The utilization of SS could reduce solid waste pollution. -- Abstract: In this study, glass–ceramic materials were produced from SS (steel slag) obtained from Wuhan Iron and Steel Corporation in China. The amount of SS used in glass batch was about 31–41 wt.% of the total batch mixture. On basis of differential thermal analysis (DTA) results, the nucleation and crystallization temperature of the parent glass samples were identified, respectively. X-ray diffraction (XRD) revealed that multiple crystalline phases coexisted in the glass–ceramics, and the main crystalline phase was wollastonite (CaSiO 3 ). SEM observation indicated that there was an increase in the amount of crystalline phase in the glass–ceramics when the CaO content and crystallization time increased. It was also found that the glass–ceramics with fine microstructure enhance mechanical properties and erosion wear resistance. The obtained glass–ceramics showed a maximum bending strength of 145.6 MPa and very nice wear resistance. Therefore, it is feasible to produce nucleated glass–ceramics materials for building and decorative materials from SS.

  11. Fabrication and characterization of bioactive glass-ceramic using soda-lime-silica waste glass.

    Abbasi, Mojtaba; Hashemi, Babak

    2014-04-01

    Soda-lime-silica waste glass was used to synthesize a bioactive glass-ceramic through solid-state reactions. In comparison with the conventional route, that is, the melt-quenching and subsequent heat treatment, the present work is an economical technique. Structural and thermal properties of the samples were examined by X-ray diffraction (XRD) and differential thermal analysis (DTA). The in vitro test was utilized to assess the bioactivity level of the samples by Hanks' solution as simulated body fluid (SBF). Bioactivity assessment by atomic absorption spectroscopy (AAS) and scanning electron microscopy (SEM) was revealed that the samples with smaller amount of crystalline phase had a higher level of bioactivity. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Surface functionalization of 3D glass-ceramic porous scaffolds for enhanced mineralization in vitro

    Ferraris, Sara; Vitale-Brovarone, Chiara; Bretcanu, Oana; Cassinelli, Clara; Vernè, Enrica

    2013-04-01

    Bone reconstruction after tissue loosening due to traumatic, pathological or surgical causes is in increasing demand. 3D scaffolds are a widely studied solution for supporting new bone growth. Bioactive glass-ceramic porous materials can offer a three-dimensional structure that is able to chemically bond to bone. The ability to surface modify these devices by grafting biologically active molecules represents a challenge, with the aim of stimulating physiological bone regeneration with both inorganic and organic signals. In this research work glass ceramic scaffolds with very high mechanical properties and moderate bioactivity have been functionalized with the enzyme alkaline phosphatase (ALP). The material surface was activated in order to expose hydroxyl groups. The activated surface was further grafted with ALP both via silanization and also via direct grafting to the surface active hydroxyl groups. Enzymatic activity of grafted samples were measured by means of UV-vis spectroscopy before and after ultrasonic washing in TRIS-HCl buffer solution. In vitro inorganic bioactivity was investigated by soaking the scaffolds after the different steps of functionalization in a simulated body fluid (SBF). SEM observations allowed the monitoring of the scaffold morphology and surface chemical composition after soaking in SBF. The presence of ALP enhanced the in vitro inorganic bioactivity of the tested material.

  13. The Fabrication and Characterization of PCL/Rice Husk Derived Bioactive Glass-Ceramic Composite Scaffolds

    Farnaz Naghizadeh

    2014-01-01

    Full Text Available The present study was conducted to fabricate a 3D scaffold using polycaprolactone (PCL and silicate based bioactive glass-ceramic (R-SBgC. Different concentrations of R-SBgC prepared from rice husk ash (RHA were combined with PCL to fabricate a composite scaffold using thermally induced phase separation (TIPS method. The products were then characterized using SEM and EDX. The results demonstrated that R-SBgC in PCL matrix produced a bioactive material which has highly porous structure with interconnected porosities. There appears to be a relationship between the increase in R-SBgC concentration and increased material density and compressive modulus; however, increasing R-SBgC concentration result in reduced scaffold porosity. In conclusion, it is possible to fabricate a PCL/bioactive glass-ceramic composite from processed rice husk. Varying the R-SBgC concentrations can control the properties of this material, which is useful in the development of the ideal scaffold intended for use as a bone substitute in nonload bearing sites.

  14. Surface engineering glass-metal coatings designed for induction heating of ceramic components

    Khan, Amir Azam; Labbe, Jean Claude

    2014-01-01

    The term Surface Engineering is of relatively recent origin and use, however, the use of coatings and treatments to render surfaces of materials more suitable for certain application or environment is not new. With the advent of Vacuum Technology, Surface Engineering has gained a whole new impetus, whereby expensive materials with adequate mechanical, chemical and thermal properties are being coated or treated on their surfaces in order to achieve what is called as Surface Engineered materials. The present paper presents an overview of recent achievements in Surface Engineering and gives a detailed view of a specific application where glass-metal composite coatings were deposited on ceramic components in order to render them sensitive to induction heating. Sintered glaze coatings containing silver particles in appropriate concentration can be used for the induction heating of porcelain. Mixtures of glass ceramic powders with silver are used to prepare self-transfer patterns, which are deposited over porcelain. Several configurations of these coatings, which are aesthetic to start with, are employed and heating patterns are recorded. The microstructure of these coatings is discussed in relation to the heating ability by a classical household induction system. The results show that this technique is practical and commercially viable

  15. Fluorine 18 in tritium generator ceramic materials

    Jimenez-Becerril, J.; Bosch, P.; Bulbulian, S.

    1992-01-01

    At present time, the ceramic materials generators of tritium are very interesting mainly by the necessity of to found an adequate product for its application as fusion reactor shielding. The important element that must contain the ceramic material is the lithium and especially the isotope with mass=6. The tritium in these materials is generated by neutron irradiation, however, when the ceramic material contains oxygen, then is generated too fluorine 18 by the action of energetic atoms of tritium in recoil on the 16 O, as it is showed in the next reactions: 1) 6 Li (n, α) 3 H ; 2) 16 O( 3 H, n) 18 F . In the present work was studied the LiAlO 2 and the Li 2 O. The first was prepared in the laboratory and the second was used such as it is commercially expended. In particular the interest of this work is to study the chemical behavior of fluorine-18, since if it would be mixed with tritium it could be contaminate the fusion reactor fuel. The ceramic materials were irradiated with neutrons and also the chemical form of fluorine-18 produced was studied. It was determined the amount of fluorine-18 liberated by the irradiated materials when they were submitted to extraction with helium currents and argon-hydrogen mixtures and also it was investigated the possibility about the fluorine-18 was volatilized then it was mixed so with the tritium. Finally it was founded that the liberated amount of fluorine-18 depends widely of the experimental conditions, such as the temperature and the hydrogen amount in the mixture of dragging gas. (Author)

  16. Correlation between nanostructural and electrical properties of barium titanate-based glass-ceramic nano-composites

    Al-Assiri, M.S., E-mail: msassiri@kku.edu.sa [Department of Physics, King Khaled University, P.O. Box 9003, Abha (Saudi Arabia); El-Desoky, M.M., E-mail: mmdesoky@gmail.com [Department of Physics, King Khaled University, P.O. Box 9003, Abha (Saudi Arabia); Department of Physics, Faculty of Science, Suez Canal University, Suez (Egypt)

    2011-09-08

    Highlights: > Glasses have been transformed into nanomaterials by annealing at crystallization temperature. > Glass-ceramic nano-composites are important because of their new physical. > Grain sizes are the most significant structural parameter in electronic nanocrystalline phases. > These phases are very high electrical conductivity. > Hence, glass-ceramic nanocrystals are expected to be used, as gas sensors. - Abstract: Glasses in the system BaTiO{sub 3}-V{sub 2}O{sub 5}-Bi{sub 2}O{sub 3} have been transformed into glass-ceramic nano-composites by annealing at crystallization temperature T{sub cr} determined from DSC thermograms. After annealing they consist of small crystallites embedded in glassy matrix. The crystallization temperature T{sub cr} increases with increasing BaTiO{sub 3} content. XRD and TEM of the glass-ceramic nano-composites show that nanocrystals were embedded in the glassy matrix with an average grain size of 25 nm. The resulting materials exhibit much higher electrical conductivity than the initial glasses. It was postulated that the major role in the conductivity enhancement of these nanomaterials is played by the developed interfacial regions between crystalline and amorphous phases, in which the concentration of V{sup 4+}-V{sup 5+} pairs responsible for electron hopping, has higher than values that inside the glassy matrix. The experimental results were discussed in terms of a model proposed in this work and based on a 'core-shell' concept. From the best fits, reasonable values of various small polaron hopping (SPH) parameters were obtained. The conduction was attributed to non-adiabatic hopping of small polaron.

  17. Relating structural parameters to leachability in a glass-bonded ceramic waste form

    Frank, S. M.; Johnson, S. G.; Moschetti, T. L.

    1998-01-01

    Lattice parameters for a crystalline material can be obtained by several methods, notably by analyzing x-ray powder diffraction patterns. By utilizing a computer program to fit a pattern, one can follow the evolution or subtle changes in a structure of a crystalline species in different environments. This work involves such a study for an essential component of the ceramic waste form that is under development at Argonne National Laboratory. Zeolite 4A and zeolite 5A are used to produce two different types of waste forms: a glass-bonded sodalite and a glass-bonded zeolite, respectively. Changes in structure during production of the waste forms are discussed. Specific salt-loadings in the sodalite waste form are related to relative peak intensities of certain reflections in the XRD patterns. Structural parameters for the final waste forms will also be given and related to leachability under standard conditions

  18. Structural Design of Glass and Ceramic Components for Space System Safety

    Bernstein, Karen S.

    2007-01-01

    Manned space flight programs will always have windows as part of the structural shell of the crew compartment. Astronauts and cosmonauts need to and enjoy looking out of the spacecraft windows at Earth, at approaching vehicles, at scientific objectives and at the stars. With few exceptions spacecraft windows have been made of glass, and the lessons learned over forty years of manned space flight have resulted in a well-defined approach for using this brittle, unforgiving material in NASA's vehicles, in windows and other structural applications. This chapter will outline the best practices that have developed at NASA for designing, verifying and accepting glass (and ceramic) windows and other components for safe and reliable use in any space system.

  19. Magnetic properties of bioactive glass-ceramics containing nanocrystalline zinc ferrite

    Singh, Rajendra Kumar; Srinivasan, A.

    2011-01-01

    Glass-ceramics with finely dispersed zinc ferrite (ZnFe 2 O 4 ) nanocrystallites were obtained by heat treatment of x(ZnO,Fe 2 O 3 )(65-x)SiO 2 20(CaO,P 2 O 5 )15Na 2 O (6≤x≤21 mole%) glasses. X-ray diffraction patterns of the glass-ceramic samples revealed the presence of calcium sodium phosphate [NaCaPO 4 ] and zinc ferrite [ZnFe 2 O 4 ] as major crystalline phases. Zinc ferrite present in nanocrystalline form contributes to the magnetic properties of the glass-ceramic samples. Magnetic hysteresis cycles of the glass-ceramic samples were obtained with applied magnetic field sweeps of ±20 kOe and ±500 Oe, in order to evaluate the potential of these glass-ceramics for hyperthermia treatment of cancer. The evolution of magnetic properties in these samples, viz., from a partially paramagnetic to fully ferrimagnetic nature has been explored using magnetometry and X-ray diffraction studies. - Research highlights: → The glass-ceramics contain bone mineral and magnetic phases. → Calcium sodium phosphate and zinc ferrite nanocrystallites have been identified in all the sample. → With an increase in ZnO and Fe2O3 content, magnetic property of samples evolved from partially paramagnetic to fully ferrimagnetic nature. → Large magnetic hysteresis loops have been obtained for samples with high ZnO+Fe2O3 content.

  20. Study of glass-nanocomposite and glass-ceramic containing ferroelectric phase

    Abdel-Khalek, E.K., E-mail: Eid_khalaf0@yahoo.com [Department of Physics, Faculty of Science, Al Azhar University, Nasr City 11884, Cairo (Egypt); Mohamed, E.A. [Department of Physics, Faculty of Science (Girl' s Branch), Al Azhar University, Nasr City, Cairo (Egypt); Salem, Shaaban M.; Ebrahim, F.M.; Kashif, I. [Department of Physics, Faculty of Science, Al Azhar University, Nasr City 11884, Cairo (Egypt)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Glass nanocomposites was synthesized. Black-Right-Pointing-Pointer Glass nanocomposites exhibit both optical transmission bands at 598 and 660 nm and broad dielectric anomalies. Black-Right-Pointing-Pointer The ferroelectricity in pure single-phase oxide glass has not yet been discovered. - Abstract: Transparent glass nanocomposite in the pseudo binary system (100 - x) Li{sub 2}B{sub 4}O{sub 7}-xBaTiO{sub 3} with x = 0 and 60 (in mol%) were prepared. Amorphous and glassy characteristics of the as-prepared samples were established via X-ray powder diffraction (XRD) and differential scanning calorimetry (DSC) respectively. The precipitated BaTiO{sub 3} nanocrystal phase embedded in the glass sample at x = 60 mol% was identified by transmission electron microscopic (TEM). The optical transmission bands at 598 and 660 nm were assigned to Ti{sup 3+} ions in tetragonal distorted octahedral sites. The precipitated Li{sub 2}B{sub 4}O{sub 7}, BaTi(BO{sub 3}){sub 2} and BaTiO{sub 3} nanocrystallites phases with heat-treatment at 923 K for 6 h (HT923) in glass-ceramic were identified by XRD, TEM and infrared absorption spectroscopy. The as-prepared at x = 60 mol% and the HT923 samples exhibit broad dielectric anomalies in the vicinity of the ferroelectric-to-paraelectric transition temperature. The results demonstrate that the method presented may be an effective way to fabricate ferroelectric host and development of multifunctional ferroelectrics.

