WorldWideScience

Sample records for glacier annual balance

  1. Monitoring glacier albedo as a proxy to derive summer and annual surface mass balances from optical remote-sensing data

    Science.gov (United States)

    Davaze, Lucas; Rabatel, Antoine; Arnaud, Yves; Sirguey, Pascal; Six, Delphine; Letreguilly, Anne; Dumont, Marie

    2018-01-01

    Less than 0.25 % of the 250 000 glaciers inventoried in the Randolph Glacier Inventory (RGI V.5) are currently monitored with in situ measurements of surface mass balance. Increasing this archive is very challenging, especially using time-consuming methods based on in situ measurements, and complementary methods are required to quantify the surface mass balance of unmonitored glaciers. The current study relies on the so-called albedo method, based on the analysis of albedo maps retrieved from optical satellite imagery acquired since 2000 by the MODIS sensor, on board the TERRA satellite. Recent studies revealed substantial relationships between summer minimum glacier-wide surface albedo and annual surface mass balance, because this minimum surface albedo is directly related to the accumulation-area ratio and the equilibrium-line altitude. On the basis of 30 glaciers located in the French Alps where annual surface mass balance data are available, our study conducted on the period 2000-2015 confirms the robustness and reliability of the relationship between the summer minimum surface albedo and the annual surface mass balance. For the ablation season, the integrated summer surface albedo is significantly correlated with the summer surface mass balance of the six glaciers seasonally monitored. These results are promising to monitor both annual and summer glacier-wide surface mass balances of individual glaciers at a regional scale using optical satellite images. A sensitivity study on the computed cloud masks revealed a high confidence in the retrieved albedo maps, restricting the number of omission errors. Albedo retrieval artifacts have been detected for topographically incised glaciers, highlighting limitations in the shadow correction algorithm, although inter-annual comparisons are not affected by systematic errors.

  2. Quantification of seasonal to annual mass balances from glacier surface albedo derived from optical satellite images, application on 30 glaciers in the French Alps for the period 2000-2015.

    Science.gov (United States)

    Davaze, Lucas; Rabatel, Antoine; Arnaud, Yves; Sirguey, Pascal; Six, Delphine; Letreguilly, Anne; Dumont, Marie

    2017-04-01

    Increasing the number of glaciers monitored for surface mass balance is very challenging, especially using laborious methods based on in situ data. Complementary methods are therefore required to quantify the surface mass balance of unmonitored glaciers. The current study relies on the so-called albedo method, based on the analysis of albedo maps retrieved from optical satellite imagery acquired since 2000 by the MODIS sensor, onboard of TERRA satellite. Recent studies performed on single glaciers in the French Alps, the Himalayas or the Southern Alps of New Zealand revealed substantial relationships between summer minimum glacier-wide surface albedo and annual mass balance, because this minimum surface albedo is directly related to accumulation-area ratio and the equilibrium-line altitude. On the basis of 30 glaciers located in the French Alps where annual surface mass balance are available, our study conducted on the period 2000-2015 confirms the robustness and reliability of the relationship between the summer minimum surface albedo and the annual surface mass balance. At the seasonal scale, the integrated summer surface albedo is significantly correlated with the summer mass balance of the six glaciers seasonally surveyed. For the winter season, four of the six glaciers showed a significant correlation when linking the winter surface mass balance and the integrated winter surface albedo, using glacier-dependent thresholds to filter the albedo signal. Sensitivity study on the computed cloud detection algorithm revealed high confidence in retrieved albedo maps. These results are promising to monitor both annual and seasonal glacier-wide surface mass balances of individual glaciers at a regional scale using optical satellite images.

  3. Gulkana Glacier, Alaska-Mass balance, meteorology, and water measurements, 1997-2001

    Science.gov (United States)

    March, Rod S.; O'Neel, Shad

    2011-01-01

    The measured winter snow, maximum winter snow, net, and annual balances for 1997-2001 in the Gulkana Glacier basin are determined at specific points and over the entire glacier area using the meteorological, hydrological, and glaciological data. We provide descriptions of glacier geometry to aid in estimation of conventional and reference surface mass balances and descriptions of ice motion to aid in the understanding of the glacier's response to its changing geometry. These data provide annual estimates for area altitude distribution, equilibrium line altitude, and accumulation area ratio during the study interval. New determinations of historical area altitude distributions are given for 1900 and annually from 1966 to 2001. As original weather instrumentation is nearing the end of its deployment lifespan, we provide new estimates of overlap comparisons and precipitation catch efficiency. During 1997-2001, Gulkana Glacier showed a continued and accelerated negative mass balance trend, especially below the equilibrium line altitude where thinning was pronounced. Ice motion also slowed, which combined with the negative mass balance, resulted in glacier retreat under a warming climate. Average annual runoff augmentation by glacier shrinkage for 1997-2001 was 25 percent compared to the previous average of 13 percent, in accordance with the measured glacier volume reductions.

  4. Opportunities and Challenges in Enhancing Value of Annual Glacier Mass Balance Monitoring Examples from Western North America

    Science.gov (United States)

    Pelto, M. S.

    2017-12-01

    Alpine glacier mass balance is the most accurate indicator of glacier response to climate and with retreat of alpine glaciers is one of the clearest signals of global climate change. Completion of long term, representative and homogenous mass balance field measurement of mass balance, compiled by WGMS, is a key climate data record. To ensure a monitoring program remains vital and funded local collaboration and connecting the research to local societal impacts is crucial. Working with local partners in collecting and providing the right data is critical whether their interest is in hydropower, irrigation, municipal supply, hazard reduction and/or aquatic ecosystems. The expansion of remote sensing and modeling capability provides both a challenge to continued relevance and an opportunity for field mass balance programs to expand relevance. In modelling studies of both glacier mass balance and glacier runoff transient balance data has equivalent value with annual balance data, for both calibration runs and as an input variable. This increases the utility of mid-season field observations. Remote sensing provides repeat imagery that often identifies the AAR and transient snowline of a glacier. For runoff assessment understanding the specific percent of glacier surface area that is glacier ice, older firn, and retained snowpack from the previous winter at frequent intervals during the melt season is vital since each region has a different melt factor. A denser field observation network combined with this imagery can provide additional point balance values of ablation that complement the mass balance record. Periodic measurement of mass balance at a denser network using GPR, LIDAR, TLS or probing is required to better understand long term point balance locations and is important at end of the melt season not just beginning, and has value mid-season for modelling. Applications of each of utility of field mass balance observations will be illustrated.

  5. Mass balance, meteorology, area altitude distribution, glacier-surface altitude, ice motion, terminus position, and runoff at Gulkana Glacier, Alaska, 1996 balance year

    Science.gov (United States)

    March, Rod S.

    2003-01-01

    The 1996 measured winter snow, maximum winter snow, net, and annual balances in the Gulkana Glacier Basin were evaluated on the basis of meteorological, hydrological, and glaciological data. Averaged over the glacier, the measured winter snow balance was 0.87 meter on April 18, 1996, 1.1 standard deviation below the long-term average; the maximum winter snow balance, 1.06 meters, was reached on May 28, 1996; and the net balance (from August 30, 1995, to August 24, 1996) was -0.53 meter, 0.53 standard deviation below the long-term average. The annual balance (October 1, 1995, to September 30, 1996) was -0.37 meter. Area-averaged balances were reported using both the 1967 and 1993 area altitude distributions (the numbers previously given in this abstract use the 1993 area altitude distribution). Net balance was about 25 percent less negative using the 1993 area altitude distribution than the 1967 distribution. Annual average air temperature was 0.9 degree Celsius warmer than that recorded with the analog sensor used since 1966. Total precipitation catch for the year was 0.78 meter, 0.8 standard deviations below normal. The annual average wind speed was 3.5 meters per second in the first year of measuring wind speed. Annual runoff averaged 1.50 meters over the basin, 1.0 standard deviation below the long-term average. Glacier-surface altitude and ice-motion changes measured at three index sites document seasonal ice-speed and glacier-thickness changes. Both showed a continuation of a slowing and thinning trend present in the 1990s. The glacier terminus and lower ablation area were defined for 1996 with a handheld Global Positioning System survey of 126 locations spread out over about 4 kilometers on the lower glacier margin. From 1949 to 1996, the terminus retreated about 1,650 meters for an average retreat rate of 35 meters per year.

  6. Relative performance of empirical and physical models in assessing the seasonal and annual glacier surface mass balance of Saint-Sorlin Glacier (French Alps)

    Science.gov (United States)

    Réveillet, Marion; Six, Delphine; Vincent, Christian; Rabatel, Antoine; Dumont, Marie; Lafaysse, Matthieu; Morin, Samuel; Vionnet, Vincent; Litt, Maxime

    2018-04-01

    This study focuses on simulations of the seasonal and annual surface mass balance (SMB) of Saint-Sorlin Glacier (French Alps) for the period 1996-2015 using the detailed SURFEX/ISBA-Crocus snowpack model. The model is forced by SAFRAN meteorological reanalysis data, adjusted with automatic weather station (AWS) measurements to ensure that simulations of all the energy balance components, in particular turbulent fluxes, are accurately represented with respect to the measured energy balance. Results indicate good model performance for the simulation of summer SMB when using meteorological forcing adjusted with in situ measurements. Model performance however strongly decreases without in situ meteorological measurements. The sensitivity of the model to meteorological forcing indicates a strong sensitivity to wind speed, higher than the sensitivity to ice albedo. Compared to an empirical approach, the model exhibited better performance for simulations of snow and firn melting in the accumulation area and similar performance in the ablation area when forced with meteorological data adjusted with nearby AWS measurements. When such measurements were not available close to the glacier, the empirical model performed better. Our results suggest that simulations of the evolution of future mass balance using an energy balance model require very accurate meteorological data. Given the uncertainties in the temporal evolution of the relevant meteorological variables and glacier surface properties in the future, empirical approaches based on temperature and precipitation could be more appropriate for simulations of glaciers in the future.

  7. Relative performance of empirical and physical models in assessing the seasonal and annual glacier surface mass balance of Saint-Sorlin Glacier (French Alps

    Directory of Open Access Journals (Sweden)

    M. Réveillet

    2018-04-01

    Full Text Available This study focuses on simulations of the seasonal and annual surface mass balance (SMB of Saint-Sorlin Glacier (French Alps for the period 1996–2015 using the detailed SURFEX/ISBA-Crocus snowpack model. The model is forced by SAFRAN meteorological reanalysis data, adjusted with automatic weather station (AWS measurements to ensure that simulations of all the energy balance components, in particular turbulent fluxes, are accurately represented with respect to the measured energy balance. Results indicate good model performance for the simulation of summer SMB when using meteorological forcing adjusted with in situ measurements. Model performance however strongly decreases without in situ meteorological measurements. The sensitivity of the model to meteorological forcing indicates a strong sensitivity to wind speed, higher than the sensitivity to ice albedo. Compared to an empirical approach, the model exhibited better performance for simulations of snow and firn melting in the accumulation area and similar performance in the ablation area when forced with meteorological data adjusted with nearby AWS measurements. When such measurements were not available close to the glacier, the empirical model performed better. Our results suggest that simulations of the evolution of future mass balance using an energy balance model require very accurate meteorological data. Given the uncertainties in the temporal evolution of the relevant meteorological variables and glacier surface properties in the future, empirical approaches based on temperature and precipitation could be more appropriate for simulations of glaciers in the future.

  8. Comparison of Glaciological and Gravimetric Glacier Mass Balance Measurements of Taku and Lemon Creek Glaciers, Southeast Alaska

    Science.gov (United States)

    Vogler, K.; McNeil, C.; Bond, M.; Getraer, B.; Huxley-Reicher, B.; McNamara, G.; Reinhardt-Ertman, T.; Silverwood, J.; Kienholz, C.; Beedle, M. J.

    2017-12-01

    Glacier-wide annual mass balances (Ba) have been calculated for Taku (726 km2) and Lemon Creek glaciers (10.2 km2) since 1946 and 1953 respectively. These are the longest mass balance records in North America, and the only Ba time-series available for Southeast Alaska, making them particularly valuable for the global glacier mass balance monitoring network. We compared Ba time-series from Taku and Lemon Creek glaciers to Gravity Recovery and Climate Experiment (GRACE) mascon solutions (1352 and 1353) during the 2004-2015 period to assess how well these gravimetric solutions reflect individual glaciological records. Lemon Creek Glacier is a challenging candidate for this comparison because it is small compared to the 12,100 km2 GRACE mascon solutions. Taku Glacier is equally challenging because its mass balance is stable compared to the negative balances dominating its neighboring glaciers. Challenges notwithstanding, a high correlation between the glaciological and gravimetrically-derived Ba for Taku and Lemon Creek glaciers encourage future use of GRACE to measure glacier mass balance. Additionally, we employed high frequency ground penetrating radar (GPR) to measure the variability of accumulation around glaciological sites to assess uncertainty in our glaciological measurements, and the resulting impact to Ba. Finally, we synthesize this comparison of glaciological and gravimetric mass balance solutions with a discussion of potential sources of error in both methods and their combined utility for measuring regional glacier change during the 21st century.

  9. Remote Sensing of Cryosphere: Estimation of Mass Balance Change in Himalayan Glaciers

    Science.gov (United States)

    Ambinakudige, Shrinidhi; Joshi, Kabindra

    2012-07-01

    Glacial changes are an important indicator of climate change. Our understanding mass balance change in Himalayan glaciers is limited. This study estimates mass balance of some major glaciers in the Sagarmatha National Park (SNP) in Nepal using remote sensing applications. Remote sensing technique to measure mass balance of glaciers is an important methodological advance in the highly rugged Himalayan terrain. This study uses ASTER VNIR, 3N (nadir view) and 3B (backward view) bands to generate Digital Elevation Models (DEMs) for the SNP area for the years 2002, 2003, 2004 and 2005. Glacier boundaries were delineated using combination of boundaries available in the Global land ice measurement (GLIMS) database and various band ratios derived from ASTER images. Elevation differences, glacial area, and ice densities were used to estimate the change in mass balance. The results indicated that the rate of glacier mass balance change was not uniform across glaciers. While there was a decrease in mass balance of some glaciers, some showed increase. This paper discusses how each glacier in the SNP area varied in its annual mass balance measurement during the study period.

  10. Water, ice, and meteorological measurements at South Cascade Glacier, Washington, balance year 2002

    Science.gov (United States)

    Bidlake, William R.; Josberger, Edward G.; Savoca, Mark E.

    2004-01-01

    Winter snow accumulation and summer snow and ice ablation were measured at South Cascade Glacier, Washington, to estimate glacier mass balance quantities for balance year 2002. The 2002 glacier-average maximum winter snow balance was 4.02 meters, the second largest since 1959. The 2002 glacier summer, net, and annual (water year) balances were -3.47, 0.55, and 0.54 meters, respectively. The area of the glacier near the end of the balance year was 1.92 square kilometers, and the equilibrium-line altitude and the accumulation area ratio were 1,820 meters and 0.84, respectively. During September 20, 2001 to September 13, 2002, the terminus retreated 4 meters, and computed average ice speeds in the ablation area ranged from 7.8 to 20.7 meters per year. Runoff from the subbasin containing the glacier and from an adjacent non-glacierized basin were measured during part of the 2002 water year. Air temperature, precipitation, atmospheric water-vapor pressure, wind speed and incoming solar radiation were measured at selected locations near the glacier.

  11. Modelled and observed mass balance of Rikha Samba Glacier, Nepal, Central Himalaya

    Science.gov (United States)

    Gurung, T. R.; Kayastha, R. B.; Fujita, K.; Sinisalo, A. K.; Stumm, D.; Joshi, S.; Litt, M.

    2016-12-01

    Glacier mass balance variability has an implication for the regional water resources and it helps to understand the response of glacier to climate change in the Himalayan region. Several mass balance studies have been started in the Himalayan region since 1970s, but they are characterized by frequent temporal gaps and a poor spatial representatively. This study aims at bridging the temporal gaps in a long term mass balance series of the Rikha Samba glacier (5383 - 6475 m a.s.l.), a benchmark glacier located in the Hidden Valley, Mustang, Nepal. The ERA Interim reanalysis data for the period 2011-2015 is calibrated with the observed meteorological variables from an AWS installed near the glacier terminus. We apply an energy mass balance model, validated with the available in-situ measurements for the years 1998 and 2011-2015. The results show that the glacier is shrinking at a moderate negative mass balance rate for the period 1995 to 2015 and the high altitude location of Rikha Samba also prevents a bigger mass loss compared to other small Himalayan glaciers. Precipitation from July to January and the mean air temperature from June to October are the most influential climatic parameters of the annual mass balance variability of Rikha Samba glacier.

  12. Water, ice, and meteorological measurements at South Cascade glacier, Washington, balance year 2003

    Science.gov (United States)

    Bidlake, William R.; Josberger, Edward G.; Savoca, Mark E.

    2005-01-01

    Winter snow accumulation and summer snow and ice ablation were measured at South Cascade Glacier, Washington, to estimate glacier mass-balance quantities for balance year 2003. The 2003 glacier-average maximum winter snow balance was 2.66 meters water equivalent, which was about equal to the average of such balances for the glacier since balance year 1959. The 2003 glacier summer balance (-4.76 meters water equivalent) was the most negative reported for the glacier, and the 2003 net balance (-2.10 meters water equivalent), was the second-most negative reported. The glacier 2003 annual (water year) balance was -1.89 meters water equivalent. The area of the glacier near the end of the balance year was 1.89 square kilometers, a decrease of 0.03 square kilometer from the previous year. The equilibrium-line altitude was higher than any part of the glacier; however, because snow remained along part of one side of the upper glacier, the accumulation-area ratio was 0.07. During September 13, 2002-September 13, 2003, the glacier terminus retreated at a rate of about 15 meters per year. Average speed of surface ice, computed using a series of vertical aerial photographs dating back to 2001, ranged from 2.2 to 21.8 meters per year. Runoff from the subbasin containing the glacier and from an adjacent non-glacierized basin was gaged during part of water year 2003. Air temperature, precipitation, atmospheric water-vapor pressure, wind speed, and incoming solar radiation were measured at selected locations on and near the glacier. Summer 2003 at the glacier was among the warmest for which data are available.

  13. Glacier Mass Changes of Lake-Terminating Grey and Tyndall Glaciers at the Southern Patagonia Icefield Derived From Geodetic Observations and Energy and Mass Balance Modeling

    Directory of Open Access Journals (Sweden)

    Stephanie S. Weidemann

    2018-06-01

    Full Text Available In this study we demonstrate how energy and mass fluxes vary in space and time for Grey and Tyndall glaciers at the Southern Patagonia Icefield (SPI. Despite the overall glacier retreat of most Patagonian glaciers, a recent increase in mass loss has been observed, but individual glaciers respond differently in terms of spatial and temporal changes. In this context, the detailed investigation of the effect of mass balance processes on recent glacier response to climate forcing still needs refinement. We therefore quantify surface energy-fluxes and climatic mass balance of the two neighboring glaciers, Grey and Tyndall. The COupled Snow and Ice energy and MAss balance model COSIMA is applied to assess recent surface energy and climatic mass balance variability with a high temporal and spatial resolution for a 16-year period between April 2000 and March 2016. The model is driven by downscaled 6-hourly atmospheric data derived from ERA-Interim reanalysis and MODIS/Terra Snow Cover and validated against ablation measurements made in single years. High resolution precipitation fields are determined by using an analytical orographic precipitation model. Frontal ablation is estimated as residual of climatic mass balance and geodetic mass balance derived from TanDEM-X/SRTM between 2000 and 2014. We simulate a positive glacier-wide mean annual climatic mass balance of +1.02 ± 0.52 m w.e. a−1 for Grey Glacier and of +0.68 ± 0.54 m w.e. a−1 for Tyndall Glacier between 2000 and 2014. Climatic mass balance results show a high year to year variability. Comparing climatic mass balance results with previous studies underlines the high uncertainty in climatic mass balance modeling with respect to accumulation on the SPI. Due to the lack of observations accumulation estimates differ from previous studies based on the methodological approaches. Mean annual ice loss by frontal ablation is estimated to be 2.07 ± 0.70 m w.e. a−1 for Grey Glacier and 3.26 ± 0

  14. Comparison of tropical and subtropical glacier surface energy balance in Africa and South America

    Science.gov (United States)

    Nicholson, L.; Prinz, R.; Kinnard, C.; Mölg, T.; Winkler, M.; Kaser, G.

    2010-05-01

    Tropical glaciers exist only at high altitude, and meteorological and surface energy balance studies of these glaciers can tell us much about the conditions and changes occurring in the mid troposphere. Understanding the surface energy balance and resultant mass balance regime of tropical glaciers is prerequisite to predicting glacier evolution, and future meltwater contributions to local hydrological resources, in response to future climate scenarios. Tropical glacier mass balance variability is strongly linked to precipitation and, via this, to multi-annual climate oscillations such as ENSO and IOZM, so it is useful to understand what role these differing regional influences play in comparison to the similarities imposed by the overarching tropical climate conditions and seasonality. New surface energy balance and mass balance data is available from Lewis glacier (Kenya, 0°09' S; 37°18' E), and here we use an energy and mass balance model to determine the surface energy flux characteristics at this site through a wet and dry season. Results are compared with those from Kersten glacier (Tanzania, 3°04' S; 37°21' E) to understand how conditions at these two glaciers compare and thus what coherent and contrasting climatic information glaciological records from these two sites can be expected to deliver. Meteorological data available from glacier stations on Antizana (Ecuador, 0°25' S; 78°09' W), Artesonraju (Peru, 8°28' S; 77°38' W) Zongo (Bolivia, 16°39' S; 67°47' W) and Guanaco (Chile, 29°20' S; 70°00' W) glaciers in South America offer the opportunity to examine how the surface fluxes and seasonal variability of the energy balance compares to those of the African glaciers. We include the extra-tropical Chilean example for comparison with the similarly high altitude, cold ice of Kersten glacier.

  15. Simulation and reconstruction of parameters of streamflow and glacier mass balance in the Northern Caucasus

    Directory of Open Access Journals (Sweden)

    V. G. Konovalov

    2014-01-01

    Full Text Available The work was aimed at numerical modeling of spatial-temporal variability of the river Terek seasonal (April to September streamflow characteristics and long-term fluctuations of components of annual glacier mass balances in this basin and on the adjacent territories. Mass balance of glaciers Djankuat and Garabashi was calculated. Simulation was performed by means of stochastic modeling and discrete data presenting fields of main meteorological parameters (precipitation, air temperature and humidity having effect on the streamflow. Realization of this approach is complicated by the fact that spatial representativeness of hydrological and meteorological sites are not corresponding one to another. Data on the runoff is clearly related to the total drainage area closed by a gauging station. And for this data we study a relationship with meteorological parameters which are measured at a non-regular observational network whose spatial representativeness is unknown. These stations are generally located beyond the area under investigation (Fig. 2. Similar problem exists when we analyze a relationship between components of the mass balance of individual glaciers (Djankuat and Garabashi and the above climate characteristics measured at some stations located on the whole Caucasus territory. The same takes place when long-term indices of width and density of tree annual rings obtained in upper reaches of the river Kuban’ are used for analysis of variations of the runoff and the glacier mass balance in the river Terek basin located at a distance of 100-150 km from the Kuban’ dendrologic sites.To solve the problem we used a wide number of factors which directly (various information about the climate or indirectly (indices of the climate dryness, wood ring characteristics characterize conditions of formation of annual and seasonal river runoff and components of glacier mass balance in the North Caucasus. Use of all obtained information made possible the

  16. An Analysis of Mass Balance of Chilean Glaciers

    Science.gov (United States)

    Ambinakudige, S.; Tetteh, L.

    2013-12-01

    Glaciers in Chile range from very small glacierets found on the isolated volcanoes of northern Chile to the 13,000 sq.km Southern Patagonian Ice Field. Regular monitoring of these glaciers is very important as they are considered as sensitive indicators of climate change. Millions of people's lives are dependent on these glaciers for fresh water and irrigation purpose. In this study, mass balances of several Chilean glaciers were estimated using Aster satellite images between 2007 and 2012. Highly accurate DEMs were created with supplementary information from IceSat data. The result indicated a negative mass balance for many glaciers indicating the need for further monitoring of glaciers in the Andes.

  17. Enhancement of a parsimonious water balance model to simulate surface hydrology in a glacierized watershed

    Science.gov (United States)

    Valentin, Melissa M.; Viger, Roland J.; Van Beusekom, Ashley E.; Hay, Lauren E.; Hogue, Terri S.; Foks, Nathan Leon

    2018-01-01

    The U.S. Geological Survey monthly water balance model (MWBM) was enhanced with the capability to simulate glaciers in order to make it more suitable for simulating cold region hydrology. The new model, MWBMglacier, is demonstrated in the heavily glacierized and ecologically important Copper River watershed in Southcentral Alaska. Simulated water budget components compared well to satellite‐based observations and ground measurements of streamflow, evapotranspiration, snow extent, and total water storage, with differences ranging from 0.2% to 7% of the precipitation flux. Nash Sutcliffe efficiency for simulated and observed streamflow was greater than 0.8 for six of eight stream gages. Snow extent matched satellite‐based observations with Nash Sutcliffe efficiency values of greater than 0.89 in the four Copper River ecoregions represented. During the simulation period 1949 to 2009, glacier ice melt contributed 25% of total runoff, ranging from 12% to 45% in different tributaries, and glacierized area was reduced by 6%. Statistically significant (p < 0.05) decreasing and increasing trends in annual glacier mass balance occurred during the multidecade cool and warm phases of the Pacific Decadal Oscillation, respectively, reinforcing the link between climate perturbations and glacier mass balance change. The simulations of glaciers and total runoff for a large, remote region of Alaska provide useful data to evaluate hydrologic, cryospheric, ecologic, and climatic trends. MWBM glacier is a valuable tool to understand when, and to what extent, streamflow may increase or decrease as glaciers respond to a changing climate.

  18. Comparison of direct and geodetic mass balances on a multi-annual time scale

    Directory of Open Access Journals (Sweden)

    A. Fischer

    2011-02-01

    Full Text Available The geodetic mass balances of six Austrian glaciers over 19 periods between 1953 and 2006 are compared to the direct mass balances over the same periods. For two glaciers, Hintereisferner and Kesselwandferner, case studies showing possible reasons for discrepancies between the geodetic and the direct mass balance are presented. The mean annual geodetic mass balance for all periods is −0.5 m w.e. a−1, the mean annual direct mass balance −0.4 m w.e. a−1. The mean cumulative difference is −0.6 m w.e., the minimum −7.3 m w.e., and the maximum 5.6 m w.e. The accuracy of geodetic mass balance may depend on the accuracy of the DEMs, which ranges from 2 m w.e. for photogrammetric data to 0.02 m w.e. for airborne laser scanning (LiDAR data. Basal melt, seasonal snow cover, and density changes of the surface layer also contribute up to 0.7 m w.e. to the difference between the two methods over the investigated period of 10 yr. On Hintereisferner, the fraction of area covered by snow or firn has been changing within 1953–2006. The accumulation area is not identical with the firn area, and both are not coincident with areas of volume gain. Longer periods between the acquisition of the DEMs do not necessarily result in a higher accuracy of the geodetic mass balance. Trends in the difference between the direct and the geodetic data vary from glacier to glacier and can differ systematically for specific glaciers under specific types of climate forcing. Ultimately, geodetic and direct mass balance data are complementary, and great care must be taken when attempting to combine them.

  19. A 30-year record of surface mass balance (1966-95) and motion and surface altitude (1975-95) at Wolverine Glacier, Alaska

    Science.gov (United States)

    Mayo, Lawrence R.; Trabant, Dennis C.; March, Rod S.

    2004-01-01

    Scientific measurements at Wolverine Glacier, on the Kenai Peninsula in south-central Alaska, began in April 1966. At three long-term sites in the research basin, the measurements included snow depth, snow density, heights of the glacier surface and stratigraphic summer surfaces on stakes, and identification of the surface materials. Calculations of the mass balance of the surface strata-snow, new firn, superimposed ice, and old firn and ice mass at each site were based on these measurements. Calculations of fixed-date annual mass balances for each hydrologic year (October 1 to September 30), as well as net balances and the dates of minimum net balance measured between time-transgressive summer surfaces on the glacier, were made on the basis of the strata balances augmented by air temperature and precipitation recorded in the basin. From 1966 through 1995, the average annual balance at site A (590 meters altitude) was -4.06 meters water equivalent; at site B (1,070 meters altitude), was -0.90 meters water equivalent; and at site C (1,290 meters altitude), was +1.45 meters water equivalent. Geodetic determination of displacements of the mass balance stake, and glacier surface altitudes was added to the data set in 1975 to detect the glacier motion responses to variable climate and mass balance conditions. The average surface speed from 1975 to 1996 was 50.0 meters per year at site A, 83.7 meters per year at site B, and 37.2 meters per year at site C. The average surface altitudes were 594 meters at site A, 1,069 meters at site B, and 1,293 meters at site C; the glacier surface altitudes rose and fell over a range of 19.4 meters at site A, 14.1 meters at site B, and 13.2 meters at site C.

  20. Juneau Icefield Mass Balance Program 1946-2011

    Science.gov (United States)

    Pelto, M.; Kavanaugh, J.; McNeil, C.

    2013-11-01

    The annual surface mass balance records of the Lemon Creek Glacier and Taku Glacier observed by the Juneau Icefield Research Program are the longest continuous glacier annual mass balance data sets in North America. Annual surface mass balance (Ba) measured on Taku Glacier averaged +0.40 m a-1 from 1946-1985, and -0.08 m a-1 from 1986-2011. The recent annual mass balance decline has resulted in the cessation of the long-term thickening of the glacier. Mean Ba on Lemon Creek Glacier has declined from -0.30 m a-1 for the 1953-1985 period to -0.60 m a-1 during the 1986-2011 period. The cumulative change in annual surface mass balance is -26.6 m water equivalent, a 29 m of ice thinning over the 55 yr. Snow-pit measurements spanning the accumulation zone, and probing transects above the transient snow line (TSL) on Taku Glacier, indicate a consistent surface mass balance gradient from year to year. Observations of the rate of TSL rise on Lemon Creek Glacier and Taku Glacier indicate a comparatively consistent migration rate of 3.8 to 4.1 m d-1. The relationship between TSL on Lemon Creek Glacier and Taku Glacier to other Juneau Icefield glaciers (Norris, Mendenhall, Herbert, and Eagle) is strong, with correlations exceeding 0.82 in all cases. doi:10.5065/D6NZ85N3

  1. Mass balance and hydrological contribution of glaciers in northern and central Chile

    Science.gov (United States)

    MacDonell, Shelley; Vivero, Sebastian; McPhee, James; Ayala, Alvaro; Pellicciotti, Francesca; Campos, Cristian; Caro, Dennys; Ponce, Rodrigo

    2016-04-01

    Water is a critical resource in the northern and central regions of Chile, as the area supports more than 40% of the country's population, and the regional economy depends on agricultural production and mining, which are two industries that rely heavily on a consistent water supply. Due to relatively low rates of rainfall, meltwater from snow and ice bodies in the highland areas provides a key component of the annual water supply in these areas. Consequently, accurate estimates of the rates of ablation of the cryosphere (i.e. snow and ice) are crucial for predicting current supply rates, and future projections. Whilst snow is generally a larger contributor of freshwater, during periods of drought, glaciers provide a significant source. This study aims to determine the contribution of glaciers to two catchments in northern and central Chile during a 2.5 year period, which largely consisted of extreme dry periods, but also included the recent El Niño event. This study combined field and modelling studies to understand glacier and rock glacier contributions in the Tapado (30°S), Yeso (33°S) catchments. In the field we undertook glaciological mass balance monitoring of three glaciers, monitored albedo and snow line changes using automatic cameras for three glaciers, measured discharge continuously at several points, installed six automatic weather stations and used thermistors to monitor thermal regime changes of two rock glaciers. The combination of these datasets where used to drive energy balance and hydrological models to estimate the contribution of ice bodies to streamflow in the two studied catchments. Over the course of the study all glaciers maintained a negative mass balance, however glaciers in central Chile lost more mass, which is due to the higher melt rates experienced due to lower elevations and higher temperatures. Areas free of debris generally contributed more to streamflow than sediment covered regions, and snow generally contributed more over

  2. Water, Ice, and Meteorological Measurements at South Cascade Glacier, Washington, Balance Years 2004 and 2005

    Science.gov (United States)

    Bidlake, William R.; Josberger, Edward G.; Savoca, Mark E.

    2007-01-01

    Winter snow accumulation and summer snow and ice ablation were measured at South Cascade Glacier, Washington, to estimate glacier mass-balance quantities for balance years 2004 and 2005. The North Cascade Range in the vicinity of South Cascade Glacier accumulated smaller than normal winter snowpacks during water years 2004 and 2005. Correspondingly, the balance years 2004 and 2005 maximum winter snow balances of South Cascade Glacier, 2.08 and 1.97 meters water equivalent, respectively, were smaller than the average of such balances since 1959. The 2004 glacier summer balance (-3.73 meters water equivalent) was the eleventh most negative during 1959 to 2005 and the 2005 glacier summer balance (-4.42 meters water equivalent) was the third most negative. The relatively small winter snow balances and unusually negative summer balances of 2004 and 2005 led to an overall loss of glacier mass. The 2004 and 2005 glacier net balances, -1.65 and -2.45 meters water equivalent, respectively, were the seventh and second most negative during 1953 to 2005. For both balance years, the accumulation area ratio was less than 0.05 and the equilibrium line altitude was higher than the glacier. The unusually negative 2004 and 2005 glacier net balances, combined with a negative balance previously reported for 2003, resulted in a cumulative 3-year net balance of -6.20 meters water equivalent. No equal or greater 3-year mass loss has occurred previously during the more than 4 decades of U.S. Geological Survey mass-balance measurements at South Cascade Glacier. Accompanying the glacier mass losses were retreat of the terminus and reduction of total glacier area. The terminus retreated at a rate of about 17 meters per year during balance year 2004 and 15 meters per year during balance year 2005. Glacier area near the end of balance years 2004 and 2005 was 1.82 and 1.75 square kilometers, respectively. Runoff from the basin containing the glacier and from an adjacent nonglacierized basin was

  3. Midlatitude Forcing Mechanisms for Glacier Mass Balance Investigated Using General Circulation Models

    NARCIS (Netherlands)

    Reichert, B.K.; Bengtsson, L.; Oerlemans, J.

    2001-01-01

    A process-oriented modeling approach is applied in order to simulate glacier mass balance for individual glaciers using statistically downscaled general circulation models (GCMs). Glacier-specific seasonal sensitivity characteristics based on a mass balance model of intermediate complexity are used

  4. How many stakes are required to measure the mass balance of a glacier?

    Science.gov (United States)

    Fountain, A.G.; Vecchia, A.

    1999-01-01

    Glacier mass balance is estimated for South Cascade Glacier and Maclure Glacier using a one-dimensional regression of mass balance with altitude as an alternative to the traditional approach of contouring mass balance values. One attractive feature of regression is that it can be applied to sparse data sets where contouring is not possible and can provide an objective error of the resulting estimate. Regression methods yielded mass balance values equivalent to contouring methods. The effect of the number of mass balance measurements on the final value for the glacier showed that sample sizes as small as five stakes provided reasonable estimates, although the error estimates were greater than for larger sample sizes. Different spatial patterns of measurement locations showed no appreciable influence on the final value as long as different surface altitudes were intermittently sampled over the altitude range of the glacier. Two different regression equations were examined, a quadratic, and a piecewise linear spline, and comparison of results showed little sensitivity to the type of equation. These results point to the dominant effect of the gradient of mass balance with altitude of alpine glaciers compared to transverse variations. The number of mass balance measurements required to determine the glacier balance appears to be scale invariant for small glaciers and five to ten stakes are sufficient.

  5. Modeled and measured glacier change and related glaciological, hydrological, and meteorological conditions at South Cascade Glacier, Washington, balance and water years 2006 and 2007

    Science.gov (United States)

    Bidlake, William R.; Josberger, Edward G.; Savoca, Mark E.

    2010-01-01

    Winter snow accumulation and summer snow and ice ablation were measured at South Cascade Glacier, Washington, to estimate glacier mass balance quantities for balance years 2006 and 2007. Mass balances were computed with assistance from a new model that was based on the works of other glacier researchers. The model, which was developed for mass balance practitioners, coupled selected meteorological and glaciological data to systematically estimate daily mass balance at selected glacier sites. The North Cascade Range in the vicinity of South Cascade Glacier accumulated approximately average to above average winter snow packs during 2006 and 2007. Correspondingly, the balance years 2006 and 2007 maximum winter snow mass balances of South Cascade Glacier, 2.61 and 3.41 meters water equivalent, respectively, were approximately equal to or more positive (larger) than the average of such balances since 1959. The 2006 glacier summer balance, -4.20 meters water equivalent, was among the four most negative since 1959. The 2007 glacier summer balance, -3.63 meters water equivalent, was among the 14 most negative since 1959. The glacier continued to lose mass during 2006 and 2007, as it commonly has since 1953, but the loss was much smaller during 2007 than during 2006. The 2006 glacier net balance, -1.59 meters water equivalent, was 1.02 meters water equivalent more negative (smaller) than the average during 1953-2005. The 2007 glacier net balance, -0.22 meters water equivalent, was 0.37 meters water equivalent less negative (larger) than the average during 1953-2006. The 2006 accumulation area ratio was less than 0.10, owing to isolated patches of accumulated snow that endured the 2006 summer season. The 2006 equilibrium line altitude was higher than the glacier. The 2007 accumulation area ratio and equilibrium line altitude were 0.60 and 1,880 meters, respectively. Accompanying the glacier mass losses were retreat of the terminus and reduction of total glacier area. The

  6. Analysis of High Resolution Satellite imagery to acsees Glacier Mass Balance and Lake Hazards in Sikkim Himalayas

    Science.gov (United States)

    Bhushan, S.; Shean, D. E.; Haritashya, U. K.; Arendt, A. A.; Syed, T. H.; Setiawan, L.

    2017-12-01

    Glacial lake outburst floods can impact downstream communities due to the sudden outflux of huge quantities of stored water. In this study, we develop a hazard assessment of the moraine dammed glacial lakes in Sikkim Himalayas by analyzing the morphometry of proglacial features, and the surface velocity and mass balance of glaciers. We generated high-resolution digital elevation models (DEMs) using the open-source NASA Ames Stereo Pipeline (ASP) and use other open-source tools to calculate surface velocity and patterns of glacier downwasting over time. Geodetic glacier mass balance is obtained for three periods using high-resolution WorldView/GeoEye stereo DEMs (8 m posting, 2014-2016), Cartosat-1 stereo DEMs (10 m, 2006-2008) and SRTM (30 m, 2000). Initial results reveal a region-wide mass balance of -0.31±0.13 m w.eq.a-1 for the 2007-2015 period, with some debris covered glaciers showing a very low mass loss rate. Additionally, 12 annual glacier velocity fields spanning from 1991 to 2017.derived from Landsat imagery are used to explore the relationship between glacier dynamics and changes in proglacial lakes. Multi-temporal glacial lake mapping is conducted using Landsat and Cartosat imagery. Avalanche and rockfall modeling are combined with morphometric analysis of the proglacial lake area to assess the likelihood of glacial lake dam failure. The above parameters are integrated into a decision tree approach enabling categorization of moraine-dammed lakes according to their potential for outburst events.

  7. Glaciers and ice caps outside Greenland

    Science.gov (United States)

    Sharp, Marin; Wolken, G.; Burgess, D.; Cogley, J.G.; Copland, L.; Thomson, L.; Arendt, A.; Wouters, B.; Kohler, J.; Andreassen, L.M.; O'Neel, Shad; Pelto, M.

    2015-01-01

    Mountain glaciers and ice caps cover an area of over 400 000 km2 in the Arctic, and are a major influence on global sea level (Gardner et al. 2011, 2013; Jacob et al. 2012). They gain mass by snow accumulation and lose mass by meltwater runoff. Where they terminate in water (ocean or lake), they also lose mass by iceberg calving. The climatic mass balance (Bclim, the difference between annual snow accumulation and annual meltwater runoff) is a widely used index of how glaciers respond to climate variability and change. The total mass balance (ΔM) is defined as the difference between annual snow accumulation and annual mass losses (by iceberg calving plus runoff).

  8. Exploring uncertainty in glacier mass balance modelling with Monte Carlo simulation

    NARCIS (Netherlands)

    Machguth, H.; Purves, R.S.; Oerlemans, J.; Hoelzle, M.; Paul, F.

    2008-01-01

    By means of Monte Carlo simulations we calculated uncertainty in modelled cumulative mass balance over 400 days at one particular point on the tongue of Morteratsch Glacier, Switzerland, using a glacier energy balance model of intermediate complexity. Before uncertainty assessment, the model was

  9. Unlocking annual firn layer water equivalents from ground-penetrating radar data on an Alpine glacier

    Directory of Open Access Journals (Sweden)

    L. Sold

    2015-05-01

    Full Text Available The spatial representation of accumulation measurements is a major limitation for current glacier mass balance monitoring approaches. Here, we present a method for estimating annual accumulation rates on a temperate Alpine glacier based on the interpretation of internal reflection horizons (IRHs in helicopter-borne ground-penetrating radar (GPR data. For each individual GPR measurement, the signal travel time is combined with a simple model for firn densification and refreezing of meltwater. The model is calibrated at locations where GPR repeat measurements are available in two subsequent years and the densification can be tracked over time. Two 10.5 m long firn cores provide a reference for the density and chronology of firn layers. Thereby, IRHs correspond to density maxima, but not exclusively to former summer glacier surfaces. Along GPR profile sections from across the accumulation area we obtain the water equivalent (w.e. of several annual firn layers. Because deeper IRHs could be tracked over shorter distances, the total length of analysed profile sections varies from 7.3 km for the uppermost accumulation layer (2011 to 0.1 km for the deepest (i.e. oldest layer (2006. According to model results, refreezing accounts for 10% of the density increase over time and depth, and for 2% of the water equivalent. The strongest limitation to our method is the dependence on layer chronology assumptions. We show that GPR can be used not only to complement existing mass balance monitoring programmes on temperate glaciers but also to retrospectively extend newly initiated time series.

  10. The energy balance on the surface of a tropical glacier tongue. Investigations on glacier Artesonraju, Cordillera Blanca, Perú.

    Science.gov (United States)

    Juen, I.; Mölg, T.; Wagnon, P.; Cullen, N. J.; Kaser, G.

    2006-12-01

    The Cordillera Blanca in Perú is situated in the Outer Tropics spanning from 8 to 10 ° South. Solar incidence and air temperature show only minor seasonal variations whereas precipitation occurs mainly from October to April. An energy balance station was installed on the tongue of glacier Artesonraju (4850 m a.s.l.) in March 2004. In this study each component of the energy balance on the glacier surface is analysed separately over a full year, covering one dry and one wet season. During the dry season glacier melt at the glacier tongue is app. 0.5 m we per month. In the wet season glacier melt is twice as much with 1 m we per month. This is due to higher energy fluxes and decreased sublimation during the wet season. With an energy balance model that has already been proved under tropical climate conditions (Mölg and Hardy, 2004) each energy flux is changed individually to evaluate the change in the amount of glacier melt. First results indicate that a change in humidity related variables affects glacier melt very differently in the dry and wet season, whereas a change in air temperature changes glacier melt more constantly throughout the year.

  11. A Mass Balance Model of Lyell and Maclure Glaciers in Yosemite National Park

    Science.gov (United States)

    Mendoza, K. A.; Stock, G. M.; Sharping, J. E.

    2015-12-01

    The Lyell and Maclure glaciers, two historically important glaciers of Yosemite National Park, have been rapidly retreating since the late 1800's. I attempted to quantify the water balance of two basins containing these glaciers. Water inputs were calculated by applying snow pillow data and two precipitation vs. elevation slope models. Water outputs consisted of a simplified evapotranspiration model and stream runoff data. Fifty-six linear combinations of precipitation and evaporation were used to develop water balance models. Most of these models predicted melt rates from the two glaciers outside of empirical observations. However, both the Lyell Glacier Basin and the Lyell Fork of the Tuolumne Basin water balance spreads had notable Kolmogorov-Smirnov test statistics: Lyell Glacier with p = 0.34 for 2013 and p = 0.37 for 2014, and Lyell Fork with p = 0.45 for 2009. The basin containing Lyell Glacier had a water balance spread of between -1,105×10^3m^3 and +58×10^3m^3+ (interquartile range) with a mean of -564×10^3m^3 for the 2013 hydrologic year, and between -1,137×10^3m^3 and +21×10^3m^3 (interquartile range) with a mean of-583×10^3m^3 for the 2014 hydrologic year. The Lyell fork of the Tuolumne basin containing both Lyell and Maclure Glaciers had a water balance spread of between-14,350×10^3m^3 and +7,454×10^3m^3 (interquartile range) with a mean of -2,426×10^3m^3 for the 2009 hydrologic year. Variations observed in water balance models for Lyell Glacier in this study are an order of magnitude larger than the expected melt signal, and two orders of magnitude for the Lyell Fork of the Tuolumne water balance models.

  12. Mass balance model parameter transferability on a tropical glacier

    Science.gov (United States)

    Gurgiser, Wolfgang; Mölg, Thomas; Nicholson, Lindsey; Kaser, Georg

    2013-04-01

    The mass balance and melt water production of glaciers is of particular interest in the Peruvian Andes where glacier melt water has markedly increased water supply during the pronounced dry seasons in recent decades. However, the melt water contribution from glaciers is projected to decrease with appreciable negative impacts on the local society within the coming decades. Understanding mass balance processes on tropical glaciers is a prerequisite for modeling present and future glacier runoff. As a first step towards this aim we applied a process-based surface mass balance model in order to calculate observed ablation at two stakes in the ablation zone of Shallap Glacier (4800 m a.s.l., 9°S) in the Cordillera Blanca, Peru. Under the tropical climate, the snow line migrates very frequently across most of the ablation zone all year round causing large temporal and spatial variations of glacier surface conditions and related ablation. Consequently, pronounced differences between the two chosen stakes and the two years were observed. Hourly records of temperature, humidity, wind speed, short wave incoming radiation, and precipitation are available from an automatic weather station (AWS) on the moraine near the glacier for the hydrological years 2006/07 and 2007/08 while stake readings are available at intervals of between 14 to 64 days. To optimize model parameters, we used 1000 model simulations in which the most sensitive model parameters were varied randomly within their physically meaningful ranges. The modeled surface height change was evaluated against the two stake locations in the lower ablation zone (SH11, 4760m) and in the upper ablation zone (SH22, 4816m), respectively. The optimal parameter set for each point achieved good model skill but if we transfer the best parameter combination from one stake site to the other stake site model errors increases significantly. The same happens if we optimize the model parameters for each year individually and transfer

  13. The influence of air temperature inversions on snowmelt and glacier mass-balance simulations, Ammassalik island, SE Greenland

    Energy Technology Data Exchange (ETDEWEB)

    Mernild, Sebastian Haugard [Los Alamos National Laboratory; Liston, Glen [COLORADO STATE UNIV.

    2009-01-01

    In many applications, a realistic description of air temperature inversions is essential for accurate snow and glacier ice melt, and glacier mass-balance simulations. A physically based snow-evolution modeling system (SnowModel) was used to simulate eight years (1998/99 to 2005/06) of snow accumulation and snow and glacier ice ablation from numerous small coastal marginal glaciers on the SW-part of Ammassalik Island in SE Greenland. These glaciers are regularly influenced by inversions and sea breezes associated with the adjacent relatively low temperature and frequently ice-choked fjords and ocean. To account for the influence of these inversions on the spatiotemporal variation of air temperature and snow and glacier melt rates, temperature inversion routines were added to MircoMet, the meteorological distribution sub-model used in SnowModel. The inversions were observed and modeled to occur during 84% of the simulation period. Modeled inversions were defined not to occur during days with strong winds and high precipitation rates due to the potential of inversion break-up. Field observations showed inversions to extend from sea level to approximately 300 m a.s.l., and this inversion level was prescribed in the model simulations. Simulations with and without the inversion routines were compared. The inversion model produced air temperature distributions with warmer lower elevation areas and cooler higher elevation areas than without inversion routines due to the use of cold sea-breeze base temperature data from underneath the inversion. This yielded an up to 2 weeks earlier snowmelt in the lower areas and up to 1 to 3 weeks later snowmelt in the higher elevation areas of the simulation domain. Averaged mean annual modeled surface mass-balance for all glaciers (mainly located above the inversion layer) was -720 {+-} 620 mm w.eq. y{sup -1} for inversion simulations, and -880 {+-} 620 mm w.eq. y{sup -1} without the inversion routines, a difference of 160 mm w.eq. y

  14. Glacier mass balance in high-arctic areas with anomalous gravity

    Science.gov (United States)

    Sharov, A.; Rieser, D.; Nikolskiy, D.

    2012-04-01

    graphically represented in the reference model geometry using Russian gravimetric maps 1:1000000 (1980s), ArcGP grid (2008) and GOCE gravity field data (Release 3, 2009-2011). 25-year long records of daily precipitation obtained from 38 coastal stations were involved in the causality analysis. Strong positive distance-weighted correlation was discovered between the magnitude of geopotential and gravity gradient on one hand and the precipitation amount, annual number of precipitation "events" and glacier elevation changes on the other, while it was noted that the correlation decreases in humid and mountainous areas. Relevant analytical and geophysical explanations were provided and tested using the basic concepts of hydrostatic stress, lapse rate and non-orographic gradient precipitation. It was concluded that the gravitational impact on the mass balance of arctic maritime ice caps is threefold. 1) Lateral variations of gravity influence directly the ambient lapse rate thereby modulating the atmospheric stability and leading to the increased intensity and frequency of heavy snowfalls over the areas with positive gravity anomalies. 2) Glacier ice deformation, flow, calving and meltwater runoff are gravity-driven phenomena, and the removal of glacier ice is closely interrelated with geopotential variations nearby. 3) Gravity anomalies affect processes of sea ice grow, drift and consolidation resulting in generally lower concentration and lesser thickness of the sea ice found in the aquatories with positive gravity. The advection of moist air to insular ice caps facilitates sea-effect snow events and makes glacier mass balance more positive. The effect is enhanced when the air mass advects toward the centre of positive anomaly. The idea about gradient (deviatoric) precipitation and related cryogravic processes does not contradict to the concept of gravity waves and has some analogy with the hypothesis on "ice lichens" devised by E.Gernet 80 years ago. Further analogies can be

  15. Diagnosing the decline in climatic mass balance of glaciers in Svalbard over 1957-2014

    Science.gov (United States)

    Ims Østby, Torbjørn; Vikhamar Schuler, Thomas; Ove Hagen, Jon; Hock, Regine; Kohler, Jack; Reijmer, Carleen H.

    2017-01-01

    Estimating the long-term mass balance of the high-Arctic Svalbard archipelago is difficult due to the incomplete geodetic and direct glaciological measurements, both in space and time. To close these gaps, we use a coupled surface energy balance and snow pack model to analyse the mass changes of all Svalbard glaciers for the period 1957-2014. The model is forced by ERA-40 and ERA-Interim reanalysis data, downscaled to 1 km resolution. The model is validated using snow/firn temperature and density measurements, mass balance from stakes and ice cores, meteorological measurements, snow depths from radar profiles and remotely sensed surface albedo and skin temperatures. Overall model performance is good, but it varies regionally. Over the entire period the model yields a climatic mass balance of 8.2 cm w. e. yr-1, which corresponds to a mass input of 175 Gt. Climatic mass balance has a linear trend of -1.4 ± 0.4 cm w. e. yr-2 with a shift from a positive to a negative regime around 1980. Modelled mass balance exhibits large interannual variability, which is controlled by summer temperatures and further amplified by the albedo feedback. For the recent period 2004-2013 climatic mass balance was -21 cm w. e. yr-1, and accounting for frontal ablation estimated by Błaszczyk et al.(2009) yields a total Svalbard mass balance of -39 cm w. e. yr-1 for this 10-year period. In terms of eustatic sea level, this corresponds to a rise of 0.037 mm yr-1. Refreezing of water in snow and firn is substantial at 22 cm w. e. yr-1 or 26 % of total annual accumulation. However, as warming leads to reduced firn area over the period, refreezing decreases both absolutely and relative to the total accumulation. Negative mass balance and elevated equilibrium line altitudes (ELAs) resulted in massive reduction of the thick (> 2 m) firn extent and an increase in the superimposed ice, thin (ice extents. Atmospheric warming also leads to a marked change in the thermal regime, with cooling of the

  16. Long term mass balance of the Helheim and Kangerdlugssuaq glaciers in

    DEFF Research Database (Denmark)

    Khan, Shfaqat Abbas; Fitzner, Antje; Kjær, Kurt

    2013-01-01

    Observations over the past decade show huge ice loss associated with speeding up of glaciers in southeast Greenland in 2003, followed by a deceleration in 2006. These short-term episodic dynamic perturbations have a major impact on the mass balance at decadal scale. However, to improve the projec......Observations over the past decade show huge ice loss associated with speeding up of glaciers in southeast Greenland in 2003, followed by a deceleration in 2006. These short-term episodic dynamic perturbations have a major impact on the mass balance at decadal scale. However, to improve...... the projection of future sea level rise, a long-term data record that reveals the mass balance between episodic events is required. Here, we extend the observational record of marginal thinning of Helheim glacier (HG) and Kangerdlugssuaq glacier (KG) from 7 to 30 years. Our measurements reveal that, although...... in air temperature suggest that both outlet glaciers respond immediately to small fluctuations in both the SST and air temperature. Furthermore, we compare our observations of ice flow speed and elevation changes with predictions based on the The Parallel Ice Sheet Model (PISM) software....

  17. Sensitivity of Glacier Mass Balance Estimates to the Selection of WRF Cloud Microphysics Parameterization in the Indus River Watershed

    Science.gov (United States)

    Johnson, E. S.; Rupper, S.; Steenburgh, W. J.; Strong, C.; Kochanski, A.

    2017-12-01

    Climate model outputs are often used as inputs to glacier energy and mass balance models, which are essential glaciological tools for testing glacier sensitivity, providing mass balance estimates in regions with little glaciological data, and providing a means to model future changes. Climate model outputs, however, are sensitive to the choice of physical parameterizations, such as those for cloud microphysics, land-surface schemes, surface layer options, etc. Furthermore, glacier mass balance (MB) estimates that use these climate model outputs as inputs are likely sensitive to the specific parameterization schemes, but this sensitivity has not been carefully assessed. Here we evaluate the sensitivity of glacier MB estimates across the Indus Basin to the selection of cloud microphysics parameterizations in the Weather Research and Forecasting Model (WRF). Cloud microphysics parameterizations differ in how they specify the size distributions of hydrometeors, the rate of graupel and snow production, their fall speed assumptions, the rates at which they convert from one hydrometeor type to the other, etc. While glacier MB estimates are likely sensitive to other parameterizations in WRF, our preliminary results suggest that glacier MB is highly sensitive to the timing, frequency, and amount of snowfall, which is influenced by the cloud microphysics parameterization. To this end, the Indus Basin is an ideal study site, as it has both westerly (winter) and monsoonal (summer) precipitation influences, is a data-sparse region (so models are critical), and still has lingering questions as to glacier importance for local and regional resources. WRF is run at a 4 km grid scale using two commonly used parameterizations: the Thompson scheme and the Goddard scheme. On average, these parameterizations result in minimal differences in annual precipitation. However, localized regions exhibit differences in precipitation of up to 3 m w.e. a-1. The different schemes also impact the

  18. Geodetic reanalysis of annual glaciological mass balances (2001-2011) of Hintereisferner, Austria

    Science.gov (United States)

    Klug, Christoph; Bollmann, Erik; Galos, Stephan Peter; Nicholson, Lindsey; Prinz, Rainer; Rieg, Lorenzo; Sailer, Rudolf; Stötter, Johann; Kaser, Georg

    2018-03-01

    This study presents a reanalysis of the glaciologically obtained annual glacier mass balances at Hintereisferner, Ötztal Alps, Austria, for the period 2001-2011. The reanalysis is accomplished through a comparison with geodetically derived mass changes, using annual high-resolution airborne laser scanning (ALS). The grid-based adjustments for the method-inherent differences are discussed along with associated uncertainties and discrepancies of the two methods of mass balance measurements. A statistical comparison of the two datasets shows no significant difference for seven annual, as well as the cumulative, mass changes over the 10-year record. Yet, the statistical view hides significant differences in the mass balance years 2002/03 (glaciological minus geodetic records = +0.92 m w.e.), 2005/06 (+0.60 m w.e.), and 2006/07 (-0.45 m w.e.). We conclude that exceptional meteorological conditions can render the usual glaciological observational network inadequate. Furthermore, we consider that ALS data reliably reproduce the annual mass balance and can be seen as validation or calibration tools for the glaciological method.

  19. Morphometric Controls on Glacier Mass Balance of the Puruogangri Ice Field, Central Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    Lin Liu

    2016-11-01

    Full Text Available Evaluating the impacts of climatic changes and morphometric features on glacier mass balance is crucial to providing insight into glacier changes and their effects on regional water resources and ecosystems. Here, we presented an evaluation of morphometric effects on the glacier mass balances of the Puruogangri ice field (PIF on the Tibetan Plateau. A clear spatial variability of glacier mass balances, ranging from −0.035 to +0.019 m·w.e.·year−1, was estimated by comparing the TanDEM-X DEM (2012 with the SRTM-X DEM (2000. In general, the observed glacier mass changes were consistent with our fieldwork investigations. Furthermore, by applying the method of linear regression analysis, we found that the mass changes of individual glaciers on the PIF were mainly dominated by the mean altitude (R = 0.84, p < 0.001, however, they were statistically independent of glacier size, aspect, and surface velocity. At a local scale (grid size of 10 × 10 pixels, apart from the factor of altitude, surface velocity was correlated with glacier mass change.

  20. Mass Balance Modelling of Saskatchewan Glacier, Canada Using Empirically Downscaled Reanalysis Data

    Science.gov (United States)

    Larouche, O.; Kinnard, C.; Demuth, M. N.

    2017-12-01

    Observations show that glaciers around the world are retreating. As sites with long-term mass balance observations are scarce, models are needed to reconstruct glacier mass balance and assess its sensitivity to climate. In regions with discontinuous and/or sparse meteorological data, high-resolution climate reanalysis data provide a convenient alternative to in situ weather observations, but can also suffer from strong bias due to the spatial and temporal scale mismatch. In this study we used data from the North American Regional Reanalysis (NARR) project with a 30 x 30 km spatial resolution and 3-hour temporal resolution to produce the meteorological forcings needed to drive a physically-based, distributed glacier mass balance model (DEBAM, Hock and Holmgren 2005) for the historical period 1979-2016. A two-year record from an automatic weather station (AWS) operated on Saskatchewan Glacier (2014-2016) was used to downscale air temperature, relative humidity, wind speed and incoming solar radiation from the nearest NARR gridpoint to the glacier AWS site. An homogenized historical precipitation record was produced using data from two nearby, low-elevation weather stations and used to downscale the NARR precipitation data. Three bias correction methods were applied (scaling, delta and empirical quantile mapping - EQM) and evaluated using split sample cross-validation. The EQM method gave better results for precipitation and for air temperature. Only a slight improvement in the relative humidity was obtained using the scaling method, while none of the methods improved the wind speed. The later correlates poorly with AWS observations, probably because the local glacier wind is decoupled from the larger scale NARR wind field. The downscaled data was used to drive the DEBAM model in order to reconstruct the mass balance of Saskatchewan Glacier over the past 30 years. The model was validated using recent snow thickness measurements and previously published geodetic mass

  1. Remote Sensing Estimates of Glacier Mass Balance Changes in the Himalayas of Nepal

    Science.gov (United States)

    Ambinakudige, S.; Joshi, K.

    2011-12-01

    Mass balance changes of glaciers are important indicators of climate change. There are only 30 'reference' glaciers in the world that have continuous mass balance data with world glacier monitoring service since 1976. Especially, Himalayan glaciers are conspicuously absent from global mass balance records. This shows the urgent need for mass balance data for glaciers throughout the world. In this study, we estimated mass balance of some major glaciers in the Sagarmatha National Park (SNP) in Nepal using remote sensing applications. The SNP is one of the densest glaciated regions in the Himalayan range consisting approximately 296 glacial lakes. The region has experienced several glacial lake outburst floods (GLOFs) in recent years, causing extensive damage to local infrastructure and loss of human life. In general, mass balance is determined at seasonal or yearly intervals. Because of the rugged and difficult terrain of the Himalayan region, there are only a few field based measurements of mass balance available. Moreover, there are only few cases where the applications of remote sensing methods were used to calculate mass balance of the Himalayan glaciers due to the lack of accurate elevation data. Studies have shown that estimations of mass balance using remote sensing applications were within the range of field-based mass balance measurements from the same period. This study used ASTER VNIR, 3N (nadir view) and 3B (backward view) bands to generate Digital Elevation Models (DEMs) for the SNP area. 3N and 3B bands generate an along track stereo pair with a base-to-height (B/H) ratio of about 0.6. Accurate measurement of ground control points (GCPs), their numbers and distribution are important inputs in creating accurate DEMs. Because of the availability of topographic maps for this area, we were able to provide very accurate GCPs, in sufficient numbers and distribution. We created DEMs for the years 2002, 2003, 2004 and 2005 using ENVI DEM extraction tool. Bands

  2. Spatial patterns of North Atlantic Oscillation influence on mass balance variability of European glaciers

    Directory of Open Access Journals (Sweden)

    B. Marzeion

    2012-06-01

    Full Text Available We present and validate a set of minimal models of glacier mass balance variability. The most skillful model is then applied to reconstruct 7735 individual time series of mass balance variability for all glaciers in the European Alps and Scandinavia. Subsequently, we investigate the influence of atmospheric variability associated with the North Atlantic Oscillation (NAO on the glaciers' mass balances.

    We find a spatial coherence in the glaciers' sensitivity to NAO forcing which is caused by regionally similar mechanisms relating the NAO forcing to the mass balance: in southwestern Scandinavia, winter precipitation causes a correlation of mass balances with the NAO. In northern Scandinavia, temperature anomalies outside the core winter season cause an anti-correlation between NAO and mass balances. In the western Alps, both temperature and winter precipitation anomalies lead to a weak anti-correlation of mass balances with the NAO, while in the eastern Alps, the influences of winter precipitation and temperature anomalies tend to cancel each other, and only on the southern side a slight anti-correlation of mass balances with the NAO prevails.

  3. Multi-year analysis of distributed glacier mass balance modelling and equilibrium line altitude on King George Island, Antarctic Peninsula

    Science.gov (United States)

    Falk, Ulrike; López, Damián A.; Silva-Busso, Adrián

    2018-04-01

    into Potter cove, has an area of 23.6 km2 and is glacierized to 93.8 %. Annual discharge from Fourcade Glacier into Potter Cove is estimated to q ¯ = 25±6 hm3 yr-1 with the standard deviation of 8 % annotating the high interannual variability. The average ELA calculated from our own glaciological observations on Fourcade Glacier over the time period 2010 to 2015 amounts to 260±20 m. Published studies suggest rather stable conditions of slightly negative glacier mass balance until the mid-1980s with an ELA of approx. 150 m. The calculated accumulation area ratio suggests dramatic changes in the future extent of the inland ice cap for the South Shetland Islands.

  4. Glacier albedo decrease in the European Alps: potential causes and links with mass balances

    Science.gov (United States)

    Di Mauro, Biagio; Julitta, Tommaso; Colombo, Roberto

    2016-04-01

    Both mountain glaciers and polar ice sheets are losing mass all over the Earth. They are highly sensitive to climate variation, and the widespread reduction of glaciers has been ascribed to the atmospheric temperature increase. Beside this driver, also ice albedo plays a fundamental role in defining mass balance of glaciers. In fact, dark ice absorbs more energy causing faster glacier melting, and this can drive to more negative balances. Previous studies showed that the albedo of Himalayan glaciers and the Greenland Ice Sheet is decreasing with important rates. In this contribution, we tested the hypothesis that also glaciers in the European Alps are getting darker. We analyzed 16-year time series of MODIS (MODerate resolution Imaging Spectrometer) snow albedo from Terra (MOD13A1, 2000-2015) and Aqua (MYD13A1, 2002-2015) satellites. These data feature a spatial resolution of 500m and a daily temporal resolution. We evaluated the existence of a negative linear and nonlinear trend of the summer albedo values both at pixel and at glacier level. We also calculated the correlation between MODIS summer albedo and glacier mass balances (from the World Glaciological Monitoring Service, WGMS database), for all the glaciers with available mass balance during the considered period. In order to estimate the percentage of the summer albedo that can be explained by atmospheric temperature, we correlated MODIS albedo and monthly air temperature extracted from the ERA-Interim reanalysis dataset. Results show that decreasing trends exist with a strong spatial variability in the whole Alpine chain. In large glaciers, such as the Aletch (Swiss Alps), the trend varies significantly also within the glacier, showing that the trend is higher in the area across the accumulation and ablation zone. Over the 17 glaciers with mass balance available in the WGMS data set, 11 gave significant relationship with the MODIS summer albedo. Moreover, the comparison between ERA-Interim temperature

  5. Reconstruction of specific mass balance for glaciers in Western ...

    Indian Academy of Sciences (India)

    Vinay Kumar Gaddam

    2017-06-12

    Jun 12, 2017 ... temperatures and precipitation estimates of ERA 20CM ensemble climate reanalysis datasets to reconstruct the specific mass balance for a period of 110 years, between 1900 and 2010. Mass balance estimates suggest that the Shaune Garang, Gor-Garang and Gara glaciers have experienced both ...

  6. Glacier mass balance and its potential impacts in the Altai Mountains over the period 1990-2011

    Science.gov (United States)

    Zhang, Yong; Enomoto, Hiroyuki; Ohata, Tetsuo; Kitabata, Hideyuki; Kadota, Tsutomu; Hirabayashi, Yukiko

    2017-10-01

    The Altai Mountains contain 1281 glaciers covering an area of 1191 km2. These glaciers have undergone significant changes in glacial length and area over the past decade. However, mass changes of these glaciers and their impacts remain poorly understood. Here we present surface mass balances of all glaciers in the region for the period 1990-2011, using a glacier mass-balance model forced by the outputs of a regional climate model. Our results indicate that the mean specific mass balance for the whole region is about -0.69 m w.e. yr-1 over the entire period, and about 81.3% of these glaciers experience negative net mass balance. We detect an accelerated wastage of these glaciers in recent years, and marked differences in mass change and its sensitivity to climate change for different regions and size classes. In particular, higher mass loss and temperature sensitivity are observed for glaciers smaller than 0.5 km2. In addition to temperature rise, a decrease in precipitation in the western part of the region and an increase in precipitation in the eastern part likely contribute to significant sub-region differences in mass loss. With significant glacier wastage, the contribution of all glaciers to regional water resources and sea-level change becomes larger than before, but may not be a potential threat to human populations through impacts on water availability.

  7. Multi-year analysis of distributed glacier mass balance modelling and equilibrium line altitude on King George Island, Antarctic Peninsula

    Directory of Open Access Journals (Sweden)

    U. Falk

    2018-04-01

    Fourcade Glacier catchment drains into Potter cove, has an area of 23.6 km2 and is glacierized to 93.8 %. Annual discharge from Fourcade Glacier into Potter Cove is estimated to q ¯  = 25±6 hm3 yr−1 with the standard deviation of 8 % annotating the high interannual variability. The average ELA calculated from our own glaciological observations on Fourcade Glacier over the time period 2010 to 2015 amounts to 260±20 m. Published studies suggest rather stable conditions of slightly negative glacier mass balance until the mid-1980s with an ELA of approx. 150 m. The calculated accumulation area ratio suggests dramatic changes in the future extent of the inland ice cap for the South Shetland Islands.

  8. Velocities of antarctic outlet glaciers determined from sequential Landsat images

    Science.gov (United States)

    MacDonald, Thomas R.; Ferrigno, Jane G.; Williams, Richard S.; Lucchitta, Baerbel K.

    1989-01-01

    Approximately 91.0 percent of the volume of present-day glacier ice on Earth is in Antarctica; Greenland contains about another 8.3 percent of the volume. Thus, together, these two great ice sheets account for an estimated 99.3 percent of the total. Long-term changes in the volume of glacier ice on our planet are the result of global climate change. Because of the relationship of global ice volume to sea level (± 330 cubic kilometers of glacier ice equals ± 1 millimeter sea level), changes in the mass balance of the antarctic ice sheet are of particular importance.Whether the mass balance of the east and west antarctic ice sheets is positive or negative is not known. Estimates of mass input by total annual precipitation for the continent have been made from scattered meteorological observations (Swithinbank 1985). The magnitude of annual ablation of the ice sheet from calving of outlet glaciers and ice shelves is also not well known. Although the velocities of outlet glaciers can be determined from field measurements during the austral summer,the technique is costly, does not cover a complete annual cycle,and has been applied to just a few glaciers. To increase the number of outlet glaciers in Antarctica for which velocities have been determined and to provide additional data for under-standing the dynamics of the antarctic ice sheets and their response to global climate change, sequential Landsat image of several outlet glaciers were measured.

  9. Greenland surface mass-balance observations from the ice-sheet ablation area and local glaciers

    NARCIS (Netherlands)

    Machguth, Horst; Thomsen, Henrik H.; Weidick, Anker; Ahlstrøm, Andreas P.; Abermann, Jakob; Andersen, Morten L.; Andersen, Signe B.; Bjørk, Anders A.; Box, Jason E.; Braithwaite, Roger J.; Bøggild, Carl E.; Citterio, Michele; Clement, Poul; Colgan, William; Fausto, Robert S.; Gleie, Karin; Gubler, Stefanie; Hasholt, Bent; Hynek, Bernhard; Knudsen, Niels T.; Larsen, Signe H.; Mernild, Sebastian H.; Oerlemans, Johannes; Oerter, Hans; Olesen, Ole B.; Smeets, C. J P Paul; Steffen, Konrad; Stober, Manfred; Sugiyama, Shin; Van As, Dirk; Van Den Broeke, Michiel R.; Van De Wal, Roderik S W

    2016-01-01

    Glacier surface mass-balance measurements on Greenland started more than a century ago, but no compilation exists of the observations from the ablation area of the ice sheet and local glaciers. Such data could be used in the evaluation of modelled surface mass balance, or to document changes in

  10. Greenland surface mass-balance observations from the ice-sheet ablation area and local glaciers

    DEFF Research Database (Denmark)

    Machguth, Horst; Thomsen, Henrik H.; Weidick, Anker

    2016-01-01

    Glacier surface mass-balance measurements on Greenland started more than a century ago, but no compilation exists of the observations from the ablation area of the ice sheet and local glaciers. Such data could be used in the evaluation of modelled surface mass balance, or to document changes in g...

  11. Assessment of interannual variations in the surface mass balance of 18 Svalbard glaciers from the Moderate Resolution Imaging Spectroradiometer/Terra albedo product

    NARCIS (Netherlands)

    Greuell, W.; Kohler, J.; Obleitner, F.; Glowacki, P.; Melvold, K.; Bernsen, E.; Oerlemans, J.

    2007-01-01

    We estimate annual anomalies of the surface mass balance of glaciers on Svalbard for the period 2000–2005 (six years), by calculating the so-called ‘‘satellite-derived mass balance’’ (Bsat) from time series of satellite-derived surface albedos. The method needs no other input variables. Surface

  12. Mass-balance measurements in Alaska and suggestions for simplified observation programs

    Science.gov (United States)

    Trabant, D.C.; March, R.S.

    1999-01-01

    US Geological Survey glacier fieldwork in Alaska includes repetitious measurements, corrections for leaning or bending stakes, an ability to reliably measure seasonal snow as deep as 10 m, absolute identification of summer surfaces in the accumulation area, and annual evaluation of internal accumulation, internal ablation, and glacier-thickness changes. Prescribed field measurement and note-taking techniques help eliminate field errors and expedite the interpretative process. In the office, field notes are transferred to computerized spread-sheets for analysis, release on the World Wide Web, and archival storage. The spreadsheets have error traps to help eliminate note-taking and transcription errors. Rigorous error analysis ends when mass-balance measurements are extrapolated and integrated with area to determine glacier and basin mass balances. Unassessable errors in the glacier and basin mass-balance data reduce the value of the data set for correlations with climate change indices. The minimum glacier mass-balance program has at least three measurement sites on a glacier and the measurements must include the seasonal components of mass balance as well as the annual balance.

  13. Past and future sea-level change from the surface mass balance of glaciers

    Directory of Open Access Journals (Sweden)

    B. Marzeion

    2012-11-01

    Full Text Available We present estimates of sea-level change caused by the global surface mass balance of glaciers, based on the reconstruction and projection of the surface mass balance of all the individual glaciers of the world, excluding the ice sheets in Greenland and Antarctica. The model is validated using a leave-one-glacier-out cross-validation scheme against 3997 observed surface mass balances of 255 glaciers, and against 756 geodetically observed, temporally integrated volume and surface area changes of 341 glaciers. When forced with observed monthly precipitation and temperature data, the glaciers of the world are reconstructed to have lost mass corresponding to 114 ± 5 mm sea-level equivalent (SLE between 1902 and 2009. Using projected temperature and precipitation anomalies from 15 coupled general circulation models from the Coupled Model Intercomparison Project phase 5 (CMIP5 ensemble, they are projected to lose an additional 148 ± 35 mm SLE (scenario RCP26, 166 ± 42 mm SLE (scenario RCP45, 175 ± 40 mm SLE (scenario RCP60, or 217 ± 47 mm SLE (scenario RCP85 during the 21st century. Based on the extended RCP scenarios, glaciers are projected to approach a new equilibrium towards the end of the 23rd century, after having lost either 248 ± 66 mm SLE (scenario RCP26, 313 ± 50 mm SLE (scenario RCP45, or 424 ± 46 mm SLE (scenario RCP85. Up until approximately 2100, ensemble uncertainty within each scenario is the biggest source of uncertainty for the future glacier mass loss; after that, the difference between the scenarios takes over as the biggest source of uncertainty. Ice mass loss rates are projected to peak 2040 ∼ 2050 (RCP26, 2050 ∼ 2060 (RCP45, 2070 ∼ 2090 (RCP60, or 2070 ∼ 2100 (RCP85.

  14. Reconstruction of specific mass balance for glaciers in Western ...

    Indian Academy of Sciences (India)

    Seasonal sensitivity characteristics (SSCs) were developed for Naradu, Shaune Garang, Gor Garang and Gara glaciers, Western Himalaya to quantify the changes in mean specific mass balance using monthly temperature and precipitation perturbations. The temperature sensitivities were observed high during summer ...

  15. Progress toward Consensus Estimates of Regional Glacier Mass Balances for IPCC AR5

    Science.gov (United States)

    Arendt, A. A.; Gardner, A. S.; Cogley, J. G.

    2011-12-01

    Glaciers are potentially large contributors to rising sea level. Since the last IPCC report in 2007 (AR4), there has been a widespread increase in the use of geodetic observations from satellite and airborne platforms to complement field observations of glacier mass balance, as well as significant improvements in the global glacier inventory. Here we summarize our ongoing efforts to integrate data from multiple sources to arrive at a consensus estimate for each region, and to quantify uncertainties in those estimates. We will use examples from Alaska to illustrate methods for combining Gravity Recovery and Climate Experiment (GRACE), elevation differencing and field observations into a single time series with related uncertainty estimates. We will pay particular attention to reconciling discrepancies between GRACE estimates from multiple processing centers. We will also investigate the extent to which improvements in the glacier inventory affect the accuracy of our regional mass balances.

  16. Geodetic mass balance measurements on debris and clean-ice tropical glaciers in Ecuador

    Science.gov (United States)

    La Frenierre, J.; Decker, C. R.; Jordan, E.; Wigmore, O.; Hodge, B. E.; Niederriter, C.; Michels, A.

    2017-12-01

    Glaciers are recognized as highly sensitive indicators of climate change in high altitude, low latitude environments. In the tropical Andes, various analyses of glacier surface area change have helped illuminate the manifestation of climate change in this region, however, information about actual glacier mass balance behavior is much more limited given the relatively small glaciers, difficult access, poor weather, and/or limited local resources common here. Several new technologies, including aerial and terrestrial LIDAR and structure-from-motion photogrammetry using small unmanned aerial vehicles (UAVs), make mass balance measurements using geodetic approaches increasingly feasible in remote mountain locations, which can both further our understanding of changing climatic conditions, and improve our ability to evaluate the downstream hydrologic impacts of ice loss. At Volcán Chimborazo, Ecuador, these new technologies, combined with a unique, 5-meter resolution digital elevation model derived from 1997 aerial imagery, make possible an analysis of the magnitude and spatial patterns of mass balance behavior over the past two decades. Here, we evaluate ice loss between 1997 and 2017 at the tongues of two adjacent glaciers, one debris-covered and detached from its accumulation area (Reschreiter Glacier), and one debris-free and intact (Hans Meyer Glacier). Additionally, we incorporate data from 2012 and 2013 terrestrial LIDAR surveys to evaluate the behavior of the Reschreiter at a finer temporal resolution. We find that on the Hans Meyer, the mean surface deflation rate since 1997 at the present-day tongue has been nearly 3 m yr-1, while on the lower-elevation Reschreiter, the mean deflation rate has been approximately 1 m yr-1. However, the processes by which debris-covered ice becomes exposed results in highly heterogeneous patterns of ice loss, with some areas experiencing surface deflation rates approaching 15 m yr-1 when energy absorption is unimpeded.

  17. A revised Canadian perspective: progress in glacier hydrology

    Science.gov (United States)

    Munro, D. Scott

    2005-01-01

    Current research into glacier hydrology is occurring at a time when glaciers around the world, particularly those whose hydrological regimes affect populated areas, are shrinking as they go through a state of perpetual negative annual mass balance. Small glaciers alone are likely to contribute 0·5 to 1 mm year-1 to global sea-level rise, with associated reductions in local freshwater resources, impacts upon freshwater ecosystems and increased risk of hazard due to outburst floods. Changes to the accumulation regimes of glaciers and ice sheets may be partly responsible, so the measurement and distribution of snowfall in glacierized basins, a topic long represented in non-glacierized basin research, is now beginning to receive more attention than it did before, aided by the advent of reliable automatic weather stations that provide data throughout the year. Satellite data continue to be an important information source for summer meltwater estimation, as distributed models, and their need for albedo maps, continue to develop. This further entails the need for simplifications to energy balance components, sacrificing point detail so that spatial calculation may proceed more quickly. The understanding of surface meltwater routing through the glacier to produce stream outflow continues to be a stimulating area of research, as demonstrated by activity at the Trapridge Glacier, Canada, and Canadian involvement in the Haut Glacier d'Arolla, Switzerland. As Canadian glacier monitoring continues to evolve, effort must be directed toward developing situations where mass balance, meltwater generation and flow routing studies can be done together at selected sites. Copyright

  18. Downscaling of the global climate model data for the mass balance calculation of mountain glaciers

    Directory of Open Access Journals (Sweden)

    P. A. Morozova

    2017-01-01

    Full Text Available In this paper, we consider a hybrid method of downscaling of the GCM‑generated meteorological fields to the characteristic spatial resolution which is usually used for modeling of a single mountain glacier mass balance. The main purpose of the study is to develop a reliable forecasting method to evaluate future state of moun‑ tain glaciation under changing climatic conditions. The method consists of two stages. In the first or dynamical stage, we use results of calculations of the regional numerical model HadRM3P for the Black Sea‑Caspian region with a spatial resolution of 25 km [22]. Initial conditions for the HadRM3P were provided by the GCM devel‑ oped in the Institute of Numerical Mathematics of RAS (INMCM4 [18]. Calculations were carried out for two time periods: the present climate (1971–2000 and climate in the late 21st century (2071–2100 according to the scenario of greenhouse gas emissions RCP 8.5. On the second stage of downscaling, further regionalization is achieved by projecting of RCM‑generated data to the high‑resolution (25 m digital altitude model in a domain enclosing a target glacier. Altitude gradients of the surface air temperature and precipitation were derived from the model data. Further on, both were corrected using data of observations. Incoming shortwave radiation was calculated in the mass balance model separately, taking into account characteristics of the slope, i.e. exposition and shading of each cell. Then, the method was tested for glaciers Marukh (Western Caucasus and Jankuat (Central Caucasus, both for the present‑day and for future climates. At the end of the 21st century, the air tem‑ perature rise predicted for the summer months was calculated to be about 5–6 °C, and the result for the winter to be minus 2–3 °C. Change in annual precipitation is not significant, less than 10%. Increase in the total short‑ wave radiation will be about 5%. These changes will result in the fact that

  19. Processes governing the mass balance of Chhota Shigri Glacier (western Himalaya, India) assessed by point-scale surface energy balance measurements

    OpenAIRE

    Azam, M. F.; Wagnon, P.; Vincent, C.; Ramanathan, AL.; Favier, V.; Mandal, A.; Pottakkal, J. G.

    2014-01-01

    Some recent studies revealed that Himalayan glaciers were shrinking at an accelerated rate since the beginning of the 21st century. However, the climatic causes for this shrinkage remain unclear given that surface energy balance studies are almost nonexistent in this region. In this study, a point-scale surface energy balance analysis was performed using in situ meteorological data from the ablation zone of Chhota Shigri Glacier over two separate periods (August 2012 to February 2013 and July...

  20. Studying the Effects of Amazonian Land Cover Change on Glacier Mass Balance in the Tropical Andes

    Science.gov (United States)

    Mark, B. G.; Fernandez, A.; Gabrielli, P.; Montenegro, A.; Postigo, J.; Hellstrom, R. A.

    2017-12-01

    Recent research has highlighted several ongoing environmental changes occurring across Tropical South America, including Andean glacier retreat, drought, as well as changes in land-use and land-cover. As the regional climate of the area is mostly characterized by land-ocean interactions, the atmospheric convection in the Amazon, and the effect of the Andes on circulation patterns, it follows that changes in one of those regions may affect the other. Most scholars who have studied the causes of tropical glaciers' fluctuations have not analyzed the linkages with changes in the Amazon with the same attention paid to the influence of Pacific sea surface temperature. Here we study the response of glacier surface mass balance in the Cordillera Blanca, Peru (10°S), to a scenario where the Amazonian rainforest is replaced by savannas. We ran climatic simulations at 2-km spatial resolution utilizing the Weather Research and Forecasting (WRF) model considering two scenarios: (a) control (CRTL), with today's rainforest extent; and (b) land cover change (LCC), where all the rainforest was replaced by savanna. WRF output was in turn ingested into a glacier energy and mass balance (GEMB) model that we validate by reconstructing both the accumulated mass balance from available observations, and the altitudinal distribution of mass balance in the region. Seasonal comparison between CRTL and LCC scenarios indicates that forest replacement by savanna results in more positive glacier mass balance. This shift to more positive mass balance contrasts with a (WRF) modeled rise in the elevation of the freezing line (0°C) between 30 to 120 m for the LCC scenario. Our results are surprising because most previous studies have shown that reducing Amazon forest cover diminishes rainfall and increases temperature, suggesting that glaciers should lose mass. We hypothesize and discuss implications of possible land-atmospheric processes that might drive this tropical glacier response to

  1. Modelling the contribution of supraglacial ice cliffs to the mass-balance of glaciers in the Langtang catchment, Nepalese Himalaya

    Science.gov (United States)

    Buri, P.; Steiner, J. F.; Miles, E.; Ragettli, S.; Pellicciotti, F.

    2017-12-01

    Supraglacial cliffs are typical surface features of debris-covered glaciers worldwide, affecting surface evolution, and mass balance by providing a direct ice-atmosphere interface where melt rates can be very high. As a result, ice cliffs act as windows of energy transfer from the atmosphere to the ice, and enhance melt and mass losses of otherwise insulated ice. However, their contribution to glacier mass balance has never been quantified at the glacier scale, and all inference has been obtained from upscaling results of point-scale models or observations at select individual cliffs. Here we use a 3D, physically-based backwasting model to estimate the volume losses associated with the melting and backwasting of supraglacial ice cliffs for the entire debris-covered glacier area of the Langtang catchment. We estimate mass losses for the 2014 melt season and compare them to recent values of glacier mass balance determined from geodetic and numerical modelling approached. Cliff outlines and topography are derived from high-resolution stereo SPOT6-imagery from April 2014. Meteorological data to force the model are provided by automatic weather stations on- and off-glacier within the valley. The model simulates ice cliff backwasting by considering the cliff-atmosphere energy-balance, reburial by debris and the effects of adjacent ponds. In the melt season of 2014, cliffs' distribution and patterns of mass losses vary considerably from glacier to glacier, and we relate rates of volume loss to both glaciers' and cliffs' characteristics. Only cliffs with a northerly aspect account for substantial losses. Uncertainty in our estimates is due to the quality of the stereo DEM, uncertainties in the cliff delineation and the fact that we use a conservative approach to cliff delineation and discard very small cliffs and those for which uncertainty in topography is high. Despite these uncertainties, our work presents the first estimate of the importance of supraglacial ice

  2. The Mass Balance of Glacier No. 1 at the Headwaters of the Urumqi River in Relation to Northern Hemisphere Teleconnection Patterns

    Directory of Open Access Journals (Sweden)

    Feifei Yuan

    2016-03-01

    Full Text Available Most small glaciers in the world have significantly decreased their volume during the last century, which has caused water shortage problems. Glacier No. 1, at the headwaters of the Urumqi River, Tianshan, China, has been monitored since 1959 and similarly has experienced significant mass and volume losses over the last few decades. Thus, we examined the trend and potential abrupt changes of the mass balance of Glacier No. 1. Principal component analysis and singular value decomposition were used to find significant relations between the mass balance of Glacier No. 1 and Northern Hemisphere teleconnection patterns using climate indices. It was found that the mass balance of Glacier No. 1 had a significantly decreasing trend corresponding to −14.5 mm/year from 1959 to 2010. A change point was detected in 1997 with 99% confidence level. Two time periods with different mass balances were identified as 1959–1996 and 1997–2010. The mass balance for the first period was −136.4 mm/year and up to −663.9 mm/year for the second period. The mass balance of Glacier No. 1 is positively related to the Scandinavian Pattern (SCA, and negatively related to the East Atlantic Pattern (EA. These relationships are useful in better understanding the interaction between glacier mass balance and climate variability.

