WorldWideScience

Sample records for glacier ice core

  1. Earth's Climate History from Glaciers and Ice Cores

    Science.gov (United States)

    Thompson, Lonnie

    2013-03-01

    Glaciers serve both as recorders and early indicators of climate change. Over the past 35 years our research team has recovered climatic and environmental histories from ice cores drilled in both Polar Regions and from low to mid-latitude, high-elevation ice fields. Those ice core -derived proxy records extending back 25,000 years have made it possible to compare glacial stage conditions in the Tropics with those in the Polar Regions. High-resolution records of δ18O (in part a temperature proxy) demonstrate that the current warming at high elevations in the mid- to lower latitudes is unprecedented for the last two millennia, although at many sites the early Holocene was warmer than today. Remarkable similarities between changes in the highland and coastal cultures of Peru and regional climate variability, especially precipitation, imply a strong connection between prehistoric human activities and regional climate. Ice cores retrieved from shrinking glaciers around the world confirm their continuous existence for periods ranging from hundreds to thousands of years, suggesting that current climatological conditions in those regions today are different from those under which these ice fields originated and have been sustained. The ongoing widespread melting of high-elevation glaciers and ice caps, particularly in low to middle latitudes, provides strong evidence that a large-scale, pervasive and, in some cases, rapid change in Earth's climate system is underway. Observations of glacier shrinkage during the 20th and 21st century girdle the globe from the South American Andes, the Himalayas, Kilimanjaro (Tanzania, Africa) and glaciers near Puncak Jaya, Indonesia (New Guinea). The history and fate of these ice caps, told through the adventure, beauty and the scientific evidence from some of world's most remote mountain tops, provide a global perspective for contemporary climate. NSF Paleoclimate Program

  2. Reassessment of the Upper Fremont Glacier ice-core chronologies by synchronizing of ice-core-water isotopes to a nearby tree-ring chronology

    Science.gov (United States)

    Chellman, Nathan J.; McConnell, Joseph R.; Arienzo, Monica; Pederson, Gregory T.; Aarons, Sarah; Csank, Adam

    2017-01-01

    The Upper Fremont Glacier (UFG), Wyoming, is one of the few continental glaciers in the contiguous United States known to preserve environmental and climate records spanning recent centuries. A pair of ice cores taken from UFG have been studied extensively to document changes in climate and industrial pollution (most notably, mid-19th century increases in mercury pollution). Fundamental to these studies is the chronology used to map ice-core depth to age. Here, we present a revised chronology for the UFG ice cores based on new measurements and using a novel dating approach of synchronizing continuous water isotope measurements to a nearby tree-ring chronology. While consistent with the few unambiguous age controls underpinning the previous UFG chronologies, the new interpretation suggests a very different time scale for the UFG cores with changes of up to 80 years. Mercury increases previously associated with the mid-19th century Gold Rush now coincide with early-20th century industrial emissions, aligning the UFG record with other North American mercury records from ice and lake sediment cores. Additionally, new UFG records of industrial pollutants parallel changes documented in ice cores from southern Greenland, further validating the new UFG chronologies while documenting the extent of late 19th and early 20th century pollution in remote North America.

  3. McCall Glacier record of Arctic climate change: Interpreting a northern Alaska ice core with regional water isotopes

    Science.gov (United States)

    Klein, E. S.; Nolan, M.; McConnell, J.; Sigl, M.; Cherry, J.; Young, J.; Welker, J. M.

    2016-01-01

    We explored modern precipitation and ice core isotope ratios to better understand both modern and paleo climate in the Arctic. Paleoclimate reconstructions require an understanding of how modern synoptic climate influences proxies used in those reconstructions, such as water isotopes. Therefore we measured periodic precipitation samples at Toolik Lake Field Station (Toolik) in the northern foothills of the Brooks Range in the Alaskan Arctic to determine δ18O and δ2H. We applied this multi-decadal local precipitation δ18O/temperature regression to ∼65 years of McCall Glacier (also in the Brooks Range) ice core isotope measurements and found an increase in reconstructed temperatures over the late-20th and early-21st centuries. We also show that the McCall Glacier δ18O isotope record is negatively correlated with the winter bidecadal North Pacific Index (NPI) climate oscillation. McCall Glacier deuterium excess (d-excess, δ2H - 8*δ18O) values display a bidecadal periodicity coherent with the NPI and suggest shifts from more southwestern Bering Sea moisture sources with less sea ice (lower d-excess values) to more northern Arctic Ocean moisture sources with more sea ice (higher d-excess values). Northern ice covered Arctic Ocean McCall Glacier moisture sources are associated with weak Aleutian Low (AL) circulation patterns and the southern moisture sources with strong AL patterns. Ice core d-excess values significantly decrease over the record, coincident with warmer temperatures and a significant reduction in Alaska sea ice concentration, which suggests that ice free northern ocean waters are increasingly serving as terrestrial precipitation moisture sources; a concept recently proposed by modeling studies and also present in Greenland ice core d-excess values during previous transitions to warm periods. This study also shows the efficacy and importance of using ice cores from Arctic valley glaciers in paleoclimate reconstructions.

  4. Newall Glacier Snow Pit and Ice Core, 1987 to 1989, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — Snow pit and ice core data from the Newall Glacier (location - 162 30' East, 77 35' South) were collected during 1987 and 1988. These include information on...

  5. Evidence for propagation of cold-adapted yeast in an ice core from a Siberian Altai glacier

    Science.gov (United States)

    Uetake, Jun; Kohshima, Shiro; Nakazawa, Fumio; Takeuchi, Nozomu; Fujita, Koji; Miyake, Takayuki; Narita, Hideki; Aizen, Vladimir; Nakawo, Masayoshi

    2011-03-01

    Cold environments, including glacier ice and snow, are known habitats for cold-adapted microorganisms. We investigated the potential for cold-adapted yeast to have propagated in the snow of the high-altitude Belukha glacier. We detected the presence of highly concentrated yeast (over 104 cells mL-1) in samples of both an ice core and firn snow. Increasing yeast cell concentrations in the same snow layer from July 2002 to July 2003 suggests that the yeast cells propagated in the glacier snow. A cold-adapted Rhodotorula sp. was isolated from the snow layer and found to be related to psychrophilic yeast previously found in other glacial environments (based on the D1/D2 26S rRNA domains). 26S rRNA clonal analysis directly amplified from meltwater within the ice core also revealed the presence of genus Rhodotorula. Analyses of the ice core showed that all peaks in yeast concentration corresponded to the peaks in indices of surface melting. These results support the hypothesis that occasional surface melting in an accumulation area is one of the major factors influencing cold-adapted yeast propagation.

  6. Ice Cores

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Records of past temperature, precipitation, atmospheric trace gases, and other aspects of climate and environment derived from ice cores drilled on glaciers and ice...

  7. CALICE: Calibrating Plant Biodiversity in Glacier Ice

    Science.gov (United States)

    Festi, Daniela; Cristofori, Antonella; Vernesi, Cristiano; Zerbe, Stefan; Wellstein, Camilla; Maggi, Valter; Oeggl, Klaus

    2017-04-01

    The objective of the project is to reconstruct plant biodiversity and its trend archived in Alpine glacier ice by pollen and eDNA (environmental DNA) during the last five decades by analyzing a 40 m ice core. For our study we chose the Adamello glacier (Trentino - Südtirol, Lombardia) because of i) the good preservation conditions for pollen and eDNA in ice, ii) the thickness of the ice cap (270m) and iii) the expected high time resolution. The biodiversity estimates gained by pollen analysis and eDNA will be validated by historical biodiversity assessments mainly based on vegetation maps, aerial photos and vegetation surveys in the catchment area of the Adamello glacier for the last five decades. This historical reconstruction of biodiversity trends will be performed on a micro-, meso- and macro-scale (5, 20-50 and 50-100 Km radius, respectively). The results will serve as a calibration data set on biodiversity for future studies, such as the second step of the coring by the POLLiCE research consortium (pollice.fmach.it). In fact, arrangements are currently been made to drill the complete ice cap and retrieve a 270 m thick core which has the potential to cover a time span of minimum 400 years up to several millennia. This second stage will extend the time scale and enable the evaluation of dissimilarity/similarity of modern biodiversity in relation to Late Holocene trends. Finally, we believe this case study has the potential to be applied in other glaciated areas to evaluate biodiversity for large regions (e.g. central Asian mountain ranges, Tibet and Tian Shan or the Andes).

  8. Climate Changes Documented in Ice Core Records from Third Pole Glaciers, with Emphasis on the Guliya Ice Cap in the Western Kunlun Mountains over the Last 100 Years

    Science.gov (United States)

    Thompson, L. G.; Yao, T.; Beaudon, E.; Mosley-Thompson, E.; Davis, M. E.; Kenny, D. V.; Lin, P. N.

    2016-12-01

    The Third Pole (TP) is a rapidly warming region containing 100,000 km2 of ice cover that collectively holds one of Earth's largest stores of freshwater that feeds Asia's largest rivers and helps sustain 1.5 billion people. Information on the accelerating warming in the region, its impact on the glaciers and subsequently on future water resources is urgently needed to guide mitigation and adaptation policies. Ice core histories collected over the last three decades across the TP demonstrate its climatic complexity and diversity. Here we present preliminary results from the flagship project of the Third Pole Environment Program, the 2015 Sino-American cooperative ice core drilling of the Guliya ice cap in the Kunlun Mountains in the western TP near the northern limit of the region influenced by the southwest monsoon. Three ice cores, each 51 meters in length, were recovered from the summit ( 6700 masl) while two deeper cores, one to bedrock ( 310 meters), were recovered from the plateau ( 6200 masl). Across the ice cap the net balance (accumulation) has increased annually by 2.3 cm of water equivalent from 1963-1992 to 1992-2015, and average oxygen isotopic ratios (δ18O) have enriched by 2‰. This contrasts with the recent ablation on the Naimona'nyi glacier located 540 km south of Guliya in the western Himalaya. Borehole temperatures in 2015 on the Guliya plateau have warmed substantially in the upper 30 meters of the ice compared to temperatures in 1992, when the first deep-drilling of the Guliya plateau was conducted. Compared with glaciers in the northern and western TP, the Himalayan ice fields are more sensitive to both fluctuations in the South Asian Monsoon and rising temperatures in the region. We examine the climatic changes of the last century preserved in ice core records from sites throughout the TP and compare them with those reconstructed for earlier warm epochs, such as the Medieval Climate Anomaly ( 950-1250 AD), the early Holocene "Hypsithermal

  9. Low-latitude ice cores and freshwater availability

    Science.gov (United States)

    Kehrwald, Natalie Marie

    2009-12-01

    Recent retreat of Tibetan Plateau glaciers affects at least half a billion people. Himalayan glaciers seasonally release meltwater into tributaries of the Indus, Ganges, and Brahmaputra Rivers and supply freshwater necessary to support agricultural and economic practices. Tibetan Plateau glaciers are retreating more rapidly than mountain glaciers elsewhere in the world, and this retreat is accelerating. The Naimona'nyi (30°27'N; 81°91'E, 6050 m a.s.l), Guliya (35°17'N; 81°29'E, 6710 m a.s.l.) and Dasuopu (28°23'N; 85°43'E, 7200 m a.s.l.) ice cores place this recent retreat into a longer time perspective through quantifying climate parameters such as past temperature, aridity, and atmospheric chemistry. Naimona'nyi has not accumulated mass since at least 1950, as evidenced by the virtual lack of radiogenic isotopes (36Cl, 3 H, and beta radioactivity) present in the ice core. These isotopes were produced by U.S. and Soviet atmospheric thermonuclear bomb tests conducted in the 1950s and 1960s and provide independent dating horizons for the ice cores. Lead-210 dates imply that the uppermost preserved glacial ice on Naimona'nyi formed during the 1940s. While this is the highest documented glacial thinning in the world other glaciers at elevations similar to that of Naimona'nyi, such as Kilimanjaro (3°4'S; 37°21'E, 5893 m a.s.l.), are also losing mass at their summits. The global scope of high-elevation glacial thinning suggests that ablation on the Earth's highest ice fields may be more prevalent as global mean temperatures continue to increase. Glacial thinning has not been taken into account in future projections of regional freshwater availability, and the net mass loss indicates that Himalayan glaciers currently store less freshwater than assumed in models. The acceleration of Tibetan Plateau glacial retreat has been hypothesized to be due in part to deposition of black carbon (BC) from biomass burning on to ice fields, thereby lowering the reflectivity of

  10. IceTrendr: a linear time-series approach to monitoring glacier environments using Landsat

    Science.gov (United States)

    Nelson, P.; Kennedy, R. E.; Nolin, A. W.; Hughes, J. M.; Braaten, J.

    2017-12-01

    Arctic glaciers in Alaska and Canada have experienced some of the greatest ice mass loss of any region in recent decades. A challenge to understanding these changing ecosystems, however, is developing globally-consistent, multi-decadal monitoring of glacier ice. We present a toolset and approach that captures, labels, and maps glacier change for use in climate science, hydrology, and Earth science education using Landsat Time Series (LTS). The core step is "temporal segmentation," wherein a yearly LTS is cleaned using pre-processing steps, converted to a snow/ice index, and then simplified into the salient shape of the change trajectory ("temporal signature") using linear segmentation. Such signatures can be characterized as simple `stable' or `transition of glacier ice to rock' to more complex multi-year changes like `transition of glacier ice to debris-covered glacier ice to open water to bare rock to vegetation'. This pilot study demonstrates the potential for interactively mapping, visualizing, and labeling glacier changes. What is truly innovative is that IceTrendr not only maps the changes but also uses expert knowledge to label the changes and such labels can be applied to other glaciers exhibiting statistically similar temporal signatures. Our key findings are that the IceTrendr concept and software can provide important functionality for glaciologists and educators interested in studying glacier changes during the Landsat TM timeframe (1984-present). Issues of concern with using dense Landsat time-series approaches for glacier monitoring include many missing images during the period 1984-1995 and that automated cloud mask are challenged and require the user to manually identify cloud-free images. IceTrendr is much more than just a simple "then and now" approach to glacier mapping. This process is a means of integrating the power of computing, remote sensing, and expert knowledge to "tell the story" of glacier changes.

  11. Perspectives for DNA studies on polar ice cores

    DEFF Research Database (Denmark)

    Hansen, Anders J.; Willerslev, E.

    2002-01-01

    Recently amplifiable ancient DNA was obtained from a Greenland ice core. The DNA revealed a diversity of fungi, plants, algae and protists and has thereby expanded the range of detectable organic material in fossil glacier ice. The results suggest that ancient DNA can be obtained from other ice c...

  12. Ice thickness measurements and volume estimates for glaciers in Norway

    Science.gov (United States)

    Andreassen, Liss M.; Huss, Matthias; Melvold, Kjetil; Elvehøy, Hallgeir; Winsvold, Solveig H.

    2014-05-01

    Whereas glacier areas in many mountain regions around the world now are well surveyed using optical satellite sensors and available in digital inventories, measurements of ice thickness are sparse in comparison and a global dataset does not exist. Since the 1980s ice thickness measurements have been carried out by ground penetrating radar on many glaciers in Norway, often as part of contract work for hydropower companies with the aim to calculate hydrological divides of ice caps. Measurements have been conducted on numerous glaciers, covering the largest ice caps as well as a few smaller mountain glaciers. However, so far no ice volume estimate for Norway has been derived from these measurements. Here, we give an overview of ice thickness measurements in Norway, and use a distributed model to interpolate and extrapolate the data to provide an ice volume estimate of all glaciers in Norway. We also compare the results to various volume-area/thickness-scaling approaches using values from the literature as well as scaling constants we obtained from ice thickness measurements in Norway. Glacier outlines from a Landsat-derived inventory from 1999-2006 together with a national digital elevation model were used as input data for the ice volume calculations. The inventory covers all glaciers in mainland Norway and consists of 2534 glaciers (3143 glacier units) covering an area of 2692 km2 ± 81 km2. To calculate the ice thickness distribution of glaciers in Norway we used a distributed model which estimates surface mass balance distribution, calculates the volumetric balance flux and converts it into thickness using the flow law for ice. We calibrated this model with ice thickness data for Norway, mainly by adjusting the mass balance gradient. Model results generally agree well with the measured values, however, larger deviations were found for some glaciers. The total ice volume of Norway was estimated to be 275 km3 ± 30 km3. From the ice thickness data set we selected

  13. An Extraction System for Radiocarbon Microanalysis of Dissolved Organic Carbon in Glacier Ice

    OpenAIRE

    Schindler, Johannes

    2017-01-01

    Alpine glaciers situated in mid- and low latitudes are valuable archives for paleoclimatology. They offer a continuous record of recent local climatic conditions in regions where the majority of humankind lived and still lives. For meaningful interpretation of an ice core from such an archive, accurate dating is essential. Usually, several complementary approaches are used to establish a depth-age relationship. The oldest part of the ice at the bottom of the ice core suffers annual layer thin...

  14. A New Multielement Method for LA-ICP-MS Data Acquisition from Glacier Ice Cores.

    Science.gov (United States)

    Spaulding, Nicole E; Sneed, Sharon B; Handley, Michael J; Bohleber, Pascal; Kurbatov, Andrei V; Pearce, Nicholas J; Erhardt, Tobias; Mayewski, Paul A

    2017-11-21

    To answer pressing new research questions about the rate and timing of abrupt climate transitions, a robust system for ultrahigh-resolution sampling of glacier ice is needed. Here, we present a multielement method of LA-ICP-MS analysis wherein an array of chemical elements is simultaneously measured from the same ablation area. Although multielement techniques are commonplace for high-concentration materials, prior to the development of this method, all LA-ICP-MS analyses of glacier ice involved a single element per ablation pass or spot. This new method, developed using the LA-ICP-MS system at the W. M. Keck Laser Ice Facility at the University of Maine Climate Change Institute, has already been used to shed light on our flawed understanding of natural levels of Pb in Earth's atmosphere.

  15. Review of levoglucosan in glacier snow and ice studies: Recent progress and future perspectives.

    Science.gov (United States)

    You, Chao; Xu, Chao

    2018-03-01

    Levoglucosan (LEV) in glacier snow and ice layers provides a fingerprint of fire activity, ranging from modern air pollution to ancient fire emissions. In this study, we review recent progress in our understanding and application of LEV in glaciers, including analytical methods, transport and post-depositional processes, and historical records. We firstly summarize progress in analytical methods for determination of LEV in glacier snow and ice. Then, we discuss the processes influencing the records of LEV in snow and ice layers. Finally, we make some recommendations for future work, such as assessing the stability of LEV and obtaining continuous records, to increase reliability of the reconstructed ancient fire activity. This review provides an update for researchers working with LEV and will facilitate the further use of LEV as a biomarker in paleo-fire studies based on ice core records. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Glacier seismology: eavesdropping on the ice-bed interface

    Science.gov (United States)

    Walter, F.; Röösli, C.

    2015-12-01

    Glacier sliding plays a central role in ice dynamics. A number of remote sensing and deep drilling initiatives have therefore focused on the ice-bed interface. Although these techniques have provided valuable insights into bed properties, they do not supply theorists with data of sufficient temporal and spatial resolution to rigorously test mathematical sliding laws. As an alternative, passive seismic techniques have gained popularity in glacier monitoring. Analysis of glacier-related seismic sources ('icequakes') has become a useful technique to study inaccessible regions of the cryosphere, including the ice-bed interface. Seismic monitoring networks on the polar ice sheets have shown that ice sliding is not only a smooth process involving viscous deformation and regelation of basal ice layers. Instead, ice streams exhibit sudden slip episodes over their beds and intermittent phases of partial or complete stagnation. Here we discuss new and recently published discoveries of basal seismic sources beneath various glacial bodies. We revisit basal seismicity of hard-bedded Alpine glaciers, which is not the result of pure stick-slip motion. Sudden changes in seismicity suggest that the local configuration of the subglacial drainage system undergoes changes on sub daily time scales. Accordingly, such observations place constraints on basal resistance and sliding of hard-bedded glaciers. In contrast, certain clusters of stick-slip dislocations associated with micro seismicity beneath the Greenland ice sheet undergo diurnal variations in magnitudes and inter event times. This is best explained with a soft till bed, which hosts the shear dislocations and whose strength varies in response to changes in subglacial water pressure. These results suggest that analysis of basal icequakes is well suited for characterizing glacier and ice sheet beds. Future studies should address the relative importance between "smooth" and seismogenic sliding in different glacial environments.

  17. Inferring Ice Thickness from a Glacier Dynamics Model and Multiple Surface Datasets.

    Science.gov (United States)

    Guan, Y.; Haran, M.; Pollard, D.

    2017-12-01

    The future behavior of the West Antarctic Ice Sheet (WAIS) may have a major impact on future climate. For instance, ice sheet melt may contribute significantly to global sea level rise. Understanding the current state of WAIS is therefore of great interest. WAIS is drained by fast-flowing glaciers which are major contributors to ice loss. Hence, understanding the stability and dynamics of glaciers is critical for predicting the future of the ice sheet. Glacier dynamics are driven by the interplay between the topography, temperature and basal conditions beneath the ice. A glacier dynamics model describes the interactions between these processes. We develop a hierarchical Bayesian model that integrates multiple ice sheet surface data sets with a glacier dynamics model. Our approach allows us to (1) infer important parameters describing the glacier dynamics, (2) learn about ice sheet thickness, and (3) account for errors in the observations and the model. Because we have relatively dense and accurate ice thickness data from the Thwaites Glacier in West Antarctica, we use these data to validate the proposed approach. The long-term goal of this work is to have a general model that may be used to study multiple glaciers in the Antarctic.

  18. Sub-ice-shelf sediments record history of twentieth-century retreat of Pine Island Glacier.

    Science.gov (United States)

    Smith, J A; Andersen, T J; Shortt, M; Gaffney, A M; Truffer, M; Stanton, T P; Bindschadler, R; Dutrieux, P; Jenkins, A; Hillenbrand, C-D; Ehrmann, W; Corr, H F J; Farley, N; Crowhurst, S; Vaughan, D G

    2017-01-05

    The West Antarctic Ice Sheet is one of the largest potential sources of rising sea levels. Over the past 40 years, glaciers flowing into the Amundsen Sea sector of the ice sheet have thinned at an accelerating rate, and several numerical models suggest that unstable and irreversible retreat of the grounding line-which marks the boundary between grounded ice and floating ice shelf-is underway. Understanding this recent retreat requires a detailed knowledge of grounding-line history, but the locations of the grounding line before the advent of satellite monitoring in the 1990s are poorly dated. In particular, a history of grounding-line retreat is required to understand the relative roles of contemporaneous ocean-forced change and of ongoing glacier response to an earlier perturbation in driving ice-sheet loss. Here we show that the present thinning and retreat of Pine Island Glacier in West Antarctica is part of a climatically forced trend that was triggered in the 1940s. Our conclusions arise from analysis of sediment cores recovered beneath the floating Pine Island Glacier ice shelf, and constrain the date at which the grounding line retreated from a prominent seafloor ridge. We find that incursion of marine water beyond the crest of this ridge, forming an ocean cavity beneath the ice shelf, occurred in 1945 (±12 years); final ungrounding of the ice shelf from the ridge occurred in 1970 (±4 years). The initial opening of this ocean cavity followed a period of strong warming of West Antarctica, associated with El Niño activity. Thus our results suggest that, even when climate forcing weakened, ice-sheet retreat continued.

  19. Distributed ice thickness and glacier volume in southern South America

    Science.gov (United States)

    Carrivick, Jonathan L.; Davies, Bethan J.; James, William H. M.; Quincey, Duncan J.; Glasser, Neil F.

    2016-11-01

    South American glaciers, including those in Patagonia, presently contribute the largest amount of meltwater to sea level rise per unit glacier area in the world. Yet understanding of the mechanisms behind the associated glacier mass balance changes remains unquantified partly because models are hindered by a lack of knowledge of subglacial topography. This study applied a perfect-plasticity model along glacier centre-lines to derive a first-order estimate of ice thickness and then interpolated these thickness estimates across glacier areas. This produced the first complete coverage of distributed ice thickness, bed topography and volume for 617 glaciers between 41°S and 55°S and in 24 major glacier regions. Maximum modelled ice thicknesses reach 1631 m ± 179 m in the South Patagonian Icefield (SPI), 1315 m ± 145 m in the North Patagonian Icefield (NPI) and 936 m ± 103 m in Cordillera Darwin. The total modelled volume of ice is 1234.6 km3 ± 246.8 km3 for the NPI, 4326.6 km3 ± 865.2 km3 for the SPI and 151.9 km3 ± 30.38 km3 for Cordillera Darwin. The total volume was modelled to be 5955 km3 ± 1191 km3, which equates to 5458.3 Gt ± 1091.6 Gt ice and to 15.08 mm ± 3.01 mm sea level equivalent (SLE). However, a total area of 655 km2 contains ice below sea level and there are 282 individual overdeepenings with a mean depth of 38 m and a total volume if filled with water to the brim of 102 km3. Adjusting the potential SLE for the ice volume below sea level and for the maximum potential storage of meltwater in these overdeepenings produces a maximum potential sea level rise (SLR) of 14.71 mm ± 2.94 mm. We provide a calculation of the present ice volume per major river catchment and we discuss likely changes to southern South America glaciers in the future. The ice thickness and subglacial topography modelled by this study will facilitate future studies of ice dynamics and glacier isostatic adjustment, and will be important for projecting water resources and

  20. Southern Alaska Glaciers: Spatial and Temporal Variations in Ice Volume

    Science.gov (United States)

    Sauber, J.; Molnia, B. F.; Lutchke, S.; Rowlands, D.; Harding, D.; Carabajal, C.; Hurtado, J. M.; Spade, G.

    2004-01-01

    Although temperate mountain glaciers comprise less than 1% of the glacier-covered area on Earth, they are important because they appear to be melting rapidly under present climatic conditions and, therefore, make significant contributions to rising sea level. In this study, we use ICESat observations made in the last 1.5 years of southern Alaska glaciers to estimate ice elevation profiles, ice surface slopes and roughness, and bi-annual and/or annual ice elevation changes. We report initial results from the near coastal region between Yakutat Bay and Cape Suckling that includes the Malaspina and Bering Glaciers. We show and interpret ice elevations changes across the lower reaches of the Bagley Ice Valley for the period between October 2003 and May 2004. In addition, we use off-nadir pointing observations to reference tracks over the Bering and Malaspina Glaciers in order to estimate annual ice elevation change. Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and Shuttle Radar Topography Mission (SRTM) derived DEMs are used to estimate across track regional slopes between ICESat data acquisitions. Although the distribution and quantity of ICESat elevation profiles with multiple, exact repeat data is currently limited in Alaska, individual ICESat data tracks, provide an accurate reference surface for comparison to other elevation data (e.g. ASTER and SRTM X- and C-band derived DEMs). Specifically we report the elevation change over the Malaspina Glacier's piedmont lobe between a DEM derived from SRTM C-band data acquired in Feb. 2000 and ICESat Laser #2b data from Feb.-March 2004. We also report use of ICESat elevation data to enhance ASTER derived absolute DEMs. Mountain glaciers generally have rougher surfaces and steeper regional slopes than the ice sheets for which the ICESat design was optimized. Therefore, rather than averaging ICESat observations over large regions or relying on crossovers, we are working with well-located ICESat

  1. Physical Limits on Hmax, the Maximum Height of Glaciers and Ice Sheets

    Science.gov (United States)

    Lipovsky, B. P.

    2017-12-01

    The longest glaciers and ice sheets on Earth never achieve a topographic relief, or height, greater than about Hmax = 4 km. What laws govern this apparent maximum height to which a glacier or ice sheet may rise? Two types of answer appear possible: one relating to geological process and the other to ice dynamics. In the first type of answer, one might suppose that if Earth had 100 km tall mountains then there would be many 20 km tall glaciers. The counterpoint to this argument is that recent evidence suggests that glaciers themselves limit the maximum height of mountain ranges. We turn, then, to ice dynamical explanations for Hmax. The classical ice dynamical theory of Nye (1951), however, does not predict any break in scaling to give rise to a maximum height, Hmax. I present a simple model for the height of glaciers and ice sheets. The expression is derived from a simplified representation of a thermomechanically coupled ice sheet that experiences a basal shear stress governed by Coulomb friction (i.e., a stress proportional to the overburden pressure minus the water pressure). I compare this model to satellite-derived digital elevation map measurements of glacier surface height profiles for the 200,000 glaciers in the Randolph Glacier Inventory (Pfeffer et al., 2014) as well as flowlines from the Greenland and Antarctic Ice Sheets. The simplified model provides a surprisingly good fit to these global observations. Small glaciers less than 1 km in length are characterized by having negligible influence of basal melt water, cold ( -15C) beds, and high surface slopes ( 30 deg). Glaciers longer than a critical distance 30km are characterized by having an ice-bed interface that is weakened by the presence of meltwater and is therefore not capable of supporting steep surface slopes. The simplified model makes predictions of ice volume change as a function of surface temperature, accumulation rate, and geothermal heat flux. For this reason, it provides insights into

  2. Investigating cold based summit glaciers through direct access to the glacier base: a case study constraining the maximum age of Chli Titlis glacier, Switzerland

    Science.gov (United States)

    Bohleber, Pascal; Hoffmann, Helene; Kerch, Johanna; Sold, Leo; Fischer, Andrea

    2018-01-01

    Cold glaciers at the highest locations of the European Alps have been investigated by drilling ice cores to retrieve their stratigraphic climate records. Findings like the Oetztal ice man have demonstrated that small ice bodies at summit locations of comparatively lower altitudes may also contain old ice if locally frozen to the underlying bedrock. In this case, constraining the maximum age of their lowermost ice part may help to identify past periods with minimum ice extent in the Alps. However, with recent warming and consequent glacier mass loss, these sites may not preserve their unique climate information for much longer. Here we utilized an existing ice cave at Chli Titlis (3030 m), central Switzerland, to perform a case study for investigating the maximum age of cold-based summit glaciers in the Alps. The cave offers direct access to the glacier stratigraphy without the logistical effort required in ice core drilling. In addition, a pioneering exploration had already demonstrated stagnant cold ice conditions at Chli Titlis, albeit more than 25 years ago. Our englacial temperature measurements and the analysis of the isotopic and physical properties of ice blocks sampled at three locations within the ice cave show that cold ice still exists fairly unchanged today. State-of-the-art micro-radiocarbon analysis constrains the maximum age of the ice at Chli Titlis to about 5000 years before present. By this means, the approach presented here will contribute to a future systematic investigation of cold-based summit glaciers, also in the Eastern Alps.

  3. Storage and release of organic carbon from glaciers and ice sheets

    Science.gov (United States)

    Hood, Eran; Battin, Tom J.; Fellman, Jason; O'Neel, Shad; Spencer, Robert G. M.

    2015-02-01

    Polar ice sheets and mountain glaciers, which cover roughly 11% of the Earth's land surface, store organic carbon from local and distant sources and then release it to downstream environments. Climate-driven changes to glacier runoff are expected to be larger than climate impacts on other components of the hydrological cycle, and may represent an important flux of organic carbon. A compilation of published data on dissolved organic carbon from glaciers across five continents reveals that mountain and polar glaciers represent a quantitatively important store of organic carbon. The Antarctic Ice Sheet is the repository of most of the roughly 6 petagrams (Pg) of organic carbon stored in glacier ice, but the annual release of glacier organic carbon is dominated by mountain glaciers in the case of dissolved organic carbon and the Greenland Ice Sheet in the case of particulate organic carbon. Climate change contributes to these fluxes: approximately 13% of the annual flux of glacier dissolved organic carbon is a result of glacier mass loss. These losses are expected to accelerate, leading to a cumulative loss of roughly 15 teragrams (Tg) of glacial dissolved organic carbon by 2050 due to climate change -- equivalent to about half of the annual flux of dissolved organic carbon from the Amazon River. Thus, glaciers constitute a key link between terrestrial and aquatic carbon fluxes, and will be of increasing importance in land-to-ocean fluxes of organic carbon in glacierized regions.

  4. Storage and release of organic carbon from glaciers and ice sheets

    Science.gov (United States)

    Hood, Eran; Battin, Tom J.; Fellman, Jason; O'Neel, Shad; Spencer, Robert G. M.

    2015-01-01

    Polar ice sheets and mountain glaciers, which cover roughly 11% of the Earth's land surface, store organic carbon from local and distant sources and then release it to downstream environments. Climate-driven changes to glacier runoff are expected to be larger than climate impacts on other components of the hydrological cycle, and may represent an important flux of organic carbon. A compilation of published data on dissolved organic carbon from glaciers across five continents reveals that mountain and polar glaciers represent a quantitatively important store of organic carbon. The Antarctic Ice Sheet is the repository of most of the roughly 6 petagrams (Pg) of organic carbon stored in glacier ice, but the annual release of glacier organic carbon is dominated by mountain glaciers in the case of dissolved organic carbon and the Greenland Ice Sheet in the case of particulate organic carbon. Climate change contributes to these fluxes: approximately 13% of the annual flux of glacier dissolved organic carbon is a result of glacier mass loss. These losses are expected to accelerate, leading to a cumulative loss of roughly 15 teragrams (Tg) of glacial dissolved organic carbon by 2050 due to climate change — equivalent to about half of the annual flux of dissolved organic carbon from the Amazon River. Thus, glaciers constitute a key link between terrestrial and aquatic carbon fluxes, and will be of increasing importance in land-to-ocean fluxes of organic carbon in glacierized regions.

  5. Do morphometric parameters and geological conditions determine chemistry of glacier surface ice? Spatial distribution of contaminants present in the surface ice of Spitsbergen glaciers (European Arctic).

    Science.gov (United States)

    Lehmann, Sara; Gajek, Grzegorz; Chmiel, Stanisław; Polkowska, Żaneta

    2016-12-01

    The chemism of the glaciers is strongly determined by long-distance transport of chemical substances and their wet and dry deposition on the glacier surface. This paper concerns spatial distribution of metals, ions, and dissolved organic carbon, as well as the differentiation of physicochemical parameters (pH, electrical conductivity) determined in ice surface samples collected from four Arctic glaciers during the summer season in 2012. The studied glaciers represent three different morphological types: ground based (Blomlibreen and Scottbreen), tidewater which evolved to ground based (Renardbreen), and typical tidewater glacier (Recherchebreen). All of the glaciers are functioning as a glacial system and hence are subject to the same physical processes (melting, freezing) and the process of ice flowing resulting from the cross-impact force of gravity and topographic conditions. According to this hypothesis, the article discusses the correlation between morphometric parameters, changes in mass balance, geological characteristics of the glaciers and the spatial distribution of analytes on the surface of ice. A strong correlation (r = 0.63) is recorded between the aspect of glaciers and values of pH and ions, whereas dissolved organic carbon (DOC) depends on the minimum elevation of glaciers (r = 0.55) and most probably also on the development of the accumulation area. The obtained results suggest that although certain morphometric parameters largely determine the spatial distribution of analytes, also the geology of the bed of glaciers strongly affects the chemism of the surface ice of glaciers in the phase of strong recession.

  6. Modeling the Rock Glacier Cycle

    Science.gov (United States)

    Anderson, R. S.; Anderson, L. S.

    2016-12-01

    Rock glaciers are common in many mountain ranges in which the ELA lies above the peaks. They represent some of the most identifiable components of today's cryosphere in these settings. Their oversteepened snouts pose often-overlooked hazards to travel in alpine terrain. Rock glaciers are supported by avalanches and by rockfall from steep headwalls. The winter's avalanche cone must be sufficiently thick not to melt entirely in the summer. The spatial distribution of rock glaciers reflects this dependence on avalanche sources; they are most common on lee sides of ridges where wind-blown snow augments the avalanche source. In the absence of rockfall, this would support a short, cirque glacier. Depending on the relationship between rockfall and avalanche patterns, "talus-derived" and "glacier-derived" rock glaciers are possible. Talus-derived: If the spatial distribution of rock delivery is similar to the avalanche pattern, the rock-ice mixture will travel an englacial path that is downward through the short accumulation zone before turning upward in the ablation zone. Advected debris is then delivered to the base of a growing surface debris layer that reduces the ice melt rate. The physics is identical to the debris-covered glacier case. Glacier-derived: If on the other hand rockfall from the headwall rolls beyond the avalanche cone, it is added directly to the ablation zone of the glacier. The avalanche accumulation zone then supports a pure ice core to the rock glacier. We have developed numerical models designed to capture the full range of glacier to debris-covered glacier to rock glacier behavior. The hundreds of meter lengths, tens of meters thicknesses, and meter per year speeds of rock glaciers are well described by the models. The model can capture both "talus-derived" and "glacier-derived" rock glaciers. We explore the dependence of glacier behavior on climate histories. As climate warms, a pure ice debris-covered glacier can transform to a much shorter rock

  7. Deriving micro- to macro-scale seismic velocities from ice-core c axis orientations

    Science.gov (United States)

    Kerch, Johanna; Diez, Anja; Weikusat, Ilka; Eisen, Olaf

    2018-05-01

    One of the great challenges in glaciology is the ability to estimate the bulk ice anisotropy in ice sheets and glaciers, which is needed to improve our understanding of ice-sheet dynamics. We investigate the effect of crystal anisotropy on seismic velocities in glacier ice and revisit the framework which is based on fabric eigenvalues to derive approximate seismic velocities by exploiting the assumed symmetry. In contrast to previous studies, we calculate the seismic velocities using the exact c axis angles describing the orientations of the crystal ensemble in an ice-core sample. We apply this approach to fabric data sets from an alpine and a polar ice core. Our results provide a quantitative evaluation of the earlier approximative eigenvalue framework. For near-vertical incidence our results differ by up to 135 m s-1 for P-wave and 200 m s-1 for S-wave velocity compared to the earlier framework (estimated 1 % difference in average P-wave velocity at the bedrock for the short alpine ice core). We quantify the influence of shear-wave splitting at the bedrock as 45 m s-1 for the alpine ice core and 59 m s-1 for the polar ice core. At non-vertical incidence we obtain differences of up to 185 m s-1 for P-wave and 280 m s-1 for S-wave velocities. Additionally, our findings highlight the variation in seismic velocity at non-vertical incidence as a function of the horizontal azimuth of the seismic plane, which can be significant for non-symmetric orientation distributions and results in a strong azimuth-dependent shear-wave splitting of max. 281 m s-1 at some depths. For a given incidence angle and depth we estimated changes in phase velocity of almost 200 m s-1 for P wave and more than 200 m s-1 for S wave and shear-wave splitting under a rotating seismic plane. We assess for the first time the change in seismic anisotropy that can be expected on a short spatial (vertical) scale in a glacier due to strong variability in crystal-orientation fabric (±50 m s-1 per 10 cm

  8. Ice thickness profile surveying with ground penetrating radar at Artesonraju Glacier, Peru

    Science.gov (United States)

    Chisolm, Rachel; Rabatel, Antoine; McKinney, Daene; Condom, Thomas; Cochacin, Alejo; Davila Roller, Luzmilla

    2014-05-01

    Tropical glaciers are an essential component of the water resource systems in the mountainous regions where they are located, and a warming climate has resulted in the accelerated retreat of Andean glaciers in recent decades. The shrinkage of Andean glaciers influences the flood risk for communities living downstream as new glacial lakes have begun to form at the termini of some glaciers. As these lakes continue to grow in area and volume, they pose an increasing risk of glacial lake outburst floods (GLOFs). Ice thickness measurements have been a key missing link in studying the tropical glaciers in Peru and how climate change is likely to impact glacial melt and the growth of glacial lakes. Ground penetrating radar (GPR) has rarely been applied to glaciers in Peru to measure ice thickness, and these measurements can tell us a lot about how a warming climate will affect glaciers in terms of thickness changes. In the upper Paron Valley (Cordillera Blanca, Peru), an emerging lake has begun to form at the terminus of the Artesonraju Glacier, and this lake has key features, including overhanging ice and loose rock likely to create slides, that could trigger a catastrophic GLOF if the lake continues to grow. Because the glacier mass balance and lake mass balance are closely linked, ice thickness measurements and measurements of the bed slope of the Artesonraju Glacier and underlying bedrock can give us an idea of how the lake is likely to evolve in the coming decades. This study presents GPR data taken in July 2013 at the Artesonraju Glacier as part of a collaboration between the Unidad de Glaciologia y Recursos Hidricos (UGRH) of Peru, the Institut de Recherche pour le Développement (IRD) of France and the University of Texas at Austin (UT) of the United States of America. Two different GPR units belonging to UGRH and UT were used for subsurface imaging to create ice thickness profiles and to characterize the total volume of ice in the glacier. A common midpoint

  9. Ice thickness estimations based on multi-temporal glacier inventories - potential and challenges

    Science.gov (United States)

    Helfricht, Kay; Huss, Matthias; Otto, Jan-Christoph

    2016-04-01

    The ongoing glacier retreat exposes a large number of surface depressions in the former glacier bed that can be filled with water or act as sediment traps. This has already been observed at various sites in Austria and in other mountain areas worldwide. The formation of glacial lakes can constitute an important environmental and socio-economic impact on high mountain systems including water resource management, sediment delivery, natural hazards, energy production and tourism. In general, information on ice thickness distribution is the basis for simulating future glacier change. We used the approach proposed by Huss and Farinotti (2012) to model the ice thickness distribution and potential locations of subglacial depressions. The study is part of the FUTURELAKE project that seeks to model the formation of new glacier lakes and their possible future evolution in the Austria Alps. The required data on glacier extent, surface elevation and slope were taken from the Austrian Glacier Inventories GI1 from 1969, GI2 from 1998 and GI3 from2006 (Fischer et al., 2015). The different glacier outlines and surface elevations from the inventories enable us to evaluate (i) the robustness of the modelled bedrock depressions with respect to different glacier settings, (ii) the power of the model to simulate recently formed glacial lakes, (iii) the similarities in calculated ice thickness distributions across the inventories and (iv) the feasibility of simulating observed changes in ice thickness and glacier volume. In general, the modelled localization of large potential depressions was relatively stable using the observed glacier settings. A number of examples show that recently formed glacial lakes could be detected by the model based on previous glacier extents. The locations of maximum ice depths within different elevation zones appeared to be sensitive to changes in glacier width. However, observed ice thickness changes and, thus, volume changes between the inventories could

  10. Visualizing Glaciers and Sea Ice via Google Earth

    Science.gov (United States)

    Ballagh, L. M.; Fetterer, F.; Haran, T. M.; Pharris, K.

    2006-12-01

    The NOAA team at NSIDC manages over 60 distinct cryospheric and related data products. With an emphasis on data rescue and in situ data, these products hold value for both the scientific and non-scientific user communities. The overarching goal of this presentation is to promote products from two components of the cryosphere (glaciers and sea ice). Our Online Glacier Photograph Database contains approximately 3,000 photographs taken over many decades, exemplifying change in the glacier terminus over time. The sea ice product shows sea ice extent and concentration along with anomalies and trends. This Sea Ice Index product, which starts in 1979 and is updated monthly, provides visuals of the current state of sea ice in both hemispheres with trends and anomalies. The long time period covered by the data set means that many of the trends in ice extent and concentration shown in this product are statistically significant despite the large natural variability in sea ice. The minimum arctic sea ice extent has been a record low in September 2002 and 2005, contributing to an accelerated trend in sea ice reduction. With increasing world-wide interest in indicators of global climate change, and the upcoming International Polar Year, these data products are of interest to a broad audience. To further extend the impact of these data, we have made them viewable through Google Earth via the Keyhole Markup Language (KML). This presents an opportunity to branch out to a more diverse audience by using a new and innovative tool that allows spatial representation of data of significant scientific and educational interest.

  11. An estimate of the glacier ice volume in the Swiss Alps

    Science.gov (United States)

    Farinotti, Daniel; Huss, Matthias; Bauder, Andreas; Funk, Martin

    2009-08-01

    Changes in glacier volume are important for questions linked to sea-level rise, water resource management, and tourism industry. With the ongoing climate warming, the retreat of mountain glaciers is a major concern. Predictions of glacier changes, necessarily need the present ice volume as initial condition, and for transient modelling, the ice thickness distribution has to be known. In this paper, a method based on mass conservation and principles of ice flow dynamics is applied to 62 glaciers located in the Swiss Alps for estimating their ice thickness distribution. All available direct ice thickness measurements are integrated. The ice volumes are referenced to the year 1999 by means of a mass balance time series. The results are used to calibrate a volume-area scaling relation, and the coefficients obtained show good agreement with values reported in the literature. We estimate the total ice volume present in the Swiss Alps in the year 1999 to be 74 ± 9 km 3. About 12% of this volume was lost between 1999 and 2008, whereas the extraordinarily warm summer 2003 caused a volume loss of about 3.5%.

  12. Glaciation of alpine valleys: The glacier - debris-covered glacier - rock glacier continuum

    Science.gov (United States)

    Anderson, Robert S.; Anderson, Leif S.; Armstrong, William H.; Rossi, Matthew W.; Crump, Sarah E.

    2018-06-01

    because they are most common on lee sides of ridges and peaks where wind-blown snow enhances the strength of the avalanche source. To maintain positive mass balance, the avalanche cone developed in the winter must be sufficiently thick not to melt entirely in the summer, thus providing an ice accumulation area for the rock glacier. In the absence of rockfall, this would support a short cirque glacier. The presence of debris, however, facilitates the development of rock glaciers with lengths of hundreds of meters, thicknesses of tens of meters, and speeds of meters per year that are well described by numerical models. Numerical models are used to explore the alpine glacier response to its climate history. In warming climates, a debris-covered glacier can transform into a much shorter rock glacier, leaving in its wake a thinning ice-cored moraine. Rock glaciers will persist in landscapes well beyond debris-free counterparts because they have much longer response times to climate change. The headwaters of alpine basins with steep headwalls will therefore oscillate between glacier and rock glacier occupation over glacial-interglacial cycles, maintaining a means by which rock from the headwall can be conveyed away. This enhances the asymmetry of alpine ridgelines, with downwind valleys biting deeply into the range crests, as originally noted by G.K. Gilbert.

  13. Investigating the Microscopic Location of Trace Elements in High-Alpine Glacier Ice

    Science.gov (United States)

    Avak, Sven Erik; Birrer, Mario; Laurent, Oscar; Guillong, Marcel; Wälle, Markus; Jenk, Theo Manuel; Bartels-Rausch, Thorsten; Schwikowski, Margit; Eichler, Anja

    2017-04-01

    Past changes in atmospheric pollution can be reconstructed from high-alpine ice core trace element records (Schwikowski et al., 2004). Percolation of meltwater alters the information originally stored in these environmental archives. Eichler et al. (2001) suggested that the preservation of major ions with respect to meltwater percolation depends on their location in the crystal ice lattice, i.e. grain boundaries versus grain interiors. Other studies have also focused on the effect of meltwater on organic pollutant concentrations as well as on stable isotope profiles in ice cores, whereas no information exists about trace elements. Here, we investigate for the first time the effect of the microscopic location of anthropogenic, dust and volcanic related trace elements on the behavior during meltwater percolation by using two different approaches. On the one hand we assess the microscopic location of trace elements indirectly by analyzing trace element concentrations in a high-alpine ice core, which has been shown to be affected by an inflow of meltwater, using discrete inductively coupled plasma mass spectrometry (ICP-MS). Impurities located at grain boundaries are prone to be removed by meltwater and tend to be depleted in the affected section of the record whereas those incorporated into the ice interior are preserved and not disturbed in the record. In the second approach we work towards a direct quantification of differences in concentrations of trace elements between ice grain boundaries and grain interiors in samples both from unaffected and affected sections of this ice core. Therefore we use cryocell laser ablation (LA) ICP-MS, which is the method of choice for the direct in situ chemical analysis of trace elements at a sub-millimeter resolution in glacier ice (Reinhardt et al., 2001, Della Lunga et al., 2014, Sneed et al., 2015). We will present first results of both approaches with regard to the evaluation of the potential of trace elements as environmental

  14. Radiocarbon determination of particulate organic carbon in glacier ice from the Grenzgletscher (Monte Rosa)

    International Nuclear Information System (INIS)

    Steier, P.; Drosg, R.; Kutschera, W.; Wild, E.M.; Fedi, M.; Schock, M.; Wagenbach, D.

    2005-01-01

    Full text: Dating ice cores from cold glaciers via radiocarbon is still an unsolved problem. This work describes our approach towards extraction and AMS radiocarbon dating of the particulate organic carbon (POC) fraction in ice samples at VERA (Vienna Environmental Research Accelerator). First measurements were performed on 1 snow and 11 ice samples from Gorner Glacier and Colle Gnifetti in the Monte Rosa Mountain region (Swiss Alps). The sample masses used were between 0.3 kg and 1.4 kg ice yielding between 18 μg and 307 μg carbon as POC. The carbon contamination introduced during the sample processing varied between 9 μg and 33 μg C and originates mainly from the quartz filters and the rinsing liquids used. Minimum sample sizes for successful graphitization of carbon dioxide in our laboratory have been reduced to less than 10 μg carbon. The background in the graphitization process is approximately 0.5 μg carbon of 40 pMC. Scatter and outliers in the radiocarbon data suggest that presently a single radiocarbon date of glacial POC has limited significance. For the set of 11 ice samples, a calibrated age of 2100 BC to 900 AD (95% confidence level) is obtained. (author)

  15. Paleo-Climate and Glaciological Reconstruction in Central Asia through the Collection and Analysis of Ice Cores and Instrumental Data from the Tien Shan

    International Nuclear Information System (INIS)

    Vladimir Aizen; Donald Bren; Karl Kreutz; Cameron Wake

    2001-01-01

    While the majority of ice core investigations have been undertaken in the polar regions, a few ice cores recovered from carefully selected high altitude/mid-to-low latitude glaciers have also provided valuable records of climate variability in these regions. A regional array of high resolution, multi-parameter ice core records developed from temperate and tropical regions of the globe can be used to document regional climate and environmental change in the latitudes which are home to the vase majority of the Earth's human population. In addition, these records can be directly compared with ice core records available from the polar regions and can therefore expand our understanding of inter-hemispheric dynamics of past climate changes. The main objectives of our paleoclimate research in the Tien Shan mountains of middle Asia combine the development of detailed paleoenvironmental records via the physical and chemical analysis of ice cores with the analysis of modern meteorological and hydrological data. The first step in this research was the collection of ice cores from the accumulation zone of the Inylchek Glacier and the collection of meteorological data from a variety of stations throughout the Tien Shan. The research effort described in this report was part of a collaborative effort with the United State Geological Survey's (USGS) Global Environmental Research Program which began studying radionuclide deposition in mid-latitude glaciers in 1995

  16. Paleo-Climate and Glaciological Reconstruction in Central Asia through the Collection and Analysis of Ice Cores and Instrumental Data from the Tien Shan

    Energy Technology Data Exchange (ETDEWEB)

    Vladimir Aizen; Donald Bren; Karl Kreutz; Cameron Wake

    2001-05-30

    While the majority of ice core investigations have been undertaken in the polar regions, a few ice cores recovered from carefully selected high altitude/mid-to-low latitude glaciers have also provided valuable records of climate variability in these regions. A regional array of high resolution, multi-parameter ice core records developed from temperate and tropical regions of the globe can be used to document regional climate and environmental change in the latitudes which are home to the vase majority of the Earth's human population. In addition, these records can be directly compared with ice core records available from the polar regions and can therefore expand our understanding of inter-hemispheric dynamics of past climate changes. The main objectives of our paleoclimate research in the Tien Shan mountains of middle Asia combine the development of detailed paleoenvironmental records via the physical and chemical analysis of ice cores with the analysis of modern meteorological and hydrological data. The first step in this research was the collection of ice cores from the accumulation zone of the Inylchek Glacier and the collection of meteorological data from a variety of stations throughout the Tien Shan. The research effort described in this report was part of a collaborative effort with the United State Geological Survey's (USGS) Global Environmental Research Program which began studying radionuclide deposition in mid-latitude glaciers in 1995.

  17. Global glacier and ice sheet surface velocities derived from 31 years of Landsat imagery

    Science.gov (United States)

    Gardner, A. S.; Scambos, T. A.; Fahnestock, M. A.

    2016-12-01

    Glaciers and ice sheets are contributing substantial volumes of water to the world's oceans due to enhanced melt resulting from changes in ocean and atmospheric conditions and respective feedbacks. Improving understanding of the processes leading to accelerated rates of ice loss is necessary for reducing uncertainties sea level projections. One key to doing this is to assemble and analyze long records of glacier change that characterize grounded ice response to changes in driving stress, buttressing, and basal conditions. As part of the NASA funded GO_LIVE project we exploit 31 years of Landsat imagery to construct detailed time histories of global glacier velocities. Early exploration of the dataset reveals the diversity of information to be gleaned: sudden tidewater glacier speedups in the Antarctic Peninsula, rifting of Antarctic ice shelves, high variability in velocities near glacier grounding lines, frequent surge activity in the mountainous regions of Alaska and High Mountain Asia, and the slowdown of land-terminating valley glaciers in Arctic Canada and elsewhere.

  18. Ancient Biomolecules from Deep Ice Cores Reveal a Forested Southern Greenland

    Science.gov (United States)

    Willerslev, Eske; Cappellini, Enrico; Boomsma, Wouter; Nielsen, Rasmus; Hebsgaard, Martin B.; Brand, Tina B.; Hofreiter, Michael; Bunce, Michael; Poinar, Hendrik N.; Dahl-Jensen, Dorthe; Johnsen, Sigfus; Steffensen, Jørgen Peder; Bennike, Ole; Schwenninger, Jean-Luc; Nathan, Roger; Armitage, Simon; de Hoog, Cees-Jan; Alfimov, Vasily; Christl, Marcus; Beer, Juerg; Muscheler, Raimund; Barker, Joel; Sharp, Martin; Penkman, Kirsty E.H.; Haile, James; Taberlet, Pierre; Gilbert, M. Thomas P.; Casoli, Antonella; Campani, Elisa; Collins, Matthew J.

    2009-01-01

    One of the major difficulties in paleontology is the acquisition of fossil data from the 10% of Earth’s terrestrial surface that is covered by thick glaciers and ice sheets. Here we reveal that DNA and amino acids from buried organisms can be recovered from the basal sections of deep ice cores and allow reconstructions of past flora and fauna. We show that high altitude southern Greenland, currently lying below more than two kilometers of ice, was once inhabited by a diverse array of conifer trees and insects that may date back more than 450 thousand years. The results provide the first direct evidence in support of a forested southern Greenland and suggest that many deep ice cores may contain genetic records of paleoenvironments in their basal sections. PMID:17615355

  19. Mechanisms of basal ice formation in polar glaciers: An evaluation of the apron entrainment model

    Science.gov (United States)

    Fitzsimons, Sean; Webb, Nicola; Mager, Sarah; MacDonell, Shelley; Lorrain, Regi; Samyn, Denis

    2008-06-01

    Previous studies of polar glaciers have argued that basal ice can form when these glaciers override and entrain ice marginal aprons that accumulate adjacent to steep ice cliffs. To test this idea, we have studied the morphology, structure, composition, and deformation of the apron and basal ice at the terminus of Victoria Upper Glacier in the McMurdo dry valleys, which are located on the western coast of the Ross Sea at 77°S in southern Victoria Land, Antarctica. Our results show that the apron has two structural elements: an inner element that consists of strongly foliated ice that has a steep up-glacier dip, and an outer element that lacks a consistent foliation and has a down-glacier, slope-parallel dip. Although strain measurements show that the entire apron is deforming, the inner element is characterized by high strain rates, whereas relatively low rates of strain characterize the outer part of the apron. Co-isotopic analyses of the ice, together with analysis of solute chemistry and sedimentary characteristics, show that the apron is compositionally different from the basal ice. Our observations show that aprons may become deformed and partially entrained by advancing glaciers. However, such an ice marginal process does not provide a satisfactory explanation for the origin of basal ice observed at the ice margin. Our interpretation of the origin of basal ice is that it is formed by subglacial processes, which are likely to include deformation and entrainment of subglacial permafrost.

  20. Sudden disintegration of ice in the glacial-proglacial transition zone of the largest glacier in Austria

    Science.gov (United States)

    Kellerer-Pirklbauer, Andreas; Avian, Michael; Hirschmann, Simon; Lieb, Gerhard Karl; Seier, Gernot; Sulzer, Wolfgang; Wakonigg, Herwig

    2017-04-01

    Rapid deglaciation does not only reveal a landscape which is prone to rapid geomorphic changes and sediment reworking but also the glacier ice itself might be in a state of disintegration by ice melting, pressure relief, crevasse formation, ice collapse or changes in the glacier's hydrology. In this study we considered the sudden disintegration of glacier ice in the glacial-proglacial transition zone of Pasterze Glacier. Pasterze Glacier is a typical alpine valley glacier and covers currently some 16.5 km2 making it to the largest glacier in Austria. This glacier is an important site for alpine mass tourism in Austria related to a public high alpine road and a cable car which enable access to the glacier rather easily also for unexperienced mountaineers. Spatial focus in our research is given on two particular study areas where several ice-mass movement events occurred during the 2015- and 2016-melting seasons. The first study area is a crevasse field at the lower third of the glacier tongue. This lateral crevasse field has been substantially modified during the last two melting seasons particularly because of thermo-erosional effects of a glacial stream which changed at this site from subglacial (until 2015) to glacier-lateral revealing a several tens of meters high unstable ice cliff prone to ice falls of different magnitudes. The second study area is located at the proglacial area. At Pasterze Glacier the proglacial area is widely influenced by dead-ice bodies of various dimensions making this area prone to slow to sudden geomorphic changes caused by ice mass changes. A particular ice-mass movement event took place on 20.09.2016. Within less than one hour the surface of the proglacial area changed substantially by tilting, lateral shifting, and subsidence of the ground accompanied by complete ice disintegration of once-debris covered ice. To understand acting processes at both areas of interest and to quantify mass changes we used field observations, terrain

  1. The imbalance of glaciers after disintegration of Larsen-B ice shelf, Antarctic Peninsula

    Directory of Open Access Journals (Sweden)

    H. Rott

    2011-03-01

    Full Text Available The outlet glaciers to the embayment of the Larsen-B Ice Shelf started to accelerate soon after the ice shelf disintegrated in March 2002. We analyse high resolution radar images of the TerraSAR-X satellite, launched in June 2007, to map the motion of outlet glaciers in detail. The frontal velocities are used to estimate the calving fluxes for 2008/2009. As reference for pre-collapse conditions, when the glaciers were in balanced state, the ice fluxes through the same gates are computed using ice motion maps derived from interferometric data of the ERS-1/ERS-2 satellites in 1995 and 1999. Profiles of satellite laser altimetry from ICESat, crossing the terminus of several glaciers, indicate considerable glacier thinning between 2003 and 2007/2008. This is taken into account for defining the calving cross sections. The difference between the pre- and post-collapse fluxes provides an estimate on the mass imbalance. For the Larsen-B embayment the 2008 mass deficit is estimated at 4.34 ± 1.64 Gt a−1, significantly lower than previously published values. The ice flow acceleration follows a similar pattern on the various glaciers, gradually decreasing in magnitude with distance upstream from the calving front. This suggests stress perturbation at the glacier front being the main factor for acceleration. So far there are no signs of slow-down indicating that dynamic thinning and frontal retreat will go on.

  2. Neoglacial fluctuations of terrestrial, tidewater, and calving lacustrine glaciers, Blackstone-Spencer Ice Complex, Kenai Mountains, Alaska

    Science.gov (United States)

    Crossen, Kristine June

    1997-12-01

    The glaciers surrounding the Blackstone-Spencer Ice Complex display a variety of termini types: Tebenkov, Spencer, Bartlett, Skookum, Trail, Burns, Shakespeare, Marquette, Lawrence, and Ripon glaciers end in terrestrial margins; Blackstone and Beloit glaciers have tidewater termini; and Portage Glacier has a calving lacustrine margin. In addition, steep temperature and precipitation gradients exist across the ice complex from the maritime environment of Prince William Sound to the colder, drier interior. The Neoglacial history of Tebenkov Glacier, as based on overrun trees near the terminus, shows advances ca. 250- 430 AD (calibrated date), ca. 1215-1275 AD (calibrated date), and ca. 1320-1430 AD (tree ring evidence), all intervals of glacier advance around the Gulf of Alaska. However, two tidewater glaciers in Blackstone Bay retreated from their outermost moraines by 1350 AD, apparently asynchronously with respect to the regional climate signal. The most extensive Kenai Mountain glacier expansions during Neoglaciation occurred in the late Little Ice Age. The outermost moraines are adjacent to mature forest stands and bog peats that yield dates as old as 5,600 BP. Prince William Sound glaciers advanced during two Little Ice Age cold periods, 1380-1680 and 1830-1900 AD. The terrestrial glaciers around the Blackstone-Spencer Ice Complex all built moraines during the 19th century and began retreating between 1875 and 1900 AD. Portage and Burns glaciers began retreating between 1790 and 1810 AD, but their margins remained close to the outermost moraines during the 19th century. Regional glacier fluctuations are broadly synchronous in the Gulf of Alaska region. With the exception of the two tidewater glaciers in Blackstone Bay, all glaciers in the Kenai Mountains, no matter their sizes, altitudes, orientations, or types of margins, retreated at the end of the Little Ice Age. The climate signal, especially temperature, appears to be the strongest control on glacier

  3. First investigations of an ice core from Eisriesenwelt cave (Austria

    Directory of Open Access Journals (Sweden)

    B. May

    2011-02-01

    Full Text Available Investigations into the genesis and dynamical properties of cave ice are essential for assessing the climate significance of these underground glaciers. We drilled an ice core through a 7.1 m-thick ice body filling a large cavern of the dynamic ice cave Eisenriesenwelt (Austria. In addition to visual core inspections, quasi-continuous measurements at 2 cm resolution comprised particulate matter, stable water isotope (δ18O, δD and electrolytic conductivity profiles supplemented by specifically selected samples analyzed for tritium and radiocarbon. We found that recent ablation led to an almost complete loss of bomb-derived tritium removing any ice accumulated since, at least, the early fifties leaving the actual ice surface even below the natural tritium level. The small particulate organic masses rendered radiocarbon dating inconclusive, though a crude estimate gave a basal ice age in the order of several thousand years. The visual stratigraphy and all investigated parameters showed a clear dichotomy between the upper 2 m and the bottom 3 m of the core, which points to a substantial change in the ice formation process. Main features of the core comprise the changing appearance and composition of distinct cryocalcite layers, extremely low total ion content and a surprisingly high variability of the isotope signature. Co-isotope evaluation (δD versus δ18O of the core in comparison with data from precipitation and karst spring water clearly indicate that ice formation is governed by (slow freezing of dripping water.

  4. Glacier ice mass fluctuations and fault instability in tectonically active Southern Alaska

    Science.gov (United States)

    Sauber, Jeanne M.; Molnia, Bruce F.

    2004-07-01

    Across the plate boundary zone in south central Alaska, tectonic strain rates are high in a region that includes large glaciers undergoing wastage (glacier retreat and thinning) and surges. For the coastal region between the Bering and Malaspina Glaciers, the average ice mass thickness changes between 1995 and 2000 range from 1 to 5 m/year. These ice changes caused solid Earth displacements in our study region with predicted values of -10 to 50 mm in the vertical and predicted horizontal displacements of 0-10 mm at variable orientations. Relative to stable North America, observed horizontal rates of tectonic deformation range from 10 to 40 mm/year to the north-northwest and the predicted tectonic uplift rates range from approximately 0 mm/year near the Gulf of Alaska coast to 12 mm/year further inland. The ice mass changes between 1995 and 2000 resulted in discernible changes in the Global Positioning System (GPS) measured station positions of one site (ISLE) located adjacent to the Bagley Ice Valley and at one site, DON, located south of the Bering Glacier terminus. In addition to modifying the surface displacements rates, we evaluated the influence ice changes during the Bering glacier surge cycle had on the background seismic rate. We found an increase in the number of earthquakes ( ML≥2.5) and seismic rate associated with ice thinning and a decrease in the number of earthquakes and seismic rate associated with ice thickening. These results support the hypothesis that ice mass changes can modulate the background seismic rate. During the last century, wastage of the coastal glaciers in the Icy Bay and Malaspina region indicates thinning of hundreds of meters and in areas of major retreat, maximum losses of ice thickness approaching 1 km. Between the 1899 Yakataga and Yakutat earthquakes ( Mw=8.1, 8.1) and prior to the 1979 St. Elias earthquake ( Ms=7.2), the plate interface below Icy Bay was locked and tectonic strain accumulated. We used estimated ice mass

  5. The evolving instability of the remnant Larsen B Ice Shelf and its tributary glaciers

    Science.gov (United States)

    Khazendar, Ala; Borstad, Christopher P.; Scheuchl, Bernd; Rignot, Eric; Seroussi, Helene

    2015-06-01

    Following the 2002 disintegration of the northern and central parts of the Larsen B Ice Shelf, the tributary glaciers of the southern surviving part initially appeared relatively unchanged and hence assumed to be buttressed sufficiently by the remnant ice shelf. Here, we modify this perception with observations from IceBridge altimetry and InSAR-inferred ice flow speeds. Our analyses show that the surfaces of Leppard and Flask glaciers directly upstream from their grounding lines lowered by 15 to 20 m in the period 2002-2011. The thinning appears to be dynamic as the flow of both glaciers and the remnant ice shelf accelerated in the same period. Flask Glacier started accelerating even before the 2002 disintegration, increasing its flow speed by ∼55% between 1997 and 2012. Starbuck Glacier meanwhile did not change much. We hypothesize that the different evolutions of the three glaciers are related to their dissimilar bed topographies and degrees of grounding. We apply numerical modeling and data assimilation that show these changes to be accompanied by a reduction in the buttressing afforded by the remnant ice shelf, a weakening of the shear zones between its flow units and an increase in its fracture. The fast flowing northwestern part of the remnant ice shelf exhibits increasing fragmentation, while the stagnant southeastern part seems to be prone to the formation of large rifts, some of which we show have delimited successive calving events. A large rift only 12 km downstream from the grounding line is currently traversing the stagnant part of the ice shelf, defining the likely front of the next large calving event. We propose that the flow acceleration, ice front retreat and enhanced fracture of the remnant Larsen B Ice Shelf presage its approaching demise.

  6. Dry calving processes at the ice cliff of an antarctic local glacier: the study case of Strandline Glacier (Northern Victoria Land, Antarctica)

    Science.gov (United States)

    Smiraglia, C.; Motta, M.; Vassena, G.; Diolaiuti, G.

    2003-04-01

    In Antartic coastal area, where the ice sheet and the large outlet glaciers do not reach the sea and where some rugged mountain chains are often present, many small glaciers can be found. They are the so called local or alpine type glaciers, which have their terminus ground-based such as the real alpine glaciers and rarely reach the main valley floors. They are practically isolated and independent from the supply flowing down from the plateau and their mass balance is mainly controlled by sublimation and aeolic erosion and accumulation. The glaciers closer to the coast are submitted to the melting as well, and when the terminus is cliff-shaped they are also affected by dry calving. The most known and studied Antarctic local glaciers are placed in the Dry Valleys region (Chinn, 1985), but this kind of glaciers is also diffused all along the Northern Victoria Land coastal region (Chinn and others, 1989). Since the first Italian Antarctic expedition (1985), many studies have been carried out on this type of glaciers, which can be usefull for detailed mass balance evaluations and for obtaining information about the effects of the present climatic dynamics on the Antarctic coastal environment (Baroni and Orombelli, 1987; Baroni and others, 1995; Meneghel, 1999; Vassena and others., 2001). The Strandline Glacier (74 41 S; 164 07 E), in particular is a small alpine glacier (0,79 kmq) on the coast of Terra Nova Bay, Northern Victoria Land; it is a cold glacier where accumulation and ablation basins are mainly controlled by wind processes. Its terminus forms in the central part a grounded ice cliff about 30 m high, about 130 m far from the sea. On that glacier mass balance, surface velocity and calving rate were measured. During the southern summer season 2000-2001 many topographycal profiles of the ice cliff were surveyed by using both classical topographical and glaciological methods (total station and stakes) and GPS technique. It was so possible to detect the short term

  7. Dead-ice environments

    DEFF Research Database (Denmark)

    Krüger, Johannes; Kjær, Kurt H.; Schomacker, Anders

    2010-01-01

    glacier environment. The scientific challenges are to answer the key questions. What are the conditions for dead-ice formation? From which sources does the sediment cover originate? Which melting and reworking processes act in the ice-cored moraines? What is the rate of de-icing in the ice-cored moraines...

  8. State of the Earth’s cryosphere at the beginning of the 21st century : glaciers, global snow cover, floating ice, and permafrost and periglacial environments: Chapter A in Satellite image atlas of glaciers of the world

    Science.gov (United States)

    Williams, Richard S.; Ferrigno, Jane G.; Williams, Richard S.; Ferrigno, Jane G.

    2012-01-01

    critically important hydrologic cycle, in which glacier ice is the second largest reservoir of water after the oceans. The second part assesses the state of glaciers in all of the glacierized regions of the planet, primarily as drawn in the other 10 chapters. It includes sections on ice cores and the climate record they contain, volumetric changes in glaciers, harnessing spaceborne sensors to measure changes in glaciers, and related topics. The third part summarizes trends in global snow cover. The fourth part summarizes long-term changes in area and thickness of floating ice, including polar sea ice and freshwater (lake and river) ice. The fifth part assesses the loss of permafrost and changes in periglacial environments at high latitudes and high altitudes.

  9. New eyes in the sky measure glaciers and ice sheets

    Science.gov (United States)

    Kieffer, Hugh; Kargel, Jeffrey S.; Barry, Roger G.; Bindschadler, Robert; Bishop, Michael P.; MacKinnon, David; Ohmura, Atsumu; Raup, Bruce; Antoninetti, Massimo; Bamber, Jonathan; Braun, Mattias; Brown, Ian; Cohen, Denis; Copland, Luke; DueHagen, Jon; Engeset, Rune V.; Fitzharris, Blair; Fujita, Koji; Haeberli, Wilfried; Hagen, Jon Oue; Hall, Dorothy; Hoelzle, Martin; Johansson, Maria; Kaab, Andi; Koenig, Max; Konovalov, Vladimir; Maisch, Max; Paul, Frank; Rau, Frank; Reeh, Niels; Rignot, Eric; Rivera, Andres; De Ruyter de Wildt, Martiyn; Scambos, Ted; Schaper, Jesko; Scharfen, Greg; Shroder, Jack; Solomina, Olga; Thompson, David; van der Veen, Kees; Wohlleben, Trudy; Young, Neal

    2000-01-01

    The mapping and measurement of glaciers and their changes are useful in predicting sea-level and regional water supply, studying hazards and climate change [Haeberli et al., 1998],and in the hydropower industry Existing inventories cover only about 67,000 of the world's estimated 160,000 glaciers and are based on data collected over 50 years or more [e.g.,Haeberli et al., 1998]. The data available have proven that small ice bodies are disappearing at an accelerating rate and that the Antarctic ice sheet and its fringing ice shelves are undergoing unexpected, rapid change. According to many glaciologists, much larger fluctuations in land ice—with vast implications for society—are possible in the coming decades and centuries due to natural and anthropogenic climate change [Oppenheimer, 1998].

  10. What Can We Learn About Glaciers and Ice Sheets From 30 Years of Landsat Imagery?

    Science.gov (United States)

    Gardner, A. S.; Scambos, T.; Fahnestock, M. A.; Moholdt, G.; Nilsson, J.

    2015-12-01

    Glacier and ice sheets are known to be rapidly changing and currently account for two thirds of observed sea level rise. Attributing the causes of the rapid decline in land ice requires separation of mass change processes, i.e. accumulation of precipitation, meltwater runoff, and solid ice discharge. Here we examine a 30 year record of Landsat imagery to determine trends in glacier velocity at a global scale in an attempt to identify anomalies in glacier flow that are contributing to changes in land ice mass. The Landsat archive represents a treasure trove of information with hundreds of thousands of images acquired over glaciers and ice sheets during the past 30 years. Gleaning useful and consistent surface displacement information from a multiple sensor archive that is heavily contaminated by cloud, saturated images, poorly resolved sensor geometry, and data gaps has proved challenging. Temporal stacking of displacement fields (Dehecq et al., 2015) and correcting for unresolved topography (Roseanau et al., 2012) have been shown to greatly improve derived velocities. Here we present results from a global processing of the complete Landsat archive for information on glacier surface displacements. We highlight patterns of coherent regional change as well as well as rapid basin-scale changes in glacier flow.

  11. Mass budget of Queen Elizabeth Islands glaciers and ice caps, Canada, from 1992 to present

    Science.gov (United States)

    Millan, R.; Rignot, E. J.; Mouginot, J.

    2015-12-01

    Recent studies indicate to say that the Canadian Artic Archipelago's mass loss has increased in recent years. However the role of ice dynamics changes in this area is not well known. In this study, we present a comprehensive velocity mapping of the CAA using ALOS/PALSAR, RADARSAT-1, ERS1 and Landsat data between 1992 and 2015. Glaciers speed are calculated using a speckle and feature tracking algorithm.The results reveals that three large marine-terminating glaciers have accelerated significantly after 2010, while most others have slowed down or retreated to a sill to become similar to land-terminating glaciers. By combining the velocities of these glaciers with ice thickness measurements from NASA's Operation IceBridge, we calculate their ice discharge. The fluxes of these glaciers increased significantly since 2000 with a marked increase after 2011. The comparison of ice discharge with the surface mass balance from RACMO-2, shows that these glaciers came out of balance after 2011, which is also a time period where their discharge almost doubled. The analysis of RACMO-2 reveals an increase in runoff between 1970's and today and a precipitation with no significant trend. We digitalize the calving front positions of the glaciers and show an increasing rate retreat since 1976. We conclude that global pattern of velocity changes shows that the mass losses due to surface mass balance will likely going to raise in the coming years and that ice discharge will have a smaller part in the contribution of the CAA to sea level rise.

  12. Glaciers and ice caps outside Greenland

    Science.gov (United States)

    Sharp, Marin; Wolken, G.; Burgess, D.; Cogley, J.G.; Copland, L.; Thomson, L.; Arendt, A.; Wouters, B.; Kohler, J.; Andreassen, L.M.; O'Neel, Shad; Pelto, M.

    2015-01-01

    Mountain glaciers and ice caps cover an area of over 400 000 km2 in the Arctic, and are a major influence on global sea level (Gardner et al. 2011, 2013; Jacob et al. 2012). They gain mass by snow accumulation and lose mass by meltwater runoff. Where they terminate in water (ocean or lake), they also lose mass by iceberg calving. The climatic mass balance (Bclim, the difference between annual snow accumulation and annual meltwater runoff) is a widely used index of how glaciers respond to climate variability and change. The total mass balance (ΔM) is defined as the difference between annual snow accumulation and annual mass losses (by iceberg calving plus runoff).

  13. How accurate are estimates of glacier ice thickness? Results from ITMIX, the Ice Thickness Models Intercomparison eXperiment

    DEFF Research Database (Denmark)

    Farinotti, Daniel; Brinkerhoff, Douglas J.; Clarke, Garry K. C.

    2017-01-01

    Knowledge of the ice thickness distribution of glaciers and ice caps is an important prerequisite for many glaciological and hydrological investigations. A wealth of approaches has recently been presented for inferring ice thickness from characteristics of the surface. With the Ice Thickness Models...

  14. Little Ice Age glacial geomorphology and sedimentology of Portage Glacier, South-Central Alaska

    Directory of Open Access Journals (Sweden)

    Carlos Córdova

    2009-06-01

    Full Text Available The study of glacial landforms and deposits is important, as it isdifficult to observe processes under modern glaciers and ice-sheets. Thus landscapes and sediments that are the product of present glaciation can give insight into processes that occurred during Pleistocene times. This study investigates the genesis of little ice age glacial landforms present in Portage Glacier, South-Central Alaska. The present day moraine morphology and sedimentology in Portage Glacier valley reveals the presence of two types of till and moraines. The clast-rich sandy diamicton present on the 1852 moraine is interpreted to be a basal till indicating this feature is a pushmoraine representing an advance or a standstill position of Portage Glacier in 1852. The moderately sorted gray sandy boulder gravel present on the 1900 and 1922 moraines is interpreted to be an ice-marginal deposit (ablation till with a mixture of supraglacial and glaciofluvial sediments deposited by slumping and stream sortingprocesses. All of these features are interpreted to be ablation moraines representing glacier retreat and moraine building in 1900 and1922.

  15. Southwest Greenland's Alpine Glacier History: Recent Glacier Change in the Context of the Holocene Geologic Record

    Science.gov (United States)

    Larocca, L. J.; Axford, Y.; Lasher, G. E.; Lee, C. W.

    2017-12-01

    Due to anthropogenic climate change, the Arctic region is currently undergoing major transformation, and is expected to continue warming much faster than the global average. To put recent and future changes into context, a longer-term understanding of this region's past response to natural climate variability is needed. Given their sensitivity to modest climate change, small alpine glaciers and ice caps on Greenland's coastal margin (beyond the Greenland Ice Sheet) represent ideal features to record climate variability through the Holocene. Here we investigate the Holocene history of a small ( 160 square km) ice cap and adjacent alpine glaciers, located in southwest Greenland approximately 50 km south of Nuuk. We employ measurements on sediment cores from a glacier-fed lake in combination with geospatial analysis of satellite images spanning the past several decades. Sedimentary indicators of sediment source and thus glacial activity, including organic matter abundance, inferred chlorophyll-a content, sediment major element abundances, grain size, and magnetic susceptibility are presented from cores collected from a distal glacier-fed lake (informally referred to here as Per's Lake) in the summer of 2015. These parameters reflect changes in the amount and character of inorganic detrital input into the lake, which may be linked to the size of the upstream glaciers and ice cap and allow us to reconstruct their status through the Holocene. Additionally, we present a complementary record of recent changes in Equilibrium Line Altitude (ELA) for the upstream alpine glaciers. Modern ELAs are inferred using the accumulation area ratio (AAR) method in ArcGIS via Landsat and Worldview-2 satellite imagery, along with elevation data obtained from digital elevation models (DEMs). Paleo-ELAs are inferred from the positions of moraines and trim lines marking the glaciers' most recent expanded state, which we attribute to the Little Ice Age (LIA). This approach will allow us to

  16. Water, ice, and meteorological measurements at South Cascade Glacier, Washington, balance year 2002

    Science.gov (United States)

    Bidlake, William R.; Josberger, Edward G.; Savoca, Mark E.

    2004-01-01

    Winter snow accumulation and summer snow and ice ablation were measured at South Cascade Glacier, Washington, to estimate glacier mass balance quantities for balance year 2002. The 2002 glacier-average maximum winter snow balance was 4.02 meters, the second largest since 1959. The 2002 glacier summer, net, and annual (water year) balances were -3.47, 0.55, and 0.54 meters, respectively. The area of the glacier near the end of the balance year was 1.92 square kilometers, and the equilibrium-line altitude and the accumulation area ratio were 1,820 meters and 0.84, respectively. During September 20, 2001 to September 13, 2002, the terminus retreated 4 meters, and computed average ice speeds in the ablation area ranged from 7.8 to 20.7 meters per year. Runoff from the subbasin containing the glacier and from an adjacent non-glacierized basin were measured during part of the 2002 water year. Air temperature, precipitation, atmospheric water-vapor pressure, wind speed and incoming solar radiation were measured at selected locations near the glacier.

  17. Using marine sediment archives to reconstruct past outlet glacier variability

    DEFF Research Database (Denmark)

    Andresen, Camilla Snowman; Straneo, Fiamma; Ribergaard, Mads

    2013-01-01

    Ice-rafted debris in fjord sediment cores provides information about outlet glacier activity beyond the instrumental time period. It tells us that the Helheim Glacier, Greenland’s third most productive glacier, responds rapidly to short-term (3 to 10 years) climate changes....

  18. High Artic Glaciers and Ice Caps Ice Mass Change from GRACE, Regional Climate Model Output and Altimetry.

    Science.gov (United States)

    Ciraci, E.; Velicogna, I.; Fettweis, X.; van den Broeke, M. R.

    2016-12-01

    The Arctic hosts more than the 75% of the ice covered regions outside from Greenland and Antarctica. Available observations show that increased atmospheric temperatures during the last century have contributed to a substantial glaciers retreat in all these regions. We use satellite gravimetry by the NASA's Gravity Recovery and Climate Experiment (GRACE), and apply a least square fit mascon approach to calculate time series of ice mass change for the period 2002-2016. Our estimates show that arctic glaciers have constantly contributed to the sea level rise during the entire observation period with a mass change of -170+/-20 Gt/yr equivalent to the 80% of the total ice mass change from the world Glacier and Ice Caps (GIC) excluding the Ice sheet peripheral GIC, which we calculated to be -215+/-32 GT/yr, with an acceleration of 9+/-4 Gt/yr2. The Canadian Archipelago is the main contributor to the total mass depletion with an ice mass trend of -73+/-9 Gt/yr and a significant acceleration of -7+/-3 Gt/yr2. The increasing mass loss is mainly determined by melting glaciers located in the northern part of the archipelago.In order to investigate the physical processes driving the observed ice mass loss we employ satellite altimetry and surface mass balance (SMB) estimates from Regional climate model outputs available for the same time period covered by the gravimetry data. We use elevation data from the NASA ICESat (2003-2009) and ESA CryoSat-2 (2010-2016) missions to estimate ice elevation changes. We compare GRACE ice mass estimates with time series of surface mass balance from the Regional Climate Model (RACMO-2) and the Modèle Atmosphérique Régional (MAR) and determine the portion of the total mass change explained by the SMB signal. We find that in Iceland and in the and the Canadian Archipelago the SMB signal explains most of the observed mass changes, suggesting that ice discharge may play a secondary role here. In other region, e.g. in Svalbar, the SMB signal

  19. Estimation of basal shear stresses from now ice-free LIA glacier forefields in the Swiss Alps

    Science.gov (United States)

    Fischer, Mauro; Haeberli, Wilfried; Huss, Matthias; Paul, Frank; Linsbauer, Andreas; Hoelzle, Martin

    2013-04-01

    In most cases, assessing the impacts of climatic changes on glaciers requires knowledge about the ice thickness distribution. Miscellaneous methodological approaches with different degrees of sophistication have been applied to model glacier thickness so far. However, all of them include significant uncertainty. By applying a parameterization scheme for ice thickness determination relying on assumptions about basal shear stress by Haeberli and Hoelzle (1995) to now ice-free glacier forefields in the Swiss Alps, basal shear stress values can be calculated based on a fast and robust experimental approach. In a GIS, the combination of recent (1973) and Little Ice Age (LIA) maximum (around 1850) glacier outlines, central flowlines, a recent Digital Elevation Model (DEM) and a DEM of glacier surface topography for the LIA maximum allows extracting local ice thickness over the forefield of individual glaciers. Subsequently, basal shear stress is calculated via the rheological assumption of perfect-plasticity relating ice thickness and surface slope to shear stress. The need of only very few input data commonly stored in glacier inventories permits an application to a large number of glaciers. Basal shear stresses are first calculated for subsamples of glaciers belonging to two test sites where the LIA maximum glacier surface is modeled with DEMs derived from accurate topographic maps for the mid 19th century. Neglecting outliers, the average resulting mean basal shear stress is around 80 kPa for the Bernina region (range 25-100 kPa) and 120 kPa (range 50-150 kPa) for the Aletsch region. For the entire Swiss Alps it is 100 kPa (range 40-175 kPa). Because complete LIA glacier surface elevation information is lacking there, a DEM is first created from reconstructed height of LIA lateral moraines and trimlines by using a simple GIS-based tool. A sensitivity analysis of the input parameters reveals that the performance of the developed approach primarily depends on the

  20. Role of glacier runoff in the Heihe Basin

    OpenAIRE

    坂井, 亜規子; 藤田, 耕史; 中尾, 正義; YAO, Tandong

    2005-01-01

    We estimated the fluctuation of precipitation and air temperature from Dunde ice core data since 1606 comparing to meteorological data taken near the July 1st glacier since 1930s. Then, we calculated the discharges from glaciers and glacier-free areaFurthermore, we analyzed the sensitivity of those discharges to meteorological factor. The result revealed that calculated discharge from glacier-free area increased with precipitation. Meanwhile, calculated discharge from glaciers decreased with ...

  1. Ice-Ocean Interactions to the North-West of Greenland: Glaciers, Straits, Ice Bridges, and the Rossby Radius (Invited)

    Science.gov (United States)

    Muenchow, A.; Falkner, K. K.; Melling, H.; Johnson, H. L.; Huntley, H. S.; Ryan, P.; Friends Of Petermann

    2010-12-01

    Petermann Glacier at 81 N latitude is a major outlet glacier adjacent to Nares Strait. It terminates in a long (70 km), narrow (16 km) and thin (50 m) floating tongue and has a grounding line more than 500 m below sea level. A calving event in 2010 reduced the floating area by 25% and produced a single 240 km2 ice island currently moving south in Nares Strait where it will likely interact with island to potentially create a temporary polynya in Nares Strait. The 2010 calving from Petermann Glacier contributes bridge formed regularly at the southern end of Nares Strait creating the North-Water polynya near 79 N latitude. Since 2006 this ice bridge has largely failed to form, leading, perhaps, to the occasional formation of a secondary ice bridge 300 km to the north where Nares Strait connects to the Arctic Ocean. However, this ice bridge appears to form for shorter periods only. Consequently Arctic sea ice can now exit the Arctic in winter via pathways to the west of Greenland all year. We speculate that this changed ocean and sea ice regime in Nares Strait and the Arctic Ocean may contribute to the recently observed calving events in Petermann Fjord.

  2. Morphology, stratigraphy and oxygen isotope composition of fossil glacier ice at Ledyanaya Gora, Northwest Siberia, Russia

    International Nuclear Information System (INIS)

    Vaikmaee, R.; Michel, F.A.; Solomatin, V.I.

    1993-01-01

    Studies of the stratigraphy, sedimentology, structure and isotope composition of a buried massive ice body and its encompassing sediments at Ledyanaya Gora in northwestern Siberia demonstrate that the ice is relict glacier ice, probably emplaced during the Early Weichselian. Characteristics of this ice body should serve as a guide for the identification of other relict buried glacier ice bodies in permafrost regions. 31 refs., 9 figs., 2 tabs

  3. Modeling the Long-Term Evolution of Supraglacial Ice Cliffs on Himalayan Debris-Covered Glaciers

    Science.gov (United States)

    Buri, P.; Miles, E. S.; Steiner, J. F.; Ragettli, S.; Pellicciotti, F.

    2016-12-01

    Supraglacial ice cliffs are present on debris-covered glaciers worldwide and provide the only direct atmosphere-ice interface over the lower sections of these glaciers. Low albedo and high longwave emissions from surrounding debris cause very high melt rates, accounting for a significant portion of total glacier mass loss. As a result, ice cliffs affect glacier downwasting and mass balance. Additionally, and in contrast to the debris-covered ice, high melt at cliffs turns them into dynamic features, directly affecting glacier surface evolution. While conceptual ideas about the formation, evolution and collapse of ice cliffs exist, their life cycles have never been thoroughly documented. Based on observations obtained from high-resolution aerial and terrestrial images analyzed with Structure-from-Motion and with data from automatic weather stations on two glaciers in the Nepalese Himalaya, we simulate the evolution of selected ice cliffs over several seasons using a new physically-based model of cliff backwasting. The 3D model calculates the energy-balance at the cliff scale and includes the cliff interaction with supraglacial ponds and reburial by debris. We consider cliffs of different shape, orientation and slope, and we show that backwasting leads to a variety of evolution typologies, with cliffs that maintain a constant, self-similar geometry, cliffs that grow laterally and cliffs that disappear through slope shallowing and debris melt-out. Most cliffs persist over several seasons. The presence of a pond appears to be the key control for cliffs to survive, while east and west facing cliffs grow because of higher radiation receipts. We use the model to test the hypothesis that south-facing cliffs do not survive. We show that most south-facing cliffs demise after one melt season on both glaciers, because of high input of solar radiation exceeding the longwave radiation receipt. For north facing features, the longwave radiation receipts at lower cliff sections

  4. Geodetic mass balance measurements on debris and clean-ice tropical glaciers in Ecuador

    Science.gov (United States)

    La Frenierre, J.; Decker, C. R.; Jordan, E.; Wigmore, O.; Hodge, B. E.; Niederriter, C.; Michels, A.