  1. Neutron-irradiation effects on SiO2 and SiO2-based glass ceramics

    Porter, D.L.; Pascucci, M.R.; Olbert, B.H.

    1981-01-01

    A preliminary data base to assess the radiation-damage resistance of some glass ceramic materials has been gathered. These are rather complex materials, both in structure and composition, but possess many of those properties required for structural, insulator applications in fusion-reactor design. Property measurements were made after fast (E > 0.1 MeV) neutron irradiations of approx. 2.4 x 10 22 n/cm 2 at 400 0 C and 550 0 C. The results have shown general resistance to changes in thermal expansion and most did not eperience severe loss of mechanical integrity. The maximum volume expansion occurred in several of the fluorophlogapite-based glass ceramics (approx. 3.0%). Several observations demonstrated differences between the effects of neutron and electron irradiation; irradiation conditions proptotypic of projected reactor uses need be considered for optimum materials selection

  2. Composite bone cements loaded with a bioactive and ferrimagnetic glass-ceramic: Leaching, bioactivity and cytocompatibility

    Verné, Enrica; Bruno, Matteo; Miola, Marta; Maina, Giovanni; Bianco, Carlotta; Cochis, Andrea; Rimondini, Lia

    2015-01-01

    In this work, composite bone cements, based on a commercial polymethylmethacrylate matrix (Palamed®) loaded with ferrimagnetic bioactive glass-ceramic particles (SC45), were produced and characterized in vitro. The ferrimagnetic bioactive glass-ceramic belongs to the system SiO 2 –Na 2 O–CaO–P 2 O 5 –FeO–Fe 2 O 3 and contains magnetite (Fe 3 O 4 ) crystals into a residual amorphous bioactive phase. Three different formulations (containing 10, 15 and 20 wt.% of glass-ceramic particles respectively) have been investigated. These materials are intended to be applied as bone fillers for the hyperthermic treatment of bone tumors. The morphological, compositional, calorimetric and mechanical properties of each formulation have been already discussed in a previous paper. The in vitro properties of the composite bone cements described in the present paper are related to iron ion leaching test (by graphite furnace atomic absorption spectrometer), bioactivity (i.e. the ability to stimulate the formation of a hydroxyapatite – HAp – layer on their surface after soaking in simulated body fluid SBF) and cytocompatibility toward human osteosarcoma cells (ATCC CRL-1427, Mg63). Morphological and chemical characterizations by scanning electron microscopy and energy dispersion spectrometry have been performed on the composite samples after each test. The iron release was negligible and all the tested samples showed the growth of HAp on their surface after 28 days of immersion in a simulated body fluid (SBF). Cells showed good viability, morphology, adhesion, density and the ability to develop bridge-like structures on all investigated samples. A synergistic effect between bioactivity and cell mineralization was also evidenced. - Highlights: • An in vitro biological characterization was carried out on ferromagnetic and bioactive composite cements. • No release of iron was revealed in the physiological solution. • Bioactivity tests show hydroxyapatite precipitates

  3. Composite bone cements loaded with a bioactive and ferrimagnetic glass-ceramic: Leaching, bioactivity and cytocompatibility

    Verné, Enrica, E-mail: enrica.verne@polito.it [Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, C. so Duca degli Abruzzi 24, 10129 Torino (Italy); Bruno, Matteo [Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, C. so Duca degli Abruzzi 24, 10129 Torino (Italy); Miola, Marta [Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, C. so Duca degli Abruzzi 24, 10129 Torino (Italy); Department of Health Sciences, Università del Piemonte Orientale “Amedeo Avogadro”, Via Solaroli 17, 28100 Novara (Italy); Maina, Giovanni; Bianco, Carlotta [Traumatology Orthopedics and Occupational Medicine Dept., Università di Torino, Via G. Zuretti 29, 10126 Torino (Italy); Cochis, Andrea [Department of Health Sciences, Università del Piemonte Orientale “Amedeo Avogadro”, Via Solaroli 17, 28100 Novara (Italy); Rimondini, Lia [Department of Health Sciences, Università del Piemonte Orientale “Amedeo Avogadro”, Via Solaroli 17, 28100 Novara (Italy); Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, Via G. Giusti, 9, 50121 Firenze (Italy)

    2015-08-01

    In this work, composite bone cements, based on a commercial polymethylmethacrylate matrix (Palamed®) loaded with ferrimagnetic bioactive glass-ceramic particles (SC45), were produced and characterized in vitro. The ferrimagnetic bioactive glass-ceramic belongs to the system SiO{sub 2}–Na{sub 2}O–CaO–P{sub 2}O{sub 5}–FeO–Fe{sub 2}O{sub 3} and contains magnetite (Fe{sub 3}O{sub 4}) crystals into a residual amorphous bioactive phase. Three different formulations (containing 10, 15 and 20 wt.% of glass-ceramic particles respectively) have been investigated. These materials are intended to be applied as bone fillers for the hyperthermic treatment of bone tumors. The morphological, compositional, calorimetric and mechanical properties of each formulation have been already discussed in a previous paper. The in vitro properties of the composite bone cements described in the present paper are related to iron ion leaching test (by graphite furnace atomic absorption spectrometer), bioactivity (i.e. the ability to stimulate the formation of a hydroxyapatite – HAp – layer on their surface after soaking in simulated body fluid SBF) and cytocompatibility toward human osteosarcoma cells (ATCC CRL-1427, Mg63). Morphological and chemical characterizations by scanning electron microscopy and energy dispersion spectrometry have been performed on the composite samples after each test. The iron release was negligible and all the tested samples showed the growth of HAp on their surface after 28 days of immersion in a simulated body fluid (SBF). Cells showed good viability, morphology, adhesion, density and the ability to develop bridge-like structures on all investigated samples. A synergistic effect between bioactivity and cell mineralization was also evidenced. - Highlights: • An in vitro biological characterization was carried out on ferromagnetic and bioactive composite cements. • No release of iron was revealed in the physiological solution. • Bioactivity tests

  4. 3D features of modified photostructurable glass-ceramic with infrared femtosecond laser pulses

    Fernandez-Pradas, J.M., E-mail: jmfernandez@ub.edu [Universitat de Barcelona, Departament de Fisica Aplicada i Optica, Marti i Franques 1, E-08028 Barcelona (Spain); Serrano, D.; Bosch, S.; Morenza, J.L.; Serra, P. [Universitat de Barcelona, Departament de Fisica Aplicada i Optica, Marti i Franques 1, E-08028 Barcelona (Spain)

    2011-04-01

    The exclusive ability of laser radiation to be focused inside transparent materials makes lasers a unique tool to process inner parts of them unreachable with other techniques. Hence, laser direct-write can be used to create 3D structures inside bulk materials. Infrared femtosecond lasers are especially indicated for this purpose because a multiphoton process is usually required for absorption and high resolution can be attained. This work studies the modifications produced by 450 fs laser pulses at 1027 nm wavelength focused inside a photostructurable glass-ceramic (Foturan) at different depths. Irradiated samples were submitted to standard thermal treatment and subsequent soaking in HF solution to form the buried microchannels and thus unveil the modified material. The voxel dimensions of modified material depend on the laser pulse energy and the depth at which the laser is focused. Spherical aberration and self-focusing phenomena are required to explain the observed results.

  5. Highly matched spectrum needed for photosynthesis in Ce{sup 3+}/Er{sup 3+}/Yb{sup 3+} tri-doped oxyfluoride glass ceramics

    Wang, Weirong; Gao, Huiping [School of Physics and Electronics, Henan University, Kaifeng 475004 (China); Institute for Computational Materials Science, Henan University, Kaifeng 475004 (China); Mao, Yanli, E-mail: ylmao@henu.edu.cn [School of Physics and Electronics, Henan University, Kaifeng 475004 (China); Institute for Computational Materials Science, Henan University, Kaifeng 475004 (China)

    2015-11-05

    A series of oxyfluoride glass ceramics containing CaF{sub 2} nano-crystals tri-doped with Ce{sup 3+}/Er{sup 3+}/Yb{sup 3+} ions were prepared by high temperature melting method and subsequent heat treatment. The structural properties were examined by X-ray diffraction measurements. The absorption, excitation, and emission spectra of the glass ceramics were investigated. Difference in erbium emission spectra between glass and glass ceramics had been studied. The emission bands originating from the {sup 4}F{sub 9/2} state of Er{sup 3+} were enhanced when the CaF{sub 2} nano-crystal created. By down-converting the ultraviolet wavelength region (280∼400 nm) light and up-converting the near-infrared wavelength region (900∼1100 nm) light, the glass ceramics can also emit strong reddish orange emission. The emission spectra consisting of bluish violet (400∼500 nm) and reddish orange (640∼680 nm) bands match well with the action spectrum of photosynthesis and absorption spectra of chlorophylls. Our materials will be favored to promote the development of glass greenhouses for green plant. - Highlights: • Ce{sup 3+}/Er{sup 3+}/Yb{sup 3+} tri-doped oxyfluoride glass ceramics were prepared by high temperature melting method. • 668 nm red emission was obtained under 320 nm, 380 nm and 980 nm excitation, respectively. • The emission of samples matched well with the spectrum for photosynthesis.

  6. Evaluation of the reuse of glass and ceramic blocks in the development of a ceramic products; Avaliacao do reaproveitamento de blocos ceramicos e de vidro no desenvolvimento de um produto ceramico

    Rodrigues, R.A.; Silva, L.A.; Martins, B.E.D.B.S.; Felippe, C.E.C.; Almeida, V.C., E-mail: valeria@eq.ufrj.b [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Escola de Quimica

    2010-07-01

    The ceramic industry has enormous potential to absorb wastes. The main objective of this study was to evaluate the feasibility of reusing leftovers ceramic blocks, from construction and, with shards of glass in the development of a ceramic product. The ceramic pieces were prepared with different compositions of glass by the method of pressing conformation and heating at 1000 and 1100 deg C. The conformed pieces were tested for linear shrinkage, water absorption, porosity, and tensile strength. The techniques for characterization were X-ray fluorescence, X-ray diffraction and scanning electron microscopy, the results show that the ceramic material produced has a high flexural strength and low values of water absorption. (author)

  7. Constitutive Theory Developed for Monolithic Ceramic Materials

    Janosik, Lesley A.

    1998-01-01

    With the increasing use of advanced ceramic materials in high-temperature structural applications such as advanced heat engine components, the need arises to accurately predict thermomechanical behavior that is inherently time-dependent and that is hereditary in the sense that the current behavior depends not only on current conditions but also on the material's thermomechanical history. Most current analytical life prediction methods for both subcritical crack growth and creep models use elastic stress fields to predict the time-dependent reliability response of components subjected to elevated service temperatures. Inelastic response at high temperatures has been well documented in the materials science literature for these material systems, but this issue has been ignored by the engineering design community. From a design engineer's perspective, it is imperative to emphasize that accurate predictions of time-dependent reliability demand accurate stress field information. Ceramic materials exhibit different time-dependent behavior in tension and compression. Thus, inelastic deformation models for ceramics must be constructed in a fashion that admits both sensitivity to hydrostatic stress and differing behavior in tension and compression. A number of constitutive theories for materials that exhibit sensitivity to the hydrostatic component of stress have been proposed that characterize deformation using time-independent classical plasticity as a foundation. However, none of these theories allow different behavior in tension and compression. In addition, these theories are somewhat lacking in that they are unable to capture the creep, relaxation, and rate-sensitive phenomena exhibited by ceramic materials at high temperatures. The objective of this effort at the NASA Lewis Research Center has been to formulate a macroscopic continuum theory that captures these time-dependent phenomena. Specifically, the effort has focused on inelastic deformation behavior associated

  8. Recycling of inorganic waste in monolithic and cellular glass-based materials for structural and functional applications.