  3. Estimating Regional Mass Balance of Himalayan Glaciers Using Hexagon Imagery: An Automated Approach

    Science.gov (United States)

    Maurer, J. M.; Rupper, S.

    2013-12-01

    Currently there is much uncertainty regarding the present and future state of Himalayan glaciers, which supply meltwater for river systems vital to more than 1.4 billion people living throughout Asia. Previous assessments of regional glacier mass balance in the Himalayas using various remote sensing and field-based methods give inconsistent results, and most assessments are over relatively short (e.g., single decade) timescales. This study aims to quantify multi-decadal changes in volume and extent of Himalayan glaciers through efficient use of the large database of declassified 1970-80s era Hexagon stereo imagery. Automation of the DEM extraction process provides an effective workflow for many images to be processed and glacier elevation changes quantified with minimal user input. The tedious procedure of manual ground control point selection necessary for block-bundle adjustment (as ephemeral data is not available for the declassified images) is automated using the Maximally Stable Extremal Regions algorithm, which matches image elements between raw Hexagon images and georeferenced Landsat 15 meter panchromatic images. Additional automated Hexagon DEM processing, co-registration, and bias correction allow for direct comparison with modern ASTER and SRTM elevation data, thus quantifying glacier elevation and area changes over several decades across largely inaccessible mountainous regions. As consistent methodology is used for all glaciers, results will likely reveal significant spatial and temporal patterns in regional ice mass balance. Ultimately, these findings could have important implications for future water resource management in light of environmental change.

  4. Mass Balance Evolution of Black Rapids Glacier, Alaska, 1980–2100, and Its Implications for Surge Recurrence

    Directory of Open Access Journals (Sweden)

    Christian Kienholz

    2017-07-01

    Full Text Available Surge-type Black Rapids Glacier, Alaska, has undergone strong retreat since it last surged in 1936–1937. To assess its evolution during the late Twentieth and Twenty-first centuries and determine potential implications for surge likelihood, we run a simplified glacier model over the periods 1980–2015 (hindcasting and 2015–2100 (forecasting. The model is forced by daily temperature and precipitation fields, with downscaled reanalysis data used for the hindcasting. A constant climate scenario and an RCP 8.5 scenario based on the GFDL-CM3 climate model are employed for the forecasting. Debris evolution is accounted for by a debris layer time series derived from satellite imagery (hindcasting and a parametrized debris evolution model (forecasting. A retreat model accounts for the evolution of the glacier geometry. Model calibration, validation and parametrization rely on an extensive set of in situ and remotely sensed observations. To explore uncertainties in our projections, we run the glacier model in a Monte Carlo fashion, varying key model parameters and input data within plausible ranges. Our results for the hindcasting period indicate a negative mass balance trend, caused by atmospheric warming in the summer, precipitation decrease in the winter and surface elevation lowering (climate-elevation feedback, which exceed the moderating effects from increasing debris cover and glacier retreat. Without the 2002 rockslide deposits on Black Rapids' lower reaches, the mass balances would be more negative, by ~20% between the 2003 and 2015 mass-balance years. Despite its retreat, Black Rapids Glacier is substantially out of balance with the current climate. By 2100, ~8% of Black Rapids' 1980 area are projected to vanish under the constant climate scenario and ~73% under the RCP 8.5 scenario. For both scenarios, the remaining glacier portions are out of balance, suggesting continued retreat after 2100. Due to mass starvation, a surge in the Twenty

  5. Solar radiation, cloudiness and longwave radiation over low-latitude glaciers: implications for mass-balance modelling

    Science.gov (United States)

    Mölg, Thomas; Cullen, Nicolas J.; Kaser, Georg

    Broadband radiation schemes (parameterizations) are commonly used tools in glacier mass-balance modelling, but their performance at high altitude in the tropics has not been evaluated in detail. Here we take advantage of a high-quality 2 year record of global radiation (G) and incoming longwave radiation (L↓) measured on Kersten Glacier, Kilimanjaro, East Africa, at 5873 m a.s.l., to optimize parameterizations of G and L↓. We show that the two radiation terms can be related by an effective cloud-cover fraction neff, so G or L↓ can be modelled based on neff derived from measured L↓ or G, respectively. At neff = 1, G is reduced to 35% of clear-sky G, and L↓ increases by 45-65% (depending on altitude) relative to clear-sky L↓. Validation for a 1 year dataset of G and L↓ obtained at 4850 m on Glaciar Artesonraju, Peruvian Andes, yields a satisfactory performance of the radiation scheme. Whether this performance is acceptable for mass-balance studies of tropical glaciers is explored by applying the data from Glaciar Artesonraju to a physically based mass-balance model, which requires, among others, G and L↓ as forcing variables. Uncertainties in modelled mass balance introduced by the radiation parameterizations do not exceed those that can be caused by errors in the radiation measurements. Hence, this paper provides a tool for inclusion in spatially distributed mass-balance modelling of tropical glaciers and/or extension of radiation data when only G or L↓ is measured.

  6. High-resolution DEMs for High-mountain Asia: A systematic, region-wide assessment of geodetic glacier mass balance and dynamics

    Science.gov (United States)

    Shean, D. E.; Arendt, A. A.; Osmanoglu, B.; Montesano, P.

    2017-12-01

    High Mountain Asia (HMA) constitutes the largest glacierized region outside of the Earth's polar regions. Although available observations are limited, long-term records indicate sustained regional glacier mass loss since 1850, with increased loss in recent decades. Recent satellite data (e.g., GRACE, ICESat-1) show spatially variable glacier mass balance, with significant mass loss in the Himalaya and Hindu Kush and slight mass gain in the Karakoram. We generated 4000 high-resolution digital elevation models (DEMs) from sub-meter commercial stereo imagery (DigitalGlobe WorldView/GeoEye) acquired over glaciers in High-mountain Asia from 2002-present (mostly 2013-present). We produced a regional 8-m DEM mosaic for 2015 and estimated 15-year geodetic mass balance for 40000 glaciers larger than 0.1 km2. We are combining with other regional DEM sources to systematically document the spatiotemporal evolution of glacier mass balance for the entire HMA region. We also generated monthly to interannual DEM and velocity time series for high-priority sites distributed across the region, with >15-20 DEMs available for some locations from 2010-present. These records document glacier dynamics, seasonal snow accumulation/redistribution, and processes that affect glacier mass balance (e.g., ice-cliff retreat, debris cover evolution). These efforts will provide basin-scale assessments of snow/ice melt runoff contributions for model cal/val and downstream water resources applications. We will continue processing all archived and newly available commercial stereo imagery for HMA, and will release all DEMs through the HiMAT DAAC.

  7. Reconstructing mass balance of Garabashi Glacier (1800–2005 using dendrochronological data

    Directory of Open Access Journals (Sweden)

    E. A. Dolgova

    2013-01-01

    Full Text Available The exploration whether tree-ring data can be effectually applied for the mass balance reconstruction in Caucasus was the main goal of this research. Tree-ring width and maximum density chronologies of pine (Pinus sylvestris L. at seven high-elevation sites in Northern Caucasus were explored for this purpose. As well as in other places of the temperate zone tree- ring width has complex climate signal controlled both temperature and precipitation. Instrumental mass balance records of Garabashi Gglacier started at 1983s. It is well known that Caucasus glaciers intensively retreat in the last decades and according to instrumental data mass balance variations are mostly controlled by the ablation, i.e. summer temperature variations. Maximum density chronology has statistically significant correlation with mass balance due to summer temperature sensitivity and great input of ablation to total mass balance variations. To include in our reconstruction different climatically sensitive parameters, stepwise multiple regression model was used. The strongest relation (r = 0.88; r2 = 0.78; p < 0.05 between two ring-width and one maximum density chronologies was identified. Cross-validation test (r = 0.79; r2 = 0.62; p < 0.05 confirmed model adequacy and it allowed to reconstruct Garabashi Glacier mass balance for 1800–2005ss. Reconstructed and instrumental mass balance values coincide well except the most recent period in 2000s, when the reconstructed mass balance slightly underestimated the real values. However even in this period it remained negative as well as the instrumental records. The bias can be explained by the weak sensitivity of the chronologies to winter precipitation (i.e. accumulation. The tree-ring based mass balance reconstruction was compared with one based on meteorological data (since 1905s. Both reconstructions have good interannual agreement (r = 0.53; p < 0.05 particularly for the period between 1975 and 2005. According to the

  8. Glaciers of Europe

    Science.gov (United States)

    Williams, Richard S.; Ferrigno, Jane G.

    1993-01-01

    ALPS: AUSTRIAN: An overview is provided on the occurrence of the glaciers in the Eastern Alps of Austria and on the climatic conditions in this area, Historical documents on the glaciers have been available since the Middle Ages. Special glaciological observations and topographic surveys of individual glaciers were initiated as early as 1846. Recent data in an inventory based on aerial photographs taken in 1969 show 925 glaciers in the Austrian Alps with a total area of 542 square kilometers. Present research topics include studies of mass and energy balance, relations of glaciers and climate, physical glaciology, a complete inventory of the glaciers, and testing of remote sensing methods. The location of the glacier areas is shown on Landsat multispectral scanner images; the improved capabilities of the Landsat thematic mapper are illustrated with an example from the Oztaler Alpen group. ALPS: SWISS: According to a glacier inventory published in 1976, which is based on aerial photography of 1973, there are 1,828 glacier units in the Swiss Alps that cover a total area of 1fl42 square kilometers. The Rhonegletscher, currently the ninth largest in the country, was one of the first to be studied in detail. Its surface has been surveyed repeatedly; velocity profiles were measured, and the fluctuations of its terminus were mapped and recorded from 1874 to 1914. Recent research on the glacier has included climatological, hydrological, and massbalance studies. Glaciological research has been conducted on various other glaciers in Switzerland concerning glacier hydrology, glacier hazards, fluctuations of glacier termini, ice mechanics, ice cores, and mass balance. Good maps are available showing the extent of glaciers from the latter decades of the 19th century. More recently, the entire country has been mapped at scales of 1:25,000, 1:50,000, 1:100,000, 1:200,000, and 1:500,000. The 1:25,000-scale series very accurately represents the glaciers as well as locates

  9. Assessing streamflow sensitivity to variations in glacier mass balance

    Science.gov (United States)

    O'Neel, Shad; Hood, Eran; Arendt, Anthony; Sass, Louis

    2014-01-01

    The mountains ringing the Gulf of Alaska (GOA) receive upwards of 4–8 m yr−1 of precipitation (Simpson et al.2005; Weingartner et al. 2005; O’Neel 2012), much of which runs off into productive coastal waters. The alpine landscape is heavily glacierized, and storage and turnover of water by glaciers substantially influences the regional surface water balance (Neal et al. 2010). In turn, the land-to-ocean flux of freshwater impacts the biogeochemistry, physical oceanography, freshwater and marine ecology of the downstream components of the GOA ecosystem (e.g., Royer et al. 2001; Hood and Scott 2008). In this way, the links between terrestrial and ocean ecosystems along the GOA have widespread impacts on regional socioeconomic issues including water and hydropower resources, fish populations, and sea level change (Dorava and Milner 2000; Royer and Grosch 2006; Cherry et al. 2010; Gardner et al. 2013). Moreover, predicting future changes in physical, chemical and biological processes in near-shore ecosystems along the GOA hinges, in part, on developing a robust understanding of water storage and transfer by glaciers through streams to the ocean.

  10. Updating the results of glacier contribution to the sea level change

    Science.gov (United States)

    Dyurgerov, Mark B.; Abdalati, Waleed Dr. (Technical Monitor)

    2005-01-01

    I have completed an update of global glacier volume change. All data of glacier annual mass balances, surface area over the period 1945/46 till 2004, outside the Greenland and Antarctic ice sheets were included in this update. As the result global glacier volume change have been calculated, also in terms of glacier contribution to sea level change. These results were sent to Working Group 1 and 2 of IPCC-4 as the basis for modeling of sea level towards the end of 2100. In this study I have concentrated on studying glacier systems of different scales, from primary (e.g. Devon ice cap) to regional (e.g. Canadian Arctic), continental scale (e,g., entire Arctic), and global (e.g., change in glacier volume and contribution to sea level rise).

  11. Investigating ice cliff evolution and contribution to glacier mass-balance using a physically-based dynamic model

    Science.gov (United States)

    Buri, Pascal; Miles, Evan; Ragettli, Silvan; Brun, Fanny; Steiner, Jakob; Pellicciotti, Francesca

    2016-04-01

    Supraglacial cliffs are a surface feature typical of debris-covered glaciers, affecting surface evolution, glacier downwasting and mass balance by providing a direct ice-atmosphere interface. As a result, melt rates can be very high and ice cliffs may account for a significant portion of the total glacier mass loss. However, their contribution to glacier mass balance has rarely been quantified through physically-based models. Most cliff energy balance models are point scale models which calculate energy fluxes at individual cliff locations. Results from the only grid based model to date accurately reflect energy fluxes and cliff melt, but modelled backwasting patterns are in some cases unrealistic, as the distribution of melt rates would lead to progressive shallowing and disappearance of cliffs. Based on a unique multitemporal dataset of cliff topography and backwasting obtained from high-resolution terrestrial and aerial Structure-from-Motion analysis on Lirung Glacier in Nepal, it is apparent that cliffs exhibit a range of behaviours but most do not rapidly disappear. The patterns of evolution cannot be explained satisfactorily by atmospheric melt alone, and are moderated by the presence of supraglacial ponds at the base of cliffs and by cliff reburial with debris. Here, we document the distinct patterns of evolution including disappearance, growth and stability. We then use these observations to improve the grid-based energy balance model, implementing periodic updates of the cliff geometry resulting from modelled melt perpendicular to the ice surface. Based on a slope threshold, pixels can be reburied by debris or become debris-free. The effect of ponds are taken into account through enhanced melt rates in horizontal direction on pixels selected based on an algorithm considering distance to the water surface, slope and lake level. We use the dynamic model to first study the evolution of selected cliffs for which accurate, high resolution DEMs are available

  12. Mass balance and surface velocity reconstructions of two reference Caucasus glaciers

    Science.gov (United States)

    Rybak, Oleg; Kaminskaia, Mariia; Kutuzov, Stanislav; Lavrentiev, Ivan; Morozova, Polina; Popovnin, Victor; Rybak, Elena

    2016-04-01

    Total glacial volume of the Greater Caucasus exceeds 40 cubic km and its area exceeds 1 thousand square km. During the 20th century, mountain glaciers at the Greater Caucasus were continuously degrading. According to various estimates, their area reduced more than one-third and their volume almost by half. The process of degradation was accompanied by growing population and economical development on surrounding territories. In the 21st century under proceeding global warming, a tendency of shrinking of area and volume of glaciation is obviously expected to continue. Working out of strategy of sustainable economic development of the region is the main motivation for elaboration of predictions of glaciers' evolution in the changing environment. Growing demand of fresh water is the basic challenge for the local economy, and efficient planning of water resources is impossible without knowing future state of glaciation. Therefore our research aims at obtaining accurate evaluation of probable future change of the most prominent mountain glaciers of the Greater Caucasus in forthcoming decades and at studying impacts of changing characteristics of glaciation on the run-off in the area. Initially, we focus on two so-called reference glaciers - Marukh (Western Caucasus) and Djankuat (Central Caucasus). Intensive field observations on both of them have been conducted during the last half of the century and essential amount of detailed relevant information has been collected on their geometry change and on mass balance. Besides, meteorological measurements were episodically carried out directly on the glaciers providing enough data for correlation of the local weather conditions with the data from the closest meteorological stations. That is why studying of response of Marukh and Djankuat on the environmental change can be accurately verified, which is crucial for understanding mechanisms driving evolution of large glaciated area in the Caucasus. As the instrument of research

  13. Climate, glacier mass balance and runoff (1993-2005) for the Mittivakkat Glacier catchment, Ammassalik Island, SE Greenland, and in a long term perspective (1898-1993)

    DEFF Research Database (Denmark)

    Mernild, Sebastian H.; Kane, D.L.; Hansen, Birger

    2008-01-01

    temperatures (MAAT) occur in the coastal area, indicating an approximately 20-d shorter thawing period. The higher lying glacier area, in contrast, experiences an increasing MAAT, an approximately 40-d longer thawing period and a 60-d longer snow-free period. The Mittivakkat Glacier net mass balance has been...... almost continuously negative, corresponding to an average loss of glacier volume of 0.4% yr-1. The total catchment runoff is averaging 1973±281 mm w.eq. yr-1, and around 30% of the runoff is explained by glacier net loss. Over the 106 years (1898-2004) MAAT has, on average, increased significantly...

  14. Role of glaciers in watershed hydrology: a preliminary study of a "Himalayan catchment"

    Directory of Open Access Journals (Sweden)

    R. J. Thayyen

    2010-02-01

    Full Text Available A large number of Himalayan glacier catchments are under the influence of humid climate with snowfall in winter (November–April and south-west monsoon in summer (June–September dominating the regional hydrology. Such catchments are defined as "Himalayan catchment", where the glacier meltwater contributes to the river flow during the period of annual high flows produced by the monsoon. The winter snow dominated Alpine catchments of the Kashmir and Karakoram region and cold-arid regions of the Ladakh mountain range are the other major glacio-hydrological regimes identified in the region. Factors influencing the river flow variations in a "Himalayan catchment" were studied in a micro-scale glacier catchment in the Garhwal Himalaya, covering an area of 77.8 km2. Three hydrometric stations were established at different altitudes along the Din Gad stream and discharge was monitored during the summer ablation period from 1998 to 2004, with an exception in 2002. These data have been analysed along with winter/summer precipitation, temperature and mass balance data of the Dokriani glacier to study the role of glacier and precipitation in determining runoff variations along the stream continuum from the glacier snout to 2360 m a.s.l. The study shows that the inter-annual runoff variation in a "Himalayan catchment" is linked with precipitation rather than mass balance changes of the glacier. This study also indicates that the warming induced an initial increase of glacier runoff and subsequent decline as suggested by the IPCC (2007 is restricted to the glacier degradation-derived component in a precipitation dominant Himalayan catchment and cannot be translated as river flow response. The preliminary assessment suggests that the "Himalayan catchment" could experience higher river flows and positive glacier mass balance regime together in association with strong monsoon. The important role of glaciers in this precipitation dominant system is

  15. Analysis of meteorological data and the surface energy balance of Keqicar Glacier, Tien Shan, China

    Science.gov (United States)

    Zhang, Y.; Liu, S.; Fujita, K.; Han, H.; Li, J.

    2009-04-01

    Northwestern China currently experiences a climate change with fundamental consequences for the hydrological cycle. In the strongly arid region where water resources are essential for agriculture and food production, glaciers represent important water resources, contributing significantly to streamflow. The debris is an important glaciological feature of the region and has major impact on melt rates. It is essential to understand and quantify the interaction of climate and sub-debris melt in order to assess the current situation and to predict future water yield. Note that the surface energy balance determines glacier melt. However, little is known about the variability characteristics of the surface energy fluxes in this region. For this reason, we set up two automatic weather stuation (AWSs) in the ablation area of Keqicar Glacier. Keqicar Glacier is located in the Tarim River basin (largest inland river basin in China), southwestern Tien Shan, China. It is a representative debris-covered glacier with a length of 26.0 km and a total surface area of 83.6 km2. The thickness of the debris layer varies from 0.0 to 2.50 m in general. In some places large rocks are piled up to several meters. In this study, we report on analysis of meteorological data for the period 1 July-13 September 2003, from two automatic weather stations, aimed at studying the relationship between climate and ablation. One station is located on the lower part of the ablation area where the glacier is covered by debris layer, and the other near the equilibrium line altitude (ELA). All sensors were sampled every 10 seconds, and data were stored as hourly averages. The stations were visited regularly for maintenance at two weeks intervals depending on the weather conditions and location of the AWS. A total of 17 ablation stakes were drilled into the glacier at different elevations to monitor glacier melt during the study period. Readings were taken regularly in connection with AWS maintenance. The

  16. A semi-automated approach to derive elevation time-series and calculate glacier mass balance from historical aerial imagery

    Science.gov (United States)

    Whorton, E.; Headman, A.; Shean, D. E.; McCann, E.

    2017-12-01

    Understanding the implications of glacier recession on water resources in the western U.S. requires quantifying glacier mass change across large regions over several decades. Very few glaciers in North America have long-term continuous field measurements of glacier mass balance. However, systematic aerial photography campaigns began in 1957 on many glaciers in the western U.S. and Alaska. These historical, vertical aerial stereo-photographs documenting glacier evolution have recently become publically available. Digital elevation models (DEM) of the transient glacier surface preserved in each imagery timestamp can be derived, then differenced to calculate glacier volume and mass change to improve regional geodetic solutions of glacier mass balance. In order to batch process these data, we use Python-based algorithms and Agisoft Photoscan structure from motion (SfM) photogrammetry software to semi-automate DEM creation, and orthorectify and co-register historical aerial imagery in a high-performance computing environment. Scanned photographs are rotated to reduce scaling issues, cropped to the same size to remove fiducials, and batch histogram equalization is applied to improve image quality and aid pixel-matching algorithms using the Python library OpenCV. Processed photographs are then passed to Photoscan through the Photoscan Python library to create DEMs and orthoimagery. To extend the period of record, the elevation products are co-registered to each other, airborne LiDAR data, and DEMs derived from sub-meter commercial satellite imagery. With the exception of the placement of ground control points, the process is entirely automated with Python. Current research is focused on: one, applying these algorithms to create geodetic mass balance time series for the 90 photographed glaciers in Washington State and two, evaluating the minimal amount of positional information required in Photoscan to prevent distortion effects that cannot be addressed during co

  17. Comparative glacio-climatological analysis of mass balance variability along the geographical margin of Europe

    Science.gov (United States)

    Lehoczky, Annamária; Kern, Zoltán; Pongrácz, Rita

    2014-05-01

    Glacio-climatological studies recognise glacier mass balance changes as high-confident climate indicators. The climatic sensitivity of a glacier does not simply depend on regional climate variability but also influenced via large- and mesoscale atmospheric circulation patterns. This study focuses on recent changes in the mass balance using records from three border regions of Europe, and investigates the relationships between the seasonal mass balance components, regional climatic conditions, and distant atmospheric forcing. Since glaciers in different macro-climatological conditions (i.e., mid-latitudes or high-latitudes, dry-continental or maritime regions) may present strongly diverse mass balance characteristics, the three analysed regions were selected from different glacierised macroregions (using the database of the World Glacier Monitoring Service). These regions belong to the Caucasus Mountains (Central Europe macroregion), the Polar Ural (Northern Asia macroregion), and Svalbard (Arctic Islands macroregion). The analysis focuses on winter, summer, and annual mass balance series of eight glaciers. The climatic variables (atmospheric pressure, air temperature, precipitation) and indices of teleconnection patterns (e.g., North Atlantic Oscillation, Pacific Decadal Oscillation) are used from the gridded databases of the University of East Anglia, Climatic Research Unit and the National Oceanic and Atmospheric Administration, National Center for Environmental Prediction. However, the period and length of available mass balance data in the selected regions vary greatly (the first full record is in 1958, Polar Ural; the last is in 2010, Caucasus Mountains), a comparative analysis can be carried out for the period of 1968-1981. Since glaciers from different regions respond to large- and mesoscale climatic forcings differently, and because the mass balance of glaciers within a region often co-vary, our specific objectives are (i) to examine the variability and the

  18. Imaging spectroscopy to assess the composition of ice surface materials and their impact on glacier mass balance

    Science.gov (United States)

    Naegeli, Kathrin; Huss, Matthias; Damm, Alexander; de Jong, Rogier; Schaepman, Michael; Hoelzle, Martin

    2014-05-01

    The ice-albedo feedback plays a crucial role in various glaciological processes, but especially influences ice melt. Glacier surface albedo is one of the most important variables in the energy balance of snow and ice, but depends in a complicated way on many factors, such as cryoconite concentration, impurities due to mineral dust, soot or organic matter, grain size or ice surface morphology. Our understanding on how these various factors influence glacier albedo is still limited hindering a spatially and temporally explicit parameterization of energy balance models and requiring strongly simplified assumptions on actual albedo values. Over the last two decades, several studies have focused on glacier surface albedo using automatic in-situ weather stations in combination with radiation measurement setups or satellite images. Due to limitations of both approaches in matching either the spatial or the temporal length scale of glacier albedo, still fairly little is known about the state, changes and impact of glacier surface albedo in the Swiss Alps, although there are obvious changes in surface characteristics on most alpine glaciers over the last years. With use of the APEX (Airborne Prism EXperiment) image spectrometer, measurements of reflected radiation were acquired in high spatial and spectral resolution on Glacier de la Plaine Morte, Switzerland, to explicitly analyse the ice surface. In-situ radiometric measurements were acquired with an ASD field spectrometer in parallel to APEX overflights. These data are intended to be used for validation purposes as well as input data for the linear spectral unmixing analysis of the APEX data. Seasonal glacier mass balance is monitored since five years using the direct glaciological method. This contribution presents a first evaluation of the data collected in summer 2013. The obtained in-situ and airborne reflectance measurements were used in combination with a spectral mixture analysis (SMA) approach to assess the

  19. Can shrubs help to reconstruct historical glacier retreats?

    International Nuclear Information System (INIS)

    Buras, Allan; Hallinger, Martin; Wilmking, Martin

    2012-01-01

    In the 21st century, most of the world’s glaciers are expected to retreat due to further global warming. The range of this predicted retreat varies widely as a result of uncertainties in climate and glacier models. To calibrate and validate glacier models, past records of glacier mass balance are necessary, which often only span several decades. Long-term reconstructions of glacier mass balance could increase the precision of glacier models by providing the required calibration data. Here we show the possibility of applying shrub growth increments as an on-site proxy for glacier summer mass balance, exemplified by Salix shrubs in Finse, Norway. We further discuss the challenges which this method needs to meet and address the high potential of shrub growth increments for reconstructing glacier summer mass balance in remote areas. (letter)

  20. Application of terrestrial photogrammetry for the mass balance calculation on Montasio Occidentale Glacier (Julian Alps, Italy)

    Science.gov (United States)

    Piermattei, Livia; Carturan, Luca; Calligaro, Simone; Blasone, Giacomo; Guarnieri, Alberto; Tarolli, Paolo; Dalla Fontana, Giancarlo; Vettore, Antonio

    2014-05-01

    Digital elevation models (DEMs) of glaciated terrain are commonly used to measure changes in geometry and hence infer the mass balance of glaciers. Different tools and methods exist to obtain information about the 3D geometry of terrain. Recent improvements on the quality and performance of digital cameras for close-range photogrammetry, and the development of automatic digital photogrammetric processing makes the 'structure from motion' photogrammetric technique (SfM) competitive for high quality 3D models production, compared to efficient but also expensive and logistically-demanding survey technologies such as airborn and terrestrial laser scanner (TLS). The purpose of this work is to test the SfM approach, using a consumer-grade SLR camera and the low-cost computer vision-based software package Agisoft Photoscan (Agisoft LLC), to monitor the mass balance of Montasio Occidentale glacier, a 0.07km2, low-altitude, debris-covered glacier located in the Eastern Italian Alps. The quality of the 3D models produced by the SfM process has been assessed by comparison with digital terrain models obtained through TLS surveys carried out at the same dates. TLS technique has indeed proved to be very effective in determining the volume change of this glacier in the last years. Our results shows that the photogrammetric approach can produce point cloud densities comparable to those derived from TLS measurements. Furthermore, the horizontal and vertical accuracies are also of the same order of magnitude as for TLS (centimetric to decimetric). The effect of different landscape characteristics (e.g. distance from the camera or terrain gradient) and of different substrata (rock, debris, ice, snow and firn) was also evaluated in terms of SfM reconstruction's accuracy vs. TLS. Given the good results obtained on the Montasio Occidentale glacier, it can be concluded that the terrestrial photogrammetry, with the advantageous features of portability, ease of use and above all low costs

  1. Mass balance evolution of Martial Este Glacier, Tierra del Fuego (Argentina for the period 1960–2099

    Directory of Open Access Journals (Sweden)

    M. Buttstädt

    2009-12-01

    Full Text Available The Martial Este Glacier in southern Tierra del Fuego was studied in order to estimate the surface mass balance from 1960 until 2099. For this reason a degree-day model was calibrated. Air temperature and precipitation data obtained from 3 weather stations as well as glaciological measurements were applied. The model was driven using a vertical air temperature gradient of 0.69 K/100 m, a degree-day factor for snow of 4.7 mm w.e. K−1 day−1, a degree-day factor for ice of 9.4 mm w.e. K−1 day−1 and a precipitation gradient of 22%/100 m. For the purpose of surface mass balance reconstruction for the time period 1960 until 2006 a winter vertical air temperature gradient of 0.57 K/100 m and a summer vertical air temperature gradient of 0.71 K/100 m were added as well as a digital terrain model. The key finding is an almost continuous negative mass balance of −772 mm w.e. a−1 throughout this period. While the calculation of the mass balance for the period 1960–2006 is based on instrumental records, the mass balance for the years 2007 until 2099 was estimated based on the IPCC SRES A2-scenario. To accomplish this estimation, the dataset of the global climate model HadCM3 was statistically downscaled to fit local conditions at Martial Este Glacier. Subsequently, the downscaled air temperature and precipitation were applied to a volume-area scaling glacier change model. Findings reveal an enduring deglaciation resulting in a surface area reduction of nearly 93% until 2099. This implicates that the Martial Este Glacier might be melted off at the beginning of the 22nd century.

  2. Natural and artificial radioactivity in the Svalbard glaciers

    International Nuclear Information System (INIS)

    Pinglot, J.F.; Pourchet, M.

    1994-01-01

    Natural and artificial radioactivity in the snow of 10 Svalbard glaciers has been measured from 31 ice core samples, drilled between 1981 and 1993. Of these ice cores, seven exhibit the well-known level arising from the fallout of the 1961-62 atmospheric thermonuclear tests. The second level, due to the Chernobyl accident (26 April 1986), has been detected in all the studied glaciers; the maximum 137 Cs fallout reaches 22 Bq kg -1 and shows a high variability. The natural radioactivity, mostly due to 210 Pb, shows an in-depth variation which is not governed by its half-life (22.2 years). These measurements serve many glaciological purposes: absolute dating of the snow layers; air-snow transfer and fallout studies; the determination of mean annual mass balances in the accumulation area of glaciers and their associated spatio-temporal variations. (author)

  3. Changing pattern of ice flow and mass balance for glaciers discharging into the Larsen A and B embayments, Antarctic Peninsula, 2011 to 2016

    Science.gov (United States)

    Rott, Helmut; Abdel Jaber, Wael; Wuite, Jan; Scheiblauer, Stefan; Floricioiu, Dana; Melchior van Wessem, Jan; Nagler, Thomas; Miranda, Nuno; van den Broeke, Michiel R.

    2018-04-01

    We analysed volume change and mass balance of outlet glaciers on the northern Antarctic Peninsula over the periods 2011 to 2013 and 2013 to 2016, using high-resolution topographic data from the bistatic interferometric radar satellite mission TanDEM-X. Complementary to the geodetic method that applies DEM differencing, we computed the net mass balance of the main outlet glaciers using the mass budget method, accounting for the difference between the surface mass balance (SMB) and the discharge of ice into an ocean or ice shelf. The SMB values are based on output of the regional climate model RACMO version 2.3p2. To study glacier flow and retrieve ice discharge we generated time series of ice velocity from data from different satellite radar sensors, with radar images of the satellites TerraSAR-X and TanDEM-X as the main source. The study area comprises tributaries to the Larsen A, Larsen Inlet and Prince Gustav Channel embayments (region A), the glaciers calving into the Larsen B embayment (region B) and the glaciers draining into the remnant part of the Larsen B ice shelf in Scar Inlet (region C). The glaciers of region A, where the buttressing ice shelf disintegrated in 1995, and of region B (ice shelf break-up in 2002) show continuing losses in ice mass, with significant reduction of losses after 2013. The mass balance numbers for the grounded glacier area of region A are -3.98 ± 0.33 Gt a-1 from 2011 to 2013 and -2.38 ± 0.18 Gt a-1 from 2013 to 2016. The corresponding numbers for region B are -5.75 ± 0.45 and -2.32 ± 0.25 Gt a-1. The mass balance in region C during the two periods was slightly negative, at -0.54 ± 0.38 Gt a-1 and -0.58 ± 0.25 Gt a-1. The main share in the overall mass losses of the region was contributed by two glaciers: Drygalski Glacier contributing 61 % to the mass deficit of region A, and Hektoria and Green glaciers accounting for 67 % to the mass deficit of region B. Hektoria and Green glaciers accelerated significantly in 2010

  4. Adjustment of regional climate model output for modeling the climatic mass balance of all glaciers on Svalbard.

    NARCIS (Netherlands)

    Möller, M.; Obleitner, F.; Reijmer, C.H.; Pohjola, V.A.; Glowacki, P.; Kohler, J.

    2016-01-01

    Large-scale modeling of glacier mass balance relies often on the output from regional climate models (RCMs). However, the limited accuracy and spatial resolution of RCM output pose limitations on mass balance simulations at subregional or local scales. Moreover, RCM output is still rarely available

  5. Acceleration of Humboldt glacier, north Greenland

    Science.gov (United States)

    Jeong, S.; Howat, I.; Noh, M. J.; King, M. D.

    2017-12-01

    Here we report on recent abrupt acceleration on the flow speed of Humboldt Glacier (HG) in northern Greenland. The mean annual discharge of this glacier in 2000 was estimated as 8.4Gt/a, placing it among the largest outlet glacier draining the northern coast (Enderlin et al., 2014). Using a combination of remote sensing datasets, we find that following a slight slowing before 2010, HG suddenly sped up by a factor of three between 2012 and 2013, maintaining that increased speed through 2016. Speedup was accompanied by up to 10 m of thinning near the terminus and followed slower, longer-term thinning and retreat. Here we assess possible causes for the speedup, potential for continued acceleration and implication to ice sheet mass balance. ReferenceEnderlin, E. M., I. M. Howat, S. Jeong, M.-J. Noh, J. H. van Angelen, and M. R. van den Broeke (2014), An improved mass budget for the Greenland ice sheet, Geophys. Res. Lett., 41, 866-872, doi:10.1002/2013GL059010.

  6. Mass Balance Reconstruction and Volumetric change of Stok Glaicer , Ladak Region, Western Himalyas,India (1969-2015)

    Science.gov (United States)

    Mohd, S.; AL, R.

    2017-12-01

    Understanding mass balance and volumetric change of glaciers are extremely important in areas where the majority of the population depends on cryospheric sources for the livelihood. Ladakh is one of the coldest and the aridest region of India. The majority of the population live in mountain pockets where the only source of water is snow and glacier melt for agriculture and domestic use. Stok village catchment (52 km2) has seven very small glaciers with an area ranging between 0.2-1.05 km2 at an elevation above 5300m a.s.l (GSI 2009). These glaciers contribute to a stream feeding Stok village of 274 ( 1469 individuals) households and a portion of Chuchot village before joining the Indus River. Ironically very limited studies have been carried out so far in this region, making it even more urgent to monitor the health of the glaciers in this region. With the changing climate, booming of the tourism industry and scarcity of water resources during the spring season, there is a shift in the livelihood of the region towards other option leading to a negative impact on the environment and over exploitation of natural resources. In this study we present analysis of measured annual mass balances for the period 2015-2017 and reconstruction of annual mass balances since 1969 to 2015 of Stok glacier located on the north eastern slope of Zanskar range in Ladakh region of western Himalayas. Direct glaciological methods were used to obtain annual mass balance for 2015-2017 and for reconstruction of annual mass balances, Classical Temperature Index model were used with the help of meteorological data from Indian Meteorological Department. The data gaps were filled with the help of several modelled datasets viz. HAR (High Asia Reanalysis), REMO, and Climate Research Unit (CRU) TS2.1 dataset. We also present catchment wide change in volume of the glaciers since 1969 to 2015. Declassified satellite images and Landsat images were used to obtain the change in volume of the glacier with

  7. Internationally coordinated glacier monitoring: strategy and datasets

    Science.gov (United States)

    Hoelzle, Martin; Armstrong, Richard; Fetterer, Florence; Gärtner-Roer, Isabelle; Haeberli, Wilfried; Kääb, Andreas; Kargel, Jeff; Nussbaumer, Samuel; Paul, Frank; Raup, Bruce; Zemp, Michael

    2014-05-01

    (c) the Randolph Glacier Inventory (RGI), a new and globally complete digital dataset of outlines from about 180,000 glaciers with some meta-information, which has been used for many applications relating to the IPCC AR5 report. Concerning glacier changes, a database (Fluctuations of Glaciers) exists containing information about mass balance, front variations including past reconstructed time series, geodetic changes and special events. Annual mass balance reporting contains information for about 125 glaciers with a subset of 37 glaciers with continuous observational series since 1980 or earlier. Front variation observations of around 1800 glaciers are available from most of the mountain ranges world-wide. This database was recently updated with 26 glaciers having an unprecedented dataset of length changes from from reconstructions of well-dated historical evidence going back as far as the 16th century. Geodetic observations of about 430 glaciers are available. The database is completed by a dataset containing information on special events including glacier surges, glacier lake outbursts, ice avalanches, eruptions of ice-clad volcanoes, etc. related to about 200 glaciers. A special database of glacier photographs contains 13,000 pictures from around 500 glaciers, some of them dating back to the 19th century. A key challenge is to combine and extend the traditional observations with fast evolving datasets from new technologies.

  8. Radiation balance diversity on NW Spitsbergen in 2010–2014

    Directory of Open Access Journals (Sweden)

    Kejna Marek

    2017-03-01

    Full Text Available This article presents the results of observations of selected fluxes of the radiation balance in north-western Spitsbergen in the years from 2010 to 2014. Measurements were taken in Ny-Ålesund and in the area of Kaffiøyra, on different surface types occurring in the Polar zone: moraine, tundra, snow and ice. Substantial differences in the radiation balance among the various types of surface were observed. The observations carried out in the summer seasons of 2010–2014 in the area of Kaffiøyra demonstrated that the considerable reflection of solar radiation on the Waldemar Glacier (albedo 55% resulted in a smaller solar energy net income. During the polar day, a diurnal course of the components of the radiation balance was apparently related to the solar elevation angle. When the sun was low over the horizon, the radiation balance became negative, especially on the glacier. Diurnal, annual and multi-annual variations in the radiation balance have a significant influence on the functioning of the environment in polar conditions.

  9. Climate sensitivity of glaciers in southern Norway: application of an energy-balance model to Nigardsbreen, Hellstugubreen and Alfotbreen

    NARCIS (Netherlands)

    Oerlemans, J.

    1992-01-01

    Three glaciers in southern Norway, with very different massbalance characteristics, are studied with an energy-balance model of the ice/snow surface. The model simulates the observed mass-balance profiles in a satisfactory way, and can thus be used with some confidence in a study of climate

  10. Glacier mass balance reconstruction by sublimation induced enrichment of chemical species on Cerro Tapado (Chilean Andes

    Directory of Open Access Journals (Sweden)

    P. Ginot

    2006-01-01

    Full Text Available A 36 m long ice core down to bedrock from the Cerro Tapado glacier (5536 m a.s.l, 30°08' S, 69°55' W was analyzed to reconstruct past climatic conditions for Northern Chile. Because of the marked seasonality in the precipitation (short wet winter and extended dry summer periods in this region, major snow ablation and related post-depositional processes occur on the glacier surface during summer periods. They include predominantly sublimation and dry deposition. Assuming that, like measured during the field campaign, the enrichment of chloride was always related to sublimation, the chemical record along the ice core may be applied to reconstruct the history of such secondary processes linked to the past climatic conditions over northern Chile. For the time period 1962–1999, a mean annual net accumulation of 316 mm water equivalent (weq and 327 mm weq loss by sublimation was deduced by this method. This corresponds to an initial total annual accumulation of 539 mm weq. The annual variability of the accumulation and sublimation is related with the Southern Oscillation Index (SOI: higher net-accumulation during El-Niño years and more sublimation during La Niña years. The deepest part of the ice record shows a time discontinuity; with an ice body deposited under different climatic conditions: 290 mm higher precipitation but with reduced seasonal distribution (+470 mm in winter and –180 mm in summer and –3°C lower mean annual temperature. Unfortunately, its age is unknown. The comparison with regional proxy data however let us conclude that the glacier buildup did most likely occur after the dry mid-Holocene.

  11. Glaciers et évolution climatique dans les Andes boliviennes. Glacier de Zongo et glacier de Chacaltaya Cordillère Royale, 16°S

    Directory of Open Access Journals (Sweden)

    1995-01-01

    Full Text Available SEDIMENTOLOGY OF THE HUANCANE FORMATION (NEOCOMIAN OF THE CUSCO REGION AND ITS RELATION TO SEA LEVEL VARIATIONS. The Huancane formation (Neocomian of the Cusco region is mainly composed of quartz sandstones which are deposited in fluvial environments. The facies recognized are organized in a vertical sequence: fluvial sheet sandstones, oxidized or eroded surface, the shale facies of alluvial plain and unusual limestone facies of possible marine origin. These vertical facies sequences show that eustatic sea level variations controlled the fluvial sedimentation. The rivers came from the NE and were fed by the erosion of the Brazilian Shield. The sedimentation developed above the boundary of the SW edge of the Eastern basin, and the Cusco-Puno Swell which had locale horst and grabens inherited from pre-neocomian relief. GLACIARES Y EVOLUCIÓN CLIMÁTICA EN LOS ANDES BOLIVIANOS GLACIAR DE ZONGO Y GLACIAR DE CHACALTAYA, CORDILLERA REAL, 16°S. Por su sensibilidad y su plazo de respuesta breve, el glaciar es de un gran interés para analizar la evolución y la variabilidad actuales del clima entre los trópicos. Se presentan los métodos de determinación del balance de masas y del balance hidrológico, con una frecuencia de mediciones mensual. Los resultados recogidos durante tres años (1991-1994 muestran una grande variabilidad. Ésta es controlada sobre todo por la extensión del periodo de precipitaciones en medio de la temporada cálida que dura más o menos 6 meses. Los eventos ENSO (El Niño Southern Oscillation son asociados a balances netamente negativos, lo que es demostrado por la respuesta del glaciar al episodio de 1991-1992 y por la reconstrucción de los balances efectuados en base a los datos hidrológicos durante los dos últimos decenios. El retroceso acelerado de los glaciares tropicales desde los años 1980 es vinculado a la vez a una sucesión de eventos ENSO y al recalentamiento atmosférico. GLACIERS AND CLIMATIC EVOLUTION IN

  12. Summer energy balance and ablation of high elevation glaciers in the central Chilean Andes

    Science.gov (United States)

    Brock, Benjamin; Rivera, Andres; Burger, Flavia; Bravo, Claudio

    2014-05-01

    Glaciers of the semi-arid central Chilean Andes are an important freshwater source for the populous Central Valley region of Chile, but have been shrinking in recent decades. The surface energy balance of these glaciers is of high scientific interest as summer ablation occurs through both sublimation and melt. During the 2012-13 Austral Summer a glacio-meteorological monitoring programme was established on Olivares Alfa (3.9 km2, 4130-4800 m elevation) and Beta (8.3 km2, 3620-4850 m elevation) Glaciers and their forelands in the Upper Olivares Valley, 33°00'-33°11' S, 70°05'-70°15' W, approximately 50 km north-east of Santiago. This included complete automatic weather stations (AWSs) with sonic rangers to record surface ablation on the ablation zones of the two glaciers, and one AWS in the proglacial area of Olivares Alfa Glacier including precipitation gauge. To complement these point data, daily images of the glaciers were captured with fixed cameras in order to calculate snow cover and albedo distributions. To calculate the surface energy balance and rates of melt and sublimation, a model was developed which uses direct AWS measurements of the radiative fluxes and calculates the turbulent fluxes of sensible and latent heat using the bulk aerodynamic approach. The model also calculates the subsurface heat flux and includes a simple scheme to estimate refreezing of melt water within surface snow or ice. Meteorological data and model results for the December to May period will be presented in this paper. Model calculations match closely the cumulative ablation curve of the sonic ranger at Olivares Alfa, with a slight overestimation, and overestimate cumulative ablation recorded by the sonic ranger at Olivares Beta, possibly due, at least in part, to uncertain snow density values. Modelled cumulative ablation in the December-April period is 2.2 m water equivalent (w.e.) at Olivares Alfa (0.10 m sublimation, 2.10 m melt) and 2.34 m w.e. at Olivares Beta (0.18 m

  13. Seasonal and inter-annual variability in velocity and frontal position of Siachen Glacier (Eastern Karakorum) using multi-satellite data

    Science.gov (United States)

    Usman, M.; Furuya, M.; Sakakibara, D.; Abe, T.

    2017-12-01

    The anomalous behavior of Karakorum glaciers is a hot topic of discussion in the scientific community. Siachen Glacier is one of the longest glaciers ( 75km) in Karakorum Range. This glacier is supposed to be a surge type but so far no studies have confirmed this claim. Detailed velocity mapping of this glacier can possibly provide some clues about intra/inter-annual changes in velocity and observed terminus. Using L-band SAR data of ALOS-1/2, we applied the feature tracking technique (search patch of 128x128 pixels (range x azimuth) , sampling interval of 12x36 pixels) to derive velocity changes; we used GAMMA software. The velocity was calculated by following the parallel flow assumption. To calculate the local topographic gradient unit vector, we used ASTER-GDEM. We also used optical images acquired by Landsat 5 Thematic Mapper (TM), the Landsat 7 Enhanced Thematic Mapper Plus (ETM+) to derive surface velocity. The algorithm we used is Cross-Correlation in Frequency domain on Orientation images (CCF-O). The velocity was finally calculated by setting a flow line and averaging over the area of 200x200m2. The results indicate seasonal speed up signals that modulate inter-annually from 1999 to 2011, with slight or no change in the observed frontal position. However, in ALOS-2 data, the `observed terminus' seems to have been advancing.

  14. The Value of Hydrograph Partitioning Curves for Calibrating Hydrological Models in Glacierized Basins

    Science.gov (United States)

    He, Zhihua; Vorogushyn, Sergiy; Unger-Shayesteh, Katy; Gafurov, Abror; Kalashnikova, Olga; Omorova, Elvira; Merz, Bruno

    2018-03-01

    This study refines the method for calibrating a glacio-hydrological model based on Hydrograph Partitioning Curves (HPCs), and evaluates its value in comparison to multidata set optimization approaches which use glacier mass balance, satellite snow cover images, and discharge. The HPCs are extracted from the observed flow hydrograph using catchment precipitation and temperature gradients. They indicate the periods when the various runoff processes, such as glacier melt or snow melt, dominate the basin hydrograph. The annual cumulative curve of the difference between average daily temperature and melt threshold temperature over the basin, as well as the annual cumulative curve of average daily snowfall on the glacierized areas are used to identify the starting and end dates of snow and glacier ablation periods. Model parameters characterizing different runoff processes are calibrated on different HPCs in a stepwise and iterative way. Results show that the HPC-based method (1) delivers model-internal consistency comparably to the tri-data set calibration method; (2) improves the stability of calibrated parameter values across various calibration periods; and (3) estimates the contributions of runoff components similarly to the tri-data set calibration method. Our findings indicate the potential of the HPC-based approach as an alternative for hydrological model calibration in glacierized basins where other calibration data sets than discharge are often not available or very costly to obtain.

  15. The changing impact of snow conditions and refreezing on the mass balance of an idealized Svalbard glacier

    Directory of Open Access Journals (Sweden)

    Ward Van Pelt

    2016-11-01

    Full Text Available Glacier surface melt and runoff depend strongly on seasonal and perennial snow (firn conditions. Not only does the presence of snow and firn directly affect melt rates by reflecting solar radiation, it may also act as a buffer against mass loss by storing melt water in refrozen or liquid form. In Svalbard, ongoing and projected amplified climate change with respect to the global mean change has severe implications for the state of snow and firn and its impact on glacier mass loss. Model experiments with a coupled surface energy balance - firn model were done to investigate the surface mass balance and the changing role of snow and firn conditions for an idealized Svalbard glacier. A climate forcing for the past, present and future (1984-2104 is constructed, based on observational data from Svalbard Airport and a seasonally dependent projection scenario. Results illustrate ongoing and future firn degradation in response to an elevational retreat of the equilibrium line altitude (ELA of 31 m decade−1. The temperate firn zone is found to retreat and expand, while cold ice in the ablation zone warms considerably. In response to pronounced winter warming and an associated increase in winter rainfall, the current prevalence of refreezing during the melt season gradually shifts to the winter season in a future climate. Sensitivity tests reveal that in a present and future climate the density and thermodynamic structure of Svalbard glaciers are heavily influenced by refreezing. Refreezing acts as a net buffer against mass loss. However, the net mass balance change after refreezing is substantially smaller than the amount of refreezing itself, which can be ascribed to melt-enhancing effects after refreezing, which partly offset the primary mass-retaining effect of refreezing.

  16. Climate Change and Glacier Retreat: Scientific Fact and Artistic Opportunity

    Science.gov (United States)

    Fagre, D. B.

    2008-12-01

    Mountain glaciers continue to retreat rapidly over most of the globe. In North America, at Glacier National Park, Montana, recent research results from Sperry Glacier (2005-2007) indicate negative mass balances are now 3-4 times greater than in the 1950s. A geospatial model of glacier retreat in the Blackfoot-Jackson basin suggested all glaciers would be gone by 2030 but has proved too conservative. Accelerated glacier shrinkage since the model was developed has mirrored an increase in actual annual temperature that is almost twice the rate used in the model. The glaciers in Glacier National Park are likely to be gone well before 2030. A variety of media, curricula, and educational strategies have been employed to communicate the disappearance of the glaciers as a consequence of global warming. These have included everything from print media and television coverage to podcasts and wayside exhibits along roads in the park. However, a new thrust is to partner with artists to communicate climate change issues to new audiences and through different channels. A scientist-artist retreat was convened to explore the tension between keeping artistic products grounded in factually-based reality while providing for freedom to express artistic creativity. Individual artists and scientists have worked to create aesthetic and emotional images, using painting, poetry, music and photography, to convey core messages from research on mountain ecosystems. Finally, a traveling art exhibit was developed to highlight the photography that systematically documents glacier change through time. The aim was to select photographs that provide the most compelling visual experience for an art-oriented viewer and also accurately reflect the research on glacier retreat. The exhibit opens on January 11, 2009

  17. Estimating the ice thickness of mountain glaciers with an inverse approach using surface topography and mass-balance

    International Nuclear Information System (INIS)

    Michel, Laurent; Picasso, Marco; Farinotti, Daniel; Bauder, Andreas; Funk, Martin; Blatter, Heinz

    2013-01-01

    We present a numerical method to estimate the ice thickness distribution within a two-dimensional, non-sliding mountain glacier, given a transient surface geometry and a mass-balance distribution, which are relatively easy to obtain for a large number of glaciers. The inverse approach is based on the shallow ice approximation (SIA) of ice flow and requires neither filtering of the surface topography with a lower slope limit nor approximation of constant basal shear stress. We first address this problem for a steady-state surface geometry. Next, we use an apparent surface mass-balance description that makes the transient evolution quasi-stationary. Then, we employ a more elaborated fixed-point method in which the bedrock solution is iteratively obtained by adding the difference between the computed and known surface geometries at the end of the considered time interval. In a sensitivity study, we show that the procedure is much more susceptible to small perturbations in surface geometry than mass-balance. Finally, we present preliminary results for bed elevations in three space dimensions. (paper)

  18. On tritium content in the Abramov glacier layers

    International Nuclear Information System (INIS)

    Voronskaya, G.N.; Nikolishin, I.Ya.; Romanov, V.V.

    1976-01-01

    Using the common pattern of the analysis of tritium in natural waters its concentration was determined in sampeles of annual layers of the Abramov glacier (Pamir-Altai) at the height of 4500 m above the sea level for 1927-1972. The tritium activity was measured with the help of the liquid scintillation spectrometer with the 10 per cent accuracy. The nature of the obtained curve of the distribution of tritium in the Abramov glacier annual layers was close to its, distribution in glaciers of Greenland, in the Fedchenko glacier and in the precipitation of Teheran. The absolute values of tritium concentrations in the Pamir glaciers are significantly lower than in glaciers of Greenlad. The maximum of tritium concentrations is observed in samples which correspond to 1963, its value approximating to 800 tritium units

  19. Glacier monitoring and glacier-climate interactions in the tropical Andes: A review

    Science.gov (United States)

    Veettil, Bijeesh Kozhikkodan; Wang, Shanshan; Florêncio de Souza, Sergio; Bremer, Ulisses Franz; Simões, Jefferson Cardia

    2017-08-01

    In this review, we summarized the evolution of glacier monitoring in the tropical Andes during the last few decades, particularly after the development of remote sensing and photogrammetry. Advantages and limitations of glacier mapping, applied so far, in Venezuela, Colombia, Ecuador, Peru and Bolivia are discussed in detail. Glacier parameters such as the equilibrium line altitude, snowline and mass balance were given special attention in understanding the complex cryosphere-climate interactions, particularly using remote sensing techniques. Glaciers in the inner and the outer tropics were considered separately based on the precipitation and temperature conditions within a new framework. The applicability of various methods to use glacier records to understand and reconstruct the tropical Andean climate between the Last Glacial Maximum (11,700 years ago) and the present is also explored in this paper. Results from various studies published recently were analyzed and we tried to understand the differences in the magnitudes of glacier responses towards the climatic perturbations in the inner tropics and the outer tropics. Inner tropical glaciers, particularly those in Venezuela and Colombia near the January Intertropical Convergence Zone (ITCZ), are more vulnerable to increase in temperature. Surface energy balance experiments show that outer tropical glaciers respond to precipitation variability very rapidly in comparison with the temperature variability, particularly when moving towards the subtropics. We also analyzed the gradients in glacier response to climate change from the Pacific coast towards the Amazon Basin as well as with the elevation. Based on the current trends synthesised from recent studies, it is hypothesized that the glaciers in the inner tropics and the southern wet outer tropics will disappear first as a response to global warming whereas glaciers in the northern wet outer tropics and dry outer tropics show resistance to warming trends due to

  20. Glaciation of alpine valleys: The glacier - debris-covered glacier - rock glacier continuum

    Science.gov (United States)

    Anderson, Robert S.; Anderson, Leif S.; Armstrong, William H.; Rossi, Matthew W.; Crump, Sarah E.

    2018-06-01

    because they are most common on lee sides of ridges and peaks where wind-blown snow enhances the strength of the avalanche source. To maintain positive mass balance, the avalanche cone developed in the winter must be sufficiently thick not to melt entirely in the summer, thus providing an ice accumulation area for the rock glacier. In the absence of rockfall, this would support a short cirque glacier. The presence of debris, however, facilitates the development of rock glaciers with lengths of hundreds of meters, thicknesses of tens of meters, and speeds of meters per year that are well described by numerical models. Numerical models are used to explore the alpine glacier response to its climate history. In warming climates, a debris-covered glacier can transform into a much shorter rock glacier, leaving in its wake a thinning ice-cored moraine. Rock glaciers will persist in landscapes well beyond debris-free counterparts because they have much longer response times to climate change. The headwaters of alpine basins with steep headwalls will therefore oscillate between glacier and rock glacier occupation over glacial-interglacial cycles, maintaining a means by which rock from the headwall can be conveyed away. This enhances the asymmetry of alpine ridgelines, with downwind valleys biting deeply into the range crests, as originally noted by G.K. Gilbert.

  1. Irreversible mass loss of Canadian Arctic Archipelago glaciers

    NARCIS (Netherlands)

    Lenaerts, J.T.M.|info:eu-repo/dai/nl/314850163; van Angelen, J.H.|info:eu-repo/dai/nl/325922470; van den Broeke, M.R.|info:eu-repo/dai/nl/073765643; Gardner, A.S.; Wouters, Bert|info:eu-repo/dai/nl/304120146; van Meijgaard, E.

    2013-01-01

    The Canadian Arctic Archipelago (CAA) contains the largest volume of glacier ice on Earth outside of Antarctica and Greenland. In the absence of significant calving, CAA glacier mass balance is governed by the difference between surface snow accumulation and meltwater runoff—surface mass balance.

  2. Application of a hybrid method for downscaling of the global climate model fields for evaluation of future surface mass balance of mountain glaciers

    Science.gov (United States)

    Morozova, Polina; Rybak, Oleg; Kaminskaia, Mariia

    2017-04-01

    Mountain glaciers in the Caucasus have been degrading during the last century. During this time period they lost approximately one-third in area and half of their volume. Prediction of their evolution in changing climate is crucial for the local economy because hydrological regime in the territory north to the Main Caucasus Chain is mainly driven by glacier run-off. For future projections of glaciers' surface mass balance (SMB) we apply a hybrid method of downscaling of GCM-generated meteorological fields from the global scale to the characteristic spatial resolution normally used for modeling of a single mountain glacier SMB. A method consists of two stages. On the first, dynamical stage, we use the results of calculations of regional climate model (RCM) HadRM3P for the Black Sea-Caspian region with a spatial resolution of approximately 25 km. Initial and boundary conditions for HadRM3P are provided by an AO GCM INMCM developed in the Institute of Numerical Mathematics (Moscow, Russia). Calculations were carried out for two time slices: the present (reference) climate (1971-2000 years) and climate in the late 21st century (2071-2100 years) according to scenario of greenhouse gas emissions RCP 8.5. On the second stage of downscaling, further regionalization is achieved by projecting of RCM-generated data to the high-resolution (25 m) digital elevation models in a domain enclosing target glaciers (Marukh in the Western Caucasus and Djankuat in the Central Caucasus, both being typical valley glaciers). Elevation gradient of surface air temperature and precipitation were derived from the model data. Further, results were corrected using data of observations. The incoming shortwave radiation is calculated separately, taking into account slopes, aspects and shade effect. In the end of the current century expected air temperature growth in the Central and Western Caucasus is about 5-6 °C (summer), and 2-3 °C (winter). Reduction in annual precipitation is not

  3. Mountain glaciers vs Ice sheet in Greenland - learning from a new monitoring site in West Greenland

    Science.gov (United States)

    Abermann, Jakob; van As, Dirk; Wacker, Stefan; Langley, Kirsty

    2017-04-01

    Only 5 out of the 20.000 peripheral glaciers and ice caps surrounding Greenland are currently monitored due to logistical challenges and despite their significance for sea level rise. Large spatial coast-to-icesheet mass and energy balance gradients limit simple upscaling methods from ice-sheet observations, which builds the motivation for this study. We present results from a new mass and energy balance time series at Qasigiannguit glacier (64°09'N; 51°21'W) in Southwest Greenland. Inter-annual variability is discussed and the surface energy balance over two summers is quantified and a ranking of the main drivers performed. We find that short-wave net radiation is by far the most dominant energy source during summer, followed by similar amounts of net longwave radiation and sensible heat, respectively. We then relate these observations to synchronous measurements at similar latitude on an outlet glacier of the ice sheet a mere 100 km away. We find very pronounced horizontal surface mass balance gradients, with generally more positive values closer to the coast. We conclude that despite minor differences of atmospheric parameters (i.e. humidity, radiation, and temperature) the main reason for the strongly different signal is a pronounced winter precipitation gradient that translates in a different duration of ice exposure and through that an albedo gradient. Modelled energy balance gradients converted into mass changes show good agreement to measured surface mass balance gradients and we explore a latitudinal signal of these findings.

  4. Recent glacier mass balance and area changes in the Kangri Karpo Mountains from DEMs and glacier inventories

    Science.gov (United States)

    Wu, Kunpeng; Liu, Shiyin; Jiang, Zongli; Xu, Junli; Wei, Junfeng; Guo, Wanqin

    2018-01-01

    Due to the influence of the Indian monsoon, the Kangri Karpo Mountains in the south-east of the Tibetan Plateau is in the most humid and one of the most important and concentrated regions containing maritime (temperate) glaciers. Glacier mass loss in the Kangri Karpo is an important contributor to global mean sea level rise, and changes run-off distribution, increasing the risk of glacial-lake outburst floods (GLOFs). Because of its inaccessibility and high labour costs, information about the Kangri Karpo glaciers is still limited. Using geodetic methods based on digital elevation models (DEMs) derived from 1980 topographic maps from the Shuttle Radar Topography Mission (SRTM) (2000) and from TerraSAR-X/TanDEM-X (2014), this study has determined glacier elevation changes. Glacier area and length changes between 1980 and 2015 were derived from topographical maps and Landsat TM/ETM+/OLI images. Results show that the Kangri Karpo contained 1166 glaciers with an area of 2048.50 ± 48.65 km2 in 2015. Ice cover diminished by 679.51 ± 59.49 km2 (24.9 ± 2.2 %) or 0.71 ± 0.06 % a-1 from 1980 to 2015, although nine glaciers advanced. A glacierized area of 788.28 km2, derived from DEM differencing, experienced a mean mass loss of 0.46 ± 0.08 m w.e. a-1 from 1980 to 2014. Shrinkage and mass loss accelerated significantly from 2000 to 2015 compared to 1980-2000, consistent with a warming climate.

  5. The retreat of the world's mountain glaciers during recent decades

    International Nuclear Information System (INIS)

    Francou, B.; Vincent, Ch.

    2009-01-01

    Glaciers have become essential tools for measuring changes in the global environment. Here, we analyze glacier evolution during the last few decades and we wonder whether the observed retreat remains in the range of glacier fluctuations since the mid-Holocene. The main fluctuations experienced by glaciers during the last millenniums, and particularly during the Little Ice Age (-1300 A.D. to ∼1860 A.D.), are presented succinctly. The recent 1960-2005 period, well documented both by ground and remote sensing observations, shows important disparities between different massifs concerning the timing and the magnitude of glacier fluctuations, which depend on regional climatic conditions. The links between glacier mass balance evolution and climate is clear when approached from an energy balance but the variables commonly considered are only temperature and precipitation. The strong correlation existing between these variables and the mass balance evolution makes it possible to simulate glaciers in the future in function of distinct climatic scenarios. Modeling glacier retreat for the 21. century is an important goal because it will allow the impacts on water resource and sea level to be assessed. (authors)

  6. Present dynamics and future prognosis of a slowly surging glacier

    Directory of Open Access Journals (Sweden)

    G. E. Flowers

    2011-03-01

    Full Text Available Glacier surges are a well-known example of an internal dynamic oscillation whose occurrence is not a direct response to the external climate forcing, but whose character (i.e. period, amplitude, mechanism may depend on the glacier's environmental or climate setting. We examine the dynamics of a small (∼5 km2 valley glacier in Yukon, Canada, where two previous surges have been photographically documented and an unusually slow surge is currently underway. To characterize the dynamics of the present surge, and to speculate on the future of this glacier, we employ a higher-order flowband model of ice dynamics with a regularized Coulomb-friction sliding law in both diagnostic and prognostic simulations. Diagnostic (force balance calculations capture the measured ice-surface velocity profile only when non-zero basal water pressures are prescribed over the central region of the glacier, coincident with where evidence of the surge has been identified. This leads to sliding accounting for 50–100% of the total surface motion in this region. Prognostic simulations, where the glacier geometry evolves in response to a prescribed surface mass balance, reveal a significant role played by a bedrock ridge beneath the current equilibrium line of the glacier. Ice thickening occurs above the ridge in our simulations, until the net mass balance reaches sufficiently negative values. We suggest that the bedrock ridge may contribute to the propensity for surges in this glacier by promoting the development of the reservoir area during quiescence, and may permit surges to occur under more negative balance conditions than would otherwise be possible. Collectively, these results corroborate our interpretation of the current glacier flow regime as indicative of a slow surge that has been ongoing for some time, and support a relationship between surge incidence or character and the net mass balance. Our results also highlight the importance of glacier bed

  7. A NEW APPROACH TO ESTIMATE WATER OUTPUT FROM THE MOUNTAIN GLACIERS IN ASIA

    Directory of Open Access Journals (Sweden)

    Vladimir G. Konovalov

    2015-01-01

    Full Text Available Regional data on climate, river runoff and inventory of glaciers within High Mountainous Asia were used as informational basis to elaborate new approach in computing components of the hydrological cycle (glaciers runoff, evaporation, precipitation. In order to improve and optimize the calculation methodology, 4 675 homogeneous groups of glaciers were identified in the largest Asian river basins, i.e., Amu Darya, Syr Darya, Indus, Ganges, Brahmaputra, Tarim, and others. As the classification criteria for 53 225 glaciers located there, the author consistently used 8 gradations of orientation (azimuth and 23 gradations of area. Calculating of the hydrological regime of glaciers was performed on the example of several Asian river basins. It has been shown that in the drainless basins in Asia, the only potential factor of the glacial influence on the changes in global Ocean level is the seasonal amount of evaporation from the melted surface of perennial ice and old firn. These results and published sources were used for re-evaluation of the previous conclusions on the influence of glacier runoff on change of the Ocean level. Comparison of measured and calculated annual river runoff, which was obtained by means of modeling the components of water-balance equation, showed good correspondence between these variables.

  8. Recent glacier mass balance and area changes in the Kangri Karpo Mountains from DEMs and glacier inventories

    Directory of Open Access Journals (Sweden)

    K. Wu

    2018-01-01

    Full Text Available Due to the influence of the Indian monsoon, the Kangri Karpo Mountains in the south-east of the Tibetan Plateau is in the most humid and one of the most important and concentrated regions containing maritime (temperate glaciers. Glacier mass loss in the Kangri Karpo is an important contributor to global mean sea level rise, and changes run-off distribution, increasing the risk of glacial-lake outburst floods (GLOFs. Because of its inaccessibility and high labour costs, information about the Kangri Karpo glaciers is still limited. Using geodetic methods based on digital elevation models (DEMs derived from 1980 topographic maps from the Shuttle Radar Topography Mission (SRTM (2000 and from TerraSAR-X/TanDEM-X (2014, this study has determined glacier elevation changes. Glacier area and length changes between 1980 and 2015 were derived from topographical maps and Landsat TM/ETM+/OLI images. Results show that the Kangri Karpo contained 1166 glaciers with an area of 2048.50 ± 48.65 km2 in 2015. Ice cover diminished by 679.51 ± 59.49 km2 (24.9 ± 2.2 % or 0.71 ± 0.06 % a−1 from 1980 to 2015, although nine glaciers advanced. A glacierized area of 788.28 km2, derived from DEM differencing, experienced a mean mass loss of 0.46 ± 0.08 m w.e. a−1 from 1980 to 2014. Shrinkage and mass loss accelerated significantly from 2000 to 2015 compared to 1980–2000, consistent with a warming climate.

  9. Numerical Modeling of Climatic Change from the Terminus Record of Lewis Glacier, Mount Kenya.

    Science.gov (United States)

    Kruss, Phillip Donald

    Over the last 100 years, the glaciers and lakes of East Africa have undergone dramatic change in response to climatic forcing. However, the available conventional meterological series have not proven sufficient to explain these environmental events. The secular climatic change at Lewis Glacier, Mount Kenya (0(DEGREES)9'S, 37(DEGREES)19'E), is reconstructed from its terminus record documented since 1893. The short-time-step numerical model developed for this study consists of climate and ice dynamics segments. The climate segment directly computes the effect on the net balance of change in the four forcings: precipitation, albedo, cloudiness, and temperature. The flow segment calculates the dynamic glacier response to net balance variation. Climatic change occurs over a wide range of time scales. Each glacier responds in a unique fashion to this spectrum of climatic forcings. The response of the Lewis terminus extent to repeated sinusoidal fluctuation in the net balance is calculated. The net balance versus elevation profile is separately translated along the orthogonal balance and elevation axes. Net balance amplitudes of 0.1 to 0.5 m a('-1) of ice and 10 to 50 m elevation, respectively, and periods ranging from 20 to 1000 years are covered. Consideration of the Lewis response is perspective with similar results for Hintereisferner, Storglaciaren, and Berendon and South Cascade Glaciers identifies general characteristics of the time lag and amplitude of the terminus response. The magnitude and timing of the change in only one of the climatic forcings precipitation, albedo, cloudiness, or temperature necessary to produce the retreat of the Lewis terminus from its late 19th century maximum are computed. Equivalent changes for two scenarios of simultaneous variation, namely precipitation/albedo/cloudiness and temperature/albedo, are also estimated. These numerical results are interpreted in the light of long-term lake level, river flow, and instrumental information. A

  10. The retreat of the world's mountain glaciers during recent decades; Le retrait des glaciers de montagne dans le monde au cours des dernieres decennies

    Energy Technology Data Exchange (ETDEWEB)

    Francou, B. [Institut de Recherche pour le Developpement (IRD), Mission de Quito, Equateur - LTHE, 38 - Grenoble (France); Vincent, Ch. [Centre National de la Recherche Scientifique (CNRS), UJF, LGGE, 38 - Grenoble (France)

    2009-08-15

    Glaciers have become essential tools for measuring changes in the global environment. Here, we analyze glacier evolution during the last few decades and we wonder whether the observed retreat remains in the range of glacier fluctuations since the mid-Holocene. The main fluctuations experienced by glaciers during the last millenniums, and particularly during the Little Ice Age (-1300 A.D. to {approx}1860 A.D.), are presented succinctly. The recent 1960-2005 period, well documented both by ground and remote sensing observations, shows important disparities between different massifs concerning the timing and the magnitude of glacier fluctuations, which depend on regional climatic conditions. The links between glacier mass balance evolution and climate is clear when approached from an energy balance but the variables commonly considered are only temperature and precipitation. The strong correlation existing between these variables and the mass balance evolution makes it possible to simulate glaciers in the future in function of distinct climatic scenarios. Modeling glacier retreat for the 21. century is an important goal because it will allow the impacts on water resource and sea level to be assessed. (authors)

  11. Surface energy balance in the ablation zone of Langfjordjøkelen, an arctic, maritime glacier in northern Norway

    NARCIS (Netherlands)

    Giesen, Rianne H.; Andreassen, Liss M.; Oerlemans, Johannes; van den Broeke, Michiel R.

    2014-01-01

    Glaciers in northern and southern Norway are subject to different daily and seasonal cycles of incoming solar radiation, which is presumably reflected in the importance of net solar radiation in their surface energy balance. We present a 3 year continuous record from an automatic weather station in

  12. ICESat laser altimetry over small mountain glaciers

    Directory of Open Access Journals (Sweden)

    D. Treichler

    2016-09-01

    Full Text Available Using sparsely glaciated southern Norway as a case study, we assess the potential and limitations of ICESat laser altimetry for analysing regional glacier elevation change in rough mountain terrain. Differences between ICESat GLAS elevations and reference elevation data are plotted over time to derive a glacier surface elevation trend for the ICESat acquisition period 2003–2008. We find spatially varying biases between ICESat and three tested digital elevation models (DEMs: the Norwegian national DEM, SRTM DEM, and a high-resolution lidar DEM. For regional glacier elevation change, the spatial inconsistency of reference DEMs – a result of spatio-temporal merging – has the potential to significantly affect or dilute trends. Elevation uncertainties of all three tested DEMs exceed ICESat elevation uncertainty by an order of magnitude, and are thus limiting the accuracy of the method, rather than ICESat uncertainty. ICESat matches glacier size distribution of the study area well and measures small ice patches not commonly monitored in situ. The sample is large enough for spatial and thematic subsetting. Vertical offsets to ICESat elevations vary for different glaciers in southern Norway due to spatially inconsistent reference DEM age. We introduce a per-glacier correction that removes these spatially varying offsets, and considerably increases trend significance. Only after application of this correction do individual campaigns fit observed in situ glacier mass balance. Our correction also has the potential to improve glacier trend significance for other causes of spatially varying vertical offsets, for instance due to radar penetration into ice and snow for the SRTM DEM or as a consequence of mosaicking and merging that is common for national or global DEMs. After correction of reference elevation bias, we find that ICESat provides a robust and realistic estimate of a moderately negative glacier mass balance of around −0.36 ± 0.07

  13. Storage and release of organic carbon from glaciers and ice sheets

    Science.gov (United States)

    Hood, Eran; Battin, Tom J.; Fellman, Jason; O'Neel, Shad; Spencer, Robert G. M.

    2015-02-01

    Polar ice sheets and mountain glaciers, which cover roughly 11% of the Earth's land surface, store organic carbon from local and distant sources and then release it to downstream environments. Climate-driven changes to glacier runoff are expected to be larger than climate impacts on other components of the hydrological cycle, and may represent an important flux of organic carbon. A compilation of published data on dissolved organic carbon from glaciers across five continents reveals that mountain and polar glaciers represent a quantitatively important store of organic carbon. The Antarctic Ice Sheet is the repository of most of the roughly 6 petagrams (Pg) of organic carbon stored in glacier ice, but the annual release of glacier organic carbon is dominated by mountain glaciers in the case of dissolved organic carbon and the Greenland Ice Sheet in the case of particulate organic carbon. Climate change contributes to these fluxes: approximately 13% of the annual flux of glacier dissolved organic carbon is a result of glacier mass loss. These losses are expected to accelerate, leading to a cumulative loss of roughly 15 teragrams (Tg) of glacial dissolved organic carbon by 2050 due to climate change -- equivalent to about half of the annual flux of dissolved organic carbon from the Amazon River. Thus, glaciers constitute a key link between terrestrial and aquatic carbon fluxes, and will be of increasing importance in land-to-ocean fluxes of organic carbon in glacierized regions.

  14. Storage and release of organic carbon from glaciers and ice sheets

    Science.gov (United States)

    Hood, Eran; Battin, Tom J.; Fellman, Jason; O'Neel, Shad; Spencer, Robert G. M.

    2015-01-01

    Polar ice sheets and mountain glaciers, which cover roughly 11% of the Earth's land surface, store organic carbon from local and distant sources and then release it to downstream environments. Climate-driven changes to glacier runoff are expected to be larger than climate impacts on other components of the hydrological cycle, and may represent an important flux of organic carbon. A compilation of published data on dissolved organic carbon from glaciers across five continents reveals that mountain and polar glaciers represent a quantitatively important store of organic carbon. The Antarctic Ice Sheet is the repository of most of the roughly 6 petagrams (Pg) of organic carbon stored in glacier ice, but the annual release of glacier organic carbon is dominated by mountain glaciers in the case of dissolved organic carbon and the Greenland Ice Sheet in the case of particulate organic carbon. Climate change contributes to these fluxes: approximately 13% of the annual flux of glacier dissolved organic carbon is a result of glacier mass loss. These losses are expected to accelerate, leading to a cumulative loss of roughly 15 teragrams (Tg) of glacial dissolved organic carbon by 2050 due to climate change — equivalent to about half of the annual flux of dissolved organic carbon from the Amazon River. Thus, glaciers constitute a key link between terrestrial and aquatic carbon fluxes, and will be of increasing importance in land-to-ocean fluxes of organic carbon in glacierized regions.

  15. A grid-based Model for Backwasting at supraglacial Ice Cliffs on a debris-covered Glacier

    Science.gov (United States)

    Buri, P.; Steiner, J. F.; Pellicciotti, F.; Miles, E. S.; Immerzeel, W.

    2014-12-01

    predicted with statistical relationships between slopes, aspect and exposure to the surrounding terrain because of the interplay between topography and energy fluxes. Only an energy balance model based on the actual complex geometry of the cliffs can reproduce their backwasting, which amounts to a significant component of the glacier's annual mass balance.

  16. Models for the runoff from a glacierized catchment area using measurements of environmental isotope contents

    International Nuclear Information System (INIS)

    Behrens, H.; Moser, H.; Oerter, H.; Rauert, W.; Stichler, W.; Ambach, W.; Kirchlechner, P.

    1978-01-01

    In the glacierized catchment area of the Rofenache (Oetztal Alps, Austria) during several years measurements have been made of the environmental isotopes 2 H, 18 O and 3 H in the precipitation, in snow and ice samples and in the runoff. Furthermore the electrolytic conductivity of runoff samples was measured and tracing experiments were made with fluorescent dyes. From core samples drilled in the accumulation area of the Vernagtferner, the gross beta activity was investigated and compared with both, the data from 2 H, 3 H und 18 O analyses and the data from mass balance studies. It is shown that the annual net balance from previous years can be recovered on temperate glaciers using environmental isotope techniques. From the diurnal variations of the 2 H and 3 H contents and the electrolytic conductivity the following proportions in the runoff of the Vernagtferner catchment area were obtained during a 24-hour interval at a time of strong ablation (August 1976): about 50% of ice melt water, 25% of direct runoff fo firn- and snow melt water, and 7% of mineralized groundwater. The rest of the runoff consists of not mineralized melt water seeping from the glacier body. The annual variations of the 2 H and 3 H contents in the runoff of the glacierized catchment area permit conclusions on the time sequence of the individual ablation periods and on the residence time on the basis of model concepts. The residence times of approximately 100 days or 4 years, respectively, are obtained from the decrease in the 2 H content at the end of the ablation period and from the variation of the 3 H content in the winter discharge. (orig.) [de

  17. Glacier evolution in high-mountain Asia under stratospheric sulfate aerosol injection geoengineering

    Directory of Open Access Journals (Sweden)

    L. Zhao

    2017-06-01

    Full Text Available Geoengineering by stratospheric sulfate aerosol injection may help preserve mountain glaciers by reducing summer temperatures. We examine this hypothesis for the glaciers in high-mountain Asia using a glacier mass balance model driven by climate simulations from the Geoengineering Model Intercomparison Project (GeoMIP. The G3 and G4 schemes specify use of stratospheric sulfate aerosols to reduce the radiative forcing under the Representative Concentration Pathway (RCP 4.5 scenario for the 50 years between 2020 and 2069, and for a further 20 years after termination of geoengineering. We estimate and compare glacier volume loss for every glacier in the region using a glacier model based on surface mass balance parameterization under climate projections from three Earth system models under G3, five models under G4, and six models under RCP4.5 and RCP8.5. The ensemble projections suggest that glacier shrinkage over the period 2010–2069 is equivalent to sea-level rise of 9.0 ± 1.6 mm (G3, 9.8 ± 4.3 mm (G4, 15.5 ± 2.3 mm (RCP4.5, and 18.5 ± 1.7 mm (RCP8.5. Although G3 keeps the average temperature from increasing in the geoengineering period, G3 only slows glacier shrinkage by about 50 % relative to losses from RCP8.5. Approximately 72 % of glaciated area remains at 2069 under G3, as compared with about 30 % for RCP8.5. The widely reported reduction in mean precipitation expected for solar geoengineering is unlikely to be as important as the temperature-driven shift from solid to liquid precipitation for forcing Himalayan glacier change. The termination of geoengineering at 2069 under G3 leads to temperature rise of about 1.3 °C over the period 2070–2089 relative to the period 2050-2069 and corresponding increase in annual mean glacier volume loss rate from 0.17 to 1.1 % yr−1, which is higher than the 0.66 % yr−1 under RCP8.5 during 2070–2089.

  18. A fifty year record of winter glacier melt events in southern Chile, 38°–42°S

    International Nuclear Information System (INIS)

    Brock, Ben W; Burger, Flavia; Montecinos, Aldo; Rivera, Andrés

    2012-01-01

    Little is known about the frequency and potential mass balance impact of winter glacier melt events. In this study, daily atmospheric temperature soundings from the Puerto Montt radiosonde (41.43°S) are used to reconstruct winter melting events at the glacier equilibrium line altitude in the 38°–42°S region of southern Chile, between 1960 and 2010. The representativeness of the radiosonde temperatures to near-surface glacier temperatures is demonstrated using meteorological records from close to the equilibrium line on two glaciers in the region over five winters. Using a degree-day model we estimate an average of 0.28 m of melt and 21 melt days in the 15 June–15 September period each year, with high inter-annual variability. The majority of melt events are associated with midlatitude migratory high pressure systems crossing Chile and northwesterly flows, that force adiabatic compression and warm advection, respectively. There are no trends in the frequency or magnitude of melt events over the period of record, but the annual frequency of winter melt days shows a significant, although rather weak and probably non-linear, relationship to late winter and early spring values of a multivariate El Niño Southern Oscillation Index (MEI). (letter)

  19. Optical Remote Sensing of Glacier Characteristics: A Review with Focus on the Himalaya

    Science.gov (United States)

    Racoviteanu, Adina E.; Williams, Mark W.; Barry, Roger G.

    2008-01-01

    The increased availability of remote sensing platforms with appropriate spatial and temporal resolution, global coverage and low financial costs allows for fast, semi-automated, and cost-effective estimates of changes in glacier parameters over large areas. Remote sensing approaches allow for regular monitoring of the properties of alpine glaciers such as ice extent, terminus position, volume and surface elevation, from which glacier mass balance can be inferred. Such methods are particularly useful in remote areas with limited field-based glaciological measurements. This paper reviews advances in the use of visible and infrared remote sensing combined with field methods for estimating glacier parameters, with emphasis on volume/area changes and glacier mass balance. The focus is on the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) sensor and its applicability for monitoring Himalayan glaciers. The methods reviewed are: volumetric changes inferred from digital elevation models (DEMs), glacier delineation algorithms from multi-spectral analysis, changes in glacier area at decadal time scales, and AAR/ELA methods used to calculate yearly mass balances. The current limitations and on-going challenges in using remote sensing for mapping characteristics of mountain glaciers also discussed, specifically in the context of the Himalaya. PMID:27879883

  20. Rock Glacier Response to Climate Change in the Argentinian Andes

    Science.gov (United States)

    Drewes, J.; Korup, O.; Moreiras, S.

    2017-12-01

    Rock glaciers are bodies of frozen debris and ice that move under the influence of gravity in permafrost areas. Rock glaciers may store a large amount of sediments and play an important role as prime movers of debris in the Andean sediment cascade. However, little is known about how much sediment and water rock glaciers may store at the mountain-belt scale, and the few existing estimates vary considerably. We address this question for the Argentinian Andes, for which a new glacial inventory containing more than 6500 rock glaciers gives us the opportunity to analyse their relevance within the sediment cascade. We examine the inventory for catchments in five sub-regions, i.e. the Desert Andes (22°-31°S); the Central Andes (31°-36°S); the Northern Andes of Patagonia (36°-45°S); the Southern Andes of Patagonia (45°-52°S); and Tierra del Fuego (52°-55°S), together with climate variables of the WorldClim datasets, and digital topographic data, to estimate how rock-glacier extents may change under different past and future climate scenarios. We observe for the northern Desert Andes that rock glacier toes are at 4000 to 5000 m a.s.l. and a mean annual temperature range of 3° and 8°C, though most rock glaciers are in areas with mean annual temperatures between -5 and 5°C, marking a distinct thermal niche. Rock glaciers are traditionally viewed as diagnostic of sporadic alpine permafrost and their toes are often near the annual mean 0°C isotherm. However, we find that only rock glaciers in the southern Desert Andes and Central Andes are located where annual mean temperature is -2°C. Future scenarios project an increase of > four degrees in these areas, which may further degrade ground ice and potentially change the rates at which rock glaciers advance. Where active rock glaciers become inactive their coarse material, which was formerly bound by ice, may be released into the sediment cascade, whereas accelerating or rapidly downwasting rock glaciers may either

  1. Spatiotemporal variability of Canadian High Arctic glacier surface albedo from MODIS data, 2001-2016

    Science.gov (United States)

    Mortimer, Colleen A.; Sharp, Martin

    2018-02-01

    Inter-annual variations and longer-term trends in the annual mass balance of glaciers in Canada's Queen Elizabeth Islands (QEI) are largely attributable to changes in summer melt. The largest source of melt energy in the QEI in summer is net shortwave radiation, which is modulated by changes in glacier surface albedo. We used measurements from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors to investigate large-scale spatial patterns, temporal trends, and variability in the summer surface albedo of QEI glaciers from 2001 to 2016. Mean summer black-sky shortwave broadband albedo (BSA) decreased at a rate of 0.029±0.025 decade-1 over that period. Larger reductions in BSA occurred in July (-0.050±0.031 decade-1). No change in BSA was observed in either June or August. Most of the decrease in BSA, which was greatest at lower elevations around the margins of the ice masses, occurred between 2007 and 2012, when mean summer BSA was anomalously low. The first principal component of the 16-year record of mean summer BSA was well correlated with the mean summer North Atlantic Oscillation index, except in 2006, 2010, and 2016, when the mean summer BSA appears to have been dominated by the August BSA. During the period 2001-2016, the mean summer land surface temperature (LST) over the QEI glaciers and ice caps increased by 0.049±0.038 °C yr-1, and the BSA record was negatively correlated (r: -0.86) with the LST record, indicative of a positive ice-albedo feedback that would increase rates of mass loss from the QEI glaciers.

  2. On the impact of using downscaled reanalysis data instead of direct measurements for modeling the mass balance of a tropical glacier (Cordillera Blanca, Peru)

    Science.gov (United States)

    Galos, Stephan; Hofer, Marlis; Marzeion, Ben; Mölg, Thomas; Großhauser, Martin

    2013-04-01

    Due to their setting, tropical glaciers are sensitive indicators of mid-tropospheric meteorological variability and climate change. Furthermore these glaciers are of particular interest because they respond faster to climatic changes than glaciers located in mid- or high-latitudes. As long-term direct meteorological measurements in such remote environments are scarce, reanalysis data (e.g. ERA-Interim) provide a highly valuable source of information. Reanalysis datasets (i) enable a temporal extension of data records gained by direct measurements and (ii) provide information from regions where direct measurements are not available. In order to properly derive the physical exchange processes between glaciers and atmosphere from reanalysis data, downscaling procedures are required. In the present study we investigate if downscaled atmospheric variables (air temperature and relative humidity) from a reanalysis dataset can be used as input for a physically based, high resolution energy and mass balance model. We apply a well validated empirical-statistical downscaling model, fed with ERA-Interim data, to an automated weather station (AWS) on the surface of Glaciar Artesonraju (8.96° S | 77.63° W). The downscaled data is then used to replace measured air temperature and relative humidity in the input for the energy and mass balance model, which was calibrated using ablation data from stakes and a sonic ranger. In order to test the sensitivity of the modeled mass balance to the downscaled data, the results are compared to a reference model run driven solely with AWS data as model input. We finally discuss the results and present future perspectives for further developing this method.