    2017-12-01

    Glaciers are recognized as highly sensitive indicators of climate change in high altitude, low latitude environments. In the tropical Andes, various analyses of glacier surface area change have helped illuminate the manifestation of climate change in this region, however, information about actual glacier mass balance behavior is much more limited given the relatively small glaciers, difficult access, poor weather, and/or limited local resources common here. Several new technologies, including aerial and terrestrial LIDAR and structure-from-motion photogrammetry using small unmanned aerial vehicles (UAVs), make mass balance measurements using geodetic approaches increasingly feasible in remote mountain locations, which can both further our understanding of changing climatic conditions, and improve our ability to evaluate the downstream hydrologic impacts of ice loss. At Volcán Chimborazo, Ecuador, these new technologies, combined with a unique, 5-meter resolution digital elevation model derived from 1997 aerial imagery, make possible an analysis of the magnitude and spatial patterns of mass balance behavior over the past two decades. Here, we evaluate ice loss between 1997 and 2017 at the tongues of two adjacent glaciers, one debris-covered and detached from its accumulation area (Reschreiter Glacier), and one debris-free and intact (Hans Meyer Glacier). Additionally, we incorporate data from 2012 and 2013 terrestrial LIDAR surveys to evaluate the behavior of the Reschreiter at a finer temporal resolution. We find that on the Hans Meyer, the mean surface deflation rate since 1997 at the present-day tongue has been nearly 3 m yr-1, while on the lower-elevation Reschreiter, the mean deflation rate has been approximately 1 m yr-1. However, the processes by which debris-covered ice becomes exposed results in highly heterogeneous patterns of ice loss, with some areas experiencing surface deflation rates approaching 15 m yr-1 when energy absorption is unimpeded.

  5. Multi-decadal elevation changes on Bagley Ice Valley and Malaspina Glacier, Alaska

    Science.gov (United States)

    Muskett, Reginald R.; Lingle, Craig S.; Tangborn, Wendell V.; Rabus, Bernhard T.

    2003-08-01

    Digital elevation models (DEMs) of Bagley Ice Valley and Malaspina Glacier produced by (i) Intermap Technologies, Inc. (ITI) from airborne interferometric synthetic aperture radar (InSAR) data acquired 4-13 September 2000, (ii) the German Aerospace Center (DRL) from spaceborne InSAR data acquired by the Shuttle Radar Topography Mission (SRTM) 11-22 February 2000, and (iii) the US Geological Survey (USGS) from aerial photographs acquired in 1972/73, were differenced to estimate glacier surface elevation changes from 1972 to 2000. Spatially non-uniform thickening, 10 +/- 7 m on average, is observed on Bagley Ice Valley (accumulation area) while non-uniform thinning, 47 +/- 5 m on average, is observed on the glaciers of the Malaspina complex (mostly ablation area). Even larger thinning is observed on the retreating tidewater Tyndall Glacier. These changes have resulted from increased temperature and precipitation associated with climate warming, and rapid tidewater retreat.

  6. Investigations of the form and flow of ice sheets and glaciers using radio-echo sounding

    Energy Technology Data Exchange (ETDEWEB)

    Dowdeswell, J A; Evans, S [Scott Polar Research Institute, University of Cambridge, Cambridge CB2 1ER (United Kingdom)

    2004-10-01

    Radio-echo sounding (RES), utilizing a variety of radio frequencies, was developed to allow glaciologists to measure the thickness of ice sheets and glaciers. We review the nature of electromagnetic wave propagation in ice and snow, including the permittivity of ice, signal attenuation and volume scattering, along with reflection from rough and specular surfaces. The variety of instruments used in RES of polar ice sheets and temperate glaciers is discussed. The applications and insights that a knowledge of ice thickness, and the wider nature of the form and flow of ice sheets, provides are also considered. The thickest ice measured is 4.7 km in East Antarctica. The morphology of the Antarctic and Greenland ice sheets, and many of the smaller ice caps and glaciers of the polar regions, has been investigated using RES. These findings are being used in three-dimensional numerical models of the response of the cryosphere to environmental change. In addition, the distribution and character of internal and basal reflectors within ice sheets contains information on, for example, ice-sheet layering and its chrono-stratigraphic significance, and has enabled the discovery and investigation of large lakes beneath the Antarctic Ice Sheet. Today, RES from ground-based and airborne platforms remains the most effective tool for measuring ice thickness and internal character.

  7. Late Holocene spatio-temporal variability of the south Greenland Ice Sheet and adjacent mountain glaciers

    Science.gov (United States)

    Sinclair, G.; Carlson, A. E.; Rood, D. H.; Axford, Y.

    2017-12-01

    The late Holocene, with its spatially complex pattern of centennial-scale climate variation, is an ideal time period to test the response of the cryosphere to atmospheric and oceanic temperature changes. The south Greenland Ice Sheet (sGrIS), with its proximity to areas of North Atlantic Deep Water formation and a large spectrum of glaciological regimes over a relatively small area, provides an excellent location to examine the spatial heterogeneity of ice-sheet and glacier responses to climate change. Here, we will present 50 Be-10 surface exposure ages from eight moraines in six locations around the margin of the sGrIS. These moraines are located just outboard of historical moraines, and will therefore allow us to constrain the timing of the most extensive prehistoric late-Holocene advance and retreat of ice margins draining the sGrIS and independent valley glaciers. The dataset includes both marine- and land-terminating glaciers draining the sGrIS, the low-altitude Qassimiut lobe, the high-altitude alpine Julianhåb ice cap and isolated valley glaciers. This diverse dataset will allow us to determine to what extent late-Holocene centennial-scale behavior of the ice-sheet and glacier margins were synchronous, perhaps in response to an external climate forcing, or more stochastic, governed instead by local factors such as basal thermal regime, bedrock topography, or microclimates. This has implications for understanding the forcings and responses of cryospheric changes at timescales relevant to human society. In addition to providing context for paleoclimatic and glacial geologic investigations, this work will inform future sea-level projections by providing targets for validating high-resolution ice-sheet and glacier models.

  8. Stable isotopes and their relationship to temperature and precipitation as recorded in low latitude ice cores

    International Nuclear Information System (INIS)

    Thompson, L.G.; Davis, M.E.; Pin-Nan, Lin

    2002-01-01

    The potential of stable isotopic ratios ( 18 O/ 16 O and 2 H/ 1 H) in mid to low latitude glaciers as modern tools for paleoclimate reconstruction is reviewed. The isotopic composition of precipitation should be viewed not only as a powerful proxy indicator of climate, but also as an additional parameter for understanding climate-induced changes in the water cycle, on both regional and global scales. To interpret quantitatively the ice core isotopic records, the response of the isotopic composition of precipitation to long-term fluctuations of key climatic parameters (temperature, precipitation amount, relative humidity) over a given area should be known. Furthermore, it is important to establish the transfer functions that relate the climate-induced changes of the isotopic composition of precipitation to the isotope record preserved in the glacier. The factors that govern the values of stable isotopes in snowfall are enigmatic and as yet no satisfactory model has been developed to link them directly with any one meteorological or oceanographic factor. This is particularly problematic in the high altitude glaciers in the tropics, where complications are present due not only to continental effects, but also to altitude effects and convective air mass instability, particularly in the monsoon climates of the tropics. This paper presents long and short-term perspectives of isotopic composition variations in ice cores spanning the last 25,000 years from the mid- to low-latitude glaciers. The isotopic records will also be examined as a function of the altitude of the individual coring sites which ranges from 5325 meters to 7200 meters. On the short, term isotopic records from ice cores from the Andes of South America, the Tibetan Plateau and Kilimanjaro in Africa through the year 2000 will be presented. All the tropical glaciers for which data exist are disappearing, and these sites show isotopic enrichment in the 20th century that suggests that large scale low latitude

  9. Assessment of diffusive isotopic fractionation in polar firn, and application to ice core trace gas records

    DEFF Research Database (Denmark)

    Buizert, C.; Sowers, T.; Blunier, T.

    2013-01-01

    During rapid variations of the atmospheric mixing ratio of a trace gas, diffusive transport in the porous firn layer atop ice sheets and glaciers alters the isotopic composition of that gas relative to the overlying atmosphere. Records of past atmospheric trace gas isotopic composition from ice...... cores and firn need to be corrected for this diffusive fractionation artifact. We present a novel, semi-empirical method to accurately estimate the magnitude of the diffusive fractionation in the ice core record. Our method (1) consists of a relatively simple analytical calculation; (2) requires only...... commonly available ice core data; (3) is not subject to the uncertainties inherent to estimating the accumulation rate, temperature, close-off depth and depth-diffusivity relationship back in time; (4) does not require knowledge of the true atmospheric variations, but uses the smoothed records obtained...

  10. Ice volume distribution and implications on runoff projections in a glacierized catchment

    Directory of Open Access Journals (Sweden)

    J. Gabbi

    2012-12-01

    Full Text Available A dense network of helicopter-based ground-penetrating radar (GPR measurements was used to determine the ice-thickness distribution in the Mauvoisin region. The comprehensive set of ice-thickness measurements was combined with an ice-thickness estimation approach for an accurate determination of the bedrock. A total ice volume of 3.69 ± 0.31 km3 and a maximum ice thickness of 290 m were found. The ice-thickness values were then employed as input for a combined glacio-hydrological model forced by most recent regional climate scenarios. This model provided glacier evolution and runoff projections for the period 2010–2100. Runoff projections of the measured initial ice volume distribution show an increase in annual runoff of 4% in the next two decades, followed by a persistent runoff decrease until 2100. Finally, we checked the influence of the ice-thickness distribution on runoff projections. Our analyses revealed that reliable estimates of the ice volume are essential for modelling future glacier and runoff evolution. Wrong estimations of the total ice volume might even lead to deviations of the predicted general runoff trend.

  11. Water, ice, and meteorological measurements at South Cascade glacier, Washington, balance year 2003

    Science.gov (United States)

    Bidlake, William R.; Josberger, Edward G.; Savoca, Mark E.

    2005-01-01

    Winter snow accumulation and summer snow and ice ablation were measured at South Cascade Glacier, Washington, to estimate glacier mass-balance quantities for balance year 2003. The 2003 glacier-average maximum winter snow balance was 2.66 meters water equivalent, which was about equal to the average of such balances for the glacier since balance year 1959. The 2003 glacier summer balance (-4.76 meters water equivalent) was the most negative reported for the glacier, and the 2003 net balance (-2.10 meters water equivalent), was the second-most negative reported. The glacier 2003 annual (water year) balance was -1.89 meters water equivalent. The area of the glacier near the end of the balance year was 1.89 square kilometers, a decrease of 0.03 square kilometer from the previous year. The equilibrium-line altitude was higher than any part of the glacier; however, because snow remained along part of one side of the upper glacier, the accumulation-area ratio was 0.07. During September 13, 2002-September 13, 2003, the glacier terminus retreated at a rate of about 15 meters per year. Average speed of surface ice, computed using a series of vertical aerial photographs dating back to 2001, ranged from 2.2 to 21.8 meters per year. Runoff from the subbasin containing the glacier and from an adjacent non-glacierized basin was gaged during part of water year 2003. Air temperature, precipitation, atmospheric water-vapor pressure, wind speed, and incoming solar radiation were measured at selected locations on and near the glacier. Summer 2003 at the glacier was among the warmest for which data are available.

  12. Modelling the contribution of supraglacial ice cliffs to the mass-balance of glaciers in the Langtang catchment, Nepalese Himalaya

    Science.gov (United States)

    Buri, P.; Steiner, J. F.; Miles, E.; Ragettli, S.; Pellicciotti, F.

    2017-12-01

    Supraglacial cliffs are typical surface features of debris-covered glaciers worldwide, affecting surface evolution, and mass balance by providing a direct ice-atmosphere interface where melt rates can be very high. As a result, ice cliffs act as windows of energy transfer from the atmosphere to the ice, and enhance melt and mass losses of otherwise insulated ice. However, their contribution to glacier mass balance has never been quantified at the glacier scale, and all inference has been obtained from upscaling results of point-scale models or observations at select individual cliffs. Here we use a 3D, physically-based backwasting model to estimate the volume losses associated with the melting and backwasting of supraglacial ice cliffs for the entire debris-covered glacier area of the Langtang catchment. We estimate mass losses for the 2014 melt season and compare them to recent values of glacier mass balance determined from geodetic and numerical modelling approached. Cliff outlines and topography are derived from high-resolution stereo SPOT6-imagery from April 2014. Meteorological data to force the model are provided by automatic weather stations on- and off-glacier within the valley. The model simulates ice cliff backwasting by considering the cliff-atmosphere energy-balance, reburial by debris and the effects of adjacent ponds. In the melt season of 2014, cliffs' distribution and patterns of mass losses vary considerably from glacier to glacier, and we relate rates of volume loss to both glaciers' and cliffs' characteristics. Only cliffs with a northerly aspect account for substantial losses. Uncertainty in our estimates is due to the quality of the stereo DEM, uncertainties in the cliff delineation and the fact that we use a conservative approach to cliff delineation and discard very small cliffs and those for which uncertainty in topography is high. Despite these uncertainties, our work presents the first estimate of the importance of supraglacial ice

  13. Listening to Glaciers: Passive hydroacoustics near marine-terminating glaciers

    Science.gov (United States)

    Pettit, E.C.; Nystuen, J.A.; O'Neel, Shad

    2012-01-01

    The catastrophic breakup of the Larsen B Ice Shelf in the Weddell Sea in 2002 paints a vivid portrait of the effects of glacier-climate interactions. This event, along with other unexpected episodes of rapid mass loss from marine-terminating glaciers (i.e., tidewater glaciers, outlet glaciers, ice streams, ice shelves) sparked intensified study of the boundaries where marine-terminating glaciers interact with the ocean. These dynamic and dangerous boundaries require creative methods of observation and measurement. Toward this effort, we take advantage of the exceptional sound-propagating properties of seawater to record and interpret sounds generated at these glacial ice-ocean boundaries from distances safe for instrument deployment and operation.

  14. Can we use ice calving on glacier fronts as a proxy for rock slope failures?

    Science.gov (United States)

    Abellan, Antonio; Penna, Ivanna; Daicz, Sergio; Carrea, Dario; Derron, Marc-Henri; Jaboyedoff, Michel; Riquelme, Adrian; Tomas, Roberto

    2015-04-01

    Ice failures on glacier terminus show very similar fingerprints to rock-slope failure (RSF) processes, nevertheless, the investigation of gravity-driven instabilities that shape rock cliffs and glacier's fronts are currently dissociated research topics. Since both materials (ice and rocks) have very different rheological properties, the development of a progressive failure on mountain cliffs occurs at a much slower rate than that observed on glacier fronts, which leads the latter a good proxy for investigating RSF. We utilized a terrestrial Laser Scanner (Ilris-LR system from Optech) for acquiring successive 3D point clouds of one of the most impressive calving glacier fronts, the Perito Moreno glacier located in the Southern Patagonian Ice Fields (Argentina). We scanned the glacier terminus during five days (from 10th to 14th of March 2014) with very high accuracy (0.7cm standard deviation of the error at 100m) and a high density of information (200 points per square meter). Each data series was acquired at a mean interval of 20 minutes. The maximum attainable range for the utilized wavelength of the Ilris-LR system (1064 nm) was around 500 meters over massive ice (showing no-significant loss of information), being this distance considerably reduced on crystalline or wet ice short after the occurrence of calving events. As for the data treatment, we have adapted our innovative algorithms originally developed for the investigation of both precursory deformation and rockfalls to study calving events. By comparing successive three-dimensional datasets, we have investigated not only the magnitude and frequency of several ice failures at the glacier's terminus (ranging from one to thousands of cubic meters), but also the characteristic geometrical features of each failure. In addition, we were able to quantify a growing strain rate on several areas of the glacier's terminus shortly after their final collapse. For instance, we investigated the spatial extent of the

  15. Impact of climate fluctuations on deposition of DDT and hexachlorocyclohexane in mountain glaciers: Evidence from ice core records

    International Nuclear Information System (INIS)

    Wang Xiaoping; Gong Ping; Zhang, Qianggong; Yao Tandong

    2010-01-01

    How do climate fluctuations affect DDT and hexachlorocyclohexane (HCH) distribution in the global scale? In this study, the interactions between climate variations and depositions of DDT and HCH in ice cores from Mt. Everest (the Tibetan Plateau), Mt. Muztagata (the eastern Pamirs) and the Rocky Mountains were investigated. All data regarding DDT/HCH deposition were obtained from the published results. Concentrations of DDT and HCH in an ice core from Mt. Everest were associated with the El Nino-Southern Oscillation. Concentrations of DDT in an ice core from Mt. Muztagata were significantly correlated with the Siberia High pattern. Concentrations of HCH in an ice core from Snow Dome of the Rocky Mountains responded to the North Atlantic Oscillation. These associations suggested that there are some linkages between climate variations and the global distribution of persistent organic pollutants. - Our study approves the potential contribution of ice core records of POPs to transport mechanisms of POPs.

  16. Aspect controls the survival of ice cliffs on debris-covered glaciers.

    Science.gov (United States)

    Buri, Pascal; Pellicciotti, Francesca

    2018-04-24

    Supraglacial ice cliffs exist on debris-covered glaciers worldwide, but despite their importance as melt hot spots, their life cycle is little understood. Early field observations had advanced a hypothesis of survival of north-facing and disappearance of south-facing cliffs, which is central for predicting the contribution of cliffs to total glacier mass losses. Their role as windows of energy transfer suggests they may explain the anomalously high mass losses of debris-covered glaciers in High Mountain Asia (HMA) despite the insulating debris, currently at the center of a debated controversy. We use a 3D model of cliff evolution coupled to very high-resolution topographic data to demonstrate that ice cliffs facing south (in the Northern Hemisphere) disappear within a few months due to enhanced solar radiation receipts and that aspect is the key control on cliffs evolution. We reproduce continuous flattening of south-facing cliffs, a result of their vertical gradient of incoming solar radiation and sky view factor. Our results establish that only north-facing cliffs are recurrent features and thus stable contributors to the melting of debris-covered glaciers. Satellite observations and mass balance modeling confirms that few south-facing cliffs of small size exist on the glaciers of Langtang, and their contribution to the glacier volume losses is very small ([Formula: see text]1%). This has major implications for the mass balance of HMA debris-covered glaciers as it provides the basis for new parameterizations of cliff evolution and distribution to constrain volume losses in a region where glaciers are highly relevant as water sources for millions of people.

  17. Ice core records of climate variability on the Third Pole with emphasis on the Guliya ice cap, western Kunlun Mountains

    Science.gov (United States)

    Thompson, Lonnie G.; Yao, Tandong; Davis, Mary E.; Mosley-Thompson, Ellen; Wu, Guangjian; Porter, Stacy E.; Xu, Baiqing; Lin, Ping-Nan; Wang, Ninglian; Beaudon, Emilie; Duan, Keqin; Sierra-Hernández, M. Roxana; Kenny, Donald V.

    2018-05-01

    Records of recent climate from ice cores drilled in 2015 on the Guliya ice cap in the western Kunlun Mountains of the Tibetan Plateau, which with the Himalaya comprises the Third Pole (TP), demonstrate that this region has become warmer and moister since at least the middle of the 19th century. Decadal-scale linkages are suggested between ice core temperature and snowfall proxies, North Atlantic oceanic and atmospheric processes, Arctic temperatures, and Indian summer monsoon intensity. Correlations between annual-scale oxygen isotopic ratios (δ18O) and tropical western Pacific and Indian Ocean sea surface temperatures are also demonstrated. Comparisons of climate records during the last millennium from ice cores acquired throughout the TP illustrate centennial-scale differences between monsoon and westerlies dominated regions. Among these records, Guliya shows the highest rate of warming since the end of the Little Ice Age, but δ18O data over the last millennium from TP ice cores support findings that elevation-dependent warming is most pronounced in the Himalaya. This, along with the decreasing precipitation rates in the Himalaya region, is having detrimental effects on the cryosphere. Although satellite monitoring of glaciers on the TP indicates changes in surface area, only a few have been directly monitored for mass balance and ablation from the surface. This type of ground-based study is essential to obtain a better understanding of the rate of ice shrinkage on the TP.

  18. Drainage of ice-dammed lakes and glacier retreat - a link

    DEFF Research Database (Denmark)

    Kjeldsen, Kristian Kjellerup; Kjaer, K. H.; Rysgaard, Søren

    2011-01-01

    surface freshwater run-off is found in the top of the water column in the fjord while sub-glacial meltwater is entrained deeper in the water column. The latter is highly important as this colder buoyant freshwater is pushed to the water surface followed by a compensating deeper landward current bringing...... in the fjord. The large quantity of buoyant freshwater changed the osmotic pressure and pushed redfish to the water surface causing them to die from divers disease. Further investigation suggested that three ice-dammed lakes adjacent to the Narssap Sermia glacier had drained within the previous year. Analysis......-30 times the volume of an ice-dammed lake prior to drainage. The warm water influx in turn causes the glacier to retreat and to gradually become thinner which feeds back to an increase in drainage events of ice-dammed lakes over time. On a larger scale the feedback mechanism between the drainage of lakes...

  19. Natural and artificial radioactivity in the Svalbard glaciers

    International Nuclear Information System (INIS)

    Pinglot, J.F.; Pourchet, M.

    1994-01-01

    Natural and artificial radioactivity in the snow of 10 Svalbard glaciers has been measured from 31 ice core samples, drilled between 1981 and 1993. Of these ice cores, seven exhibit the well-known level arising from the fallout of the 1961-62 atmospheric thermonuclear tests. The second level, due to the Chernobyl accident (26 April 1986), has been detected in all the studied glaciers; the maximum 137 Cs fallout reaches 22 Bq kg -1 and shows a high variability. The natural radioactivity, mostly due to 210 Pb, shows an in-depth variation which is not governed by its half-life (22.2 years). These measurements serve many glaciological purposes: absolute dating of the snow layers; air-snow transfer and fallout studies; the determination of mean annual mass balances in the accumulation area of glaciers and their associated spatio-temporal variations. (author)

  20. Ice-dammed lake drainage evolution at Russell Glacier, west Greenland

    Science.gov (United States)

    Carrivick, Jonathan L.; Tweed, Fiona S.; Ng, Felix; Quincey, Duncan J.; Mallalieu, Joseph; Ingeman-Nielsen, Thomas; Mikkelsen, Andreas B.; Palmer, Steven J.; Yde, Jacob C.; Homer, Rachel; Russell, Andrew J.; Hubbard, Alun

    2017-11-01

    Glaciological and hydraulic factors that control the timing and mechanisms of glacier lake outburst floods (GLOFs) remain poorly understood. This study used measurements of lake level at fifteen minute intervals and known lake bathymetry to calculate lake outflow during two GLOF events from the northern margin of Russell Glacier, west Greenland. We used measured ice surface elevation, interpolated subglacial topography and likely conduit geometry to inform a melt enlargement model of the outburst evolution. The model was tuned to best-fit the hydrograph’s rising limb and timing of peak discharge in both events; it achieved Mean Absolute Errors of Lake water temperature, which strongly governed the enlargement rate, preconditioned the high peak discharge and short duration of these floods. We hypothesize that both GLOFs were triggered by ice dam flotation, and localised hydraulic jacking sustained most of their early-stage outflow, explaining the particularly rapid water egress in comparison to that recorded at other ice-marginal lakes. As ice overburden pressure relative to lake water hydraulic head diminished, flow became confined to a subglacial conduit. This study has emphasised the inter-play between ice dam thickness and lake level, drainage timing, lake water temperature and consequently rising stage lake outflow and flood evolution.

  1. Recent dynamic changes on Fleming Glacier after the disintegration of Wordie Ice Shelf, Antarctic Peninsula

    Science.gov (United States)

    Friedl, Peter; Seehaus, Thorsten C.; Wendt, Anja; Braun, Matthias H.; Höppner, Kathrin

    2018-04-01

    The Antarctic Peninsula is one of the world's regions most affected by climate change. Several ice shelves have retreated, thinned or completely disintegrated during recent decades, leading to acceleration and increased calving of their tributary glaciers. Wordie Ice Shelf, located in Marguerite Bay at the south-western side of the Antarctic Peninsula, completely disintegrated in a series of events between the 1960s and the late 1990s. We investigate the long-term dynamics (1994-2016) of Fleming Glacier after the disintegration of Wordie Ice Shelf by analysing various multi-sensor remote sensing data sets. We present a dense time series of synthetic aperture radar (SAR) surface velocities that reveals a rapid acceleration of Fleming Glacier in 2008 and a phase of further gradual acceleration and upstream propagation of high velocities in 2010-2011.The timing in acceleration correlates with strong upwelling events of warm circumpolar deep water (CDW) into Wordie Bay, most likely leading to increased submarine melt. This, together with continuous dynamic thinning and a deep subglacial trough with a retrograde bed slope close to the terminus probably, has induced unpinning of the glacier tongue in 2008 and gradual grounding line retreat between 2010 and 2011. Our data suggest that the glacier's grounding line had retreated by ˜ 6-9 km between 1996 and 2011, which caused ˜ 56 km2 of the glacier tongue to go afloat. The resulting reduction in buttressing explains a median speedup of ˜ 1.3 m d-1 ( ˜ 27 %) between 2008 and 2011, which we observed along a centre line extending between the grounding line in 1996 and ˜ 16 km upstream. Current median ice thinning rates (2011-2014) along profiles in areas below 1000 m altitude range between ˜ 2.6 to 3.2 m a-1 and are ˜ 70 % higher than between 2004 and 2008. Our study shows that Fleming Glacier is far away from approaching a new equilibrium and that the glacier dynamics are not primarily controlled by the loss of the

  2. Vulnerability of Southeast Greenland Glaciers to Warm Atlantic Water From Operation IceBridge and Ocean Melting Greenland Data

    Science.gov (United States)

    Millan, R.; Rignot, E.; Mouginot, J.; Wood, M.; Bjørk, A. A.; Morlighem, M.

    2018-03-01

    We employ National Aeronautics and Space Administration (NASA)'s Operation IceBridge high-resolution airborne gravity from 2016, NASA's Ocean Melting Greenland bathymetry from 2015, ice thickness from Operation IceBridge from 2010 to 2015, and BedMachine v3 to analyze 20 major southeast Greenland glaciers. The results reveal glacial fjords several hundreds of meters deeper than previously thought; the full extent of the marine-based portions of the glaciers; deep troughs enabling warm, salty Atlantic Water (AW) to reach the glacier fronts and melt them from below; and few shallow sills that limit the access of AW. The new oceanographic and topographic data help to fully resolve the complex pattern of historical ice front positions from the 1930s to 2017: glaciers exposed to AW and resting on retrograde beds have retreated rapidly, while glaciers perched on shallow sills or standing in colder waters or with major sills in the fjords have remained stable.

  3. Exploring the mobility of cryoconite on High-Arctic glaciers

    Science.gov (United States)

    Irvine-Fynn, T. D.; Hodson, A. J.; Bridge, J. W.; Langford, H.; Anesio, A.; Ohlanders, N.; Newton, S.

    2010-12-01

    There has been a growing awareness of the significance of biologically active dust (cryoconite) on the energy balance of, and nutrient cycling at glacier surfaces. Moreover, researchers have estimated the mass of biological material released from glacier ice to downstream environments and ecosystems, including the melt-out of cells from emergent ice in the ablation area. However, the processes, rates and mechanisms of cryoconite mobility and transport have not been fully explored. For many smaller valley glaciers in the High-Arctic, the climate dictates only a thin (~ 1m) layer of ice at the glacier surface is at the melting point during the summer months. This surface ice is commonly characterized by an increased porosity in response to incident energy and hydraulic conditions, and has been termed the “weathering crust”. The presence of cryoconite, with its higher radiation absorption, exacerbates the weathering crust development. Thus, crucially, the transport of cryoconite is not confined to simply a ‘smooth’ ice surface, but rather also includes mobility in the near-surface ice matrix. Here, we present initial results from investigations of cryoconite transport at Midtre Lovénbreen and Longyearbreen, two north-facing valley glaciers in Svalbard (Norway). Using time-lapse imagery, we explore the transport rates of cryoconite on a glacier surface and consider the associations between mobility and meteorological conditions. Results suggest some disparity between micro-, local- and plot-scale observations of cryoconite transport: the differences imply controlling influences of cryoconite volume, ice surface topography and ice structure. While to examine the relative volumes of cryoconite exported from the glacier surface by supraglacial streams we employ flow cytometry, using SYBR-Green-II staining to identify the biological component of the suspended load. Preliminary comparisons between shallow (1m) ice cores and in-stream concentrations suggest

  4. Application of electrical tomography to study the internal structure of rock glaciers in Altai

    OpenAIRE

    G. S. Dyakova; V. V. Olenchenko; O. V. Ostanin

    2017-01-01

    Internal structure of rock glaciers was investigated at two key sites in Altai by means of electric tomography. It had been found that the rock glaciers of the same type, located at different altitude levels, differ in electric resistances of ice nuclei and the degree of consolidation of the ice material inside of them. Typical characteristics of the ice core of a rock glacier in the high-mountain area are the following: electrical resistivity is about 1000–2000 kOhm∙m and a high degree of th...

  5. First measurement of ice-bedrock interface of alpine glaciers by cosmic muon radiography

    Science.gov (United States)

    Nishiyama, R.; Ariga, A.; Ariga, T.; Käser, S.; Lechmann, A.; Mair, D.; Scampoli, P.; Vladymyrov, M.; Ereditato, A.; Schlunegger, F.

    2017-06-01

    The shape of the bedrock underneath alpine glaciers bears vital information on the erosional mechanism related to the flow of ice. So far, several geophysical exploration methods have been proposed to map the bedrock topography though with limited accuracy. Here we illustrate the first results from a technology, called cosmic ray muon radiography, newly applied in glacial geology to investigate the bedrock geometry beneath the Aletsch Glacier situated in the Central Swiss Alps. For this purpose we installed new cosmic muon detectors made of emulsion films at three sites along the Jungfrau railway tunnel and measured the shape of the bedrock under the uppermost part of Aletsch Glacier (Jungfraufirn). Our results constrain the continuation of the bedrock-ice interface up to a depth of 50 m below the surface, where the bedrock underneath the glacier strikes NE-SW and dips at 45° ± 5°. This documents the first successful application of this technology to a glaciated environment.

  6. Imaging spectroscopy to assess the composition of ice surface materials and their impact on glacier mass balance

    Science.gov (United States)

    Naegeli, Kathrin; Huss, Matthias; Damm, Alexander; de Jong, Rogier; Schaepman, Michael; Hoelzle, Martin

    2014-05-01

    The ice-albedo feedback plays a crucial role in various glaciological processes, but especially influences ice melt. Glacier surface albedo is one of the most important variables in the energy balance of snow and ice, but depends in a complicated way on many factors, such as cryoconite concentration, impurities due to mineral dust, soot or organic matter, grain size or ice surface morphology. Our understanding on how these various factors influence glacier albedo is still limited hindering a spatially and temporally explicit parameterization of energy balance models and requiring strongly simplified assumptions on actual albedo values. Over the last two decades, several studies have focused on glacier surface albedo using automatic in-situ weather stations in combination with radiation measurement setups or satellite images. Due to limitations of both approaches in matching either the spatial or the temporal length scale of glacier albedo, still fairly little is known about the state, changes and impact of glacier surface albedo in the Swiss Alps, although there are obvious changes in surface characteristics on most alpine glaciers over the last years. With use of the APEX (Airborne Prism EXperiment) image spectrometer, measurements of reflected radiation were acquired in high spatial and spectral resolution on Glacier de la Plaine Morte, Switzerland, to explicitly analyse the ice surface. In-situ radiometric measurements were acquired with an ASD field spectrometer in parallel to APEX overflights. These data are intended to be used for validation purposes as well as input data for the linear spectral unmixing analysis of the APEX data. Seasonal glacier mass balance is monitored since five years using the direct glaciological method. This contribution presents a first evaluation of the data collected in summer 2013. The obtained in-situ and airborne reflectance measurements were used in combination with a spectral mixture analysis (SMA) approach to assess the

  7. Seasonal variation of ice melting on varying layers of debris of Lirung Glacier, Langtang Valley, Nepal

    Directory of Open Access Journals (Sweden)

    M. B. Chand

    2015-05-01

    Full Text Available Glaciers in the Himalayan region are often covered by extensive debris cover in ablation areas, hence it is essential to assess the effect of debris on glacier ice melt. Seasonal melting of ice beneath different thicknesses of debris on Lirung Glacier in Langtang Valley, Nepal, was studied during three seasons of 2013–14. The melting rates of ice under 5 cm debris thickness are 3.52, 0.09, and 0.85 cm d−1 during the monsoon, winter and pre-monsoon season, respectively. Maximum melting is observed in dirty ice (0.3 cm debris thickness and the rate decreases with the increase of debris thickness. The energy balance calculations on dirty ice and at 40 cm debris thickness show that the main energy source of ablation is net radiation. The major finding from this study is that the maximum melting occurs during the monsoon season than rest of the seasons.

  8. Microbial processes in glaciers and permafrost. A literature study on microbiology affecting groundwater at ice sheet melting

    International Nuclear Information System (INIS)

    Hallbeck, Lotta

    2009-10-01

    A repository for spent nuclear fuel will remain for hundred thousands of years. During this period, several ice ages will most likely take place. To understand the effect of melt water from ice sheets on the repository, the microbiological processes of oxygen reduction has to be elucidated. This report is a compilation of the present knowledge about biological activity in glacier environments. These environments consist of many different parts which have their own biological character depending on the prevailing physical and chemical conditions. There are, for example, ice sheets and glaciers, glacial streams and rivers, soil and water beneath the ice, soil and water in front of and beside ice sheets and glacier and deep groundwater beneath the ice. The microbiological processes of importance are consumption of oxygen by aerobic microorganisms, anaerobic organisms and their reduced metabolites, like sulphide, acetate and methane, which can act as reducing agents in biological or chemical oxygen reduction. The lithotrophic type (inorganic energy source) of metabolism is important in these cold environments. There are also microbiological processes important to radionuclide transport and the production of complexing agents, biological colloids and biofilms. The study of microbial processes in glacier and ice sheet environments is still a young scientific niche. The studies have so far mostly been concentrated to ice surfaces and the subglacial environment. The most important findings from the literature study are as follows. Primary production is ongoing in snow cover and on ice surfaces of glaciers and ice sheets. The production is dependent on the location, because of temperature and solar radiation, but also on the prevailing state of the glacier. On surfaces and in the snow cover, heterotrophic microorganisms consume oxygen and organic material. In surface ice structures anaerobic conditions may occur. The subglacial environment is very active with several types

  9. Microbial processes in glaciers and permafrost. A literature study on microbiology affecting groundwater at ice sheet melting

    Energy Technology Data Exchange (ETDEWEB)

    Hallbeck, Lotta (Microbial Analytics Sweden AB, Moelnlycke (Sweden))

    2009-10-15

    A repository for spent nuclear fuel will remain for hundred thousands of years. During this period, several ice ages will most likely take place. To understand the effect of melt water from ice sheets on the repository, the microbiological processes of oxygen reduction has to be elucidated. This report is a compilation of the present knowledge about biological activity in glacier environments. These environments consist of many different parts which have their own biological character depending on the prevailing physical and chemical conditions. There are, for example, ice sheets and glaciers, glacial streams and rivers, soil and water beneath the ice, soil and water in front of and beside ice sheets and glacier and deep groundwater beneath the ice. The microbiological processes of importance are consumption of oxygen by aerobic microorganisms, anaerobic organisms and their reduced metabolites, like sulphide, acetate and methane, which can act as reducing agents in biological or chemical oxygen reduction. The lithotrophic type (inorganic energy source) of metabolism is important in these cold environments. There are also microbiological processes important to radionuclide transport and the production of complexing agents, biological colloids and biofilms. The study of microbial processes in glacier and ice sheet environments is still a young scientific niche. The studies have so far mostly been concentrated to ice surfaces and the subglacial environment. The most important findings from the literature study are as follows. Primary production is ongoing in snow cover and on ice surfaces of glaciers and ice sheets. The production is dependent on the location, because of temperature and solar radiation, but also on the prevailing state of the glacier. On surfaces and in the snow cover, heterotrophic microorganisms consume oxygen and organic material. In surface ice structures anaerobic conditions may occur. The subglacial environment is very active with several types

  10. Glaciers of Asia

    Science.gov (United States)

    Williams, Richard S.; Ferrigno, Jane G.

    2010-01-01

    systems of the world including the Himalaya, Karakorum, Tien Shan and Altay mountain ranges. The glaciers are widely scattered and cover an area of about 59,425 km2. The mountain glaciers may be classified as maritime, subcontinental or extreme continental. In Afghanistan, more than 3,000 small glaciers occur in the Hindu Kush and Pamir mountains. Most glaciers occur on north-facing slopes shaded by mountain peaks and on east and southeast slopes that are shaded by monsoon clouds. The glaciers provide vital water resources to the region and cover an area of about 2,700 km2. Glaciers of northern Pakistan are some of the largest and longest mid-latitude glaciers on Earth. They are located in the Hindu Kush, Himalaya, and Karakoram mountains and cover an area of about 15,000 km2. Glaciers here are important for their role in providing water resources and their hazard potential. The glaciers in India are located in the Himalaya and cover about 8,500 km2. The Himalaya contains one of the largest reservoirs of snow and ice outside the polar regions. The glaciers are a major source of fresh water and supply meltwater to all the rivers in northern India, thereby affecting the quality of life of millions of people. In Nepal, the glaciers are located in the Himalaya as individual glaciers; the glacierized area covers about 5,324 km2. The region is the highest mountainous region on Earth and includes the Mt. Everest region. Glaciers in the Bhutan Himalaya have a total area of about 1,317 km2. Many recent glacier studies are focused on glacier lakes that have the potential of generating dangerous glacier lake outburst floods. Research on the glaciers of the middle-latitude, high-mountain glaciers of Asia has also focused on the information contained in the ice cores from the glaciers. This information helps in the reconstruction of paleoclimatic records, and the computer modeling of global climate change.

  11. Little Ice Age climate reconstruction from ensemble reanalysis of Alpine glacier fluctuations

    Directory of Open Access Journals (Sweden)

    M. P. Lüthi

    2014-04-01

    Full Text Available Mountain glaciers sample a combination of climate fields – temperature, precipitation and radiation – by accumulation and melting of ice. Flow dynamics acts as a transfer function that maps volume changes to a length response of the glacier terminus. Long histories of terminus positions have been assembled for several glaciers in the Alps. Here I analyze terminus position histories from an ensemble of seven glaciers in the Alps with a macroscopic model of glacier dynamics to derive a history of glacier equilibrium line altitude (ELA for the time span 400–2010 C.E. The resulting climatic reconstruction depends only on records of glacier variations. The reconstructed ELA history is similar to recent reconstructions of Alpine summer temperature and Atlantic Multidecadal Oscillation (AMO index, but bears little resemblance to reconstructed precipitation variations. Most reconstructed low-ELA periods coincide with large explosive volcano eruptions, hinting at a direct effect of volcanic radiative cooling on mass balance. The glacier advances during the LIA, and the retreat after 1860, can thus be mainly attributed to temperature and volcanic radiative cooling.

  12. Glaciers and Ice Sheets As Analog Environments of Potentially Habitable Icy Worlds

    Directory of Open Access Journals (Sweden)

    Eva Garcia-Lopez

    2017-07-01

    Full Text Available Icy worlds in the solar system and beyond have attracted a remarkable attention as possible habitats for life. The current consideration about whether life exists beyond Earth is based on our knowledge of life in terrestrial cold environments. On Earth, glaciers and ice sheets have been considered uninhabited for a long time as they seemed too hostile to harbor life. However, these environments are unique biomes dominated by microbial communities which maintain active biochemical routes. Thanks to techniques such as microscopy and more recently DNA sequencing methods, a great biodiversity of prokaryote and eukaryote microorganisms have been discovered. These microorganisms are adapted to a harsh environment, in which the most extreme features are the lack of liquid water, extremely cold temperatures, high solar radiation and nutrient shortage. Here we compare the environmental characteristics of icy worlds, and the environmental characteristics of terrestrial glaciers and ice sheets in order to address some interesting questions: (i which are the characteristics of habitability known for the frozen worlds, and which could be compatible with life, (ii what are the environmental characteristics of terrestrial glaciers and ice sheets that can be life-limiting, (iii What are the microbial communities of prokaryotic and eukaryotic microorganisms that can live in them, and (iv taking into account these observations, could any of these planets or satellites meet the conditions of habitability? In this review, the icy worlds are considered from the point of view of astrobiological exploration. With the aim of determining whether icy worlds could be potentially habitable, they have been compared with the environmental features of glaciers and ice sheets on Earth. We also reviewed some field and laboratory investigations about microorganisms that live in analog environments of icy worlds, where they are not only viable but also metabolically active.

  13. Ice-Dammed Lake Drainage Evolution at Russell Glacier, West Greenland

    Directory of Open Access Journals (Sweden)

    Jonathan L. Carrivick

    2017-11-01

    Full Text Available KEY POINTS/HIGHLIGHTSTwo rapid ice-dammed lake drainage events gauged and ice dam geometry measured.A melt enlargement model is developed to examine the evolution of drainage mechanism(s.Lake temperature dominated conduit melt enlargement and we hypothesize a flotation trigger.Glaciological and hydraulic factors that control the timing and mechanisms of glacier lake outburst floods (GLOFs remain poorly understood. This study used measurements of lake level at 15 min intervals and known lake bathymetry to calculate lake outflow during two GLOF events from the northern margin of Russell Glacier, west Greenland. We used measured ice surface elevation, interpolated subglacial topography and likely conduit geometry to inform a melt enlargement model of the outburst evolution. The model was tuned to best-fit the hydrograph rising limb and timing of peak discharge in both events; it achieved Mean Absolute Errors of <5%. About one third of the way through the rising limb, conduit melt enlargement became the dominant drainage mechanism. Lake water temperature, which strongly governed the enlargement rate, preconditioned the high peak discharge and short duration of these floods. We hypothesize that both GLOFs were triggered by ice dam flotation, and localized hydraulic jacking sustained most of their early-stage outflow, explaining the particularly rapid water egress in comparison to that recorded at other ice-marginal lakes. As ice overburden pressure relative to lake water hydraulic head diminished, flow became confined to a subglacial conduit. This study has emphasized the inter-play between ice dam thickness and lake level, drainage timing, lake water temperature and consequently rising stage lake outflow and flood evolution.

  14. Heat sources for glacial ice melt in a West Greenland tidewater outlet glacier fjord: The role of subglacial freshwater discharge

    DEFF Research Database (Denmark)

    Bendtsen, Jørgen; Mortensen, John; Lennert, Kunuk

    2015-01-01

    The melting of tidewater outlet glaciers from the Greenland Ice Sheet contributes significantly to global sea level rise. Accelerated mass loss is related to melt-processes in front of calving glaciers, yet the role of ocean heat transports is poorly understood. Here we present the first direct...... of the area near the glacier showed that ice melt was mainly due to ocean heat transport and that direct plume-associated melt was only important in periods with high meltwater discharge rates of ~100 m3 s−1. Ocean mixing outside of the plume area was thus the primary heat source for melting glacier ice....

  15. Evolution of a highly vulnerable ice-cored moraine: Col des Gentianes, Swiss Alps

    Science.gov (United States)

    Ravanel, L.; Lambiel, C.; Oppikofer, T.; Mazotti, B.; Jaboyedoff, M.

    2012-04-01

    Rock mass movements are dominant in the morphodynamics of high mountain rock slopes and are at the origin of significant risks for people who attend these areas and for infrastructures that are built on (mountain huts, cable cars, etc.). These risks are becoming greater because of permafrost degradation and glacier retreat, two consequences of the global warming. These two commonly associated factors may affect slope stability by changing mechanical properties of the interstitial ice and modifying the mechanical constraints in these rock slopes. Between 1977 and 1979, significant works were carried out on the Little Ice Age moraine of the Tortin glacier at the Col des Gentianes (2894 m), in the Mont Fort area (Verbier, Switzerland), for the construction of a cable car station and a restaurant. Since the early 1980s, the glacier drastically retreated and the moraine became unstable: its inner slope has retreated for several meters. Various observations and geoelectric measurements indicate that significant volume of massive ice mass is still present within the moraine (ice-cored moraine). Its melting could therefore increase the instability of the moraine. Since 2007, the moraine is surveyed by terrestrial laser scanning (TLS) in order to characterize its evolution: 8 campaigns were conducted between July 2007 and October 2011. The comparison of the high resolution 3D models so obtained allowed the detection and quantification of mass movements that have affected the moraine over this period, essentially by calculating difference maps (shortest oblique distances between two models). Between July 2007 and October 2011, 7 landslides were measured, involving volumes between 87 and 1138 m3. The most important of these occurred during the summers 2009 and 2011. TLS data also allowed identifying: (i) two main areas affected by slower but sometimes substantial movements (displacements of blocks on more than 2 m during a summer period); (ii) significant deposits of

  16. Holocene glacier fluctuations inferred from lacustrine sediment, Emerald Lake, Kenai Peninsula, Alaska

    Science.gov (United States)

    LaBrecque, Taylor S.; Kaufman, Darrell S.

    2016-01-01

    Physical and biological characteristics of lacustrine sediment from Emerald Lake were used to reconstruct the Holocene glacier history of Grewingk Glacier, southern Alaska. Emerald Lake is an ice-marginal threshold lake, receiving glaciofluvial sediment when Grewingk Glacier overtops the topographic divide that separates it from the lake. Sub-bottom acoustical profiles were used to locate core sites to maximize both the length and resolution of the sedimentary sequence recovered in the 4-m-long cores. The age model for the composite sequence is based on 13 14C ages and a 210Pb profile. A sharp transition from the basal inorganic mud to organic-rich mud at 11.4 ± 0.2 ka marks the initial retreat of Grewingk Glacier below the divide of Emerald Lake. The overlaying organic-rich mud is interrupted by stony mud that records a re-advance between 10.7 ± 0.2 and 9.8 ± 0.2 ka. The glacier did not spill meltwater into the lake again until the Little Ice Age, consistent with previously documented Little Ice Ages advances on the Kenai Peninsula. The retreat of Grewingk Glacier at 11.4 ka took place as temperature increased following the Younger Dryas, and the subsequent re-advance corresponds with a climate reversal beginning around 11 ka across southern Alaska.

  17. Greenland surface mass-balance observations from the ice-sheet ablation area and local glaciers

    NARCIS (Netherlands)

    Machguth, Horst; Thomsen, Henrik H.; Weidick, Anker; Ahlstrøm, Andreas P.; Abermann, Jakob; Andersen, Morten L.; Andersen, Signe B.; Bjørk, Anders A.; Box, Jason E.; Braithwaite, Roger J.; Bøggild, Carl E.; Citterio, Michele; Clement, Poul; Colgan, William; Fausto, Robert S.; Gleie, Karin; Gubler, Stefanie; Hasholt, Bent; Hynek, Bernhard; Knudsen, Niels T.; Larsen, Signe H.; Mernild, Sebastian H.; Oerlemans, Johannes; Oerter, Hans; Olesen, Ole B.; Smeets, C. J P Paul; Steffen, Konrad; Stober, Manfred; Sugiyama, Shin; Van As, Dirk; Van Den Broeke, Michiel R.; Van De Wal, Roderik S W

    2016-01-01

    Glacier surface mass-balance measurements on Greenland started more than a century ago, but no compilation exists of the observations from the ablation area of the ice sheet and local glaciers. Such data could be used in the evaluation of modelled surface mass balance, or to document changes in

  18. Volcanic eruptions recorded in the Illimani ice core (Bolivia: 1918–1998 and Tambora periods

    Directory of Open Access Journals (Sweden)

    M. De Angelis

    2003-01-01

    Full Text Available Acid layers of volcanic origin detected in polar snow and ice layers are commonly used to document past volcanic activity on a global scale or, conversely, to date polar ice cores. Although most cataclysmic eruptions of the last two centuries (Pinatubo, El Chichon, Agung, Krakatoa, Cosiguina, Tambora, etc. occurred in the tropics, cold tropical glaciers have not been used for the reconstruction of past volcanism. The glaciochemical study of a 137 m ice core drilled in 1999 close to the summit of Nevado Illimani (Eastern Bolivian Andes, 16°37' S, 67°46' W, 6350 m asl demonstrates, for the first time, that such eruptions are recorded by both their tropospheric and stratospheric deposits. An 80-year ice sequence (1918-1998 and the Tambora years have been analyzed in detail. In several cases, ash, chloride and fluoride were also detected. The ice records of the Pinatubo (1991, Agung (1963 and Tambora (1815 eruptions are discussed in detail. The potential impact of less important regional eruptions is discussed.

  19. Outlet Glacier-Ice Shelf-Ocean Interactions: Is the Tail Wagging the Dog?

    Science.gov (United States)

    Parizek, B. R.; Walker, R. T.; Rinehart, S. K.

    2009-12-01

    While the massive interior regions of the Antarctic and Greenland Ice Sheets are presently ``resting quietly", the lower elevations of many outlet glaciers are experiencing dramatic adjustments due to changes in ice dynamics and/or surface mass balance. Oceanic and/or atmospheric forcing in these marginal regions often leads to mass deficits for entire outlet basins. Therefore, coupling the wagging tail of ice-ocean interactions with the vast ice-sheet reservoirs is imperative for accurate assessments of future sea-level rise. To study ice-ocean dynamic processes, we couple an ocean-plume model that simulates ice-shelf basal melting rates based on temperature and salinity profiles combined with plume dynamics associated with the geometry of the ice-shelf cavity (following Jenkins, 1991 and Holland and Jenkins, 1999) with a two-dimensional, isothermal model of outlet glacier-ice shelf flow (as used in Alley et al., 2007; Walker et al., 2008; Parizek et al., in review). Depending on the assigned temperature and salinity profiles, the ocean model can simulate both water-mass end-members: either cold High Salinity Shelf Water (HSSW) or relatively warm Circumpolar Deep Water (CDW), as well as between-member conditions. Notably, the coupled system exhibits sensitivity to the initial conditions. In particular, melting concentrated near the grounding line has the greatest effect in forcing grounding-line retreat. Retreat is further enhanced by a positive feedback between the ocean and ice, as the focused melt near the grounding line leads to an increase in the local slope of the basal ice, thereby enhancing buoyancy-driven plume flow and subsequent melt rates.

  20. Greenland surface mass-balance observations from the ice-sheet ablation area and local glaciers

    DEFF Research Database (Denmark)

    Machguth, Horst; Thomsen, Henrik H.; Weidick, Anker

    2016-01-01

    Glacier surface mass-balance measurements on Greenland started more than a century ago, but no compilation exists of the observations from the ablation area of the ice sheet and local glaciers. Such data could be used in the evaluation of modelled surface mass balance, or to document changes in g...

  1. Bathymetry and retreat of Southeast Greenland glaciers from Operation IceBridge and Ocean Melting Greenland data

    Science.gov (United States)

    Millan, R.; Rignot, E. J.; Morlighem, M.; Bjork, A. A.; Mouginot, J.; Wood, M.

    2017-12-01

    Southeast Greenland has been one of the largest contributors to ice mass loss in Greenland in part because of significant changes in glacier dynamics. The leading hypothesis for the changes in glacier dynamics is that enhanced thermal forcing from the ocean has dislodged a number of glaciers from their anchoring positions and some of them retreated rapidly along a reverse bed. The glaciers response has been observed to vary significantly from one fjord to the next, but until now there was not enough data to understand or interpret these changes. In particular, there was no data on glacier bed topography and seafloor bathymetry in the fjords. Here we present the results of new fjord mapping by the NASA Ocean Melting Greenland mission combined with a recent high-resolution airborne gravity survey by NASA Operation IceBridge. We combine these data with a reconstruction of the bed using a mass conservation approach upstream extending into the glacial fjords for the first time. In the fjord and along the ice-ocean transition, we employ a 3D inversion of gravity data to infer the bed elevation along a set of 9 survey boxes spanning south of Helheim Glacier to the southern tip of Southeast Greenland. We combine the results with an analysis of the glacier front history since the 1930's and Conductivity Temperature Depth data obtained in the fjord by OMG in 2016. The data reveals bed elevations several 100-m deeper than previously thought, for almost all the glaciers, up to 500 m for some of them. For many glaciers, the bed profiles help to completely understand the history of retreat of the glaciers. For instance, glaciers stranded on sills have been stable; glaciers on a reverse slope have retreated rapidly; and glaciers with a normal slope have retreated slowly. The mapping also helps document the extent of the marine portion of the glacier basins. In many of the fjords, we document the presence of warm, salty Atlantic Water which fuels large melt rates. We employ

  2. Phylogenetic and physiological diversity of microorganisms isolated from a deep greenland glacier ice core

    Science.gov (United States)

    Miteva, V. I.; Sheridan, P. P.; Brenchley, J. E.

    2004-01-01

    We studied a sample from the GISP 2 (Greenland Ice Sheet Project) ice core to determine the diversity and survival of microorganisms trapped in the ice at least 120,000 years ago. Previously, we examined the phylogenetic relationships among 16S ribosomal DNA (rDNA) sequences in a clone library obtained by PCR amplification from genomic DNA extracted from anaerobic enrichments. Here we report the isolation of nearly 800 aerobic organisms that were grouped by morphology and amplified rDNA restriction analysis patterns to select isolates for further study. The phylogenetic analyses of 56 representative rDNA sequences showed that the isolates belonged to four major phylogenetic groups: the high-G+C gram-positives, low-G+C gram-positives, Proteobacteria, and the Cytophaga-Flavobacterium-Bacteroides group. The most abundant and diverse isolates were within the high-G+C gram-positive cluster that had not been represented in the clone library. The Jukes-Cantor evolutionary distance matrix results suggested that at least 7 isolates represent new species within characterized genera and that 49 are different strains of known species. The isolates were further categorized based on the isolation conditions, temperature range for growth, enzyme activity, antibiotic resistance, presence of plasmids, and strain-specific genomic variations. A significant observation with implications for the development of novel and more effective cultivation methods was that preliminary incubation in anaerobic and aerobic liquid prior to plating on agar media greatly increased the recovery of CFU from the ice core sample.

  3. Classification of debris-covered glaciers and rock glaciers in the Andes of central Chile

    Science.gov (United States)

    Janke, Jason R.; Bellisario, Antonio C.; Ferrando, Francisco A.

    2015-07-01

    In the Dry Andes of Chile (17 to 35° S), debris-covered glaciers and rock glaciers are differentiated from true glaciers based on the percentage of surface debris cover, thickness of surface debris, and ice content. Internal ice is preserved by an insulating cover of thick debris, which acts as a storage reservoir to release water during the summer and early fall. These landforms are more numerous than glaciers in the central Andes; however, the existing legislation only recognizes uncovered or semicovered glaciers as a water resource. Glaciers, debris-covered glaciers, and rock glaciers are being altered or removed by mining operations to extract valuable minerals from the mountains. In addition, agricultural expansion and population growth in this region have placed additional demands on water resources. In a warmer climate, as glaciers recede and seasonal water availability becomes condensed over the course of a snowmelt season, rock glaciers and debris-covered glaciers contribute a larger component of base flow to rivers and streams. As a result, identifying and locating these features to implement sustainable regional planning for water resources is important. The objective of this study is to develop a classification system to identify debris-covered glaciers and rock glaciers based on the interpretation of satellite imagery and aerial photographs. The classification system is linked to field observations and measurements of ice content. Debris-covered glaciers have three subclasses: surface coverage of semi (class 1) and fully covered (class 2) glaciers differentiates the first two forms, whereas debris thickness is critical for class 3 when glaciers become buried with more than 3 m of surface debris. Based on field observations, the amount of ice decreases from more than 85%, to 65-85%, to 45-65% for semi, fully, and buried debris-covered glaciers, respectively. Rock glaciers are characterized by three stages. Class 4 rock glaciers have pronounced

  4. Ice Sheets & Ice Cores

    DEFF Research Database (Denmark)

    Mikkelsen, Troels Bøgeholm

    Since the discovery of the Ice Ages it has been evident that Earth’s climate is liable to undergo dramatic changes. The previous climatic period known as the Last Glacial saw large oscillations in the extent of ice sheets covering the Northern hemisphere. Understanding these oscillations known....... The first part concerns time series analysis of ice core data obtained from the Greenland Ice Sheet. We analyze parts of the time series where DO-events occur using the so-called transfer operator and compare the results with time series from a simple model capable of switching by either undergoing...

  5. A database of worldwide glacier thickness observations

    DEFF Research Database (Denmark)

    Gärtner-Roer, I.; Naegeli, K.; Huss, M.

    2014-01-01

    One of the grand challenges in glacier research is to assess the total ice volume and its global distribution. Over the past few decades the compilation of a world glacier inventory has been well-advanced both in institutional set-up and in spatial coverage. The inventory is restricted to glacier...... the different estimation approaches. This initial database of glacier and ice caps thickness will hopefully be further enlarged and intensively used for a better understanding of the global glacier ice volume and its distribution....... surface observations. However, although thickness has been observed on many glaciers and ice caps around the globe, it has not yet been published in the shape of a readily available database. Here, we present a standardized database of glacier thickness observations compiled by an extensive literature...... review and from airborne data extracted from NASA's Operation IceBridge. This database contains ice thickness observations from roughly 1100 glaciers and ice caps including 550 glacier-wide estimates and 750,000 point observations. A comparison of these observational ice thicknesses with results from...

  6. Chronology of Pu isotopes and 236U in an Arctic ice core.

    Science.gov (United States)

    Wendel, C C; Oughton, D H; Lind, O C; Skipperud, L; Fifield, L K; Isaksson, E; Tims, S G; Salbu, B

    2013-09-01

    In the present work, state of the art isotopic fingerprinting techniques are applied to an Arctic ice core in order to quantify deposition of U and Pu, and to identify possible tropospheric transport of debris from former Soviet Union test sites Semipalatinsk (Central Asia) and Novaya Zemlya (Arctic Ocean). An ice core chronology of (236)U, (239)Pu, and (240)Pu concentrations, and atom ratios, measured by accelerator mass spectrometry in a 28.6m deep ice core from the Austfonna glacier at Nordaustlandet, Svalbard is presented. The ice core chronology corresponds to the period 1949 to 1999. The main sources of Pu and (236)U contamination in the Arctic were the atmospheric nuclear detonations in the period 1945 to 1980, as global fallout, and tropospheric fallout from the former Soviet Union test sites Novaya Zemlya and Semipalatinsk. Activity concentrations of (239+240)Pu ranged from 0.008 to 0.254 mBq cm(-2) and (236)U from 0.0039 to 0.053 μBq cm(-2). Concentrations varied in concordance with (137)Cs concentrations in the same ice core. In contrast to previous published results, the concentrations of Pu and (236)U were found to be higher at depths corresponding to the pre-moratorium period (1949 to 1959) than to the post-moratorium period (1961 and 1962). The (240)Pu/(239)Pu ratio ranged from 0.15 to 0.19, and (236)U/(239)Pu ranged from 0.18 to 1.4. The Pu atom ratios ranged within the limits of global fallout in the most intensive period of nuclear atmospheric testing (1952 to 1962). To the best knowledge of the authors the present work is the first publication on biogeochemical cycles with respect to (236)U concentrations and (236)U/(239)Pu atom ratios in the Arctic and in ice cores. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Progression of the 2011-2012 Surge of Bering Glacier and Bagley Ice Field, Alaska

    Science.gov (United States)

    Herzfeld, U. C.; McDonald, B.; Stachura, M.; Hale, R.; Trantow, T.; Weltman, A.; Chen, P.

    2012-12-01

    Bering Glacier, Alaska, started a surge in late spring 2011. The surge reached the ice front in May 2011 and extended into Bagley Ice Field by summer 2011. New surge-related crevassing was observed in July 2012. We collected aerial observations, including systematic videographic and photographic imagery, GPS data and laser altimeter data in September 2011 and in July 2012. In this talk, an analysis of surge progression and comparison to the early, mature and late stages of the 1993-1995 surge of Bering Glacier and Bagley Ice Field will be presented. A suite of approaches will be used to this end: Analysis of elevation changes based on CryoSat data, 2009 and 2010 IceBridge data and 2011 and 2012 laser altimeter data collected by our group, geostatistical classification of crevasse types based on imagery, classification of laser altimeter data and analysis of high-resolution satellite imagery (Worldview and GEOS).

  8. Towards Quantification of Glacier Dynamic Ice Loss through Passive Seismic Monitoring

    Science.gov (United States)

    Köhler, A.; Nuth, C.; Weidle, C.; Schweitzer, J.; Kohler, J.; Buscaino, G.

    2015-12-01

    Global glaciers and ice caps loose mass through calving, while existing models are currently not equipped to realistically predict dynamic ice loss. This is mainly because long-term continuous calving records, that would help to better understand fine scale processes and key climatic-dynamic feedbacks between calving, climate, terminus evolution and marine conditions, do not exist. Combined passive seismic/acoustic strategies are the only technique able to capture rapid calving events continuously, independent of daylight or meteorological conditions. We have produced such a continuous calving record for Kronebreen, a tidewater glacier in Svalbard, using data from permanent seismic stations between 2001 and 2014. However, currently no method has been established in cryo-seismology to quantify the calving ice loss directly from seismic data. Independent calibration data is required to derive 1) a realistic estimation of the dynamic ice loss unobserved due to seismic noise and 2) a robust scaling of seismic calving signals to ice volumes. Here, we analyze the seismic calving record at Kronebreen and independent calving data in a first attempt to quantify ice loss directly from seismic records. We make use of a) calving flux data with weekly to monthly resolution obtained from satellite remote sensing and GPS data between 2007 and 2013, and b) direct, visual calving observations in two weeks in 2009 and 2010. Furthermore, the magnitude-scaling property of seismic calving events is analyzed. We derive and discuss an empirical relation between seismic calving events and calving flux which for the first time allows to estimate a time series of calving volumes more than one decade back in time. Improving our model requires to incorporate more precise, high-resolution calibration data. A new field campaign will combine innovative, multi-disciplinary monitoring techniques to measure calving ice volumes and dynamic ice-ocean interactions simultaneously with terrestrial laser

  9. Ice core carbonyl sulfide measurements from a new South Pole ice core (SPICECORE)

    Science.gov (United States)

    Aydin, M.; Nicewonger, M. R.; Saltzman, E. S.

    2017-12-01

    Carbonyl sulfide (COS) is the most abundant sulfur gas in the troposphere with a present-day mixing ratio of about 500 ppt. Direct and indirect emissions from the oceans are the predominant sources of atmospheric COS. The primary removal mechanism is uptake by terrestrial plants during photosynthesis. Because plants do not respire COS, atmospheric COS levels are linked to terrestrial gross primary productivity (GPP). Ancient air trapped in polar ice cores has been used to reconstruct COS records of the past atmosphere, which can be used to infer past GPP variability and potential changes in oceanic COS emission. We are currently analyzing samples from a newly drilled intermediate depth ice core from South Pole, Antarctica (SPICECORE). This core is advantageous for studying COS because the cold temperatures of South Pole ice lead to very slow rates of in situ loss due to hydrolysis. One hundred and eighty-four bubbly ice core samples have been analyzed to date with gas ages ranging from about 9.2 thousand (733 m depth) to 75 years (126 m depth) before present. After a 2% correction for gravitational enrichment in the firn, the mean COS mixing ratio for the data set is 312±15 ppt (±1s), with the data set median also equal to 312 ppt. The only significant long-term trend in the record is a 5-10% increase in COS during the last 2-3 thousand years of the Holocene. The SPICECORE data agree with previously published ice core COS records from other Antarctic sites during times of overlap, confirming earlier estimates of COS loss rates to in situ hydrolysis in ice cores. Antarctic ice core data place strict constraints on the COS mixing ratio and its range of variability in the southern hemisphere atmosphere during the last several millennia. Implications for the atmospheric COS budget will be discussed.

  10. Ice-sheet flow conditions deduced from mechanical tests of ice core

    DEFF Research Database (Denmark)

    Miyamoto, Atsushi; Narita, Hideki; Hondoh, Takeo

    1999-01-01

    Uniaxial compression tests were performed on samples of the Greenland Ice Core Project (GRIP) deep ice core, both in the field and later in a cold-room laboratory, in order to understand the ice-flow behavior of large ice sheets. Experiments were conducted under conditions of constant strain rate....... It was revealed that cloudy bands affect ice-deformation processes, but the details remain unclear. Udgivelsesdato: June......Uniaxial compression tests were performed on samples of the Greenland Ice Core Project (GRIP) deep ice core, both in the field and later in a cold-room laboratory, in order to understand the ice-flow behavior of large ice sheets. Experiments were conducted under conditions of constant strain rate......-core samples with basal planes parallel to the horizontal plane of the ice sheet. The ice-flow enhancement factors show a gradual increase with depth down to approximately 2000 m. These results can be interpreted in terms of an increase in the fourth-order Schmid factor. Below 2000 m depth, the flow...

  11. Atmosphere aerosol/dust composition over central Asia and western Siberia derived from snow/ice core records and calibrated with NASA remote sensing data

    Science.gov (United States)

    Aizen, V. B.; Aizen, E. M.; Joswiak, D. R.; Surazakov, A. B.; Takeuchi, N.

    2007-12-01

    The vast arid and semi-arid regions of central Asia, Mongolia, and Northern China are the world's second largest source of atmospheric mineral dust. In recent years, severe dust storms in Asia have intensified in frequency, duration, and areal coverage. However, limited spatial and temporal extent of aerosol measurements precludes definitive statements to be made regarding relationship between the Asian aerosol generation and climate. It has been well known that glaciers are the natural archives of environmental records related to past climate and aerosol generation. In our research, we utilized central Asian and western Siberia shallow ice-core records recovered from Altai, Tien Shan and Pamir mountain glaciers. Despite the fact that ice-core data may extend climate/aerosol records back in time, their sparse coverage is inadequate to document aerosol spatial distribution. The NASA products from Aura, Terra and Aqua satellite missions address this gap identifying aerosol sources, transport pathways, and area of deposition. The main objective of our research is to evaluate an affect of climate variability on dynamics of Asian aerosol loading to atmosphere and changes in aerosol transport pathways. Dust particle, major and rare earth element analysis from dust aerosols deposited and accumulated in Altai, Tien Shan and Pamir glaciers suggests that loess from Tajikistan, Afghanistan and north-western China are main sources of aerosol loading into the upper troposphere over the central Asia and western Siberia. At the same time, the soluble ionic component of the ice-cores, related to aerosol generated from evaporate deposits, demonstrated both anthropogenic and natural impacts on atmospheric chemistry over these regions. Large perturbations of Ca2+ derived from CaCO3- rich dust transported from Goby Desert to Altai and Tien Shan. Origin and pathway of the ice-core aerosol depositions for the last 10-years were identified through calibrating ice-core records with dust

  12. Changing pattern of ice flow and mass balance for glaciers discharging into the Larsen A and B embayments, Antarctic Peninsula, 2011 to 2016

    Science.gov (United States)

    Rott, Helmut; Abdel Jaber, Wael; Wuite, Jan; Scheiblauer, Stefan; Floricioiu, Dana; Melchior van Wessem, Jan; Nagler, Thomas; Miranda, Nuno; van den Broeke, Michiel R.

    2018-04-01

    We analysed volume change and mass balance of outlet glaciers on the northern Antarctic Peninsula over the periods 2011 to 2013 and 2013 to 2016, using high-resolution topographic data from the bistatic interferometric radar satellite mission TanDEM-X. Complementary to the geodetic method that applies DEM differencing, we computed the net mass balance of the main outlet glaciers using the mass budget method, accounting for the difference between the surface mass balance (SMB) and the discharge of ice into an ocean or ice shelf. The SMB values are based on output of the regional climate model RACMO version 2.3p2. To study glacier flow and retrieve ice discharge we generated time series of ice velocity from data from different satellite radar sensors, with radar images of the satellites TerraSAR-X and TanDEM-X as the main source. The study area comprises tributaries to the Larsen A, Larsen Inlet and Prince Gustav Channel embayments (region A), the glaciers calving into the Larsen B embayment (region B) and the glaciers draining into the remnant part of the Larsen B ice shelf in Scar Inlet (region C). The glaciers of region A, where the buttressing ice shelf disintegrated in 1995, and of region B (ice shelf break-up in 2002) show continuing losses in ice mass, with significant reduction of losses after 2013. The mass balance numbers for the grounded glacier area of region A are -3.98 ± 0.33 Gt a-1 from 2011 to 2013 and -2.38 ± 0.18 Gt a-1 from 2013 to 2016. The corresponding numbers for region B are -5.75 ± 0.45 and -2.32 ± 0.25 Gt a-1. The mass balance in region C during the two periods was slightly negative, at -0.54 ± 0.38 Gt a-1 and -0.58 ± 0.25 Gt a-1. The main share in the overall mass losses of the region was contributed by two glaciers: Drygalski Glacier contributing 61 % to the mass deficit of region A, and Hektoria and Green glaciers accounting for 67 % to the mass deficit of region B. Hektoria and Green glaciers accelerated significantly in 2010

  13. Arctic polynya and glacier interactions

    Science.gov (United States)

    Edwards, Laura

    2013-04-01

    Major uncertainties surround future estimates of sea level rise attributable to mass loss from the polar ice sheets and ice caps. Understanding changes across the Arctic is vital as major potential contributors to sea level, the Greenland Ice Sheet and the ice caps and glaciers of the Canadian Arctic archipelago, have experienced dramatic changes in recent times. Most ice mass loss is currently focused at a relatively small number of glacier catchments where ice acceleration, thinning and calving occurs at ocean margins. Research suggests that these tidewater glaciers accelerate and iceberg calving rates increase when warming ocean currents increase melt on the underside of floating glacier ice and when adjacent sea ice is removed causing a reduction in 'buttressing' back stress. Thus localised changes in ocean temperatures and in sea ice (extent and thickness) adjacent to major glacial catchments can impact hugely on the dynamics of, and hence mass lost from, terrestrial ice sheets and ice caps. Polynyas are areas of open water within sea ice which remain unfrozen for much of the year. They vary significantly in size (~3 km2 to > ~50,000 km2 in the Arctic), recurrence rates and duration. Despite their relatively small size, polynyas play a vital role in the heat balance of the polar oceans and strongly impact regional oceanography. Where polynyas develop adjacent to tidewater glaciers their influence on ocean circulation and water temperatures may play a major part in controlling subsurface ice melt rates by impacting on the water masses reaching the calving front. Areas of open water also play a significant role in controlling the potential of the atmosphere to carry moisture, as well as allowing heat exchange between the atmosphere and ocean, and so can influence accumulation on (and hence thickness of) glaciers and ice caps. Polynya presence and size also has implications for sea ice extent and therefore potentially the buttressing effect on neighbouring

  14. Application of electrical tomography to study the internal structure of rock glaciers in Altai

    Directory of Open Access Journals (Sweden)

    G. S. Dyakova

    2017-01-01

    Full Text Available Internal structure of rock glaciers was investigated at two key sites in Altai by means of electric tomography. It had been found that the rock glaciers of the same type, located at different altitude levels, differ in electric resistances of ice nuclei and the degree of consolidation of the ice material inside of them. Typical characteristics of the ice core of a rock glacier in the high-mountain area are the following: electrical resistivity is about 1000–2000 kOhm∙m and a high degree of the ice consolidation, while the same for the mid-mountain region: the electrical resistivity is 150–300 kOhm∙m and the presence of the talik zones within the glacier body. Using the method of electric tomography for investigation of the internal structure of the rock-glaciers makes possible to reveal presence of frozen soils and ice and to find the upper boundary of occurrence of them from anomalously high specific electric resistance. However, it is not always possible to determine a thickness of the rock-ice formation, and to estimate a degree of its consolidation that does not allow calculating the ice content volume. Limitations of this technology can be overcome by the use of electric tomography in combination with other geophysical methods.

  15. Morphometric Controls on Glacier Mass Balance of the Puruogangri Ice Field, Central Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    Lin Liu

    2016-11-01

    Full Text Available Evaluating the impacts of climatic changes and morphometric features on glacier mass balance is crucial to providing insight into glacier changes and their effects on regional water resources and ecosystems. Here, we presented an evaluation of morphometric effects on the glacier mass balances of the Puruogangri ice field (PIF on the Tibetan Plateau. A clear spatial variability of glacier mass balances, ranging from −0.035 to +0.019 m·w.e.·year−1, was estimated by comparing the TanDEM-X DEM (2012 with the SRTM-X DEM (2000. In general, the observed glacier mass changes were consistent with our fieldwork investigations. Furthermore, by applying the method of linear regression analysis, we found that the mass changes of individual glaciers on the PIF were mainly dominated by the mean altitude (R = 0.84, p < 0.001, however, they were statistically independent of glacier size, aspect, and surface velocity. At a local scale (grid size of 10 × 10 pixels, apart from the factor of altitude, surface velocity was correlated with glacier mass change.

  16. 110 years of local glacier and ice cap changes in Central- and North East Greenland

    Science.gov (United States)

    Bjork, A. A.; Aagaard, S.; Kjaer, K. H.; Khan, S. A.; Box, J.

    2014-12-01

    The local glaciers and ice caps of Greenland are becoming more apparent players in global sea-level rise, and their contribution to future changes is significant. Very little information on their historical fluctuations exists as much of the focus has been on the Greenland Ice Sheet. Now, we can for the first time present historic data that spans 110 years for more than 200 of the local glaciers and ice caps covering this large and important region of the Arctic. The central- and north eastern part of Greenland is of particular interest as these areas are predicted to exhibit a more active behavior with higher mass loss in the future - simultaneously with an increase in precipitation. Our results show that the glaciers and ice caps in the region are responding very rapidly to changes in temperature and precipitation. The present retreat is the fastest observed within the last eight decades, only surpassed by the rapid post LIA retreat. The 1930s was the golden era for scientific exploration in Central- and North East Greenland as several large expeditions visited the area and photographed from land, sea and air. We use historic recordings from Danish and Norwegian aerial missions and terrestrial recordings from the renowned American Explorer Louise Boyd. These unique pictures from the early 1930s form the backbone of the study and are supplemented the more recent aerial photographs the 1940s and onwards and satellite imagery from the mid-1960s and up until present. From high resolution aerial photographs we are able to map the maximum extent of the glaciers during the LIA (Little Ice Age), from which retreat in this area is estimated to commence in 1900. Using a new SMB (Surface Mass Balance) model and its components covering the entire observational period along with high resolution DEMs and historic sea-ice records we are now able to extract valuable information on the past and present triggers of glacial change.

  17. Ice-ocean interaction and calving front morphology at two west Greenland tidewater outlet glaciers

    Science.gov (United States)

    Chauché, N.; Hubbard, A.; Gascard, J.-C.; Box, J. E.; Bates, R.; Koppes, M.; Sole, A.; Christoffersen, P.; Patton, H.

    2014-08-01

    Warm, subtropical-originating Atlantic water (AW) has been identified as a primary driver of mass loss across the marine sectors of the Greenland Ice Sheet (GrIS), yet the specific processes by which this water mass interacts with and erodes the calving front of tidewater glaciers is frequently modelled and much speculated upon but remains largely unobserved. We present a suite of fjord salinity, temperature, turbidity versus depth casts along with glacial runoff estimation from Rink and Store glaciers, two major marine outlets draining the western sector of the GrIS during 2009 and 2010. We characterise the main water bodies present and interpret their interaction with their respective calving fronts. We identify two distinct processes of ice-ocean interaction which have distinct spatial and temporal footprints: (1) homogenous free convective melting which occurs across the calving front where AW is in direct contact with the ice mass, and (2) localised upwelling-driven melt by turbulent subglacial runoff mixing with fjord water which occurs at distinct injection points across the calving front. Throughout the study, AW at 2.8 ± 0.2 °C was consistently observed in contact with both glaciers below 450 m depth, yielding homogenous, free convective submarine melting up to ~200 m depth. Above this bottom layer, multiple interactions are identified, primarily controlled by the rate of subglacial fresh-water discharge which results in localised and discrete upwelling plumes. In the record melt year of 2010, the Store Glacier calving face was dominated by these runoff-driven plumes which led to a highly crenulated frontal geometry characterised by large embayments at the subglacial portals separated by headlands which are dominated by calving. Rink Glacier, which is significantly deeper than Store has a larger proportion of its submerged calving face exposed to AW, which results in a uniform, relatively flat overall frontal geometry.

  18. Spatial and temporal melt variability at Helheim Glacier, East Greenland, and its effect on ice dynamics

    DEFF Research Database (Denmark)

    Andersen, M. L.; Larsen, T. B.; Nettles, M.

    2010-01-01

    Understanding the behavior of large outlet glaciers draining the Greenland Ice Sheet is critical for assessing the impact of climate change on sea level rise. The flow of marine-terminating outlet glaciers is partly governed by calving-related processes taking place at the terminus but is also in...

  19. Modelling glacier-bed overdeepenings and possible future lakes for the glaciers in the Himalaya-Karakoram region

    DEFF Research Database (Denmark)

    Linsbauer, A.; Frey, H.; Haeberli, W.

    2016-01-01

    Surface digital elevation models (DEMs) and slope-related estimates of glacier thickness enable modelling of glacier-bed topographies over large ice-covered areas. Due to the erosive power of glaciers, such bed topographies can contain numerous overdeepenings, which when exposed following glacier...... retreat may fill with water and form new lakes. In this study, the bed overdeepenings for ∼28000 glaciers (40 775km2) of the Himalaya-Karakoram region are modelled using GlabTop2 (Glacier Bed Topography model version 2), in which ice thickness is inferred from surface slope by parameterizing basal shear...... stress as a function of elevation range for each glacier. The modelled ice thicknesses are uncertain (±30%), but spatial patterns of ice thickness and bed elevation primarily depend on surface slopes as derived from the DEM and, hence, are more robust. About 16 000 overdeepenings larger than 104m2 were...

  20. The Open Global Glacier Model

    Science.gov (United States)

    Marzeion, B.; Maussion, F.

    2017-12-01

    Mountain glaciers are one of the few remaining sub-systems of the global climate system for which no globally applicable, open source, community-driven model exists. Notable examples from the ice sheet community include the Parallel Ice Sheet Model or Elmer/Ice. While the atmospheric modeling community has a long tradition of sharing models (e.g. the Weather Research and Forecasting model) or comparing them (e.g. the Coupled Model Intercomparison Project or CMIP), recent initiatives originating from the glaciological community show a new willingness to better coordinate global research efforts following the CMIP example (e.g. the Glacier Model Intercomparison Project or the Glacier Ice Thickness Estimation Working Group). In the recent past, great advances have been made in the global availability of data and methods relevant for glacier modeling, spanning glacier outlines, automatized glacier centerline identification, bed rock inversion methods, and global topographic data sets. Taken together, these advances now allow the ice dynamics of glaciers to be modeled on a global scale, provided that adequate modeling platforms are available. Here, we present the Open Global Glacier Model (OGGM), developed to provide a global scale, modular, and open source numerical model framework for consistently simulating past and future global scale glacier change. Global not only in the sense of leading to meaningful results for all glaciers combined, but also for any small ensemble of glaciers, e.g. at the headwater catchment scale. Modular to allow combinations of different approaches to the representation of ice flow and surface mass balance, enabling a new kind of model intercomparison. Open source so that the code can be read and used by anyone and so that new modules can be added and discussed by the community, following the principles of open governance. Consistent in order to provide uncertainty measures at all realizable scales.

  1. Experimental Analysis of Sublimation Dynamics for Buried Glacier Ice in Beacon Valley, Antarctica

    Science.gov (United States)

    Ehrenfeucht, S.; Dennis, D. P.; Marchant, D. R.

    2017-12-01

    The age of the oldest known buried ice in Beacon Valley, McMurdo Dry Valleys (MDV) Antarctica is a topic of active debate due to its implications for the stability of the East Antarctic Ice Sheet. Published age estimates range from as young as 300 ka to as old as 8.1 Ma. In the upland MDV, ablation occurs predominantly via sublimation. The relict ice in question (ancient ice from Taylor Glacier) lies buried beneath a thin ( 30-70 cm) layer of sublimation till, which forms as a lag deposit as underlying debris-rich ice sublimes. As the ice sublimates, the debris held within the ice accumulates slowly on the surface, creating a porous boundary between the buried-ice surface and the atmosphere, which in turn influences gas exchange between the ice and the atmosphere. Additionally, englacial debris adds several salt species that are ultimately concentrated on the ice surface. It is well documented the rate of ice sublimation varies as a function of overlying till thickness. However, the rate-limiting dynamics under varying environmental conditions, including the threshold thicknesses at which sublimation is strongly retarded, are not yet defined. To better understand the relationships between sublimation rate, till thickness, and long-term surface evolution, we build on previous studies by Lamp and Marchant (2017) and evaluate the role of till thickness as a control on ice loss in an environmental chamber capable of replicating the extreme cold desert conditions observed in the MDV. Previous work has shown that this relationship exhibits exponential decay behavior, with sublimation rate significantly dampened under less than 10 cm of till. In our experiments we pay particular attention to the effect of the first several cm of till in order to quantify the dynamics that govern the transition from bare ice to debris-covered ice. We also examine this transition for various forms of glacier ice, including ice with various salt species.

  2. Dating of 30m ice cores drilled by Japanese Antarctic Research Expedition and environmental change study

    Science.gov (United States)

    Motoyama, H.; Suzuki, T.; Fukui, K.; Ohno, H.; Hoshina, Y.; Hirabayashi, M.; Fujita, S.

    2017-12-01

    1. Introduction It is possible to reveal the past climate and environmental change from the ice core drilled in polar ice sheet and glaciers. The 54th Japanese Antarctic Research Expedition conducted several shallow core drillings up to 30 m depth in the inland and coastal areas of the East Antarctic ice sheet. Ice core sample was cut out at a thickness of about 5 cm in the cold room of the National Institute of Polar Research, and analyzed ion, water isotope, dust and so one. We also conducted dielectric profile measurement (DEP measurement). The age as a key layer of large-scale volcanic explosion was based on Sigl et al. (Nature Climate Change, 2014). 2. Inland ice core Ice cores were collected at the NDF site (77°47'14"S, 39°03'34"E, 3754 m.a.s.l.) and S80 site (80°00'00"S, 40°30'04"E, 3622 m.a.s.l.). Dating of ice core was done as follows. Calculate water equivalent from core density. Accumulate water equivalent from the surface. Approximate the relation of depth - cumulative water equivalent by a quartic equation. We determined the key layer with nssSO42 - peak corresponding to several large volcanic explosions. The accumulation rate was kept constant between the key layers. As a result, NDF was estimated to be around 1360 AD and S80 was estimated to be around 1400 AD in the deepest ice core. 3. Coastal ice core An ice core was collected at coastal H15 sites (69°04'10"S, 40°44'51"E, 1030 m.a.s.l.). Dating of ice core was done as follows. Calculate water equivalent from ice core density. Accumulate water equivalent from the surface. Approximate the relation of depth - cumulative water equivalent by a quartic equation. Basically we decided to summer (December) and winter (June) due to the seasonal change of the water isotope (δD or δ18O). In addition to the seasonal change of isotope, confirm the following. Maximum of SO42- / Na +, which is earlier in time than the maximum of water isotope. Maximum of MSA at about the same time as the maximum of the

  3. Brief communication: Getting Greenland's glaciers right - a new data set of all official Greenlandic glacier names

    Science.gov (United States)

    Bjørk, A. A.; Kruse, L. M.; Michaelsen, P. B.

    2015-12-01

    Place names in Greenland can be difficult to get right, as they are a mix of Greenlandic, Danish, and other foreign languages. In addition, orthographies have changed over time. With this new data set, we give the researcher working with Greenlandic glaciers the proper tool to find the correct name for glaciers and ice caps in Greenland and to locate glaciers described in the historic literature with the old Greenlandic orthography. The data set contains information on the names of 733 glaciers, 285 originating from the Greenland Ice Sheet (GrIS) and 448 from local glaciers and ice caps (LGICs).

  4. Sub-ice-shelf sediments record history of twentieth-century retreat of Pine Island Glacier

    OpenAIRE

    Smith, J.A.; Andersen, T.J.; Shortt, M.; Gaffney, A.M.; Truffer, M.; Stanton, T.P.; Bindschadler, R.; Dutrieux, P.; Jenkins, A.; Hillenbrand, C.-D.; Ehrmann, W.; Corr, H.F.J.; Farley, N.; Crowhurst, S.; Vaughan, D.G.

    2016-01-01

    The article of record as published may be found at http://dx.doi.org/10.1038/nature20136 The West Antarctic Ice Sheet is one of the largest potential sources of rising sea levels. Over the past 40 years, glaciers flowing into the Amundsen Sea sector of the ice sheet have thinned at an accelerating rate, and several numerical models suggest that unstable and irreversible retreat of the grounding line—which marks the boundary between grounded ice and floating ice shelf—is underway. Under...

  5. Characterization of atmospheric trace elements in the Puruogangri ice core: a preliminary account of Tibetan Plateau environmental and contamination histories

    Science.gov (United States)

    Beaudon, E.; Gabrielli, P.; Sierra Hernandez, R.; Wegner, A.; Thompson, L. G.

    2014-12-01

    Asia is facing enormous challenges including large-scale environmental changes, rapid population growth and industrialization. The inherent generated pollution contributes to half of all Earth's anthropogenic trace metals emissions that, when deposited to glaciers of the surrounding mountains of the Third Pole region, leave a characteristic chemical fingerprint. Records of past atmospheric deposition preserved in snow and ice from Third Pole glaciers provide unique insights into changes of the chemical composition of the atmosphere and into the nature and intensity of the regional atmospheric circulation systems. The determination of the elemental composition of aeolian dust stored in Himalayan and Tibetan Plateau glaciers can help to qualify the potential contamination of glacial meltwater as a part of the greater fresh Asian water source. The 215 m long Puruogangri ice core retrieved in 2000 at 6500 m a.s.l. in central Tibetan Plateau (Western Tanggula Shan, China) provides one of the first multi-millennium-long environmental archives (spanning the last 7000 years and annually resolved for the last 400 years) obtained from the Tibetan Plateau region. The Puruogangri's area is climatologically of particular interest because of its location at the boundary between the monsoon (wet) and the westerly (dry) dominated atmospheric circulation. The major objective of this study is to determine the concentration of trace and ultra-trace elements in the Puruogangri ice core between 1600 and 2000 AD in order to characterize the atmospheric aerosols entrapped in the ice. Particular attention is given to assess the amount of trace elements originating from anthropogenic sources during both the pre-industrial and industrial periods. The distinction between the anthropogenic contribution and the crustal background may rely on the precise decoupling of the dry and wet seasons signals, the former being largely influenced by dust contribution.

  6. A 400-year ice core melt layer record of summertime warming in the Alaska Range

    Science.gov (United States)

    Winski, D.; Osterberg, E. C.; Kreutz, K. J.; Wake, C. P.; Ferris, D. G.; Campbell, S. W.; Baum, M.; Raudzens Bailey, A.; Birkel, S. D.; Introne, D.; Handley, M.

    2017-12-01

    Warming in high-elevation regions has socially relevant impacts on glacier mass balance, water resources, and sensitive alpine ecosystems, yet very few high-elevation temperature records exist from the middle or high latitudes. While many terrestrial paleoclimate records provide critical temperature records from low elevations over recent centuries, melt layers preserved in alpine glaciers present an opportunity to develop calibrated, annually-resolved temperature records from high elevations. We present a 400-year temperature record based on the melt-layer stratigraphy in two ice cores collected from Mt. Hunter in the Central Alaska Range. The ice core record shows a 60-fold increase in melt frequency and water equivalent melt thickness between the pre-industrial period (before 1850) and present day. We calibrate the melt record to summer temperatures based on local and regional weather station analyses, and find that the increase in melt production represents a summer warming of at least 2° C, exceeding rates of temperature increase at most low elevation sites in Alaska. The Mt. Hunter melt layer record is significantly (p<0.05) correlated with surface temperatures in the central tropical Pacific through a Rossby-wave like pattern that induces high temperatures over Alaska. Our results show that rapid alpine warming has taken place in the Alaska Range for at least a century, and that conditions in the tropical oceans contribute to this warming.

  7. Transport of perfluoroalkyl substances (PFAS) from an arctic glacier to downstream locations: implications for sources.