    Rincón, Acacio; Marangoni, Mauro; Cetin, Suna; Bernardo, Enrico

    2016-07-01

    The stabilization of inorganic waste of various nature and origin, in glasses, has been a key strategy for environmental protection for the last decades. When properly formulated, glasses may retain many inorganic contaminants permanently, but it must be acknowledged that some criticism remains, mainly concerning costs and energy use. As a consequence, the sustainability of vitrification largely relies on the conversion of waste glasses into new, usable and marketable glass-based materials, in the form of monolithic and cellular glass-ceramics. The effective conversion in turn depends on the simultaneous control of both starting materials and manufacturing processes. While silica-rich waste favours the obtainment of glass, iron-rich wastes affect the functionalities, influencing the porosity in cellular glass-based materials as well as catalytic, magnetic, optical and electrical properties. Engineered formulations may lead to important reductions of processing times and temperatures, in the transformation of waste-derived glasses into glass-ceramics, or even bring interesting shortcuts. Direct sintering of wastes, combined with recycled glasses, as an example, has been proven as a valid low-cost alternative for glass-ceramic manufacturing, for wastes with limited hazardousness. The present paper is aimed at providing an up-to-date overview of the correlation between formulations, manufacturing technologies and properties of most recent waste-derived, glass-based materials. © 2016 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

  9. Production of coloured glass-ceramics from incinerator ash using thermal plasma technology.

    Cheng, T W; Huang, M Z; Tzeng, C C; Cheng, K B; Ueng, T H

    2007-08-01

    Incineration is a major treatment process for municipal solid waste in Taiwan. It is estimated that over 1.5 Mt of incinerator ash are produced annually. This study proposes using thermal plasma technology to treat incinerator ash. Sintered glass-ceramics were produced using quenched vitrified slag with colouring agents added. The experimental results showed that the major crystalline phases developed in the sintered glass-ceramics were gehlenite and wollastonite, but many other secondary phases also appeared depending on the colouring agents added. The physical/mechanical properties, chemical resistance and toxicity characteristic leaching procedure of the coloured glass-ceramics were satisfactory. The glass-ceramic products obtained from incinerator ash treated with thermal plasma technology have great potential for building applications.

  10. Effect of heat treatment time on microstructure and electrical conductivity in LATP glass ceramics

    Sonigra, Dhiren, E-mail: somans@iitb.ac.in, E-mail: ajit.kulkarni@iitb.ac.in; Soman, Swati, E-mail: somans@iitb.ac.in, E-mail: ajit.kulkarni@iitb.ac.in; Kulkarni, Ajit R., E-mail: somans@iitb.ac.in, E-mail: ajit.kulkarni@iitb.ac.in [Dept. of Metallurgical Engineering and Materials Science, IIT Bombay, Mumbai-400076 (India)

    2014-04-24

    Glass-ceramic is prepared by heat treatment of melt quenched 14Li{sub 2}O−9Al{sub 2}O{sub 3}−38TiO{sub 2}−39P{sub 2}O{sub 5} glass in the vicinity of crystallization temperature. Growth of ceramic phase is controlled by tuning heat treatment time at fixed temperature. Ceramic phase was identified to be LiTi{sub 2}(PO{sub 4}){sub 3} from X Ray Diffraction analysis. Microstructural evolution of this phase with hold time was observed under high resolution Scanning Electron Microscope. DC conductivity is observed to increase by 4-5 orders of magnitude in this glass-ceramic compared to parent glass. However, formation of pores and cracks with very large heat treatment time seem to hinder further increase of conductivity.

  11. Bioactive glasses materials, properties and applications

    Ylänen, Heimo

    2011-01-01

    Due to their biocompatibility and bioactivity, bioactive glasses are used as highly effective implant materials throughout the human body to replace or repair damaged tissue. As a result, they have been in continuous use since shortly after their invention in the late 1960s and are the subject of extensive research worldwide.Bioactive glasses provides readers with a detailed review of the current status of this unique material, its properties, technologies and applications. Chapters in part one deal with the materials and mechanical properties of bioactive glass, examining topics such

  12. Composite bone cements loaded with a bioactive and ferrimagnetic glass-ceramic: Leaching, bioactivity and cytocompatibility.

    Verné, Enrica; Bruno, Matteo; Miola, Marta; Maina, Giovanni; Bianco, Carlotta; Cochis, Andrea; Rimondini, Lia

    2015-08-01

    In this work, composite bone cements, based on a commercial polymethylmethacrylate matrix (Palamed®) loaded with ferrimagnetic bioactive glass-ceramic particles (SC45), were produced and characterized in vitro. The ferrimagnetic bioactive glass-ceramic belongs to the system SiO2-Na2O-CaO-P2O5-FeO-Fe2O3 and contains magnetite (Fe3O4) crystals into a residual amorphous bioactive phase. Three different formulations (containing 10, 15 and 20 wt.% of glass-ceramic particles respectively) have been investigated. These materials are intended to be applied as bone fillers for the hyperthermic treatment of bone tumors. The morphological, compositional, calorimetric and mechanical properties of each formulation have been already discussed in a previous paper. The in vitro properties of the composite bone cements described in the present paper are related to iron ion leaching test (by graphite furnace atomic absorption spectrometer), bioactivity (i.e. the ability to stimulate the formation of a hydroxyapatite - HAp - layer on their surface after soaking in simulated body fluid SBF) and cytocompatibility toward human osteosarcoma cells (ATCC CRL-1427, Mg63). Morphological and chemical characterizations by scanning electron microscopy and energy dispersion spectrometry have been performed on the composite samples after each test. The iron release was negligible and all the tested samples showed the growth of HAp on their surface after 28 days of immersion in a simulated body fluid (SBF). Cells showed good viability, morphology, adhesion, density and the ability to develop bridge-like structures on all investigated samples. A synergistic effect between bioactivity and cell mineralization was also evidenced. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. LSA glass-ceramic tiles made by powder pressing; Obtencao de placas vitroceramicas do sistema LSA utilizando a prensagem de pos

    Figueira, F.C.; Bertan, F.M. [Colorminas Colorificio e Mineracao, Icara, SC (Brazil); Riella, H.G. [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Programa de Pos-Graduaco em Engenharia Quimica; Uggioni, E. [Universidade do Extremo Sul Catarinense (UFSC), Florianopolis, SC (Brazil). Curso de Engenharia de Materiais; Bernardin, A.M., E-mail: amb@unesc.ne [Servico Nacional de Aprendizagem Industrial (SENAI), Tijucas, SC (Brazil). Dept. de Tecnologia em Ceramica

    2009-07-01

    A low cost alternative for the production of glass-ceramic materials is the pressing of the matrix glass powders and its consolidation simultaneously with crystallization in a single stage of sintering. The main objective of this work was to obtain LSA glass ceramics with low thermal expansion, processed by pressing and sintering a ceramic frit powder. The raw materials were homogenized and melted (1480 deg C, 80min), and the melt was poured in water. The glass was chemically (XRF and AAS) and thermally (DTA, 10 deg C/min, air) characterized, and then ground (60min and 120min). The ground powders were characterized (laser diffraction) and compressed (35MPa and 45MPa), thus forming four systems. The compacts were dried (150 deg C, 24h) and sintered (1175 deg C and 1185 deg C, 10 deg C/min). Finally, the glass-ceramics were characterized by microstructural analysis (SEM and XRD), mechanical behavior ({sigma}bending) and thermal analysis ({alpha}). The best results for thermal expansion were those for the glass-ceramics processed with smaller particle size and greater compaction pressure. (author)

  14. Ceramics for Molten Materials Transfer

    Standish, Evan; Stefanescu, Doru M.; Curreri, Peter A.

    2009-01-01

    The paper reviews the main issues associated with molten materials transfer and handling on the lunar surface during the operation of a hig h temperature electrowinning cell used to produce oxygen, with molten iron and silicon as byproducts. A combination of existing technolog ies and purposely designed technologies show promise for lunar exploi tation. An important limitation that requires extensive investigation is the performance of refractory currently used for the purpose of m olten metal containment and transfer in the lunar environment associa ted with electrolytic cells. The principles of a laboratory scale uni t at a scale equivalent to the production of 1 metric ton of oxygen p er year are introduced. This implies a mass of molten materials to be transferred consistent with the equivalent of 1kg regolithlhr proces sed.

  15. Friction and wear behavior of glasses and ceramics

    Buckley, D. H.

    1973-01-01

    Adhesion, friction, and wear behavior of glasses and ionic solids are reviewed. These materials are shown to behave in a manner similar to other solids with respect to adhesion. Their friction characteristics are shown to be sensitive to environmental constituents and surface films. This sensitivity can be related to a reduction in adhesive bonding and the changes in surficial mechanical behavior associated with Rehbinder and Joffe effects. Both friction and wear properties of ionic crystalline solids are highly anisotropic. With metals in contact with ionic solids the fracture strength of the ionic solid and the shear strength in the metal and those properties that determine these will dictate which of the materials undergoes adhesive wear. The chemical activity of the metal plays an important role in the nature and strength of the adhesive interfacial bond that develops between the metal and a glass or ionic solid.

  16. Using glass as a shielding material

    Yousef, S.

    2002-04-01

    Different theoretical and technological concepts and problems in using glass as a shielding material was discussed, some primarily designs for different types of radiation shielding windows were illustrated. (author)

  17. Using glass as a shielding material

    Yousef, S.

    2003-01-01

    Different theoretical and technological concepts and problems in using glass as a shielding material was discussed, some primarily designs for different types of radiation shielding windows were illustrated. (author)

  18. OSL and TL retrospective dosimetry with a fluorapatite glass-ceramic used for dental restorations

    Ekendahl, Daniela; Judas, Libor; Sukupova, Lucie

    2013-01-01

    Optically Stimulated Luminescence (OSL) and Thermoluminescence (TL) properties of a fluorapatite glass-ceramic have been investigated, with a view to developing a dose assessment technique for medical triage following unplanned exposures of individuals to ionizing radiation. The ceramic is an innovative material used in dental prostheses and restorations. It is strongly sensitive to radiation and the intensity of both the OSL and TL signals are proportional to the absorbed radiation dose. We focused on the optimization of the measuring procedure and investigated characteristics such as reproducibility, fading, minimum detectable dose (MDD), dose response and photon energy response of TL and OSL signals. The dental ceramic exhibited very good reproducibility (<5% at 2σ level) when measured and a linear dose response for a wide range of doses (50 mGy–20 Gy). The MDD values for the samples investigated were ∼5 mGy. The material is not tissue equivalent and the OSL and TL signals are strongly dependent on incident photon energy. Both the luminescence signals exhibited significant fading during the first few hours after irradiation. Its rate was dependent on the parameters of measurement. The results indicate that the material can be used for the purposes of accident dosimetry, however, the fading and photon energy response have to be properly corrected for a reliable dose assessment. - Highlights: ► A dental ceramic was considered as a retrospective and accident dosimeter. ► Dosimetry application was investigated using OSL and TL. ► TL and OSL signals are proportional to absorbed radiation dose. ► Accuracy is dependent on correction of fading and photon energy response

  19. Microtensile bond strength of a resin cement to glass infiltrated zirconia-reinforced ceramic: The effect of surface conditioning

    Amaral, R.; Ozcan, M.; Bottino, M.A.; Valandro, L.F.