  3. Tibetan Plateau glacier and hydrological change under stratospheric aerosol injection

    Science.gov (United States)

    Ji, D.

    2017-12-01

    As an important inland freshwater resource, mountain glaciers are highly related to human life, they provide water for many large rivers and play a very important role in regional water cycles. The response of mountain glaciers to future climate change is a topic of concern especially to the many people who rely on glacier-fed rivers for purposes such as irrigation. Geoengineering by stratospheric aerosol injection is a method of offsetting the global temperature rise from greenhouse gases. How the geoengineering by stratospheric aerosol injection affects the mass balance of mountain glaciers and adjacent river discharge is little understood. In this study, we use regional climate model WRF and catchment-based river model CaMa-Flood to study the impacts of stratospheric aerosol injection to Tibetan Plateau glacier mass balance and adjacent river discharge. To facilitate mountain glacier mass balance study, we improve the description of mountain glacier in the land surface scheme of WRF. The improvements include: (1) a fine mesh nested in WRF horizontal grid to match the highly non-uniform spatial distribution of the mountain glaciers, (2) revising the radiation flux at the glacier surface considering the surrounding terrain. We use the projections of five Earth system models for CMIP5 rcp45 and GeoMIP G4 scenarios to drive the WRF and CaMa-Flood models. The G4 scenario, which uses stratospheric aerosols to reduce the incoming shortwave while applying the rcp4.5 greenhouse gas forcing, starts stratospheric sulfate aerosol injection at a rate of 5 Tg per year over the period 2020-2069. The ensemble projections suggest relatively slower glacier mass loss rates and reduced river discharge at Tibetan Plateau and adjacent regions under geoengineering scenario by stratospheric aerosol injection.

  4. Improving estimation of glacier volume change: a GLIMS case study of Bering Glacier System, Alaska

    Directory of Open Access Journals (Sweden)

    M. J. Beedle

    2008-04-01

    Full Text Available The Global Land Ice Measurements from Space (GLIMS project has developed tools and methods that can be employed by analysts to create accurate glacier outlines. To illustrate the importance of accurate glacier outlines and the effectiveness of GLIMS standards we conducted a case study on Bering Glacier System (BGS, Alaska. BGS is a complex glacier system aggregated from multiple drainage basins, numerous tributaries, and many accumulation areas. Published measurements of BGS surface area vary from 1740 to 6200 km2, depending on how the boundaries of this system have been defined. Utilizing GLIMS tools and standards we have completed a new outline (3630 km2 and analysis of the area-altitude distribution (hypsometry of BGS using Landsat images from 2000 and 2001 and a US Geological Survey 15-min digital elevation model. We compared this new hypsometry with three different hypsometries to illustrate the errors that result from the widely varying estimates of BGS extent. The use of different BGS hypsometries results in highly variable measures of volume change and net balance (bn. Applying a simple hypsometry-dependent mass-balance model to different hypsometries results in a bn rate range of −1.0 to −3.1 m a−1 water equivalent (W.E., a volume change range of −3.8 to −6.7 km3 a−1 W.E., and a near doubling in contributions to sea level equivalent, 0.011 mm a−1 to 0.019 mm a−1. Current inaccuracies in glacier outlines hinder our ability to correctly quantify glacier change. Understanding of glacier extents can become comprehensive and accurate. Such accuracy is possible with the increasing volume of satellite imagery of glacierized regions, recent advances in tools and standards, and dedication to this important task.

  5. Copernicus Big Data and Google Earth Engine for Glacier Surface Velocity Field Monitoring: Feasibility Demonstration on San Rafael and San Quintin Glaciers

    Science.gov (United States)

    Di Tullio, M.; Nocchi, F.; Camplani, A.; Emanuelli, N.; Nascetti, A.; Crespi, M.

    2018-04-01

    The glaciers are a natural global resource and one of the principal climate change indicator at global and local scale, being influenced by temperature and snow precipitation changes. Among the parameters used for glacier monitoring, the surface velocity is a key element, since it is connected to glaciers changes (mass balance, hydro balance, glaciers stability, landscape erosion). The leading idea of this work is to continuously retrieve glaciers surface velocity using free ESA Sentinel-1 SAR imagery and exploiting the potentialities of the Google Earth Engine (GEE) platform. GEE has been recently released by Google as a platform for petabyte-scale scientific analysis and visualization of geospatial datasets. The algorithm of SAR off-set tracking developed at the Geodesy and Geomatics Division of the University of Rome La Sapienza has been integrated in a cloud based platform that automatically processes large stacks of Sentinel-1 data to retrieve glacier surface velocity field time series. We processed about 600 Sentinel-1 image pairs to obtain a continuous time series of velocity field measurements over 3 years from January 2015 to January 2018 for two wide glaciers located in the Northern Patagonian Ice Field (NPIF), the San Rafael and the San Quintin glaciers. Several results related to these relevant glaciers also validated with respect already available and renown software (i.e. ESA SNAP, CIAS) and with respect optical sensor measurements (i.e. LANDSAT8), highlight the potential of the Big Data analysis to automatically monitor glacier surface velocity fields at global scale, exploiting the synergy between GEE and Sentinel-1 imagery.

  6. Emerging Glacial Lakes in the Cordillera Blanca, Peru: A Case Study at Arteson Glacier

    Science.gov (United States)

    Chisolm, R. E.; Mckinney, D. C.; Gomez, J.; Voss, K.

    2012-12-01

    Tropical glaciers are an essential component of the water resources systems in the mountainous regions where they are located, and a warming climate has resulted in the accelerated retreat of Andean glaciers in recent decades. The shrinkage of Andean glaciers influences the flood risk for communities living downstream as new glacial lakes have begun to form at the termini of some glaciers. As these lakes continue to grow in area and volume, they pose an increasing risk of glacial lake outburst floods (GLOFs). Ice thickness measurements have been a key missing link in studying the tropical glaciers in Peru and how climate change is likely to impact glacial melt and the growth of glacial lakes. Ground penetrating radar (GPR) has rarely been applied to glaciers in Peru to measure ice thickness, and these measurements can tell us a lot about how a warming climate will affect glacier mass balance. This study presents GPR data taken in July 2012 at the Arteson glacier in the Cordillera Blanca, Peru. A new lake has begun to form at the terminus of the Arteson glacier, and this lake has key features, including overhanging ice and loose rock likely to create landslides, that could trigger a catastrophic GLOF if the lake continues to grow. This new lake is part of a series of three lakes that have formed below the Arteson glacier. The two lower lakes, Artesonraju and Paron, are much larger so that if there were an avalanche or landslide into the new lake below Arteson glacier, the impact could potentially be more catastrophic than a GLOF from one single lake. Estimates of how the lake mass balance is likely to evolve due to the retreating glacier are key to assessing the flood risk from this dynamic three-lake system. Because the glacier mass balance and lake mass balance are closely linked, the ice thickness measurements and measurements of the bed slope of the Arteson glacier and underlying bedrock give us a clue to how the lake is likely to evolve. GPR measurements of

  7. Tidal Movement of Nioghalvfjerdsfjorden Glacier, Northeast Greenland: Observations and Modelling

    DEFF Research Database (Denmark)

    Reeh, Niels; Mayer, C.; Olesen, O. B.

    2000-01-01

    Nioghalvfjerdsfjorden glacier is a > 60 km long and 20 km wide floating outlet glacier located at 79 degrees 30' N, 22 degrees W, draining a large area of the northeast Greenland ice sheet. Climate, mass-balance and dynamics studies were carried out on the glacier in three field seasons in 1996...

  8. Spatio-temporal Variability of Albedo and its Impact on Glacier Melt Modelling

    Science.gov (United States)

    Kinnard, C.; Mendoza, C.; Abermann, J.; Petlicki, M.; MacDonell, S.; Urrutia, R.

    2017-12-01

    Albedo is an important variable for the surface energy balance of glaciers, yet its representation within distributed glacier mass-balance models is often greatly simplified. Here we study the spatio-temporal evolution of albedo on Glacier Universidad, central Chile (34°S, 70°W), using time-lapse terrestrial photography, and investigate its effect on the shortwave radiation balance and modelled melt rates. A 12 megapixel digital single-lens reflex camera was setup overlooking the glacier and programmed to take three daily images of the glacier during a two-year period (2012-2014). One image was chosen for each day with no cloud shading on the glacier. The RAW images were projected onto a 10m resolution digital elevation model (DEM), using the IMGRAFT software (Messerli and Grinsted, 2015). A six-parameter camera model was calibrated using a single image and a set of 17 ground control points (GCPs), yielding a georeferencing accuracy of accounting for possible camera movement over time. The reflectance values from the projected image were corrected for topographic and atmospheric influences using a parametric solar irradiation model, following a modified algorithm based on Corripio (2004), and then converted to albedo using reference albedo measurements from an on-glacier automatic weather station (AWS). The image-based albedo was found to compare well with independent albedo observations from a second AWS in the glacier accumulation area. Analysis of the albedo maps showed that the albedo is more spatially-variable than the incoming solar radiation, making albedo a more important factor of energy balance spatial variability. The incorporation of albedo maps within an enhanced temperature index melt model revealed that the spatio-temporal variability of albedo is an important factor for the calculation of glacier-wide meltwater fluxes.

  9. Very small glaciers under climate change: from the local to the global scale

    Science.gov (United States)

    Huss, M.; Fischer, M.

    2015-12-01

    Very small glaciers (climate archive. Very small glaciers have generally shorter response times than valley glaciers and their mass balance is strongly dependent on snow redistribution processes. Worldwide glacier monitoring has focused on medium-sized to large glaciers leaving us with a relatively limited understanding of the behavior of very small glaciers. With warming climate there is an increasing concern that very small glaciers might be the first to disappear. Already in the next decades this might result in the complete deglaciation of mountain ranges with glacier equilibrium lines close to the highest peaks, such as in the Rocky Mountains, the European Alps, the Andes or parts of High Mountain Asia. In this contribution, we present a comprehensive modelling framework to assess past and future changes in very small glaciers at the mountain-range scale. Among other processes our model accounts for snow redistribution, changes in glacier geometry and dynamic changes in debris-coverage, and computes e.g. distributed mass balance, englacial temperature and proglacial runoff. Detailed glacier projections until 2060 are shown for the Swiss Alps based on new data sets, and the 21st century contribution of all very small glaciers worldwide to sea-level rise is quantified using a global model. Grid-based modelling of surface mass balance and retreat for 1133 very small glaciers in Switzerland indicates that 70% of them will completely vanish within the next 25 years. However, a few avalanche-fed glaciers at low elevation might be able to survive even substantial atmospheric warming. We find relatively high static and dynamic sensitivities for gently-sloping glaciers. At the global scale, glaciers presently smaller than 1 km2 make up for only 0.7% of total ice volume but account for 6.7% of sea-level rise contribution during the period 2015-2025. This indicates that very small glaciers are a non-negligible component of global glacier change, at least in the near

  10. Simulating calving-front changes of Greenland’s marine-terminating glaciers

    DEFF Research Database (Denmark)

    Haubner, Konstanze

    glacier retreat to a certain degree and foremost define the variation of retreat rates. The thesis implies the importance of incorporating glacier-front dynamics into ice sheet models in order to match observations and verifies atmospheric and oceanic forcing as important triggers for glacier retreat...... UI outlet glaciers. The change in mass flux resulting from the prescribed glacier retreat contributes to 70% of UI’s mass change over the simulation periods. The residual mass change is due to surface mass balance. A second simulation on the fastest UI glacier (UI-1) reveals that frontal melt rates...

  11. Dry calving processes at the ice cliff of an antarctic local glacier: the study case of Strandline Glacier (Northern Victoria Land, Antarctica)

    Science.gov (United States)

    Smiraglia, C.; Motta, M.; Vassena, G.; Diolaiuti, G.

    2003-04-01

    In Antartic coastal area, where the ice sheet and the large outlet glaciers do not reach the sea and where some rugged mountain chains are often present, many small glaciers can be found. They are the so called local or alpine type glaciers, which have their terminus ground-based such as the real alpine glaciers and rarely reach the main valley floors. They are practically isolated and independent from the supply flowing down from the plateau and their mass balance is mainly controlled by sublimation and aeolic erosion and accumulation. The glaciers closer to the coast are submitted to the melting as well, and when the terminus is cliff-shaped they are also affected by dry calving. The most known and studied Antarctic local glaciers are placed in the Dry Valleys region (Chinn, 1985), but this kind of glaciers is also diffused all along the Northern Victoria Land coastal region (Chinn and others, 1989). Since the first Italian Antarctic expedition (1985), many studies have been carried out on this type of glaciers, which can be usefull for detailed mass balance evaluations and for obtaining information about the effects of the present climatic dynamics on the Antarctic coastal environment (Baroni and Orombelli, 1987; Baroni and others, 1995; Meneghel, 1999; Vassena and others., 2001). The Strandline Glacier (74 41 S; 164 07 E), in particular is a small alpine glacier (0,79 kmq) on the coast of Terra Nova Bay, Northern Victoria Land; it is a cold glacier where accumulation and ablation basins are mainly controlled by wind processes. Its terminus forms in the central part a grounded ice cliff about 30 m high, about 130 m far from the sea. On that glacier mass balance, surface velocity and calving rate were measured. During the southern summer season 2000-2001 many topographycal profiles of the ice cliff were surveyed by using both classical topographical and glaciological methods (total station and stakes) and GPS technique. It was so possible to detect the short term

  12. Balanced conditions or slight mass gain of glaciers in the Lahaul and Spiti region (northern India, Himalaya during the nineties preceded recent mass loss

    Directory of Open Access Journals (Sweden)

    C. Vincent

    2013-04-01

    Full Text Available The volume change of the Chhota Shigri Glacier (India, 32° 20 N, 77° 30' E between 1988 and 2010 has been determined using in situ geodetic measurements. This glacier has experienced only a slight mass loss between 1988 and 2010 (−3.8 ± 2.0 m w.e. (water equivalent corresponding to −0.17 ± 0.09 m w.e. yr−1. Using satellite digital elevation models (DEM differencing and field measurements, we measure a negative mass balance (MB between 1999 and 2010 (−4.8 ± 1.8 m w.e. corresponding to −0.44 ± 0.16 m w.e. yr−1. Thus, we deduce a slightly positive or near-zero MB between 1988 and 1999 (+1.0 ± 2.7 m w.e. corresponding to +0.09 ± 0.24 m w.e. yr−1. Furthermore, satellite DEM differencing reveals that the MB of the Chhota Shigri Glacier (−0.39 ± 0.15 m w.e. yr−1 has been only slightly less negative than the MB of a 2110 km2 glaciarized area in the Lahaul and Spiti region (−0.44 ± 0.09 m w.e. yr−1 during 1999−2011. Hence, we conclude that the ice wastage is probably moderate in this region over the last 22 yr, with near equilibrium conditions during the nineties, and an ice mass loss after. The turning point from balanced to negative mass budget is not known but lies probably in the late nineties and at the latest in 1999. This positive or near-zero MB for Chhota Shigri Glacier (and probably for the surrounding glaciers of the Lahaul and Spiti region during at least part of the 1990s contrasts with a recent compilation of MB data in the Himalayan range that indicated ice wastage since 1975. However, in agreement with this compilation, we confirm more negative balances since the beginning of the 21st century.

  13. OPTICAL FLOW FOR GLACIER MOTION ESTIMATION

    Directory of Open Access Journals (Sweden)

    C. Vogel

    2012-07-01

    Full Text Available Quantitative measurements of glacier flow over time are an important ingredient for glaciological research, for example to determine the mass balances and the evolution of glaciers. Measuring glacier flow in multi-temporal images involves the estimation of a dense set of corresponding points, which in turn define the flow vectors. Furthermore glaciers exhibit rather difficult radiometry, since their surface usually contains homogeneous areas as well as weak texture and contrast. To date glacier flow is usually observed by manually measuring a sparse set of correspondences, which is labor-intensive and often yields rather irregular point distributions, with the associated problems of interpolating over large areas. In the present work we propose to densely compute motion vectors at every pixel, by using recent robust methods for optic flow computation. Determining the optic flow, i.e. the dense deformation field between two images of a dynamic scene, has been a classic, long-standing research problem in computer vision and image processing. Sophisticated methods exist to optimally balance data fidelity with smoothness of the motion field. Depending on the strength of the local image gradients these methods yield a smooth trade-off between matching and interpolation, thereby avoiding the somewhat arbitrary decision which discrete anchor points to measure, while at the same time mitigating the problem of gross matching errors. We evaluate our method by comparing with manually measured point wise ground truth.

  14. Glacier Changes in the Cordillera Blanca, Peru, Derived From SPOT5 Imagery, GIS and Field- Based Measurements

    Science.gov (United States)

    Racoviteanu, A.; Arnaud, Y.; Williams, M. W.; Singh Khalsa, S.

    2007-12-01

    There is urgency in deriving an extensive dataset for deriving glacier changes within the Cordillera Blanca, Peru, in a cost-effective and timely manner. Rapid glacial retreat during the last decades in this area poses a threat for water resources, hydroelectric power and local traditions. While there is some information on decadal changes in glacier extents, there still remains a paucity of mass balance measurements and glacier parameters such as hypsometry, size distribution and termini elevations. Here we investigate decadal changes in glacier parameters for Cordillera Blanca of Peru using data from Système Probatoire d'Observation de la Terre (SPOT) sensor, an old glacier inventory from 1970 aerial photography, field-based mass balance measurements and meteorological observations. Here we focus on: constructing a geospatial glacier inventory from 2003 SPOT scenes; mass balance estimations using remote sensing and field data; frequency distribution of glacier area; changes in termini elevations; hypsometry changes over time; glacier topography (slope, aspect, length/width ratio); AAR vs. mass balance for Artesonraju and Yanamarey benchmark glaciers; precipitation and temperature trends in the region. Over the last 25 years, mean temperatures increases of 0.09 deg.C/yr were greater at lower elevation than the 0.01 deg.C/yr at higher elevations, with little change in precipitation. Comparison of the new SPOT-based glacier inventory with the 1970 inventory shows that glaciers in Cordillera Blanca retreated at a rate of 0.6% per year over the last three decades, with no significant differences in the rate of area loss between E and W side. At lower elevations there is an upward shift of glacier termini along with a decrease in glacier area. Small glaciers are losing more area than large glaciers. Based on the relationship between specific mass balance (bn) and accumulation area ratio (AAR) for the two benchmark glaciers, we predicted a steady-state equilibrium line

  15. Multi-Annual Kinematics of an Active Rock Glacier Quantified from Very High-Resolution DEMs: An Application-Case in the French Alps

    Directory of Open Access Journals (Sweden)

    Xavier Bodin

    2018-04-01

    Full Text Available Rock glaciers result from the long-term creeping of ice-rich permafrost along mountain slopes. Under warming conditions, deformation is expected to increase, and potential destabilization of those landforms may lead to hazardous phenomena. Monitoring the kinematics of rock glaciers at fine spatial resolution is required to better understand at which rate, where and how they deform. We present here the results of several years of in situ surveys carried out between 2005 and 2015 on the Laurichard rock glacier, an active rock glacier located in the French Alps. Repeated terrestrial laser-scanning (TLS together with aerial laser-scanning (ALS and structure-from-motion-multi-view-stereophotogrammetry (SFM-MVS were used to accurately quantify surface displacement of the Laurichard rock glacier at interannual and pluri-annual scales. Six very high-resolution digital elevation models (DEMs, pixel size <50 cm of the rock glacier surface were generated, and their respective quality was assessed. The relative horizontal position accuracy (XY of the individual DEMs is in general less than 2 cm with a co-registration error on stable areas ranging from 20–50 cm. The vertical accuracy is around 20 cm. The direction and amplitude of surface displacements computed between DEMs are very consistent with independent geodetic field measurements (e.g., DGPS. Using these datasets, local patterns of the Laurichard rock glacier kinematics were quantified, pointing out specific internal (rheological and external (bed topography controls. The evolution of the surface velocity shows few changes on the rock glacier’s snout for the first years of the observed period, followed by a major acceleration between 2012 and 2015 affecting the upper part of the tongue and the snout.

  16. The Open Global Glacier Model

    Science.gov (United States)

    Marzeion, B.; Maussion, F.

    2017-12-01

    Mountain glaciers are one of the few remaining sub-systems of the global climate system for which no globally applicable, open source, community-driven model exists. Notable examples from the ice sheet community include the Parallel Ice Sheet Model or Elmer/Ice. While the atmospheric modeling community has a long tradition of sharing models (e.g. the Weather Research and Forecasting model) or comparing them (e.g. the Coupled Model Intercomparison Project or CMIP), recent initiatives originating from the glaciological community show a new willingness to better coordinate global research efforts following the CMIP example (e.g. the Glacier Model Intercomparison Project or the Glacier Ice Thickness Estimation Working Group). In the recent past, great advances have been made in the global availability of data and methods relevant for glacier modeling, spanning glacier outlines, automatized glacier centerline identification, bed rock inversion methods, and global topographic data sets. Taken together, these advances now allow the ice dynamics of glaciers to be modeled on a global scale, provided that adequate modeling platforms are available. Here, we present the Open Global Glacier Model (OGGM), developed to provide a global scale, modular, and open source numerical model framework for consistently simulating past and future global scale glacier change. Global not only in the sense of leading to meaningful results for all glaciers combined, but also for any small ensemble of glaciers, e.g. at the headwater catchment scale. Modular to allow combinations of different approaches to the representation of ice flow and surface mass balance, enabling a new kind of model intercomparison. Open source so that the code can be read and used by anyone and so that new modules can be added and discussed by the community, following the principles of open governance. Consistent in order to provide uncertainty measures at all realizable scales.

  17. Hydrological interaction between glacier and páramos in the tropical Andes: implications for water resources availability

    Science.gov (United States)

    Villacís, Marcos; Cadier, Eric; Mena, Sandra; Anaguano, Marcelo; Calispa, Marlon; Maisisncho, Luis; Galárraga, Remigio; Francou, Bernard

    2010-05-01

    Preliminary hydro glacier estimates indicate that glacier contribution to the average annual consumption (5.6 m3 s-1) of the city of Quito (Capital of Ecuador, ~2'500.000 inhabitants, 2800 masl) represents only about 2%-4% of the total supply for human consumption. However, at the local level at the Antizana volcano (0°28'S, 78°09'W), the mass balance analysis of the system composed by the Humboldt catchment (area of 15.1 km2, 15% of glaciarized area, 5% of moraines area, 80% of the area is páramo-endemic ecosystem of the tropical Andes, range from 5670 masl to 4000 masl) and Los Crespos catchment (area of 2.4 km2, 67% glaciarized area, 27% moraines area, range from 5670 masl to 4500 masl), which is nested into the Humboldt catchment, allows us to identify that due to the presence of the glacier reservoirs there is an additional contribution of 24% to the annual volume at the Humboldt catchment and it helps to regulate the runoff during the dry season, where the daily additional glacier contribution from November to February in some cases could reach t 40%. The Humboldt catchment has similar physiographic characteristics than the sites where new diversions will be built in the future in order to satisfy the increasing demand of water for human consumption of the city of Quito and its surrounding populations. Based on detail hydrological observations (every 15 minutes measurements) during 2005 to 2009 and sporadic environmental trace analysis during the same period, the annual percentage of glacier contribution from the Humboldt catchment could potentially be as high as 37% due in part to the glacier melt contribution that gets infiltrated over 4750 masl it is then delivered around 4100 masl through underground circulation. Some of the sites where the glacier contribution reaches de surface has been identified through field work and the glacier origin of this water have been confirmed using a conductivity measurement, which seems to be a good indicator in when

  18. Mass Balance of Novaya Zemlya Archipelago from 2002 to Present

    Science.gov (United States)

    Ciraci, E.; Velicogna, I.; Fettweis, X.

    2017-12-01

    We employ satellite gravimetry from NASA's Gravity Recovery and Climate Experiment (GRACE) using a least-squares fit mascon approach to evaluate the mass balance of the glaciers of the Novaya Zemlya Archipelago (NZA) from 2002 to present. Our results reveal a mean mass loss 8±5 Gt/yr (gigatons per year), which makes NZA the largest contributor to sea level rise in the Russian Arctic (total Russian Arctic contributes 16±7Gt/yr). We then use Surface Mass Balance (SMB) estimates from the Modèle Atmosphérique Régional (MAR) and ice elevation change rates from NASA ICESat (2003-2009) and ESA CryoSat-2 (2010-present) altimetry data to gain insight about the physical processes driving the observed mass loss. We find that the inter-annual variability in SMB displays a significant correlation (0.6, p-val sea level rise. Elevation change from satellite altimetry reveals substantial thinning at low altitudes for both marine and land terminating glaciers. This result is consistent with the negative cumulative SMB values found at those sites. Yet, altimetry-derived thinning rates for the marine terminating glaciers are on average two times larger than those for land-terminating glaciers. We conclude that both SMB and ice dynamics play important roles in the regional ice mass loss.

  19. Ice thickness measurements and volume estimates for glaciers in Norway

    Science.gov (United States)

    Andreassen, Liss M.; Huss, Matthias; Melvold, Kjetil; Elvehøy, Hallgeir; Winsvold, Solveig H.

    2014-05-01

    Whereas glacier areas in many mountain regions around the world now are well surveyed using optical satellite sensors and available in digital inventories, measurements of ice thickness are sparse in comparison and a global dataset does not exist. Since the 1980s ice thickness measurements have been carried out by ground penetrating radar on many glaciers in Norway, often as part of contract work for hydropower companies with the aim to calculate hydrological divides of ice caps. Measurements have been conducted on numerous glaciers, covering the largest ice caps as well as a few smaller mountain glaciers. However, so far no ice volume estimate for Norway has been derived from these measurements. Here, we give an overview of ice thickness measurements in Norway, and use a distributed model to interpolate and extrapolate the data to provide an ice volume estimate of all glaciers in Norway. We also compare the results to various volume-area/thickness-scaling approaches using values from the literature as well as scaling constants we obtained from ice thickness measurements in Norway. Glacier outlines from a Landsat-derived inventory from 1999-2006 together with a national digital elevation model were used as input data for the ice volume calculations. The inventory covers all glaciers in mainland Norway and consists of 2534 glaciers (3143 glacier units) covering an area of 2692 km2 ± 81 km2. To calculate the ice thickness distribution of glaciers in Norway we used a distributed model which estimates surface mass balance distribution, calculates the volumetric balance flux and converts it into thickness using the flow law for ice. We calibrated this model with ice thickness data for Norway, mainly by adjusting the mass balance gradient. Model results generally agree well with the measured values, however, larger deviations were found for some glaciers. The total ice volume of Norway was estimated to be 275 km3 ± 30 km3. From the ice thickness data set we selected

  20. Increased rate of acceleration on Pine Island Glacier strongly coupled to changes in gravitational driving stress

    Directory of Open Access Journals (Sweden)

    J. B. T. Scott

    2009-05-01

    Full Text Available Pine Island Glacier, Antarctica, has been undergoing several related changes for at least two decades; these include acceleration, thinning and grounding line retreat. During the first major ground-based study between 2006 and 2008, GPS receivers were used to monitor ice flow from 55 km to 171 km inland, along the central flowline. At four sites both acceleration and thinning rates over the last two years exceeded rates observed at any other time over the last two decades. At the downstream site acceleration was 6.4% over 2007 and thinning was 3.5±0.5 ma−1. Acceleration and thinning have spread rapidly inland with the acceleration 171 km inland at 4.1% over 2007, greater than any measured annual flow increase along the whole glacier prior to 2006. Increases in surface slope, and hence gravitational driving stress, correlate well with the acceleration and no sustained change in longitudinal stress gradient is needed to explain the force balance. There is no indication that the glacier is approaching a new steady state.

  1. Southern Alaska Glaciers: Spatial and Temporal Variations in Ice Volume

    Science.gov (United States)

    Sauber, J.; Molnia, B. F.; Lutchke, S.; Rowlands, D.; Harding, D.; Carabajal, C.; Hurtado, J. M.; Spade, G.

    2004-01-01

    Although temperate mountain glaciers comprise less than 1% of the glacier-covered area on Earth, they are important because they appear to be melting rapidly under present climatic conditions and, therefore, make significant contributions to rising sea level. In this study, we use ICESat observations made in the last 1.5 years of southern Alaska glaciers to estimate ice elevation profiles, ice surface slopes and roughness, and bi-annual and/or annual ice elevation changes. We report initial results from the near coastal region between Yakutat Bay and Cape Suckling that includes the Malaspina and Bering Glaciers. We show and interpret ice elevations changes across the lower reaches of the Bagley Ice Valley for the period between October 2003 and May 2004. In addition, we use off-nadir pointing observations to reference tracks over the Bering and Malaspina Glaciers in order to estimate annual ice elevation change. Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and Shuttle Radar Topography Mission (SRTM) derived DEMs are used to estimate across track regional slopes between ICESat data acquisitions. Although the distribution and quantity of ICESat elevation profiles with multiple, exact repeat data is currently limited in Alaska, individual ICESat data tracks, provide an accurate reference surface for comparison to other elevation data (e.g. ASTER and SRTM X- and C-band derived DEMs). Specifically we report the elevation change over the Malaspina Glacier's piedmont lobe between a DEM derived from SRTM C-band data acquired in Feb. 2000 and ICESat Laser #2b data from Feb.-March 2004. We also report use of ICESat elevation data to enhance ASTER derived absolute DEMs. Mountain glaciers generally have rougher surfaces and steeper regional slopes than the ice sheets for which the ICESat design was optimized. Therefore, rather than averaging ICESat observations over large regions or relying on crossovers, we are working with well-located ICESat

  2. Mass balance gradients and climatic change

    NARCIS (Netherlands)

    Oerlemans, J.; Hoogendoorn, N.C.

    1989-01-01

    It is generally assumed that the mass-balance gradient on glaciers is more or less conserved under climatic change. In studies of the dynamic response of glaciers to climatic change, one of the following assumptions is normally made: (i) the mass-balance perturbation is independent of altitude

  3. Glacier retreat of the Tian Shan and its impact on the urban growth and environment evaluated from satellite remote sensing data

    Science.gov (United States)

    Fu, B. H.; Guo, Q.; Yan, F.; Zhang, J.; Shi, P. L.; Ayinuer, M.; Xue, G. L.

    2017-07-01

    The retreat of mountain glaciers, notably in high Asia, provides evidence for the rise of global temperature. The mass balance is vital for the health of a glacier. If the amount of frozen precipitation in the accumulation zone exceeds the quantity of glacial ice loss due to melting or lies in the ablation zone, the glacier will advance. Conversely, if the accumulation is less than the ablation, the glacier will retreat. Glaciers in retreat will have negative mass balances, and if they do not reach an equilibrium between accumulation and ablation, will eventually disappear. Long-term changes of the mountain glaciers in the Tian Shan, Central Asia, are not well constrained. Analyses of satellite remote sensing data combined with the ground observations reveal a 37.5% decline of glaciered area from 1989 to 2014 in No.1 Glacier, the headwaters of the Urumqi River basin, Chinese Tian Shan, which could be linked to increased summer melting. The results show that the area of glaciers was reduced from 31.55 km2 in 18 August 1989 to 28.66 km2 in 24 August 1994 and 19.74 km2 in 31 August 2014. The glacier area was reduced by 0.47 km2/per year in recent 25 years since 1989, and the annual reduction was 1.5%. Meanwhile, the urban area of Urumqi, the biggest city of Xinjiang Uygur Autonomous Region, increased from 156 km2 in 1989 to 555 km2 in 2014. Correspondingly, the population of permanent residents increased from 1.06 million in 1989 to 3.53 million in 2014. We suggest that the decline of glacier area is driven primarily by summer melting and, possibly, linked to the combined effects of the global rise in temperatures and black carbon/CO2 emission from coal-fired power plants, cement plants and petroleum chemical plants from the nearby Urumqi and surrounding regions. The continuing retreat of glaciers will have a number of different quantitative impacts. Populations in the arid Central Asia regions are heavily dependent on snow and glacier melt for their irrigation and

  4. Internationally coordinated glacier monitoring - a timeline since 1894

    Science.gov (United States)

    Nussbaumer, Samuel U.; Armstrong, Richard; Fetterer, Florence; Gärtner-Roer, Isabelle; Hoelzle, Martin; Machguth, Horst; Mölg, Nico; Paul, Frank; Raup, Bruce H.; Zemp, Michael

    2016-04-01

    glacier retreat and mass loss is a global phenomenon. Glaciological and geodetic observations show that the rates of the 21st-century mass loss are unprecedented on a global scale, for the time period observed, and probably also for recorded history, as indicated in glacier reconstructions from written and illustrated documents. The databases are supplemented by specific index datasets (e.g., glacier thickness data) and a dataset containing information on special events including glacier surges, glacier lake outbursts, ice avalanches, eruptions of ice-clad volcanoes, etc. related to about 200 glaciers. A special database of glacier photographs (GPC - Glacier Photograph Collection) contains more than 15,000 pictures from around 500 glaciers, some of them dating back to the mid-19th century. Current efforts are to close remaining observational gaps regarding data both from in-situ measurements and remote sensing, to establish a well-distributed baseline for sound estimates of climate-related glacier changes and their impacts. Within the framework of dedicated capacity building and twinning activities, disrupted long-term mass balance programmes in Central Asia have recently been resumed, and the continuation of mass balance measurements in the Tropical Andes has been supported. New data also emerge from several research projects using NASA and ESA sensors and are actively integrated into the GTN-G databases. Key tasks for the future include the quantitative assessment of uncertainties of available measurements, and their representativeness for changes in the respective mountain ranges. For this, a well-considered integration of in-situ measurements, remotely sensed observations, and numerical modelling is required.

  5. Seismic observations of subglacial water discharge from glacier-dammed lake drainage at Lemon Creek Glacier, Alaska

    Science.gov (United States)

    Labedz, C. R.; Bartholomaus, T. C.; Gimbert, F.; Amundson, J. M.; Vore, M. E.; Karplus, M. S.; Tsai, V. C.

    2017-12-01

    Subglacial water flow affects the dynamics of glaciers, influencing basal sliding, sediment transport, fracturing, and terminus dynamics. However, the difficulty of directly observing glacial hydrologic systems creates significant challenges in understanding such glacier behavior. Recently-developed descriptions of ground motion generated by subglacial water flow provide a promising basis for new and unique characterization of glacial hydrologic systems. Particularly, high-frequency ( 1.5-20 Hz) seismic tremor observed near glaciers has been shown to correlate with subglacial runoff. In addition, specific properties of subglacial water flow like water pressure, conduit size, sediment flux, and grain size can be inferred by examining hysteretic behavior over time between different parts of these signals. In this study, we observe the seismic signals generated by subglacial water flow using a high-density array of more than 100 nodes deployed for 10-25 days, and six broadband seismometers deployed for 80 days at Lemon Creek Glacier, Alaska. Specifically, we examine the 36-hour drainage of a glacier-dammed lake into subglacial conduits, comparing hydrologic metrics such as lake level, precipitation, and outlet stream flow rate to the power of seismic signals. Our node array captures this annually-significant hydraulic transient with sensors spaced approximately every 250 m over the majority of the 5.7 km long glacier. This and other lake drainage events provide natural experiments for exploring glaciohydraulic tremor, because the increased water flux through the glacier increases the power of the tremor and hosts the hysteretic behaviors described previously. Analysis of the tremor from events such as this can be extended to further understand subglacial runoff at Lemon Creek glacier and for glacier hydrology in general.

  6. Modelling the behavior of Jakobshavn glacier in the last century

    DEFF Research Database (Denmark)

    Muresan, Ioana Stefania; Khroulev, Constantine; Khan, Shfaqat Abbas

    2014-01-01

    overview and for the purpose of increasing the resolution to 2 km, our study focuses only on the Jakobshavn glacier. In order to determine the locations of the flow for the regional model, a drainage basin mask was extracted from the surface elevation data based on the gradient flow. While inside the basin......Current model estimates of the Greenland Ice Sheet (GrIS) are almost entirely based on coarse grids (>10km) and constrained by climate models that span from 60s to present. To improve the projection of future sea level rise, a long-term data record that reveals the mass balance beyond decadal...... mask the full PISM model is applied, outside the basin mask the boundary conditions are taken as captured by the whole Greenland initialization. Considering the surface mass balanced reconstruction where the monthly accumulation rates are assumed to be 1/12 of the annual accumulation, a yearly 1900...

  7. The future sea-level rise contribution of Greenland’s glaciers and ice caps

    International Nuclear Information System (INIS)

    Machguth, H; Rastner, P; Bolch, T; Mölg, N; Sørensen, L Sandberg; Aðalgeirsdottir, G; Van Angelen, J H; Van den Broeke, M R; Fettweis, X

    2013-01-01

    We calculate the future sea-level rise contribution from the surface mass balance of all of Greenland’s glaciers and ice caps (GICs, ∼90 000 km 2 ) using a simplified energy balance model which is driven by three future climate scenarios from the regional climate models HIRHAM5, RACMO2 and MAR. Glacier extent and surface elevation are modified during the mass balance model runs according to a glacier retreat parameterization. Mass balance and glacier surface change are both calculated on a 250 m resolution digital elevation model yielding a high level of detail and ensuring that important feedback mechanisms are considered. The mass loss of all GICs by 2098 is calculated to be 2016 ± 129 Gt (HIRHAM5 forcing), 2584 ± 109 Gt (RACMO2) and 3907 ± 108 Gt (MAR). This corresponds to a total contribution to sea-level rise of 5.8 ± 0.4, 7.4 ± 0.3 and 11.2 ± 0.3 mm, respectively. Sensitivity experiments suggest that mass loss could be higher by 20–30% if a strong lowering of the surface albedo were to take place in the future. It is shown that the sea-level rise contribution from the north-easterly regions of Greenland is reduced by increasing precipitation while mass loss in the southern half of Greenland is dominated by steadily decreasing summer mass balances. In addition we observe glaciers in the north-eastern part of Greenland changing their characteristics towards greater activity and mass turnover. (letter)

  8. Refined energy-balance modelling of a supraglacial pond, Langtang Khola, Nepal

    NARCIS (Netherlands)

    Miles, Evan S.; Pellicciotti, Francesca; Willis, Ian C.; Steiner, Jakob F.; Buri, Pascal; Arnold, Neil S.

    2016-01-01

    Supraglacial ponds on debris-covered glaciers present a mechanism of atmosphere/glacier energy transfer that is poorly studied, and only conceptually included in mass-balance studies of debris-covered glaciers. This research advances previous efforts to develop a model of mass and energy balance for

  9. Fate of Glaciers in the Tibetan Plateau by 2100

    Science.gov (United States)

    Duan, K.

    2017-12-01

    As the third polar on the Earth, the Tibetan plateau holds more than 40,000 glaciers which have experienced a rapid retreat in recent decades. The variability of equilibrium line altitude (ELA) indicates expansion and wastage of glacier directly. Here we simulated the ELA variability in the Tibetan Plateau based on a full surface energy and mass balance model. The simulation results are agreement with the observations. The ELAs have risen at a rate of 2-8m/a since 1970 throughout the Plateau, especially in the eastern Plateau where the ELAs have risen to or over the top altitude of glacier, indicating the glaciers are accelerating to melting over there. Two glaciers, XD glacier in the center of the Plateau and Qiyi glacier in the Qilian Mountain, are chosen to simulate its future ELA variability in the scenarios of RCP2.6, RCP4.5 and RCP 8.5 given by IPCC. The results show the ELAs will arrive to its maximum in around 2040 in RCP2.6, while the ELAs will be over the top altitude of glaciers in 2035-2045 in RCP4.5 and RCP8.5, suggesting the glaciers in the eastern Plateau will be melting until the disappear of the glaciers by the end of 2100.

  10. Permafrost distribution map of San Juan Dry Andes (Argentina) based on rock glacier sites

    Science.gov (United States)

    Esper Angillieri, María Yanina

    2017-01-01

    Rock glaciers are frozen water reservoirs in mountainous areas. Water resources are important for the local populations and economies. The presence of rock glaciers is commonly used as a direct indicator of mountain permafrost conditions. Over 500 active rock glaciers have been identified, showing that elevations between 3500 and 4500 m asl., a south-facing or east-facing aspect, areas with relatively low solar radiation and low mean annual air temperature (-4 to 0 °C) favour the existence of rock glaciers in this region. The permafrost probability model, for Dry Andes of San Juan Province between latitudes 28º30‧S and 32°30‧S, have been analyzed by logistic regression models based on the active rock glaciers occurrence in relation to some topoclimatic variables such as altitude, aspect, mean annual temperature, mean annual precipitation and solar radiation, using optical remote sensing techniques in a GIS environment. The predictive performances of the model have been estimated by known rock glaciers locations and by the area under the receiver operating characteristic curve (AUROC). This regional permafrost map can be applied by the Argentinean Government for their recent initiatives which include creating inventories, monitoring and studying ice masses along the Argentinean Andes. Further, this generated map provides valuable input data for permafrost scenarios and contributes to a better understanding of our geosystem.

  11. Global-scale hydrological response to future glacier mass loss

    Science.gov (United States)

    Huss, Matthias; Hock, Regine

    2018-01-01

    Worldwide glacier retreat and associated future runoff changes raise major concerns over the sustainability of global water resources1-4, but global-scale assessments of glacier decline and the resulting hydrological consequences are scarce5,6. Here we compute global glacier runoff changes for 56 large-scale glacierized drainage basins to 2100 and analyse the glacial impact on streamflow. In roughly half of the investigated basins, the modelled annual glacier runoff continues to rise until a maximum (`peak water') is reached, beyond which runoff steadily declines. In the remaining basins, this tipping point has already been passed. Peak water occurs later in basins with larger glaciers and higher ice-cover fractions. Typically, future glacier runoff increases in early summer but decreases in late summer. Although most of the 56 basins have less than 2% ice coverage, by 2100 one-third of them might experience runoff decreases greater than 10% due to glacier mass loss in at least one month of the melt season, with the largest reductions in central Asia and the Andes. We conclude that, even in large-scale basins with minimal ice-cover fraction, the downstream hydrological effects of continued glacier wastage can be substantial, but the magnitudes vary greatly among basins and throughout the melt season.

  12. The length of the world's glaciers - a new approach for the global calculation of center lines

    DEFF Research Database (Denmark)

    Machguth, Horst; Huss, M.

    2014-01-01

    length using an automated method that relies on glacier surface slope, distance to the glacier margins and a set of trade-off functions. The method is developed for East Greenland, evaluated for East Greenland as well as for Alaska and eventually applied to all similar to 200 000 glaciers around...... appear to be related to characteristics of topography and glacier mass balance. The present study adds glacier length as a key parameter to global glacier inventories. Global and regional scaling laws might prove beneficial in conceptual glacier models....

  13. The 2016 gigantic twin glacier collapses in Tibet: towards an improved understanding of large glacier instabilities and their potential links to climate change

    Science.gov (United States)

    Gilbert, Adrien; Leinss, Silvan; Evans, Steve; Tian, Lide; Kääb, Andreas; Kargel, Jeffrey; Gimbert, Florent; Chao, Wei-An; Gascoin, Simon; Bueler, Yves; Berthier, Etienne; Yao, Tandong; Huggel, Christian; Farinotti, Daniel; Brun, Fanny; Guo, Wanqin; Leonard, Gregory

    2017-04-01

    In northwestern Tibet (34.0°N, 82.2°E) near lake Aru Co, the entire ablation area of an unnamed glacier (Aru-1) suddenly collapsed on 17 July 2016 and transformed into a mass flow that ran out over a distance of over 8 km, killing nine people and hundreds of cattle. Remarkably, a second glacier detachment with similar characteristics (Aru-2) took place 2.6 km south of the July event on 21 September 2016. These two events are unique in several aspects: their massive volumes (66 and 83 Mm3 respectively), the low slope angles ( 200 km h-1) and their close timing within two months. The only similar event currently documented is the 2002 Kolka Glacier mass flow (Caucasus Mountains). The uncommon occurrence of such large glacier failures suggest that such events require very specific conditions that could be linked to glacier thermal regime, bedrock lithology and morphology, geothermal activity or a particular climate setting. Using field and remote sensing observations, retrospective climate analysis, mass balance and thermo-mechanical modeling of the two glaciers in Tibet, we investigate the processes involved in the twin collapses. It appears that both, mostly cold-based glaciers, started to surge about 7-8 years ago, possibly in response to a long period of positive mass balance (1995-2005) followed by a sustained increase of melt water delivery to the glacier bed in the polythermal lower accumulation zone (1995-2016). Inversion of friction conditions at the base of the glacier constrained by surface elevation change rate for both glaciers shows a zone of very low basal friction progressively migrating downward until the final collapse. We interpret this to be the signature of the presence of high-pressure water dammed at the bed by the glacier's frozen periphery and toe. Large areas of low friction at the bed led to high shear stresses along the frozen side walls as evident in surface ice cracking patterns observed on satellite imagery. This process progressively

  14. Ocean impact on Nioghalvfjerdsfjorden Glacier, Northeast Greenland

    Science.gov (United States)

    Schaffer, Janin; Kanzow, Torsten; von Appen, Wilken-Jon; Mayer, Christoph

    2017-04-01

    The ocean plays an important role in modulating the mass balance of the Greenland Ice Sheet by delivering heat to the marine-terminating outlet glaciers around Greenland. The largest of three outlet glaciers draining the Northeast Greenland Ice Stream is Nioghalvfjerdsfjorden Glacier (also referred to as 79 North Glacier). Historic observations showed that warm waters of Atlantic origin are present in the subglacial cavity below the 80 km long floating ice tongue of the Nioghalvfjerdsfjorden Glacier and cause strong basal melt at the grounding line, but to date it has been unknown how those warm water enter the cavity. In order to understand how Atlantic origin waters carry heat into the subglacial cavity beneath Nioghalvfjerdsfjorden Glacier, we performed bathymetric, hydrographic, and velocity observations in the vicinity of the main glacier calving front aboard RV Polarstern in summer 2016. The bathymetric multibeam data shows a 500 m deep and 2 km narrow passage downstream of a 310 m deep sill. This turned out to be the only location deep enough for an exchange of Atlantic waters between the glacier cavity and the continental shelf. Hydrographic and velocity measurements revealed a density driven plume in the vicinity of the glacier calving front causing a rapid flow of waters of Atlantic origin warmer 1°C into the subglacial cavity through the 500 m deep passage. In addition, glacially modified waters flow out of the glacier cavity below the 80 m deep ice base. In the vicinity of the glacier, the glacially modified waters form a distinct mixed layer situated above the Atlantic waters and below the ambient Polar water. At greater distances from the glacier this layer is eroded by lateral mixing with ambient water. Based on our observations we will present an estimate of the ocean heat transport into the subglacial cavity. In comparison with historic observations we find an increase in Atlantic water temperatures throughout the last 20 years. The resulting

  15. Glacier shrinkage and water resources in the Andes

    Science.gov (United States)

    Francou, Bernard; Coudrain, Anne

    For more than a century glaciers around the world have been melting as air temperatures rise due to a combination of natural processes and human activity. The disappearance of these glaciers can have wide-ranging effects, such as the creation of new natural hazards or changes in stream flow that could threaten water suppliesSome of the most dramatic melting has occurred in the Andes mountain range in South America. To highlight the climatic and glacial change in the Andes and to encourage the scientific community to strengthen the glacier observation network that stretches from Colombia to the Patagonian ice fields, the Instituto Nacional de Recursos Naturales (INRENA), Perú, and the Institute of Research and Development (IRD), France, recently organized the second Symposium on Mass Balance of Andean Glaciers in Huaráz,Perú.

  16. Aspect controls the survival of ice cliffs on debris-covered glaciers.

    Science.gov (United States)

    Buri, Pascal; Pellicciotti, Francesca

    2018-04-24

    Supraglacial ice cliffs exist on debris-covered glaciers worldwide, but despite their importance as melt hot spots, their life cycle is little understood. Early field observations had advanced a hypothesis of survival of north-facing and disappearance of south-facing cliffs, which is central for predicting the contribution of cliffs to total glacier mass losses. Their role as windows of energy transfer suggests they may explain the anomalously high mass losses of debris-covered glaciers in High Mountain Asia (HMA) despite the insulating debris, currently at the center of a debated controversy. We use a 3D model of cliff evolution coupled to very high-resolution topographic data to demonstrate that ice cliffs facing south (in the Northern Hemisphere) disappear within a few months due to enhanced solar radiation receipts and that aspect is the key control on cliffs evolution. We reproduce continuous flattening of south-facing cliffs, a result of their vertical gradient of incoming solar radiation and sky view factor. Our results establish that only north-facing cliffs are recurrent features and thus stable contributors to the melting of debris-covered glaciers. Satellite observations and mass balance modeling confirms that few south-facing cliffs of small size exist on the glaciers of Langtang, and their contribution to the glacier volume losses is very small ([Formula: see text]1%). This has major implications for the mass balance of HMA debris-covered glaciers as it provides the basis for new parameterizations of cliff evolution and distribution to constrain volume losses in a region where glaciers are highly relevant as water sources for millions of people.

  17. Greenland Ice Sheet Mass Balance

    Science.gov (United States)

    Reeh, N.

    1984-01-01

    Mass balance equation for glaciers; areal distribution and ice volumes; estimates of actual mass balance; loss by calving of icebergs; hydrological budget for Greenland; and temporal variations of Greenland mass balance are examined.

  18. Determining the Current and Future Health of Low-Latitude Andean Glaciers Using an Equilibrium Line Altitude Model and Hypsometric Data from the Randolph Glacier Inventory

    Science.gov (United States)

    Malone, A.; MacAyeal, D. R.

    2015-12-01

    Mountain glaciers have been described as the water towers of world, and for many populations in the low-latitude South American Andes, glacial runoff is vital for agricultural, industrial, and basic water needs. Previous studies of low-latitude Andean glaciers suggest a precarious future due to contemporary warming. These studies have looked at trends in freezing level heights or observations of contemporary retreat. However, regional-scale understanding of low-latitude glacial responses to present and future climate change is limited, in part due to incomplete information about the extent and elevation distribution of low-latitude glaciers. The recently published Randolph Glacier Inventory (RGI) (5.0) provides the necessary information about the size and elevation distribution of low-latitude glaciers to begin such studies. We determine the contemporary equilibrium line altitudes (ELAs) for low-latitude Andean glaciers in the RGI, using a numerical energy balance ablation model driven with reanalysis and gridded data products. Contemporary ELAs tend to fall around the peak of the elevation histogram, with an exception being the southern-most outer tropical glaciers whose modeled ELAs tend to be higher than the elevation histogram for that region (see below figure). Also, we use the linear tends in temperature and precipitation from the contemporary climatology to extrapolate 21stcentury climate forcings. Modeled ELAs by the middle on the century are universally predicted to rise, with outer tropical ELAs rising more than the inner tropical glaciers. These trends continue through the end of the century. Finally, we explore how climate variables and parameters in our numerical model may vary for different warming scenarios from United Nation's IPCC AR5 report. We quantify the impacts of these changes on ELAs for various climate change trajectories. These results support previous work on the precarious future of low latitude Andean glaciers, while providing a richer

  19. Debris supply to mountain glaciers and how it effects their sensitivity to climate change - A case study from the Chhota Shigri Glacier, India

    Science.gov (United States)

    Scherler, D.; Egholm, D. L.

    2017-12-01

    Debris-covered glaciers are widespread in the Himalaya and other steep mountain ranges. They testify to active erosion of ice-free bedrock hillslopes that tower above valley glaciers, sometimes more than a kilometer high. It is well known that supraglacial debris cover significantly reduces surface ablation rates and thereby influences glacial mass balances and runoff. However, the dynamic evolution of debris cover along with climatic and topographic changes is poorly understood. Here, we present ice-free hillslope erosion rates derived from 10Be concentrations in the ablation-dominated medial moraine of the Chhota Shigri Glacier, Indian Himalaya. We combine our empirical, field-based approach with a numerical model of frost-related sediment production and glacial debris transport to (1) assess patterns of ice-free hillslope erosion that are permissible with observed patterns of debris cover, and (2) explore the coupled response of glaciers and ice-free hillslopes to climatic changes. Measured 10Be concentrations increase downglacier from 3×104 to 6×104 atoms (g quartz) -1, yielding hillslope erosion rates of 1.3-0.6 mm yr-1. The accumulation of 10Be during debris residence on the ice surface can only account for a small fraction (erosion rates. We used the 10Be-derived hillslope erosion rates to define debris supply rates from ice-free bedrock hillslopes in the numerical ice and landscape evolution model iSOSIA. Based on available mass balance and ice thickness data, the calibrated model reproduces the medial moraine of the Chhota Shogri Glacier quite well, although uncertainties exist due to the transient disequilibrium of the glacier, i.e., the current debris cover was fed into the glacier during the Little Ice Age (LIA), and thus under different boundary conditions. We currently perform transient experiments during warming and cooling periods for testing models of frost-related and temperature-sensitive debris production, and for assessing the coupled

  20. A glacier runoff extension to the Precipitation Runoff Modeling System

    Science.gov (United States)

    Van Beusekom, Ashley E.; Viger, Roland

    2016-01-01

    A module to simulate glacier runoff, PRMSglacier, was added to PRMS (Precipitation Runoff Modeling System), a distributed-parameter, physical-process hydrological simulation code. The extension does not require extensive on-glacier measurements or computational expense but still relies on physical principles over empirical relations as much as is feasible while maintaining model usability. PRMSglacier is validated on two basins in Alaska, Wolverine, and Gulkana Glacier basin, which have been studied since 1966 and have a substantial amount of data with which to test model performance over a long period of time covering a wide range of climatic and hydrologic conditions. When error in field measurements is considered, the Nash-Sutcliffe efficiencies of streamflow are 0.87 and 0.86, the absolute bias fractions of the winter mass balance simulations are 0.10 and 0.08, and the absolute bias fractions of the summer mass balances are 0.01 and 0.03, all computed over 42 years for the Wolverine and Gulkana Glacier basins, respectively. Without taking into account measurement error, the values are still within the range achieved by the more computationally expensive codes tested over shorter time periods.

  1. Radiocarbon ages of insects and plants frozen in the No. 31 Glacier, Suntar-Khayata Range, eastern Siberia

    Energy Technology Data Exchange (ETDEWEB)

    Nakazawa, F., E-mail: nakazawa@nipr.ac.jp [National Institute of Polar Research, 10-3 Midori-cho, Tachikawa, Tokyo 190-8518 (Japan); Transdisciplinary Research Integration Center, Hulic Kamiyacho Bldg. 2F, 4-3-13 Toranomon, Minato-ku, Tokyo 105-0001 (Japan); Uchida, M.; Kondo, M. [Center for Environmental Measurement and Analysis, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-0053 (Japan); Kadota, T. [Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima, Yokosuka 237-0061 (Japan); Shirakawa, T. [Kitami Institute of Technology, Kitami, Hokkaido 090-8507 (Japan); Enomoto, H. [National Institute of Polar Research, 10-3 Midori-cho, Tachikawa, Tokyo 190-8518 (Japan); Department of Polar Science, The Graduate University for Advanced Studies (SOKENDAI), 10-3 Midori-cho, Tachikawa, Tokyo 190-8518 (Japan); Fedorov, A.N. [Melnikov Permafrost Institute, SB RAN, Yakutsk 6770110 (Russian Federation); North-Eastern Federal University, Yakutsk 677010 (Russian Federation); Fujisawa, Y. [Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522 (Japan); Konstantinov, P.Y. [Melnikov Permafrost Institute, SB RAN, Yakutsk 6770110 (Russian Federation); Kusaka, R. [Kitami Institute of Technology, Kitami, Hokkaido 090-8507 (Japan); Miyairi, M. [Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522 (Japan); Ohata, T.; Yabuki, H. [Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima, Yokosuka 237-0061 (Japan)

    2015-10-15

    The aim of this study was to estimate the age of glacier ice in the No. 31 Glacier in the Suntar-Khayata Range of eastern Siberia by performing dating of insects thought to be long-legged fly species (Dolichopodidae) as well as plants (species unknown) fragments preserved in the ice. Ice samples containing organisms were collected at depths of 0.4–1.1 m at five points from the middle to lowest parts of the glacier in 2013. The age of an insect collected at the lowest point on the glacier was estimated as 2038 ± 32 yr B.P. Insects collected at higher points had a modern or near-modern radiocarbon age. The age of plant fragments collected at the uppermost and middle points was 1531 ± 44 and 1288 ± 26 yr B.P., respectively, and that of a mixture of plant and insect fragments collected at the lowest point was 9772 ± 42 yr B.P. When comparing specimens collected at the same point, the plant fragments were found to be older than the insects. In 2012–2014 observations, some living insects were found on the glacier, and thus the age of the insects appears to correspond to the age of the ice. On the other hand, the plant fragments might have already aged since detachment from the source plants. This study found an approximately 2000-year gap in the age of the ice between the lowest and higher points. Annual mass balance observations from 2012 to 2014 showed that in recent years, the glacier sometimes had no accumulation area. Therefore, the wide gap in the age of ice may be due to a difference in past melting processes between the lowest and higher points on the glacier.

  2. Technical note: Representing glacier geometry changes in a semi-distributed hydrological model

    Directory of Open Access Journals (Sweden)

    J. Seibert

    2018-04-01

    Full Text Available Glaciers play an important role in high-mountain hydrology. While changing glacier areas are considered of highest importance for the understanding of future changes in runoff, glaciers are often only poorly represented in hydrological models. Most importantly, the direct coupling between the simulated glacier mass balances and changing glacier areas needs feasible solutions. The use of a complex glacier model is often not possible due to data and computational limitations. The Δh parameterization is a simple approach to consider the spatial variation of glacier thickness and area changes. Here, we describe a conceptual implementation of the Δh parameterization in the semi-distributed hydrological model HBV-light, which also allows for the representation of glacier advance phases and for comparison between the different versions of the implementation. The coupled glacio-hydrological simulation approach, which could also be implemented in many other semi-distributed hydrological models, is illustrated based on an example application.

  3. Glacier variability in the conterminous United States during the twentieth century

    Science.gov (United States)

    McCabe, Gregory J.; Fountain, Andrew G.

    2013-01-01

    Glaciers of the conterminous United States have been receding for the past century. Since 1900 the recession has varied from a 24 % loss in area (Mt. Rainier, Washington) to a 66 % loss in the Lewis Range of Montana. The rates of retreat are generally similar with a rapid loss in the early decades of the 20th century, slowing in the 1950s–1970s, and a resumption of rapid retreat starting in the 1990s. Decadal estimates of changes in glacier area for a subset of 31 glaciers from 1900 to 2000 are used to test a snow water equivalent model that is subsequently employed to examine the effects of temperature and precipitation variability on annual glacier area changes for these glaciers. Model results indicate that both winter precipitation and winter temperature have been important climatic factors affecting the variability of glacier variability during the 20th Century. Most of the glaciers analyzed appear to be more sensitive to temperature variability than to precipitation variability. However, precipitation variability is important, especially for high elevation glaciers. Additionally, glaciers with areas greater than 1 km2 are highly sensitive to variability in temperature.

  4. Spatial features of glacier changes in the Barents-Kara Sector

    Science.gov (United States)

    Sharov, A. I.; Schöner, W.; Pail, R.

    2009-04-01

    In the 1950s, the total area of glaciers occupying separate islands and archipelagos of the Barents and Kara seas exceeded 92,300 km² (Atlas of the Arctic 1985). The overall glacier volume reached 20,140 km³ and the average ice thickness was given as 218 m. Our recent remote sensing studies and mass-balance estimates using spaceborne ASTER and LANDSAT imagery, ERS and JERS radar interferometric mosaics, and ICESat altimetry data revealed that, in the 2000s, the areal extent and volume of Barents-Kara glaciation amounted to 86,200±200 km² and 19,330±20 km³, respectively. The annual loss of land ice influenced by severe climate change in longitudinal direction was determined at approx. 8 km³/a in Svalbard, 4 km³/a both in the Franz Josef Land and Novaya Zemlya archipelagos, and less than 0.3 km³/a in Severnaya Zemlya over the past 50 years. The average ice thickness of remaining glaciation increased to 224 m. This fact was explained by rapid disintegration of thinner glacier margins and essential accumulation of snow at higher glacier elevations. Both effects were clearly visible in the series of satellite image maps of glacier elevation changes generated within the framework of the INTEGRAL, SMARAGD and ICEAGE research projects. These maps can be accessed at http://joanneum.dib.at/integral or smaragd (cd results). The largest negative elevation changes were typically detected in the seaward basins of fast-flowing outlet glaciers, both at their fronts and tops. Ablation processes were stronger manifested on southern slopes of ice caps, while the accumulation of snow was generally higher on northern slopes so that main ice divides "shifted" to the north. The largest positive elevation changes (about 100 m) were found in the central part of the study region in the accumulation areas of the biggest ice caps, such as Northern Ice Cap in Novaya Zemlya, Tyndall and Windy ice domes in Franz Josef Land, and Kvitoyjokulen at Kvitøya. The sides of these glaciers

  5. Mass budget of Queen Elizabeth Islands glaciers and ice caps, Canada, from 1992 to present

    Science.gov (United States)

    Millan, R.; Rignot, E. J.; Mouginot, J.

    2015-12-01

    Recent studies indicate to say that the Canadian Artic Archipelago's mass loss has increased in recent years. However the role of ice dynamics changes in this area is not well known. In this study, we present a comprehensive velocity mapping of the CAA using ALOS/PALSAR, RADARSAT-1, ERS1 and Landsat data between 1992 and 2015. Glaciers speed are calculated using a speckle and feature tracking algorithm.The results reveals that three large marine-terminating glaciers have accelerated significantly after 2010, while most others have slowed down or retreated to a sill to become similar to land-terminating glaciers. By combining the velocities of these glaciers with ice thickness measurements from NASA's Operation IceBridge, we calculate their ice discharge. The fluxes of these glaciers increased significantly since 2000 with a marked increase after 2011. The comparison of ice discharge with the surface mass balance from RACMO-2, shows that these glaciers came out of balance after 2011, which is also a time period where their discharge almost doubled. The analysis of RACMO-2 reveals an increase in runoff between 1970's and today and a precipitation with no significant trend. We digitalize the calving front positions of the glaciers and show an increasing rate retreat since 1976. We conclude that global pattern of velocity changes shows that the mass losses due to surface mass balance will likely going to raise in the coming years and that ice discharge will have a smaller part in the contribution of the CAA to sea level rise.

  6. Glaciers of North America - Glaciers of Alaska

    Science.gov (United States)

    Molnia, Bruce F.

    2008-01-01

    Glaciers cover about 75,000 km2 of Alaska, about 5 percent of the State. The glaciers are situated on 11 mountain ranges, 1 large island, an island chain, and 1 archipelago and range in elevation from more than 6,000 m to below sea level. Alaska's glaciers extend geographically from the far southeast at lat 55 deg 19'N., long 130 deg 05'W., about 100 kilometers east of Ketchikan, to the far southwest at Kiska Island at lat 52 deg 05'N., long 177 deg 35'E., in the Aleutian Islands, and as far north as lat 69 deg 20'N., long 143 deg 45'W., in the Brooks Range. During the 'Little Ice Age', Alaska's glaciers expanded significantly. The total area and volume of glaciers in Alaska continue to decrease, as they have been doing since the 18th century. Of the 153 1:250,000-scale topographic maps that cover the State of Alaska, 63 sheets show glaciers. Although the number of extant glaciers has never been systematically counted and is thus unknown, the total probably is greater than 100,000. Only about 600 glaciers (about 1 percent) have been officially named by the U.S. Board on Geographic Names (BGN). There are about 60 active and former tidewater glaciers in Alaska. Within the glacierized mountain ranges of southeastern Alaska and western Canada, 205 glaciers (75 percent in Alaska) have a history of surging. In the same region, at least 53 present and 7 former large ice-dammed lakes have produced jokulhlaups (glacier-outburst floods). Ice-capped volcanoes on mainland Alaska and in the Aleutian Islands have a potential for jokulhlaups caused by subglacier volcanic and geothermal activity. Because of the size of the area covered by glaciers and the lack of large-scale maps of the glacierized areas, satellite imagery and other satellite remote-sensing data are the only practical means of monitoring regional changes in the area and volume of Alaska's glaciers in response to short- and long-term changes in the maritime and continental climates of the State. A review of the

  7. Energy and Mass Balance At Gran Campo Nevado, Patagonia, Chile

    Science.gov (United States)

    Schneider, C.; Kilian, R.; Casassa, G.

    The Gran Campo Nevado (GCN) Ice Cap on Peninsula Muñoz Gamero, Chile, is lo- cated in the southernmost part of the Patagonian Andes at 53S. It comprises an ice cap and numerous outlet glaciers which mostly end in proglacial lakes at sea level. The total ice covered area sums up to approximately 250 km2. GCN forms the only major ice body between the Southern Patagonian Icefield and the Street of Magallan. Its almost unique location in the zone of the all-year westerlies makes it a region of key interest in terms of glacier and climate change studies of the westwind zone of the Southern Hemisphere. Mean annual temperature of approximately +5C at sea level and high precipitation of about 8.000 mm per year lead to an extreme turn-over of ice mass from the accumulation area of the GCN Ice Cap to the ablation areas of the outlet glaciers. Since October 1999 an automated weather station (AWS) is run continuously in the area at Bahia Bahamondes for monitoring climate parameters. From February to April 2000 an additional AWS was operated on Glaciar Lengua a small outlet glacier of GCN to the north-west. Ablation has been measured at stakes during the same pe- riod. The aim of this study, was to obtain point energy and mass balance on Glaciar Lengua. The work was conducted as part of the international and interdisciplinary working group SGran Campo NevadoT and supported by the German Research Foun- & cedil;dation (DFG). Energy balance was calculated using the bulk approach formulas and calibrated to the measured ablation. It turns out, that sensible heat transfer is the major contribution to the energy balance. Since high cloud cover rates prevail, air tempera- ture is the key factor for the energy balance of the glacier. Despite high rain fall rates, energy input from rain fall is of only minor importance to the overall energy balance. From the energy balance computed, it was possible to derive summer-time degree-day factors for Glaciar Lengua. With data from the nearby

  8. Pathways of warm water to the Northeast Greenland outlet glaciers

    Science.gov (United States)

    Schaffer, Janin; Timmermann, Ralph; Kanzow, Torsten; Arndt, Jan Erik; Mayer, Christoph; Schauer, Ursula

    2015-04-01

    The ocean plays an important role in modulating the mass balance of the Greenland Ice Sheet by delivering heat to the marine-terminating outlet glaciers surrounding the Greenland coast. The warming and accumulation of Atlantic Water in the subpolar North Atlantic has been suggested to be a potential driver of the glaciers' retreat over the last decades. The shelf regions thus play a critical role for the transport of Atlantic Water towards the glaciers, but also for the transfer of freshwater towards the deep ocean. A key region for the mass balance of the Greenland Ice Sheet is the Northeast Greenland Ice Stream. This large ice stream drains the second-largest basin of the Greenland Ice Sheet and feeds three outlet glaciers. The largest one is Nioghalvfjerdsfjorden (79°N-Glacier) featuring an 80 km long floating ice tongue. Both the ocean circulation on the continental shelf off Northeast Greenland and the circulation in the cavity below the ice tongue are weakly constrained so far. In order to study the relevant processes of glacier-ocean interaction we combine observations and model work. Here we focus on historic and recent hydrographic observations and on the complex bathymetry in the Northeast Greenland shelf region, which is thought to steer the flux of warm Atlantic water onto the continental shelf and into the sub-ice cavity beneath the 79°N-Glacier. We present a new global topography data set, RTopo-2, which includes the most recent surveys on the Northeast Greenland continental shelf and provides a detailed bathymetry for all around Greenland. In addition, RTopo-2 contains ice and bedrock surface topographies for Greenland and Antarctica. Based on the updated ocean bathymetry and a variety of hydrographic observations we show the water mass distribution on the continental shelf off Northeast Greenland. These maps enable us to discuss possible supply pathways of warm modified Atlantic waters on the continental shelf and thus potential ways of heat

  9. Modelling historical and recent mass loss of McCall Glacier, Alaska, USA

    Directory of Open Access Journals (Sweden)

    C. Delcourt

    2008-03-01

    Full Text Available Volume loss of valley glaciers is now considered to be a significant contribution to sea level rise. Understanding and identifying the processes involved in accelerated mass loss are necessary to determine their impact on the global system. Here we present results from a series of model experiments with a higher-order thermomechanically coupled flowline model (Pattyn, 2002. Boundary conditions to the model are parameterizations of surface mass balance, geothermal heating, observed surface and 10 m ice depth temperatures. The time-dependent experiments aim at simulating the glacier retreat from its LIA expansion to present according to different scenarios and model parameters. Model output was validated against measurements of ice velocity, ice surface elevation and terminus position at different stages. Results demonstrate that a key factor in determining the glacier retreat history is the importance of internal accumulation (>50% in the total mass balance. The persistence of a basal temperate zone characteristic for this polythermal glacier depends largely on its contribution. Accelerated glacier retreat since the early nineties seems directly related to the increase in ELA and the sudden reduction in AAR due to the fact that a large lower elevation cirque – previously an important accumulation area – became part of the ablation zone.

  10. Little Ice Age climate reconstruction from ensemble reanalysis of Alpine glacier fluctuations

    Directory of Open Access Journals (Sweden)

    M. P. Lüthi

    2014-04-01

    Full Text Available Mountain glaciers sample a combination of climate fields – temperature, precipitation and radiation – by accumulation and melting of ice. Flow dynamics acts as a transfer function that maps volume changes to a length response of the glacier terminus. Long histories of terminus positions have been assembled for several glaciers in the Alps. Here I analyze terminus position histories from an ensemble of seven glaciers in the Alps with a macroscopic model of glacier dynamics to derive a history of glacier equilibrium line altitude (ELA for the time span 400–2010 C.E. The resulting climatic reconstruction depends only on records of glacier variations. The reconstructed ELA history is similar to recent reconstructions of Alpine summer temperature and Atlantic Multidecadal Oscillation (AMO index, but bears little resemblance to reconstructed precipitation variations. Most reconstructed low-ELA periods coincide with large explosive volcano eruptions, hinting at a direct effect of volcanic radiative cooling on mass balance. The glacier advances during the LIA, and the retreat after 1860, can thus be mainly attributed to temperature and volcanic radiative cooling.

  11. Structure from motion, a low cost, very high resolution method for surveying glaciers using GoPros and opportunistic helicopter flights

    Science.gov (United States)

    Girod, L.; Nuth, C.; Schellenberger, T.

    2014-12-01

    The capability of structure from motion techniques to survey glaciers with a very high spatial and temporal resolution is a promising tool for better understanding the dynamic changes of glaciers. Modern software and computing power allow us to produce accurate data sets from low cost surveys, thus improving the observational capabilities on a wider range of glaciers and glacial processes. In particular, highly accurate glacier volume change monitoring and 3D movement computations will be possible Taking advantage of the helicopter flight needed to survey the ice stakes on Kronenbreen, NW Svalbard, we acquired high resolution photogrammetric data over the well-studied Midre Lovénbreen in September 2013. GoPro Hero 2 cameras were attached to the landing gear of the helicopter, acquiring two images per second. A C/A code based GPS was used for registering the stereoscopic model. Camera clock calibration is obtained through fitting together the shapes of the flight given by both the GPS logger and the relative orientation of the images. A DEM and an ortho-image are generated at 30cm resolution from 300 images collected. The comparison with a 2005 LiDAR DEM (5 meters resolution) shows an absolute error in the direct registration of about 6±3m in 3D which could be easily reduced to 1,5±1m by using fine point cloud alignment algorithms on stable ground. Due to the different nature of the acquisition method, it was not possible to use tie point based co-registration. A combination of the DEM and ortho-image is shown with the point cloud in figure below. A second photogrammetric data set will be acquired in September 2014 to survey the annual volume change and movement. These measurements will then be compared to the annual resolution glaciological stake mass balance and velocity measurements to assess the precision of the method to monitor at an annual resolution.

  12. Utility of late summer transient snowline migration rate on Taku Glacier, Alaska

    Directory of Open Access Journals (Sweden)

    M. Pelto

    2011-12-01

    Full Text Available On Taku Glacier, Alaska a combination of field observations of snow water equivalent (SWE from snowpits and probing in the vicinity of the transient snowline (TSL are used to quantify the mass balance gradient. The balance gradient derived from the TSL and SWE measured in snowpits at 1000 m from 1998–2010 ranges from 2.6–3.8 mm m−1. Probing transects from 950 m–1100 m directly measure SWE and yield a slightly higher balance gradient of 3.3–3.8 mm m−1. The TSL on Taku Glacier is identified in MODIS and Landsat 4 and 7 Thematic Mapper images for 31 dates during the 2004–2010 period to assess the consistency of its rate of rise and reliability in assessing ablation for mass balance assessment. For example, in 2010, the TSL was 750 m on 28 July, 800 m on 5 August, 875 m on 14 August, 925 m on 30 August, and 975 m on 20 September. The mean observed probing balance gradient was 3.3 mm m−1, combined with the TSL rise of 3.7 m day−1 yields an ablation rate of 12.2 mm day−1 from mid-July to mid-Sept, 2010. The TSL rise in the region from 750–1100 m on Taku Glacier during eleven periods each covering more than 14 days during the ablation season indicates a mean TSL rise of 3.7 m day−1, the rate of rise is relatively consistent ranging from 3.1 to 4.4 m day−1. This rate is useful for ascertaining the final ELA if images or observations are not available near the end of the ablation season. The mean ablation from 750–1100 m during the July–September period determined from the TSL rise and the observed balance gradient is 11–13 mm day−1 on Taku Glacier during the 2004–2010 period. The potential for providing an estimate of bn from TSL observations late in the melt season from satellite images combined with the frequent availability of such images provides a means for efficient mass balance assessment in many years and on many

  13. Seasonal variation and light absorption property of carbonaceous aerosol in a typical glacier region of the southeastern Tibetan Plateau

    Science.gov (United States)

    Niu, Hewen; Kang, Shichang; Wang, Hailong; Zhang, Rudong; Lu, Xixi; Qian, Yun; Paudyal, Rukumesh; Wang, Shijin; Shi, Xiaofei; Yan, Xingguo

    2018-05-01

    Deposition and accumulation of light-absorbing carbonaceous aerosol on glacier surfaces can alter the energy balance of glaciers. In this study, 2 years (December 2014 to December 2016) of continuous observations of carbonaceous aerosols in the glacierized region of the Mt. Yulong and Ganhaizi (GHZ) basin are analyzed. The average elemental carbon (EC) and organic carbon (OC) concentrations were 1.51±0.93 and 2.57±1.32 µg m-3, respectively. Although the annual mean OC / EC ratio was 2.45±1.96, monthly mean EC concentrations during the post-monsoon season were even higher than OC in the high altitudes (approximately 5000 m a. s. l. ) of Mt. Yulong. Strong photochemical reactions and local tourism activities were likely the main factors inducing high OC / EC ratios in the Mt. Yulong region during the monsoon season. The mean mass absorption efficiency (MAE) of EC, measured for the first time in Mt. Yulong, at 632 nm with a thermal-optical carbon analyzer using the filter-based method, was 6.82±0.73 m2 g-1, comparable with the results from other studies. Strong seasonal and spatial variations of EC MAE were largely related to the OC abundance. Source attribution analysis using a global aerosol-climate model, equipped with a black carbon (BC) source tagging technique, suggests that East Asia emissions, including local sources, have the dominant contribution (over 50 %) to annual mean near-surface BC in the Mt. Yulong area. There is also a strong seasonal variation in the regional source apportionment. South Asia has the largest contribution to near-surface BC during the pre-monsoon season, while East Asia dominates the monsoon season and post-monsoon season. Results in this study have great implications for accurately evaluating the influences of carbonaceous matter on glacial melting and water resource supply in glacierization areas.

  14. Ice thickness estimations based on multi-temporal glacier inventories - potential and challenges

    Science.gov (United States)

    Helfricht, Kay; Huss, Matthias; Otto, Jan-Christoph

    2016-04-01

    only partly be reproduced by the model. This may be explained by differences in the dynamical state of the glacier among the considered periods with almost balanced mass balance conditions (GI1 - GI2) and strong disequilibrium (GI2 - GI3). Huss, M., and D. Farinotti (2012), Distributed ice thickness and volume of all glaciers around the globe, J. Geophys. Res., 117, F04010, doi:10.1029/2012JF002523. Fischer, A., Seiser, B., Stocker Waldhuber, M., Mitterer, C., and Abermann, J. (2015), Tracing glacier changes in Austria from the Little Ice Age to the present using a lidar-based high-resolution glacier inventory in Austria, The Cryosphere, 9, 753-766, doi:10.5194/tc-9-753-2015.

  15. Arctic polynya and glacier interactions

    Science.gov (United States)

    Edwards, Laura

    2013-04-01

    Major uncertainties surround future estimates of sea level rise attributable to mass loss from the polar ice sheets and ice caps. Understanding changes across the Arctic is vital as major potential contributors to sea level, the Greenland Ice Sheet and the ice caps and glaciers of the Canadian Arctic archipelago, have experienced dramatic changes in recent times. Most ice mass loss is currently focused at a relatively small number of glacier catchments where ice acceleration, thinning and calving occurs at ocean margins. Research suggests that these tidewater glaciers accelerate and iceberg calving rates increase when warming ocean currents increase melt on the underside of floating glacier ice and when adjacent sea ice is removed causing a reduction in 'buttressing' back stress. Thus localised changes in ocean temperatures and in sea ice (extent and thickness) adjacent to major glacial catchments can impact hugely on the dynamics of, and hence mass lost from, terrestrial ice sheets and ice caps. Polynyas are areas of open water within sea ice which remain unfrozen for much of the year. They vary significantly in size (~3 km2 to > ~50,000 km2 in the Arctic), recurrence rates and duration. Despite their relatively small size, polynyas play a vital role in the heat balance of the polar oceans and strongly impact regional oceanography. Where polynyas develop adjacent to tidewater glaciers their influence on ocean circulation and water temperatures may play a major part in controlling subsurface ice melt rates by impacting on the water masses reaching the calving front. Areas of open water also play a significant role in controlling the potential of the atmosphere to carry moisture, as well as allowing heat exchange between the atmosphere and ocean, and so can influence accumulation on (and hence thickness of) glaciers and ice caps. Polynya presence and size also has implications for sea ice extent and therefore potentially the buttressing effect on neighbouring

  16. Recent changes in equilibrium line altitudes of glaciers in the Chandra-Bhaga Catchments, the Western Himalaya

    Science.gov (United States)

    Kumari, R.; Vijay, S.; Banerjee, A.; Singh, G.

    2017-12-01

    Abstract: Climatic forcing affects a glacier through a change in the corresponding equilibrium line altitude (ELA). Many approximate methods are available in the literature for estimating ELA of glaciers that are in a steady state. Some of the rudimentary methods e.g. Toe-to-Headwall-Ratio method or mid-point elevation methods are based solely on the elevation range of the glacier cover, and ignore the variations in slope, valley width or the mass-balance profile. The mean-elevation method is more accurate in that it takes into account the glacier hypsometry. In this study, we extend this method to estimate the ELA of a glacier that is not in a steady state. We assume a linear mass-balance profile, and utilize geodetic mass balance and hypsometry of the glacier to obtain ELA. This method is generally useful to track, for example, the spatial pattern of recent ELA changes in a given region. We apply the above method to 46 debris-free glaciers in the Chandra-Bhaga catchments, the Western Himalaya, to understand the regional ELA forcing during 2000 to 2012. Shuttle Radar Topographic Mission (2000) and TanDEM-X (2012) digital elevation model (DEM) are used to get elevation data. A strong correlation (r2=0.90 and pELAs with the corresponding end-of-summer-snowline-elevation data derived from cloud-free Landsat images validates our method. Our estimate for the recent ELA of Chhota shigri Glacier from the region are consistent with published glaciological ELA values. On a regional scale, the estimated ELAs are negatively correlated (r2= 0.66 and pELA per 10 mm/year reduction in rainfall. We shall also discuss the regional patterns of the changes in transient ELA between 2000 and 2012.

  17. An enhanced temperature index model for debris-covered glaciers accounting for thickness effect

    Science.gov (United States)

    Carenzo, M.; Pellicciotti, F.; Mabillard, J.; Reid, T.; Brock, B. W.

    2016-08-01

    Debris-covered glaciers are increasingly studied because it is assumed that debris cover extent and thickness could increase in a warming climate, with more regular rockfalls from the surrounding slopes and more englacial melt-out material. Debris energy-balance models have been developed to account for the melt rate enhancement/reduction due to a thin/thick debris layer, respectively. However, such models require a large amount of input data that are not often available, especially in remote mountain areas such as the Himalaya, and can be difficult to extrapolate. Due to their lower data requirements, empirical models have been used extensively in clean glacier melt modelling. For debris-covered glaciers, however, they generally simplify the debris effect by using a single melt-reduction factor which does not account for the influence of varying debris thickness on melt and prescribe a constant reduction for the entire melt across a glacier. In this paper, we present a new temperature-index model that accounts for debris thickness in the computation of melt rates at the debris-ice interface. The model empirical parameters are optimized at the point scale for varying debris thicknesses against melt rates simulated by a physically-based debris energy balance model. The latter is validated against ablation stake readings and surface temperature measurements. Each parameter is then related to a plausible set of debris thickness values to provide a general and transferable parameterization. We develop the model on Miage Glacier, Italy, and then test its transferability on Haut Glacier d'Arolla, Switzerland. The performance of the new debris temperature-index (DETI) model in simulating the glacier melt rate at the point scale is comparable to the one of the physically based approach, and the definition of model parameters as a function of debris thickness allows the simulation of the nonlinear relationship of melt rate to debris thickness, summarised by the

  18. Quantifying seasonal velocity at Khumbu Glacier, Nepal

    Science.gov (United States)

    Miles, E.; Quincey, D. J.; Miles, K.; Hubbard, B. P.; Rowan, A. V.

    2017-12-01

    While the low-gradient debris-covered tongues of many Himalayan glaciers exhibit low surface velocities, quantifying ice flow and its variation through time remains a key challenge for studies aimed at determining the long-term evolution of these glaciers. Recent work has suggested that glaciers in the Everest region of Nepal may show seasonal variability in surface velocity, with ice flow peaking during the summer as monsoon precipitation provides hydrological inputs and thus drives changes in subglacial drainage efficiency. However, satellite and aerial observations of glacier velocity during the monsoon are greatly limited due to cloud cover. Those that do exist do not span the period over which the most dynamic changes occur, and consequently short-term (i.e. daily) changes in flow, as well as the evolution of ice dynamics through the monsoon period, remain poorly understood. In this study, we combine field and remote (satellite image) observations to create a multi-temporal, 3D synthesis of ice deformation rates at Khumbu Glacier, Nepal, focused on the 2017 monsoon period. We first determine net annual and seasonal surface displacements for the whole glacier based on Landsat-8 (OLI) panchromatic data (15m) processed with ImGRAFT. We integrate inclinometer observations from three boreholes drilled by the EverDrill project to determine cumulative deformation at depth, providing a 3D perspective and enabling us to assess the role of basal sliding at each site. We additionally analyze high-frequency on-glacier L1 GNSS data from three sites to characterize variability within surface deformation at sub-seasonal timescales. Finally, each dataset is validated against repeat-dGPS observations at gridded points in the vicinity of the boreholes and GNSS dataloggers. These datasets complement one another to infer thermal regime across the debris-covered ablation area of the glacier, and emphasize the seasonal and spatial variability of ice deformation for glaciers in High

  19. 18 CFR 141.51 - FERC Form No. 714, Annual Electric Balancing Authority Area and Planning Area Report.

    Science.gov (United States)

    2010-04-01

    ..., Annual Electric Balancing Authority Area and Planning Area Report. 141.51 Section 141.51 Conservation of...) § 141.51 FERC Form No. 714, Annual Electric Balancing Authority Area and Planning Area Report. (a) Who... Policies Act, 16 U.S.C. 2602, operating a balancing authority area, and any group of electric utilities...

  20. Changes of glaciers in the Andes of Chile and priorities for future work.

    Science.gov (United States)

    Pellicciotti, F; Ragettli, S; Carenzo, M; McPhee, J

    2014-09-15

    Glaciers in the Andes of Chile seem to be shrinking and possibly loosing mass, but the number and types of studies conducted, constrained mainly by data availability, are not sufficient to provide a synopsis of glacier changes for the past or future or explain in an explicit way causes of the observed changes. In this paper, we provide a systematic review of changes in glaciers for the entire country, followed by a discussion of the studies that have provided evidence of such changes. We identify a missing type of work in distributed, physically-oriented modelling studies that are needed to bridge the gap between the numerous remote sensing studies and the specific, point scale works focused on process understanding. We use an advanced mass balance model applied to one of the best monitored glaciers in the region to investigate four main research issues that should be addressed in modelling studies for a sound assessment of glacier changes: 1) the use of physically-based models of glacier ablation (energy balance models) versus more empirical models (enhanced temperature index approaches); 2) the importance of the correct extrapolation of air temperature forcing on glaciers and in high elevation areas and the large uncertainty in model outputs associated with it; 3) the role played by snow gravitational redistribution; and 4) the uncertainty associated with future climate scenarios. We quantify differences in model outputs associated with each of these choices, and conclude with suggestions for future work directions. © 2013 Elsevier B.V. All rights reserved.

  1. Hydrologic impacts of changes in climate and glacier extent in the Gulf of Alaska watershed

    Science.gov (United States)

    Beamer, J. P.; Hill, D. F.; McGrath, D.; Arendt, A.; Kienholz, C.

    2017-09-01

    High-resolution regional-scale hydrologic models were used to quantify the response of late 21st century runoff from the Gulf of Alaska (GOA) watershed to changes in regional climate and glacier extent. NCEP Climate Forecast System Reanalysis data were combined with five Coupled Model Intercomparison Project Phase 5 general circulation models (GCMs) for two representative concentration pathway (RCP) scenarios (4.5 and 8.5) to develop meteorological forcing for the period 2070-2099. A hypsographic model was used to estimate future glacier extent given assumed equilibrium line altitude (ELA) increases of 200 and 400 m. GCM predictions show an increase in annual precipitation of 12% for RCP 4.5 and 21% for RCP 8.5, and an increase in annual temperature of 2.5°C for RCP 4.5 and 4.3°C for RCP 8.5, averaged across the GOA. Scenarios with perturbed climate and glaciers predict annual GOA-wide runoff to increase by 9% for RCP4.5/ELA200 case and 14% for the RCP8.5/ELA400 case. The glacier runoff decreased by 14% for RCP4.5/ELA200 and by 34% for the RCP8.5/ELA400 case. Intermodel variability in annual runoff was found to be approximately twice the variability in precipitation input. Additionally, there are significant changes in runoff partitioning and increases in snowpack runoff are dominated by increases in rain-on-snow events. We present results aggregated across the entire GOA and also for individual watersheds to illustrate the range in hydrologic regime changes and explore the sensitivities of these results by independently perturbing only climate forcings and only glacier cover.