    Science.gov (United States)

    Kwok, Karen Y; Yamazaki, Eriko; Yamashita, Nobuyoshi; Taniyasu, Sachi; Murphy, Margaret B; Horii, Yuichi; Petrick, Gert; Kallerborn, Roland; Kannan, Kurunthachalam; Murano, Kentaro; Lam, Paul K S

    2013-03-01

    Perfluoroalkyl substances (PFAS) have been globally detected in various environmental matrices, yet their fate and transport to the Arctic is still unclear, especially for the European Arctic. In this study, concentrations of 17 PFAS were quantified in two ice cores (n=26), surface snow (n=9) and surface water samples (n=14) collected along a spatial gradient in Svalbard, Norway. Concentrations of selected ions (Na(+), SO4(2-), etc.) were also determined for tracing the origins and sources of PFAS. Perfluorobutanoate (PFBA), perfluorooctanoate (PFOA) and perfluorononanoate (PFNA) were the dominant compounds found in ice core samples. Taking PFOA, PFNA and perfluorooctane-sulfonate (PFOS) as examples, higher concentrations were detected in the middle layers of the ice cores representing the period of 1997-2000. Lower concentrations of C8-C12 perfluorocarboxylates (PFCAs) were detected in comparison with concentrations measured previously in an ice core from the Canadian Arctic, indicating that contamination levels in the European Arctic are lower. Average PFAS concentrations were found to be lower in surface snow and melted glacier water samples, while increased concentrations were observed in river water downstream near the coastal area. Perfluorohexanesulfonate (PFHxS) was detected in the downstream locations, but not in the glacier, suggesting existence of local sources of this compound. Long-range atmospheric transport of PFAS was the major deposition pathway for the glaciers, while local sources (e.g., skiing activities) were identified in the downstream locations. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Chronology of Pu isotopes and {sup 236}U in an Arctic ice core

    Energy Technology Data Exchange (ETDEWEB)

    Wendel, C.C., E-mail: cato.wendel@umb.no [Isotope Laboratory, Department of Plant and Environmental Sciences, Agricultural University of Norway, P.O. Box 5003, N-1432 Aas (Norway); Oughton, D.H., E-mail: deborah.oughton@umb.no [Isotope Laboratory, Department of Plant and Environmental Sciences, Agricultural University of Norway, P.O. Box 5003, N-1432 Aas (Norway); Lind, O.C., E-mail: ole-christian.lind@umb.no [Isotope Laboratory, Department of Plant and Environmental Sciences, Agricultural University of Norway, P.O. Box 5003, N-1432 Aas (Norway); Skipperud, L., E-mail: lindis.skipperud@umb.no [Isotope Laboratory, Department of Plant and Environmental Sciences, Agricultural University of Norway, P.O. Box 5003, N-1432 Aas (Norway); Fifield, L.K., E-mail: keith.fifield@anu.edu.au [Department of Nuclear Physics, Australian National University, Canberra ACT 0200 (Australia); Isaksson, E., E-mail: elisabeth.isaksson@npolar.no [Norwegian Polar Institute, Fram Centre, Hjalmar Johansens Gate 14, N9296 Tromsø (Norway); Tims, S.G., E-mail: steve.tims@anu.edu.au [Department of Nuclear Physics, Australian National University, Canberra ACT 0200 (Australia); Salbu, B., E-mail: brit.salbu@umb.no [Isotope Laboratory, Department of Plant and Environmental Sciences, Agricultural University of Norway, P.O. Box 5003, N-1432 Aas (Norway)

    2013-09-01

    In the present work, state of the art isotopic fingerprinting techniques are applied to an Arctic ice core in order to quantify deposition of U and Pu, and to identify possible tropospheric transport of debris from former Soviet Union test sites Semipalatinsk (Central Asia) and Novaya Zemlya (Arctic Ocean). An ice core chronology of {sup 236}U, {sup 239}Pu, and {sup 240}Pu concentrations, and atom ratios, measured by accelerator mass spectrometry in a 28.6 m deep ice core from the Austfonna glacier at Nordaustlandet, Svalbard is presented. The ice core chronology corresponds to the period 1949 to 1999. The main sources of Pu and {sup 236}U contamination in the Arctic were the atmospheric nuclear detonations in the period 1945 to 1980, as global fallout, and tropospheric fallout from the former Soviet Union test sites Novaya Zemlya and Semipalatinsk. Activity concentrations of {sup 239+240}Pu ranged from 0.008 to 0.254 mBq cm{sup −2} and {sup 236}U from 0.0039 to 0.053 μBq cm{sup −2}. Concentrations varied in concordance with {sup 137}Cs concentrations in the same ice core. In contrast to previous published results, the concentrations of Pu and {sup 236}U were found to be higher at depths corresponding to the pre-moratorium period (1949 to 1959) than to the post-moratorium period (1961 and 1962). The {sup 240}Pu/{sup 239}Pu ratio ranged from 0.15 to 0.19, and {sup 236}U/{sup 239}Pu ranged from 0.18 to 1.4. The Pu atom ratios ranged within the limits of global fallout in the most intensive period of nuclear atmospheric testing (1952 to 1962). To the best knowledge of the authors the present work is the first publication on biogeochemical cycles with respect to {sup 236}U concentrations and {sup 236}U/{sup 239}Pu atom ratios in the Arctic and in ice cores. - Highlights: • Concentrations and atom ratios of Pu and {sup 236}U determined in an Arctic ice core. • Concentrations of U and Pu found to be higher pre- than post-moratorium. • U and Pu concentrations

  9. Sediment transport drives tidewater glacier periodicity.

    Science.gov (United States)

    Brinkerhoff, Douglas; Truffer, Martin; Aschwanden, Andy

    2017-07-21

    Most of Earth's glaciers are retreating, but some tidewater glaciers are advancing despite increasing temperatures and contrary to their neighbors. This can be explained by the coupling of ice and sediment dynamics: a shoal forms at the glacier terminus, reducing ice discharge and causing advance towards an unstable configuration followed by abrupt retreat, in a process known as the tidewater glacier cycle. Here we use a numerical model calibrated with observations to show that interactions between ice flow, glacial erosion, and sediment transport drive these cycles, which occur independent of climate variations. Water availability controls cycle period and amplitude, and enhanced melt from future warming could trigger advance even in glaciers that are steady or retreating, complicating interpretations of glacier response to climate change. The resulting shifts in sediment and meltwater delivery from changes in glacier configuration may impact interpretations of marine sediments, fjord geochemistry, and marine ecosystems.The reason some of the Earth's tidewater glaciers are advancing despite increasing temperatures is not entirely clear. Here, using a numerical model that simulates both ice and sediment dynamics, the authors show that internal dynamics drive glacier variability independent of climate.

  10. Characteristics of the Yala Glacier from theview point of tritium content

    International Nuclear Information System (INIS)

    Kamiyama, K.; Kitaoka, K.; Watanabe, O.

    1986-01-01

    The vertical distributions of tritium content in glacier ice were determined at two different heights of the Yala Glacier in the Langtang Region, Nepal Himalayas. In the vertical profile of tritium content at the upper point (about 5,400 m high) there exists a clear peak, which shows the injection of artificial tritium due to nuclear weapon test series. The average accumulation rate from 1963 to 1982 at this point is estimated to be 0.85 m of water equivalent per year. At the lower point (about 5,200 m high) the tritium content is relatively low throughout the ice core, decreasing with depth. Precipitation nourishes the glacier in the accumulation area and, after a long time, it appears in the ablation area with the movement of the ice body, resulting in the different profiles of the tritium content between the two points. From the viewpoint of tritium content, the precipitation in the Yala Glacier is more similar to that in New Delhi, India, than that in Karizimir, Afghanistan. Generally speaking, the tritium content in the pricipitation is lower in the coastal area than in the continental area. The precipitation in the Yala Glacier belongs to the coastal type. There possibly exists a great difference in tritium content between the glaciers nourished by water vapor coming directly from the sea and by that coming over the continent

  11. Glaciers of North America - Glaciers of Alaska

    Science.gov (United States)

    Molnia, Bruce F.

    2008-01-01

    Glaciers cover about 75,000 km2 of Alaska, about 5 percent of the State. The glaciers are situated on 11 mountain ranges, 1 large island, an island chain, and 1 archipelago and range in elevation from more than 6,000 m to below sea level. Alaska's glaciers extend geographically from the far southeast at lat 55 deg 19'N., long 130 deg 05'W., about 100 kilometers east of Ketchikan, to the far southwest at Kiska Island at lat 52 deg 05'N., long 177 deg 35'E., in the Aleutian Islands, and as far north as lat 69 deg 20'N., long 143 deg 45'W., in the Brooks Range. During the 'Little Ice Age', Alaska's glaciers expanded significantly. The total area and volume of glaciers in Alaska continue to decrease, as they have been doing since the 18th century. Of the 153 1:250,000-scale topographic maps that cover the State of Alaska, 63 sheets show glaciers. Although the number of extant glaciers has never been systematically counted and is thus unknown, the total probably is greater than 100,000. Only about 600 glaciers (about 1 percent) have been officially named by the U.S. Board on Geographic Names (BGN). There are about 60 active and former tidewater glaciers in Alaska. Within the glacierized mountain ranges of southeastern Alaska and western Canada, 205 glaciers (75 percent in Alaska) have a history of surging. In the same region, at least 53 present and 7 former large ice-dammed lakes have produced jokulhlaups (glacier-outburst floods). Ice-capped volcanoes on mainland Alaska and in the Aleutian Islands have a potential for jokulhlaups caused by subglacier volcanic and geothermal activity. Because of the size of the area covered by glaciers and the lack of large-scale maps of the glacierized areas, satellite imagery and other satellite remote-sensing data are the only practical means of monitoring regional changes in the area and volume of Alaska's glaciers in response to short- and long-term changes in the maritime and continental climates of the State. A review of the

  12. Glacier History of the Northern Antarctic Peninsula Region Since the End of the Last Ice Age and Implications for Southern Hemisphere Westerly-Climate Changes

    Science.gov (United States)

    Kaplan, M. R.; Schaefer, J. M.; Strelin, J. A.; Peltier, C.; Southon, J. R.; Lepper, K. E.; Winckler, G.

    2017-12-01

    For the area around James Ross Island, we present new cosmogenic 10Be exposure ages on glacial deposits, and 14C ages on associated fossil materials. These data allow us to reconstruct in detail when and how the Antarctic Peninsula Ice Sheet retreated around the Island as the last Ice Age ended, and afterward when local land-based glaciers fluctuated. Similar to other studies, we found widespread deglaciation during the earliest Holocene, with fjords and bays becoming ice free between about 11,000 and 8,000 years ago. After 7,000 years ago, neoglacial type advances initiated. Then, both expansions and ice free periods occurred from the middle to late Holocene. We compare the new glacier record to those in southern Patagonia, which is on the other side of the Drake Passage, and published Southern Ocean marine records, in order to infer past middle to high latitude changes in the Southern Hemisphere Westerlies. Widespread warmth in the earliest Holocene, to the north and south of the Drake Passage, led to small glacier systems in Patagonia and wide-ranging glacier recession around the northern Antarctic Peninsula. We infer that this early Holocene period of overall glacier recession - from Patagonia to the northern Peninsula - was caused by a persistent far-southerly setting of the westerlies and accompanying warm climates. Subsequently, during the middle Holocene renewed glacier expansions occurred on both sides of the Drake Passage, which reflects that the Westerlies and associated colder climate systems were generally more equatorward. From the middle to late Holocene, glacier expansions and ice free periods (and likely related ice shelf behavior) document how the Westerlies and associated higher-latitude climate systems varied.

  13. Local response of a glacier to annual filling and drainage of an ice-marginal lake

    Science.gov (United States)

    Walder, J.S.; Trabant, D.C.; Cunico, M.; Fountain, A.G.; Anderson, S.P.; Anderson, R. Scott; Malm, A.

    2006-01-01

    Ice-marginal Hidden Creek Lake, Alaska, USA, outbursts annually over the course of 2-3 days. As the lake fills, survey targets on the surface of the 'ice dam' (the glacier adjacent to the lake) move obliquely to the ice margin and rise substantially. As the lake drains, ice motion speeds up, becomes nearly perpendicular to the face of the ice dam, and the ice surface drops. Vertical movement of the ice dam probably reflects growth and decay of a wedge of water beneath the ice dam, in line with established ideas about jo??kulhlaup mechanics. However, the distribution of vertical ice movement, with a narrow (50-100 m wide) zone where the uplift rate decreases by 90%, cannot be explained by invoking flexure of the ice dam in a fashion analogous to tidal flexure of a floating glacier tongue or ice shelf. Rather, the zone of large uplift-rate gradient is a fault zone: ice-dam deformation is dominated by movement along high-angle faults that cut the ice dam through its entire thickness, with the sense of fault slip reversing as the lake drains. Survey targets spanning the zone of steep uplift gradient move relative to one another in a nearly reversible fashion as the lake fills and drains. The horizontal strain rate also undergoes a reversal across this zone, being compressional as the lake fills, but extensional as the lake drains. Frictional resistance to fault-block motion probably accounts for the fact that lake level falls measurably before the onset of accelerated horizontal motion and vertical downdrop. As the overall fault pattern is the same from year to year, even though ice is lost by calving, the faults must be regularly regenerated, probably by linkage of surface and bottom crevasses as ice is advected toward the lake basin.

  14. Ice Velocity Variations of the Polar Record Glacier (East Antarctica Using a Rotation-Invariant Feature-Tracking Approach

    Directory of Open Access Journals (Sweden)

    Tingting Liu

    2017-12-01

    Full Text Available In this study, the ice velocity changes from 2004 to 2015 of the Polar Record Glacier (PRG in East Antarctica were investigated based on a feature-tracking method using Landsat-7 enhanced thematic mapper plus (ETM+ and Landsat-8 operational land imager (OLI images. The flow field of the PRG curves make it difficult to generate ice velocities in some areas using the traditional normalized cross-correlation (NCC-based feature-tracking method. Therefore, a rotation-invariant parameter from scale-invariant feature transform (SIFT is introduced to build a novel rotation-invariant feature-tracking approach. The validation was performed based on multi-source images and the making earth system data records for use in research environments (MEaSUREs interferometric synthetic aperture radar (InSAR-based Antarctica ice velocity map data set. The results indicate that the proposed method is able to measure the ice velocity in more areas and performs as well as the traditional NCC-based feature-tracking method. The sequential ice velocities obtained present the variations in the PRG during this period. Although the maximum ice velocity of the frontal margin of the PRG and the frontal iceberg reached about 900 m/a and 1000 m/a, respectively, the trend from 2004 to 2015 showed no significant change. Under the interaction of the Polar Times Glacier and the Polarforschung Glacier, both the direction and the displacement of the PRG were influenced. This impact also led to higher velocities in the western areas of the PRG than in the eastern areas. In addition, elevation changes and frontal iceberg calving also impacted the ice velocity of the PRG.

  15. Hymenobacter glacieicola sp. nov., isolated from glacier ice.

    Science.gov (United States)

    Liu, Keshao; Liu, Yongqin; Wang, Ninglian; Gu, Zhengquan; Shen, Liang; Xu, Baiqing; Zhou, Yuguang; Liu, Hongcan; Jiao, Nianzhi

    2016-10-01

    A Gram-stain-negative, rod-shaped, non-motile and red-pink-pigmented bacterial strain, designated B1909T, was isolated from an ice core drilled from Muztagh Glacier on the Tibetan Plateau, China. A phylogenetic tree based on 16S rRNA gene sequences showed that strain B1909T formed a lineage within the genus Hymenobacter and was closely related to Hymenobacter xinjiangensis X2-1gT (96.16 % similarity) and Hymenobacter psychrotolerans Tibet-IIU11T (95.99 %). The predominant fatty acids were iso-C15 : 0, summed feature 3 (C16 : 1ω7c/C16 : 1ω6c), summed feature 4 (iso-C17 : 1ω6c I/anteiso B), C16 : 1ω5c, anteiso-C15 : 0 and iso-C17 : 0 3-OH. The major menaquinone was MK-7. The major polar lipid was phosphatidylethanolamine. The DNA G+C content was 59 mol%. On the basis of the phenotypic, phylogenetic and chemotaxonomic data presented, strain B1909T is considered to represent a novel species of the genus Hymenobacter, for which the name Hymenobacterglacieicola sp. nov. is proposed; the type strain is B1909T (=JCM 30596T=CGMCC 1.12990T).

  16. ICE CHEMISTRY IN STARLESS MOLECULAR CORES

    Energy Technology Data Exchange (ETDEWEB)

    Kalvans, J., E-mail: juris.kalvans@venta.lv [Engineering Research Institute “Ventspils International Radio Astronomy Center” of Ventspils University College, Inzenieru 101, Ventspils, LV-3601 (Latvia)

    2015-06-20

    Starless molecular cores are natural laboratories for interstellar molecular chemistry research. The chemistry of ices in such objects was investigated with a three-phase (gas, surface, and mantle) model. We considered the center part of five starless cores, with their physical conditions derived from observations. The ice chemistry of oxygen, nitrogen, sulfur, and complex organic molecules (COMs) was analyzed. We found that an ice-depth dimension, measured, e.g., in monolayers, is essential for modeling of chemistry in interstellar ices. Particularly, the H{sub 2}O:CO:CO{sub 2}:N{sub 2}:NH{sub 3} ice abundance ratio regulates the production and destruction of minor species. It is suggested that photodesorption during the core-collapse period is responsible for the high abundance of interstellar H{sub 2}O{sub 2} and O{sub 2}H and other species synthesized on the surface. The calculated abundances of COMs in ice were compared to observed gas-phase values. Smaller activation barriers for CO and H{sub 2}CO hydrogenation may help explain the production of a number of COMs. The observed abundance of methyl formate HCOOCH{sub 3} could be reproduced with a 1 kyr, 20 K temperature spike. Possible desorption mechanisms, relevant for COMs, are gas turbulence (ice exposure to interstellar photons) or a weak shock within the cloud core (grain collisions). To reproduce the observed COM abundances with the present 0D model, 1%–10% of ice mass needs to be sublimated. We estimate that the lifetime for starless cores likely does not exceed 1 Myr. Taurus cores are likely to be younger than their counterparts in most other clouds.

  17. Quantifying volume loss from ice cliffs on debris-covered glaciers using high-resolution terrestrial and aerial photogrammetry

    NARCIS (Netherlands)

    Brun, Fanny; Buri, Pascal; Miles, Evan S.; Wagnon, Patrick; Steiner, J.F.; Berthier, Etienne; Ragettli, S.; Kraaijenbrink, P.D.A.; Immerzeel, W.W.; Pellicciotti, Francesca

    Mass losses originating from supraglacial ice cliffs at the lower tongues of debris-covered glaciers are a potentially large component of the mass balance, but have rarely been quantified. In this study, we develop a method to estimate ice cliff volume losses based on high-resolution topographic

  18. Mass balance, meteorology, area altitude distribution, glacier-surface altitude, ice motion, terminus position, and runoff at Gulkana Glacier, Alaska, 1996 balance year

    Science.gov (United States)

    March, Rod S.

    2003-01-01

    The 1996 measured winter snow, maximum winter snow, net, and annual balances in the Gulkana Glacier Basin were evaluated on the basis of meteorological, hydrological, and glaciological data. Averaged over the glacier, the measured winter snow balance was 0.87 meter on April 18, 1996, 1.1 standard deviation below the long-term average; the maximum winter snow balance, 1.06 meters, was reached on May 28, 1996; and the net balance (from August 30, 1995, to August 24, 1996) was -0.53 meter, 0.53 standard deviation below the long-term average. The annual balance (October 1, 1995, to September 30, 1996) was -0.37 meter. Area-averaged balances were reported using both the 1967 and 1993 area altitude distributions (the numbers previously given in this abstract use the 1993 area altitude distribution). Net balance was about 25 percent less negative using the 1993 area altitude distribution than the 1967 distribution. Annual average air temperature was 0.9 degree Celsius warmer than that recorded with the analog sensor used since 1966. Total precipitation catch for the year was 0.78 meter, 0.8 standard deviations below normal. The annual average wind speed was 3.5 meters per second in the first year of measuring wind speed. Annual runoff averaged 1.50 meters over the basin, 1.0 standard deviation below the long-term average. Glacier-surface altitude and ice-motion changes measured at three index sites document seasonal ice-speed and glacier-thickness changes. Both showed a continuation of a slowing and thinning trend present in the 1990s. The glacier terminus and lower ablation area were defined for 1996 with a handheld Global Positioning System survey of 126 locations spread out over about 4 kilometers on the lower glacier margin. From 1949 to 1996, the terminus retreated about 1,650 meters for an average retreat rate of 35 meters per year.

  19. Investigating ice cliff evolution and contribution to glacier mass-balance using a physically-based dynamic model

    Science.gov (United States)

    Buri, Pascal; Miles, Evan; Ragettli, Silvan; Brun, Fanny; Steiner, Jakob; Pellicciotti, Francesca

    2016-04-01

    Supraglacial cliffs are a surface feature typical of debris-covered glaciers, affecting surface evolution, glacier downwasting and mass balance by providing a direct ice-atmosphere interface. As a result, melt rates can be very high and ice cliffs may account for a significant portion of the total glacier mass loss. However, their contribution to glacier mass balance has rarely been quantified through physically-based models. Most cliff energy balance models are point scale models which calculate energy fluxes at individual cliff locations. Results from the only grid based model to date accurately reflect energy fluxes and cliff melt, but modelled backwasting patterns are in some cases unrealistic, as the distribution of melt rates would lead to progressive shallowing and disappearance of cliffs. Based on a unique multitemporal dataset of cliff topography and backwasting obtained from high-resolution terrestrial and aerial Structure-from-Motion analysis on Lirung Glacier in Nepal, it is apparent that cliffs exhibit a range of behaviours but most do not rapidly disappear. The patterns of evolution cannot be explained satisfactorily by atmospheric melt alone, and are moderated by the presence of supraglacial ponds at the base of cliffs and by cliff reburial with debris. Here, we document the distinct patterns of evolution including disappearance, growth and stability. We then use these observations to improve the grid-based energy balance model, implementing periodic updates of the cliff geometry resulting from modelled melt perpendicular to the ice surface. Based on a slope threshold, pixels can be reburied by debris or become debris-free. The effect of ponds are taken into account through enhanced melt rates in horizontal direction on pixels selected based on an algorithm considering distance to the water surface, slope and lake level. We use the dynamic model to first study the evolution of selected cliffs for which accurate, high resolution DEMs are available

  20. Mountain glaciers vs Ice sheet in Greenland - learning from a new monitoring site in West Greenland

    Science.gov (United States)

    Abermann, Jakob; van As, Dirk; Wacker, Stefan; Langley, Kirsty

    2017-04-01

    Only 5 out of the 20.000 peripheral glaciers and ice caps surrounding Greenland are currently monitored due to logistical challenges and despite their significance for sea level rise. Large spatial coast-to-icesheet mass and energy balance gradients limit simple upscaling methods from ice-sheet observations, which builds the motivation for this study. We present results from a new mass and energy balance time series at Qasigiannguit glacier (64°09'N; 51°21'W) in Southwest Greenland. Inter-annual variability is discussed and the surface energy balance over two summers is quantified and a ranking of the main drivers performed. We find that short-wave net radiation is by far the most dominant energy source during summer, followed by similar amounts of net longwave radiation and sensible heat, respectively. We then relate these observations to synchronous measurements at similar latitude on an outlet glacier of the ice sheet a mere 100 km away. We find very pronounced horizontal surface mass balance gradients, with generally more positive values closer to the coast. We conclude that despite minor differences of atmospheric parameters (i.e. humidity, radiation, and temperature) the main reason for the strongly different signal is a pronounced winter precipitation gradient that translates in a different duration of ice exposure and through that an albedo gradient. Modelled energy balance gradients converted into mass changes show good agreement to measured surface mass balance gradients and we explore a latitudinal signal of these findings.

  1. Modelling ice-cliff backwasting on a debris-covered glacier in the Nepalese Himalaya

    NARCIS (Netherlands)

    Steiner, Jakob F.; Pellicciotti, Francesca; Buri, Pascal; Miles, Evan S.; Immerzeel, Walter W.|info:eu-repo/dai/nl/290472113; Reid, Tim D.

    2015-01-01

    Ice cliffs have been identified as a reason for higher ablation rates on debris-covered glaciers than are implied by the insulation effects of the debris. This study aims to improve our understanding of cliff backwasting, and the role of radiative fluxes in particular. An energy-balance model is

  2. Tidal Modulation of Ice Flow on Kangerdlugssuaq and Helheim Glaciers, East Greenland, from High-Rate GPS Measurements

    DEFF Research Database (Denmark)

    Hamilton, G. S.; Stearns, L. A.; Elosegui, P.

    knowledge of ice thickness and fjord bathymetry. Here, we use high-rate GPS measurements collected at sites within a few km of the calving fronts of Kangerdlugssuaq and Helheim glaciers to examine the effect of ocean tide on ice flow. Data were collected at 5-15 s sampling rate during several campaign...... appears to have a short floating tongue, based on an analysis of GPS data collected in June-August 2006 at several stations located at increasing distances from the calving front. Glacier uplift was in phase with measured and modeled tidal height, but attenuated rapidly beyond ~~1 km from the terminus. We...

  3. Seasonal variability of organic matter composition in an Alaskan glacier outflow: insights into glacier carbon sources

    International Nuclear Information System (INIS)

    Spencer, Robert G M; Vermilyea, Andrew; Fellman, Jason; Hood, Eran; Raymond, Peter; Stubbins, Aron; Scott, Durelle

    2014-01-01

    Glacier ecosystems are a significant source of bioavailable, yet ancient dissolved organic carbon (DOC). Characterizing DOC in Mendenhall Glacier outflow (southeast Alaska) we document a seasonal persistence to the radiocarbon-depleted signature of DOC, highlighting ancient DOC as a ubiquitous feature of glacier outflow. We observed no systematic depletion in Δ 14 C-DOC with increasing discharge during the melt season that would suggest mobilization of an aged subglacial carbon store. However, DOC concentration, δ 13 C-DOC, Δ 14 C-DOC and fluorescence signatures appear to have been influenced by runoff from vegetated hillslopes above the glacier during onset and senescence of melt. In the peak glacier melt period, the Δ 14 C-DOC of stream samples at the outflow (−181.7 to −355.3‰) was comparable to the Δ 14 C-DOC for snow samples from the accumulation zone (−207.2 to −390.9‰), suggesting that ancient DOC from the glacier surface is exported in glacier runoff. The pre-aged DOC in glacier snow and runoff is consistent with contributions from fossil fuel combustion sources similar to those documented previously in ice cores and thus provides evidence for anthropogenic perturbation of the carbon cycle. Overall, our results emphasize the need to further characterize DOC inputs to glacier ecosystems, particularly in light of predicted changes in glacier mass and runoff in the coming century. (papers)

  4. Sharply increased mass loss from glaciers and ice caps in the Canadian Arctic Archipelago.

    Science.gov (United States)

    Gardner, Alex S; Moholdt, Geir; Wouters, Bert; Wolken, Gabriel J; Burgess, David O; Sharp, Martin J; Cogley, J Graham; Braun, Carsten; Labine, Claude

    2011-05-19

    Mountain glaciers and ice caps are contributing significantly to present rates of sea level rise and will continue to do so over the next century and beyond. The Canadian Arctic Archipelago, located off the northwestern shore of Greenland, contains one-third of the global volume of land ice outside the ice sheets, but its contribution to sea-level change remains largely unknown. Here we show that the Canadian Arctic Archipelago has recently lost 61 ± 7 gigatonnes per year (Gt yr(-1)) of ice, contributing 0.17 ± 0.02 mm yr(-1) to sea-level rise. Our estimates are of regional mass changes for the ice caps and glaciers of the Canadian Arctic Archipelago referring to the years 2004 to 2009 and are based on three independent approaches: surface mass-budget modelling plus an estimate of ice discharge (SMB+D), repeat satellite laser altimetry (ICESat) and repeat satellite gravimetry (GRACE). All three approaches show consistent and large mass-loss estimates. Between the periods 2004-2006 and 2007-2009, the rate of mass loss sharply increased from 31 ± 8 Gt yr(-1) to 92 ± 12 Gt yr(-1) in direct response to warmer summer temperatures, to which rates of ice loss are highly sensitive (64 ± 14 Gt yr(-1) per 1 K increase). The duration of the study is too short to establish a long-term trend, but for 2007-2009, the increase in the rate of mass loss makes the Canadian Arctic Archipelago the single largest contributor to eustatic sea-level rise outside Greenland and Antarctica.

  5. An inventory and estimate of water stored in firn fields, glaciers, debris-covered glaciers, and rock glaciers in the Aconcagua River Basin, Chile

    Science.gov (United States)

    Janke, Jason R.; Ng, Sam; Bellisario, Antonio

    2017-11-01

    An inventory of firn fields, glaciers, debris-covered glaciers, and rock glaciers was conducted in the Aconcagua River Basin of the semiarid Andes of central Chile. A total of 916 landforms were identified, of which rock glaciers were the most abundant (669) and occupied the most total area. Glaciers and debris-covered glaciers were less numerous, but were about five times larger in comparison. The total area occupied by glaciers and debris-covered glaciers was roughly equivalent to the total area of rock glaciers. Debris-covered glaciers and rock glaciers were subcategorized into six ice-content classes based on interpretation of surface morphology with high-resolution satellite imagery. Over 50% of rock glaciers fell within a transitional stage; 85% of debris-covered glaciers were either fully covered or buried. Most landforms occupied elevations between 3500 and 4500 m. Glaciers and firn occurred at higher elevations compared to rock glaciers and debris-covered glaciers. Rock glaciers had a greater frequency in the northern part of the study area where arid climate conditions exist. Firn and glaciers were oriented south, debris-covered glaciers west, and rock glaciers southwest. An analysis of water contribution of each landform in the upper Andes of the Aconcagua River Basin was conducted using formulas that associate the size of the landforms to estimates of water stored. Minimum and maximum water storage was calculated based on a range of debris to ice content ratios for debris-covered glaciers and rock glaciers. In the Aconcagua River Basin, rock glaciers accounted for 48 to 64% of the water stored within the landforms analyzed; glaciers accounted for 15 to 25%; debris-covered glaciers were estimated at 15 to 19%; firn fields contained only about 5 to 8% of the water stored. Expansion of agriculture, prolonged drought, and removal of ice-rich landforms for mining have put additional pressure on already scarce water resources. To develop long

  6. Glaciers of Europe

    Science.gov (United States)

    Williams, Richard S.; Ferrigno, Jane G.

    1993-01-01

    ALPS: AUSTRIAN: An overview is provided on the occurrence of the glaciers in the Eastern Alps of Austria and on the climatic conditions in this area, Historical documents on the glaciers have been available since the Middle Ages. Special glaciological observations and topographic surveys of individual glaciers were initiated as early as 1846. Recent data in an inventory based on aerial photographs taken in 1969 show 925 glaciers in the Austrian Alps with a total area of 542 square kilometers. Present research topics include studies of mass and energy balance, relations of glaciers and climate, physical glaciology, a complete inventory of the glaciers, and testing of remote sensing methods. The location of the glacier areas is shown on Landsat multispectral scanner images; the improved capabilities of the Landsat thematic mapper are illustrated with an example from the Oztaler Alpen group. ALPS: SWISS: According to a glacier inventory published in 1976, which is based on aerial photography of 1973, there are 1,828 glacier units in the Swiss Alps that cover a total area of 1fl42 square kilometers. The Rhonegletscher, currently the ninth largest in the country, was one of the first to be studied in detail. Its surface has been surveyed repeatedly; velocity profiles were measured, and the fluctuations of its terminus were mapped and recorded from 1874 to 1914. Recent research on the glacier has included climatological, hydrological, and massbalance studies. Glaciological research has been conducted on various other glaciers in Switzerland concerning glacier hydrology, glacier hazards, fluctuations of glacier termini, ice mechanics, ice cores, and mass balance. Good maps are available showing the extent of glaciers from the latter decades of the 19th century. More recently, the entire country has been mapped at scales of 1:25,000, 1:50,000, 1:100,000, 1:200,000, and 1:500,000. The 1:25,000-scale series very accurately represents the glaciers as well as locates

  7. Ice cores and palaeoclimate

    International Nuclear Information System (INIS)

    Krogh Andersen, K.; Ditlevsen, P.; Steffensen, J.P.

    2001-01-01

    Ice cores from Greenland give testimony of a highly variable climate during the last glacial period. Dramatic climate warmings of 15 to 25 deg. C for the annual average temperature in less than a human lifetime have been documented. Several questions arise: Why is the Holocene so stable? Is climatic instability only a property of glacial periods? What is the mechanism behind the sudden climate changes? Are the increased temperatures in the past century man-made? And what happens in the future? The ice core community tries to attack some of these problems. The NGRIP ice core currently being drilled is analysed in very high detail, allowing for a very precise dating of climate events. It will be possible to study some of the fast changes on a year by year basis and from this we expect to find clues to the sequence of events during rapid changes. New techniques are hoped to allow for detection of annual layers as far back as 100,000 years and thus a much improved time scale over past climate changes. It is also hoped to find ice from the Eemian period. If the Eemian layers confirm the GRIP sequence, the Eemian was actually climatically unstable just as the glacial period. This would mean that the stability of the Holocene is unique. It would also mean, that if human made global warming indeed occurs, we could jeopardize the Holocene stability and create an unstable 'Eemian situation' which ultimately could start an ice age. Currenlty mankind is changing the composition of the atmosphere. Ice cores document significant increases in greenhouse gases, and due to increased emissions of sulfuric and nitric acid from fossil fuel burning, combustion engines and agriculture, modern Greenland snow is 3 - 5 times more acidic than pre-industrial snow (Mayewski et al., 1986). However, the magnitude and abruptness of the temperature changes of the past century do not exceed the magnitude of natural variability. It is from the ice core perspective thus not possible to attribute the

  8. A deposition record of inorganic ions from a high-alpine glacier

    Energy Technology Data Exchange (ETDEWEB)

    Huber, T. [Bern Univ. (Switzerland); Bruetsch, S.; Gaeggeler, H.W.; Schotterer, U.; Schwikowski, M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    The lowest five metres of an ice core from a high-alpine glacier (Colle Gnifetti, Monte Rosa massif, 4450m a.s.l., Switzerland) were analysed for ammonium, calcium, chloride, magnesium, nitrate, potassium, sodium, and sulphate by ion chromatography. (author) 1 fig., 3 refs.

  9. Aerosol deposition (trace elements and black carbon) over the highest glacier of the Eastern European Alps during the last centuries

    Science.gov (United States)

    Bertò, Michele; Barbante, Carlo; Gabrieli, Jacopo; Gabrielli, Paolo; Spolaor, Andrea; Dreossi, Giuliano; Laj, Paolo; Zanatta, Marco; Ginot, Patrick; Fain, Xavier

    2016-04-01

    Ice cores are an archive of a wide variety of climatic and environmental information from the past, retaining them for hundreds of thousands of years. Anthropogenic pollutants, trace elements, heavy metals and major ions, are preserved as well providing insights on the past atmospheric circulations and allowing evaluating the human impact on the environment. Several ice cores were drilled in glaciers at mid and low latitudes, as in the European Alps. The first ice cores drilled to bedrock in the Eastern Alps were retrieved during autumn 2011 on the "Alto dell`Ortles glacier", the uppermost glacier of the Ortles massif (3905m, South Tirol, Italy), in the frame of the "Ortles Project". A preliminary dating of the core suggests that it should cover at least 300-400 years. Despite the summer temperature increase of the last decades this glacier still contain cold ice. Indeed, O and H isotopes profiles well describe the atmospheric warming as well as the low temperatures recorded during the Little Ice Age (LIA). Moreover, this glacier is located close to densely populated and industrialized areas and can be used for reconstructing for the first time past and recent air pollution and the human impact in the Eastern European Alps. The innermost part of the core is under analysis by means of a "Continuous Flow Analysis" system. This kind of analysis offers a high resolution in data profiles. The separation between the internal and the external parts of the core avoid any kind of contamination. An aluminum melting head melts the core at about 2.5 cm min-1. Simultaneous analyses of conductivity, dust concentration and size distribution (from 0.8 to 80 μm), trace elements with Inductive Coupled Plasma Mass Spectrometer (ICP-MS, Agilent 7500) and refractory black carbon (rBC) with the Single Particle Soot Photometer (SP2, Droplet Measurement Technologies) are performed. A fraction of the melt water is collected by an auto-sampler for further analysis. The analyzed elements

  10. A Younger Dryas re-advance of local glaciers in north Greenland

    DEFF Research Database (Denmark)

    Larsen, Nicolaj K.; Funder, Svend; Linge, Henriette

    2016-01-01

    The Younger Dryas (YD) is a well-constrained cold event from 12,900 to 11,700 years ago but it remains unclear how the cooling and subsequent abrupt warming recorded in ice cores was translated into ice margin fluctuations in Greenland. Here we present 10Be surface exposure ages from three moraines...... in front of local glaciers on a 50 km stretch along the north coast of Greenland, facing the Arctic Ocean. Ten ages range from 11.6 ± 0.5 to 27.2 ± 0.9 ka with a mean age of 12.5 ± 0.7 ka after exclusion of two outliers. We consider this to be a minimum age for the abandonment of the moraines. The ages...... the interval 11.8-13.0 ka ago. This is the first time a synchronous YD glacier advance and subsequent retreat has been recorded for several independent glaciers in Greenland. In most other areas, there is no evidence for re-advance and glaciers were retreating during YD. We explain the different behaviour...

  11. Holocene glacier variations and sea level change in Wahlenbergfjorden, Nordaustlandet, Svalbard

    Science.gov (United States)

    Schomacker, A.; Farnsworth, W. R.; Ingolfsson, O.; Allaart, L.; Håkansson, L.; Retelle, M.

    2017-12-01

    Here we present preliminary results on the Holocene glacier variations in Wahlenbergfjorden on Nordaustlandet, Svalbard. The reconstructions are based on lake sediment records from Lake Kl\\overbladvatna covering the last 9500 years. This lake captures meltwater from the Etonbreen glacier, a main outlet of the Austfonna ice cap, when the glacier extends further than present. Additionally, Kl\\overbladvatna is an isolation basin capturing the postglacial isolation from the marine to lacustrine environment due to glacioisostatic rebound. The chronology is based on radiocarbon dating of terrestrial and marine macrofossils. The lake sediment record also reveals that glacial meltwater exceeded the threshold into Lake Kl\\overbladvatna during the Little Ice Age as witnessed by glacial meltwater clay in the upper part of the sediment cores. In periods of less advanced glaciers, the lake sediment record is dominated by laminated clayey gyttja. Based on radiocarbon datings of driftwood, whalebone, and marine mollusc shells in raised beaches and marine deposits in Pallanderbukta, south Wahlenbergfjorden, we also present a new postglacial sea level curve from this region.

  12. Velocities of antarctic outlet glaciers determined from sequential Landsat images

    Science.gov (United States)

    MacDonald, Thomas R.; Ferrigno, Jane G.; Williams, Richard S.; Lucchitta, Baerbel K.

    1989-01-01

    Approximately 91.0 percent of the volume of present-day glacier ice on Earth is in Antarctica; Greenland contains about another 8.3 percent of the volume. Thus, together, these two great ice sheets account for an estimated 99.3 percent of the total. Long-term changes in the volume of glacier ice on our planet are the result of global climate change. Because of the relationship of global ice volume to sea level (± 330 cubic kilometers of glacier ice equals ± 1 millimeter sea level), changes in the mass balance of the antarctic ice sheet are of particular importance.Whether the mass balance of the east and west antarctic ice sheets is positive or negative is not known. Estimates of mass input by total annual precipitation for the continent have been made from scattered meteorological observations (Swithinbank 1985). The magnitude of annual ablation of the ice sheet from calving of outlet glaciers and ice shelves is also not well known. Although the velocities of outlet glaciers can be determined from field measurements during the austral summer,the technique is costly, does not cover a complete annual cycle,and has been applied to just a few glaciers. To increase the number of outlet glaciers in Antarctica for which velocities have been determined and to provide additional data for under-standing the dynamics of the antarctic ice sheets and their response to global climate change, sequential Landsat image of several outlet glaciers were measured.

  13. A grid-based Model for Backwasting at supraglacial Ice Cliffs on a debris-covered Glacier

    Science.gov (United States)

    Buri, P.; Steiner, J. F.; Pellicciotti, F.; Miles, E. S.; Immerzeel, W.

    2014-12-01

    In the Himalaya, debris-covered glaciers cover significant portions of the glacierised area. Their behaviour is not entirely understood, but they seem to experience strong mass losses in direct contradiction with the insulating effect of debris. A characteristic most debris-covered glaciers share is the appearance of cliffs and lakes on their surface. These supraglacial features play a role in surface evolution, dynamics and downwasting of debris-covered glaciers but their actual effects have not been quantified at the glacier scale. Numerous measurements of radiative fluxes at the cliff surface, detailed survey of cliffs geometry and ablation have been conducted on the debris-covered Lirung Glacier, Nepalese Himalayas. We used four 20cm-resolution DEMs obtained from UAV flights to represent the glacier surface to a very detailed degree. As the debris remains stable on slopes up to 30°, ice cliffs show inclinations above this threshold and were clearly represented in the DEMs. Direct measurements and a point-scale cliff-backwasting model have showed that melt patterns over a single cliff are highly variable across and along the ice surface due to non-uniform geometry, varying inclination, aspect and terrain view factors. Variability in observed ablation was large also among cliffs. We therefore developed an energy balance model with a gridded representation of the cliff to understand the melt behaviour at the cliff scale. Previous models assumed the cliff to be a plane with a constant slope and aspect, and extrapolation of melt rates to the glacier scale based on this assumption might be erroneous. Using a grid-based approach allows representation of real inclined areas of the cliff. The detailed surface from the UAV-DEM was taken as initial condition for the model. The model was in close agreement with ablation measurements at numerous stakes located on 3 cliffs. Results show very high variability both along the cliffs' elevation and extension. These cannot be

  14. A physically based 3-D model of ice cliff evolution over debris-covered glaciers

    NARCIS (Netherlands)

    Buri, Pascal; Miles, Evan S.; Steiner, J.F.; Immerzeel, W.W.; Wagnon, Patrick; Pellicciotti, Francesca

    2016-01-01

    We use high-resolution digital elevation models (DEMs) from unmanned aerial vehicle (UAV) surveys to document the evolution of four ice cliffs on the debris-covered tongue of Lirung Glacier, Nepal, over one ablation season. Observations show that out of four cliffs, three different patterns of

  15. Rapid changes in ice core gas records - Part 1: On the accuracy of methane synchronisation of ice cores

    Science.gov (United States)

    Köhler, P.

    2010-08-01

    Methane synchronisation is a concept to align ice core records during rapid climate changes of the Dansgaard/Oeschger (D/O) events onto a common age scale. However, atmospheric gases are recorded in ice cores with a log-normal-shaped age distribution probability density function, whose exact shape depends mainly on the accumulation rate on the drilling site. This age distribution effectively shifts the mid-transition points of rapid changes in CH4 measured in situ in ice by about 58% of the width of the age distribution with respect to the atmospheric signal. A minimum dating uncertainty, or artefact, in the CH4 synchronisation is therefore embedded in the concept itself, which was not accounted for in previous error estimates. This synchronisation artefact between Greenland and Antarctic ice cores is for GRIP and Byrd less than 40 years, well within the dating uncertainty of CH4, and therefore does not calls the overall concept of the bipolar seesaw into question. However, if the EPICA Dome C ice core is aligned via CH4 to NGRIP this synchronisation artefact is in the most recent unified ice core age scale (Lemieux-Dudon et al., 2010) for LGM climate conditions of the order of three centuries and might need consideration in future gas chronologies.

  16. Age, origin and evolution of Antarctic debris-covered glaciers: Implications for landscape evolution and long-term climate change

    Science.gov (United States)

    Mackay, Sean Leland

    Antarctic debris-covered glaciers are potential archives of long-term climate change. However, the geomorphic response of these systems to climate forcing is not well understood. To address this concern, I conducted a series of field-based and numerical modeling studies in the McMurdo Dry Valleys of Antarctica (MDV), with a focus on Mullins and Friedman glaciers. I used data and results from geophysical surveys, ice-core collection and analysis, geomorphic mapping, micro-meteorological stations, and numerical-process models to (1) determine the precise origin and distribution of englacial and supraglacial debris within these buried-ice systems, (2) quantify the fundamental processes and feedbacks that govern interactions among englacial and supraglacial debris, (3) establish a process-based model to quantify the inventory of cosmogenic nuclides within englacial and supraglacial debris, and (4) isolate the governing relationships between the evolution of englacial /supraglacial debris and regional climate forcing. Results from 93 field excavations, 21 ice cores, and 24 km of ground-penetrating radar data show that Mullins and Friedman glaciers contain vast areas of clean glacier ice interspersed with inclined layers of concentrated debris. The similarity in the pattern of englacial debris bands across both glaciers, along with model results that call for negligible basal entrainment, is best explained by episodic environmental change at valley headwalls. To constrain better the timing of debris-band formation, I developed a modeling framework that tracks the accumulation of cosmogenic 3He in englacial and supraglacial debris. Results imply that ice within Mullins Glacier increases in age non-linearly from 12 ka to ˜220 ka in areas of active flow (up to >> 1.6 Ma in areas of slow-moving-to-stagnant ice) and that englacial debris bands originate with a periodicity of ˜41 ka. Modeling studies suggest that debris bands originate in synchronicity with changes in

  17. Sea ice and pollution-modulated changes in Greenland ice core methanesulfonate and bromine

    Science.gov (United States)

    Maselli, Olivia J.; Chellman, Nathan J.; Grieman, Mackenzie; Layman, Lawrence; McConnell, Joseph R.; Pasteris, Daniel; Rhodes, Rachael H.; Saltzman, Eric; Sigl, Michael

    2017-01-01

    Reconstruction of past changes in Arctic sea ice extent may be critical for understanding its future evolution. Methanesulfonate (MSA) and bromine concentrations preserved in ice cores have both been proposed as indicators of past sea ice conditions. In this study, two ice cores from central and north-eastern Greenland were analysed at sub-annual resolution for MSA (CH3SO3H) and bromine, covering the time period 1750-2010. We examine correlations between ice core MSA and the HadISST1 ICE sea ice dataset and consult back trajectories to infer the likely source regions. A strong correlation between the low-frequency MSA and bromine records during pre-industrial times indicates that both chemical species are likely linked to processes occurring on or near sea ice in the same source regions. The positive correlation between ice core MSA and bromine persists until the mid-20th century, when the acidity of Greenland ice begins to increase markedly due to increased fossil fuel emissions. After that time, MSA levels decrease as a result of declining sea ice extent but bromine levels increase. We consider several possible explanations and ultimately suggest that increased acidity, specifically nitric acid, of snow on sea ice stimulates the release of reactive Br from sea ice, resulting in increased transport and deposition on the Greenland ice sheet.

  18. Accuracy of three-dimensional glacier surface volocities derived from radar interfeometry and ice-soundin radar measurements

    DEFF Research Database (Denmark)

    Mohr, Johan Jacob; Reeh, Niels; Madsen, Søren Nørvang

    2003-01-01

    We present a method for analyzing the errors involved in measuring three-dimensional glacier velocities with interferometric radar. We address the surface-parallel flow assumption and an augmented approach with a flux-divergence (FD) term. The errors in an interferometric ERS-1/-2 satellite radar...... dataset with ascending- and descending-orbit data covering Storstrommen glacier, northeast Greenland, are assessed. The FD error assessment is carried out on airborne 60 MHz ice-sounding radar data from the same area. A simple model of an interferometric radar system is developed and analyzed. The error...... sources considered include phase noise, atmospheric distortions, baseline calibration errors, a dry snow layer, and the stationary-flow assumption used in differential interferometry. The additional error sources in the analysis of FD errors are noise, bias and unknown variations of the ice thickness...

  19. Toward unified ice core chronologies with the DatIce tool

    Science.gov (United States)

    Toye Mahamadou Kele, H.; Lemieux-Dudon, B.; Blayo, E.

    2012-04-01

    Antarctic and Greenland ice cores provide a means to study the phase relationships of climate changes in both hemispheres. They also enable to study the timing between climate, and greenhouse gases or orbital forcings. One key step for such studies is to improve the absolute and relative precisions of ice core age scales (for ice and trapped gas), and beyond that, to try to reach the best consistency between chronologies of paleo records of any kind. The DatIce tool is designed to increase the consistency between pre-existing (also called background) core chronologies. It formulates a variational inverse problem which aims at correcting three key quantities that uniquely define the core age scales: the accumulation rate, the total thinning function, and the close-off depth. For that purpose, it integrates paleo data constraints of many types among which age markers (with for instance documented volcanoes eruptions), and stratigraphic links (with for instance abrupt changes in methane concentration). A cost function is built that enables to calculate new chronologies by making a trade-off between all the constraints (background chronologies and paleo data). The method presented in Lemieux-Dudon et al (2010) has already been applied simultaneously to EPICA EDML and EDC, Vostok and NGRIP. Currently, on going works are conducted at LSCE Saclay and LGGE Grenoble laboratories to construct unified Antarctic chronologies by applying the DatIce tool with new ice cores and new sets of paleo measurements. We here present the DatIce tool, the underlying methodology, and its potential applications. We further show some improvements that have been made recently. We especially adress the issue related to the calibration of the error of pre-existing core chronologies. They are inputs that may have a strong impact on the results. However these uncertainties are uneasy to analyze, since prior chronologies are most of the time assessed on the basis of glaciological models (firn

  20. Seasonal and altitudinal variations in snow algal communities on an Alaskan glacier (Gulkana glacier in the Alaska range)

    International Nuclear Information System (INIS)

    Takeuchi, Nozomu

    2013-01-01

    Snow and ice algae are cold tolerant algae growing on the surface of snow and ice, and they play an important role in the carbon cycles for glaciers and snowfields in the world. Seasonal and altitudinal variations in seven major taxa of algae (green algae and cyanobacteria) were investigated on the Gulkana glacier in Alaska at six different elevations from May to September in 2001. The snow algal communities and their biomasses changed over time and elevation. Snow algae were rarely observed on the glacier in May although air temperature had been above 0 ° C since the middle of the month and surface snow had melted. In June, algae appeared in the lower areas of the glacier, where the ablation ice surface was exposed. In August, the distribution of algae was extended to the upper parts of the glacier as the snow line was elevated. In September, the glacier surface was finally covered with new winter snow, which terminated algal growth in the season. Mean algal biomass of the study sites continuously increased and reached 6.3 × 10 μl m −2 in cell volume or 13 mg carbon m −2 in September. The algal community was dominated by Chlamydomonas nivalis on the snow surface, and by Ancylonema nordenskiöldii and Mesotaenium berggrenii on the ice surface throughout the melting season. Other algae were less abundant and appeared in only a limited area of the glacier. Results in this study suggest that algae on both snow and ice surfaces significantly contribute to the net production of organic carbon on the glacier and substantially affect surface albedo of the snow and ice during the melting season. (letter)

  1. Diversity of Holocene life forms in fossil glacier ice

    DEFF Research Database (Denmark)

    Willerslev, E.; Hansen, Anders J.; Christensen, B.

    1999-01-01

    Studies of biotic remains of polar ice caps have been limited to morphological identification of plant pollen and spores. By using sensitive molecular techniques, we now demonstrate a much greater range of detectable organisms; from 2000- and 4000-year-old ice-core samples, we obtained...

  2. A grid-based model of backwasting of supraglacial ice cliffs over debris-covered glaciers

    NARCIS (Netherlands)

    Buri, Pascal; Pellicciotti, Francesca; Steiner, Jakob F|info:eu-repo/dai/nl/119338653; Miles, Evan S.; Immerzeel, Wouter W|info:eu-repo/dai/nl/290472113

    2016-01-01

    Ice cliffs might be partly responsible for the high mass losses of debris-covered glaciers in the Hindu Kush-Karakoram-Himalaya region. The few existing models of cliff backwasting are point-scale models applied at few locations or assume cliffs to be planes with constant slope and aspect, a major

  3. Changes in ice dynamics and mass balance of the Antarctic ice sheet.

    Science.gov (United States)

    Rignot, Eric

    2006-07-15

    The concept that the Antarctic ice sheet changes with eternal slowness has been challenged by recent observations from satellites. Pronounced regional warming in the Antarctic Peninsula triggered ice shelf collapse, which led to a 10-fold increase in glacier flow and rapid ice sheet retreat. This chain of events illustrated the vulnerability of ice shelves to climate warming and their buffering role on the mass balance of Antarctica. In West Antarctica, the Pine Island Bay sector is draining far more ice into the ocean than is stored upstream from snow accumulation. This sector could raise sea level by 1m and trigger widespread retreat of ice in West Antarctica. Pine Island Glacier accelerated 38% since 1975, and most of the speed up took place over the last decade. Its neighbour Thwaites Glacier is widening up and may double its width when its weakened eastern ice shelf breaks up. Widespread acceleration in this sector may be caused by glacier ungrounding from ice shelf melting by an ocean that has recently warmed by 0.3 degrees C. In contrast, glaciers buffered from oceanic change by large ice shelves have only small contributions to sea level. In East Antarctica, many glaciers are close to a state of mass balance, but sectors grounded well below sea level, such as Cook Ice Shelf, Ninnis/Mertz, Frost and Totten glaciers, are thinning and losing mass. Hence, East Antarctica is not immune to changes.

  4. Sodium, Iodine and Bromine in Polar Ice Cores

    DEFF Research Database (Denmark)

    Maffezzoli, Niccolo

    Abstract: This research focuses on sodium, bromine and iodine in polar ice cores, with the aim of reviewing and advancing their current understanding with additional measurements and records, and investigating the connections of these tracers with sea ice and their feasibility as sea ice indicators...... with a description of the main analytic al techniques used to measure ionic and elemental species in ice cores. Chapter 4 introduces sodium, bromine and iodine with a theoretical perspective and a particular focus on their connections with sea ice. Some of the physical and chemical properties that are believed...... back trajectory analyses of the past 17 years. The results identify the aerosol source area influencing the Renland ice cap, a result necessary for the interpretation of impurity records obtained from the ice core. Chapter 6 reviews the published ice/snow measurements of bromine and iodine at polar...

  5. Determining and Interpreting Detailed Ice Surface Elevation Changes of the Glaciers in Upernavik Isstrøm, Northwest Greenland, 1985-2016

    Science.gov (United States)

    Wendler, L.; Csatho, B. M.; Schenk, A. F.

    2017-12-01

    The several distinct glaciers of Upernavik Isstrøm in NW Greenland exhibit variable thinning, retreat, and velocity behaviors, despite being in close proximity, draining into the same fjord, and experiencing similar climatic conditions. This study reconstructed the 1985-2016 surface elevation change history for each Upernavik glacier. The data sets used included altimetry data collected by NASA's ATM, LVIS, and ICESat systems and digital elevation models (DEMs) derived from 1985 aerial photographs; ASTER, SPOT, and Worldview-1 and 2 satellite stereo imagery. The Surface Elevation Reconstruction and Change detection (SERAC) program was used to combine the data and correct the DEMs for fusing with the altimetry data. The spatiotemporal pattern of ice surface change was partitioned into changes related to surface processes and ice dynamics. The resulting ice thickness change time series were compared to other data sets, such as bed elevation, SMB anomalies, runoff, as well as marginal retreat derived from satellite imagery corresponding to the ASTER DEMs, to investigate possible forcings causing the variable behavior of the glaciers. Major findings include detection of rapid dynamic thinning of glacier 1 between 2005 and 2006, during a period of a stable calving front position. Continuing thinning and speed-up led to a loss of contact with a pinning point causing a major retreat between 2007 and 2008. This sequence of events contradicts previously held hypotheses that major thinning was caused by reduced backstress when a long-lived floating tongue disintegrated. Also, our results show a period of large thinning on glacier 2 between 2010 and 2011, after the retreat of the front resulted in a loss of contact between the glacier and one of its flanking outcrops suggesting that reduction of lateral drag might have contributed to the thinning. While the study reinforces that bed topography is a major factor in controlling outlet glacier dynamic thinning, it also

  6. Morphology of bottom surfaces of glacier ice tongues in the East Antarctic region

    Energy Technology Data Exchange (ETDEWEB)

    Bianchi, C.; Chiappini, M.; Zirizzotti, A.; Zuccheretti, E. [Istituto Nazionale di Geofisica e Vulcanologia, Rome (Italy); Tabacco, I. E. [Milan Univ., Milan (Italy). Sez. Geofisica; Passerini, A. [Milan Univ. Bicocca, Milan (Italy). Dipt. di Fisica

    2001-02-01

    During three Antarctic summer campaigns (1995/97/99) Radio Echo Sounding (RES) system data from some glacier ice tongues in the East Antarctic regions between Victoria Land and George 5. Land were collected. The morphology and structure of the bottom surfaces deduced from the electromagnetic interpretation of echo signal were observed. The bottom surfaces at the ice/water interface show either irregular or flat contours or both. Some ice tongues are nearly perfectly flat, others show clear signs of irregularities while three of them have good regular spaced rippled bottom surfaces. The latter structures are well-evident in the longitudinal traverse of the tongues, whereas the transversal paths do not show the same features. This particular shape of the bottom surfaces related to the ablation process and detachment mechanism could be interesting especially to determine some physical characteristics and the possible fracture points of the ice tongues.

  7. Morphology of bottom surfaces of glacier ice tongues in the East Antarctic region

    Directory of Open Access Journals (Sweden)

    E. Zuccheretti

    2001-06-01

    Full Text Available During three Antarctic summer campaigns (1995/97/99 Radio Echo Sounding (RES system data from some glacier ice tongues in the East Antarctic regions between Victoria Land and George V Land were collected. The morphology and structure of the bottom surfaces deduced from the electromagnetic interpretation of echo signal were observed. The bottom surfaces at the ice/water interface show either irregular or flat contours or both. Some ice tongues are nearly perfectly flat, others show clear signs of irregularities while three of them have good regular spaced rippled bottom surfaces. The latter structures are well-evident in the longitudinal traverse of the tongues, whereas the transversal paths do not show the same features. This particular shape of the bottom surfaces related to the ablation process and detachment mechanism could be interesting especially to determine some physical characteristics and the possible fracture points of the ice tongues.

  8. Ice-Shelf Melt Response to Changing Winds and Glacier Dynamics in the Amundsen Sea Sector, Antarctica

    Science.gov (United States)

    Donat-Magnin, Marion; Jourdain, Nicolas C.; Spence, Paul; Le Sommer, Julien; Gallée, Hubert; Durand, Gaël.

    2017-12-01

    It has been suggested that the coastal Southern Ocean subsurface may warm over the 21st century in response to strengthening and poleward shifting winds, with potential adverse effects on West Antarctic glaciers. However, using a 1/12° ocean regional model that includes ice-shelf cavities, we find a more complex response to changing winds in the Amundsen Sea. Simulated offshore subsurface waters get colder under strengthened and poleward shifted winds representative of the SAM projected trend. The buoyancy-driven circulation induced by ice-shelf melt transports this cold offshore anomaly onto the continental shelf, leading to cooling and decreased melt below 450 m. In the vicinity of ice-shelf fronts, Ekman pumping contributes to raise the isotherms in response to changing winds. This effect overwhelms the horizontal transport of colder offshore waters at intermediate depths (between 200 and 450 m), and therefore increases melt rates in the upper part of the ice-shelf cavities, which reinforces the buoyancy-driven circulation and further contributes to raise the isotherms. Then, prescribing an extreme grounding line retreat projected for 2100, the total melt rates simulated underneath Thwaites and Pine Island are multiplied by 2.5. Such increase is explained by a larger ocean/ice interface exposed to CDW, which is then amplified by a stronger melt-induced circulation along the ice draft. Our main conclusions are that (1) outputs from ocean models that do not represent ice shelf cavities (e.g., CMIP5 models) should not be directly used to predict the thermal forcing of future ice shelf cavities; (2) coupled ocean/ice sheet models with a velocity-dependent melt formulation are needed for future projections of glaciers experiencing a significant grounding line retreat.

  9. Recent Elevation Changes on Bagley Ice Valley, Guyot and Yahtse Glaciers, Alaska, from ICESat Altimetry, Star-3i Airborne, and SRTM Spaceborne DEMs

    Science.gov (United States)

    Muskett, R. R.; Sauber, J. M.; Lingle, C. S.; Rabus, B. T.; Tangborn, W. V.; Echelmeyer, K. A.

    2005-12-01

    Three- to 5-year surface elevation changes on Bagley Ice Valley, Guyot and Yahtse Glaciers, in the eastern Chugach and St. Elias Mtns of south-central Alaska, are estimated using ICESat-derived data and digital elevation models (DEMs) derived from interferometric synthetic aperture radar (InSAR) data. The surface elevations of these glaciers are influenced by climatic warming superimposed on surge dynamics (in the case of Bagley Ice Valley) and tidewater glacier dynamics (in the cases of Guyot and Yahtse Glaciers) in this coastal high-precipitation regime. Bagley Ice Valley / Bering Glacier last surged in 1993-95. Guyot and Yahtse Glaciers, as well as the nearby Tyndell Glacier, have experienced massive tidewater retreat during the past century, as well as during recent decades. The ICESat-derived elevation data we employ were acquired in early autumn in both 2003 and 2004. The NASA/NIMA Shuttle Radar Topography Mission (SRTM) DEM that we employ was derived from X-band InSAR data acquired during this 11-22 Feb. 2000 mission and processed by the German Aerospace Center. This DEM was corrected for estimated systematic error, and a mass balance model was employed to account for seasonal snow accumulation. The Star-3i airborne, X-band, InSAR-derived DEM that we employ was acquired 4-13 Sept. 2000 by Intermap Technologies, Inc., and was also processed by them. The ICESat-derived profiles crossing Bagley Ice Valley, differenced with Star-3i DEM elevations, indicate preliminary mean along-profile elevation increases of 5.6 ± 3.4 m at 1315 m altitude, 7.4 ± 2.7 m at 1448 m altitude, 4.7 ± 1.9 m at 1557 m altitude, 1.3 ± 1.4 m at 1774 m altitude, and 2.5 ± 1.5 m at 1781 m altitude. This is qualitatively consistent with the rising surface on Bagley Ice Valley observed by Muskett et al. [2003]. The ICESat-derived profiles crossing Yahtse Glacier, differenced with the SRTM DEM elevations, indicate preliminary mean elevation changes (negative implies decrease) of -0.9 ± 3

  10. Variability of Basal Melt Beneath the Pine Island Glacier Ice Shelf, West Antarctica

    Science.gov (United States)

    Bindschadler, Robert; Vaughan, David G.; Vornberger, Patricia

    2011-01-01

    Observations from satellite and airborne platforms are combined with model calculations to infer the nature and efficiency of basal melting of the Pine Island Glacier ice shelf, West Antarctica, by ocean waters. Satellite imagery shows surface features that suggest ice-shelf-wide changes to the ocean s influence on the ice shelf as the grounding line retreated. Longitudinal profiles of ice surface and bottom elevations are analyzed to reveal a spatially dependent pattern of basal melt with an annual melt flux of 40.5 Gt/a. One profile captures a persistent set of surface waves that correlates with quasi-annual variations of atmospheric forcing of Amundsen Sea circulation patterns, establishing a direct connection between atmospheric variability and sub-ice-shelf melting. Ice surface troughs are hydrostatically compensated by ice-bottom voids up to 150m deep. Voids form dynamically at the grounding line, triggered by enhanced melting when warmer-than-average water arrives. Subsequent enlargement of the voids is thermally inefficient (4% or less) compared with an overall melting efficiency beneath the ice shelf of 22%. Residual warm water is believed to cause three persistent polynyas at the ice-shelf front seen in Landsat imagery. Landsat thermal imagery confirms the occurrence of warm water at the same locations.

  11. Associations between accelerated glacier mass wastage and increased summer temperature in coastal regions

    Science.gov (United States)

    Dyurgerov, M.; McCabe, G.J.

    2006-01-01

    Low-elevation glaciers in coastal regions of Alaska, the Canadian Arctic, individual ice caps around the Greenland ice sheet, and the Patagonia Ice Fields have an aggregate glacier area of about 332 ?? 103 km 2 and account for approximately 42% of all the glacier area outside the Greenland and Antarctic ice sheets. They have shown volume loss, especially since the end of the 1980s, increasing from about 45% in the 1960s to nearly 67% in 2003 of the total wastage from all glaciers on Earth outside those two largest ice sheets. Thus, a disproportionally large contribution of coastal glacier ablation to sea level rise is evident. We examine cumulative standardized departures (1961-2000 reference period) of glacier mass balances and air temperature data in these four coastal regions. Analyses indicate a strong association between increases in glacier volume losses and summer air temperature at regional and global scales. Increases in glacier volume losses in the coastal regions also coincide with an accelerated rate of ice discharge from outlet glaciers draining the Greenland and West Antarctic ice sheets. These processes imply further increases in sea level rise. ?? 2006 Regents of the University of Colorado.

  12. Assessment of the Relationship between Andean Ice Core Precipitation Indicators and Amazon River Discharge

    Science.gov (United States)

    Johnson, N.; Alsdorf, D.; Thompson, L.; Mosley-Thompson, E.; Melack, J.

    2006-12-01

    Prior to the last 100 years, there is a significant lack of hydrologic knowledge for the Amazon Basin. A 100- year record of discharge from the city of Manaus, located at the confluence of the Solimoes and Negro rivers, is the most complete record for the basin. Inundated wetlands play a key role in carbon out-gassing to the atmosphere whereas discharge from the Amazon River contributes about 20% of the total freshwater flux delivered to the world's oceans. As discharge (Q) and inundation are directly related to precipitation, we are developing a method to extend our understanding of Q and inundation into the 19^{th} century. Using proxy data preserved in Andean glaciers and ice caps and recovered from ice cores, annually resolved histories of δ^{18)O and mass accumulation are available. The latter is a proxy for local precipitation amount whereas δ18O is influenced by continental scale processes (i.e., evaporation, convection) as well as by temperature and hence, by varying climate regimes. We have correlated the accumulation and δ18O records from Core 1 drilled on the Quelccaya ice-cap in the southern Andes of Peru with the Manaus discharge data. As ice core annual layers correspond to the thermal year (in Peru, July to June of the following year) and the discharge records are kept daily (January to December), we averaged 365 days of Q data seeking the optimal correlation for each start and end date. The best statistical relationship between δ18O and Q (r = -0.41, p = < 0.001) is attained when Q is averaged from March 16 to March 15 of the following year. We also correlated 23 years of ENSO events, which are linked to both Amazon River discharge and ice core δ18O (r = -0.60, p = < 0.001). These linear relationships are used to create Amazon discharge for the 20^{th} century and to extrapolate Q into the 19^{th} century. Previously developed relationships between Q and mainstem inundated area are then used to estimate inundated area along the main Amazon

  13. A common and optimized age scale for Antarctic ice cores

    Science.gov (United States)

    Parrenin, F.; Veres, D.; Landais, A.; Bazin, L.; Lemieux-Dudon, B.; Toye Mahamadou Kele, H.; Wolff, E.; Martinerie, P.

    2012-04-01

    Dating ice cores is a complex problem because 1) there is a age shift between the gas bubbles and the surrounding ice 2) there are many different ice cores which can be synchronized with various proxies and 3) there are many methods to date the ice and the gas bubbles, each with advantages and drawbacks. These methods fall into the following categories: 1) Ice flow (for the ice) and firn densification modelling (for the gas bubbles); 2) Comparison of ice core proxies with insolation variations (so-called orbital tuning methods); 3) Comparison of ice core proxies with other well dated archives; 4) Identification of well-dated horizons, such as tephra layers or geomagnetic anomalies. Recently, an new dating tool has been developped (DATICE, Lemieux-Dudon et al., 2010), to take into account all the different dating information into account and produce a common and optimal chronology for ice cores with estimated confidence intervals. In this talk we will review the different dating information for Antarctic ice cores and show how the DATICE tool can be applied.

  14. A Younger Dryas re-advance of local glaciers in north Greenland

    Science.gov (United States)

    Larsen, Nicolaj K.; Funder, Svend; Linge, Henriette; Möller, Per; Schomacker, Anders; Fabel, Derek; Xu, Sheng; Kjær, Kurt H.

    2016-09-01

    The Younger Dryas (YD) is a well-constrained cold event from 12,900 to 11,700 years ago but it remains unclear how the cooling and subsequent abrupt warming recorded in ice cores was translated into ice margin fluctuations in Greenland. Here we present 10Be surface exposure ages from three moraines in front of local glaciers on a 50 km stretch along the north coast of Greenland, facing the Arctic Ocean. Ten ages range from 11.6 ± 0.5 to 27.2 ± 0.9 ka with a mean age of 12.5 ± 0.7 ka after exclusion of two outliers. We consider this to be a minimum age for the abandonment of the moraines. The ages of the moraines are furthermore constrained using Optically Stimulated Luminescence (OSL) dating of epishelf sediments, which were deposited prior to the ice advance that formed the moraines, yielding a maximum age of 12.4 ± 0.6 ka, and bracketing the formation and subsequent abandonment of the moraines to within the interval 11.8-13.0 ka ago. This is the first time a synchronous YD glacier advance and subsequent retreat has been recorded for several independent glaciers in Greenland. In most other areas, there is no evidence for re-advance and glaciers were retreating during YD. We explain the different behaviour of the glaciers in northernmost Greenland as a function of their remoteness from the Atlantic Meridional Overturning Circulation (AMOC), which in other areas has been held responsible for modifying the YD drop in temperatures.

  15. Water, Ice, and Meteorological Measurements at South Cascade Glacier, Washington, Balance Years 2004 and 2005

    Science.gov (United States)

    Bidlake, William R.; Josberger, Edward G.; Savoca, Mark E.

    2007-01-01

    Winter snow accumulation and summer snow and ice ablation were measured at South Cascade Glacier, Washington, to estimate glacier mass-balance quantities for balance years 2004 and 2005. The North Cascade Range in the vicinity of South Cascade Glacier accumulated smaller than normal winter snowpacks during water years 2004 and 2005. Correspondingly, the balance years 2004 and 2005 maximum winter snow balances of South Cascade Glacier, 2.08 and 1.97 meters water equivalent, respectively, were smaller than the average of such balances since 1959. The 2004 glacier summer balance (-3.73 meters water equivalent) was the eleventh most negative during 1959 to 2005 and the 2005 glacier summer balance (-4.42 meters water equivalent) was the third most negative. The relatively small winter snow balances and unusually negative summer balances of 2004 and 2005 led to an overall loss of glacier mass. The 2004 and 2005 glacier net balances, -1.65 and -2.45 meters water equivalent, respectively, were the seventh and second most negative during 1953 to 2005. For both balance years, the accumulation area ratio was less than 0.05 and the equilibrium line altitude was higher than the glacier. The unusually negative 2004 and 2005 glacier net balances, combined with a negative balance previously reported for 2003, resulted in a cumulative 3-year net balance of -6.20 meters water equivalent. No equal or greater 3-year mass loss has occurred previously during the more than 4 decades of U.S. Geological Survey mass-balance measurements at South Cascade Glacier. Accompanying the glacier mass losses were retreat of the terminus and reduction of total glacier area. The terminus retreated at a rate of about 17 meters per year during balance year 2004 and 15 meters per year during balance year 2005. Glacier area near the end of balance years 2004 and 2005 was 1.82 and 1.75 square kilometers, respectively. Runoff from the basin containing the glacier and from an adjacent nonglacierized basin was

  16. Temperature and mineral dust variability recorded in two low-accumulation Alpine ice cores over the last millennium

    Science.gov (United States)

    Bohleber, Pascal; Erhardt, Tobias; Spaulding, Nicole; Hoffmann, Helene; Fischer, Hubertus; Mayewski, Paul

    2018-01-01

    Among ice core drilling sites in the European Alps, Colle Gnifetti (CG) is the only non-temperate glacier to offer climate records dating back at least 1000 years. This unique long-term archive is the result of an exceptionally low net accumulation driven by wind erosion and rapid annual layer thinning. However, the full exploitation of the CG time series has been hampered by considerable dating uncertainties and the seasonal summer bias in snow preservation. Using a new core drilled in 2013 we extend annual layer counting, for the first time at CG, over the last 1000 years and add additional constraints to the resulting age scale from radiocarbon dating. Based on this improved age scale, and using a multi-core approach with a neighbouring ice core, we explore the time series of stable water isotopes and the mineral dust proxies Ca2+ and insoluble particles. Also in our latest ice core we face the already known limitation to the quantitative use of the stable isotope variability based on a high and potentially non-stationary isotope/temperature sensitivity at CG. Decadal trends in Ca2+ reveal substantial agreement with instrumental temperature and are explored here as a potential site-specific supplement to the isotope-based temperature reconstruction. The observed coupling between temperature and Ca2+ trends likely results from snow preservation effects and the advection of dust-rich air masses coinciding with warm temperatures. We find that if calibrated against instrumental data, the Ca2+-based temperature reconstruction is in robust agreement with the latest proxy-based summer temperature reconstruction, including a Little Ice Age cold period as well as a medieval climate anomaly. Part of the medieval climate period around AD 1100-1200 clearly stands out through an increased occurrence of dust events, potentially resulting from a relative increase in meridional flow and/or dry conditions over the Mediterranean.

  17. Continuous greenhouse gas measurements from ice cores

    DEFF Research Database (Denmark)

    Stowasser, Christopher

    Ice cores offer the unique possibility to study the history of past atmospheric greenhouse gases over the last 800,000 years, since past atmospheric air is trapped in bubbles in the ice. Since the 1950s, paleo-scientists have developed a variety of techniques to extract the trapped air from...... individual ice core samples, and to measure the mixing ratio of greenhouse gases such as carbon dioxide, methane and nitrous oxide in the extracted air. The discrete measurements have become highly accurate and reproducible, but require relatively large amounts of ice per measured species and are both time......-consuming and labor-intensive. This PhD thesis presents the development of a new method for measurements of greenhouse gas mixing ratios from ice cores based on a melting device of a continuous flow analysis (CFA) system. The coupling to a CFA melting device enables time-efficient measurements of high resolution...

  18. Measurement of neutrino oscillations in atmospheric neutrinos with the IceCube DeepCore detector

    Energy Technology Data Exchange (ETDEWEB)

    Yanez Garza, Juan Pablo

    2014-06-02

    The study of neutrino oscillations is an active field of research. During the last couple of decades many experiments have measured the effects of oscillations, pushing the field from the discovery stage towards an era of precision and deeper understanding of the phenomenon. The IceCube Neutrino Observatory, with its low energy subarray, DeepCore, has the possibility of contributing to this field. IceCube is a 1 km{sup 3} ice Cherenkov neutrino telescope buried deep in the Antarctic glacier. DeepCore, a region of denser instrumentation in the lower center of IceCube, permits the detection of neutrinos with energies as low as 10 GeV. Every year, thousands of atmospheric neutrinos around these energies leave a strong signature in DeepCore. Due to their energy and the distance they travel before being detected, these neutrinos can be used to measure the phenomenon of oscillations. This work starts with a study of the potential of IceCube DeepCore to measure neutrino oscillations in different channels, from which the disappearance of ν{sub μ} is chosen to move forward. It continues by describing a novel method for identifying Cherenkov photons that traveled without being scattered until detected direct photons. These photons are used to reconstruct the incoming zenith angle of muon neutrinos. The total energy of the interacting neutrino is also estimated. In data taken in 343 days during 2011-2012, 1487 neutrino candidates with an energy between 7 GeV and 100 GeV are found inside the DeepCore volume. Compared to the expectation from the atmospheric neutrino flux without oscillations, this corresponds to a deficit of about 500 muon neutrino events. The oscillation parameters that describe the data best are sin{sup 2}(2θ{sub 23})=1(>0.94 at 68 % C.L.) and vertical stroke Δm{sup 2}{sub 32} vertical stroke =2.4{sub -0.4}{sup +0.6}.10{sup -3} eV{sup 2}, which are in agreement with the results reported by other experiments. The simulation follows the data closely

  19. Tropical Glaciers

    Science.gov (United States)

    Fountain, Andrew

    The term "tropical glacier" calls to mind balmy nights and palm trees on one hand and cold, blue ice on the other. Certainly author Gabriel Garcia Marqez exploited this contrast in One Hundred Years of Solitude. We know that tropical fish live in warm, Sun-kissed waters and tropical plants provide lush, dense foliage populated by colorful tropical birds. So how do tropical glaciers fit into this scene? Like glaciers everywhere, tropical glaciers form where mass accumulation—usually winter snow—exceeds mass loss, which is generally summer melt. Thus, tropical glaciers exist at high elevations where precipitation can occur as snowfall exceeds melt and sublimation losses, such as the Rwenzori Mountains in east Africa and the Maoke Range of Irian Jaya.

  20. Dynamic response of Sjögren Inlet glaciers, Antarctic Peninsula, to ice shelf breakup derived from multi-mission remote sensing time series.

    NARCIS (Netherlands)

    Seehaus, T.C.; Marinsek, S.; Skvarca, P.; van Wessem, J.M.; Reijmer, C.H.; Seco, J.L.; Braun, M.

    2016-01-01

    The substantial retreat or disintegration of numerous ice shelves has been observed on the Antarctic Peninsula. The ice shelf in the Prince Gustav Channel has retreated gradually since the late 1980s and broke up in 1995. Tributary glaciers reacted with speed-up, surface lowering and increased ice

  1. High-resolution 129I bomb peak profile in an ice core from SE-Dome site, Greenland.

    Science.gov (United States)

    Bautista, Angel T; Miyake, Yasuto; Matsuzaki, Hiroyuki; Iizuka, Yoshinori; Horiuchi, Kazuho

    2018-04-01

    129 I in natural archives, such as ice cores, can be used as a proxy for human nuclear activities, age marker, and environmental tracer. Currently, there is only one published record of 129 I in ice core (i.e., from Fiescherhorn Glacier, Swiss Alps) and its limited time resolution (1-2 years) prevents the full use of 129 I for the mentioned applications. Here we show 129 I concentrations in an ice core from SE-Dome, Greenland, covering years 1956-1976 at a time resolution of ∼6 months, the most detailed record to date. Results revealed 129 I bomb peaks in years 1959, 1962, and 1963, associated to tests performed by the former Soviet Union, one year prior, in its Novaya Zemlya test site. All 129 I bomb peaks were observed in winter (1958.9, 1962.1, and 1963.0), while tritium bomb peaks, another prominent radionuclide associated with nuclear bomb testing, were observed in spring or summer (1959.3, and 1963.6; Iizuka et al., 2017). These results indicate that 129 I bomb peaks can be used as annual and seasonal age markers for these years. Furthermore, we found that 129 I recorded nuclear fuel reprocessing signals and that these can be potentially used to correct timing of estimated 129 I releases during years 1964-1976. Comparisons with other published records of 129 I in natural archives showed that 129 I can be used as common age marker and tracer for different types of records. Most notably, the 1963 129 I bomb peak can be used as common age marker for ice and coral cores, providing the means to reconcile age models and associated trends from the polar and tropical regions, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. An Analysis of Mass Balance of Chilean Glaciers

    Science.gov (United States)

    Ambinakudige, S.; Tetteh, L.

    2013-12-01

    Glaciers in Chile range from very small glacierets found on the isolated volcanoes of northern Chile to the 13,000 sq.km Southern Patagonian Ice Field. Regular monitoring of these glaciers is very important as they are considered as sensitive indicators of climate change. Millions of people's lives are dependent on these glaciers for fresh water and irrigation purpose. In this study, mass balances of several Chilean glaciers were estimated using Aster satellite images between 2007 and 2012. Highly accurate DEMs were created with supplementary information from IceSat data. The result indicated a negative mass balance for many glaciers indicating the need for further monitoring of glaciers in the Andes.

  3. Bathymetry and ocean properties beneath Pine Island Glacier revealed by Autosub3 and implications for recent ice stream evolution (Invited)

    Science.gov (United States)

    Jenkins, A.; Dutrieux, P.; McPhail, S.; Perrett, J.; Webb, A.; White, D.; Jacobs, S. S.

    2009-12-01

    The Antarctic ice sheet, which represents the largest of all potential contributors to sea level rise, appears to be losing mass at a rate that has accelerated over recent decades. Ice loss is focussed in a number of key drainage basins where dynamical changes in the outlet glaciers have led to increased discharge. The synchronous response of several independent glaciers, coupled with the observation that thinning is most rapid over their floating termini, is generally taken as an indicator that the changes have been driven from the ocean. Some of the most significant changes have been observed on Pine Island Glacier, where thinning, acceleration and grounding line retreat have all been observed, primarily through satellite remote sensing. Even during the relatively short satellite record, rates of change have been observed to increase. Between 20th and 30th January 2009 the Autosub3 autonomous underwater vehicle was deployed from host ship RVIB Nathaniel B Palmer on six sorties into the ocean cavity beneath Pine Island Glacier. Total track length was 887 km (taking 167 hours) of which 510 km (taking 94 hours) were beneath the glacier. Some of the main aims were to map both the seabed beneath and the underside of the glacier and to investigate how warm Circumpolar Deep Water (CDW) flows beneath Pine Island Glacier and determines its melt rate. Among the instruments carried by Autosub-3 were a Seabird CTD, with dual conductivity and temperature sensors plus a dissolved oxygen sensor and a transmissometer, a multi-beam echosounder that could be configured to look up or down, and two Acoustic Doppler Current Profilers (ADCPs): an upward-looking 300 kHz instrument and a downward-looking 150 kHz instrument, providing a record of ice draft and seabed depth along the vehicle track. The ADCP data reveal an apparently continuous ridge with an undulating crest that extends across the cavity about 30km in from the current ice front. This topographic feature blocks CDW inflow

  4. Estimating the ice thickness of mountain glaciers with an inverse approach using surface topography and mass-balance

    International Nuclear Information System (INIS)

    Michel, Laurent; Picasso, Marco; Farinotti, Daniel; Bauder, Andreas; Funk, Martin; Blatter, Heinz

    2013-01-01

    We present a numerical method to estimate the ice thickness distribution within a two-dimensional, non-sliding mountain glacier, given a transient surface geometry and a mass-balance distribution, which are relatively easy to obtain for a large number of glaciers. The inverse approach is based on the shallow ice approximation (SIA) of ice flow and requires neither filtering of the surface topography with a lower slope limit nor approximation of constant basal shear stress. We first address this problem for a steady-state surface geometry. Next, we use an apparent surface mass-balance description that makes the transient evolution quasi-stationary. Then, we employ a more elaborated fixed-point method in which the bedrock solution is iteratively obtained by adding the difference between the computed and known surface geometries at the end of the considered time interval. In a sensitivity study, we show that the procedure is much more susceptible to small perturbations in surface geometry than mass-balance. Finally, we present preliminary results for bed elevations in three space dimensions. (paper)

  5. Ocean impact on Nioghalvfjerdsfjorden Glacier, Northeast Greenland

    Science.gov (United States)

    Schaffer, Janin; Kanzow, Torsten; von Appen, Wilken-Jon; Mayer, Christoph

    2017-04-01

    The ocean plays an important role in modulating the mass balance of the Greenland Ice Sheet by delivering heat to the marine-terminating outlet glaciers around Greenland. The largest of three outlet glaciers draining the Northeast Greenland Ice Stream is Nioghalvfjerdsfjorden Glacier (also referred to as 79 North Glacier). Historic observations showed that warm waters of Atlantic origin are present in the subglacial cavity below the 80 km long floating ice tongue of the Nioghalvfjerdsfjorden Glacier and cause strong basal melt at the grounding line, but to date it has been unknown how those warm water enter the cavity. In order to understand how Atlantic origin waters carry heat into the subglacial cavity beneath Nioghalvfjerdsfjorden Glacier, we performed bathymetric, hydrographic, and velocity observations in the vicinity of the main glacier calving front aboard RV Polarstern in summer 2016. The bathymetric multibeam data shows a 500 m deep and 2 km narrow passage downstream of a 310 m deep sill. This turned out to be the only location deep enough for an exchange of Atlantic waters between the glacier cavity and the continental shelf. Hydrographic and velocity measurements revealed a density driven plume in the vicinity of the glacier calving front causing a rapid flow of waters of Atlantic origin warmer 1°C into the subglacial cavity through the 500 m deep passage. In addition, glacially modified waters flow out of the glacier cavity below the 80 m deep ice base. In the vicinity of the glacier, the glacially modified waters form a distinct mixed layer situated above the Atlantic waters and below the ambient Polar water. At greater distances from the glacier this layer is eroded by lateral mixing with ambient water. Based on our observations we will present an estimate of the ocean heat transport into the subglacial cavity. In comparison with historic observations we find an increase in Atlantic water temperatures throughout the last 20 years. The resulting

  6. Debris supply to mountain glaciers and how it effects their sensitivity to climate change - A case study from the Chhota Shigri Glacier, India

    Science.gov (United States)

    Scherler, D.; Egholm, D. L.

    2017-12-01

    Debris-covered glaciers are widespread in the Himalaya and other steep mountain ranges. They testify to active erosion of ice-free bedrock hillslopes that tower above valley glaciers, sometimes more than a kilometer high. It is well known that supraglacial debris cover significantly reduces surface ablation rates and thereby influences glacial mass balances and runoff. However, the dynamic evolution of debris cover along with climatic and topographic changes is poorly understood. Here, we present ice-free hillslope erosion rates derived from 10Be concentrations in the ablation-dominated medial moraine of the Chhota Shigri Glacier, Indian Himalaya. We combine our empirical, field-based approach with a numerical model of frost-related sediment production and glacial debris transport to (1) assess patterns of ice-free hillslope erosion that are permissible with observed patterns of debris cover, and (2) explore the coupled response of glaciers and ice-free hillslopes to climatic changes. Measured 10Be concentrations increase downglacier from 3×104 to 6×104 atoms (g quartz) -1, yielding hillslope erosion rates of 1.3-0.6 mm yr-1. The accumulation of 10Be during debris residence on the ice surface can only account for a small fraction (erosion rates. We used the 10Be-derived hillslope erosion rates to define debris supply rates from ice-free bedrock hillslopes in the numerical ice and landscape evolution model iSOSIA. Based on available mass balance and ice thickness data, the calibrated model reproduces the medial moraine of the Chhota Shogri Glacier quite well, although uncertainties exist due to the transient disequilibrium of the glacier, i.e., the current debris cover was fed into the glacier during the Little Ice Age (LIA), and thus under different boundary conditions. We currently perform transient experiments during warming and cooling periods for testing models of frost-related and temperature-sensitive debris production, and for assessing the coupled

  7. Glaciological and chemical studies on ice cores from Hans Tausen ice cap, Greenland

    DEFF Research Database (Denmark)

    Clausen, H.B.; Stampe, Mia; Hammer, C.U.

    2001-01-01

    The paper presents studies of various chemical and isotopical parameters from ice cores drilled in the northernmost located ice cap, Hans Tausen Iskappe, Pearyland, Greenland (HT). The 346 m main core (MC95) was drilled to bedrock in 1995 as well as a 35 m shallow core (SC95). A 60 m shallow core...... (SC75) and a 51 m shallow core (SC76) was drilled at two different positions in 1975 and 1976, respectively. A 6 m shallow core (SC94) was drilled in 1994. Continuous stable isotope records exist for all of these cores, total b-activity only from SC75 and SC76. Continuous ECM inferred acidity records...... exist along the 1995 cores (MC95 and SC95) and finally detailed records of dust and water soluble ion concentrations exist on selected parts of MC95. To determine a time scale for the ice core is an important prerequisite for the interpretation of other records. The age scale is based on acid layers...

  8. Central Tibetan Plateau atmospheric trace metals contamination: a 500-year record from the Puruogangri ice core

    Science.gov (United States)

    Beaudon, E.; Gabrielli, P.; Sierra Hernandez, R.; Wegner, A.; Thompson, L. G.