    2006-01-01

    Objectives. This study evaluated the effect of three surface conditioning methods on the microtensile bond strength of resin cement to a glass-infiltrated zirconia-reinforced alumina-based core ceramic. Methods. Thirty blocks (5 x 5 x 4 mm) of In-Ceram Zirconia ceramics (In-Ceram Zirconia-INC-ZR,

  20. Microtensile bond strength of a resin cement to glass infiltrated zirconia-reinforced ceramic : The effect of surface conditioning

    Amaral, R; Ozcan, M; Bottino, MA; Valandro, LF

    Objectives. This study evaluated the effect of three surface conditioning methods on the microtensile bond strength of resin cement to a glass-infiltrated zirconia-reinforced alumina-based core ceramic. Methods. Thirty blocks (5 x 5 x 4 mm) of In-Ceram Zirconia ceramics (In-Ceram Zirconia-INC-ZR,

  1. Kinetic neutron diffraction and SANS studies of phase formation in bioactive machinable glass ceramics

    Bentley, P M; Kilcoyne, S H; Bubb, N L; Ritter, C; Dewhurst, C D; Wood, D J

    2007-01-01

    Bioactive fluormica-fluorapatite glass-ceramic materials offer a very encouraging solution to the problem of efficient restoration and reconstruction of hard tissues. To produce material with the desired crystalline phases, a five-stage heat treatment must be performed. This thermal processing has a large impact on the microstructure and ultimately the final mechanical properties of the materials. We have examined the thermal processing of one of our most promising machinable biomaterials, using time-resolved small angle neutron scattering and neutron diffraction to study the nucleation and growth of crystallites. The processing route had already been optimized by studying the properties of quenched samples using x-ray diffraction, mechanical measurements and differential thermal analysis. However these results show that the heat treatment can be further optimized in terms of crystal nucleation, and we show that these techniques are the only methods by which a truly optimized thermal processing route may be obtained

  2. Detoxification and immobilization of chromite ore processing residue in spinel-based glass-ceramic

    Liao, Chang-Zhong [Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650 (China); Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region (China); Tang, Yuanyuan [School of Environmental Science and Engineering, South University of Science and Technology of China, Shenzhen 518055 (China); Lee, Po-Heng [Department of Civil & Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region (China); Liu, Chengshuai, E-mail: csliu@soil.gd.cn [Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650 (China); State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550009 (China); Shih, Kaimin, E-mail: kshih@hku.hk [Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region (China); Li, Fangbai [Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650 (China)

    2017-01-05

    Graphical abstract: Schematic illustration of detoxification and immobilization of chromite ore processing residue in spinel-based glass-ceramic matrix. All Cr(VI) species is reduced to Cr(III) and most chromium contents are incorporated into spinel structure where the residual chromium are resided in the glass networks. - Highlights: • COPR was detoxified and immobilized in a spinel-based glass-ceramic matrix. • Cr-rich crystalline phase was determined to be MgCr{sub 1.32}Fe{sub 0.19}Al{sub 0.49}O{sub 4} spinel. • The partitioning ratio of Cr into spinel in the glass-ceramic can be up to 77%. • No Cr(VI) was observed after conversion of COPR into a glass-ceramic. • TCLP results demonstrate the superiority of the final product in immobilizing Cr. - Abstract: A promising strategy for the detoxification and immobilization of chromite ore processing residue (COPR) in a spinel-based glass-ceramic matrix is reported in this study. In the search for a more chemically durable matrix for COPR, the most critical crystalline phase for Cr immobilization was found to be a spinel solid solution with a chemical composition of MgCr{sub 1.32}Fe{sub 0.19}Al{sub 0.49}O{sub 4}. Using Rietveld quantitative X-ray diffraction analysis, we identified this final product is with the phases of spinel (3.5 wt.%), diopside (5.2 wt.%), and some amorphous contents (91.2 wt.%). The partitioning ratio of Cr reveals that about 77% of the Cr was incorporated into the more chemically durable spinel phase. The results of Cr K-edge X-ray absorption near-edge spectroscopy show that no Cr(VI) was observed after conversion of COPR into a glass-ceramic, which indicates successful detoxification of Cr(VI) into Cr(III) in the COPR-incorporated glass-ceramic. The leaching performances of Cr{sub 2}O{sub 3} and COPR-incorporated glass-ceramic were compared with a prolonged acid-leaching test, and the results demonstrate the superiority of the COPR-incorporated glass-ceramic matrix in the

  3. Detoxification and immobilization of chromite ore processing residue in spinel-based glass-ceramic

    Liao, Chang-Zhong; Tang, Yuanyuan; Lee, Po-Heng; Liu, Chengshuai; Shih, Kaimin; Li, Fangbai

    2017-01-01

    Graphical abstract: Schematic illustration of detoxification and immobilization of chromite ore processing residue in spinel-based glass-ceramic matrix. All Cr(VI) species is reduced to Cr(III) and most chromium contents are incorporated into spinel structure where the residual chromium are resided in the glass networks. - Highlights: • COPR was detoxified and immobilized in a spinel-based glass-ceramic matrix. • Cr-rich crystalline phase was determined to be MgCr 1.32 Fe 0.19 Al 0.49 O 4 spinel. • The partitioning ratio of Cr into spinel in the glass-ceramic can be up to 77%. • No Cr(VI) was observed after conversion of COPR into a glass-ceramic. • TCLP results demonstrate the superiority of the final product in immobilizing Cr. - Abstract: A promising strategy for the detoxification and immobilization of chromite ore processing residue (COPR) in a spinel-based glass-ceramic matrix is reported in this study. In the search for a more chemically durable matrix for COPR, the most critical crystalline phase for Cr immobilization was found to be a spinel solid solution with a chemical composition of MgCr 1.32 Fe 0.19 Al 0.49 O 4 . Using Rietveld quantitative X-ray diffraction analysis, we identified this final product is with the phases of spinel (3.5 wt.%), diopside (5.2 wt.%), and some amorphous contents (91.2 wt.%). The partitioning ratio of Cr reveals that about 77% of the Cr was incorporated into the more chemically durable spinel phase. The results of Cr K-edge X-ray absorption near-edge spectroscopy show that no Cr(VI) was observed after conversion of COPR into a glass-ceramic, which indicates successful detoxification of Cr(VI) into Cr(III) in the COPR-incorporated glass-ceramic. The leaching performances of Cr 2 O 3 and COPR-incorporated glass-ceramic were compared with a prolonged acid-leaching test, and the results demonstrate the superiority of the COPR-incorporated glass-ceramic matrix in the immobilization of Cr. The overall results suggest that

  4. Effect of phase transformation and partial crystallization on the mechanical properties of glass and glass-ceramics based on 3CaO.P_2O_5-SiO_2-MgO system

    Daguano, J.K.M.F.; Simba, B.G.; Santos, C.

    2011-01-01

    In this work, glass and glass-ceramics of the 3CaO.P_2O_5-SiO_2-MgO system were developed aiming to produce different crystallization degrees. Glasses were melted at 1600 deg C and heat treated at 700 deg C. Part of the glasses was crystallized using heat treatments at 770 deg C and 1150 deg C for 4h. The partial crystallization and phase transformations were responsible for different mechanical properties (bending strength, young modulus, fracture toughness and hardness) in each temperature. The mechanical response of the material is discussed in relation to the microstructure, crystalline phases, and porosity of the materials. (author)

  5. Electrophoretic deposition of mesoporous bioactive glass on glass-ceramic foam scaffolds for bone tissue engineering.

    Fiorilli, Sonia; Baino, Francesco; Cauda, Valentina; Crepaldi, Marco; Vitale-Brovarone, Chiara; Demarchi, Danilo; Onida, Barbara

    2015-01-01

    In this work, the coating of 3-D foam-like glass-ceramic scaffolds with a bioactive mesoporous glass (MBG) was investigated. The starting scaffolds, based on a non-commercial silicate glass, were fabricated by the polymer sponge replica technique followed by sintering; then, electrophoretic deposition (EPD) was applied to deposit a MBG layer on the scaffold struts. EPD was also compared with other techniques (dipping and direct in situ gelation) and it was shown to lead to the most promising results. The scaffold pore structure was maintained after the MBG coating by EPD, as assessed by SEM and micro-CT. In vitro bioactivity of the scaffolds was assessed by immersion in simulated body fluid and subsequent evaluation of hydroxyapatite (HA) formation. The deposition of a MBG coating can be a smart strategy to impart bioactive properties to the scaffold, allowing the formation of nano-structured HA agglomerates within 48 h from immersion, which does not occur on uncoated scaffold surfaces. The mechanical properties of the scaffold do not vary after the EPD (compressive strength ~19 MPa, fracture energy ~1.2 × 10(6) J m(-3)) and suggest the suitability of the prepared highly bioactive constructs as bone tissue engineering implants for load-bearing applications.

  6. Standard test method for measuring waste glass or glass ceramic durability by vapor hydration test

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 The vapor hydration test method can be used to study the corrosion of a waste forms such as glasses and glass ceramics upon exposure to water vapor at elevated temperatures. In addition, the alteration phases that form can be used as indicators of those phases that may form under repository conditions. These tests; which allow altering of glass at high surface area to solution volume ratio; provide useful information regarding the alteration phases that are formed, the disposition of radioactive and hazardous components, and the alteration kinetics under the specific test conditions. This information may be used in performance assessment (McGrail et al, 2002 (1) for example). 1.2 This test method must be performed in accordance with all quality assurance requirements for acceptance of the data. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practice...

  7. Reuse of the red brick waste and dust waste of blasting chamber (glass micro spheres) in the red ceramic industry

    Rodrigues, R.A.; Felippe, C.E.C.; Guimaraes, C.S.; Almeida, V.C.

    2010-01-01

    The search for alternative environmentally less aggressive disposal of solid waste has been adopted to reverse the negative scenario established by the improper disposal of these materials. The aim of this study was to evaluate the reuse of waste: leftover red brick from the civil construction and glass micro spheres, obtained from the blasting chamber, aiming to develop a ceramic product. Mixtures containing various amounts of waste were prepared. The ceramic pieces were burned at 1000 and 1200 deg C being tested for water absorption and tensile strength and characterized by X-ray diffraction. The analysis of volatile organic compounds released during the burning process was performed. The results indicate that the ceramic material produced has a high resistance although the analysis of gases from the burning point to a negative environmental impact. (author)

  8. Characterization of raw materials to obtain the mass for white ware, using waste glass

    Cavalcanti, M.S.L.; Porto, V.S.; Meneses, R.L; Albuquerque, A.V.; Guedes, B.F.R.; Morais, C.R.S.; Santana, L.N.L.

    2009-01-01

    A major problem faced in the post modern society is the huge amount of glass, accumulated in landfills cities. The glass material is one hundred percent recyclable and has the property to act as fluxes as well as feldspar. Given this premise, this study aimed to characterize materials - raw materials and waste glass regional plan for development of ceramic bodies with the similar behavior produced industrially, using shards of glass to partially replace the feldspar. The materials - raw materials used were clay, ball clay, kaolin, quartz, feldspar and shard of glass, being characterized by the techniques: chemical analysis, size analysis, differential thermal analysis vibrational spectroscopy in the infrared region, the Ray-Diffraction X and scanning electron microscopy. The results showed that the waste had higher rates of vitreous oxides fluxes and similar. (author)

  9. New Coating Technique of Ceramic Implants with Different Glass Solder Matrices for Improved Osseointegration-Mechanical Investigations.

    Mick, Enrico; Markhoff, Jana; Mitrovic, Aurica; Jonitz, Anika; Bader, Rainer

    2013-09-11

    Ceramics are a very popular material in dental implant technology due to their tribological properties, their biocompatibility and their esthetic appearance. However, their natural surface structure lacks the ability of proper osseointegration, which constitutes a crucial process for the stability and, thus, the functionality of a bone implant. We investigated the application of a glass solder matrix in three configurations-consisting mainly of SiO₂, Al₂O₃, K₂O and Na₂O to TZP-A ceramic specimens. The corresponding adhesive strength and surface roughness of the coatings on ceramic specimens have been analyzed. Thereby, high adhesive strength (70.3 ± 7.9 MPa) was found for the three different coatings. The obtained roughness (R z ) amounted to 18.24 ± 2.48 µm in average, with significant differences between the glass solder configurations. Furthermore, one configuration was also tested after additional etching which did not lead to significant increase of surface roughness (19.37 ± 1.04 µm) or adhesive strength (57.2 ± 5.8 MPa). In conclusion, coating with glass solder matrix seems to be a promising surface modification technique that may enable direct insertion of ceramic implants in dental and orthopaedic surgery.

  10. New Coating Technique of Ceramic Implants with Different Glass Solder Matrices for Improved Osseointegration-Mechanical Investigations

    Rainer Bader

    2013-09-01

    Full Text Available Ceramics are a very popular material in dental implant technology due to their tribological properties, their biocompatibility and their esthetic appearance. However, their natural surface structure lacks the ability of proper osseointegration, which constitutes a crucial process for the stability and, thus, the functionality of a bone implant. We investigated the application of a glass solder matrix in three configurations—consisting mainly of SiO2, Al2O3, K2O and Na2O to TZP-A ceramic specimens. The corresponding adhesive strength and surface roughness of the coatings on ceramic specimens have been analyzed. Thereby, high adhesive strength (70.3 ± 7.9 MPa was found for the three different coatings. The obtained roughness (Rz amounted to 18.24 ± 2.48 µm in average, with significant differences between the glass solder configurations. Furthermore, one configuration was also tested after additional etching which did not lead to significant increase of surface roughness (19.37 ± 1.04 µm or adhesive strength (57.2 ± 5.8 MPa. In conclusion, coating with glass solder matrix seems to be a promising surface modification technique that may enable direct insertion of ceramic implants in dental and orthopaedic surgery.