  2. Glacier Snowline Determination from Terrestrial Laser Scanning Intensity Data

    Directory of Open Access Journals (Sweden)

    Hannah Prantl

    2017-07-01

    Full Text Available Accurately identifying the extent of surface snow cover on glaciers is important for extrapolating end of year mass balance measurements, constraining the glacier surface radiative energy balance and evaluating model simulations of snow cover. Here, we use auxiliary information from Riegl VZ-6000 Terrestrial Laser Scanner (TLS return signals to accurately map the snow cover over a glacier throughout an ablation season. Three classification systems were compared, and we find that supervised classification based on TLS signal intensity alone is outperformed by a rule-based classification employing intensity, surface roughness and an associated optical image, which achieves classification accuracy of 68–100%. The TLS intensity signal shows no meaningful relationship with surface or bulk snow density. Finally, we have also compared our Snow Line Altitude (SLA derived from TLS with SLA derived from the model output, as well as one Landsat image. The results of the model output track the SLA from TLS well, however with a positive bias. In contrast, automatic Landsat-derived SLA slightly underestimates the SLA from TLS. To conclude, we demonstrate that the snow cover extent can be mapped successfully using TLS, although the snow mass remains elusive.

  3. Annual carbon balance of a peatland 10 yr following restoration

    Directory of Open Access Journals (Sweden)

    M. Strack

    2013-05-01

    Full Text Available Undisturbed peatlands represent long-term net sinks of carbon; however, peat extraction converts these systems into large and persistent sources of greenhouse gases. Although rewetting and restoration following peat extraction have taken place over the last several decades, very few studies have investigated the longer term impact of this restoration on peatland carbon balance. We determined the annual carbon balance of a former horticulturally-extracted peatland restored 10 yr prior to the study and compared these values to the carbon balance measured at neighboring unrestored and natural sites. Carbon dioxide (CO2 and methane (CH4 fluxes were measured using the chamber technique biweekly during the growing season from May to October 2010 and three times over the winter period. Dissolved organic carbon (DOC export was measured from remnant ditches in the unrestored and restored sites. During the growing season the restored site had greater uptake of CO2 than the natural site when photon flux density was greater than 1000 μmol m−2 s−1, while the unrestored site remained a source of CO2. Ecosystem respiration was similar between natural and restored sites, which were both significantly lower than the unrestored site. Methane flux remained low at the restored site except from open water pools, created as part of restoration, and remnant ditches. Export of DOC during the growing season was 5.0 and 28.8 g m−2 from the restored and unrestored sites, respectively. Due to dry conditions during the study year all sites acted as net carbon sources with annual balance of the natural, restored and unrestored sites of 250.7, 148.0 and 546.6 g C m−2, respectively. Although hydrological conditions and vegetation community at the restored site remained intermediate between natural and unrestored conditions, peatland restoration resulted in a large reduction in annual carbon loss from the system resulting in a carbon balance more similar to a natural

  4. Glaciers of Asia

    Science.gov (United States)

    Williams, Richard S.; Ferrigno, Jane G.

    2010-01-01

    This chapter is the ninth to be released in U.S. Geological Survey Professional Paper 1386, Satellite Image Atlas of Glaciers of the World, a series of 11 chapters. In each of the geographic area chapters, remotely sensed images, primarily from the Landsat 1, 2, and 3 series of spacecraft, are used to analyze the specific glacierized region of our planet under consideration and to monitor glacier changes. Landsat images, acquired primarily during the middle to late 1970s and early 1980s, were used by an international team of glaciologists and other scientists to study various geographic regions and (or) to discuss related glaciological topics. In each glacierized geographic region, the present areal distribution of glaciers is compared, wherever possible, with historical information about their past extent. The atlas provides an accurate regional inventory of the areal extent of glacier ice on our planet during the 1970s as part of a growing international scientific effort to measure global environmental change on the Earth?s surface. The chapter is divided into seven geographic parts and one topical part: Glaciers of the Former Soviet Union (F-1), Glaciers of China (F-2), Glaciers of Afghanistan (F?3), Glaciers of Pakistan (F-4), Glaciers of India (F-5), Glaciers of Nepal (F?6), Glaciers of Bhutan (F-7), and the Paleoenvironmental Record Preserved in Middle-Latitude, High-Mountain Glaciers (F-8). Each geographic section describes the glacier extent during the 1970s and 1980s, the benchmark time period (1972-1981) of this volume, but has been updated to include more recent information. Glaciers of the Former Soviet Union are located in the Russian Arctic and various mountain ranges of Russia and the Republics of Georgia, Kyrgyzstan, Tajikistan, and Kazakstun. The Glacier Inventory of the USSR and the World Atlas of Ice and Snow Resources recorded a total of 28,881 glaciers covering an area of 78,938 square kilometers (km2). China includes many of the mountain-glacier

  5. Sensitivity of very small glaciers in the Swiss Alps to future climate change

    Directory of Open Access Journals (Sweden)

    Matthias eHuss

    2016-04-01

    Full Text Available Very small glaciers (<0.5 km2 account for more than 80% of the total number of glaciers in mid- to low-latitude mountain ranges. Although their total area and volume is small compared to larger glaciers, they are a relevant component of the cryosphere, contributing to landscape formation, local hydrology and sea-level rise. Worldwide glacier monitoring mostly focuses on medium-sized to large glaciers leaving us with a limited understanding of the response of dwarf glaciers to climate change. In this study, we present a comprehensive modeling framework to assess past and future changes of very small glaciers at the mountain-range scale. Among other processes our model accounts for snow redistribution, changes in glacier geometry and the time-varying effect of supraglacial debris. It computes the mass balance distribution, the englacial temperature regime and proglacial runoff. The evolution of 1,133 individual glaciers in the Swiss Alps is modeled in detail until 2060 based on new distributed data sets. Our results indicate that 52% of all very small glaciers in Switzerland will completely disappear within the next 25 years. However, a few avalanche-fed glaciers at low elevation might be able to survive even substantial atmospheric warming. We find highly variable sensitivities of very small glaciers to air temperature change, with gently-sloping, low-elevation, and debris-covered glaciers being most sensitive.

  6. Do morphometric parameters and geological conditions determine chemistry of glacier surface ice? Spatial distribution of contaminants present in the surface ice of Spitsbergen glaciers (European Arctic).

    Science.gov (United States)

    Lehmann, Sara; Gajek, Grzegorz; Chmiel, Stanisław; Polkowska, Żaneta

    2016-12-01

    The chemism of the glaciers is strongly determined by long-distance transport of chemical substances and their wet and dry deposition on the glacier surface. This paper concerns spatial distribution of metals, ions, and dissolved organic carbon, as well as the differentiation of physicochemical parameters (pH, electrical conductivity) determined in ice surface samples collected from four Arctic glaciers during the summer season in 2012. The studied glaciers represent three different morphological types: ground based (Blomlibreen and Scottbreen), tidewater which evolved to ground based (Renardbreen), and typical tidewater glacier (Recherchebreen). All of the glaciers are functioning as a glacial system and hence are subject to the same physical processes (melting, freezing) and the process of ice flowing resulting from the cross-impact force of gravity and topographic conditions. According to this hypothesis, the article discusses the correlation between morphometric parameters, changes in mass balance, geological characteristics of the glaciers and the spatial distribution of analytes on the surface of ice. A strong correlation (r = 0.63) is recorded between the aspect of glaciers and values of pH and ions, whereas dissolved organic carbon (DOC) depends on the minimum elevation of glaciers (r = 0.55) and most probably also on the development of the accumulation area. The obtained results suggest that although certain morphometric parameters largely determine the spatial distribution of analytes, also the geology of the bed of glaciers strongly affects the chemism of the surface ice of glaciers in the phase of strong recession.

  7. Ice thickness profile surveying with ground penetrating radar at Artesonraju Glacier, Peru

    Science.gov (United States)

    Chisolm, Rachel; Rabatel, Antoine; McKinney, Daene; Condom, Thomas; Cochacin, Alejo; Davila Roller, Luzmilla

    2014-05-01

    Tropical glaciers are an essential component of the water resource systems in the mountainous regions where they are located, and a warming climate has resulted in the accelerated retreat of Andean glaciers in recent decades. The shrinkage of Andean glaciers influences the flood risk for communities living downstream as new glacial lakes have begun to form at the termini of some glaciers. As these lakes continue to grow in area and volume, they pose an increasing risk of glacial lake outburst floods (GLOFs). Ice thickness measurements have been a key missing link in studying the tropical glaciers in Peru and how climate change is likely to impact glacial melt and the growth of glacial lakes. Ground penetrating radar (GPR) has rarely been applied to glaciers in Peru to measure ice thickness, and these measurements can tell us a lot about how a warming climate will affect glaciers in terms of thickness changes. In the upper Paron Valley (Cordillera Blanca, Peru), an emerging lake has begun to form at the terminus of the Artesonraju Glacier, and this lake has key features, including overhanging ice and loose rock likely to create slides, that could trigger a catastrophic GLOF if the lake continues to grow. Because the glacier mass balance and lake mass balance are closely linked, ice thickness measurements and measurements of the bed slope of the Artesonraju Glacier and underlying bedrock can give us an idea of how the lake is likely to evolve in the coming decades. This study presents GPR data taken in July 2013 at the Artesonraju Glacier as part of a collaboration between the Unidad de Glaciologia y Recursos Hidricos (UGRH) of Peru, the Institut de Recherche pour le Développement (IRD) of France and the University of Texas at Austin (UT) of the United States of America. Two different GPR units belonging to UGRH and UT were used for subsurface imaging to create ice thickness profiles and to characterize the total volume of ice in the glacier. A common midpoint

  8. Contrasting evolution patterns between glacier-fed and non-glacier-fed lakes in the central Tibetan Plateau and driving force analysis

    Science.gov (United States)

    Song, C.; Sheng, Y.

    2015-12-01

    High-altitude lakes in the Tibetan Plateau (TP) showed strong spatio-temporal variability during past decades. The lake dynamics can be associated with several key factors including lake type, supply of glacial meltwater, local climate variations. It is important to differentiate these factors when analyzing the driving force of lakes dynamics. With a focus on lakes over the Tanggula Mountains of the central TP, this study investigates the temporal evolution patterns of lake area and water level of different types: glacier-fed closed lake, non-glacier-fed closed lake and upstream lake (draining into closed lakes). We collected all available Landsat archive data and quantified the inter-annual variability of lake extents. Results show accelerated expansions of both glacier-fed and non-glacier-fed lakes during 1970s-2013, and different temporal patterns of the two types of lakes: the non-glacier-fed lakes displayed a batch-wise growth pattern, with obvious growth in 2002, 2005 and 2011 and slight changes in other years, while glacier-fed lakes showed steady expanding tendency. The contrasting patterns are confirmed by the distinction of lake level change between the two groups derived from satellite altimetry during 2003-2009. The upstream lakes remained largely stable due to natural drainage regulation. The intermittent expansions for non-glacier-fed lakes were found to be related to excessive precipitation events and positive "precipitation-evaporation". In contrast, glacier-fed lake changes showed weak correlations with precipitation variations, which imply a joint contribution from glacial meltwater to water budgets. A simple estimation reveals that the increased water storage for all of examined lakes contributed from precipitation/evaporation (0.31±0.09 Gt/yr) slightly overweighed the glacial meltwater supply (0.26±0.08 Gt/yr).

  9. Multi-decadal marine- and land-terminating glacier recession in the Ammassalik region, southeast Greenland

    Directory of Open Access Journals (Sweden)

    S. H. Mernild

    2012-06-01

    Full Text Available Landsat imagery was applied to elucidate glacier fluctuations of land- and marine-terminating outlet glaciers from the Greenland Ice Sheet (GrIS and local land-terminating glaciers and ice caps (GIC peripheral to the GrIS in the Ammassalik region, Southeast Greenland, during the period 1972–2011. Data from 21 marine-terminating glaciers (including the glaciers Helheim, Midgaard, and Fenris, the GrIS land-terminating margin, and 35 GIC were examined and compared to observed atmospheric air temperatures, precipitation, and reconstructed ocean water temperatures (at 400 m depth in the Irminger Sea. Here, we document that net glacier recession has occurred since 1972 in the Ammassalik region for all glacier types and sizes, except for three GIC. The land-terminating GrIS and GIC reflect lower marginal and areal changes than the marine-terminating outlet glaciers. The mean annual land-terminating GrIS and GIC margin recessions were about three to five times lower than the GrIS marine-terminating recession. The marine-terminating outlet glaciers had an average net frontal retreat for 1999–2011 of 0.098 km yr−1, which was significantly higher than in previous sub-periods 1972–1986 and 1986–1999. For the marine-terminating GrIS, the annual areal recession rate has been decreasing since 1972, while increasing for the land-terminating GrIS since 1986. On average for all the observed GIC, a mean net frontal retreat for 1986–2011 of 0.010 ± 0.006 km yr−1 and a mean areal recession of around 1% per year occurred; overall for all observed GIC, a mean recession rate of 27 ± 24% occurred based on the 1986 GIC area. Since 1986, five GIC melted away in the Ammassalik area.

  10. EVALUATION OF GLACIER MELT CONTRIBUTION TO RUNOFF IN THE NORTH CAUCASUS ALPINE CATCHMENTS USING ISOTOPIC METHODS AND ENERGY BALANCE MODELING

    Directory of Open Access Journals (Sweden)

    E. Rets

    2017-01-01

    Full Text Available Frequency and intensity of river floods rise observed in the North Caucasus during last decades is considered to be driven by recent climate change. In order to predict possible future trends in extreme hydrological events in the context of climate change, it is essential to estimate the contribution of different feed sources in complicated flow-forming processes in the alpine part of the North Caucasus. A study was carried out for the Djankuat River basin, the representative for the North Caucasus system. Simultaneous measurements of electrical conductivity, isotopic and ion balance equations, and energy balance modeling of ice and snow melt were used to evaluate the contribution of different sources and processes in the Djankuat River runoff regime formation. A forecast of possible future changes in the Djankuat glacier melting regime according to the predicted climate changes was done.

  11. Contribution of glacier melt to sea-level rise since AD 1865: a regionally differentiated calculation

    NARCIS (Netherlands)

    Zuo, Z.; Oerlemans, J.

    1997-01-01

    The contribution of glacier melt, including the Greenland ice-sheet, to sea-level change since AD 1865 is estimated on the basis of modelled sensitivity of glacier mass balance to climate change and historical temperature data. Calculations are done in a regionally differentiated manner to overcome

  12. Associations between accelerated glacier mass wastage and increased summer temperature in coastal regions

    Science.gov (United States)

    Dyurgerov, M.; McCabe, G.J.

    2006-01-01

    Low-elevation glaciers in coastal regions of Alaska, the Canadian Arctic, individual ice caps around the Greenland ice sheet, and the Patagonia Ice Fields have an aggregate glacier area of about 332 ?? 103 km 2 and account for approximately 42% of all the glacier area outside the Greenland and Antarctic ice sheets. They have shown volume loss, especially since the end of the 1980s, increasing from about 45% in the 1960s to nearly 67% in 2003 of the total wastage from all glaciers on Earth outside those two largest ice sheets. Thus, a disproportionally large contribution of coastal glacier ablation to sea level rise is evident. We examine cumulative standardized departures (1961-2000 reference period) of glacier mass balances and air temperature data in these four coastal regions. Analyses indicate a strong association between increases in glacier volume losses and summer air temperature at regional and global scales. Increases in glacier volume losses in the coastal regions also coincide with an accelerated rate of ice discharge from outlet glaciers draining the Greenland and West Antarctic ice sheets. These processes imply further increases in sea level rise. ?? 2006 Regents of the University of Colorado.

  13. Hydrological response in catchments whit debris covered glaciers in the semi-arid Andes, Chile

    Science.gov (United States)

    Caro, A.; McPhee, J.; MacDonell, S.; Pellicciotti, F.; Ayala, A.

    2016-12-01

    Glaciers in the semi-arid Andes Cordillera in Chile have shrank rapidly during the 20th century. Negative mass balance contributes to increase the surface area of debris-covered glaciers. Recent research in Chile suggests that contributions from glaciers to summer season river flow in dry years is very important, however hydrological processes determining the glacier contribution are still poorly understood in the region. This work seeks to determine appropriate parameters for the simulation of melt volume in two watersheds dominated by debris-covered glaciers, in order to understand its variability in time and space, in the area with the largest population in Chile. The hydrological simulation is performed for the Tapado (30°S) and Pirámide (33ºS) glaciers, which can be defined as cold and temperate respectively. To simulate the hydrological behaviour we adopt the physically-based TOPographic Kinematic wave APproximation model (TOPKAPI-ETH). The hydrometeorological records necessary model runs have been collected through fieldwork from 2013 to 2015. Regarding the calibration of the model parameters melting ETI, its observed that the value for TF in Pirámide is a third of the value for Tapado glacier, while SRF is half in Tapado regarding to Pirámide. The runoff in the glaciers, the constant snow and ice storage are higher in Tapado regarding Pirámide. Results show a contribution of glacial outflow to runoff during 2015 of 55% in Tapado and 77% in Pirámide, with maximum contributions between January and March in Tapado and Pirámide between November and March, presenting the relevance of the permanence of snow cover during spring and shelter that provides debris-covered in reducing the melting glacier. The results have allowed to know the relevance of the glacier contribution to mountain streams, allowing to know the calibration parameters most relevant in the hydrology balance of glacier basins in the Andes.

  14. Glaciers

    Science.gov (United States)

    Hambrey, Michael; Alean, Jürg

    2004-12-01

    Glaciers are among the most beautiful natural wonders on Earth, as well as the least known and understood, for most of us. Michael Hambrey describes how glaciers grow and decay, move and influence human civilization. Currently covering a tenth of the Earth's surface, glacier ice has shaped the landscape over millions of years by scouring away rocks and transporting and depositing debris far from its source. Glacier meltwater drives turbines and irrigates deserts, and yields mineral-rich soils as well as a wealth of valuable sand and gravel. However, glaciers also threaten human property and life. Our future is indirectly connected with the fate of glaciers and their influence on global climate and sea level. Including over 200 stunning photographs, the book takes the reader from the High-Arctic through North America, Europe, Asia, Africa, New Zealand and South America to the Antarctic. Michael Hambrey is Director of the Centre for Glaciology at the University of Wales, Aberystwyth. A past recipient of the Polar Medal, he was also given the Earth Science Editors' Outstanding Publication Award for the first edition of Glaciers (Cambridge, 1995). Hambrey is also the author of Glacial Environments (British Columbia, 1994). JÜrg Alean is Professor of Geography at the Kantonsschule ZÜrcher Unterland in BÜlach, Switzerland.

  15. Modeling the Long-Term Evolution of Supraglacial Ice Cliffs on Himalayan Debris-Covered Glaciers

    Science.gov (United States)

    Buri, P.; Miles, E. S.; Steiner, J. F.; Ragettli, S.; Pellicciotti, F.

    2016-12-01

    Supraglacial ice cliffs are present on debris-covered glaciers worldwide and provide the only direct atmosphere-ice interface over the lower sections of these glaciers. Low albedo and high longwave emissions from surrounding debris cause very high melt rates, accounting for a significant portion of total glacier mass loss. As a result, ice cliffs affect glacier downwasting and mass balance. Additionally, and in contrast to the debris-covered ice, high melt at cliffs turns them into dynamic features, directly affecting glacier surface evolution. While conceptual ideas about the formation, evolution and collapse of ice cliffs exist, their life cycles have never been thoroughly documented. Based on observations obtained from high-resolution aerial and terrestrial images analyzed with Structure-from-Motion and with data from automatic weather stations on two glaciers in the Nepalese Himalaya, we simulate the evolution of selected ice cliffs over several seasons using a new physically-based model of cliff backwasting. The 3D model calculates the energy-balance at the cliff scale and includes the cliff interaction with supraglacial ponds and reburial by debris. We consider cliffs of different shape, orientation and slope, and we show that backwasting leads to a variety of evolution typologies, with cliffs that maintain a constant, self-similar geometry, cliffs that grow laterally and cliffs that disappear through slope shallowing and debris melt-out. Most cliffs persist over several seasons. The presence of a pond appears to be the key control for cliffs to survive, while east and west facing cliffs grow because of higher radiation receipts. We use the model to test the hypothesis that south-facing cliffs do not survive. We show that most south-facing cliffs demise after one melt season on both glaciers, because of high input of solar radiation exceeding the longwave radiation receipt. For north facing features, the longwave radiation receipts at lower cliff sections

  16. What influences climate and glacier change in southwestern China?

    Science.gov (United States)

    Yasunari, Teppei J.

    2011-12-01

    The subject of climate change in the Tibetan Plateau (TP) and Himalayas has taken on increasing importance because of the availability of water resources from their mountain glaciers (Immerzeel et al 2010). Many of the glaciers over these regions have been retreating, while some are advancing and stable (Yao et al 2004, Scherler et al 2011). Other studies report that some glaciers in the Himalayas show acceleration of their shrinkage (e.g., Fujita and Nuimura 2011). However, the causes of glacier melting are still difficult to grasp because of the complexity of climatic change and its influence on glacier issues. Despite this, it is vital that we pursue further study to enable future predictions of glacier changes. The paper entitled 'Climate and glacier change in southwestern China during the past several decades' by Li et al (2011) provided carefully analyzed, quality controlled, long-term data on atmospheric temperature and precipitation during the period 1961-2008. The data were obtained from 111 Chinese stations. The researchers performed systematic analyses of temperature and precipitation over the whole southwestern Chinese domain. They discussed those changes in terms of other meteorological components such as atmospheric circulation patterns, radiation and altitude difference, and then showed how these factors could contribute to climate and glacier changes in the region. Air temperature and precipitation are strongly associated with glacier mass balance because of heat balance and the addition of mass when it snows. Temperature warming trends over many places in southwestern China were unequivocally dominant in all seasons and at higher altitudes. This indicates that the heat contribution to the glaciers has been increasing. On the other hand, precipitation has a wider variability in time and space. It is more difficult to clearly understand the effect of precipitation on the climate and glacier melting characteristics in the whole of southwestern China

  17. Modelling the behavior of the Jakobshavn glacier since the end of the Little Ice Age

    DEFF Research Database (Denmark)

    Muresan, Ioana Stefania; Khroulev, Constantine; Khan, Shfaqat Abbas

    2014-01-01

    . For a better overview and for the purpose of increasing the resolution to 1 km, our study focuses only on the Jakobshavn glacier. In order to determine the locations of the flow for the regional model, a drainage basin mask was extracted from the surface elevation data based on the gradient flow. While inside......Current model estimates of the Greenland Ice Sheet (GrIS) are almost entirely based on coarse grids (>10km) and constrained by climate models that span from 60s to present. To improve the projection of future sea level rise, a long-term data record that reveals the mass balance beyond decadal...... the basin mask the full PISM model is applied, outside the basin mask the boundary conditions are taken as captured by the whole Greenland initialization. Considering the surface mass balance reconstruction where the monthly accumulation rates are assumed to be 1/12 of the annual accumulation, a yearly 1850...

  18. Energy-balance and melt contributions of supraglacial lakes, Langtang Khola, Nepal

    Science.gov (United States)

    Miles, E. S.; Willis, I. C.; Pellicciotti, F.; Steiner, J. F.; Buri, P.; Arnold, N. S.

    2014-12-01

    As Himalayan debris-covered glaciers retreat and thin in response to climate warming, their long, low-gradient tongues generate substantial meltwater which often collects to form surface lakes. Supraglacial lakes on debris covered glaciers present a mechanism of atmosphere-glacier energy transfer that is poorly-studied, and only conceptually included in mass-balance studies. The ponded water can enhance energy transfer as compared to dry debris cover, while also acting as a reservoir of melt-available energy. Supraglacial lakes occur in association with debris-free ice cliffs, another poorly-constrained but critical component of glacier melt. Understanding the role of supraglacial lakes requires precise monitoring of lake volume, estimation of inlet and outlet flows, and consideration of the energy balance across three surfaces: atmosphere-lake, lake-ice, and lake-saturated debris layer. This research progresses previous modeling work on the energy and mass balance of such supraglacial lakes. Lakes were monitored during the monsoon of 2013 on Lirung Glacier in the Langtang Himal of Nepal with pressure transducers and temperature sensors, while UAV-derived DEMs were used to determine lake geometry. Lake albedo was measured to vary between 0.08 and 0.12, and a nearby on-glacier AWS was used to drive the energy balance. Results indicate that the lakes act as a significant recipient of energy, and suggest that lakes are an important part of an active supraglacial hydrologic system during the monsoon. Melt generated by the lake in contact with bare ice is calculated to be 3-5 cm/day, while energy conducted through saturated lake-bottom debris only resulted in 1-2 mm/day melt. The subaqueous melt rates are of similar magnitude to observed ice-cliff melt rates, allowing lake-cliff systems to persist. Energy leaving the lake system through englacial conduits may be the most important contribution to the glacier's mass balance, driving surface evolution to form new ice

  19. Temporal variations in supraglacial debris distribution on Baltoro Glacier, Karakoram between 2001 and 2012

    Science.gov (United States)

    Gibson, Morgan J.; Glasser, Neil F.; Quincey, Duncan J.; Mayer, Christoph; Rowan, Ann V.; Irvine-Fynn, Tristram D. L.

    2017-10-01

    of such spatiotemporal variations in debris thickness in distributed surface energy balance models would increase the accuracy of calculated ablation, leading to a more accurate simulation of glacier mass balance through time, and greater precision in quantification of the response of debris-covered glaciers to climatic change.

  20. Mass balance of Greenland's three largest outlet glaciers - 2000–2010

    NARCIS (Netherlands)

    Howat, I.M.; Ahn, Y.; Joughin, I.; van den Broeke, M.R.; Lenaerts, J.T.M.; Smith, B.

    2011-01-01

    Acceleration of Greenland's three largest outlet glaciers, Helheim, Kangerdlugssuaq and Jakobshavn Isbræ, accounted for a substantial portion of the ice sheet's mass loss over the past decade. Rapid changes in their discharge, however, make their cumulative mass-change uncertain. We derive monthly

  1. Measuring past glacier fluctuations from historic photographs geolocated using Structure from Motion

    Science.gov (United States)

    Vargo, L.; Anderson, B.; Horgan, H. J.; Mackintosh, A.; Lorrey, A.; Thornton, M.

    2017-12-01

    Quantifying glacier fluctuations is important for understanding how the cryosphere responds to climate variability and change. Photographs of past ice extents have become iconic images of climate change, but until now incorporating these images into quantitative estimates of glacier change has been problematic. We present a new method to quantitatively measure past glacier fluctuations from historic images. The method uses a large set of modern geolocated photographs and Structure from Motion (SfM) to calculate the camera parameters for the historic images, including the location from which they were taken. We initially apply this method to a small maritime New Zealand glacier (Brewster Glacier, 44°S, 2 km2), and quantify annual equilibrium line altitudes (ELAs) and length changes from historic oblique aerial photographs (1981 - 2017). Results show that Brewster has retreated 364 ± 12 m since 1981 and, using independent field measurements of terminus positions (2005 - 2014), we show that this SfM-derived length record accurately captures glacier change. We calculate the uncertainties associated with this method using known coordinates of bedrock features surrounding the glacier. Mean uncertainties in the ELA and length records are 7 m and 11 m, respectively. In addition to Brewster, 49 other New Zealand glaciers have been monitored by aerial photographs since 1978. However, the length records for these glaciers only include years of relative advance or retreat, and no length changes have been quantified. We will ultimately apply this method to all 50 glaciers, expanding the database of New Zealand glacier fluctuations that until now included only a few glaciers. This method can be further applied to any glacier with historic images, and can be used to measure past changes in glacier width, area, and surface elevation in addition to ELA and length.

  2. Effect of Topography on Subglacial Discharge and Submarine Melting During Tidewater Glacier Retreat

    Science.gov (United States)

    Amundson, J. M.; Carroll, D.

    2018-01-01

    To first order, subglacial discharge depends on climate, which determines precipitation fluxes and glacier mass balance, and the rate of glacier volume change. For tidewater glaciers, large and rapid changes in glacier volume can occur independent of climate change due to strong glacier dynamic feedbacks. Using an idealized tidewater glacier model, we show that these feedbacks produce secular variations in subglacial discharge that are influenced by subglacial topography. Retreat along retrograde bed slopes (into deep water) results in rapid surface lowering and coincident increases in subglacial discharge. Consequently, submarine melting of glacier termini, which depends on subglacial discharge and ocean thermal forcing, also increases during retreat into deep water. Both subglacial discharge and submarine melting subsequently decrease as glacier termini retreat out of deep water and approach new steady state equilibria. In our simulations, subglacial discharge reached peaks that were 6-17% higher than preretreat values, with the highest values occurring during retreat from narrow sills, and submarine melting increased by 14% for unstratified fjords and 51% for highly stratified fjords. Our results therefore indicate that submarine melting acts in concert with iceberg calving to cause tidewater glacier termini to be unstable on retrograde beds. The full impact of submarine melting on tidewater glacier stability remains uncertain, however, due to poor understanding of the coupling between submarine melting and iceberg calving.

  3. HYDROLOGICAL REGIME OF GLACIERS IN THE RIVER BASINS OF THE NORTHERN CAUCASUS AND ALTAI

    Directory of Open Access Journals (Sweden)

    V. G. Konovalov

    2018-01-01

    Full Text Available Rivers with snow-glacier alimentation in six basins of the Northern Caucasus (Cherek, Chegem, Baksan, Malka, Teberda, and upper course of the Terek River and Altai (the Katun’ River were investigated in 1946–2005 for the purpose to analyze long-term streamflow variations. It was noted that in 1976–2005 volume of annual runoff increased relative to the previous 30-year interval in four of six rivers of the Northern Caucasus. During the vegetation period the volume of runoff changed synchronously with the annual one. As for the river Katun’, its volumes and variability of both, the annual runoff and that for the vegetation season, decreased. In the course of investigation of spatial-temporal dynamics of hydrological and glaciological characteristics in the above river basins of the Northern Caucasus and the same of Katun’ River the following problems were considered and solved: a the information and methodological basis for regional calculations of the runoff for the rivers with snow-glacier alimentation had been improved and corrected; b changes of the components of hydrological cycle (precipitation, evaporation, and glacier runoff over the glaciation area had been estimated for the period of 1946–2005; c data on quality of the initial glaciological and hydrological information were integrated; d definitions of the runoff were verified by means of comparison of measured runoff with similar values calculated by equation of the annual water budget as a whole for the basin. It should be noted that the total areas of glaciers and areas of their ablation were significantly reduced, but areas and thicknesses of ice under the moraine cover increased. Despite widespread, sometimes twofold decrease in the relative part of glacier alimentation in the total river streamflow for period of April–September this did make almost no effect on the water supply of the vegetation period in individual basins as well as in the whole the Northern

  4. Regional cooling caused recent New Zealand glacier advances in a period of global warming.

    Science.gov (United States)

    Mackintosh, Andrew N; Anderson, Brian M; Lorrey, Andrew M; Renwick, James A; Frei, Prisco; Dean, Sam M

    2017-02-14

    Glaciers experienced worldwide retreat during the twentieth and early twenty first centuries, and the negative trend in global glacier mass balance since the early 1990s is predominantly a response to anthropogenic climate warming. The exceptional terminus advance of some glaciers during recent global warming is thought to relate to locally specific climate conditions, such as increased precipitation. In New Zealand, at least 58 glaciers advanced between 1983 and 2008, and Franz Josef and Fox glaciers advanced nearly continuously during this time. Here we show that the glacier advance phase resulted predominantly from discrete periods of reduced air temperature, rather than increased precipitation. The lower temperatures were associated with anomalous southerly winds and low sea surface temperature in the Tasman Sea region. These conditions result from variability in the structure of the extratropical atmospheric circulation over the South Pacific. While this sequence of climate variability and its effect on New Zealand glaciers is unusual on a global scale, it remains consistent with a climate system that is being modified by humans.

  5. How do glacier inventory data aid global glacier assessments and projections?

    Science.gov (United States)

    Hock, R.

    2017-12-01

    Large-scale glacier modeling relies heavily on datasets that are collected by many individuals across the globe, but managed and maintained in a coordinated fashion by international data centers. The Global Terrestrial Network for Glaciers (GTN-G) provides the framework for coordinating and making available a suite of data sets such as the Randolph Glacier Inventory (RGI), the Glacier Thickness Dataset or the World Glacier Inventory (WGI). These datasets have greatly increased our ability to assess global-scale glacier mass changes. These data have also been vital for projecting the glacier mass changes of all mountain glaciers in the world outside the Greenland and Antarctic ice sheet, a total >200,000 glaciers covering an area of more than 700,000 km2. Using forcing from 8 to 15 GCMs and 4 different emission scenarios, global-scale glacier evolution models project multi-model mean net mass losses of all glaciers between 7 cm and 24 cm sea-level equivalent by the end of the 21st century. Projected mass losses vary greatly depending on the choice of the forcing climate and emission scenario. Insufficiently constrained model parameters likely are an important reason for large differences found among these studies even when forced by the same emission scenario, especially on regional scales.

  6. Listening to Glaciers: Passive hydroacoustics near marine-terminating glaciers

    Science.gov (United States)

    Pettit, E.C.; Nystuen, J.A.; O'Neel, Shad

    2012-01-01

    The catastrophic breakup of the Larsen B Ice Shelf in the Weddell Sea in 2002 paints a vivid portrait of the effects of glacier-climate interactions. This event, along with other unexpected episodes of rapid mass loss from marine-terminating glaciers (i.e., tidewater glaciers, outlet glaciers, ice streams, ice shelves) sparked intensified study of the boundaries where marine-terminating glaciers interact with the ocean. These dynamic and dangerous boundaries require creative methods of observation and measurement. Toward this effort, we take advantage of the exceptional sound-propagating properties of seawater to record and interpret sounds generated at these glacial ice-ocean boundaries from distances safe for instrument deployment and operation.

  7. Biogeography of cryoconite bacterial communities on glaciers of the Tibetan Plateau.

    Science.gov (United States)

    Liu, Yongqin; Vick-Majors, Trista J; Priscu, John C; Yao, Tandong; Kang, Shichang; Liu, Keshao; Cong, Ziyuang; Xiong, Jingbo; Li, Yang

    2017-06-01

    Cryoconite holes, water-filled pockets containing biological and mineralogical deposits that form on glacier surfaces, play important roles in glacier mass balance, glacial geochemistry and carbon cycling. The presence of cryoconite material decreases surface albedo and accelerates glacier mass loss, a problem of particular importance in the rapidly melting Tibetan Plateau. No studies have addressed the microbial community composition of cryoconite holes and their associated ecosystem processes on Tibetan glaciers. To further enhance our understanding of these glacial ecosystems on the Tibetan Plateau and to examine their role in carbon cycling as the glaciers respond to climate change, we explored the bacterial communities within cryoconite holes associated with three climatically distinct Tibetan Plateau glaciers using Illumina sequencing of the V4 region of the 16S rRNA gene. Cryoconite bacterial communities were dominated by Cyanobacteria, Chloroflexi, Betaproteobacteria, Bacteroidetes and Actinobacteria. Cryoconite bacterial community composition varied according to their geographical locations, exhibiting significant differences among glaciers studied. Regional beta diversity was driven by the interaction between geographic distance and environmental variables; the latter contributed more than geographic distance to the variation in cryoconite microbial communities. Our study is the first to describe the regional-scale spatial variability and to identify the factors that drive regional variability of cryoconite bacterial communities on the Tibetan Plateau. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Seasonal variation and light absorption property of carbonaceous aerosol in a typical glacier region of the southeastern Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    H. Niu

    2018-05-01

    Full Text Available Deposition and accumulation of light-absorbing carbonaceous aerosol on glacier surfaces can alter the energy balance of glaciers. In this study, 2 years (December 2014 to December 2016 of continuous observations of carbonaceous aerosols in the glacierized region of the Mt. Yulong and Ganhaizi (GHZ basin are analyzed. The average elemental carbon (EC and organic carbon (OC concentrations were 1.51±0.93 and 2.57±1.32 µg m−3, respectively. Although the annual mean OC ∕ EC ratio was 2.45±1.96, monthly mean EC concentrations during the post-monsoon season were even higher than OC in the high altitudes (approximately 5000 m a. s. l.  of Mt. Yulong. Strong photochemical reactions and local tourism activities were likely the main factors inducing high OC ∕ EC ratios in the Mt. Yulong region during the monsoon season. The mean mass absorption efficiency (MAE of EC, measured for the first time in Mt. Yulong, at 632 nm with a thermal-optical carbon analyzer using the filter-based method, was 6.82±0.73 m2 g−1, comparable with the results from other studies. Strong seasonal and spatial variations of EC MAE were largely related to the OC abundance. Source attribution analysis using a global aerosol–climate model, equipped with a black carbon (BC source tagging technique, suggests that East Asia emissions, including local sources, have the dominant contribution (over 50 % to annual mean near-surface BC in the Mt. Yulong area. There is also a strong seasonal variation in the regional source apportionment. South Asia has the largest contribution to near-surface BC during the pre-monsoon season, while East Asia dominates the monsoon season and post-monsoon season. Results in this study have great implications for accurately evaluating the influences of carbonaceous matter on glacial melting and water resource supply in glacierization areas.

  9. The Swiss Alpine Glacier's Response to the '2°C Target

    Science.gov (United States)

    Salzmann, Nadine; Machguth, Horst

    2010-05-01

    The "2°C target" for global warming (relative to pre-industrial level) became a main focus in the climate change debate since the UN Climate Change Conference in Copenhagen (COP15) in December 2009 at the latest. While this target implies to be a ‘clear' goal for politicians and decision makers, the effective impacts that a global mean air temperature increase of 2°C has on natural and human systems on regional to local scales remain complex. So far, most impact studies use only relative and static 2°C delta change approaches. Here, however, we use results from latest climate model outputs an take into account the warming that has already occurred in a specific region. Global warming is not equally distributed around the globe. Observations show that during the last century air temperature trends significantly differ between regions. In Switzerland, for example, air temperature has increased about twice as much as the global mean during the last century. In glacierised mountain regions, where glaciers represent an important source for fresh water and control a great part of the hydrological cycle, the retreat or disappearance of glaciers as a consequence of climatic changes will have major socio-economical consequences on the people living there and the adjacent lowland. A trend to negative glacier mass balances is observed and well documented for many mountain ranges all over the world. Based on climate model projections it is very likely that this trend continues or even accelerates. Here, we make an effort to assess the impact of a global 2°C (that is about 4°C for Switzerland) air temperature increase compared to pre-industrial conditions for the Swiss Alpine glaciers. We use 12 homogenised long-term climate observations to define the warming that has already taken place. The ‘remaining' temperature increase up to the level of 2°C, is based on results from a selection of Regional Climate Model results that have been simulated in the recently finished

  10. Retreat of Stephenson Glacier, Heard Island, from Remote Sensing and Field Observations

    Science.gov (United States)

    Mitchell, W.; Schmieder, R.

    2017-12-01

    Heard Island (Australian sub-Antarctic territory, 53 S, 73.5 E) is a volcanic island mantled in glaciers, and a UNESCO World Heritage Site both for its geology and ecology. Lying to the south of the Antarctic Convergence, the changes in response to climate seen on Heard Island are likely to be a bellwether for areas further south. Beginning in 1999, American satellites (Landsat 7, EO-1, and Landsat 8) have produced images of the island on a roughly weekly basis. Although the island is often shrouded in clouds, clear images of at least portions of the island are plentiful enough to create a nearly-annual record of the toe of Stephenson Glacier. During this period, Stephenson Glacier retreated by nearly 5 km, and lost 50% of its area. As a result of this retreat, a portion of the glacier now could be classified as a separate glacier. Additionally, in 2016, terrestrial photographs of Stephenson Glacier were taken during a three-week expedition to Heard Island, which accessed the Stephenson Glacier area by boat via the proglacial Stephenson Lagoon. During that work, sonar indicated some depths in the lagoon exceeding 100 m. Much of the loss in glacier length and area occurred during the mid- and late-2000s, with retreat rates slowing toward 2017. At this time, the glacier has retreated so that the main toe is not far from the base of a tall ice falls, while another toe—perhaps now a separate glacier—is land-based. This type of retreat pattern, fast over water and slower on land, is typical of other tidewater glaciers. Further monitoring of Stephenson Glacier and other glaciers on Heard Island will continue using Landsat 8.

  11. Hydrology, microbiology and carbon cycling at a high Arctic polythermal glacier, (John Evans Glacier, Ellesmere Island, Canada)

    Science.gov (United States)

    Skidmore, Mark Leslie

    Analysis of the hydrology, hydrochemistry and microbiology at polythermal John Evans Glacier and geochemical and isotopic data from Haut Glacier d'Arolla demonstrates that certain subglacial chemical weathering processes are microbially mediated. Subglacial drainage is likely an annual occurrence beneath John Evans Glacier and solute rich subglacial waters indicate over winter storage at the glacier bed. Subglacial microbial populations are also present, and are viable under simulated near in situ conditions at 0.3°C. This suggests that temperate subglacial environments at a polythermal glacier, which are isolated by cold ice above and around them, provide a viable habitat for life where basal water and organic carbon are present throughout the year. Thus, a subglacial microbial ecosystem based upon legacy carbon, (from old soils or surface inputs) rather than primary production may exist, where redox processes are a key component, and seasonal anoxia may occur. The existence of anoxic environments is supported by the presence of strictly anaerobic bacteria (sulphate reducing bacteria and methanogens) in the basal sediments---which are viable in culture at 4°C---and also argues that these bacteria are not washed in with oxygenated surface meltwaters, but are present in the subglacial environment. During the summer meltseason there is a large input of surficial waters to the subglacial system and water residence times are drastically reduced. Hence, kinetic weathering processes dominate, resulting in light delta 13C-DIC (dissolved inorganic carbon) in glacial runoff, as verified by experimental work on CaCO3 and John Evans Glacier sediments. The experiments demonstrate kinetic bedrock fractionation (KBF) during carbonate hydrolysis and that kinetic fractionation of CO2 (KFC) is proportional to the rate of CO2 draw down during the carbonation of carbonates. This results in significantly depleted delta13C-DIC values (≤-16 ‰) relative to the bedrock carbonate

  12. Tropical Glaciers

    Science.gov (United States)

    Fountain, Andrew

    The term "tropical glacier" calls to mind balmy nights and palm trees on one hand and cold, blue ice on the other. Certainly author Gabriel Garcia Marqez exploited this contrast in One Hundred Years of Solitude. We know that tropical fish live in warm, Sun-kissed waters and tropical plants provide lush, dense foliage populated by colorful tropical birds. So how do tropical glaciers fit into this scene? Like glaciers everywhere, tropical glaciers form where mass accumulation—usually winter snow—exceeds mass loss, which is generally summer melt. Thus, tropical glaciers exist at high elevations where precipitation can occur as snowfall exceeds melt and sublimation losses, such as the Rwenzori Mountains in east Africa and the Maoke Range of Irian Jaya.

  13. Basal and thermal control mechanisms of the Ragnhild glaciers, East Antarctica

    Science.gov (United States)

    Pattyn, Frank; de Brabander, Sang; Huyghe, Ann

    The Ragnhild glaciers are three enhanced-flow features situated between the Sør Rondane and Yamato Mountains in eastern Dronning Maud Land, Antarctica. We investigate the glaciological mechanisms controlling their existence and behavior, using a three-dimensional numerical thermomechanical ice-sheet model including higher-order stress gradients. This model is further extended with a steady-state model of subglacial water flow, based on the hydraulic potential gradient. Both static and dynamic simulations are capable of reproducing the enhanced ice-flow features. Although basal topography is responsible for the existence of the flow pattern, thermomechanical effects and basal sliding seem to locally soften and lubricate the ice in the main trunks. Lateral drag is a contributing factor in balancing the driving stress, as shear margins can be traced over a distance of hundreds of kilometers along west Ragnhild glacier. Different basal sliding scenarios show that central Ragnhild glacier stagnates as west Ragnhild glacier accelerates and progressively drains the whole catchment area by ice and water piracy.

  14. Asia’s glaciers are a regionally important buffer against drought

    Science.gov (United States)

    Pritchard, Hamish D.

    2017-05-01

    The high mountains of Asia—encompassing the Himalayas, the Hindu Kush, Karakoram, Pamir Alai, Kunlun Shan, and Tian Shan mountains—have the highest concentration of glaciers globally, and 800 million people depend in part on meltwater from them. Water stress makes this region vulnerable economically and socially to drought, but glaciers are a uniquely drought-resilient source of water. Here I show that these glaciers provide summer meltwater to rivers and aquifers that is sufficient for the basic needs of 136 million people, or most of the annual municipal and industrial needs of Pakistan, Tajikistan, Turkmenistan, Uzbekistan and Kyrgyzstan. During drought summers, meltwater dominates water inputs to the upper Indus and Aral river basins. Uncertainties in mountain precipitation are poorly known, but, given the magnitude of this water supply, predicted glacier loss would add considerably to drought-related water stress. Such additional water stress increases the risk of social instability, conflict and sudden, uncontrolled population migrations triggered by water scarcity, which is already associated with the large and rapidly growing populations and hydro-economies of these basins.

  15. An inventory and estimate of water stored in firn fields, glaciers, debris-covered glaciers, and rock glaciers in the Aconcagua River Basin, Chile

    Science.gov (United States)

    Janke, Jason R.; Ng, Sam; Bellisario, Antonio

    2017-11-01

    An inventory of firn fields, glaciers, debris-covered glaciers, and rock glaciers was conducted in the Aconcagua River Basin of the semiarid Andes of central Chile. A total of 916 landforms were identified, of which rock glaciers were the most abundant (669) and occupied the most total area. Glaciers and debris-covered glaciers were less numerous, but were about five times larger in comparison. The total area occupied by glaciers and debris-covered glaciers was roughly equivalent to the total area of rock glaciers. Debris-covered glaciers and rock glaciers were subcategorized into six ice-content classes based on interpretation of surface morphology with high-resolution satellite imagery. Over 50% of rock glaciers fell within a transitional stage; 85% of debris-covered glaciers were either fully covered or buried. Most landforms occupied elevations between 3500 and 4500 m. Glaciers and firn occurred at higher elevations compared to rock glaciers and debris-covered glaciers. Rock glaciers had a greater frequency in the northern part of the study area where arid climate conditions exist. Firn and glaciers were oriented south, debris-covered glaciers west, and rock glaciers southwest. An analysis of water contribution of each landform in the upper Andes of the Aconcagua River Basin was conducted using formulas that associate the size of the landforms to estimates of water stored. Minimum and maximum water storage was calculated based on a range of debris to ice content ratios for debris-covered glaciers and rock glaciers. In the Aconcagua River Basin, rock glaciers accounted for 48 to 64% of the water stored within the landforms analyzed; glaciers accounted for 15 to 25%; debris-covered glaciers were estimated at 15 to 19%; firn fields contained only about 5 to 8% of the water stored. Expansion of agriculture, prolonged drought, and removal of ice-rich landforms for mining have put additional pressure on already scarce water resources. To develop long

  16. Modelling the dynamics and boundary processes of Svalbard glaciers

    NARCIS (Netherlands)

    van Pelt, W.J.J.

    2014-01-01

    The focus of this thesis is on improving our understanding of surface and basal processes in the context of glaciers in Svalbard. At the surface, interactions with the atmosphere and underlying snow determine the surface mass balance. A coupled model is applied to Nordenskiöldbreen, a tidewater

  17. Global Monitoring of Mountain Glaciers Using High-Resolution Spotlight Imaging from the International Space Station

    Science.gov (United States)

    Donnellan, A.; Green, J. J.; Bills, B. G.; Goguen, J.; Ansar, A.; Knight, R. L.; Hallet, B.; Scambos, T. A.; Thompson, L. G.; Morin, P. J.

    2013-12-01

    Mountain glaciers around the world are retreating rapidly, contributing about 20% to present-day sea level rise. Numerous studies have shown that mountain glaciers are sensitive to global environmental change. Temperate-latitude glaciers and snowpack provide water for over 1 billion people. Glaciers are a resource for irrigation and hydroelectric power, but also pose flood and avalanche hazards. Accurate mass balance assessments have been made for only 280 glaciers, yet there are over 130,000 in the World Glacier Inventory. The rate of glacier retreat or advance can be highly variable, is poorly sampled, and inadequately understood. Liquid water from ice front lakes, rain, melt, or sea water and debris from rocks, dust, or pollution interact with glacier ice often leading to an amplification of warming and further melting. Many mountain glaciers undergo rapid and episodic events that greatly change their mass balance or extent but are sparsely documented. Events include calving, outburst floods, opening of crevasses, or iceberg motion. Spaceborne high-resolution spotlight optical imaging provides a means of clarifying the relationship between the health of mountain glaciers and global environmental change. Digital elevation models (DEMs) can be constructed from a series of images from a range of perspectives collected by staring at a target during a satellite overpass. It is possible to collect imagery for 1800 targets per month in the ×56° latitude range, construct high-resolution DEMs, and monitor changes in high detail over time with a high-resolution optical telescope mounted on the International Space Station (ISS). Snow and ice type, age, and maturity can be inferred from different color bands as well as distribution of liquid water. Texture, roughness, albedo, and debris distribution can be estimated by measuring bidirectional reflectance distribution functions (BRDF) and reflectance intensity as a function of viewing angle. The non-sun-synchronous orbit

  18. Local response of a glacier to annual filling and drainage of an ice-marginal lake

    Science.gov (United States)

    Walder, J.S.; Trabant, D.C.; Cunico, M.; Fountain, A.G.; Anderson, S.P.; Anderson, R. Scott; Malm, A.

    2006-01-01

    Ice-marginal Hidden Creek Lake, Alaska, USA, outbursts annually over the course of 2-3 days. As the lake fills, survey targets on the surface of the 'ice dam' (the glacier adjacent to the lake) move obliquely to the ice margin and rise substantially. As the lake drains, ice motion speeds up, becomes nearly perpendicular to the face of the ice dam, and the ice surface drops. Vertical movement of the ice dam probably reflects growth and decay of a wedge of water beneath the ice dam, in line with established ideas about jo??kulhlaup mechanics. However, the distribution of vertical ice movement, with a narrow (50-100 m wide) zone where the uplift rate decreases by 90%, cannot be explained by invoking flexure of the ice dam in a fashion analogous to tidal flexure of a floating glacier tongue or ice shelf. Rather, the zone of large uplift-rate gradient is a fault zone: ice-dam deformation is dominated by movement along high-angle faults that cut the ice dam through its entire thickness, with the sense of fault slip reversing as the lake drains. Survey targets spanning the zone of steep uplift gradient move relative to one another in a nearly reversible fashion as the lake fills and drains. The horizontal strain rate also undergoes a reversal across this zone, being compressional as the lake fills, but extensional as the lake drains. Frictional resistance to fault-block motion probably accounts for the fact that lake level falls measurably before the onset of accelerated horizontal motion and vertical downdrop. As the overall fault pattern is the same from year to year, even though ice is lost by calving, the faults must be regularly regenerated, probably by linkage of surface and bottom crevasses as ice is advected toward the lake basin.

  19. Analysis of Seasonal Variability in Gulf of Alaska Glacier Mass Balance using GRACE

    Science.gov (United States)

    Arendt, A. A.; Luthcke, S. B.; Oneel, S.; Gardner, A. S.; Hill, D. F.

    2011-12-01

    Mass variations of glaciers in Alaska/northwestern Canada must be quantified in order to assess impacts on ecosystems, human infrastructure, and global sea level. Here we combine Gravity Recovery and Climate Experiment (GRACE) observations with a wide range of satellite and field data to investigate drivers of these recent changes, with a focus on seasonal variations. Our central focus will be the exceptionally high mass losses of 2009, which do not correlate with weather station temperature and precipitation data, but may be linked to ash fall from the March 31, 2009 eruption of Mt. Redoubt. The eruption resulted in a significant decrease in MODIS-derived surface albedo over many Alaska glacier regions, and likely contributed to some of the 2009 anomalous mass loss observed by GRACE. We also focus on the Juneau and Stikine Icefield regions that are far from the volcanic eruption but experienced the largest mass losses of any region in 2009. Although rapid drawdown of tidewater glaciers was occurring in southeast Alaska during 2009, we show these changes were probably not sufficiently widespread to explain all of the GRACE signal in those regions. We examine additional field and satellite datasets to quantify potential errors in the climate and GRACE fields that could result in the observed discrepancy.

  20. Historical glacier outlines from digitized topographic maps of the Swiss Alps

    Science.gov (United States)

    Freudiger, Daphné; Mennekes, David; Seibert, Jan; Weiler, Markus

    2018-04-01

    Since the end of the Little Ice Age around 1850, the total glacier area of the central European Alps has considerably decreased. In order to understand the changes in glacier coverage at various scales and to model past and future streamflow accurately, long-term and large-scale datasets of glacier outlines are needed. To fill the gap between the morphologically reconstructed glacier outlines from the moraine extent corresponding to the time period around 1850 and the first complete dataset of glacier areas in the Swiss Alps from aerial photographs in 1973, glacier areas from 80 sheets of a historical topographic map (the Siegfried map) were manually digitized for the publication years 1878-1918 (further called first period, with most sheets being published around 1900) and 1917-1944 (further called second period, with most sheets being published around 1935). The accuracy of the digitized glacier areas was then assessed through a two-step validation process: the data were (1) visually and (2) quantitatively compared to glacier area datasets of the years 1850, 1973, 2003, and 2010, which were derived from different sources, at the large scale, basin scale, and locally. The validation showed that at least 70 % of the digitized glaciers were comparable to the outlines from the other datasets and were therefore plausible. Furthermore, the inaccuracy of the manual digitization was found to be less than 5 %. The presented datasets of glacier outlines for the first and second periods are a valuable source of information for long-term glacier mass balance or hydrological modelling in glacierized basins. The uncertainty of the historical topographic maps should be considered during the interpretation of the results. The datasets can be downloaded from the FreiDok plus data repository (https://freidok.uni-freiburg.de/data/15008" target="_blank">https://freidok.uni-freiburg.de/data/15008, https://doi.org/10.6094/UNIFR/15008" target="_blank">https://doi.org/10.6094/UNIFR

  1. Observations of enhanced thinning in the upper reaches of Svalbard glaciers

    Directory of Open Access Journals (Sweden)

    T. D. James

    2012-11-01

    Full Text Available Changes in the volume and extent of land ice of the Svalbard archipelago have been the subject of considerable research since their sensitivity to changes in climate was first noted. However, the measurement of these changes is often necessarily based on point or profile measurements which may not be representative if extrapolated to a whole catchment or region. Combining high-resolution elevation data from contemporary laser-altimetry surveys and archived aerial photography makes it possible to measure historical changes across a glacier's surface without the need for extrapolation. Here we present a high spatial resolution time-series for six Arctic glaciers in the Svalbard archipelago spanning 1961 to 2005. We find high variability in thinning rates between sites with prevalent elevation changes at all sites averaging −0.59 ± 0.04 m a−1 between 1961–2005. Prior to 1990, ice surface elevation was changing at an average rate of −0.52 ± 0.09 m a−1 which decreased to −0.76 ± 0.10 m a−1 after 1990. Setting the elevation changes against the glaciers' altitude distribution reveals that significant increases in thinning rates are occurring most notably in the glaciers' upper reaches. We find that these changes are coincident with a decrease in winter precipitation at the Longyearbyen meteorological station and could reflect a decrease in albedo or dynamic response to lower accumulation. Further work is required to understand fully the causes of this increase in thinning rates in the glaciers' upper reaches. If on-going and occurring elsewhere in the archipelago, these changes will have a significant effect on the region's future mass balance. Our results highlight the importance of understanding the climatological context of geodetic mass balance measurements and demonstrate the difficulty of using index glaciers to represent regional changes in areas of strong climatological gradients.

  2. New inventory of glaciers in southeastern part of the Eastern Sayan Mountains

    Directory of Open Access Journals (Sweden)

    E. Yu. Osipov

    2013-01-01

    Full Text Available Satellite images with high (Quick Bird, 2006, WorldView-1, 2008, 0.5–0.6 m and middle (Landsat-7 ETM +, 2001, 15–30 m resolution were used to map contemporary glaciers on two mountain peaks of south-eastern part of East Sayan Ridge – Munky Sardyk (3491 m a.s.l. and Topographov (3089 m a.s.l.. Topographic maps of 1978 and 1981 and Landsat-7 images (summer 2001 were used to assess glacier changes during second half of XX century. Modern terminal and lateral moraines near glacier snouts were used to reconstruct former outlines during the end of the Little Ice Age (middle of XIX century. Also SRTM data and GPS-surveys in Munku-Sardyk area were applied to measure glacier altitudes. GIS technologies allowed forming digital glacier data base with attribute information and new inventory was made. Totally 13 glaciers with area of 5.1 km² were investigated and mapped. Glaciers are located in vertical range from 2800–3490 m a.s.l. (Munku-Sardyk area and 2340–2950 m a.s.l. (Topographov area. Firn line on glaciers vary from 2540 to 3110 m a.s.l., rising to the southeast. On average, over the past 160 years (since the end of the Little Ice Age glaciers have significantly decreased. Ice area has decreased by 49%, length has diminished by 570 m, the glacier snouts has risen by 124 m. Analysis of regional climate data shows that the rate of deglaciation is well correlated with summer temperatures increasing in the second half of XX century, especially in 1980–1990s. A tendency to recover glacier mass balance was revealed during the last decade based on climatic data.

  3. Exploring the mobility of cryoconite on High-Arctic glaciers

    Science.gov (United States)

    Irvine-Fynn, T. D.; Hodson, A. J.; Bridge, J. W.; Langford, H.; Anesio, A.; Ohlanders, N.; Newton, S.

    2010-12-01

    There has been a growing awareness of the significance of biologically active dust (cryoconite) on the energy balance of, and nutrient cycling at glacier surfaces. Moreover, researchers have estimated the mass of biological material released from glacier ice to downstream environments and ecosystems, including the melt-out of cells from emergent ice in the ablation area. However, the processes, rates and mechanisms of cryoconite mobility and transport have not been fully explored. For many smaller valley glaciers in the High-Arctic, the climate dictates only a thin (~ 1m) layer of ice at the glacier surface is at the melting point during the summer months. This surface ice is commonly characterized by an increased porosity in response to incident energy and hydraulic conditions, and has been termed the “weathering crust”. The presence of cryoconite, with its higher radiation absorption, exacerbates the weathering crust development. Thus, crucially, the transport of cryoconite is not confined to simply a ‘smooth’ ice surface, but rather also includes mobility in the near-surface ice matrix. Here, we present initial results from investigations of cryoconite transport at Midtre Lovénbreen and Longyearbreen, two north-facing valley glaciers in Svalbard (Norway). Using time-lapse imagery, we explore the transport rates of cryoconite on a glacier surface and consider the associations between mobility and meteorological conditions. Results suggest some disparity between micro-, local- and plot-scale observations of cryoconite transport: the differences imply controlling influences of cryoconite volume, ice surface topography and ice structure. While to examine the relative volumes of cryoconite exported from the glacier surface by supraglacial streams we employ flow cytometry, using SYBR-Green-II staining to identify the biological component of the suspended load. Preliminary comparisons between shallow (1m) ice cores and in-stream concentrations suggest

  4. Application of a minimal glacier model to Hansbreen, Svalbard

    Directory of Open Access Journals (Sweden)

    J. Oerlemans

    2011-01-01

    Full Text Available Hansbreen is a well studied tidewater glacier in the southwestern part of Svalbard, currently about 16 km long. Since the end of the 19th century it has been retreating over a distance of 2.7 km. In this paper the global dynamics of Hansbreen are studied with a minimal glacier model, in which the ice mechanics are strongly parameterised and a simple law for iceberg calving is used. The model is calibrated by reconstructing a climate history in such a way that observed and simulated glacier length match. In addition, the calving law is tuned to reproduce the observed mean calving flux for the period 2000–2008.

    Equilibrium states are studied for a wide range of values of the equilibrium line altitude. The dynamics of the glacier are strongly nonlinear. The height-mass balance feedback and the water depth-calving flux feedback give rise to cusp catastrophes in the system.

    For the present climatic conditions Hansbreen cannot survive. Depending on the imposed climate change scenario, in AD 2100 Hansbreen is predicted to have a length between 10 and 12 km. The corresponding decrease in ice volume (relative to the volume in AD 2000 is 45 to 65%.

    Finally the late-Holocene history of Hansbreen is considered. We quote evidence from dated peat samples that Hansbreen did not exist during the Holocene Climatic Optimum. We speculate that at the end of the mid-Holocene Climatic Optimum Hansbreen could advance because the glacier bed was at least 50 m higher than today, and because the tributary glaciers on the western side may have supplied a significant amount of mass to the main stream. The excavation of the overdeepening and the formation of the shoal at the glacier terminus probably took place during the Little Ice Age.

  5. Medial moraines of glaciers of the Copper River Basin, Alaska: Discrete landslides dominate over other sources

    Science.gov (United States)

    Kargel, J. S.; Fischer, L.; Furfaro, R.; Huggel, C.; Korup, O.; Leonard, G. J.; Uhlmann, M.; Wessels, R. L.; Wolfe, D. F.

    2009-12-01

    Medial moraines are visually dominant structures of most large valley glaciers in the Copper River Basin (CRB), Alaska. Areally extensive but thin (usually rock falls and talus creep; rocks delivered via snow and ice avalanches; ingestion of lateral moraines along tributary convergences; and basal erosional debris. Evidence indicates that in CRB glaciers, discrete large avalanches predominate as the major contributors of moraine mass. Subglacial erosional debris is predominantly pulverized to small grain sizes and flushed. Many large, young avalanches exist on CRB glaciers. Evidence from colorimetry indicates that many medial moraines actually are landslides that have been sheared and swept downglacier, thus mimicking the form of other types of medial moraines formed where tributaries coalesce and flow down valley. Landcover classification of ASTER imagery, qualitative observations from air photos, and semiquantitative field-based estimations of rock color types indicate that on Allen Glacier, and other CRB glaciers, landslides are the sources of most medial moraines. On Allen and Root Glacier, for example, we see very few boulders with obvious signs of basal abrasion, whereas nearly all boulders exhibit signs of irregular fracture, for example in landslides. Such landslides have large effects on the thermal and mass balance of CRB glaciers, sometimes opposing or in other cases accentuating the effects of global/regional climate change. Considering the link between landslides and seismicity, and that Magnitude 8-9 earthquakes may occur nearby only about once a century, which is also the characteristic response time of large glaciers to climate shifts, seismicity must be considered along with climate change induced glacier responses in the CRB. Ultimately, climate has the final word, and already this is evident in the glacier record. Glacial flour is probably almost entirely from bed erosion. We will present estimates of the contributions of landslides and

  6. Adapting to the reality of climate change at Glacier National Park, Montana, USA

    Science.gov (United States)

    Fagre, Daniel B.

    2007-01-01

    The glaciers of Glacier National Park (GNP) are disappearing rapidly and likely will be gone by 2030. These alpine glaciers have been continuously present for approximately 7,000 years so their loss from GNP in another 25 years underscores the significance of current climate change. There are presently only 27 glaciers remaining of the 150 estimated to have existed when GNP was created in 1910. Mean annual temperature in GNP has increased 1.6 0 C during the past cen- tury, three times the global mean increase. The temperature increase has affected other parts of the mountain ecosystem, too. Snowpacks hold less water equivalent and melt 2+ weeks earlier in the spring. Forest growth rates have increased, alpine treelines have expanded upward and be- come denser, and subalpine meadows have been invaded by high elevation tree species. These latter responses can be mostly attributed to longer growing seasons and warmer temperatures.

  7. GlacierRocks - Glacier-Headwall Interaction and its Influence on Rockfall Activity

    Science.gov (United States)

    Hartmeyer, Ingo; Keuschnig, Markus; Krautblatter, Michael; Helfricht, Kay; Leith, Kerry; Otto, Jan-Christoph

    2017-04-01

    Climate models predict continued climate warming and a decrease of Austrian glaciers to less than 20% of their present area by the end of this century. Rockfall from freshly exposed headwalls has been documented as an increasing risk factor with considerable significance for man and high-alpine infrastructure. Recent findings of a five-year terrestrial laserscanning campaign (2011-2016) monitoring glacial headwalls at the Kitzsteinhorn (3.203 m a.s.l.), Hohe Tauern Range, Austria, show the dramatic impact of glacier thinning on adjacent headwalls: 80 % of the detected rockfall volumes were triggered from areas located less than 20 m above the current glacier surface. Despite these implications, little is known about the thermal, mechanical and hydrological processes that operate at the glacier-headwall interface (randkluft). Systemic in-situ monitoring of stability-relevant parameters are lacking, leaving fundamental gaps in the understanding of rockfall preconditioning in glacial headwalls and the geomorphological evolution of glaciated catchments. In this contribution we introduce the recently approved research project 'GlacierRocks', which starts in 2017 and will run for at least three years. 'GlacierRocks' will establish the worldwide first research site for long-term monitoring of stability-relevant processes inside a randkluft system. Based on the acquired monitoring data 'GlacierRocks' is pursuing three overall aims at (1) gaining a better understanding of rockfall preconditioning in randklufts and related geomorphological shaping of headwalls, (2) analyzing poorly understood glacial thinning dynamics near headwalls, and (3) estimating present and future rockfall hazard potential in headwalls on a regional scale. The three system components (headwall, glacier, randkluft) will be investigated by combining geomorphological, glaciological and meteorological methods. 'GlacierRocks' will continuously monitor rock temperature, rock moisture, frost cracking

  8. Classification of debris-covered glaciers and rock glaciers in the Andes of central Chile

    Science.gov (United States)

    Janke, Jason R.; Bellisario, Antonio C.; Ferrando, Francisco A.

    2015-07-01

    In the Dry Andes of Chile (17 to 35° S), debris-covered glaciers and rock glaciers are differentiated from true glaciers based on the percentage of surface debris cover, thickness of surface debris, and ice content. Internal ice is preserved by an insulating cover of thick debris, which acts as a storage reservoir to release water during the summer and early fall. These landforms are more numerous than glaciers in the central Andes; however, the existing legislation only recognizes uncovered or semicovered glaciers as a water resource. Glaciers, debris-covered glaciers, and rock glaciers are being altered or removed by mining operations to extract valuable minerals from the mountains. In addition, agricultural expansion and population growth in this region have placed additional demands on water resources. In a warmer climate, as glaciers recede and seasonal water availability becomes condensed over the course of a snowmelt season, rock glaciers and debris-covered glaciers contribute a larger component of base flow to rivers and streams. As a result, identifying and locating these features to implement sustainable regional planning for water resources is important. The objective of this study is to develop a classification system to identify debris-covered glaciers and rock glaciers based on the interpretation of satellite imagery and aerial photographs. The classification system is linked to field observations and measurements of ice content. Debris-covered glaciers have three subclasses: surface coverage of semi (class 1) and fully covered (class 2) glaciers differentiates the first two forms, whereas debris thickness is critical for class 3 when glaciers become buried with more than 3 m of surface debris. Based on field observations, the amount of ice decreases from more than 85%, to 65-85%, to 45-65% for semi, fully, and buried debris-covered glaciers, respectively. Rock glaciers are characterized by three stages. Class 4 rock glaciers have pronounced

  9. Modeled climate-induced glacier change in Glacier National Park, 1850-2100

    Science.gov (United States)

    Hall, M.H.P.; Fagre, D.B.

    2003-01-01

    The glaciers in the Blackfoot-Jackson Glacier Basin of Glacier National Park, Montana, decreased in area from 21.6 square kilometers (km2) in 1850 to 7.4 km2 in 1979. Over this same period global temperatures increased by 0.45??C (?? 0. 15??C). We analyzed the climatic causes and ecological consequences of glacier retreat by creating spatially explicit models of the creation and ablation of glaciers and of the response of vegetation to climate change. We determined the melt rate and spatial distribution of glaciers under two possible future climate scenarios, one based on carbon dioxide-induced global warming and the other on a linear temperature extrapolation. Under the former scenario, all glaciers in the basin will disappear by the year 2030, despite predicted increases in precipitation; under the latter, melting is slower. Using a second model, we analyzed vegetation responses to variations in soil moisture and increasing temperature in a complex alpine landscape and predicted where plant communities are likely to be located as conditions change.

  10. Century-scale variability in global annual runoff examined using a water balance model

    Science.gov (United States)

    McCabe, G.J.; Wolock, D.M.

    2011-01-01

    A monthly water balance model (WB model) is used with CRUTS2.1 monthly temperature and precipitation data to generate time series of monthly runoff for all land areas of the globe for the period 1905 through 2002. Even though annual precipitation accounts for most of the temporal and spatial variability in annual runoff, increases in temperature have had an increasingly negative effect on annual runoff after 1980. Although the effects of increasing temperature on runoff became more apparent after 1980, the relative magnitude of these effects are small compared to the effects of precipitation on global runoff. ?? 2010 Royal Meteorological Society.

  11. Comparison of climate change signals in CMIP3 and CMIP5 multi-model ensembles and implications for Central Asian glaciers

    Directory of Open Access Journals (Sweden)

    A. F. Lutz

    2013-09-01

    Full Text Available Central Asian water resources largely depend on melt water generated in the Pamir and Tien Shan mountain ranges. To estimate future water availability in this region, it is necessary to use climate projections to estimate the future glacier extent and volume. In this study, we evaluate the impact of uncertainty in climate change projections on the future glacier extent in the Amu and Syr Darya river basins. To this end we use the latest climate change projections generated for the upcoming IPCC report (CMIP5 and, for comparison, projections used in the fourth IPCC assessment (CMIP3. With these projections we force a regionalized glacier mass balance model, and estimate changes in the basins' glacier extent as a function of the glacier size distribution in the basins and projected temperature and precipitation. This glacier mass balance model is specifically developed for implementation in large scale hydrological models, where the spatial resolution does not allow for simulating individual glaciers and data scarcity is an issue. Although the CMIP5 ensemble results in greater regional warming than the CMIP3 ensemble and the range in projections for temperature as well as precipitation is wider for the CMIP5 than for the CMIP3, the spread in projections of future glacier extent in Central Asia is similar for both ensembles. This is because differences in temperature rise are small during periods of maximum melt (July–September while differences in precipitation change are small during the period of maximum accumulation (October–February. However, the model uncertainty due to parameter uncertainty is high, and has roughly the same importance as uncertainty in the climate projections. Uncertainty about the size of the decline in glacier extent remains large, making estimates of future Central Asian glacier evolution and downstream water availability uncertain.

  12. Recent glacier retreat and climate trends in Cordillera Huaytapallana, Peru

    Science.gov (United States)

    López-Moreno, J. I.; Fontaneda, S.; Bazo, J.; Revuelto, J.; Azorin-Molina, C.; Valero-Garcés, B.; Morán-Tejeda, E.; Vicente-Serrano, S. M.; Zubieta, R.; Alejo-Cochachín, J.

    2014-01-01

    We analyzed 19 annual Landsat Thematic Mapper images from 1984 to 2011 to determine changes of the glaciated surface and snow line elevation in six mountain areas of the Cordillera Huaytapallana range in Peru. In contrast to other Peruvian mountains, glacier retreat in these mountains has been poorly documented, even though this is a heavily glaciated area. These glaciers are the main source of water for the surrounding lowlands, and melting of these glaciers has triggered several outburst floods. During the 28-year study period, there was a 55% decrease in the surface covered by glaciers and the snowline moved upward in different regions by 93 to 157 m. Moreover, several new lakes formed in the recently deglaciated areas. There was an increase in precipitation during the wet season (October-April) over the 28-year study period. The significant increase in maximum temperatures may be related to the significant glacier retreat in the study area. There were significant differences in the wet season temperatures during El Niño (warmer) and La Niña (colder) years. Although La Niña years were generally more humid than El Niño years, these differences were not statistically significant. Thus, glaciers tended to retreat at a high rate during El Niño years, but tended to be stable or increase during La Niña years, although there were some notable deviations from this general pattern. Climate simulations for 2021 to 2050, based on the most optimistic assumptions of greenhouse gas concentrations, forecast a continuation of climate warming at the same rate as documented here. Such changes in temperature might lead to a critical situation for the glaciers of the Cordillera Huaytapallana, and may significantly impact the water resources, ecology, and natural hazards of the surrounding areas.

  13. Modeling the Rock Glacier Cycle

    Science.gov (United States)

    Anderson, R. S.; Anderson, L. S.

    2016-12-01

    Rock glaciers are common in many mountain ranges in which the ELA lies above the peaks. They represent some of the most identifiable components of today's cryosphere in these settings. Their oversteepened snouts pose often-overlooked hazards to travel in alpine terrain. Rock glaciers are supported by avalanches and by rockfall from steep headwalls. The winter's avalanche cone must be sufficiently thick not to melt entirely in the summer. The spatial distribution of rock glaciers reflects this dependence on avalanche sources; they are most common on lee sides of ridges where wind-blown snow augments the avalanche source. In the absence of rockfall, this would support a short, cirque glacier. Depending on the relationship between rockfall and avalanche patterns, "talus-derived" and "glacier-derived" rock glaciers are possible. Talus-derived: If the spatial distribution of rock delivery is similar to the avalanche pattern, the rock-ice mixture will travel an englacial path that is downward through the short accumulation zone before turning upward in the ablation zone. Advected debris is then delivered to the base of a growing surface debris layer that reduces the ice melt rate. The physics is identical to the debris-covered glacier case. Glacier-derived: If on the other hand rockfall from the headwall rolls beyond the avalanche cone, it is added directly to the ablation zone of the glacier. The avalanche accumulation zone then supports a pure ice core to the rock glacier. We have developed numerical models designed to capture the full range of glacier to debris-covered glacier to rock glacier behavior. The hundreds of meter lengths, tens of meters thicknesses, and meter per year speeds of rock glaciers are well described by the models. The model can capture both "talus-derived" and "glacier-derived" rock glaciers. We explore the dependence of glacier behavior on climate histories. As climate warms, a pure ice debris-covered glacier can transform to a much shorter rock

  14. Representativeness of regional and global mass-balance measurement networks (Invited)

    Science.gov (United States)

    Cogley, J. G.; Moholdt, G.; Gardner, A. S.

    2013-12-01

    We showed in a recent publication that regional estimates of glacier mass budgets, obtained by interpolation from in-situ measurements, were markedly more negative than corresponding estimates by satellite gravimetry (GRACE) and satellite altimetry (ICESat) during 2003-2009. Examining the ICESat data in more detail, we found that in-situ records tend to be located in areas where glaciers are thinning more rapidly than as observed in their regional surroundings. Because neither GRACE nor ICESat can provide information for times before 2002-2003, and may not operate without interruption in the future, we explore possible explanations of and remedies for the identified bias in the in-situ network. Sparse spatial sampling, coupled with previously undetected spatial variability of mass balance at scales between the 10-km in-situ scale and the 350-km gravimetric scale, appears to be the leading explanation. Satisfactory remedies are not obvious. Selecting glaciers for in-situ measurement that are more representative will yield only incremental improvements. There appears to be no alternative to mass-balance modelling as a versatile tool for estimation of regional mass balance. However the meteorological data for forcing the surface components of glacier models have coarser resolution than is desirable and are themselves uncertain, especially in the remote regions where much of the glacier ice is found. Measurements of frontal (dynamic) mass changes are still difficult, and modelling of these changes remains underdeveloped in spite of recent advances. Thus research on a broad scale is called for in order to meet the challenge of producing more accurate hindcasts and projections of glacier mass budgets with fine spatial and temporal resolution.

  15. Air temperature, radiation budget and area changes of Quisoquipina glacier in the Cordillera Vilcanota (Peru)

    Science.gov (United States)

    Suarez, Wilson; Macedo, Nicolás; Montoya, Nilton; Arias, Sandro; Schauwecker, Simone; Huggel, Christian; Rohrer, Mario; Condom, Thomas

    2015-04-01

    The Peruvian Andes host about 71% of all tropical glaciers. Although several studies have focused on glaciers of the largest glaciered mountain range (Cordillera Blanca), other regions have received little attention to date. In 2011, a new program has been initiated with the aim of monitoring glaciers in the centre and south of Peru. The monitoring program is managed by the Servicio Nacional de Meteorología e Hidrología del Perú (SENAMHI) and it is a joint project together with the Universidad San Antonio Abad de Cusco (UNSAAC) and the Autoridad Nacional del Agua (ANA). In Southern Peru, the Quisoquipina glacier has been selected due to its representativeness for glaciers in the Cordillera Vilcanota considering area, length and orientation. The Cordillera Vilcanota is the second largest mountain range in Peru with a glaciated area of approximately 279 km2 in 2009. Melt water from glaciers in this region is partly used for hydropower in the dry season and for animal breeding during the entire year. Using Landsat 5 images, we could estimate that the area of Quisoquipina glacier has decreased by approximately 11% from 3.66 km2 in 1990 to 3.26 km2 in 2010. This strong decrease is comparable to observations of other tropical glaciers. In 2011, a meteorological station has been installed on the glacier at 5180 m asl., measuring air temperature, wind speed, relative humidity, net short and longwave radiation and atmospheric pressure. Here, we present a first analysis of air temperature and the radiation budget at the Quisoquipina glacier for the first three years of measurements. Additionally, we compare the results from Quisoquipina glacier to results obtained by the Institut de recherche pour le développement (IRD) for Zongo glacier (Bolivia) and Antizana glacier (Ecuador). For both, Quisoquipina and Zongo glacier, net shortwave radiation may be the most important energy source, thus indicating the important role of albedo in the energy balance of the glacier

  16. Mass balance and sliding velocity of the Puget lobe of the cordilleran ice sheet during the last glaciation

    Science.gov (United States)

    Booth, D.B.

    1986-01-01

    An estimate of the sliding velocity and basal meltwater discharge of the Puget lobe of the Cordilleran ice sheet can be calculated from its reconstructed extent, altitude, and mass balance. Lobe dimensions and surface altitudes are inferred from ice limits and flow-direction indicators. Net annual mass balance and total ablation are calculated from relations empirically derived from modern maritime glaciers. An equilibrium-line altitude between 1200 and 1250 m is calculated for the maximum glacial advance (ca. 15,000 yr B.P.) during the Vashon Stade of the Fraser Glaciation. This estimate is in accord with geologic data and is insensitive to plausible variability in the parameters used in the reconstruction. Resultant sliding velocities are as much as 650 m/a at the equilibrium line, decreasing both up- and downglacier. Such velocities for an ice sheet of this size are consistent with nonsurging behavior. Average meltwater discharge increases monotonically downglacier to 3000 m3/sec at the terminus and is of a comparable magnitude to ice discharge over much of the glacier's ablation area. Palcoclimatic inferences derived from this reconstruction are consistent with previous, independently derived studies of late Pleistocene temperature and precipitation in the Pacific Northwest. ?? 1986.

  17. Impact of glacier shrinkage and adapted hydropower potential in the Swiss Alps

    International Nuclear Information System (INIS)

    Terrier, Stephane; Bieri, Martin; Jordan, Frederic; Schleiss, Anton J.

    2015-01-01

    Global warming is an alarming reality and likely leads to an increase of multiple pressures on socio-economic systems. However, in high-mountain regions it might also become an opportunity to adapt existing hydropower schemes and to develop new projects to this reality. In the Alps, the melting of glaciers first produces over the near future an increase of the average annual discharge depending on glacier and catchment characteristics, especially during the summer season. Nevertheless after a certain time, significant decrease of runoff related to glacier melting must be considered for hydropower management. Moreover, the shrinking glaciers free new areas, having the potential for the construction of new dams and reservoirs. The opportunity to build new dams and hydropower plants downstream of retreating glaciers is studied using two models. The first (GlabTop) is used to predict the future topography and geomorphology underneath the melting glaciers, in order to define the optimal locations of the future dams and reservoirs. Secondly, the RS3.0 CLIMATE rainfall-runoff hydrological model computes the glacier evolution, the river discharge at the outlet of the catchment area as well as the hydropower production of the new schemes. As a case study the Upper Aare River basin in Switzerland is presented. The opportunity of the construction of a new dam and a hydropower plant is studied, including its economic benefit. The result of the case study provides a basis to assess the potential of investing in such projects to ensure the Swiss hydroelectricity production also in future as well as peak energy for the European grid. (authors)

  18. The imbalance of glaciers after disintegration of Larsen-B ice shelf, Antarctic Peninsula

    Directory of Open Access Journals (Sweden)

    H. Rott

    2011-03-01

    Full Text Available The outlet glaciers to the embayment of the Larsen-B Ice Shelf started to accelerate soon after the ice shelf disintegrated in March 2002. We analyse high resolution radar images of the TerraSAR-X satellite, launched in June 2007, to map the motion of outlet glaciers in detail. The frontal velocities are used to estimate the calving fluxes for 2008/2009. As reference for pre-collapse conditions, when the glaciers were in balanced state, the ice fluxes through the same gates are computed using ice motion maps derived from interferometric data of the ERS-1/ERS-2 satellites in 1995 and 1999. Profiles of satellite laser altimetry from ICESat, crossing the terminus of several glaciers, indicate considerable glacier thinning between 2003 and 2007/2008. This is taken into account for defining the calving cross sections. The difference between the pre- and post-collapse fluxes provides an estimate on the mass imbalance. For the Larsen-B embayment the 2008 mass deficit is estimated at 4.34 ± 1.64 Gt a−1, significantly lower than previously published values. The ice flow acceleration follows a similar pattern on the various glaciers, gradually decreasing in magnitude with distance upstream from the calving front. This suggests stress perturbation at the glacier front being the main factor for acceleration. So far there are no signs of slow-down indicating that dynamic thinning and frontal retreat will go on.

  19. An estimate of the glacier ice volume in the Swiss Alps

    Science.gov (United States)

    Farinotti, Daniel; Huss, Matthias; Bauder, Andreas; Funk, Martin

    2009-08-01

    Changes in glacier volume are important for questions linked to sea-level rise, water resource management, and tourism industry. With the ongoing climate warming, the retreat of mountain glaciers is a major concern. Predictions of glacier changes, necessarily need the present ice volume as initial condition, and for transient modelling, the ice thickness distribution has to be known. In this paper, a method based on mass conservation and principles of ice flow dynamics is applied to 62 glaciers located in the Swiss Alps for estimating their ice thickness distribution. All available direct ice thickness measurements are integrated. The ice volumes are referenced to the year 1999 by means of a mass balance time series. The results are used to calibrate a volume-area scaling relation, and the coefficients obtained show good agreement with values reported in the literature. We estimate the total ice volume present in the Swiss Alps in the year 1999 to be 74 ± 9 km 3. About 12% of this volume was lost between 1999 and 2008, whereas the extraordinarily warm summer 2003 caused a volume loss of about 3.5%.

  20. Revisited Inventory of Glaciers on Axel Heiberg Island, Nunavut

    Science.gov (United States)

    Thomson, L.; Osinski, G.

    2009-05-01

    As documented in the IPCC's Climate Change 2007 report, the high latitude regions of the Northern Hemisphere are experiencing the highest rates of warming. Given that 35% of the global glacial ice exists within the Arctic Archipelago, this region provides an excellent laboratory for monitoring the anticipated degree of glacial recession [1]. Evidence of arctic warming through negative mass balance trends has been detected in several studies already [e.g., 2]. Here, we show the importance and value of historical records in the task of monitoring glacial retreat. A highly detailed inventory developed by S. Ommanney in 1969 [3], has been revisited and transformed into digital format for the purposes of integration with modern inventories. The Ommanney inventory covers the entirety of Axel Heiberg Island , NU, and includes details often lacking in present day inventories, including orientations (accumulation and ablation zones), elevations (highest, lowest, elevation of the snowline, and the mean elevations of both the accumulation and ablation areas), length (of the ablation area, exposed ice, and of the total glacier including debris cover), area (of the ablation area, exposed ice, and of the total glacier), accumulation area ratio (AAR), depth, volume, and a six digit code which gives qualitative details on glacier attributes. This report is one of the most thorough and comprehensive glacier inventory report ever published in Canada. More recent inventories used for comparison include the glacier extents created by the National Topographic System based on photography from 1980-1987, as well as extents developed by Dr. Luke Copland for the Global Land Ice Measurements from Space (GLIMS) database using 1999-2000 satellite imagery. Our preliminary results show that approximately 90% of ice bodies under 0.2km on Axel Heiberg Island have disappeared entirely in the 40 year period of interest. The issue of glacier definition will be discussed as a possible cause of these

  1. Glaciers between two drivers

    DEFF Research Database (Denmark)

    Machguth, Horst

    2014-01-01

    It is assumed that the monsoon is the dominant influence on Himalayan glaciers. However, a study now investigates the importance of the mid-latitude Westerlies and shows that glacier changes can be triggered from afar.......It is assumed that the monsoon is the dominant influence on Himalayan glaciers. However, a study now investigates the importance of the mid-latitude Westerlies and shows that glacier changes can be triggered from afar....

  2. Estimating stream discharge from a Himalayan Glacier using coupled satellite sensor data

    Science.gov (United States)

    Child, S. F.; Stearns, L. A.; van der Veen, C. J.; Haritashya, U. K.; Tarpanelli, A.