    2017-12-01

    Since the 1980s, Asia has experienced enormous industrial development from rapid population growth, industrialization and consequent large-scale environmental changes. The inherent generated atmospheric pollution currently contributes to half of all Earth's anthropogenic trace metals emissions. Asian trace metal aerosols, when deposited on glaciers of the surrounding mountains of the Tibetan Plateau (TP), leave a characteristic chemical fingerprint. Interpreting trace element (TE) records from glaciers implies a thorough comprehension of their provenance and temporal variability. It is then essential to discriminate the TEs' natural background components from their anthropogenic components. Here we present 500-year TE records from the Puruogangri ice core (Tibet, China) that provide a highly resolved account of the impact of past atmospheric influences, environmental processes and human activities on the central TP. A decreasing aeolian dust input to the ice cap allowed the detection of an atmospheric pollution signal. The anthropogenic pollution contribution emerges in the record since the early 1900s and increases substantially after 1935. The metallurgy (Zn, Pb and steel smelting) emission products from the former Soviet Union and especially from central Asia likely enhanced the anthropogenic deposition to the Puruogangri ice cap between 1935 and 1980, suggesting that the westerlies served as a conveyor of atmospheric pollution to central Tibet. The impact of this industrial pollution cumulated with that of the hemispheric coal and gasoline combustion which are respectively traced by Sb and Pb enrichment in the ice. The Chinese steel production accompanying the Great Leap Forward (1958-1961) and the Chinese Cultural Revolution (1966-1976) is proposed as a secondary but proximal source of Pb pollution affecting the ice cap between 1958 and 1976. The most recent decade (1980-1992) of the enrichment time series suggests that Puruogangri ice cap recorded the early

  9. Glacier Land Ice Measurements from Space (GLIMS) and the GLIMS Information Management System at NSIDC

    Science.gov (United States)

    Machado, A. E.; Scharfen, G. R.; Barry, R. G.; Khalsa, S. S.; Raup, B.; Swick, R.; Troisi, V. J.; Wang, I.

    2001-12-01

    GLIMS (Global Land Ice Measurements from Space) is an international project to survey a majority of the world's glaciers with the accuracy and precision needed to assess recent changes and determine trends in glacial environments. This will be accomplished by: comprehensive periodic satellite measurements, coordinated distribution of screened image data, analysis of images at worldwide Regional Centers, validation of analyses, and a publicly accessible database. The primary data source will be from the ASTER (Advanced Spaceborne Thermal Emission and reflection Radiometer) instrument aboard the EOS Terra spacecraft, and Landsat ETM+ (Enhanced Thematic Mapper Plus), currently in operation. Approximately 700 ASTER images have been acquired with GLIMS gain settings as of mid-2001. GLIMS is a collaborative effort with the United States Geological Survey (USGS), the National Aeronautics Space Adminstration (NASA), other U.S. Federal Agencies and a group of internationally distributed glaciologists at Regional Centers of expertise. The National Snow and Ice Data Center (NSIDC) is developing the information management system for GLIMS. We will ingest and maintain GLIMS-analyzed glacier data from Regional Centers and provide access to the data via the World Wide Web. The GLIMS database will include measurements (over time) of glacier length, area, boundaries, topography, surface velocity vectors, and snowline elevation, derived primarily from remote sensing data. The GLIMS information management system at NSIDC will provide an easy to use and widely accessible service for the glaciological community and other users needing information about the world's glaciers. The structure of the international GLIMS consortium, status of database development, sample imagery and derived analyses and user search and order interfaces will be demonstrated. More information on GLIMS is available at: http://www.glims.org/.

  10. A novel multispectral glacier mapping method and its performance in Greenland

    Science.gov (United States)

    Citterio, M.; Fausto, R. S.; Ahlstrom, A. P.; Andersen, S. B.

    2014-12-01

    Multispectral land surface classification methods are widely used for mapping glacier outlines. Significant post-classification manual editing is typically required, and mapping glacier outlines over larger regions remains a rather labour intensive task. In this contribution we introduce a novel method for mapping glacier outlines from multispectral satellite imagery, requiring only minor manual editing.Over the last decade GLIMS (Global Land Ice Measurements from Space) improved the availability of glacier outlines, and in 2012 the Randolph Glacier Inventory (RGI) attained global coverage by compiling existing and new data sources in the wake of the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR5). With the launch of Landsat 8 in 2013 and the upcoming ESA (European Space Agency) Sentinel 2 missions, the availability of multispectral imagery may grow faster than our ability to process it into timely and reliable glacier outline products. Improved automatic classification methods would enable a full exploitation of these new data sources.We outline the theoretical basis of the proposed classification algorithm, provide a step by step walk-through from raw imagery to finished ice cover grids and vector glacier outlines, and evaluate the performance of the new method in mapping the outlines of glaciers, ice caps and the Greenland Ice Sheet from Landsat 8 OLI imagery. The classification output is compared against manually digitized ice margin positions, the RGI vectors, and the PROMICE (Programme for Monitoring of the Greenland Ice Sheet) aerophotogrammetric map of Greenland ice masses over a sector of the Disko Island surge cluster in West Greenland, the Qassimiut ice sheet lobe in South Greenland, and the A.P. Olsen ice cap in NE Greenland.

  11. Bathymetry of Torssukatak fjord and one century of glacier stability

    Science.gov (United States)

    An, L.; Rignot, E. J.; Morlighem, M.

    2017-12-01

    Marine-terminating glaciers dominate the evolution of the Greenland Ice Sheet(GrIS) mass balance as they control 90% of the ice discharge into the ocean. Warm air temperatures thin the glaciers from the top to unground ice fronts from the bed. Warm oceans erode the submerged grounded ice, causing the grounding line to retreat. To interpret the recent and future evolution of two outlet glaciers, Sermeq Avangnardleq (AVA) and Sermeq Kujatdleq (KUJ) in central West Greenland, flowing into the ice-choked Torssukatak fjord (TOR), we need to know their ice thickness and bed topography and the fjord bathymetry. Here, we present a novel mapping of the glacier bed topography, ice thickness and sea floor bathymetry near the grounding line using high resolution airborne gravity data from AIRGrav collected in August 2012 with a helicopter platform, at 500 m spacing grid, 50 knots ground speed, 80 m ground clearance, with submilligal accuracy, i.e. higher than NASA Operation IceBridge (OIB)'s 5.2 km resolution, 290 knots, and 450 m clearance. We also employ MultiBeam Echo Sounding data (MBES) collected in the fjord since 2009. We had to wait until the summer of 2016, during Ocean Melting Greenland (OMG), to map the fjord bathymetry near the ice fronts for the first time. We constrain the 3D inversion of the gravity data with MBES in the fjord and a reconstruction of the glacier bed topography using mass conservation (MC) on land ice. The seamless topography obtained across the grounding line reveal the presence of a 300-m sill for AVA, which explains why this glacier has been stable for a century, despite changes in surface melt and ocean-induced melt and the presence of a deep fjord (800 m) in front of the glacier. For KUJ, we also reveal the presence of a wide sill (300 m depth) near the current ice front which explains its stability and the stranding of iceberg debris in front of the glacier. The results shed new light on the evolution of these glaciers and explain their

  12. Evolution of Pine Island Glacier subglacial conditions in response to 18 years of ice flow acceleration

    Science.gov (United States)

    Brisbourne, A.; Bougamont, M. H.; Christoffersen, P.; Cornford, S. L.; Nias, I.; Vaughan, D.; Smith, A.

    2017-12-01

    Antarctica's main contribution to sea-level rise originates from the Amundsen Coast, when warm ocean water intrudes onto the continental shelf. As a result, strong melting beneath the ice shelves induces thinning near the grounding line of glaciers, which is ensued by large ice flow speed up diffusing rapidly inland. In particular, ice loss from Pine Island Glacier (PIG) accounts for 20% of the total ice loss in West Antarctica, amounting to 0.12 mm yr-1 of global sea-level rise. Forecasting the future flow of Amundsen Coast glaciers is however hindered by large uncertainties regarding how the thinning initiated at the grounding line is transmitted upstream, and how the grounded flow will ultimately respond. This work aims at elucidating the role of subglacial processes beneath PIG tributaries in modulating the ice flow response to frontal perturbations. We used the Community Ice Sheet Model (CISM 2.0) to perform numerical inversions of PIG surface velocity as observed in 1996 and 2014. Over that time period, ice flow acceleration has been widespread over PIG's basin, and the inversions provide insights into the related evolution of the basal thermal and stress conditions. We assume the latter to be directly related to changes in the properties of a soft sediment (till) layer known to exist beneath PIG. We find that the overall bed strength has weakened by 18% in the region of enhanced flow, and that the annual melt production for PIG catchment increased by 25% between 1996 and 2014. Specifically, regions of high melt production are located in the southern tributaries, where the overall stronger bed allows for more frictional melting. However, we find no significant and widespread change in the basal strength of that region, and we infer that the water produced is transported away in a concentrated hydrological system, without much interaction with the till layer. In contrast, we find that relatively less basal melting occurs elsewhere in the catchment, where the

  13. Glacier Instability, Rapid Glacier Lake Growth and Related Hazards at Belvedere Glacier, Macugnaga, Italy

    Science.gov (United States)

    Huggel, C.; Kaeaeb, A.; Haeberli, W.; Mortara, G.; Chiarle, M.; Epifani, F.

    2002-12-01

    Starting in summer 2000, Belvedere Glacier, near Macugnaga, Italian Alps, developed an extraordinary change in flow, geometry and surface appearance. A surge-type flow acceleration started in the lower parts of the Monte-Rosa east face, leading to strong crevassing and deformation of Belvedere Glacier, accompanied by bulging of its orographic right margin. In September 2001, a small supraglacial lake developed on the glacier. High water pressure and accelerated movement lasted into winter 2001/2002. The ice, in places, started to override moraines from the Little Ice Age. In late spring and early summer 2002, the supraglacial lake grew at extraordinary rates reaching a maximum area of more than 150'000 m2 by end of June. The evolution of such a large supraglacial lake, a rather unique feature in the Alps, was probably enabled by changes in the subglacial drainage system in the course of the surge-like developments with high water pressure in the glacier. At the end of June, an enhanced growth of the lake level with a rise of about 1 m per day was observed such that the supraglacial lake became a urgent hazard problem for the community of Macugnaga. Emergency measures had to be taken by the Italian Civil Protection. The authors thereby acted as the official expert advisers. Temporal evacuations were ordered and a permanent monitoring and alarm system was installed. Pumps with a maximum output of 1 m3/s were brought to the lake. Bathymetric studies yielded a maximum lake depth of 55 m and a volume of 3.3 millions of cubic meters of water. Aerial photography of 1995, 1999, September 2001 and October 2001 was used to calculate ice flow velocities and changes in surface altitude. Compared to the period of 1995 to 1999, the flow accelerated by about five times in 2001 (max. speeds up to 200 m/yr). Surface uplift measured was about 10-15 m/yr. The results of the photogrammetric studies were used to evaluate different possible lake-outburst scenarios, in particular

  14. End of the "Little Ice Age" in the Alps not forced by industrial black carbon

    Science.gov (United States)

    Sigl, Michael; Osmont, Dimtri; Gabrieli, Jacopo; Barbante, Carlo; Schwikowski, Margit

    2016-04-01

    Light absorbing aerosols present in the atmosphere and cryosphere play an important role in the climate system. Their presence in ambient air and snow changes radiative properties of these media, thus contributing to increased atmospheric warming and snowmelt. High spatio-temporal variability of aerosol concentrations in these media and a shortage of long-term observations contribute to large uncertainties in properly assigning the climate effects of these aerosols through time. Glaciers in the European Alps began to retreat abruptly from their mid-19th century maximum, marking what appeared to be the end of the Little Ice Age. Radiative forcing by increasing deposition of industrial black carbon to snow has been suggested as the main driver of the abrupt glacier retreats in the Alps (Painter et al. 2012). Basis for this hypothesis were model simulations using ice-core measurements of elemental carbon at low temporal resolution from two ice cores in the Alps. Here we present sub-annually resolved, well replicated ice-core measurements of refractory black carbon (rBC; using a SP2 soot photometer), mineral dust (Fe, Ca), biomass burning (NH4, K) and distinctive industrial pollution tracers (Bi, Pb, SO4) from an ice core in the Alps covering the past 250 years. These reconstructions allow to precisely compare the timing of observed acceleration of glacier melt in the mid-19th century with that of the increase of soot deposition on ice-sheets caused by the industrialization of Western Europe. Our study suggests that at the time when European rBC emission rates started to significantly increase Alpine glaciers have already experienced more than 70% of their total 19th century length reduction. Industrial BC emissions can therefore not been considered as the primary forcing of the rapid deglaciation at the end of the Little Ice Age in the Alps. References: Painter, T. H., M. G. Flanner, G. Kaser, B. Marzeion, R. A. VanCuren, and W. Abdalati (2013), End of the Little Ice

  15. Grounding line processes on the Totten Glacier

    Science.gov (United States)

    Cook, S.; Watson, C. S.; Galton-Fenzi, B.; Peters, L. E.; Coleman, R.

    2017-12-01

    The Totten Glacier has been an area of recent interest due to its large drainage basin, much of which is grounded below sea level and has a history of large scale grounding line movement. Reports that warm water reaches the sub-ice shelf cavity have led to speculation that it could be vulnerable to future grounding line retreat. Over the Antarctic summer 2016/17 an array of 6 GPS and autonomous phase-sensitive radar (ApRES) units were deployed in the grounding zone of the Totten Glacier. These instruments measure changes in ice velocity and thickness which can be used to investigate both ice dynamics across the grounding line, and the interaction between ice and ocean in the subglacial cavity. Basal melt rates calculated from the ApRES units on floating ice range from 1 to 17 m/a. These values are significantly lower than previous estimates of basal melt rate produced by ocean modelling of the subglacial cavity. Meanwhile, GPS-derived velocity and elevation on the surface of the ice show a strong tidal signal, as does the vertical strain rate within the ice derived from internal layering from the ApRES instruments. These results demonstrate the significance of the complex grounding pattern of the Totten Glacier. The presence of re-grounding points has significant implications for the dynamics of the glacier and the ocean circulation within the subglacial cavity. We discuss what can be learned from our in situ measurements, and how they can be used to improve models of the glacier's future behaviour.

  16. Stable isotope analysis in ice core paleoclimatology

    International Nuclear Information System (INIS)

    Bertler, N.A.N.

    2014-01-01

    Ice cores from New Zealand and the Antarctic margin provide an excellent means of addressing the lack of longer-term climate observations in the Southern Hemisphere with near instrumental quality. Ice core records provide an annual-scale, 'instrumental-quality' baseline of atmospheric temperature and circulation changes back many thousands of years. (author)

  17. Exploring the links between transient water inputs and glacier velocity in a small temperate glacier in southeastern Alaska

    Science.gov (United States)

    Heavner, M.; Habermann, M.; Hood, E. W.; Fatland, D. R.

    2009-12-01

    Glaciers along the Gulf of Alaska are thinning and retreating rapidly. An important control on the rate at which ice is being lost is basal motion because higher glacier velocities increase the rate at which ice is delivered to ablation zones. Recent research has focused on understanding the effects of sub-glacial water storage on glacier basal motion. In this study, we examined two seasons of the effect of hydrologic controls (from large rainfall events as well as a glacier lake outburst floods) on the velocity of the Lemon Creek Glacier in southeastern Alaska. Lemon Creek Glacier is a moderately sized (~16~km2) temperate glacier at the margin of the Juneau Icefield. An ice-marginal lake forms at the head of the glacier and catastrophically drains once or twice every melt season. We have instrumented the glacier with two meteorological stations: one at the head of the glacier near the ice-marginal lake and another several kilometers below the terminus. These stations measure temperature, relative humidity, precipitation, incoming solar radiation and wind speed and direction. Lake stage in the ice-marginal lake was monitored with a pressure transducer. In addition, Lemon Creek was instrumented with a water quality sonde at the location of a US Geological Survey gaging station approximately 3 km downstream from the glacier terminus. The sonde provides continuous measurements of water temperature, dissolved oxygen, turbidity and conductivity. Finally, multiple Trimble NetRS dual frequency, differential GPS units were deployed on the glacier along the centerline of the glacier. All of the instruments were run continuously from May-September 2008 and May-September 2009 and captured threee outburst floods associated with the ice-marginal lake drainage as well as several large (>3~cm) rainfall events associated with frontal storms off of the Gulf of Alaska in late summer. Taken together, these data allow us to test the hypothesis that water inputs which overwhelm

  18. Internationally coordinated glacier monitoring - a timeline since 1894

    Science.gov (United States)

    Nussbaumer, Samuel U.; Armstrong, Richard; Fetterer, Florence; Gärtner-Roer, Isabelle; Hoelzle, Martin; Machguth, Horst; Mölg, Nico; Paul, Frank; Raup, Bruce H.; Zemp, Michael

    2016-04-01

    Changes in glaciers and ice caps provide some of the clearest evidence of climate change, with impacts on sea-level variations, regional hydrological cycles, and natural hazard situations. Therefore, glaciers have been recognized as an Essential Climate Variable (ECV). Internationally coordinated collection and distribution of standardized information about the state and change of glaciers and ice caps was initiated in 1894 and is today organized within the Global Terrestrial Network for Glaciers (GTN-G). GTN-G ensures the continuous development and adaptation of the international strategies to the long-term needs of users in science and policy. A GTN-G Steering Committee coordinates, supports and advices the operational bodies responsible for the international glacier monitoring, which are the World Glacier Monitoring Service (WGMS), the US National Snow and Ice Data Center (NSIDC), and the Global Land Ice Measurements from Space (GLIMS) initiative. In this presentation, we trace the development of the internationally coordinated glacier monitoring since its beginning in the 19th century. Today, several online databases containing a wealth of diverse data types with different levels of detail and global coverage provide fast access to continuously updated information on glacier fluctuation and inventory data. All glacier datasets are made freely available through the respective operational bodies within GTN-G, and can be accessed through the GTN-G Global Glacier Browser (http://www.gtn-g.org/data_browser.html). Glacier inventory data (e.g., digital outlines) are available for about 180,000 glaciers (GLIMS database, RGI - Randolph Glacier Inventory, WGI - World Glacier Inventory). Glacier front variations with about 45,000 entries since the 17th century and about 6,200 glaciological and geodetic mass (volume) change observations dating back to the 19th century are available in the Fluctuations of Glaciers (FoG) database. These datasets reveal clear evidence that

  19. Quantifying seasonal velocity at Khumbu Glacier, Nepal

    Science.gov (United States)

    Miles, E.; Quincey, D. J.; Miles, K.; Hubbard, B. P.; Rowan, A. V.

    2017-12-01

    While the low-gradient debris-covered tongues of many Himalayan glaciers exhibit low surface velocities, quantifying ice flow and its variation through time remains a key challenge for studies aimed at determining the long-term evolution of these glaciers. Recent work has suggested that glaciers in the Everest region of Nepal may show seasonal variability in surface velocity, with ice flow peaking during the summer as monsoon precipitation provides hydrological inputs and thus drives changes in subglacial drainage efficiency. However, satellite and aerial observations of glacier velocity during the monsoon are greatly limited due to cloud cover. Those that do exist do not span the period over which the most dynamic changes occur, and consequently short-term (i.e. daily) changes in flow, as well as the evolution of ice dynamics through the monsoon period, remain poorly understood. In this study, we combine field and remote (satellite image) observations to create a multi-temporal, 3D synthesis of ice deformation rates at Khumbu Glacier, Nepal, focused on the 2017 monsoon period. We first determine net annual and seasonal surface displacements for the whole glacier based on Landsat-8 (OLI) panchromatic data (15m) processed with ImGRAFT. We integrate inclinometer observations from three boreholes drilled by the EverDrill project to determine cumulative deformation at depth, providing a 3D perspective and enabling us to assess the role of basal sliding at each site. We additionally analyze high-frequency on-glacier L1 GNSS data from three sites to characterize variability within surface deformation at sub-seasonal timescales. Finally, each dataset is validated against repeat-dGPS observations at gridded points in the vicinity of the boreholes and GNSS dataloggers. These datasets complement one another to infer thermal regime across the debris-covered ablation area of the glacier, and emphasize the seasonal and spatial variability of ice deformation for glaciers in High

  20. Asynchronous behavior of the Antarctic Ice Sheet and local glaciers during and since Termination 1, Salmon Valley, Antarctica

    Science.gov (United States)

    Jackson, Margaret S.; Hall, Brenda L.; Denton, George H.

    2018-01-01

    The stability of the Antarctic Ice Sheet under future warming remains an open question with broad implications for sea-level prediction and adaptation. In particular, knowledge of whether the ice sheet has the capacity for rapid drawdown or collapse, or whether it can remain stable during periods of warming, is essential for predicting its future behavior. Here we use 55 radiocarbon dates, coupled with geomorphologic mapping, to reconstruct the timing of changes in ice extent and elevation during the last ice-age termination in Salmon Valley, adjacent to McMurdo Sound in the western Ross Sea Embayment. Results indicate that a grounded ice sheet in the Ross Sea Embayment achieved its maximum elevation and extent along the headlands of Salmon Valley at ∼18,000 yr BP, during a period of increasing temperatures and accumulation over the Antarctic continent. This ice remained at or near its maximum on the headlands near the valley mouth until after ∼14,000 yr BP. Removal of grounded Ross Sea ice from Salmon Valley was complete shortly after ∼7900 yr BP, indicating that the grounding line had retreated through southern McMurdo Sound by that time. We suggest the primary driver of Ross Sea ice removal from McMurdo Sound was marine-based, either through basal melting or calving due to sea-level rise. When combined with regional data, the Salmon Valley record suggests that this sector of the Antarctic Ice Sheet did not contribute in a significant way to deglacial meltwater pulses, such as meltwater pulse 1a. In contrast to the Ross Sea ice, our work also shows that local, independent alpine glaciers in Salmon Valley have advanced through the Holocene. Land-terminating glaciers such as these elsewhere in the region show a similar pattern, and may reflect the continued influence of increased accumulation following the termination of the last ice age.

  1. Stable isotope analysis in ice core paleoclimatology

    International Nuclear Information System (INIS)

    Bertler, N.A.N.

    2015-01-01

    Ice cores from New Zealand and the Antarctic margin provide an excellent means of addressing the lack of longer-term climate observations in the Southern Hemisphere with near instrumental quality. Ice core records provide an annual-scale, 'instrumental-quality' baseline of atmospheric temperature and circulation changes back many thousands of years. (author).

  2. Glacier area changes in Northern Eurasia

    International Nuclear Information System (INIS)

    Khromova, Tatiana; Nosenko, Gennady; Kutuzov, Stanislav; Muraviev, Anton; Chernova, Ludmila

    2014-01-01

    Glaciers are widely recognized as key indicators of climate change. Recent evidence suggests an acceleration of glacier mass loss in several key mountain regions. Glacier recession implies landscape changes in the glacial zone, the origin of new lakes and activation of natural disaster processes, catastrophic mudflows, ice avalanches, outburst floods, etc. The absence or inadequacy of such information results in financial and human losses. A more comprehensive evaluation of glacier changes is imperative to assess ice contributions to global sea level rise and the future of water resources from glacial basins. One of the urgent steps is a full inventory of all ice bodies and their changes. The first estimation of glacier state and glacier distribution on the territory of the former Soviet Union has been done in the USSR Glacier Inventory (UGI) published in 1965–1982. The UGI is based on topographic maps and air photos and reflects the status of the glaciers in the 1940s–1970s. There is information about 28 884 glaciers with an area of 7830.75 km 2 in the inventory. It covers 25 glacier systems in Northern Eurasia. In the 1980s the UGI has been transformed into digital form as a part of the World Glacier Inventory (WGI). Recent satellite data provide a unique opportunity to look again at these glaciers and to evaluate changes in glacier extent for the second part of the 20th century. About 15 000 glacier outlines for the Caucasus, Polar Urals, Pamir Alay, Tien Shan, Altai, Kamchatka and Russian Arctic have been derived from ASTER and Landsat imagery and can be used for glacier change evaluation. Results of the analysis indicate the steady trend in glacier shrinkage in all mountain regions for the second part of the 20th century. Glacier area loss for the studied regions varies from 13% (Tien Shan) to 22.3% (Polar Urals). The common driver, most likely, is an increase in summer air temperature. There is also a very large variability in the degree of

  3. Holocene glacier and climate variations in Vestfirðir, Iceland, from the modeling of Drangajökull ice cap

    Science.gov (United States)

    Anderson, Leif S.; Flowers, Gwenn E.; Jarosch, Alexander H.; Aðalgeirsdóttir, Guðfinna Th; Geirsdóttir, Áslaug; Miller, Gifford H.; Harning, David J.; Thorsteinsson, Thorsteinn; Magnússon, Eyjólfur; Pálsson, Finnur

    2018-06-01

    Drangajökull is a maritime ice cap located in northwest (Vestfirðir) Iceland. Drangajökull's evolution is therefore closely linked to atmospheric and ocean variability. In order to better constrain the Holocene climate and glacier history of Vestfirðir we model the past evolution of Drangajökull ice cap. Simulations from 10 ka to present are forced by general circulation model output, ice-core-based temperature reconstructions, and sea-surface temperature reconstructions. Based on these 10-thousand year simulations, Drangajökull did not persist through the Holocene. We estimate that air temperatures were 2.5-3.0 °C higher during the Holocene Thermal Maximum than the local 1960-1990 average. Simulations support Drangajökull's late Holocene inception between 2 and 1 ka, though intermittent ice likely occupied cirques as early as 2.6 ka. Drangajökull is primarily a Little Ice Age ice cap: it expanded between 1300 and 1750 CE, with the most rapid growth occurring between 1600 and 1750 CE. The maximum Holocene extent of Drangajökull occurred between 1700 and 1925 CE, despite the lowest late Holocene temperatures, occurring between 1650 and 1720 CE. Between 1700 and 1925 CE temperatures were likely 0.6-0.8 °C lower than the 1950-2015 reference temperature. The modern equilibrium line altitude (ELA) is bracketed by topographic thresholds: a 1 °C temperature increase from the modern ELA would eliminate the ice cap's accumulation area, while a reduction of 0.5 °C would lead to the rapid expansion of the ice cap across Vestfirðir. The proximity of Drangajökull to topographic thresholds may explain its late inception and rapid expansion during the Little Ice Age.

  4. The future sea-level rise contribution of Greenland’s glaciers and ice caps

    International Nuclear Information System (INIS)

    Machguth, H; Rastner, P; Bolch, T; Mölg, N; Sørensen, L Sandberg; Aðalgeirsdottir, G; Van Angelen, J H; Van den Broeke, M R; Fettweis, X

    2013-01-01

    We calculate the future sea-level rise contribution from the surface mass balance of all of Greenland’s glaciers and ice caps (GICs, ∼90 000 km 2 ) using a simplified energy balance model which is driven by three future climate scenarios from the regional climate models HIRHAM5, RACMO2 and MAR. Glacier extent and surface elevation are modified during the mass balance model runs according to a glacier retreat parameterization. Mass balance and glacier surface change are both calculated on a 250 m resolution digital elevation model yielding a high level of detail and ensuring that important feedback mechanisms are considered. The mass loss of all GICs by 2098 is calculated to be 2016 ± 129 Gt (HIRHAM5 forcing), 2584 ± 109 Gt (RACMO2) and 3907 ± 108 Gt (MAR). This corresponds to a total contribution to sea-level rise of 5.8 ± 0.4, 7.4 ± 0.3 and 11.2 ± 0.3 mm, respectively. Sensitivity experiments suggest that mass loss could be higher by 20–30% if a strong lowering of the surface albedo were to take place in the future. It is shown that the sea-level rise contribution from the north-easterly regions of Greenland is reduced by increasing precipitation while mass loss in the southern half of Greenland is dominated by steadily decreasing summer mass balances. In addition we observe glaciers in the north-eastern part of Greenland changing their characteristics towards greater activity and mass turnover. (letter)

  5. Thallium as a tracer for preindustrial volcanic eruptions in an ice core record from Illimani, Bolivia.

    Science.gov (United States)

    Kellerhals, Thomas; Tobler, Leonhard; Brütsch, Sabina; Sigl, Michael; Wacker, Lukas; Gäggeler, Heinz W; Schwikowski, Margit

    2010-02-01

    Trace element records from glacier and ice sheet archives provide insights into biogeochemical cycles, atmospheric circulation changes, and anthropogenic pollution history. We present the first continuous high-resolution thallium (Tl) record, derived from an accurately dated ice core from tropical South America, and discuss Tl as a tracer for volcanic eruptions. We identify four prominent Tl peaks and propose that they represent signals from the massive explosive eruptions of the "unknown 1258" A.D. volcano, of Kuwae ( approximately 1450 A.D.), Tambora (1815 A.D.), and Krakatoa (1883 A.D.). The highly resolved record was obtained with an improved setup for the continuous analysis of trace elements in ice with inductively coupled plasma sector field mass spectrometry (ICP-SFMS). The new setup allowed for a stronger initial acidification of the meltwater and shorter tubing length, thereby reducing the risk of memory effects and losses of analytes to the capillary walls. With a comparison of the continuous method to the established conventional decontamination and analysis procedure for discrete samples, we demonstrate the accuracy of the continuous method for Tl analyses.

  6. Internationally coordinated glacier monitoring: strategy and datasets

    Science.gov (United States)

    Hoelzle, Martin; Armstrong, Richard; Fetterer, Florence; Gärtner-Roer, Isabelle; Haeberli, Wilfried; Kääb, Andreas; Kargel, Jeff; Nussbaumer, Samuel; Paul, Frank; Raup, Bruce; Zemp, Michael

    2014-05-01

    Internationally coordinated monitoring of long-term glacier changes provide key indicator data about global climate change and began in the year 1894 as an internationally coordinated effort to establish standardized observations. Today, world-wide monitoring of glaciers and ice caps is embedded within the Global Climate Observing System (GCOS) in support of the United Nations Framework Convention on Climate Change (UNFCCC) as an important Essential Climate Variable (ECV). The Global Terrestrial Network for Glaciers (GTN-G) was established in 1999 with the task of coordinating measurements and to ensure the continuous development and adaptation of the international strategies to the long-term needs of users in science and policy. The basic monitoring principles must be relevant, feasible, comprehensive and understandable to a wider scientific community as well as to policy makers and the general public. Data access has to be free and unrestricted, the quality of the standardized and calibrated data must be high and a combination of detailed process studies at selected field sites with global coverage by satellite remote sensing is envisaged. Recently a GTN-G Steering Committee was established to guide and advise the operational bodies responsible for the international glacier monitoring, which are the World Glacier Monitoring Service (WGMS), the US National Snow and Ice Data Center (NSIDC), and the Global Land Ice Measurements from Space (GLIMS) initiative. Several online databases containing a wealth of diverse data types having different levels of detail and global coverage provide fast access to continuously updated information on glacier fluctuation and inventory data. For world-wide inventories, data are now available through (a) the World Glacier Inventory containing tabular information of about 130,000 glaciers covering an area of around 240,000 km2, (b) the GLIMS-database containing digital outlines of around 118,000 glaciers with different time stamps and

  7. Glacier change in the Gangdise Mountains, southern Tibet, since the Little Ice Age

    Science.gov (United States)

    Zhang, Qian; Yi, Chaolu; Fu, Ping; Wu, Yubin; Liu, Jinhua; Wang, Ninglian

    2018-04-01

    Delineating glacier change during the Little Ice Age (LIA) is of great importance when attempting to understand regional climatic changes and can also help to improve the understanding of any predictions of future glacial changes. However, such knowledge is still lacking for some critical regions of the Tibetan Plateau (TP). In this study, we mapped 4188 contemporary glaciers and reconstructed 1216 LIA areas of glacial coverage in the Gangdise Mountains to the north of the Himalaya using Google Earth satellite imagery. We estimated their paleoglacial areas and equilibrium line altitudes (ELAs) based on the toe-to-headwall altitude ratio (THAR) method. Results show that most glaciers are small (ELA ranges from 5516 to 6337 m asl; the LIA ELA ranged from 5476 to 6329 m asl. Contemporary and LIA ELA values rise from southeast to northwest. As a general rule, the rise in the ELA value decreases from the eastern to the central Gangdise Mountains and then increases westward, with a mean ELA rise of 45 m. Multiple regression models suggest that 46.8% of the glacier area loss can be explained by glacier elevation, area, and slope. However, only 15.5% of the rise in ELA values can be explained by glacial geometric, topographic, or locational parameters. The spatial pattern of modern ELA values in this region appears inversely related to precipitation, which decreases from southeast to northwest, implying that precipitation is one of the key controls of ELAs. This is also consistent with results from elsewhere in High Asia. In contrast to the Gangdise Mountains' eastern and western sectors, glaciers in the central sector have undergone less change, i.e., in terms of reductions in length, area loss, and rises in ELA. Topography can of course also influence glacial change by creating shielding and/or rainshadow effects and by affecting local temperatures.

  8. Devon island ice cap: core stratigraphy and paleoclimate.

    Science.gov (United States)

    Koerner, R M

    1977-04-01

    Valuable paleoclimatic information can be gained by studying the distribution of melt layers in deep ice cores. A profile representing the percentage of ice in melt layers in a core drilled from the Devon Island ice cap plotted against both time and depth shows that the ice cap has experienced a period of very warm summers since 1925, following a period of colder summers between about 1600 and 1925. The earlier period was coldest between 1680 and 1730. There is a high correlation between the melt-layer ice percentage and the mass balance of the ice cap. The relation between them suggests that the ice cap mass balance was zero (accumulation equaled ablation) during the colder period but is negative in the present warmer one. There is no firm evidence of a present cooling trend in the summer conditions on the ice cap. A comparison with the melt-layer ice percentage in cores from the other major Canadian Arctic ice caps shows that the variation of summer conditions found for the Devon Island ice cap is representative for all the large ice caps for about 90 percent of the time. There is also a good correlation between melt-layer percentage and summer sea-ice conditions in the archipelago. This suggests that the search for the northwest passage was influenced by changing climate, with the 19th-century peak of the often tragic exploration coinciding with a period of very cold summers.

  9. Pathways of warm water to the Northeast Greenland outlet glaciers

    Science.gov (United States)

    Schaffer, Janin; Timmermann, Ralph; Kanzow, Torsten; Arndt, Jan Erik; Mayer, Christoph; Schauer, Ursula

    2015-04-01

    The ocean plays an important role in modulating the mass balance of the Greenland Ice Sheet by delivering heat to the marine-terminating outlet glaciers surrounding the Greenland coast. The warming and accumulation of Atlantic Water in the subpolar North Atlantic has been suggested to be a potential driver of the glaciers' retreat over the last decades. The shelf regions thus play a critical role for the transport of Atlantic Water towards the glaciers, but also for the transfer of freshwater towards the deep ocean. A key region for the mass balance of the Greenland Ice Sheet is the Northeast Greenland Ice Stream. This large ice stream drains the second-largest basin of the Greenland Ice Sheet and feeds three outlet glaciers. The largest one is Nioghalvfjerdsfjorden (79°N-Glacier) featuring an 80 km long floating ice tongue. Both the ocean circulation on the continental shelf off Northeast Greenland and the circulation in the cavity below the ice tongue are weakly constrained so far. In order to study the relevant processes of glacier-ocean interaction we combine observations and model work. Here we focus on historic and recent hydrographic observations and on the complex bathymetry in the Northeast Greenland shelf region, which is thought to steer the flux of warm Atlantic water onto the continental shelf and into the sub-ice cavity beneath the 79°N-Glacier. We present a new global topography data set, RTopo-2, which includes the most recent surveys on the Northeast Greenland continental shelf and provides a detailed bathymetry for all around Greenland. In addition, RTopo-2 contains ice and bedrock surface topographies for Greenland and Antarctica. Based on the updated ocean bathymetry and a variety of hydrographic observations we show the water mass distribution on the continental shelf off Northeast Greenland. These maps enable us to discuss possible supply pathways of warm modified Atlantic waters on the continental shelf and thus potential ways of heat

  10. Ice Thickness, Melting Rates and Styles of Activity in Ice-Volcano Interaction

    Science.gov (United States)

    Gudmundsson, M. T.

    2005-12-01

    In most cases when eruptions occur within glaciers they lead to rapid ice melting, jokulhlaups and/or lahars. Many parameters influence the style of activity and its impact on the environment. These include ice thickness (size of glacier), bedrock geometry, magma flow rate and magma composition. The eruptions that have been observed can roughly be divided into: (1) eruptions under several hundred meters thick ice on a relatively flat bedrock, (2) eruptions on flat or sloping bed through relatively thin ice, and (3) volcanism where effects are limitied to confinement of lava flows or melting of ice by pyroclastic flows or surges. This last category (ice-contact volcanism) need not cause much ice melting. Many of the deposits formed by Pleistocene volcanism in Iceland, British Columbia and Antarctica belong to the first category. An important difference between this type of activity and submarine activity (where pressure is hydrostatic) is that pressure at vents may in many cases be much lower than glaciostatic due to partial support of ice cover over vents by the surrounding glacier. Reduced pressure favours explosive activity. Thus the effusive/explosive transition may occur several hundred metres underneath the ice surface. Explosive fragmentation of magma leads to much higher rates of heat transfer than does effusive eruption of pillow lavas, and hence much higher melting rates. This effect of reduced pressure at vents will be less pronounced in a large ice sheet than in a smaller glacier or ice cap, since the hydraulic gradient that drives water away from an eruption site will be lower in the large glacier. This may have implications for form and type of eruption deposits and their relationship with ice thickness and glacier size.

  11. Quantification and Analysis of Icebergs in a Tidewater Glacier Fjord Using an Object-Based Approach.

    Directory of Open Access Journals (Sweden)

    Robert W McNabb

    Full Text Available Tidewater glaciers are glaciers that terminate in, and calve icebergs into, the ocean. In addition to the influence that tidewater glaciers have on physical and chemical oceanography, floating icebergs serve as habitat for marine animals such as harbor seals (Phoca vitulina richardii. The availability and spatial distribution of glacier ice in the fjords is likely a key environmental variable that influences the abundance and distribution of selected marine mammals; however, the amount of ice and the fine-scale characteristics of ice in fjords have not been systematically quantified. Given the predicted changes in glacier habitat, there is a need for the development of methods that could be broadly applied to quantify changes in available ice habitat in tidewater glacier fjords. We present a case study to describe a novel method that uses object-based image analysis (OBIA to classify floating glacier ice in a tidewater glacier fjord from high-resolution aerial digital imagery. Our objectives were to (i develop workflows and rule sets to classify high spatial resolution airborne imagery of floating glacier ice; (ii quantify the amount and fine-scale characteristics of floating glacier ice; (iii and develop processes for automating the object-based analysis of floating glacier ice for large number of images from a representative survey day during June 2007 in Johns Hopkins Inlet (JHI, a tidewater glacier fjord in Glacier Bay National Park, southeastern Alaska. On 18 June 2007, JHI was comprised of brash ice ([Formula: see text] = 45.2%, SD = 41.5%, water ([Formula: see text] = 52.7%, SD = 42.3%, and icebergs ([Formula: see text] = 2.1%, SD = 1.4%. Average iceberg size per scene was 5.7 m2 (SD = 2.6 m2. We estimate the total area (± uncertainty of iceberg habitat in the fjord to be 455,400 ± 123,000 m2. The method works well for classifying icebergs across scenes (classification accuracy of 75.6%; the largest classification errors occur in areas

  12. Deep ice coring at Dome Fuji Station, Antarctica

    Directory of Open Access Journals (Sweden)

    Yoshiyuki Fujii

    1999-03-01

    Full Text Available Deep ice coring was carried out at Dome Fuji Station, Antarctica in 1995 and 1996 following a pilot borehole drilled and cased with FRP pipes in 1993,and reached 2503.52m in December 1996. Total numbers of ice coring runs below the pilot borehole and chip collection were 1369 and 837 respectively. The mean coring depths per run and per day were 1.75m and 8.21m respectively. We report the outline of the coring operation, the system, coring method, and troubles encountered during the coring work.

  13. The Girls on Ice program: Improving perceptions of climate change and environmental stewardship by exploring a glacier landscape

    Science.gov (United States)

    Young, J. C.; Conner, L.; Pettit, E. C.

    2017-12-01

    Girls on Ice is a unique, free, science and mountaineering experience for underserved girls aged 16 to 18. Each year, two teams of nine girls spend eight days on a remote Alaska or Washington glacier to learn about glaciology, climate change, and alpine ecology (as well as mountaineering, art and leadership). During the program, the girls live on, explore and study a glacier and the visibly climate change-altered landscape that surrounds it, through both instructor-led modules and scientific field studies the girls design themselves. Time spent on the glacier means witnessing rivers of meltwater running off the surface, climbing 300 m uphill to where the glacier last sat 150 years ago, and learning how scientists monitor the glacier's retreat. Previous studies have shown that pro-environmental behavior in youth is strongly influenced by having significant life experiences outdoors, and that engagement of citizens in a climate change-impacted landscape is emerging as a powerful way to connect people to environment and to motivate environmental action. Given the significant life experience provided by our unique wilderness format, and the interactions with a rapidly changing glacier landscape, this study examines how participation in Girls on Ice impacts the 16 to 18 year-old participants' perceptions of climate change, as well as their sense of environmental identity. We use mixed qualitative and quantitative methods, including pre- and post-program questionnaires, an in-program focus group discussion, end-of-program interviews, and early and late in-program concept (node-link) mapping exercises. Preliminary results from qualitative data show a shift in many girls' perceptions of climate change towards being motivated to act to combat it, with particular reference to glaciers as a key component prompting that shift. Ultimately, this study aims to demonstrate the value of tenets of environmental and outdoor education theory, namely significant life experiences and

  14. 2017 Rapid Retreat Of Thwaites Glacier

    Science.gov (United States)

    Milillo, P.; Rignot, E. J.; Mouginot, J.; Scheuchl, B.

    2017-12-01

    We employ data from the second generation of SAR systems e.g. the Italian COSMO- SkyMed (CSK) constellation and the German TanDEM-X (TDX) formation to monitor grounding line retreat using short repeat-time interferometry and accurate InSAR DEM on Thwaites glacier in the Amundsen Sea Embayment (ASE), West Antarctica. The ASE is a marine-based ice sheet with a retrograde bed containing enough ice to raise global sea level by 120 cm. Several studies have inferred the mechanical properties of portions of ASE using observationally constrained numerical models, but these studies offer only temporal snapshots of basal mechanics owing to a dearth of observational time series. Prior attempts of grounding lines mapping have been limited because few space-borne SAR missions offer the short-term repeat pass capability required to map the differential vertical displacement of floating ice at tidal frequencies with sufficient detail to resolve grounding line boundaries in areas of fast ice deformation. Using 1-day CSK repeat pass data and TDX DEMs, we collected frequent, high-resolution grounding line measurements of Thwaites glaciers spanning 2015-2017. We compare the results with ERS data spanning 1996-2011, and Sentinel-1a 2014-2015 data. Between 2011 and 2017 we observe a maximum retreat of 5-7 km across the main Thwaites glacier tongue and Thwaites Eastern ice shelf (TEIS) corresponding to an increased retreat rate of 0.5 km/yr. Grounding line retreat has been fueled by the enhanced intrusion of warm, salty, subsurface ocean water of circumpolar deep water origin onto the continental shelf, beneath the floating ice shelf, to reach the glacier grounding zone and melt it from below at rates varying from 50 to 150 m/yr. The retreat rate varies depending on the magnitude of ice melt by the ocean, the rate of ice thinning and the shape of the glacier surface and bed topography.

  15. Pre-cometary ice composition from hot core chemistry.

    Science.gov (United States)

    Tornow, Carmen; Kührt, Ekkehard; Motschmann, Uwe

    2005-10-01

    Pre-cometary ice located around star-forming regions contains molecules that are pre-biotic compounds or pre-biotic precursors. Molecular line surveys of hot cores provide information on the composition of the ice since it sublimates near these sites. We have combined a hydrostatic hot core model with a complex network of chemical reactions to calculate the time-dependent abundances of molecules, ions, and radicals. The model considers the interaction between the ice and gas phase. It is applied to the Orion hot core where high-mass star formation occurs, and to the solar-mass binary protostar system IRAS 16293-2422. Our calculations show that at the end of the hot core phase both star-forming sites produce the same prebiotic CN-bearing molecules. However, in the Orion hot core these molecules are formed in larger abundances. A comparison of the calculated values with the abundances derived from the observed line data requires a chemically unprocessed molecular cloud as the initial state of hot core evolution. Thus, it appears that these objects are formed at a much younger cloud stage than previously thought. This implies that the ice phase of the young clouds does not contain CN-bearing molecules in large abundances before the hot core has been formed. The pre-biotic molecules synthesized in hot cores cause a chemical enrichment in the gas phase and in the pre-cometary ice. This enrichment is thought to be an important extraterrestrial aspect of the formation of life on Earth and elsewhere.

  16. Measurements of 14C in ancient ice from Taylor Glacier, Antarctica constrain in situ cosmogenic 14CH4 and 14CO production rates

    Science.gov (United States)

    Petrenko, Vasilii V.; Severinghaus, Jeffrey P.; Schaefer, Hinrich; Smith, Andrew M.; Kuhl, Tanner; Baggenstos, Daniel; Hua, Quan; Brook, Edward J.; Rose, Paul; Kulin, Robb; Bauska, Thomas; Harth, Christina; Buizert, Christo; Orsi, Anais; Emanuele, Guy; Lee, James E.; Brailsford, Gordon; Keeling, Ralph; Weiss, Ray F.

    2016-03-01

    Carbon-14 (14C) is incorporated into glacial ice by trapping of atmospheric gases as well as direct near-surface in situ cosmogenic production. 14C of trapped methane (14CH4) is a powerful tracer for past CH4 emissions from ;old; carbon sources such as permafrost and marine CH4 clathrates. 14C in trapped carbon dioxide (14CO2) can be used for absolute dating of ice cores. In situ produced cosmogenic 14C in carbon monoxide (14CO) can potentially be used to reconstruct the past cosmic ray flux and past solar activity. Unfortunately, the trapped atmospheric and in situ cosmogenic components of 14C in glacial ice are difficult to disentangle and a thorough understanding of the in situ cosmogenic component is needed in order to extract useful information from ice core 14C. We analyzed very large (≈1000 kg) ice samples in the 2.26-19.53 m depth range from the ablation zone of Taylor Glacier, Antarctica, to study in situ cosmogenic production of 14CH4 and 14CO. All sampled ice is >50 ka in age, allowing for the assumption that most of the measured 14C originates from recent in situ cosmogenic production as ancient ice is brought to the surface via ablation. Our results place the first constraints on cosmogenic 14CH4 production rates and improve on prior estimates of 14CO production rates in ice. We find a constant 14CH4/14CO production ratio (0.0076 ± 0.0003) for samples deeper than 3 m, which allows the use of 14CO for correcting the 14CH4 signals for the in situ cosmogenic component. Our results also provide the first unambiguous confirmation of 14C production by fast muons in a natural setting (ice or rock) and suggest that the 14C production rates in ice commonly used in the literature may be too high.

  17. Glaciers

    Science.gov (United States)

    Hambrey, Michael; Alean, Jürg

    2004-12-01

    Glaciers are among the most beautiful natural wonders on Earth, as well as the least known and understood, for most of us. Michael Hambrey describes how glaciers grow and decay, move and influence human civilization. Currently covering a tenth of the Earth's surface, glacier ice has shaped the landscape over millions of years by scouring away rocks and transporting and depositing debris far from its source. Glacier meltwater drives turbines and irrigates deserts, and yields mineral-rich soils as well as a wealth of valuable sand and gravel. However, glaciers also threaten human property and life. Our future is indirectly connected with the fate of glaciers and their influence on global climate and sea level. Including over 200 stunning photographs, the book takes the reader from the High-Arctic through North America, Europe, Asia, Africa, New Zealand and South America to the Antarctic. Michael Hambrey is Director of the Centre for Glaciology at the University of Wales, Aberystwyth. A past recipient of the Polar Medal, he was also given the Earth Science Editors' Outstanding Publication Award for the first edition of Glaciers (Cambridge, 1995). Hambrey is also the author of Glacial Environments (British Columbia, 1994). JÜrg Alean is Professor of Geography at the Kantonsschule ZÜrcher Unterland in BÜlach, Switzerland.

  18. DEVELOPMENT OF GLACIERS OF MOUNT ELBRUS AFTER THE LITTLE ICE AGE

    Directory of Open Access Journals (Sweden)

    E. A. Zolotarev

    2012-01-01

    Full Text Available SummaryThe results of remote monitoring of the greatest inEuropemountain glaciation of Elbrus are covered for 120 years by instrumental survey (1887–2007 and lichenometric survey in 1986. The materials of stereoscopic digital photo survey of the whole glaciation with terrain resolution of2.5 metersproduced by space imaging system Cartosat-1 (IRS-P5 in 2007 were compared with the same year materials of phototheodolite survey of south glaciation slope (6 glaciers in total. Results of comparison showed that the data received from Cartosat-1 can be used for monitoring of glaciers with long enough interval of time between repeated surveys (from 10 years and more, and also is suitable for updating 1:25 000 topographic maps of mountain areas. The leading role of Dzhikiugankez plateau in changes was revealed. Over the last 50 years (1957–2007 the Dzhikiugankez share in change of the glaciation area as a whole has reached 45 %. The method of glacier dynamics research, based on digital technologies of image processing and assuming first of all visual deciphering of changes and in the second – measurement of parameters of changes is offered. The quantitative data of Elbrus glaciation reduction since the middle of the XIX century do not confirm the hypothesis of the global climate warming beginning just in the second half of XX century as a result of anthropogenic greenhouse gases effect. Contrarily in 1970s, many Elbrus glaciers advanced. Elbrus glaciation area reduction is occurring practically evenly through time and is alternated with short-term periods of stationary state and advance. These facts suggest that global climate warming, which alternated with short-term cooling periods, began after the end of the Little Ice Age and was most likely due to natural rather than anthropogenic causes.

  19. Samarium-Neodymium model age and Geochemical (Sr-Nd) signature of a bedrock inclusion from lake Vostok accretion ice.

    Science.gov (United States)

    Delmonte, B.; Petit, J. R.; Michard, A.; Basile-Doelsch, I.; Lipenkov, V.

    2003-04-01

    We investigated properties of the basal ice from Vostok ice core as well as the sediment inclusions within the accreted ice. The Vostok ice core preserves climatic information for the last 420 kyrs down to 3310m depth, but below this depth the horizontal layers of the climatic record are disrupted by the glacier dynamics. From 3450 m to 3538 m depth thin bedrock particles, as glacial flour, are entrapped. Glacial flour is released in the northern area lake, where glacier mostly melts and contributes to sediment accumulation. In the southern area, close to Vostok station, the lake water freezes and the upstream glacial flour does not contribute to sedimentation. The accreted ice contains visible sediment inclusions down to 3608 m (accretion ice 1), while below this depth and likely down to the water interface (˜3750 m), the ice is clear (accretion ice 2). The fine inclusions (1-2mm in diameter) from Accretion Ice 1 mostly consist of fine clays and quartz aggregates and we suggest they are entrained into ice as the glacier floats over shallow depth bay then it grounds against a relief rise. Afterward the glacier freely floats over the deep lake before reaching Vostok, and accreted ice 2 is clean. Sm-Nd dating of one of two inclusions at 3570 m depth gives 1.88 (+/-0.13)Ga (DM model age), corresponding to 1.47 Ga (TCHUR), suggesting a Precambrian origin. Also the isotopic signature of such inclusion (87Sr/86Sr= 0.8232 and eNd= -16) and that of a second one (87Sr/86Sr= 0.7999 and eNd= -15) are coherent with the nature of an old continental shield. Sediments that may initially accumulate in the shallow bay prior the Antarctic glaciation, should have been eroded and exported out of the lake by the glacier movement, this assuming processes for ice accretion and for sediment entrapping operate since a long time. As the glacial flour from upstream does not contribute to sedimentation, sediments need to be renewed at the surface of the bedrock rising question about the way

  20. Global-scale hydrological response to future glacier mass loss

    Science.gov (United States)

    Huss, Matthias; Hock, Regine

    2018-01-01

    Worldwide glacier retreat and associated future runoff changes raise major concerns over the sustainability of global water resources1-4, but global-scale assessments of glacier decline and the resulting hydrological consequences are scarce5,6. Here we compute global glacier runoff changes for 56 large-scale glacierized drainage basins to 2100 and analyse the glacial impact on streamflow. In roughly half of the investigated basins, the modelled annual glacier runoff continues to rise until a maximum (`peak water') is reached, beyond which runoff steadily declines. In the remaining basins, this tipping point has already been passed. Peak water occurs later in basins with larger glaciers and higher ice-cover fractions. Typically, future glacier runoff increases in early summer but decreases in late summer. Although most of the 56 basins have less than 2% ice coverage, by 2100 one-third of them might experience runoff decreases greater than 10% due to glacier mass loss in at least one month of the melt season, with the largest reductions in central Asia and the Andes. We conclude that, even in large-scale basins with minimal ice-cover fraction, the downstream hydrological effects of continued glacier wastage can be substantial, but the magnitudes vary greatly among basins and throughout the melt season.

  1. Changes in glacier dynamics in the northern Antarctic Peninsula since 1985

    Science.gov (United States)

    Seehaus, Thorsten; Cook, Alison J.; Silva, Aline B.; Braun, Matthias

    2018-02-01

    The climatic conditions along the northern Antarctic Peninsula have shown significant changes within the last 50 years. Here we present a comprehensive analysis of temporally and spatially detailed observations of the changes in ice dynamics along both the east and west coastlines of the northern Antarctic Peninsula. Temporal evolutions of glacier area (1985-2015) and ice surface velocity (1992-2014) are derived from a broad multi-mission remote sensing database for 74 glacier basins on the northern Antarctic Peninsula ( disintegration showed the largest retreat by 208.59 km2. Glaciers on the east coast north of the former Prince Gustav Ice Shelf extent in 1986 receded by only 21.07 km2 (1985-2015) and decelerated by about 58 % on average (1992-2014). A dramatic acceleration after ice shelf disintegration with a subsequent deceleration is observed at most former ice shelf tributaries on the east coast, combined with a significant frontal retreat. In 2014, the flow speed of the former ice shelf tributaries was 26 % higher than before 1996. Along the west coast the average flow speeds of the glaciers increased by 41 %. However, the glaciers on the western Antarctic Peninsula revealed a strong spatial variability of the changes in ice dynamics. By applying a hierarchical cluster analysis, we show that this is associated with the geometric parameters of the individual glacier basins (hypsometric indexes, maximum surface elevation of the basin, flux gate to catchment size ratio). The heterogeneous spatial pattern of ice dynamic evolutions at the northern Antarctic Peninsula shows that temporally and spatially detailed observations as well as further monitoring are necessary to fully understand glacier change in regions with such strong topographic and climatic variances.

  2. The isotopic composition of methane in polar ice cores

    Science.gov (United States)

    Craig, H.; Chou, C. C.; Welhan, J. A.; Stevens, C. M.; Engelkemeir, A.

    1988-01-01

    Air bubbles in polar ice cores indicate that about 300 years ago the atmospheric mixing ratio of methane began to increase rapidly. Today the mixing ratio is about 1.7 parts per million by volume, and, having doubled once in the past several hundred years, it will double again in the next 60 years if current rates continue. Carbon isotope ratios in methane up to 350 years in age have been measured with as little as 25 kilograms of polar ice recovered in 4-meter-long ice-core segments. The data show that: (1) in situ microbiology or chemistry has not altered the ice-core methane concentrations, and (2) that the carbon-13 to carbon-12 ratio of atmospheric CH4 in ice from 100 years and 300 years ago was about 2 per mil lower than at present. Atmospheric methane has a rich spectrum of isotopic sources: the ice-core data indicate that anthropogenic burning of the earth's biomass is the principal cause of the recent C-13H4 enrichment, although other factors may also contribute.

  3. Temperature and mineral dust variability recorded in two low-accumulation Alpine ice cores over the last millennium

    Directory of Open Access Journals (Sweden)

    P. Bohleber

    2018-01-01

    Full Text Available Among ice core drilling sites in the European Alps, Colle Gnifetti (CG is the only non-temperate glacier to offer climate records dating back at least 1000 years. This unique long-term archive is the result of an exceptionally low net accumulation driven by wind erosion and rapid annual layer thinning. However, the full exploitation of the CG time series has been hampered by considerable dating uncertainties and the seasonal summer bias in snow preservation. Using a new core drilled in 2013 we extend annual layer counting, for the first time at CG, over the last 1000 years and add additional constraints to the resulting age scale from radiocarbon dating. Based on this improved age scale, and using a multi-core approach with a neighbouring ice core, we explore the time series of stable water isotopes and the mineral dust proxies Ca2+ and insoluble particles. Also in our latest ice core we face the already known limitation to the quantitative use of the stable isotope variability based on a high and potentially non-stationary isotope/temperature sensitivity at CG. Decadal trends in Ca2+ reveal substantial agreement with instrumental temperature and are explored here as a potential site-specific supplement to the isotope-based temperature reconstruction. The observed coupling between temperature and Ca2+ trends likely results from snow preservation effects and the advection of dust-rich air masses coinciding with warm temperatures. We find that if calibrated against instrumental data, the Ca2+-based temperature reconstruction is in robust agreement with the latest proxy-based summer temperature reconstruction, including a Little Ice Age cold period as well as a medieval climate anomaly. Part of the medieval climate period around AD 1100–1200 clearly stands out through an increased occurrence of dust events, potentially resulting from a relative increase in meridional flow and/or dry conditions over the Mediterranean.

  4. GlacierRocks - Glacier-Headwall Interaction and its Influence on Rockfall Activity

    Science.gov (United States)

    Hartmeyer, Ingo; Keuschnig, Markus; Krautblatter, Michael; Helfricht, Kay; Leith, Kerry; Otto, Jan-Christoph

    2017-04-01

    , glacier ice temperature, glacier ice motion, randkluft depth/width changes and a series of meteorological parameters. The study site of 'GlacierRocks' is located in the summit region of the Kitzsteinhorn (3.203 m a.s.l.), which is home to an interdisciplinary Open Air Lab (OPAL) focusing on permafrost and rockfall monitoring. Utilizing the existing infrastructure of the OPAL and collaborating with several Kitzsteinhorn-based partner projects, 'GlacierRocks' will make a concerted effort to shed light on poorly understood processes operating at the transition zone between subglacial and subaerial process domains.

  5. Instruments and Methods: A Low-Cost Glacier-Mapping System

    DEFF Research Database (Denmark)

    Christensen, Erik Lintz; Reeh, Niels; Forsberg, René

    2000-01-01

    the capability of acquiring accurate data on location and ice-surface elevation, and adequate-quality data on ice thickness. The system has been applied successfully in mapping the Nioghalvfjerdsfjorden glacier, northeast Greenland, in spite of the difficult conditions with melting water on the glacier surface....... The measurements from the floating part of the glacier have been evaluated by comparison of radar data with laser-altimeter and in situ measurements....

  6. Ancient biomolecules from deep ice cores reveal a forested southern Greenland

    DEFF Research Database (Denmark)

    Willerslev, Eske; Cappellini, Enrico; Boomsma, Wouter Krogh

    2007-01-01

    It is difficult to obtain fossil data from the 10% of Earth's terrestrial surface that is covered by thick glaciers and ice sheets, and hence, knowledge of the paleoenvironments of these regions has remained limited. We show that DNA and amino acids from buried organisms can be recovered from the...

  7. Quantifying the Jakobshavn Effect: Jakobshavn Isbrae, Greenland, compared to Byrd Glacier, Antarctica

    Science.gov (United States)

    Hughes, T.; Sargent, A.; Fastook, J.; Purdon, K.; Li, J.; Yan, J.-B.; Gogineni, S.

    2014-04-01

    The Jakobshavn Effect is a series of positive feedback mechanisms that was first observed on Jakobshavn Isbrae, which drains the west-central part of the Greenland Ice Sheet and enters Jakobshavn Isfjord at 69°10'. These mechanisms fall into two categories, reductions of ice-bed coupling beneath an ice stream due to surface meltwater reaching the bed, and reductions in ice-shelf buttressing beyond an ice stream due to disintegration of a laterally confined and locally pinned ice shelf. These uncoupling and unbuttressing mechanisms have recently taken place for Byrd Glacier in Antarctica and Jakobshavn Isbrae in Greenland, respectively. For Byrd Glacier, no surface meltwater reaches the bed. That water is supplied by drainage of two large subglacial lakes where East Antarctic ice converges strongly on Byrd Glacier. Results from modeling both mechanisms are presented here. We find that the Jakobshavn Effect is not active for Byrd Glacier, but is active for Jakobshavn Isbrae, at least for now. Our treatment is holistic in the sense it provides continuity from sheet flow to stream flow to shelf flow. It relies primarily on a force balance, so our results cannot be used to predict long-term behavior of these ice streams. The treatment uses geometrical representations of gravitational and resisting forces that provide a visual understanding of these forces, without involving partial differential equations and continuum mechanics. The Jakobshavn Effect was proposed to facilitate terminations of glaciation cycles during the Quaternary Ice Age by collapsing marine parts of ice sheets. This is unlikely for the Antarctic and Greenland ice sheets, based on our results for Byrd Glacier and Jakobshavn Isbrae, without drastic climate warming in high polar latitudes. Warming would affect other Antarctic ice streams already weakly buttressed or unbuttressed by an ice shelf. Ross Ice Shelf would still protect Byrd Glacier.

  8. An investigation of the thermomechanical features of Laohugou Glacier No. 12 on Qilian Shan, western China, using a two-dimensional first-order flow-band ice flow model

    Science.gov (United States)

    Wang, Yuzhe; Zhang, Tong; Ren, Jiawen; Qin, Xiang; Liu, Yushuo; Sun, Weijun; Chen, Jizu; Ding, Minghu; Du, Wentao; Qin, Dahe

    2018-03-01

    By combining in situ measurements and a two-dimensional thermomechanically coupled ice flow model, we investigate the thermomechanical features of the largest valley glacier (Laohugou Glacier No. 12; LHG12) on Qilian Shan located in the arid region of western China. Our model results suggest that LHG12, previously considered as fully cold, is probably polythermal, with a lower temperate ice layer overlain by an upper layer of cold ice over a large region of the ablation area. Modelled ice surface velocities match well with the in situ observations in the east branch (main branch) but clearly underestimate those near the glacier terminus, possibly because the convergent flow is ignored and the basal sliding beneath the confluence area is underestimated. The modelled ice temperatures are in very good agreement with the in situ measurements from a deep borehole (110 m deep) in the upper ablation area. The model results are sensitive to surface thermal boundary conditions, for example surface air temperature and near-surface ice temperature. In this study, we use a Dirichlet surface thermal condition constrained by 20 m borehole temperatures and annual surface air temperatures. Like many other alpine glaciers, strain heating is important in controlling the englacial thermal structure of LHG12. Our transient simulations indicate that the accumulation zone becomes colder during the last two decades as a response to the elevated equilibrium line altitude and the rising summer air temperatures. We suggest that the extent of accumulation basin (the amount of refreezing latent heat from meltwater) of LHG12 has a considerable impact on the englacial thermal status.

  9. Multiproxy records of Holocene climate and glacier variability from sediment cores in the Cordillera Vilcabamba of southern Peru

    Science.gov (United States)

    Schweinsberg, A. D.; Licciardi, J. M.; Rodbell, D. T.; Stansell, N.; Tapia, P. M.

    2012-12-01

    Sediments contained in glacier-fed lakes and bogs provide continuous high-resolution records of glacial activity, and preserve multiproxy evidence of Holocene climate change. Tropical glacier fluctuations offer critical insight on regional paleoclimatic trends and controls, however, continuous sediment records of past tropical climates are limited. Recent cosmogenic 10Be surface exposure ages of moraine sequences in the Cordillera Vilcabamba of southern Peru (13°20'S latitude) reveal a glacial culmination during the early Holocene and a less extensive glaciation coincident with the Little Ice Age of the Northern Hemisphere. Here we supplement the existing 10Be moraine chronology with the first continuous records of multiproxy climate data in this mountain range from sediment cores recovered from bogs in direct stratigraphic contact with 10Be-dated moraines. Radiocarbon-dated sedimentological changes in a 2-meter long bog core reveal that the Holocene is characterized by alternating inorganic and organic-rich laminae, suggesting high-frequency climatic variability. Carbon measurements, bulk density, and bulk sedimentation rates are used to derive a record of clastic sediment flux that serves as a proxy indicator of former glacier activity. Preliminary analyses of the bog core reveal approximately 70 diatom taxa that indicate both rheophilic and lentic environments. Initial results show a general decrease in magnetic susceptibility and clastic flux throughout the early to mid-Holocene, which suggests an interval of deglaciation. An episode of high clastic flux from 3.8 to 2.0 ka may reflect a late Holocene glacial readvance. Volcanic glass fragments and an anomalous peak in magnetic susceptibility may correspond to the historical 1600 AD eruption of Huaynaputina. Ten new bog and lake sediment cores were collected during the 2012 field expedition and analytical measurements are underway. Ongoing efforts are focused on analyzing diatom assemblage data, developing

  10. Updating the New Zealand Glacier Inventory

    Science.gov (United States)

    Baumann, S. C.; Anderson, B.; Mackintosh, A.; Lorrey, A.; Chinn, T.; Collier, C.; Rack, W.; Purdie, H.

    2017-12-01

    The last complete glacier inventory of New Zealand dates from the year 1978 (North Island 1988) and was manually constructed from oblique aerial photographs and geodetic maps (Chinn 2001). The inventory has been partly updated by Gjermundsen et al. (2011) for the year 2002 (40% of total area) and by Sirguey & More (2010) for the year 2009 (32% of total area), both using ASTER satellite imagery. We used Landsat 8 OLI/TIRS satellite data from February/March 2016 to map the total glaciated area. Clean and debris-covered ice were mapped semi-automatically. The band ratio approach was used for clean ice (ratio: red/SWIR). We mapped debris-covered ice using a supervised classification (maximum likelihood). Manual post processing was necessary due to misclassifications (e.g. lakes, clouds) or mapping in shadowed areas. It was also necessary to manually combine the clean and debris-covered parts into single glaciers. Additional input data for the post processing were Sentinel 2 images from the same time period, orthophotos from Land Information New Zealand (resolution: 0.75 m, date: Nov 2014), and the 1978/88 outlines from the GLIMS database (http://www.glims.org/). As the Sentinel 2 data were more heavily cloud covered compared to the Landsat 8 images, they were only used for post processing and not for the classification itself. Initial results show that New Zealand glaciers covered an area of about 1050 km² in 2016, a reduction of 16% since 1978. Approximately 17% of glacier area was covered in surface debris. The glaciers in the central Southern Alps around Mt Cook reduced in area by 24%. Glaciers in the North Island of New Zealand reduced by 71% since 1988, and only 2 km² of ice cover remained in 2016. Chinn, TJH (2001). "Distribution of the glacial water resources of New Zealand." Journal of Hydrology (NZ) 40(2): 139-187 Gjermundsen, EF, Mathieu, R, Kääb, A, Chinn, TJH, Fitzharris, B & Hagen, JO (2011). "Assessment of multispectral glacier mapping methods and

  11. Changes in the Surface Area of Glaciers in Northern Eurasia

    Science.gov (United States)

    Khromova, T.; Nosenko, G.

    2012-12-01

    Glaciers are widely recognized as key indicators of climate change. Recent evidence suggests an acceleration of glacier mass loss in several key mountain regions. Glacier recession implies the landscape changes in the glacial zone, origin of new lakes and activation of natural disaster processes, catastrophic mudflows, ice avalanches, outburst floods, and etc. The presence of glaciers in itself threats to human life, economic activity and growing infrastructure. Economical and recreational human activity in mountain regions requires relevant information on snow and ice objects. Absence or inadequacy of such information results in financial and human losses. A more comprehensive evaluation of glacier changes is imperative to assess ice contributions to global sea level rise and the future of water resources from glacial basins. One of the urgent steps is a full inventory of all ice bodies, their volume and changes The first estimation of glaciers state and glaciers distribution in the big part of Northern Eurasia has been done in the USSR Glacier Inventory published in 1966 -1980 as a part of IHD activity. The Inventory is based on topographic maps and air photos and reflects the status of the glaciers in 1957-1970y. There is information about 23796 glaciers with area of 78222.3 km2 in the Inventory. It covers 23 glacier systems on Northern Eurasia. In the 80th the USSR Glacier Inventory has been transformed in the digital form as a part of the World Glacier Inventory. Recent satellite data provide a unique opportunity to look again at these glaciers and to evaluate changes in glacier extent for the second part of XX century. In the paper we report about 15 000 glaciers outlines for Caucasus, Pamir, Tien-Shan, Altai, Syntar-Khayata, Cherskogo Range, Kamchatka and Russian Arctic which have been derived from ASTER and Landsat imagery and could be used for glacier changes evaluation. The results show that glaciers are retreating in all these regions. There is, however

  12. Ice-dammed lateral lake and epishelf lake insights into Holocene dynamics of Marguerite Trough Ice Stream and George VI Ice Shelf, Alexander Island, Antarctic Peninsula

    Science.gov (United States)

    Davies, Bethan J.; Hambrey, Michael J.; Glasser, Neil F.; Holt, Tom; Rodés, Angél; Smellie, John L.; Carrivick, Jonathan L.; Blockley, Simon P. E.

    2017-12-01

    We present new data regarding the past dynamics of Marguerite Trough Ice Stream, George VI Ice Shelf and valley glaciers from Ablation Point Massif on Alexander Island, Antarctic Peninsula. This ice-free oasis preserves a geological record of ice stream lateral moraines, ice-dammed lakes, ice-shelf moraines and valley glacier moraines, which we dated using cosmogenic nuclide ages. We provide one of the first detailed sediment-landform assemblage descriptions of epishelf lake shorelines. Marguerite Trough Ice Stream imprinted lateral moraines against eastern Alexander Island at 120 m at Ablation Point Massif. During deglaciation, lateral lakes formed in the Ablation and Moutonnée valleys, dammed against the ice stream in George VI Sound. Exposure ages from boulders on these shorelines yielded ages of 13.9 to 9.7 ka. Following recession of the ice stream, George VI Ice Shelf formed in George VI Sound. An epishelf lake formed at 15-20 m asl in Ablation and Moutonnée valleys, dated from 9.4 to 4.6 ka, suggesting that the lake was stable and persistent for some 5000 years. Lake-level lowering occurred after this, with the lake level at 12 m at 3.1 ± 0.4 ka and at 5 m asl today. A readvance of the valley glaciers on Alexander Island at 4.4 ± 0.7 ka is recorded by valley glacier moraines overlying epishelf lake sediments. We speculate that the glacier readvance, which occurred during a period of warmth, may have been caused by a dynamic response of the glaciers to a lowering in surface elevation of George VI Ice Shelf.

  13. Rapid thinning and collapse of lake calving Yakutat Glacier, Southeast Alaska

    Science.gov (United States)

    Trussel, Barbara Lea

    Glaciers around the globe are experiencing a notable retreat and thinning, triggered by atmospheric warming. Tidewater glaciers in particular have received much attention, because they have been recognized to contribute substantially to global sea level rise. However, lake calving glaciers in Alaska show increasingly high thinning and retreat rates and are therefore contributors to sea level rise. The number of such lake calving systems is increasing worldwide as land-terminating glaciers retreat into overdeepened basins and form proglacial lakes. Yakutat Glacier in Southeast Alaska is a low elevation lake calving glacier with an accumulation to total area ratio of 0.03. It experienced rapid thinning of 4.43 +/- 0.06 m w.e. yr-1 between 2000-2010 and terminus retreat of over 15 km since the beginning of the 20th century. Simultaneously, adjacent Yakutat Icefield land-terminating glaciers thinned at lower but still substantial rates (3.54 +/- 0.06 m w.e. yr -1 for the same time period), indicating lake calving dynamics help drive increased mass loss. Yakutat Glacier sustained a ˜3 km long floating tongue for over a decade, which started to disintegrate into large tabular icebergs in 2010. Such floating tongues are rarely seen on temperate tidewater glaciers. The floating ice was weakened by surface ablation, which then allowed rifts to form and intersect. Ice velocity from GPS measurements showed that the ice on the floating tongue was moving substantially faster than grounded ice, which was attributed to rift opening between the floating and grounded ice. Temporal variations of rift opening were determined from time-lapse imagery, and correlated well with variations in ice speeds. Larger rift opening rates occurred during and after precipitation or increased melt episodes. Both of these events increased subglacial discharge and could potentially increase the subaqueous currents towards the open lake and thus increase drag on the ice underside. Simultaneously

  14. Is proglacial field an important contributor to runoff in glacierized watershed? Lesson learned from a case study in Duke River watershed, Yukon, Canada.

    Science.gov (United States)

    Chesnokova, A.; Baraer, M.

    2017-12-01

    Sub-Arctic glacierized catchments are complex hydrological systems of paramount importance not only for water resources management but also for various ecosystem services. Those areas are environmentally fragile and host many climate-sensitive components of hydrological cycle. In a context of shifting from glacial to non-glacial regimes in Sub-Arctic, this study focuses on understanding hydrological role of proglacial field in runoff generation in headwaters of Duke River watershed, Canada, by comparing to that of alpine meadow (area that is not recently reworked by glacier). Duke Glacier, as many glaciers in St. Elias Mountains, is a surging glacier, and produced debris-charged dead-ice masses once the last surge has seized. In addition, such features as ice-cored moraines and taluses are found in proglacial field. Those features are hypothesised to cause high storage capacity and complex groundwater distribution systems which might affect significantly watershed hydrology. In order to estimate the contribution of different components of the alpine meadow and the proglacial field to runoff, HBCM, a multi-component distributed hydrochemical mixing model (Baraer et al., 2015) was applied. During field campaign in June 2016, 157 samples were taken from possible hydrological sources (end-members) and from main stream, and analysed for major ions, dissolved organic compounds and heavy stable water isotopes. End-members contribution was quantified based on tracer concentration at mixing points. Discharge was measured 6 km downstream from the glacier snout so that both proglacial field and alpine meadow occupy comparable areas of the catchment. Results show the difference between main water sources for the two hydrological systems: buried ice, ice-cored moraines and groundwater sources within proglacial field, and groundwater and supra-permafrost water within alpine meadow. Overall contribution of glaciers during June 2016 exceeded the contribution of the rest of the

  15. Directly measuring melt at a vertical face tidewater glacier: is it possible?

    Science.gov (United States)

    Sutherland, D.; Amundson, J. M.; Duncan, D.; Jackson, R. H.; Kienholz, C.; Motyka, R. J.; Nash, J. D.

    2017-12-01

    Direct observations of melt on the underwater portion of tidewater glaciers have proved elusive, mostly due to the inherent dangers of making measurements next to a calving ice front. Additionally, the melting process itself is often masked by large ice speeds, variable calving across the glacier front, and enhanced melting due to rising subglacial discharge plumes. Here, we use repeat multibeam sonar images of LeConte Glacier to assess the possibility of measuring terminus melt in situ. LeConte Glacier is a fast-moving tidewater system in southeast Alaska with ice speeds of 25 m d-1 and previously estimated submarine melting that accounts for 50% of ice loss at the front. In August 2016, May 2017, and September 2017, we conducted intensive fieldwork at the 1.5 km long, 250 m deep glacier front, collecting dozens of repeat multibeam images of the underwater terminus. Combined with coincident time-lapse photography and surface radar measurements, we attempt to disentangle the ambient melt at the glacier face from ice motion and calving. We use a suite of oceanographic observations of the emerging subglacial discharge plume to separate portions of the glacier front that show evidence of enhanced melting versus portions outside of the affected plume areas. We find a complex, time-varying geometry, with regions of undercutting, overcutting, and large discharge channels. Measurements like these are critical to i) improving numerical model parameterizations of coupled glacier-ocean interactions and ii) developing a process-based understanding of how the literal ice-ocean boundary evolves in time and space.

  16. How do glacier inventory data aid global glacier assessments and projections?

    Science.gov (United States)

    Hock, R.

    2017-12-01

    Large-scale glacier modeling relies heavily on datasets that are collected by many individuals across the globe, but managed and maintained in a coordinated fashion by international data centers. The Global Terrestrial Network for Glaciers (GTN-G) provides the framework for coordinating and making available a suite of data sets such as the Randolph Glacier Inventory (RGI), the Glacier Thickness Dataset or the World Glacier Inventory (WGI). These datasets have greatly increased our ability to assess global-scale glacier mass changes. These data have also been vital for projecting the glacier mass changes of all mountain glaciers in the world outside the Greenland and Antarctic ice sheet, a total >200,000 glaciers covering an area of more than 700,000 km2. Using forcing from 8 to 15 GCMs and 4 different emission scenarios, global-scale glacier evolution models project multi-model mean net mass losses of all glaciers between 7 cm and 24 cm sea-level equivalent by the end of the 21st century. Projected mass losses vary greatly depending on the choice of the forcing climate and emission scenario. Insufficiently constrained model parameters likely are an important reason for large differences found among these studies even when forced by the same emission scenario, especially on regional scales.

  17. Ice core melt features in relation to Antarctic coastal climate

    NARCIS (Netherlands)

    Kaczmarska, M.; Isaksson, E.; Karlöf, L.; Brandt, O.; Winther, J.G.; van de Wal, R.S.W.; van den Broeke, M.R.; Johnsen, S.J.

    2006-01-01

    Measurement of light intensity transmission was carried out on an ice core S100 from coastal Dronning Maud Land (DML). Ice lenses were observed in digital pictures of the core and recorded as peaks in the light transmittance record. The frequency of ice layer occurrence was compared with climate

  18. Continuous methane measurements from a late Holocene Greenland ice core

    DEFF Research Database (Denmark)

    Rhodes, R.H.; Mitchell, L.E.; Brook, E.J.

    2013-01-01

    Ancient air trapped inside bubbles in ice cores can now be analysed for methane concentration utilising a laser spectrometer coupled to a continuous melter system. We present a new ultra-high resolution record of atmospheric methane variability over the last 1800yr obtained from continuous analysis...... of a shallow ice core from the North Greenland Eemian project (NEEM-2011-S1) during a 4-week laboratory-based measurement campaign. Our record faithfully replicates the form and amplitudes of multi-decadal oscillations previously observed in other ice cores and demonstrates the detailed depth resolution (5.3cm......), rapid acquisition time (30mday) and good long-term reproducibility (2.6%, 2s) of the continuous measurement technique.In addition, we report the detection of high frequency ice core methane signals of non-atmospheric origin. Firstly, measurements of air from the firn-ice transition region...

  19. Glacier mass balance reconstruction by sublimation induced enrichment of chemical species on Cerro Tapado (Chilean Andes

    Directory of Open Access Journals (Sweden)

    P. Ginot

    2006-01-01

    Full Text Available A 36 m long ice core down to bedrock from the Cerro Tapado glacier (5536 m a.s.l, 30°08' S, 69°55' W was analyzed to reconstruct past climatic conditions for Northern Chile. Because of the marked seasonality in the precipitation (short wet winter and extended dry summer periods in this region, major snow ablation and related post-depositional processes occur on the glacier surface during summer periods. They include predominantly sublimation and dry deposition. Assuming that, like measured during the field campaign, the enrichment of chloride was always related to sublimation, the chemical record along the ice core may be applied to reconstruct the history of such secondary processes linked to the past climatic conditions over northern Chile. For the time period 1962–1999, a mean annual net accumulation of 316 mm water equivalent (weq and 327 mm weq loss by sublimation was deduced by this method. This corresponds to an initial total annual accumulation of 539 mm weq. The annual variability of the accumulation and sublimation is related with the Southern Oscillation Index (SOI: higher net-accumulation during El-Niño years and more sublimation during La Niña years. The deepest part of the ice record shows a time discontinuity; with an ice body deposited under different climatic conditions: 290 mm higher precipitation but with reduced seasonal distribution (+470 mm in winter and –180 mm in summer and –3°C lower mean annual temperature. Unfortunately, its age is unknown. The comparison with regional proxy data however let us conclude that the glacier buildup did most likely occur after the dry mid-Holocene.

  20. Microstructural Location and Composition of Impurities in Polar Ice Cores, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains measurements of impurities and ions in three polar ice cores: the Vostok 5G ice core and the Byrd ice core from Antarctica, and the Greenland...

  1. Accumulation rate in a tropical Andean glacier as a proxy for northern Amazon precipitation

    Science.gov (United States)

    da Rocha Ribeiro, Rafael; Simões, Jefferson Cardia; Ramirez, Edson; Taupin, Jean-Denis; Assayag, Elias; Dani, Norberto

    2018-04-01

    Andean tropical glaciers have shown a clear shrinkage throughout the last few decades. However, it is unclear how this general retreat is associated with variations in rainfall patterns in the Amazon basin. To investigate this question, we compared the annual net accumulation variations in the Bolivian Cordillera Real (Andes), which is derived from an ice core from the Nevado Illimani (16° 37' S, 67° 46' W), covering the period 1960-1999 using the Amazonian Rainfall Index, Northern Atlantic Index (TNA), Multivariate ENSO Index (MEI), and Pacific Decadal Oscillation (PDO). The accumulation rate at the Nevado Illimani ice core decreased by almost 25% after 1980, from 1.02 w.eq. a-1 (water equivalent per year) in the 1961-1981 period to 0.76 w.eq. a-1 in the 1981-1999 period. The Northern Amazonian Rainfall (NAR) index best reflects changes in accumulation rates in the Bolivian ice core. Our proposal is based on two observations: (1) This area shows reduced rainfall associated with a more frequent and intense El Niño (during the positive phase of the MEI). The opposite (more rain) is true during La Niña phases. (2) Comparisons of the ice core record and NAR, PDO, and MEI indexes showed similar trends for the early 1980s, represented by a decrease in the accumulation rates and its standard deviations, probably indicating the same causality. The general changes observed by early 1980s coincided with the beginning of a PDO warm phase. This was followed by an increase in the Amazonian and tropical Andean precipitation from 1999, coinciding with a new PDO phase. However, this increase did not result in an expansion of the Zongo Glacier area.

  2. 90-year-old firn air from Styx glacier, East Antarctica

    Science.gov (United States)

    Jang, Y.; Ahn, J.; Buizert, C.; Lee, H. G.; Hong, S.; Han, Y.; Jun, S. J.; Hur, S. D.

    2017-12-01

    Firn is the upper part of the glacier that has not yet been completely changed to the ice. In this layer, firn air can move through the open pores and be pumped for sampling. We obtained firn air and ice cores from Styx glacier (73°51'95″ S, 163°41'217″ E, 1623m asl.), East Antarctica during 2014-2015. The Styx glacier is located near coast, and has an accumulation rate of 0.13 Mgm-2y-1 with a mean annual temperature of -31.7 °. We found that the lock-in depth (depth where gas diffusion starts to stop, "LID") is 52.4 m and bubble close-off depth (the depth to the snow-ice transition perfectly, "COD") is 65.1 m. Therefore lock-in zone (between LID and COD, "LIZ") is 52.4 - 65.1 m. Concentrations of greenhouse gases (CO2, CH4, n=13) in the firn air were analyzed at US National Oceanic and Atmospheric Administration (NOAA) and 15N of N2 was measured at the Scripps Institution of Oceanography (SIO). We find that the firn air ages are up to about 90 years, the oldest firn air ages observed among coastal glaciers. In order to better understand physical properties and chemical composition, methane concentration and total air content of the closed bubbles in the LIZ (3 cm resolution, n=124) were analyzed by a wet extraction method at Seoul National University. The CH4 concentration and total air content show large variations in cm-scale depth intervals, and they are anti-correlated with each other. The CH4 concentration changes in a few cm corresponds to up to 40 years in CH4 age. We also applied Centre for Ice and Climate (CIC) 1-dimensional diffusion model and simulated greenhouse gas concentration profiles to quantitatively understand how the air moves in the Styx firn column. We hypothesize that density variations in the firn may increase thickness of LIZ and consequently increase of firn gas ages.

  3. Precipitation variations recorded in Guliya ice core in the past 400 years

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Based on the Guliya ice core records, the precipitation in the past 400 years was retrieved. Its rela tions with other regions were also analyzed. The results demonstrated that there were two high-precipitation periods and two low-precipitation periods in Guliya ice core since 1571 AD. The average precipitation in the two high-precipitation periods was 42 mm (21%) higher than that in the two low-precipitation periods. The precipitation recorded in the Guliya ice core was consistent with that in Dunde ice core. The variation trends of precipitation in the Guliya ice core and the northern hemisphere are similar. During the extremely wet years in the northern hemisphere, the precipitation recorded in the Guliya ice core was two times the long-term average. However, the annual precipitation was 38% less than that of the long-term average in extremely dry years.

  4. Dynamic interactions between glacier and glacial lake in the Bhutan Himalaya

    Science.gov (United States)

    Tsutaki, S.; Fujita, K.; Yamaguchi, S.; Sakai, A.; Nuimura, T.; Komori, J.; Takenaka, S.; Tshering, P.

    2012-04-01

    A number of supraglacial lakes formed on the termini of debris-covered glaciers in the Bhutan Himalaya as a result of glacier retreat due to climate change. The terminal part of the lake-terminating glaciers flow faster than that of the land-terminating glaciers because the basal ice motion is enhanced by high subglacial water pressure generated by lake water. Increased ice flux caused by the accelerated glacier flow could be dissipated through the calving process which reduced the glacier thickness. It is important to understand the interaction between lake formation and glacier dynamics. Although glacier flow velocity has been measured by remote-sensing analysis in several regions of the Himalayas, glacier thinning rates have not been observed by neither in-situ nor remote-sensing approaches. The lack of field data raises limitation to interpretations for glacier dynamics. We investigate the influence of the presence/absence of glacial lakes on glacier dynamics and changes in surface elevation. We study two debris-covered glaciers in the Lunana region, the Bhutan Himalaya. Thorthormi Glacier is a land-terminating glacier with some supraglacial lakes while Lugge Glacier is a lake-terminating glaciers. We surveyed the surface elevation of debris-covered areas of the two glaciers in 2004 and 2011 by a differential GPS. Change in surface elevation of the lake-terminating Lugge Glacier (-5.4--2.4 m yr-1) was much more negative than that of the land-terminating Thorthormi Glacier (-3.3-0.6 m yr-1). Surface flow speed of the Thorthormi Glacier measured during 2002-2004 was faster in the upper reaches (~90 m yr-1) and reduced toward the downstream (40 m yr-1). In contrast, the surface flow speed at the Lugge Glacier measured in the same periods was 40-55 m yr-1 and the greatest at the lower most part. Observed spatial distribution of surface flow velocity at both glaciers were evaluated by a two-dimensional numerical flow model. Calculated emergence velocities are 1

  5. Ice core based Pb pollution from gasoline in South America in the context of a 2000 year metallurgical history

    Science.gov (United States)

    Eichler, Anja; Gramlich, Gabriela; Kellerhals, Thomas; Tobler, Leonhard; Schwikowski, Margit

    2015-04-01

    Lead (Pb) is highly neurotoxic and, in contrast to many other heavy metals including cobalt, copper, and zinc, it has no beneficial effects to humans even at low concentrations. The introduction of leaded gasoline in the 1920s initiated a period of unabated growth in the global emissions of Pb. Prior to the onset of leaded gasoline phase-out in the 1970s, atmospheric Pb levels increased dramatically. Long-term histories of Pb pollution in Eastern and Western Europe, Asia, and North America suggest that emissions from leaded gasoline within the Northern Hemisphere are dominant compared to that from metallurgy and coal combustion during the second half of the 20th century. However, there is no equivalent data for Southern America. Although exploitation of the extensive polymetallic deposits of the Andean Altiplano in South America since pre-colonial times has caused substantial emissions of neurotoxic Pb into the atmosphere, its historical significance compared to recent Pb pollution from leaded gasoline is not yet resolved. Here we present the first comprehensive, high-resolution two millennia Pb emission history for South America, based on ice core records of Pb concentrations, Pb enrichment factors (EFs), and Pb isotope ratios from Illimani glacier in Bolivia. Complementary to local air pollution recorded in lake sediments, ice cores from mid latitude glaciers provide information about more extended source areas. Illimani is the highest mountain of the eastern Bolivian Andes and is located at the northeastern margin of the Bolivian Altiplano. The ice core Pb deposition history revealed enhanced Pb EFs due to metallurgical processing for silver production during periods of the Tiwanaku/Wari culture (AD 450-950), the Inca empires (AD 1450-1532), colonial times (AD 1532-1900), and tin production at the beginning of the 20th century. After the 1960s 208Pb/207Pb ratios decreased significantly, whereas Pb EFs increased by a factor of three compared to the emission level

  6. Toward an integrated ice core chronology using relative and orbital tie-points

    Science.gov (United States)

    Bazin, L.; Landais, A.; Lemieux-Dudon, B.; Toyé Mahamadou Kele, H.; Blunier, T.; Capron, E.; Chappellaz, J.; Fischer, H.; Leuenberger, M.; Lipenkov, V.; Loutre, M.-F.; Martinerie, P.; Parrenin, F.; Prié, F.; Raynaud, D.; Veres, D.; Wolff, E.