  11. Optical Property Requirements for Glasses, Ceramics and Plastics in Spacecraft Window Systems

    Estes, Lynda

    2011-01-01

    This is a preliminary draft of a standard published by the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) that is intended to provide uniform window optical design requirements in support of the development of human-rated spaceflight hardware. The material covered in this standard is based on data from extensive testing by the Advanced Sensing and Optical Measurement Branch at NASA Langley Research Center, and compiled into requirements format by the NASA JSC Structural Engineering Division. At the time of this initial document release, a broader technical community has not reviewed this standard. The technical content of this standard is primarily based on the Constellation Program Orion Crew Exploration Vehicle Window Optical Properties Requirements, CxP 72407, Baseline. Unlike other optical requirements documents available for human rated spacecraft, this document includes requirements that ensure functionality for windows that contain glass/ceramic and/or plastic window substrate materials. These requirements were derived by measuring the optical properties of fused silica and aluminosilicate glass window assemblies and ensuring that the performance of any window assembly that includes a plastic pane or panes will meet the performance level of the all-glass assemblies. The resulting requirements are based upon the performance and parameter metrology testing of a variety of materials, including glass, transparent ceramics, acrylics, and polycarbonates. In general, these requirements are minimum specifications for each optical parameter in order to achieve the function specified for each functional category, A through D. Because acrylic materials perform at a higher level than polycarbonates in the optics regime, and CxP/Orion is planning to use acrylic in the Orion spacecraft, these requirements are based heavily on metrology from that material. As a result, two of the current Category D requirements for plastics are cited in

  12. Micro-CT based finite element models for elastic properties of glass-ceramic scaffolds.

    Tagliabue, Stefano; Rossi, Erica; Baino, Francesco; Vitale-Brovarone, Chiara; Gastaldi, Dario; Vena, Pasquale

    2017-01-01

    In this study, the mechanical properties of porous glass-ceramic scaffolds are investigated by means of three-dimensional finite element models based on micro-computed tomography (micro-CT) scan data. In particular, the quantitative relationship between the morpho-architectural features of the obtained scaffolds, such as macroscopic porosity and strut thickness, and elastic properties, is sought. The macroscopic elastic properties of the scaffolds have been obtained through numerical homogenization approaches using the mechanical characteristics of the solid walls of the scaffolds (assessed through nanoindentation) as input parameters for the numerical simulations. Anisotropic mechanical properties of the produced scaffolds have also been investigated by defining a suitable anisotropy index. A comparison with morphological data obtained through the micro-CT scans is also presented. The proposed study shows that the produced glass-ceramic scaffolds exhibited a macroscopic porosity ranging between 29% and 97% which corresponds to an average stiffness ranging between 42.4GPa and 36MPa. A quantitative estimation of the isotropy of the macroscopic elastic properties has been performed showing that the samples with higher solid fractions were those closest to an isotropic material. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Effect of sintering temperature on physical, structural and optical properties of wollastonite based glass-ceramic derived from waste soda lime silica glasses

    Karima Amer Almasri

    Full Text Available The impact of different sintering temperatures on physical, optical and structural properties of wollastonite (CaSiO3 based glass-ceramics were investigated for its potential application as a building material. Wollastonite based glass-ceramics was provided by a conventional melt-quenching method and followed by a controlled sintering process. In this work, soda lime silica glass waste was utilized as a source of silicon. The chemical composition and physical properties of glass were characterized by using Energy Dispersive X-ray Fluorescence (EDXRF and Archimedes principle. The Archimedes measurement results show that the density increased with the increasing of sintering temperature. The generation of CaSiO3, morphology, size and crystal phase with increasing the heat-treatment temperature were examined by field emission scanning electron microscopy (FESEM, Fourier transforms infrared reflection spectroscopy (FTIR, and X-ray diffraction (XRD. The average calculated crystal size gained from XRD was found to be in the range 60 nm. The FESEM results show a uniform distribution of particles and the morphology of the wollastonite crystal is in relict shapes. The appearance of CaO, SiO2, and Ca-O-Si bands disclosed from FTIR which showed the formation of CaSiO3 crystal phase. In addition to the calculation of the energy band gap which found to be increased with increasing sintering temperature. Keywords: Soda lime silica glass, Wollastonite, Sintering, Structural properties, Optical properties

  14. Characterization and Morphological Properties of Glass Fiber ...

    PROF HORSFALL

    used as the matrix for the glass fibre-epoxy resin formation. E- Glass fibre ... reinforcement of composites, coatings of materials, and other ..... composite for the manufacture of glass-ceramic materials ... reinforced epoxy composites with carbon.

  15. [Research on the aging of all-ceramics restoration materials].

    Zhang, Dongjiao; Chen, Xinmin

    2011-10-01

    All-ceramic crowns and bridges have been widely used for dental restorations owing to their excellent functionality, aesthetics and biocompatibility. However, the premature clinical failure of all-ceramic crowns and bridges may easily occur when they are subjected to the complex environment of oral cavity. In the oral environment, all-ceramic materials are prone to aging. Aging can lead all-ceramic materials to change color, to lower bending strength, and to reduce anti-fracture toughness. There are many factors affecting the aging of the all-ceramic materials, for example, the grain size, the type of stabilizer, the residual stress and the water environment. In order to analyze the aging behavior, to optimize the design of all-ceramic crowns and bridges, and to evaluate the reliability and durability, we review in this paper recent research progress of aging behavior for all-ceramics restoration materials.

  16. Deposition, characterization, and tribological applications of near-frictionless carbon films on glass and ceramic substrates

    Eryilmaz, O L; Johnson, J A; Ajayi, O O; Erdemir, A

    2006-01-01

    As an element, carbon is rather unique and offers a range of rare opportunities for the design and fabrication of zero-, one-, two-, and three-dimensional nanostructured novel materials and coatings such as fullerenes, nanotubes, thin films, and free-standing nano-to-macroscale structures. Among these, carbon-based two-dimensional thin films (such as diamond and diamond-like carbon (DLC)) have attracted an overwhelming interest in recent years, mainly because of their exceptional physical, chemical, mechanical, electrical, and tribological properties. In particular, certain DLC films were found to provide extremely low friction and wear coefficients to sliding metallic and ceramic surfaces. Since the early 1990s, carbon has been used at Argonne National Laboratory to synthesize a class of novel DLC films that now provide friction and wear coefficients as low as 0.001 and 10 -11 -10 -10 mm 3 N -1 m -1 , respectively, when tested in inert or vacuum test environments. Over the years, we have optimized these films and applied them successfully to all kinds of metallic and ceramic substrates and evaluated their friction and wear properties under a wide range of sliding conditions. In this paper, we will provide details of our recent work on the deposition, characterization, and tribological applications of near-frictionless carbon films on glass and ceramic substrates. We will also provide chemical and structural information about these films and describe the fundamental tribological mechanisms that control their unusual friction and wear behaviour

  17. Effects of crystal size on the mechanical properties of a lithium disilicate glass-ceramic

    Li, D. [State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, 28 West Xianning Road, Xi’an 710049 (China); Guo, J.W.; Wang, X.S; Zhang, S.F. [State Key Laboratory of Military Stomatology, Department of Prosthodontics, School of Stomatology, Fourth Military Medical University, 145 West Changle Road, Xi’an 710032 (China); He, L., E-mail: helin@mail.xjtu.edu.cn [State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, 28 West Xianning Road, Xi’an 710049 (China)

    2016-07-04

    Crystal size of lithium disilicate (LD) phase in a LD glass-ceramic was changed by thermally controlled crystallization of a precursory LD glass at different temperatures. Effects of the crystal size on the mechanical properties of the glass-ceramic were investigated. It was found that the flexural strength presented a hump-like variation trend with increasing the crystal size, the hardness monotonously decreased at the same time. It was further confirmed that micro residual compressive stresses existed inside the LD crystals due to the thermal expansion mismatch between the glass matrix and the crystalline phase. The levels of the residual stresses increased with increasing the crystal size. The crystal size performed dual effects on the flexural strength of the glass-ceramic: an “interlocking effect” caused by larger-sized LD crystals and a “micro residual stress effect” related to the balancing tensile stresses in the glass matrix. Higher residual tensile stresses in the glass matrix induced by larger-sized LD crystals would counteract the “interlocking effect” of the crystals, causing the strength degradation. The hardness of the glass-ceramic was mainly controlled by the “micro residual stress effect”.

  18. Percolative ionic conduction in the LiAlSiO4 glass-ceramic system

    Biefeld, R.M.; Pike, G.E.; Johnson, R.T. Jr.

    1977-01-01

    The effect f crystallinity on the lithium ion conductivity in LiAlSiO 4 glass and glass-ceramic solid electrolytes has been determined. The ionic conductivity is thermally activated with an activation energy and pre-exponential factor that change in a marked and nonsimple manner as the volume fraction of crystallinity changes. These results are explained by using a continuum percolation model (effective-medium approximation) which assumes that ionic conduction in the glass-ceramic is almost entirely within the glass phase until the crystalline volume fraction rises above approx. 55%. The LiAlSiO 4 system would seem to be nearly ideal for application of percolation theory since the crystalline phase, β eucryptite, has nearly the same composition as the glass phase. Hence, as the crystallite volume fraction increases in the glass ceramic, the residual glass composition and conductivity remain the same. This is the first application of percolation theory to ionic transport in glass-ceramics and excellent agreement is obtained between theory and experiment for the LiAlSiO 4 system

  19. Advanced ceramic materials and their potential impact on the future

    Laren, M.G.M.

    1989-01-01

    This article reviews the types of advanced ceramic materials that are being used today and their potential for even greater utilization in the future. Market analysis and projections have been developed from a number of sources both foreign and domestic are referenced and given in the text. Projection on the future use of advanced ceramics to the year 2000 indicate a potential growth of the total world market approaching 187 billion dollars. This paper describes advanced ceramic materials by their functionality, i.e. structural, electronic, chemical, thermal, biological, nuclear, etc. It also refers to specific engineering uses of advanced ceramics and include automotive ceramic materials with physical data for the most likely ceramic materials to be used for engine parts. This family of materials includes silicon carbides, silicon nitride, partially stabilized zirconia and alumina. Fiber reinforced ceramic composites are discussed with recognition of the research on fiber coating chemistry and the compatibility of the coating with the fiber and the matrix. Another class of advanced ceramics is toughened ceramics. The transformation toughened alumina is recognized as an example of this technology. The data indicate that electronic ceramic materials will always have the largest portion of the advanced ceramic market and the critical concepts of a wide range of uses is reviewed. (Auth.)

  20. Fiber glass reinforced structural materials for aerospace application

    Bartlett, D. H.

    1968-01-01

    Evaluation of fiber glass reinforced plastic materials concludes that fiber glass construction is lighter than aluminum alloy construction. Low thermal conductivity and strength makes the fiber glass material useful in cryogenic tank supports.

  1. Solid state reaction in alumina nanoparticles/LZSA glass-ceramic composites

    Montedo, O.K.; Oliveira, A.N. de; Raupp-Pereira, F.

    2016-01-01

    Full text: The aim of this work is to present results related to solid state reactions on LZSA glass-ceramic composites containing alumina reinforcement nano-particles. A LZSA (Li2O-ZrO2-SiO2-Al2O3) glass-ceramic has been prepared by sintering of powders and characterized. Composites containing 0 to 77 vol.% of alumina nanoparticles (27-43 nm APS, 35 m2.g-1 SSA) and a 16.9Li2O•5.0ZrO2•65.1SiO2•8.6Al2O3 glass-ceramic matrix have been prepared. X-ray diffractometry studies have been performed in order of investigating the solid state reactions occurring in LZSA-based composites. Results of the XRD patterns have been related to the coefficient of thermal expansion (CTE), Young modulus, and dielectric constant, showing that, in comparison with the glass-ceramic composition, the composites showed a decrease of CTE with the alumina concentration increasing, due to the increasing of beta-spodumeness formation (solid solution of beta-spodumene, Li2O.Al2O3.4-10SiO2). The performance of the glass-ceramic was improved with the alumina nano-particles addition, showing potential of using in the preparation of Low Thermal Co-fired Ceramics (LTCC). (author)

  2. Fluorescent Lamp Glass Waste Incorporation into Clay Ceramic: A Perfect Solution

    Morais, Alline Sardinha Cordeiro; Vieira, Carlos Maurício Fontes; Rodriguez, Rubén Jesus Sanchez; Monteiro, Sergio Neves; Candido, Veronica Scarpini; Ferreira, Carlos Luiz

    2016-09-01

    The mandatory use of fluorescent lamps as part of a Brazilian energy-saving program generates a huge number of spent fluorescent lamps (SFLs). After operational life, SFLs cannot be disposed as common garbage owing to mercury and lead contamination. Recycling methods separate contaminated glass tubes and promote cleaning for reuse. In this work, glass from decontaminated SFLs was incorporated into clay ceramics, not only as an environmental solution for such glass wastes and clay mining reduction but also due to technical and economical advantages. Up to 30 wt.% of incorporation, a significant improvement in fired ceramic flexural strength and a decrease in water absorption was observed. A prospective analysis showed clay ceramic incorporation as an environmentally correct and technical alternative for recycling the enormous amount of SFLs disposed of in Brazil. This could also be a solution for other world clay ceramic producers, such as US, China and some European countries.