    2015-12-01

    The 4th IPCC report highlighted our limited understanding of Himalayan glacier behavior and contribution to the region's hydrology. Seasonal snow and glacier melt in the Himalayas are important sources of water, but estimates greatly differ about the actual contribution of melted glacier ice to stream discharge. A more comprehensive understanding of the contribution of glaciers to stream discharge is needed because streams being fed by glaciers affect the livelihoods of a large part of the world's population. Most of the streams in the Himalayas are unmonitored because in situ measurements are logistically difficult and costly. This necessitates the use of remote sensing platforms to obtain estimates of river discharge for validating hydrological models. In this study, we estimate stream discharge using cost-effective methods via repeat satellite imagery from Landsat-8 and SENTINEL-1A sensors. The methodology is based on previous studies, which show that ratio values from optical satellite bands correlate well with measured stream discharge. While similar, our methodology relies on significantly higher resolution imagery (30 m) and utilizes bands that are in the blue and near-infrared spectrum as opposed to previous studies using 250 m resolution imagery and spectral bands only in the near-infrared. Higher resolution imagery is necessary for streams where the source is a glacier's terminus because the width of the stream is often only 10s of meters. We validate our methodology using two rivers in the state of Kansas, where stream gauges are plentiful. We then apply our method to the Bhagirathi River, in the North-Central Himalayas, which is fed by the Gangotri Glacier and has a well monitored stream gauge. The analysis will later be used to couple river discharge and glacier flow and mass balance through an integrated hydrologic model in the Bhagirathi Basin.

  3. Bathymetry of Torssukatak fjord and one century of glacier stability

    Science.gov (United States)

    An, L.; Rignot, E. J.; Morlighem, M.

    2017-12-01

    Marine-terminating glaciers dominate the evolution of the Greenland Ice Sheet(GrIS) mass balance as they control 90% of the ice discharge into the ocean. Warm air temperatures thin the glaciers from the top to unground ice fronts from the bed. Warm oceans erode the submerged grounded ice, causing the grounding line to retreat. To interpret the recent and future evolution of two outlet glaciers, Sermeq Avangnardleq (AVA) and Sermeq Kujatdleq (KUJ) in central West Greenland, flowing into the ice-choked Torssukatak fjord (TOR), we need to know their ice thickness and bed topography and the fjord bathymetry. Here, we present a novel mapping of the glacier bed topography, ice thickness and sea floor bathymetry near the grounding line using high resolution airborne gravity data from AIRGrav collected in August 2012 with a helicopter platform, at 500 m spacing grid, 50 knots ground speed, 80 m ground clearance, with submilligal accuracy, i.e. higher than NASA Operation IceBridge (OIB)'s 5.2 km resolution, 290 knots, and 450 m clearance. We also employ MultiBeam Echo Sounding data (MBES) collected in the fjord since 2009. We had to wait until the summer of 2016, during Ocean Melting Greenland (OMG), to map the fjord bathymetry near the ice fronts for the first time. We constrain the 3D inversion of the gravity data with MBES in the fjord and a reconstruction of the glacier bed topography using mass conservation (MC) on land ice. The seamless topography obtained across the grounding line reveal the presence of a 300-m sill for AVA, which explains why this glacier has been stable for a century, despite changes in surface melt and ocean-induced melt and the presence of a deep fjord (800 m) in front of the glacier. For KUJ, we also reveal the presence of a wide sill (300 m depth) near the current ice front which explains its stability and the stranding of iceberg debris in front of the glacier. The results shed new light on the evolution of these glaciers and explain their

  4. Distributed ice thickness and glacier volume in southern South America

    Science.gov (United States)

    Carrivick, Jonathan L.; Davies, Bethan J.; James, William H. M.; Quincey, Duncan J.; Glasser, Neil F.

    2016-11-01

    South American glaciers, including those in Patagonia, presently contribute the largest amount of meltwater to sea level rise per unit glacier area in the world. Yet understanding of the mechanisms behind the associated glacier mass balance changes remains unquantified partly because models are hindered by a lack of knowledge of subglacial topography. This study applied a perfect-plasticity model along glacier centre-lines to derive a first-order estimate of ice thickness and then interpolated these thickness estimates across glacier areas. This produced the first complete coverage of distributed ice thickness, bed topography and volume for 617 glaciers between 41°S and 55°S and in 24 major glacier regions. Maximum modelled ice thicknesses reach 1631 m ± 179 m in the South Patagonian Icefield (SPI), 1315 m ± 145 m in the North Patagonian Icefield (NPI) and 936 m ± 103 m in Cordillera Darwin. The total modelled volume of ice is 1234.6 km3 ± 246.8 km3 for the NPI, 4326.6 km3 ± 865.2 km3 for the SPI and 151.9 km3 ± 30.38 km3 for Cordillera Darwin. The total volume was modelled to be 5955 km3 ± 1191 km3, which equates to 5458.3 Gt ± 1091.6 Gt ice and to 15.08 mm ± 3.01 mm sea level equivalent (SLE). However, a total area of 655 km2 contains ice below sea level and there are 282 individual overdeepenings with a mean depth of 38 m and a total volume if filled with water to the brim of 102 km3. Adjusting the potential SLE for the ice volume below sea level and for the maximum potential storage of meltwater in these overdeepenings produces a maximum potential sea level rise (SLR) of 14.71 mm ± 2.94 mm. We provide a calculation of the present ice volume per major river catchment and we discuss likely changes to southern South America glaciers in the future. The ice thickness and subglacial topography modelled by this study will facilitate future studies of ice dynamics and glacier isostatic adjustment, and will be important for projecting water resources and

  5. The Inylchek Glacier in Kyrgyzstan, Central Asia: Insight on Surface Kinematics from Optical Remote Sensing Imagery

    Directory of Open Access Journals (Sweden)

    Mohamad Nobakht

    2014-01-01

    Full Text Available Mountain chains of Central Asia host a large number of glaciated areas that provide critical water supplies to the semi-arid populated foothills and lowlands of this region. Spatio-temporal variations of glacier flows are a key indicator of the impact of climate change on water resources as the glaciers react sensitively to climate. Satellite remote sensing using optical imagery is an efficient method for studying ice-velocity fields on mountain glaciers. In this study, temporal and spatial changes in surface velocity associated with the Inylchek glacier in Kyrgyzstan are investigated. We present a detailed map for the kinematics of the Inylchek glacier obtained by cross-correlation analysis of Landsat images, acquired between 2000 and 2011, and a set of ASTER images covering the time period between 2001 and 2007. Our results indicate a high-velocity region in the elevated part of the glacier, moving up to a rate of about 0.5 m/day. Time series analysis of optical data reveals some annual variations in the mean surface velocity of the Inylchek during 2000–2011. In particular, our findings suggest an opposite trend between periods of the northward glacial flow in Proletarskyi and Zvezdochka glacier, and the rate of westward motion observed for the main stream of the Inylchek.

  6. GLACIER MONITORING SYSTEM IN COLOMBIA - complementing glaciological measurements with laser-scanning and ground-penetrating radar surveys

    Science.gov (United States)

    Ceballos, Jorge; Micheletti, Natan; Rabatel, Antoine; Mölg, Nico; Zemp, Michael

    2015-04-01

    Colombia (South America) has six small glaciers (total glacierized area of 45 Km2); their geographical location, close to zero latitude, makes them very sensitive to climate changes. An extensive monitoring program is being performed since 2006 on two glaciers, with international cooperation supports. This presentation summarizes the results of glacier changes in Colombia and includes the latest results obtained within the CATCOS Project - Phase 1 (Capacity Building and Twinning for Climate Observing Systems) signed between Colombia and Switzerland, and within the Joint Mixte Laboratory GREAT-ICE (IRD - France), with the application of LiDAR technology and GPR-based ice thickness measurements at Conejeras Glacier. Conejeras Glacier (Lat. N. 4° 48' 56"; Long. W. 75° 22' 22"; Alt. Max. 4915m.; Alt. Min. 4730m. Area 0.2 Km2) is located on the north-western side of Santa Isabel Volcano. This glacier belongs to global glacier monitoring network of the World Glacier Monitoring Service (WGMS-ID: 2721). The surface mass balance is calculated monthly using the direct glaciological method. Between April 2006 and May 2014, Conejeras Glacier showed a cumulative loss of -21 m w.e. The CATCOS Project allowed to improve the glacier monitoring system in Colombia with two main actions: (1) a terrestrial laser scanner survey (RIEGL VZ-6000 terrestrial laser scanner, property of Universities of Lausanne and Fribourg); and (2) ice thickness measurements (Blue System Integration Ltd. Ice Penetrating Radar of property of IRD). The terrestrial laser-scanning survey allowed to realize an accurate digital terrain model of the glacier surface with 13 million points and a decimetric resolution. Ice thickness measurements showed an average glacier thickness of 22 meters and a maximum of 52 meters.

  7. Satellite-derived submarine melt rates and mass balance (2011-2015) for Greenland's largest remaining ice tongues

    Science.gov (United States)

    Wilson, Nat; Straneo, Fiammetta; Heimbach, Patrick

    2017-12-01

    Ice-shelf-like floating extensions at the termini of Greenland glaciers are undergoing rapid changes with potential implications for the stability of upstream glaciers and the ice sheet as a whole. While submarine melting is recognized as a major contributor to mass loss, the spatial distribution of submarine melting and its contribution to the total mass balance of these floating extensions is incompletely known and understood. Here, we use high-resolution WorldView satellite imagery collected between 2011 and 2015 to infer the magnitude and spatial variability of melt rates under Greenland's largest remaining ice tongues - Nioghalvfjerdsbræ (79 North Glacier, 79N), Ryder Glacier (RG), and Petermann Glacier (PG). Submarine melt rates under the ice tongues vary considerably, exceeding 50 m a-1 near the grounding zone and decaying rapidly downstream. Channels, likely originating from upstream subglacial channels, give rise to large melt variations across the ice tongues. We compare the total melt rates to the influx of ice to the ice tongue to assess their contribution to the current mass balance. At Petermann Glacier and Ryder Glacier, we find that the combined submarine and aerial melt approximately balances the ice flux from the grounded ice sheet. At Nioghalvfjerdsbræ the total melt flux (14.2 ± 0.96 km3 a-1 w.e., water equivalent) exceeds the inflow of ice (10.2 ± 0.59 km3 a-1 w.e.), indicating present thinning of the ice tongue.

  8. Response of small glaciers to climate change: runoff from glaciers of the Wind River range, Wyoming

    Science.gov (United States)

    Bliss, A. K.; Stamper, B.

    2017-12-01

    Runoff from glaciers affects downstream ecosystems by influencing the quantity, seasonality, and chemistry of the water. We describe the present state of glaciers in the Wind River range, Wyoming and consider how these glaciers will change in the future. Wind River glaciers have been losing mass in recent decades, as seen with geodetic techniques and by examining glacier morphology. Interestingly, the 2016/7 winter featured one of the largest snowfalls on record. Our primary focus is the Dinwoody Glacier ( 3 km^2, 3300-4000 m above sea level). We present data collected in mid-August 2017 including glacier ablation rates, snow line elevations, and streamflow. We compare measured glacier mass loss to streamflow at the glacier terminus and at a USGS stream gauge farther downstream. Using a hydrological model, we explore the fate of glacial runoff as it moves into downstream ecosystems and through ranchlands important to local people. The techniques used here can be applied to similar small-glacier systems in other parts of the world.

  9. Beyond annual streamflow reconstructions for the Upper Colorado River Basin: a paleo-water-balance approach

    Science.gov (United States)

    Gangopadhyay, Subhrendu; McCabe, Gregory J.; Woodhouse, Connie A.

    2015-01-01

    In this paper, we present a methodology to use annual tree-ring chronologies and a monthly water balance model to generate annual reconstructions of water balance variables (e.g., potential evapotrans- piration (PET), actual evapotranspiration (AET), snow water equivalent (SWE), soil moisture storage (SMS), and runoff (R)). The method involves resampling monthly temperature and precipitation from the instrumental record directed by variability indicated by the paleoclimate record. The generated time series of monthly temperature and precipitation are subsequently used as inputs to a monthly water balance model. The methodology is applied to the Upper Colorado River Basin, and results indicate that the methodology reliably simulates water-year runoff, maximum snow water equivalent, and seasonal soil moisture storage for the instrumental period. As a final application, the methodology is used to produce time series of PET, AET, SWE, SMS, and R for the 1404–1905 period for the Upper Colorado River Basin.

  10. Patterns of LGM precipitation in the U.S. Rocky Mountains: results from regional application of a glacier mass/energy balance and flow model

    Science.gov (United States)

    Leonard, E. M.; Laabs, B. J.; Refsnider, K. A.; Plummer, M. A.; Jacobsen, R. E.; Wollenberg, J. A.

    2010-12-01

    Global climate model (GCM) simulations of the last glacial maximum (LGM) in the western United States predict changes in atmospheric circulation and storm tracks that would have resulted in significantly less-than-modern precipitation in the Northwest and northern Rockies, and significantly more-than-modern precipitation in the Southwest and southern Rockies. Model simulations also suggest that late Pleistocene pluvial lakes in the intermontane West may have modified local moisture regimes in areas immediately downwind. In this study, we present results of the application of a coupled energy/mass balance and glacier-flow model (Plummer and Phillips, 2003) to reconstructed paleoglaciers in Rocky Mountains of Utah, New Mexico, Colorado, and Wyoming to assess the changes from modern climate that would have been necessary to sustain each glacier in mass-balance equilibrium at its LGM extent. Results demonstrate that strong west-to-east and north-to-south gradients in LGM precipitation, relative to present, would be required if a uniform LGM temperature depression with respect to modern is assumed across the region. At an assumed 7oC temperature depression, approximately modern precipitation would have been necessary to support LGM glaciation in the Colorado Front Range, significantly less than modern precipitation to support glaciation in the Teton Range, and almost twice modern precipitation to sustain glaciers in the Wasatch and Uinta ranges of Utah and the New Mexico Sangre de Cristo Range. The observed west-to-east (Utah-to-Colorado) LGM moisture gradient is consistent with precipitation enhancement from pluvial Lake Bonneville, decreasing with distance downwind from the lake. The north-to-south (Wyoming-to-New Mexico) LGM moisture gradient is consistent with a southward LGM displacement of the mean winter storm track associated with the winter position of the Pacific Jet Stream across the western U.S. Our analysis of paleoglacier extents in the Rocky Mountain

  11. World Glacier Inventory

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The World Glacier Inventory (WGI) contains information for over 130,000 glaciers. Inventory parameters include geographic location, area, length, orientation,...

  12. Specific changes of the Kolka Glacier (the North Caucasus from 2002 to 2016

    Directory of Open Access Journals (Sweden)

    G. A. Nosenko

    2017-01-01

    Full Text Available The process of filling the bed with ice with steep lateral tributaries, which lost support, began almost immediately after the catastrophe on the Kolka Glacier in 2002. Currently, three streams of ice have closed in the rear zone of the circus, forming a single ice massif on the bed. The dimensions of the glacier vary under the influence of both new conditions for the accumulation and melting of ice, and the features of the dynamics of the ice masses filling the vacated bed. This paper describes the next stage of the state of the new Kolka glacier – relative stabilization – and analyzes the features of the process of its recovery based on ground‑based observations, modern space imag‑ ery materials, and calculations of changes in summer air temperatures and winter precipitation in the glacier area at the beginning of the 21st century. In recent years, the rate of increase in the area of the glacier does not exceed 0.015 km2 per year. By September 2016, its area reached 1.11 km2, the volume – about 0.044 km3. The conditions for the formation of a new glacier on the empty bottom of the circus differ significantly from the previous ones – when Kolka was restored in the 1970s after a pulsation. In addition to the background increase in summer tem‑ peratures, the thermal balance in the circus has changed due to an increase in the area of the open surface of the bed and lateral moraine, which increases the melting of ice. At the same time, the growth of the moraine cover on the glacier restrains the melting process. Rockfalls and avalanches enrich the glacier with detrital material with greater intensity than in the 1970s. The conditions of accumulation also changed – the volume of food supplied from the hanging glaciers decreased from the previous 31% to 17%. Fumarolic activity in the crown area of the starboard side of the circus is preserved and this prevents the restoration of these glaciers.

  13. Threatened by: An audiovisual experience inspired by scientific data about glaciers and climate change

    Science.gov (United States)

    Lee, J.; Jeong, S.

    2017-12-01

    Glaciers often have been considered as a symbol of climate change, also its mass change is a major contributor to sea level rise. Dynamic discharge is one of the mechanisms that marine-terminating outlet glaciers loses its mass, whose trend consists of seasonal, annual and secular patterns. These patterns, along with the other climate parameters, can be inspirational to music composition, thereby it can be expressed and transferred by musical media. Here we present `Threatened by,' a piece of electronic music accompanied by animation of glaciers' movement which represent an attempt to frame the sound of the glacier in freer ways vis-à-vis acoustic music. To give expression to the sound, musical production tools such as Pro Tools, Sound Forge Pro, Logic Pro X, Max/MSP, etc. are utilized to modify and combine a variety of sounds generated by a melting glacier. After adding impact by the way of EQ, reverberation, distortion, delay, reverse, etc., we created a two-channel stereo piece in approximately 7 minutes. Along with the musical media, we also present a video clip whose visual features corresponds to glacial properties or events. We expect this work will raise awareness of glaciers' behaviour to general public, also presenting one of the examples that scientists and artists work collaboratively to come up with an artwork that has social implications.

  14. Estimating the snow water equivalent on a glacierized high elevation site (Forni Glacier, Italy)

    Science.gov (United States)

    Senese, Antonella; Maugeri, Maurizio; Meraldi, Eraldo; Verza, Gian Pietro; Azzoni, Roberto Sergio; Compostella, Chiara; Diolaiuti, Guglielmina

    2018-04-01

    We present and compare 11 years of snow data (snow depth and snow water equivalent, SWE) measured by an automatic weather station (AWS) and corroborated by data from field campaigns on the Forni Glacier in Italy. The aim of the analysis is to estimate the SWE of new snowfall and the annual SWE peak based on the average density of the new snow at the site (corresponding to the snowfall during the standard observation period of 24 h) and automated snow depth measurements. The results indicate that the daily SR50 sonic ranger measurements and the available snow pit data can be used to estimate the mean new snow density value at the site, with an error of ±6 kg m-3. Once the new snow density is known, the sonic ranger makes it possible to derive SWE values with an RMSE of 45 mm water equivalent (if compared with snow pillow measurements), which turns out to be about 8 % of the total SWE yearly average. Therefore, the methodology we present is interesting for remote locations such as glaciers or high alpine regions, as it makes it possible to estimate the total SWE using a relatively inexpensive, low-power, low-maintenance, and reliable instrument such as the sonic ranger.

  15. Changes in ice dynamics and mass balance of the Antarctic ice sheet.

    Science.gov (United States)

    Rignot, Eric

    2006-07-15

    The concept that the Antarctic ice sheet changes with eternal slowness has been challenged by recent observations from satellites. Pronounced regional warming in the Antarctic Peninsula triggered ice shelf collapse, which led to a 10-fold increase in glacier flow and rapid ice sheet retreat. This chain of events illustrated the vulnerability of ice shelves to climate warming and their buffering role on the mass balance of Antarctica. In West Antarctica, the Pine Island Bay sector is draining far more ice into the ocean than is stored upstream from snow accumulation. This sector could raise sea level by 1m and trigger widespread retreat of ice in West Antarctica. Pine Island Glacier accelerated 38% since 1975, and most of the speed up took place over the last decade. Its neighbour Thwaites Glacier is widening up and may double its width when its weakened eastern ice shelf breaks up. Widespread acceleration in this sector may be caused by glacier ungrounding from ice shelf melting by an ocean that has recently warmed by 0.3 degrees C. In contrast, glaciers buffered from oceanic change by large ice shelves have only small contributions to sea level. In East Antarctica, many glaciers are close to a state of mass balance, but sectors grounded well below sea level, such as Cook Ice Shelf, Ninnis/Mertz, Frost and Totten glaciers, are thinning and losing mass. Hence, East Antarctica is not immune to changes.

  16. Stable oxygen isotope variability in two contrasting glacier river catchments in Greenland

    DEFF Research Database (Denmark)

    Yde, Jacob C.; Knudsen, Niels T.; Steffensen, Jørgen P.

    2016-01-01

    the Greenland Ice Sheet (GrIS). At the Mittivakkat Gletscher river, a small river draining a local temperate glacier in southeast Greenland, diurnal oscillations in δ18O occurred with a 3 h time lag to the diurnal oscillations in run-off. The mean annual δ18O was -14.68±0.18‰ during the peak flow period...... event. Overall, a comparison of the δ18O compositions from glacial river water in Greenland shows distinct differences between water draining local glaciers and ice caps (between -23.0 and -13.7 ‰) and the GrIS (between -29.9 and -23.2 ‰). This study demonstrates that water isotope analyses can be used......Analysis of stable oxygen isotope (δ18O) characteristics is a useful tool to investigate water provenance in glacier river systems. In order to attain knowledge on the diversity of δ18O variations in Greenlandic rivers, we examined two contrasting glacierised catchments disconnected from...

  17. A field and glacier modelling based approach to determine the timing and extent of glaciation in southern Africa

    Science.gov (United States)

    Mills, Stephanie C.; Rowan, Ann V.; Barrow, Timothy T.; Plummer, Mitchell A.; Smith, Michael; Grab, Stefan W.; Carr, Simon J.; Fifield, L. Keith

    2014-05-01

    Moraines identified at high-altitude sites in southern Africa and dated to the last glacial maximum (LGM) indicate that the climate in this region was cold enough to support glaciers. Small glaciers are very sensitive to changes in temperature and precipitation and the identification of LGM moraines in southern Africa has important palaeoclimatic implications concerning the magnitude of temperature change and the seasonality of precipitation during the last glacial cycle. This paper presents a refined time-frame for likely glaciations based on surface exposure dating using Cl-36 at sites in Lesotho and reports results of a 2D glacier energy balance and ice flow modelling approach (Plummer and Phillips, 2003) to evaluate the most likely climatic scenarios associated with mapped moraine limits. Samples for surface exposure dating were collected from glacially eroded bedrock at several locations and yield ages within the timescale of the LGM. Scatter in the ages may be due to insufficient erosion of the bedrock surface due to the small and relatively thin nature of the glaciers. To determine the most likely climatic conditions that may have caused the glaciers to reach their mapped extent, we use a glacier-climate model, driven by data from local weather stations and a 30m (ASTER) DEM (sub-sampled to 10m) representation of the topographic surface. The model is forced using modern climate data for primary climatic controls (temperature and precipitation) and for secondary climatic parameters (relative humidity, cloudiness, wind speed). Various sensitivity tests were run by dropping temperature by small increments and by varying the amount of precipitation and its seasonality relative to present-day values. Results suggest that glaciers could have existed in the Lesotho highlands with a temperature depression of ~5-6 ºC and that the glaciers were highly sensitive to small changes in temperature. The additional accumulation of mass through wind redistribution appears to

  18. An Analytical Model for Basin-scale Glacier Erosion as a Function of Climate and Topography

    Science.gov (United States)

    Jaffrey, M.; Hallet, B.

    2017-12-01

    Knowledge about glacier erosion has advanced considerably over the last few decades with the emergence of a firm mechanistic understanding of abrasion and quarrying, the growing sophistication of complex numerical models of glacial erosion and the evolution of glacial landforms, and the increase in data from field studies of erosion rates. Interest in glacial erosion has also intensified and diversified substantially as it is increasingly recognized as a key process affecting the heights of mountains, the overall evolution of mountain belts, and the coupling of climate, erosion, and tectonics. Yet, the general controls of glacier erosion rates have not been addressed theoretically, and the large range of published basin-scale erosion rates, covering more than 3 orders of magnitude, remains poorly understood. To help gain insight into glacier erosion rates at the scale of glacier basins, the only scale for which extensive data exist, we develop analytically a simple budget of the total mechanical energy per unit time, the power, dissipated by a steady state glacier in sliding, S, and viscous deformation, V. We hypothesize that the power for the work of erosion derives solely from S and that the basin wide erosion rate scales with S averaged over the basin. We solve the power budget directly in terms of climatic and topographic parameters, showing explicitly that the source of power to drive both S and V is the gravitational power supplied by the net snow accumulation (mass balance). The budget leads to the simple metric φ=mbΔz2 for the basin average of S with Δz being the glacier basin relief and mb the gradient of the mass balance with elevation. The dependence of φ on the square of the relief arises from both the mass balance's and potential energy's linear increases with elevation. We validate φ using results from a comprehensive field study of erosion rates paired with glaciological data along a transect extending from Southern Patagonia to the Antarctic

  19. Step-wise changes in glacier flow speed coincide with calving and glacial earthquakes at Helheim Glacier, Greenland

    DEFF Research Database (Denmark)

    Nettles, M.; Larsen, T. B.; Elósegui, P.

    2008-01-01

    Geodetic observations show several large, sudden increases in flow speed at Helheim Glacier, one of Greenland's largest outlet glaciers, during summer, 2007. These step-like accelerations, detected along the length of the glacier, coincide with teleseismically detected glacial earthquakes and major...... iceberg calving events. No coseismic offset in the position of the glacier surface is observed; instead, modest tsunamis associated with the glacial earthquakes implicate glacier calving in the seismogenic process. Our results link changes in glacier velocity directly to calving-front behavior...... at Greenland's largest outlet glaciers, on timescales as short as minutes to hours, and clarify the mechanism by which glacial earthquakes occur. Citation: Nettles, M., et al. (2008), Step-wise changes in glacier flow speed coincide with calving and glacial earthquakes at Helheim Glacier, Greenland....

  20. The full annual carbon balance of Eurasian boreal forests is highly sensitive to precipitation

    Science.gov (United States)

    Öquist, Mats; Bishop, Kevin; Grelle, Achim; Klemedtsson, Leif; Köhler, Stephan; Laudon, Hjalmar; Lindroth, Anders; Ottosson Löfvenius, Mikaell; Wallin, Marcus; Nilsson, Mats

    2013-04-01

    Boreal forest biomes are identified as one of the major sinks for anthropogenic atmospheric CO2 and are also predicted to be particularly sensitive to climate change. Recent advances in understanding the carbon balance of these biomes stems mainly from eddy-covariance measurements of the net ecosystem exchange (NEE). However, NEE includes only the vertical CO2 exchange driven by photosynthesis and ecosystem respiration. A full net ecosystem carbon balance (NECB) also requires inclusion of lateral carbon export (LCE) through catchment discharge. Currently LCE is often regarded as negligible for the NECB of boreal forest ecosystems of the northern hemisphere, commonly corresponding to ~5% of annual NEE. Here we use long term (13 year) data showing that annual LCE and NEE are strongly correlated (p=0.003); years with low C sequestration by the forest coincide with years when lateral C loss is high. The fraction of NEE lost annually through LCE varied markedly from solar radiation caused by clouds. The dual effect of precipitation implies that both the observed and the predicted increases in annual precipitation at high latitudes may reduce NECB in boreal forest ecosystems. Based on regional scaling of hydrological discharge and observed spatio-temporal variations in forest NEE we conclude that our finding is relevant for large areas of the boreal Eurasian landscape.

  1. Empirical downscaling of atmospheric key variables above a tropical glacier surface (Cordillera Blanca, Peru)

    Science.gov (United States)

    Hofer, M.; Kaser, G.; Mölg, T.; Juen, I.; Wagnon, P.

    2009-04-01

    Glaciers in the outer tropical Cordillera Blanca (Peru, South America) are of major socio-economic importance, since glacier runoff represents the primary water source during the dry season, when little or no rainfall occurs. Due to their location at high elevations, the glaciers moreover provide important information about climate change in the tropical troposphere, where measurements are sparse. This study targets the local reconstruction of air temperature, specific humidity and wind speed above the surface of an outer tropical glacier from NCEP/NCAR reanalysis data as large scale predictors. Since a farther scope is to provide input data for process based glacier mass balance modelling, the reconstruction pursues a high temporal resolution. Hence an empirical downscaling scheme is developed, based on a few years' time series of hourly observations from automatic weather stations, located at the glacier Artesonraju and nearby moraines (Northern Cordillera Blanca). Principal component and multiple regression analyses are applied to define the appropriate spatial downscaling domain, suitable predictor variables, and the statistical transfer functions. The model performance is verified using an independent data set. The best predictors are lower tropospheric air temperature and specific humidity, at reanalysis model grid points that represent the Bolivian Altiplano, located in the South of the Cordillera Blanca. The developed downscaling model explaines a considerable portion (more than 60%) of the diurnal variance of air temperature and specific humidity at the moraine stations, and air temperature above the glacier surface. Specific humidity above the glacier surface, however, can be reconstructed well in the seasonal, but not in the required diurnal time resolution. Wind speed can only be poorly determined by the large scale predictors (r² lower than 0.3) at both sites. We assume a complex local interaction between valley and glacier wind system to be the main

  2. Modelling runoff and glacier melt in the Hunza basin in northern Pakistan using satellite remote sensing techniques

    International Nuclear Information System (INIS)

    Shafiq, M.

    2011-01-01

    The glaciers in western Karakoram are important for freshwater supply in the rivers of Pakistan. Global warming influences the future water supply from glaciers. In order to study the hydrological conditions and possible impacts of climate change, runoff simulations are performed for the Hunza basin. The hydrological modelling system SRM (Snowmelt Runoff Model) is customized and applied to the Hunza basin. Various data obtained from satellite remote sensing imagery and meteorological stations in the study area are processed, prepared and used as input to SRM. For runoff simulations the basin is divided into five sub-basins. The (sub-) basins are defined by the hydrological response units (HRU) based on the elevation zones and land-cover types. The spatially distributed data are aggregated HRU-wise as input for the model simulations. The energy available for snow and glacier melt is parameterized in SRM by degree day factors which are defined separately for seasonal snow, ice and debris covered glaciers. The model is calibrated for the Hunza basin using the meteorological and remote sensing data from years 2002 and 2003. The daily runoff is simulated and compared with the measured discharge data obtained from the power company. The Nash-Sutcliffe correlation coefficient of simulated versus measured runoff data is 0.87 for year 2002 and 0.96 for year 2003 which indicates a good agreement. An estimation of mass balance of Baltoro glacier is made using the meteorological data from Shigar station applying the hydrological method to estimate accumulation and melt. Based on these data is found that Baltoro glacier has slightly negative mass balance. The ablation rates of debris covered parts of Baltoro glacier at 4150 m elevation are estimated to be between 3 and 4 cm per day. However, the uncertainty in mass balance modelling is high due to poor knowledge of accumulation inferred by spatial extrapolation from station data.Keeping the glacier area unchanged, for the 2002

  3. Glacier area changes in Northern Eurasia

    International Nuclear Information System (INIS)

    Khromova, Tatiana; Nosenko, Gennady; Kutuzov, Stanislav; Muraviev, Anton; Chernova, Ludmila

    2014-01-01

    Glaciers are widely recognized as key indicators of climate change. Recent evidence suggests an acceleration of glacier mass loss in several key mountain regions. Glacier recession implies landscape changes in the glacial zone, the origin of new lakes and activation of natural disaster processes, catastrophic mudflows, ice avalanches, outburst floods, etc. The absence or inadequacy of such information results in financial and human losses. A more comprehensive evaluation of glacier changes is imperative to assess ice contributions to global sea level rise and the future of water resources from glacial basins. One of the urgent steps is a full inventory of all ice bodies and their changes. The first estimation of glacier state and glacier distribution on the territory of the former Soviet Union has been done in the USSR Glacier Inventory (UGI) published in 1965–1982. The UGI is based on topographic maps and air photos and reflects the status of the glaciers in the 1940s–1970s. There is information about 28 884 glaciers with an area of 7830.75 km 2 in the inventory. It covers 25 glacier systems in Northern Eurasia. In the 1980s the UGI has been transformed into digital form as a part of the World Glacier Inventory (WGI). Recent satellite data provide a unique opportunity to look again at these glaciers and to evaluate changes in glacier extent for the second part of the 20th century. About 15 000 glacier outlines for the Caucasus, Polar Urals, Pamir Alay, Tien Shan, Altai, Kamchatka and Russian Arctic have been derived from ASTER and Landsat imagery and can be used for glacier change evaluation. Results of the analysis indicate the steady trend in glacier shrinkage in all mountain regions for the second part of the 20th century. Glacier area loss for the studied regions varies from 13% (Tien Shan) to 22.3% (Polar Urals). The common driver, most likely, is an increase in summer air temperature. There is also a very large variability in the degree of

  4. Structure and evolution of the drainage system of a Himalayan debris-covered glacier, and its relationship with patterns of mass loss

    Science.gov (United States)

    Benn, Douglas I.; Thompson, Sarah; Gulley, Jason; Mertes, Jordan; Luckman, Adrian; Nicholson, Lindsey

    2017-09-01

    We provide the first synoptic view of the drainage system of a Himalayan debris-covered glacier and its evolution through time, based on speleological exploration and satellite image analysis of Ngozumpa Glacier, Nepal. The drainage system has several linked components: (1) a seasonal subglacial drainage system below the upper ablation zone; (2) supraglacial channels, allowing efficient meltwater transport across parts of the upper ablation zone; (3) sub-marginal channels, allowing long-distance transport of meltwater; (4) perched ponds, which intermittently store meltwater prior to evacuation via the englacial drainage system; (5) englacial cut-and-closure conduits, which may undergo repeated cycles of abandonment and reactivation; and (6) a "base-level" lake system (Spillway Lake) dammed behind the terminal moraine. The distribution and relative importance of these elements has evolved through time, in response to sustained negative mass balance. The area occupied by perched ponds has expanded upglacier at the expense of supraglacial channels, and Spillway Lake has grown as more of the glacier surface ablates to base level. Subsurface processes play a governing role in creating, maintaining, and shutting down exposures of ice at the glacier surface, with a major impact on spatial patterns and rates of surface mass loss. Comparison of our results with observations on other glaciers indicate that englacial drainage systems play a key role in the response of debris-covered glaciers to sustained periods of negative mass balance.

  5. Radar Interferometry Studies of the Mass Balance of Polar Ice Sheets

    Science.gov (United States)

    Rignot, Eric (Editor)

    1999-01-01

    The objectives of this work are to determine the current state of mass balance of the Greenland and Antarctic Ice Sheets. Our approach combines different techniques, which include satellite synthetic-aperture radar interferometry (InSAR), radar and laser altimetry, radar ice sounding, and finite-element modeling. In Greenland, we found that 3.5 times more ice flows out of the northern part of the Greenland Ice Sheet than previously accounted for. The discrepancy between current and past estimates is explained by extensive basal melting of the glacier floating sections in the proximity of the grounding line where the glacier detaches from its bed and becomes afloat in the ocean. The inferred basal melt rates are very large, which means that the glaciers are very sensitive to changes in ocean conditions. Currently, it appears that the northern Greenland glaciers discharge more ice than is being accumulated in the deep interior, and hence are thinning. Studies of temporal changes in grounding line position using InSAR confirm the state of retreat of northern glaciers and suggest that thinning is concentrated at the lower elevations. Ongoing work along the coast of East Greenland reveals an even larger mass deficit for eastern Greenland glaciers, with thinning affecting the deep interior of the ice sheet. In Antarctica, we found that glaciers flowing into a large ice shelf system, such as the Ronne Ice Shelf in the Weddell Sea, exhibit an ice discharge in remarkable agreement with mass accumulation in the interior, and the glacier grounding line positions do not migrate with time. Glaciers flowing rapidly into the Amudsen Sea, unrestrained by a major ice shelf, are in contrast discharging more ice than required to maintain a state of mass balance and are thinning quite rapidly near the coast. The grounding line of Pine Island glacier (see diagram) retreated 5 km in 4 years, which corresponds to a glacier thinning rate of 3.5 m/yr. Mass imbalance is even more negative

  6. Highly variable aerodynamic roughness length (z0) for a hummocky debris-covered glacier

    Science.gov (United States)

    Miles, Evan S.; Steiner, Jakob F.; Brun, Fanny

    2017-08-01

    The aerodynamic roughness length (z0) is an essential parameter in surface energy balance studies, but few literature values exist for debris-covered glaciers. We use microtopographic and aerodynamic methods to assess the spatial variability of z0 for Lirung Glacier, Nepal. We apply structure from motion to produce digital elevation models for three nested domains: five 1 m2 plots, a 21,300 m2 surface depression, and the lower 550,000 m2 of the debris-mantled tongue. Wind and temperature sensor towers were installed in the vicinity of the plots within the surface depression in October 2014. We calculate z0 according to a variety of transect-based microtopographic parameterizations for each plot, then develop a grid version of the algorithms by aggregating data from all transects. This grid approach is applied to the surface depression digital elevation model to characterize z0 spatial variability. The algorithms reproduce the same variability among transects and plots, but z0 estimates vary by an order of magnitude between algorithms. Across the study depression, results from different algorithms are strongly correlated. Using Monin-Obukov similarity theory, we derive z0 values from the meteorological data. Using different stability criteria, we derive median values of z0 between 0.03 m and 0.05 m, but with considerable uncertainty due to the glacier's complex topography. Considering estimates from these algorithms, results suggest that z0 varies across Lirung Glacier between ˜0.005 m (gravels) to ˜0.5 m (boulders). Future efforts should assess the importance of such variable z0 values in a distributed energy balance model.

  7. Differences in the water-balance components of four lakes in the southern-central Tibetan Plateau

    Science.gov (United States)

    Biskop, S.; Maussion, F.; Krause, P.; Fink, M.

    2016-01-01

    The contrasting patterns of lake-level fluctuations across the Tibetan Plateau (TP) are indicators of differences in the water balance over the TP. However, little is known about the key hydrological factors controlling this variability. The purpose of this study is to contribute to a more quantitative understanding of these factors for four selected lakes in the southern-central part of the TP: Nam Co and Tangra Yumco (increasing water levels), and Mapam Yumco and Paiku Co (stable or slightly decreasing water levels). We present the results of an integrated approach combining hydrological modeling, atmospheric-model output and remote-sensing data. The J2000g hydrological model was adapted and extended according to the specific characteristics of closed-lake basins on the TP and driven with High Asia Refined analysis (HAR) data at 10 km resolution for the period 2001-2010. Differences in the mean annual water balances among the four basins are primarily related to higher precipitation totals and attributed runoff generation in the Nam Co and Tangra Yumco basins. Precipitation and associated runoff are the main driving forces for inter-annual lake variations. The glacier-meltwater contribution to the total basin runoff volume (between 14 and 30 % averaged over the 10-year period) plays a less important role compared to runoff generation from rainfall and snowmelt in non-glacierized land areas. Nevertheless, using a hypothetical ice-free scenario in the hydrological model, we indicate that ice-melt water constitutes an important water-supply component for Mapam Yumco and Paiku Co, in order to maintain a state close to equilibrium, whereas the water balance in the Nam Co and Tangra Yumco basins remains positive under ice-free conditions. These results highlight the benefits of linking hydrological modeling with atmospheric-model output and satellite-derived data, and the presented approach can be readily transferred to other data-scarce closed lake basins, opening new

  8. Glacier Photograph Collection

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Glacier Photograph Collection is a database of photographs of glaciers from around the world, some dating back to the mid-1850's, that provide an historical...

  9. Can the snowline be used as an indicator of the equilibrium line and mass balance for glaciers in the outer tropics ?

    OpenAIRE

    Rabatel, A.; Bermejo, A.; Loarte, E.; Soruco, A.; Gomez, J.; Leonardini, G.; Vincent, C.; Sicart, Jean-Emmanuel

    2012-01-01

    Because the glacier snowline is easy to identify on optical satellite images and because in certain conditions it can be used as an indicator of the equilibrium line, it may be a relevant parameter for the study of the relationships between climate and glaciers. Although several studies have shown that the snowline altitude (SLA) at the end of the hydrological year is a good indicator of the equilibrium-line altitude (ELA) for mid-latitude glaciers, such a relationship remains conjectural for...

  10. Modelling ice-cliff backwasting on a debris-covered glacier in the Nepalese Himalaya

    NARCIS (Netherlands)

    Steiner, Jakob F.; Pellicciotti, Francesca; Buri, Pascal; Miles, Evan S.; Immerzeel, Walter W.|info:eu-repo/dai/nl/290472113; Reid, Tim D.

    2015-01-01

    Ice cliffs have been identified as a reason for higher ablation rates on debris-covered glaciers than are implied by the insulation effects of the debris. This study aims to improve our understanding of cliff backwasting, and the role of radiative fluxes in particular. An energy-balance model is

  11. Reassessment of Colombia's tropical glaciers retreat rates: are they bound to disappear during the 2010–2020 decade?

    Directory of Open Access Journals (Sweden)

    G. Poveda

    2009-12-01

    Full Text Available Clear-cut evidences of global environmental change in Colombia are discussed for diverse hydro-climatic records, and illustrated herein for increasing minimum temperature and decreasing annual maximum river flows records. As a consequence, eight tropical glaciers disappeared from the Colombian Andes during the 20th century, and the remaining six have experienced alarming retreat rates during the last decade. Here we report an updated estimation of retreat rates in the six remaining glacierized mountain ranges of Colombia for the period 1987–2007, using Landsat TM and TM+ imagery. Analyses are performed using detailed pre-processing, processing and post-processing satellite imagery techniques. Alarming retreat rates are confirmed in the studied glaciers, with an overall area shrinkage from 60 km2 in 2002, to 55.4 km2 in 2003, to less than 45 km2 in 2007. Assuming such linear loss rate (~3 km2 per year, for the near and medium term, the total collapse of the Colombian glaciers can be foreseen by 2022, but diverse physical mechanisms discussed herein would exacerbate the shrinkage processes, thus prompting us to forecast a much earlier deadline by the late 2010–2020 decade, long before the 100 years foreseen by the 2007 IPCC Fourth Assessment Report. This forecast demands detailed monitoring studies of mass and energy balances. Our updated estimations of Colombia's glacier retreat rates posse serious challenges for highly valuable ecosystem services, including water supply of several large cities and hundreds of rural settlements along the Colombian Andes, but also for cheap and renewable hydropower generation which provides 80% of Colombia's demand. Also, the identified changes threaten the survivability of unique and fragile ecosystems like paramos and cloud forests, in turn contributing to exacerbate social unrest and ongoing environmental problems in the tropical Andes which have been

  12. Surge of a Complex Glacier System - The Current Surge of the Bering-Bagley Glacier System, Alaska

    Science.gov (United States)

    Herzfeld, U. C.; McDonald, B.; Trantow, T.; Hale, G.; Stachura, M.; Weltman, A.; Sears, T.

    2013-12-01

    Understanding fast glacier flow and glacial accelerations is important for understanding changes in the cryosphere and ultimately in sea level. Surge-type glaciers are one of four types of fast-flowing glaciers --- the other three being continuously fast-flowing glaciers, fjord glaciers and ice streams --- and the one that has seen the least amount of research. The Bering-Bagley Glacier System, Alaska, the largest glacier system in North America, surged in 2011 and 2012. Velocities decreased towards the end of 2011, while the surge kinematics continued to expand. A new surge phase started in summer and fall 2012. In this paper, we report results from airborne observations collected in September 2011, June/July and September/October 2012 and in 2013. Airborne observations include simultaneously collected laser altimeter data, videographic data, GPS data and photographic data and are complemented by satellite data analysis. Methods range from classic interpretation of imagery to analysis and classification of laser altimeter data and connectionist (neural-net) geostatistical classification of concurrent airborne imagery. Results focus on the characteristics of surge progression in a large and complex glacier system (as opposed to a small glacier with relatively simple geometry). We evaluate changes in surface elevations including mass transfer and sudden drawdowns, crevasse types, accelerations and changes in the supra-glacial and englacial hydrologic system. Supraglacial water in Bering Glacier during Surge, July 2012 Airborne laser altimeter profile across major rift in central Bering Glacier, Sept 2011

  13. Glaciers and society

    DEFF Research Database (Denmark)

    Gagné, Karine; Rasmussen, Mattias Borg; Orlove, Ben

    2014-01-01

    As icons of a world set in motion by human action, glaciers are often highlighted as quintessential evidences of global climate change. Although there is a general agreement among scientists that glaciers around the world are receding, much of the discussions on the subject tend to be oriented...... true when esthetic and economic values are assigned to glaciers. Real and perceived changes in the form, reach and out-flow of water impact the local populations, and shape the kinds of action undertaken by communities, local actors, state authorities, and international organizations. The paper...

  14. Comparison of the meteorology and surface energy balance at Storbreen and Midtdalsbreen, two glaciers in southern Norway

    Directory of Open Access Journals (Sweden)

    R. H. Giesen

    2009-03-01

    Full Text Available We compare 5 years of meteorological records from automatic weather stations (AWSs on Storbreen and Midtdalsbreen, two glaciers in southern Norway, located approximately 120 km apart. The records are obtained from identical AWSs with an altitude difference of 120 m and cover the period September 2001 to September 2006. Air temperature at the AWS locations is found to be highly correlated, even with the seasonal cycle removed. The most striking difference between the two sites is the difference in wind climate. Midtdalsbreen is much more under influence of the large-scale circulation with wind speeds on average a factor 1.75 higher. On Storbreen, weaker katabatic winds are dominant. The main melt season is from May to September at both locations. During the melt season, incoming and net solar radiation are larger on Midtdalsbreen, whereas incoming and net longwave radiation are larger on Storbreen, primarily caused by thicker clouds on the latter. The turbulent fluxes are a factor 1.7 larger on Midtdalsbreen, mainly due to the higher wind speeds. Inter-daily fluctuations in the surface energy fluxes are very similar at the AWS sites. On average, melt energy is a factor 1.3 larger on Midtdalsbreen, a result of both larger net radiation and larger turbulent fluxes. The relative contribution of net radiation to surface melt is larger on Storbreen (76% than on Midtdalsbreen (66%. As winter snow depth at the two locations is comparable in most years, the larger amount of melt energy results in an earlier disappearance of the snowpack on Midtdalsbreen and 70% more ice melt than on Storbreen. We compare the relative and absolute values of the energy fluxes on Storbreen and Midtdalsbreen with reported values for glaciers at similar latitudes. Furthermore, a comparison is made with meteorological variables measured at two nearby weather stations, showing that on-site measurements are essential for an accurate calculation of the surface energy balance and

  15. After the Earthquake: Impacts of Seismic Snow and Ice Redistribution in Langtang Valley, Nepal, on Glacier Mass Balances and Hydrological Regimes

    Science.gov (United States)

    Shea, J. M.; Ragettli, S.; Immerzeel, W.; Pellicciotti, F.; Miles, E. S.; Steiner, J. F.; Buri, P.; Kraaijenbrink, P. D. A.

    2015-12-01

    The magnitude 7.8 Gorkha Earthquake that struck Nepal on 25 April 2015 resulted in a catastrophic loss of life and property, and had major impacts in high mountain areas. The earthquake resulted in a number of massive ice avalanches in Langtang Valley that destroyed entire villages and killed over 300 people. We first conduct a remote sensing analysis of the entire catchment, and attempt to quantify the volumes of snow and ice redistributed through high-resolution optical imagery, thermal imagery, and DEM differencing. Where data are available we examine the impact on the surface mass balances of four major glaciers (Lirung, Shalbachaum, Langtang and Langshisha). Finally, we use the physically-based and fully distributed TOPKAPI model to simulate the impacts of the co-seismic snow and ice redistribution on the hydrology of the Langtang River.

  16. Three Decades of Volume Change of a Small Greenlandic Glacier Using Ground Penetrating Radar, Structure from Motion, and Aerial Photogrammetry

    DEFF Research Database (Denmark)

    Marcer, M.; Stentoft, Peter Alexander; Bjerre, Elisa

    2017-01-01

    Glaciers in the Arctic are losing mass at an increasing rate. Here we use surface topography derived from Structure from Motion (SfM) and ice volume from ground penetrating radar (GPR) to describe the 2014 state of Aqqutikitsoq glacier (2.85 km) on Greenland's west coast. A photogrammetrically...... derived 1985 digital elevation model (DEM) was subtracted from a 2014 DEM obtained using land-based SfM to calculate geodetic glacier mass balance. Furthermore, a detailed 2014 ground penetrating radar survey was performed to assess ice volume. From 1985 to 2014, the glacier has lost 49.8 ± 9.4 10 m...... aerial photography. To address this issue, surface elevation in low contrast areas was measured manually at point locations and interpolated using a universal kriging approach. We conclude that ground-based SfM is well suited to establish high-quality DEMs of smaller glaciers. Provided favorable...

  17. An eddy covariance system to characterize the atmospheric surface layer and turbulent latent heat fluxes over a debris-covered Himalayan glacier.

    Science.gov (United States)

    Litt, Maxime; Steiner, Jakob F.; Stigter, Emmy E.; Immerzeel, Walter; Shea, Joseph Michael

    2017-04-01

    Over debris-covered glaciers, water content variations in the debris layer can drive significant changes in its thermal conductivity and significantly impact melt rates. Since sublimation and evaporation are favoured in high-altitude conditions, e.g., low atmospheric pressure and high wind speeds, they are expected to strongly influence the water balance of the debris-layer. Dedicated latent heat fluxes measurements at the debris surface are essential to characterize the debris heat conductivity in order to assess underlying ice melt. Furthermore, the contribution of the turbulent fluxes in the surface energy balance over debris covered glacier remains uncertain since they are generally evaluated through similarity methods which might not be valid in complex terrain. We present the first results of a 15-day eddy-covariance experiment installed at the end of the monsoon (September-October) on a 3-m tower above the debris-covered Lirung glacier in Nepal. The tower also included measurements of the 4 radiation components. The eddy covariance measurements allowed for the characterization of the turbulence in the atmospheric surface layer, as well as the direct measurements of evaporation, sublimation and turbulent sensible heat fluxes. The experiment helps us to evaluate the contribution of turbulent fluxes to the surface energy balance over this debris-covered glacier, through a precise characterization of the overlying turbulent atmospheric surface layer. It also helps to study the role of the debris-layer water content changes through evaporation and sublimation and its feedback on heat conduction in this layer. The large observed turbulent fluxes play a significant role in the energy balance at the debris surface and significantly influence debris moisture, conductivity and subsequently underlying ice melt.

  18. Modelling glacier-bed overdeepenings and possible future lakes for the glaciers in the Himalaya-Karakoram region

    DEFF Research Database (Denmark)

    Linsbauer, A.; Frey, H.; Haeberli, W.

    2016-01-01

    Surface digital elevation models (DEMs) and slope-related estimates of glacier thickness enable modelling of glacier-bed topographies over large ice-covered areas. Due to the erosive power of glaciers, such bed topographies can contain numerous overdeepenings, which when exposed following glacier...... retreat may fill with water and form new lakes. In this study, the bed overdeepenings for ∼28000 glaciers (40 775km2) of the Himalaya-Karakoram region are modelled using GlabTop2 (Glacier Bed Topography model version 2), in which ice thickness is inferred from surface slope by parameterizing basal shear...... stress as a function of elevation range for each glacier. The modelled ice thicknesses are uncertain (±30%), but spatial patterns of ice thickness and bed elevation primarily depend on surface slopes as derived from the DEM and, hence, are more robust. About 16 000 overdeepenings larger than 104m2 were...

  19. Seasonal variability of organic matter composition in an Alaskan glacier outflow: insights into glacier carbon sources

    International Nuclear Information System (INIS)

    Spencer, Robert G M; Vermilyea, Andrew; Fellman, Jason; Hood, Eran; Raymond, Peter; Stubbins, Aron; Scott, Durelle

    2014-01-01

    Glacier ecosystems are a significant source of bioavailable, yet ancient dissolved organic carbon (DOC). Characterizing DOC in Mendenhall Glacier outflow (southeast Alaska) we document a seasonal persistence to the radiocarbon-depleted signature of DOC, highlighting ancient DOC as a ubiquitous feature of glacier outflow. We observed no systematic depletion in Δ 14 C-DOC with increasing discharge during the melt season that would suggest mobilization of an aged subglacial carbon store. However, DOC concentration, δ 13 C-DOC, Δ 14 C-DOC and fluorescence signatures appear to have been influenced by runoff from vegetated hillslopes above the glacier during onset and senescence of melt. In the peak glacier melt period, the Δ 14 C-DOC of stream samples at the outflow (−181.7 to −355.3‰) was comparable to the Δ 14 C-DOC for snow samples from the accumulation zone (−207.2 to −390.9‰), suggesting that ancient DOC from the glacier surface is exported in glacier runoff. The pre-aged DOC in glacier snow and runoff is consistent with contributions from fossil fuel combustion sources similar to those documented previously in ice cores and thus provides evidence for anthropogenic perturbation of the carbon cycle. Overall, our results emphasize the need to further characterize DOC inputs to glacier ecosystems, particularly in light of predicted changes in glacier mass and runoff in the coming century. (papers)

  20. Sediment transport drives tidewater glacier periodicity.

    Science.gov (United States)

    Brinkerhoff, Douglas; Truffer, Martin; Aschwanden, Andy

    2017-07-21

    Most of Earth's glaciers are retreating, but some tidewater glaciers are advancing despite increasing temperatures and contrary to their neighbors. This can be explained by the coupling of ice and sediment dynamics: a shoal forms at the glacier terminus, reducing ice discharge and causing advance towards an unstable configuration followed by abrupt retreat, in a process known as the tidewater glacier cycle. Here we use a numerical model calibrated with observations to show that interactions between ice flow, glacial erosion, and sediment transport drive these cycles, which occur independent of climate variations. Water availability controls cycle period and amplitude, and enhanced melt from future warming could trigger advance even in glaciers that are steady or retreating, complicating interpretations of glacier response to climate change. The resulting shifts in sediment and meltwater delivery from changes in glacier configuration may impact interpretations of marine sediments, fjord geochemistry, and marine ecosystems.The reason some of the Earth's tidewater glaciers are advancing despite increasing temperatures is not entirely clear. Here, using a numerical model that simulates both ice and sediment dynamics, the authors show that internal dynamics drive glacier variability independent of climate.

  1. Surface lowering of the debris-covered area of Kanchenjunga Glacier in the eastern Nepal Himalaya since 1975, as revealed by Hexagon KH-9 and ALOS satellite observations

    Science.gov (United States)

    Lamsal, Damodar; Fujita, Koji; Sakai, Akiko

    2017-12-01

    This study presents the geodetic mass balance of Kanchenjunga Glacier, one of the largest debris-covered glaciers in the easternmost Nepal Himalaya, which possesses a negative mass balance of -0.18 ± 0.17 m w.e. a-1 for the 1975-2010 study period, estimated using digital elevation models (DEMs) generated from Hexagon KH-9 and ALOS PRISM stereo images. Accurate DEMs, with a relative uncertainty of ±5.5 m, were generated from the intensive and manual editing of triangulated irregular network (TIN) models on a stereo MirrorTM/3D Monitor. The glacier ice-flow velocity field was also calculated using a feature-tracking method that was applied to two ALOS orthoimages taken in 2010. The elevation differences between the two DEMs highlight considerable surface lowering across the debris-covered area, and a slight thickening in the accumulation area of Kanchenjunga Glacier between 1975 and 2010. The magnitude and gradient of surface lowering are similar among the six glacier tributaries, even though they are situated at different elevations, which may reflect variations in the ice-flow velocity field. The pattern of surface lowering correlates well with the ice-flow velocity field over the debris-covered portion of the main tributary, suggesting that the glacier dynamics significantly affect surface lowering by altering the emergence velocity along the glacier, particularly in the compressive ablation area. Surface-lowering patterns partially correspond to the supraglacial pond area fraction of the glacier, with enhanced surface lowering observed in areas that possess a larger pond area fraction. These findings support the hypothesis that supraglacial ponds may intensify ice wastage and play a key role in the heterogeneous surface lowering of debris-covered glaciers. The estimated mass loss of Kanchenjunga Glacier is moderate compared with other debris-covered glaciers in neighboring Himalayan regions, which may be due to the lower pond area fraction of Kanchenjunga

  2. Controls on the inland propagation of terminus-driven speedups at Helheim Glacier, SE Greenland

    Science.gov (United States)

    Kehrl, L. M.; Joughin, I. R.; Smith, B.

    2017-12-01

    Tidewater glaciers are very sensitive to changes in the stress balance near their termini. When submarine melt or iceberg calving reduce lateral or basal resistance near the terminus, the glacier typically must speed up to produce the additional longitudinal and lateral stress gradients necessary to restore stress balance. Once speedup near the terminus is initiated, it can propagate inland through longitudinal stress coupling, thinning-induced changes in the effective pressure, and/or a steepening of surface slopes. The controls on these processes and the timing and spatial extent of the inland response, however, remain poorly understood. In this study, we use a three-dimensional, Full Stokes model (Elmer/Ice) to investigate the effects of different ice rheology and basal sliding parameterizations on the inland propagation of speedups at Helheim Glacier, SE Greenland. Using satellite observations of terminus position, we force the model with the observed 3-km, 2013/14 retreat history and allow the model to evolve in response to this retreat. We run a set of simulations that vary the ice rheology (constant or spatially variable ice temperature) and basal sliding law (linear, nonlinear, and effective-pressure-dependent). Our results show that the choice of parameterizations affect the timing and spatial extent of the inland response, but that the range of acceptable parameters can be constrained by comparing the model results to satellite observations of surface velocity and elevation.

  3. Combination of UAV and terrestrial photogrammetry to assess rapid glacier evolution and map glacier hazards

    Science.gov (United States)

    Fugazza, Davide; Scaioni, Marco; Corti, Manuel; D'Agata, Carlo; Azzoni, Roberto Sergio; Cernuschi, Massimo; Smiraglia, Claudio; Diolaiuti, Guglielmina Adele

    2018-04-01

    Tourists and hikers visiting glaciers all year round face hazards such as sudden terminus collapses, typical of such a dynamically evolving environment. In this study, we analyzed the potential of different survey techniques to analyze hazards of the Forni Glacier, an important geosite located in Stelvio Park (Italian Alps). We carried out surveys in the 2016 ablation season and compared point clouds generated from an unmanned aerial vehicle (UAV) survey, close-range photogrammetry and terrestrial laser scanning (TLS). To investigate the evolution of glacier hazards and evaluate the glacier thinning rate, we also used UAV data collected in 2014 and a digital elevation model (DEM) created from an aerial photogrammetric survey of 2007. We found that the integration between terrestrial and UAV photogrammetry is ideal for mapping hazards related to the glacier collapse, while TLS is affected by occlusions and is logistically complex in glacial terrain. Photogrammetric techniques can therefore replace TLS for glacier studies and UAV-based DEMs hold potential for becoming a standard tool in the investigation of glacier thickness changes. Based on our data sets, an increase in the size of collapses was found over the study period, and the glacier thinning rates went from 4.55 ± 0.24 m a-1 between 2007 and 2014 to 5.20 ± 1.11 m a-1 between 2014 and 2016.

  4. A new climate and glacier baseline for the Cordillera Vilcanota, Peru, reduces critical information gaps

    Science.gov (United States)

    Salzmann, Nadine; Huggel, Christian; Rohrer, Mario; Silverio, Walter; Mark, Bryan G.; Cochachin, Alejo; Suarez, Wilson; Giráldez, Claudia

    2013-04-01

    The Cordillera Vilcanota in the Southern Peruvian Andes is the second largest ice-covered Cordillera in Peru (after the Cordillera Blanca) and serves for the Cusco Region as a temporary water storage for fresh-water and hydropower generation and irrigation. Despite the Cordillera Vilcanota's size and socio-economic relevance, there has so far no comprehensive baseline data been available for climate and glacier evolution. In the framework of two jointly launched -Peruvian-Swiss climate change impact and adaptation programs (Climate Change Adaptation Programm - PACC; Glacier Change Adaptation and Desaster Risk Reduction Programm - Glacier 513) significant efforts have been undertaken and are on the way to create a climate, glacier and hazard baseline for the Cordillera Vilcanota. Because of the remoteness of the area and the scarcity of available data, multiple sources such as climate stations, climate reanalysis and satellite data have been collected, processed and analyzed. Based on our data, we found only marginal glacier changes between 1962 and 1985, but a massive ice loss since 1985 (about 30% of area and about 45% of volume). These high numbers corroborate studies from other glacierized cordilleras in Peru. The climate data show overall a moderate increase in air temperature, and mostly weak and not significant trends for precipitation sums, which probably cannot fully explain the observed substantial ice loss. The likely increase of specific humidity in the upper troposphere, where the glaciers are located, probably played a major role in the observed massive of the Cordillera Vilcanota over the past decades. The mass balance measurements initiated in 2010 on two glaciers of the Cordillera Vilcanota, and the climate station installed in 2011 on one of the glaciers, preliminarily indicate that ice loss (in water equivalent) is clearly lower that in the Cordillera Blanca. In the near future the data will provide new and important insights on climate and

  5. Three Decades of Volume Change of a Small Greenlandic Glacier Using Ground Penetrating Radar, Structure from Motion, and Aerial Photogrammetry

    DEFF Research Database (Denmark)

    Marcer, M.; Stentoft, Peter Alexander; Bjerre, Elisa

    2017-01-01

    of ice, corresponding to roughly a quarter of its 1985 volume (148.6 ± 47.6 10 m) and a thinning rate of 0.60 ± 0.11 m a. The computations are challenged by a relatively large fraction of the 1985 DEM (∼50% of the glacier surface) being deemed unreliable owing to low contrast (snow cover) in the 1985......Glaciers in the Arctic are losing mass at an increasing rate. Here we use surface topography derived from Structure from Motion (SfM) and ice volume from ground penetrating radar (GPR) to describe the 2014 state of Aqqutikitsoq glacier (2.85 km) on Greenland's west coast. A photogrammetrically...... derived 1985 digital elevation model (DEM) was subtracted from a 2014 DEM obtained using land-based SfM to calculate geodetic glacier mass balance. Furthermore, a detailed 2014 ground penetrating radar survey was performed to assess ice volume. From 1985 to 2014, the glacier has lost 49.8 ± 9.4 10 m...

  6. Brief communication: Getting Greenland's glaciers right - a new data set of all official Greenlandic glacier names

    Science.gov (United States)

    Bjørk, A. A.; Kruse, L. M.; Michaelsen, P. B.

    2015-12-01

    Place names in Greenland can be difficult to get right, as they are a mix of Greenlandic, Danish, and other foreign languages. In addition, orthographies have changed over time. With this new data set, we give the researcher working with Greenlandic glaciers the proper tool to find the correct name for glaciers and ice caps in Greenland and to locate glaciers described in the historic literature with the old Greenlandic orthography. The data set contains information on the names of 733 glaciers, 285 originating from the Greenland Ice Sheet (GrIS) and 448 from local glaciers and ice caps (LGICs).

  7. Fuzzy Cognitive Maps for Glacier Hazards Assessment: Application to Predicting the Potential for Glacier Lake Outbursts

    Science.gov (United States)

    Furfaro, R.; Kargel, J. S.; Fink, W.; Bishop, M. P.

    2010-12-01

    Glaciers and ice sheets are among the largest unstable parts of the solid Earth. Generally, glaciers are devoid of resources (other than water), are dangerous, are unstable and no infrastructure is normally built directly on their surfaces. Areas down valley from large alpine glaciers are also commonly unstable due to landslide potential of moraines, debris flows, snow avalanches, outburst floods from glacier lakes, and other dynamical alpine processes; yet there exists much development and human occupation of some disaster-prone areas. Satellite remote sensing can be extremely effective in providing cost-effective and time- critical information. Space-based imagery can be used to monitor glacier outlines and their lakes, including processes such as iceberg calving and debris accumulation, as well as changing thicknesses and flow speeds. Such images can also be used to make preliminary identifications of specific hazardous spots and allows preliminary assessment of possible modes of future disaster occurrence. Autonomous assessment of glacier conditions and their potential for hazards would present a major advance and permit systematized analysis of more data than humans can assess. This technical leap will require the design and implementation of Artificial Intelligence (AI) algorithms specifically designed to mimic glacier experts’ reasoning. Here, we introduce the theory of Fuzzy Cognitive Maps (FCM) as an AI tool for predicting and assessing natural hazards in alpine glacier environments. FCM techniques are employed to represent expert knowledge of glaciers physical processes. A cognitive model embedded in a fuzzy logic framework is constructed via the synergistic interaction between glaciologists and AI experts. To verify the effectiveness of the proposed AI methodology as applied to predicting hazards in glacier environments, we designed and implemented a FCM that addresses the challenging problem of autonomously assessing the Glacier Lake Outburst Flow

  8. The current state of glaciers within the Koryak Highland and assessment of their development by the middle of this century

    Directory of Open Access Journals (Sweden)

    M. D. Ananicheva

    2012-01-01

    Full Text Available The Koryak Upland, located in Russian Far East, has so far been poorly studied in terms of glaciology. The information contained in the USSR Glacier Inventory (1982 was obtained by analysis of topographic maps and aerial photography. On the publication date, the Inventory of Koryak Upland included 715 glaciers. To study of the current state of Koryak glaciers, we used satellite imageries – Landsat, Terra /Aqua (EOS AM-1 and ASTER. Deciphering the scenes showed that a significant portion of the glaciers melted away since the mid-1970's until now. We have found only 237 glaciers. Some glaciers are appeared to be rock glaciers, filled with detrital material, cemented by ice in a single body. They might be taken for real glaciers while categorization. The analysis of the retreat (reduction in area of Koryak glaciers by groups with the same morphological type and the same aspect was conducted. The total retreat of the glaciers of this region varied from 40 (for those measured in situ to 70% (mean total as compared to aerial photography surveys (1950. This is the most intense reduction among the studied glacier systems of the Russian Subarctic. It can be explained by the changes in atmospheric circulation due to climate change, the Koryak Upland dries out while the increasing of annual air temperatures. Significant reduction of the glacier area was an incentive for us to undertake a work to assess the evolution of the glaciers in the near future. We used a GCM – ECHAM5 (B1 as the climatic scenario. The projection method has got further development: we have estimated the evolution of glacier systems in which the prevailing type is corries (relatively small circus glacier. The results show a diverse picture of glacier reduction by area, but in general the glacierization will not disappear for the period 2049–2060, reducing the extent by only 17% of the contemporary state.

  9. Measuring Surface Deformation in Glacier Retreated Areas Based on Ps-Insar - Geladandong Glacier as a Case Study

    Science.gov (United States)

    Mohamadi, B.; Balz, T.

    2018-04-01

    Glaciers are retreating in many parts of the world as a result of global warming. Many researchers consider Qinghai-Tibetan Plateau as a reference for climate change by measuring glaciers retreat on the plateau. This retreat resulted in some topographic changes in retreated areas, and in some cases can lead to geohazards as landslides, and rock avalanches, which is known in glacier retreated areas as paraglacial slope failure (PSF). In this study, Geladandong biggest and main glacier mass was selected to estimate surface deformation on its glacier retreated areas and define potential future PSF based on PS-InSAR technique. 56 ascending and 49 descending images were used to fulfill this aim. Geladandong glacier retreated areas were defined based on the maximum extent of the glacier in the little ice age. Results revealed a general uplift in the glacier retreated areas with velocity less than 5mm/year. Obvious surface motion was revealed in seven parts surround glacier retreated areas with high relative velocity reached ±60mm/year in some parts. Four parts were considered as PSF potential motion, and two of them showed potential damage for the main road in the study area in case of rock avalanche into recent glacier lakes that could result in glacier lake outburst flooding heading directly to the road. Finally, further analysis and field investigations are needed to define the main reasons for different types of deformation and estimate future risks of these types of surface motion in the Qinghai-Tibetan Plateau.

  10. Quantifying the Jakobshavn Effect: Jakobshavn Isbrae, Greenland, compared to Byrd Glacier, Antarctica

    Science.gov (United States)

    Hughes, T.; Sargent, A.; Fastook, J.; Purdon, K.; Li, J.; Yan, J.-B.; Gogineni, S.

    2014-04-01

    The Jakobshavn Effect is a series of positive feedback mechanisms that was first observed on Jakobshavn Isbrae, which drains the west-central part of the Greenland Ice Sheet and enters Jakobshavn Isfjord at 69°10'. These mechanisms fall into two categories, reductions of ice-bed coupling beneath an ice stream due to surface meltwater reaching the bed, and reductions in ice-shelf buttressing beyond an ice stream due to disintegration of a laterally confined and locally pinned ice shelf. These uncoupling and unbuttressing mechanisms have recently taken place for Byrd Glacier in Antarctica and Jakobshavn Isbrae in Greenland, respectively. For Byrd Glacier, no surface meltwater reaches the bed. That water is supplied by drainage of two large subglacial lakes where East Antarctic ice converges strongly on Byrd Glacier. Results from modeling both mechanisms are presented here. We find that the Jakobshavn Effect is not active for Byrd Glacier, but is active for Jakobshavn Isbrae, at least for now. Our treatment is holistic in the sense it provides continuity from sheet flow to stream flow to shelf flow. It relies primarily on a force balance, so our results cannot be used to predict long-term behavior of these ice streams. The treatment uses geometrical representations of gravitational and resisting forces that provide a visual understanding of these forces, without involving partial differential equations and continuum mechanics. The Jakobshavn Effect was proposed to facilitate terminations of glaciation cycles during the Quaternary Ice Age by collapsing marine parts of ice sheets. This is unlikely for the Antarctic and Greenland ice sheets, based on our results for Byrd Glacier and Jakobshavn Isbrae, without drastic climate warming in high polar latitudes. Warming would affect other Antarctic ice streams already weakly buttressed or unbuttressed by an ice shelf. Ross Ice Shelf would still protect Byrd Glacier.

  11. Some notes on the behaviour of tropical glaciers

    Directory of Open Access Journals (Sweden)

    1995-01-01

    en comparación con las condiciones existentes en los Alpes. Se establece la discusión sobre un modelo de gradiente vertical del balance de masa (VBG. Comparada con los glaciares de las latitudes medias, la ELA reacciona en general de una manera menos sensible, pero responde más fuertemente a cambios de temperaturas. Las lenguas así como los glaciares pequeños reaccionan de una manera sensible a una ablación creciente. La respuesta a las influencias dinámicas de largo plazo es poco significativa. The fact of a relatively immediate inference of tropical glacier fluctuations on a climate originating from relatively homogenous air masses makes glaciological investigations in the tropics particularly important. One peculiarity of tropical climate is the lack of any appreciable thermal seasonality. Under this general aspect, two characteristic features of the glacier - climate relationship, (a the sensitivity of the equilibrium line altitude (ELA on climatic perturbations and (b the corresponding reaction of glacier tongues are discussed in comparison to the Alpine conditions. The discussion is based on a modeled vertical budget gradient (VBG. Compared to midlatitude glaciers, the ELA reacts generally less sensitively, but more strongly if forced by a change in temperature. The tongues as well as small glaciers react sensitively on increasing ablation. The reaction on long term dynamic forcing is weak.

  12. On the influence of debris in glacier melt modelling: a new temperature-index model accounting for the debris thickness feedback

    Science.gov (United States)

    Carenzo, Marco; Mabillard, Johan; Pellicciotti, Francesca; Reid, Tim; Brock, Ben; Burlando, Paolo

    2013-04-01

    The increase of rockfalls from the surrounding slopes and of englacial melt-out material has led to an increase of the debris cover extent on Alpine glaciers. In recent years, distributed debris energy-balance models have been developed to account for the melt rate enhancing/reduction due to a thin/thick debris layer, respectively. However, such models require a large amount of input data that are not often available, especially in remote mountain areas such as the Himalaya. Some of the input data such as wind or temperature are also of difficult extrapolation from station measurements. Due to their lower data requirement, empirical models have been used in glacier melt modelling. However, they generally simplify the debris effect by using a single melt-reduction factor which does not account for the influence of debris thickness on melt. In this paper, we present a new temperature-index model accounting for the debris thickness feedback in the computation of melt rates at the debris-ice interface. The empirical parameters (temperature factor, shortwave radiation factor, and lag factor accounting for the energy transfer through the debris layer) are optimized at the point scale for several debris thicknesses against melt rates simulated by a physically-based debris energy balance model. The latter has been validated against ablation stake readings and surface temperature measurements. Each parameter is then related to a plausible set of debris thickness values to provide a general and transferable parameterization. The new model is developed on Miage Glacier, Italy, a debris cover glacier in which the ablation area is mantled in near-continuous layer of rock. Subsequently, its transferability is tested on Haut Glacier d'Arolla, Switzerland, where debris is thinner and its extension has been seen to expand in the last decades. The results show that the performance of the new debris temperature-index model (DETI) in simulating the glacier melt rate at the point scale

  13. Late Quaternary glacier sensitivity to temperature and precipitation distribution in the Southern Alps of New Zealand

    Energy Technology Data Exchange (ETDEWEB)

    Ann V. Rowan; Simon H. Brocklehurst; David M. Schultz; Mitchell A. Plummer; Leif S. Anderson; Neil F. Glasser

    2014-05-01

    Glaciers respond to climate variations and leave geomorphic evidence that represents an important terrestrial paleoclimate record. However, the accuracy of paleoclimate reconstructions from glacial geology is limited by the challenge of representing mountain meteorology in numerical models. Precipitation is usually treated in a simple manner and yet represents difficult-to-characterize variables such as amount, distribution, and phase. Furthermore, precipitation distributions during a glacial probably differed from present-day interglacial patterns. We applied two models to investigate glacier sensitivity to temperature and precipitation in the eastern Southern Alps of New Zealand. A 2-D model was used to quantify variations in the length of the reconstructed glaciers resulting from plausible precipitation distributions compared to variations in length resulting from change in mean annual air temperature and precipitation amount. A 1-D model was used to quantify variations in length resulting from interannual climate variability. Assuming that present-day interglacial values represent precipitation distributions during the last glacial, a range of plausible present-day precipitation distributions resulted in uncertainty in the Last Glacial Maximum length of the Pukaki Glacier of 17.1?km (24%) and the Rakaia Glacier of 9.3?km (25%), corresponding to a 0.5°C difference in temperature. Smaller changes in glacier length resulted from a 50% decrease in precipitation amount from present-day values (-14% and -18%) and from a 50% increase in precipitation amount (5% and 9%). Our results demonstrate that precipitation distribution can produce considerable variation in simulated glacier extents and that reconstructions of paleoglaciers should include this uncertainty.

  14. Increased Melting of Glaciers during Cotopaxi volcano awakening in 2015

    Science.gov (United States)

    Ramon, Patricio; Vallejo, Silvia; Almeida, Marco; Gomez, Juan Pablo; Caceres, Bolivar

    2016-04-01

    observations made until the end of last year showed an increase of the phenomena already described. Thanks to the collaboration of the Military Geographic Institute of Ecuador (IGM), orthophotos of the volcano made on August 18 and then again on October 8, shows a decrease in the area covered by glaciers of about 0.49 km2 (annual projection of 3.51 km2), this value compared to the decrease of glacier areas since 1976, shows a very high rate of glacier melting, not explained exclusively by climate change phenomena. It is estimated that small volumes of magma reached surface levels through the volcano conduits causing increased circulation of hot fluids inside the edifice, which are apparently reaching the basal area of the glaciers and producing a major melting thereof. It is necessary to further investigate hazard due to the instability in the melting glaciers of Cotopaxi and their eventual collapse which could lead to greater secondary lahars.

  15. A database of worldwide glacier thickness observations

    DEFF Research Database (Denmark)

    Gärtner-Roer, I.; Naegeli, K.; Huss, M.

    2014-01-01

    One of the grand challenges in glacier research is to assess the total ice volume and its global distribution. Over the past few decades the compilation of a world glacier inventory has been well-advanced both in institutional set-up and in spatial coverage. The inventory is restricted to glacier...... the different estimation approaches. This initial database of glacier and ice caps thickness will hopefully be further enlarged and intensively used for a better understanding of the global glacier ice volume and its distribution....... surface observations. However, although thickness has been observed on many glaciers and ice caps around the globe, it has not yet been published in the shape of a readily available database. Here, we present a standardized database of glacier thickness observations compiled by an extensive literature...... review and from airborne data extracted from NASA's Operation IceBridge. This database contains ice thickness observations from roughly 1100 glaciers and ice caps including 550 glacier-wide estimates and 750,000 point observations. A comparison of these observational ice thicknesses with results from...

  16. Spatial Patterns of Soil Development, Methane Oxidation, and Methanotrophic Diversity along a Receding Glacier Forefield, Southeast Greenland

    DEFF Research Database (Denmark)

    Barcena, Teresa Gomez; Finster, Kai; Yde, Jacob Clement

    2011-01-01

    Increasing global annual temperature leads to massive loss of ice cover worldwide. Consequently, glaciers retreat and ice-covered areas become exposed. We report on a study from the Mittivakkat Gletscher forefield in Southeast Greenland with special focus on methanotrophy in relation to exposure ...

  17. MEASURING SURFACE DEFORMATION IN GLACIER RETREATED AREAS BASED ON PS-INSAR – GELADANDONG GLACIER AS A CASE STUDY

    Directory of Open Access Journals (Sweden)

    B. Mohamadi

    2018-04-01

    Full Text Available Glaciers are retreating in many parts of the world as a result of global warming. Many researchers consider Qinghai-Tibetan Plateau as a reference for climate change by measuring glaciers retreat on the plateau. This retreat resulted in some topographic changes in retreated areas, and in some cases can lead to geohazards as landslides, and rock avalanches, which is known in glacier retreated areas as paraglacial slope failure (PSF. In this study, Geladandong biggest and main glacier mass was selected to estimate surface deformation on its glacier retreated areas and define potential future PSF based on PS-InSAR technique. 56 ascending and 49 descending images were used to fulfill this aim. Geladandong glacier retreated areas were defined based on the maximum extent of the glacier in the little ice age. Results revealed a general uplift in the glacier retreated areas with velocity less than 5mm/year. Obvious surface motion was revealed in seven parts surround glacier retreated areas with high relative velocity reached ±60mm/year in some parts. Four parts were considered as PSF potential motion, and two of them showed potential damage for the main road in the study area in case of rock avalanche into recent glacier lakes that could result in glacier lake outburst flooding heading directly to the road. Finally, further analysis and field investigations are needed to define the main reasons for different types of deformation and estimate future risks of these types of surface motion in the Qinghai-Tibetan Plateau.

  18. The GLIMS Glacier Database

    Science.gov (United States)

    Raup, B. H.; Khalsa, S. S.; Armstrong, R.

    2007-12-01

    The Global Land Ice Measurements from Space (GLIMS) project has built a geospatial and temporal database of glacier data, composed of glacier outlines and various scalar attributes. These data are being derived primarily from satellite imagery, such as from ASTER and Landsat. Each "snapshot" of a glacier is from a specific time, and the database is designed to store multiple snapshots representative of different times. We have implemented two web-based interfaces to the database; one enables exploration of the data via interactive maps (web map server), while the other allows searches based on text-field constraints. The web map server is an Open Geospatial Consortium (OGC) compliant Web Map Server (WMS) and Web Feature Server (WFS). This means that other web sites can display glacier layers from our site over the Internet, or retrieve glacier features in vector format. All components of the system are implemented using Open Source software: Linux, PostgreSQL, PostGIS (geospatial extensions to the database), MapServer (WMS and WFS), and several supporting components such as Proj.4 (a geographic projection library) and PHP. These tools are robust and provide a flexible and powerful framework for web mapping applications. As a service to the GLIMS community, the database contains metadata on all ASTER imagery acquired over glacierized terrain. Reduced-resolution of the images (browse imagery) can be viewed either as a layer in the MapServer application, or overlaid on the virtual globe within Google Earth. The interactive map application allows the user to constrain by time what data appear on the map. For example, ASTER or glacier outlines from 2002 only, or from Autumn in any year, can be displayed. The system allows users to download their selected glacier data in a choice of formats. The results of a query based on spatial selection (using a mouse) or text-field constraints can be downloaded in any of these formats: ESRI shapefiles, KML (Google Earth), Map

  19. Rapid Late Holocene glacier fluctuations reconstructed from South Georgia lake sediments using novel analytical and numerical techniques

    Science.gov (United States)

    van der Bilt, Willem; Bakke, Jostein; Werner, Johannes; Paasche, Øyvind; Rosqvist, Gunhild

    2016-04-01

    The collapse of ice shelves, rapidly retreating glaciers and a dramatic recent temperature increase show that Southern Ocean climate is rapidly shifting. Also, instrumental and modelling data demonstrate transient interactions between oceanic and atmospheric forcings as well as climatic teleconnections with lower-latitude regions. Yet beyond the instrumental period, a lack of proxy climate timeseries impedes our understanding of Southern Ocean climate. Also, available records often lack the resolution and chronological control required to resolve rapid climate shifts like those observed at present. Alpine glaciers are found on most Southern Ocean islands and quickly respond to shifts in climate through changes in mass balance. Attendant changes in glacier size drive variations in the production of rock flour, the suspended product of glacial erosion. This climate response may be captured by downstream distal glacier-fed lakes, continuously recording glacier history. Sediment records from such lakes are considered prime sources for paleoclimate reconstructions. Here, we present the first reconstruction of Late Holocene glacier variability from the island of South Georgia. Using a toolbox of advanced physical, geochemical (XRF) and magnetic proxies, in combination with state-of-the-art numerical techniques, we fingerprinted a glacier signal from glacier-fed lake sediments. This lacustrine sediment signal was subsequently calibrated against mapped glacier extent with the help of geomorphological moraine evidence and remote sensing techniques. The outlined approach enabled us to robustly resolve variations of a complex glacier at sub-centennial timescales, while constraining the sedimentological imprint of other geomorphic catchment processes. From a paleoclimate perspective, our reconstruction reveals a dynamic Late Holocene climate, modulated by long-term shifts in regional circulation patterns. We also find evidence for rapid medieval glacier retreat as well as a

  20. Comparing Impact of Climate Science Data Visualized Graphically and in Artwork

    Science.gov (United States)

    Pelto, J. N.; Pelto, M. S.; Zemp, M.

    2017-12-01

    How significant is the form of scientific data presentation in determining impact on and extent of the audience? This question is investigated by comparing the response to scientific information presented as a traditional data graph versus presented in artwork. Most people will gloss over the graphs in a scientific paper, even though the figures tell an important story. The role as an artist is to engage people emotionally in that story using the uniquely articulate lens of art. The goal of communicating the climate science data in an art format was to reach a broader audience. We compare the social media and media analytics from publication of original glacier data sets in 2015 to that generated by the artwork of the same data also completed in 2015. Glacier annual mass balance, total snow accumulation minus total snow ablation, is recognized as the most sensitive and representative climate parameter observed and reported from glaciers. The World Glacier Monitoring Service (M.Zemp: WGMS) compiles and reports this data. As a key contributor (M. Pelto) to this record and reporter on this record for the annual BAMS State of the Climate (SOTC) report, it became apparent that the data set though a special focus and media highlight of the SOTC report could benefit from a new perspective. J. Pelto completed two pieces of art that feature glacier mass balance as a visually important story of climate change. Decrease in Glacier Mass Balance presents data of average mass balance for a group of North Cascade, WA glaciers 1984-2014. Climate Change Data illustrates global annual glacier mass balance, global sea level rise, and global temperatures. This image conveys how the data sets are linked, and presented together better communicates the fluctuations in Earth's dynamic systems. The numbers on the left y-axis depict quantities of glacial melt and sea level rise, and the suns across the horizon contain global temperature increase values, coinciding with the timeline on the x

  1. Glaciers in Patagonia: Controversy and prospects

    Science.gov (United States)

    Kargel, J. S.; Alho, P.; Buytaert, W.; Célleri, R.; Cogley, J. G.; Dussaillant, A.; Guido, Z.; Haeberli, W.; Harrison, S.; Leonard, G.; Maxwell, A.; Meier, C.; Poveda, G.; Reid, B.; Reynolds, J.; Rodríguez, C. A. Portocarrero; Romero, H.; Schneider, J.

    2012-05-01

    Lately, glaciers have been subjects of unceasing controversy. Current debate about planned hydroelectric facilities—a US7- to 10-billion megaproject—in a pristine glacierized area of Patagonia, Chile [Romero Toledo et al., 2009; Vince, 2010], has raised anew the matter of how glaciologists and global change experts can contribute their knowledge to civic debates on important issues. There has been greater respect for science in this controversy than in some previous debates over projects that pertain to glaciers, although valid economic motivations again could trump science and drive a solution to the energy supply problem before the associated safety and environmental problems are understood. The connection between glaciers and climate change—both anthropogenic and natural—is fundamental to glaciology and to glaciers' practical importance for water and hydropower resources, agriculture, tourism, mining, natural hazards, ecosystem conservation, and sea level [Buytaert et al., 2010; Glasser et al., 2011]. The conflict between conservation and development can be sharper in glacierized regions than almost anywhere else. Glaciers occur in spectacular natural landscapes, but they also supply prodigious exploitable meltwater.

  2. Balances de glaciares y clima en Bolivia y Perú: impacto de los eventos ENSO

    Directory of Open Access Journals (Sweden)

    1995-01-01

    Full Text Available BILANS GLACIAIRES ET CLIMAT EN BOLIVIE ET AU PÉROU : IMPACT DES ÉVÉNEMENTS ENSO. À partir d’une reconstruction faite pour le glacier de Zongo (Cordillère Royale, Bolivie avec des données hydrologiques et de l’application du modèle linéaire (Lliboutry sur les données des glaciers Yanamarey et Uruashraju (Cordillère Blanche, Pérou, on a pu disposer de séries de 15-20 ans de bilans de masse. En analysant parallèlement les données recueillies aux stations météorologiques proches, on met en évidence le rôle des températures dans la détermination de ces bilans. La variabilité des températures dépend de façon étroite des phénomènes ENSO (El Niño Southern Oscillation : pendant ces épisodes, les températures maximales et minimales augmentent sensiblement, ce qui affecte le terme ablation du bilan de masse. On vérifie sur ces séries de 20 ans que toutes les années ENSO sont associées à des bilans négatifs. Pendant la plupart des épisodes ENSO se produit au sud du Pérou et en Bolivie une réduction des précipitations, ce qui contribue à accentuer l’effet ENSO sur les bilans. Ces événements ont une grande influence sur l’évolution actuelle des glaciers andins, caractérisée par un recul rapide. La reconstrucción del balance hidrológico a partir de datos hidrométricos del glaciar de Zongo (Cordillera Real de Bolivia, así como la aplicación del modelo lineal (Lliboutry sobre los datos de balance de los glaciares Yanamarey y Uruashraju (Cordillera Blanca del Perú, ofrecen la posibilidad de disponer de series de 15-20 años de balance de masa. Analizando paralelamente los datos recogidos en estaciones meteorológicas cercanas, se puede evidenciar el rol de las temperaturas en la determinación de estos balances. La variabilidad de las temperaturas depende de una manera estrecha de los eventos ENSO (El Niño Southern Oscillation: durante estos eventos, las temperaturas máximas y mínimas aumentan

  3. Geodetic Mass Balance of the Northern Patagonian Icefield from 2000 to 2012 Using Two Independent Methods

    Directory of Open Access Journals (Sweden)

    Inés Dussaillant

    2018-02-01

    Full Text Available We compare two independent estimates of the rate of elevation change and geodetic mass balance of the Northern Patagonian Icefield (NPI between 2000 (3,856 km2 and 2012 (3,740 km2 from space-borne data. The first is obtained by differencing the Shuttle Radar Topography Mission (SRTM digital elevation model (DEM from February 2000 and a Satellite pour l'Observation de la Terre 5 (SPOT5 DEM from March 2012. The second is deduced by fitting pixel-based linear elevation trends over 118 DEMs calculated from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER stereo images acquired between 2000 and 2012. Both methods lead to similar and strongly negative icefield-wide mass balance rates of −1.02 ± 0.21 and −1.06 ± 0.14 m w.e. yr−1 respectively, which is in agreement with earlier studies. Contrasting glacier responses are observed, with individual glacier mass balance rates ranging from −0.15 to −2.30 m w.e. yr−1 (standard deviation = 0.49 m w.e. yr−1; N = 38. For individual glaciers, the two methods agree within error bars, except for small glaciers poorly sampled in the SPOT5 DEM due to clouds. Importantly, our study confirms the lack of penetration of the C-band SRTM radar signal into the NPI snow and firn except for a region above 2,900 m a.s.l. covering <1% of the total area. Ignoring penetration would bias the mass balance by only 0.005 m w.e. yr−1. A strong advantage of the ASTER method is that it relies only on freely available data and can thus be extended to other glacierized areas.