    2012-04-01

    Precise ice cores chronologies are essential to better understand the mechanisms linking climate change to orbital and greenhouse gases concentration forcing. A tool for ice core dating (DATICE [developed by Lemieux-Dudon et al., 2010] permits to generate a common time-scale integrating relative and absolute dating constraints on different ice cores, using an inverse method. Nevertheless, this method has only been applied for a 4-ice cores scenario and for the 0-50 kyr time period. Here, we present the bases for an extension of this work back to 800 ka using (1) a compilation of published and new relative and orbital tie-points obtained from measurements of air trapped in ice cores and (2) an adaptation of the DATICE inputs to 5 ice cores for the last 800 ka. We first present new measurements of δ18Oatm and δO2/N2 on the Talos Dome and EPICA Dome C (EDC) ice cores with a particular focus on Marine Isotopic Stages (MIS) 5, and 11. Then, we show two tie-points compilations. The first one is based on new and published CH4 and δ18Oatm measurements on 5 ice cores (NorthGRIP, EPICA Dronning Maud Land, EDC, Talos Dome and Vostok) in order to produce a table of relative gas tie-points over the last 400 ka. The second one is based on new and published records of δO2/N2, δ18Oatm and air content to provide a table of orbital tie-points over the last 800 ka. Finally, we integrate the different dating constraints presented above in the DATICE tool adapted to 5 ice cores to cover the last 800 ka and show how these constraints compare with the established gas chronologies of each ice core.

  7. Glacier Remote Sensing Using Sentinel-2. Part I: Radiometric and Geometric Performance, and Application to Ice Velocity

    Directory of Open Access Journals (Sweden)

    Andreas Kääb

    2016-07-01

    Full Text Available With its temporal resolution of 10 days (five days with two satellites, and significantly more at high latitudes, its swath width of 290 km, and its 10 m and 20 m spatial resolution bands from the visible to the shortwave infrared, the European Sentinel-2 satellites have significant potential for glacier remote sensing, in particular mapping of glacier outlines and facies, and velocity measurements. Testing Level 1C commissioning and ramp-up phase data for initial sensor quality experiences, we find a high radiometric performance, but with slight striping effects under certain conditions. Through co-registration of repeat Sentinal-2 data we also find lateral offset patterns and noise on the order of a few metres. Neither of these issues will complicate most typical glaciological applications. Absolute geo-location of the data investigated was on the order of one pixel at the time of writing. The most severe geometric problem stems from vertical errors of the DEM used for ortho-rectifying Sentinel-2 data. These errors propagate into locally varying lateral offsets in the images, up to several pixels with respect to other georeferenced data, or between Sentinel-2 data from different orbits. Finally, we characterize the potential and limitations of tracking glacier flow from repeat Sentinel-2 data using a set of typical glaciers in different environments: Aletsch Glacier, Swiss Alps; Fox Glacier, New Zealand; Jakobshavn Isbree, Greenland; Antarctic Peninsula at the Larsen C ice shelf.

  8. Microshear in the deep EDML ice core analyzed using cryogenic EBSD

    Science.gov (United States)

    Kuiper, Ernst-Jan; Pennock, Gill; Drury, Martyn; Kipfstuhl, Sepp; Faria, Sérgio; Weikusat, Ilka

    2017-04-01

    Ice sheets play an important role in sea level evolution by storing large amounts of fresh water on land. The ice in an ice sheet flows from the interior of the ice sheet to the edges where it either melts or calves into the ocean. This flow of ice results from internal deformation of the ice aggregate. Dislocation creep is assumed to be the dominant deformation mechanism for polar ice and is grain size insensitive. Recently, a different deformation mechanism was identified in the deeper part of the EDML ice core (Antarctica) where, at a depth of 2385 meters, the grain size strongly decreases, the grain aspect ratio increase and, the inclination of the grain elongation changes (Faria et al., 2006; Weikusat et al., 2017). At this depth the borehole displacement increases strongly (Weikusat et al., 2017), which indicates a relatively high strain rate. Part of this EDML ice core section was studied using cryogenic electron backscattered diffraction (cryo-EBSD) (Weikusat et al, 2011). EBSD produces high resolution, full crystallographic (a-axis and c-axis) maps of the ice core samples. EBSD samples were taken from an ice core section at 2392.2 meter depth. This section was chosen for its very small grain size and the strongly aligned grain boundaries. The EBSD maps show a very low orientation gradient of <0.3° per millimetre inside the grains, which is 5-10 times lower than the orientation gradients found in other parts of the ice core. Furthermore, close to some grain boundaries, a relatively strong orientation gradient of 1°-2° per millimetre was found. The subgrain boundaries developed such that they elongate the sliding boundaries in order to accommodate the incompatibilities and maintain the strongly aligned grain boundary network. We identify the dominant deformation mechanism in this part of the ice core as grain boundary sliding accommodated by localized dislocation creep, which is a process similar to microshear (Drury and Humpreys, 1988). The existence of

  9. Initial Continuous Chemistry Results From The Roosevelt Island Ice Core (RICE)

    Science.gov (United States)

    Kjær, H. A.; Vallelonga, P. T.; Simonsen, M. F.; Neff, P. D.; Bertler, N. A. N.; Svensson, A.; Dahl-Jensen, D.

    2014-12-01

    The Roosevelt Island ice core (79.36° S, -161.71° W) was drilled in 2011-13 at the top of the Roosevelt Island ice dome, a location surrounded by the Ross ice shelf. The RICE ice core provides a unique opportunity to look into the past evolution of the West Antarctic Ice sheet. Further the site has high accumulation; 0.26 m of ice equivalent is deposited annually allowing annual layer determination for many chemical parameters. The RICE core was drilled to bedrock and has a total length of 763 metres. Preliminary results derived from water isotopes suggest that the oldest ice reaches back to the Eemian, with the last glacial being compressed in the bottom 60 metres. We present preliminary results from the RICE ice core including continuous measurements of acidity using an optical dye method, insoluble dust particles, conductivity and calcium. The core was analyzed at the New Zealand National Ice Core Research Facility at GNS Science in Wellington. The analytical set up used to determine climate proxies in the ice core was a modified version of the Copenhagen CFA system (Bigler et al., 2011). Key volcanic layers have been matched to those from the WAIS record (Sigl et al., 2013). A significant anti-correlation between acidity and calcium was seen in the Holocene part of the record. Due to the proximity to the ocean a large fraction of the calcium originates from sea salt and is in phase with total conductivity and sodium. In combination with the insoluble dust record, calcium has been apportioned into ocean-related and dust-related sources. Variability over the Holocene is presented and attributed to changing inputs of marine and dust aerosols.

  10. Variability of sea salts in ice and firn cores from Fimbul Ice Shelf, Dronning Maud Land, Antarctica

    Science.gov (United States)

    Paulina Vega, Carmen; Isaksson, Elisabeth; Schlosser, Elisabeth; Divine, Dmitry; Martma, Tõnu; Mulvaney, Robert; Eichler, Anja; Schwikowski-Gigar, Margit

    2018-05-01

    Major ions were analysed in firn and ice cores located at Fimbul Ice Shelf (FIS), Dronning Maud Land - DML, Antarctica. FIS is the largest ice shelf in the Haakon VII Sea, with an extent of approximately 36 500 km2. Three shallow firn cores (about 20 m deep) were retrieved in different ice rises, Kupol Ciolkovskogo (KC), Kupol Moskovskij (KM), and Blåskimen Island (BI), while a 100 m long core (S100) was drilled near the FIS edge. These sites are distributed over the entire FIS area so that they provide a variety of elevation (50-400 m a.s.l.) and distance (3-42 km) to the sea. Sea-salt species (mainly Na+ and Cl-) generally dominate the precipitation chemistry in the study region. We associate a significant sixfold increase in median sea-salt concentrations, observed in the S100 core after the 1950s, to an enhanced exposure of the S100 site to primary sea-salt aerosol due to a shorter distance from the S100 site to the ice front, and to enhanced sea-salt aerosol production from blowing salty snow over sea ice, most likely related to the calving of Trolltunga occurred during the 1960s. This increase in sea-salt concentrations is synchronous with a shift in non-sea-salt sulfate (nssSO42-) toward negative values, suggesting a possible contribution of fractionated aerosol to the sea-salt load in the S100 core most likely originating from salty snow found on sea ice. In contrast, there is no evidence of a significant contribution of fractionated sea salt to the ice-rises sites, where the signal would be most likely masked by the large inputs of biogenic sulfate estimated for these sites. In summary, these results suggest that the S100 core contains a sea-salt record dominated by the proximity of the site to the ocean, and processes of sea ice formation in the neighbouring waters. In contrast, the ice-rises firn cores register a larger-scale signal of atmospheric flow conditions and a less efficient transport of sea-salt aerosols to these sites. These findings are a

  11. Understanding Recent Mass Balance Changes of the Greenland Ice Sheet

    Science.gov (United States)

    vanderVeen, Cornelius

    2003-01-01

    The ultimate goal of this project is to better understand the current transfer of mass between the Greenland Ice Sheet, the world's oceans and the atmosphere, and to identify processes controlling the rate of this transfer, to be able to predict with greater confidence future contributions to global sea level rise. During the first year of this project, we focused on establishing longer-term records of change of selected outlet glaciers, reevaluation of mass input to the ice sheet and analysis of climate records derived from ice cores, and modeling meltwater production and runoff from the margins of the ice sheet.

  12. Mapping tide-water glacier dynamics in east Greenland using landsat data

    Science.gov (United States)

    Dwyer, John L.

    1995-01-01

    Landsat multispectral scanner and thematic mapper images were co-registered For the Kangerdlugssuaq Fjord region in East Greenland and were used to map glacier drainage-basin areas, changes in the positions of tide-water glacier termini and to estimate surface velocities of the larger tide-water glaciers. Statistics were compiled to document distance and area changes to glacier termini. The methodologies developed in this study are broadly applicable to the investigation of tide-water glaciers in other areas. The number of images available for consecutive years and the accuracy with which images are co-registered are key factors that influence the degree to which regional glacier dynamics can be characterized using remotely sensed data.Three domains of glacier state were interpreted: net increase in terminus area in the southern part of the study area, net loss of terminus area for glaciers in upper Kangerdlugssuaq Fjord and a slight loss of glacier terminus area northward from Ryberg Fjord. Local increases in the concentrations of drifting icebergs in the fjords coincide with the observed extension of glacier termini positions Ice-surface velocity estimates were derived for several glaciers using automated image cross-correlation techniques The velocity determined for Kangerdlugssuaq Gletscher is approximately 5.0 km a−1 and that for Kong Christian IV Gletscher is 0.9 km a−1. The continuous presence of icebergs and brash ice in front of these glaciers indicates sustained rates of ice-front calving.

  13. Glaciers of Avacha group of volcanoes in Neoholocene

    Directory of Open Access Journals (Sweden)

    T. M. Manevich

    2016-01-01

    Full Text Available The study of moraines at the Avacha volcano group revealed that glaciers changes at all volcanoes within the group happened almost synchronously. Glacial deposits could be grouped into three generations, corresponding to three periods of glacier fluctuations in Neoholocene. The largest glaciation within the group occurred ~2000 years ago. Fragments of moraine, corresponding to that period were found only in the moraine complex of the Ditmar Glacier which was 15% larger then today at that time. The most of moraines at the Avacha volcano group were formed during the Little Ice Age, which in the studied region continued up to the first decades of XX centuries. The maximal advance of glaciers probably happened in XVII century. The moraine corresponding to that period was found at the Kozelsky Glacier valley. At present time the total area of glaciers which moraines were described and dated approaches 21.46  km2. The area of reconstructed moraines corresponding to the Little Ice Age is estimated to be 2.79 km2, therefore at that period the total glaciation area reaches 24,25 км2 exceeding the present area by 13%. It could be claimed that in general during the time past the Little Ice Age the glaciation nature and glacier types did not change sufficiently. The rate of glacier degradation at various parts of the group is different and depends mainly on exposition. At the valleys of four glaciers we found moraines formed in the middle of XX century. They may appear in 1941–1952 when the unfavorable weather conditions leaded to stable negative anomalies in accumulation have happened.

  14. A complex relationship between calving glaciers and climate

    Science.gov (United States)

    Post, A.; O'Neel, S.; Motyka, R.J.; Streveler, G.

    2011-01-01

    Many terrestrial glaciers are sensitive indicators of past and present climate change as atmospheric temperature and snowfall modulate glacier volume. However, climate interpretations based on glacier behavior require careful selection of representative glaciers, as was recently pointed out for surging and debris-covered glaciers, whose behavior often defies regional glacier response to climate [Yde and Paasche, 2010]. Tidewater calving glaciers (TWGs)mountain glaciers whose termini reach the sea and are generally grounded on the seaflooralso fall into the category of non-representative glaciers because the regional-scale asynchronous behavior of these glaciers clouds their complex relationship with climate. TWGs span the globe; they can be found both fringing ice sheets and in high-latitude regions of each hemisphere. TWGs are known to exhibit cyclic behavior, characterized by slow advance and rapid, unstable retreat, largely independent of short-term climate forcing. This so-called TWG cycle, first described by Post [1975], provides a solid foundation upon which modern investigations of TWG stability are built. Scientific understanding has developed rapidly as a result of the initial recognition of their asynchronous cyclicity, rendering greater insight into the hierarchy of processes controlling regional behavior. This has improved the descriptions of the strong dynamic feedbacks present during retreat, the role of the ocean in TWG dynamics, and the similarities and differences between TWG and ice sheet outlet glaciers that can often support floating tongues.

  15. Electrical conductivity measurements from the GISP2 and GRIP Greenland ice cores

    DEFF Research Database (Denmark)

    Dahl-Jensen, Dorthe; Clausen, Henrik Brink; Taylor, K. C.

    1993-01-01

    . Here we present electrical conductivity records for the Greenland Ice Sheet Project 2 (GISP2) and Greenland Ice-core Project (GRIP) ice cores, drilled 28 km apart to enable direct comparison of the results. The upper parts of both records are consistent with previous evidence from other Greenland cores...

  16. Bed-Deformation Experiments Beneath a Temperate Glacier

    Science.gov (United States)

    Iverson, N. R.; Hooyer, T. S.; Fischer, U. H.; Cohen, D.; Jackson, M.; Moore, P. L.; Lappegard, G.; Kohler, J.

    2002-12-01

    Fast flow of glaciers and genesis of glacial landforms are commonly attributed to shear deformation of subglacial sediment. Although models of this process abound, data gathered subglacially on the kinematics and mechanics of such deformation are difficult to interpret. Major difficulties stem from the necessity of either measuring deformation near glacier margins, where conditions may be abnormal, or at the bottoms of boreholes, where the scope of instrumentation is limited, drilling disturbs sediment, and local boundary conditions are poorly known. A different approach is possible at the Svartisen Subglacial Laboratory, where tunnels melted in the ice provide temporary human access to the bed of Engabreen, a temperate outlet glacier of the Svartisen Ice Cap in Norway. A trough (2 m x 1.5 m x 0.5 m deep) was blasted in the rock bed, where the glacier is 220 m thick and sliding at 0.1-0.2 m/d. During two spring field seasons, this trough was filled with 2.5 tons of simulated till. Instruments in the till recorded shear (tiltmeters), volume change, total normal stress, and pore-water pressure as ice moved across the till surface. Pore pressure was brought to near the total normal stress by feeding water to the base of the till with a high-pressure pump, operated in a rock tunnel 4 m below the bed surface. Results illustrate some fundamental aspects of bed deformation. Permanent shear deformation requires low effective normal stress and hence high pore-water pressure, owing to the frictional nature of till. Shear strain generally increases upward in the bed toward the glacier sole, consistent with previous measurements beneath thinner ice at glacier margins. At low effective normal stresses, ice sometimes decouples from underlying till. Overall, bed deformation accounts for 10-35 % of basal motion, although this range excludes shear in the uppermost 0.05 m of till where shear was not measured. Pump tests with durations ranging from seconds to hours highlight the need

  17. Atlantic Water advection vs. glacier dynamics in northern Spitsbergen since early deglaciation

    Directory of Open Access Journals (Sweden)

    M. Bartels

    2017-11-01

    Full Text Available Atlantic Water (AW advection plays an important role in climatic, oceanographic and environmental conditions in the eastern Arctic. Situated along the only deep connection between the Atlantic and the Arctic oceans, the Svalbard Archipelago is an ideal location to reconstruct the past AW advection history and document its linkage with local glacier dynamics, as illustrated in the present study of a 275 cm long sedimentary record from Woodfjorden (northern Spitsbergen; water depth: 171 m spanning the last  ∼  15 500 years. Sedimentological, micropalaeontological and geochemical analyses were used to reconstruct changes in marine environmental conditions, sea ice cover and glacier activity. Data illustrate a partial break-up of the Svalbard–Barents Sea Ice Sheet from Heinrich Stadial 1 onwards (until  ∼  14.6 ka. During the Bølling–Allerød ( ∼  14.6–12.7 ka, AW penetrated as a bottom water mass into the fjord system and contributed significantly to the destabilization of local glaciers. During the Younger Dryas ( ∼  12.7–11.7 ka, it intruded into intermediate waters while evidence for a glacier advance is lacking. A short-term deepening of the halocline occurred at the very end of this interval. During the early Holocene ( ∼  11.7–7.8 ka, mild conditions led to glacier retreat, a reduced sea ice cover and increasing sea surface temperatures, with a brief interruption during the Preboreal Oscillation ( ∼  11.1–10.8 ka. Due to a  ∼  6000-year gap, the mid-Holocene is not recorded in this sediment core. During the late Holocene ( ∼  1.8–0.4 ka, a slightly reduced AW inflow and lower sea surface temperatures compared to the early Holocene are reconstructed. Glaciers, which previously retreated to the shallower inner parts of the Woodfjorden system, likely advanced during the late Holocene. In particular, topographic control in concert with the reduced

  18. Circum-Arctic Changes in the Flow of Glaciers and Ice Caps from Satellite SAR Data between the 1990s and 2017

    Directory of Open Access Journals (Sweden)

    Tazio Strozzi

    2017-09-01

    Full Text Available We computed circum-Arctic surface velocity maps of glaciers and ice caps over the Canadian Arctic, Svalbard and the Russian Arctic for at least two times between the 1990s and 2017 using satellite SAR data. Our analyses are mainly performed with offset-tracking of ALOS-1 PALSAR-1 (2007–2011 and Sentinel-1 (2015–2017 data. In certain cases JERS-1 SAR (1994–1998, TerraSAR-X (2008–2012, Radarsat-2 (2009–2016 and ALOS-2 PALSAR-2 (2015–2016 data were used to fill-in spatial or temporal gaps. Validation of the latest Sentinel-1 results was accomplished by means of SAR data at higher spatial resolution (Radarsat-2 Wide Ultra Fine and ground-based measurements. In general, we observe a deceleration of flow velocities for the major tidewater glaciers in the Canadian Arctic and an increase in frontal velocity along with a retreat of frontal positions over Svalbard and the Russian Arctic. However, all regions have strong accelerations for selected glaciers. The latter developments can be well traced based on the very high temporal sampling of Sentinel-1 acquisitions since 2015, revealing new insights in glacier dynamics. For example, surges on Spitsbergen (e.g., Negribreen, Nathorsbreen, Penckbreen and Strongbreen have a different characteristic and timing than those over Eastern Austfonna and Edgeoya (e.g., Basin 3, Basin 2 and Stonebreen. Events similar to those ongoing on Eastern Austofonna were also observed over the Vavilov Ice Cap on Severnaya Zemlya and possibly Simony Glacier on Franz-Josef Land. Collectively, there seems to be a recently increasing number of glaciers with frontal destabilization over Eastern Svalbard and the Russian Arctic compared to the 1990s.

  19. The sensitivity of flowline models of tidewater glaciers to parameter uncertainty

    Directory of Open Access Journals (Sweden)

    E. M. Enderlin

    2013-10-01

    Full Text Available Depth-integrated (1-D flowline models have been widely used to simulate fast-flowing tidewater glaciers and predict change because the continuous grounding line tracking, high horizontal resolution, and physically based calving criterion that are essential to realistic modeling of tidewater glaciers can easily be incorporated into the models while maintaining high computational efficiency. As with all models, the values for parameters describing ice rheology and basal friction must be assumed and/or tuned based on observations. For prognostic studies, these parameters are typically tuned so that the glacier matches observed thickness and speeds at an initial state, to which a perturbation is applied. While it is well know that ice flow models are sensitive to these parameters, the sensitivity of tidewater glacier models has not been systematically investigated. Here we investigate the sensitivity of such flowline models of outlet glacier dynamics to uncertainty in three key parameters that influence a glacier's resistive stress components. We find that, within typical observational uncertainty, similar initial (i.e., steady-state glacier configurations can be produced with substantially different combinations of parameter values, leading to differing transient responses after a perturbation is applied. In cases where the glacier is initially grounded near flotation across a basal over-deepening, as typically observed for rapidly changing glaciers, these differences can be dramatic owing to the threshold of stability imposed by the flotation criterion. The simulated transient response is particularly sensitive to the parameterization of ice rheology: differences in ice temperature of ~ 2 °C can determine whether the glaciers thin to flotation and retreat unstably or remain grounded on a marine shoal. Due to the highly non-linear dependence of tidewater glaciers on model parameters, we recommend that their predictions are accompanied by

  20. Reconstruction of glacier variability from lake sediments reveals dynamic Holocene climate in Svalbard

    Science.gov (United States)

    van der Bilt, Willem G. M.; Bakke, Jostein; Vasskog, Kristian; D'Andrea, William J.; Bradley, Raymond S.; Ólafsdóttir, Sædis

    2015-10-01

    The Arctic is warming faster than anywhere else on Earth. Holocene proxy time-series are increasingly used to put this amplified response in perspective by understanding Arctic climate processes beyond the instrumental period. However, available datasets are scarce, unevenly distributed and often of coarse resolution. Glaciers are sensitive recorders of climate shifts and variations in rock-flour production transfer this signal to the lacustrine sediment archives of downstream lakes. Here, we present the first full Holocene record of continuous glacier variability on Svalbard from glacier-fed Lake Hajeren. This reconstruction is based on an undisturbed lake sediment core that covers the entire Holocene and resolves variability on centennial scales owing to 26 dating points. A toolbox of physical, geochemical (XRF) and magnetic proxies in combination with multivariate statistics has allowed us to fingerprint glacier activity in addition to other processes affecting the sediment record. Evidence from variations in sediment density, validated by changes in Ti concentrations, reveal glaciers remained present in the catchment following deglaciation prior to 11,300 cal BP, culminating in a Holocene maximum between 9.6 and 9.5 ka cal BP. Correspondence with freshwater pulses from Hudson Strait suggests that Early Holocene glacier advances were driven by the melting Laurentide Ice Sheet (LIS). We find that glaciers disappeared from the catchment between 7.4 and 6.7 ka cal BP, following a late Hypsithermal. Glacier reformation around 4250 cal BP marks the onset of the Neoglacial, supporting previous findings. Between 3380 and 3230 cal BP, we find evidence for a previously unreported centennial-scale glacier advance. Both events are concurrent with well-documented episodes of North Atlantic cooling. We argue that this brief forcing created suitable conditions for glaciers to reform in the catchment against a background of gradual orbital cooling. These findings highlight the

  1. Determining glacier velocity with single frequency GPS receivers

    NARCIS (Netherlands)

    Reijmer, C.H.; van de Wal, R.S.W.; Boot, W.

    2011-01-01

    A well-known phenomenon in glacier dynamics is the existence of a relation between the glacier velocity and available amount of melt water (Zwally et al., 2002; Van de Wal et al., 2008). This relation is of particular importance when estimating the reaction of glaciers and ice sheets to climate

  2. The Photographic History of Greenland’s Glaciers – and how the historical data plays an important role in today’s glacier research

    DEFF Research Database (Denmark)

    Bjørk, Anders Anker; Kjeldsen, Kristian Kjellerup; Korsgaard, Niels Jákup

    As the Greenland Ice Sheet and Greenland's glaciers are continuing to loss mass at high rates, knowledge of their past response to climatic changes is ever important. By harvesting the archives for images, both terrestrial and airborne, we are able to expand the record of glacier observation...... by several decades, thus supplying crucial knowledge on glacier behavior to important climatic transitions such as the end of the Little Ice Age and the early 20th Century warming. Here we show how a large collection of historical aerial images portray the glacial response to the Little Ice Age deglaciation...... in Greenland and document frontal change throughout the 20th Century. A detailed story of the LIA-deglaciation is told by supplementing with terrestrial photos that capture the onset of retreat and high resolution aerial images that portray geomorphological evidence of the Little Ice Age maximum extent...

  3. On the use of δ18Oatm for ice core dating

    Science.gov (United States)

    Extier, Thomas; Landais, Amaelle; Bréant, Camille; Prié, Frédéric; Bazin, Lucie; Dreyfus, Gabrielle; Roche, Didier M.; Leuenberger, Markus

    2018-04-01

    Deep ice core chronologies have been improved over the past years through the addition of new age constraints. However, dating methods are still associated with large uncertainties for ice cores from the East Antarctic plateau where layer counting is not possible. Indeed, an uncertainty up to 6 ka is associated with AICC2012 chronology of EPICA Dome C (EDC) ice core, which mostly arises from uncertainty on the delay between changes recorded in δ18Oatm and in June 21st insolation variations at 65°N used for ice core orbital dating. Consequently, we need to enhance the knowledge of this delay to improve ice core chronologies. We present new high-resolution EDC δ18Oatm record (153-374 ka) and δO2/N2 measurements (163-332 ka) performed on well-stored ice to provide continuous records of δ18Oatm and δO2/N2 between 100 and 800 ka. The comparison of δ18Oatm with the δ18Ocalcite from East Asian speleothems shows that both signals present similar orbital and millennial variabilities, which may represent shifts in the InterTropical Convergence Zone position, themselves associated with Heinrich events. We thus propose to use the δ18Ocalcite as target for δ18Oatm orbital dating. Such a tuning method improves the ice core chronology of the last glacial inception compared to AICC2012 by reconciling NGRIP and mid-latitude climatic records. It is especially marked during Dansgaard-Oeschger 25 where the proposed chronology is 2.2 ka older than AICC2012. This δ18Oatm - δ18Ocalcite alignment method applied between 100 and 640 ka improves the EDC ice core chronology, especially over MIS 11, and leads to lower ice age uncertainties compared to AICC2012.

  4. ICESat laser altimetry over small mountain glaciers

    Directory of Open Access Journals (Sweden)

    D. Treichler

    2016-09-01

    Full Text Available Using sparsely glaciated southern Norway as a case study, we assess the potential and limitations of ICESat laser altimetry for analysing regional glacier elevation change in rough mountain terrain. Differences between ICESat GLAS elevations and reference elevation data are plotted over time to derive a glacier surface elevation trend for the ICESat acquisition period 2003–2008. We find spatially varying biases between ICESat and three tested digital elevation models (DEMs: the Norwegian national DEM, SRTM DEM, and a high-resolution lidar DEM. For regional glacier elevation change, the spatial inconsistency of reference DEMs – a result of spatio-temporal merging – has the potential to significantly affect or dilute trends. Elevation uncertainties of all three tested DEMs exceed ICESat elevation uncertainty by an order of magnitude, and are thus limiting the accuracy of the method, rather than ICESat uncertainty. ICESat matches glacier size distribution of the study area well and measures small ice patches not commonly monitored in situ. The sample is large enough for spatial and thematic subsetting. Vertical offsets to ICESat elevations vary for different glaciers in southern Norway due to spatially inconsistent reference DEM age. We introduce a per-glacier correction that removes these spatially varying offsets, and considerably increases trend significance. Only after application of this correction do individual campaigns fit observed in situ glacier mass balance. Our correction also has the potential to improve glacier trend significance for other causes of spatially varying vertical offsets, for instance due to radar penetration into ice and snow for the SRTM DEM or as a consequence of mosaicking and merging that is common for national or global DEMs. After correction of reference elevation bias, we find that ICESat provides a robust and realistic estimate of a moderately negative glacier mass balance of around −0.36 ± 0.07

  5. A relationship between ion balance and the chemical compounds of salt inclusions found in the Greenland Ice Core Project and Dome Fuji ice cores

    DEFF Research Database (Denmark)

    Johnsen, Sigfus Johann; Dahl-Jensen, Dorthe; Steffensen, Jørgen Peder

    2008-01-01

    We have proposed a method of deducing the chemical compounds found in deep polar ice cores by analyzing the balance between six major ions (Cl-, NO3 -, SO4 2-, Na+, Mg2+, and Ca2+). The method is demonstrated for the Holocene and last glacial maximum regions of the Dome Fuji and GRIP ice cores...... on individual salt inclusions. The abundances in the ice cores are shown to reflect differences in climatic periods (the acidic environment of the Holocene versus the reductive environment of the last glacial maximum) and regional conditions (the marine environment of Antarctica versus the continental...

  6. Geographic Names of Iceland's Glaciers: Historic and Modern

    Science.gov (United States)

    Sigurðsson, Oddur; Williams, Richard S.

    2008-01-01

    Climatic changes and resulting glacier fluctuations alter landscapes. In the past, such changes were noted by local residents who often documented them in historic annals; eventually, glacier variations were recorded on maps and scientific reports. In Iceland, 10 glacier place-names are to be found in Icelandic sagas, and one of Iceland's ice caps, Snaefellsjokull, appeared on maps of Iceland published in the 16th century. In the late 17th century, the first description of eight of Iceland's glaciers was written. Therefore, Iceland distinguishes itself in having a more than 300-year history of observations by Icelanders on its glaciers. A long-term collaboration between Oddur Sigurdsson and Richard S. Williams, Jr., led to the authorship of three books on the glaciers of Iceland. Much effort has been devoted to documenting historical glacier research and related nomenclature and to physical descriptions of Icelandic glaciers by Icelanders and other scientists from as far back as the Saga Age to recent (2008) times. The first book, Icelandic Ice Mountains, was published by the Icelandic Literary Society in 2004 in cooperation with the Icelandic Glaciological Society and the International Glaciological Society. Icelandic Ice Mountains was a glacier treatise written by Sveinn Palsson in 1795 and is the first English translation of this important scientific document. Icelandic Ice Mountains includes a Preface, including a summary of the history and facsimiles of page(s) from the original manuscript, a handwritten copy, and an 1815 manuscript (without maps and drawings) by Sveinn Palsson on the same subject which he wrote for Rev. Ebenezer Henderson; an Editor's Introduction; 82 figures, including facsimiles of Sveinn Palsson's original maps and perspective drawings, maps, and photographs to illustrate the text; a comprehensive Index of Geographic Place-Names and Other Names in the treatise; References, and 415 Endnotes. Professional Paper 1746 (this book) is the second

  7. The Neoglacial landscape and human history of Glacier Bay, Glacier Bay National Park and Preserve, southeast Alaska, USA

    Science.gov (United States)

    Connor, C.; Streveler, G.; Post, A.; Monteith, D.; Howell, W.

    2009-01-01

    The Neoglacial landscape of the Huna Tlingit homeland in Glacier Bay is recreated through new interpretations of the lower Bay's fjordal geomorphology, late Quaternary geology and its ethnographic landscape. Geological interpretation is enhanced by 38 radiocarbon dates compiled from published and unpublished sources, as well as 15 newly dated samples. Neoglacial changes in ice positions, outwash and lake extents are reconstructed for c. 5500?????"200 cal. yr ago, and portrayed as a set of three landscapes at 1600?????"1000, 500?????"300 and 300?????"200 cal. yr ago. This history reveals episodic ice advance towards the Bay mouth, transforming it from a fjordal seascape into a terrestrial environment dominated by glacier outwash sediments and ice-marginal lake features. This extensive outwash plain was building in lower Glacier Bay by at least 1600 cal. yr ago, and had filled the lower bay by 500 cal. yr ago. The geologic landscape evokes the human-described landscape found in the ethnographic literature. Neoglacial climate and landscape dynamism created difficult but endurable environmental conditions for the Huna Tlingit people living there. Choosing to cope with environmental hardship was perhaps preferable to the more severely deteriorating conditions outside of the Bay as well as conflicts with competing groups. The central portion of the outwash plain persisted until it was overridden by ice moving into Icy Strait between AD 1724?????"1794. This final ice advance was very abrupt after a prolonged still-stand, evicting the Huna Tlingit from their Glacier Bay homeland. ?? 2009 SAGE Publications.

  8. Cosmogenic 10Be Depth Profile in top 560 m of West Antarctic Ice Sheet Divide Ice Core

    Science.gov (United States)

    Welten, K. C.; Woodruff, T. E.; Caffee, M. W.; Edwards, R.; McConnell, J. R.; Bisiaux, M. M.; Nishiizumi, K.

    2009-12-01

    Concentrations of cosmogenic 10Be in polar ice samples are a function of variations in solar activity, geomagnetic field strength, atmospheric mixing and annual snow accumulation rates. The 10Be depth profile in ice cores also provides independent chronological markers to tie Antarctic to Greenland ice cores and to tie Holocene ice cores to the 14C dendrochronology record. We measured 10Be concentrations in 187 samples from depths of 0-560 m of the main WAIS Divide core, WDC06A. The ice samples are typically 1-2 kg and represent 2-4 m of ice, equivalent to an average temporal resolution of ~12 years, based on the preliminary age-depth scale proposed for the WDC core, (McConnell et al., in prep). Be, Al and Cl were separated using ion exchange chromatography techniques and the 10Be concentrations were measured by accelerator mass spectrometry (AMS) at PRIME lab. The 10Be concentrations range from 8.1 to 19.1 x 10^3 at/g, yielding an average of (13.1±2.1) x 10^3 at/g. Adopting an average snow accumulation rate of 20.9 cm weq/yr, as derived from the age-depth scale, this value corresponds to an average 10Be flux of (2.7±0.5) x 10^5 atoms/yr/cm2. This flux is similar to that of the Holocene part of the Siple Dome (Nishiizumi and Finkel, 2007) and Dome Fuji (Horiuchi et al. 2008) ice cores, but ~30% lower than the value of 4.0 x 10^5 atoms/yr/cm2 for GISP2 (Finkel and Nishiizumi, 1997). The periods of low solar activity, known as Oort, Wolf, Spörer, Maunder and Dalton minima, show ~20% higher 10Be concentrations/fluxes than the periods of average solar activity in the last millennium. The maximum 10Be fluxes during some of these periods of low solar activity are up to ~50% higher than average 10Be fluxes, as seen in other polar ice cores, which makes these peaks suitable as chronologic markers. We will compare the 10Be record in the WAIS Divide ice core with that in other Antarctic as well as Greenland ice cores and with the 14C treering record. Acknowledgment. This

  9. Rapid Holocene thinning of outlet glaciers followed by readvance in the western Ross Embayment, Antarctica

    Science.gov (United States)

    Jones, R. S.; Whitmore, R.; Mackintosh, A.; Norton, K. P.; Eaves, S.; Stutz, J.

    2017-12-01

    Investigating Antarctic deglaciation following the LGM provides an opportunity to better understand patterns, mechanisms and drivers of ice sheet retreat. In the Ross Sea sector, geomorphic features preserved on the seafloor indicate that streaming East Antarctic outlet glaciers once extended >100 km offshore of South Victoria Land prior to back-stepping towards their modern configurations. In order to adequately interpret the style and causes of this retreat, the timing and magnitude of corresponding ice thickness change is required. We present new constraints on ice surface lowering from Mawson Glacier, an outlet of the East Antarctic Ice Sheet that flows into the western Ross Sea. Surface-exposure (10Be) ages from samples collected in elevation transects above the modern ice surface reveal that rapid thinning occurred at 5-8 ka, broadly coeval with new ages of grounding-line retreat at 6 ka and rapid thinning recorded at nearby Mackay Glacier at 7 ka. Our data also show that a moraine formed near to the modern ice margin of Mawson Glacier at 0.8 ka, which, together with historical observations, indicates that glaciers in this region readvanced during the last thousand years. We argue that 1) the accelerated thinning of outlet glaciers was driven by local grounding-line retreat through overdeepened basins during the early-mid Holocene, and 2) the glaciers subsequently readvanced, possibly linked to late Holocene sea-ice expansion, before retreating to their current positions. Our work demonstrates that these outlet glaciers were closely coupled to environmental and topography-induced perturbations near their termini throughout the Holocene.

  10. Present dynamics and future prognosis of a slowly surging glacier

    Directory of Open Access Journals (Sweden)

    G. E. Flowers

    2011-03-01

    Full Text Available Glacier surges are a well-known example of an internal dynamic oscillation whose occurrence is not a direct response to the external climate forcing, but whose character (i.e. period, amplitude, mechanism may depend on the glacier's environmental or climate setting. We examine the dynamics of a small (∼5 km2 valley glacier in Yukon, Canada, where two previous surges have been photographically documented and an unusually slow surge is currently underway. To characterize the dynamics of the present surge, and to speculate on the future of this glacier, we employ a higher-order flowband model of ice dynamics with a regularized Coulomb-friction sliding law in both diagnostic and prognostic simulations. Diagnostic (force balance calculations capture the measured ice-surface velocity profile only when non-zero basal water pressures are prescribed over the central region of the glacier, coincident with where evidence of the surge has been identified. This leads to sliding accounting for 50–100% of the total surface motion in this region. Prognostic simulations, where the glacier geometry evolves in response to a prescribed surface mass balance, reveal a significant role played by a bedrock ridge beneath the current equilibrium line of the glacier. Ice thickening occurs above the ridge in our simulations, until the net mass balance reaches sufficiently negative values. We suggest that the bedrock ridge may contribute to the propensity for surges in this glacier by promoting the development of the reservoir area during quiescence, and may permit surges to occur under more negative balance conditions than would otherwise be possible. Collectively, these results corroborate our interpretation of the current glacier flow regime as indicative of a slow surge that has been ongoing for some time, and support a relationship between surge incidence or character and the net mass balance. Our results also highlight the importance of glacier bed

  11. Dendrochronology and late Holocene history of Bering piedmont glacier, Alaska

    Science.gov (United States)

    Wiles, G.C.; Post, A.; Muller, E.H.; Molnia, B.F.

    1999-01-01

    Fluctuations of the piedmont lobe of Bering Glacier and its sublobe Steller Glacier over the past two millennia are reconstructed using 34 radiocarbon dates and tree-ring data from 16 sites across the glaciers' forelands. The general sequence of glacial activity is consistent with well-dated fluctuations of tidewater and land-terminating glaciers elsewhere along the Gulf of Alaska. Extensive forested areas along 25 km of the Bering ice margin were inundated by glacio-lacustrine and glacio-fluvial sediments during a probable ice advance shortly before 500 cal yr A.D. Regrowth of forests followed the retreating ice as early as the 7th century A.D., with frequent interruptions of tree growth due to outwash aggradation. Forests overrun by ice and buried in outwash indicate readvance about 1080 cal yr A.D. Retreat followed, with ice-free conditions maintained along the distal portions of the forefield until the early 17th century after which the ice advanced to within a few kilometers of its outer Neoglacial moraine. Ice reached this position after the mid-17th century and prior to 200 yr ago. Since the early 20th century, glacial retreat has been punctuated by periodic surges. The record from forests overrun by the nonsurging Steller Lobe shows that this western ice margin was advancing by 1250 A.D., reaching near its outer moraine after 1420 cal yr A.D. Since the late 19th century, the lobe has dominantly retreated.

  12. Basal and thermal control mechanisms of the Ragnhild glaciers, East Antarctica

    Science.gov (United States)

    Pattyn, Frank; de Brabander, Sang; Huyghe, Ann

    The Ragnhild glaciers are three enhanced-flow features situated between the Sør Rondane and Yamato Mountains in eastern Dronning Maud Land, Antarctica. We investigate the glaciological mechanisms controlling their existence and behavior, using a three-dimensional numerical thermomechanical ice-sheet model including higher-order stress gradients. This model is further extended with a steady-state model of subglacial water flow, based on the hydraulic potential gradient. Both static and dynamic simulations are capable of reproducing the enhanced ice-flow features. Although basal topography is responsible for the existence of the flow pattern, thermomechanical effects and basal sliding seem to locally soften and lubricate the ice in the main trunks. Lateral drag is a contributing factor in balancing the driving stress, as shear margins can be traced over a distance of hundreds of kilometers along west Ragnhild glacier. Different basal sliding scenarios show that central Ragnhild glacier stagnates as west Ragnhild glacier accelerates and progressively drains the whole catchment area by ice and water piracy.

  13. GEOMORPHOLOGY AND SEDIMENTOLOGY OF UNION GLACIER AREA, ELLSWORTH MOUNTAINS, OCCIDENTAL ANTARCTICA

    Directory of Open Access Journals (Sweden)

    Vanessa do Couto Silva Costa

    2017-08-01

    Full Text Available The work aims to investigate the geomorphological and sedimentological aspects of Union Glacier area (79°45’00’’S; 82°30’00’’W, southern sector of Ellsworth Mountains. Geomorphological cartography based on 15 m ASTER (2010 satellite imagery and field works were carried out during the Brazilian expedition (2011/2012 enabled the identification of morainic formations: ice-cored hummock moraines, supraglacial moraines, and recession moraines in the interior of the valleys. With the exception of the latter one, all types of moraines have been developed on the blue-ice areas. The evidence for paleo wet-based glacial conditions is reconstructed from a range of geomorphological record, including exposed abrasion marks, striations and glaciotectonic deformation. This type of deformation is represented by lee sides of oversteepening bedrock promontories which follow the tributaries of glaciers ice flow. Glacial sediments were collected from the moraines for granulometric and morphometric analyses. They show the prevalence of sandy gravel and sand texture, low quantity of fine fractions, and absence of attributes such as striated and faceted clasts, which indicate, on the other side, low-sediment transport capacity from the ice sheet bottom. It is inferred that the moraine debris are originated from local sources. Weathering action and constant katabatic winds are possibly the major agents of transport and alteration of the exposed sediments. The geomorphological features reveal an ancient thicker ice sheet, and sedimentary characteristics of the morainic formations reveal a latter thinner ice sheet in this sector of Ellsworth Mountains.

  14. The distribution and hydrological significance of rock glaciers in the Nepalese Himalaya

    Science.gov (United States)

    Jones, D. B.; Harrison, S.; Anderson, K.; Selley, H. L.; Wood, J. L.; Betts, R. A.

    2018-01-01

    In the Nepalese Himalaya, there is little information on the number, spatial distribution and morphometric characteristics of rock glaciers, and this information is required if their hydrological contribution is to be understood. Based on freely available fine spatial resolution satellite data accessible through Google Earth, we produced the first comprehensive Nepalese rock glacier inventory, supported through statistical validation and field survey. The inventory includes the location of over 6000 rock glaciers, with a mean specific density of 3.4%. This corresponds to an areal coverage of 1371 km2. Our approach subsampled approximately 20% of the total identified rock glacier inventory (n = 1137) and digitised their outlines so that quantitative/qualitative landform attributes could be extracted. Intact landforms (containing ice) accounted for 68% of the subsample, and the remaining were classified as relict (not containing ice). The majority (56%) were found to have a northerly aspect (NE, N, and NW), and landforms situated within north- to west-aspects reside at lower elevations than those with south- to- east aspects. In Nepal, we show that rock glaciers are situated between 3225 and 5675 m a.s.l., with the mean minimum elevation at the front estimated to be 4977 ± 280 m a.s.l. for intact landforms and 4541 ± 346 m a.s.l. for relict landforms. The hydrological significance of rock glaciers in Nepal was then established by statistically upscaling the results from the subsample to estimate that these cryospheric reserves store between 16.72 and 25.08 billion m3 of water. This study, for the first time, estimates rock glacier water volume equivalents and evaluates their relative hydrological importance in comparison to ice glaciers. Across the Nepalese Himalaya, rock glacier to ice glacier water volume equivalent is 1:9, and generally increases westwards (e.g., ratio = 1:3, West region). This inventory represents a preliminary step for understanding the

  15. Specific changes of the Kolka Glacier (the North Caucasus from 2002 to 2016

    Directory of Open Access Journals (Sweden)

    G. A. Nosenko

    2017-01-01

    Full Text Available The process of filling the bed with ice with steep lateral tributaries, which lost support, began almost immediately after the catastrophe on the Kolka Glacier in 2002. Currently, three streams of ice have closed in the rear zone of the circus, forming a single ice massif on the bed. The dimensions of the glacier vary under the influence of both new conditions for the accumulation and melting of ice, and the features of the dynamics of the ice masses filling the vacated bed. This paper describes the next stage of the state of the new Kolka glacier – relative stabilization – and analyzes the features of the process of its recovery based on ground‑based observations, modern space imag‑ ery materials, and calculations of changes in summer air temperatures and winter precipitation in the glacier area at the beginning of the 21st century. In recent years, the rate of increase in the area of the glacier does not exceed 0.015 km2 per year. By September 2016, its area reached 1.11 km2, the volume – about 0.044 km3. The conditions for the formation of a new glacier on the empty bottom of the circus differ significantly from the previous ones – when Kolka was restored in the 1970s after a pulsation. In addition to the background increase in summer tem‑ peratures, the thermal balance in the circus has changed due to an increase in the area of the open surface of the bed and lateral moraine, which increases the melting of ice. At the same time, the growth of the moraine cover on the glacier restrains the melting process. Rockfalls and avalanches enrich the glacier with detrital material with greater intensity than in the 1970s. The conditions of accumulation also changed – the volume of food supplied from the hanging glaciers decreased from the previous 31% to 17%. Fumarolic activity in the crown area of the starboard side of the circus is preserved and this prevents the restoration of these glaciers.

  16. Emerging Glacial Lakes in the Cordillera Blanca, Peru: A Case Study at Arteson Glacier

    Science.gov (United States)

    Chisolm, R. E.; Mckinney, D. C.; Gomez, J.; Voss, K.

    2012-12-01

    Tropical glaciers are an essential component of the water resources systems in the mountainous regions where they are located, and a warming climate has resulted in the accelerated retreat of Andean glaciers in recent decades. The shrinkage of Andean glaciers influences the flood risk for communities living downstream as new glacial lakes have begun to form at the termini of some glaciers. As these lakes continue to grow in area and volume, they pose an increasing risk of glacial lake outburst floods (GLOFs). Ice thickness measurements have been a key missing link in studying the tropical glaciers in Peru and how climate change is likely to impact glacial melt and the growth of glacial lakes. Ground penetrating radar (GPR) has rarely been applied to glaciers in Peru to measure ice thickness, and these measurements can tell us a lot about how a warming climate will affect glacier mass balance. This study presents GPR data taken in July 2012 at the Arteson glacier in the Cordillera Blanca, Peru. A new lake has begun to form at the terminus of the Arteson glacier, and this lake has key features, including overhanging ice and loose rock likely to create landslides, that could trigger a catastrophic GLOF if the lake continues to grow. This new lake is part of a series of three lakes that have formed below the Arteson glacier. The two lower lakes, Artesonraju and Paron, are much larger so that if there were an avalanche or landslide into the new lake below Arteson glacier, the impact could potentially be more catastrophic than a GLOF from one single lake. Estimates of how the lake mass balance is likely to evolve due to the retreating glacier are key to assessing the flood risk from this dynamic three-lake system. Because the glacier mass balance and lake mass balance are closely linked, the ice thickness measurements and measurements of the bed slope of the Arteson glacier and underlying bedrock give us a clue to how the lake is likely to evolve. GPR measurements of

  17. Investigating the Equatorial Gaps in Snowball Earth Sea Glaciers

    Science.gov (United States)

    Spaulding-Astudillo, F.; Ashkenazy, Y.; Tziperman, E.; Abbot, D. S.

    2017-12-01

    The way photosynthetic life survived the Neoproterozoic Snowball Earth events is still a matter of debate that has deep implications for planetary habitability. One option is that gaps in thick, semi-global ice coverage (sea glaciers) could be maintained at the equator by ocean-ice-atmosphere dynamics. We investigate this idea by modifying a global ocean-thick-marine-ice model developed for modeling Neoproterozoic Snowball Events to account for gaps in thick ice and interactions with atmospheric dynamics. Our hypothesis is that in the parameter regime that allows for sea glacier flow, ice flow will make gaps in the thick ice, and therefore an open ocean solution, less likely. This would suggest that oases in thick ice are a more viable survival mechanism for photosynthetic life during a Snowball Earth event.

  18. Fuzzy Cognitive Maps for Glacier Hazards Assessment: Application to Predicting the Potential for Glacier Lake Outbursts

    Science.gov (United States)

    Furfaro, R.; Kargel, J. S.; Fink, W.; Bishop, M. P.

    2010-12-01

    Glaciers and ice sheets are among the largest unstable parts of the solid Earth. Generally, glaciers are devoid of resources (other than water), are dangerous, are unstable and no infrastructure is normally built directly on their surfaces. Areas down valley from large alpine glaciers are also commonly unstable due to landslide potential of moraines, debris flows, snow avalanches, outburst floods from glacier lakes, and other dynamical alpine processes; yet there exists much development and human occupation of some disaster-prone areas. Satellite remote sensing can be extremely effective in providing cost-effective and time- critical information. Space-based imagery can be used to monitor glacier outlines and their lakes, including processes such as iceberg calving and debris accumulation, as well as changing thicknesses and flow speeds. Such images can also be used to make preliminary identifications of specific hazardous spots and allows preliminary assessment of possible modes of future disaster occurrence. Autonomous assessment of glacier conditions and their potential for hazards would present a major advance and permit systematized analysis of more data than humans can assess. This technical leap will require the design and implementation of Artificial Intelligence (AI) algorithms specifically designed to mimic glacier experts’ reasoning. Here, we introduce the theory of Fuzzy Cognitive Maps (FCM) as an AI tool for predicting and assessing natural hazards in alpine glacier environments. FCM techniques are employed to represent expert knowledge of glaciers physical processes. A cognitive model embedded in a fuzzy logic framework is constructed via the synergistic interaction between glaciologists and AI experts. To verify the effectiveness of the proposed AI methodology as applied to predicting hazards in glacier environments, we designed and implemented a FCM that addresses the challenging problem of autonomously assessing the Glacier Lake Outburst Flow

  19. Long term mass balance of the Helheim and Kangerdlugssuaq glaciers in

    DEFF Research Database (Denmark)

    Khan, Shfaqat Abbas; Fitzner, Antje; Kjær, Kurt

    2013-01-01

    Observations over the past decade show huge ice loss associated with speeding up of glaciers in southeast Greenland in 2003, followed by a deceleration in 2006. These short-term episodic dynamic perturbations have a major impact on the mass balance at decadal scale. However, to improve the projec......Observations over the past decade show huge ice loss associated with speeding up of glaciers in southeast Greenland in 2003, followed by a deceleration in 2006. These short-term episodic dynamic perturbations have a major impact on the mass balance at decadal scale. However, to improve...... the projection of future sea level rise, a long-term data record that reveals the mass balance between episodic events is required. Here, we extend the observational record of marginal thinning of Helheim glacier (HG) and Kangerdlugssuaq glacier (KG) from 7 to 30 years. Our measurements reveal that, although...... in air temperature suggest that both outlet glaciers respond immediately to small fluctuations in both the SST and air temperature. Furthermore, we compare our observations of ice flow speed and elevation changes with predictions based on the The Parallel Ice Sheet Model (PISM) software....

  20. Updating the results of glacier contribution to the sea level change

    Science.gov (United States)

    Dyurgerov, Mark B.; Abdalati, Waleed Dr. (Technical Monitor)

    2005-01-01

    I have completed an update of global glacier volume change. All data of glacier annual mass balances, surface area over the period 1945/46 till 2004, outside the Greenland and Antarctic ice sheets were included in this update. As the result global glacier volume change have been calculated, also in terms of glacier contribution to sea level change. These results were sent to Working Group 1 and 2 of IPCC-4 as the basis for modeling of sea level towards the end of 2100. In this study I have concentrated on studying glacier systems of different scales, from primary (e.g. Devon ice cap) to regional (e.g. Canadian Arctic), continental scale (e,g., entire Arctic), and global (e.g., change in glacier volume and contribution to sea level rise).

  1. Correlation of Greenland ice-core isotope profiles and the terrestrial record of the Alpine Rhine glacier for the period 32-15 ka

    NARCIS (Netherlands)

    de Jong, M.G.G.; de Graaff, L.W.S.; Seijmonsbergen, A.C.; Böhm, A.R.

    2011-01-01

    We present a newly extended stratigraphic subdivision of the Greenland NGRIP, GRIP and GISP2 ice cores for the period 32-15 ka. Our classification emphasizes the multiscale nature of the climatic oscillations. Spectral trend analysis of isotopic data supports this interpretation. We compare this

  2. 3D high resolution tracking of ice flow using mutli-temporal stereo satellite imagery, Franz Josef Glacier, New Zealand

    Science.gov (United States)

    Leprince, S.; Lin, J.; Ayoub, F.; Herman, F.; Avouac, J.

    2013-12-01

    We present the latest capabilities added to the Co-Registration of Optically Sensed Images and Correlation (COSI-Corr) software, which aim at analyzing time-series of stereoscopic imagery to document 3D variations of the ground surface. We review the processing chain and present the new and improved modules for satellite pushbroom imagery, in particular the N-image bundle block adjustment to jointly optimize the viewing geometry of multiple acquisitions, the improved multi-scale image matching based on Semi-Global Matching (SGM) to extract high resolution topography, and the triangulation of multi-temporal disparity maps to derive 3D ground motion. In particular, processes are optimized to run on a cluster computing environment. This new suite of algorithms is applied to the study of Worldview stereo imagery above the Franz Josef, Fox, and Tasman Glaciers, New Zealand, acquired on 01/30/2013, 02/09/2013, and 02/28/2013. We derive high resolution (1m post-spacing) maps of ice flow in three dimensions, where ice velocities of up to 4 m/day are recorded. Images were collected in early summer during a dry and sunny period, which followed two weeks of unsettled weather with several heavy rainfall events across the Southern Alps. The 3D tracking of ice flow highlights the surface response of the glaciers to changes in effective pressure at the ice-bedrock interface due to heavy rainfall, at an unprecedented spatial resolution.

  3. Annual layering in the NGRIP ice core during the Eemian

    Directory of Open Access Journals (Sweden)

    A. Svensson

    2011-12-01

    Full Text Available The Greenland NGRIP ice core continuously covers the period from present day back to 123 ka before present, which includes several thousand years of ice from the previous interglacial period, MIS 5e or the Eemian. In the glacial part of the core, annual layers can be identified from impurity records and visual stratigraphy, and stratigraphic layer counting has been performed back to 60 ka. In the deepest part of the core, however, the ice is close to the pressure melting point, the visual stratigraphy is dominated by crystal boundaries, and annual layering is not visible to the naked eye. In this study, we apply a newly developed setup for high-resolution ice core impurity analysis to produce continuous records of dust, sodium and ammonium concentrations as well as conductivity of melt water. We analyzed three 2.2 m sections of ice from the Eemian and the glacial inception. In all of the analyzed ice, annual layers can clearly be recognized, most prominently in the dust and conductivity profiles. Part of the samples is, however, contaminated in dust, most likely from drill liquid. It is interesting that the annual layering is preserved despite a very active crystal growth and grain boundary migration in the deep and warm NGRIP ice. Based on annual layer counting of the new records, we determine a mean annual layer thickness close to 11 mm for all three sections, which, to first order, confirms the modeled NGRIP time scale (ss09sea. The counting does, however, suggest a longer duration of the climatically warmest part of the NGRIP record (MIS5e of up to 1 ka as compared to the model estimate. Our results suggest that stratigraphic layer counting is possible basically throughout the entire NGRIP ice core, provided sufficiently highly-resolved profiles become available.

  4. Radar Interferometry Studies of the Mass Balance of Polar Ice Sheets

    Science.gov (United States)

    Rignot, Eric (Editor)

    1999-01-01

    The objectives of this work are to determine the current state of mass balance of the Greenland and Antarctic Ice Sheets. Our approach combines different techniques, which include satellite synthetic-aperture radar interferometry (InSAR), radar and laser altimetry, radar ice sounding, and finite-element modeling. In Greenland, we found that 3.5 times more ice flows out of the northern part of the Greenland Ice Sheet than previously accounted for. The discrepancy between current and past estimates is explained by extensive basal melting of the glacier floating sections in the proximity of the grounding line where the glacier detaches from its bed and becomes afloat in the ocean. The inferred basal melt rates are very large, which means that the glaciers are very sensitive to changes in ocean conditions. Currently, it appears that the northern Greenland glaciers discharge more ice than is being accumulated in the deep interior, and hence are thinning. Studies of temporal changes in grounding line position using InSAR confirm the state of retreat of northern glaciers and suggest that thinning is concentrated at the lower elevations. Ongoing work along the coast of East Greenland reveals an even larger mass deficit for eastern Greenland glaciers, with thinning affecting the deep interior of the ice sheet. In Antarctica, we found that glaciers flowing into a large ice shelf system, such as the Ronne Ice Shelf in the Weddell Sea, exhibit an ice discharge in remarkable agreement with mass accumulation in the interior, and the glacier grounding line positions do not migrate with time. Glaciers flowing rapidly into the Amudsen Sea, unrestrained by a major ice shelf, are in contrast discharging more ice than required to maintain a state of mass balance and are thinning quite rapidly near the coast. The grounding line of Pine Island glacier (see diagram) retreated 5 km in 4 years, which corresponds to a glacier thinning rate of 3.5 m/yr. Mass imbalance is even more negative

  5. Geomorphic consequences of rapid deglaciation at Pasterze Glacier, Hohe Tauern Range, Austria, between 2010 and 2013 based on repeated terrestrial laser scanning data

    Science.gov (United States)

    Avian, M.; Kellerer-Pirklbauer, A.; Lieb, G. K.

    2018-06-01

    Since the end of the Little Ice Age around 1850 CE glaciers in the Alps have been receding dramatically. This study aimed to quantify and characterize the geomorphic and landform changes of a 0.9 km2 large proglacial area at the largest glacier in Austria (Pasterze Glacier, Austria, N 47°04‧, E 12°44‧). Point clouds from multiple terrestrial laserscanning (TLS) and different image data were used to quantify surface elevation changes and distinguish different types of erosional and depositional landforms during the period 2010-2013. Results indicate that the study area is characterized by a total volume loss of 1,309,000 m3. Excluding the area which was deglaciated, the volume loss equals 275,000 m3 in the period 2010-13. The decrease is related to sediment transfer out of study area and due to sediment-buried glacier ice which is slowly melting. The landform classification reveals that drift mantled slopes are most frequent (20.9% of the study area in 2013) next to ice contact terrace landforms (19.7%). In terms of vertical surface elevation changes, our results suggest distinguishing between 3 distinct domains within the study area: (i) a flat valley bottom area consisting of water/sandur areas and ice-cored landforms dominated by widespread subsurface ice melting and lateral fluvial (and thermal) erosion; (ii) a gently-sloping footslope area consisting of ice-contact sediments, former ice marginal channels and deep incised gullies with corresponding debris cones dominated by linear erosion and corresponding deposition; and (iii) a steep lateral slope area mainly built up of consolidated drift material with incised gullies dominated by linear erosion. Our results not only confirm the previously revealed high geomorphic activity for proglacial areas of alpine glaciers in terms of surface elevation variations, they also highlight that landforms might change substantially from one year to the next not only because of erosional/depositional processes, but also

  6. Seasonal velocities of eight major marine-terminating outlet glaciers of the Greenland ice sheet from continuous in situ GPS instruments

    DEFF Research Database (Denmark)

    Ahlstrøm, A. P.; Andersen, S. B.; Andersen, M. L.

    2013-01-01

    We present 17 velocity records derived from in situ stand-alone single-frequency Global Positioning System (GPS) receivers placed on eight marine-terminating ice sheet outlet glaciers in South, West and North Greenland, covering varying parts of the period summer 2009 to summer 2012. Common to all...

  7. Revisited Inventory of Glaciers on Axel Heiberg Island, Nunavut

    Science.gov (United States)

    Thomson, L.; Osinski, G.

    2009-05-01

    As documented in the IPCC's Climate Change 2007 report, the high latitude regions of the Northern Hemisphere are experiencing the highest rates of warming. Given that 35% of the global glacial ice exists within the Arctic Archipelago, this region provides an excellent laboratory for monitoring the anticipated degree of glacial recession [1]. Evidence of arctic warming through negative mass balance trends has been detected in several studies already [e.g., 2]. Here, we show the importance and value of historical records in the task of monitoring glacial retreat. A highly detailed inventory developed by S. Ommanney in 1969 [3], has been revisited and transformed into digital format for the purposes of integration with modern inventories. The Ommanney inventory covers the entirety of Axel Heiberg Island , NU, and includes details often lacking in present day inventories, including orientations (accumulation and ablation zones), elevations (highest, lowest, elevation of the snowline, and the mean elevations of both the accumulation and ablation areas), length (of the ablation area, exposed ice, and of the total glacier including debris cover), area (of the ablation area, exposed ice, and of the total glacier), accumulation area ratio (AAR), depth, volume, and a six digit code which gives qualitative details on glacier attributes. This report is one of the most thorough and comprehensive glacier inventory report ever published in Canada. More recent inventories used for comparison include the glacier extents created by the National Topographic System based on photography from 1980-1987, as well as extents developed by Dr. Luke Copland for the Global Land Ice Measurements from Space (GLIMS) database using 1999-2000 satellite imagery. Our preliminary results show that approximately 90% of ice bodies under 0.2km on Axel Heiberg Island have disappeared entirely in the 40 year period of interest. The issue of glacier definition will be discussed as a possible cause of these

  8. Climatic Changes on Tibetan Plateau Based on Ice Core Records

    Science.gov (United States)

    Yao, T.

    2008-12-01

    Climatic changes have been reconstructed for the Tibetan Plateau based on ice core records. The Guliya ice core on the Tibetan Plateau presents climatic changes in the past 100,000 years, thus is comparative with that from Vostok ice core in Antarctica and GISP2 record in Arctic. These three records share an important common feature, i.e., our climate is not stable. It is also evident that the major patterns of climatic changes are similar on the earth. Why does climatic change over the earth follow a same pattern? It might be attributed to solar radiation. We found that the cold periods correspond to low insolation periods, and warm periods to high insolation periods. We found abrupt climatic change in the ice core climatic records, which presented dramatic temperature variation of as much as 10 °C in 50 or 60 years. Our major challenge in the study of both climate and environment is that greenhouse gases such as CO2, CH4 are possibly amplifying global warming, though at what degree remains unclear. One of the ways to understand the role of greenhouse gases is to reconstruct the past greenhouse gases recorded in ice. In 1997, we drilled an ice core from 7100 m a.s.l. in the Himalayas to reconstruct methane record. Based on the record, we found seasonal cycles in methane variation. In particular, the methane concentration is high in summer, suggestiing active methane emission from wet land in summer. Based on the seasonal cycle, we can reconstruct the methane fluctuation history in the past 500 years. The most prominent feature of the methane record in the Himalayan ice core is the abrupt increase since 1850 A.D.. This is closely related to the industrial revolution worldwide. We can also observe sudden decrease in methane concentration during the World War I and World War II. It implies that the industrial revolution has dominated the atmospheric greenhouse gas emission for about 100 years. Besides, the average methane concentration in the Himalayan ice core is

  9. CUDA GPU based full-Stokes finite difference modelling of glaciers

    Science.gov (United States)

    Brædstrup, C. F.; Egholm, D. L.

    2012-04-01

    Many have stressed the limitations of using the shallow shelf and shallow ice approximations when modelling ice streams or surging glaciers. Using a full-stokes approach requires either large amounts of computer power or time and is therefore seldom an option for most glaciologists. Recent advances in graphics card (GPU) technology for high performance computing have proven extremely efficient in accelerating many large scale scientific computations. The general purpose GPU (GPGPU) technology is cheap, has a low power consumption and fits into a normal desktop computer. It could therefore provide a powerful tool for many glaciologists. Our full-stokes ice sheet model implements a Red-Black Gauss-Seidel iterative linear solver to solve the full stokes equations. This technique has proven very effective when applied to the stokes equation in geodynamics problems, and should therefore also preform well in glaciological flow probems. The Gauss-Seidel iterator is known to be robust but several other linear solvers have a much faster convergence. To aid convergence, the solver uses a multigrid approach where values are interpolated and extrapolated between different grid resolutions to minimize the short wavelength errors efficiently. This reduces the iteration count by several orders of magnitude. The run-time is further reduced by using the GPGPU technology where each card has up to 448 cores. Researchers utilizing the GPGPU technique in other areas have reported between 2 - 11 times speedup compared to multicore CPU implementations on similar problems. The goal of these initial investigations into the possible usage of GPGPU technology in glacial modelling is to apply the enhanced resolution of a full-stokes solver to ice streams and surging glaciers. This is a area of growing interest because ice streams are the main drainage conjugates for large ice sheets. It is therefore crucial to understand this streaming behavior and it's impact up-ice.

  10. Rainfall as primary driver of discharge and solute export from rock glaciers: The Col d'Olen Rock Glacier in the NW Italian Alps.

    Science.gov (United States)

    Colombo, Nicola; Gruber, Stephan; Martin, Maria; Malandrino, Mery; Magnani, Andrea; Godone, Danilo; Freppaz, Michele; Fratianni, Simona; Salerno, Franco

    2018-10-15

    Three hypotheses exist to explain how meteorological variables drive the amount and concentration of solute-enriched water from rock glaciers: (1) Warm periods cause increased subsurface ice melt, which releases solutes; (2) rain periods and the melt of long-lasting snow enhance dilution of rock-glacier outflows; and (3) percolation of rain through rock glaciers facilitates the export of solutes, causing an opposite effect as that described in hypothesis (2). This lack of detailed understanding likely exists because suitable studies of meteorological variables, hydrologic processes and chemical characteristics of water bodies downstream from rock glaciers are unavailable. In this study, a rock-glacier pond in the North-Western Italian Alps was studied on a weekly basis for the ice-free seasons 2014 and 2015 by observing the meteorological variables (air temperature, snowmelt, rainfall) assumed to drive the export of solute-enriched waters from the rock glacier and the hydrochemical response of the pond (water temperature as a proxy of rock-glacier discharge, stable water isotopes, major ions and selected trace elements). An intra-seasonal pattern of increasing solute export associated with higher rock-glacier discharge was found. Specifically, rainfall, after the winter snowpack depletion and prolonged periods of atmospheric temperature above 0 °C, was found to be the primary driver of solute export from the rock glacier during the ice-free season. This occurs likely through the flushing of isotopically- and geochemically-enriched icemelt, causing concomitant increases in the rock-glacier discharge and the solute export (SO 4 2- , Mg 2+ , Ca 2+ , Ni, Mn, Co). Moreover, flushing of microbially-active sediments can cause increases in NO 3 - export. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Digital outlines and topography of the glaciers of the American West

    Science.gov (United States)

    Fountain, Andrew G.; Hoffman, Matthew; Jackson, Keith; Basagic, Hassan; Nylen, Thomas; Percy, David

    2007-01-01

    Alpine glaciers have generally receded during the past century (post-“Little Ice Age”) because of climate warming (Oerlemans and others, 1998; Mann and others, 1999; Dyurgerov and Meier, 2000; Grove, 2001). This general retreat has accelerated since the mid 1970s, when a shift in atmospheric circulation occurred (McCabe and Fountain, 1995; Dyurgerov and Meier, 2000). The loss in glacier cover has had several profound effects. First, the shrinkage of glaciers results in a net increase in stream flow, typically in late summer when water supplies are at the lowest levels (Fountain and Tangborn, 1985). This additional water is important to ecosystems (Hall and Fagre, 2003) and to human water needs (Tangborn, 1980). However, if shrinkage continues, the net contribution to stream flow will diminish, and the effect upon these benefactors will be adverse. Glacier shrinkage is also a significant factor in current sea level rise (Meier, 1984; Dyurgerov and Meier, 2000). Second, many of the glaciers in the West Coast States are located on stratovolcanoes, and continued recession will leave oversteepened river valleys. These valleys, once buttressed by ice are now subject to failure, creating conditions for lahars (Walder and Driedger, 1994; O’Connor and others, 2001). Finally, reduction or loss of glaciers reduce or eliminate glacial activity as an important geomorphic process on landscape evolution and alters erosion rates in high alpine areas (Hallet and others, 1996). Because of the importance of glaciers to studies of climate change, hazards, and landscape modification, glacier inventories have been published for Alaska (Manley, in press), China (http://wdcdgg.westgis.ac.cn/DATABASE/Glacier/Glacier.asp), Nepal (Mool and others, 2001), Switzerland (Paul and others, 2002), and the Tyrolian Alps of Austria (Paul, 2002), among other locales. To provide the necessary data for assessing the magnitude and rate of glacier change in the American West, exclusive of Alaska

  12. Variable glacier response to atmospheric warming, northern Antarctic Peninsula, 1988–2009

    Directory of Open Access Journals (Sweden)

    B. J. Davies

    2012-09-01

    Full Text Available The northern Antarctic Peninsula has recently exhibited ice-shelf disintegration, glacier recession and acceleration. However, the dynamic response of land-terminating, ice-shelf tributary and tidewater glaciers has not yet been quantified or assessed for variability, and there are sparse data for glacier classification, morphology, area, length or altitude. This paper firstly classifies the area, length, altitude, slope, aspect, geomorphology, type and hypsometry of 194 glaciers on Trinity Peninsula, Vega Island and James Ross Island in 2009 AD. Secondly, this paper documents glacier change 1988–2009. In 2009, the glacierised area was 8140±262 km2. From 1988–2001, 90% of glaciers receded, and from 2001–2009, 79% receded. This equates to an area change of −4.4% for Trinity Peninsula eastern coast glaciers, −0.6% for western coast glaciers, and −35.0% for ice-shelf tributary glaciers from 1988–2001. Tidewater glaciers on the drier, cooler eastern Trinity Peninsula experienced fastest shrinkage from 1988–2001, with limited frontal change after 2001. Glaciers on the western Trinity Peninsula shrank less than those on the east. Land-terminating glaciers on James Ross Island shrank fastest in the period 1988–2001. This east-west difference is largely a result of orographic temperature and precipitation gradients across the Antarctic Peninsula, with warming temperatures affecting the precipitation-starved glaciers on the eastern coast more than on the western coast. Reduced shrinkage on the western Peninsula may be a result of higher snowfall, perhaps in conjunction with the fact that these glaciers are mostly grounded. Rates of area loss on the eastern side of Trinity Peninsula are slowing, which we attribute to the floating ice tongues receding into the fjords and reaching a new dynamic equilibrium. The rapid shrinkage of tidewater glaciers on James Ross Island is likely to continue because of their low elevations and

  13. Spatial and temporal variations in glacier hydrology on Storglaciaeren, Sweden

    International Nuclear Information System (INIS)

    Jansson, Peter; Naeslund, Jens-Ove

    2009-06-01

    The aim of the current research project was to provide a framework of real conditions within which to interpret theory and extrapolate likely conditions beneath a future ice sheet over Fennoscandia. The purpose of this report is to summarize the experimental work on glacier hydrology and basal hydraulic conditions performed on Storglaciaeren, northern Sweden, during the years 1990-2006. Surface fed subglacial hydrological systems are extremely dynamic because the input rates of rain and temperature-controlled surface melt fluctuate, and the geometry of flow paths is constantly changing due to ice deformation which tends to open and close the flow paths. The hydrological system of a glacier is quite unusual because since liquid water flows through conduits made of its solid phase (ice). Understanding the expected dynamic range of a glacier's hydrological system is best studied by in situ measurements. The processes studied on Storglaciaeren can be expected to apply to ice sheet scale, albeit on different spatial scales. Since Storglaciaeren is a polythermal glacier with a large fraction of ice below freezing and at the melting point and with a surface-fed hydrological system of conduits and tunnels, results apply to the lower elevation regions where the surface is composed of ice (ablation zone) rather than composed of snow (accumulation zone) found at higher elevations of the glaciers and ice sheets, Therefore, our results apply to the ablation zone of the past Fennoscandian Ice Sheet. In this report we discuss the measurements made to assess the subglacial conditions that provide a potential analogue for conditions under the Fennoscandian Ice Sheet. For this purpose field work was performed on from 2003 to 2006 yielding subglacial water pressure measurements. We have included a large quantity of unpublished data from Storglaciaeren from different research projects conducted since 1990. Together these data provide a picture of the temporal and spatial water

  14. Spatial and temporal variations in glacier hydrology on Storglaciaeren, Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Jansson, Peter (Dept. of Physical Geography and Quaternary Geology, Stockholm Univ., Stockholm (Sweden)); Naeslund, Jens-Ove (Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden))

    2009-06-15

    The aim of the current research project was to provide a framework of real conditions within which to interpret theory and extrapolate likely conditions beneath a future ice sheet over Fennoscandia. The purpose of this report is to summarize the experimental work on glacier hydrology and basal hydraulic conditions performed on Storglaciaeren, northern Sweden, during the years 1990-2006. Surface fed subglacial hydrological systems are extremely dynamic because the input rates of rain and temperature-controlled surface melt fluctuate, and the geometry of flow paths is constantly changing due to ice deformation which tends to open and close the flow paths. The hydrological system of a glacier is quite unusual because since liquid water flows through conduits made of its solid phase (ice). Understanding the expected dynamic range of a glacier's hydrological system is best studied by in situ measurements. The processes studied on Storglaciaeren can be expected to apply to ice sheet scale, albeit on different spatial scales. Since Storglaciaeren is a polythermal glacier with a large fraction of ice below freezing and at the melting point and with a surface-fed hydrological system of conduits and tunnels, results apply to the lower elevation regions where the surface is composed of ice (ablation zone) rather than composed of snow (accumulation zone) found at higher elevations of the glaciers and ice sheets, Therefore, our results apply to the ablation zone of the past Fennoscandian Ice Sheet. In this report we discuss the measurements made to assess the subglacial conditions that provide a potential analogue for conditions under the Fennoscandian Ice Sheet. For this purpose field work was performed on from 2003 to 2006 yielding subglacial water pressure measurements. We have included a large quantity of unpublished data from Storglaciaeren from different research projects conducted since 1990. Together these data provide a picture of the temporal and spatial water

  15. An automated approach for annual layer counting in ice cores

    Science.gov (United States)

    Winstrup, M.; Svensson, A.; Rasmussen, S. O.; Winther, O.; Steig, E.; Axelrod, A.

    2012-04-01

    The temporal resolution of some ice cores is sufficient to preserve seasonal information in the ice core record. In such cases, annual layer counting represents one of the most accurate methods to produce a chronology for the core. Yet, manual layer counting is a tedious and sometimes ambiguous job. As reliable layer recognition becomes more difficult, a manual approach increasingly relies on human interpretation of the available data. Thus, much may be gained by an automated and therefore objective approach for annual layer identification in ice cores. We have developed a novel method for automated annual layer counting in ice cores, which relies on Bayesian statistics. It uses algorithms from the statistical framework of Hidden Markov Models (HMM), originally developed for use in machine speech recognition. The strength of this layer detection algorithm lies in the way it is able to imitate the manual procedures for annual layer counting, while being based on purely objective criteria for annual layer identification. With this methodology, it is possible to determine the most likely position of multiple layer boundaries in an entire section of ice core data at once. It provides a probabilistic uncertainty estimate of the resulting layer count, hence ensuring a proper treatment of ambiguous layer boundaries in the data. Furthermore multiple data series can be incorporated to be used at once, hence allowing for a full multi-parameter annual layer counting method similar to a manual approach. In this study, the automated layer counting algorithm has been applied to data from the NGRIP ice core, Greenland. The NGRIP ice core has very high temporal resolution with depth, and hence the potential to be dated by annual layer counting far back in time. In previous studies [Andersen et al., 2006; Svensson et al., 2008], manual layer counting has been carried out back to 60 kyr BP. A comparison between the counted annual layers based on the two approaches will be presented

  16. Stable isotope analysis in ice core paleoclimatology

    International Nuclear Information System (INIS)

    Bertler, N.

    2004-01-01

    Ice cores are the most direct, continuous, and high resolution archive for Late Quaternary paleoclimate reconstruction. Ice cores from New Zealand and the Antarctic margin provide an excellent means of addressing the lack of longer-term climate observations in the Southern Hemisphere with near instrumental quality. Their study helps us to improve our understanding of regional patterns of climate behaviour in Antarctica and its influence on New Zealand, leading to more realistic regional climate models. Such models are needed to sensibly interpret current Antarctic and New Zealand climate variability and for the development of appropriate migration strategies for New Zealand. (author). 23 refs., 15 figs., 1 tab

  17. Improved regional sea-level estimates from Ice Sheets, Glaciers and land water storage using GRACE time series and other data

    Science.gov (United States)

    He, Z.; Velicogna, I.; Hsu, C. W.; Rignot, E. J.; Mouginot, J.; Scheuchl, B.; Fettweis, X.; van den Broeke, M. R.

    2017-12-01

    Changes in ice sheets, glaciers and ice caps (GIC) and land water mass cause regional sea level variations that differ significantly from a uniform re-distribution of mass over the ocean, with a decrease in sea level compared to the global mean sea level contribution (GMSL) near the sources of mass added to the ocean and an increase up to 30% larger than the GMSL in the far field. The corresponding sea level fingerprints (SLF) are difficult to separate from ocean dynamics on short time and spatial scales but as ice melt continues, the SLF signal will become increasingly dominant in the pattern of regional sea level rise. It has been anticipated that it will be another few decades before the land ice SLF could be identified in the pattern of regional sea level rise. Here, we combine 40 years of observations of ice sheet mass balance for Antarctica (1975-present) and Greenland (1978-present), along with surface mass balance reconstructions of glacier and ice caps mass balance (GIC) from 1970s to present to determine the contribution to the SLF from melting land ice (MAR and RACMO). We compare the results with observations from GRACE for the time period 2002 to present for evaluation of our approach. Land hydrology is constrained by GRACE data for the period 2002-present and by the GLDAS-NOAH land hydrology model for the longer time period. Over the long time period, we find that the contribution from land ice dominates. We quantify the contribution to the total SLF from Greenland and Antarctica in various parts of the world over the past 40 years. More important, we compare the cumulative signal from SLF with tide gauge records around the world, corrected for earth dynamics, to determine whether the land ice SLF can be detected in that record. Early results will be reported at the meeting. This work was performed at UC Irvine and at Caltech's Jet Propulsion Laboratory under a contract with NASA's Cryospheric Science Program.

  18. GLACIER MONITORING SYSTEM IN COLOMBIA - complementing glaciological measurements with laser-scanning and ground-penetrating radar surveys

    Science.gov (United States)

    Ceballos, Jorge; Micheletti, Natan; Rabatel, Antoine; Mölg, Nico; Zemp, Michael

    2015-04-01

    Colombia (South America) has six small glaciers (total glacierized area of 45 Km2); their geographical location, close to zero latitude, makes them very sensitive to climate changes. An extensive monitoring program is being performed since 2006 on two glaciers, with international cooperation supports. This presentation summarizes the results of glacier changes in Colombia and includes the latest results obtained within the CATCOS Project - Phase 1 (Capacity Building and Twinning for Climate Observing Systems) signed between Colombia and Switzerland, and within the Joint Mixte Laboratory GREAT-ICE (IRD - France), with the application of LiDAR technology and GPR-based ice thickness measurements at Conejeras Glacier. Conejeras Glacier (Lat. N. 4° 48' 56"; Long. W. 75° 22' 22"; Alt. Max. 4915m.; Alt. Min. 4730m. Area 0.2 Km2) is located on the north-western side of Santa Isabel Volcano. This glacier belongs to global glacier monitoring network of the World Glacier Monitoring Service (WGMS-ID: 2721). The surface mass balance is calculated monthly using the direct glaciological method. Between April 2006 and May 2014, Conejeras Glacier showed a cumulative loss of -21 m w.e. The CATCOS Project allowed to improve the glacier monitoring system in Colombia with two main actions: (1) a terrestrial laser scanner survey (RIEGL VZ-6000 terrestrial laser scanner, property of Universities of Lausanne and Fribourg); and (2) ice thickness measurements (Blue System Integration Ltd. Ice Penetrating Radar of property of IRD). The terrestrial laser-scanning survey allowed to realize an accurate digital terrain model of the glacier surface with 13 million points and a decimetric resolution. Ice thickness measurements showed an average glacier thickness of 22 meters and a maximum of 52 meters.

  19. Construction and Deployment of Tilt Sensors along the Lateral Margins of Jarvis Glacier, Alaska to improve understanding of the Deformation Regime of Wet-Based Polythermal Glaciers

    Science.gov (United States)

    Lee, I. R.; Hawley, R. L.; Clemens-Sewall, D.; Campbell, S. W.; Waszkiewicz, M.; Bernsen, S.; Gerbi, C. C.; Kreutz, K. J.; Koons, P. O.

    2017-12-01

    Most studies of natural ice have been on bodies of ice with frozen beds which experience minimal lateral shear strain, to the exclusion of polythermal ice sheets & glaciers which due to their mixed basal thermal regime have wet-based beds. The deficiency in knowledge and understanding of the operative deformation mechanisms of wet-based bodies of ice results in uncertainty in the constitutive flow law of ice. Given that the flow law was derived experimentally under assumptions more conducive to bodies of ice with frozen-based beds, it is necessary to calibrate the flow law when applied to different bodies of ice such as wet-based polythermal glaciers. To this end, Dartmouth and the University of Maine have collaborated to carry out research on Jarvis Glacier in Alaska, a geometrically simple, wet-based glacier. Here, we constructed and deployed an array of 25 tilt sensors into 3 boreholes drilled along the glacier's shear margin. Our goal is to obtain 3D strain measurements to calculate the full velocity field & create deformation regime maps in the vicinity of the boreholes, as well as to support numerical modeling. The tilt sensors were developed in-lab: Each tilt sensor comes equipped with an LSM303C chip (embedded with a 3-axis accelerometer and magnetometer) and Arduino Pro-Mini mounted on a custom-made printed circuit board encased within a watertight aluminum tube. The design concept was to produce a sensor string, consisting of tilt sensors spaced apart at pre-calculated intervals, to be lowered into a borehole and frozen-in over months to collect strain data through a Campbell Scientific CR1000 datalogger. Three surface-to-bed boreholes were successfully installed with tilt sensor strings. Given the lack of prior in-situ borehole geophysics studies on polythermal glaciers, deliberate consideration on factors such as strain relief and waterproofing electrical components was necessary in the development of the sensor system. On-site challenges also arose due

  20. Boundary layer models for calving marine outlet glaciers

    Directory of Open Access Journals (Sweden)

    C. Schoof

    2017-10-01

    Full Text Available We consider the flow of marine-terminating outlet glaciers that are laterally confined in a channel of prescribed width. In that case, the drag exerted by the channel side walls on a floating ice shelf can reduce extensional stress at the grounding line. If ice flux through the grounding line increases with both ice thickness and extensional stress, then a longer shelf can reduce ice flux by decreasing extensional stress. Consequently, calving has an effect on flux through the grounding line by regulating the length of the shelf. In the absence of a shelf, it plays a similar role by controlling the above-flotation height of the calving cliff. Using two calving laws, one due to Nick et al. (2010 based on a model for crevasse propagation due to hydrofracture and the other simply asserting that calving occurs where the glacier ice becomes afloat, we pose and analyse a flowline model for a marine-terminating glacier by two methods: direct numerical solution and matched asymptotic expansions. The latter leads to a boundary layer formulation that predicts flux through the grounding line as a function of depth to bedrock, channel width, basal drag coefficient, and a calving parameter. By contrast with unbuttressed marine ice sheets, we find that flux can decrease with increasing depth to bedrock at the grounding line, reversing the usual stability criterion for steady grounding line location. Stable steady states can then have grounding lines located on retrograde slopes. We show how this anomalous behaviour relates to the strength of lateral versus basal drag on the grounded portion of the glacier and to the specifics of the calving law used.

  1. A plot-scale study of firn stratigraphy at Lomonosovfonna, Svalbard, using ice cores, borehole video and GPR surveys in 2012-14

    DEFF Research Database (Denmark)

    Marchenko, Sergey; Pohjola, Veijo A.; Pettersson, Rickard

    2017-01-01

    Spatial heterogeneity of snow and firn properties on glaciers introduces uncertainty in interpretation of point and profile observations and complicates modelling of meltwater percolation and runoff. Here we present a study of the temporal and spatial dynamics of firn density and stratigraphy...... at the plot-scale (≈10 m × 10 m × 10 m) repeated annually during 2012-14 at the Lomonosovfonna icefield, Svalbard. Results from cores, video inspections in boreholes and radar grid surveys are compared. Ice layers 0.1-50 cm thick comprised ≈8% of the borehole length. Most of them are 1-3 cm thick and could...... in individual boreholes. However, the match between the high amplitude peaks in the grid-averaged radar signal and horizons of preferential ice layer formation revealed by averaging the video surveys over multiple boreholes is higher. These horizons are interpreted as buried firn layers previously exposed...

  2. Pond dynamics and supraglacial-englacial connectivity on debris-covered Lirung Glacier

    NARCIS (Netherlands)

    Miles, Evan Stewart; Steiner, Jakob|info:eu-repo/dai/nl/119338653; Willis, Ian C.; Buri, Pascal; Immerzeel, Walter Willem|info:eu-repo/dai/nl/290472113; Chesnokova, Anna; Pellicciotti, Francesca

    The hydrological systems of heavily-downwasted debris-covered glaciers differ from clean-ice glaciers due to the hummocky surface and debris mantle of such glaciers, leading to a relatively limited understanding of drainage pathways. Supraglacial ponds represent sinks within the discontinuous

  3. Glacier Mass Changes of Lake-Terminating Grey and Tyndall Glaciers at the Southern Patagonia Icefield Derived From Geodetic Observations and Energy and Mass Balance Modeling

    Directory of Open Access Journals (Sweden)

    Stephanie S. Weidemann

    2018-06-01

    Full Text Available In this study we demonstrate how energy and mass fluxes vary in space and time for Grey and Tyndall glaciers at the Southern Patagonia Icefield (SPI. Despite the overall glacier retreat of most Patagonian glaciers, a recent increase in mass loss has been observed, but individual glaciers respond differently in terms of spatial and temporal changes. In this context, the detailed investigation of the effect of mass balance processes on recent glacier response to climate forcing still needs refinement. We therefore quantify surface energy-fluxes and climatic mass balance of the two neighboring glaciers, Grey and Tyndall. The COupled Snow and Ice energy and MAss balance model COSIMA is applied to assess recent surface energy and climatic mass balance variability with a high temporal and spatial resolution for a 16-year period between April 2000 and March 2016. The model is driven by downscaled 6-hourly atmospheric data derived from ERA-Interim reanalysis and MODIS/Terra Snow Cover and validated against ablation measurements made in single years. High resolution precipitation fields are determined by using an analytical orographic precipitation model. Frontal ablation is estimated as residual of climatic mass balance and geodetic mass balance derived from TanDEM-X/SRTM between 2000 and 2014. We simulate a positive glacier-wide mean annual climatic mass balance of +1.02 ± 0.52 m w.e. a−1 for Grey Glacier and of +0.68 ± 0.54 m w.e. a−1 for Tyndall Glacier between 2000 and 2014. Climatic mass balance results show a high year to year variability. Comparing climatic mass balance results with previous studies underlines the high uncertainty in climatic mass balance modeling with respect to accumulation on the SPI. Due to the lack of observations accumulation estimates differ from previous studies based on the methodological approaches. Mean annual ice loss by frontal ablation is estimated to be 2.07 ± 0.70 m w.e. a−1 for Grey Glacier and 3.26 ± 0

  4. Glacier mass balance in high-arctic areas with anomalous gravity

    Science.gov (United States)

    Sharov, A.; Rieser, D.; Nikolskiy, D.