  3. Industrial ceramics - Properties, forming and applications

    Fantozzi, Gilbert; Niepce, Jean-Claude; Bonnefont, Guillaume; Alary, J.A.; Allard, B.; Ayral, A.; Bassat, J.M.; Elissalde, C.; Maglione, M.; Beauvy, M.; Bertrand, G.; Bignon, A.; Billieres, D.; Blanc, J.J.; Blumenfeld, P.; Bonnet, J.P.; Bougoin, M.; Bourgeon, M.; Boussuge, M.; Thorel, A.; Bruzek, C.E.; Cambier, F.; Carrerot, H.; Casabonne, J.M.; Chaix, J.M.; Chevalier, J.; Chopinet, M.H.; Couque, H.; Courtois, C.; Leriche, A.; Dhaler, D.; Denape, J.; Euzen, P.; Ganne, J.P.; Gauffinet, S.; Girard, A.; Gonon, M.; Guizard, C.; Hampshire, S.; Joulin, J.P.; Julbe, A.; Ferrato, M.; Fontaine, M.L.; Lebourgeois, R.; Lopez, J.; Maquet, M.; Marinel, S.; Marrony, M.; Martin, J.F.; Mougin, J.; Pailler, R.; Pate, M.; Petitpas, E.; Pijolat, C.; Pires-Franco, P.; Poirier, C.; Poirier, J.; Pourcel, F.; Potier, A.; Tulliani, J.M.; Viricelle, J.P.; Beauger, A.

    2013-01-01

    After a general introduction to ceramics (definition, general properties, elaboration, applications, market data), this book address conventional ceramics (elaboration, material types), thermo-structural ceramics (oxide based ceramics, non-oxide ceramics, fields of application, functional coatings), refractory ceramics, long fibre and ceramic matrix composites, carbonaceous materials, ceramics used for filtration, catalysis and the environment, ceramics for biomedical applications, ceramics for electronics and electrical engineering (for capacitors, magnetic, piezoelectric, dielectric ceramics, ceramics for hyper-frequency resonators), electrochemical ceramics, transparent ceramics (forming and sintering), glasses, mineral binders. The last chapter addresses ceramics used in the nuclear energy sector: in nuclear fuels and fissile material, absorbing ceramics and shields, in the management of nuclear wastes, new ceramics for reactors under construction or for future nuclear energy

  4. Structural and optical properties of Tb-doped Na-Gd metaphosphate glasses and glass-ceramics

    Moretti, F.; Vedda, A.; Nikl, Martin; Nitsch, Karel

    2009-01-01

    Roč. 21, č. 15 (2009), 155103/1-155103/7 ISSN 0953-8984 R&D Projects: GA AV ČR IAA200100626 Institutional research plan: CEZ:AV0Z10100521 Keywords : Na-Gd metaphosphate glass * glass -ceramics * NaGd(PO 3 ) 4 * optical properties * structural properties * Raman spectroscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.964, year: 2009

  5. A New Biocompatible and Antibacterial Phosphate Free Glass-Ceramic for Medical Applications

    Cabal, Belén; Alou, Luís; Cafini, Fabio; Couceiro, Ramiro; Sevillano, David; Esteban-Tejeda, Leticia; Guitián, Francisco; Torrecillas, Ramón; Moya, José S.

    2014-01-01

    In the attempt to find valid alternatives to classic antibiotics and in view of current limitations in the efficacy of antimicrobial-coated or loaded biomaterials, this work is focused on the development of a new glass-ceramic with antibacterial performance together with safe biocompatibility. This bactericidal glass-ceramic composed of combeite and nepheline crystals in a residual glassy matrix has been obtained using an antimicrobial soda-lime glass as a precursor. Its inhibitory effects on bacterial growth and biofilm formation were proved against five biofilm-producing reference strains. The biocompatibility tests by using mesenchymal stem cells derived from human bone indicate an excellent biocompatibility. PMID:24961911

  6. Talc-silicon glass-ceramic waste forms for immobilization of high- level calcined waste

    Vinjamuri, K.

    1993-06-01

    Talc-silicon glass-ceramic waste forms are being evaluated as candidates for immobilization of the high level calcined waste stored onsite at the Idaho Chemical Processing Plant. These glass-ceramic waste forms were prepared by hot isostatically pressing a mixture of simulated nonradioactive high level calcined waste, talc, silicon and aluminum metal additives. The waste forms were characterized for density, chemical durability, and glass and crystalline phase compositions. The results indicate improved density and chemical durability as the silicon content is increased

  7. A New Biocompatible and Antibacterial Phosphate Free Glass-Ceramic for Medical Applications

    Cabal, Belén; Alou, Luís; Cafini, Fabio; Couceiro, Ramiro; Sevillano, David; Esteban-Tejeda, Leticia; Guitián, Francisco; Torrecillas, Ramón; Moya, José S.

    2014-06-01

    In the attempt to find valid alternatives to classic antibiotics and in view of current limitations in the efficacy of antimicrobial-coated or loaded biomaterials, this work is focused on the development of a new glass-ceramic with antibacterial performance together with safe biocompatibility. This bactericidal glass-ceramic composed of combeite and nepheline crystals in a residual glassy matrix has been obtained using an antimicrobial soda-lime glass as a precursor. Its inhibitory effects on bacterial growth and biofilm formation were proved against five biofilm-producing reference strains. The biocompatibility tests by using mesenchymal stem cells derived from human bone indicate an excellent biocompatibility.

  8. Microstructure of gross chill-mark defect in a glass-ceramic preform

    Spears, R.K.

    1980-01-01

    The microstructure of a vacuum tube glass-ceramic preform containing gross chill-marks on the top and bottom surfaces as well as on the sides was analyzed. The preform was ceramed in a graphite mold and examined using SEM. The glass-ceramic had an extremely dense and fine crystalline structure except where the chill-marks were located. In those areas of matrix glass following the chill-mark plane were evident. It is concluded that gross chill-marks will affect the microstructure by disrupting the chemistry or nucleating characteristics in such a way that a chill-mark regon would appear to be depleted of crystallites. Although the crystallites in this region are larger, the quantity is lower than in the base glass-ceramic. The affected area caused by the chill-mark left a band of matrix glass approximately 100 μ wide. It is believed that planar defects of this size will degrade the mechanical and permeation properties of the glass-ceramic

  9. Structural integrity of ceramic multilayer capacitor materials and ceramic multilayer capacitors

    With, de G.

    1993-01-01

    An review with 61 refs. is given of the fracture of and stress situation in ceramic capacitor materials and ceramic multilayer capacitors. A brief introduction to the relevant concepts is given first. Next the data for capacitor materials and the data for capacitors are discussed. The materials data

  10. Comparison of three and four point bending evaluation of two adhesive bonding systems for glass-ceramic zirconia bi-layered ceramics.

    Gee, C; Weddell, J N; Swain, M V

    2017-09-01

    To quantify the adhesion of two bonding approaches of zirconia to more aesthetic glass-ceramic materials using the Schwickerath (ISO 9693-2:2016) three point bend (3PB) [1] test to determine the fracture initiation strength and strain energy release rate associated with stable crack extension with this test and the Charalamabides et al. (1989) [2] four point bend (4PB) test. Two glass-ceramic materials (VITABLOCS Triluxe forte, Vita Zahnfabrik, Germany and IPS.emax CAD, Ivoclar Vivadent, Liechtenstein) were bonded to sintered zirconia (VITA InCeram YZ). The former was resin bonded using a dual-cure composite resin (Panavia F 2.0, Kuraray Medical Inc., Osaka, Japan) following etching and silane conditioning, while the IPS.emax CAD was glass bonded (IPS e.max CAD Crystall/Connect) during crystallization of the IPS.emax CAD. Specimens (30) of the appropriate dimensions were fabricated for the Schwickerath 3PB and 4PB tests. Strength values were determined from crack initiation while strain energy release rate values were determined from the minima in the force-displacement curves with the 3PB test (Schneider and Swain, 2015) [3] and for 4PB test from the plateau region of stable crack extension. Strength values for the resin and glass bonded glass ceramics to zirconia were 22.20±6.72MPa and 27.02±3.49MPa respectively. The strain energy release rates for the two methods used were very similar and for the glass bonding, (4PB) 15.14±5.06N/m (or J/m 2 ) and (3PB) 16.83±3.91N/m and resin bonding (4PB) 8.34±1.93N/m and (3PB) 8.44±2.81N/m respectively. The differences in strength and strain energy release rate for the two bonding approaches were statistically significant (pceramics to zirconia. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  11. UK program: glasses and ceramics for immobilization of radioactive wastes for disposal

    Johnson, K.D.B.

    1979-01-01

    The UK Research Program on Radioactive Waste Management includes the development of processes for the conversion of high-level-liquid-reprocessing wastes from thermal and fast reactors to borosilicate glasses. The properties of these glasses and their behavior under storage and disposal conditions have been examined. Methods for immobilizing activity from other wastes by conversion to glass or ceramic forms are described. The UK philosophy of final solutions to waste management and disposal is presented

  12. [Spectroscopic Research on Slag Nanocrystal Glass Ceramics Containing Rare Earth Elements].

    Ouyang, Shun-li; Li, Bao-wei; Zhang, Xue-feng; Jia, Xiao-lin; Zhao, Ming; Deng, Lei-bo

    2015-08-01

    The research group prepared the high-performance slag nanocrystal glass ceramics by utilizing the valuable elements of the wastes in the Chinese Bayan Obo which are characterized by their symbiotic or associated existence. In this paper, inductively coupled plasma emission spectroscopy (ICP), X-ray diffraction (XRD), Raman spectroscopy (Raman) and scanning electron microscopy (SEM) are all used in the depth analysis for the composition and structure of the samples. The experiment results of ICP, XRD and SEM showed that the principal crystalline phase of the slag nanocrystal glass ceramics containing rare earth elements is diopside, its grain size ranges from 45 to 100 nm, the elements showed in the SEM scan are basically in consistent with the component analysis of ICP. Raman analysis indicated that its amorphous phase is a three-dimensional network structure composed by the structural unit of silicon-oxy tetrahedron with different non-bridging oxygen bonds. According to the further analysis, we found that the rare earth microelement has significant effect on the network structure. Compared the nanocrystal slag glass ceramic with the glass ceramics of similar ingredients, we found that generally, the Raman band wavenumber for the former is lower than the later. The composition difference between the glass ceramics and the slag nanocrystal with the similar ingredients mainly lies on the rare earth elements and other trace elements. Therefore, we think that the rare earth elements and other trace elements remains in the slag nanocrystal glass ceramics have a significant effect on the network structure of amorphous phase. The research method of this study provides an approach for the relationship among the composition, structure and performance of the glass ceramics.

  13. Understanding and control of optical performance from ceramic materials

    Barbour, J.C.; Knapp, J.A.; Potter, B.G.; Jennison, D.R.; Verdozzi, C.A.; Follstaedt, D.M.; Bendale, R.D.; Simmons, J.H.

    1998-06-01

    This report summarizes a two-year Laboratory-Directed Research and Development (LDRD) program to gain understanding and control of the important parameters which govern the optical performance of rare-earth (RE) doped ceramics. This LDRD developed the capability to determine stable atomic arrangements in RE doped alumina using local density functional theory, and to model the luminescence from RE-doped alumina using molecular dynamic simulations combined with crystal-field calculations. Local structural features for different phases of alumina were examined experimentally by comparing their photoluminescence spectra and the atomic arrangement of the amorphous phase was determined to be similar to that of the gamma phase. The luminescence lifetimes were correlated to these differences in the local structure. The design of both high and low-phonon energy host materials was demonstrated through the growth of Er-doped aluminum oxide and lanthanum oxide. Multicomponent structures of rare-earth doped telluride glass in an alumina and silica matrix were also prepared. Finally, the optical performance of Er-doped alumina was determined as a function of hydrogen content in the host matrix. This LDRD is the groundwork for future experimentation to understand the effects of ionizing radiation on the optical properties of RE-doped ceramic materials used in space and other radiation environments

  14. Ceramic Matrix Composite (CMC) Materials Characterization

    Calomino, Anthony

    2001-01-01

    Under the former NASA EPM Program, much initial progress was made in identifying constituent materials and processes for SiC/SiC ceramic composite hot-section components. This presentation discusses the performance benefits of these approaches and elaborates on further constituent and property improvements made under NASA UEET. These include specific treatments at NASA that significantly improve the creep and environmental resistance of the Sylramic(TM) SiC fiber as well as the thermal conductivity and creep resistance of the CVI Sic matrix. Also discussed are recent findings concerning the beneficial effects of certain 2D-fabric architectures and carbon between the BN interphase coating and Sic matrix.

  15. Ceramic Matrix Composite (CMC) Materials Development

    DiCarlo, James

    2001-01-01

    Under the former NASA EPM Program, much initial progress was made in identifying constituent materials and processes for SiC/SiC ceramic composite hot-section components. This presentation discusses the performance benefits of these approaches and elaborates on further constituent and property improvements made under NASA UEET. These include specific treatments at NASA that significantly improve the creep and environmental resistance of the Sylramic(TM) Sic fiber as well as the thermal conductivity and creep resistance of the CVI Sic matrix. Also discussed are recent findings concerning the beneficial effects of certain 2D-fabric architectures and carbon between the BN interphase coating and Sic matrix.