  4. Mass balance re-analysis of Findelengletscher, Switzerland; benefits of extensive snow accumulation measurements

    Directory of Open Access Journals (Sweden)

    Leo eSold

    2016-02-01

    Full Text Available A re-analysis is presented here of a 10-year mass balance series at Findelengletscher, a temperate mountain glacier in Switzerland. Calculating glacier-wide mass balance from the set of glaciological point balance observations using conventional approaches, such as the profile or contour method, resulted in significant deviations from the reference value given by the geodetic mass change over a five-year period. This is attributed to the sparsity of observations at high elevations and to the inability of the evaluation schemes to adequately estimate accumulation in unmeasured areas. However, measurements of winter mass balance were available for large parts of the study period from snow probings and density pits. Complementary surveys by helicopter-borne ground-penetrating radar (GPR were conducted in three consecutive years. The complete set of seasonal observations was assimilated using a distributed mass balance model. This model-based extrapolation revealed a substantial mass loss at Findelengletscher of -0.43m w.e. a^-1 between 2004 and 2014, while the loss was less pronounced for its former tributary, Adlergletscher (-0.30m w.e. a^-1. For both glaciers, the resulting time series were within the uncertainty bounds of the geodetic mass change. We show that the model benefited strongly from the ability to integrate seasonal observations. If no winter mass balance measurements were available and snow cover was represented by a linear precipitation gradient, the geodetic mass balance was not matched. If winter balance measurements by snow probings and snow density pits were taken into account, the model performance was substantially improved but still showed a significant bias relative to the geodetic mass change. Thus the excellent agreement of the model-based extrapolation with the geodetic mass change was owed to an adequate representation of winter accumulation distribution by means of extensive GPR measurements.

  5. The length of the glaciers in the world

    DEFF Research Database (Denmark)

    Machguth, Horst; Huss, M.; Huss, M.

    2014-01-01

    a fully automated method based on glacier surface slope, distance to the glacier margins and a set of trade-off functions. The method is developed for East Greenland, evaluated for the same area as well as for Alaska, and eventually applied to all ∼ 200000 glaciers around the globe. The evaluation...... highlights accurately calculated glacier length where DEM quality is good (East 10 Greenland) and limited precision on low quality DEMs (parts of Alaska). Measured length of very small glaciers is subject to a certain level of ambiguity. The global calculation shows that only about 1.5% of all glaciers...... are longer than 10km with Bering Glacier (Alaska/Canada) being the longest glacier in the world at a length of 196 km. Based on model output we derive global and regional area-length scaling laws. Differences among regional scaling parameters appear to be related to characteristics of topography and glacier...

  6. Estimation of snow and glacier melt contribution to Liddar stream in a mountainous catchment, western Himalaya: an isotopic approach.

    Science.gov (United States)

    Jeelani, Gh; Shah, Rouf A; Jacob, Noble; Deshpande, Rajendrakumar D

    2017-03-01

    Snow- and glacier-dominated catchments in the Himalayas are important sources of fresh water to more than one billion people. However, the contribution of snowmelt and glacier melt to stream flow remains largely unquantified in most parts of the Himalayas. We used environmental isotopes and geochemical tracers to determine the source water and flow paths of stream flow draining the snow- and glacier-dominated mountainous catchment of the western Himalaya. The study suggested that the stream flow in the spring season is dominated by the snowmelt released from low altitudes and becomes isotopically depleted as the melt season progressed. The tracer-based mixing models suggested that snowmelt contributed a significant proportion (5-66 %) to stream flow throughout the year with the maximum contribution in spring and summer seasons (from March to July). In 2013 a large and persistent snowpack contributed significantly (∼51 %) to stream flow in autumn (September and October) as well. The average annual contribution of glacier melt to stream flow is little (5 %). However, the monthly contribution of glacier melt to stream flow reaches up to 19 % in September during years of less persistent snow pack.

  7. California's Snow Gun and its implications for mass balance predictions under greenhouse warming

    Science.gov (United States)

    Howat, I.; Snyder, M.; Tulaczyk, S.; Sloan, L.

    2003-12-01

    Precipitation has received limited treatment in glacier and snowpack mass balance models, largely due to the poor resolution and confidence of precipitation predictions relative to temperature predictions derived from atmospheric models. Most snow and glacier mass balance models rely on statistical or lapse rate-based downscaling of general or regional circulation models (GCM's and RCM's), essentially decoupling sub-grid scale, orographically-driven evolution of atmospheric heat and moisture. Such models invariably predict large losses in the snow and ice volume under greenhouse warming. However, positive trends in the mass balance of glaciers in some warming maritime climates, as well as at high elevations of the Greenland Ice Sheet, suggest that increased precipitation may play an important role in snow- and glacier-climate interactions. Here, we present a half century of April snowpack data from the Sierra Nevada and Cascade mountains of California, USA. This high-density network of snow-course data indicates that a gain in winter snow accumulation at higher elevations has compensated loss in snow volume at lower elevations by over 50% and has led to glacier expansion on Mt. Shasta. These trends are concurrent with a region-wide increase in winter temperatures up to 2° C. They result from the orographic lifting and saturation of warmer, more humid air leading to increased precipitation at higher elevations. Previous studies have invoked such a "Snow Gun" effect to explain contemporaneous records of Tertiary ocean warming and rapid glacial expansion. A climatological context of the California's "snow gun" effect is elucidated by correlation between the elevation distribution of April SWE observations and the phase of the Pacific Decadal Oscillation and the El Nino Southern Oscillation, both controlling the heat and moisture delivered to the U.S. Pacific coast. The existence of a significant "Snow Gun" effect presents two challenges to snow and glacier mass

  8. The potential of Sentinel-2 for investigating glaciers and related natural hazards

    Science.gov (United States)

    Winsvold, Solveig H.; Altena, Bas; Kääb, Andreas

    2016-04-01

    compared to Landsat data. This improved resolution together with the high radiometric fidelity is also important for detecting and assessing glacier lakes and their changes over time. From S2 data it becomes possible to track velocities of smaller glaciers and even over seasonal scales, as we demonstrate for the European Alps, the Caucasus, New Zealand and Greenland. This opens up for the possibility of obtaining both summer and annual velocities from the same sensor.

  9. Application of terrestrial 'structure-from-motion' photogrammetry on a medium-size Arctic valley glacier: potential, accuracy and limitations

    Science.gov (United States)

    Hynek, Bernhard; Binder, Daniel; Boffi, Geo; Schöner, Wolfgang; Verhoeven, Geert

    2014-05-01

    Terrestrial photogrammetry was the standard method for mapping high mountain terrain in the early days of mountain cartography, until it was replaced by aerial photogrammetry and airborne laser scanning. Modern low-price digital single-lens reflex (DSLR) cameras and highly automatic and cheap digital computer vision software with automatic image matching and multiview-stereo routines suggest the rebirth of terrestrial photogrammetry, especially in remote regions, where airborne surveying methods are expensive due to high flight costs. Terrestrial photogrammetry and modern automated image matching is widely used in geodesy, however, its application in glaciology is still rare, especially for surveying ice bodies at the scale of some km², which is typical for valley glaciers. In August 2013 a terrestrial photogrammetric survey was carried out on Freya Glacier, a 6km² valley glacier next to Zackenberg Research Station in NE-Greenland, where a detailed glacier mass balance monitoring was initiated during the last IPY. Photos with a consumer grade digital camera (Nikon D7100) were taken from the ridges surrounding the glacier. To create a digital elevation model, the photos were processed with the software photoscan. A set of ~100 dGPS surveyed ground control points on the glacier surface was used to georeference and validate the final DEM. Aim of this study was to produce a high resolution and high accuracy DEM of the actual surface topography of the Freya glacier catchment with a novel approach and to explore the potential of modern low-cost terrestrial photogrammetry combined with state-of-the-art automated image matching and multiview-stereo routines for glacier monitoring and to communicate this powerful and cheap method within the environmental research and glacier monitoring community.

  10. Improving Understanding of Glacier Melt Contribution to High Asian River Discharge through Collaboration and Capacity Building with High Asian CHARIS Partner Institutions

    Science.gov (United States)

    Armstrong, Richard; Brodzik, Mary Jo; Armstrong, Betsy; Barrett, Andrew; Fetterer, Florence; Hill, Alice; Jodha Khalsa, Siri; Racoviteanu, Adina; Raup, Bruce; Rittger, Karl; Williams, Mark; Wilson, Alana; Ye, Qinghua

    2017-04-01

    The Contribution to High Asia Runoff from Ice & Snow (CHARIS) project uses remote sensing data combined with modeling from 2000 to the present to improve proportional estimates of melt from glaciers and seasonal snow surfaces. Based at the National Snow and Ice Data Center (NSIDC), University of Colorado, Boulder, USA, the CHARIS project objectives are twofold: 1) capacity-building efforts with CHARIS partners from eight High Asian countries to better forecast future availability and vulnerability of water resources in the region, and 2) improving our ability to systematically assess the role of glaciers and seasonal snow in the freshwater resources of High Asia. Capacity-building efforts include working with CHARIS partners from Bhutan, Nepal, India, Pakistan, Afghanistan, Kazakhstan, Kyrgyzstan and Tajikistan. Our capacity-building activities include training, data sharing, supporting fieldwork, graduate student education and infrastructure development. Because of the scarcity of in situ data in this High Asian region, we are using the wealth of available remote sensing data to characterize digital elevation, daily maps of fractional snow-cover, annual maps of glacier and permanent snow cover area and downscaled reanalysis temperature data in snow melt models to estimate the relative proportions of river runoff from glacierized and seasonally snow-covered surfaces. Current collaboration with Qinghua Ye, visiting scientist at NSIDC from the Institute of Tibetan Plateau Research, CAS, focuses on remote sensing methods to detect changes in the mountain cryosphere. Collaboration with our Asian partners supports the systematic analysis of the annual cycle of seasonal snow and glacier ice melt across the High Mountain Asia region. With our Asian partners, we have derived reciprocal benefits, learning from their specialized local knowledge and obtaining access to their in situ data. We expect that the improved understanding of runoff from snow and glacier surfaces will

  11. Glaciers in 21st Century Himalayan Geopolitics

    Science.gov (United States)

    Kargel, J. S.; Wessels, R.; Kieffer, H. H.

    2002-05-01

    Glaciers are ablating rapidly the world over. Nowhere are the rates of retreat and downwasting greater than in the Hindu Kush-Himalaya (HKH) region. It is estimated that over the next century, 40,000 square kilometers of present glacier area in the HKH region will become ice free. Most of this area is in major valleys and the lowest glaciated mountain passes. The existence and characteristics of glaciers have security impacts, and rapidly changing HKH glaciers have broad strategic implications: (1) Glaciers supply much of the fresh water and hydroelectric power in South and Central Asia, and so glaciers are valuable resources. (2) Shared economic interests in water, hydroelectricity, flood hazards, and habitat preservation are a force for common cause and reasoned international relations. (3) Glaciers and their high mountains generally pose a natural barrier tending to isolate people. Historically, they have hindered trade and intercultural exchanges and have protected against aggression. This has further promoted an independent spirit of the region's many ethnic groups. (4) Although glaciers are generally incompatible with human development and habitation, many of the HKH region's glaciers and their mountains have become sanctuaries and transit routes for militants. Siachen Glacier in Kashmir has for 17 years been "the world's highest battlefield," with tens of thousands of troops deployed on both sides of the India/Pakistan line of control. In 1999, that conflict threatened to trigger all-out warfare, and perhaps nuclear warfare. Other recent terrorist and military action has taken place on glaciers in Kyrgyzstan and Tajikistan. As terrorists are forced from easily controlled territories, many may tend to migrate toward the highest ground, where definitive encounters may take place in severe alpine glacial environments. This should be a major concern in Nepali security planning, where an Army offensive is attempting to reign in an increasingly robust and brutal

  12. Quantifying present and future glacier melt-water contribution to runoff in a central Himalayan river basin

    Directory of Open Access Journals (Sweden)

    M. Prasch

    2013-05-01

    Full Text Available Water supply of most lowland cultures heavily depends on rain and melt water from the upstream mountains. Especially melt-water release of alpine mountain ranges is usually attributed a pivotal role for the water supply of large downstream regions. Water scarcity is assumed as consequence of glacier shrinkage and possible disappearance due to global climate change (GCC, in particular for large parts of Central and Southeast Asia. In this paper, the application and validation of a coupled modeling approach with regional climate model (RCM outputs and a process-oriented glacier and hydrological model is presented for the central Himalayan Lhasa River basin despite scarce data availability. Current and possible future contributions of ice melt to runoff along the river network are spatially explicitly shown. Its role among the other water balance components is presented. Although glaciers have retreated and will continue to retreat according to the chosen climate scenarios, water availability is and will be primarily determined by monsoon precipitation and snowmelt. Ice melt from glaciers is and will be a minor runoff component in summer monsoon-dominated Himalayan river basins.

  13. Tracer-based identification of rock glacier thawing in a glacierized Alpine catchment

    Science.gov (United States)

    Engel, Michael; Penna, Daniele; Tirler, Werner; Comiti, Francesco

    2017-04-01

    Current warming in high mountains leads to increased melting of snow, glacier ice and permafrost. In particular rock glaciers, as a creeping form of mountain permafrost, may release contaminants such as heavy metals into the stream during intense melting periods in summer. This may have strong impacts on both water quantity and quality of fresh water resources but might also harm the aquatic fauna in mountain regions. In this context, the present study used stable isotopes of water and electrical conductivity (EC) combined with trace, major and minor elements to identify the influence of permafrost thawing on the water quality in the glacierized Solda catchment (130 km2) in South Tyrol (Italy). We carried out a monthly sampling of two springs fed by an active rock glacier at about 2600 m a.s.l. from July to October 2015. Furthermore, we took monthly water samples from different stream sections of the Solda River (1110 to m a.s.l.) from March to November 2015. Meteorological data were measured by an Automatic Weather Station at 2825 m a.s.l. of the Hydrographic Office (Autonomous Province of Bozen-Bolzano). First results show that water from the rock glacier springs and stream water fell along the global meteoric water line. Spring water was slightly more variable in isotopic ratio (δ2H: -91 to - 105 ) and less variable in dissolved solutes (EC: 380 to 611 μS/cm) than stream water (δ2H: -96 to - 107 ‰ and EC: 212 to 927 μS/cm). Both spring water and stream water showed a pronounced drop in EC during July and August, very likely induced by increased melt water dilution. In both water types, element concentrations of Ca and Mg were highest (up to 160 and 20 mg/l, respectively). In September, spring water showed higher concentrations in Cu, As, and Pb than stream water, indicating that these elements partly exceeded the concentration limit for drinking water. These observations highlight the important control, which rock glacier thawing may have on water quality

  14. Debris thickness patterns on debris-covered glaciers

    Science.gov (United States)

    Anderson, Leif S.; Anderson, Robert S.

    2018-06-01

    Many debris-covered glaciers have broadly similar debris thickness patterns: surface debris thickens and tends to transition from convex- to concave-up-down glacier. We explain this pattern using theory (analytical and numerical models) paired with empirical observations. Down glacier debris thickening results from the conveyor-belt-like nature of the glacier surface in the ablation zone (debris can typically only be added but not removed) and from the inevitable decline in ice surface velocity toward the terminus. Down-glacier thickening of debris leads to the reduction of sub-debris melt and debris emergence toward the terminus. Convex-up debris thickness patterns occur near the up-glacier end of debris covers where debris emergence dominates (ablation controlled). Concave-up debris thickness patterns occur toward glacier termini where declining surface velocities dominate (velocity controlled). A convex-concave debris thickness profile inevitably results from the transition between ablation-control and velocity-control down-glacier. Debris thickness patterns deviating from this longitudinal shape are most likely caused by changes in hillslope debris supply through time. By establishing this expected debris thickness pattern, the effects of climate change on debris cover can be better identified.

  15. GLACIERS OF THE KORYAK VOLCANO

    Directory of Open Access Journals (Sweden)

    T. M. Manevich

    2012-01-01

    Full Text Available The paper presents main glaciological characteristics of present-day glaciers located on the Koryaksky volcano. The results of fieldwork (2008–2009 and high-resolution satellite image analysis let us to specify and complete information on modern glacial complex of Koryaksky volcano. Now there are seven glaciers with total area 8.36 km2. Three of them advance, two are in stationary state and one degrades. Moreover, the paper describes the new crater glacier.

  16. Quantifying volume loss from ice cliffs on debris-covered glaciers using high-resolution terrestrial and aerial photogrammetry

    NARCIS (Netherlands)

    Brun, Fanny; Buri, Pascal; Miles, Evan S.; Wagnon, Patrick; Steiner, J.F.; Berthier, Etienne; Ragettli, S.; Kraaijenbrink, P.D.A.; Immerzeel, W.W.; Pellicciotti, Francesca

    Mass losses originating from supraglacial ice cliffs at the lower tongues of debris-covered glaciers are a potentially large component of the mass balance, but have rarely been quantified. In this study, we develop a method to estimate ice cliff volume losses based on high-resolution topographic

  17. A complex relationship between calving glaciers and climate

    Science.gov (United States)

    Post, A.; O'Neel, S.; Motyka, R.J.; Streveler, G.

    2011-01-01

    Many terrestrial glaciers are sensitive indicators of past and present climate change as atmospheric temperature and snowfall modulate glacier volume. However, climate interpretations based on glacier behavior require careful selection of representative glaciers, as was recently pointed out for surging and debris-covered glaciers, whose behavior often defies regional glacier response to climate [Yde and Paasche, 2010]. Tidewater calving glaciers (TWGs)mountain glaciers whose termini reach the sea and are generally grounded on the seaflooralso fall into the category of non-representative glaciers because the regional-scale asynchronous behavior of these glaciers clouds their complex relationship with climate. TWGs span the globe; they can be found both fringing ice sheets and in high-latitude regions of each hemisphere. TWGs are known to exhibit cyclic behavior, characterized by slow advance and rapid, unstable retreat, largely independent of short-term climate forcing. This so-called TWG cycle, first described by Post [1975], provides a solid foundation upon which modern investigations of TWG stability are built. Scientific understanding has developed rapidly as a result of the initial recognition of their asynchronous cyclicity, rendering greater insight into the hierarchy of processes controlling regional behavior. This has improved the descriptions of the strong dynamic feedbacks present during retreat, the role of the ocean in TWG dynamics, and the similarities and differences between TWG and ice sheet outlet glaciers that can often support floating tongues.

  18. Studying Basin Water Balance Variations at Inter- and Intra-annual Time Scales Based On the Budyko Hypothesis and GRACE Gravimetry Satellite Observations

    Science.gov (United States)

    Shen, H.

    2017-12-01

    Increasing intensity in global warming and anthropogenic activities has triggered significant changes over regional climates and landscapes, which, in turn, drive the basin water cycle and hydrological balance into a complex and unstable state. Budyko hypothesis is a powerful tool to characterize basin water balance and hydrological variations at long-term average scale. However, due to the absence of basin water storage change, applications of Budyko theory to the inter-annual and intra-annual time scales has been prohibited. The launch of GRACE gavimetry satellites provides a great opportunity to quantify terrestrial water storage change, which can be further introduced into the Budyko hypothesis to reveal the inter- and intra-annual response of basin water components under impacts of climate variability and/or human activities. This research targeted Hai River Basin (in China) and Murray-Darling Basin (in Australia), which have been identified with a continuous groundwater depletion trend as well as impacts by extreme climates in the past decade. This can help us to explore how annual or seasonal precipitation were redistributed to evapotranspiration and runoff via changing basin water storage. Moreover, the impacts of vegetation on annual basin water balance will be re-examined. Our results are expected to provide deep insights about the water cycle and hydrological behaviors for the targeted basins, as well as a proof for a consideration of basin water storage change into the Budyko model at inter- or intra-annual time steps.

  19. Seasonal variation of ice melting on varying layers of debris of Lirung Glacier, Langtang Valley, Nepal

    Directory of Open Access Journals (Sweden)

    M. B. Chand

    2015-05-01

    Full Text Available Glaciers in the Himalayan region are often covered by extensive debris cover in ablation areas, hence it is essential to assess the effect of debris on glacier ice melt. Seasonal melting of ice beneath different thicknesses of debris on Lirung Glacier in Langtang Valley, Nepal, was studied during three seasons of 2013–14. The melting rates of ice under 5 cm debris thickness are 3.52, 0.09, and 0.85 cm d−1 during the monsoon, winter and pre-monsoon season, respectively. Maximum melting is observed in dirty ice (0.3 cm debris thickness and the rate decreases with the increase of debris thickness. The energy balance calculations on dirty ice and at 40 cm debris thickness show that the main energy source of ablation is net radiation. The major finding from this study is that the maximum melting occurs during the monsoon season than rest of the seasons.

  20. Contrasting medial moraine development at adjacent temperate, maritime glaciers: Fox and Franz Josef Glaciers, South Westland, New Zealand

    Science.gov (United States)

    Brook, Martin; Hagg, Wilfried; Winkler, Stefan

    2017-08-01

    Medial moraines form important pathways for sediment transportation in valley glaciers. Despite the existence of well-defined medial moraines on several glaciers in the New Zealand Southern Alps, medial moraines there have hitherto escaped attention. The evolving morphology and debris content of medial moraines on Franz Josef Glacier and Fox Glacier on the western flank of the Southern Alps is the focus of this study. These temperate maritime glaciers exhibit accumulation zones of multiple basins that feed narrow tongues flowing down steep valleys and terminate 400 m above sea level. The medial moraines at both glaciers become very prominent in the lower ablation zones, where the medial moraines widen, and develop steeper flanks coeval with an increase in relative relief. Medial moraine growth appears somewhat self-limiting in that relief and slope angle increase eventually lead to transport of debris away from the medial moraine by mass-movement-related processes. Despite similarities in overall morphologies, a key contrast in medial moraine formation exists between the two glaciers. At Fox Glacier, the medial moraine consists of angular rockfall-derived debris, folded to varying degrees along flow-parallel axes throughout the tongue. The debris originates above the ELA, coalesces at flow-unit boundaries, and takes a medium/high level transport pathway before subsequently emerging at point-sources aligned with gently dipping fold hinges near the snout. In contrast at Franz Josef Glacier, the medial moraine emerges farther down-glacier immediately below a prominent rock knob. Clasts show a mix of angular to rounded shapes representing high level transport and subglacially transported materials, the latter facies possibly also elevated by supraglacial routing of subglacial meltwater. Our observations confirm that a variety of different debris sources, transport pathways, and structural glaciological processes can interact to form medial moraines within New Zealand

  1. Stable water isotope variation in a Central Andean watershed dominated by glacier and snowmelt

    Directory of Open Access Journals (Sweden)

    N. Ohlanders

    2013-03-01

    Full Text Available Central Chile is an economically important region for which water supply is dependent on snow- and ice melt. Nevertheless, the relative contribution of water supplied by each of those two sources remains largely unknown. This study represents the first attempt to estimate the region's water balance using stable isotopes of water in streamflow and its sources. Isotopic ratios of both H and O were monitored during one year in a high-altitude basin with a moderate glacier cover (11.5%. We found that the steep altitude gradient of the studied catchment caused a corresponding gradient in snowpack isotopic composition and that this spatial variation had a profound effect on the temporal evolution of streamflow isotopic composition during snowmelt. Glacier melt and snowmelt contributions to streamflow in the studied basin were determined using a quantitative analysis of the isotopic composition of streamflow and its sources, resulting in a glacier melt contribution of 50–90% for the unusually dry melt year of 2011/2012. This suggests that in (La Niña years with little precipitation, glacier melt is an important water source for central Chile. Predicted decreases in glacier melt due to global warming may therefore have a negative long-term impact on water availability in the Central Andes. The pronounced seasonal pattern in streamflow isotope composition and its close relation to the variability in snow cover and discharge presents a potentially powerful tool to relate discharge variability in mountainous, melt-dominated catchments with related factors such as contributions of sources to streamflow and snowmelt transit times.

  2. Structure and evolution of the drainage system of a Himalayan debris-covered glacier, and its relationship with patterns of mass loss

    Directory of Open Access Journals (Sweden)

    D. I. Benn

    2017-09-01

    Full Text Available We provide the first synoptic view of the drainage system of a Himalayan debris-covered glacier and its evolution through time, based on speleological exploration and satellite image analysis of Ngozumpa Glacier, Nepal. The drainage system has several linked components: (1 a seasonal subglacial drainage system below the upper ablation zone; (2 supraglacial channels, allowing efficient meltwater transport across parts of the upper ablation zone; (3 sub-marginal channels, allowing long-distance transport of meltwater; (4 perched ponds, which intermittently store meltwater prior to evacuation via the englacial drainage system; (5 englacial cut-and-closure conduits, which may undergo repeated cycles of abandonment and reactivation; and (6 a "base-level" lake system (Spillway Lake dammed behind the terminal moraine. The distribution and relative importance of these elements has evolved through time, in response to sustained negative mass balance. The area occupied by perched ponds has expanded upglacier at the expense of supraglacial channels, and Spillway Lake has grown as more of the glacier surface ablates to base level. Subsurface processes play a governing role in creating, maintaining, and shutting down exposures of ice at the glacier surface, with a major impact on spatial patterns and rates of surface mass loss. Comparison of our results with observations on other glaciers indicate that englacial drainage systems play a key role in the response of debris-covered glaciers to sustained periods of negative mass balance.

  3. Role of glacier runoff in the Heihe Basin

    OpenAIRE

    坂井, 亜規子; 藤田, 耕史; 中尾, 正義; YAO, Tandong

    2005-01-01

    We estimated the fluctuation of precipitation and air temperature from Dunde ice core data since 1606 comparing to meteorological data taken near the July 1st glacier since 1930s. Then, we calculated the discharges from glaciers and glacier-free areaFurthermore, we analyzed the sensitivity of those discharges to meteorological factor. The result revealed that calculated discharge from glacier-free area increased with precipitation. Meanwhile, calculated discharge from glaciers decreased with ...

  4. Can mountain glacier melting explains the GRACE-observed mass loss in the southeast Tibetan Plateau: From a climate perspective?

    Science.gov (United States)

    Song, Chunqiao; Ke, Linghong; Huang, Bo; Richards, Keith S.

    2015-01-01

    The southeast Tibetan Plateau (SETP) includes the majority of monsoonal temperate glaciers in High Mountain Asia (HMA), which is an important source of water for the upper reaches of several large Asian river systems. Climatic change and variability has substantial impacts on cryosphere and hydrological processes in the SETP. The Gravity Recovery and Climate Experiment (GRACE) gravimetry observations between 2003 and 2009 suggest that there was an average mass loss rate of - 5.99 ± 2.78 Gigatonnes (Gt)/yr in this region. Meanwhile, the hydrological data by model calculations from the GLDAS/Noah and CPC are used to estimate terrestrial water storage (TWS) changes with a slight negative trend of about - 0.3 Gt/yr. The recent studies (Kääb et al., 2012; Gardner et al., 2013) reported the thinning rates of mountain glaciers in HMA based on the satellite laser altimetry, and an approximate estimation of the glacier mass budget in the SETP was 4.69 ± 2.03 Gt/yr during 2003-2009. This estimate accounted for a large proportion ( 78.3%) of the difference between the GRACE TWS and model-calculated TWS changes. To better understand the cause of sharp mass loss existing in the SETP, the correlations between key climatic variables (precipitation and temperature) and the GRACE TWS changes are examined at different timescales between 2003 and 2011. The results show that precipitation is the leading factors of abrupt, seasonal and multi-year undulating signals of GRACE TWS anomaly time series, but with weak correlations with the inter-annual trend and annual mass budget of GRACE TWS. In contrast, the annual mean temperature is tightly associated with the annual net mass budget (r = 0.81, p < 0.01), which indirectly suggests that the GRACE-observed mass loss in the SETP may be highly related to glacial processes.

  5. Evaluation of the most suitable threshold value for modelling snow glacier melt through T- index approach: the case study of Forni Glacier (Italian Alps)

    Science.gov (United States)

    Senese, Antonella; Maugeri, Maurizio; Vuillermoz, Elisa; Smiraglia, Claudio; Diolaiuti, Guglielmina

    2014-05-01

    Glacier melt occurs whenever the surface temperature is null (273.15 K) and the net energy budget is positive. These conditions can be assessed by analyzing meteorological and energy data acquired by a supraglacial Automatic Weather Station (AWS). In the case this latter is not present at the glacier surface the assessment of actual melting conditions and the evaluation of melt amount is difficult and degree-day (also named T-index) models are applied. These approaches require the choice of a correct temperature threshold. In fact, melt does not necessarily occur at daily air temperatures higher than 273.15 K, since it is determined by the energy budget which in turn is only indirectly affected by air temperature. This is the case of the late spring period when ablation processes start at the glacier surface thus progressively reducing snow thickness. In this study, to detect the most indicative air temperature threshold witnessing melt conditions in the April-June period, we analyzed air temperature data recorded from 2006 to 2012 by a supraglacial AWS (at 2631 m a.s.l.) on the ablation tongue of the Forni Glacier (Italy), and by a weather station located nearby the studied glacier (at Bormio, 1225 m a.s.l.). Moreover we evaluated the glacier energy budget (which gives the actual melt, Senese et al., 2012) and the snow water equivalent values during this time-frame. Then the ablation amount was estimated both from the surface energy balance (MEB from supraglacial AWS data) and from degree-day method (MT-INDEX, in this latter case applying the mean tropospheric lapse rate to temperature data acquired at Bormio changing the air temperature threshold) and the results were compared. We found that the mean tropospheric lapse rate permits a good and reliable reconstruction of daily glacier air temperature conditions and the major uncertainty in the computation of snow melt from degree-day models is driven by the choice of an appropriate air temperature threshold. Then

  6. Hillslope failure and paraglacial reworking of sediments in response to glacier retreat, Fox Valley, New Zealand.

    Science.gov (United States)

    McColl, Samuel T.; Fuller, Ian C.; Anderson, Brian; Tate, Rosie

    2017-04-01

    Climate and glacier fluctuations influence sediment supply to glacier forelands, which in turn influences down-valley hazards to infrastructure and tourism within glacier forelands. At Fox Glacier, one of New Zealand's most iconic and popular glaciers, rapid retreat has initiated a range of hillslope and valley floor responses, that present a cascade of hazards and changes that need to be carefully managed. Fox Glacier has retreated many kilometres historically, with 2.6 km of retreat since the mid-20th century, and a phase of rapid retreat of 50-340 m per year since 2009. To study the system response to past and ongoing glacial retreat at the Fox valley, morphological changes are being observed using time-lapse photography and the annual collection of high-resolution digital elevation models (DEMs) and orthophoto mosaics. The DEMs are being produced using Structure from Motion photogrammetry from UAV/RPAS and helicopter platforms, and are being used, along with manual ground surveying, to produce ground surface change models (DoDs; DEMs of Difference) and sediment budgets for the valley. Results from time-lapse photography and DoDs show that glacial retreat has initiated destabilisation and (mostly chronic) mass movement of surficial glacial sediments on the valley slopes near the glacier terminus. Alluvial fans farther down valley are actively growing, reworking glacial and landslide sediments from tributary catchments. These paraglacial sediments being delivered to the proglacial river from the glacier terminus and alluvial fans are driving aggradation of the valley floor of decimetres to metres per year and maintaining a highly dynamic braid plain. Valley floor changes also include the melting of buried dead ice, which are causing localised subsidence at the carpark and one of the alluvial fans. The unstable slopes and active debris fans, aggrading and highly active river channel, ground subsidence, add to the spectacle but also the hazards of the Fox valley

  7. Human activities and its Responses to Glacier Melt Water Over Tarim River Basin

    Science.gov (United States)

    He, Hai; Zhou, Shenbei; Bai, Minghao

    2017-04-01

    Tarim River Basin lies in the south area of Xinjiang Uygur Autonomous Region, the north-west area of China. It is the longest inland river of China. Being far away from ocean and embraced by high mountains, Tarim River Basin is the typical arid region in the world. The intensity of human activities increased rapidly in Tarim River Basin since 1980's and water resources lacking is the major issue restricting the development of social economy. The glacier melt water plays an important role for the regional social and economic development, and it accounts for 40% of mountain-pass runoff. It is a fragile mutual-dependent relationship between local sustainable development and runoff. Under the background of global change glacier melt water process has also changed especially in the arid and semi-arid region. Due to climate change, glacier in Tarim River Basin has melted in an observed way since 1980s, together with increasing trend of annual rainfall and virgin flow in mountain basins. Correspondingly, human activity gets more frequent since 1970s, resulting into the obvious fragile mutual-dependent relationship between basin runoff and water use amount. Through an analysis of meteorological, hydrological and geographical observation data from 1985 to 2015, this thesis make a multi-factor variance analysis of population, cultivation area, industrial development and runoff in upstream and mid-stream of Tarim River under changing conditions. Furthermore, the regulation function of natural factors and water demand management factors on relationship between runoff and water using amount are discussed, including temperature, rainfall, and evaporation, water conservation technology and soil-water exploitation administrative institutions. It concludes that: first, increase in glacier runoff, rainfall amount, and virgin flow haven't notably relieved ecological issue in Tarim River Basin, and even has promoted water use behaviour in different flowing areas and noticeably reduced

  8. The spatial variable glacier mass loss over the southeast Tibet Plateau and the climate cause analyses

    Science.gov (United States)

    Ke, L.; Ding, X.; Song, C.; Sheng, Y.

    2016-12-01

    Temperate glaciers can be highly sensitive to global climate change due to relatively humid and warm local climate. Numerous temperate glaciers are distributed in the southeastern Tibet Plateau (SETP) and their changes are still poorly represented. Based on a latest glacier inventory and ICESat altimetry measurements, we examine the spatial heterogeneity of glacier change in the SETP (including the central and eastern Nyainqêntanglha ranges) and further analyze its relation with climate change by using station-based and gridded meteorological data. Our results show that SETP glaciers experienced drastic surface lowering at about -0.84±0.26 m a-1 on average over 2003-2008. Debris-covered ice thinned at an average rate of -1.13±0.32 m a-1, in comparison with -0.92±0.17 m a-1 over the debris-free ice areas. The thinning rate is the strongest in the southeastern sub-region (up to -1.24 m a-1 ) and moderate ( -0.45 m a-1 ) in the central and northwestern parts, which is in general agreement with the pattern of surface mass changes based on the GRACE gravimetry observation. Long-term climate data at weather stations show that, in comparison with the period of 1992-2002, mean temperature increased by 0.46 °C - 0.59 °C in the recent decade (2003-2013); while the change of summer precipitation exhibited remarkably spatial variability, following a southeast-northwest contrasting pattern (decreasing by over 10% in the southeast, to stable level in the central region, and increment up to 10% in the northwest). This spatially variable precipitation change is consistent with results from CN05 grid data and ERA re-analysis data, and agrees well with the spatial pattern of glacier surface elevation changes. The results suggest that overall negative glacier mass balances in SETP are governed by temperature rising, while the different precipitation change could contribute to inconsistent glacier thinning rates. The spatial pattern of precipitation decrease and mass loss might

  9. Characterization of meltwater 'ingredients' at the Haig Glacier, Canadian Rockies: the importance of glaciers to regional water resources

    Science.gov (United States)

    Miller, K.; Marshall, S.

    2017-12-01

    With rising temperatures, Alberta's glaciers are under stresses which change and alter the timing, amount, and composition of meltwater contributions to rivers that flow from the Rocky Mountains. Meltwater can be stored within a glacier or it can drain through the groundwater system, reducing and delaying meltwater delivery to glacier-fed streams. This study tests whether the glacier meltwater is chemically distinct from rain or snow melt, and thus whether meltwater contributions to higher-order streams that flow from the mountains can be determined through stream chemistry. Rivers like the Bow, North Saskatchewan, and Athabasca are vital waterways for much of Alberta's population. Assessing the extent of glacier meltwater is vital to future water resource planning. Glacier snow/ice and meltwater stream samples were collected during the 2017 summer melt season (May- September) and analyzed for isotope and ion chemistry. The results are being used to model water chemistry evolution in the melt stream through the summer season. A chemical mixing model will be constructed to determine the fractional contributions to the Haig meltwater stream from precipitation, surface melt, and subglacial meltwaters. Distinct chemical water signatures have not been used to partition water sources and understand glacier contributions to rivers in the Rockies. The goal of this work is to use chemical signatures of glacial meltwater to help assess the extent of glacier meltwater in Alberta rivers and how this varies through the summer season.

  10. National parks and protected areas: Appoaches for balancing social, economic, and ecological values

    Science.gov (United States)

    Prato, Tony; Fagre, Daniel B.

    2005-01-01

    The balance of nature in any strict sense has been upset long ago…The only option we have is to create a new balance objectively determined for each area in accordance with the intended use of that area.” --Aldo Leopold, 1927, in a letter to the Superintendent of Glacier National Park

  11. Geographic Names of Iceland's Glaciers: Historic and Modern

    Science.gov (United States)

    Sigurðsson, Oddur; Williams, Richard S.

    2008-01-01

    Climatic changes and resulting glacier fluctuations alter landscapes. In the past, such changes were noted by local residents who often documented them in historic annals; eventually, glacier variations were recorded on maps and scientific reports. In Iceland, 10 glacier place-names are to be found in Icelandic sagas, and one of Iceland's ice caps, Snaefellsjokull, appeared on maps of Iceland published in the 16th century. In the late 17th century, the first description of eight of Iceland's glaciers was written. Therefore, Iceland distinguishes itself in having a more than 300-year history of observations by Icelanders on its glaciers. A long-term collaboration between Oddur Sigurdsson and Richard S. Williams, Jr., led to the authorship of three books on the glaciers of Iceland. Much effort has been devoted to documenting historical glacier research and related nomenclature and to physical descriptions of Icelandic glaciers by Icelanders and other scientists from as far back as the Saga Age to recent (2008) times. The first book, Icelandic Ice Mountains, was published by the Icelandic Literary Society in 2004 in cooperation with the Icelandic Glaciological Society and the International Glaciological Society. Icelandic Ice Mountains was a glacier treatise written by Sveinn Palsson in 1795 and is the first English translation of this important scientific document. Icelandic Ice Mountains includes a Preface, including a summary of the history and facsimiles of page(s) from the original manuscript, a handwritten copy, and an 1815 manuscript (without maps and drawings) by Sveinn Palsson on the same subject which he wrote for Rev. Ebenezer Henderson; an Editor's Introduction; 82 figures, including facsimiles of Sveinn Palsson's original maps and perspective drawings, maps, and photographs to illustrate the text; a comprehensive Index of Geographic Place-Names and Other Names in the treatise; References, and 415 Endnotes. Professional Paper 1746 (this book) is the second

  12. Localized Glacier Deformation Associated with Filling and Draining of a Glacier-Dammed Lake and Implications for Outburst Flood Hydraulics

    Science.gov (United States)

    Cunico, M. L.; Walder, J. S.; Fountain, A. G.; Trabant, D. C.

    2001-12-01

    During the summer of 2000, we measured displacements of 22 survey targets on the surface of Kennicott Glacier, Alaska, in the vicinity of Hidden Creek Lake, an ice-dammed lake in a tributary valley that fills and drains annually. Targets were distributed over a domain about equal in width to the lake, from near the glacier/lake margin to a distance of about 1 km from the margin. Targets were surveyed over a 24-day period as the lake filled and then drained. Lake stage was independently monitored. Vertical movement of targets generally fell off with distance d from the lake. As the lake filled, targets with d typically about 0.5 m/d--with a few targets rising slightly faster than the lake. The rate of vertical movement fell off rapidly with distance from the lake: for d = ca. 600 m--roughly twice the local ice thickness--targets moved upward only about 10% as fast as lake stage. Vertical movement of targets with d > ca. 1 km seemed to be uncorrelated with lake stage. The general pattern is consistent with the idea that a wedge of water extended beneath the glacier to a distance of perhaps 300 to 400 m from the visible margin of the lake and exerts buoyant stresses on the ice that were transmitted into the main body of the glacier and caused flexure. This scenario bears some resemblance to tidal deflections of ice shelves or tidewater glaciers. For a given value of lake stage, target elevations were invariably higher as the lake drained than as the lake filled. Moreover, survey targets at a distance of about 400 m or more from the lake continued to rise for some time even after the lake began to drain. The lag time between the beginning of lake drainage and the beginning of target downdrop increased with distance from the lake, with the lag being about 14 hours at a distance of 400 m from the lake. (The lake drained completely in approximately 75 hours.) The likeliest explanations for the departure from reversibility and the existence of the time lag are either (i) a

  13. Under the glacier, the groundwater - the case of Skálafell area, Iceland

    Science.gov (United States)

    Vincent, Aude; Hart, Jane

    2017-04-01

    The research addressing glaciers evolution under climate change is well developed, and is now looking not only at their mass balance, but also at the associated subsurface hydrology and downstream hydrology. However, the groundwater component is rarely considered, even though it will be required to forecast the evolution of water resources and of water linked hazards under climate change. The few available studies demonstrate the existence of sub-or pro-glacial aquifers. Some of them suggest strong coupling between rivers and the aquifer, observe the flooding due to water table rising following enhanced glacier melting, or expect stronger recharge in the future due to glacier melting. The present study is the first step of a wider project, GlacAq, aiming at filling this knowledge gap, by characterizing the particular hydrogeology encountered under and downstream of glaciers of alpine type, i.e. sub-, pro- and periglacial hydrogeology, and its sensibility to climate change, in order to provide operational management directions. Skálafell glacier area (Iceland) has been chosen as it has already been followed for climatic, glaciological, and surface hydrology data (Hart et al. (2015), Young et al. (2015)). The present work will use those data, as well as topographic and surface data from the National Land Survey of Iceland, and geological data, to run a comprehensive numerical modelling. The work conducted on the Skálafell site will lead both to the achievement of an operational understanding of a poorly known underground system, and to the anticipation of its hydrodynamic response to climate change. The foreseen mechanisms include an enhanced sub-glacial aquifer recharge, intense surface water bodies-aquifer exchanges, and the aquifer discharge either through springs, or to an offshore system. Those offshore stocks are being increasingly recognised, but their origins are still only guessed at. Skálafell site allows the exploration of the potential role of the

  14. The Greater Caucasus Glacier Inventory (Russia, Georgia and Azerbaijan)

    Science.gov (United States)

    Tielidze, Levan G.; Wheate, Roger D.

    2018-01-01

    There have been numerous studies of glaciers in the Greater Caucasus, but none that have generated a modern glacier database across the whole mountain range. Here, we present an updated and expanded glacier inventory at three time periods (1960, 1986, 2014) covering the entire Greater Caucasus. Large-scale topographic maps and satellite imagery (Corona, Landsat 5, Landsat 8 and ASTER) were used to conduct a remote-sensing survey of glacier change, and the 30 m resolution Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Model (ASTER GDEM; 17 November 2011) was used to determine the aspect, slope and height distribution of glaciers. Glacier margins were mapped manually and reveal that in 1960 the mountains contained 2349 glaciers with a total glacier surface area of 1674.9 ± 70.4 km2. By 1986, glacier surface area had decreased to 1482.1 ± 64.4 km2 (2209 glaciers), and by 2014 to 1193.2 ± 54.0 km2 (2020 glaciers). This represents a 28.8 ± 4.4 % (481 ± 21.2 km2) or 0.53 % yr-1 reduction in total glacier surface area between 1960 and 2014 and an increase in the rate of area loss since 1986 (0.69 % yr-1) compared to 1960-1986 (0.44 % yr-1). Glacier mean size decreased from 0.70 km2 in 1960 to 0.66 km2 in 1986 and to 0.57 km2 in 2014. This new glacier inventory has been submitted to the Global Land Ice Measurements from Space (GLIMS) database and can be used as a basis data set for future studies.

  15. Southwest Greenland's Alpine Glacier History: Recent Glacier Change in the Context of the Holocene Geologic Record

    Science.gov (United States)

    Larocca, L. J.; Axford, Y.; Lasher, G. E.; Lee, C. W.

    2017-12-01

    Due to anthropogenic climate change, the Arctic region is currently undergoing major transformation, and is expected to continue warming much faster than the global average. To put recent and future changes into context, a longer-term understanding of this region's past response to natural climate variability is needed. Given their sensitivity to modest climate change, small alpine glaciers and ice caps on Greenland's coastal margin (beyond the Greenland Ice Sheet) represent ideal features to record climate variability through the Holocene. Here we investigate the Holocene history of a small ( 160 square km) ice cap and adjacent alpine glaciers, located in southwest Greenland approximately 50 km south of Nuuk. We employ measurements on sediment cores from a glacier-fed lake in combination with geospatial analysis of satellite images spanning the past several decades. Sedimentary indicators of sediment source and thus glacial activity, including organic matter abundance, inferred chlorophyll-a content, sediment major element abundances, grain size, and magnetic susceptibility are presented from cores collected from a distal glacier-fed lake (informally referred to here as Per's Lake) in the summer of 2015. These parameters reflect changes in the amount and character of inorganic detrital input into the lake, which may be linked to the size of the upstream glaciers and ice cap and allow us to reconstruct their status through the Holocene. Additionally, we present a complementary record of recent changes in Equilibrium Line Altitude (ELA) for the upstream alpine glaciers. Modern ELAs are inferred using the accumulation area ratio (AAR) method in ArcGIS via Landsat and Worldview-2 satellite imagery, along with elevation data obtained from digital elevation models (DEMs). Paleo-ELAs are inferred from the positions of moraines and trim lines marking the glaciers' most recent expanded state, which we attribute to the Little Ice Age (LIA). This approach will allow us to

  16. Simple tool for the rapid, automated quantification of glacier advance/retreat observations using multiple methods

    Science.gov (United States)

    Lea, J.

    2017-12-01

    The quantification of glacier change is a key variable within glacier monitoring, with the method used potentially being crucial to ensuring that data can be appropriately compared with environmental data. The topic and timescales of study (e.g. land/marine terminating environments; sub-annual/decadal/centennial/millennial timescales) often mean that different methods are more suitable for different problems. However, depending on the GIS/coding expertise of the user, some methods can potentially be time consuming to undertake, making large-scale studies problematic. In addition, examples exist where different users have nominally applied the same methods in different studies, though with minor methodological inconsistencies in their approach. In turn, this will have implications for data homogeneity where regional/global datasets may be constructed. Here, I present a simple toolbox scripted in a Matlab® environment that requires only glacier margin and glacier centreline data to quantify glacier length, glacier change between observations, rate of change, in addition to other metrics. The toolbox includes the option to apply the established centreline or curvilinear box methods, or a new method: the variable box method - designed for tidewater margins where box width is defined as the total width of the individual terminus observation. The toolbox is extremely flexible, and has the option to be applied as either Matlab® functions within user scripts, or via a graphical user interface (GUI) for those unfamiliar with a coding environment. In both instances, there is potential to apply the methods quickly to large datasets (100s-1000s of glaciers, with potentially similar numbers of observations each), thus ensuring large scale methodological consistency (and therefore data homogeneity) and allowing regional/global scale analyses to be achievable for those with limited GIS/coding experience. The toolbox has been evaluated against idealised scenarios demonstrating

  17. The importance of accurate glacier albedo for estimates of surface mass balance on Vatnajökull: evaluating the surface energy budget in a regional climate model with automatic weather station observations

    Science.gov (United States)

    Steffensen Schmidt, Louise; Aðalgeirsdóttir, Guðfinna; Guðmundsson, Sverrir; Langen, Peter L.; Pálsson, Finnur; Mottram, Ruth; Gascoin, Simon; Björnsson, Helgi

    2017-07-01

    A simulation of the surface climate of Vatnajökull ice cap, Iceland, carried out with the regional climate model HIRHAM5 for the period 1980-2014, is used to estimate the evolution of the glacier surface mass balance (SMB). This simulation uses a new snow albedo parameterization that allows albedo to exponentially decay with time and is surface temperature dependent. The albedo scheme utilizes a new background map of the ice albedo created from observed MODIS data. The simulation is evaluated against observed daily values of weather parameters from five automatic weather stations (AWSs) from the period 2001-2014, as well as in situ SMB measurements from the period 1995-2014. The model agrees well with observations at the AWS sites, albeit with a general underestimation of the net radiation. This is due to an underestimation of the incoming radiation and a general overestimation of the albedo. The average modelled albedo is overestimated in the ablation zone, which we attribute to an overestimation of the thickness of the snow layer and not taking the surface darkening from dirt and volcanic ash deposition during dust storms and volcanic eruptions into account. A comparison with the specific summer, winter, and net mass balance for the whole of Vatnajökull (1995-2014) shows a good overall fit during the summer, with a small mass balance underestimation of 0.04 m w.e. on average, whereas the winter mass balance is overestimated by on average 0.5 m w.e. due to too large precipitation at the highest areas of the ice cap. A simple correction of the accumulation at the highest points of the glacier reduces this to 0.15 m w.e. Here, we use HIRHAM5 to simulate the evolution of the SMB of Vatnajökull for the period 1981-2014 and show that the model provides a reasonable representation of the SMB for this period. However, a major source of uncertainty in the representation of the SMB is the representation of the albedo, and processes currently not accounted for in RCMs

  18. The importance of accurate glacier albedo for estimates of surface mass balance on Vatnajökull: evaluating the surface energy budget in a regional climate model with automatic weather station observations

    Directory of Open Access Journals (Sweden)

    L. S. Schmidt

    2017-07-01

    Full Text Available A simulation of the surface climate of Vatnajökull ice cap, Iceland, carried out with the regional climate model HIRHAM5 for the period 1980–2014, is used to estimate the evolution of the glacier surface mass balance (SMB. This simulation uses a new snow albedo parameterization that allows albedo to exponentially decay with time and is surface temperature dependent. The albedo scheme utilizes a new background map of the ice albedo created from observed MODIS data. The simulation is evaluated against observed daily values of weather parameters from five automatic weather stations (AWSs from the period 2001–2014, as well as in situ SMB measurements from the period 1995–2014. The model agrees well with observations at the AWS sites, albeit with a general underestimation of the net radiation. This is due to an underestimation of the incoming radiation and a general overestimation of the albedo. The average modelled albedo is overestimated in the ablation zone, which we attribute to an overestimation of the thickness of the snow layer and not taking the surface darkening from dirt and volcanic ash deposition during dust storms and volcanic eruptions into account. A comparison with the specific summer, winter, and net mass balance for the whole of Vatnajökull (1995–2014 shows a good overall fit during the summer, with a small mass balance underestimation of 0.04 m w.e. on average, whereas the winter mass balance is overestimated by on average 0.5 m w.e. due to too large precipitation at the highest areas of the ice cap. A simple correction of the accumulation at the highest points of the glacier reduces this to 0.15 m w.e. Here, we use HIRHAM5 to simulate the evolution of the SMB of Vatnajökull for the period 1981–2014 and show that the model provides a reasonable representation of the SMB for this period. However, a major source of uncertainty in the representation of the SMB is the representation of the albedo, and processes

  19. Glacier Retreat in the Southern Peruvian Andes: Climate Change, Environmental Impacts, Human Perception and Social Response

    Science.gov (United States)

    Orlove, B.

    2007-12-01

    This paper presents results from recent environmental and anthropological research near glacierized areas in the department of Cusco, Peru, home to the well-known Quelccaya Ice Cap and to the peak of Ausangate (6384 m). Glaciers in the region are in negative mass balance, losing volume and area, with upslope movement of the glacier fronts. Somewhat paradoxically, flows in many streams close to the glaciers are reduced, particularly in the dry season, due to a shift in the seasonal distribution of melting, to increased evaporation and to increased percolation into newly-exposed sands and gravels. Associated with this reduction in flow is a desiccation of some anthropogenic and natural wetlands, reducing the availability of dry season forage to wild (vicuna) and domesticated (alpaca, llama) ruminants. Interviews and ethnographic observations with local populations of Quechua-speaking herders at elevations of 4500-5200 meters provide detailed comments on these changes. They have an extensive vocabulary of terms for glacial features associated with retreat. They link this treat with environmental factors (higher temperatures, greater winds that deposit dust on lower portions of glaciers) and with religious factors (divine punishment for human wrong-doing, failure of humans to respect mountain spirits). They describe a variety of economic and extra-economic impacts of this retreat on different spatial, social and temporal scales. Though they face other issues as well (threats of pollution from new mining projects, inadequacy of government services), glacier retreat is their principal concern. Many herders express extreme distress over this unprecedented threat to their livelihoods and communities, though a few propose responses - out-migration, the formation of an association of neighboring communities, development of irrigation works - that could serve as adaptations.

  20. Annual energy balances of CHP-units supplying households; Jahresenergiebilanzen von KWK-Anlagen zur Hausenergieversorgung

    Energy Technology Data Exchange (ETDEWEB)

    Geiger, B.; Muehlbacher, H. [Technische Univ. Muenchen (Germany). Lehrstuhl fuer Energiewirtschaft und Anwendungstechnik

    2008-07-01

    A method to balance CHP-units for use in households on an annual basis has been developed. Seasonal as well as intraday fluctuations of the CHP-units are accounted for in the model. The results of this new method were validated in a test facility for certain days. Together with experimentally obtained data from a CHP-unit, the potential for technical improvements and a more favourable operational mode can be derived from the model. (orig.)

  1. Comparison of the meteorology and surface energy balance at Storbreen and Midtdalsbreen, two glaciers in southern Norway

    NARCIS (Netherlands)

    Giesen, R.H.; Andreassen, L.M.; van den Broeke, M.R.; Oerlemans, J.

    2009-01-01

    We compare 5 years of meteorological records from automatic weather stations (AWSs) on Storbreen and Midtdalsbreen, two glaciers in southern Norway, located approximately 120 km apart. The records are obtained from identical AWSs with an altitude difference of 120 m and cover the period September

  2. Exploring the links between transient water inputs and glacier velocity in a small temperate glacier in southeastern Alaska

    Science.gov (United States)

    Heavner, M.; Habermann, M.; Hood, E. W.; Fatland, D. R.

    2009-12-01

    Glaciers along the Gulf of Alaska are thinning and retreating rapidly. An important control on the rate at which ice is being lost is basal motion because higher glacier velocities increase the rate at which ice is delivered to ablation zones. Recent research has focused on understanding the effects of sub-glacial water storage on glacier basal motion. In this study, we examined two seasons of the effect of hydrologic controls (from large rainfall events as well as a glacier lake outburst floods) on the velocity of the Lemon Creek Glacier in southeastern Alaska. Lemon Creek Glacier is a moderately sized (~16~km2) temperate glacier at the margin of the Juneau Icefield. An ice-marginal lake forms at the head of the glacier and catastrophically drains once or twice every melt season. We have instrumented the glacier with two meteorological stations: one at the head of the glacier near the ice-marginal lake and another several kilometers below the terminus. These stations measure temperature, relative humidity, precipitation, incoming solar radiation and wind speed and direction. Lake stage in the ice-marginal lake was monitored with a pressure transducer. In addition, Lemon Creek was instrumented with a water quality sonde at the location of a US Geological Survey gaging station approximately 3 km downstream from the glacier terminus. The sonde provides continuous measurements of water temperature, dissolved oxygen, turbidity and conductivity. Finally, multiple Trimble NetRS dual frequency, differential GPS units were deployed on the glacier along the centerline of the glacier. All of the instruments were run continuously from May-September 2008 and May-September 2009 and captured threee outburst floods associated with the ice-marginal lake drainage as well as several large (>3~cm) rainfall events associated with frontal storms off of the Gulf of Alaska in late summer. Taken together, these data allow us to test the hypothesis that water inputs which overwhelm

  3. Post-Little Landscape and Glacier Change in Glacier Bay National Park: Documenting More than a Century of Variability with Repeat Photography

    Science.gov (United States)

    Molnia, B. F.; Karpilo, R. D.; Pranger, H. S.

    2004-12-01

    Historical photographs, many dating from the late-19th century are being used to document landscape and glacier change in the Glacier Bay area. More than 350 pre-1980 photographs that show the Glacier Bay landscape and glacier termini positions have been acquired by the authors. Beginning in 2003, approximately 150 of the sites from which historical photographs had been made were revisited. At each site, elevation and latitude and longitude were recorded using WAAS-enabled GPS. Compass bearings to photographic targets were also determined. Finally, using the historical photographs as a composition guide, new photographs were exposed using digital imaging and film cameras. In the laboratory, 21st century images and photographs were compared with corresponding historical photographs to determine, and to better understand rates, timing, and mechanics of Glacier Bay landscape evolution, as well as to clarify the response of specific glaciers to changing climate and environment. The comparisons clearly document rapid vegetative succession throughout the bay; continued retreat of larger glaciers in the East Arm of the bay; a complex pattern of readvance and retreat of the larger glaciers in the West Arm of the bay, coupled with short-term fluctuations of its smaller glaciers; transitions from tidewater termini to stagnant, debris-covered termini; fiord sedimentation and erosion; development of outwash and talus features; and many other dramatic changes. As might be expected, 100-year-plus photo comparisons show significant changes throughout the Glacier Bay landscape, especially at the southern ends of East and West Arms. Surprisingly, recent changes, occurring since the late-1970s were equally dramatic, especially documenting the rapid thinning and retreat of glaciers in upper Muir Inlet.

  4. Distribution and transportation of mercury from glacier to lake in the Qiangyong Glacier Basin, southern Tibetan Plateau, China.

    Science.gov (United States)

    Sun, Shiwei; Kang, Shichang; Huang, Jie; Li, Chengding; Guo, Junming; Zhang, Qianggong; Sun, Xuejun; Tripathee, Lekhendra

    2016-06-01

    The Tibetan Plateau is home to the largest aggregate of glaciers outside the Polar Regions and is a source of fresh water to 1.4 billion people. Yet little is known about the transportation and cycling of Hg in high-elevation glacier basins on Tibetan Plateau. In this study, surface snow, glacier melting stream water and lake water samples were collected from the Qiangyong Glacier Basin. The spatiotemporal distribution and transportation of Hg from glacier to lake were investigated. Significant diurnal variations of dissolved Hg (DHg) concentrations were observed in the river water, with low concentrations in the morning (8:00am-14:00pm) and high concentrations in the afternoon (16:00pm-20:00pm). The DHg concentrations were exponentially correlated with runoff, which indicated that runoff was the dominant factor affecting DHg concentrations in the river water. Moreover, significant decreases of Hg were observed during transportation from glacier to lake. DHg adsorption onto particulates followed by the sedimentation of particulate-bound Hg (PHg) could be possible as an important Hg removal mechanism during the transportation process. Significant decreases in Hg concentrations were observed downstream of Xiao Qiangyong Lake, which indicated that the high-elevation lake system could significantly affect the distribution and transportation of Hg in the Qiangyong Glacier Basin. Copyright © 2016. Published by Elsevier B.V.

  5. ROCK GLACIERS IN THE KOLYMA HIGHLAND

    Directory of Open Access Journals (Sweden)

    A. A. Galanin

    2012-01-01

    Full Text Available Based on remote mapping and field studies inGrand Rapids, Tumansky,Hasynsky,Del-Urechen Ridges as well as Dukchinsky and Kilgansky Mountain Massifs there were identified about 1160 landforms which morphologically are similar to the rock glaciers or they develop in close association with them. Besides tongue-shaped cirque rock glaciers originated due to ablation, a large number of lobate-shaped slope-associated rock glaciers were recognized. Significant quantity of such forms are developing within the active neotectonic areas, in zones of seismic-tectonic badland and in association with active earthquakes-controlling faults. Multiplication of regional data on volcanic-ash-chronology, lichenometry, Schmidt Hammer Test, pollen spectra and single radiocarbon data, most of the active rock glaciers were preliminary attributed to the Late Holocene.

  6. Updating the New Zealand Glacier Inventory

    Science.gov (United States)

    Baumann, S. C.; Anderson, B.; Mackintosh, A.; Lorrey, A.; Chinn, T.; Collier, C.; Rack, W.; Purdie, H.

    2017-12-01

    The last complete glacier inventory of New Zealand dates from the year 1978 (North Island 1988) and was manually constructed from oblique aerial photographs and geodetic maps (Chinn 2001). The inventory has been partly updated by Gjermundsen et al. (2011) for the year 2002 (40% of total area) and by Sirguey & More (2010) for the year 2009 (32% of total area), both using ASTER satellite imagery. We used Landsat 8 OLI/TIRS satellite data from February/March 2016 to map the total glaciated area. Clean and debris-covered ice were mapped semi-automatically. The band ratio approach was used for clean ice (ratio: red/SWIR). We mapped debris-covered ice using a supervised classification (maximum likelihood). Manual post processing was necessary due to misclassifications (e.g. lakes, clouds) or mapping in shadowed areas. It was also necessary to manually combine the clean and debris-covered parts into single glaciers. Additional input data for the post processing were Sentinel 2 images from the same time period, orthophotos from Land Information New Zealand (resolution: 0.75 m, date: Nov 2014), and the 1978/88 outlines from the GLIMS database (http://www.glims.org/). As the Sentinel 2 data were more heavily cloud covered compared to the Landsat 8 images, they were only used for post processing and not for the classification itself. Initial results show that New Zealand glaciers covered an area of about 1050 km² in 2016, a reduction of 16% since 1978. Approximately 17% of glacier area was covered in surface debris. The glaciers in the central Southern Alps around Mt Cook reduced in area by 24%. Glaciers in the North Island of New Zealand reduced by 71% since 1988, and only 2 km² of ice cover remained in 2016. Chinn, TJH (2001). "Distribution of the glacial water resources of New Zealand." Journal of Hydrology (NZ) 40(2): 139-187 Gjermundsen, EF, Mathieu, R, Kääb, A, Chinn, TJH, Fitzharris, B & Hagen, JO (2011). "Assessment of multispectral glacier mapping methods and

  7. Accelerated contributions of Canada's Baffin and Bylot Island glaciers to sea level rise over the past half century

    Directory of Open Access Journals (Sweden)

    A. Gardner

    2012-10-01

    Full Text Available Canadian Arctic glaciers have recently contributed large volumes of meltwater to the world's oceans. To place recently observed glacier wastage into a historical perspective and to determine the region's longer-term (~50 years contribution to sea level, we estimate mass and volume changes for the glaciers of Baffin and Bylot Islands using digital elevation models generated from airborne and satellite stereoscopic imagery and elevation postings from repeat airborne and satellite laser altimetry. In addition, we update existing glacier mass change records from GRACE satellite gravimetry to cover the period from 2003 to 2011. Using this integrated approach, we find that the rate of mass loss from the region's glaciers increased from 11.1 ± 3.4 Gt a−1 (271 ± 84 kg m−2 a−1 for the period 1963–2006 to 23.8 ± 6.1 Gt a−1 (581 ± 149 kg m−2 a−1 for the period 2003–2011. The doubling of the rate of mass loss is attributed to higher temperatures in summer with little change in annual precipitation. Through both direct and indirect effects, changes in summer temperatures accounted for 70–98% of the variance in the rate of mass loss, to which the Barnes Ice Cap was found to be 1.7 times more sensitive than either the Penny Ice Cap or the region's glaciers as a whole. This heightened sensitivity is the result of a glacier hypsometry that is skewed to lower elevations, which are shown to have a higher mass change sensitive to temperature compared to glacier surfaces at higher elevations. Between 2003 and 2011 the glaciers of Baffin and Bylot Islands contributed 0.07 ± 0.02 mm a−1 to sea level rise accounting for 16% of the total contribution from glaciers outside of Greenland and Antarctica, a rate much higher than the longer-term average of 0.03 ± 0.01 mm a−1 (1963 to 2006.

  8. Modulation of snow reflectance and snowmelt from Central Asian glaciers by anthropogenic black carbon.

    Science.gov (United States)

    Schmale, Julia; Flanner, Mark; Kang, Shichang; Sprenger, Michael; Zhang, Qianggong; Guo, Junming; Li, Yang; Schwikowski, Margit; Farinotti, Daniel

    2017-01-12

    Deposited mineral dust and black carbon are known to reduce the albedo of snow and enhance melt. Here we estimate the contribution of anthropogenic black carbon (BC) to snowmelt in glacier accumulation zones of Central Asia based on in-situ measurements and modelling. Source apportionment suggests that more than 94% of the BC is emitted from mostly regional anthropogenic sources while the remaining contribution comes from natural biomass burning. Even though the annual deposition flux of mineral dust can be up to 20 times higher than that of BC, we find that anthropogenic BC causes the majority (60% on average) of snow darkening. This leads to summer snowmelt rate increases of up to 6.3% (7 cm a -1 ) on glaciers in three different mountain environments in Kyrgyzstan, based on albedo reduction and snowmelt models.

  9. Applying an orographic precipitation model to improve mass balance modeling of the Juneau Icefield, AK

    Science.gov (United States)

    Roth, A. C.; Hock, R.; Schuler, T.; Bieniek, P.; Aschwanden, A.

    2017-12-01

    Mass loss from glaciers in Southeast Alaska is expected to alter downstream ecological systems as runoff patterns change. To investigate these potential changes under future climate scenarios, distributed glacier mass balance modeling is required. However, the spatial resolution gap between global or regional climate models and the requirements for glacier mass balance modeling studies must be addressed first. We have used a linear theory of orographic precipitation model to downscale precipitation from both the Weather Research and Forecasting (WRF) model and ERA-Interim to the Juneau Icefield region over the period 1979-2013. This implementation of the LT model is a unique parameterization that relies on the specification of snow fall speed and rain fall speed as tuning parameters to calculate the cloud time delay, τ. We assessed the LT model results by considering winter precipitation so the effect of melt was minimized. The downscaled precipitation pattern produced by the LT model captures the orographic precipitation pattern absent from the coarse resolution WRF and ERA-Interim precipitation fields. Observational data constraints limited our ability to determine a unique parameter combination and calibrate the LT model to glaciological observations. We established a reference run of parameter values based on literature and performed a sensitivity analysis of the LT model parameters, horizontal resolution, and climate input data on the average winter precipitation. The results of the reference run showed reasonable agreement with the available glaciological measurements. The precipitation pattern produced by the LT model was consistent regardless of parameter combination, horizontal resolution, and climate input data, but the precipitation amount varied strongly with these factors. Due to the consistency of the winter precipitation pattern and the uncertainty in precipitation amount, we suggest a precipitation index map approach to be used in combination with

  10. Changes in the Surface Area of Glaciers in Northern Eurasia

    Science.gov (United States)

    Khromova, T.; Nosenko, G.

    2012-12-01

    Glaciers are widely recognized as key indicators of climate change. Recent evidence suggests an acceleration of glacier mass loss in several key mountain regions. Glacier recession implies the landscape changes in the glacial zone, origin of new lakes and activation of natural disaster processes, catastrophic mudflows, ice avalanches, outburst floods, and etc. The presence of glaciers in itself threats to human life, economic activity and growing infrastructure. Economical and recreational human activity in mountain regions requires relevant information on snow and ice objects. Absence or inadequacy of such information results in financial and human losses. A more comprehensive evaluation of glacier changes is imperative to assess ice contributions to global sea level rise and the future of water resources from glacial basins. One of the urgent steps is a full inventory of all ice bodies, their volume and changes The first estimation of glaciers state and glaciers distribution in the big part of Northern Eurasia has been done in the USSR Glacier Inventory published in 1966 -1980 as a part of IHD activity. The Inventory is based on topographic maps and air photos and reflects the status of the glaciers in 1957-1970y. There is information about 23796 glaciers with area of 78222.3 km2 in the Inventory. It covers 23 glacier systems on Northern Eurasia. In the 80th the USSR Glacier Inventory has been transformed in the digital form as a part of the World Glacier Inventory. Recent satellite data provide a unique opportunity to look again at these glaciers and to evaluate changes in glacier extent for the second part of XX century. In the paper we report about 15 000 glaciers outlines for Caucasus, Pamir, Tien-Shan, Altai, Syntar-Khayata, Cherskogo Range, Kamchatka and Russian Arctic which have been derived from ASTER and Landsat imagery and could be used for glacier changes evaluation. The results show that glaciers are retreating in all these regions. There is, however

  11. Hydro-chemical Characterization of Glacier Melt Water of Ponkar Glacier, Manang, Nepal.

    Science.gov (United States)

    Shrestha, R.; Sandeep, S.

    2017-12-01

    The study was carried out in Ponkar Glacier, representing Himalayan glacier of Nepal. The study aims in determining the physical-chemical properties of the glacier melt water. The sampling sites included moraine dammed, Ponkar Lake at 4100 m a.s.l to the downstream glaciated stream at 3580 m a.s.l. The water samples were collected from the seven different sites. Temperature was recorded by digital multi-thermometer on site. The samples were brought to the laboratory and the parameters were analyzed according to the APHA, AWWA and WEF standards. The glacier meltwater was slightly basic with pH 7.44 (±0.307). The meltwater was found to be in the range 30-60 which implies the water is moderately soft resulting value of concentration 36.429±8.664 mg CaCO3 L-1 and the electrical conductivity was found to be 47.14 (±11.18) µS/cm. The concentration of anion was in the order of HCO3 - > Cl- > SO42- > NO3- > TP-PO43- with the concentration 194.286±40.677, 55.707±30.265, 11.533±1.132 mgL-1, 1.00±0.7 mgL-1 and 0.514±0.32 mgL-1 respectively. Calcium carbonate weathering was found out to be the major source of dissolved ions in the region. The heavy metals were found in the order Al>Fe>Mn>Zn with concentration 1.34±0.648, 1.103±0.917, 0.08±0.028 and 0.023±0.004 mgL-1 respectively. The concentration of iron, manganese and zinc in some sites were below the detection limit. These results represent baseline data for the physical-chemical properties of the glacier meltwater

  12. The role of ecosystem memory in predicting inter-annual variations of the tropical carbon balance.

    Science.gov (United States)

    Bloom, A. A.; Liu, J.; Bowman, K. W.; Konings, A. G.; Saatchi, S.; Worden, J. R.; Worden, H. M.; Jiang, Z.; Parazoo, N.; Williams, M. D.; Schimel, D.

    2017-12-01

    Understanding the trajectory of the tropical carbon balance remains challenging, in part due to large uncertainties in the integrated response of carbon cycle processes to climate variability. Satellite observations atmospheric CO2 from GOSAT and OCO-2, together with ancillary satellite measurements, provide crucial constraints on continental-scale terrestrial carbon fluxes. However, an integrated understanding of both climate forcings and legacy effects (or "ecosystem memory") on the terrestrial carbon balance is ultimately needed to reduce uncertainty on its future trajectory. Here we use the CARbon DAta-MOdel fraMework (CARDAMOM) diagnostic model-data fusion approach - constrained by an array of C cycle satellite surface observations, including MODIS leaf area, biomass, GOSAT solar-induced fluorescence, as well as "top-down" atmospheric inversion estimates of CO2 and CO surface fluxes from the NASA Carbon Monitoring System Flux (CMS-Flux) - to constrain and predict spatially-explicit tropical carbon state variables during 2010-2015. We find that the combined assimilation of land surface and atmospheric datasets places key constraints on the temperature sensitivity and first order carbon-water feedbacks throughout the tropics and combustion factors within biomass burning regions. By varying the duration of the assimilation period, we find that the prediction skill on inter-annual net biospheric exchange is primarily limited by record length rather than model structure and process representation. We show that across all tropical biomes, quantitative knowledge of memory effects - which account for 30-50% of interannual variations across the tropics - is critical for understanding and ultimately predicting the inter-annual tropical carbon balance.

  13. Changes in the Mass Balance of the Greenland Ice Sheet in a Warming Climate During 2003-2009

    Science.gov (United States)

    Zwally, H. Jay; Luthcke, Scott

    2010-01-01

    Mass changes of the Greenland ice sheet (GIS) derived from ICESat and GRACE data both show that the net mass loss from GIS during 2003-2009 is about 175 Gt/year, which contributes 0.5mm/yr global sea-level rise. The rate of mass loss has increased significantly since the 1990's when the GIS was close to mass balance. Even though the GIS was close to mass balance during the 1990's, it was already showing characteristics of responding to8 warmer climate, specifically thinning at the margins and thickening inland at higher elevations. During 2003-2009, increased ice thinning due to increases in melting and acceleration of outlet glaciers began to strongly exceed the inland thickening from increases in accumulation. Over the entire GIS, the mass loss between the two periods, from increased melting and ice dynamics, increased by about 190 Gt/year while the mass gain, from increased precipitation and accumulation, increased by only about 15Gt/year. These ice changes occurred during a time when the temperature on GIS changed at rate of about 2K/decade. The distribution of elevation and mass changes derived from ICESat have high spatial resolution showing details over outlet glaciers, by drainage systems, and by elevation. However, information on the seasonal cycle of changes from ICESat data is limited, because the ICESat lasers were only operated during two to three campaigns per year of about 35 days duration each. In contrast, the temporal resolution of GRACE data, provided by the continuous data collection, is much better showing details of the seasonal cycle and the inter-annual variability. The differing sensitivity of the ICESat altimetry and the GRACE gravity methods to motion of the underlying bedrock from glacial isostatic adjustment (GIA) is used to evaluate the GIA corrections provided by models. The two data types are also combined to make estimates of the partitioning of the mass gains and losses among accumulation, melting, and ice discharge from outlet

  14. Mapping surface temperature variability on a debris-covered glacier with an unmanned aerial vehicle

    Science.gov (United States)

    Kraaijenbrink, P. D. A.; Litt, M.; Shea, J. M.; Treichler, D.; Koch, I.; Immerzeel, W.

    2016-12-01

    Debris-covered glacier tongues cover about 12% of the glacier surface in high mountain Asia and much of the melt water is generated from those glaciers. A thin layer of supraglacial debris enhances ice melt by lowering the albedo, while thicker debris insulates the ice and reduces melt. Data on debris thickness is therefore an important input for energy balance modelling of these glaciers. Thermal infrared remote sensing can be used to estimate the debris thickness by using an inverse relation between debris surface temperature and thickness. To date this has only been performed using coarse spaceborne thermal imagery, which cannot reveal small scale variation in debris thickness and its influence on the heterogeneous melt patterns on debris-covered glaciers. We deployed an unmanned aerial vehicle mounted with a thermal infrared sensor over the debris-covered Lirung Glacier in Nepal three times in May 2016 to reveal the spatial and temporal variability of surface temperature in high detail. The UAV survey matched a Landsat 8 overpass to be able to make a comparison with spaceborne thermal imagery. The UAV-acquired data is processed using Structure from Motion photogrammetry and georeferenced using DGPS-measured ground control points. Different surface types were distinguished by using data acquired by an additional optical UAV survey in order to correct for differences in surface emissivity. In situ temperature measurements and incoming solar radiation data are used to calibrate the temperature calculations. Debris thicknesses derived are validated by thickness measurements of a ground penetrating radar. Preliminary analysis reveals a spatially highly heterogeneous pattern of surface temperature over Lirung Glacier with a range in temperature of over 40 K. At dawn the debris is relatively cold and its temperature is influenced strongly by the ice underneath. Exposed to the high solar radiation at the high altitude the debris layer heats up very rapidly as sunrise

  15. Airborne Surface Profiling of Alaskan Glaciers

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set consists of glacier outline, laser altimetry profile, and surface elevation change data for 46 glaciers in Alaska and British Columbia, Canada,...

  16. An Extraction System for Radiocarbon Microanalysis of Dissolved Organic Carbon in Glacier Ice

    OpenAIRE

    Schindler, Johannes

    2017-01-01

    Alpine glaciers situated in mid- and low latitudes are valuable archives for paleoclimatology. They offer a continuous record of recent local climatic conditions in regions where the majority of humankind lived and still lives. For meaningful interpretation of an ice core from such an archive, accurate dating is essential. Usually, several complementary approaches are used to establish a depth-age relationship. The oldest part of the ice at the bottom of the ice core suffers annual layer thin...

  17. NUKEM annual report 1981

    International Nuclear Information System (INIS)

    The annual report of this important undertaking in the German nuclear industry informs about its structure, holdings and activities in 1981. The report of the management is followed by remarks on the annual statement of accounts (annual balance, profit-loss accounting) and the report of the Supervisory Board. In the annex the annual balance of NUKEM GmbH/HOBEG mbH as per December 31, 1981, and the profit-loss accounting of NUKEM GmbH/HOBEG mbH for the business year 1981 are presented. (UA) [de

  18. Dynamic interactions between glacier and glacial lake in the Bhutan Himalaya

    Science.gov (United States)

    Tsutaki, S.; Fujita, K.; Yamaguchi, S.; Sakai, A.; Nuimura, T.; Komori, J.; Takenaka, S.; Tshering, P.

    2012-04-01

    A number of supraglacial lakes formed on the termini of debris-covered glaciers in the Bhutan Himalaya as a result of glacier retreat due to climate change. The terminal part of the lake-terminating glaciers flow faster than that of the land-terminating glaciers because the basal ice motion is enhanced by high subglacial water pressure generated by lake water. Increased ice flux caused by the accelerated glacier flow could be dissipated through the calving process which reduced the glacier thickness. It is important to understand the interaction between lake formation and glacier dynamics. Although glacier flow velocity has been measured by remote-sensing analysis in several regions of the Himalayas, glacier thinning rates have not been observed by neither in-situ nor remote-sensing approaches. The lack of field data raises limitation to interpretations for glacier dynamics. We investigate the influence of the presence/absence of glacial lakes on glacier dynamics and changes in surface elevation. We study two debris-covered glaciers in the Lunana region, the Bhutan Himalaya. Thorthormi Glacier is a land-terminating glacier with some supraglacial lakes while Lugge Glacier is a lake-terminating glaciers. We surveyed the surface elevation of debris-covered areas of the two glaciers in 2004 and 2011 by a differential GPS. Change in surface elevation of the lake-terminating Lugge Glacier (-5.4--2.4 m yr-1) was much more negative than that of the land-terminating Thorthormi Glacier (-3.3-0.6 m yr-1). Surface flow speed of the Thorthormi Glacier measured during 2002-2004 was faster in the upper reaches (~90 m yr-1) and reduced toward the downstream (40 m yr-1). In contrast, the surface flow speed at the Lugge Glacier measured in the same periods was 40-55 m yr-1 and the greatest at the lower most part. Observed spatial distribution of surface flow velocity at both glaciers were evaluated by a two-dimensional numerical flow model. Calculated emergence velocities are 1

  19. Small Glacier Area Studies: A New Approach for Turkey

    Science.gov (United States)

    Yavasli, Dogukan D.; Tucker, Compton J.

    2012-01-01

    Many regions of Earth have glaciers that have been neglected for study because they are small. We report on a new approach to overcome the problem of studying small glaciers, using Turkey as an example. Prior to our study, no reliable estimates of Turkish glaciers existed because of a lack of systematic mapping, difficulty in using Landsat data collected before 1982, snowpack vs. glacier ice differentiation using existing satellite data and aerial photography, the previous high cost of Landsat images, and a lack of high-resolution imagery of small Turkish glaciers. Since 2008, a large number of area of nine smaller glaciers in Turkey. We also used five Landsat-3 Return Beam Videcon (RBV) 30 m pixel resolution images, all from 1980, for six glaciers. The total area of Turkish glaciers decreased from 23 km2 in the 1970s to 10.1 km2 in 2007-2011. By 2007-2011, six Turkish glaciers disappeared, four were < 0.3 km2, and only three were 1.0 km2 or larger. No trends in precipitation from 1970 to 2006 and cloud cover from 1980 to 2010 were found, while surface temperatures increased, with summer minimum temperatures showing the greatest increase. We conclude that increased surface temperatures during the summer were responsible for the 56% recession of Turkish glaciers from the 1970s to 2006-2011.

  20. Seasonal and altitudinal variations in snow algal communities on an Alaskan glacier (Gulkana glacier in the Alaska range)

    International Nuclear Information System (INIS)

    Takeuchi, Nozomu

    2013-01-01

    Snow and ice algae are cold tolerant algae growing on the surface of snow and ice, and they play an important role in the carbon cycles for glaciers and snowfields in the world. Seasonal and altitudinal variations in seven major taxa of algae (green algae and cyanobacteria) were investigated on the Gulkana glacier in Alaska at six different elevations from May to September in 2001. The snow algal communities and their biomasses changed over time and elevation. Snow algae were rarely observed on the glacier in May although air temperature had been above 0 ° C since the middle of the month and surface snow had melted. In June, algae appeared in the lower areas of the glacier, where the ablation ice surface was exposed. In August, the distribution of algae was extended to the upper parts of the glacier as the snow line was elevated. In September, the glacier surface was finally covered with new winter snow, which terminated algal growth in the season. Mean algal biomass of the study sites continuously increased and reached 6.3 × 10 μl m −2 in cell volume or 13 mg carbon m −2 in September. The algal community was dominated by Chlamydomonas nivalis on the snow surface, and by Ancylonema nordenskiöldii and Mesotaenium berggrenii on the ice surface throughout the melting season. Other algae were less abundant and appeared in only a limited area of the glacier. Results in this study suggest that algae on both snow and ice surfaces significantly contribute to the net production of organic carbon on the glacier and substantially affect surface albedo of the snow and ice during the melting season. (letter)

  1. South Cascade (USA/North Cascades)

    Science.gov (United States)

    Bidlake, William R.

    2011-01-01

    The U.S. Geological Survey has closely monitored this temperate mountain glacier since the late 1950s. During 1958-2007, the glacier retreated about 0.7 km and shrank in area from 2.71 to 1.73 km2, although part of the area change was due to separation of contributing ice bodies from the main glacier. Maximum and average glacier thicknesses are about 170 and 80 m, respectively. Year-to-year variations of snow accumulation amounts on the glacier are largely attributable to the regional maritime climate and fluctuating climate conditions of the North Pacific Ocean. Long-term-average precipitation is about 4500 mm and most of that falls as snow during October through May. Average annual air temperature at 1,900 m altitude (the approximate ELA0) was estimated to be 1.6°C during 2000-2009. Mass balances are computed yearly by the direct glaciological method. Mass balances measured at selected locations are used in an interpolation and extrapolation procedure that computes the mass balance at each point in the glacier surface altitude grid. The resulting mass balance grid is averaged to obtain glacier mass balances. Additionally, the geodetic method has been applied to compute glacier net balances in 1970, 1975, 1977, 1979-80, and 1985-97. Winter snow accumulation on the glacier during 2007/08 and 2008/09 was larger than the long-term (1959-2009) average. The 2007/08 preliminary summer balance (-3510 mm w.e.) was slightly more negative than the long-term average and this yielded a preliminary 2007/08 net balance (-290 mm w.e.), which was less negative than the average for the period of record (-600 mm w.e.). Summer 2009 was uncommonly warm and the preliminary 2008/09 summer balance (-4980 mm w.e.) was more negative than any on record for the glacier. The 2008/09 glacier net balance (-1860 mm w.e.) was among the 10 most negative for the period of net balance record (1953-2009). Material presented here is preliminary in nature and presented prior to final review. These

  2. Founders Energy Ltd. 1998 annual report : fiscally prudent, value driven balanced growth strategy

    International Nuclear Information System (INIS)

    1999-01-01

    Founders Energy Ltd is a growth-oriented junior resource company engaged in the acquisition and development of oil and natural gas properties in Alberta, British Columbia and Saskatchewan. The annual review provides details of the company's operations and relevant financial performance during the 1998 fiscal year. In brief, the company realized significant increases in production and reserves, top quartile findings and development costs. It reported significant increases in leverage to natural gas through exploration success at Pouce Coupe and the acquisition of Opal Energy Inc.. It established new core areas in west-central Alberta, Peace River Arch and west-central Saskatchewan. It achieved a better balanced risk profile through geographical diversification and better balance to exploration and development. It increased undeveloped land area to 160,268 net acres and added 11.5 million barrels of established reserves at a finding cost of $ 6.28 per barrel. Financial highlights include increased gross revenue, increased net income per share, and increased shareholders' equity. tabs., figs

  3. 90-year-old firn air from Styx glacier, East Antarctica

    Science.gov (United States)

    Jang, Y.; Ahn, J.; Buizert, C.; Lee, H. G.; Hong, S.; Han, Y.; Jun, S. J.; Hur, S. D.