    2012-04-01

    All known glaciological models describing the evolution of Arctic land- and sea-ice masses in changing climate treat the Earth's gravity as horizontally constant, but it isn't. In the High Arctic, the strength of the gravitational field varies considerably across even short distances under the influence of a density gradient, and the magnitude of free air gravity anomalies attains 100 mGal and more. On long-term base, instantaneous deviations of gravity can have a noticeable effect on the regime and mass budget of glaciological objects. At best, the gravity-induced component of ice mass variations can be determined on topographically smooth, open and steady surfaces, like those of arctic planes, regular ice caps and landfast sea ice. The present research is devoted to studying gravity-driven impacts on glacier mass balance in the outer periphery of four Eurasian shelf seas with a very cold, dry climate and rather episodic character of winter precipitation. As main study objects we had chosen a dozen Russia's northernmost insular ice caps, tens to hundreds of square kilometres in extent, situated in a close vicinity of strong gravity anomalies and surrounded with extensive fields of fast and/or drift ice for most of the year. The supposition about gravitational forcing on glacioclimatic settings in the study region is based on the results of quantitative comparison and joint interpretation of existing glacier change maps and available data on the Arctic gravity field and solid precipitation. The overall mapping of medium-term (from decadal to half-centennial) changes in glacier volumes and quantification of mass balance characteristics in the study region was performed by comparing reference elevation models of study glaciers derived from Russian topographic maps 1:200,000 (CI = 20 or 40 m) representing the glacier state as in the 1950s-1980s with modern elevation data obtained from satellite radar interferometry and lidar altimetry. Free-air gravity anomalies were

  5. Levoglucosan Levels in Alaskan Ice Cores as a Record of Past Wildfires

    Science.gov (United States)

    Dunham, M. E.; Osterberg, E. C.; Kehrwald, N. M.; Kennedy, J.; Ferris, D. G.

    2017-12-01

    Glaciers in southeast Alaska are significant contributors to global sea-level rise, and therefore understanding the mechanisms driving their recent mass loss is crucial for predicting future sea-level change. Fire activity in Alaska has increased dramatically during the last decade, adding a potential new source of light-absorbing organic material (soot) to the Juneau Icefield that can reduce albedo and enhance surface melt rates. The goal of this project is to create an accurate record of Alaskan wildfires to understand how Alaskan glacial mass balance is affected by the deposition of organic aerosols from wildfires. Previously, oxalate, ammonia, and potassium ion levels have been used as proxies for past wildfire activity, but these ions all have broader emission sources in addition to wildfires. Here we develop a record of past Alaskan fire events and climate from: (1) levels of a biomass burning indicator, levoglucosan, which only forms when cellulose is burned over 300 °C, (2) major ions including oxalate, ammonia, and potassium; (3) the number and size distribution of particles to quantify trace amounts of soot from wildfires; and (4) stable water isotope ratios as a proxy for past temperature in ice cores. We utilize a total of four shallow ice cores, ranging from 7 to 9 m in length, that were collected by a biogeochemistry team during the Juneau Icefield Research Program (JIRP) in 2016. Complications include our limited understanding of the conservation and degradation of levoglucosan over time or during the firnification process. We hypothesize that particle counts will be correlated with levoglucosan peaks, co-varying with wildfire frequency and temperatures over time. Based on previous work, we also expect to find correlations between levoglucosan and oxalate ion concentrations, even though oxalate ions have sources in addition to wildfire activity.

  6. How Will Sea Ice Loss Affect the Greenland Ice Sheet? On the Puzzling Features of Greenland Ice-Core Isotopic Composition

    Science.gov (United States)

    Pausata, Francesco S. R.; Legrande, Allegra N.; Roberts, William H. G.

    2016-01-01

    The modern cryosphere, Earth's frozen water regime, is in fast transition. Greenland ice cores show how fast theses changes can be, presenting evidence of up to 15 C warming events over timescales of less than a decade. These events, called Dansgaard/Oeschger (D/O) events, are believed to be associated with rapid changes in Arctic sea ice, although the underlying mechanisms are still unclear. The modern demise of Arctic sea ice may, in turn, instigate abrupt changes on the Greenland Ice Sheet. The Arctic Sea Ice and Greenland Ice Sheet Sensitivity (Ice2Ice Chttps://ice2ice.b.uib.noD) initiative, sponsored by the European Research Council, seeks to quantify these past rapid changes to improve our understanding of what the future may hold for the Arctic. Twenty scientists gathered in Copenhagen as part of this initiative to discuss the most recent observational, technological, and model developments toward quantifying the mechanisms behind past climate changes in Greenland. Much of the discussion focused on the causes behind the changes in stable water isotopes recorded in ice cores. The participants discussed sources of variability for stable water isotopes and framed ways that new studies could improve understanding of modern climate. The participants also discussed how climate models could provide insights into the relative roles of local and nonlocal processes in affecting stable water isotopes within the Greenland Ice Sheet. Presentations of modeling results showed how a change in the source or seasonality of precipitation could occur not only between glacial and modern climates but also between abrupt events. Recent fieldwork campaigns illustrate an important role of stable isotopes in atmospheric vapor and diffusion in the final stable isotope signal in ice. Further, indications from recent fieldwork campaigns illustrate an important role of stable isotopes in atmospheric vapor and diffusion in the final stable isotope signal in ice. This feature complicates

  7. Stable isotope analysis in ice core paleoclimatology

    International Nuclear Information System (INIS)

    Bertler, N.

    2009-01-01

    Ice cores from New Zealand and the Antarctic margin provide an excellent means of addressing the lack of longer-term climate observations in the Southern Hemisphere with near instrumental quality. Their study helps us to improve our understanding of regional patterns of climate behaviour in Antarctica and its influence on New Zealand, leading to more realistic regional climate models. Such models are needed to sensibly interpret current Antarctic and New Zealand climate variability and for the development of appropriate mitigation strategies for New Zealand. Ice core records provide an annual-scale, 'instrumental-quality' baseline of atmospheric temperature and circulation changes back many thousands of years. (author). 45 refs., 16 figs., 2 tabs.

  8. Stable isotope analysis in ice core paleoclimatology

    International Nuclear Information System (INIS)

    Bertler, N.

    2009-01-01

    Ice cores from New Zealand and the Antarctic margin provide an excellent means of addressing the lack of longer-term climate observations in the Southern Hemisphere with near instrumental quality. Their study helps us to improve our understanding of regional patterns of climate behaviour in Antarctica and its influence on New Zealand, leading to more realistic regional climate models. Such models are needed to sensibly interpret current Antarctic and New Zealand climate variability and for the development of appropriate mitigation strategies for New Zealand. Ice core records provide an annual-scale, 'instrumental-quality' baseline of atmospheric temperature and circulation changes back many thousands of years. (author). 27 refs., 18 figs., 2 tabs

  9. Stable isotope analysis in ice core paleoclimatology

    International Nuclear Information System (INIS)

    Bertler, N.A.N.

    2012-01-01

    Ice cores from New Zealand and the Antarctic margin provide an excellent means of addressing the lack of longer-term climate observations in the Southern Hemisphere with near instrumental quality. Their study helps us to improve our understanding of regional patterns of climate behaviour in Antarctica and its influence on New Zealand, leading to more realistic regional climate models. Such models are needed to sensibly interpret current Antarctic and New Zealand climate variability and for the development of appropriate mitigation strategies for New Zealand. Ice core records provide an annual-scale, 'instrumental-quality' baseline of atmospheric temperature and circulation changes back many thousands of years. (author). 28 refs., 20 figs., 1 tab.

  10. Stable isotope analysis in ice core paleoclimatology

    International Nuclear Information System (INIS)

    Bertler, N.

    2008-01-01

    Ice cores from New Zealand and the Antarctic margin provide an excellent means of addressing the lack of longer-term climate observations in the Southern Hemisphere with near instrumental quality. Their study helps us to improve our understanding of regional patterns of climate behaviour in Antarctica and its influence on New Zealand, leading to more realistic regional climate models. Such models are needed to sensibly interpret current Antarctic and New Zealand climate variability and for the development of appropriate mitigation strategies for New Zealand. Ice core records provide an annual-scale, 'instrumental-quality' baseline of atmospheric temperature and circulation changes back many thousands of years. (author). 27 refs., 18 figs., 2 tabs

  11. Ice sheet hydrology - a review

    International Nuclear Information System (INIS)

    Jansson, Peter; Naeslund, Jens-Ove; Rodhe, Lars

    2007-03-01

    This report summarizes the theoretical knowledge on water flow in and beneath glaciers and ice sheets and how these theories are applied in models to simulate the hydrology of ice sheets. The purpose is to present the state of knowledge and, perhaps more importantly, identify the gaps in our understanding of ice sheet hydrology. Many general concepts in hydrology and hydraulics are applicable to water flow in glaciers. However, the unique situation of having the liquid phase flowing in conduits of the solid phase of the same material, water, is not a commonly occurring phenomena. This situation means that the heat exchange between the phases and the resulting phase changes also have to be accounted for in the analysis. The fact that the solidus in the pressure-temperature dependent phase diagram of water has a negative slope provides further complications. Ice can thus melt or freeze from both temperature and pressure variations or variations in both. In order to provide details of the current understanding of water flow in conjunction with deforming ice and to provide understanding for the development of ideas and models, emphasis has been put on the mathematical treatments, which are reproduced in detail. Qualitative results corroborating theory or, perhaps more often, questioning the simplifications made in theory, are also given. The overarching problem with our knowledge of glacier hydrology is the gap between the local theories of processes and the general flow of water in glaciers and ice sheets. Water is often channelized in non-stationary conduits through the ice, features which due to their minute size relative to the size of glaciers and ice sheets are difficult to incorporate in spatially larger models. Since the dynamic response of ice sheets to global warming is becoming a key issue in, e.g. sea-level change studies, the problems of the coupling between the hydrology of an ice sheet and its dynamics is steadily gaining interest. New work is emerging

  12. Ice sheet hydrology - a review

    Energy Technology Data Exchange (ETDEWEB)

    Jansson, Peter; Naeslund, Jens-Ove [Dept. of Physical Geography and Quaternary Geology, Stockholm Univ., Stockholm (Sweden); Rodhe, Lars [Geological Survey of Sweden, Uppsala (Sweden)

    2007-03-15

    This report summarizes the theoretical knowledge on water flow in and beneath glaciers and ice sheets and how these theories are applied in models to simulate the hydrology of ice sheets. The purpose is to present the state of knowledge and, perhaps more importantly, identify the gaps in our understanding of ice sheet hydrology. Many general concepts in hydrology and hydraulics are applicable to water flow in glaciers. However, the unique situation of having the liquid phase flowing in conduits of the solid phase of the same material, water, is not a commonly occurring phenomena. This situation means that the heat exchange between the phases and the resulting phase changes also have to be accounted for in the analysis. The fact that the solidus in the pressure-temperature dependent phase diagram of water has a negative slope provides further complications. Ice can thus melt or freeze from both temperature and pressure variations or variations in both. In order to provide details of the current understanding of water flow in conjunction with deforming ice and to provide understanding for the development of ideas and models, emphasis has been put on the mathematical treatments, which are reproduced in detail. Qualitative results corroborating theory or, perhaps more often, questioning the simplifications made in theory, are also given. The overarching problem with our knowledge of glacier hydrology is the gap between the local theories of processes and the general flow of water in glaciers and ice sheets. Water is often channelized in non-stationary conduits through the ice, features which due to their minute size relative to the size of glaciers and ice sheets are difficult to incorporate in spatially larger models. Since the dynamic response of ice sheets to global warming is becoming a key issue in, e.g. sea-level change studies, the problems of the coupling between the hydrology of an ice sheet and its dynamics is steadily gaining interest. New work is emerging

  13. Exceptional retreat of Novaya Zemlya's marine-terminating outlet glaciers between 2000 and 2013

    Directory of Open Access Journals (Sweden)

    J. R. Carr

    2017-09-01

    Full Text Available Novaya Zemlya (NVZ has experienced rapid ice loss and accelerated marine-terminating glacier retreat during the past 2 decades. However, it is unknown whether this retreat is exceptional longer term and/or whether it has persisted since 2010. Investigating this is vital, as dynamic thinning may contribute substantially to ice loss from NVZ, but is not currently included in sea level rise predictions. Here, we use remotely sensed data to assess controls on NVZ glacier retreat between 1973/76 and 2015. Glaciers that terminate into lakes or the ocean receded 3.5 times faster than those that terminate on land. Between 2000 and 2013, retreat rates were significantly higher on marine-terminating outlet glaciers than during the previous 27 years, and we observe widespread slowdown in retreat, and even advance, between 2013 and 2015. There were some common patterns in the timing of glacier retreat, but the magnitude varied between individual glaciers. Rapid retreat between 2000 and 2013 corresponds to a period of significantly warmer air temperatures and reduced sea ice concentrations, and to changes in the North Atlantic Oscillation (NAO and Atlantic Multidecadal Oscillation (AMO. We need to assess the impact of this accelerated retreat on dynamic ice losses from NVZ to accurately quantify its future sea level rise contribution.

  14. Glaciation of Siberia and the problem of massive ice beddings

    Directory of Open Access Journals (Sweden)

    V. S. Sheinkman

    2017-01-01

    Full Text Available As a result of many years of the author’s studies of glaciers and ground ices, a great amount of factual material has been collected for a purpose to analyze a possibility of burying the glaciers in the permafrost zone and to esti‑ mate a time of their stay in such а condition. According to the author’s opinion, the Siberian glaciers were mainly the valley ones; ice sheets were never formed, and any existence of buried glaciers could not be real in the geo‑ logical time scale. However, some researchers still believe that in the Quaternary ice sheets occurred in the North of Siberia, and, in addition, they consider the local massive ice beddings as relics of these sheets. No clear expla‑ nation of the similar origin of such ice structures exists at the present time, so development and variety of this ice could be easier explained by the permafrost genesis. Basing on results of observations carried out in all glacier regions of Siberia, the author concludes that glaciers cannot exist in the form of buried ice for a long time. This is unrealistic even in the North‑East of Siberia, where the absolute minimum temperature is −67.8 °C, and the mean annual air temperature drops below −17 °C. The characteristic feature of the Siberia continental climate is short, but hot summer. In such a situation, the coarse fragmental morainic material, covering glaciers by the layer up to 3 m thick, cannot preserve the underlying ice from melting because the heat penetrates down with the air, liquid precipitation, and the melt water. When glaciers reduce, the dead ice, buried under a moraine, may be preserved in the coldest areas of Siberia for only 100–150 years. Therefore, despite the resemblance of the scarps of the ice bodies having the permafrost or glacial origin, consideration of them as relics of ancient glaciers would be wrong.

  15. PIXE analysis as a tool for dating of ice cores from the Greenland ice sheet

    International Nuclear Information System (INIS)

    Hansson, H.C.; Swietlicki, E.; Larsson, N.P.O.; Johnsen, S.J.

    1993-01-01

    Sections from the 2037 m long Dye 3 ice core drilled in 1979-1981 in the ice sheet of Southern Greenland were analysed with PIXE. The seven selected sections were from depths between 1778 and 1813 m, which corresponds to a time interval between about 8 500 and 10 000 years B.C. at the end of the last Ice Age. During this time period, fast climatic changes of several degrees centrigrade per century are known to have taken place. The exact time scales of these changes need yet to be verified by renewed measurements using nonconventional stratigraphic dating techniques such as PIXE. The problem is highly relevant for the prediction of climatic changes in our present age. A new sample preparation technique was developed which enables the determination of annual thicknesses of the parts of the ice core representing 10 000-40 000 years before present, where the thickness of the annual ice layers are believed to be less than 2.5 cm. More commonly used techniques of dating, such as measurements of oxygen and hydrogen isotopes δ 18 O and δD, nitrate, acidity or conductivity all have difficulties in resolving annual cycles in thicknesses of less than about 2 cm. The new technique involves sublimation of 18 cm long ice sections, after which the material contained in the ice is deposited on the thin backing. In this way, the material to be analysed is preconcentrated through the removal of the H 2 O, while still retaining the spatial distribution pattern of the various water soluble and insoluble components along the ice core. The resulting spatial resolution of the sublimation technique is estimated to be ±1 mm. A PIXE analysis was performed in contiguous millimeter steps across the sublimated ice sections. Estimations of annual ice layer thicknesses were based on the patterns of seasonal variation along the ice sections for several major and minor elements quantified with PIXE. (orig./TW)

  16. Iron from melting glaciers fuels phytoplankton blooms in the Amundsen Sea (Southern Ocean): Phytoplankton characteristics and productivity

    NARCIS (Netherlands)

    Alderkamp, A.C.; Mills, M.M.; van Dijken, G.L.; Laan, P.; Thuróczy, C.-E.; Gerringa, L.J.A.; de Baar, H.J.W.; Payne, C.D.; Visser, R.J.W.; Buma, A.G.J.; Arrigo, K.R.

    2012-01-01

    The phytoplankton community composition and productivity in waters of the Amundsen Sea and surrounding sea ice zone were characterized with respect to iron (Fe) input from melting glaciers. High Fe input from glaciers such as the Pine Island Glacier, and the Dotson and Crosson ice shelves resulted

  17. Surface Elevation Change of Transantarctic Outlet Glaciers using Historical Aerial Imagery and Structure-from-Motion Photogrammetry

    Science.gov (United States)

    Child, S. F.; Stearns, L. A.; Girod, L.

    2017-12-01

    Transantarctic Mountain outlet glaciers drain ice from the East Antarctic Ice Sheet to the Ross Ice Shelf and are generally considered to be stable. However, studies that assess these glaciers typically use data with coarse spatial resolutions (1 - 20 km) and span only the last 15 - 20 years. Here, we use trimetrogon aerial (TMA) photographs collected by the United States Geological Survey from 1960 - 1965 to create historical surface elevation maps. We construct elevations from both the vertical (0° nadir) and oblique photographs using MicMac, a Structure-from-Motion (SfM) software. With typical SfM processing, accurate ground control points (GCPs) are necessary for the best results; however, in situ GCPs are extremely sparse in Antarctica, so we manually identify GCPs using exposed rock outcrops in the WorldView imagery. The historical glacier surface elevations are then compared with present-day elevations derived from WorldView imagery. With this methodology, we assess how Transantarctic outlet glaciers have changed over 55 years. Recent studies indicate thinning of the eastern Ross Ice Shelf, where it borders the Transantarctic Mountains. With long-term records of glacier elevation change, we can differentiate whether ice shelf thinning is driven by changes in glacier or ocean dynamics. These results give us a better understanding of the long-term stability of East Antarctic outlet glaciers, which is essential in improving predictive models of ice sheet behavior.

  18. Irreversible mass loss of Canadian Arctic Archipelago glaciers

    NARCIS (Netherlands)

    Lenaerts, J.T.M.|info:eu-repo/dai/nl/314850163; van Angelen, J.H.|info:eu-repo/dai/nl/325922470; van den Broeke, M.R.|info:eu-repo/dai/nl/073765643; Gardner, A.S.; Wouters, Bert|info:eu-repo/dai/nl/304120146; van Meijgaard, E.

    2013-01-01

    The Canadian Arctic Archipelago (CAA) contains the largest volume of glacier ice on Earth outside of Antarctica and Greenland. In the absence of significant calving, CAA glacier mass balance is governed by the difference between surface snow accumulation and meltwater runoff—surface mass balance.

  19. Tidal Movement of Nioghalvfjerdsfjorden Glacier, Northeast Greenland: Observations and Modelling

    DEFF Research Database (Denmark)

    Reeh, Niels; Mayer, C.; Olesen, O. B.

    2000-01-01

    Nioghalvfjerdsfjorden glacier is a > 60 km long and 20 km wide floating outlet glacier located at 79 degrees 30' N, 22 degrees W, draining a large area of the northeast Greenland ice sheet. Climate, mass-balance and dynamics studies were carried out on the glacier in three field seasons in 1996...

  20. Visual-stratigraphic dating of the GISP2 ice core: Basis, reproducibility, and application

    Science.gov (United States)

    Alley, R. B.; Shuman, C. A.; Meese, D. A.; Gow, A. J.; Taylor, K. C.; Cuffey, K. M.; Fitzpatrick, J. J.; Grootes, P. M.; Zielinski, G. A.; Ram, M.; Spinelli, G.; Elder, B.

    1997-11-01

    Annual layers are visible in the Greenland Ice Sheet Project 2 ice core from central Greenland, allowing rapid dating of the core. Changes in bubble and grain structure caused by near-surface, primarily summertime formation of hoar complexes provide the main visible annual marker in the Holocene, and changes in "cloudiness" of the ice correlated with dustiness mark Wisconsinan annual cycles; both markers are evident and have been intercalibrated in early Holocene ice. Layer counts are reproducible between different workers and for one worker at different times, with 1% error over century-length times in the Holocene. Reproducibility is typically 5% in Wisconsinan ice-age ice and decreases with increasing age and depth. Cumulative ages from visible stratigraphy are not significantly different from independent ages of prominent events for ice older than the historical record and younger than approximately 50,000 years. Visible observations are not greatly degraded by "brittle ice" or many other core-quality problems, allowing construction of long, consistently sampled time series. High accuracy requires careful study of the core by dedicated observers.

  1. Recent glacier retreat and lake formation in the Querecocha watershed, Cordillera Blanca, Peru

    Science.gov (United States)

    López Moreno, J.; Valero-Garces, B.; Revuelto, J.; Azorín-Molina, C.; Bazo, J.; Cochachin, A.; Fontaneda, S.; Mark, B. G.

    2013-12-01

    In the Andes, and specifically in the Peruvian mountains a marked decrease of the glaciated area has occurred since the end of the Little Ice Age, and it has been accelerated since the last decades of the 20th century. As a result of the glacier retreat new pro-glaciar lakes are originated, and often the area and volume of existing ones increases. The study of these newly-formed lakes and their recent evolution may provide a better understanding of the hydrological and geomorphological evolution of deglaciated areas, and a better evaluation of the risk of glacial lakes outburst floods (GLOFS). In this work, we use 26 annual Landsat Thematic Mapper images from 1975 to 2010 to determine changes of the glaciated surface, snow line elevation and lakes formation in the headwaters of the Querecocha watershed in Cordillera Blanca (Perú). We also present the information derived from 10 short sediment cores (up to 50 cm long) retrieved along several transects in Yanamarey Lake. Both data sets inform of the sediment yield and lake development in recently deglaciated environments of the Andes. Results demonstrate that only one third of the surface covered by ice in 1975 remained in 2010. In this period, snowline has shifted up more than 100 meters in elevation in both, Yanamarey North and South areas respectively. At the same time, new lakes have been formed very quickly in these deglaciated areas. Preliminary 137Cs dating of Yanamarey sediment core indicates that at least the top 50 cm of the lake sequence deposited after 1960. This is coherent with the Landsat image of 1975 that showed the current surface of the lake still covered by ice. The high sediment rate (> 1 cm/yr) in the lake demonstrates the very high sediment yield in these geomorphically active settings. The sediment cores are composed of cm-thick sequences defined by grain-size (silt-clay) common in proglacial lakes reflecting the variability of hydrological response associated to the glacier retreat in the

  2. Unveiling the climate memory of an Arctic polythermal glacier: a combined radar and thermomechanical modeling approach

    Science.gov (United States)

    Delcourt, C.; Van Liefferinge, B.; Pattyn, F.; Nolan, M.

    2011-12-01

    Based on borehole temperature measurements and radio-echo sounding surveys on McCall Glacier, Alaska (USA) we were able to identify and map the Cold Transition Surface (CTS) marking the limit between cold and warm ice of a polythermal glacier. In the accumulation area, the ice column is observed to be warm throughout, while in the ablation area, the amount of cold ice at the top of the ice column increases downstream, hence lowering the CTS. High englacial temperatures in the accumulation are explained by the latent heat release due to percolating meltwater and precipitation, hence warming the ice column. With increasing atmospheric temperatures and increasing ablation rates, reduction of the perennial snowpack results in surface runoff and ice cooling. Using a transient thermomechanically-coupled higher-order glacier model, the timing of the cooling was determined from which past equilibrium-line altitudes (ELA) were constructed, which are in accord with ELAs measured since the 1950s (IGY). The paper therefore shows that (i) mapping of the CTS allows reconstructing the recent climate history of polythermal glaciers, and (ii) with a warming climate, McCall Glacier tends to cool down in a counterintuitive way.

  3. Glacier Surface Lowering and Stagnation in the Manaslu Region of Nepal

    Science.gov (United States)

    Robson, B. A.; Nuth, C.; Nielsen, P. R.; Hendrickx, M.; Dahl, S. O.

    2015-12-01

    Frequent and up-to-date glacier outlines are needed for many applications of glaciology, not only glacier area change analysis, but also for masks in volume or velocity analysis, for the estimation of water resources and as model input data. Remote sensing offers a good option for creating glacier outlines over large areas, but manual correction is frequently necessary, especially in areas containing supraglacial debris. We show three different workflows for mapping clean ice and debris-covered ice within Object Based Image Analysis (OBIA). By working at the object level as opposed to the pixel level, OBIA facilitates using contextual, spatial and hierarchical information when assigning classes, and additionally permits the handling of multiple data sources. Our first example shows mapping debris-covered ice in the Manaslu Himalaya, Nepal. SAR Coherence data is used in combination with optical and topographic data to classify debris-covered ice, obtaining an accuracy of 91%. Our second example shows using a high-resolution LiDAR derived DEM over the Hohe Tauern National Park in Austria. Breaks in surface morphology are used in creating image objects; debris-covered ice is then classified using a combination of spectral, thermal and topographic properties. Lastly, we show a completely automated workflow for mapping glacier ice in Norway. The NDSI and NIR/SWIR band ratio are used to map clean ice over the entire country but the thresholds are calculated automatically based on a histogram of each image subset. This means that in theory any Landsat scene can be inputted and the clean ice can be automatically extracted. Debris-covered ice can be included semi-automatically using contextual and morphological information.

  4. ESTIMATION OF THE WANDA GLACIER (SOUTH SHETLANDS SEDIMENT EROSION RATE USING NUMERICAL MODELLING

    Directory of Open Access Journals (Sweden)

    Kátia Kellem Rosa

    2013-09-01

    Full Text Available Glacial sediment yield results from glacial erosion and is influenced by several factors including glacial retreat rate, ice flow velocity and thermal regime. This paper estimates the contemporary subglacial erosion rate and sediment yield of Wanda Glacier (King George Island, South Shetlands. This work also examines basal sediment evacuation mechanisms by runoff and glacial erosion processes during the subglacial transport. This is small temperate glacier that has seen retreating for the last decades. In this work, we examine basal sediment evacuation mechanisms by runoff and analyze glacial erosion processes occurring during subglacial transport. The glacial erosion rate at Wanda Glacier, estimated using a numerical model that consider sediment evacuated to outlet streams, ice flow velocity, ice thickness and glacier area, is 1.1 ton m yr-1.

  5. Tidal bending of glaciers: a linear viscoelastic approach

    DEFF Research Database (Denmark)

    Reeh, Niels; Christensen, Erik Lintz; Mayer, Christoph

    2003-01-01

    In theoretical treatments of tidal bending of floating glaciers, the glacier is usually modelled as an elastic beam with uniform thickness, resting on an elastic foundation. With a few exceptions, values of the elastic (Young's) modulus E of ice derived from tidal deflection records of floating...

  6. Using Continuum Damage Mechanics to Simulate Iceberg Calving from Tidewater Outlet Glaciers

    Science.gov (United States)

    Mercenier, R.; Lüthi, M.; Vieli, A.

    2017-12-01

    Many ocean terminating glaciers in the Arctic are currently undergoingrapid retreat, thinning and strong accelerations in flow. The processof iceberg calving plays a crucial role for the related dynamical masslosses and occurs when the stresses at the calving front exceed thefracture strength of ice, driving the propagation of cracks andeventually leading to the detachment of ice blocks from the glacierfront. However, the understanding of the processes involved in icebergcalving as well as the capability of flow models to represent thecalving mechanism remain limited.Here, we use a time-dependent two-dimensional finite-element flowmodel coupled to a damage model to simulate the break-off of ice atthe front of idealized tidewater outlet glaciers. The flow modelcomputes flow velocities and the resulting stresses, which are in turnused to calculate the evolution of the glacier geometry anddamage. Damage is defined as a change of rheological properties, e.g.viscosity, due to increasing material degradation. Elements of ice areremoved when the damage variable reaches a critical threshold. Theeffects of material properties and of geometrical parameters such aswater depth, ice thickness and submarine frontal melting on thesimulated calving rates are explored through systematic sensitivityanalyses.The coupled ice flow/damage model allows for successful reproductionof calving front geometries typically observed for different waterdepths. We further use detailed observations from real glaciergeometries to better constrain the model parameters. Theproposed model approach should be applicable to simulate icebergcalving on arbitrary glaciers, and thus be used to analyse theevolution of tidewater glacier variations from the past to the future.

  7. Observed thinning of Totten Glacier is linked to coastal polynya variability

    NARCIS (Netherlands)

    Khazendar, A.; Schodlok, M.P.; Fenty, I.; Ligtenberg, S.R.M.; Rignot, Eric; van den Broeke, M.R.

    2013-01-01

    Analysis of ICESat-1 data (2003–2008) shows significant surface lowering of Totten Glacier, the glacier discharging the largest volume of ice in East Antarctica, and less change on nearby Moscow University Glacier. After accounting for firn compaction anomalies, the thinning appears to coincide with

  8. Sudden increase in tidal response linked to calving and acceleration at a large Greenland outlet glacier

    DEFF Research Database (Denmark)

    de Juan, Julia; Elósegui, Pedro; Nettles, Meredith

    2010-01-01

    strongly with the step-like increases in glacier speed and longitudinal strain rate associated with glacial earthquakes. The enhanced response to the ocean tides may be explained by a temporary disruption of the subglacial drainage system and a concomitant reduction of the friction at the ice......Large calving events at Greenland's largest outlet glaciers are associated with glacial earthquakes and near-instantaneous increases in glacier flow speed. At some glaciers and ice streams, flow is also modulated in a regular way by ocean tidal forcing at the terminus. At Helheim Glacier, analysis...

  9. Glacier dynamics over the last quarter of a century at Helheim, Kangerdlugssuaq and 14 other major Greenland outlet glaciers

    Directory of Open Access Journals (Sweden)

    S. L. Bevan

    2012-09-01

    Full Text Available The Greenland ice sheet is experiencing increasing rates of mass loss, the majority of which results from changes in discharge from tidewater glaciers. Both atmospheric and ocean drivers have been implicated in these dynamic changes, but understanding the nature of the response has been hampered by the lack of measurements of glacier flow rates predating the recent period of warming. Here, using Landsat-5 data from 1985 onwards, we extend back in time the record of surface velocities and ice-front position for 16 of Greenland's fastest-flowing tidewater glaciers, and compare these to more recent data from Landsat-7 and satellite-borne synthetic-aperture radar. Climate re-analysis data and sea surface temperatures from 1982 show that since 1995 most of Greenland and its surrounding oceans have experienced significant overall warming, and a switch to a warming trend. During the period from 1985 to 1995 when Greenland and the surrounding oceans were not warming, major tidewater outlet glaciers around Greenland, including Kangerdlugssuaq and Helheim, were dynamically stable. Since the mid-1990s, glacier discharge has consistently been both greater and more variable. Together, these observations support the hypothesis that recent dynamic change is a rapid response to climate forcing. Both air and ocean temperatures in this region are predicted to continue to warm, and will therefore likely drive further change in outlet glacier discharge.

  10. Lake sediment-based Late Holocene glacier reconstruction reveals medieval retreat and two-phase Little Ice Age on subantarctic South Georgia

    Science.gov (United States)

    van der Bilt, W. G. M.; Bakke, J.; Werner, J.; Paasche, O.; Rosqvist, G. N.; Vatle, S. S.

    2016-12-01

    Southern Ocean climate is rapidly changing. Yet beyond the instrumental period (± 100 years), our comprehension of climate variability in the region is restricted by a lack of high-resolution paleoclimate records. Alpine glaciers, ubiquitous on Southern Ocean islands, may provide such data as they rapidly respond to climate shifts, recording attendant changes in extent by variations in glacial erosion. Rock flour, the fine-grained fraction of this process, is suspended in meltwater streams and transfers this signal to the sediments of downstream lakes, continuously recording glacier history. Here, we use this relationship and present the first reconstruction of the Late Holocene (1250 cal. yr BP - present) glacier history of the Southern Ocean island of South Georgia, using sediments from the glacier-fed Middle Hamberg lake. Variations are resolved on multi-centennial scales due to robust chronological control. To fingerprint a glacial erosion signal, we employed a set of routinely used physical, geochemical and magnetic parameters. Using Titanium counts, validated against changes in sediment density and grain size distribution, we continuously reconstruct glacier variations over the past millennium. Refining local moraine evidence and supporting evidence from other Southern Hemisphere sites, this study shows a progressive diminishing of consecutive Late Holocene advances. These include a two-stage Little Ice Age, in agreement with other Southern Hemisphere glacier evidence. The presented record furthermore captures an unreported retreat phase behind present limits around 500 cal. yr BP.

  11. δ13C-CH4 in ice core samples

    DEFF Research Database (Denmark)

    Sperlich, Peter

    Ice core records of δ13C-CH4 reflect the variability of CH4 biogeochemistry in response to climate change and show this system is far more complex than expected. The first part of this work is concerned with the development of analytical techniques that allow 1) precise referencing and 2) measure......Ice core records of δ13C-CH4 reflect the variability of CH4 biogeochemistry in response to climate change and show this system is far more complex than expected. The first part of this work is concerned with the development of analytical techniques that allow 1) precise referencing and 2......) measurements of δ13C-CH4 in ice core samples as is required when δ13C-CH4 records that are measured in several laboratories are merged for analysis. Both the referencing and measurement techniques have been compared to further laboratories which proofed the accuracy of the analytical systems. The second part...

  12. Spatial features of glacier changes in the Barents-Kara Sector

    Science.gov (United States)

    Sharov, A. I.; Schöner, W.; Pail, R.

    2009-04-01

    In the 1950s, the total area of glaciers occupying separate islands and archipelagos of the Barents and Kara seas exceeded 92,300 km² (Atlas of the Arctic 1985). The overall glacier volume reached 20,140 km³ and the average ice thickness was given as 218 m. Our recent remote sensing studies and mass-balance estimates using spaceborne ASTER and LANDSAT imagery, ERS and JERS radar interferometric mosaics, and ICESat altimetry data revealed that, in the 2000s, the areal extent and volume of Barents-Kara glaciation amounted to 86,200±200 km² and 19,330±20 km³, respectively. The annual loss of land ice influenced by severe climate change in longitudinal direction was determined at approx. 8 km³/a in Svalbard, 4 km³/a both in the Franz Josef Land and Novaya Zemlya archipelagos, and less than 0.3 km³/a in Severnaya Zemlya over the past 50 years. The average ice thickness of remaining glaciation increased to 224 m. This fact was explained by rapid disintegration of thinner glacier margins and essential accumulation of snow at higher glacier elevations. Both effects were clearly visible in the series of satellite image maps of glacier elevation changes generated within the framework of the INTEGRAL, SMARAGD and ICEAGE research projects. These maps can be accessed at http://joanneum.dib.at/integral or smaragd (cd results). The largest negative elevation changes were typically detected in the seaward basins of fast-flowing outlet glaciers, both at their fronts and tops. Ablation processes were stronger manifested on southern slopes of ice caps, while the accumulation of snow was generally higher on northern slopes so that main ice divides "shifted" to the north. The largest positive elevation changes (about 100 m) were found in the central part of the study region in the accumulation areas of the biggest ice caps, such as Northern Ice Cap in Novaya Zemlya, Tyndall and Windy ice domes in Franz Josef Land, and Kvitoyjokulen at Kvitøya. The sides of these glaciers

  13. Terminal zone glacial sediment transfer at a temperate overdeepened glacier system

    Science.gov (United States)

    Swift, D. A.; Cook, S. J.; Graham, D. J.; Midgley, N. G.; Fallick, A. E.; Storrar, R.; Toubes Rodrigo, M.; Evans, D. J. A.

    2018-01-01

    Continuity of sediment transfer through glacial systems is essential to maintain subglacial bedrock erosion, yet transfer at temperate glaciers with overdeepened beds, where subglacial fluvial sediment transport should be greatly limited by adverse slopes, remains poorly understood. Complex multiple transfer processes in temperate overdeepened systems has been indicated by the presence of large frontal moraine systems, supraglacial debris of mixed transport origin, thick basal ice sequences, and englacial thrusts and eskers. At Svínafellsjökull, thrusts comprising decimetre-thick debris-rich bands of stratified facies ice of basal origin, with a coarser size distribution and higher clast content than that observed in basal ice layers, contribute substantially to the transfer of subglacial material in the terminal zone. Entrainment and transfer of material occurs by simple shear along the upper surface of bands and by strain-induced deformation of stratified and firnified glacier ice below. Thrust material includes rounded and well-rounded clasts that are also striated, indicating that fluvial bedload is deposited as subglacial channels approach the overdeepening and then entrained along thrusts. Substantial transfer also occurs within basal ice, with facies type and debris content dependent on the hydrological connectedness of the adverse slope. A process model of transfer at glaciers with terminal overdeepenings is proposed, in which the geometry of the overdeepening influences spatial patterns of ice deformation, hydrology, and basal ice formation. We conclude that the significance of thrusting in maintaining sediment transfer continuity has likely been overlooked by glacier sediment budgets and glacial landscape evolution studies.

  14. Simulating the evolution of the Amundsen Sea Sector with a coupled ice-ocean model

    Science.gov (United States)

    Seroussi, H. L.; Nakayama, Y.; Menemenlis, D.; Larour, E. Y.; Morlighem, M.; Rignot, E. J.

    2017-12-01

    Ice shelves and floating glacier termini play an important role in the stability of ice sheets and interact strongly with the ocean. They account for much of the buttressing against the flow of inland glaciers that drain the Antarctic ice sheet. Changes in their geometry due to ice-front retreat, thinning or even collapse profoundly affect the flow of their tributary glaciers, which in turn affects the volume of grounded ice carried by these tributary glaciers into the ocean, and the extent of resulting sea level rise. Recent simulations of glaciers in Antarctica show that the largest climatic impact on ice dynamics is the rate of ice shelf melting, which rapidly affects glaciers' speed over several hundreds of kilometers upstream of the grounding line. These melting rates, however, as well as their spatial and temporal evolution remain largely unknown. In the absence of direct long-term observations, coupled ice-ocean models are the best available approach to address this question. In a previous study, we simulated the coupled ice-ocean system near Thwaites Glacier using a new two-way coupled system between the Massachusetts Institute of Technology general circulation model (MITgcm) and the Ice Sheet System Model (ISSM). Our results highlighted the impact of ocean conditions on glacier evolution and demonstrated the importance of simulating the coupled ice-ocean system to produce accurate melting rates under the ice shelf and at the grounding line. In this study, we focus on the entire Amundsen Sea sector, a region that experienced glacier acceleration, thinning and grounding line retreat over the past three decades. We investigate the feedbacks between changes in the ice and ocean, and the dynamic response of the glacier to changes in the ocean circulation. The simulations suggest that this region is likely to undergo substantial changes in the coming decades. This work was performed at the Jet Propulsion Laboratory, California Institute of Technology, under a

  15. A century of ice retreat on Kilimanjaro: the mapping reloaded

    Directory of Open Access Journals (Sweden)

    N. J. Cullen

    2013-03-01

    Full Text Available A new and consistent time series of glacier retreat on Kilimanjaro over the last century has been established by re-interpreting two historical maps and processing nine satellite images, which removes uncertainty about the location and extent of past and present ice bodies. Three-dimensional visualization techniques were used in conjunction with aerial and ground-based photography to facilitate the interpretation of ice boundaries over eight epochs between 1912 and 2011. The glaciers have retreated from their former extent of 11.40 km2 in 1912 to 1.76 km2 in 2011, which represents a total loss of about 85% of the ice cover over the last 100 yr. The total loss of ice cover is in broad agreement with previous estimates, but to further characterize the spatial and temporal variability of glacier retreat a cluster analysis using topographical information (elevation, slope and aspect was performed to segment the ice cover as observed in 1912, which resulted in three glacier zones being identified. Linear extrapolation of the retreat in each of the three identified glacier assemblages implies the ice cover on the western slopes of Kilimanjaro will be gone before 2020, while the remaining ice bodies on the plateau and southern slopes will most likely disappear by 2040. It is highly unlikely that any body of ice will be present on Kilimanjaro after 2060 if present-day climatological conditions are maintained. Importantly, the geo-statistical approach developed in this study provides us with an additional tool to characterize the physical processes governing glacier retreat on Kilimanjaro. It remains clear that, to use glacier response to unravel past climatic conditions on Kilimanjaro, the transition from growth to decay of the plateau glaciers must be further resolved, in particular the mechanisms responsible for vertical cliff development.

  16. A High-Resolution Continuous Flow Analysis System for Polar Ice Cores

    DEFF Research Database (Denmark)

    Dallmayr, Remi; Goto-Azuma, Kumiko; Kjær, Helle Astrid

    2016-01-01

    of Polar Research (NIPR) in Tokyo. The system allows the continuous analysis of stable water isotopes and electrical conductivity, as well as the collection of discrete samples from both inner and outer parts of the core. This CFA system was designed to have sufficiently high temporal resolution to detect...... signals of abrupt climate change in deep polar ice cores. To test its performance, we used the system to analyze different climate intervals in ice drilled at the NEEM (North Greenland Eemian Ice Drilling) site, Greenland. The quality of our continuous measurement of stable water isotopes has been......In recent decades, the development of continuous flow analysis (CFA) technology for ice core analysis has enabled greater sample throughput and greater depth resolution compared with the classic discrete sampling technique. We developed the first Japanese CFA system at the National Institute...

  17. Characterization of rapid climate changes through isotope analyses of ice and entrapped air in the NEEM ice core

    DEFF Research Database (Denmark)

    Guillevic, Myriam

    Greenland ice core have revealed the occurrence of rapid climatic instabilities during the last glacial period, known as Dansgaard-Oeschger (DO) events, while marine cores from the North Atlantic have evidenced layers of ice rafted debris deposited by icebergs melt, caused by the collapse...... mechanisms at play. Recent analytical developments have made possible to measure new paleoclimate proxies in Greenland ice cores. In this thesis we first contribute to these analytical developments by measuring the new innovative parameter 17O-excess at LSCE (Laboratoire des Sciences du Climatet de l......'Environnement, France). At the Centre for Ice and Climate (CIC, Denmark) we contribute to the development of a protocol for absolute referencing of methane gas isotopes, and making full air standard with known concentration and isotopic composition of methane. Then, air (δ15N) and water stable isotope measurements from...

  18. Life and death of ice cliffs and lakes on debris covered glaciers - insights from a new dataset from the Nepalese Himalaya

    Science.gov (United States)

    Steiner, Jakob; Buri, Pascal; Miles, Evan; Ragettli, Silvan; Pellicciotti, Francesca

    2016-04-01

    Numerous studies suggest that supraglacial ice cliffs and lakes could be one contributing factor to relatively high overall ablation rates on debris covered glaciers. While some studies have quantified backwasting rates, developments over the larger scale have not yet been assessed. Field work and earlier studies during three seasons in the Langtang catchment in the Nepalese Himalaya has given some insights into how these landforms develop, from initial emergence to persistence and disappearance. From 6 sets of concurrent high-resolution satellite imagery and DEMs between 2006 and 2015 and an additional image from 1974, we assembled an extensive dataset of these landforms on all glaciers in the catchment, including nearly 4000 individual lakes and cliffs. We show that ice cliffs appear in combination with lakes or without and there are lakes that are not bordered by a cliff. Numbers vary strongly between seasons, especially as lakes show strong seasonal variability. There are furthermore different types of cliff forms - circular, lateral and longitudinal - that give an indication of their formation process. Circular cliffs form with either collapsing subglacial channels or overdeepenings caused by water accumulating on the surface, while lateral cliffs are likely associated with underlying crevasses. Some of the cliff and lake systems remain at the same location on-glacier over a number of years, while most move with the whole glacier body down valley. From the DEMs determine preferential slopes and expositions of the cliffs in the catchment which have been shown to be essential aspects in explaining the backwasting process. In combination with field observations from one glacier, where most of these types were present, we can infer development processes of a number of systems over the whole catchment. It is also apparent that densities of these landforms vary greatly over the glacier surface, which can be explained with velocities or underlying bed topography in

  19. Lacustrine Records of Holocene Mountain Glacier Fluctuations from Western Greenland

    Science.gov (United States)

    Schweinsberg, A.; Briner, J. P.; Bennike, O.

    2014-12-01

    Recent studies have focused on documenting fluctuations of the Greenland Ice Sheet margin throughout the Holocene but few data exist that constrain past changes of local glaciers independent of the ice sheet. Our research combines proglacial lake sediment analysis with cosmogenic 10Be dating of Holocene moraines and radiocarbon dating of ice-cap-killed vegetation with an overall objective to use this multi-proxy approach to generate a detailed record of the coupled climate-glacier system through the Holocene. Here, we present lacustrine records of mountain glacier variability from continuous pro-glacial lake sediment sequences recovered from two glaciated catchments in northeastern Nuussuaq, western Greenland. We use radiocarbon-dated sediments from Sikuiui and Pauiaivik lakes to reconstruct the timing of advance and retreat of local glaciers. Sediments were characterized with magnetic susceptibility (MS), gamma density, Itrax XRF and visible reflectance spectroscopy at 0.2 cm intervals and sediment organic matter at 0.5 cm intervals. Basal radiocarbon ages provide minimum-age constraints on deglaciation from Sikuiui and Pauiaivik lakes of ~9.6 and 8.7 ka, respectively. Organic-rich gyttja from deglaciation until ~5.0 ka in Pauiaivik Lake suggests minimal glacial extent there while slightly elevated MS values from ~9.0 - 7.0 ka in Sikuiui Lake may reflect early Holocene glacial advances. Minerogenic sediment input gradually increases starting at ~5.0 ka in Pauiaivik Lake, which we interpret as the onset of Neoglaciation in the catchment. Furthermore, a distinct episode of enhanced glacial activity from ~4.0 - 2.2 ka in Sikuiui Lake may be correlative to a period of persistent snowline lowering evidenced by radiocarbon dates of ice-killed vegetation from nearby ice cap margins. Results from these lacustrine records and our ice-killed vegetation dataset suggest a middle Holocene onset of Neoglaciation ~5.0 - 4.0 ka in this region. We are supplementing these records

  20. What controls the survival of ice cliffs on debris-covered glaciers? An investigation into the aspect-dependent evolution of supraglacial cliffs in the Nepalese Himalaya

    Science.gov (United States)

    Pellicciotti, F.; Buri, P.

    2017-12-01

    Supraglacial ice cliffs exist on debris-covered glaciers worldwide, but despite increasing evidence of their important role in the surface melt of debris-covered glaciers, their role and importance at the glacier scale is still little understood. Acting as windows of energy transfer through the debris, they can contribute to very large glacier mass losses. Their abundance and life cycle might thus explain the anomalous behavior of much higher than expected mass losses of the debris-covered glaciers of High Mountain Asia, a controversial finding of recent research in a region where glaciers are highly relevant as water sources for millions of people downstream. Cliffs' evolution in time and distribution in space will determine their total contribution to the mass balance of glaciers, but while spatial distribution has been recently inferred from remote sensing studies, their temporal evolution is largely unknown. Here, we make use of recent advancements in our ability to model these complex features and use a novel 3D numerical model of cliff backwasting and very high resolution topographic data to show that supraglacial ice cliffs existence is controlled by aspect. Because of lack of observed south-facing cliffs, we rotate north-facing cliff systems observed in high detail over the debris-covered Lirung glacier, in the Nepalese Himalaya, towards southerly aspects and use the model coupled to the very high resolution topography to simulate the continuous evolution of selected cliffs over one melt season. Cliffs facing south (in the Northern Hemisphere) do not survive the duration of an ablation season and disappear within few weeks to few months due to very strong solar radiation receipts. Our model shows a progressive, continuous flattening of southerly facing cliffs, which is a result of their vertical gradient of incoming solar radiation. We also show that there is a clear range of aspects (northwest to northeast) that allows cliff survival because of energy and

  1. New inventory of glaciers in southeastern part of the Eastern Sayan Mountains

    Directory of Open Access Journals (Sweden)

    E. Yu. Osipov

    2013-01-01

    Full Text Available Satellite images with high (Quick Bird, 2006, WorldView-1, 2008, 0.5–0.6 m and middle (Landsat-7 ETM +, 2001, 15–30 m resolution were used to map contemporary glaciers on two mountain peaks of south-eastern part of East Sayan Ridge – Munky Sardyk (3491 m a.s.l. and Topographov (3089 m a.s.l.. Topographic maps of 1978 and 1981 and Landsat-7 images (summer 2001 were used to assess glacier changes during second half of XX century. Modern terminal and lateral moraines near glacier snouts were used to reconstruct former outlines during the end of the Little Ice Age (middle of XIX century. Also SRTM data and GPS-surveys in Munku-Sardyk area were applied to measure glacier altitudes. GIS technologies allowed forming digital glacier data base with attribute information and new inventory was made. Totally 13 glaciers with area of 5.1 km² were investigated and mapped. Glaciers are located in vertical range from 2800–3490 m a.s.l. (Munku-Sardyk area and 2340–2950 m a.s.l. (Topographov area. Firn line on glaciers vary from 2540 to 3110 m a.s.l., rising to the southeast. On average, over the past 160 years (since the end of the Little Ice Age glaciers have significantly decreased. Ice area has decreased by 49%, length has diminished by 570 m, the glacier snouts has risen by 124 m. Analysis of regional climate data shows that the rate of deglaciation is well correlated with summer temperatures increasing in the second half of XX century, especially in 1980–1990s. A tendency to recover glacier mass balance was revealed during the last decade based on climatic data.

  2. Simulating calving-front changes of Greenland’s marine-terminating glaciers

    DEFF Research Database (Denmark)

    Haubner, Konstanze

    glacier retreat to a certain degree and foremost define the variation of retreat rates. The thesis implies the importance of incorporating glacier-front dynamics into ice sheet models in order to match observations and verifies atmospheric and oceanic forcing as important triggers for glacier retreat...... UI outlet glaciers. The change in mass flux resulting from the prescribed glacier retreat contributes to 70% of UI’s mass change over the simulation periods. The residual mass change is due to surface mass balance. A second simulation on the fastest UI glacier (UI-1) reveals that frontal melt rates...

  3. Detection of Organic Matter in Greenland Ice Cores by Deep-UV Fluorescence

    Science.gov (United States)

    Willis, M.; Malaska, M.; Wanger, G.; Bhartia, R.; Eshelman, E.; Abbey, W.; Priscu, J. C.

    2017-12-01

    The Greenland Ice Sheet is an Earthly analog for icy ocean worlds in the outer Solar System. Future missions to such worlds including Europa, Enceladus, and Titan may potentially include spectroscopic instrumentation to examine the surface/subsurface. The primary goal of our research is to test deep UV/Raman systems for in the situ detection and localization of organics in ice. As part of this effort we used a deep-UV fluorescence instrument able to detect naturally fluorescent biological materials such as aromatic molecules found in proteins and whole cells. We correlated these data with more traditional downstream analyses of organic material in natural ices. Supraglacial ice cores (2-4 m) were collected from several sites on the southwest outlet of the Greenland Ice Sheet using a 14-cm fluid-free mechanical coring system. Repeat spectral mapping data were initially collected longitudinally on uncut core sections. Cores were then cut into 2 cm thick sections along the longitudinal axis, slowly melted and analyzed for total organic carbon (TOC), total dissolved nitrogen (TDN), and bacterial density. These data reveal a spatial correlation between organic matter concentration, cell density, and the deep UV fluorescence maps. Our results provide a profile of the organics embedded within the ice from the top surface into the glacial subsurface, and the TOC:TDN data from the clean interior of the cores are indicative of a biological origin. This work provides a background dataset for future work to characterize organic carbon in the Greenland Ice Sheet and validation of novel instrumentation for in situ data collection on icy bodies.

  4. Holocene glacier variability: three case studies using an intermediate-complexity climate model

    NARCIS (Netherlands)

    Weber, S.L.; Oerlemans, J.

    2003-01-01

    Synthetic glacier length records are generated for the Holocene epoch using a process-based glacier model coupled to the intermediate-complexity climate model ECBilt. The glacier model consists of a massbalance component and an ice-flow component. The climate model is forced by the insolation change

  5. Monitoring tropical debris-covered glacier dynamics from high-resolution unmanned aerial vehicle photogrammetry, Cordillera Blanca, Peru

    Directory of Open Access Journals (Sweden)

    O. Wigmore

    2017-11-01

    Full Text Available The glaciers of the Cordillera Blanca, Peru, are rapidly retreating and thinning as a result of climate change, altering the timing, quantity and quality of water available to downstream users. Furthermore, increases in the number and size of proglacial lakes associated with these melting glaciers is increasing potential exposure to glacier lake outburst floods (GLOFs. Understanding how these glaciers are changing and their connection to proglacial lake systems is thus of critical importance. Most satellite data are too coarse for studying small mountain glaciers and are often affected by cloud cover, while traditional airborne photogrammetry and lidar are costly. Recent developments have made unmanned aerial vehicles (UAVs a viable and potentially transformative method for studying glacier change at high spatial resolution, on demand and at relatively low cost.Using a custom designed hexacopter built for high-altitude (4000–6000 m a. s. l.  operation, we completed repeat aerial surveys (2014 and 2015 of the debris-covered Llaca Glacier tongue and proglacial lake system. High-resolution orthomosaics (5 cm and digital elevation models (DEMs (10 cm were produced and their accuracy assessed. Analysis of these datasets reveals highly heterogeneous patterns of glacier change. The most rapid areas of ice loss were associated with exposed ice cliffs and meltwater ponds on the glacier surface. Considerable subsidence and low surface velocities were also measured on the sediments within the pro-glacial lake, indicating the presence of extensive regions of buried ice and continued connection to the glacier tongue. Only limited horizontal retreat of the glacier tongue was observed, indicating that measurements of changes in aerial extent alone are inadequate for monitoring changes in glacier ice quantity.

  6. Application of a minimal glacier model to Hansbreen, Svalbard

    Directory of Open Access Journals (Sweden)

    J. Oerlemans

    2011-01-01

    Full Text Available Hansbreen is a well studied tidewater glacier in the southwestern part of Svalbard, currently about 16 km long. Since the end of the 19th century it has been retreating over a distance of 2.7 km. In this paper the global dynamics of Hansbreen are studied with a minimal glacier model, in which the ice mechanics are strongly parameterised and a simple law for iceberg calving is used. The model is calibrated by reconstructing a climate history in such a way that observed and simulated glacier length match. In addition, the calving law is tuned to reproduce the observed mean calving flux for the period 2000–2008.

    Equilibrium states are studied for a wide range of values of the equilibrium line altitude. The dynamics of the glacier are strongly nonlinear. The height-mass balance feedback and the water depth-calving flux feedback give rise to cusp catastrophes in the system.

    For the present climatic conditions Hansbreen cannot survive. Depending on the imposed climate change scenario, in AD 2100 Hansbreen is predicted to have a length between 10 and 12 km. The corresponding decrease in ice volume (relative to the volume in AD 2000 is 45 to 65%.

    Finally the late-Holocene history of Hansbreen is considered. We quote evidence from dated peat samples that Hansbreen did not exist during the Holocene Climatic Optimum. We speculate that at the end of the mid-Holocene Climatic Optimum Hansbreen could advance because the glacier bed was at least 50 m higher than today, and because the tributary glaciers on the western side may have supplied a significant amount of mass to the main stream. The excavation of the overdeepening and the formation of the shoal at the glacier terminus probably took place during the Little Ice Age.

  7. Towards a new common Greenland Ice Core Chronology for the last 5000 years

    Science.gov (United States)

    Winstrup, Mai; Olander Rasmussen, Sune; Møllesøe Vinther, Bo; Cook, Eliza; Svensson, Anders; McConnell, Joe; Steffensen, Jørgen Peder

    2017-04-01

    Since the development of the Greenland Ice Core Chronology 2005 (GICC05), it has been widely used as a reference chronology in paleoclimate research. However, recent research (Sigl et al, 2015) demonstrated that this timescale has small, but significant, issues over historical time. These discrepancies was found by counting annual layers in high-resolution chemistry records from the NEEM S1 shallow core, and confirmed by linking via 10Be marker horizons to the layer-counted WAIS Divide ice core, Antarctica, and accurately-dated tree-ring series. This work showed that a revision of GICC05 is required prior to 1250AD. We here refine and extend this work. Layer-counting in a single core will always involve some uncertainty, and we hence use data from multiple Greenland ice cores, for which high-resolution impurity records recently have been measured. These ice cores have been synchronized using volcanic marker horizons, and the layer-counting is performed automatically using the StratiCounter algorithm (Winstrup et al, 2012), while ensuring that the number of layers between volcanic horizons are the same in all cores. Based on this extended multiple-core data set, we are further able to extend the new Greenland timescale another few thousand years back in time. This will, among others, provide a new ice-core date for the catastrophic volcanic eruption ( 1600 BC) that destroyed the Greek Minoan culture, an important time marker in Greek history.

  8. Greenland Ice Shelves and Ice Tongues

    DEFF Research Database (Denmark)

    Reeh, Niels

    2017-01-01

    literature and physical properties are reviewed. There exists a difference between: (1) Floating glaciers in northern Greenland (>77°N) which experience bottom melting as their dominant ablation mechanism and calve relatively thin, but large (km-sized) tabular icebergs (‘ice islands’), and (2) Grounded...... glaciers further south (iceberg calving provides the dominant ablation mechanism. The relatively smaller iceberg discharge in northern Greenland is closely related to the occurrence of extended floating glacier sections, allowing bottom melting estimated at up to 10 m year−1 for locations...

  9. Seasonal variations in the sources of natural and anthropogenic lead deposited at the East Rongbuk Glacier in the high-altitude Himalayas.

    Science.gov (United States)

    Burn-Nunes, Laurie; Vallelonga, Paul; Lee, Khanghyun; Hong, Sungmin; Burton, Graeme; Hou, Shugui; Moy, Andrew; Edwards, Ross; Loss, Robert; Rosman, Kevin

    2014-07-15

    Lead (Pb) isotopic compositions and concentrations, and barium (Ba) and indium (In) concentrations have been analysed at sub-annual resolution in three sections from a snow pit samples dated to 2004/2005, recovered from the East Rongbuk Glacier in the high-altitude Himalayas. Ice core sections indicate that atmospheric chemistry prior to ~1,953 was controlled by mineral dust inputs, with no discernible volcanic or anthropogenic contributions. Eighteenth century monsoon ice core chemistry is indicative of dominant contributions from local Himalayan sources; non-monsoon ice core chemistry is linked to contributions from local (Himalayan), regional (Indian/Thar Desert) and long-range (North Africa, Central Asia) sources. Twentieth century monsoon and non-monsoon ice core data demonstrate similar seasonal sources of mineral dust, however with a transition to less-radiogenic isotopic signatures that suggests local and regional climate/environmental change. The snow pit record demonstrates natural and anthropogenic contributions during both seasons, with increased anthropogenic influence during non-monsoon times. Monsoon anthropogenic inputs are most likely sourced to South/South-East Asia and/or India, whereas non-monsoon anthropogenic inputs are most likely sourced to India and Central Asia. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Seasonal ice dynamics of the Northeast Greenland Ice Stream

    DEFF Research Database (Denmark)

    Vijay, Saurabh; Khan, Shfaqat Abbas; Simonsen, Sebastian Bjerregaard

    2018-01-01

    and temporal details. This study focus on the Northeast Greenland Ice Stream (NEGIS), which consists of three main outlets, 79 North glacier (79N), Zachariae Isstrøm (ZI) and Storstrømmen Glacier (SG). While both 79 North and Storstrømmen have floating tongues, Zachariae Isstrøm is mostly grounded...

  11. Mechanism of the 2016 giant twin glacier collapse in Aru range, Tibet

    Science.gov (United States)

    Gilbert, A.; Leinss, S.; Kääb, A.; Kargel, J. S.; Yao, T.; Gascoin, S.; Leonard, G. J.; Berthier, E.; Karki, A.

    2017-12-01

    In northwestern Tibet (34.0°N, 82.2°E) near lake Aru Co, the entire ablation area of two unnamed glaciers (Aru-1 and Aru-2) suddenly collapsed on 17 July 2016 and 21 September 2016 and transformed into a mass flow that ran out over a distance of over several km, killing nine people. These two events are unique and defined a new kind of glacier behavior almost never observed before. The only similar event currently documented is the 2002 Kolka Glacier mass flow (Caucasus Mountains). Using remote sensing observations and 3D thermo-mechanical modeling of the two glaciers, we reconstructed glacier thermal regime, thickness, basal friction evolution and ice damaging state prior to the collapse. We show that frictional change leading to the collapse occurred in the temperate areas of a polythermal structure that is likely close to equilibrium with the local climate. The collapses were driven by a fast and sustained friction change in the temperate part of the glacier for which the glacier shape was not able to adjust due to the cold-based parts providing strong resisting force to sliding. This led to high stresses on the cold margins of the glacier where ice deformation became partially accommodated by fracturing until the final collapse occurred. Field investigations reveal that those two glaciers are flowing on a soft and fine-grained sedimentary lithology prone to landslide activity in the presence of water. This suggests that fast friction change in the temperate part of the glacier is linked to shear strength weakening in the sediment and till underneath the glacier in response to increasing water pore pressure at the glacier base. The Kolka Glacier mass flow also occurred on pyroclastic rocks well known for their landslide activities. This suggests that the three gigantic glacier collapses documented to date involve specific bedrock lithology where failure is driven by shear strength weakening in the glacier till in a landslide-like process. Contrary to a

  12. Tree ring and ice core time scales around the Santorini eruption

    Science.gov (United States)

    Löfroth, Elin; Muscheler, Raimund; Aldahan, Ala; Possnert, Göran; Berggren, Ann-Marie

    2010-05-01

    When studying cosmogenic radionuclides in ice core and tree ring archives around the Santorini eruption a ~20 year discrepancy was found between the records (Muscheler 2009). In this study a new 10Be dataset from the NGRIP ice core is presented. It has a resolution of 7 years and spans the period 3752-3244 BP (1803-1295 BC). The NGRIP 10Be record and the previously published 10Be GRIP record were compared to the IntCal datasets to further investigate the discrepancy between the ice core and tree ring chronologies. By modelling the 14C production rate based on atmospheric 14C records a comparison could be made to the 10Be flux which is assumed to represent the 10Be production rate. This showed a time shift of ~23 years between the records. The sensitivity of the results to changes in important model parameters was evaluated. Uncertainties in the carbon cycle model cannot explain a substantial part of the timing differences. Potential influences of climate and atmospheric processes on the 10Be deposition were studied using δ18O from the respective cores and GISP2 ice core ion data. The comparison to δ18O revealed a small but significant correlation between 10Be flux and δ18O when the 14C-derived production signal was removed from the 10Be curves. The ion data, as proxies for atmospheric circulation changes, did not show any correlations to the 10Be record or the 10Be/14C difference. When including possible data uncertainties there is still a minimum discrepancy of ~10 years between the 10Be ice core and the 14C tree ring record. Due to lack of alternative explanations it is concluded that the ice core and/or the tree ring chronologies contains unaccounted errors in this range. This also reconciles the radiocarbon 1627-1600 BC (Friedrich et al., 2006) and ice core 1642±5 BC (Vinther et al., 2006) datings of the Santorini eruption. Friedrich, W.L., Kromer, B., Friedrich, M., Heinemeier, J., Pfeiffer, T., & Talamo, S., 2006: Santorini eruption radiocarbon dated to

  13. A particle based simulation model for glacier dynamics

    Directory of Open Access Journals (Sweden)

    J. A. Åström

    2013-10-01

    Full Text Available A particle-based computer simulation model was developed for investigating the dynamics of glaciers. In the model, large ice bodies are made of discrete elastic particles which are bound together by massless elastic beams. These beams can break, which induces brittle behaviour. At loads below fracture, beams may also break and reform with small probabilities to incorporate slowly deforming viscous behaviour in the model. This model has the advantage that it can simulate important physical processes such as ice calving and fracturing in a more realistic way than traditional continuum models. For benchmarking purposes the deformation of an ice block on a slip-free surface was compared to that of a similar block simulated with a Finite Element full-Stokes continuum model. Two simulations were performed: (1 calving of an ice block partially supported in water, similar to a grounded marine glacier terminus, and (2 fracturing of an ice block on an inclined plane of varying basal friction, which could represent transition to fast flow or surging. Despite several approximations, including restriction to two-dimensions and simplified water-ice interaction, the model was able to reproduce the size distributions of the debris observed in calving, which may be approximated by universal scaling laws. On a moderate slope, a large ice block was stable and quiescent as long as there was enough of friction against the substrate. For a critical length of frictional contact, global sliding began, and the model block disintegrated in a manner suggestive of a surging glacier. In this case the fragment size distribution produced was typical of a grinding process.

  14. Reconstructing the temperature regime of the Weichselian ice sheet

    Energy Technology Data Exchange (ETDEWEB)

    Holmlund, P. [Stockholm Univ. (Sweden). Dept. of Physical Geography

    1997-04-01

    Areas in Sweden are described, where the ice could have been at the pressure melting point during the last ice age. In order to calculate probable degrees of glacial erosion, estimates on the time of ice coverage and the temperature distribution in time are combined data on erosion rates from present day glaciers. An estimate of the extent of ice cover can be made using the proxy temperature record from the Greenland ice cores and a model of the ice sheet. Adding the estimations on climate and ice sheet shape outlined in this contribution, to erosion figures we may conclude that the crucial areas for glaciation erosion are within the mountains and where the present Baltic and the Gulf of Bothnia are situated. At these sites erosion rates of some tens of meters may have occurred. In inland northern Sweden and inland southern Sweden the potential for glacial erosion seems to be small. 14 refs.

  15. Reconstructing the temperature regime of the Weichselian ice sheet

    International Nuclear Information System (INIS)

    Holmlund, P.

    1997-01-01

    Areas in Sweden are described, where the ice could have been at the pressure melting point during the last ice age. In order to calculate probable degrees of glacial erosion, estimates on the time of ice coverage and the temperature distribution in time are combined data on erosion rates from present day glaciers. An estimate of the extent of ice cover can be made using the proxy temperature record from the Greenland ice cores and a model of the ice sheet. Adding the estimations on climate and ice sheet shape outlined in this contribution, to erosion figures we may conclude that the crucial areas for glaciation erosion are within the mountains and where the present Baltic and the Gulf of Bothnia are situated. At these sites erosion rates of some tens of meters may have occurred. In inland northern Sweden and inland southern Sweden the potential for glacial erosion seems to be small. 14 refs

  16. Glaciers along proposed routes extending the Copper River Highway, Alaska

    Science.gov (United States)

    Glass, R.L.

    1996-01-01

    Three inland highway routes are being considered by the Alaska Department of Transportation and Public Facilities to connect the community of Cordova in southcentral Alaska to a statewide road system. The routes use part of a Copper River and Northwest Railway alignment along the Copper River through mountainous terrain having numerous glaciers. An advance of any of several glaciers could block and destroy the roadway, whereas retreating glaciers expose large quantities of unconsolidated, unvegetated, and commonly ice-rich sediments. The purpose of this study was to map historical locations of glacier termini near these routes and to describe hazards associated with glaciers and seasonal snow. Historical and recent locations of glacier termini along the proposed Copper River Highway routes were determined by reviewing reports and maps and by interpreting aerial photographs. The termini of Childs, Grinnell, Tasnuna, and Woodworth Glaciers were 1 mile or less from a proposed route in the most recently available aerial photography (1978-91); the termini of Allen, Heney, and Schwan Glaciers were 1.5 miles or less from a proposed route. In general, since 1911, most glaciers have slowly retreated, but many glaciers have had occasional advances. Deserted Glacier and one of its tributary glaciers have surge-type medial moraines, indicating potential rapid advances. The terminus of Deserted Glacier was about 2.1 miles from a proposed route in 1978, but showed no evidence of surging. Snow and rock avalanches and snowdrifts are common along the proposed routes and will periodically obstruct the roadway. Floods from ice-dammed lakes also pose a threat. For example, Van Cleve Lake, adjacent to Miles Glacier, is as large as 4.4 square miles and empties about every 6 years. Floods from drainages of Van Cleve Lake have caused the Copper River to rise on the order of 20 feet at Million Dollar Bridge.

  17. Remote Sensing of Cryosphere: Estimation of Mass Balance Change in Himalayan Glaciers

    Science.gov (United States)

    Ambinakudige, Shrinidhi; Joshi, Kabindra

    2012-07-01

    Glacial changes are an important indicator of climate change. Our understanding mass balance change in Himalayan glaciers is limited. This study estimates mass balance of some major glaciers in the Sagarmatha National Park (SNP) in Nepal using remote sensing applications. Remote sensing technique to measure mass balance of glaciers is an important methodological advance in the highly rugged Himalayan terrain. This study uses ASTER VNIR, 3N (nadir view) and 3B (backward view) bands to generate Digital Elevation Models (DEMs) for the SNP area for the years 2002, 2003, 2004 and 2005. Glacier boundaries were delineated using combination of boundaries available in the Global land ice measurement (GLIMS) database and various band ratios derived from ASTER images. Elevation differences, glacial area, and ice densities were used to estimate the change in mass balance. The results indicated that the rate of glacier mass balance change was not uniform across glaciers. While there was a decrease in mass balance of some glaciers, some showed increase. This paper discusses how each glacier in the SNP area varied in its annual mass balance measurement during the study period.

  18. Gulkana Glacier, Alaska-Mass balance, meteorology, and water measurements, 1997-2001

    Science.gov (United States)

    March, Rod S.; O'Neel, Shad

    2011-01-01

    The measured winter snow, maximum winter snow, net, and annual balances for 1997-2001 in the Gulkana Glacier basin are determined at specific points and over the entire glacier area using the meteorological, hydrological, and glaciological data. We provide descriptions of glacier geometry to aid in estimation of conventional and reference surface mass balances and descriptions of ice motion to aid in the understanding of the glacier's response to its changing geometry. These data provide annual estimates for area altitude distribution, equilibrium line altitude, and accumulation area ratio during the study interval. New determinations of historical area altitude distributions are given for 1900 and annually from 1966 to 2001. As original weather instrumentation is nearing the end of its deployment lifespan, we provide new estimates of overlap comparisons and precipitation catch efficiency. During 1997-2001, Gulkana Glacier showed a continued and accelerated negative mass balance trend, especially below the equilibrium line altitude where thinning was pronounced. Ice motion also slowed, which combined with the negative mass balance, resulted in glacier retreat under a warming climate. Average annual runoff augmentation by glacier shrinkage for 1997-2001 was 25 percent compared to the previous average of 13 percent, in accordance with the measured glacier volume reductions.

  19. The 2016 gigantic twin glacier collapses in Tibet: towards an improved understanding of large glacier instabilities and their potential links to climate change

    Science.gov (United States)

    Gilbert, Adrien; Leinss, Silvan; Evans, Steve; Tian, Lide; Kääb, Andreas; Kargel, Jeffrey; Gimbert, Florent; Chao, Wei-An; Gascoin, Simon; Bueler, Yves; Berthier, Etienne; Yao, Tandong; Huggel, Christian; Farinotti, Daniel; Brun, Fanny; Guo, Wanqin; Leonard, Gregory

    2017-04-01

    In northwestern Tibet (34.0°N, 82.2°E) near lake Aru Co, the entire ablation area of an unnamed glacier (Aru-1) suddenly collapsed on 17 July 2016 and transformed into a mass flow that ran out over a distance of over 8 km, killing nine people and hundreds of cattle. Remarkably, a second glacier detachment with similar characteristics (Aru-2) took place 2.6 km south of the July event on 21 September 2016. These two events are unique in several aspects: their massive volumes (66 and 83 Mm3 respectively), the low slope angles ( 200 km h-1) and their close timing within two months. The only similar event currently documented is the 2002 Kolka Glacier mass flow (Caucasus Mountains). The uncommon occurrence of such large glacier failures suggest that such events require very specific conditions that could be linked to glacier thermal regime, bedrock lithology and morphology, geothermal activity or a particular climate setting. Using field and remote sensing observations, retrospective climate analysis, mass balance and thermo-mechanical modeling of the two glaciers in Tibet, we investigate the processes involved in the twin collapses. It appears that both, mostly cold-based glaciers, started to surge about 7-8 years ago, possibly in response to a long period of positive mass balance (1995-2005) followed by a sustained increase of melt water delivery to the glacier bed in the polythermal lower accumulation zone (1995-2016). Inversion of friction conditions at the base of the glacier constrained by surface elevation change rate for both glaciers shows a zone of very low basal friction progressively migrating downward until the final collapse. We interpret this to be the signature of the presence of high-pressure water dammed at the bed by the glacier's frozen periphery and toe. Large areas of low friction at the bed led to high shear stresses along the frozen side walls as evident in surface ice cracking patterns observed on satellite imagery. This process progressively

  20. Location of a new ice core site at Talos Dome (East Antarctica

    Directory of Open Access Journals (Sweden)

    I. Tabacco

    2006-06-01

    Full Text Available In the frame of glaciology and palaeoclimate research, Talos Dome (72°48lS; 159°06lE, an ice dome on the East Antarctic plateau, represents the new selected site for a new deep ice core drilling. The increasing interest in this region is due to the fact that the ice accumulation is higher here than in other domes in East Antarctica. A new deep drilling in this site could give important information about the climate changes near the coast. Previous papers showed that the dome summit is situated above a sloped bedrock. A new position on a relatively flat bedrock 5-6 km far from here in the SE direction was defined as a possible new ice core site for an European (Italy, France, Swiss and United Kingdom drilling project named as TALDICE (TALos Dome Ice Core Project. This point, named as ID1 (159°11l00mE; 72°49l40mS, became the centre of the Radio Echo Sounding (RES flight plan during the 2003 Italian Antarctic expedition, with the aim of confirming the new drilling site choice. In this paper 2001 and 2003 RES data sets have been used to draw a better resolution of ice thickness, bottom morphology and internal layering of a restricted area around the dome. Based on the final results, point ID1 has been confirmed as the new coring site. Finally, the preliminary operations about the installation of the summer ice core camp (TALDICE at ID1 site carried out during the XX Italian Antarctic expedition (November 2004-December 2005 are briefly described.

  1. Eemian interglacial reconstructed from a Greenland folded ice core

    DEFF Research Database (Denmark)

    Dahl-Jensen, Dorthe; Albert, M. R.; Aldahan, A.

    2013-01-01

    Efforts to extract a Greenland ice core with a complete record of the Eemian interglacial (130,000 to 115,000 years ago) have until now been unsuccessful. The response of the Greenland ice sheet to the warmer-than-present climate of the Eemian has thus remained unclear. Here we present the new No...

  2. Acceleration of Humboldt glacier, north Greenland

    Science.gov (United States)

    Jeong, S.; Howat, I.; Noh, M. J.; King, M. D.

    2017-12-01

    Here we report on recent abrupt acceleration on the flow speed of Humboldt Glacier (HG) in northern Greenland. The mean annual discharge of this glacier in 2000 was estimated as 8.4Gt/a, placing it among the largest outlet glacier draining the northern coast (Enderlin et al., 2014). Using a combination of remote sensing datasets, we find that following a slight slowing before 2010, HG suddenly sped up by a factor of three between 2012 and 2013, maintaining that increased speed through 2016. Speedup was accompanied by up to 10 m of thinning near the terminus and followed slower, longer-term thinning and retreat. Here we assess possible causes for the speedup, potential for continued acceleration and implication to ice sheet mass balance. ReferenceEnderlin, E. M., I. M. Howat, S. Jeong, M.-J. Noh, J. H. van Angelen, and M. R. van den Broeke (2014), An improved mass budget for the Greenland ice sheet, Geophys. Res. Lett., 41, 866-872, doi:10.1002/2013GL059010.

  3. Timing of the Little Ice Age in southern Greenland

    DEFF Research Database (Denmark)

    Kjær, Kurt H.; Kjeldsen, Kristian K.; Bjørk, Anders A.

    2013-01-01

    as a signal for ice-free terrain being overridden by LIA glacier advances, and data from threshold lakes showing the onset of glacier-fed lakes, thus revealing the advance-maximum phase initiating the LIA. Finally, we have compiled lichenometry results indicating the onset of bedrock vegetation succeeding ice......Northern hemisphere temperatures reached their Holocene minimum and most glaciers reached their maximum during The Little Ice Age (LIA), but the timing of specific cold intervals is site-specific. In southern Greenland, we have compiled data from organic matter incorporated in LIA sediments, used...

  4. Rock Glacier Response to Climate Change in the Argentinian Andes

    Science.gov (United States)

    Drewes, J.; Korup, O.; Moreiras, S.

    2017-12-01

    Rock glaciers are bodies of frozen debris and ice that move under the influence of gravity in permafrost areas. Rock glaciers may store a large amount of sediments and play an important role as prime movers of debris in the Andean sediment cascade. However, little is known about how much sediment and water rock glaciers may store at the mountain-belt scale, and the few existing estimates vary considerably. We address this question for the Argentinian Andes, for which a new glacial inventory containing more than 6500 rock glaciers gives us the opportunity to analyse their relevance within the sediment cascade. We examine the inventory for catchments in five sub-regions, i.e. the Desert Andes (22°-31°S); the Central Andes (31°-36°S); the Northern Andes of Patagonia (36°-45°S); the Southern Andes of Patagonia (45°-52°S); and Tierra del Fuego (52°-55°S), together with climate variables of the WorldClim datasets, and digital topographic data, to estimate how rock-glacier extents may change under different past and future climate scenarios. We observe for the northern Desert Andes that rock glacier toes are at 4000 to 5000 m a.s.l. and a mean annual temperature range of 3° and 8°C, though most rock glaciers are in areas with mean annual temperatures between -5 and 5°C, marking a distinct thermal niche. Rock glaciers are traditionally viewed as diagnostic of sporadic alpine permafrost and their toes are often near the annual mean 0°C isotherm. However, we find that only rock glaciers in the southern Desert Andes and Central Andes are located where annual mean temperature is -2°C. Future scenarios project an increase of > four degrees in these areas, which may further degrade ground ice and potentially change the rates at which rock glaciers advance. Where active rock glaciers become inactive their coarse material, which was formerly bound by ice, may be released into the sediment cascade, whereas accelerating or rapidly downwasting rock glaciers may either

  5. Paleoclimate from ice cores : abrupt climate change and the prolonged Holocene

    International Nuclear Information System (INIS)

    White, J.W.C.

    2001-01-01

    Ice cores provide valuable information about the Earth's past climates and past environments. They can also help in predicting future climates and the nature of climate change. Recent findings in ice cores have shown large and abrupt climate changes in the past. This paper addressed abrupt climate changes and the peculiar nature of the Holocene. An abrupt climate change is a shift of 5 degrees C in mean annual temperature in less than 50 years. This is considered to be the most threatening aspect of potential future climate change since it leaves very little time for adaptation by humans or any other part of the Earth's ecosystem. This paper also discussed the arrival of the next glacial period. In the past 50 years, scientists have recognized the importance of the Earth's orbit around the sun in pacing the occurrence of large ice sheets. The timing of orbital forcing suggests that the Earth is overdue for the next major glaciation. The reason for this anomaly was discussed. Abrupt climate shifts seem to be caused by mode changes in sensitive points in the climate system, such as the North Atlantic Deep Water Formation and its impact on sea ice cover in the North Atlantic. These changes have been observed in ice cores in Greenland but they are not restricted to Greenland. Evidence from Antarctic ice cores suggest that abrupt climate change may also occur in the Southern Hemisphere. The Vostok ice core in Antarctica indicates that the 11,000 year long interglacial period that we are in right now is longer than the previous four interglacial periods. The Holocene epoch is unique because both methane and carbon dioxide rise in the last 6,000 years, an atypical response from these greenhouse gases during an interglacial period. It was suggested that the rise in methane can be attributed to human activities. 13 refs., 2 figs

  6. Surge of a Complex Glacier System - The Current Surge of the Bering-Bagley Glacier System, Alaska

    Science.gov (United States)

    Herzfeld, U. C.; McDonald, B.; Trantow, T.; Hale, G.; Stachura, M.; Weltman, A.; Sears, T.

    2013-12-01

    Understanding fast glacier flow and glacial accelerations is important for understanding changes in the cryosphere and ultimately in sea level. Surge-type glaciers are one of four types of fast-flowing glaciers --- the other three being continuously fast-flowing glaciers, fjord glaciers and ice streams --- and the one that has seen the least amount of research. The Bering-Bagley Glacier System, Alaska, the largest glacier system in North America, surged in 2011 and 2012. Velocities decreased towards the end of 2011, while the surge kinematics continued to expand. A new surge phase started in summer and fall 2012. In this paper, we report results from airborne observations collected in September 2011, June/July and September/October 2012 and in 2013. Airborne observations include simultaneously collected laser altimeter data, videographic data, GPS data and photographic data and are complemented by satellite data analysis. Methods range from classic interpretation of imagery to analysis and classification of laser altimeter data and connectionist (neural-net) geostatistical classification of concurrent airborne imagery. Results focus on the characteristics of surge progression in a large and complex glacier system (as opposed to a small glacier with relatively simple geometry). We evaluate changes in surface elevations including mass transfer and sudden drawdowns, crevasse types, accelerations and changes in the supra-glacial and englacial hydrologic system. Supraglacial water in Bering Glacier during Surge, July 2012 Airborne laser altimeter profile across major rift in central Bering Glacier, Sept 2011

  7. Deconvolution-based resolution enhancement of chemical ice core records obtained by continuous flow analysis

    DEFF Research Database (Denmark)

    Rasmussen, Sune Olander; Andersen, Katrine K.; Johnsen, Sigfus Johann

    2005-01-01

    Continuous flow analysis (CFA) has become a popular measuring technique for obtaining high-resolution chemical ice core records due to an attractive combination of measuring speed and resolution. However, when analyzing the deeper sections of ice cores or cores from low-accumulation areas...... of the data for high-resolution studies such as annual layer counting. The presented method uses deconvolution techniques and is robust to the presence of noise in the measurements. If integrated into the data processing, it requires no additional data collection. The method is applied to selected ice core...

  8. Ice-core evidence of earliest extensive copper metallurgy in the Andes 2700 years ago

    Science.gov (United States)

    Eichler, A.; Gramlich, G.; Kellerhals, T.; Tobler, L.; Rehren, Th.; Schwikowski, M.

    2017-01-01

    The importance of metallurgy for social and economic development is indisputable. Although copper (Cu) was essential for the wealth of pre- and post-colonial societies in the Andes, the onset of extensive Cu metallurgy in South America is still debated. Comprehensive archaeological findings point to first sophisticated Cu metallurgy during the Moche culture ~200-800 AD, whereas peat-bog records from southern South America suggest earliest pollution potentially from Cu smelting as far back as ~2000 BC. Here we present a 6500-years Cu emission history for the Andean Altiplano, based on ice-core records from Illimani glacier in Bolivia, providing the first complete history of large-scale Cu smelting activities in South America. We find earliest anthropogenic Cu pollution during the Early Horizon period ~700-50 BC, and attribute the onset of intensified Cu smelting in South America to the activities of the central Andean Chiripa and Chavin cultures ~2700 years ago. This study provides for the first time substantial evidence for extensive Cu metallurgy already during these early cultures.

  9. Ice-core evidence of earliest extensive copper metallurgy in the Andes 2700 years ago.

    Science.gov (United States)

    Eichler, A; Gramlich, G; Kellerhals, T; Tobler, L; Rehren, Th; Schwikowski, M

    2017-01-31

    The importance of metallurgy for social and economic development is indisputable. Although copper (Cu) was essential for the wealth of pre- and post-colonial societies in the Andes, the onset of extensive Cu metallurgy in South America is still debated. Comprehensive archaeological findings point to first sophisticated Cu metallurgy during the Moche culture ~200-800 AD, whereas peat-bog records from southern South America suggest earliest pollution potentially from Cu smelting as far back as ~2000 BC. Here we present a 6500-years Cu emission history for the Andean Altiplano, based on ice-core records from Illimani glacier in Bolivia, providing the first complete history of large-scale Cu smelting activities in South America. We find earliest anthropogenic Cu pollution during the Early Horizon period ~700-50 BC, and attribute the onset of intensified Cu smelting in South America to the activities of the central Andean Chiripa and Chavin cultures ~2700 years ago. This study provides for the first time substantial evidence for extensive Cu metallurgy already during these early cultures.

  10. 10Be evidence for the Matuyama-Brunhes geomagnetic reversal in the EPICA Dome C ice core.

    Science.gov (United States)

    Raisbeck, G M; Yiou, F; Cattani, O; Jouzel, J

    2006-11-02

    An ice core drilled at Dome C, Antarctica, is the oldest ice core so far retrieved. On the basis of ice flow modelling and a comparison between the deuterium signal in the ice with climate records from marine sediment cores, the ice at a depth of 3,190 m in the Dome C core is believed to have been deposited around 800,000 years ago, offering a rare opportunity to study climatic and environmental conditions over this time period. However, an independent determination of this age is important because the deuterium profile below a depth of 3,190 m depth does not show the expected correlation with the marine record. Here we present evidence for enhanced 10Be deposition in the ice at 3,160-3,170 m, which we interpret as a result of the low dipole field strength during the Matuyama-Brunhes geomagnetic reversal, which occurred about 780,000 years ago. If correct, this provides a crucial tie point between ice cores, marine cores and a radiometric timescale.

  11. The Second Deep Ice Coring Project at Dome Fuji, Antarctica

    Directory of Open Access Journals (Sweden)

    Hideaki Motoyama

    2007-09-01

    Full Text Available Throughout the history of the polar icecaps, dust and aerosols have been transported through the atmosphere to the poles, to be preserved within the annually freezing ice of the growing ice shields. Therefore, the Antarctic ice sheet is a “time capsule" for environmental data, containing information of ancient periods of Earth’s history. To unravel this history and decode cycles in glaciations and global change is among the major goals of the Dome Fuji Ice Coring Project.

  12. Late Pleistocene and Holocene paleoclimate and alpine glacier fluctuations recorded by high-resolution grain-size data from an alpine lake sediment core, Wind River Range, Wyoming, USA

    Science.gov (United States)

    Thompson Davis, P.; Machalett, Björn; Gosse, John

    2013-04-01

    Varved lake sediments, which provide ideal high-resolution climate proxies, are not commonly available in many geographic areas over long time scales. This paper utilizes high-resolution grain-size analyses (n = 1040) from a 520-cm long sediment core from Lower Titcomb Lake (LTL), which lies just outside the type Titcomb Basin (TTB) moraines in the Wind River Range, Wyoming. The TTB moraines lie between Lower Titcomb Lake and Upper Titcomb Lake (UTL), about 3 km beyond, and 200 m lower than the modern glacier margin and Gannett Peak (Little Ice Age) moraines in the basin. Based on cosmogenic exposure dating, the TTB moraines are believed to be Younger Dryas (YD) age (Gosse et al., 1995) and lie in a geomorphic position similar to several other outer cirque moraines throughout the western American Cordillera. Until recently, many of these outer cirque moraines were believed to be Neoglacial age. The sediment core discussed here is one of five obtained from the two Titcomb Lakes, but is by the far the longest with the oldest sediment depositional record. Two AMS radiocarbon ages from the 445- and 455-cm core depths (about 2% loss on ignition, LOI) suggest that the lake basin may have been ice-free as early as 16.1 or even 16.8 cal 14C kyr, consistent with 10Be and 26Al exposure ages from boulders and bedrock surfaces outside the TTB moraines. The 257-cm depth in the core marks an abrupt transition from inorganic, sticky gray silt below (rock flour production between the 257 and 466 cm core depths appear to be roughly correlative with the YD-Alleröd-Bölling-Meiendorf-Heinrich 1 climate events recognized in other terrestrial records and Northern Atlantic Ocean marine cores, but provide much higher resolution than most of those records from a climate-sensitive alpine region in North America.