  16. The Effect of a Glass Ceramic Insert in Sandwich Technique on Microleakage in Class II Composite Resin Restorations

    Hila Hajizadeh

    2015-06-01

    Full Text Available Introduction: The aim of the present study was to evaluate the effect of glass ceramic insert in the sandwich technique to reduce microleakage in class II composite resin restorations. Methods: Sixty sound human upper second premolars were selected and randomly divided into six groups (n=10. Class II box-only cavities were prepared in distal aspects of each tooth with gingival margin located approximately 0.5 mm below the CEJ. Group A (Control was restored incrementally with Tetric Ceram and a total-etch bonding technique. Group B and C were restored with sandwich technique using a compomer (Compoglass F or flowable composite resin (Tetric Flow as the lining material at gingival floor, respectively. Group D, E and F were represented in the same way as group A, B and C and a glass ceramic insert was added to the composite bulk. The specimens were thermo-mechanically cycled, and then immersed in 0.5 % basic fuschin for 24 hours. Dye penetration was detected using a sectioning technique. Results: No significant difference was found between total-etch bonding and sandwich techniques. The placement of an insert caused an increase in   microleakage in all groups significantly (P < 0.05. Group D (no liner/ with glass insert showed the highest amount of microleakage and Group A (no liner/ without glass insert resulted in the lowest amount of total microleakage. Conclusion: Placement of glass ceramic insert could not decrease gingival leakage. According to the limitation of this study a composite resin restorations with incremental technique is recommended

  17. Study on the Optimization and Process Modeling of the Rotary Ultrasonic Machining of Zerodur Glass-Ceramic

    Pitts, James Daniel

    Rotary ultrasonic machining (RUM), a hybrid process combining ultrasonic machining and diamond grinding, was created to increase material removal rates for the fabrication of hard and brittle workpieces. The objective of this research was to experimentally derive empirical equations for the prediction of multiple machined surface roughness parameters for helically pocketed rotary ultrasonic machined Zerodur glass-ceramic workpieces by means of a systematic statistical experimental approach. A Taguchi parametric screening design of experiments was employed to systematically determine the RUM process parameters with the largest effect on mean surface roughness. Next empirically determined equations for the seven common surface quality metrics were developed via Box-Behnken surface response experimental trials. Validation trials were conducted resulting in predicted and experimental surface roughness in varying levels of agreement. The reductions in cutting force and tool wear associated with RUM, reported by previous researchers, was experimentally verified to also extended to helical pocketing of Zerodur glass-ceramic.

  18. Bioactive Glass-Ceramic Foam Scaffolds from ‘Inorganic Gel Casting’ and Sinter-Crystallization

    Molino, Giulia; Vitale Brovarone, Chiara

    2018-01-01

    Highly porous bioactive glass-ceramic scaffolds were effectively fabricated by an inorganic gel casting technique, based on alkali activation and gelification, followed by viscous flow sintering. Glass powders, already known to yield a bioactive sintered glass-ceramic (CEL2) were dispersed in an alkaline solution, with partial dissolution of glass powders. The obtained glass suspensions underwent progressive hardening, by curing at low temperature (40 °C), owing to the formation of a C–S–H (calcium silicate hydrate) gel. As successful direct foaming was achieved by vigorous mechanical stirring of gelified suspensions, comprising also a surfactant. The developed cellular structures were later heat-treated at 900–1000 °C, to form CEL2 glass-ceramic foams, featuring an abundant total porosity (from 60% to 80%) and well-interconnected macro- and micro-sized cells. The developed foams possessed a compressive strength from 2.5 to 5 MPa, which is in the range of human trabecular bone strength. Therefore, CEL2 glass-ceramics can be proposed for bone substitutions. PMID:29495498

  19. Bioactive Glass-Ceramic Foam Scaffolds from ‘Inorganic Gel Casting’ and Sinter-Crystallization

    Hamada Elsayed

    2018-02-01

    Full Text Available Highly porous bioactive glass-ceramic scaffolds were effectively fabricated by an inorganic gel casting technique, based on alkali activation and gelification, followed by viscous flow sintering. Glass powders, already known to yield a bioactive sintered glass-ceramic (CEL2 were dispersed in an alkaline solution, with partial dissolution of glass powders. The obtained glass suspensions underwent progressive hardening, by curing at low temperature (40 °C, owing to the formation of a C–S–H (calcium silicate hydrate gel. As successful direct foaming was achieved by vigorous mechanical stirring of gelified suspensions, comprising also a surfactant. The developed cellular structures were later heat-treated at 900–1000 °C, to form CEL2 glass-ceramic foams, featuring an abundant total porosity (from 60% to 80% and well-interconnected macro- and micro-sized cells. The developed foams possessed a compressive strength from 2.5 to 5 MPa, which is in the range of human trabecular bone strength. Therefore, CEL2 glass-ceramics can be proposed for bone substitutions.

  20. Upconversion studies of Er3+/Yb3+ doped SrO.TiO2 borosilicate glass ceramic system

    Maheshwari, Aditya; Om Prakash; Kumar, Devendra; Rai, S.B.

    2011-01-01

    Upconversion behaviour has been studied in various matrices and fine powders of SrTiO 3 by previous workers. In present work, Er 3+ /Yb 3+ were doped in appropriate ratio in SrO.TiO 2 borosilicate glass ceramic system to study the upconversion phenomenon. Dielectric properties of this class of glass ceramic system have been extensively investigated by Thakur et al. It has been observed that both upconversion efficiency and dielectric constant increases with transformation of glass into glass ceramic. Therefore, present investigation is based upon the study of optical as well as the electrical properties of same glass ceramic system. In order to prepare different crystalline matrices, two different Er 3+ /Yb 3+ :SrO.TiO 2 borosilicate glasses with same amount of Er 2 O 3 and Yb 2 O 3 were prepared by melt quench method. Glasses were transparent with light-wine colour. Glass ceramics were prepared from the glasses by heat treatment based on DTA (Differential thermal analysis) results. Glass ceramics were fully opaque with brownish-cream colour. Powder X-ray diffraction (XRD) patterns confirmed that two different crystalline matrices, Sr 3 Ti 2 O 7 , Ti 10 O 19 and SrTiO 3 , TiO 2 were present in two glass ceramic samples respectively. Luminescence properties of glass and glass ceramic samples with 976nm laser irradiation showed that the intensities of the green and red emission increased multiple times in glass ceramic than that of the glass. Possible mechanisms responsible for upconversion eg. Energy Transfer (ET) and Excited State Absorption (ESA), were studied through laser pumping power log dependence

  1. Field-Induced Texturing of Ceramic Materials for Unparalleled Properties

    2017-03-01

    Texturing of Ceramic Materials for Unparalleled Properties by...influence over many properties , such as optical transparency, strength, electrical conductivity, and piezoelectricity .19 Highly textured materials are... Ceramic Materials for Unparalleled Properties by Raymond Brennan, Victoria Blair, Nicholas Ku, Krista Limmer, Tanya Chantawansri, Mahesh

  2. Structural and electrical properties of NASICON type solid electrolyte nanoscaled glass-ceramic powder by mechanical milling for thin film batteries.

    Patil, Vaishali; Patil, Arun; Yoon, Seok-Jin; Choi, Ji-Won

    2013-05-01

    During last two decades, lithium-based glasses have been studied extensively as electrolytes for solid-state secondary batteries. For practical use, solid electrolyte must have high ionic conductivity as well as chemical, thermal and electrochemical stability. Recent progresses have focused on glass electrolytes due to advantages over crystalline solid. Glass electrolytes are generally classified into two types oxide glass and sulfide glass. Oxide glasses do not react with electrode materials and this chemical inertness is advantageous for cycle performances of battery. In this study, major effort has been focused on the improvement of the ion conductivity of nanosized LiAlTi(PO4)3 oxide electrolyte prepared by mechanical milling (MM) method. After heating at 1000 degrees C the material shows good crystallinity and ionic conductivity with low electronic conductivity. In LiTi2(PO4)3, Ti4+ ions are partially substituted by Al3+ ions by heat-treatment of Li20-Al2O3-TiO2-P2O5 glasses at 1000 degrees C for 10 h. The conductivity of this material is 1.09 x 10(-3) S/cm at room temp. The glass-ceramics show fast ion conduction and low E(a) value. It is suggested that high conductivity, easy fabrication and low cost make this glass-ceramics promising to be used as inorganic solid electrolyte for all-solid-state Li rechargeable batteries.

  3. Reduction-oxidation Enabled Glass-ceramics to Stainless Steel Bonding Part II interfacial bonding analysis

    Dai, Steve Xunhu [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    Among glass-ceramic compositions modified with a variety of oxidants (AgO, FeO, NiO, PbO, SnO, CuO, CoO, MoO3 and WO3) only CuO and CoO doped glass-ceramics showed existence of bonding oxides through reduction-oxidation (redox) at the GC-SS interface. The CuO-modified glass-ceramics demonstrate the formation of a continuous layer of strong bonding Cr2O3 at the interface in low partial oxygen (PO2) atmosphere. However, in a local reducing atmosphere, the CuO is preferentially reduced at the surface of glass-ceramic rather than the GC-SS interface for redox. The CoO-modified glass-ceramics demonstrate improved GC-SS bonding. But the low mobility of Co++ ions in the GC limited the amount of CoO that can diffuse to and participate in redox at the interface.

  4. Preparation and biocompatibility evaluation of apatite/wollastonite-derived porous bioactive glass ceramic scaffolds

    Zhang Hua; Ye Xiaojian; Li Jiashun

    2009-01-01

    An apatite/wollastonite-derived (A/W) porous glass ceramic scaffold with highly interconnected pores was successfully fabricated by adding a plastic porosifier. The morphology, porosity and mechanical strength were characterized. The results showed that the glass ceramic scaffold with controllable pore size and porosity displayed open macropores. In addition, good in vitro bioactivity was found for the scaffold obtained by soaking it in simulated body fluid. Mesenchymal stem cells (MSCs) were cultured, expanded and seeded on the scaffold, and the adhesion and proliferation of MSCs were determined using MTT assay and environmental scanning electron microscopy (ESEM). The results revealed that the scaffold was biocompatible and had no negative effects on the MSCs in vitro. The in vivo biocompatibility and osteogenicity were investigated by implanting both the pure scaffold and the MSC/scaffold construct in rabbit mandibles and studying histologically. The results showed that the glass ceramic scaffold exhibited good biocompatibility and osteoconductivity. Moreover, the introduction of MSCs into the scaffold observably improved the efficiency of new bone formation, especially at the initial stage after implantation. However, the glass ceramic scaffold showed the same good biocompatibility and osteogenicity as the hybrid one at the later stage. These results indicate that porous bioactive scaffolds based on the original apatite-wollastonite glass ceramic fulfil the basic requirements of a bone tissue engineering scaffold.

  5. Study of Wettability of Clayey Ceramic and Fluorescent Lamp Glass Waste Powders

    Morais, Alline Sardinha Cordeiro; Monteiro, Sergio Neves; Ribeiro, Sebastião; Sardinha, Leonardo Carneiro; Vieira, Carlos Maurício Fontes

    The glass tube of spent fluorescent lamps is contaminated with mercury, which might be a serious hazard in the case of conventional recycling by melting with other glasses. A possible solution could be its incorporation into a clay body to fabricate common fired ceramics such as bricks and tiles. The objective of this work is to characterize a type of fluorescent lamp glass waste to be incorporated into a clayey ceramic. The characterization was performed in terms of wettability tests to evaluate the interaction between the surface of the clayey ceramic and glass waste as a function of the firing temperature. The results showed that the contact angle decreased with increasing temperature, reaching a value of 79°, at a temperature of 1100°C, but not sufficient to completely wet the ceramic. However, compatible chemical composition and reduction of porosity by the flow of soft glass waste between the clay particles favor the consolidation of the ceramics structure above 900°C.

  6. Sealed glass coating of high temperature ceramic superconductors

    Wu, Weite; Chu, Cha Y.; Goretta, Kenneth C.; Routbort, Jules L.

    1995-01-01

    A method and article of manufacture of a lead oxide based glass coating on a high temperature superconductor. The method includes preparing a dispersion of glass powders in a solution, applying the dispersion to the superconductor, drying the dispersion before applying another coating and heating the glass powder dispersion at temperatures below oxygen diffusion onset and above the glass melting point to form a continuous glass coating on the superconductor to establish compressive stresses which enhance the fracture strength of the superconductor.