    2017-12-01

    Firn is the upper part of the glacier that has not yet been completely changed to the ice. In this layer, firn air can move through the open pores and be pumped for sampling. We obtained firn air and ice cores from Styx glacier (73°51'95″ S, 163°41'217″ E, 1623m asl.), East Antarctica during 2014-2015. The Styx glacier is located near coast, and has an accumulation rate of 0.13 Mgm-2y-1 with a mean annual temperature of -31.7 °. We found that the lock-in depth (depth where gas diffusion starts to stop, "LID") is 52.4 m and bubble close-off depth (the depth to the snow-ice transition perfectly, "COD") is 65.1 m. Therefore lock-in zone (between LID and COD, "LIZ") is 52.4 - 65.1 m. Concentrations of greenhouse gases (CO2, CH4, n=13) in the firn air were analyzed at US National Oceanic and Atmospheric Administration (NOAA) and 15N of N2 was measured at the Scripps Institution of Oceanography (SIO). We find that the firn air ages are up to about 90 years, the oldest firn air ages observed among coastal glaciers. In order to better understand physical properties and chemical composition, methane concentration and total air content of the closed bubbles in the LIZ (3 cm resolution, n=124) were analyzed by a wet extraction method at Seoul National University. The CH4 concentration and total air content show large variations in cm-scale depth intervals, and they are anti-correlated with each other. The CH4 concentration changes in a few cm corresponds to up to 40 years in CH4 age. We also applied Centre for Ice and Climate (CIC) 1-dimensional diffusion model and simulated greenhouse gas concentration profiles to quantitatively understand how the air moves in the Styx firn column. We hypothesize that density variations in the firn may increase thickness of LIZ and consequently increase of firn gas ages.

  4. Climate reconstructions derived from global glacier length records

    NARCIS (Netherlands)

    Klok, E.J.; Oerlemans, J.

    2004-01-01

    As glacier length fluctuations provide useful information about past climate, we derived historic fluctuations in the equilibrium-line altitude (ELA) on the basis of 19 glacier length records from different parts of the world. We used a model that takes into account the geometry of the glacier,

  5. An integrated modeling system for estimating glacier and snow melt driven streamflow from remote sensing and earth system data products in the Himalayas

    Science.gov (United States)

    Brown, M. E.; Racoviteanu, A. E.; Tarboton, D. G.; Gupta, A. Sen; Nigro, J.; Policelli, F.; Habib, S.; Tokay, M.; Shrestha, M. S.; Bajracharya, S.; Hummel, P.; Gray, M.; Duda, P.; Zaitchik, B.; Mahat, V.; Artan, G.; Tokar, S.

    2014-11-01

    Quantification of the contribution of the hydrologic components (snow, ice and rain) to river discharge in the Hindu Kush Himalayan (HKH) region is important for decision-making in water sensitive sectors, and for water resources management and flood risk reduction. In this area, access to and monitoring of the glaciers and their melt outflow is challenging due to difficult access, thus modeling based on remote sensing offers the potential for providing information to improve water resources management and decision making. This paper describes an integrated modeling system developed using downscaled NASA satellite based and earth system data products coupled with in-situ hydrologic data to assess the contribution of snow and glaciers to the flows of the rivers in the HKH region. Snow and glacier melt was estimated using the Utah Energy Balance (UEB) model, further enhanced to accommodate glacier ice melt over clean and debris-covered tongues, then meltwater was input into the USGS Geospatial Stream Flow Model (GeoSFM). The two model components were integrated into Better Assessment Science Integrating point and Nonpoint Sources modeling framework (BASINS) as a user-friendly open source system and was made available to countries in high Asia. Here we present a case study from the Langtang Khola watershed in the monsoon-influenced Nepal Himalaya, used to validate our energy balance approach and to test the applicability of our modeling system. The snow and glacier melt model predicts that for the eight years used for model evaluation (October 2003-September 2010), the total surface water input over the basin was 9.43 m, originating as 62% from glacier melt, 30% from snowmelt and 8% from rainfall. Measured streamflow for those years were 5.02 m, reflecting a runoff coefficient of 0.53. GeoSFM simulated streamflow was 5.31 m indicating reasonable correspondence between measured and model confirming the capability of the integrated system to provide a quantification of

  6. An Integrated Modeling System for Estimating Glacier and Snow Melt Driven Streamflow from Remote Sensing and Earth System Data Products in the Himalayas

    Science.gov (United States)

    Brown, M. E.; Racoviteanu, A. E.; Tarboton, D. G.; Sen Gupta, A.; Nigro, J.; Policelli, F.; Habib, S.; Tokay, M.; Shrestha, M. S.; Bajracharya, S.

    2014-01-01

    Quantification of the contribution of the hydrologic components (snow, ice and rain) to river discharge in the Hindu Kush Himalayan (HKH) region is important for decision-making in water sensitive sectors, and for water resources management and flood risk reduction. In this area, access to and monitoring of the glaciers and their melt outflow is challenging due to difficult access, thus modeling based on remote sensing offers the potential for providing information to improve water resources management and decision making. This paper describes an integrated modeling system developed using downscaled NASA satellite based and earth system data products coupled with in-situ hydrologic data to assess the contribution of snow and glaciers to the flows of the rivers in the HKH region. Snow and glacier melt was estimated using the Utah Energy Balance (UEB) model, further enhanced to accommodate glacier ice melt over clean and debris-covered tongues, then meltwater was input into the USGS Geospatial Stream Flow Model (Geo- SFM). The two model components were integrated into Better Assessment Science Integrating point and Nonpoint Sources modeling framework (BASINS) as a user-friendly open source system and was made available to countries in high Asia. Here we present a case study from the Langtang Khola watershed in the monsoon-influenced Nepal Himalaya, used to validate our energy balance approach and to test the applicability of our modeling system. The snow and glacier melt model predicts that for the eight years used for model evaluation (October 2003-September 2010), the total surface water input over the basin was 9.43 m, originating as 62% from glacier melt, 30% from snowmelt and 8% from rainfall. Measured streamflow for those years were 5.02 m, reflecting a runoff coefficient of 0.53. GeoSFM simulated streamflow was 5.31 m indicating reasonable correspondence between measured and model confirming the capability of the integrated system to provide a quantification

  7. Central Asian supra-glacier snow melt enhanced by anthropogenic black carbon

    Science.gov (United States)

    Schmale, Julia; Flanner, Mark; Kang, Shichang; Sprenger, Michael; Farinotti, Daniel; Zhang, Qianggong; Guo, Junming; Li, Yang; Lawrence, Mark; Schwikowski, Margit

    2016-04-01

    In Central Asia, more than 60 % of the population depends on water stored in glaciers and mountain snow. Densely populated areas near lower-lying mountain ranges are particularly vulnerable and a recent study showed that the region might lose 50 % of its glacier mass by 2050. While temperature, precipitation and dynamic processes are key drivers of glacial change, deposition of light absorbing impurities such as mineral dust and black carbon can lead to accelerated melting through surface albedo reduction. Here, we discuss the origin of deposited mineral dust and black carbon and their impacts on albedo change and snow melt. 218 snow samples were taken on 4 glaciers, Abramov (Pamir), Suek, Glacier No. 354 and Golubin (Tien Shan), representing deposition between summer 2012 and 2014. They were analyzed for elemental carbon, mineral dust and iron among other parameters. We find the elemental carbon concentration to be at the higher end of the range reported for neighboring mountain ranges between 70 and 502 ng g-1 (interquartile range). To investigate the origin of the snow impurities, we used a Lagrangian particle dispersion model, LAGRANTO. Back trajectory ensembles of 40 members with varied starting points to capture the meteorological spread were released every 6 hours for the covered period at all sites. "Footprints" were calculated and combined with emission inventories to estimate the relative contribution of anthropogenic and natural BC to deposited aerosol on the glaciers. We find that more than 94 % of BC is of anthropogenic origin and the major source region is Central Asia followed by the Middle East. Further exploring the implications of mineral dust and BC deposition, we calculate the snow albedo reduction with the Snow-Ice-Aerosol-Radiative model (SNICAR). Even though mineral dust concentrations were up to a factor of 50 higher than BC concentrations, BC dominates the albedo reduction. Using these results we calculate the snow melt induced by

  8. Glaciers along proposed routes extending the Copper River Highway, Alaska

    Science.gov (United States)

    Glass, R.L.

    1996-01-01

    Three inland highway routes are being considered by the Alaska Department of Transportation and Public Facilities to connect the community of Cordova in southcentral Alaska to a statewide road system. The routes use part of a Copper River and Northwest Railway alignment along the Copper River through mountainous terrain having numerous glaciers. An advance of any of several glaciers could block and destroy the roadway, whereas retreating glaciers expose large quantities of unconsolidated, unvegetated, and commonly ice-rich sediments. The purpose of this study was to map historical locations of glacier termini near these routes and to describe hazards associated with glaciers and seasonal snow. Historical and recent locations of glacier termini along the proposed Copper River Highway routes were determined by reviewing reports and maps and by interpreting aerial photographs. The termini of Childs, Grinnell, Tasnuna, and Woodworth Glaciers were 1 mile or less from a proposed route in the most recently available aerial photography (1978-91); the termini of Allen, Heney, and Schwan Glaciers were 1.5 miles or less from a proposed route. In general, since 1911, most glaciers have slowly retreated, but many glaciers have had occasional advances. Deserted Glacier and one of its tributary glaciers have surge-type medial moraines, indicating potential rapid advances. The terminus of Deserted Glacier was about 2.1 miles from a proposed route in 1978, but showed no evidence of surging. Snow and rock avalanches and snowdrifts are common along the proposed routes and will periodically obstruct the roadway. Floods from ice-dammed lakes also pose a threat. For example, Van Cleve Lake, adjacent to Miles Glacier, is as large as 4.4 square miles and empties about every 6 years. Floods from drainages of Van Cleve Lake have caused the Copper River to rise on the order of 20 feet at Million Dollar Bridge.

  9. The Impacts of Advancing Glaciers and Jökulhlaups on the 19th Century Farming Community in the Suðursveit District South of Vatnajökull Glacier, Iceland.

    Science.gov (United States)

    Sigurmundsson, F. S.; Gísladóttir, G.; Erlendsson, E.

    2014-12-01

    Few areas in Iceland were as vulnerable to climate changes during the 19th century as the region south of Vatnajökull glacier. The region was repeatedly affected by glacier advance and jökulhlaups (glacier outburst floods) during the Little Ice Age AD 1300-1900 (LIA). The land area between the glacier and the coast was occupied by farming community. The aim of this research is to quantify and map the size of lost vegetated area in the 19th century during the glacial advance in the climax of the LIA and the impact these events had on the community, land-use, ownership, value of estates and livelihood. This research employs historical written sources to investigate changes in the cultural and natural landscape. Historical data and field observations will be collected and stored in a GIS database designed for the research, allowing data to be analyzed and presented on maps. The first recorded impact on the settlement is from 1794 when the Breiðármerkurjökull outlet glacier advanced and devastated pastures and crofts belonging in west of the district. Seventy five years later, in 1868, the largest estate was completely destroyed by a jökulhlaup. In 1829 a farm site in the middle of the district was moved due to repeated jökulhlaup. The outlet glacier Brókarjökull initiated annual jökulhlaups during 1820 -1870, devastating pastures and hayfields and woodlands of a total of 3 prominent estates in the area (by 1200 ha), causing devaluation of 33-66% on these estates. In the eastern part extensive jökulhlaups changed the glacial river channel causing the river to flow over vast area devastating 80 % of the eastern most estate causing its abandonment in 1892. The climate change and accompanied hazards during the 19th century changed the landscape of the Suðursveit district significantly. By the turn of the 20thcentury the vegetated land in the district had been reduced by 35% and areas of sediments increased by 25% and glaciated area increased by 10%. These

  10. Glaciers of Avacha group of volcanoes in Neoholocene

    Directory of Open Access Journals (Sweden)

    T. M. Manevich

    2016-01-01

    Full Text Available The study of moraines at the Avacha volcano group revealed that glaciers changes at all volcanoes within the group happened almost synchronously. Glacial deposits could be grouped into three generations, corresponding to three periods of glacier fluctuations in Neoholocene. The largest glaciation within the group occurred ~2000 years ago. Fragments of moraine, corresponding to that period were found only in the moraine complex of the Ditmar Glacier which was 15% larger then today at that time. The most of moraines at the Avacha volcano group were formed during the Little Ice Age, which in the studied region continued up to the first decades of XX centuries. The maximal advance of glaciers probably happened in XVII century. The moraine corresponding to that period was found at the Kozelsky Glacier valley. At present time the total area of glaciers which moraines were described and dated approaches 21.46  km2. The area of reconstructed moraines corresponding to the Little Ice Age is estimated to be 2.79 km2, therefore at that period the total glaciation area reaches 24,25 км2 exceeding the present area by 13%. It could be claimed that in general during the time past the Little Ice Age the glaciation nature and glacier types did not change sufficiently. The rate of glacier degradation at various parts of the group is different and depends mainly on exposition. At the valleys of four glaciers we found moraines formed in the middle of XX century. They may appear in 1941–1952 when the unfavorable weather conditions leaded to stable negative anomalies in accumulation have happened.

  11. Motion of the Lambert Glacier estimated by using differential Interferometric Synthetic Aperture Radar

    International Nuclear Information System (INIS)

    Liu, Shuang; Tong, Xiaohua; Xie, Huan; Liu, Xiangfeng; Liu, Jun

    2014-01-01

    Interferometric Synthetic Aperture Radar (InSAR) is one of the most promising remote sensing technologies and has been widely applied in constructing topographic information and estimating the deformation of the Earth's surface. Ice velocity is an important parameter for calculating the mass balance and modelling ice shelve dynamics. Ice velocity is also an important indicator for climate changes. Therefore, it plays an important role in studying the global climate change and global sea level rise. In this paper, the ERS-1/2 tandem data and the ASTER GDEM are combined together to obtained the deformation in line of sight by using the differential Interferometric SAR for the Lambert Amery glacier in Antarctica. Then the surface parallel assumption is adopted in order to achieve the ice flow velocity. The results showed that ice velocity would be increased along the Lambert glacier; the maximum ice velocity would be reach about 450m/year in the study area

  12. Determining glacier velocity with single frequency GPS receivers

    NARCIS (Netherlands)

    Reijmer, C.H.; van de Wal, R.S.W.; Boot, W.

    2011-01-01

    A well-known phenomenon in glacier dynamics is the existence of a relation between the glacier velocity and available amount of melt water (Zwally et al., 2002; Van de Wal et al., 2008). This relation is of particular importance when estimating the reaction of glaciers and ice sheets to climate

  13. Glacialmorphological reconstruction of glacier advances and glacial lake outburst floods at the Cachapoal glacier in the Dry Central Andes of Chile (34°S)

    Science.gov (United States)

    Iturrizaga, Lasafam; Charrier, Reynaldo

    2013-04-01

    Throughout the Andes Mountain range of South America a general trend of glacier shrinkage has taken place in the last century. Only a few glaciers have shown a rather non-continuous trend of glacier retreat and temporally advanced or even surged during the mid-19th to 20th century. One of the earliest assumed glacier surges has occurred in the upper Cachapoal catchment area at the homonymous glacier. In climatic respect the Cachapoal glacier is located in the transition zone from the most southern part of the Dry Central Andes of Chile to the more humid zone of the Wet Andes. The region is affected mainly by winter precipitation deriving from the Westerlies. The debris-covered, 12 km-long Cachapoal glacier represents one of the largest valley glaciers in the Central Andes. It is an avalanche-fed glacier with an almost 1500 m-high head wall in its upper catchment area flowing down from Picos del Barroso (5180 m) and terminates at an elevation of 2630 m a.s.l. with a bifurcated glacier tongue. A large moraine complex, almost 2 km in length and 500 m in width, separates the two glacier lobes. During times of advanced glacier tongue positions the Ríos Molina and Cachapoal may be have blocked independently at two distinct localities which are situated about 2300 m apart from each other. A blockage with temporal lake formation has occurred at least in the years 1848, 1955 and 1981 (cf. Plagemann 1887, Peña 1981), from which the rupture of the earliest glacier barrier has been the most devastating. This event is locally reminded as "la gran avenida en seco" in the historical record. Geomorphological evidence of the past historical and modern glacier expansions is given in the proglacial area by a fresh dead-ice hummocky topography and glacial trimlines at the valley flanks. More down valley broad outwash plains and boulder clusters indicate past high energy floods produced by glacier lake outbursts. Regarding the small size of the catchment area of the Río Molina

  14. The Neogene Environment of the Beardmore Glacier, Transantarctic Mountains

    Science.gov (United States)

    Ashworth, A. C.; Cantrill, D. J.; Francis, J. E.; Roof, S. R.

    2004-12-01

    Discontinuous sequences of Neogene marine and non-marine glacigenic sequences, including the Meyer Desert Formation (MDF), occur throughout the Transantarctic Mountains. The upper 85m of the MDF, consisting of interbedded diamictites, conglomerates, sandstones and siltstones, outcrops in the Oliver Bluffs on the Beardmore Glacier at 85° 07'S, 166° 35'E. The location is about 170 km south of the confluence of the Beardmore Glacier with the Ross Ice Shelf and about 500 km north of the South Pole The glacial, fluvioglacial and glaciolacustrine facies of the MDF represent a dynamic glacial margin which advanced and retreated on at least four occasions. On at least one occasion, the retreat was sufficiently long for plants and animals to colonize the head of a major fjord which existed in the place of the existing Beardmore Glacier. From the fossils we have identified at least 18 species of plants, 3 species of insects, 2 species of freshwater mollusks, and a species of fish. The plant fossils consist of pollen, seeds, fruits, flowers, leaves, wood, and in situ plants. The plants include a cryptogamic flora of mosses and liverworts, conifers, and angiosperms in the families Gramineae, Cyperaceae, Nothofagaceae, Ranunculaceae, Hippuridaceae, ?Caryophyllaceae, and ?Chenopodiaceae or ?Myrtaceae. The plants grew in a weakly developed soil developed on a complex periglacial environment that included moraines, glacial outwash streams, well-drained gravel ridges, and poorly drained depressions in which peat and marl were being deposited. The fossil assemblage represents a mosaic tundra environment of well- and poorly-drained micro-sites, in which nutrient availability would have been patchily distributed. Antarctica has been essentially in a polar position since the Early Cretaceous and at 85° S receives no sunlight from the middle of March until the end of September. Today, the annual radiation received is about 42% that of Tierra del Fuego at 55° S. During the Neogene

  15. Rock glaciers in the Suntar‑Khayata Range

    Directory of Open Access Journals (Sweden)

    V. M. Lytkin

    2016-01-01

    Full Text Available The remote map‑making technique and results of field investigations made possible for the first time to reveal a great number of rock glaciers within the area of the Suntar‑Khayata Range (North‑East Asia. A total of 540 formations were identified. Among them, 47 rock glaciers were classified as corrie (cirque tongue‑shaped formations and 493 ones – as niche lobe‑shaped (single‑ and multi‑lobe rock glaciers. Occurrence of such formations is 8.4/100 km2, that is the largest in the North‑East Asia. The rock glaciers in this region are found within a range of true altitudes from 1297 up to 2402 m asl. The majority of active features, however, are confined to the interval between 1500 and 1900 m asl. Rock glaciers occur in the altitudinal range of 1297 to 2402 m asl. The majority of active features, however, are confined to the interval between 1500 and 1900 m asl, and the main part of active formations is located within the range of 1500‑2500 m. The frequency analysis of true altitudes of the rock‑glacier occurrence indicates that their formation can be caused by the hypsometry of the region relation to morphoclimatic zonality.

  16. Glaciers and hydrological changes in the Tien Shan: simulation and prediction

    International Nuclear Information System (INIS)

    Aizen, V B; Aizen, E M; Kuzmichonok, V A

    2007-01-01

    In this study, we estimated the current glacier state and forecast the potential impact of global and regional climate change on the glaciers and glacier runoff in the Tien Shan. General (G) and detailed (D) simulations were developed based on assessment of the Tien Shan glacier recession between 1943 and 2003 using an iterative stepwise increase in the equilibrium line altitude of 20 m. The G simulation was developed for 2777 grids each of which covered over 1000 km 2 of glacier surface and D for the 15 953 Tien Shan glaciers. Both simulations employed glacier morphometric characteristics derived from Digital Elevation Model based on remote sensing data, high resolution maps and in situ GPS validation. Simulated changes in glacier area demonstrated that a possible increase in air temperature of 1 deg. C at E-barLA must be compensated by a 100 mm increase in precipitation at the same altitude if Tien Shan glaciers are to be maintained in their current state. An increase in mean air temperature of 4 deg. C and precipitation of 1.1 times the current level could increase E-barLA by 570 m during the 21st century. Under these conditions, the number of glaciers, glacier covered area, glacier volume, and glacier runoff are predicted to be 94%, 69%, 75%, and 75% of current values. The maximum glacier runoff may reach as much as 1.25 times current levels while the minimum will likely equal zero

  17. Investigating cold based summit glaciers through direct access to the glacier base: a case study constraining the maximum age of Chli Titlis glacier, Switzerland

    Science.gov (United States)

    Bohleber, Pascal; Hoffmann, Helene; Kerch, Johanna; Sold, Leo; Fischer, Andrea

    2018-01-01

    Cold glaciers at the highest locations of the European Alps have been investigated by drilling ice cores to retrieve their stratigraphic climate records. Findings like the Oetztal ice man have demonstrated that small ice bodies at summit locations of comparatively lower altitudes may also contain old ice if locally frozen to the underlying bedrock. In this case, constraining the maximum age of their lowermost ice part may help to identify past periods with minimum ice extent in the Alps. However, with recent warming and consequent glacier mass loss, these sites may not preserve their unique climate information for much longer. Here we utilized an existing ice cave at Chli Titlis (3030 m), central Switzerland, to perform a case study for investigating the maximum age of cold-based summit glaciers in the Alps. The cave offers direct access to the glacier stratigraphy without the logistical effort required in ice core drilling. In addition, a pioneering exploration had already demonstrated stagnant cold ice conditions at Chli Titlis, albeit more than 25 years ago. Our englacial temperature measurements and the analysis of the isotopic and physical properties of ice blocks sampled at three locations within the ice cave show that cold ice still exists fairly unchanged today. State-of-the-art micro-radiocarbon analysis constrains the maximum age of the ice at Chli Titlis to about 5000 years before present. By this means, the approach presented here will contribute to a future systematic investigation of cold-based summit glaciers, also in the Eastern Alps.

  18. Seismological observations of glaciers dynamic on the Spitsbergen archipelago

    Directory of Open Access Journals (Sweden)

    Fedorov A. V.

    2016-03-01

    Full Text Available The paper provides a brief description of results of Spitsbergen glacier observations by the seismic method. The study has been carried out both by permanent and temporary stations data. Characteristic features of glacier-related seismic events have been shown. Main areas of glacier seismic activity on the Archipelago have been revealed. A detailed study of Horsund-fjord glacier activity has been carried out using local seismic station HSPB data. Temporal and spatial distributions of glacier-related events have been obtained for the area. Season variations in temporal distribution of the events have been found

  19. What Influences Climate and Glacier Change in the Southwestern China?

    Science.gov (United States)

    Yasunari, Teppei J.

    2012-01-01

    The subject of climate change in the areas of the Tibetan Plateau (TP) and the Himalayas has taken on increasing importance because of available water resources from their mountain glaciers. Many of these glaciers over the region have been retreating, while some are advancing and stable. Other studies report that some glaciers in the Himalayas show acceleration on their shrinkage. However, the causes of the glacier meltings are still difficult to grasp because of the complexity of climatic change and its influence on glacier issues. However, it is vital that we pursue further study to enable the future prediction on glacier changes.

  20. Glacier Instability, Rapid Glacier Lake Growth and Related Hazards at Belvedere Glacier, Macugnaga, Italy

    Science.gov (United States)

    Huggel, C.; Kaeaeb, A.; Haeberli, W.; Mortara, G.; Chiarle, M.; Epifani, F.

    2002-12-01

    Starting in summer 2000, Belvedere Glacier, near Macugnaga, Italian Alps, developed an extraordinary change in flow, geometry and surface appearance. A surge-type flow acceleration started in the lower parts of the Monte-Rosa east face, leading to strong crevassing and deformation of Belvedere Glacier, accompanied by bulging of its orographic right margin. In September 2001, a small supraglacial lake developed on the glacier. High water pressure and accelerated movement lasted into winter 2001/2002. The ice, in places, started to override moraines from the Little Ice Age. In late spring and early summer 2002, the supraglacial lake grew at extraordinary rates reaching a maximum area of more than 150'000 m2 by end of June. The evolution of such a large supraglacial lake, a rather unique feature in the Alps, was probably enabled by changes in the subglacial drainage system in the course of the surge-like developments with high water pressure in the glacier. At the end of June, an enhanced growth of the lake level with a rise of about 1 m per day was observed such that the supraglacial lake became a urgent hazard problem for the community of Macugnaga. Emergency measures had to be taken by the Italian Civil Protection. The authors thereby acted as the official expert advisers. Temporal evacuations were ordered and a permanent monitoring and alarm system was installed. Pumps with a maximum output of 1 m3/s were brought to the lake. Bathymetric studies yielded a maximum lake depth of 55 m and a volume of 3.3 millions of cubic meters of water. Aerial photography of 1995, 1999, September 2001 and October 2001 was used to calculate ice flow velocities and changes in surface altitude. Compared to the period of 1995 to 1999, the flow accelerated by about five times in 2001 (max. speeds up to 200 m/yr). Surface uplift measured was about 10-15 m/yr. The results of the photogrammetric studies were used to evaluate different possible lake-outburst scenarios, in particular

  1. How Well do we Know Near-Surface Density When Determining Mass Balance by the Geodetic Method?

    Science.gov (United States)

    Kuhn, M. H.; Matzi, E.

    2005-12-01

    From a data set of firn pits in the accumulation area of Hintereisferner in the years 1964 - 2002 the behavior of density and water equivalent was analyzed with a view to estimating the potential errors in the application of the geodetic method. Since annual specific balance ranged from 100 to 3300 mm w.e. the profiles were scaled to total depth. For the uppermost 10% of the annual deposit at a typical location the 1964-2002 mean density would be 350 kg/m-3 with a standard deviation of 110 kg/m-3; for the 10% layer at the base of the annual snowpack the respective figures are 510 +- 30 kg/m-3. The normalized long term means of an ensemble of 9 pits ranged from 310 to 380 kg/m-3 in the top layer and from 510 to 540 kg/m-3 in the bottom layer. When one outlier is removed the the range in the bottom layer reduces to 525 to 540 kg/m-3. This small local variance encourages the use of the geodetic method. The comparison of elevation models of 1969 and 1997 yields a mass change that agrees very well with the results of the glaciological method provided the volume change is converted to mass with a density of 900 kg/m-3. While this may be true for the entire glacier on long terms, it will fail for individual years in the accumulation area. Possible errors are calculated from the data set emphasizing the role of year to year changes of specific balance and accumulation area ratio.

  2. Glacier mass changes on the Tibetan Plateau 2003–2009 derived from ICESat laser altimetry measurements

    International Nuclear Information System (INIS)

    Neckel, N; Kropáček, J; Hochschild, V; Bolch, T

    2014-01-01

    Glacier mass changes are a valuable indicator of climate variability and monsoon oscillation on the underexplored Tibetan Plateau. In this study data from the Ice Cloud and Elevation Satellite (ICESat) is employed to estimate elevation and mass changes of glaciers on the Tibetan Plateau between 2003 and 2009. In order to get a representative sample size of ICESat measurements, glaciers on the Tibetan Plateau were grouped into eight climatically homogeneous sub-regions. Most negative mass budgets of − 0.77 ± 0.35 m w.e. a −1 were found for the Qilian Mountains and eastern Kunlun Mountains while a mass gain of + 0.37 ± 0.25 m w.e. a −1 was found in the westerly-dominated north-central part of the Tibetan Plateau. A total annual mass budget of − 15.6 ± 10.1 Gt a −1 was estimated for the eight sub-regions sufficiently covered by ICESat data which represents ∼80% of the glacier area on the Tibetan Plateau. 13.9 ± 8.9 Gt a −1 (or 0.04 ± 0.02 mm a −1 sea-level equivalent) of the total mass budget contributed ‘directly’ to the global sea-level rise while 1.7 ± 1.9 Gt a −1 drained into endorheic basins on the plateau. (paper)

  3. Changes of glacier, glacier-fed rivers and lakes in Altai Tavan Bogd National Park, Western Mongolia, based on multispectral satellite data from 1990 to 2017

    Science.gov (United States)

    Batsaikhan, B.; Lkhamjav, O.; Batsaikhan, N.

    2017-12-01

    Impacts on glaciers and water resource management have been altering through climate changes in Mongolia territory characterized by dry and semi-arid climate with low precipitation. Melting glaciers are early indicators of climate change unlike the response of the forests which is slower and takes place over a long period of time. Mountain glaciers are important environmental components of local, regional, and global hydrological cycles. The study calculates an overview of changes for glacier, glacier-fed rivers and lakes in Altai Tavan Bogd mountain, the Western Mongolia, based on the indexes of multispectral data and the methods typically applied in glacier studies. Were utilized an integrated approach of Normalized Difference Snow Index (NDSI) and Normalized Difference Water Index (NDWI) to combine Landsat, MODIS imagery and digital elevation model, to identify glacier cover are and quantify water storage change in lakes, and compared that with and climate parameters including precipitation, land surface temperature, evaporation, moisture. Our results show that melts of glacier at the study area has contributed to significantly increase of water storage of lakes in valley of The Altai Tavan Bogd mountain. There is hydrologic connection that lake basin is directly fed by glacier meltwater.

  4. Annual balances of CH4 and N2O from a managed fen meadow using eddy covariance flux measurements

    International Nuclear Information System (INIS)

    Schrier-Uijl, A.P.; Veenendaal, E.M.; Kroon, P.S.; Hensen, A.; Jonker, H.J.J.

    2010-10-01

    Annual terrestrial balances of methane (CH4) and nitrous oxide (N2O) are presented for a managed fen meadow in the Netherlands for 2006, 2007 and 2008, using eddy covariance (EC) flux measurements. Annual emissions derived from different methods are compared. The most accurate annual CH4 flux is achieved by gap filling EC fluxes with an empirical multivariate regression model, with soil temperature and mean wind velocity as driving variables. This model explains about 60% of the variability in observed daily CH4 fluxes. Annual N2O emissions can be separated into background emissions and event emissions due to fertilization. The background emission is estimated using a multivariate regression model also based on EC flux data, with soil temperature and mean wind velocity as driving variables. The event emissions are estimated using emission factors. The minimum direct emission factor is derived for six fertilization events by subtracting the background emission, and the IPCC default emission factor of 1% is used for the other events. In addition, the maximum direct emission factors are determined for the six events without subtracting the background emission. The average direct emission factor ranges from 1.2 to 2.8%, which is larger than the IPCC default value. Finally, the total terrestrial greenhouse gas balance is estimated at 16 Mg ha -1 year -1 in CO2-equivalents with contributions of 30, 25 and 45% by CO2, CH4 and N2O, respectively.

  5. Using Metaphorical Models for Describing Glaciers

    Science.gov (United States)

    Felzmann, Dirk

    2014-01-01

    To date, there has only been little conceptual change research regarding conceptions about glaciers. This study used the theoretical background of embodied cognition to reconstruct different metaphorical concepts with respect to the structure of a glacier. Applying the Model of Educational Reconstruction, the conceptions of students and scientists…

  6. Climate-induced glacier and snow loss imperils alpine stream insects

    Science.gov (United States)

    Giersch, J. Joseph; Hotaling, Scott; Kovach, Ryan; Jones, Leslie A.; Muhlfeld, Clint C.

    2017-01-01

    Climate warming is causing rapid loss of glaciers and snowpack in mountainous regions worldwide. These changes are predicted to negatively impact the habitats of many range-restricted species, particularly endemic, mountaintop species dependent on the unique thermal and hydrologic conditions found only in glacier-fed and snowmelt-driven alpine streams. Though progress has been made, existing understanding of the status, distribution, and ecology of alpine aquatic species, particularly in North America, is lacking, thereby hindering conservation and management programs. Two aquatic insects – the meltwater stonefly Lednia tumana and the glacier stonefly Zapada glacier – were recently proposed for listing under the U.S. Endangered Species Act due to climate-change-induced habitat loss. Using a large dataset (272 streams, 482 total sites) with high-resolution climate and habitat information, we describe the distribution, status, and key environmental features that limit L. tumana and Z. glacier across the northern Rocky Mountains. Lednia tumana was detected in 113 streams (175 sites) within Glacier National Park (GNP) and surrounding areas. The probability of L. tumana occurrence increased with cold stream temperatures and close proximity to glaciers and permanent snowfields. Similarly, densities of L. tumana declined with increasing distance from stream source. Zapada glacier was only detected in 10 streams (20 sites), six in GNP and four in mountain ranges up to ~600 km southwest. Our results show that both L. tumana and Z. glacier inhabit an extremely narrow distribution, restricted to short sections of cold, alpine streams often below glaciers predicted to disappear over the next two decades. Climate warming-induced glacier and snow loss clearly imperils the persistence of L. tumana and Z. glacier throughout their ranges, highlighting the role of mountaintop aquatic invertebrates as sentinels of climate change in mid-latitude regions.

  7. Rock glaciers, Central Andes, Argentina, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — Primary rock glaciers are fed by avalanche chutes. At the El Salto rock glacier, surveys have been undertaken in order to determine the creep rate. Between 1981 and...

  8. Neoglacial fluctuations of Deming Glacier, Mt. Baker, Washington USA.

    Science.gov (United States)

    Osborn, G.; Menounos, B.; Scott, K.; Clague, J. J.; Tucker, D.; Riedel, J.; Davis, P.

    2007-12-01

    Deming Glacier flows from the upper west slopes of Mt. Baker, a stratovolcano in the Cascade Range of Washington, USA. The north and south lateral moraines of Deming Glacier are composed of at least four tills separated by layers of detrital wood and sheared stumps in growth position. The stratigraphy records fluctuations of the glacier during the Holocene. The outer ten rings of an in situ stump from the middle wood layer, which is about 40 m below the north lateral moraine crest and 1.2 km downvalley from the present glacier terminus, yielded an age of 1750 ± 50~~ 14C yr BP [1810-1550 cal yr BP]. The stump revealed at least 300 rings and thus records a period of landscape stability and relatively restricted glaciation for several hundred years prior to ca. 1750 14C yr BP . Samples from the lowest wood layer also have been submitted for radiocarbon dating. Outer rings of detrital wood samples collected from two wood mats exposed in the south lateral moraine, 2.3 km downvalley of the glacier terminus, returned radiocarbon ages of 1600 ± 30~~ 14C yr BP [1550- 1410 cal yr BP] and 430 ± 30~~ 14C yr BP [AD 1420-1620]. These data indicate that Deming Glacier advanced over a vegetated moraine sometime after 1810 cal yr BP to a position less extensive that it achieved at the peak of the Little Ice Age. The glacier then receded before it began its final and most extensive Holocene advance after AD 1420. The older advance is correlative with the 'First Millennium AD' advance, recently recognized throughout western North America. The younger advance coincides with an advance of Mt. Baker's Easton Glacier [AD 1430-1630], and advances of many alpine glaciers elsewhere in western North America. Our data suggest that glaciers on Mt. Baker fluctuated in a similar manner to alpine glaciers in the Coast Mountains of British Columbia and in other mountain ranges of northwest North America during Neoglaciation.

  9. Accessing the inaccessible: making (successful) field observations at tidewater glacier termini

    Science.gov (United States)

    Kienholz, C.; Amundson, J. M.; Jackson, R. H.; Motyka, R. J.; Nash, J. D.; Sutherland, D.

    2017-12-01

    Glaciers terminating in ocean water (tidewater glaciers) show complex dynamic behavior driven predominantly by processes at the ice-ocean interface (sedimentation, erosion, iceberg calving, submarine melting). A quantitative understanding of these processes is required, for example, to better assess tidewater glaciers' fate in our rapidly warming environment. Lacking observations close to glacier termini, due to unpredictable risks from calving, hamper this understanding. In an effort to remedy this lack of knowledge, we initiated a large field-based effort at LeConte Glacier, southeast Alaska, in 2016. LeConte Glacier is a regional analog for many tidewater glaciers, but better accessible and observable and thus an ideal target for our multi-disciplinary effort. Our ongoing campaigns comprise measurements from novel autonomous vessels (temperature, salinity and current) in the immediate proximity of the glacier terminus and additional surveys (including multibeam bathymetry) from boats and moorings in the proglacial fjord. These measurements are complemented by iceberg and glacier velocity measurements from time lapse cameras and a portable radar interferometer situated above LeConte Bay. GPS-based velocity observations and melt measurements are conducted on the glacier. These measurements provide necessary input for process-based understanding and numerical modeling of the glacier and fjord systems. In the presentation, we discuss promising initial results and lessons learned from the campaign.

  10. Glacier dynamics over the last quarter of a century at Helheim, Kangerdlugssuaq and 14 other major Greenland outlet glaciers

    Directory of Open Access Journals (Sweden)

    S. L. Bevan

    2012-09-01

    Full Text Available The Greenland ice sheet is experiencing increasing rates of mass loss, the majority of which results from changes in discharge from tidewater glaciers. Both atmospheric and ocean drivers have been implicated in these dynamic changes, but understanding the nature of the response has been hampered by the lack of measurements of glacier flow rates predating the recent period of warming. Here, using Landsat-5 data from 1985 onwards, we extend back in time the record of surface velocities and ice-front position for 16 of Greenland's fastest-flowing tidewater glaciers, and compare these to more recent data from Landsat-7 and satellite-borne synthetic-aperture radar. Climate re-analysis data and sea surface temperatures from 1982 show that since 1995 most of Greenland and its surrounding oceans have experienced significant overall warming, and a switch to a warming trend. During the period from 1985 to 1995 when Greenland and the surrounding oceans were not warming, major tidewater outlet glaciers around Greenland, including Kangerdlugssuaq and Helheim, were dynamically stable. Since the mid-1990s, glacier discharge has consistently been both greater and more variable. Together, these observations support the hypothesis that recent dynamic change is a rapid response to climate forcing. Both air and ocean temperatures in this region are predicted to continue to warm, and will therefore likely drive further change in outlet glacier discharge.

  11. Causes of Glacier Melt Extremes in the Alps Since 1949

    Science.gov (United States)

    Thibert, E.; Dkengne Sielenou, P.; Vionnet, V.; Eckert, N.; Vincent, C.

    2018-01-01

    Recent record-breaking glacier melt values are attributable to peculiar extreme events and long-term warming trends that shift averages upward. Analyzing one of the world's longest mass balance series with extreme value statistics, we show that detrending melt anomalies makes it possible to disentangle these effects, leading to a fairer evaluation of the return period of melt extreme values such as 2003, and to characterize them by a more realistic bounded behavior. Using surface energy balance simulations, we show that three independent drivers control melt: global radiation, latent heat, and the amount of snow at the beginning of the melting season. Extremes are governed by large deviations in global radiation combined with sensible heat. Long-term trends are driven by the lengthening of melt duration due to earlier and longer-lasting melting of ice along with melt intensification caused by trends in long-wave irradiance and latent heat due to higher air moisture.

  12. Mapping tide-water glacier dynamics in east Greenland using landsat data

    Science.gov (United States)

    Dwyer, John L.

    1995-01-01

    Landsat multispectral scanner and thematic mapper images were co-registered For the Kangerdlugssuaq Fjord region in East Greenland and were used to map glacier drainage-basin areas, changes in the positions of tide-water glacier termini and to estimate surface velocities of the larger tide-water glaciers. Statistics were compiled to document distance and area changes to glacier termini. The methodologies developed in this study are broadly applicable to the investigation of tide-water glaciers in other areas. The number of images available for consecutive years and the accuracy with which images are co-registered are key factors that influence the degree to which regional glacier dynamics can be characterized using remotely sensed data.Three domains of glacier state were interpreted: net increase in terminus area in the southern part of the study area, net loss of terminus area for glaciers in upper Kangerdlugssuaq Fjord and a slight loss of glacier terminus area northward from Ryberg Fjord. Local increases in the concentrations of drifting icebergs in the fjords coincide with the observed extension of glacier termini positions Ice-surface velocity estimates were derived for several glaciers using automated image cross-correlation techniques The velocity determined for Kangerdlugssuaq Gletscher is approximately 5.0 km a−1 and that for Kong Christian IV Gletscher is 0.9 km a−1. The continuous presence of icebergs and brash ice in front of these glaciers indicates sustained rates of ice-front calving.

  13. Rainfall as primary driver of discharge and solute export from rock glaciers: The Col d'Olen Rock Glacier in the NW Italian Alps.

    Science.gov (United States)

    Colombo, Nicola; Gruber, Stephan; Martin, Maria; Malandrino, Mery; Magnani, Andrea; Godone, Danilo; Freppaz, Michele; Fratianni, Simona; Salerno, Franco

    2018-10-15

    Three hypotheses exist to explain how meteorological variables drive the amount and concentration of solute-enriched water from rock glaciers: (1) Warm periods cause increased subsurface ice melt, which releases solutes; (2) rain periods and the melt of long-lasting snow enhance dilution of rock-glacier outflows; and (3) percolation of rain through rock glaciers facilitates the export of solutes, causing an opposite effect as that described in hypothesis (2). This lack of detailed understanding likely exists because suitable studies of meteorological variables, hydrologic processes and chemical characteristics of water bodies downstream from rock glaciers are unavailable. In this study, a rock-glacier pond in the North-Western Italian Alps was studied on a weekly basis for the ice-free seasons 2014 and 2015 by observing the meteorological variables (air temperature, snowmelt, rainfall) assumed to drive the export of solute-enriched waters from the rock glacier and the hydrochemical response of the pond (water temperature as a proxy of rock-glacier discharge, stable water isotopes, major ions and selected trace elements). An intra-seasonal pattern of increasing solute export associated with higher rock-glacier discharge was found. Specifically, rainfall, after the winter snowpack depletion and prolonged periods of atmospheric temperature above 0 °C, was found to be the primary driver of solute export from the rock glacier during the ice-free season. This occurs likely through the flushing of isotopically- and geochemically-enriched icemelt, causing concomitant increases in the rock-glacier discharge and the solute export (SO 4 2- , Mg 2+ , Ca 2+ , Ni, Mn, Co). Moreover, flushing of microbially-active sediments can cause increases in NO 3 - export. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. A possible climate signal in the surface morphology and internal structure of Galena Creek Rock Glacier, Wyoming

    Science.gov (United States)

    Petersen, Eric; Holt, John; Levy, Joseph; Stuurman, Cassie; Nerozzi, Stefano; Cardenas, Benjamin; Pharr, James; Aylward, Dan; Schmidt, Logan; Hoey, William; Prem, Parvathy; Rambo, Jackie; Lim, YeJin; Maharaj, Kian

    2016-04-01

    intersected the surface at 15-35 degrees at each ridge. Each of these reflectors is interpreted to be a debris band similar to the one observed in the thermokarst pond. These debris bands are hypothesized to represent climatic "tree rings:" they are formed in interglacial periods as rockfall accumulates and preserves underlying ice and then buried by subsequent ice deposition in the accumulation zone during positive mass balance periods. The up-glacier dip is the 2D expression of "nested spoons" morphology, expected from glacier flow. The potential connections between surface ridge morphology, englacial debris bands, and regional climate-driven ice accumulation make GCRG a prime candidate for further investigation.

  15. Glacier Monitoring and Capacity Building: Important Ingredients for Sustainable Mountain Development

    Directory of Open Access Journals (Sweden)

    Samuel U. Nussbaumer

    2017-02-01

    Full Text Available Glacier observation data from major mountain regions of the world are key to improving our understanding of glacier changes: they deliver fundamental baseline information for climatological, hydrological, and hazard assessments. In many mountain ecosystems, as well as in the adjacent lowlands, glaciers play a crucial role in freshwater provision and regulation. This article first presents the state of the art on glacier monitoring and related strategies within the framework of the Global Terrestrial Network for Glaciers (GTN-G. Both in situ measurements of changes in glacier mass, volume, and length as well as remotely sensed data on glacier extents and changes over entire mountain ranges provide clear indications of climate change. Based on experiences from capacity-building activities undertaken in the Tropical Andes and Central Asia over the past years, we also review the state of the art on institutional capacity in these regions and make further recommendations for sustainable mountain development. The examples from Peru, Ecuador, Colombia, and Kyrgyzstan demonstrate that a sound understanding of measurement techniques and of the purpose of measurements is necessary for successful glacier monitoring. In addition, establishing durable institutions, capacity-building programs, and related funding is necessary to ensure that glacier monitoring is sustainable and maintained in the long term. Therefore, strengthening regional cooperation, collaborating with local scientists and institutions, and enhancing knowledge sharing and dialogue are envisaged within the GTN-G. Finally, glacier monitoring enhances the resilience of the populations that depend on water resources from glacierized mountains or that are affected by hazards related to glacier changes. We therefore suggest that glacier monitoring be included in the development of sustainable adaptation strategies in regions with glaciated mountains.

  16. Climatic Drivers of Tropical Andean Glacier Recession, c1987 - c2006

    Science.gov (United States)

    Slayback, D. A.; Tucker, C. J.

    2011-12-01

    We report on the climatic trends associated with glacier recession in the tropical Andes from the mid-1980s to the mid-2000s. These glaciers comprise 99% of the world's tropical glaciers and occur in Bolivia, Peru, Ecuador, Colombia, and Venezuela. We previously reported on our comprehensive analysis of Landsat imagery of these glaciers, which indicated an overall recession of approximately 30% in glacierized area between c1987 and c2006, or a drop from ~2500 km2 to ~1800 km2 in total glacier area. In the current work, we have examined trends in temperature, cloud cover, and precipitation and compared these trends with those in glacier recession. For temperature and cloud cover, we use the MERRA reanalysis datasets (Modern Era Retrospective-Analysis for Research and Applications) produced by the NASA Goddard's GMAO (Global Modeling and Assimilation Office), which are based on satellite observations. For precipitation, we use the GPCP (Glocal Precipitation Climatology Project) datasets, which are based on both ground and satellite observations. We find that over the glacierized zones, the only significant trends are those in temperature, which show increases of up to 0.5 degree C per decade over some glacierized areas. Trends in cloud cover and precipitation are not generally significant. We discuss these trends in relation to glacier recession trends for each of the major glacierized areas of the tropical Andes.

  17. Monitoring Unstable Glaciers with Seismic Noise Interferometry

    Science.gov (United States)

    Preiswerk, L. E.; Walter, F.

    2016-12-01

    Gravity-driven glacier instabilities are a threat to human infrastructure in alpine terrain, and this hazard is likely to increase with future changes in climate. Seismometers have been used previously on hazardous glaciers to monitor the natural englacial seismicity. In some situations, an increase in "icequake" activity may indicate fracture growth and thus an imminent major break-off. However, without independent constraints on unstable volumes, such mere event counting is of little use. A promising new approach to monitor unstable masses in Alpine terrain is coda wave interferometry of ambient noise. While already established in the solid earth, application to glaciers is not straightforward, because the lack of inhomogeneities typically suppresses seismic coda waves in glacier ice. Only glaciers with pervasive crevasses provide enough scattering to generate long codas. This is requirement is likely met for highly dynamic unstable glaciers. Here, we report preliminary results from a temporary 5-station on-ice array of seismometers (corner frequencies: 1 Hz, array aperture: 500m) on Bisgletscher (Switzerland). The seismometers were deployed in shallow boreholes, directly above the unstable tongue of the glacier. In the frequency band 4-12 Hz, we find stable noise cross-correlations, which in principle allows monitoring on a subdaily scale. The origin and the source processes of the ambient noise in these frequencies are however uncertain. As a first step, we evaluate the stability of the sources in order to separate effects of changing source parameters from changes of englacial properties. Since icequakes occurring every few seconds may dominate the noise field, we compare their temporal and spatial occurrences with the cross-correlation functions (stability over time, the asymmetry between causal and acausal parts of the cross-correlation functions) as well as with results from beamforming to assess the influence of these transient events on the noise field.

  18. Annual Energy Balance Sheets 2001-2002

    International Nuclear Information System (INIS)

    2004-01-01

    During the year 2002 the primary supply of energy reached 629 TWh, which is 7.7 TWh less than 2001. The decrease originates mainly from the reduced electricity production from water power. Also the electricity production in nuclear power plants decreased by 4.5 TWh. If we were to look at the supplied energy for final consumption we will find a slightly rise by 1.8 TWh. The year 2002 was warmer than a 'normal' year and that consequently brings lower energy needs. Compared with 2001, 2002 was not warmer and a net electricity import of 5.4 TWh covered the energy needs. The energy use increased by 3.3 TWh between 2002 and 2001. The industry sector shows the largest rise by 2.9 TWh, nearly 2 per cent. Within that sector, energy from biomass fuel had a rise by 6.7 per cent. The household sector decreases its energy use by 2.7 per cent, and oil and electricity show the largest decrease. The proportionately high electricity price probably had a slowing down effect on the electricity use. The balance sheets of energy sources are showing the total supply and consumption of energy sources expressed in original units, i.e. units recorded in the primary statistics - mainly commercial units. The production of derived energy commodities is recorded on the supply - side of the balance sheets of energy sources, which is not the case in the energy balance sheets. The balance sheets of energy sources also include specifications of input--output and energy consumption in energy conversion industries. The energy balance sheets are based on primary data recorded in the balance sheets of energy sources, here expressed in a common energy unit, TJ. The production of derived energy is recorded in a second flow-step comprising energy turnover in energy conversion and is also specified in complementary input - output tables for energy conversion industries. The following items are shown in the energy balance sheets. 1.1 Inland supply of primary energy; 1.3 Import; 1.4 Export; 1.5 Changes in

  19. Individual particles of cryoconite deposited on the mountain glaciers of the Tibetan Plateau: Insights into chemical composition and sources

    Science.gov (United States)

    Dong, Zhiwen; Qin, Dahe; Kang, Shichang; Liu, Yajun; Li, Yang; Huang, Jie; Qin, Xiang

    2016-08-01

    Cryoconite deposited on mountain glacier surfaces is significant for understanding regional atmospheric environments, which could influence the albedo and energy balance of the glacier basins, and maintain the glacial microbiology system. Field observations were conducted on the glaciers of western China, including Laohugou Glacier No.12 (LHG), Tanggula Dongkemadi Glacier (TGL), Zhadang Glacier (ZD), and Baishui Glacier No.1 in the Yulong Mountains (YL), as well as Urumqi Glacier No.1 in the Tianshan Mountains (TS) for comparison with locations in the Tibetan Plateau, in addition to laboratory TEM-EDX analysis of the individual cryoconite particles filtered on lacey carbon (LC) and calcium-coated carbon (Ca-C) TEM grids. This work provided information on the morphology and chemical composition, as well as a unique record of the particle's physical state, of cryoconite deposition on the Tibetan Plateau. The result showed that there is a large difference in the cryoconite particle composition between various locations on the Tibetan Plateau. In total, mineral dust particles were dominant (>50%) in the cryoconite at all locations. However, more anthropogenic particles (e.g., black carbon (BC) and fly ash) were found in YL (38%) and ZD (22%) in the Ca-C grids in the southern locations. In TGL, many NaCl and MCS particles (>10%), as well as few BC and biological particles (<5%), were found in cryoconite in addition to mineral dust. In TS, the cryoconite is composed primarily of mineral dust, as well as BC (<5%). Compared with other sites, the LHG cryoconite shows a more complex composition of atmospheric deposition with sufficient NaCl, BC, fly ash and biological particles (6% in LC grid). The higher ratio of anthropogenic particles in the southern Tibetan Plateau is likely caused by atmospheric pollutant transport from the south Asia to the Tibetan Plateau. Cryoconite in the northern locations (e.g., TGL, LHG, and TS) with higher dust and salt particle ratio are

  20. A GIS tool for two-dimensional glacier-terminus change tracking

    Science.gov (United States)

    Urbanski, Jacek Andrzej

    2018-02-01

    This paper presents a Glacier Termini Tracking (GTT) toolbox for the two-dimensional analysis of glacier-terminus position changes. The input consists of a vector layer with several termini lines relating to the same glacier at different times. The output layers allow analyses to be conducted of glacier-terminus retreats, changes in retreats over time and along the ice face, and glacier-terminus fluctuations over time. The application of three tools from the toolbox is demonstrated via the analysis of eight glacier-terminus retreats and fluctuations at the Hornsund fjord in south Svalbard. It is proposed that this toolbox may also be useful in the study of other line features that change over time, like coastlines and rivers. The toolbox has been coded in Python and runs via ArcGIS.

  1. Distribution and interannual variability of supraglacial lakes on debris-covered glaciers in the Khan Tengri-Tumor Mountains, Central Asia

    International Nuclear Information System (INIS)

    Qiao, Liu; Mayer, Christoph; Liu, Shiyin

    2015-01-01

    Supraglacial lakes are widely formed on debris-covered glaciers in the Khan Tengri-Tumor Mountains (KTTM), Tianshan, Central Asia. Study of their distribution characters based on regional-wide remote sensing investigations is still lacking, but it can promote our understanding about the influence of supraglacial lakes on the surface melting, hydrology and dynamics of debris-covered glaciers in this region. This study presents results of the supraglacial lake inventory in the KTTM region, based on multi-year Landsat images. We focus on the glacio-geomorphological characters of the supraglacial lakes and their late summer conditions, since all suitable Landsat images were acquired between August and September during 1990–2011. With a minimum threshold extent of 3600 m 2 for conservative mapping results, we totally mapped 775 supraglacial lakes and 38 marginal glacial lakes on eight huge debris-covered glaciers. Supraglacial lakes are concentrated on the Tumor Glacier and the South Inylchek Glacier, two biggest glaciers in this region. Although most supraglacial lakes are short-lived, a number of lakes can be repeatedly identified between different Landsat images. Detailed investigation of these ‘perennial’ lakes on the Tumor Glacier indicates that their filling frequency and area contributions have increased since 2005. Analysis of the area-elevation distributions for all mapped supraglacial lakes shows that they predominantly occur close to the altitude of 3250 m a.s.l., as high as the lowest reach of clean ice where surface debris begins to appear, and can further develop upglacier to a limit of about 3950 m a.s.l.. Total and mean area of supraglacial lakes in the KTTM region during the late summer seasons show great variability between years. Correlation analysis between the annual lake area and the observed nearby meteorological conditions suggests that warmer springs seem related to the draining of some supraglacial lakes during the following seasons, due

  2. Climate warming could increase recruitment success in glacier foreland plants.

    Science.gov (United States)

    Mondoni, Andrea; Pedrini, Simone; Bernareggi, Giulietta; Rossi, Graziano; Abeli, Thomas; Probert, Robin J; Ghitti, Michele; Bonomi, Costantino; Orsenigo, Simone

    2015-11-01

    Glacier foreland plants are highly threatened by global warming. Regeneration from seeds on deglaciated terrain will be crucial for successful migration and survival of these species, and hence a better understanding of the impacts of climate change on seedling recruitment is urgently needed to predict future plant persistence in these environments. This study presents the first field evidence of the impact of climate change on recruitment success of glacier foreland plants. Seeds of eight foreland species were sown on a foreland site at 2500 m a.s.l., and at a site 400 m lower in altitude to simulate a 2·7 °C increase in mean annual temperature. Soil from the site of origin was used to reproduce the natural germination substrate. Recruitment success, temperature and water potential were monitored for 2 years. The response of seed germination to warming was further investigated in the laboratory. At the glacier foreland site, seedling emergence was low (0 to approx. 40 %) and occurred in summer in all species after seeds had experienced autumn and winter seasons. However, at the warmer site there was a shift from summer to autumn emergence in two species and a significant increase of summer emergence (13-35 % higher) in all species except two. Survival and establishment was possible for 60-75 % of autumn-emerged seedlings and was generally greater under warmer conditions. Early snowmelt in spring caused the main ecological factors enhancing the recruitment success. The results suggest that warming will influence the recruitment of glacier foreland species primarily via the extension of the snow-free period in spring, which increases seedling establishment and results in a greater resistance to summer drought and winter extremes. The changes in recruitment success observed here imply that range shifts or changes in abundance are possible in a future warmer climate, but overall success may be dependent on interactions with shifts in other components of the

  3. Changing drainage patterns within South Cascade Glacier, Washington, USA, 1964-1992

    Science.gov (United States)

    Fountain, A.G.; Vaughn, B.H.

    1995-01-01

    The theoretical patterns of water drainage are presented for South Cascade Glacier for four different years between 1964 and 1992, during which the glacier was thinning and receding. The theoretical pattern compares well, in a broad sense, with the flow pattern determined from tracer injections in 1986 and 1987. Differences between the patterns may result from the routing of surface meltwater in crevasses prior to entering the body of the glacier. The changing drainage pattern was caused by glacier thinning. The migration of a drainage divide eventually rerouted most of the surface meltwater from the main stream that drained the glacier in 1987 to another, formerly smaller, stream by 1992. On the basis of projected glacier thinning between 1992 and 1999, we predict that the drainage divide will continue to migrate across the glacier.

  4. Debris cover increase as an essential factor determining evolution of the Djankuat Glacier in the Caucasus

    Science.gov (United States)

    Rezepkin, Alexey; Popovnin, Victor

    2013-04-01

    45-year-long direct monitoring of Djankuat Glacier mass and water balance revealed the continuous increase of its superficial debris cover. Its area was mapped 7 times since 1968 on a basis of photogrammetric surveys, showing more than three-fold increase from 0,104 to 0,344 km2, whereas its share in the entire glacier surface increased more than 4 times (from 3% to 13%); currently supraglacial moraine occupies 61% of the ablation area. Besides, 3 direct and complete areal surveys of debris thickness were carried out in 1983, 1994 and 2010. They consisted of 133-240 measurement points which were distributed either in checkmate order over uniform debris-covered parts of the snout or by transverse profiles across linear morainic ramparts. Procedure of measuring thickness with an accuracy of 1 cm was coming to till piercing down to ice surface with metallic rod or, when impossible, to manual excavations. Maximum detected point values reached 183 cm in 1983, 280 cm in 1994 and 245 cm in 2010, and average debris thickness turned out to increased more than twice during the monitoring period - 26, 39 and 54 cm, for correspondent surveys. Debris cover influence on liquid run-off was estimated by heat balance considerations, based both on records of AWSs, erected on clean and debris-covered ice surface, and on vertical temperature profiles within the lithogenic layer, demonstrating clearly the diurnal cycle attenuation with depth. Sub-debris ablation is higher than clean ice melting rate under a thin debris layer (2025 the debris cover will reduce hypsometrical lowering rate on the snout by 45% in the latter case. This lead to the assumption about the future role of debris mantle development in Djankuat Glacier evolution: it may become comparable with that exerted by climate change.

  5. New results on two well-studied glaciers of the Pamir

    Directory of Open Access Journals (Sweden)

    A. A. Yablokov

    2012-01-01

    Full Text Available In summer 2011, after many years of recession, a group of workers from the Hydrographic expeditionary department of the State Hydrometeorological Survey of the Republic Tajikistan visited the Medvezhiy Glacier (at the source of the Vanch River and the Skogach Glacier (basin of the Obihingo River. Medvezhiy Glacier is a surging one and during this visit it was in its active stage. Its length in comparison with 2005 increased by 800–1000 m, but there was no dam at the Abdukagor River and a dam lake which produces mudflow, as it happened in 1960–70s did not created. At nowadays, the Medvezhiy Glacier advanced a bit further than in time of its previous surge in 2001–2002. The topographic survey of the Skogach Glacier was not performed for twenty years. This glacier retreated and degraded in the last century, but in contrary, it was found that the glacier did not retreat, and its tongue is at the same place where it was in 1991.

  6. The atmospheric boundary layer over melting glaciers

    NARCIS (Netherlands)

    Oerlemans, J.

    1998-01-01

    Results from a number of glacio-meteorological experiments carried out over melting glaciers are summarized. It is shown that in summer the microclimate of a glacier tongue is dominated by katabatic flow, initiated by the downward sensible heat flux. Characteristic obstacle height is an

  7. Regional passive seismic monitoring reveals dynamic glacier activity on Spitsbergen, Svalbard

    Directory of Open Access Journals (Sweden)

    Andreas Köhler

    2015-12-01

    Full Text Available Dynamic glacier activity is increasingly observed through passive seismic monitoring. We analysed near-regional-scale seismicity on the Arctic archipelago of Svalbard to identify seismic icequake signals and to study their spatial–temporal distribution within the 14-year period from 2000 until 2013. This is the first study that uses seismic data recorded on permanent broadband stations to detect and locate icequakes in different regions of Spitsbergen, the main island of the archipelago. A temporary local seismic network and direct observations of glacier calving and surging were used to identify icequake sources. We observed a high number of icequakes with clear spectral peaks between 1 and 8 Hz in different parts of Spitsbergen. Spatial clusters of icequakes could be associated with individual grounded tidewater glaciers and exhibited clear seasonal variability each year with more signals observed during the melt season. Locations at the termini of glaciers, and correlation with visual calving observations in situ at Kronebreen, a glacier in the Kongsfjorden region, show that these icequakes were caused dominantly by calving. Indirect evidence for glacier surging through increased calving seismicity was found in 2003 at Tunabreen, a glacier in central Spitsbergen. Another type of icequake was observed in the area of the Nathorstbreen glacier system. Seismic events occurred upstream of the glacier within a short time period between January and May 2009 during the initial phase of a major glacier surge. This study is the first step towards the generation and implementation of an operational seismic monitoring strategy for glacier dynamics in Svalbard.

  8. Using terrestrial laser scanning for differential measurement of interannual rock glacier movement in the Argentine Dry Andes

    Science.gov (United States)

    Kane, Renato R.

    Argentina has recently implemented laws to protect glaciers and buried ice in the Andes to improve the sustainability of scarce, long-term water resources. Therefore, all glaciers and buried ice terrains must be located and avoided in any commercial alterations of the landscape. Buried ice in this remote and often dangerous terrain typically is located via the use of remote-sensing techniques. This thesis applies one such technique, Light Detection and Ranging (LiDAR) in the form of Terrestrial Laser Scanning (TLS), to detect rock glacier movement that is indicative of flowing, buried ice not visible in near surface excavations. TLS surveys were completed at two locales, Los Azules and El Altar, in both AD 2013 and AD 2014 on landscapes where buried ice is suspected to have produced the current surface forms. Multiple TLS scans were co-registered with the use of benchmarks, both between scans and between years, which introduced quantifiable positional errors. Digital Elevation Models (DEMs) were derived from the point cloud data by standardizing the spacing of the points in the horizontal direction, creating 0.1 m by 0.1 m cells with elevation as the cell value. The DEMs for each year were subtracted from each other to yield a change in elevation. The surface roughness of the rock glaciers (vertical variability within each cell) was empirically determined and evaluated as a threshold for results. Both sites showed sub-decimeter interannual movements, and the direction of their movement is typical of forms with buried ice. The results of the study were validated using independent GPS data showing annual movement rates. Despite the downslope movement of these rock glaciers, the volume of ice contained within them remains unclear, and further study is required to assess the volume of water contained.

  9. The response of glaciers to climate change

    NARCIS (Netherlands)

    Klok, Elisabeth Jantina

    2003-01-01

    The research described in this thesis addresses two aspects of the response of glaciers to climate change. The first aspect deals with the physical processes that govern the interaction between glaciers and climate change and was treated by (1) studying the spatial and temporal variation of the

  10. Ice volume distribution and implications on runoff projections in a glacierized catchment

    Directory of Open Access Journals (Sweden)

    J. Gabbi

    2012-12-01

    Full Text Available A dense network of helicopter-based ground-penetrating radar (GPR measurements was used to determine the ice-thickness distribution in the Mauvoisin region. The comprehensive set of ice-thickness measurements was combined with an ice-thickness estimation approach for an accurate determination of the bedrock. A total ice volume of 3.69 ± 0.31 km3 and a maximum ice thickness of 290 m were found. The ice-thickness values were then employed as input for a combined glacio-hydrological model forced by most recent regional climate scenarios. This model provided glacier evolution and runoff projections for the period 2010–2100. Runoff projections of the measured initial ice volume distribution show an increase in annual runoff of 4% in the next two decades, followed by a persistent runoff decrease until 2100. Finally, we checked the influence of the ice-thickness distribution on runoff projections. Our analyses revealed that reliable estimates of the ice volume are essential for modelling future glacier and runoff evolution. Wrong estimations of the total ice volume might even lead to deviations of the predicted general runoff trend.

  11. Ecological responses to experimental glacier-runoff reduction in alpine rivers

    DEFF Research Database (Denmark)

    Cauvy-Fraunié, Sophie; Andino, Patricio; Espinosa, Rodrigo

    2016-01-01

    Glacier retreat is a worldwide phenomenon with important consequences for the hydrological cycle and downstream ecosystem structure and functioning. To determine the effects of glacier retreat on aquatic communities, we conducted a 4-year flow manipulation in a tropical glacier-fed stream. Compared...

  12. Using marine sediment archives to reconstruct past outlet glacier variability

    DEFF Research Database (Denmark)

    Andresen, Camilla Snowman; Straneo, Fiamma; Ribergaard, Mads

    2013-01-01

    Ice-rafted debris in fjord sediment cores provides information about outlet glacier activity beyond the instrumental time period. It tells us that the Helheim Glacier, Greenland’s third most productive glacier, responds rapidly to short-term (3 to 10 years) climate changes....

  13. Timing of glacier advances and climate in the High Tatra Mountains (Western Carpathians) during the Last Glacial Maximum

    Science.gov (United States)

    Makos, Michał; Dzierżek, Jan; Nitychoruk, Jerzy; Zreda, Marek

    2014-07-01

    During the Last Glacial Maximum (LGM), long valley glaciers developed on the northern and southern sides of the High Tatra Mountains, Poland and Slovakia. Chlorine-36 exposure dating of moraine boulders suggests two major phases of moraine stabilization, at 26-21 ka (LGM I - maximum) and at 18 ka (LGM II). The dates suggest a significantly earlier maximum advance on the southern side of the range. Reconstructing the geometry of four glaciers in the Sucha Woda, Pańszczyca, Mlynicka and Velicka valleys allowed determining their equilibrium-line altitudes (ELAs) at 1460, 1460, 1650 and 1700 m asl, respectively. Based on a positive degree-day model, the mass balance and climatic parameter anomaly (temperature and precipitation) has been constrained for LGM I advance. Modeling results indicate slightly different conditions between northern and southern slopes. The N-S ELA gradient finds confirmation in slightly higher temperature (at least 1 °C) or lower precipitation (15%) on the south-facing glaciers during LGM I. The precipitation distribution over the High Tatra Mountains indicates potentially different LGM atmospheric circulation than at the present day, with reduced northwesterly inflow and increased southerly and westerly inflows of moist air masses.

  14. Hybrid inventory, gravimetry and altimetry (HIGA) mass balance product for Greenland and the Canadian Arctic

    DEFF Research Database (Denmark)

    Colgan, W.; Abdalati, W.; Citterio, M.

    2015-01-01

    We present a novel inversion algorithm that generates a mass balance field that is simultaneously consistent with independent observations of glacier inventory derived from optical imagery, cryosphere-attributed mass trends derived from satellite gravimetry, and ice surface elevation trends derived...

  15. Mechanism of the 2016 giant twin glacier collapse in Aru range, Tibet

    Science.gov (United States)

    Gilbert, A.; Leinss, S.; Kääb, A.; Kargel, J. S.; Yao, T.; Gascoin, S.; Leonard, G. J.; Berthier, E.; Karki, A.

    2017-12-01

    In northwestern Tibet (34.0°N, 82.2°E) near lake Aru Co, the entire ablation area of two unnamed glaciers (Aru-1 and Aru-2) suddenly collapsed on 17 July 2016 and 21 September 2016 and transformed into a mass flow that ran out over a distance of over several km, killing nine people. These two events are unique and defined a new kind of glacier behavior almost never observed before. The only similar event currently documented is the 2002 Kolka Glacier mass flow (Caucasus Mountains). Using remote sensing observations and 3D thermo-mechanical modeling of the two glaciers, we reconstructed glacier thermal regime, thickness, basal friction evolution and ice damaging state prior to the collapse. We show that frictional change leading to the collapse occurred in the temperate areas of a polythermal structure that is likely close to equilibrium with the local climate. The collapses were driven by a fast and sustained friction change in the temperate part of the glacier for which the glacier shape was not able to adjust due to the cold-based parts providing strong resisting force to sliding. This led to high stresses on the cold margins of the glacier where ice deformation became partially accommodated by fracturing until the final collapse occurred. Field investigations reveal that those two glaciers are flowing on a soft and fine-grained sedimentary lithology prone to landslide activity in the presence of water. This suggests that fast friction change in the temperate part of the glacier is linked to shear strength weakening in the sediment and till underneath the glacier in response to increasing water pore pressure at the glacier base. The Kolka Glacier mass flow also occurred on pyroclastic rocks well known for their landslide activities. This suggests that the three gigantic glacier collapses documented to date involve specific bedrock lithology where failure is driven by shear strength weakening in the glacier till in a landslide-like process. Contrary to a

  16. Variable glacier response to atmospheric warming, northern Antarctic Peninsula, 1988–2009

    Directory of Open Access Journals (Sweden)

    B. J. Davies

    2012-09-01

    Full Text Available The northern Antarctic Peninsula has recently exhibited ice-shelf disintegration, glacier recession and acceleration. However, the dynamic response of land-terminating, ice-shelf tributary and tidewater glaciers has not yet been quantified or assessed for variability, and there are sparse data for glacier classification, morphology, area, length or altitude. This paper firstly classifies the area, length, altitude, slope, aspect, geomorphology, type and hypsometry of 194 glaciers on Trinity Peninsula, Vega Island and James Ross Island in 2009 AD. Secondly, this paper documents glacier change 1988–2009. In 2009, the glacierised area was 8140±262 km2. From 1988–2001, 90% of glaciers receded, and from 2001–2009, 79% receded. This equates to an area change of −4.4% for Trinity Peninsula eastern coast glaciers, −0.6% for western coast glaciers, and −35.0% for ice-shelf tributary glaciers from 1988–2001. Tidewater glaciers on the drier, cooler eastern Trinity Peninsula experienced fastest shrinkage from 1988–2001, with limited frontal change after 2001. Glaciers on the western Trinity Peninsula shrank less than those on the east. Land-terminating glaciers on James Ross Island shrank fastest in the period 1988–2001. This east-west difference is largely a result of orographic temperature and precipitation gradients across the Antarctic Peninsula, with warming temperatures affecting the precipitation-starved glaciers on the eastern coast more than on the western coast. Reduced shrinkage on the western Peninsula may be a result of higher snowfall, perhaps in conjunction with the fact that these glaciers are mostly grounded. Rates of area loss on the eastern side of Trinity Peninsula are slowing, which we attribute to the floating ice tongues receding into the fjords and reaching a new dynamic equilibrium. The rapid shrinkage of tidewater glaciers on James Ross Island is likely to continue because of their low elevations and

  17. Glaciers in South Tyrol 1850 - 2006: application of Airborne Laser Scanner data, orthophotos and historical maps for the acquisition of recent and the reconstruction of past glacier extents

    International Nuclear Information System (INIS)

    Knoll, C. C.

    2009-01-01

    In the densely populated high mountain areas of the Alps, glaciers are an important part of the cultural and natural landscape. During the warm summer months they are among the most important freshwater resources for economy sectors such as agriculture or industry, an important component for the tourism industry and of great significance for the production of energy from hydropower. However, they also constitute a potential cause of natural hazards. Due to their direct linkage to temperature and precipitation, glaciers are characterized as one of the best natural climate indicators. For that reason, mountain glaciers have become a key symbol for the ongoing discussion about climate, climate changes and the resulting consequences because their reactions can easily be observed and visualized. The main objective of this doctoral thesis is to contribute to a better understanding of the regional South Tyrolean glacier development through a reconstruction and analysis of the glacier changes that have occurred since the climax of the Little Ice Age at around 1850. Glacier inventories, fieldwork and GIS-assisted reconstructions of historical and calculation of recent glacier topographies are used to depict, analyze and visualize the changes of the South Tyrolean glaciers between the maximum extent of approximately 1850 and the inventories of 1997 and 2006. In a comparison of recent, highly accurate glacier topographies mapped with ALS-methods (Airborne Laser Scanner) with a reconstruction of the Little Ice Age maximum South Tyrolean glaciers were detected to have lost 183.2 km 2 or 66% of their glacier cover in approximately the last 150 years. This comparison also showed a loss in glacier volume of 9 km 3 between 1850 and 2006, which corresponds to a mean ice thickness change of -49 m. These drastic losses in the glacier covered area and volume, which are mainly visible on the glacier tongues of large valley glaciers like Langtauferer- and Suldenferner, clearly show

  18. Rock waste dumps on the Davydov Glacier (Akshyirak Range, Tien Shan

    Directory of Open Access Journals (Sweden)

    V. A. Kuzmichenok

    2012-01-01

    Full Text Available Since 1995, a barren rock has been formed at the Davydov Glacier, due to the works at the Kumtor Gold Mine. By the end of 2010, total amount of the rock, stockpiled on the glacier, apparently exceeded 200 million tons, the height of dumps of rock sometimes exceeded 50 meters. The most noticeable effects of this are provoking local surges of the Davydov Glacier and squeezing glacier ice out of the dumps of rock. For a detailed analysis of both processes, we also used the results of periodic geodetic measurements (over 8000 of monitoring rods (about 800 rods of the gold mining company. A number of local surges of the glacier has been found, the first of which began in March–April 2002. To analyze glacier squeezing out of the dumps of rock, mathematical modeling of that process has been done. It was established that in most cases, the glacier is almost completely squeezed out of for 1–2 years.

  19. Bacteria at glacier surfaces: microbial community structures in debris covered glaciers and cryoconites in the Italian Alps

    Science.gov (United States)

    Azzoni, Roberto; Franzetti, Andrea; Ambrosini, Roberto; D'Agata, Carlo; Senese, Antonella; Minora, Umberto; Tagliaferri, Ilario; Diolaiuti, Guglielmina

    2014-05-01

    Supraglacial debris has an important role in the glacier energy budget and has strong influence on the glacial ecosystem. Sediment derives generally from rock inputs from nesting rockwalls and are abundant and continuous at the surface of debris-covered glaciers (i.e. DCGs; glaciers where the ablation area is mainly covered by rock debris) and sparse and fine on debris-free glaciers (DFGs). Recently, evidence for significant tongue darkening on retreating debris-free glaciers has been drawing increasing attention. Fine particles, the cryoconite, are locally abundant and may form cryoconite holes that are water-filled depressions on the surface of DFGs that form when a thin layer of cryoconite is heated by the sun and melts the underlying ice. There is increasing evidence that cryoconite holes also host highly diverse microbial communities and can significantly contribute to global carbon cycle. However, there is almost no study on microbial communities of the debris cover of DCGs and there is a lack of data from the temporal evolution of the microbial communities in the cryoconites. To fill these gaps in our knowledge we characterized the supraglacial debris of two Italian DCGs and we investigated the temporal evolution of microbial communities on cryoconite holes in DFG. We used the Illumina technology to analyse the V5 and V6 hypervariable regions of the bacterial 16S rRNA gene amplified from samples collected distances from the terminus of two DCGs (Miage and Belvedere Glaciers - Western Italian Alps). Heterotrophic taxa dominated bacterial communities, whose structure changed during downwards debris transport. Organic carbon of these recently exposed substrates therefore is probably provided more by allochthonous deposition of organic matter than by primary production by autotrophic organisms. We used ARISA fingerprinting and quantitative PCR to describe the structure and the evolution of the microbial communities and to estimate the number of the total

  20. Latest Pleistocene and Holocene Glacier Fluctuations in southernmost Patagonia

    Science.gov (United States)

    Menounos, B.; Maurer, M.; Clague, J. J.; osborn, G.; Ponce, F.; Davis, P. T.; Rabassa, J.; Coronato, A.; Marr, R.

    2011-12-01

    Summer insolation has been proposed to explain long-term glacier fluctuations during the Holocene. If correct, the record of glacier fluctuations at high latitudes in the Southern Hemisphere should differ from that in the Northern Hemisphere. Testing this insolation hypothesis has been hampered by dating uncertainties of many Holocene glacier chronologies from Patagonia. We report on our ongoing research aimed at developing a regional glacier chronology at the southern end of the Andes north and west of Ushuaia, Argentina. We have found evidence for an advance of cirque glaciers at the end of the Pleistocene; one or locally two closely spaced moraines extend up to 2 km beyond Little Ice Age moraines. Radiocarbon dating of terrestrial macrofossils recovered from basal sediments behind two of these moraines yielded ages of 10,320 ± 25 and 10,330 ± 30 14C yr BP. These moraines may record glacier advances coeval with the Antarctic Cold Reversal; surface exposure dating of these moraines is currently in progress to test this hypothesis. We find no evidence of Holocene moraines older than 6800 14C yr BP, based on the distribution of Hudson tephra of that age. At some sites, there is evidence for an early Neoglacial advance of glaciers slightly beyond (Peru. We have documented multiple wood mats with stumps in growth position separated by till units in a 100 m section of the northeast lateral moraine at Stoppani Glacier (54.78 S, 68.98 W), 50 km west of Ushuaia. Ten radiocarbon ages on these wood mats range in age from 3510 ± 15 to 135 ± 15 14C yr BP. The mats decrease in age up-section; many overlap with published age ranges for Neoglacial advances in western Canada. Taken together, these data: a) do not support the summer insolation hypothesis for Holocene glacier fluctuations in southernmost Patagonia; b) confirm paleobotanical evidence for a warm, dry early Holocene; and c) suggest that many Neoglacial advances in southernmost Patagonia and western North America

  1. Characterizing aerodynamic roughness length (z0) for a debris-covered glacier: aerodynamic inversion and SfM-derived microtopographic approaches

    Science.gov (United States)

    Miles, Evan; Steiner, Jakob; Brun, Fanny; Detert, Martin; Buri, Pascal; Pellicciotti, Francesca

    2016-04-01

    Aerodynamic surface roughness is an essential parameter in surface energy balance studies. While actual measurements on bare ice glaciers are rare, a wide range of literature values exist for ice and snow surfaces. There are very few values suggested for debris covered glaciers and actual measurements are even scarcer - studies instead optimize z0 or use a reference value. The increased use of photogrammetry on glaciers provides an opportunity to characterize the range of z0 values meaningful for debris-covered glaciers. We apply Agisoft's Structure-from-Motion process chain to produce high resolution DEMs for five 1m x 1m plots (1mm resolution) with differing grain-size distributions, as well as a large ~180m x ~180m depression (5cm) on Lirung Glacier in the Nepalese Himalayas. For each plot, we calculate z0 according to transect-based microtopographic parameterisations. We compare individual-transect z0 estimates based on profile position and direction, and develop a grid version of the algorithms aggregating height data from all bidirectional transects. This grid approach is applied to our larger DEM to characterize the variability of z0 across the study site for each algorithm. For the plot DEMs, z0 estimated by any algorithm varies by an order of magnitude based on transect position. Although the algorithms reproduce the same variability among transects and plots, z0 estimates vary by an order of magnitude between algorithms. For any algorithm, however, we find minimal difference between cross- and down-glacier profile directions. At the basin scale, results from different algorithms are strongly correlated and results are more closely clustered with the exception of the Rounce (2015) algorithm, while any algorithm's values range by two orders of magnitude across the study depression. The Rounce algorithm consistently produced the highest z0 values, while the Lettau (1969) and Munro (1989) methods produced the lowest values, and use of the Nield (2013

  2. High Artic Glaciers and Ice Caps Ice Mass Change from GRACE, Regional Climate Model Output and Altimetry.

    Science.gov (United States)

    Ciraci, E.; Velicogna, I.; Fettweis, X.; van den Broeke, M. R.

    2016-12-01

    The Arctic hosts more than the 75% of the ice covered regions outside from Greenland and Antarctica. Available observations show that increased atmospheric temperatures during the last century have contributed to a substantial glaciers retreat in all these regions. We use satellite gravimetry by the NASA's Gravity Recovery and Climate Experiment (GRACE), and apply a least square fit mascon approach to calculate time series of ice mass change for the period 2002-2016. Our estimates show that arctic glaciers have constantly contributed to the sea level rise during the entire observation period with a mass change of -170+/-20 Gt/yr equivalent to the 80% of the total ice mass change from the world Glacier and Ice Caps (GIC) excluding the Ice sheet peripheral GIC, which we calculated to be -215+/-32 GT/yr, with an acceleration of 9+/-4 Gt/yr2. The Canadian Archipelago is the main contributor to the total mass depletion with an ice mass trend of -73+/-9 Gt/yr and a significant acceleration of -7+/-3 Gt/yr2. The increasing mass loss is mainly determined by melting glaciers located in the northern part of the archipelago.In order to investigate the physical processes driving the observed ice mass loss we employ satellite altimetry and surface mass balance (SMB) estimates from Regional climate model outputs available for the same time period covered by the gravimetry data. We use elevation data from the NASA ICESat (2003-2009) and ESA CryoSat-2 (2010-2016) missions to estimate ice elevation changes. We compare GRACE ice mass estimates with time series of surface mass balance from the Regional Climate Model (RACMO-2) and the Modèle Atmosphérique Régional (MAR) and determine the portion of the total mass change explained by the SMB signal. We find that in Iceland and in the and the Canadian Archipelago the SMB signal explains most of the observed mass changes, suggesting that ice discharge may play a secondary role here. In other region, e.g. in Svalbar, the SMB signal

  3. Measurement of glacier velocity at Pik Lenin, Tajikistan, by feature tracking

    Science.gov (United States)

    Kumari, S.; Ghosh, S. K.; Buchroithner, M. F.

    2014-11-01

    Glaciers, especially in mountain area are sensitive indicators of climate fluctuations and also contribute to present rates of sea level rise. In Central Asia, these glaciers are the primary resource for fresh water. Understanding the seasonal behavior of these glaciers would help to make efficient use of the available water reservoir. Different methods have been employed to study glacier displacements in past. The conventional survey techniques are very cost-intensive and highly depend on accessibility to high mountain glaciers also directs us to look for new ways to study these areas. Here remote sensing comes in handy with freely available data and a good coverage with high spatial and temporal resolution. Optical satellite imagery, available free can be effectively used for research purpose. The glacier in this region fed lake Karakul (380 km2), the largest Lake in Tajikistan. The objective is to study the displacement tendency of the Glacier in Pik Lenin area using Landsat 7 dataset. Normalized cross correlation algorithm has been implemented via CIAS to estimate the motion of glacier surface. A number of combination of reference block and search area size were tested for 30 m resolution dataset. As a result the specifications: reference block size of 15 pixels and search area size of 10 pixels was found out as the best set of parameters and considered for further processing. The study derives a reliable set of data depicting the velocities in the glacier which after post processing shows peak velocity of 121 m/y of the glacier.

  4. The sensitivity of flowline models of tidewater glaciers to parameter uncertainty

    Directory of Open Access Journals (Sweden)

    E. M. Enderlin

    2013-10-01

    Full Text Available Depth-integrated (1-D flowline models have been widely used to simulate fast-flowing tidewater glaciers and predict change because the continuous grounding line tracking, high horizontal resolution, and physically based calving criterion that are essential to realistic modeling of tidewater glaciers can easily be incorporated into the models while maintaining high computational efficiency. As with all models, the values for parameters describing ice rheology and basal friction must be assumed and/or tuned based on observations. For prognostic studies, these parameters are typically tuned so that the glacier matches observed thickness and speeds at an initial state, to which a perturbation is applied. While it is well know that ice flow models are sensitive to these parameters, the sensitivity of tidewater glacier models has not been systematically investigated. Here we investigate the sensitivity of such flowline models of outlet glacier dynamics to uncertainty in three key parameters that influence a glacier's resistive stress components. We find that, within typical observational uncertainty, similar initial (i.e., steady-state glacier configurations can be produced with substantially different combinations of parameter values, leading to differing transient responses after a perturbation is applied. In cases where the glacier is initially grounded near flotation across a basal over-deepening, as typically observed for rapidly changing glaciers, these differences can be dramatic owing to the threshold of stability imposed by the flotation criterion. The simulated transient response is particularly sensitive to the parameterization of ice rheology: differences in ice temperature of ~ 2 °C can determine whether the glaciers thin to flotation and retreat unstably or remain grounded on a marine shoal. Due to the highly non-linear dependence of tidewater glaciers on model parameters, we recommend that their predictions are accompanied by

  5. Subglacial discharge at tidewater glaciers revealed by seismic tremor

    Science.gov (United States)

    Bartholomaus, Timothy C.; Amundson, Jason M.; Walter, Jacob I.; O'Neel, Shad; West, Michael E.; Larsen, Christopher F.

    2015-01-01

    Subglacial discharge influences glacier basal motion and erodes and redeposits sediment. At tidewater glacier termini, discharge drives submarine terminus melting, affects fjord circulation, and is a central component of proglacial marine ecosystems. However, our present inability to track subglacial discharge and its variability significantly hinders our understanding of these processes. Here we report observations of hourly to seasonal variations in 1.5–10 Hz seismic tremor that strongly correlate with subglacial discharge but not with basal motion, weather, or discrete icequakes. Our data demonstrate that vigorous discharge occurs from tidewater glaciers during summer, in spite of fast basal motion that could limit the formation of subglacial conduits, and then abates during winter. Furthermore, tremor observations and a melt model demonstrate that drainage efficiency of tidewater glaciers evolves seasonally. Glaciohydraulic tremor provides a means by which to quantify subglacial discharge variations and offers a promising window into otherwise obscured glacierized environments.

  6. Instruments and Methods: A Low-Cost Glacier-Mapping System

    DEFF Research Database (Denmark)

    Christensen, Erik Lintz; Reeh, Niels; Forsberg, René

    2000-01-01

    the capability of acquiring accurate data on location and ice-surface elevation, and adequate-quality data on ice thickness. The system has been applied successfully in mapping the Nioghalvfjerdsfjorden glacier, northeast Greenland, in spite of the difficult conditions with melting water on the glacier surface....... The measurements from the floating part of the glacier have been evaluated by comparison of radar data with laser-altimeter and in situ measurements....

  7. High Resolution Modeling of the Water Cycle to Refine GRACE Signal Analysis in the Gulf of Alaska Drainage

    Science.gov (United States)

    Beamer, J.; Hill, D. F.; Arendt, A. A.; Luthcke, S. B.; Liston, G. E.