  13. Glacier albedo decrease in the European Alps: potential causes and links with mass balances

    Science.gov (United States)

    Di Mauro, Biagio; Julitta, Tommaso; Colombo, Roberto

    2016-04-01

    Both mountain glaciers and polar ice sheets are losing mass all over the Earth. They are highly sensitive to climate variation, and the widespread reduction of glaciers has been ascribed to the atmospheric temperature increase. Beside this driver, also ice albedo plays a fundamental role in defining mass balance of glaciers. In fact, dark ice absorbs more energy causing faster glacier melting, and this can drive to more negative balances. Previous studies showed that the albedo of Himalayan glaciers and the Greenland Ice Sheet is decreasing with important rates. In this contribution, we tested the hypothesis that also glaciers in the European Alps are getting darker. We analyzed 16-year time series of MODIS (MODerate resolution Imaging Spectrometer) snow albedo from Terra (MOD13A1, 2000-2015) and Aqua (MYD13A1, 2002-2015) satellites. These data feature a spatial resolution of 500m and a daily temporal resolution. We evaluated the existence of a negative linear and nonlinear trend of the summer albedo values both at pixel and at glacier level. We also calculated the correlation between MODIS summer albedo and glacier mass balances (from the World Glaciological Monitoring Service, WGMS database), for all the glaciers with available mass balance during the considered period. In order to estimate the percentage of the summer albedo that can be explained by atmospheric temperature, we correlated MODIS albedo and monthly air temperature extracted from the ERA-Interim reanalysis dataset. Results show that decreasing trends exist with a strong spatial variability in the whole Alpine chain. In large glaciers, such as the Aletch (Swiss Alps), the trend varies significantly also within the glacier, showing that the trend is higher in the area across the accumulation and ablation zone. Over the 17 glaciers with mass balance available in the WGMS data set, 11 gave significant relationship with the MODIS summer albedo. Moreover, the comparison between ERA-Interim temperature

  14. Experimental results on improved JARE deep ice core drill-Experiments in Rikubetsu, Hokkaido in 2002 -

    Directory of Open Access Journals (Sweden)

    Takao Kameda

    2002-07-01

    Full Text Available Deep ice coring to bedrock (3028m in depth at Dome Fuji Station is planned during three successive summer seasons starting from 2003/2004. An improved JARE deep ice core drill (12.2m in length and 3.8m in maximum core length was developed in December 2001 for the ice coring at Dome Fuji. In January/February of 2002,we performed experiments on drill performance using artificial ice blocks in Rikubetsu, Hokkaido. In this paper, we outline the experiment and report the results. It was found through the experiment that an ice core of 3.8m length was smoothly obtained by the improved drill with three screws in the chip chamber and cutting pitch of 5mm/cycle. About 45000 small holes 1.2mm in diameter were made on the surface of the chip chamber. These small holes enabled liquid to circulate between cutters and outside of the drill through the chip chamber in the drill. The dry density of the chips was 440 to 500kg/m^3 and the chip recovery rate during ice coring was 65 to 91%. A check valve installed at the bottom of the chip chamber to prevent outflow of chips from the drill was not tested enough, but more durability is needed for the valve. The newly developed motor system and core catchers of the drill worked perfectly. The average coring speed was 24.5cm/min with cutting pitch of 5mm/cycle. The average power consumption during ice coring was 171W.

  15. Glaciers in South Tyrol 1850 - 2006: application of Airborne Laser Scanner data, orthophotos and historical maps for the acquisition of recent and the reconstruction of past glacier extents

    International Nuclear Information System (INIS)

    Knoll, C. C.

    2009-01-01

    In the densely populated high mountain areas of the Alps, glaciers are an important part of the cultural and natural landscape. During the warm summer months they are among the most important freshwater resources for economy sectors such as agriculture or industry, an important component for the tourism industry and of great significance for the production of energy from hydropower. However, they also constitute a potential cause of natural hazards. Due to their direct linkage to temperature and precipitation, glaciers are characterized as one of the best natural climate indicators. For that reason, mountain glaciers have become a key symbol for the ongoing discussion about climate, climate changes and the resulting consequences because their reactions can easily be observed and visualized. The main objective of this doctoral thesis is to contribute to a better understanding of the regional South Tyrolean glacier development through a reconstruction and analysis of the glacier changes that have occurred since the climax of the Little Ice Age at around 1850. Glacier inventories, fieldwork and GIS-assisted reconstructions of historical and calculation of recent glacier topographies are used to depict, analyze and visualize the changes of the South Tyrolean glaciers between the maximum extent of approximately 1850 and the inventories of 1997 and 2006. In a comparison of recent, highly accurate glacier topographies mapped with ALS-methods (Airborne Laser Scanner) with a reconstruction of the Little Ice Age maximum South Tyrolean glaciers were detected to have lost 183.2 km 2 or 66% of their glacier cover in approximately the last 150 years. This comparison also showed a loss in glacier volume of 9 km 3 between 1850 and 2006, which corresponds to a mean ice thickness change of -49 m. These drastic losses in the glacier covered area and volume, which are mainly visible on the glacier tongues of large valley glaciers like Langtauferer- and Suldenferner, clearly show

  16. High-Resolution Monitoring of Himalayan Glacier Dynamics Using Unmanned Aerial Vehicles

    Science.gov (United States)

    Immerzeel, W.; Kraaijenbrink, P. D. A.; Shea, J.; Shrestha, A. B.; Pellicciotti, F.; Bierkens, M. F.; de Jong, S. M.

    2014-12-01

    Himalayan glacier tongues are commonly debris covered and play an important role in modulating the glacier response to climate . However, they remain relatively unstudied because of the inaccessibility of the terrain and the difficulties in field work caused by the thick debris mantles. Observations of debris-covered glaciers are therefore limited to point locations and airborne remote sensing may bridge the gap between scarce, point field observations and coarse resolution space-borne remote sensing. In this study we deploy an Unmanned Airborne Vehicle (UAV) on two debris covered glaciers in the Nepalese Himalayas: the Lirung and Langtang glacier during four field campaigns in 2013 and 2014. Based on stereo-imaging and the structure for motion algorithm we derive highly detailed ortho-mosaics and digital elevation models (DEMs), which we geometrically correct using differential GPS observations collected in the field. Based on DEM differencing and manual feature tracking we derive the mass loss and the surface velocity of the glacier at a high spatial resolution and accuracy. We also assess spatiotemporal changes in supra-glacial lakes and ice cliffs based on the imagery. On average, mass loss is limited and the surface velocity is very small. However, the spatial variability of melt rates is very high, and ice cliffs and supra-glacial ponds show mass losses that can be an order of magnitude higher than the average. We suggest that future research should focus on the interaction between supra-glacial ponds, ice cliffs and englacial hydrology to further understand the dynamics of debris-covered glaciers. Finally, we conclude that UAV deployment has large potential in glaciology and it represents a substantial advancement over methods currently applied in studying glacier surface features.

  17. Assessing Glacier Hazards At Ghiacciaio Del Belvedere, Macugnaga, Italian Alps

    Science.gov (United States)

    Haeberli, W.; Chiarle, M.; Mortara, G.; Mazza, A.

    The uppermost section of the Valle Anzasca behind and above the community of Macugnaga in the Italian Alps is one of the most spectacular high-mountain land- scapes in Europe, with gigantic rock walls and numerous steep hanging glaciers. Its main glacier, Ghiacciaio del Belvedere at the foot of the huge Monte Rosa east face, is a heavily debris-covered glacier flowing on a thick sediment bed. Problems with floods, avalanches and debris flows from this ice body have been known for extended time periods. Most recently, however, the evolution of this highly dynamic environ- ment has become more dramatic. An outburst of Lago delle Locce, an ice-dammed lake at the confluenec of the tributary Ghiacciaio delle Locce with Ghiacciaio del Belvedere, caused heavy damage in 1979 and necessitated site investigation and con- struction work to be done for flood protection. The intermittent glacier growth ten- dency in the 1970es induced strong bulging of the glacier surface and, in places, caused the glacier tongue to override historical morains and to destroy newly-grown forest stands. A surge-type flow acceleration started in the lower parts of the Monte- Rosa east face during summer 2000, leading to strong crevassing and deformation of Ghiacciaio del Belvedere and extreme bulging of its orographic right margin. High water pressure and accelerated movement lasted into winter 2001/2002: the ice now started overriding the LIA moraine near Rifugio Zamboni of the CAI. In addition but rather independently, a most active detachment zone for rock falls and debris flows developed for several years now in the east face of Monte Rosa, somewhat more to the south of the accelerated glacier movement and at an altitude where relatively warm permafrost must be expected. Besides the scientific interest in these phenomena, the growing hazard potential to the local infrastructure must be considered seriously. Es- pecially potentials for the destabilization of large rock and ice masses in the

  18. Satellite-derived submarine melt rates and mass balance (2011-2015) for Greenland's largest remaining ice tongues

    Science.gov (United States)

    Wilson, Nat; Straneo, Fiammetta; Heimbach, Patrick

    2017-12-01

    Ice-shelf-like floating extensions at the termini of Greenland glaciers are undergoing rapid changes with potential implications for the stability of upstream glaciers and the ice sheet as a whole. While submarine melting is recognized as a major contributor to mass loss, the spatial distribution of submarine melting and its contribution to the total mass balance of these floating extensions is incompletely known and understood. Here, we use high-resolution WorldView satellite imagery collected between 2011 and 2015 to infer the magnitude and spatial variability of melt rates under Greenland's largest remaining ice tongues - Nioghalvfjerdsbræ (79 North Glacier, 79N), Ryder Glacier (RG), and Petermann Glacier (PG). Submarine melt rates under the ice tongues vary considerably, exceeding 50 m a-1 near the grounding zone and decaying rapidly downstream. Channels, likely originating from upstream subglacial channels, give rise to large melt variations across the ice tongues. We compare the total melt rates to the influx of ice to the ice tongue to assess their contribution to the current mass balance. At Petermann Glacier and Ryder Glacier, we find that the combined submarine and aerial melt approximately balances the ice flux from the grounded ice sheet. At Nioghalvfjerdsbræ the total melt flux (14.2 ± 0.96 km3 a-1 w.e., water equivalent) exceeds the inflow of ice (10.2 ± 0.59 km3 a-1 w.e.), indicating present thinning of the ice tongue.

  19. Modelling historical and recent mass loss of McCall Glacier, Alaska, USA

    Directory of Open Access Journals (Sweden)

    C. Delcourt

    2008-03-01

    Full Text Available Volume loss of valley glaciers is now considered to be a significant contribution to sea level rise. Understanding and identifying the processes involved in accelerated mass loss are necessary to determine their impact on the global system. Here we present results from a series of model experiments with a higher-order thermomechanically coupled flowline model (Pattyn, 2002. Boundary conditions to the model are parameterizations of surface mass balance, geothermal heating, observed surface and 10 m ice depth temperatures. The time-dependent experiments aim at simulating the glacier retreat from its LIA expansion to present according to different scenarios and model parameters. Model output was validated against measurements of ice velocity, ice surface elevation and terminus position at different stages. Results demonstrate that a key factor in determining the glacier retreat history is the importance of internal accumulation (>50% in the total mass balance. The persistence of a basal temperate zone characteristic for this polythermal glacier depends largely on its contribution. Accelerated glacier retreat since the early nineties seems directly related to the increase in ELA and the sudden reduction in AAR due to the fact that a large lower elevation cirque – previously an important accumulation area – became part of the ablation zone.

  20. North and northeast Greenland ice discharge from satellite radar interferometry

    DEFF Research Database (Denmark)

    Rignot, E.J.; Gogineni, S.P.; Krabill, W.B.

    1997-01-01

    Ice discharge from north and northeast Greenland calculated from satellite radar interferometry data of 14 outlet glaciers is 3.5 times that estimated from iceberg production. The satellite estimates, obtained at the grounding line of the outlet glaciers, differ from those obtained at the glacier...... front, because basal melting is extensive at the underside of the floating glacier sections. The results suggest that the north and northeast parts of the Greenland ice sheet may be thinning and contributing positively to sea-level rise....

  1. Deuterium excess record in a southern Tibetan ice core and its potential climatic implications

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Huabiao; Xu, Baiqing; Yao, Tandong; Wu, Guangjian; Lin, Shubiao; Gao, Jing; Wang, Mo [Chinese Academy of Sciences, Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Beijing (China)

    2012-05-15

    A 55-m long ice core, drilled close to bedrock from Mt. Noijin Kangsang on the southern Tibetan Plateau in summer 2007, was annually dated covering the period of 1864-2006 AD. The stable isotope ratios ({delta} {sup 18}O and {delta}D) of the ice core were measured and thereby the deuterium excess (d) was calculated by d = {delta}D - 8*{delta} {sup 18}O for the individual ice samples. Results show that the d values of the ice samples were predominantly controlled by the moisture sources. The significant increasing trend of annual mean d values along the ice core is mainly related to the rapid warming of the tropical Indian Ocean, although the tendency is subjected to the modulation by the western-derived moisture. The decreasing Indian monsoon precipitation on the southern Tibetan Plateau, physically linked with the increasing tropical Indian Ocean SST, reduced the share of monsoon precipitation in the annual total accumulation, making an additional contribution to the significant increase of annual mean d in the Noijin Kangsang ice core with high values during the past 143 years. (orig.)

  2. Identifying deformation mechanisms in the NEEM ice core using EBSD measurements

    Science.gov (United States)

    Kuiper, Ernst-Jan; Weikusat, Ilka; Drury, Martyn R.; Pennock, Gill M.; de Winter, Matthijs D. A.

    2015-04-01

    Deformation of ice in continental sized ice sheets determines the flow behavior of ice towards the sea. Basal dislocation glide is assumed to be the dominant deformation mechanism in the creep deformation of natural ice, but non-basal glide is active as well. Knowledge of what types of deformation mechanisms are active in polar ice is critical in predicting the response of ice sheets in future warmer climates and its contribution to sea level rise, because the activity of deformation mechanisms depends critically on deformation conditions (such as temperature) as well as on the material properties (such as grain size). One of the methods to study the deformation mechanisms in natural materials is Electron Backscattered Diffraction (EBSD). We obtained ca. 50 EBSD maps of five different depths from a Greenlandic ice core (NEEM). The step size varied between 8 and 25 micron depending on the size of the deformation features. The size of the maps varied from 2000 to 10000 grid point. Indexing rates were up to 95%, partially by saving and reanalyzing the EBSP patterns. With this method we can characterize subgrain boundaries and determine the lattice rotation configurations of each individual subgrain. Combining these observations with arrangement/geometry of subgrain boundaries the dislocation types can be determined, which form these boundaries. Three main types of subgrain boundaries have been recognized in Antarctic (EDML) ice core¹². Here, we present the first results obtained from EBSD measurements performed on the NEEM ice core samples from the last glacial period, focusing on the relevance of dislocation activity of the possible slip systems. Preliminary results show that all three subgrain types, recognized in the EDML core, occur in the NEEM samples. In addition to the classical boundaries made up of basal dislocations, subgrain boundaries made of non-basal dislocations are also common. ¹Weikusat, I.; de Winter, D. A. M.; Pennock, G. M.; Hayles, M

  3. Radiocarbon ages of insects and plants frozen in the No. 31 Glacier, Suntar-Khayata Range, eastern Siberia

    Energy Technology Data Exchange (ETDEWEB)

    Nakazawa, F., E-mail: nakazawa@nipr.ac.jp [National Institute of Polar Research, 10-3 Midori-cho, Tachikawa, Tokyo 190-8518 (Japan); Transdisciplinary Research Integration Center, Hulic Kamiyacho Bldg. 2F, 4-3-13 Toranomon, Minato-ku, Tokyo 105-0001 (Japan); Uchida, M.; Kondo, M. [Center for Environmental Measurement and Analysis, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-0053 (Japan); Kadota, T. [Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima, Yokosuka 237-0061 (Japan); Shirakawa, T. [Kitami Institute of Technology, Kitami, Hokkaido 090-8507 (Japan); Enomoto, H. [National Institute of Polar Research, 10-3 Midori-cho, Tachikawa, Tokyo 190-8518 (Japan); Department of Polar Science, The Graduate University for Advanced Studies (SOKENDAI), 10-3 Midori-cho, Tachikawa, Tokyo 190-8518 (Japan); Fedorov, A.N. [Melnikov Permafrost Institute, SB RAN, Yakutsk 6770110 (Russian Federation); North-Eastern Federal University, Yakutsk 677010 (Russian Federation); Fujisawa, Y. [Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522 (Japan); Konstantinov, P.Y. [Melnikov Permafrost Institute, SB RAN, Yakutsk 6770110 (Russian Federation); Kusaka, R. [Kitami Institute of Technology, Kitami, Hokkaido 090-8507 (Japan); Miyairi, M. [Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522 (Japan); Ohata, T.; Yabuki, H. [Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima, Yokosuka 237-0061 (Japan)

    2015-10-15

    The aim of this study was to estimate the age of glacier ice in the No. 31 Glacier in the Suntar-Khayata Range of eastern Siberia by performing dating of insects thought to be long-legged fly species (Dolichopodidae) as well as plants (species unknown) fragments preserved in the ice. Ice samples containing organisms were collected at depths of 0.4–1.1 m at five points from the middle to lowest parts of the glacier in 2013. The age of an insect collected at the lowest point on the glacier was estimated as 2038 ± 32 yr B.P. Insects collected at higher points had a modern or near-modern radiocarbon age. The age of plant fragments collected at the uppermost and middle points was 1531 ± 44 and 1288 ± 26 yr B.P., respectively, and that of a mixture of plant and insect fragments collected at the lowest point was 9772 ± 42 yr B.P. When comparing specimens collected at the same point, the plant fragments were found to be older than the insects. In 2012–2014 observations, some living insects were found on the glacier, and thus the age of the insects appears to correspond to the age of the ice. On the other hand, the plant fragments might have already aged since detachment from the source plants. This study found an approximately 2000-year gap in the age of the ice between the lowest and higher points. Annual mass balance observations from 2012 to 2014 showed that in recent years, the glacier sometimes had no accumulation area. Therefore, the wide gap in the age of ice may be due to a difference in past melting processes between the lowest and higher points on the glacier.

  4. Monitoring Unstable Glaciers with Seismic Noise Interferometry

    Science.gov (United States)

    Preiswerk, L. E.; Walter, F.

    2016-12-01

    Gravity-driven glacier instabilities are a threat to human infrastructure in alpine terrain, and this hazard is likely to increase with future changes in climate. Seismometers have been used previously on hazardous glaciers to monitor the natural englacial seismicity. In some situations, an increase in "icequake" activity may indicate fracture growth and thus an imminent major break-off. However, without independent constraints on unstable volumes, such mere event counting is of little use. A promising new approach to monitor unstable masses in Alpine terrain is coda wave interferometry of ambient noise. While already established in the solid earth, application to glaciers is not straightforward, because the lack of inhomogeneities typically suppresses seismic coda waves in glacier ice. Only glaciers with pervasive crevasses provide enough scattering to generate long codas. This is requirement is likely met for highly dynamic unstable glaciers. Here, we report preliminary results from a temporary 5-station on-ice array of seismometers (corner frequencies: 1 Hz, array aperture: 500m) on Bisgletscher (Switzerland). The seismometers were deployed in shallow boreholes, directly above the unstable tongue of the glacier. In the frequency band 4-12 Hz, we find stable noise cross-correlations, which in principle allows monitoring on a subdaily scale. The origin and the source processes of the ambient noise in these frequencies are however uncertain. As a first step, we evaluate the stability of the sources in order to separate effects of changing source parameters from changes of englacial properties. Since icequakes occurring every few seconds may dominate the noise field, we compare their temporal and spatial occurrences with the cross-correlation functions (stability over time, the asymmetry between causal and acausal parts of the cross-correlation functions) as well as with results from beamforming to assess the influence of these transient events on the noise field.

  5. Extraction of trapped gases in ice cores for isotope analysis

    International Nuclear Information System (INIS)

    Leuenberger, M.; Bourg, C.; Francey, R.; Wahlen, M.

    2002-01-01

    The use of ice cores for paleoclimatic investigations is discussed in terms of their application for dating, temperature indication, spatial time marker synchronization, trace gas fluxes, solar variability indication and changes in the Dole effect. The different existing techniques for the extraction of gases from ice cores are discussed. These techniques, all to be carried out under vacuum, are melt-extraction, dry-extraction methods and the sublimation technique. Advantages and disadvantages of the individual methods are listed. An extensive list of references is provided for further detailed information. (author)

  6. Past climate changes derived from isotope measurements in polar ice cores

    International Nuclear Information System (INIS)

    Beer, J.; Muscheler, R.; Wagner, G.; Kubik, P.K.

    2002-01-01

    Measurements of stable and radioactive isotopes in polar ice cores provide a wealth of information on the climate conditions of the past. Stable isotopes (δ 18 O, δD) reflect mainly the temperature, whereas δ 18 O of oxygen in air bubbles reveals predominantly the global ice volume and the biospheric activity. Cosmic ray produced radioisotopes (cosmogenic nuclides) such as 10 Be and 36 Cl record information on the solar variability and possibly also on the solar irradiance. If the flux of a cosmogenic nuclide into the ice is known the accumulation rate can be derived from the measured concentration. The comparison of 10 Be from ice with 14 C from tree rings allows deciding whether observed 14 C variations are caused by production or system effects. Finally, isotope measurements are very useful for establishing and improving time scales. The 10 Be/ 36 Cl ratio changes with an apparent half-life of 376,000 years and is therefore well suited to date old ice. Significant abrupt changes in the records of 10 Be, 36 Cl from ice and of δ 18 O from atmospheric oxygen representing global signals can be used to synchronize ice and sediment cores. (author)

  7. TALDICE-1 age scale of the Talos Dome deep ice core, East Antarctica

    Directory of Open Access Journals (Sweden)

    D. Buiron

    2011-01-01

    Full Text Available A new deep ice core drilling program, TALDICE, has been successfully handled by a European team at Talos Dome, in the Ross Sea sector of East Antarctica, down to 1620 m depth. Using stratigraphic markers and a new inverse method, we produce the first official chronology of the ice core, called TALDICE-1. We show that it notably improves an a priori chronology resulting from a one-dimensional ice flow model. It is in agreement with a posteriori controls of the resulting accumulation rate and thinning function along the core. An absolute uncertainty of only 300 yr is obtained over the course of the last deglaciation. This uncertainty remains lower than 600 yr over Marine Isotope Stage 3, back to 50 kyr BP. The phasing of the TALDICE ice core climate record with respect to the central East Antarctic plateau and Greenland records can thus be determined with a precision allowing for a discussion of the mechanisms at work at sub-millennial time scales.

  8. Mass balance and hydrological contribution of glaciers in northern and central Chile

    Science.gov (United States)

    MacDonell, Shelley; Vivero, Sebastian; McPhee, James; Ayala, Alvaro; Pellicciotti, Francesca; Campos, Cristian; Caro, Dennys; Ponce, Rodrigo

    2016-04-01

    Water is a critical resource in the northern and central regions of Chile, as the area supports more than 40% of the country's population, and the regional economy depends on agricultural production and mining, which are two industries that rely heavily on a consistent water supply. Due to relatively low rates of rainfall, meltwater from snow and ice bodies in the highland areas provides a key component of the annual water supply in these areas. Consequently, accurate estimates of the rates of ablation of the cryosphere (i.e. snow and ice) are crucial for predicting current supply rates, and future projections. Whilst snow is generally a larger contributor of freshwater, during periods of drought, glaciers provide a significant source. This study aims to determine the contribution of glaciers to two catchments in northern and central Chile during a 2.5 year period, which largely consisted of extreme dry periods, but also included the recent El Niño event. This study combined field and modelling studies to understand glacier and rock glacier contributions in the Tapado (30°S), Yeso (33°S) catchments. In the field we undertook glaciological mass balance monitoring of three glaciers, monitored albedo and snow line changes using automatic cameras for three glaciers, measured discharge continuously at several points, installed six automatic weather stations and used thermistors to monitor thermal regime changes of two rock glaciers. The combination of these datasets where used to drive energy balance and hydrological models to estimate the contribution of ice bodies to streamflow in the two studied catchments. Over the course of the study all glaciers maintained a negative mass balance, however glaciers in central Chile lost more mass, which is due to the higher melt rates experienced due to lower elevations and higher temperatures. Areas free of debris generally contributed more to streamflow than sediment covered regions, and snow generally contributed more over

  9. An automated approach for mapping persistent ice and snow cover over high latitude regions

    Science.gov (United States)

    Selkowitz, David J.; Forster, Richard R.

    2016-01-01

    We developed an automated approach for mapping persistent ice and snow cover (glaciers and perennial snowfields) from Landsat TM and ETM+ data across a variety of topography, glacier types, and climatic conditions at high latitudes (above ~65°N). Our approach exploits all available Landsat scenes acquired during the late summer (1 August–15 September) over a multi-year period and employs an automated cloud masking algorithm optimized for snow and ice covered mountainous environments. Pixels from individual Landsat scenes were classified as snow/ice covered or snow/ice free based on the Normalized Difference Snow Index (NDSI), and pixels consistently identified as snow/ice covered over a five-year period were classified as persistent ice and snow cover. The same NDSI and ratio of snow/ice-covered days to total days thresholds applied consistently across eight study regions resulted in persistent ice and snow cover maps that agreed closely in most areas with glacier area mapped for the Randolph Glacier Inventory (RGI), with a mean accuracy (agreement with the RGI) of 0.96, a mean precision (user’s accuracy of the snow/ice cover class) of 0.92, a mean recall (producer’s accuracy of the snow/ice cover class) of 0.86, and a mean F-score (a measure that considers both precision and recall) of 0.88. We also compared results from our approach to glacier area mapped from high spatial resolution imagery at four study regions and found similar results. Accuracy was lowest in regions with substantial areas of debris-covered glacier ice, suggesting that manual editing would still be required in these regions to achieve reasonable results. The similarity of our results to those from the RGI as well as glacier area mapped from high spatial resolution imagery suggests it should be possible to apply this approach across large regions to produce updated 30-m resolution maps of persistent ice and snow cover. In the short term, automated PISC maps can be used to rapidly

  10. Debris thickness patterns on debris-covered glaciers

    Science.gov (United States)

    Anderson, Leif S.; Anderson, Robert S.

    2018-06-01

    Many debris-covered glaciers have broadly similar debris thickness patterns: surface debris thickens and tends to transition from convex- to concave-up-down glacier. We explain this pattern using theory (analytical and numerical models) paired with empirical observations. Down glacier debris thickening results from the conveyor-belt-like nature of the glacier surface in the ablation zone (debris can typically only be added but not removed) and from the inevitable decline in ice surface velocity toward the terminus. Down-glacier thickening of debris leads to the reduction of sub-debris melt and debris emergence toward the terminus. Convex-up debris thickness patterns occur near the up-glacier end of debris covers where debris emergence dominates (ablation controlled). Concave-up debris thickness patterns occur toward glacier termini where declining surface velocities dominate (velocity controlled). A convex-concave debris thickness profile inevitably results from the transition between ablation-control and velocity-control down-glacier. Debris thickness patterns deviating from this longitudinal shape are most likely caused by changes in hillslope debris supply through time. By establishing this expected debris thickness pattern, the effects of climate change on debris cover can be better identified.

  11. Extraordinary Biomass-Burning Episode and Impact Winter Triggered by the Younger Dryas Cosmic Impact approximate to 12,800 Years Ago. 1. Ice Cores and Glaciers

    Czech Academy of Sciences Publication Activity Database

    Wolbach, W. S.; Ballard, J. P.; Mayewski, P. A.; Adedeji, V.; Bunch, T. E.; Firestone, R. B.; French, T. A.; Howard, G. A.; Israde-Alcántara, I.; Johnson, J. R.; Kimbel, D. R.; Kinzie, Ch. R.; Kurbatov, A.; Kletetschka, Günther; LeCompte, M. A.; Mahaney, W. C.; Mellot, A. L.; Maiorana-Boutilier, A.; Mitra, S.; Moore, Ch. R.; Napier, W. M.; Parlier, J.; Tankersley, K. B.; Thomas, B. C.; Wittke, J. H.; West, A.; Kennett, J. P.

    2018-01-01

    Roč. 126, č. 2 (2018), s. 165-184 ISSN 0022-1376 Institutional support: RVO:67985831 Keywords : biomass burning * comet * deposition * ice core * impact * mass extinction * paleoclimate * paleoenvironment * platinum * trigger mechanism * wildfire * winter * Younger Dryas Subject RIV: DB - Geology ; Mineralogy OBOR OECD: Geology Impact factor: 1.952, year: 2016

  12. Active water exchange and life near the grounding line of an Antarctic outlet glacier

    Science.gov (United States)

    Sugiyama, Shin; Sawagaki, Takanobu; Fukuda, Takehiro; Aoki, Shigeru

    2014-08-01

    The grounding line (GL) of the Antarctic ice sheet forms the boundary between grounded and floating ice along the coast. Near this line, warm oceanic water contacts the ice shelf, producing the ice sheet's highest basal-melt rate. Despite the importance of this region, water properties and circulations near the GL are largely unexplored because in-situ observations are difficult. Here we present direct evidence of warm ocean-water transport to the innermost part of the subshelf cavity (several hundred meters seaward from the GL) of Langhovde Glacier, an outlet glacier in East Antarctica. Our measurements come from boreholes drilled through the glacier's ∼400-m-thick grounding zone. Beneath the grounding zone, we find a 10-24-m-deep water layer of uniform temperature and salinity (-1.45 °C; 34.25 PSU), values that roughly equal those measured in the ocean in front of the glacier. Moreover, living organisms are found in the thin subglacial water layer. These findings indicate active transport of water and nutrients from the adjacent ocean, meaning that the subshelf environment interacts directly and rapidly with the ocean.

  13. A new climate and glacier baseline for the Cordillera Vilcanota, Peru, reduces critical information gaps

    Science.gov (United States)

    Salzmann, Nadine; Huggel, Christian; Rohrer, Mario; Silverio, Walter; Mark, Bryan G.; Cochachin, Alejo; Suarez, Wilson; Giráldez, Claudia

    2013-04-01

    The Cordillera Vilcanota in the Southern Peruvian Andes is the second largest ice-covered Cordillera in Peru (after the Cordillera Blanca) and serves for the Cusco Region as a temporary water storage for fresh-water and hydropower generation and irrigation. Despite the Cordillera Vilcanota's size and socio-economic relevance, there has so far no comprehensive baseline data been available for climate and glacier evolution. In the framework of two jointly launched -Peruvian-Swiss climate change impact and adaptation programs (Climate Change Adaptation Programm - PACC; Glacier Change Adaptation and Desaster Risk Reduction Programm - Glacier 513) significant efforts have been undertaken and are on the way to create a climate, glacier and hazard baseline for the Cordillera Vilcanota. Because of the remoteness of the area and the scarcity of available data, multiple sources such as climate stations, climate reanalysis and satellite data have been collected, processed and analyzed. Based on our data, we found only marginal glacier changes between 1962 and 1985, but a massive ice loss since 1985 (about 30% of area and about 45% of volume). These high numbers corroborate studies from other glacierized cordilleras in Peru. The climate data show overall a moderate increase in air temperature, and mostly weak and not significant trends for precipitation sums, which probably cannot fully explain the observed substantial ice loss. The likely increase of specific humidity in the upper troposphere, where the glaciers are located, probably played a major role in the observed massive of the Cordillera Vilcanota over the past decades. The mass balance measurements initiated in 2010 on two glaciers of the Cordillera Vilcanota, and the climate station installed in 2011 on one of the glaciers, preliminarily indicate that ice loss (in water equivalent) is clearly lower that in the Cordillera Blanca. In the near future the data will provide new and important insights on climate and

  14. New constraints on the structure and dynamics of the East Antarctic Ice Sheet from the joint IPY/Ice Bridge ICECAP aerogeophysical project

    Science.gov (United States)

    Blankenship, D. D.; Young, D. A.; Siegert, M. J.; van Ommen, T. D.; Roberts, J. L.; Wright, A.; Warner, R. C.; Holt, J. W.; Young, N. W.; Le Meur, E.; Legresy, B.; Cavitte, M.; Icecap Team

    2010-12-01

    Ice within marine basins of East Antarctica, and their outlets, represent the ultimate limit on sea level change. The region of East Antarctica between the Ross Sea and Wilkes Land hosts a number of major basin, but has been poorly understood. Long range aerogeophysics from US, Australian and French stations, with significant British and IceBridge support, has, under the banner of the ICECAP project, greatly improved our knowledge of ice thickness, surface elevation, and crustal structure of the Wilkes and Aurora Subglacial Basins, as well as the Totten Glacier, Cook Ice Shelf, and Byrd Glacier. We will discuss the evolution of the Wilkes and Aurora Subglacial Basins, new constraints on the geometry of the major outlet glaciers, as well as our results from surface elevation change measurements over dynamic regions of the ice sheet. We will discuss the implications of our data for the presence of mid Pleistocene ice in central East Antarctica. Future directions for ICECAP will be discussed.

  15. Improved ice loss estimate of the northwestern Greenland ice sheet

    NARCIS (Netherlands)

    Kjeldsen, K.K.; Khan, S.A.; van den Broeke, M.R.; van Angelen, J.H.

    2013-01-01

    We estimate ice volume change rates in the northwest Greenland drainage basin during 2003–2009 using Ice, Cloud and land Elevation Satellite (ICESat) laser altimeter data. Elevation changes are often reported to be largest near the frontal portion of outlet glaciers. To improve the volume change

  16. Repeating ice-earthquakes beneath David Glacier from the 2012-2015 TAMNNET array

    Science.gov (United States)

    Walter, J. I.; Peng, Z.; Hansen, S. E.

    2017-12-01

    The continent of Antarctica has approximately the same surface area as the continental United States, though we know significantly less about its underlying geology and seismic activity. In recent years, improvements in seismic instrumentation, battery technology, and field deployment practices have allowed for continuous broadband stations throughout the dark Antarctic winter. We utilize broadband seismic data from a recent experiment (TAMNNET), which was originally proposed as a structural seismology experiment, for seismic event detection. Our target is to address fundamental questions about regional-scale crustal and environmental seismicity in the study region that comprises the Transantarctic Mountain area of Victoria and Oates Land. We identify most seismicity emanating from David Glacier, upstream of the Drygalski Ice Tongue, which has been documented by several other studies. In order to improve the catalog completeness for the David Glacier area, we utilize a matched-filter technique to identify potential missing earthquakes that may not have been originally detected. This technique utilizes existing cataloged waveforms as templates to scan through continuous data and to identify repeating or nearby earthquakes. With a more robust catalog, we evaluate relative changes in icequake positions, recurrence intervals, and other first-order information. In addition, we attempt to further refine locations of other regional seismicity using a variety of methods including body and surface wave polarization, beamforming, surface wave dispersion, and other seismological methods. This project highlights the usefulness of archiving raw datasets (i.e., passive seismic continuous data), so that researchers may apply new algorithms or techniques to test hypotheses not originally or specifically targeted by the original experimental design.

  17. First identification and characterization of Borrobol-type tephra in the Greenland ice cores

    DEFF Research Database (Denmark)

    Cook, Eliza; Davies, Siwan M.; Guðmundsdóttir, Esther R.

    2018-01-01

    in the ice-cores or that it relates to just one of the ice-core events. A firm correlation cannot be established at present due to their strong geochemical similarities. The older tephra horizon, found within all three ice-cores and dated to 17326 ± 319 a b2k, can be correlated to a known layer within marine....... The older deposit is consistent with BT age estimates derived from Scottish sites, while the younger deposit overlaps with both BT and PT age estimates. We suggest that either the BT in Northern European terrestrial sequences represents an amalgamation of tephra from both of the GI-1e events identified...

  18. Timing and paleoclimatic significance of Holocene glacier fluctuations in the Cordillera Vilcabamba of southern Peru

    Science.gov (United States)

    Licciardi, J. M.; Taggart, J. R.; Schaefer, J. M.; Lund, D. C.

    2009-12-01

    Past fluctuations in climatically sensitive tropical glaciers provide important insight into regional paleoclimatic trends and forcings, but well-dated chronologies are scarce, particularly during the Holocene. We have established precise cosmogenic 10Be surface exposure ages of moraine sequences in the Cordillera Vilcabamba (13°20’S latitude), located in the outer tropics of southern Peru. Results indicate the dominance of two major glacial culminations and associated climatic shifts in the Vilcabamba, including an early Holocene glacial interval and a somewhat less extensive glaciation late in the ‘Little Ice Age’ (LIA) period. Lichenometric measurements on the youngest moraines support the 10Be ages, but uncertainties in the lichen ages arise from the lack of a local lichen growth curve. The Peruvian glacier chronologies differ from a recently-developed New Zealand record but are broadly correlative with well-dated glacial records in Europe, suggesting climate linkages between the tropics and the North Atlantic region. For the latest Holocene, our leading hypothesis is that climate forcings involving southward migration of the Atlantic Intertropical Convergence Zone can explain concurrent glaciations in tropical South America and northern high latitudes, but the influence of other climate drivers such as the El Niño/Southern Oscillation may have also played a role. Estimated differences between equilibrium-line altitudes (ELAs) on modern glaciers and those inferred for expanded latest Holocene glaciers reveal an ELA rise of 165-200 m since the LIA, suggesting that temperatures 1.1-1.3°C cooler than present could have sustained glaciers at their LIA maximum positions if temperature was the only control, and thus providing an upper bound on temperature depression during the LIA. However, further work is required to constrain the likely role of precipitation changes. These new Peruvian glacier chronologies and ELA reconstructions complement ice core and

  19. Glacier changes and climate trends derived from multiple sources in the data scarce Cordillera Vilcanota region, southern Peruvian Andes

    Science.gov (United States)

    Salzmann, N.; Huggel, C.; Rohrer, M.; Silverio, W.; Mark, B. G.; Burns, P.; Portocarrero, C.

    2013-01-01

    The role of glaciers as temporal water reservoirs is particularly pronounced in the (outer) tropics because of the very distinct wet/dry seasons. Rapid glacier retreat caused by climatic changes is thus a major concern, and decision makers demand urgently for regional/local glacier evolution trends, ice mass estimates and runoff assessments. However, in remote mountain areas, spatial and temporal data coverage is typically very scarce and this is further complicated by a high spatial and temporal variability in regions with complex topography. Here, we present an approach on how to deal with these constraints. For the Cordillera Vilcanota (southern Peruvian Andes), which is the second largest glacierized cordillera in Peru (after the Cordillera Blanca) and also comprises the Quelccaya Ice Cap, we assimilate a comprehensive multi-decadal collection of available glacier and climate data from multiple sources (satellite images, meteorological station data and climate reanalysis), and analyze them for respective changes in glacier area and volume and related trends in air temperature, precipitation and in a more general manner for specific humidity. While we found only marginal glacier changes between 1962 and 1985, there has been a massive ice loss since 1985 (about 30% of area and about 45% of volume). These high numbers corroborate studies from other glacierized cordilleras in Peru. The climate data show overall a moderate increase in air temperature, mostly weak and not significant trends for precipitation sums and probably cannot in full explain the observed substantial ice loss. Therefore, the likely increase of specific humidity in the upper troposphere, where the glaciers are located, is further discussed and we conclude that it played a major role in the observed massive ice loss of the Cordillera Vilcanota over the past decades.

  20. Glacier changes and climate trends derived from multiple sources in the data scarce Cordillera Vilcanota region, southern Peruvian Andes

    Directory of Open Access Journals (Sweden)

    N. Salzmann

    2013-01-01

    Full Text Available The role of glaciers as temporal water reservoirs is particularly pronounced in the (outer tropics because of the very distinct wet/dry seasons. Rapid glacier retreat caused by climatic changes is thus a major concern, and decision makers demand urgently for regional/local glacier evolution trends, ice mass estimates and runoff assessments. However, in remote mountain areas, spatial and temporal data coverage is typically very scarce and this is further complicated by a high spatial and temporal variability in regions with complex topography. Here, we present an approach on how to deal with these constraints. For the Cordillera Vilcanota (southern Peruvian Andes, which is the second largest glacierized cordillera in Peru (after the Cordillera Blanca and also comprises the Quelccaya Ice Cap, we assimilate a comprehensive multi-decadal collection of available glacier and climate data from multiple sources (satellite images, meteorological station data and climate reanalysis, and analyze them for respective changes in glacier area and volume and related trends in air temperature, precipitation and in a more general manner for specific humidity. While we found only marginal glacier changes between 1962 and 1985, there has been a massive ice loss since 1985 (about 30% of area and about 45% of volume. These high numbers corroborate studies from other glacierized cordilleras in Peru. The climate data show overall a moderate increase in air temperature, mostly weak and not significant trends for precipitation sums and probably cannot in full explain the observed substantial ice loss. Therefore, the likely increase of specific humidity in the upper troposphere, where the glaciers are located, is further discussed and we conclude that it played a major role in the observed massive ice loss of the Cordillera Vilcanota over the past decades.

  1. Oceans Melting Greenland: Early Results from NASA's Ocean-Ice Mission in Greenland

    DEFF Research Database (Denmark)

    Fenty, Ian; Willis, Josh K.; Khazendar, Ala

    2016-01-01

    the continental shelf, and about the extent to which the ocean interacts with glaciers. Early results from NASA's five-year Oceans Melting Greenland (OMG) mission, based on extensive hydrographic and bathymetric surveys, suggest that many glaciers terminate in deep water and are hence vulnerable to increased...... melting due to ocean-ice interaction. OMG will track ocean conditions and ice loss at glaciers around Greenland through the year 2020, providing critical information about ocean-driven Greenland ice mass loss in a warming climate....

  2. Measuring Surface Deformation in Glacier Retreated Areas Based on Ps-Insar - Geladandong Glacier as a Case Study

    Science.gov (United States)

    Mohamadi, B.; Balz, T.

    2018-04-01

    Glaciers are retreating in many parts of the world as a result of global warming. Many researchers consider Qinghai-Tibetan Plateau as a reference for climate change by measuring glaciers retreat on the plateau. This retreat resulted in some topographic changes in retreated areas, and in some cases can lead to geohazards as landslides, and rock avalanches, which is known in glacier retreated areas as paraglacial slope failure (PSF). In this study, Geladandong biggest and main glacier mass was selected to estimate surface deformation on its glacier retreated areas and define potential future PSF based on PS-InSAR technique. 56 ascending and 49 descending images were used to fulfill this aim. Geladandong glacier retreated areas were defined based on the maximum extent of the glacier in the little ice age. Results revealed a general uplift in the glacier retreated areas with velocity less than 5mm/year. Obvious surface motion was revealed in seven parts surround glacier retreated areas with high relative velocity reached ±60mm/year in some parts. Four parts were considered as PSF potential motion, and two of them showed potential damage for the main road in the study area in case of rock avalanche into recent glacier lakes that could result in glacier lake outburst flooding heading directly to the road. Finally, further analysis and field investigations are needed to define the main reasons for different types of deformation and estimate future risks of these types of surface motion in the Qinghai-Tibetan Plateau.

  3. A fast semi-quantitative method for Plutonium determination in an alpine firn/ice core

    Science.gov (United States)

    Gabrieli, J.; Cozzi, G.; Vallelonga, P.; Schwikowski, M.; Sigl, M.; Boutron, C.; Barbante, C.

    2009-04-01

    Plutonium is present in the environment as a consequence of atmospheric nuclear tests carried out in the 1960s, nuclear weapons production and releases by the nuclear industry over the past 50 years. Plutonium, unlike uranium, is essentially anthropogenic and it was first produced and isolated in 1940 by deuteron bombardment of uranium in the cyclotron of Berkeley University. It exists in five main isotopes, 238Pu, 239Pu, 240Pu, 241Pu, 242Pu, derived from civilian and military sources (weapons production and detonation, nuclear reactors, nuclear accidents). In the environment, 239Pu is the most abundant isotope. Approximately 6 tons of 239Pu have been released into the environment as a result of 541 atmospheric weapon tests Nuclear Pu fallout has been studied in various environmental archives, such as sediments, soil and herbarium grass. Mid-latitude ice cores have been studied as well, on Mont Blanc, the Western Alps and on Belukha Glacier, Siberian Altai. We present a Pu record obtained by analyzing 52 discrete samples of an alpine firn/ice core from Colle Gnifetti (M. Rosa, 4450 m a.s.l.), dating from 1945 to 1991. The239Pu signal was recorded directly, without preliminary cleaning or preconcentration steps, using an ICP-SFMS (Thermo Element2) equipped with a desolvation system (APEX). 238UH+ interferences were negligible for U concentrations lower than 50 ppt as verified both in spiked fresh snow and pre-1940 ice samples. The shape of 239Pu profile reflects the three main periods of atmospheric nuclear weapons testing: the earliest peak starts in 1954/55 to 1958 and includes the first testing period which reached a maximum in 1958. Despite a temporary halt in testing in 1959/60, the Pu concentration decreased only by half with respect to the 1958 peak. In 1961/62 Pu concentrations rapidly increased reaching a maximum in 1963, which was about 40% more intense than the 1958 peak. After the sign of the "Limited Test Ban Treaty" between USA and URSS in 1964, Pu

  4. Direct north-south synchronization of abrupt climate change record in ice cores using Beryllium 10

    Directory of Open Access Journals (Sweden)

    G. M. Raisbeck

    2007-09-01

    Full Text Available A new, decadally resolved record of the 10Be peak at 41 kyr from the EPICA Dome C ice core (Antarctica is used to match it with the same peak in the GRIP ice core (Greenland. This permits a direct synchronisation of the climatic variations around this time period, independent of uncertainties related to the ice age-gas age difference in ice cores. Dansgaard-Oeschger event 10 is in the period of best synchronisation and is found to be coeval with an Antarctic temperature maximum. Simulations using a thermal bipolar seesaw model agree reasonably well with the observed relative climate chronology in these two cores. They also reproduce three Antarctic warming events observed between A1 and A2.

  5. Solid and gaseous inclusions in the EDML deep ice core: origins and implications for the physical properties of polar ice

    Science.gov (United States)

    Faria, S. H.; Kipfstuhl, S.; Garbe, C. S.; Bendel, V.; Weikusat, C.; Weikusat, I.

    2010-12-01

    The great value of polar deep ice cores stems mainly from two essential features of polar ice: its crystalline structure and its impurities. They determine the physical properties of the ice matrix and provide proxies for the investigation of past climates. Experience shows that these two essential features of polar ice manifest themselves in a multiscale diversity of dynamic structures, including dislocations, grain boundaries, solid particles, air bubbles, clathrate hydrates and cloudy bands, among others. The fact that these structures are dynamic implies that they evolve with time through intricate interactions between the crystalline structure, impurities, and the ice flow. Records of these interactions have been carefully investigated in samples of the EPICA deep ice core drilled in Dronning Maud Land, Antarctica (75°S, 0°E, 2882 m elevation, 2774.15 m core length). Here we show how the distributions of sizes and shapes of air bubbles correlate with impurities and the crystalline structure, how the interaction between moving grain boundaries and micro-inclusions changes with ice depth and temperature, as well as the possible causes for the abrupt change in ice rheology observed in the MIS6-MIS5e transition. We also discuss how these observations may affect the flow of the ice sheet and the interpretation of paleoclimate records. Micrograph of an EDML sample from 555m depth. One can identify air bubbles (dark, round objects), microinclusions (tiny defocused spots), and a grain boundary pinned by a bubble. The width of the image is 700 micrometers.

  6. Global Monitoring of Mountain Glaciers Using High-Resolution Spotlight Imaging from the International Space Station

    Science.gov (United States)

    Donnellan, A.; Green, J. J.; Bills, B. G.; Goguen, J.; Ansar, A.; Knight, R. L.; Hallet, B.; Scambos, T. A.; Thompson, L. G.; Morin, P. J.

    2013-12-01

    Mountain glaciers around the world are retreating rapidly, contributing about 20% to present-day sea level rise. Numerous studies have shown that mountain glaciers are sensitive to global environmental change. Temperate-latitude glaciers and snowpack provide water for over 1 billion people. Glaciers are a resource for irrigation and hydroelectric power, but also pose flood and avalanche hazards. Accurate mass balance assessments have been made for only 280 glaciers, yet there are over 130,000 in the World Glacier Inventory. The rate of glacier retreat or advance can be highly variable, is poorly sampled, and inadequately understood. Liquid water from ice front lakes, rain, melt, or sea water and debris from rocks, dust, or pollution interact with glacier ice often leading to an amplification of warming and further melting. Many mountain glaciers undergo rapid and episodic events that greatly change their mass balance or extent but are sparsely documented. Events include calving, outburst floods, opening of crevasses, or iceberg motion. Spaceborne high-resolution spotlight optical imaging provides a means of clarifying the relationship between the health of mountain glaciers and global environmental change. Digital elevation models (DEMs) can be constructed from a series of images from a range of perspectives collected by staring at a target during a satellite overpass. It is possible to collect imagery for 1800 targets per month in the ×56° latitude range, construct high-resolution DEMs, and monitor changes in high detail over time with a high-resolution optical telescope mounted on the International Space Station (ISS). Snow and ice type, age, and maturity can be inferred from different color bands as well as distribution of liquid water. Texture, roughness, albedo, and debris distribution can be estimated by measuring bidirectional reflectance distribution functions (BRDF) and reflectance intensity as a function of viewing angle. The non-sun-synchronous orbit

  7. After the Earthquake: Impacts of Seismic Snow and Ice Redistribution in Langtang Valley, Nepal, on Glacier Mass Balances and Hydrological Regimes

    Science.gov (United States)

    Shea, J. M.; Ragettli, S.; Immerzeel, W.; Pellicciotti, F.; Miles, E. S.; Steiner, J. F.; Buri, P.; Kraaijenbrink, P. D. A.

    2015-12-01

    The magnitude 7.8 Gorkha Earthquake that struck Nepal on 25 April 2015 resulted in a catastrophic loss of life and property, and had major impacts in high mountain areas. The earthquake resulted in a number of massive ice avalanches in Langtang Valley that destroyed entire villages and killed over 300 people. We first conduct a remote sensing analysis of the entire catchment, and attempt to quantify the volumes of snow and ice redistributed through high-resolution optical imagery, thermal imagery, and DEM differencing. Where data are available we examine the impact on the surface mass balances of four major glaciers (Lirung, Shalbachaum, Langtang and Langshisha). Finally, we use the physically-based and fully distributed TOPKAPI model to simulate the impacts of the co-seismic snow and ice redistribution on the hydrology of the Langtang River.

  8. Using high resolution tritium profiles to quantify the effects of melt on two Spitsbergen ice cores

    NARCIS (Netherlands)

    van der Wel, L.G.; Streurman, H.J.; Isaksson, E.; Helsen, M.M.; van de Wal, R.S.W.; Martma, T.; Pohjola, V.A.; Moore, J.C.; Meijer, H.A.J.

    2011-01-01

    Ice cores from small ice caps provide valuable climatic information, additional to that of Greenland and Antarctica. However, their integrity is usually compromised by summer meltwater percolation. To determine to what extent this can affect such ice cores, we performed high-resolution tritium

  9. Using high-resolution tritium profiles to quantify the effects of melt on two Spitsbergen ice cores

    NARCIS (Netherlands)

    Wel, L.G. van der; Streurman, H.J.; Isaksson, E.; Helsen, M.M.; Wal, R.S.W. van de; Martma, T.; Pohjola, V.A.; Moore, J.C.; Meijer, H.A.J.

    2011-01-01

    Ice cores from small ice caps provide valuable climatic information, additional to that of Greenland and Antarctica. However, their integrity is usually compromised by summer meltwater percolation. To determine to what extent this can affect such ice cores, we performed high-resolution tritium

  10. A possible climate signal in the surface morphology and internal structure of Galena Creek Rock Glacier, Wyoming

    Science.gov (United States)

    Petersen, Eric; Holt, John; Levy, Joseph; Stuurman, Cassie; Nerozzi, Stefano; Cardenas, Benjamin; Pharr, James; Aylward, Dan; Schmidt, Logan; Hoey, William; Prem, Parvathy; Rambo, Jackie; Lim, YeJin; Maharaj, Kian

    2016-04-01

    Galena Creek Rock Glacier (GCRG) has been shown in previous studies to be a debris-covered glacier (e.g. Ackert, Jr., 1998), and is thus a target of interest as a record of climate and an element of the mountain hydrological system. The goal of this study was to investigate possible relationships between surface morphology and internal structure and composition of GCRG. This was achieved using ground-penetrating radar (GPR), time-domain electromagnetic sounding (TEM), and photogrammetry to produce digital terrain models (DTMs). We acquired 6 longitudinal GPR surveys at 50 and 100 MHz, 2 common midpoint GPR surveys, and 28 TEM soundings on GCRG from the head to the toe, and ground-based photogrammetry data were collected to produce a DTM of its cirque at 10 cm resolution. TEM soundings locally constrained the bulk thickness of GCRG to 26-75 meters. Common midpoint and hyperbola analyses of GPR surveys produced dielectric constants in the near subsurface of 4 in the upper glacier to 5-9 in the middle and lower glacier. These are consistent with clean ice and a mélange of rock with air and/or ice, respectively. GPR revealed a pervasive shallow reflector at 1-2.5m depth that we interpret to be the interface between the surface debris layer and glacier ice. There is increased structure and clutter in the GPR data beneath this interface as one moves down glacier. Observations were additionally made of a 40m wide, 4-5m deep circular thermokarst pond located on upper GCRG in the cirque. The walls of the pond revealed a cross-section of the top several meters of GCRG's interior: a dry surface layer of rocky debris 1-1.5m thick overlying pure glacier ice. An englacial debris band was also observed, roughly 50 cm thick and presenting at an apparent up-glacier dip of ~30 degrees, intersecting the surface near a subtle ridge resolved in the photogrammetry DTM. A GPR transect conducted near the pond over 6 similar ridges imaged 6 corresponding up-glacier dipping reflectors that

  11. Trace elements in a dated ice core from Antarctica

    International Nuclear Information System (INIS)

    Keshin, S.S.; Xudong Huang; Olmez, I.; Langway, C.C. Jr.

    1992-01-01

    Aerosol particles from both natural and anthropogenic sources are emitted into the atmosphere and transported by wind systems by various mechanisms. Once airborne, the particles, which contain various trace elements, accumulate on the earth's surface as either condensation nuclei or by dry fallout processes. In the polar regions, these particles are incorporated and deposited in snow layers in sequential time-unit increments. The trace analysis of elements contained in dated annual snow layers provides a measure of the elemental chemistry content of the atmosphere for the same time interval. A 164-m-deep, 10-cm-diam ice core was obtained at Byrd Station, Antarctica, in November 1989. Other physical and chemistry studies on this ice core have identified its detailed chronology in annual increments for the past 1360 yr. This study presents the results of the instrumental neutron activation analysis (INAA) measurements made on 26 individually dated samples of this core, selected between the 6.43- and 118.15-m depths

  12. Evidence for general instability of past climate from a 250-KYR ice-core record

    DEFF Research Database (Denmark)

    Johnsen, Sigfus Johann; Clausen, Henrik Brink; Dahl-Jensen, Dorthe

    1993-01-01

    decades. Here we present a detailed stable-isotope record for the full length of the Greenland Ice-core Project Summit ice core, extending over the past 250 kyr according to a calculated timescale. We find that climate instability was not confined to the last glaciation, but appears also to have been...... results1,2 from two ice cores drilled in central Greenland have revealed large, abrupt climate changes of at least regional extent during the late stages of the last glaciation, suggesting that climate in the North Atlantic region is able to reorganize itself rapidly, perhaps even within a few...

  13. A GIS tool for two-dimensional glacier-terminus change tracking

    Science.gov (United States)

    Urbanski, Jacek Andrzej

    2018-02-01

    This paper presents a Glacier Termini Tracking (GTT) toolbox for the two-dimensional analysis of glacier-terminus position changes. The input consists of a vector layer with several termini lines relating to the same glacier at different times. The output layers allow analyses to be conducted of glacier-terminus retreats, changes in retreats over time and along the ice face, and glacier-terminus fluctuations over time. The application of three tools from the toolbox is demonstrated via the analysis of eight glacier-terminus retreats and fluctuations at the Hornsund fjord in south Svalbard. It is proposed that this toolbox may also be useful in the study of other line features that change over time, like coastlines and rivers. The toolbox has been coded in Python and runs via ArcGIS.

  14. The formation of ice sails

    Science.gov (United States)

    Fowler, A. C.; Mayer, C.

    2017-11-01

    Debris-covered glaciers are prone to the formation of a number of supraglacial geomorphological features, and generally speaking, their upper surfaces are far from level surfaces. Some of these features are due to radiation screening or enhancing properties of the debris cover, but theoretical explanations of the consequent surface forms are in their infancy. In this paper we consider a theoretical model for the formation of "ice sails", which are regularly spaced bare ice features which are found on debris-covered glaciers in the Karakoram.

  15. The influence of basal-ice debris on patterns and rates of glacial erosion

    Science.gov (United States)

    Ugelvig, Sofie V.; Egholm, David L.

    2018-05-01

    Glaciers have played a key role for shaping much of Earth's high topography during the cold periods of the Late Cenozoic. However, despite of their distinct influence on landscapes, the mechanisms of glacial erosion, and the properties that determine their rate of operation, are still poorly understood. Theoretical models of subglacial erosion generally highlight the influence of basal sliding in setting the pace of erosion, but they also point to a strong influence of other subglacial properties, such as effective bed pressure and basal-ice debris concentration. The latter properties are, however, not easily measured in existing glaciers, and hence their influence cannot readily be confirmed by observations. In order to better connect theoretical models for erosion to measurable properties in glaciers, we used computational landscape evolution experiments to study the expected influence of basal-ice debris concentration for subglacial abrasion at the scale of glaciers. The computational experiments couple the two erosion processes of quarrying and abrasion, and furthermore integrate the flow of ice and transport of debris within the ice, thus allowing for the study of dynamic feedbacks between subglacial erosion and systematic glacier-scale variations in basal-ice debris concentration. The experiments explored several physics-based models for glacial erosion, in combination with different models for basal sliding to elucidate the relationship between sliding speed, erosion rate and basal-ice debris concentration. The results demonstrate how differences in debris concentration can explain large variations in measured rates. The experiments also provide a simple explanation for the observed dependence of glacier-averaged rate of erosion on glacier size: that large glacier uplands feed more debris into their lower-elevation parts, thereby strengthening their erosive power.

  16. Peeking Below the Snow Surface to Explore Amundsen Sea Climate Variability and Locate Optimal Ice-Core Sites

    Science.gov (United States)

    Neff, P. D.; Fudge, T. J.; Medley, B.

    2016-12-01

    Observations over recent decades reveal rapid changes in ice shelves and fast-flowing grounded ice along the Amundsen Sea coast of the West Antarctic Ice Sheet (WAIS). Long-term perspectives on this ongoing ice loss are needed to address a central question of Antarctic research: how much and how fast will Antarctic ice-loss raise sea level? Ice cores can provide insight into past variability of the atmospheric (wind) forcing of regional ocean dynamics affecting ice loss. Interannual variability of snow accumulation on coastal ice domes grounded near or within ice shelves reflects local to regional atmospheric circulation near the ice-ocean interface. Records of snow accumulation inferred from shallow ice cores strongly correlate with reanalysis precipitation and pressure fields, but ice cores have not yet been retrieved along the Amundsen Sea coast. High-frequency airborne radar data (NASA Operation IceBridge), however, have been collected over this region and we demonstrate that these data accurately reflect annual stratigraphy in shallow snow and firn (1 to 2 decades of accumulation). This further validates the agreement between radar snow accumulation records and climate reanalysis products. We then explore regional climate controls on local snow accumulation through comparison with gridded reanalysis products, providing a preview of what information longer coastal ice core records may provide with respect to past atmospheric forcing of ocean circulation and WAIS ice loss.

  17. Solving the riddle of interglacial temperatures over the last 1.5 million years with a future IPICS "Oldest Ice" ice core

    Science.gov (United States)

    Fischer, Hubertus

    2014-05-01

    The sequence of the last 8 glacial cycles is characterized by irregular 100,000 year cycles in temperature and sea level. In contrast, the time period between 1.5-1.2 million years ago is characterized by more regular cycles with an obliquity periodicity of 41,000 years. Based on a deconvolution of deep ocean temperature and ice volume contributions to benthic δ18O (Elderfield et al., Science, 2012), it is suggested that glacial sea level became progressively lower over the last 1.5 Myr, while glacial deep ocean temperatures were very similar. At the same time many interglacials prior to the Mid Brunhes event showed significantly cooler deep ocean temperatures than the Holocene, while at the same time interglacial ice volume remained essentially the same. In contrast, interglacial sea surface temperatures in the tropics changed little (Herbert et al., Science,2010) and proxy reconstructions of atmospheric CO2 using δ11B in planktic foraminifera (Hönisch et al., Science, 2009) suggest that prior to 900,000 yr before present interglacial CO2 levels did not differ substantially from those over the last 450,000 years. Accordingly, the conundrum arises how interglacials can differ in deep ocean temperature without any obvious change in ice volume or greenhouse gas forcing and what caused the change in cyclicity of glacial interglacial cycles over the Mid Pleistocene Transition. Probably the most important contribution to solve this riddle is the recovery of a 1.5 Myr old ice core from Antarctica, which among others would provide an unambiguous, high-resolution record of the greenhouse gas history over this time period. Accordingly, the international ice core community, as represented by the International Partnership for Ice Core Science (IPICS), has identified such an 'Oldest Ice' ice core as one of the most important scientific targets for the future (http://www.pages.unibe.ch/ipics/white-papers). However, finding stratigraphically undisturbed ice, which covers this

  18. Ice, Ice, Baby!

    Science.gov (United States)

    Hamilton, C.

    2008-12-01

    The Center for Remote Sensing of Ice Sheets (CReSIS) has developed an outreach program based on hands-on activities called "Ice, Ice, Baby". These lessons are designed to teach the science principles of displacement, forces of motion, density, and states of matter. These properties are easily taught through the interesting topics of glaciers, icebergs, and sea level rise in K-8 classrooms. The activities are fun, engaging, and simple enough to be used at science fairs and family science nights. Students who have participated in "Ice, Ice, Baby" have successfully taught these to adults and students at informal events. The lessons are based on education standards which are available on our website www.cresis.ku.edu. This presentation will provide information on the activities, survey results from teachers who have used the material, and other suggested material that can be used before and after the activities.

  19. The significance of volcanic ash in Greenland ice cores during the Common Era

    Science.gov (United States)

    Plunkett, G.; Pilcher, J. R.; McConnell, J. R.; Sigl, M.; Chellman, N.

    2017-12-01

    Volcanic forcing is now widely regarded as a leading natural factor in short-term climate variability. Polar ice cores provide an unrivalled and continuous record of past volcanism through their chemical and particulate content. With an almost annual precision for the Common Era, the ice core volcanic record can be combined with historical data to investigate the climate and social impacts of the eruptions. The sulfate signature in ice cores is critical for determining the possible climate effectiveness of an eruption, but the presence and characterization of volcanic ash (tephra) in the ice is requisite for establishing the source eruption so that location and eruptive style can be better factored in to climate models. Here, we review the Greenland tephra record for the Common Era, and present the results of targeted sampling for tephra of volcanic events that are of interest either because of their suspected climate and societal impacts or because of their potential as isochrons in paleoenvironmental (including ice core) archives. The majority of identifiable tephras derive from Northern Hemisphere mid- to high latitude eruptions, demonstrating the significance of northern extra-tropical volcanic regions as a source of sulfates in Greenland. A number of targets are represented by sparse or no tephra, or shards that cannot be firmly correlated with a source. We consider the challenges faced in isolating and characterizing tephra from low latitude eruptions, and the implications for accurately modelling climate response to large, tropical events. Finally, we compare the ice core tephra record with terrestrial tephrostratigraphies in the circum-North Atlantic area to evaluate the potential for intercontinental tephra linkages and the refinement of volcanic histories.

  20. Correlating Ice Cores from Quelccaya Ice Cap with Chronology from Little Ice Age Glacial Extents

    Science.gov (United States)

    Stroup, J. S.; Kelly, M. A.; Lowell, T. V.

    2010-12-01

    Proxy records indicate Southern Hemisphere climatic changes during the Little Ice Age (LIA; ~1300-1850 AD). In particular, records of change in and around the tropical latitudes require attention because these areas are sensitive to climatic change and record the dynamic interplay between hemispheres (Oerlemans, 2005). Despite this significance, relatively few records exist for the southern tropics. Here we present a reconstruction of glacial fluctuations of Quelccaya Ice Cap (QIC), Peruvian Andes, from pre-LIA up to the present day. In the Qori Kalis valley, extensive sets of moraines exist beginning with the 1963 AD ice margin (Thompson et al., 2006) and getting progressively older down valley. Several of these older moraines can be traced and are continuous with moraines in the Challpa Cocha valley. These moraines have been dated at chronology of past ice cap extents are correlated with ice core records from QIC which show an accumulation increase during ~1500-1700 AD and an accumulation decrease during ~1720-1860 AD (Thompson et al., 1985; 1986; 2006). In addition, other proxy records from Peru and the tropics are correlated with the records at QIC as a means to understand climate conditions during the LIA. This work forms the basis for future modeling of the glacial system during the LIA at QIC and for modeling of past temperature and precipitation regimes at high altitude in the tropics.

  1. MEASURING SURFACE DEFORMATION IN GLACIER RETREATED AREAS BASED ON PS-INSAR – GELADANDONG GLACIER AS A CASE STUDY

    Directory of Open Access Journals (Sweden)

    B. Mohamadi

    2018-04-01

    Full Text Available Glaciers are retreating in many parts of the world as a result of global warming. Many researchers consider Qinghai-Tibetan Plateau as a reference for climate change by measuring glaciers retreat on the plateau. This retreat resulted in some topographic changes in retreated areas, and in some cases can lead to geohazards as landslides, and rock avalanches, which is known in glacier retreated areas as paraglacial slope failure (PSF. In this study, Geladandong biggest and main glacier mass was selected to estimate surface deformation on its glacier retreated areas and define potential future PSF based on PS-InSAR technique. 56 ascending and 49 descending images were used to fulfill this aim. Geladandong glacier retreated areas were defined based on the maximum extent of the glacier in the little ice age. Results revealed a general uplift in the glacier retreated areas with velocity less than 5mm/year. Obvious surface motion was revealed in seven parts surround glacier retreated areas with high relative velocity reached ±60mm/year in some parts. Four parts were considered as PSF potential motion, and two of them showed potential damage for the main road in the study area in case of rock avalanche into recent glacier lakes that could result in glacier lake outburst flooding heading directly to the road. Finally, further analysis and field investigations are needed to define the main reasons for different types of deformation and estimate future risks of these types of surface motion in the Qinghai-Tibetan Plateau.

  2. Quantification of Sediment Transport During Glacier Surges and its Impact on Landform Architecture

    DEFF Research Database (Denmark)

    Kjær, Kurt H.; Schomacker, Anders; Korsgaard, Niels Jákup

    ) for 1945, prior to the last surge in 1964, and for 2003 in order to assess the effect of the surge on the sediment architecture in the forefield. The pre- and post-surge DEMs allow direct quantification of the sediment volumes that were re-distributed in the forefield by the surging ice mass in 1964...... or glaciofluvial outwash fans. Mapping of the sediment thickness in the glacier forefield shows higher accumulation along ice marginal positions related to wedge formation during extremely rapid ice flow. Fast flow was sustained by overpressurized water causing sediment-bedrock decoupling beneath a thick sediment...... architecture occurs distal to the 1810 ice margin, where the 1890 surge advanced over hitherto undeformed sediments. Proximal to the 1810 ice margin, the landscape have been transgressed by either one or two glaciers (in 1890 and 1964). The most complex landscape architecture is found proximal to the 1964 ice...

  3. 1500 Years of Annual Climate and Environmental Variability as Recorded in Bona-Churchill (Alaska) Ice Cores

    Science.gov (United States)

    Thompson, L. G.; Mosley-Thompson, E. S.; Zagorodnov, V.; Davis, M. E.; Mashiotta, T. A.; Lin, P.

    2004-12-01

    In 2003, six ice cores measuring 10.5, 11.5, 11.8, 12.4, 114 and 460 meters were recovered from the col between Mount Bona and Mount Churchill (61° 24'N; 141° 42'W; 4420 m asl). These cores have been analyzed for stable isotopic ratios, insoluble dust content and concentrations of major chemical species. Total Beta radioactivity was measured in the upper sections. The 460-meter core, extending to bedrock, captured the entire depositional record at this site where ice temperatures ranged from -24° C at 10 meters to -19.8° C at the ice/bedrock contact. The shallow cores allow assessment of surface processes under modern meteorological conditions while the deep core offers a ˜1500-year climate and environmental perspective. The average annual net balance is ˜~1000 mm of water equivalent and distinct annual signals in dust and calcium concentrations along with δ 18O allow annual resolution over most of the core. The excess sulfate record reflects many known large volcanic eruptions such as Katmai, Krakatau, Tambora, and Laki which allow validation of the time scale in the upper part of the core. The lower part of the core yields a history of earlier volcanic events. The 460-m Bona-Churchill ice core provides a detailed history of the `Little Ice Age' and medieval warm periods for southeastern Alaska. The source of the White River Ash will be discussed in light of the evidence from this core. The 460-m core also provides a long-term history of the dust fall that originates in north-central China. The annual ice core-derived climate records from southeastern Alaska will facilitate an investigation of the likelihood that the high resolution 1500-year record from the tropical Quelccaya Ice Cap (Peru) preserves a history of the variability of both the PDO and the Aleutian Low.

  4. Two Extreme Climate Events of the Last 1000 Years Recorded in Himalayan and Andean Ice Cores: Impacts on Humans

    Science.gov (United States)

    Thompson, L. G.; Mosley-Thompson, E. S.; Davis, M. E.; Kenny, D. V.; Lin, P.

    2013-12-01

    In the last few decades numerous studies have linked pandemic influenza, cholera, malaria, and viral pneumonia, as well as droughts, famines and global crises, to the El Niño-Southern Oscillation (ENSO). Two annually resolved ice core records, one from Dasuopu Glacier in the Himalaya and one from the Quelccaya Ice Cap in the tropical Peruvian Andes provide an opportunity to investigate these relationships on opposite sides of the Pacific Basin for the last 1000 years. The Dasuopu record provides an annual history from 1440 to 1997 CE and a decadally resolved record from 1000 to 1440 CE while the Quelccaya ice core provides annual resolution over the last 1000 years. Major ENSO events are often recorded in the oxygen isotope, insoluble dust, and chemical records from these cores. Here we investigate outbreaks of diseases, famines and global crises during two of the largest events recorded in the chemistry of these cores, particularly large peaks in the concentrations of chloride (Cl-) and fluoride (Fl-). One event is centered on 1789 to 1800 CE and the second begins abruptly in 1345 and tapers off after 1360 CE. These Cl- and F- peaks represent major droughts and reflect the abundance of continental atmospheric dust, derived in part from dried lake beds in drought stricken regions upwind of the core sites. For Dasuopu the likely sources are in India while for Quelccaya the sources would be the Andean Altiplano. Both regions are subject to drought conditions during the El Niño phase of the ENSO cycle. These two events persist longer (10 to 15 years) than today's typical ENSO events in the Pacific Ocean Basin. The 1789 to 1800 CE event was associated with a very strong El Niño event and was coincidental with the Boji Bara famine resulting from extended droughts that led to over 600,000 deaths in central India by 1792. Similarly extensive droughts are documented in Central and South America. Likewise, the 1345 to 1360 CE event, although poorly documented

  5. Physical modeling of glacier contact with bedrock (experiment

    Directory of Open Access Journals (Sweden)

    V. P. Epifanov

    2013-01-01

    Full Text Available Studies of the adhesive strength of glacial ice connection with bedrock has been studied using the analysis of the amplitude-frequency characteristics of acoustic emission (AE in the frequency range from 15 Hz to 20,000 Hz. Identification of signal source on bed is based on physical modeling of adhesive ice fracture at the complex shear and patterns of elastic waves propagation in the ice using data on ice thickness of the ice and its acoustic properties. The experimental dependence of the ice and serpentinite substrate adhesive strength with temperature (from 0 °C to −30 °C has been obtained at constraint axial shear. It is shown that the destruction of adhesive ice contact with substrate begins long before the maximum shear stress achieved, and AE signals in the coordinates amplitude-frequency-time have been obtained for the for static friction and sliding parts of deformation curves. Influence of shear to normal stresses ratio on the adhesive ice/substrate strength has been shown. Influence of the ratio of longitudinal and transverse shear stresses on the adhesive bond strength of ice to the substrate has been shown. The natural glacier spectra revealed periodic reduction of AE signals frequency in the middle range of frequencies. The similar effect of AE signals shifting along the frequency axis to the low frequency domain was obtained by testing of freshwater ice samples and related with expansion of the destruction scale. Practical application of the strain AE results for remote determination of the local glacial stability and for studies of glacier ice mechanics is discussed.

  6. Snowball Earth: Asynchronous coupling of sea-glacier flow with a global climate model

    Science.gov (United States)

    Pollard, D.; Kasting, J. F.; Zugger, M. E.

    2017-05-01

    During Snowball Earth episodes of the Neoproterozoic and Paleoproterozoic, limited amounts of tropical open ocean (Jormungand), or tropical ocean with thin ice cover, would help to explain (1) vigorous glacial activity in low latitudes, (2) survival of photosynthetic life, and (3) deglacial recovery without excessive buildup of atmospheric CO2. Some previous models have suggested that tropical open ocean or thin-ice cover is possible; however, its viability in the presence of kilometer-thick sea glaciers flowing from higher latitudes has not been demonstrated conclusively. Here we describe a new method of asynchronously coupling a zonal sea-glacier model with a 3-D global climate model and apply it to Snowball Earth. Equilibrium curves of ice line versus CO2 are mapped out, as well as their dependence on ocean heat transport efficiency, sea-glacier flow, and other model parameters. No climate states with limited tropical open ocean or thin ice are found in any of our model runs, including those with sea glaciers. If this result is correct, then other refugia such as cryoconite pans would have been required for life to survive. However, the reasons for the differences between our results and others should first be resolved. It is suggested that small-scale convective dynamics, affecting fractional snow cover in low latitudes, may be a critical factor accounting for these differences.

  7. Monitoring rock glacier dynamics and ground temperatures in the semiarid Andes (Chile, 30°S)

    Science.gov (United States)

    Brenning, Alexander; Azócar, Guillermo F.; Bodin, Xavier

    2013-04-01

    Rock glaciers and mountain permafrost are widespread in the high semiarid Andes of Chile, where they concentrate greater amounts of ice than glaciers. Rock glaciers are of particular interest because in some cases the permafrost they contain might be in a degrading in response to climatic warming. This could result in increased dynamics and even to destabilization, which has been observed on some rock glaciers in the studied area. Displacement rates and active-layer temperatures of two rock glaciers as well as ground surface temperatures of the periglacial environment in the upper Elqui valley have been monitored since summer 2009/10 with funding from the Chilean Dirección General de Aguas. Differential GPS measurements of 115 points on the surface of two rock glaciers since April 2010 showed horizontal displacements of up to 1.3 m/a on the Llano de las Liebres rock glacier and up to 1.2 m/a on the Tapado rock glacier. General velocity patterns are consistent with the morphological evidence of activity (e.g., front slopes, looseness of debris) and for the Tapado complex, a clearly distinct activity from the debris-covered glacier was observed. Temperature measurements in four boreholes indicate active-layer depths of about 2.5 m at the highest locations on the Tapado rock glacier (~4400 m a.s.l.) and about 8 m near the front of the Llano rock glacier (3786 m a.s.l.). Spatial patterns of mean ground surface temperature (MGST) were analyzed with regards to influences of elevation, potential incoming solar radiation, location on ice-debris landforms (rock and debris-covered glaciers), and snow cover duration using linear mixed-effects models. While accounting for the other variables, sites with long-lasting snow patches had ~0.4°C lower MGST, and ice-debris landforms had ~0.4-0.6°C lower MGST than general debris surfaces, highlighting important local modifications to the general topographic variation of ground thermal conditions.

  8. Lichenometry in the Cordillera Blanca, Peru: “Little Ice Age” moraine chronology

    Science.gov (United States)

    Solomina, Olga; Jomelli, Vincent; Kaser, Georg; Ames, Alcides; Berger, Bernhard; Pouyaud, Bernard

    2007-10-01

    This paper is a comparison and compilation of lichenometric and geomorphic studies performed by two independent teams in the Cordillera Blanca, Peru, in 1996 and 2002 on 66 "Little Ice Age" moraines of 14 glaciers. Using eleven new control points, we recalibrated the initial rapid growth phase of the previously established Rhizocarpon subgenus Rhizocarpon growth curve. This curve was then used to estimate the age of "Little Ice Age" moraines. The time of deposition of the most prominent and numerous terminal and lateral moraines on the Pacific-facing side of the Cordillera Blanca (between AD 1590 and AD 1720) corresponds to the coldest and wettest phase in the tropical Andes as revealed by ice-core data. Less prominent advances occurred between AD 1780 and 1880.

  9. A new cycle of jökulhlaups at Russell Glacier, Kangerlussuaq, West Greenland

    DEFF Research Database (Denmark)

    Russell, Andrew J.; Carrivick, Jonathan L.; Ingeman-Nielsen, Thomas

    2011-01-01

    years. Robust calculations of lake volumes and peak discharges are made, based onintensive field surveys and utilizing high-spatial-resolution orthophotographs of the lake basin and icemargin. These data enable identification of controls on the behaviour of the ice-dammed lake andprovide the first field......Jokulhlaups in 2007 and 2008 from an ice-dammed lake at the northern margin of RussellGlacier, West Greenland, marked the onset of a renewed jokulhlaup cycle after 20 years of stability. Wepresent a record of successive ice-dammed lake drainage events and associated ice-margin dynamicsspanning 25......-based examination of controls on jokulhlaup magnitude and frequency for thissystem. We find that Russell Glacier jokulhlaups have a much higher peak discharge than predicted bythe Clague–Mathews relationship, which we attribute to an unusually short englacial/subglacialrouteway and the presence of a thin ice dam...

  10. Localized Glacier Deformation Associated with Filling and Draining of a Glacier-Dammed Lake and Implications for Outburst Flood Hydraulics

    Science.gov (United States)

    Cunico, M. L.; Walder, J. S.; Fountain, A. G.; Trabant, D. C.

    2001-12-01

    During the summer of 2000, we measured displacements of 22 survey targets on the surface of Kennicott Glacier, Alaska, in the vicinity of Hidden Creek Lake, an ice-dammed lake in a tributary valley that fills and drains annually. Targets were distributed over a domain about equal in width to the lake, from near the glacier/lake margin to a distance of about 1 km from the margin. Targets were surveyed over a 24-day period as the lake filled and then drained. Lake stage was independently monitored. Vertical movement of targets generally fell off with distance d from the lake. As the lake filled, targets with d typically about 0.5 m/d--with a few targets rising slightly faster than the lake. The rate of vertical movement fell off rapidly with distance from the lake: for d = ca. 600 m--roughly twice the local ice thickness--targets moved upward only about 10% as fast as lake stage. Vertical movement of targets with d > ca. 1 km seemed to be uncorrelated with lake stage. The general pattern is consistent with the idea that a wedge of water extended beneath the glacier to a distance of perhaps 300 to 400 m from the visible margin of the lake and exerts buoyant stresses on the ice that were transmitted into the main body of the glacier and caused flexure. This scenario bears some resemblance to tidal deflections of ice shelves or tidewater glaciers. For a given value of lake stage, target elevations were invariably higher as the lake drained than as the lake filled. Moreover, survey targets at a distance of about 400 m or more from the lake continued to rise for some time even after the lake began to drain. The lag time between the beginning of lake drainage and the beginning of target downdrop increased with distance from the lake, with the lag being about 14 hours at a distance of 400 m from the lake. (The lake drained completely in approximately 75 hours.) The likeliest explanations for the departure from reversibility and the existence of the time lag are either (i) a

  11. Greenland ice core evidence for spatial and temporal variability of the Atlantic Multidecadal Oscillation

    NARCIS (Netherlands)

    Chylek, P.; Folland, C.K.; Frankcombe, L.M.; Dijkstra, H.A.; Lesins, G.; Dubey, M.

    2012-01-01

    [1] The Greenland δ18O ice core record is used as a proxy for Greenland surface air temperatures and to interpret Atlantic Multidecadal Oscillation (AMO) variability. An analysis of annual δ18O data from six Arctic ice cores (five from Greenland and one from Canada's Ellesmere Island) suggests a

  12. Seasonal variations in the sources of natural and anthropogenic lead deposited at the East Rongbuk Glacier in the high-altitude Himalayas

    International Nuclear Information System (INIS)

    Burn-Nunes, Laurie; Vallelonga, Paul; Lee, Khanghyun; Hong, Sungmin; Burton, Graeme; Hou, Shugui; Moy, Andrew; Edwards, Ross; Loss, Robert; Rosman, Kevin

    2014-01-01

    Lead (Pb) isotopic compositions and concentrations, and barium (Ba) and indium (In) concentrations have been analysed at sub-annual resolution in three sections from a < 110 m ice core dated to the 18th and 20th centuries, as well as snow pit samples dated to 2004/2005, recovered from the East Rongbuk Glacier in the high-altitude Himalayas. Ice core sections indicate that atmospheric chemistry prior to ∼ 1953 was controlled by mineral dust inputs, with no discernible volcanic or anthropogenic contributions. Eighteenth century monsoon ice core chemistry is indicative of dominant contributions from local Himalayan sources; non-monsoon ice core chemistry is linked to contributions from local (Himalayan), regional (Indian/Thar Desert) and long-range (North Africa, Central Asia) sources. Twentieth century monsoon and non-monsoon ice core data demonstrate similar seasonal sources of mineral dust, however with a transition to less-radiogenic isotopic signatures that suggests local and regional climate/environmental change. The snow pit record demonstrates natural and anthropogenic contributions during both seasons, with increased anthropogenic influence during non-monsoon times. Monsoon anthropogenic inputs are most likely sourced to South/South-East Asia and/or India, whereas non-monsoon anthropogenic inputs are most likely sourced to India and Central Asia. - Highlights: • Pb isotopes in ice and snow show seasonality in Mt Everest atmospheric chemistry. • Local (Himalayan) mineral dust inputs are present year round. • Regional and long-range mineral dust inputs are evident during non-monsoon times. • Snow samples indicate increased anthropogenic inputs during non-monsoon times. • Anthropogenic inputs are linked with Indian, South Asian and Central Asian sources

  13. Seasonal variations in the sources of natural and anthropogenic lead deposited at the East Rongbuk Glacier in the high-altitude Himalayas

    Energy Technology Data Exchange (ETDEWEB)

    Burn-Nunes, Laurie, E-mail: L.Nunes@curtin.edu.au [Department of Imaging and Applied Physics, Curtin University, GPO Box U 1987, Perth 6845, Western Australia (Australia); Vallelonga, Paul [Centre for Ice and Climate, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen Ø (Denmark); Lee, Khanghyun [Environmental Measurement and Analysis Center, National Institute of Environmental Research, Environmental Research Complex, Kyungseo-dong, Seo-gu, Incheon 404-170 (Korea, Republic of); Hong, Sungmin [Department of Ocean Sciences, Inha University, 100 Inha-ro, Nam-gu, Incheon 402-751 (Korea, Republic of); Burton, Graeme [Department of Imaging and Applied Physics, Curtin University, GPO Box U 1987, Perth 6845, Western Australia (Australia); Hou, Shugui [Key Laboratory of Coast and Island development of Ministry of Education, School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210093 (China); Moy, Andrew [Department of the Environment, Australian Antarctic Division, Channel Highway, Kingston 7050, Tasmania (Australia); Antarctic Climate and Ecosystems Cooperative Research Centre, University of Tasmania, Private Bag 80, Hobart 7001, Tasmania (Australia); Edwards, Ross; Loss, Robert; Rosman, Kevin [Department of Imaging and Applied Physics, Curtin University, GPO Box U 1987, Perth 6845, Western Australia (Australia)

    2014-07-01

    Lead (Pb) isotopic compositions and concentrations, and barium (Ba) and indium (In) concentrations have been analysed at sub-annual resolution in three sections from a < 110 m ice core dated to the 18th and 20th centuries, as well as snow pit samples dated to 2004/2005, recovered from the East Rongbuk Glacier in the high-altitude Himalayas. Ice core sections indicate that atmospheric chemistry prior to ∼ 1953 was controlled by mineral dust inputs, with no discernible volcanic or anthropogenic contributions. Eighteenth century monsoon ice core chemistry is indicative of dominant contributions from local Himalayan sources; non-monsoon ice core chemistry is linked to contributions from local (Himalayan), regional (Indian/Thar Desert) and long-range (North Africa, Central Asia) sources. Twentieth century monsoon and non-monsoon ice core data demonstrate similar seasonal sources of mineral dust, however with a transition to less-radiogenic isotopic signatures that suggests local and regional climate/environmental change. The snow pit record demonstrates natural and anthropogenic contributions during both seasons, with increased anthropogenic influence during non-monsoon times. Monsoon anthropogenic inputs are most likely sourced to South/South-East Asia and/or India, whereas non-monsoon anthropogenic inputs are most likely sourced to India and Central Asia. - Highlights: • Pb isotopes in ice and snow show seasonality in Mt Everest atmospheric chemistry. • Local (Himalayan) mineral dust inputs are present year round. • Regional and long-range mineral dust inputs are evident during non-monsoon times. • Snow samples indicate increased anthropogenic inputs during non-monsoon times. • Anthropogenic inputs are linked with Indian, South Asian and Central Asian sources.

  14. The Mount Logan (Yukon) Ice Cores: Preliminary Results

    Science.gov (United States)

    Fisher, D. A.

    2004-05-01

    Three ice cores were taken at different elevations on or near My Logan in the years 2001 and 2002. The summit core (PRCol) comes from the summit plateau ( 5340 masl, length 187 m to bedrock, mean temperature -29 C ) and was done by the Geological Survey of Canada. The NIPR group cored 210m on the flanks of the mountain at King Col (4200 masl mean temperature -16C) and the UNH group cored 20 km from the mountain at Eclipse "Dome" (3015 masl,length 345 m mean temperature -5C) . The three cores were done cooperatively by GSC, NIPR and UNH and cover nominally 30 ka, 1 ka and 2ka respectively . Located very close to the Gulf of Alaska these core records are thought to reflect the climate history of the Pacific Ocean and having three widely spaced elevations, the sites "see" different distances to different sources. The lowest site (Eclipse) has excellent seasonals but a very muted δ 18O history with no obvious little ice age, whereas the most recent 1ka of the PRCol summit sites contains two very large and sudden δ 18O and d (deuterium excess) shifts at 1850 AD and ~ 800 AD. The δ 18O shifts which happen from one year to the next are about 4 o/oo . The summit site (PRCol) δ 18O response is "backwards", ie the Little Ice Age δ 18O values are 4 o/oo more positive than recent ones. The PRCol δ 18O and d suggest that the source water can either be ëlocalí (Gulf of Alaska) or very distant (tropics) . The Eclipse site seems only to get the local water . A massive dust storm originating in central Asia (Gobi) in April 2001 dumped a visible layer all over the St Elias Mountains and this layer was sampled, to provide a calibration "Asian dust event". The satellite and isotoic signatures both agreed that Gobi was the source. The PRCol record covers the Holocene and well back into the ice age. The transition is defined by a sudden ECM shift on the flanks of a more gradual O18 shift. Acknowledgements. Logan consortium consists of : Geological Survey of Canada : Jocelyne

  15. Surge of Bering Glacier and Bagley Ice Field: Parameterization of surge characteristics based on automated analysis of crevasse image data and laser altimeter data

    Science.gov (United States)

    Stachura, M.; Herzfeld, U. C.; McDonald, B.; Weltman, A.; Hale, G.; Trantow, T.

    2012-12-01

    The dynamical processes that occur during the surge of a large, complex glacier system are far from being understood. The aim of this paper is to derive a parameterization of surge characteristics that captures the principle processes and can serve as the basis for a dynamic surge model. Innovative mathematical methods are introduced that facilitate derivation of such a parameterization from remote-sensing observations. Methods include automated geostatistical characterization and connectionist-geostatistical classification of dynamic provinces and deformation states, using the vehicle of crevasse patterns. These methods are applied to analyze satellite and airborne image and laser altimeter data collected during the current surge of Bering Glacier and Bagley Ice Field, Alaska.