  7. Preparation and spectral analysis of a new Tb3+-doped CaO-MgO-SiO2 glass ceramics

    Cheng Jinshu; Tian Peijing; Zheng Weihong; Xie Jun; Chen Zhenxia

    2009-01-01

    Tb 3+ -doped CaO-MgO-SiO 2 glass ceramics have been prepared and characterized. The structure and optical properties of the glass ceramics were studied by XRD, SEM, Raman, and fluorescence spectra. The precipitated crystalline phase in the glass ceramics was columnar CaMgSi 2 O 6 . Raman spectra showed the introduction of rare earth nearly had no influence on the sample structure. Fluorescence measurements showed that Tb 3+ ions entered into the diopside crystalline phase and induced a much stronger emission in the glass ceramics than that in the corresponding glass. With increase of Tb 3+ content and the introduction of Gd 3+ , the fluorescence intensity of the luminescent glass ceramic increased

  8. Tough hybrid ceramic-based material with high strength

    Guo, Shuqi; Kagawa, Yutaka; Nishimura, Toshiyuki

    2012-01-01

    This study describes a tough and strong hybrid ceramic material consisting of platelet-like zirconium compounds and metal. A mixture of boron carbide and excess zirconium powder was heated to 1900 °C using a liquid-phase reaction sintering technique to produce a platelet-like ZrB 2 -based hybrid ceramic bonded by a thin zirconium layer. The platelet-like ZrB 2 grains were randomly present in the as-sintered hybrid ceramic. Relative to non-hybrid ceramics, the fracture toughness and flexural strength of the hybrid ceramic increased by approximately 2-fold.

  9. Microstructure and mechanical properties of low-activation glass-ceramic joining and coating for SiC/SiC composites

    Katoh, Yutai; Kotani, M.; Kohyama, A.; Montorsi, M.; Salvo, M.; Ferraris, M.

    2000-01-01

    Calcia-alumina (CA) glass-ceramic was studied as a candidate low-activation joining and sealing material for SiC/SiC components for fusion blanket and diverter structures, in terms of microstructural stability and mechanical properties. The CA glass-ceramic joining and seal coating were applied to the Hi-Nicalon TM SiC fiber-reinforced SiC matrix composites in which the matrix had been formed through chemical vapor infiltration and polymer impregnation and pyrolysis methods. Microstructural characterization was carried out for the joined and coated materials by optical and scanning electron microscopy (SEM). The mechanical property of the joint was evaluated through a shear test on sandwich joints. The average shear strength of the joined structures was 28 MPa at room temperature. Fractography revealed that the fracture occurred in the glass phase and the shear strength may be improved by reduction of the glass fraction

  10. Preliminary study in development of glass-ceramic based on SiO2-LiO2 system, starting of different SiO2 starting powders

    Daguano, J.K.M.F.; Santos, F.A.; Santos, C.; Marton, L.F.M.; Conte, R.A.; Rodrigues Junior, D.; Melo, F.C.L.

    2009-01-01

    In this work, lithium disilicate glass-ceramics were developed starting of the rice ash- SiO 2 and Li 2 CO 3 powders. The results were compared with glass ceramics based on the lithium disilicate obtained by commercial SiO 2 powders. Glass were melted at 1580 deg C, and annealed at 850 deg C. X-Ray diffraction and scanning electron microscopy were used for characterization of the materials, and hardness and fracture toughness were evaluated using Vickers indentation method. Glasses with amorphous structure were obtained in both materials. After annealing, 'rice-ash' samples presented Li 2 SiO 3 and residual SiO 2 as crystalline phases. On the other side, commercial SiO 2 - Samples presented only Li 2 Si 2 O 5 as crystalline phases and the better results of hardness and fracture toughness. (author)

  11. Development of an oxidation resistant glass-ceramic composite coating on Ti-47Al-2Cr-2Nb alloy

    Li, Wenbo; Zhu, Shenglong; Chen, Minghui; Wang, Cheng; Wang, Fuhui

    2014-02-01

    Three glass-ceramic composite coatings were prepared on Ti-47Al-2Cr-2Nb alloy by air spraying technique and subsequent firing. The aim of this work is to study the reactions between glass matrix and inclusions and their effects on the oxidation resistance of the glass-ceramic composite coating. The powders of alumina, quartz, or both were added into the aqueous solution of potassium silicate (ASPS) to form slurries used as the starting materials for the composite coatings. The coating formed from an ASPS-alumina slurry was porous, because the reaction between alumina and potassium silicate glass resulted in the formation of leucite (KAlSi2O6), consuming substantive glass phase and hindering the densification of the composite coating. Cracks were observed in the coating prepared from an ASPS-quartz slurry due to the larger volume shrinkage of the coating than that of the alloy. In contrast, an intact and dense SiO2-Al2O3-glass coating was successfully prepared from an ASPS-alumina-silica slurry. The oxidation behavior of the SiO2-Al2O3-glass composite coating on Ti-47Al-2Cr-2Nb alloy was studied at 900 °C. The SiO2-Al2O3-glass composite coating acted as an oxygen diffusion barrier, and prevented the inward diffusion of the oxygen from the air to the coating/alloy interface, therefore, decreasing the oxidation rate of the Ti-47Al-2Cr-2Nb alloy significantly.

  12. Calcium titanium silicate based glass-ceramic for nuclear waste immobilisation

    Sharma, K.; Srivastav, A. P.; Goswami, M.; Krishnan, Madangopal

    2018-04-01

    Titanate based ceramics (synroc) have been studied for immobilisation of nuclear wastes due to their high radiation and thermal stability. The aim of this study is to synthesis glass-ceramic with stable phases from alumino silicate glass composition and study the loading behavior of actinides in glass-ceramics. The effects of CaO and TiO2 addition on phase evolution and structural properties of alumino silicate based glasses with nominal composition x(10CaO-9TiO2)-y(10Na2O-5 Al2O3-56SiO2-10B2O3); where z = x/y = 1.4-1.8 are reported. The glasses are prepared by melt-quench technique and characterized for thermal and structural properties using DTA and Raman Spectroscopy. Glass transition and peak crystallization temperatures decrease with increase of CaO and TiO2 content, which implies the weakening of glass network and increased tendency of glasses towards crystallization. Sphene (CaTiSiO5) and perovskite (CaTiO3) crystalline phases are confirmed from XRD which are well known stable phase for conditioning of actinides. The microsturcture and elemental analysis indicate the presence of actinide in stable crystalline phases.

  13. Radiation effects in glass and glass-ceramic waste forms for the immobilization of CANDU UO{sub 2} fuel reprocessing waste

    Tait, J C

    1993-05-01

    AECL has investigated three waste forms for the immobilization of high-level liquid wastes that would arise if used CANDU fuels were reprocessed at some time in the future to remove fissile materials for the fabrication of new power reactor fuel. These waste forms are borosilicate glasses, aluminosilicate glasses and titanosilicate glass-ceramics. This report discusses the potential effects of alpha, beta and gamma radiation on the releases of radionuclides from these waste forms as a result of aqueous corrosion by groundwaters that would be present in an underground waste disposal vault. The report discusses solid-state damage caused by radiation-induced atomic displacements in the waste forms as well as irradiation of groundwater solutions (radiolysis), and their potential effects on waste-form corrosion and radionuclide release. The current literature on radiation effects on borosilicate glasses and in ceramics is briefly reviewed, as are potential radiation effects on specialized waste forms for the immobilization of {sup 129}I, {sup 85}Kr and {sup 14}C. (author). 104 refs., 9 tabs., 5 figs.

  14. UV laser micromachining of ceramic materials: formation of columnar topographies

    Oliveira, V.; Vilar, R.; Conde, O.

    2001-01-01

    Laser machining is increasingly appearing as an alternative for micromachining of ceramics. Using ceramic materials using excimer lasers can result in smooth surfaces or in the formation of cone-like or columnar topography. Potential applications of cone-shaped or columnar surface topography include, for example, light trapping in anti-reflection coatings and improvement of adhesion bonding between ceramic materials. In this communication results of a comparative study of surface topography change during micromachining of several ceramic materials with different ablation behaviors are reported. (orig.)

  15. Ceramic materials for SOFCs: Current status

    Kozhukharov, V.

    2002-10-01

    Full Text Available It is well known that the main parts of Solid Oxide Fuel Cells (SOFCs are build from ceramic materials. Namely the ceramic materials and composites, used for SOFCs manufacturing, are objects of the overview in the present work. The analysis carried out covers the last current publications in the field discussed. Special attention and examination in details have been done on patents state-of-the-art. After a background and short classification of the ceramic SOFCs materials the attention is focused on cathode, electrolyte, anode, interconnection and sealing materials. Their requirements, structure, thermal stability, composition control and behavior, processing and performance are the object of overview. A correlation has been made between the phase diagrams oxygen incorporation and transport, and SOFC advantages, generally for materials of lanthanum- base perovskite family. In order to analyze the innovative investigations regarding the patent branch of the SOFCs development and application, an object of review was patents from Japan, USA, Germany and European Union. Some examples of the inventions with accent on the ceramic materials are shown. In addition the tendency regarding R & D activities of SOFCs development materials from the leading companies in the world is analyzed. On the base of the most important technological and economical parameters of cell cathode/electrolyte/anode materials an attempt for evaluation and correlation has been made and innovative conceptions are shown.

    Es bien sabido que los componentes principales de las celdas de combustible de óxido sólido (SOFCs estan constituidos por materiales cerámicos. Dichos materiales cerámicos y materiales compuestos que se utilizan en la fabricación de SOFCs son objeto de estudio en el presente trabajo. El análisis llevado a cabo incluye la revisión de las últimas publicaciones en la materia, con una especial atención y examen minucioso sobre las patentes m

  16. Microanalytical investigation of fibre-reinforced ceramic materials

    Meier, B.; Grathwohl, G.

    1989-01-01

    Microanalytical investigations have been made on samples of ceramic fibres (SiC fibres, (Nicalon) C fibre coated with TiN) and fibre-reinforced ceramics (SiC-and glass-matrices). High resolution Auger electron spectroscopy (HRAES), electron probe microanalysis (EPMA) and scanning electron microscopy were employed for these examinations. Analysis was best performed with HRAES on account of its lateral and depth resolution. Some of the problems involved in this technique are discussed e.g. electron beam effects. AES depth profiles of ceramic fibres are reported and compared with the surface analysis of fibres in the composites after being broken in situ. (orig.)

  17. Selection of a glass-ceramic formulation to immobilize fluorinel- sodium calcine

    Staples, B.A.; Wood, H.C.

    1994-12-01

    One option for immobilizing calcined high level wastes produced by nuclear fuel reprocessing activities at the Idaho Chemical Processing Plant (ICPP) is conversion to a glass-ceramic form through hot isostatic pressing. Calcines exist in several different chemical compositions, and thus candidate formulations have been developed for converting each to glass-ceramic forms which are potentially resistant to aqueous corrosion and stable enough to qualify for repository storage. Fluorinel/Na, a chemically complex calcine type, is one of the types being stored at ICPP, and development efforts have identified three formulations with potential for immobilizing it. These are a glass forming additive that uses aluminum metal to enhance reactivity, a second glass forming additive that uses titanium metal to enhance reactivity and a third that uses not only a combination of silicon and titanium metals but enough phosphorous pentoxide to form a calcium phosphate host phase in the glass-ceramic product. Glass-ceramics of each formulation performed well in restricted characterization tests. However, none of the three was subjected to rigorous testing that would provide information on whether each was processable, that is able to retain favorable characteristics over a practical range of processing conditions

  18. EFFECT OF CaO/SiO₂ AND HEAT TREATMENT ON THE MICROSTRUCTURE OF GLASS-CERAMICS FROM BLAST FURNACE SLAG

    Chunshai Xie; Yongliang Gui; Song Chunyan; Hu Binsheng

    2016-01-01

    Glass-ceramics, with molten blast furnace (BF) slag as the major raw material, were prepared successfully by the melting method. The effect of the CaO/SiO₂ ratio in the molten BF slag and heat treatment on the viscosity and microstructure of glass-ceramics produced from BF slag were traced using the melt property tester, DSC, XRD and SEM. The results showed that increasing the CaO/SiO₂ ratio of BF slag caused a decrease not only in the viscosity of the BF slag at high temperature but also in ...

  19. Ceramic composite resistors of B4C modified by TIO2 and glass phase

    Klimiec, E.; Zaraska, W.; Stobiecki, T.

    1998-01-01

    Technical progress in the manufacturing technology of composite materials resulted in arising of new generation of bulk resistors, resistant to high levels of overloads and high temperature. These resistors can be applied in extremely heavy working conditions, for instance in cooperation with ignition circuits. The resistors investigated in our research were performed on the basis of ceramic composite consisted of semiconductor boron carbide B 4 C as conductive phase, aluminium oxide Al 2 O 3 and non-alkali glass as insulators and titanium dioxide TiO 2 . The technological procedure of the fabrication of resistors and the results of the tests, such as temperature dependence of the electrical resistance exploitation trials, are presented. (author)

  20. Nano-Micro Materials Enabled Thermoelectricity From Window Glasses

    Inayat, Salman Bin

    2012-01-01

    of individual glass strips to form the thickness depth of the glass on subsequent curing of the strips, and c) embedding nano-manufactured thermoelectric pillars, have been implemented for innovative integration of thermoelectric materials into window glasses