  16. Towards a Highly Efficient Meshfree Simulation of Non-Newtonian Free Surface Ice Flow: Application to the Haut Glacier d'Arolla

    Science.gov (United States)

    Shcherbakov, V.; Ahlkrona, J.

    2016-12-01

    In this work we develop a highly efficient meshfree approach to ice sheet modeling. Traditionally mesh based methods such as finite element methods are employed to simulate glacier and ice sheet dynamics. These methods are mature and well developed. However, despite of numerous advantages these methods suffer from some drawbacks such as necessity to remesh the computational domain every time it changes its shape, which significantly complicates the implementation on moving domains, or a costly assembly procedure for nonlinear problems. We introduce a novel meshfree approach that frees us from all these issues. The approach is built upon a radial basis function (RBF) method that, thanks to its meshfree nature, allows for an efficient handling of moving margins and free ice surface. RBF methods are also accurate and easy to implement. Since the formulation is stated in strong form it allows for a substantial reduction of the computational cost associated with the linear system assembly inside the nonlinear solver. We implement a global RBF method that defines an approximation on the entire computational domain. This method exhibits high accuracy properties. However, it suffers from a disadvantage that the coefficient matrix is dense, and therefore the computational efficiency decreases. In order to overcome this issue we also implement a localized RBF method that rests upon a partition of unity approach to subdivide the domain into several smaller subdomains. The radial basis function partition of unity method (RBF-PUM) inherits high approximation characteristics form the global RBF method while resulting in a sparse system of equations, which essentially increases the computational efficiency. To demonstrate the usefulness of the RBF methods we model the velocity field of ice flow in the Haut Glacier d'Arolla. We assume that the flow is governed by the nonlinear Blatter-Pattyn equations. We test the methods for different basal conditions and for a free moving

  17. Glaciers in 21st Century Himalayan Geopolitics

    Science.gov (United States)

    Kargel, J. S.; Wessels, R.; Kieffer, H. H.

    2002-05-01

    Glaciers are ablating rapidly the world over. Nowhere are the rates of retreat and downwasting greater than in the Hindu Kush-Himalaya (HKH) region. It is estimated that over the next century, 40,000 square kilometers of present glacier area in the HKH region will become ice free. Most of this area is in major valleys and the lowest glaciated mountain passes. The existence and characteristics of glaciers have security impacts, and rapidly changing HKH glaciers have broad strategic implications: (1) Glaciers supply much of the fresh water and hydroelectric power in South and Central Asia, and so glaciers are valuable resources. (2) Shared economic interests in water, hydroelectricity, flood hazards, and habitat preservation are a force for common cause and reasoned international relations. (3) Glaciers and their high mountains generally pose a natural barrier tending to isolate people. Historically, they have hindered trade and intercultural exchanges and have protected against aggression. This has further promoted an independent spirit of the region's many ethnic groups. (4) Although glaciers are generally incompatible with human development and habitation, many of the HKH region's glaciers and their mountains have become sanctuaries and transit routes for militants. Siachen Glacier in Kashmir has for 17 years been "the world's highest battlefield," with tens of thousands of troops deployed on both sides of the India/Pakistan line of control. In 1999, that conflict threatened to trigger all-out warfare, and perhaps nuclear warfare. Other recent terrorist and military action has taken place on glaciers in Kyrgyzstan and Tajikistan. As terrorists are forced from easily controlled territories, many may tend to migrate toward the highest ground, where definitive encounters may take place in severe alpine glacial environments. This should be a major concern in Nepali security planning, where an Army offensive is attempting to reign in an increasingly robust and brutal

  18. Late-glacial and Holocene history of changes in Quelccaya Ice Cap, Peru

    Science.gov (United States)

    Kelly, M. A.; Lowell, T. V.; Schaefer, J. M.; Finkel, R. C.

    2008-12-01

    Quelccaya Ice Cap in the southeastern Peruvian Andes (~13-14° S latitude) is an icon for climate change. Its rapidly receding outlet, Qori Kalis Glacier, has been monitored since the 1970's. Cores from Quelccaya Ice Cap provide high-resolution information about temperature and precipitation during the past 1,500 years. We extend the understanding of past changes in Quelccaya Ice Cap based on mapping and dating of glacial moraines and associated deposits. Our results include fifty 10Be ages of moraines and bedrock as well as twenty-nine 14C ages of organic material associated with moraines. These results form the basis of a chronology of changes in Quelccaya Ice Cap from ~16,000 yr BP to late Holocene time. Results from 10Be and 14C dating indicate that Quelccaya Ice Cap experienced a significant advance at 12,700-11,400 yr BP. Subsequent to this advance, the ice margin deposited at least three recessional moraine sets. Quelccaya Ice Cap receded to near its present-day margin by ~10,000 yr BP. Neoglacial advances began by ~3,000 yr BP and culminated with a maximum advance during the Little Ice Age. This chronology fits well with prior work which indicates a restricted Quelccaya Ice Cap during middle Holocene time. Moreover, the overlap between moraine and ice core data for the last 1,500 years provides a unique opportunity to assess the influences of temperature and precipitation on past ice cap extents.

  19. Using terrestrial laser scanning for differential measurement of interannual rock glacier movement in the Argentine Dry Andes

    Science.gov (United States)

    Kane, Renato R.

    Argentina has recently implemented laws to protect glaciers and buried ice in the Andes to improve the sustainability of scarce, long-term water resources. Therefore, all glaciers and buried ice terrains must be located and avoided in any commercial alterations of the landscape. Buried ice in this remote and often dangerous terrain typically is located via the use of remote-sensing techniques. This thesis applies one such technique, Light Detection and Ranging (LiDAR) in the form of Terrestrial Laser Scanning (TLS), to detect rock glacier movement that is indicative of flowing, buried ice not visible in near surface excavations. TLS surveys were completed at two locales, Los Azules and El Altar, in both AD 2013 and AD 2014 on landscapes where buried ice is suspected to have produced the current surface forms. Multiple TLS scans were co-registered with the use of benchmarks, both between scans and between years, which introduced quantifiable positional errors. Digital Elevation Models (DEMs) were derived from the point cloud data by standardizing the spacing of the points in the horizontal direction, creating 0.1 m by 0.1 m cells with elevation as the cell value. The DEMs for each year were subtracted from each other to yield a change in elevation. The surface roughness of the rock glaciers (vertical variability within each cell) was empirically determined and evaluated as a threshold for results. Both sites showed sub-decimeter interannual movements, and the direction of their movement is typical of forms with buried ice. The results of the study were validated using independent GPS data showing annual movement rates. Despite the downslope movement of these rock glaciers, the volume of ice contained within them remains unclear, and further study is required to assess the volume of water contained.

  20. Motion of the Lambert Glacier estimated by using differential Interferometric Synthetic Aperture Radar

    International Nuclear Information System (INIS)

    Liu, Shuang; Tong, Xiaohua; Xie, Huan; Liu, Xiangfeng; Liu, Jun

    2014-01-01

    Interferometric Synthetic Aperture Radar (InSAR) is one of the most promising remote sensing technologies and has been widely applied in constructing topographic information and estimating the deformation of the Earth's surface. Ice velocity is an important parameter for calculating the mass balance and modelling ice shelve dynamics. Ice velocity is also an important indicator for climate changes. Therefore, it plays an important role in studying the global climate change and global sea level rise. In this paper, the ERS-1/2 tandem data and the ASTER GDEM are combined together to obtained the deformation in line of sight by using the differential Interferometric SAR for the Lambert Amery glacier in Antarctica. Then the surface parallel assumption is adopted in order to achieve the ice flow velocity. The results showed that ice velocity would be increased along the Lambert glacier; the maximum ice velocity would be reach about 450m/year in the study area

  1. Storm-induced water dynamics and thermohaline structure at the tidewater Flade Isblink Glacier outlet to theWandel Sea (NE Greenland)

    DEFF Research Database (Denmark)

    Kirillov, Sergei; Dmitrenko, Igor; Rysgaard, Soren

    2017-01-01

    In April 2015, an ice-tethered conductivity-temperature-depth (CTD) profiler and a down-looking acoustic Doppler current profiler (ADCP) were deployed from the landfast ice near the tidewater glacier terminus of the Flade Isblink Glacier in the Wandel Sea, NE Greenland. The 3-week time series...

  2. Benthic Trophic Interactions in an Antarctic Shallow Water Ecosystem Affected by Recent Glacier Retreat.

    Directory of Open Access Journals (Sweden)

    Francesca Pasotti

    Full Text Available The western Antarctic Peninsula is experiencing strong environmental changes as a consequence of ongoing regional warming. Glaciers in the area are retreating rapidly and increased sediment-laden meltwater runoff threatens the benthic biodiversity at shallow depths. We identified three sites with a distinct glacier-retreat related history and different levels of glacial influence in the inner part of Potter Cove (King George Island, South Shetland Islands, a fjord-like embayment impacted since the 1950s by a tidewater glacier retreat. We compared the soft sediment meio- and macrofauna isotopic niche widths (δ13C and δ15N stable isotope analysis at the three sites to investigate possible glacier retreat-related influences on benthic trophic interactions. The isotopic niches were locally shaped by the different degrees of glacier retreat-related disturbance within the Cove. Wider isotopic niche widths were found at the site that has become ice-free most recently, and narrower niches at the older ice-free sites. At an intermediate state of glacier retreat-related disturbance (e.g. via ice-growler scouring species with different strategies could settle. The site at the earliest stage of post-retreat development was characterized by an assemblage with lower trophic redundancy. Generally, the isotopic niche widths increased with increasing size spectra of organisms within the community, excepting the youngest assemblage, where the pioneer colonizer meiofauna size class displayed the highest isotopic niche width. Meiofauna at all sites generally occupied positions in the isotopic space that suggested a detrital-pool food source and/or the presence of predatory taxa. In general ice scour and glacial impact appeared to play a two-fold role within the Cove: i either stimulating trophic diversity by allowing continuous re-colonization of meiofaunal species or, ii over time driving the benthic assemblages into a more compact trophic structure with

  3. Benthic Trophic Interactions in an Antarctic Shallow Water Ecosystem Affected by Recent Glacier Retreat.

    Science.gov (United States)

    Pasotti, Francesca; Saravia, Leonardo Ariel; De Troch, Marleen; Tarantelli, Maria Soledad; Sahade, Ricardo; Vanreusel, Ann

    2015-01-01

    The western Antarctic Peninsula is experiencing strong environmental changes as a consequence of ongoing regional warming. Glaciers in the area are retreating rapidly and increased sediment-laden meltwater runoff threatens the benthic biodiversity at shallow depths. We identified three sites with a distinct glacier-retreat related history and different levels of glacial influence in the inner part of Potter Cove (King George Island, South Shetland Islands), a fjord-like embayment impacted since the 1950s by a tidewater glacier retreat. We compared the soft sediment meio- and macrofauna isotopic niche widths (δ13C and δ15N stable isotope analysis) at the three sites to investigate possible glacier retreat-related influences on benthic trophic interactions. The isotopic niches were locally shaped by the different degrees of glacier retreat-related disturbance within the Cove. Wider isotopic niche widths were found at the site that has become ice-free most recently, and narrower niches at the older ice-free sites. At an intermediate state of glacier retreat-related disturbance (e.g. via ice-growler scouring) species with different strategies could settle. The site at the earliest stage of post-retreat development was characterized by an assemblage with lower trophic redundancy. Generally, the isotopic niche widths increased with increasing size spectra of organisms within the community, excepting the youngest assemblage, where the pioneer colonizer meiofauna size class displayed the highest isotopic niche width. Meiofauna at all sites generally occupied positions in the isotopic space that suggested a detrital-pool food source and/or the presence of predatory taxa. In general ice scour and glacial impact appeared to play a two-fold role within the Cove: i) either stimulating trophic diversity by allowing continuous re-colonization of meiofaunal species or, ii) over time driving the benthic assemblages into a more compact trophic structure with increased

  4. Automated Glacier Mapping using Object Based Image Analysis. Case Studies from Nepal, the European Alps and Norway

    Science.gov (United States)

    Vatle, S. S.

    2015-12-01

    Frequent and up-to-date glacier outlines are needed for many applications of glaciology, not only glacier area change analysis, but also for masks in volume or velocity analysis, for the estimation of water resources and as model input data. Remote sensing offers a good option for creating glacier outlines over large areas, but manual correction is frequently necessary, especially in areas containing supraglacial debris. We show three different workflows for mapping clean ice and debris-covered ice within Object Based Image Analysis (OBIA). By working at the object level as opposed to the pixel level, OBIA facilitates using contextual, spatial and hierarchical information when assigning classes, and additionally permits the handling of multiple data sources. Our first example shows mapping debris-covered ice in the Manaslu Himalaya, Nepal. SAR Coherence data is used in combination with optical and topographic data to classify debris-covered ice, obtaining an accuracy of 91%. Our second example shows using a high-resolution LiDAR derived DEM over the Hohe Tauern National Park in Austria. Breaks in surface morphology are used in creating image objects; debris-covered ice is then classified using a combination of spectral, thermal and topographic properties. Lastly, we show a completely automated workflow for mapping glacier ice in Norway. The NDSI and NIR/SWIR band ratio are used to map clean ice over the entire country but the thresholds are calculated automatically based on a histogram of each image subset. This means that in theory any Landsat scene can be inputted and the clean ice can be automatically extracted. Debris-covered ice can be included semi-automatically using contextual and morphological information.

  5. Rapid ice unloading in the Fleming Glacier region, southern Antarctic Peninsula, and its effect on bedrock uplift rates

    DEFF Research Database (Denmark)

    Zhao, Chen; King, Matt A.; Watson, Christopher S.

    2017-01-01

    deformation. We subtract modeled elastic deformation rates, and a suite of modeled viscous rates, from GPS-derived three-dimensional bedrock velocities at sites to the south of Fleming Glacier to infer properties of Earth rheology. Assuming the pre-breakup bedrock uplift was positive due to post-Last Glacial...... Maximum (LGM) ice retreat, our viscoelastic-corrected GPS uplift rates suggest upper mantle viscosities are >2×1019 Pas and likely >1×1020 Pas in this region, 1–2 orders of magnitude greater than previously found for the northern Antarctic Peninsula. Horizontal velocities at the GPS site nearest...

  6. Glacier extent in sub-Antarctic Kerguelen archipelago from MIS 3 period: Evidence from 36Cl dating

    Science.gov (United States)

    Jomelli, Vincent; Schimmelpfennig, Irene; Favier, Vincent; Mokadem, Fatima; Landais, Amaelle; Rinterknecht, Vincent; Brunstein, Daniel; Verfaillie, Deborah; Legentil, Claude; Aumaitre, Georges; Bourlès, Didier L.; Keddadouche, Karim

    2018-03-01

    Documenting sub-Antarctic glacier variations during the local last glacial maximum is of major interest to better understand their sensitivity to atmospheric and oceanic temperature changes in conjunction with Antarctic ice sheet changes. However, data are sparse because evidence of earlier glacier extents is for most sub-Antarctic islands located offshore making their observation complex. Here, we present 22 cosmogenic 36Cl surface exposure ages obtained from five sites at Kerguelen to document the glacial history. The 36Cl ages from roche moutonnee surfaces, erratics and boulders collected on moraines span from 41.9 ± 4.4 ka to 14.3 ± 1.1 ka. Ice began to retreat on the eastern part of the main island before 41.4 ± 4.4 ka. Slow deglaciation occurred from ∼41 to ∼29 ka. There is no evidence of advances between 29 ka and the Antarctic Cold Reversal (ACR) period (∼14.5-12.9 ka) period. During the ACR, however, the Bontemps and possibly Belvedere moraines were formed by the advance of a Cook Ice Cap outlet glacier and a local glacier on the Presque Ile Jeanne d'Arc, respectively. This glacier evolution differs partly from that of glaciers in New Zealand and in Patagonia. These asynchronous glacier changes in the sub-Antarctic region are however in agreement with sea surface temperature changes recorded around Antarctica, which suggest differences in the climate evolution of the Indo-Pacific and Atlantic sectors of Antarctica.

  7. Polar Ice Caps: a Canary for the Greenland Ice Sheet

    Science.gov (United States)

    Honsaker, W.; Lowell, T. V.; Sagredo, E.; Kelly, M. A.; Hall, B. L.

    2010-12-01

    Ice caps are glacier masses that are highly sensitive to climate change. Because of their hypsometry they can have a binary state. When relatively slight changes in the equilibrium line altitude (ELA) either intersect or rise above the land the ice can become established or disappear. Thus these upland ice masses have a fast response time. Here we consider a way to extract the ELA signal from independent ice caps adjacent to the Greenland Ice Sheet margin. It may be that these ice caps are sensitive trackers of climate change that also impact the ice sheet margin. One example is the Istorvet Ice Cap located in Liverpool Land, East Greenland (70.881°N, 22.156°W). The ice cap topography and the underlying bedrock surface dips to the north, with peak elevation of the current ice ranging in elevation from 1050 to 745 m.a.s.l. On the eastern side of the ice mass the outlet glaciers extending down to sea level. The western margin has several small lobes in topographic depressions, with the margin reaching down to 300 m.a.s.l. Topographic highs separate the ice cap into at least 5 main catchments, each having a pair of outlet lobes toward either side of the ice cap. Because of the regional bedrock slope each catchment has its own elevation range. Therefore, as the ELA changes it is possible for some catchments of the ice cap to experience positive mass balance while others have a negative balance. Based on weather observations we estimate the present day ELA to be ~1000 m.a.s.l, meaning mass balance is negative for the majority of the ice cap. By tracking glacier presence/absence in these different catchments, we can reconstruct small changes in the ELA. Another example is the High Ice Cap (informal name) in Milne Land (70.903°N, 25.626°W, 1080 m), East Greenland. Here at least 4 unconformities in ice layers found near the southern margin of the ice cap record changing intervals of accumulation and ablation. Therefore, this location may also be sensitive to slight

  8. Beryllium-10 in the Taylor Dome ice core: Applications to Antarctic glaciology and paleoclimatology

    Energy Technology Data Exchange (ETDEWEB)

    Steig, E.J.

    1996-12-31

    An ice core was drilled at Taylor dome, East Antarctica, reaching to bedrock at 554 meters. Oxygen-isotope measurements reveal climatic fluctuations through the last interglacial period. To facilitate comparison of the Taylor Dome paleoclimate record with geologic data and results from other deep ice cores, several glaciological issues need to be addressed. In particular, accumulation data are necessary as input for numerical ice-flow-models, for determining the flux of chemical constituents from measured concentrations, and for calculation of the offset in age between ice and trapped air in the core. The analysis of cosmogenic beryllium-10 provides a geochemical method for constraining the accumulation-rate history at Taylor Dome. High-resolution measurements were made in shallow firn cores and snow pits to determine the relationship among beryllium-10 concentrations, wet and dry deposition mechanisms, and snow-accumulation rates. Comparison between theoretical and measured variations in deposition over the last 75 years constrains the relationship between beryllium-10 deposition and global average production rates. The results indicate that variations in geomagnetically-modulated production-rate do not strongly influence beryllium-10 deposition at Taylor Dome. Although solar modulation of production rate is important for time scales of years to centuries, snow-accumulation rate is the dominant control on ice-core beryllium-10 concentrations for longer periods. Results show that the Taylor Dome core can be used to provide new constraints on regional climate over the last 130,000 years, complementing the terrestrial and marine geological record from the Dry Valley, Transantarctic Mountains and western Ross Sea.

  9. Models for the runoff from a glacierized catchment area using measurements of environmental isotope contents

    International Nuclear Information System (INIS)

    Behrens, H.; Moser, H.; Oerter, H.; Rauert, W.; Stichler, W.; Ambach, W.; Kirchlechner, P.

    1978-01-01

    In the glacierized catchment area of the Rofenache (Oetztal Alps, Austria) during several years measurements have been made of the environmental isotopes 2 H, 18 O and 3 H in the precipitation, in snow and ice samples and in the runoff. Furthermore the electrolytic conductivity of runoff samples was measured and tracing experiments were made with fluorescent dyes. From core samples drilled in the accumulation area of the Vernagtferner, the gross beta activity was investigated and compared with both, the data from 2 H, 3 H und 18 O analyses and the data from mass balance studies. It is shown that the annual net balance from previous years can be recovered on temperate glaciers using environmental isotope techniques. From the diurnal variations of the 2 H and 3 H contents and the electrolytic conductivity the following proportions in the runoff of the Vernagtferner catchment area were obtained during a 24-hour interval at a time of strong ablation (August 1976): about 50% of ice melt water, 25% of direct runoff fo firn- and snow melt water, and 7% of mineralized groundwater. The rest of the runoff consists of not mineralized melt water seeping from the glacier body. The annual variations of the 2 H and 3 H contents in the runoff of the glacierized catchment area permit conclusions on the time sequence of the individual ablation periods and on the residence time on the basis of model concepts. The residence times of approximately 100 days or 4 years, respectively, are obtained from the decrease in the 2 H content at the end of the ablation period and from the variation of the 3 H content in the winter discharge. (orig.) [de

  10. Three Decades of Volume Change of a Small Greenlandic Glacier Using Ground Penetrating Radar, Structure from Motion, and Aerial Photogrammetry

    DEFF Research Database (Denmark)

    Marcer, M.; Stentoft, Peter Alexander; Bjerre, Elisa

    2017-01-01

    of ice, corresponding to roughly a quarter of its 1985 volume (148.6 ± 47.6 10 m) and a thinning rate of 0.60 ± 0.11 m a. The computations are challenged by a relatively large fraction of the 1985 DEM (∼50% of the glacier surface) being deemed unreliable owing to low contrast (snow cover) in the 1985......Glaciers in the Arctic are losing mass at an increasing rate. Here we use surface topography derived from Structure from Motion (SfM) and ice volume from ground penetrating radar (GPR) to describe the 2014 state of Aqqutikitsoq glacier (2.85 km) on Greenland's west coast. A photogrammetrically...... derived 1985 digital elevation model (DEM) was subtracted from a 2014 DEM obtained using land-based SfM to calculate geodetic glacier mass balance. Furthermore, a detailed 2014 ground penetrating radar survey was performed to assess ice volume. From 1985 to 2014, the glacier has lost 49.8 ± 9.4 10 m...

  11. Measurement of the fracture toughness of polycrystalline bubbly ice from an Antarctic ice core

    Directory of Open Access Journals (Sweden)

    J. Christmann

    2015-05-01

    Full Text Available The critical fracture toughness is a material parameter describing the resistance of a cracked body to further crack extension. It is an important parameter for simulating and predicting the breakup behavior of ice shelves from the calving of single icebergs to the disintegration of entire ice shelves over a wide range of length scales. The fracture toughness values are calculated with equations that are derived from an elastic stress analysis. Additionally, an X-ray computer tomography (CT scanner was used to identify the density as a function of depth. The critical fracture toughness of 91 Antarctic bubbly ice samples with densities between 840 and 870 kg m−3 has been determined by applying a four-point bending technique on single-edge v-notched beam samples. The examined ice core was drilled 70 m north of Kohnen Station, Dronnning Maud Land (75°00' S, 00°04' E; 2882 m. Supplementary data are available at doi:10.1594/PANGAEA.835321.

  12. Ways of far-distance dust transport onto Caucasian glaciers and chemical composition of snow on the Western plateau of Elbrus

    Directory of Open Access Journals (Sweden)

    S. S. Kutuzov

    2014-01-01

    Full Text Available We present and discuss the chronology of dust deposition events documented by the shallow firn and ice cores extracted on the Western Plateau, Mt. Elbrus (5150 m a.s.l. in 2009, 2012 and 2013. Snow and ice samples were analysed for major ions and minor element concentrations including heavy metals. Dust layers are formed on the surface of the glaciers as a result of atmospheric transport of mineral dust and aerosol particles to the Caucasus region. Satellite imagery (SEVIRI, trajectory models, and meteorological data were used for accurate dating of each the dust layers revealed in the ice cores. Then we tried to determine origins of the dust clouds and to investigate their transport pathways with high resolution (50–100 km. It was found that the desert dust is deposited on Caucasus glaciers 3–7 times in a year and it comes mainly from deserts of the Middle East and more rarely from the Northern Sahara desert. For the first time average annual dust flux (264 µg/cm2 per a year and average mass concentration (1.7 mg/kg over the period 2007–2013 were calculated for this region. The deposition of dust resulted in elevated concentrations consists of mostly ions, especially Ca2+, Mg2+, K+, and sulphates. Dust originated from various sources in the Middle East, including Mesopotamia, or similar dust clouds passing over the Middle East are characterised by high concentrations of nitrates and ammonia that may be related to atmospheric transport of ammonium from agricultural lands that may explain high concentrations of ammonium in the dust originating from this region. Mean values of crustal enrichment factors (EF for the measured minor elements including heavy metals were calculated. We believe that high content of Cu, Zn and Cd can be a result of possible contribution from anthropogenic sources. Studies of the Caucasus ice cores may allow obtaining new independent data on the atmosphere circulation and high-altitude environment of this region.

  13. Deglaciation and its impact on permafrost and rock glacier evolution: New insight from two adjacent cirques in Austria.

    Science.gov (United States)

    Kellerer-Pirklbauer, Andreas; Kaufmann, Viktor

    2018-04-15

    Glaciers and permafrost are strongly linked to each other in mid-latitude mountain regions particularly with polythermal glaciers. This linkage is not only climatically defined but also in terms of geomorphic and glaciological processes. We studied two adjacent cirques located in the Central Austria. We focussed on the deglaciation since the Little Ice Age (LIA) maximum (c.1850CE) and its relevance for permafrost and rock glacier evolution since then. One cirque is occupied by a glacier remnant whereas the second one is occupied by an active rock glacier which was partly overridden by a glacier during the LIA. We applied a multidisciplinary approach using field-based techniques including geoelectrics, geodetic measurements, and automatic monitoring as well as historic maps and photographs, remote sensing, and digital terrain analysis. Results indicate almost complete deglaciation by the end of the last millennium. Small-scale tongue-shaped landforms of complex origin formed during the last decades at finer-grained slope deposits below the cirque headwalls. Field evidences and geophysics results proved the existence of widespread sedimentary ice beneath a thin veneer of debris at these slopes. The variable thickness of the debris layer has a major impact on differential ablation and landform evolution in both cirques. The comparison of digital elevation models revealed clear mass losses at both cirques with low rates between 1954 and 2002 and significantly higher rates since then. The central and lower part of the rock glacier moves fast transporting sediments and ice downvalley. In contrast, the upper part of the rock glacier is characterised by low debris and ice input rates. Both effects cause a significant decoupling of the main rock glacier body from its nourishment area leading eventually to rock glacier starvation. This study demonstrates the importance of a decadal-scale and multidisciplinary research approach in determining the development of alpine

  14. Sea ice dynamics influence halogen deposition to Svalbard

    Directory of Open Access Journals (Sweden)

    A. Spolaor

    2013-10-01

    Full Text Available Sea ice is an important parameter in the climate system and its changes impact upon the polar albedo and atmospheric and oceanic circulation. Iodine (I and bromine (Br have been measured in a shallow firn core drilled at the summit of the Holtedahlfonna glacier (Northwest Spitsbergen, Svalbard. Changing I concentrations can be linked to the March–May maximum sea ice extension. Bromine enrichment, indexed to the Br / Na sea water mass ratio, appears to be influenced by changes in the seasonal sea ice area. I is emitted from marine biota and so the retreat of March–May sea ice coincides with enlargement of the open-ocean surface which enhances marine primary production and consequent I emission. The observed Br enrichment could be explained by greater Br emissions during the Br explosions that have been observed to occur mainly above first year sea ice during the early springtime. In this work we present the first comparison between halogens in surface snow and Arctic sea ice extension. Although further investigation is required to characterize potential depositional and post-depositional processes, these preliminary findings suggest that I and Br can be linked to variability in the spring maximum sea ice extension and seasonal sea ice surface area.

  15. Retrieving a common accumulation record from Greenland ice cores for the past 1800 years

    DEFF Research Database (Denmark)

    Andersen, Katrine K.; Ditlevsen, Peter D.; Rasmussen, Sune Olander

    2006-01-01

    In the accumulation zone of the Greenland ice sheet the annual accumulation rate may be determined through identification of the annual cycle in the isotopic climate signal and other parameters that exhibit seasonal variations. On an annual basis the accumulation rate in different Greenland ice...... cores is highly variable, and the degree of correlation between accumulation series from different ice cores is low. However, when using multiyear averages of the different accumulation records, the correlation increases significantly. A statistical model has been developed to estimate the common...

  16. RICE ice core: Black Carbon reflects climate variability at Roosevelt Island, West Antarctica

    Science.gov (United States)

    Ellis, Aja; Edwards, Ross; Bertler, Nancy; Winton, Holly; Goodwin, Ian; Neff, Peter; Tuohy, Andrea; Proemse, Bernadette; Hogan, Chad; Feiteng, Wang

    2015-04-01

    The Roosevelt Island Climate Evolution (RICE) project successfully drilled a deep ice core from Roosevelt Island during the 2011/2012 and 2012/2013 seasons. Located in the Ross Ice Shelf in West Antarctica, the site is an ideal location for investigating climate variability and the past stability of the Ross Ice Shelf. Black carbon (BC) aerosols are emitted by both biomass burning and fossil fuels, and BC particles emitted in the southern hemisphere are transported in the atmosphere and preserved in Antarctic ice. The past record of BC is expected to be sensitive to climate variability, as it is modulated by both emissions and transport. To investigate BC variability over the past 200 years, we developed a BC record from two overlapping ice cores (~1850-2012) and a high-resolution snow pit spanning 2010-2012 (cal. yr). Consistent results are found between the snow pit profiles and ice core records. Distinct decadal trends are found with respect to BC particle size, and the record indicates a steady rise in BC particle size over the last 100 years. Differences in emission sources and conditions may be a possible explanation for changes in BC size. These records also show a significant increase in BC concentration over the past decade with concentrations rising over 1.5 ppb (1.5*10^-9 ng/g), suggesting a fundamental shift in BC deposition to the site.

  17. Historical ablation rates on south-east Greenland glaciers measured in the 1933 warm summer

    Directory of Open Access Journals (Sweden)

    Bent Hasholt

    2016-07-01

    Full Text Available Ice ablation rates measured on four glaciers in south-east Greenland in summer 1933 are recovered from an old field book of geologist K. Milthers. These unpublished ablation data are among the first measured in Greenland and were obtained during a warm period comparable to that of recent years. Ablation rates of up to 45 mm ice eq. d−1 were observed. Using the Tasiilaq meteorological record, we calculate degree-day factors of ca. 3–5 mm ice eq. d−1°C−1. Comparing these results with 1996–2012 observations at one of Milthers’ glaciers (Mittivakkat, we find that ablation rates and degree-day factors are significantly higher (61±50% in recent years. We speculate this to be due to a reduction in surface albedo, and perhaps the retreat of the glaciers out of the cold maritime inversion layer. Our findings suggest that using a temperature-index method that assumes constant degree-day factors may produce inaccurate long-term ablation estimates for south-east Greenland glaciers, further emphasizing the value of the rare 1933 measurements for validation of ablation models.

  18. Denali Ice Core MSA: A Record of North Pacific Primary Productivity

    Science.gov (United States)

    Polashenski, D.; Osterberg, E. C.; Winski, D.; Kreutz, K. J.; Wake, C. P.; Ferris, D. G.; Introne, D.; Campbell, S. W.

    2017-12-01

    The high nutrient, low chlorophyll region of the North Pacific is one of the most biologically productive marine ecosystems in the world and forms the basis of commercial, sport, and subsistence fisheries worth more than a billion dollars annually. Marine phytoplankton prove to be important both as the primary producers in these ecosystems and as a major source of biogenic sulfur emissions which have long been hypothesized to serve as a biological control on Earth's climate system. Despite their importance, the record of marine phytoplankton abundance and the flux of biogenic sulfur from these regions is not well constrained. In situ measurements of marine phytoplankton from oceanographic cruises over the past several decades are limited in both spatial and temporal resolution. Meanwhile, marine sediment records may provide insight on million year timescales, but lack decadal resolution due to slow sediment deposition rates and bioturbation. In this study, we aim to investigate changes in marine phytoplankton productivity of the northeastern subarctic Pacific Ocean (NSPO) over the twentieth century using the methanesulfonic acid (MSA) record from the Mt. Hunter ice cores drilled in Denali National Park, Alaska. These parallel, 208 meter long ice cores were drilled during the 2013 field season on the Mt. Hunter plateau (63° N, 151° W, 4,000 m above sea level). Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) modeling is used to identify likely source areas in the NSPO for MSA being transported to the core site. SeaWiFS satellite imagery allows for a direct comparison of chlorophyll a concentrations in these source areas with MSA concentrations in the core record through time. Our findings suggest that the Denali ice core MSA record reflects changes in the biological productivity of marine phytoplankton and shows a significant decline in MSA beginning in 1961. We investigate several hypotheses for potential mechanisms driving this MSA decline

  19. Massive collapse of two glaciers in western Tibet in 2016 after surge-like instability

    Science.gov (United States)

    Kääb, Andreas; Leinss, Silvan; Gilbert, Adrien; Bühler, Yves; Gascoin, Simon; Evans, Stephen G.; Bartelt, Perry; Berthier, Etienne; Brun, Fanny; Chao, Wei-An; Farinotti, Daniel; Gimbert, Florent; Guo, Wanqin; Huggel, Christian; Kargel, Jeffrey S.; Leonard, Gregory J.; Tian, Lide; Treichler, Désirée; Yao, Tandong

    2018-02-01

    Surges and glacier avalanches are expressions of glacier instability, and among the most dramatic phenomena in the mountain cryosphere. Until now, the catastrophic collapse of a glacier, combining the large volume of surges and mobility of ice avalanches, has been reported only for the 2002 130 × 106 m3 detachment of Kolka Glacier (Caucasus Mountains), which has been considered a globally singular event. Here, we report on the similar detachment of the entire lower parts of two adjacent glaciers in western Tibet in July and September 2016, leading to an unprecedented pair of giant low-angle ice avalanches with volumes of 68 ± 2 × 106 m3 and 83 ± 2 × 106 m3. On the basis of satellite remote sensing, numerical modelling and field investigations, we find that the twin collapses were caused by climate- and weather-driven external forcing, acting on specific polythermal and soft-bed glacier properties. These factors converged to produce surge-like enhancement of driving stresses and massively reduced basal friction connected to subglacial water and fine-grained bed lithology, to eventually exceed collapse thresholds in resisting forces of the tongues frozen to their bed. Our findings show that large catastrophic instabilities of low-angle glaciers can happen under rare circumstances without historical precedent.

  20. Annual layering in the NGRIP ice core during the Eemian

    DEFF Research Database (Denmark)

    Svensson, Anders; Bigler, Matthias; Kettner, Ernesto

    2011-01-01

    ice, annual layers can clearly be recognized, most prominently in the dust and conductivity profiles. Part of the samples is, however, contaminated in dust, most likely from drill liquid. It is interesting that the annual layering is preserved despite a very active crystal growth and grain boundary....... In this study, we apply a newly developed setup for high-resolution ice core impurity analysis to produce continuous records of dust, sodium and ammonium concentrations as well as conductivity of melt water. We analyzed three 2.2m sections of ice from the Eemian and the glacial inception. In all of the analyzed...

  1. Dynamic behavior of the Bering Glacier-Bagley icefield system during a surge, and other measurements of Alaskan glaciers with ERS SAR imagery

    Science.gov (United States)

    Lingle, Craig S.; Fatland, Dennis R.; Voronina, Vera A.; Ahlnaes, Kristina; Troshina, Elena N.

    1997-01-01

    ERS-1 synthetic aperture radar (SAR) imagery was employed for the measurement of the dynamics of the Bagley icefield during a major surge in 1993-1994, the measurement of ice velocities on the Malaspina piedmont glacier during a quiescent phase between surges, and for mapping the snow lines and the position of the terminus of Nabesna glacier on Mount Wrangell (a 4317 m andesitic shield volcano) in the heavily glacierized Saint Elias and Wrangell Mountains of Alaska. An overview and summary of results is given. The methods used include interferometry, cross-correlation of sequential images, and digitization of boundaries using terrain-corrected SAR imagery.

  2. Characterization of meltwater 'ingredients' at the Haig Glacier, Canadian Rockies: the importance of glaciers to regional water resources

    Science.gov (United States)

    Miller, K.; Marshall, S.

    2017-12-01

    With rising temperatures, Alberta's glaciers are under stresses which change and alter the timing, amount, and composition of meltwater contributions to rivers that flow from the Rocky Mountains. Meltwater can be stored within a glacier or it can drain through the groundwater system, reducing and delaying meltwater delivery to glacier-fed streams. This study tests whether the glacier meltwater is chemically distinct from rain or snow melt, and thus whether meltwater contributions to higher-order streams that flow from the mountains can be determined through stream chemistry. Rivers like the Bow, North Saskatchewan, and Athabasca are vital waterways for much of Alberta's population. Assessing the extent of glacier meltwater is vital to future water resource planning. Glacier snow/ice and meltwater stream samples were collected during the 2017 summer melt season (May- September) and analyzed for isotope and ion chemistry. The results are being used to model water chemistry evolution in the melt stream through the summer season. A chemical mixing model will be constructed to determine the fractional contributions to the Haig meltwater stream from precipitation, surface melt, and subglacial meltwaters. Distinct chemical water signatures have not been used to partition water sources and understand glacier contributions to rivers in the Rockies. The goal of this work is to use chemical signatures of glacial meltwater to help assess the extent of glacier meltwater in Alberta rivers and how this varies through the summer season.

  3. Glacier shrinkage and water resources in the Andes

    Science.gov (United States)

    Francou, Bernard; Coudrain, Anne

    For more than a century glaciers around the world have been melting as air temperatures rise due to a combination of natural processes and human activity. The disappearance of these glaciers can have wide-ranging effects, such as the creation of new natural hazards or changes in stream flow that could threaten water suppliesSome of the most dramatic melting has occurred in the Andes mountain range in South America. To highlight the climatic and glacial change in the Andes and to encourage the scientific community to strengthen the glacier observation network that stretches from Colombia to the Patagonian ice fields, the Instituto Nacional de Recursos Naturales (INRENA), Perú, and the Institute of Research and Development (IRD), France, recently organized the second Symposium on Mass Balance of Andean Glaciers in Huaráz,Perú.

  4. Dissolved organic carbon fractionation accelerates glacier-melting: A case study in the northern Tibetan Plateau.

    Science.gov (United States)

    Hu, Zhaofu; Kang, Shichang; Yan, Fangping; Zhang, Yulan; Li, Yang; Chen, Pengfei; Qin, Xiang; Wang, Kun; Gao, Shaopeng; Li, Chaoliu

    2018-06-15

    In glacierized regions, melting process has a significant effect on concentrations and light absorption characteristics of dissolved organic carbon (DOC), potentially resulting in variations of its radiative forcing, which is not yet relevant research at glacier region of the Tibetan Plateau (TP). In this study, DOC fractionation and its radiative forcing change during the melting process were investigated at Laohugou glacier No. 12 (LHG glacier) in western Qilian Mts., northern TP. DOC concentrations in fresh snow, snowpit and surface ice samples were 0.38 ± 0.06, 0.22 ± 0.11 and 0.60 ± 0.21 mg L -1 , respectively. Their mass absorption cross-section at 365 nm (MAC 365 ) were 0.65 ± 0.16, 4.71 ± 3.68 and 1.44 ± 0.52 m 2  g -1 , respectively. The MAC 365 values of snowpit samples showed a significant negative correlation with DOC concentrations, indicating DOC with high MAC 365 values were likely to be kept in snow during the melting process. Topsoil samples of LHG glacierized region likely contributed a lot to snowpit DOC with high MAC 365 values due to their similar absorption spectra. Spatially, the DOC concentration of surface ice samples increased from terminus to the upper part of the glacier. Correspondingly, the MAC 365 value showed decreased trend. In the freezing experiment on surface ice and topsoil samples, small part of DOC with high MAC 365 value was also likely to enter first frozen solid phase. In addition, the radiative forcing caused by snowpit and surface ice DOC increased around 7.64 ± 2.93 and 4.95 ± 1.19 times relative to fresh snow DOC, indicating the snow/ice melting caused by increased light-absorbing DOC needs to be considered in the future research. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Spatiotemporal variability of oxygen isotope compositions in three contrasting glacier river catchments in Greenland

    DEFF Research Database (Denmark)

    Knudsen, N. Tvis; Yde, J.C.; Steffensen, J.P.

    2015-01-01

    composition is controlled by the proportion between snowmelt and ice melt with episodic inputs of rainwater and occasional storage and release of a specific water component due to changes in the subglacial drainage system. At Kuannersuit Glacier River on the island Qeqertarsuaq, the δ18O characteristics were......Analysis of stable oxygen isotope (δ18O) characteristics is a useful tool to investigate water provenance in glacier river systems. In order to attain knowledge on the diversity of spatio-temporal δ18O variations in glacier rivers, we have examined three glacierized catchments in Greenland...... of diurnal oscillations, and in 2003 there were large diurnal fluctuations in δ18O. At Watson River, a large catchment at the western margin of the Greenland Ice Sheet, the spatial distribution of δ18O in the river system was applied to fingerprint the relative runoff contributions from sub-catchments. Spot...

  6. Climatic changes on orbital and sub-orbital time scale recorded by the Guliya ice core in Tibetan Plateau

    Institute of Scientific and Technical Information of China (English)

    姚檀栋; 徐柏青; 蒲健辰

    2001-01-01

    Based on ice core records in the Tibetan Plateau and Greenland, the features and possible causes of climatic changes on orbital and sub-orbital time scale were discussed. Orbital time scale climatic change recorded in ice core from the Tibetan Plateau is typically ahead of that from polar regions, which indicates that climatic change in the Tibetan Plateau might be earlier than polar regions. The solar radiation change is a major factor that dominates the climatic change on orbital time scale. However, climatic events on sub-orbital time scale occurred later in the Tibetan Plateau than in the Arctic Region, indicating a different mechanism. For example, the Younger Dryas and Heinrich events took place earlier in Greenland ice core record than in Guliya ice core record. It is reasonable to propose the hypothesis that these climatic events were affected possibly by the Laurentide Ice Sheet. Therefore, ice sheet is critically important to climatic change on sub-orbital time scale in some ice ages.

  7. Optimization of High-Resolution Continuous Flow Analysis for Transient Climate Signals in Ice Cores

    DEFF Research Database (Denmark)

    Bigler, Matthias; Svensson, Anders; Kettner, Ernesto

    2011-01-01

    Over the past two decades, continuous flow analysis (CFA) systems have been refined and widely used to measure aerosol constituents in polar and alpine ice cores in very high-depth resolution. Here we present a newly designed system consisting of sodium, ammonium, dust particles, and electrolytic...... meltwater conductivity detection modules. The system is optimized for high- resolution determination of transient signals in thin layers of deep polar ice cores. Based on standard measurements and by comparing sections of early Holocene and glacial ice from Greenland, we find that the new system features...

  8. Two Millennia of Pb Pollution Related to Altiplano Metallurgical Activities and Leaded Gasoline in South America from Illimani Ice Core

    Science.gov (United States)

    Eichler, A.; Gramlich, G.; Kellerhals, T.; Tobler, L.; Schwikowski, M.

    2014-12-01

    The exploitation of the extended polymetallic deposits of the Altiplano in South America led to significant emissions of the neurotoxic Pb into the atmosphere already since pre-Colonial times. Long-term histories of Pb pollution in Eastern and Western Europe, Asia, and North America suggest that within the Northern Hemisphere emissions from metallurgy and coal combustion are minor compared to that from leaded gasoline during the second half of the 20th century. However, there is no equivalent data for Southern America. Here we present the first comprehensive, high-resolution two millennia Pb emission history for South America, based on an ice core record from Illimani glacier in Bolivia. Illimani is the highest mountain of the eastern Bolivian Andes and is located at the northeastern margin of the Bolivian Altiplano. The 2000 year ice-core based decadal Pb deposition history revealed highest Pb Enrichment Factors (EFs) during the period 1965-85. Metallurgical processing for silver production during periods of the Tiwanaku culture (400-900 AD), the Inca empire (1450-1532 AD), colonial times (1532-1900 AD), and the tin production at the beginning of the 20th century were identified as major sources for enhanced Pb EFs before the 1960s. Gasoline related Pb emissions in 1965-85, however, led to a threefold increase of the Pb EFs compared to the emission level from metal production, considerably preceding those of the past 2000 years. This finding is complementary to the local air pollution signal preserved in lake sediments and in good agreement with various studies from the Northern Hemisphere.

  9. InSAR Observations and Finite Element Modeling of Crustal Deformation Around a Surging Glacier, Iceland

    Science.gov (United States)

    Spaans, K.; Auriac, A.; Sigmundsson, F.; Hooper, A. J.; Bjornsson, H.; Pálsson, F.; Pinel, V.; Feigl, K. L.

    2014-12-01

    Icelandic ice caps, covering ~11% of the country, are known to be surging glaciers. Such process implies an important local crustal subsidence due to the large ice mass being transported to the ice edge during the surge in a few months only. In 1993-1995, a glacial surge occurred at four neighboring outlet glaciers in the southwestern part of Vatnajökull ice cap, the largest ice cap in Iceland. We estimated that ~16±1 km3 of ice have been moved during this event while the fronts of some of the outlet glaciers advanced by ~1 km.Surface deformation associated with this surge has been surveyed using Interferometric Synthetic Aperture Radar (InSAR) acquisitions from 1992-2002, providing high resolution ground observations of the study area. The data show about 75 mm subsidence at the ice edge of the outlet glaciers following the transport of the large volume of ice during the surge (Fig. 1). The long time span covered by the InSAR images enabled us to remove ~12 mm/yr of uplift occurring in this area due to glacial isostatic adjustment from the retreat of Vatnajökull ice cap since the end of the Little Ice Age in Iceland. We then used finite element modeling to investigate the elastic Earth response to the surge, as well as confirm that no significant viscoelastic deformation occurred as a consequence of the surge. A statistical approach based on Bayes' rule was used to compare the models to the observations and obtain an estimate of the Young's modulus (E) and Poisson's ratio (v) in Iceland. The best-fitting models are those using a one-kilometer thick top layer with v=0.17 and E between 12.9-15.3 GPa underlain by a layer with v=0.25 and E from 67.3 to 81.9 GPa. Results demonstrate that InSAR data and finite element models can be used successfully to reproduce crustal deformation induced by ice mass variations at Icelandic ice caps.Fig. 1: Interferograms spanning 1993 July 31 to 1995 June 19, showing the surge at Tungnaárjökull (Tu.), Skaftárjökull (Sk.) and S

  10. A study of the decontamination procedures used for chemical analysis of polar deep ice cores

    Directory of Open Access Journals (Sweden)

    Takayuki Miyake

    2009-11-01

    Full Text Available We investigated the decontamination procedures used on polar deep ice cores before chemical analyses such as measurements of the concentrations of iron species and dust (microparticles. We optimized cutting and melting protocols for decontamination using chemically ultraclean polyethylene bags and simulated ice samples made from ultrapure water. For dust and ion species including acetate, which represented a high level of contamination, we were able to decrease contamination to below several μg l^ for ion concentrations and below 10000 particles ml^ for the dust concentration. These concentration levels of ion species and dust are assumed to be present in the Dome Fuji ice core during interglacial periods. Decontamination of the ice core was achieved by cutting away approximately 3 mm of the outside of a sample and by melting away approximately 30% of a sample's weight. Furthermore, we also report the preparation protocols for chemical analyses of the 2nd Dome Fuji ice core, including measurements of ion and dust concentrations, pH, electric conductivity (EC, and stable isotope ratios of water (δD and δO, based on the results of the investigation of the decontamination procedures.

  11. Recent glacier mass balance and area changes in the Kangri Karpo Mountains from DEMs and glacier inventories

    Science.gov (United States)

    Wu, Kunpeng; Liu, Shiyin; Jiang, Zongli; Xu, Junli; Wei, Junfeng; Guo, Wanqin

    2018-01-01

    Due to the influence of the Indian monsoon, the Kangri Karpo Mountains in the south-east of the Tibetan Plateau is in the most humid and one of the most important and concentrated regions containing maritime (temperate) glaciers. Glacier mass loss in the Kangri Karpo is an important contributor to global mean sea level rise, and changes run-off distribution, increasing the risk of glacial-lake outburst floods (GLOFs). Because of its inaccessibility and high labour costs, information about the Kangri Karpo glaciers is still limited. Using geodetic methods based on digital elevation models (DEMs) derived from 1980 topographic maps from the Shuttle Radar Topography Mission (SRTM) (2000) and from TerraSAR-X/TanDEM-X (2014), this study has determined glacier elevation changes. Glacier area and length changes between 1980 and 2015 were derived from topographical maps and Landsat TM/ETM+/OLI images. Results show that the Kangri Karpo contained 1166 glaciers with an area of 2048.50 ± 48.65 km2 in 2015. Ice cover diminished by 679.51 ± 59.49 km2 (24.9 ± 2.2 %) or 0.71 ± 0.06 % a-1 from 1980 to 2015, although nine glaciers advanced. A glacierized area of 788.28 km2, derived from DEM differencing, experienced a mean mass loss of 0.46 ± 0.08 m w.e. a-1 from 1980 to 2014. Shrinkage and mass loss accelerated significantly from 2000 to 2015 compared to 1980-2000, consistent with a warming climate.

  12. Five millennia of frozen vegetation and fire dynamics from an ice core in the Mongolian Altai

    Science.gov (United States)

    Brügger, S. O.; Gobet, E.; Sigl, M.; Osmont, D.; Papina, T.; Rudaya, N.; Schwikowski, M.; Tinner, W.

    2017-12-01

    The steppes of the Altai region in Central Asia are highly vulnerable to e.g. drought and overgrazing. Degradation during the past decades may undermine their resilience under global change conditions. Knowledge about past vegetation and fire dynamics in Mongolian Altai may contribute to a better understanding of future climate and human impact responses, however, paleo records are scarce in the area. Our novel high-alpine ice record from Tsambagarav glacier (48°39.338'N, 90°50.826'E, 4130m asl) in the Mongolian Altai provides unique paleoenvironmental informations at the landscape scale. The site is surrounded by dry steppes with scattered boreal tree stands. We assume that the site collects pollen and spores within several hundred km. The archive provides an exceptional temporal resolution with a sound chronology covering the past 5500 years (Herren et al. 2013). Microfossil analysis allows to reconstruct large-scale fire and vegetation dynamics to gain a better understanding of the timing and causes of late Holocene response variability. We use pollen as proxies for vegetation composition and structure, microscopic charcoal as a proxy for fire activity (Eichler et al. 2011), and spheroidal carbonaceous particles (SCPs or soots) as a proxy for fossil fuel combustion. Here we present the first microscopic charcoal record from Mongolia and link it to vegetation dynamics of the past. The reconstructed mid to late Holocene forest collapses likely in response to climate change underscore the vulnerability of relict forest ecosystems in the Mongolian Altai. Our multiproxy-study suggests that moisture is more important than temperature for forest preservation. The lacking resilience of vegetation to moisture changes in the past emphasizes the vulnerability of large forests in neighboring dry areas such as the Russian Altai, if global warming is associated to moisture declines as future projections forecast (IPCC; Climate Change 2013). References: Eichler et al. (2011

  13. Model calibration for ice sheets and glaciers dynamics: a general theory of inverse problems in glaciology

    Science.gov (United States)

    Giudici, Mauro; Baratelli, Fulvia; Vassena, Chiara; Cattaneo, Laura

    2014-05-01

    Numerical modelling of the dynamic evolution of ice sheets and glaciers requires the solution of discrete equations which are based on physical principles (e.g. conservation of mass, linear momentum and energy) and phenomenological constitutive laws (e.g. Glen's and Fourier's laws). These equations must be accompanied by information on the forcing term and by initial and boundary conditions (IBC) on ice velocity, stress and temperature; on the other hand the constitutive laws involves many physical parameters, which possibly depend on the ice thermodynamical state. The proper forecast of the dynamics of ice sheets and glaciers (forward problem, FP) requires a precise knowledge of several quantities which appear in the IBCs, in the forcing terms and in the phenomenological laws and which cannot be easily measured at the study scale in the field. Therefore these quantities can be obtained through model calibration, i.e. by the solution of an inverse problem (IP). Roughly speaking, the IP aims at finding the optimal values of the model parameters that yield the best agreement of the model output with the field observations and data. The practical application of IPs is usually formulated as a generalised least squares approach, which can be cast in the framework of Bayesian inference. IPs are well developed in several areas of science and geophysics and several applications were proposed also in glaciology. The objective of this paper is to provide a further step towards a thorough and rigorous theoretical framework in cryospheric studies. Although the IP is often claimed to be ill-posed, this is rigorously true for continuous domain models, whereas for numerical models, which require the solution of algebraic equations, the properties of the IP must be analysed with more care. First of all, it is necessary to clarify the role of experimental and monitoring data to determine the calibration targets and the values of the parameters that can be considered to be fixed

  14. Seasonal variability of the circulation system in a West Greenland tidewater outlet glacier fjord, Godthåbsfjord (64°N)

    DEFF Research Database (Denmark)

    Mortensen, John; Bendtsen, Jørgen; Lennert, Kunuk

    2014-01-01

    Many tidewater outlet glacier fjords surround the coast of Greenland, and their dynamics and circulation are of great importance for understanding the heat transport toward glaciers from the ice sheet. Thus, fjord circulation is a critical aspect for assessing the threat of global sea level rise...... due to melting of the ice sheet. However, very few observational studies describe the seasonal dynamics of fjord circulation. Here we present the first continuous current measurements (April–November) from a deep mooring deployed in a west Greenland tidewater outlet glacier fjord. Four distinct...... circulation phases are identified during the period, and they are related to exchange processes with coastal waters, tidal mixing, and melt processes on the Greenland Ice Sheet. During early summer, warm intermediate water is transported toward the glacier at an average velocity of about 7 cm s−1. In late...

  15. Glaciation style and the geomorphological record: evidence for Younger Dryas glaciers in the eastern Lake District, northwest England

    Science.gov (United States)

    McDougall, Derek

    2013-08-01

    The Younger Dryas (c. 12,900-11,700 years ago) in Britain witnessed renewed glaciation, with the readvance of ice masses that had survived the preceding Lateglacial Interstadial as well as the formation of new glaciers. The extents of these former glaciers have been mapped by many workers over the past fifty years, usually as a basis for palaeoclimatic investigations. It has frequently been asserted that the landform record is sufficiently clear to allow accurate ice mass reconstructions at or near maximum extents. Detailed geomorphological mapping in the eastern Lake District in NW England, however, demonstrates that this confidence may not always be warranted. Whereas previous workers have interpreted the well-developed moraines that exist in some locations as evidence for an alpine-style of glaciation, with ice restricted to a small number of valleys, this study shows that the most recent glaciation to affect the area was characterised by: (i) extensive summit icefields, which supplied ice to the surrounding valleys; and (ii) a much greater volume of ice in the valleys than previously thought. The discovery that summit icefields were relatively common at this time is consistent with recent studies elsewhere in the Lake District and beyond. More significant, however, is the recognition that changing glacier-topographic interactions over both space and time appears to have had a profound impact on valley-floor glacial landform development, with the absence of clear moraines not necessarily indicating ice-free conditions at this time. This complicates glacier reconstructions based solely on the geomorphological record. Similar geomorphological complexity may be present in other areas that previously supported summit icefields, and this needs to be taken into account in glacier reconstructions.

  16. Recent evolution and degradation of the bent Jatunraju glacier (Cordillera Blanca, Peru)

    Czech Academy of Sciences Publication Activity Database

    Emmer, A.; Loarte, E.C.; Klimeš, Jan; Vilímek, V.

    2015-01-01

    Roč. 228, JAN 1 (2015), s. 345-355 ISSN 0169-555X R&D Projects: GA ČR(CZ) GAP209/11/1000 Institutional support: RVO:67985891 Keywords : debris-covered glacier * rock glacier * surface movements * buried ice degradation * supraglacial lakes Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 2.813, year: 2015

  17. Changing Climate Drives Lagging and Accelerating Glacier Responses and Accelerating Adjustments of the Hazard Regime

    Science.gov (United States)

    Kargel, Jeffrey

    2013-04-01

    It is virtually universally recognized among climate and cryospheric scientists that climate and greenhouse gas abundances are closely correlated. Disagreements mainly pertain to the fundamental triggers for large fluctuations in climate and greenhouse gases during the pre-industrial era, and exactly how coupling is achieved amongst the dynamic solid Earth, the Sun, orbital and rotational dynamics, greenhouse gas abundances, and climate. Also unsettled is the climate sensitivity defined as the absolute linkage between the magnitude of climate warming/cooling and greenhouse gas increase/decrease. Important questions concern lagging responses (either greenhouse gases lagging climate fluctuations, or vice versa) and the causes of the lags. In terms of glacier and ice sheet responses to climate change, there also exist several processes causing lagging responses to climate change inputs. The simplest parameterization giving a glacier's lagging response time, τ, is that given by Jóhanneson et al. (1989), modified slightly here as τ = b/h, where b is a measure of ablation rate and h is a measure of glacier thickness. The exact definitions of τ, b, and h are subject to some interpretive license, but for a back-of-the-envelope approximation, we may take b as the magnitude of the mean ablation rate over the whole ablation area, and h as the mean glacier thickness in the glacier ablation zone. τ remains a bit ambiguous but may be considered as an exponential time scale for a decreasing response of b to a climatic step change. For some climate changes, b and h can be taken as the values prior to the climate change, but for large climatic shifts, this parameterization must be iterated. The actual response of a glacier at any time is the sum of exponentially decreasing responses from past changes. (Several aspects of glacier dynamics cause various glacier responses to differ from this idealized glacier-response theory.) Some important details relating to the retreat (or

  18. Elastic uplift in southeast Greenland due to rapid ice mass loss

    DEFF Research Database (Denmark)

    Khan, Shfaqat Abbas; Van dam, Tonie; Hamilton, Gordon S.

    2007-01-01

    The rapid unloading of ice from the southeastern sector of the Greenland ice sheet between 2001 and 2006 caused an elastic uplift of 35 mm at a GPS site in Kulusuk. Most of the uplift results from ice dynamic-induced volume losses on two nearby outlet glaciers. Volume loss from Helheim Glacier...... between 62N and 66N. Citation: Khan, S. A., J. Wahr, L. A. Stearns, G. S. Hamilton, T. van Dam, K. M. Larson, and O. Francis (2007), Elastic uplift in southeast Greenland due to rapid ice mass loss....

  19. Impact of impurities and cryoconite on the optical properties of the Morteratsch Glacier (Swiss Alps)

    Science.gov (United States)

    Di Mauro, Biagio; Baccolo, Giovanni; Garzonio, Roberto; Giardino, Claudia; Massabò, Dario; Piazzalunga, Andrea; Rossini, Micol; Colombo, Roberto

    2017-11-01

    The amount of reflected energy by snow and ice plays a fundamental role in their melting processes. Different non-ice materials (carbonaceous particles, mineral dust (MD), microorganisms, algae, etc.) can decrease the reflectance of snow and ice promoting the melt. The object of this paper is to assess the capability of field and satellite (EO-1 Hyperion) hyperspectral data to characterize the impact of light-absorbing impurities (LAIs) on the surface reflectance of ice and snow of the Vadret da Morteratsch, a large valley glacier in the Swiss Alps. The spatial distribution of both narrow-band and broad-band indices derived from Hyperion was analyzed in relation to ice and snow impurities. In situ and laboratory reflectance spectra were acquired to characterize the optical properties of ice and cryoconite samples. The concentrations of elemental carbon (EC), organic carbon (OC) and levoglucosan were also determined to characterize the impurities found in cryoconite. Multi-wavelength absorbance spectra were measured to compare the optical properties of cryoconite samples and local moraine sediments. In situ reflectance spectra showed that the presence of impurities reduced ice reflectance in visible wavelengths by 80-90 %. Satellite data also showed the outcropping of dust during the melting season in the upper parts of the glacier, revealing that seasonal input of atmospheric dust can decrease the reflectance also in the accumulation zone of the glacier. The presence of EC and OC in cryoconite samples suggests a relevant role of carbonaceous and organic material in the darkening of the ablation zone. This darkening effect is added to that caused by fine debris from lateral moraines, which is assumed to represent a large fraction of cryoconite. Possible input of anthropogenic activity cannot be excluded and further research is needed to assess the role of human activities in the darkening process of glaciers observed in recent years.

  20. The Morsárjökull rock avalanche in the southern part of the Vatnajökull glacier, south Iceland

    Science.gov (United States)

    Sæmundsson, Şorsteinn; Sigurősson, Ingvar A.; Pétursson, Halldór G.; Decaulne, Armelle; Jónsson, Helgi P.

    2010-05-01

    On the 20th of March 2007 a large rock avalanche fell on Morsárjökull, one of the outlet glaciers from the southern part of the Vatnajökull ice cap, in south Iceland. This is considered to be one of the largest rock avalanches which have occurred in Iceland during the last decades. It is believed that it fell in two separate stages, the main part fell on the 20th of March and the second and smaller one, on the 17th of April 2007. The Morsárjökull outlet glacier is about 4 km long and surrounded by up to 1000 m high valley slopes. The outlet glacier is fed by two ice falls which are partly disconnected to the main ice cap of Vatnajökull, which indicates that the glacier is mainly fed by ice avalanches. The rock avalanche fell on the eastern side of the uppermost part of the Morsárjökull outlet glacier and covered about 1/5 of the glacier surface, an area of about 720,000 m2. The scar of the rock avalanche is located on the north face of the headwall above the uppermost part of the glacier. It is around 330 m high, reaching from about 620 m up to 950 m, showing that the main part of the slope collapsed. It is estimated that about 4 million m3 of rock debris fell on the glacier, or about 10 million tons. The accumulation lobe is up to 1.6 km long, reaching from 520 m a.s.l., to about 350 m a.s.l. Its width is from 125 m to 650 m, or on average 480 m. The total area which the lobe covers is around 720.000 m2 and its mean thickness 5.5 m. The surface of the lobe shows longitudinal ridges and grooves and narrow flow-like lobes, indicating that the debris mass evolved down glacier as a mixture of a slide and debris flow. The debris mass is coarse grained and boulder rich. Blocks over 5 to 8 m in diameter are common on the edges of the lobe up to 1.6 km from the source. No indication was observed of any deformation of the glacier surface under the debris mass. The first glaciological measurements of Morsárjökull outlet glacier were carried out in the year 1896

  1. Tracking the El Nino events from Antarctic ice core records

    International Nuclear Information System (INIS)

    Keskin, S.S.; Oelmez, I.

    2004-01-01

    Sodium and chlorine measurements were made by instrumental neutron activation analysis (INAA) on stratigraphically dated ice core samples from Byrd Station, Antarctica, for the last three centuries. The time period between 1969 and 1989 showed an enhanced impact on the Antarctic ice sheets from oceans in the form of marine aerosols. A disturbed ocean-atmosphere interface due to El Ni Southern Oscillation (ENSO) events seems to be a candidate for this observation in Antarctica. (author)

  2. A 21 000-year record of fluorescent organic matter markers in the WAIS Divide ice core

    Science.gov (United States)

    D'Andrilli, Juliana; Foreman, Christine M.; Sigl, Michael; Priscu, John C.; McConnell, Joseph R.

    2017-05-01

    Englacial ice contains a significant reservoir of organic material (OM), preserving a chronological record of materials from Earth's past. Here, we investigate if OM composition surveys in ice core research can provide paleoecological information on the dynamic nature of our Earth through time. Temporal trends in OM composition from the early Holocene extending back to the Last Glacial Maximum (LGM) of the West Antarctic Ice Sheet Divide (WD) ice core were measured by fluorescence spectroscopy. Multivariate parallel factor (PARAFAC) analysis is widely used to isolate the chemical components that best describe the observed variation across three-dimensional fluorescence spectroscopy (excitation-emission matrices; EEMs) assays. Fluorescent OM markers identified by PARAFAC modeling of the EEMs from the LGM (27.0-18.0 kyr BP; before present 1950) through the last deglaciation (LD; 18.0-11.5 kyr BP), to the mid-Holocene (11.5-6.0 kyr BP) provided evidence of different types of fluorescent OM composition and origin in the WD ice core over 21.0 kyr. Low excitation-emission wavelength fluorescent PARAFAC component one (C1), associated with chemical species similar to simple lignin phenols was the greatest contributor throughout the ice core, suggesting a strong signature of terrestrial OM in all climate periods. The component two (C2) OM marker, encompassed distinct variability in the ice core describing chemical species similar to tannin- and phenylalanine-like material. Component three (C3), associated with humic-like terrestrial material further resistant to biodegradation, was only characteristic of the Holocene, suggesting that more complex organic polymers such as lignins or tannins may be an ecological marker of warmer climates. We suggest that fluorescent OM markers observed during the LGM were the result of greater continental dust loading of lignin precursor (monolignol) material in a drier climate, with lower marine influences when sea ice extent was higher and

  3. Carbon dioxide enhances fragility of ice crystals

    International Nuclear Information System (INIS)

    Qin Zhao; Buehler, Markus J

    2012-01-01

    Ice caps and glaciers cover 7% of the Earth, greater than the land area of Europe and North America combined, and play an important role in global climate. The small-scale failure mechanisms of ice fracture, however, remain largely elusive. In particular, little understanding exists about how the presence and concentration of carbon dioxide molecules, a significant component in the atmosphere, affects the propensity of ice to fracture. Here we use atomic simulations with the first-principles based ReaxFF force field capable of describing the details of chemical reactions at the tip of a crack, applied to investigate the effects of the presence of carbon dioxide molecules on ice fracture. Our result shows that increasing concentrations of carbon dioxide molecules significantly decrease the fracture toughness of the ice crystal, making it more fragile. Using enhanced molecular sampling with metadynamics we reconstruct the free energy landscape in varied chemical microenvironments and find that carbon dioxide molecules affect the bonds between water molecules at the crack tip and decrease their strength by altering the dissociation energy of hydrogen bonds. In the context of glacier dynamics our findings may provide a novel viewpoint that could aid in understanding the breakdown and melting of glaciers, suggesting that the chemical composition of the atmosphere can be critical to mediate the large-scale motion of large volumes of ice.

  4. Changes in Black Carbon Deposition to Antarctica from Two Ice Core Records, A.D. 1850-2000

    Science.gov (United States)

    Bisiaux, Marion M.; Edward, Ross; McConnell, Joseph R.; Curran, Mark A. J.; VanOmmen, Tas D.; Smith, Andrew M.; Neumann, Thomas A.; Pasteris, Daniel R.; Penner, Joyce E.; Taylor, Kendrick

    2012-01-01

    Continuous flow analysis was based on a steady sample flow and in-line detection of BC and other chemical substances as described in McConnell et al. (2007). In the cold room, previously cut one meter ice core sticks of 3x3cm, are melted continuously on a heated melter head specifically designed to eliminate contamination from the atmosphere or by the external parts of the ice. The melted ice from the most inner part of the ice stick is continuously pumped by a peristaltic pump and carried to a clean lab by Teflon lines. The recorded signal is continuous, integrating a sample volume of about 0.05 mL, for which the temporal resolution depends on the speed of melting, ice density and snow accumulation rate at the ice core drilling site. For annual accumulation derived from the WAIS and Law Dome ice cores, we assumed 3.1 cm water equivalent uncertainty in each year's accumulation from short scale spatial variability (glaciological noise) which was determined from several measurements of annual accumulation in multiple parallel ice cores notably from the WAIS Divide ice core site (Banta et al., 2008) and from South Pole site (McConnell et al., 1997; McConnell et al., 2000). Refractory black carbon (rBC) concentrations were determined using the same method as in (Bisiaux et al., 2011) and adapted to continuous flow measurements as described by (McConnell et al., 2007). The technique uses a single particle intracavity laser induced incandescence photometer (SP2, Droplet Measurement Technologies, Boulder, Colorado) coupled to an ultrasonic nebulizer/desolvation (CETAC UT5000) Flow Injection Analysis (FIA). All analyses, sample preparation etc, were performed in a class 100 cleanroom using anti contamination "clean techniques". The samples were not acidified.

  5. Direct chemical analysis of frozen ice cores by UV-laser ablation ICPMS

    DEFF Research Database (Denmark)

    Müller, Wolfgang; Shelley, J. Michael G.; Rasmussen, Sune Olander

    2011-01-01

    Cryo-cell UV-LA-ICPMS is a new technique for direct chemical analysis of frozen ice cores at high spatial resolution (dust records and annual layer signatures at unprecedented spatial/time resolution. Uniquely......, the location of cation impurities relative to grain boundaries in recrystallized ice can be assessed....

  6. Small Glacier Area Studies: A New Approach for Turkey

    Science.gov (United States)

    Yavasli, Dogukan D.; Tucker, Compton J.

    2012-01-01

    Many regions of Earth have glaciers that have been neglected for study because they are small. We report on a new approach to overcome the problem of studying small glaciers, using Turkey as an example. Prior to our study, no reliable estimates of Turkish glaciers existed because of a lack of systematic mapping, difficulty in using Landsat data collected before 1982, snowpack vs. glacier ice differentiation using existing satellite data and aerial photography, the previous high cost of Landsat images, and a lack of high-resolution imagery of small Turkish glaciers. Since 2008, a large number of area of nine smaller glaciers in Turkey. We also used five Landsat-3 Return Beam Videcon (RBV) 30 m pixel resolution images, all from 1980, for six glaciers. The total area of Turkish glaciers decreased from 23 km2 in the 1970s to 10.1 km2 in 2007-2011. By 2007-2011, six Turkish glaciers disappeared, four were < 0.3 km2, and only three were 1.0 km2 or larger. No trends in precipitation from 1970 to 2006 and cloud cover from 1980 to 2010 were found, while surface temperatures increased, with summer minimum temperatures showing the greatest increase. We conclude that increased surface temperatures during the summer were responsible for the 56% recession of Turkish glaciers from the 1970s to 2006-2011.

  7. Revised estimates of Greenland ice sheet thinning histories based on ice-core records

    DEFF Research Database (Denmark)

    Lecavalier, B.S.; Milne, G.A.; Fisher, D.A.

    2013-01-01

    -based reconstructions and, to some extent, the estimated elevation histories. A key component of the ice core analysis involved removing the influence of vertical surface motion on the dO signal measured from the Agassiz and Renland ice caps. We re-visit the original analysis with the intent to determine if the use...... of more accurate land uplift curves can account for some of the above noted discrepancy. To improve on the original analysis, we apply a geophysical model of glacial isostatic adjustment calibrated to sea-level records from the Queen Elizabeth Islands and Greenland to calculate the influence of land...... in this selection is further complicated by the possible influence of Innuitian ice during the early Holocene (12-8 ka BP). Our results indicate that a more accurate treatment of the uplift correction leads to elevation histories that are, in general, shifted down relative to the original curves at GRIP, NGRIP, DYE...

  8. Direct observation of salts as micro-inclusions in the Greenland GRIP ice core

    DEFF Research Database (Denmark)

    Dahl-Jensen, Dorthe; Sakurai, Toshimitsu; Iizuka, Yoshinori

    2009-01-01

    We provide the first direct evidence that a number of water-soluble compounds, in particular calcium sulfate (CaSO4·2H2O) and calcium carbonate (CaCO3), are present as solid, micron-sized inclusions within the Greenland GRIP ice core. The compounds are detected by two independent methods: micro...... distributions of the micro-inclusions. These results suggest that water-soluble aerosols in the GRIP ice core are dependable proxies for past atmospheric conditions. Udgivelsesdato: December...

  9. The Distribution of Basal Water Beneath the Greenland Ice Sheet from Radio-Echo Sounding

    Science.gov (United States)

    Jordan, T.; Williams, C.; Schroeder, D. M.; Martos, Y. M.; Cooper, M.; Siegert, M. J.; Paden, J. D.; Huybrechts, P.; Bamber, J. L.

    2017-12-01

    There is widespread, but often indirect, evidence that a significant fraction of the Greenland Ice Sheet is thawed at the bed. This includes major outlet glaciers and around the NorthGRIP ice-core in the interior. However, the ice-sheet-wide distribution of basal water is poorly constrained by existing observations, and the spatial relationship between basal water and other ice-sheet and subglacial properties is therefore largely unexplored. In principle, airborne radio-echo sounding (RES) surveys provide the necessary information and spatial coverage to infer the presence of basal water at the ice-sheet scale. However, due to uncertainty and spatial variation in radar signal attenuation, the commonly used water diagnostic, bed-echo reflectivity, is highly ambiguous and prone to spatial bias. Here we introduce a new RES diagnostic for the presence of basal water which incorporates both sharp step-transitions and rapid fluctuations in bed-echo reflectivity. This has the advantage of being (near) independent of attenuation model, and enables a decade of recent Operation Ice Bride RES survey data to be combined in a single map for basal water. The ice-sheet-wide water predictions are compared with: bed topography and drainage network structure, existing knowledge of the thermal state and geothermal heat flux, and ice velocity. In addition to the fast flowing ice-sheet margins, we also demonstrate widespread water routing and storage in parts of the slow-flowing northern interior. Notably, this includes a quasi-linear `corridor' of basal water, extending from NorthGRIP to Petermann glacier, which spatially correlates with a region of locally high (magnetic-derived) geothermal heat flux. The predicted water distribution places a new constraint upon the basal thermal state of the Greenland Ice Sheet, and could be used as an input for ice-sheet model simulations.

  10. Rock waste dumps on the Davydov Glacier (Akshyirak Range, Tien Shan

    Directory of Open Access Journals (Sweden)

    V. A. Kuzmichenok

    2012-01-01

    Full Text Available Since 1995, a barren rock has been formed at the Davydov Glacier, due to the works at the Kumtor Gold Mine. By the end of 2010, total amount of the rock, stockpiled on the glacier, apparently exceeded 200 million tons, the height of dumps of rock sometimes exceeded 50 meters. The most noticeable effects of this are provoking local surges of the Davydov Glacier and squeezing glacier ice out of the dumps of rock. For a detailed analysis of both processes, we also used the results of periodic geodetic measurements (over 8000 of monitoring rods (about 800 rods of the gold mining company. A number of local surges of the glacier has been found, the first of which began in March–April 2002. To analyze glacier squeezing out of the dumps of rock, mathematical modeling of that process has been done. It was established that in most cases, the glacier is almost completely squeezed out of for 1–2 years.

  11. Archival processes of the water stable isotope signal in East Antarctic ice cores

    Science.gov (United States)

    Casado, Mathieu; Landais, Amaelle; Picard, Ghislain; Münch, Thomas; Laepple, Thomas; Stenni, Barbara; Dreossi, Giuliano; Ekaykin, Alexey; Arnaud, Laurent; Genthon, Christophe; Touzeau, Alexandra; Masson-Delmotte, Valerie; Jouzel, Jean

    2018-05-01

    The oldest ice core records are obtained from the East Antarctic Plateau. Water isotopes are key proxies to reconstructing past climatic conditions over the ice sheet and at the evaporation source. The accuracy of climate reconstructions depends on knowledge of all processes affecting water vapour, precipitation and snow isotopic compositions. Fractionation processes are well understood and can be integrated in trajectory-based Rayleigh distillation and isotope-enabled climate models. However, a quantitative understanding of processes potentially altering snow isotopic composition after deposition is still missing. In low-accumulation sites, such as those found in East Antarctica, these poorly constrained processes are likely to play a significant role and limit the interpretability of an ice core's isotopic composition. By combining observations of isotopic composition in vapour, precipitation, surface snow and buried snow from Dome C, a deep ice core site on the East Antarctic Plateau, we found indications of a seasonal impact of metamorphism on the surface snow isotopic signal when compared to the initial precipitation. Particularly in summer, exchanges of water molecules between vapour and snow are driven by the diurnal sublimation-condensation cycles. Overall, we observe in between precipitation events modification of the surface snow isotopic composition. Using high-resolution water isotopic composition profiles from snow pits at five Antarctic sites with different accumulation rates, we identified common patterns which cannot be attributed to the seasonal variability of precipitation. These differences in the precipitation, surface snow and buried snow isotopic composition provide evidence of post-deposition processes affecting ice core records in low-accumulation areas.

  12. Ice-sheet modelling accelerated by graphics cards

    Science.gov (United States)

    Brædstrup, Christian Fredborg; Damsgaard, Anders; Egholm, David Lundbek

    2014-11-01

    Studies of glaciers and ice sheets have increased the demand for high performance numerical ice flow models over the past decades. When exploring the highly non-linear dynamics of fast flowing glaciers and ice streams, or when coupling multiple flow processes for ice, water, and sediment, researchers are often forced to use super-computing clusters. As an alternative to conventional high-performance computing hardware, the Graphical Processing Unit (GPU) is capable of massively parallel computing while retaining a compact design and low cost. In this study, we present a strategy for accelerating a higher-order ice flow model using a GPU. By applying the newest GPU hardware, we achieve up to 180× speedup compared to a similar but serial CPU implementation. Our results suggest that GPU acceleration is a competitive option for ice-flow modelling when compared to CPU-optimised algorithms parallelised by the OpenMP or Message Passing Interface (MPI) protocols.

  13. Comparison of northern and central Greenland ice cores records of methanesulfonate covering the last glacial period

    DEFF Research Database (Denmark)

    Jonsell, U.; Hansson, M. E.; Siggaard-Andersen, M-L-

    2007-01-01

    Methanesulfonate (MS-) is measured in ice cores with the objective to obtain a proxy record of marine phytoplankton production of dimethylsulfide (DMS). We present a continuous MS- record covering the last glacial period from the North Greenland Ice Core Project (NGRIP) ice core and compare...... this record with the corresponding records previously presented from Greenland and, in particular, with the GISP2 ice core located 320 km south of NGRIP. Despite that the records have similar mean concentrations, their responses to climatic changes during the last glacial period are slightly different. NGRIP...... MS- concentrations were higher during the cold marine isotopic stages (MIS) 2 and 4 and lower during the warm MIS 5. This long-term trend in MS-, which is similar to the inverse of the corresponding trend in d 18O, is not detected in the GISP2 MS- record. A systematic response in MS- concentrations...

  14. A geophone wireless sensor network for investigating glacier stick-slip motion

    Science.gov (United States)

    Martinez, Kirk; Hart, Jane K.; Basford, Philip J.; Bragg, Graeme M.; Ward, Tyler; Young, David S.

    2017-08-01

    We have developed an innovative passive borehole geophone system, as part of a wireless environmental sensor network to investigate glacier stick-slip motion. The new geophone nodes use an ARM Cortex-M3 processor with a low power design capable of running on battery power while embedded in the ice. Only data from seismic events was stored, held temporarily on a micro-SD card until they were retrieved by systems on the glacier surface which are connected to the internet. The sampling rates, detection and filtering levels were determined from a field trial using a standard commercial passive seismic system. The new system was installed on the Skalafellsjökull glacier in Iceland and provided encouraging results. The results showed that there was a relationship between surface melt water production and seismic event (ice quakes), and these occurred on a pattern related to the glacier surface melt-water controlled velocity changes (stick-slip motion). Three types of seismic events were identified, which were interpreted to reflect a pattern of till deformation (Type A), basal sliding (Type B) and hydraulic transience (Type C) associated with stick-slip motion.

  15. Using aerogravity and seismic data to model the bathymetry and upper crustal structure beneath the Pine Island Glacier ice shelf, West Antarctica

    Science.gov (United States)

    Muto, A.; Peters, L. E.; Anandakrishnan, S.; Alley, R. B.; Riverman, K. L.

    2013-12-01

    Recent estimates indicate that ice shelves along the Amundsen Sea coast in West Antarctica are losing substantial mass through sub-ice-shelf melting and contributing to the accelerating mass loss of the grounded ice buttressed by them. For Pine Island Glacier (PIG), relatively warm Circumpolar Deep Water has been identified as the key driver of the sub-ice-shelf melting although poor constraints on PIG sub-ice shelf have restricted thorough understanding of these ice-ocean interactions. Aerogravity data from NASA's Operation IceBridge (OIB) have been useful in identifying large-scale (on the order of ten kilometers) features but the results have relatively large uncertainties due to the inherent non-uniqueness of the gravity inversion. Seismic methods offer the most direct means of providing water thickness and upper crustal geological constraints, but availability of such data sets over the PIG ice shelf has been limited due to logistical constraints. Here we present a comparative analysis of the bathymetry and upper crustal structure beneath the ice shelf of PIG through joint inversion of OIB aerogravity data and in situ active-source seismic measurements collected in the 2012-13 austral summer. Preliminary results indicate improved resolution of the ocean cavity, particularly in the interior and sides of the PIG ice shelf, and sedimentary drape across the region. Seismically derived variations in ice and ocean water densities are also applied to the gravity inversion to produce a more robust model of PIG sub-ice shelf structure, as opposed to commonly used single ice and water densities across the entire study region. Misfits between the seismically-constrained gravity inversion and that estimated previously from aerogravity alone provide insights on the sensitivity of gravity measurements to model perturbations and highlight the limitations of employing gravity data to model ice shelf environments when no other sub-ice constraints are available.

  16. Particle shape accounts for instrumental discrepancy in ice core dust size distributions

    Science.gov (United States)

    Folden Simonsen, Marius; Cremonesi, Llorenç; Baccolo, Giovanni; Bosch, Samuel; Delmonte, Barbara; Erhardt, Tobias; Kjær, Helle Astrid; Potenza, Marco; Svensson, Anders; Vallelonga, Paul

    2018-05-01

    The Klotz Abakus laser sensor and the Coulter counter are both used for measuring the size distribution of insoluble mineral dust particles in ice cores. While the Coulter counter measures particle volume accurately, the equivalent Abakus instrument measurement deviates substantially from the Coulter counter. We show that the difference between the Abakus and the Coulter counter measurements is mainly caused by the irregular shape of dust particles in ice core samples. The irregular shape means that a new calibration routine based on standard spheres is necessary for obtaining fully comparable data. This new calibration routine gives an increased accuracy to Abakus measurements, which may improve future ice core record intercomparisons. We derived an analytical model for extracting the aspect ratio of dust particles from the difference between Abakus and Coulter counter data. For verification, we measured the aspect ratio of the same samples directly using a single-particle extinction and scattering instrument. The results demonstrate that the model is accurate enough to discern between samples of aspect ratio 0.3 and 0.4 using only the comparison of Abakus and Coulter counter data.

  17. Morphological characteristics of overdeepenings in high-mountain glacier beds

    Science.gov (United States)

    Haeberli, Wilfried; Cochachin, Alejo; Fischer, Urs; Giráldez, Claudia; Linsbauer, Andreas; Salazar, Cesar

    2014-05-01

    Overdeepenings, i.e. closed topographic depressions with adverse slopes in the flow direction, are characteristic for glacier beds and glacially sculpted landscapes. Besides their importance as geomorphological landforms, groundwater bodies and sedimentary archives, they are of increasing interest in relation to climate-induced lake formation in de-glaciating landscapes and to depth erosion under ice age conditions in connection with the long-term safety of radioactive waste repositories in some mid-latitude countries. Quantitative predictions of their shape, distribution and conditions of occurrence, however, remain difficult. One major problem thereby relates to the still unsatisfactory treatment in glacier erosion theory of sediment evacuation at glacier beds, especially by subglacial meltwater. An alternative way of searching for realistic/empirical quantitative estimates is, therefore, to analyse the geometry of well-documented overdeepenings. The present study attempts to do this by combining statistical analyses of (a) detailed bathymetries from recently exposed lakes in the Peruvian Andes, (b) numerous bed overdeepenigs below still existing glaciers of the Swiss Alps and the Himalaya-Karakoram region modelled with a robust shear stress approximation linking surface slope to ice thickness at high resolution, and (c, for comparison) reconstructed overdeepenings produced by ice age glaciers in the Swiss Plateau based on numerous drillings and geophysical soundings. The sample of (a) has the advantage that geometries are exactly measured and only subject to young/small sedimentation effects. Sample (b) allows for a comparison with a modern model calculation and with known glacier characteristics. Sample (c) may provide some insights into the question how safely results from high mountain topography can be transferred to sites with markedly different topographic, climatic and glaciological controls (cold-arid lowland). Where possible, mean and maximum values of

  18. A comparison of the present and last interglacial periods in six Antarctic ice cores

    Directory of Open Access Journals (Sweden)

    V. Masson-Delmotte

    2011-04-01

    Full Text Available We compare the present and last interglacial periods as recorded in Antarctic water stable isotope records now available at various temporal resolutions from six East Antarctic ice cores: Vostok, Taylor Dome, EPICA Dome C (EDC, EPICA Dronning Maud Land (EDML, Dome Fuji and the recent TALDICE ice core from Talos Dome. We first review the different modern site characteristics in terms of ice flow, meteorological conditions, precipitation intermittency and moisture origin, as depicted by meteorological data, atmospheric reanalyses and Lagrangian moisture source diagnostics. These different factors can indeed alter the relationships between temperature and water stable isotopes. Using five records with sufficient resolution on the EDC3 age scale, common features are quantified through principal component analyses. Consistent with instrumental records and atmospheric model results, the ice core data depict rather coherent and homogenous patterns in East Antarctica during the last two interglacials. Across the East Antarctic plateau, regional differences, with respect to the common East Antarctic signal, appear to have similar patterns during the current and last interglacials. We identify two abrupt shifts in isotopic records during the glacial inception at TALDICE and EDML, likely caused by regional sea ice expansion. These regional differences are discussed in terms of moisture origin and in terms of past changes in local elevation histories, which are compared to ice sheet model results. Our results suggest that elevation changes may contribute significantly to inter-site differences. These elevation changes may be underestimated by current ice sheet models.

  19. Glaciers bring more precipitation over south slope of the Himalayas and less moisture to the Tibetan Plateau

    Science.gov (United States)

    Yang, K.; Lin, C.; Chen, D.

    2017-12-01

    Due to the warming climate, significant retreat of glaciers in the Himalayan region is observed. Thus, it is crucial to understand whether and how the glaciers impact (feedback to) regional climate. Due to lack of observational data, most processes with glaciers are however not well documented. For instance, convergence takes place when summertime upslope flows of warm and moist air masses meet cool and dry katabatic winds over a glacier slope, which may induce local convections and precipitations. This work intends to test this hypothesis according to an experiment conducted with the Weather Research and Forecasting (WRF) Model focusing on the Himalayan region. Three cases are designed for the experiment: a) a normal run as the control case; b) a sensitive run with land use ice/snow replaced by bare ground tundra and the maximum snow albedo set to 0.25; and c) a sensitive run with land use ice/snow replaced by bare ground tundra and no new snowing. According to differences between the control case and both the two sensitive cases, here we found that glaciers overall leads to less precipitation over glacier-covered areas and north of the Himalayas, which can be attributed to the suppressing of cooling glacier surfaces to upslope moist flows. By contrast, a zone of extra more precipitation (that can be up to 200 mm for JJA) is clearly found over the south slope of the Himalayas at elevation of 4-5 km where it meets the glacier terminus, accompanied with the convergence of upslope air masses and katabatic winds. Case b) reflects a smaller such effect when compared to case c), possibly because it takes a portion of energy for ice/snow melting. When it comes to impacts on water vapor transport, glaciers will result approximately 2% less moisture flowing into the Tibetan Plateau.

  20. The retreat of the world's mountain glaciers during recent decades

    International Nuclear Information System (INIS)

    Francou, B.; Vincent, Ch.

    2009-01-01

    Glaciers have become essential tools for measuring changes in the global environment. Here, we analyze glacier evolution during the last few decades and we wonder whether the observed retreat remains in the range of glacier fluctuations since the mid-Holocene. The main fluctuations experienced by glaciers during the last millenniums, and particularly during the Little Ice Age (-1300 A.D. to ∼1860 A.D.), are presented succinctly. The recent 1960-2005 period, well documented both by ground and remote sensing observations, shows important disparities between different massifs concerning the timing and the magnitude of glacier fluctuations, which depend on regional climatic conditions. The links between glacier mass balance evolution and climate is clear when approached from an energy balance but the variables commonly considered are only temperature and precipitation. The strong correlation existing between these variables and the mass balance evolution makes it possible to simulate glaciers in the future in function of distinct climatic scenarios. Modeling glacier retreat for the 21. century is an important goal because it will allow the impacts on water resource and sea level to be assessed. (authors)