    2015-12-01

    A comprehensive study of the Gulf of Alaska (GOA) drainage basin was carried out to improve understanding of the coastal freshwater discharge (FWD) and surface mass balance (SMB) of glaciers. Coastal FWD and SMB for all glacier surfaces were modeled using a suite of physically based, spatially distributed weather, energy-balance snow/ice melt, soil water balance, and runoff routing models at a high resolution (1 km horizontal grid; daily time step). A 35 year hind cast was performed, providing complete records of precipitation, runoff, snow water equivalent (SWE) depth, evapotranspiration, coastal FWD and glacier SMB. Meteorological forcing was provided by the North American Regional Reanalysis (NARR), Modern Era Retrospective Analysis for Research and Applications (MERRA), and NCEP Climate Forecast System Reanalysis (CFSR) datasets. A fourth dataset was created by bias-correcting the NARR data to recently-developed monthly weather grids based on PRISM climatologies (NARR-BC). Each weather dataset and model combination was individually calibrated using PRISM climatologies, streamflow, and glacier mass balance measurements from four locations in the study domain. Simulated mean annual FWD into the GOA ranged from 600 km3 yr-1 using NARR to 850 km3 yr-1 from NARR-BC. The CFSR-forced simulations with optimized model parameters produced a simulated regional water storage that compared favorably to data from the NASA/DLR Gravity Recovery and Climate Experiment (GRACE) high resolution mascon solutions (Figure). Glacier runoff, taken as the sum of rainfall, snow and ice melt occurring on glacier surfaces, ranged from 260 km3 yr-1 from MERRA to 400 km3 yr-1 from NARR-BC, approximately one half of the signal from both glaciers and surrounding terrain. The large contribution from non-glacier surfaces to the seasonal water balance is likely not being fully removed from GRACE solutions aimed at isolating the glacier signal alone. We will discuss methods to use our simulations

  8. Monitoring population status of sea otters (Enhydra lutris) in Glacier Bay National Park and Preserve, Alaska: options and considerations

    Science.gov (United States)

    Esslinger, George G.; Esler, Daniel N.; Howlin, S.; Starcevich, L.A.

    2015-06-25

    After many decades of absence from southeast Alaska, sea otters (Enhydra lutris) are recolonizing parts of their former range, including Glacier Bay, Alaska. Sea otters are well known for structuring nearshore ecosystems and causing community-level changes such as increases in kelp abundance and changes in the size and number of other consumers. Monitoring population status of sea otters in Glacier Bay will help park researchers and managers understand and interpret sea otter-induced ecosystem changes relative to other sources of variation, including potential human-induced impacts such as ocean acidification, vessel disturbance, and oil spills. This report was prepared for the National Park Service (NPS), Southeast Alaska Inventory and Monitoring Network following a request for evaluation of options for monitoring sea otter population status in Glacier Bay National Park and Preserve. To meet this request, we provide a detailed consideration of the primary method of assessment of abundance and distribution, aerial surveys, including analyses of power to detect interannual trends and designs to reduce variation around annual abundance estimates. We also describe two alternate techniques for evaluating sea otter population status—(1) quantifying sea otter diets and energy intake rates, and (2) detecting change in ages at death. In addition, we provide a brief section on directed research to identify studies that would further our understanding of sea otter population dynamics and effects on the Glacier Bay ecosystem, and provide context for interpreting results of monitoring activities.

  9. Pond dynamics and supraglacial-englacial connectivity on debris-covered Lirung Glacier

    NARCIS (Netherlands)

    Miles, Evan Stewart; Steiner, Jakob|info:eu-repo/dai/nl/119338653; Willis, Ian C.; Buri, Pascal; Immerzeel, Walter Willem|info:eu-repo/dai/nl/290472113; Chesnokova, Anna; Pellicciotti, Francesca

    The hydrological systems of heavily-downwasted debris-covered glaciers differ from clean-ice glaciers due to the hummocky surface and debris mantle of such glaciers, leading to a relatively limited understanding of drainage pathways. Supraglacial ponds represent sinks within the discontinuous

  10. Simulation of historic glacier variations with a simple climate-glacier model

    NARCIS (Netherlands)

    Oerlemans, J.

    1988-01-01

    Glacier variations during the last few centuries have shown a marked coherence over the globe. Characteristic features are the maximum stand somewhere in the middle of the nineteenth century, and the steady retreat afterwards (with some minor interrruptions depending on the particular region).

  11. High methane emissions dominate annual greenhouse gas balances 30 years after bog rewetting

    Science.gov (United States)

    Vanselow-Algan, M.; Schmidt, S. R.; Greven, M.; Fiencke, C.; Kutzbach, L.; Pfeiffer, E.-M.

    2015-02-01

    Natural peatlands are important carbon sinks and sources of methane (CH4). In contrast, drained peatlands turn from a carbon sink to a carbon source and potentially emit nitrous oxide (N2O). Rewetting of peatlands thus implies climate change mitigation. However, data about the time span that is needed for the re-establishment of the carbon sink function by restoration is scarce. We therefore investigated the annual greenhouse gas (GHG) balances of three differently vegetated bog sites 30 years after rewetting. All three vegetation communities turned out to be sources of carbon dioxide (CO2) ranging between 0.6 ± 1.43 t CO2 ha-2 yr-1 (Sphagnum-dominated vegetation) and 3.09 ± 3.86 t CO2 ha-2 yr-1 (vegetation dominated by heath). While accounting for the different global warming potential (GWP) of the three greenhouse gases, the annual GHG balance was calculated. Emissions ranged between 25 and 53 t CO2-eq ha-1 yr-1 and were dominated by large emissions of CH4 (22 up to 51 t CO2-eq ha-1 yr-1), while highest rates were found at purple moor grass (Molinia caerulea) stands. These are to our knowledge the highest CH4 emissions so far reported for bog ecosystems in temperate Europe. As the restored area was subject to large fluctuations in water table, we conclude that the high CH4 emission rates were caused by a combination of both the temporal inundation of the easily decomposable plant litter of this grass species and the plant-mediated transport through its tissues. In addition, as a result of the land use history, the mixed soil material can serve as an explanation. With regards to the long time span passed since rewetting, we note that the initial increase in CH4 emissions due to rewetting as described in the literature is not limited to a short-term period.

  12. High methane emissions dominated annual greenhouse gas balances 30 years after bog rewetting

    Science.gov (United States)

    Vanselow-Algan, M.; Schmidt, S. R.; Greven, M.; Fiencke, C.; Kutzbach, L.; Pfeiffer, E.-M.

    2015-07-01

    Natural peatlands are important carbon sinks and sources of methane (CH4). In contrast, drained peatlands turn from a carbon sink to a carbon source and potentially emit nitrous oxide (N2O). Rewetting of peatlands thus potentially implies climate change mitigation. However, data about the time span that is needed for the re-establishment of the carbon sink function by restoration are scarce. We therefore investigated the annual greenhouse gas (GHG) balances of three differently vegetated sites of a bog ecosystem 30 years after rewetting. All three vegetation communities turned out to be sources of carbon dioxide (CO2) ranging between 0.6 ± 1.43 t CO2 ha-2 yr-1 (Sphagnum-dominated vegetation) and 3.09 ± 3.86 t CO2 ha-2 yr-1 (vegetation dominated by heath). While accounting for the different global warming potential (GWP) of CO2, CH4 and N2O, the annual GHG balance was calculated. Emissions ranged between 25 and 53 t CO2-eq ha-1 yr-1 and were dominated by large emissions of CH4 (22-51 t CO2-eq ha-1 yr-1), with highest rates found at purple moor grass (Molinia caerulea) stands. These are to our knowledge the highest CH4 emissions so far reported for bog ecosystems in temperate Europe. As the restored area was subject to large fluctuations in the water table, we assume that the high CH4 emission rates were caused by a combination of both the temporal inundation of the easily decomposable plant litter of purple moor grass and the plant-mediated transport through its tissues. In addition, as a result of the land use history, mixed soil material due to peat extraction and refilling can serve as an explanation. With regards to the long time span passed since rewetting, we note that the initial increase in CH4 emissions due to rewetting as described in the literature is not inevitably limited to a short-term period.

  13. Inventory of glaciers in the Eastern Sayan on the basis of space surveys

    Directory of Open Access Journals (Sweden)

    E. Y. Osipov

    2017-01-01

    Full Text Available Small glaciers (areas smaller 1 km2 are the most numerous in most mountainous and glacial regions of the Earth, but their responses to the present‑day climate change are still to be investigated. The paper presents results of the new inventory of small inter‑continental glaciers located in the Eastern Sayan (South of Eastern Siberia. The previous (1950 glacier inventory was made from data of aerial photography carried out in the middle of the 20th century (USSR Glacier Inventory, КЛ 1950. A more complete inventory of the East Sayan glaciers for the state of 2000 (КЛ 2000 had been performed using the multichannel space images (Landsat Enhanced The‑ matic Mapper (ETM+ of 2000 and 2001, and the Shuttle Radar Topography Mission (SRTM digital elevation model (DEM. In addition, some glaciers from the Inventory KL 1950 were re‑mapped on the basis of the Land‑ sat images (TM, ETM+, 1986‑2011 for years 1950, 1990 and 2010. The glacier outlines, determined on the test site from images of medium (Landsat and high (World View‑1 satellite resolution, were compared that con‑ firmed that errors of mapping of small glaciers did not exceed 15%. The KL 2000 contains data on 172 glaciers with a total area of 16.6±1.9 km2. Glacier sizes are from 0.02 to 1.37 km2. For 1950–2000, the total area of the East Sayan glaciers had decreased by 59% (0.40% per a year. In 1990–2000, the glaciers decreased the most rapidly (by an order of magnitude faster as compared to the period of 1950–1990.. In 2000–2010, the area of glaciation slightly increased (by 4% owing to formation of very small glaciers (area smaller 0.5 km2. On the whole, changes in glacier areas in the years 1950–2010 are in the good agreement with changes in amounts of winter precipita‑ tion and summer temperatures. In addition to regional climatic factors, there are also some local factors related to the topography and microclimate of individual glaciers which do also influence

  14. Downscaling the Local Weather Above Glaciers in Complex Topography

    Science.gov (United States)

    Horak, Johannes; Hofer, Marlis; Gutmann, Ethan; Gohm, Alexander; Rotach, Mathias

    2017-04-01

    Glaciers have experienced a substantial ice-volume loss during the 20th century. To study their response to climate change, process-based glacier mass-balance models (PBGMs) are employed, which require a faithful representation of the state of the atmosphere above the glacier at high spatial and temporal resolution. Glaciers are usually located in complex topography where weather stations are scarce or not existent at all due to the remoteness of such sites and the associated high cost of maintenance. Furthermore. the effective resolution of global circulation models is too large to adequately capture the local topography and represent local weather, which is prerequisite for atmospheric input used by PBGMs. Dynamical downscaling is a physically consistent but computationally expensive approach to bridge the scale gap between GCM output and input needed by PBGMs, while statistical downscaling is faster but requires measurements for training. Both methods have their merits, however, a computationally frugal approach that does not rely on measurements is desirable, especially for long term studies of glacier response to future climate. In this study the intermediate complexity atmospheric research model (ICAR) is employed (Gutmann et al., 2016). It simplifies the wind field physics by relying on analytical solutions derived with linear theory. ICAR then advects atmospheric quantities within this wind field. This allows for computationally fast downscaling and yields a physically consistent set of atmospheric variables. First results obtained from downscaling air temperature, precipitation amount, relative humidity and wind speed to 4 × 4 km2 are presented. Preliminary ICAR is applied for a six month simulation period during five years and evaluated for three domains located in very distinct climates, namely the Southern Alps of New Zealand, the Cordillera Blanca in Peru and the European Alps using ERA Interim reanalysis data (ERAI) as forcing data set. The

  15. Climatic control on extreme sediment transfer from Dokriani Glacier ...

    Indian Academy of Sciences (India)

    glaciers have received more attention for the water resources management and hydropower develop- ment in the Himalayas ..... Glacier melt runoff represents the integrated basin response to various ..... for policy implementation; Him. Geol.

  16. Unraveling the Hydrology of the Glacierized Kaidu Basin by Integrating Multisource Data in the Tianshan Mountains, Northwestern China

    Science.gov (United States)

    Shen, Yan-Jun; Shen, Yanjun; Fink, Manfred; Kralisch, Sven; Brenning, Alexander

    2018-01-01

    Understanding the water balance, especially as it relates to the distribution of runoff components, is crucial for water resource management and coping with the impacts of climate change. However, hydrological processes are poorly known in mountainous regions due to data scarcity and the complex dynamics of snow and glaciers. This study aims to provide a quantitative comparison of gridded precipitation products in the Tianshan Mountains, located in Central Asia and in order to further understand the mountain hydrology and distribution of runoff components in the glacierized Kaidu Basin. We found that gridded precipitation products are affected by inconsistent biases based on a spatiotemporal comparison with the nearest weather stations and should be evaluated with caution before using them as boundary conditions in hydrological modeling. Although uncertainties remain in this data-scarce basin, driven by field survey data and bias-corrected gridded data sets (ERA-Interim and APHRODITE), the water balance and distribution of runoff components can be plausibly quantified based on the distributed hydrological model (J2000). We further examined parameter sensitivity and uncertainty with respect to both simulated streamflow and different runoff components based on an ensemble of simulations. This study demonstrated the possibility of integrating gridded products in hydrological modeling. The methodology used can be important for model applications and design in other data-scarce mountainous regions. The model-based simulation quantified the water balance and how the water resources are partitioned throughout the year in Tianshan Mountain basins, although the uncertainties present in this study result in important limitations.

  17. Recent Wetting and Glacier Expansion in the Northwest Himalaya and Karakoram.

    Science.gov (United States)

    Yadav, Ram R; Gupta, Anil K; Kotlia, Bahadur S; Singh, Vikram; Misra, Krishna G; Yadava, Akhilesh K; Singh, Anoop K

    2017-07-21

    Hydroclimatic variability driven by global warming in the climatically vulnerable cold semi-arid to arid northwest (NW) Himalaya is poorly constrained due to paucity of continuous weather records and annually resolved proxies. Applying a network of annually resolved tree-ring-width chronologies from semi-arid region of Kishtwar, Jammu and Kashmir, India, we reconstructed April-May standardized precipitation index extending back to A.D. 1439 (576 years). The reconstructed series is featured by the most conspicuous long-term droughts during the 15 th to early 17 th centuries followed by a general wetting, with 1984-2014 being the wettest interval in the past 576 years. The data, consistent with other independently developed tree-ring-based hydrological records from cold semi-arid to arid NW Himalaya and Karakoram, point to an increased regional wetting in the recent decades. Such an increased wetting might have led to the anomalous behaviour of glaciers in the NW Himalaya and Karakoram in contrast to the general receding trends in the central and eastern Himalaya.

  18. Tidal bending of glaciers: a linear viscoelastic approach

    DEFF Research Database (Denmark)

    Reeh, Niels; Christensen, Erik Lintz; Mayer, Christoph

    2003-01-01

    In theoretical treatments of tidal bending of floating glaciers, the glacier is usually modelled as an elastic beam with uniform thickness, resting on an elastic foundation. With a few exceptions, values of the elastic (Young's) modulus E of ice derived from tidal deflection records of floating...

  19. Annual report - ENERSUL - 1999

    International Nuclear Information System (INIS)

    2000-01-01

    The annual report of ENERSUL - Brazilian electric power distribution company - introduces the following main topics: Outlook for the State of Mato Grosso do Sul; strategic focus; financial performance; relation with investors; energy sold; capacity increases; customers; customers; energy balance; performance and quality; electric system; investments; people; human resources; synergies; awards; workplace safety; social balance; and patrimonial balance

  20. Observed thinning of Totten Glacier is linked to coastal polynya variability

    NARCIS (Netherlands)

    Khazendar, A.; Schodlok, M.P.; Fenty, I.; Ligtenberg, S.R.M.; Rignot, Eric; van den Broeke, M.R.

    2013-01-01

    Analysis of ICESat-1 data (2003–2008) shows significant surface lowering of Totten Glacier, the glacier discharging the largest volume of ice in East Antarctica, and less change on nearby Moscow University Glacier. After accounting for firn compaction anomalies, the thinning appears to coincide with

  1. Grounding line processes on the Totten Glacier

    Science.gov (United States)

    Cook, S.; Watson, C. S.; Galton-Fenzi, B.; Peters, L. E.; Coleman, R.

    2017-12-01

    The Totten Glacier has been an area of recent interest due to its large drainage basin, much of which is grounded below sea level and has a history of large scale grounding line movement. Reports that warm water reaches the sub-ice shelf cavity have led to speculation that it could be vulnerable to future grounding line retreat. Over the Antarctic summer 2016/17 an array of 6 GPS and autonomous phase-sensitive radar (ApRES) units were deployed in the grounding zone of the Totten Glacier. These instruments measure changes in ice velocity and thickness which can be used to investigate both ice dynamics across the grounding line, and the interaction between ice and ocean in the subglacial cavity. Basal melt rates calculated from the ApRES units on floating ice range from 1 to 17 m/a. These values are significantly lower than previous estimates of basal melt rate produced by ocean modelling of the subglacial cavity. Meanwhile, GPS-derived velocity and elevation on the surface of the ice show a strong tidal signal, as does the vertical strain rate within the ice derived from internal layering from the ApRES instruments. These results demonstrate the significance of the complex grounding pattern of the Totten Glacier. The presence of re-grounding points has significant implications for the dynamics of the glacier and the ocean circulation within the subglacial cavity. We discuss what can be learned from our in situ measurements, and how they can be used to improve models of the glacier's future behaviour.

  2. Local and General Monitoring of Forni Glacier (italian Alps) Using Multi-Platform Structure-From Photogrammetry

    Science.gov (United States)

    Scaioni, M.; Corti, M.; Diolaiuti, G.; Fugazza, D.; Cernuschi, M.

    2017-09-01

    Experts from the University of Milan have been investigating Forni Glacier in the Italian alps for decades, resulting in the archive of a cumbersome mass of observed data. While the analysis of archive maps, medium resolution satellite images and DEM's may provide an overview of the long-term processes, the application of close-range sensing techniques offers the unprecedented opportunity to operate a 4D reconstruction of the glacier geometry at both global and local levels. In the latest years the availability of high-resolution DEM's from stereo-photogrammetry (2007) and UAV-photogrammetry (2014 and 2016) has allowed an improved analysis of the glacier ice-mass balance within time. During summer 2016 a methodology to record the local disruption processes has been investigated. The presence of vertical and sub-vertical surfaces has motivated the use of Structure-from-Motion Photogrammetry from ground-based stations, which yielded results comparable to the ones achieved using a long-range terrestrial laser scanner. This technique may be assumed as benchmarking for accuracy assessment, but is more difficult to be operated in high-mountain areas. Nevertheless, the measurement of GCP's for the terrestrial photogrammetric project has revealed to be a complex task, involving the need of a total station a GNSS. The effect of network geometry on the final output has also been investigated for SfM-Photogrammetry, considering the severe limitations implied in the Alpine environment.

  3. The distribution and hydrological significance of rock glaciers in the Nepalese Himalaya

    Science.gov (United States)

    Jones, D. B.; Harrison, S.; Anderson, K.; Selley, H. L.; Wood, J. L.; Betts, R. A.

    2018-01-01

    In the Nepalese Himalaya, there is little information on the number, spatial distribution and morphometric characteristics of rock glaciers, and this information is required if their hydrological contribution is to be understood. Based on freely available fine spatial resolution satellite data accessible through Google Earth, we produced the first comprehensive Nepalese rock glacier inventory, supported through statistical validation and field survey. The inventory includes the location of over 6000 rock glaciers, with a mean specific density of 3.4%. This corresponds to an areal coverage of 1371 km2. Our approach subsampled approximately 20% of the total identified rock glacier inventory (n = 1137) and digitised their outlines so that quantitative/qualitative landform attributes could be extracted. Intact landforms (containing ice) accounted for 68% of the subsample, and the remaining were classified as relict (not containing ice). The majority (56%) were found to have a northerly aspect (NE, N, and NW), and landforms situated within north- to west-aspects reside at lower elevations than those with south- to- east aspects. In Nepal, we show that rock glaciers are situated between 3225 and 5675 m a.s.l., with the mean minimum elevation at the front estimated to be 4977 ± 280 m a.s.l. for intact landforms and 4541 ± 346 m a.s.l. for relict landforms. The hydrological significance of rock glaciers in Nepal was then established by statistically upscaling the results from the subsample to estimate that these cryospheric reserves store between 16.72 and 25.08 billion m3 of water. This study, for the first time, estimates rock glacier water volume equivalents and evaluates their relative hydrological importance in comparison to ice glaciers. Across the Nepalese Himalaya, rock glacier to ice glacier water volume equivalent is 1:9, and generally increases westwards (e.g., ratio = 1:3, West region). This inventory represents a preliminary step for understanding the

  4. Bed-Deformation Experiments Beneath a Temperate Glacier

    Science.gov (United States)

    Iverson, N. R.; Hooyer, T. S.; Fischer, U. H.; Cohen, D.; Jackson, M.; Moore, P. L.; Lappegard, G.; Kohler, J.

    2002-12-01

    Fast flow of glaciers and genesis of glacial landforms are commonly attributed to shear deformation of subglacial sediment. Although models of this process abound, data gathered subglacially on the kinematics and mechanics of such deformation are difficult to interpret. Major difficulties stem from the necessity of either measuring deformation near glacier margins, where conditions may be abnormal, or at the bottoms of boreholes, where the scope of instrumentation is limited, drilling disturbs sediment, and local boundary conditions are poorly known. A different approach is possible at the Svartisen Subglacial Laboratory, where tunnels melted in the ice provide temporary human access to the bed of Engabreen, a temperate outlet glacier of the Svartisen Ice Cap in Norway. A trough (2 m x 1.5 m x 0.5 m deep) was blasted in the rock bed, where the glacier is 220 m thick and sliding at 0.1-0.2 m/d. During two spring field seasons, this trough was filled with 2.5 tons of simulated till. Instruments in the till recorded shear (tiltmeters), volume change, total normal stress, and pore-water pressure as ice moved across the till surface. Pore pressure was brought to near the total normal stress by feeding water to the base of the till with a high-pressure pump, operated in a rock tunnel 4 m below the bed surface. Results illustrate some fundamental aspects of bed deformation. Permanent shear deformation requires low effective normal stress and hence high pore-water pressure, owing to the frictional nature of till. Shear strain generally increases upward in the bed toward the glacier sole, consistent with previous measurements beneath thinner ice at glacier margins. At low effective normal stresses, ice sometimes decouples from underlying till. Overall, bed deformation accounts for 10-35 % of basal motion, although this range excludes shear in the uppermost 0.05 m of till where shear was not measured. Pump tests with durations ranging from seconds to hours highlight the need

  5. Passive seismic monitoring of the Bering Glacier during its last surge event

    Science.gov (United States)

    Zhan, Z.

    2017-12-01

    The physical causes behind glacier surges are still unclear. Numerous evidences suggest that they probably involve changes in glacier basal conditions, such as switch of basal water system from concentrated large tunnels to a distributed "layer" as "connected cavities". However, most remote sensing approaches can not penetrate to the base to monitor such changes continuously. Here we apply seismic interferometry using ambient noise to monitor glacier seismic structures, especially to detect possible signatures of the hypothesized high-pressure water "layer". As an example, we derive an 11-year long history of seismic structure of the Bering Glacier, Alaska, covering its latest surge event. We observe substantial drops of Rayleigh and Love wavespeeds across the glacier during the surge event, potentially caused by changes in crevasse density, glacier thickness, and basal conditions.

  6. Monitoring of Gangotri glacier using remote sensing and ground ...

    Indian Academy of Sciences (India)

    for activating fast melting and affecting the glacier health significantly. Apart from climatic ... glacier health were also validated using high resolution satellite imageries and field visit. A deglaciation ...... Contribution of Work- ing Group I to the ...

  7. Challenging the Southern Boundary of Active Rock Glaciers in West Greenland

    Science.gov (United States)

    Langley, K.; Abermann, J.

    2017-12-01

    Rock glaciers are permafrost features abundant in mountainous environments and are characterized as `steadily creeping perennially frozen and ice-rich debris on non-glacierised mountain slopes'. Previous studies investigated both the climatic significance and the dynamics of rock glaciers in Greenland, however, there do not exist studies as far south as the Godthåbsfjord area. We recently found evidence of a active rock glacier near Nuuk, around 250 km further south than the previously suggested southern active limit. It shows no signs of pioneer vegetation, which supports its likely dynamic activity. The rock glacier covers an area of ca. 1 km2and its lowest point is at an elevation of about 250 m a.s.l. Here we present the results of a two year field campaign designed to (I) confirm or reject active rock glacier occurrence in the Godthåbsfjord area with innovative methods, (II) study their dynamic regime and (III) investigate the climatic boundary conditions necessary for active rock glacier occurrence in the Sub-Arctic. We use a number of methods to determine the state of the rock glacier. Movement of the landform is assessed using repeat GPS surveying of marked stones and feature tracking based on ortho-photos and DEMs from repeat UAV deployments. Bottom temperature of snow cover (BTS) measurements give an independent first-order estimate of permafrost occurrence. An air temperature sensor deployed near the snout and recording hourly gives a first order estimate of the temperature gradients between Nuuk and the rock glacier, allowing us to assess the climatic boundary conditions required for rock glacier occurrence. BTS measurements show a clear drop in temperatures over the rock glacier compared to the surrounding areas suggesting an active landform with a well demarcated thermal regime. We will assess this independently with the repeat GPS and UAV surveys and will thus be able to confirm or reject the hypothesis of activity by the end of summer 2017.

  8. Digital outlines and topography of the glaciers of the American West

    Science.gov (United States)

    Fountain, Andrew G.; Hoffman, Matthew; Jackson, Keith; Basagic, Hassan; Nylen, Thomas; Percy, David

    2007-01-01

    Alpine glaciers have generally receded during the past century (post-“Little Ice Age”) because of climate warming (Oerlemans and others, 1998; Mann and others, 1999; Dyurgerov and Meier, 2000; Grove, 2001). This general retreat has accelerated since the mid 1970s, when a shift in atmospheric circulation occurred (McCabe and Fountain, 1995; Dyurgerov and Meier, 2000). The loss in glacier cover has had several profound effects. First, the shrinkage of glaciers results in a net increase in stream flow, typically in late summer when water supplies are at the lowest levels (Fountain and Tangborn, 1985). This additional water is important to ecosystems (Hall and Fagre, 2003) and to human water needs (Tangborn, 1980). However, if shrinkage continues, the net contribution to stream flow will diminish, and the effect upon these benefactors will be adverse. Glacier shrinkage is also a significant factor in current sea level rise (Meier, 1984; Dyurgerov and Meier, 2000). Second, many of the glaciers in the West Coast States are located on stratovolcanoes, and continued recession will leave oversteepened river valleys. These valleys, once buttressed by ice are now subject to failure, creating conditions for lahars (Walder and Driedger, 1994; O’Connor and others, 2001). Finally, reduction or loss of glaciers reduce or eliminate glacial activity as an important geomorphic process on landscape evolution and alters erosion rates in high alpine areas (Hallet and others, 1996). Because of the importance of glaciers to studies of climate change, hazards, and landscape modification, glacier inventories have been published for Alaska (Manley, in press), China (http://wdcdgg.westgis.ac.cn/DATABASE/Glacier/Glacier.asp), Nepal (Mool and others, 2001), Switzerland (Paul and others, 2002), and the Tyrolian Alps of Austria (Paul, 2002), among other locales. To provide the necessary data for assessing the magnitude and rate of glacier change in the American West, exclusive of Alaska

  9. Rapid thinning and collapse of lake calving Yakutat Glacier, Southeast Alaska

    Science.gov (United States)

    Trussel, Barbara Lea

    Glaciers around the globe are experiencing a notable retreat and thinning, triggered by atmospheric warming. Tidewater glaciers in particular have received much attention, because they have been recognized to contribute substantially to global sea level rise. However, lake calving glaciers in Alaska show increasingly high thinning and retreat rates and are therefore contributors to sea level rise. The number of such lake calving systems is increasing worldwide as land-terminating glaciers retreat into overdeepened basins and form proglacial lakes. Yakutat Glacier in Southeast Alaska is a low elevation lake calving glacier with an accumulation to total area ratio of 0.03. It experienced rapid thinning of 4.43 +/- 0.06 m w.e. yr-1 between 2000-2010 and terminus retreat of over 15 km since the beginning of the 20th century. Simultaneously, adjacent Yakutat Icefield land-terminating glaciers thinned at lower but still substantial rates (3.54 +/- 0.06 m w.e. yr -1 for the same time period), indicating lake calving dynamics help drive increased mass loss. Yakutat Glacier sustained a ˜3 km long floating tongue for over a decade, which started to disintegrate into large tabular icebergs in 2010. Such floating tongues are rarely seen on temperate tidewater glaciers. The floating ice was weakened by surface ablation, which then allowed rifts to form and intersect. Ice velocity from GPS measurements showed that the ice on the floating tongue was moving substantially faster than grounded ice, which was attributed to rift opening between the floating and grounded ice. Temporal variations of rift opening were determined from time-lapse imagery, and correlated well with variations in ice speeds. Larger rift opening rates occurred during and after precipitation or increased melt episodes. Both of these events increased subglacial discharge and could potentially increase the subaqueous currents towards the open lake and thus increase drag on the ice underside. Simultaneously

  10. Inferring Ice Thickness from a Glacier Dynamics Model and Multiple Surface Datasets.

    Science.gov (United States)

    Guan, Y.; Haran, M.; Pollard, D.

    2017-12-01

    The future behavior of the West Antarctic Ice Sheet (WAIS) may have a major impact on future climate. For instance, ice sheet melt may contribute significantly to global sea level rise. Understanding the current state of WAIS is therefore of great interest. WAIS is drained by fast-flowing glaciers which are major contributors to ice loss. Hence, understanding the stability and dynamics of glaciers is critical for predicting the future of the ice sheet. Glacier dynamics are driven by the interplay between the topography, temperature and basal conditions beneath the ice. A glacier dynamics model describes the interactions between these processes. We develop a hierarchical Bayesian model that integrates multiple ice sheet surface data sets with a glacier dynamics model. Our approach allows us to (1) infer important parameters describing the glacier dynamics, (2) learn about ice sheet thickness, and (3) account for errors in the observations and the model. Because we have relatively dense and accurate ice thickness data from the Thwaites Glacier in West Antarctica, we use these data to validate the proposed approach. The long-term goal of this work is to have a general model that may be used to study multiple glaciers in the Antarctic.

  11. Limited influence of climate change mitigation on short-term glacier mass loss

    Science.gov (United States)

    Marzeion, Ben; Kaser, Georg; Maussion, Fabien; Champollion, Nicolas

    2018-04-01

    Glacier mass loss is a key contributor to sea-level change1,2, slope instability in high-mountain regions3,4 and the changing seasonality and volume of river flow5-7. Understanding the causes, mechanisms and time scales of glacier change is therefore paramount to identifying successful strategies for mitigation and adaptation. Here, we use temperature and precipitation fields from the Coupled Model Intercomparison Project Phase 5 output to force a glacier evolution model, quantifying mass responses to future climatic change. We find that contemporary glacier mass is in disequilibrium with the current climate, and 36 ± 8% mass loss is already committed in response to past greenhouse gas emissions. Consequently, mitigating future emissions will have only very limited influence on glacier mass change in the twenty-first century. No significant differences between 1.5 and 2 K warming scenarios are detectable in the sea-level contribution of glaciers accumulated within the twenty-first century. In the long-term, however, mitigation will exert strong control, suggesting that ambitious measures are necessary for the long-term preservation of glaciers.

  12. IceTrendr: a linear time-series approach to monitoring glacier environments using Landsat

    Science.gov (United States)

    Nelson, P.; Kennedy, R. E.; Nolin, A. W.; Hughes, J. M.; Braaten, J.

    2017-12-01

    Arctic glaciers in Alaska and Canada have experienced some of the greatest ice mass loss of any region in recent decades. A challenge to understanding these changing ecosystems, however, is developing globally-consistent, multi-decadal monitoring of glacier ice. We present a toolset and approach that captures, labels, and maps glacier change for use in climate science, hydrology, and Earth science education using Landsat Time Series (LTS). The core step is "temporal segmentation," wherein a yearly LTS is cleaned using pre-processing steps, converted to a snow/ice index, and then simplified into the salient shape of the change trajectory ("temporal signature") using linear segmentation. Such signatures can be characterized as simple `stable' or `transition of glacier ice to rock' to more complex multi-year changes like `transition of glacier ice to debris-covered glacier ice to open water to bare rock to vegetation'. This pilot study demonstrates the potential for interactively mapping, visualizing, and labeling glacier changes. What is truly innovative is that IceTrendr not only maps the changes but also uses expert knowledge to label the changes and such labels can be applied to other glaciers exhibiting statistically similar temporal signatures. Our key findings are that the IceTrendr concept and software can provide important functionality for glaciologists and educators interested in studying glacier changes during the Landsat TM timeframe (1984-present). Issues of concern with using dense Landsat time-series approaches for glacier monitoring include many missing images during the period 1984-1995 and that automated cloud mask are challenged and require the user to manually identify cloud-free images. IceTrendr is much more than just a simple "then and now" approach to glacier mapping. This process is a means of integrating the power of computing, remote sensing, and expert knowledge to "tell the story" of glacier changes.

  13. Updated Estimates of Glacier Mass Change for Western North America

    Science.gov (United States)

    Menounos, B.; Gardner, A. S.; Howat, I.; Berthier, E.; Dehecq, A.; Noh, M. J.; Pelto, B. M.

    2017-12-01

    Alpine glaciers are critical components in Western North America's hydrologic cycle. We use varied remotely-sensed datasets to provide updated mass change estimates for Region 2 of the Randolf Glacier Inventory (RGI-02 - all North American glaciers outside of Alaska). Our datasets include: i) aerial laser altimetry surveys completed over many thousands of square kilometers; and ii) multiple Terabytes of high resolution optical stereo imagery (World View 1-3 and Pleiades). Our data from the period 2014-2017 includes the majority of glaciers in RGI-02, specifically those ice masses in the Rocky Mountains (US and Canada), Interior Ranges in British Columbia and the Cascade Mountains (Washington). We co-registered and bias corrected the recent surface models to the Shuttle Radar Topographic Mapping (SRTM) data acquired in February, 2000. In British Columbia, our estimates of mass change are within the uncertainty estimates obtained for the period 1985-2000, but estimates from some regions indicate accelerated mass loss. Work is also underway to update glacier mass change estimates for glaciers in Washington and Montana. Finally, we use re-analysis data (ERA interim and ERA5) to evaluate the meteorological drivers that explain the temporal and spatial variability of mass change evident in our analysis.

  14. Increasing meltwater discharge from the Nuuk region of the Greenland ice sheet and implications for mass balance (1960-2012)

    DEFF Research Database (Denmark)

    van As, Dirk; Langer Andersen, Morten; Petersen, Dorthe

    2014-01-01

    We assess the runoff and surface mass balance (SMB) of the Greenland ice sheet in the Nuuk region (southwest) using output of two regional climate models (RCMs) evaluated by observations. The region encompasses six glaciers that drain into Godthåbsfjord. RCM data (1960-2012) are resampled to a high...... spatial resolution to include the narrow (relative to the native grid spacing) glacier trunks in the ice mask. Comparing RCM gridded results with automaticweather station (AWS) point measurements reveals that locally models can underestimate ablation andoverestimate accumulation by up to tens of per cent...

  15. Annual report - ESCELSA - 1999

    International Nuclear Information System (INIS)

    2000-01-01

    The annual report of 1999 of ESCELSA - Brazilian electric power company - introduces the next main topics: state of Espirito Santo; strategic focus; financial performance; relation with investors; energy sales; customers; quality; electric system; investments; people; resources; synergies; awards; outlook; social balancing; and patrimonial balancing

  16. Long-term changes of the glacial seismicity: case study from Spitsbergen

    Science.gov (United States)

    Gajek, Wojciech; Trojanowski, Jacek; Malinowski, Michał

    2016-04-01

    Changes in global temperature balance have proved to have a major impact on the cryosphere, and therefore withdrawing glaciers are the symbol of the warming climate. Our study focuses on year-to-year changes in glacier-generated seismicity. We have processed 7-year long continuous seismological data recorded by the HSP broadband station located in the proximity of Hansbreen glacier (Hornsund, southern Spitsbergen), obtaining seismic activity distribution between 2008 and 2014. We developed a new fuzzy logic algorithm to distinguish between glacier- and non-glacier-origin events. The algorithm takes into account the frequency of seismic signal and the energy flow in certain time interval. Our research has revealed that the number of detected glacier-origin events over last two years has doubled. Annual events distribution correlates well with temperature and precipitation curves, illustrating characteristic yearlong behaviour of glacier seismic activity. To further support our observations, we have analysed 5-year long distribution of glacier-origin tremors detected in the vicinity of the Kronebreen glacier using KBS broadband station located in Ny-Ålesund (western Spitsbergen). We observe a steady increase in the number of detected events. detected each year, however not as significant as for Hornsund dataset.

  17. Glacier seismology: eavesdropping on the ice-bed interface

    Science.gov (United States)

    Walter, F.; Röösli, C.

    2015-12-01

    Glacier sliding plays a central role in ice dynamics. A number of remote sensing and deep drilling initiatives have therefore focused on the ice-bed interface. Although these techniques have provided valuable insights into bed properties, they do not supply theorists with data of sufficient temporal and spatial resolution to rigorously test mathematical sliding laws. As an alternative, passive seismic techniques have gained popularity in glacier monitoring. Analysis of glacier-related seismic sources ('icequakes') has become a useful technique to study inaccessible regions of the cryosphere, including the ice-bed interface. Seismic monitoring networks on the polar ice sheets have shown that ice sliding is not only a smooth process involving viscous deformation and regelation of basal ice layers. Instead, ice streams exhibit sudden slip episodes over their beds and intermittent phases of partial or complete stagnation. Here we discuss new and recently published discoveries of basal seismic sources beneath various glacial bodies. We revisit basal seismicity of hard-bedded Alpine glaciers, which is not the result of pure stick-slip motion. Sudden changes in seismicity suggest that the local configuration of the subglacial drainage system undergoes changes on sub daily time scales. Accordingly, such observations place constraints on basal resistance and sliding of hard-bedded glaciers. In contrast, certain clusters of stick-slip dislocations associated with micro seismicity beneath the Greenland ice sheet undergo diurnal variations in magnitudes and inter event times. This is best explained with a soft till bed, which hosts the shear dislocations and whose strength varies in response to changes in subglacial water pressure. These results suggest that analysis of basal icequakes is well suited for characterizing glacier and ice sheet beds. Future studies should address the relative importance between "smooth" and seismogenic sliding in different glacial environments.

  18. The retreat of mountain glaciers: what can satellites tell us?

    International Nuclear Information System (INIS)

    Berthier, E.

    2008-01-01

    Mountain glaciers are one of the best indicators of climate change and their rapid wastage make them a strong contributor to sea level rise. The estimated 160,000 mountain glaciers are spread all around the globe and remain difficult to access. Consequently, only a limited number (about 50 glaciers) are regularly monitored in the field. Today, high resolution satellite optical images are combined to some advanced methodologies to survey their fast and alarming evolution. (author)

  19. Pattern of Glacier Recession in Indian Himalaya

    Science.gov (United States)

    Singh, Ajay; Patwardhan, Anand

    All currently available climate models predict a near-surface warming trend under the influence of rising levels of greenhouse gases in the atmosphere. In addition to the direct effects on climate — for example, on the frequency of heat waves — this increase in surface temperatures has important consequences for the cryosphere subsequently hydrological cycle, particularly in regions where water supply is currently dominated by melting snow or ice. The Indian Himalayan region occupies a special place in the mountain ecosystems of the world. These geodynamically young mountains are not only important from the standpoint of climate and as a provider of life, giving water to a large part of the Indian subcontinent, but they also harbor a rich variety of flora, fauna, human communities and cultural diversity. Glaciers in this region are changing in area as well as in volume like those in other parts of the world. Studies have been carried out for recession in some of these glaciers using remote sensing as well as field observation techniques. Spatiotemporal pattern in the recession rate of the studied glaciers has been presented in this paper. Plausible causes for the recession have been also discussed. Finally, future scopes for observation and analysis in glaciers recession have been suggested.

  20. Reconstruction of Equilibrium Line Altitudes of Nevado Coropuna Glaciers (Southern Peru) from the Late Pleistocene to the present

    Science.gov (United States)

    Úbeda, J.; Palacios, D.; Vázquez, L.

    2009-04-01

    automatic functions within the GIS operating environment. To reconstruct the ELAs of the glaciers, the Area x Altitude Balance Ratio (AABR) method was used. This method is extensively described in Osmaston (2005). To determine the rates of deglaciation, variations observed for 2007 in surface areas and ELAs against their values in 1986, 1955 and the Little Ice Age (LIA) were used as geoindicators. Establishing deglaciation rates has allowed forecasts to be made as to when the complete disappearance of ice mass could occur for three future scenarios, considering the hypothetical reproduction in each scenario of the rates of deglaciation observed since 1986 (Scenario 1), 1955 (Scenario 2) and the LIA (Scenario 3). To determine the chronology of the last maximum advance of the glaciers and the last volcanic manifestations, samples were taken from moraine blocks and glaciated rocky thresholds, and also from lava ejected during the last eruption, in the eastern sector of the complex. Due to their recent external appearance, since they have been channeled by glacial valleys and have been affected by ice masses only at the head, these lavas had been dated as Holocene. Absolute dating was performed using cosmogenic methods (Cl36). As a result of applying the proposed method, glacial system surface areas have been estimated for 2007 (47 km2), 1986 (54 km2) and 1955 (56 km2), implying a reduction of ~18% in 52 years. The process appears to have speeded up in the last decades (~13% in only 21 years). Surfaces were also estimated and ELAs reconstructed for the NE and SE groups in 2007, 1986, 1955, the Little Ice Age and during the last maximum advance. Glaciers from the NE group show an area during all periods (2.3, 2.7, 2.9, 3.3 and 30 km2) smaller than SE group glaciers (8.1, 9.9, 10.3, 11.9 and 66.5 km2). An individual analysis of glaciers in the NE and SE groups in 2007 shows a reduction in surface area two to four times greater than that observed between 1955 and 1986. ELAs are

  1. Spatial‑temporal variability of water balance components in the North area of the Zailiisky Alatau Range

    Directory of Open Access Journals (Sweden)

    V. G. Konovalov

    2016-01-01

    Full Text Available Analysis of changes in WB components (precipitation, evaporation, glacier runoff, dynamical water resources on the Northern slope of the Zailiisky Alatau was performed for the 1946–2005 time divided into two periods: 1946–1975 and 1976–2005. The territory under investigation included basins of the following rivers: Bolshaya Almatinka, Malaya Almatinka, Talgar, Turgen, Issyk, Chemolgan, Kaskelen, Kargalinka, Prohodnaya, and Uzunkargaly. Their total area down to the closing gauge points amounts to 2644 km2. Summarized glacier areas in these basins and annual runoff were equal, respectively, to: 306.6 km2 and 39.05 km3in 1946–1975, and 253.0 km2 and 38.35 km3 in 1975–2005. In 1946–2005, typical features of regional glaciation dynamics were increasing area of the moraine cover on glaciers and reducing area of bare ice that results in decreasing of the glacial runoff volume, all other factors being the same. The method to calculate the WB components consists of the following constituents: model of seasonal runoff from melted snow and ice in the areas of accumulation and ablation of glaciers; complex of formulas to calculate precipitation, air temperature and humidity, intensity of ice melting under the moraine, bare ice and evaporation within the height intervals corresponding to the main types of surfaces on the glaciers. On the basis of our method, we could reconstruct for the 1876–2015 period long‑term series of data on a runoff, separately annual values and sums for the vegetation periods. They can be used for regional scientific and applied analyses of the river stream discharges. The data on runoff in the Malaya Almatinka River basin and observational data on the meteorological station Almaty (Hydrometeorological Observatory had been quantitatively substantiated as the representative information for modeling and calculation of water resources on the Northern slope of the Zailiisky Alatau Range.

  2. 2017 Rapid Retreat Of Thwaites Glacier

    Science.gov (United States)

    Milillo, P.; Rignot, E. J.; Mouginot, J.; Scheuchl, B.

    2017-12-01

    We employ data from the second generation of SAR systems e.g. the Italian COSMO- SkyMed (CSK) constellation and the German TanDEM-X (TDX) formation to monitor grounding line retreat using short repeat-time interferometry and accurate InSAR DEM on Thwaites glacier in the Amundsen Sea Embayment (ASE), West Antarctica. The ASE is a marine-based ice sheet with a retrograde bed containing enough ice to raise global sea level by 120 cm. Several studies have inferred the mechanical properties of portions of ASE using observationally constrained numerical models, but these studies offer only temporal snapshots of basal mechanics owing to a dearth of observational time series. Prior attempts of grounding lines mapping have been limited because few space-borne SAR missions offer the short-term repeat pass capability required to map the differential vertical displacement of floating ice at tidal frequencies with sufficient detail to resolve grounding line boundaries in areas of fast ice deformation. Using 1-day CSK repeat pass data and TDX DEMs, we collected frequent, high-resolution grounding line measurements of Thwaites glaciers spanning 2015-2017. We compare the results with ERS data spanning 1996-2011, and Sentinel-1a 2014-2015 data. Between 2011 and 2017 we observe a maximum retreat of 5-7 km across the main Thwaites glacier tongue and Thwaites Eastern ice shelf (TEIS) corresponding to an increased retreat rate of 0.5 km/yr. Grounding line retreat has been fueled by the enhanced intrusion of warm, salty, subsurface ocean water of circumpolar deep water origin onto the continental shelf, beneath the floating ice shelf, to reach the glacier grounding zone and melt it from below at rates varying from 50 to 150 m/yr. The retreat rate varies depending on the magnitude of ice melt by the ocean, the rate of ice thinning and the shape of the glacier surface and bed topography.

  3. Elevation Change, Mass Balance, Dynamics, and Surging of Langjökull, Iceland from 1997 to 2007

    OpenAIRE

    Pope, Allen; Willis, Ian Craig; Pálsson, Finnur; Arnold, Neil Stuart; Rees, William Gareth; Björnsson, Helgi; Grey, Lauren

    2016-01-01

    Glaciers and ice caps around the world are changing quickly, with surge-type behaviour superimposed upon climatic forcing. Here, we study Iceland’s second largest ice cap, Langjökull, which has both surge- and non-surge-type outlets. By differencing elevation change with surface mass balance, we estimate the contribution of ice dynamics to elevation change. We use DEMs, in situ stake measurements, regional reanalyses, and a mass balance model to calculate the vertical ice velocity. Thus,...

  4. A 14-year dataset of in situ glacier surface velocities for a tidewater and a land-terminating glacier in Livingston Island, Antarctica

    Science.gov (United States)

    Machío, Francisco; Rodríguez-Cielos, Ricardo; Navarro, Francisco; Lapazaran, Javier; Otero, Jaime

    2017-10-01

    We present a 14-year record of in situ glacier surface velocities determined by repeated global navigation satellite system (GNSS) measurements in a dense network of 52 stakes distributed across two glaciers, Johnsons (tidewater) and Hurd (land-terminating), located on Livingston Island, South Shetland Islands, Antarctica. The measurements cover the time period 2000-2013 and were collected at the beginning and end of each austral summer season. A second-degree polynomial approximation is fitted to each stake position, which allows estimating the approximate positions and associated velocities at intermediate times. This dataset is useful as input data for numerical models of glacier dynamics or for the calibration and validation of remotely sensed velocities for a region where very scarce in situ glacier surface velocity measurements have been available so far. The link to the data repository is as follows: pangaea.de/10.1594/PANGAEA.846791" target="_blank">http://doi.pangaea.de/10.1594/PANGAEA.846791.

  5. Thermal Properties and Energy Fluxes in Pre-monsoon Season of 2016 at the Ponkar Debris-Covered Glacier, Manang, Nepal Himalaya

    Science.gov (United States)

    Chand, M. B.; Kayastha, R. B.; Armstrong, R. L.

    2016-12-01

    Himalayan glaciers are characterized by the presence of extensive debris cover in ablation areas. It is essential to understand the thermal properties and assess the effect of debris in glacier ice melt rate in debris-covered glaciers. Meteorological conditions are recorded on the lower ablation zone of the debris-covered Ponkar Glacier, Bhimthang, Manang, Nepal during pre-monsoon season of 2016. Debris temperature at different depths is monitored for winter and pre-monsoon season to estimate the effective heat conduction. Similarly, melt under the debris is also measured for pre-monsoon season. The incoming and outgoing shortwave radiations are measured at 2 m above the surface and other variables including air temperature, humidity, wind speed, and precipitation are used to estimate surface energy balance. Energy flux is dominated by net shortwave radiation as the foremost source of melting, where contribution of net longwave radiation, sensible, latent, and conductive heat flux is low. The daily average temperature gradients of the debris layer from surface to 30 cm below for winter and pre-monsoon seasons are 0.04 oC cm-1 and 0.23 oC cm-1, respectively. Debris thermal conductivities are 0.30 W m-1 K-1 and 1.69 W m-1 K-1 for the winter and pre-monsoon season, respectively. The higher value of conductivity during pre-monsoon season is due to the higher air temperature and increased precipitation compared to the winter months. The daily mean measured ice melt under a debris layer of 11-20 cm ranges from 0.6 to 1.1 cm. Estimation of melt at a few points can be used to estimate the general melting pattern for the glacier surface, which can be improved by using the spatial distribution of debris thickness and surface temperature.

  6. End of the Little Ice Age in the Alps forced by industrial black carbon.

    Science.gov (United States)

    Painter, Thomas H; Flanner, Mark G; Kaser, Georg; Marzeion, Ben; VanCuren, Richard A; Abdalati, Waleed

    2013-09-17

    Glaciers in the European Alps began to retreat abruptly from their mid-19th century maximum, marking what appeared to be the end of the Little Ice Age. Alpine temperature and precipitation records suggest that glaciers should instead have continued to grow until circa 1910. Radiative forcing by increasing deposition of industrial black carbon to snow may represent the driver of the abrupt glacier retreats in the Alps that began in the mid-19th century. Ice cores indicate that black carbon concentrations increased abruptly in the mid-19th century and largely continued to increase into the 20th century, consistent with known increases in black carbon emissions from the industrialization of Western Europe. Inferred annual surface radiative forcings increased stepwise to 13-17 W⋅m(-2) between 1850 and 1880, and to 9-22 W⋅m(-2) in the early 1900s, with snowmelt season (April/May/June) forcings reaching greater than 35 W⋅m(-2) by the early 1900s. These snowmelt season radiative forcings would have resulted in additional annual snow melting of as much as 0.9 m water equivalent across the melt season. Simulations of glacier mass balances with radiative forcing-equivalent changes in atmospheric temperatures result in conservative estimates of accumulating negative mass balances of magnitude -15 m water equivalent by 1900 and -30 m water equivalent by 1930, magnitudes and timing consistent with the observed retreat. These results suggest a possible physical explanation for the abrupt retreat of glaciers in the Alps in the mid-19th century that is consistent with existing temperature and precipitation records and reconstructions.

  7. What controls the survival of ice cliffs on debris-covered glaciers? An investigation into the aspect-dependent evolution of supraglacial cliffs in the Nepalese Himalaya

    Science.gov (United States)

    Pellicciotti, F.; Buri, P.

    2017-12-01

    Supraglacial ice cliffs exist on debris-covered glaciers worldwide, but despite increasing evidence of their important role in the surface melt of debris-covered glaciers, their role and importance at the glacier scale is still little understood. Acting as windows of energy transfer through the debris, they can contribute to very large glacier mass losses. Their abundance and life cycle might thus explain the anomalous behavior of much higher than expected mass losses of the debris-covered glaciers of High Mountain Asia, a controversial finding of recent research in a region where glaciers are highly relevant as water sources for millions of people downstream. Cliffs' evolution in time and distribution in space will determine their total contribution to the mass balance of glaciers, but while spatial distribution has been recently inferred from remote sensing studies, their temporal evolution is largely unknown. Here, we make use of recent advancements in our ability to model these complex features and use a novel 3D numerical model of cliff backwasting and very high resolution topographic data to show that supraglacial ice cliffs existence is controlled by aspect. Because of lack of observed south-facing cliffs, we rotate north-facing cliff systems observed in high detail over the debris-covered Lirung glacier, in the Nepalese Himalaya, towards southerly aspects and use the model coupled to the very high resolution topography to simulate the continuous evolution of selected cliffs over one melt season. Cliffs facing south (in the Northern Hemisphere) do not survive the duration of an ablation season and disappear within few weeks to few months due to very strong solar radiation receipts. Our model shows a progressive, continuous flattening of southerly facing cliffs, which is a result of their vertical gradient of incoming solar radiation. We also show that there is a clear range of aspects (northwest to northeast) that allows cliff survival because of energy and

  8. Rock glaciers on South Shetland Islands, Antarctic Peninsula, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — In the South Shetland Islands the investigators found eight active rock glaciers, no relict or fossil examples, and seven protalus ramparts. The rock glaciers are...

  9. LOCAL AND GENERAL MONITORING OF FORNI GLACIER (ITALIAN ALPS USING MULTI-PLATFORM STRUCTURE-FROM-MOTION PHOTOGRAMMETRY

    Directory of Open Access Journals (Sweden)

    M. Scaioni

    2017-09-01

    Full Text Available Experts from the University of Milan have been investigating Forni Glacier in the Italian alps for decades, resulting in the archive of a cumbersome mass of observed data. While the analysis of archive maps, medium resolution satellite images and DEM’s may provide an overview of the long-term processes, the application of close-range sensing techniques offers the unprecedented opportunity to operate a 4D reconstruction of the glacier geometry at both global and local levels. In the latest years the availability of high-resolution DEM's from stereo-photogrammetry (2007 and UAV-photogrammetry (2014 and 2016 has allowed an improved analysis of the glacier ice-mass balance within time. During summer 2016 a methodology to record the local disruption processes has been investigated. The presence of vertical and sub-vertical surfaces has motivated the use of Structure-from-Motion Photogrammetry from ground-based stations, which yielded results comparable to the ones achieved using a long-range terrestrial laser scanner. This technique may be assumed as benchmarking for accuracy assessment, but is more difficult to be operated in high-mountain areas. Nevertheless, the measurement of GCP’s for the terrestrial photogrammetric project has revealed to be a complex task, involving the need of a total station a GNSS. The effect of network geometry on the final output has also been investigated for SfM-Photogrammetry, considering the severe limitations implied in the Alpine environment.

  10. Holocene glacier variability: three case studies using an intermediate-complexity climate model

    NARCIS (Netherlands)

    Weber, S.L.; Oerlemans, J.

    2003-01-01

    Synthetic glacier length records are generated for the Holocene epoch using a process-based glacier model coupled to the intermediate-complexity climate model ECBilt. The glacier model consists of a massbalance component and an ice-flow component. The climate model is forced by the insolation change

  11. Dynamic behavior of the Bering Glacier-Bagley icefield system during a surge, and other measurements of Alaskan glaciers with ERS SAR imagery

    Science.gov (United States)

    Lingle, Craig S.; Fatland, Dennis R.; Voronina, Vera A.; Ahlnaes, Kristina; Troshina, Elena N.

    1997-01-01

    ERS-1 synthetic aperture radar (SAR) imagery was employed for the measurement of the dynamics of the Bagley icefield during a major surge in 1993-1994, the measurement of ice velocities on the Malaspina piedmont glacier during a quiescent phase between surges, and for mapping the snow lines and the position of the terminus of Nabesna glacier on Mount Wrangell (a 4317 m andesitic shield volcano) in the heavily glacierized Saint Elias and Wrangell Mountains of Alaska. An overview and summary of results is given. The methods used include interferometry, cross-correlation of sequential images, and digitization of boundaries using terrain-corrected SAR imagery.

  12. A novel multispectral glacier mapping method and its performance in Greenland

    Science.gov (United States)

    Citterio, M.; Fausto, R. S.; Ahlstrom, A. P.; Andersen, S. B.

    2014-12-01

    Multispectral land surface classification methods are widely used for mapping glacier outlines. Significant post-classification manual editing is typically required, and mapping glacier outlines over larger regions remains a rather labour intensive task. In this contribution we introduce a novel method for mapping glacier outlines from multispectral satellite imagery, requiring only minor manual editing.Over the last decade GLIMS (Global Land Ice Measurements from Space) improved the availability of glacier outlines, and in 2012 the Randolph Glacier Inventory (RGI) attained global coverage by compiling existing and new data sources in the wake of the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR5). With the launch of Landsat 8 in 2013 and the upcoming ESA (European Space Agency) Sentinel 2 missions, the availability of multispectral imagery may grow faster than our ability to process it into timely and reliable glacier outline products. Improved automatic classification methods would enable a full exploitation of these new data sources.We outline the theoretical basis of the proposed classification algorithm, provide a step by step walk-through from raw imagery to finished ice cover grids and vector glacier outlines, and evaluate the performance of the new method in mapping the outlines of glaciers, ice caps and the Greenland Ice Sheet from Landsat 8 OLI imagery. The classification output is compared against manually digitized ice margin positions, the RGI vectors, and the PROMICE (Programme for Monitoring of the Greenland Ice Sheet) aerophotogrammetric map of Greenland ice masses over a sector of the Disko Island surge cluster in West Greenland, the Qassimiut ice sheet lobe in South Greenland, and the A.P. Olsen ice cap in NE Greenland.

  13. ELETRONUCLEAR - Annual report - 1997

    International Nuclear Information System (INIS)

    1998-01-01

    The annual activities report of 1997 of ELETRONUCLEAR - Brazilian company responsible by the electric power generation from the nuclear technology - introduces the next main topics: company vision and mission; energy production and commercialization; investments in the electric power generation; economic and financial situation; social balancing; and patrimonial balancing

  14. THE INTERNET PRESENTATION OF DATABASES OF GLACIERS OF THE SOUTH OF EASTERN SIBERIA

    Directory of Open Access Journals (Sweden)

    A. D. Kitov

    2017-01-01

    Full Text Available The authors consider the technology for creating databases of glaciers in Southern Siberia and the presentation of these databases on the Internet. The technology consists in the recognition and vectorization of spatial, multi-temporal data using GIS techniques, followed by the formation of databases that reflect the spatial and temporal variation of nival-glacial formations. The results of GIS design are presented on the website IG SB RAS and with the help of Internet service ArcGISonline on the public map. The mapping of databases shows the dynamic of nival-glacial formations for three time phases: the beginning of the 20th century (if you have data, its middle (the catalogs of glaciers and topographic maps and the beginning of the 21st century (according to satellite images and field research. Graphic objects are represented as point, line, and polygonal GIS-themes. Point-themes indicate parameters such as the center, lower and upper boundaries of the glacier. Line-themes determine the length and perimeter of the glacier. Polygonal-themes define the contour of the glacier and its area. The attributive table corresponds to the international standard World Glacier Inventory (WGI. The contours of the glaciers of northern Asia are represented conditionally (ellipses at international portals, and attribute characteristics correspond to the state that was displayed in catalogs of glaciers of the USSR, and they are inaccurate. Considered databases are devoid of these shortcomings. Coordinates of the center of glaciers have been refined. Glaciers contours have boundaries, appropriate to space images or topographic maps, in shp-file format. New glaciers of Baikalskiy and Barguzinskiy ridges are also presented. Existing catalogs and databases still do not include these glaciers. Features of the glaciers are examined in the context of the latitudinal transect of southern Siberia, from the Kodar ridge to the Eastern Sayan. GIS-analysis of the Databases

  15. Reconstruction of glacier variability from lake sediments reveals dynamic Holocene climate in Svalbard

    Science.gov (United States)

    van der Bilt, Willem G. M.; Bakke, Jostein; Vasskog, Kristian; D'Andrea, William J.; Bradley, Raymond S.; Ólafsdóttir, Sædis

    2015-10-01

    The Arctic is warming faster than anywhere else on Earth. Holocene proxy time-series are increasingly used to put this amplified response in perspective by understanding Arctic climate processes beyond the instrumental period. However, available datasets are scarce, unevenly distributed and often of coarse resolution. Glaciers are sensitive recorders of climate shifts and variations in rock-flour production transfer this signal to the lacustrine sediment archives of downstream lakes. Here, we present the first full Holocene record of continuous glacier variability on Svalbard from glacier-fed Lake Hajeren. This reconstruction is based on an undisturbed lake sediment core that covers the entire Holocene and resolves variability on centennial scales owing to 26 dating points. A toolbox of physical, geochemical (XRF) and magnetic proxies in combination with multivariate statistics has allowed us to fingerprint glacier activity in addition to other processes affecting the sediment record. Evidence from variations in sediment density, validated by changes in Ti concentrations, reveal glaciers remained present in the catchment following deglaciation prior to 11,300 cal BP, culminating in a Holocene maximum between 9.6 and 9.5 ka cal BP. Correspondence with freshwater pulses from Hudson Strait suggests that Early Holocene glacier advances were driven by the melting Laurentide Ice Sheet (LIS). We find that glaciers disappeared from the catchment between 7.4 and 6.7 ka cal BP, following a late Hypsithermal. Glacier reformation around 4250 cal BP marks the onset of the Neoglacial, supporting previous findings. Between 3380 and 3230 cal BP, we find evidence for a previously unreported centennial-scale glacier advance. Both events are concurrent with well-documented episodes of North Atlantic cooling. We argue that this brief forcing created suitable conditions for glaciers to reform in the catchment against a background of gradual orbital cooling. These findings highlight the

  16. The new Inventory of Italian Glaciers: Present knowledge, applied methods and preliminary results

    Science.gov (United States)

    Smiraglia, Claudio; Diolaiuti, Guglielmina; D'Agata, Carlo; Maragno, Davide; Baroni, Carlo; Mortara, Gianni; Perotti, Luigi; Bondesan, Aldino; Salvatore, Cristina; Vagliasindi, Marco; Vuillermoz, Elisa

    2013-04-01

    A new Glacier Inventory is an indispensable requirement in Italy due to the importance of evaluating the present glacier coverage and the recent changes driven by climate. Furthermore Alpine glaciers represent a not negligible water and touristic resource then to manage and promote them is needed to know their distribution, size and features. The first Italian Glacier Inventory dates back to 1959-1962. It was compiled by the Italian Glaciological Committee (CGI) in cooperation with the National Research Council (CNR); this first inventory was mainly based on field data coupled with photographs (acquired on the field) and high resolution maps. The Italian glaciation resulted to be spread into 754 ice bodies which altogether were covering 525 km2. Moreover in the Eighties a new inventory was compiled to insert Italian data into the World Glacier Inventory (WGI); aerial photos taken at the end of the Seventies (and in some cases affected by a high and not negligible snow coverage) were used as the main source of data. No other national inventory were compiled after that period. Nevertheless during the last decade the largest part of the Italian Alpine regions have produced regional and local glacier inventories which in several cases are also available and queried through web sites and web GIS application. The actual need is now to obtain a complete, homogeneous and contemporary picture of the Italian Glaciation which encompasses the already available regional and local data and all the new updated information coming from new sources of data (e.g.: orthophotos, satellite imagines, etc..). The challenge was accepted by the University of Milan, the EvK2CNR Committee and the Italian Glaciological Committee who, with the sponsorship of Levissima Spa, are presently working to compile the new updated Italian Glacier Inventory. The first project step is to produce a unique homogeneous glacier database including glacier boundary and surface area and the main fundamental

  17. Observations and analysis of self-similar branching topology in glacier networks

    Science.gov (United States)

    Bahr, D.B.; Peckham, S.D.

    1996-01-01

    Glaciers, like rivers, have a branching structure which can be characterized by topological trees or networks. Probability distributions of various topological quantities in the networks are shown to satisfy the criterion for self-similarity, a symmetry structure which might be used to simplify future models of glacier dynamics. Two analytical methods of describing river networks, Shreve's random topology model and deterministic self-similar trees, are applied to the six glaciers of south central Alaska studied in this analysis. Self-similar trees capture the topological behavior observed for all of the glaciers, and most of the networks are also reasonably approximated by Shreve's theory. Copyright 1996 by the American Geophysical Union.

  18. Top-down or bottom-up? Assessing crevassing directions on surging glaciers and developments for physically testing glacier crevassing models.

    Science.gov (United States)

    Rea, B.; Evans, D. J. A.; Benn, D. I.; Brennan, A. J.

    2012-04-01

    Networks of crevasse squeeze ridges (CSRs) preserved on the forelands of many surging glaciers attest to extensive full-depth crevassing. Full-depth connections have been inferred from turbid water up-welling in crevasses and the formation of concertina eskers however, it has not been clearly established if the crevasses formed from the top-down or the bottom-up. A Linear Elastic Fracture Mechanics (LEFM) approach is used to determine the likely propagation direction for Mode I crevasses on seven surging glaciers. Results indicate that, the high extensional surface strain rates are insufficient to promote top-down full-depth crevasses but have sufficient magnitude to penetrate to depths of 4-12 m, explaining the extensive surface breakup accompanying glacier surges. Top-down, full-depth crevassing is only possible when water depth approaches 97% of the crevasse depth. However, the provision of sufficient meltwater is problematic due to the aforementioned extensive shallow surface crevassing. Full-depth, bottom-up crevassing can occur provided basal water pressures are in excess of 80-90% of flotation which is the default for surging and on occasion water pressures may even become artesian. Therefore CSRs, found across many surging glacier forelands and ice margins most likely result from the infilling of basal crevasses formed, for the most part, by bottom-up hydrofracturing. Despite the importance of crevassing for meltwater routing and calving dynamics physically testing numerical crevassing models remains problematic due to technological limitations, changing stress regimes and difficulties associated with working in crevasse zones on glaciers. Mapping of CSR spacing and matching to surface crevasse patterns can facilitate quantitative comparison between the LEFM model and observed basal crevasses provided ice dynamics are known. However, assessing full-depth top-down crevasse propagation is much harder to monitor in the field and no geomorphological record is

  19. The 24 July 2008 outburst flood at the western Zyndan glacier lake and recent regional changes in glacier lakes of the Teskey Ala-Too range, Tien Shan, Kyrgyzstan

    Directory of Open Access Journals (Sweden)

    C. Narama

    2010-04-01

    Full Text Available On 24 July 2008, a glacier lake outburst flood (GLOF occurred at the western (w- Zyndan glacier lake in the Tong District of Ysyk-Köl Oblast, Kyrgyzstan. The flood killed three people and numerous livestock, destroyed infrastructure, and devastated potato and barley crops as well as pastures. Tuurasuu village and a downstream reservoir on the Zyndan river escaped heavy damage because the main flood was diverted toward the Tong river. RTK-GPS and satellite data (Landsat 7 ETM+, ALOS/PRISM, and ALOS/AVNIR-2 reveal that the flood reduced the lake area from 0.0422 km2 to 0.0083 km2, discharging 437 000 m3 of water. This glacier lake was not present in a Landsat 7 ETM+ image taken on 26 April 2008. It formed rapidly over just two and half months from early May to the late July, when large amounts of snow and glacier melt water became trapped in a basin in the glacier terminus area, blocked by temporary closure of the drainage channel through the terminal moraine that included much dead-ice. In the same mountain region, most other glacier-lake expansions were not particularly large during the period from 1999–2008. Although events like the w-Zyndan glacier lake outburst occur infrequently in the high Central Asian mountains, such fast developing, short-lived lakes are particularly dangerous and not easy to monitor using satellite data. Appropriate measures to protect against such lake outburst hazards in this region include educating residents on glacier hazards and monitoring techniques, providing frequently updated maps of glacier lakes, and planning and monitoring land-use, including house locations.

  20. Tropical New World Glacier Recession from the mid-1980s to the mid-2000s

    Science.gov (United States)

    Slayback, D. A.; Tucker, C. J.

    2010-12-01

    We report on the systematic retreat of all glaciers in the tropics of the New World from the mid-1980s to the mid-2000s. These glaciers comprise 99% of the world’s tropical glaciers and occur in Bolivia, Peru, Ecuador, Colombia, Venezuela, and Mexico. It was necessary to use a large quantity of Landsat satellite data (124 images), selecting multiple images for every glacier for both epochs, to minimize confusion of glacier area with snow. Change in glacier extent was combined with a digital elevation model (DEM) to provide information on the elevation and aspect of areas of glacier recession. Overall, we found glacier recession of approximately 30% over twenty years, declining from ~2500 km2 from the mid-1980s to ~1800 km2 in the mid-2000s. In addition, there was a strong association of glacier recession with elevation and aspect. We discuss these trends in relation to hypothesized climatic influences.

  1. Rock glaciers in the Pyrenees, Spain and France, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — This study and inventory of active rock glaciers was carried out by means of the usual techniques used in the study of alpine permafrost. First, the rock glaciers...

  2. Critical discussion on the "observed" water balances of five sub-basins in the Everest region

    Science.gov (United States)

    Chevallier, P.; Eeckman, J.; Nepal, S.; Delclaux, F.; Wagnon, P.; Brun, F.; Koirala, D.

    2017-12-01

    The hydrometeorological components of five Dudh Koshi River sub-basins on the Nepalese side of the Mount Everest have been monitored during four hydrological years (2013-2017), with altitudes ranging from 2000 m to Everest top, areas between 4.65 and 1207 km², and proportions of glaciated areas between nil and 45%. This data set is completed with glacier mass balance observations. The analysis of the observed data and the resulting water balances show large uncertainties of different types: aleatory, epistemic or semantic, following the classification proposed by Beven (2016). The discussion is illustrated using results from two modeling approaches, physical (ISBA, Noilhan and Planton, 1996) and conceptual (J2000, Krause, 2001), as well as large scale glacier mass balances obtained by the way of a recent remote sensing processing method. References: Beven, K., 2016. Facets of uncertainty: epistemic uncertainty, non-stationarity, likelihood, hypothesis testing, and communication. Hydrological Sciences Journal 61, 1652-1665. doi:10.1080/02626667.2015.1031761 Krause, P., 2001. Das hydrologische Modellsystem J2000: Beschreibung und Anwendung in groen Flueinzugsgebieten, Schriften des Forschungszentrum Jülich. Reihe Umwelt/Environment; Band 29. Noilhan, J., Planton, S., 1989. A single parametrization of land surface processes for meteorological models. Monthly Weather Review 536-549.

  3. Investigating changes in basal conditions of Variegated Glacier prior to and during its 1982–1983 surge

    Directory of Open Access Journals (Sweden)

    M. Jay-Allemand

    2011-08-01

    Full Text Available Variegated Glacier (Alaska is known to surge periodically after a sufficient amount of cumulative mass balance is reached, but this observation is difficult to link with changes in the basal conditions. Here, using a 10-yr dataset, consisting of surface topography and surface velocity observations along a flow line for 25 dates, we have reconstructed the evolution of the basal conditions prior to and during the 1982–1983 surge. The model solves the full-Stokes problem along the central flow line using the finite element method. For the 25 dates of the dataset, the basal friction parameter distribution is inferred using the inverse method proposed by Arthern and Gudmundsson (2010. This method is here slightly modified by incorporating a regularisation term in the cost function to avoid short wavelength changes in the friction parameter. Our results indicate that dramatic changes in the basal conditions occurred between 1973 to 1983. Prior to the surge, periodic changes can be observed between winter and summer, with a regular increase of the sliding from 1973 to 1982. During the surge, the basal friction decreased dramatically and an area of very low friction moved from the upper part of the glacier to its terminus. Using a more complex friction law, these changes in basal sliding are then interpreted in terms of basal water pressure. Our results support that dramatic changes took place in the subglacial drainage system of Variegated Glacier, moving from a relatively efficient drainage system prior to the surge to an inefficient one during the surge. By reconstructing the water pressure evolution at the base of the glacier it is possible to propose a scenario for the hydrological history leading to the occurrence of a surge.

  4. Annual report 1974

    International Nuclear Information System (INIS)

    1975-07-01

    The report gives a survey of the activities of the Institut fuer Radiometrie of the Gesellschaft fuer Strahlen- und Umweltforschung mbH, Muenchen, in 1974. The long-term studies on flow models were finished, and new groundwater flow models were established on the basis of their results. Apart from apparative and methodical work for isotope hydrology studies, the work on melting processes in snow blankets and the water balance in glacier regions was continued. Plant materials were investigated as a contribution to palaeoclimatical studies. Furthermore, extensive borchole-meter measurements were carried out in some regions in connection with groundwater securing and protection. The knowledge gained so far concerning the hydrological situation of the region was supplemented by tritium measurements in the Asse groundwaters. (ORU) [de

  5. Methods for Automating Analysis of Glacier Morphology for Regional Modelling: Centerlines, Extensions, and Elevation Bands

    Science.gov (United States)

    Viger, R. J.; Van Beusekom, A. E.

    2016-12-01

    The treatment of glaciers in modeling requires information about their shape and extent. This presentation discusses new methods and their application in a new glacier-capable variant of the USGS PRMS model, a physically-based, spatially distributed daily time-step model designed to simulate the runoff and evolution of glaciers through time. In addition to developing parameters describing PRMS land surfaces (hydrologic response units, HRUs), several of the analyses and products are likely of interest to cryospheric science community in general. The first method is a (fully automated) variation of logic previously presented in the literature for definition of the glacier centerline. Given that the surface of a glacier might be convex, using traditional topographic analyses based on a DEM to trace a path down the glacier is not reliable. Instead a path is derived based on a cost function. Although only a single path is presented in our results, the method can be easily modified to delineate a branched network of centerlines for each glacier. The second method extends the glacier terminus downslope by an arbitrary distance, according to local surface topography. This product is can be used to explore possible, if unlikely, scenarios under which glacier area grows. More usefully, this method can be used to approximate glacier extents from previous years without needing historical imagery. The final method presents an approach for segmenting the glacier into altitude-based HRUs. Successful integration of this information with traditional approaches for discretizing the non-glacierized portions of a basin requires several additional steps. These include synthesizing the glacier centerline network with one developed with a traditional DEM analysis, ensuring that flow can be routed under and beyond glaciers to a basin outlet. Results are presented based on analysis of the Copper River Basin, Alaska.

  6. Estimating Velocities of Glaciers Using Sentinel-1 SAR Imagery

    Science.gov (United States)

    Gens, R.; Arnoult, K., Jr.; Friedl, P.; Vijay, S.; Braun, M.; Meyer, F. J.; Gracheva, V.; Hogenson, K.

    2017-12-01

    In an international collaborative effort, software has been developed to estimate the velocities of glaciers by using Sentinel-1 Synthetic Aperture Radar (SAR) imagery. The technique, initially designed by the University of Erlangen-Nuremberg (FAU), has been previously used to quantify spatial and temporal variabilities in the velocities of surging glaciers in the Pakistan Karakoram. The software estimates surface velocities by first co-registering image pairs to sub-pixel precision and then by estimating local offsets based on cross-correlation. The Alaska Satellite Facility (ASF) at the University of Alaska Fairbanks (UAF) has modified the software to make it more robust and also capable of migration into the Amazon Cloud. Additionally, ASF has implemented a prototype that offers the glacier tracking processing flow as a subscription service as part of its Hybrid Pluggable Processing Pipeline (HyP3). Since the software is co-located with ASF's cloud-based Sentinel-1 archive, processing of large data volumes is now more efficient and cost effective. Velocity maps are estimated for Single Look Complex (SLC) SAR image pairs and a digital elevation model (DEM) of the local topography. A time series of these velocity maps then allows the long-term monitoring of these glaciers. Due to the all-weather capabilities and the dense coverage of Sentinel-1 data, the results are complementary to optically generated ones. Together with the products from the Global Land Ice Velocity Extraction project (GoLIVE) derived from Landsat 8 data, glacier speeds can be monitored more comprehensively. Examples from Sentinel-1 SAR-derived results are presented along with optical results for the same glaciers.

  7. Annual Energy Balance Sheets 2003-2004

    International Nuclear Information System (INIS)

    2005-01-01

    During the year 2004 the supply of primary energy reached 657.6 TWh. That is an increased supply by 16 TWh compared with 2003, The electricity production in hydropower and wind power stations increased by 7 TWh, to 61 TWh during the year 2004. The electricity generated in nuclear power plants was 77.5 TWh, an increase by 10 TWh. During the year 2004 Sweden net exported 2.1 TWh electricity. But in year 2003 we net imported 12.8 TWh electricity. The energy use increased from 406 TWh to 409 TWh between year 2003 and year 2004. The use of coal and coke in manufacturing increased by 22 per cent, and the use of oil products in transport sector increased by 4 per cent. The energy balance sheets are based on data primary recorded in the balance sheets of energy sources, here expressed in a common energy unit, TJ. The production of derived energy is here recorded in a second flow-step comprising energy turnover in energy conversion and is also specified in complementary input-output tables for energy conversion industries

  8. Review article: Hydrological modeling in glacierized catchments of central Asia - status and challenges

    Science.gov (United States)

    Chen, Yaning; Li, Weihong; Fang, Gonghuan; Li, Zhi

    2017-02-01

    Meltwater from glacierized catchments is one of the most important water supplies in central Asia. Therefore, the effects of climate change on glaciers and snow cover will have increasingly significant consequences for runoff. Hydrological modeling has become an indispensable research approach to water resources management in large glacierized river basins, but there is a lack of focus in the modeling of glacial discharge. This paper reviews the status of hydrological modeling in glacierized catchments of central Asia, discussing the limitations of the available models and extrapolating these to future challenges and directions. After reviewing recent efforts, we conclude that the main sources of uncertainty in assessing the regional hydrological impacts of climate change are the unreliable and incomplete data sets and the lack of understanding of the hydrological regimes of glacierized catchments of central Asia. Runoff trends indicate a complex response to changes in climate. For future variation of water resources, it is essential to quantify the responses of hydrologic processes to both climate change and shrinking glaciers in glacierized catchments, and scientific focus should be on reducing uncertainties linked to these processes.

  9. Physical Limits on Hmax, the Maximum Height of Glaciers and Ice Sheets

    Science.gov (United States)

    Lipovsky, B. P.

    2017-12-01

    The longest glaciers and ice sheets on Earth never achieve a topographic relief, or height, greater than about Hmax = 4 km. What laws govern this apparent maximum height to which a glacier or ice sheet may rise? Two types of answer appear possible: one relating to geological process and the other to ice dynamics. In the first type of answer, one might suppose that if Earth had 100 km tall mountains then there would be many 20 km tall glaciers. The counterpoint to this argument is that recent evidence suggests that glaciers themselves limit the maximum height of mountain ranges. We turn, then, to ice dynamical explanations for Hmax. The classical ice dynamical theory of Nye (1951), however, does not predict any break in scaling to give rise to a maximum height, Hmax. I present a simple model for the height of glaciers and ice sheets. The expression is derived from a simplified representation of a thermomechanically coupled ice sheet that experiences a basal shear stress governed by Coulomb friction (i.e., a stress proportional to the overburden pressure minus the water pressure). I compare this model to satellite-derived digital elevation map measurements of glacier surface height profiles for the 200,000 glaciers in the Randolph Glacier Inventory (Pfeffer et al., 2014) as well as flowlines from the Greenland and Antarctic Ice Sheets. The simplified model provides a surprisingly good fit to these global observations. Small glaciers less than 1 km in length are characterized by having negligible influence of basal melt water, cold ( -15C) beds, and high surface slopes ( 30 deg). Glaciers longer than a critical distance 30km are characterized by having an ice-bed interface that is weakened by the presence of meltwater and is therefore not capable of supporting steep surface slopes. The simplified model makes predictions of ice volume change as a function of surface temperature, accumulation rate, and geothermal heat flux. For this reason, it provides insights into

  10. High-Resolution Monitoring of Himalayan Glacier Dynamics Using Unmanned Aerial Vehicles

    Science.gov (United States)

    Immerzeel, W.; Kraaijenbrink, P. D. A.; Shea, J.; Shrestha, A. B.; Pellicciotti, F.; Bierkens, M. F.; de Jong, S. M.

    2014-12-01

    Himalayan glacier tongues are commonly debris covered and play an important role in modulating the glacier response to climate . However, they remain relatively unstudied because of the inaccessibility of the terrain and the difficulties in field work caused by the thick debris mantles. Observations of debris-covered glaciers are therefore limited to point locations and airborne remote sensing may bridge the gap between scarce, point field observations and coarse resolution space-borne remote sensing. In this study we deploy an Unmanned Airborne Vehicle (UAV) on two debris covered glaciers in the Nepalese Himalayas: the Lirung and Langtang glacier during four field campaigns in 2013 and 2014. Based on stereo-imaging and the structure for motion algorithm we derive highly detailed ortho-mosaics and digital elevation models (DEMs), which we geometrically correct using differential GPS observations collected in the field. Based on DEM differencing and manual feature tracking we derive the mass loss and the surface velocity of the glacier at a high spatial resolution and accuracy. We also assess spatiotemporal changes in supra-glacial lakes and ice cliffs based on the imagery. On average, mass loss is limited and the surface velocity is very small. However, the spatial variability of melt rates is very high, and ice cliffs and supra-glacial ponds show mass losses that can be an order of magnitude higher than the average. We suggest that future research should focus on the interaction between supra-glacial ponds, ice cliffs and englacial hydrology to further understand the dynamics of debris-covered glaciers. Finally, we conclude that UAV deployment has large potential in glaciology and it represents a substantial advancement over methods currently applied in studying glacier surface features.

  11. 110 years of local glacier and ice cap changes in Central- and North East Greenland

    Science.gov (United States)

    Bjork, A. A.; Aagaard, S.; Kjaer, K. H.; Khan, S. A.; Box, J.

    2014-12-01

    The local glaciers and ice caps of Greenland are becoming more apparent players in global sea-level rise, and their contribution to future changes is significant. Very little information on their historical fluctuations exists as much of the focus has been on the Greenland Ice Sheet. Now, we can for the first time present historic data that spans 110 years for more than 200 of the local glaciers and ice caps covering this large and important region of the Arctic. The central- and north eastern part of Greenland is of particular interest as these areas are predicted to exhibit a more active behavior with higher mass loss in the future - simultaneously with an increase in precipitation. Our results show that the glaciers and ice caps in the region are responding very rapidly to changes in temperature and precipitation. The present retreat is the fastest observed within the last eight decades, only surpassed by the rapid post LIA retreat. The 1930s was the golden era for scientific exploration in Central- and North East Greenland as several large expeditions visited the area and photographed from land, sea and air. We use historic recordings from Danish and Norwegian aerial missions and terrestrial recordings from the renowned American Explorer Louise Boyd. These unique pictures from the early 1930s form the backbone of the study and are supplemented the more recent aerial photographs the 1940s and onwards and satellite imagery from the mid-1960s and up until present. From high resolution aerial photographs we are able to map the maximum extent of the glaciers during the LIA (Little Ice Age), from which retreat in this area is estimated to commence in 1900. Using a new SMB (Surface Mass Balance) model and its components covering the entire observational period along with high resolution DEMs and historic sea-ice records we are now able to extract valuable information on the past and present triggers of glacial change.

  12. Spatial mapping of multi-year superimposed ice on the glacier Kongsvegen, Svalbard

    DEFF Research Database (Denmark)

    Brandt, Ola; Kohler, Jack; Lüthje, Mikael

    2008-01-01

    by GPR. Using the SI spatial depth distribution, we estimate the mean annual accumulation of superimposed ice to be 0.16 +/- 0.06 mw.e.a(-1) (locally up to 0.43 ma(-1) w.e.). This corresponds to similar to 15-33% of the local winter balance and similar to 5-10% of the total winter balance measured since...

  13. Using an Ablation Gradient Model to Characterize Annual Glacial Melt Contribution to Major Rivers in High Asia

    Science.gov (United States)

    Brodzik, M. J.; Armstrong, R. L.; Khalsa, S. J. S.; Painter, T. H.; Racoviteanu, A.; Rittger, K.

    2014-12-01

    Ice melt from mountain glaciers can represent a significant contribution to freshwater hydrological budgets, along with seasonal snow melt, rainfall and groundwater. In the rivers of High Asia, understanding the proportion of glacier ice melt is critical for water resource management of irrigation and planning for hydropower generation and human consumption. Current climate conditions are producing heterogeneous glacier responses across the Hindu Kush-Karakoram-Himalayan ranges. However, it is not yet clear how contrasting glacier patterns affect regional water resources. For example, in the Upper Indus basin, estimates of glacial contribution to runoff are often not distinguished from seasonal snow contribution, and vary widely, from as little as 15% to as much as 55%. While many studies are based on reasonable concepts, most are based on assumptions uninformed by actual snow or ice cover measurements. While straightforward temperature index models have been used to estimate glacier runoff in some Himalayan basins, application of these models in larger Himalayan basins is limited by difficulties in estimating key model parameters, particularly air temperature. Estimating glacial area from the MODIS Permanent Snow and Ice Extent (MODICE) product for the years 2000-2013, with recently released Shuttle Radar Topography Mission (SRTMGL3) elevation data, we use a simple ablation gradient approach to calculate an upper limit on the contribution of clean glacier ice melt to streamflow data. We present model results for the five major rivers with glaciated headwaters in High Asia: the Bramaputra, Ganges, Indus, Amu Darya and Syr Darya. Using GRDC historical discharge records, we characterize the annual contribution from glacier ice melt. We use MODICE interannual trends in each basin to estimate glacier ice melt uncertainties. Our results are being used in the USAID project, Contribution to High Asia Runoff from Ice and Snow (CHARIS), to inform regional-scale planning for

  14. Glacier protection laws: Potential conflicts in managing glacial hazards and adapting to climate change.

    Science.gov (United States)

    Anacona, Pablo Iribarren; Kinney, Josie; Schaefer, Marius; Harrison, Stephan; Wilson, Ryan; Segovia, Alexis; Mazzorana, Bruno; Guerra, Felipe; Farías, David; Reynolds, John M; Glasser, Neil F

    2018-03-13

    The environmental, socioeconomic and cultural significance of glaciers has motivated several countries to regulate activities on glaciers and glacierized surroundings. However, laws written to specifically protect mountain glaciers have only recently been considered within national political agendas. Glacier Protection Laws (GPLs) originate in countries where mining has damaged glaciers and have been adopted with the aim of protecting the cryosphere from harmful activities. Here, we analyze GPLs in Argentina (approved) and Chile (under discussion) to identify potential environmental conflicts arising from law restrictions and omissions. We conclude that GPLs overlook the dynamics of glaciers and could prevent or delay actions needed to mitigate glacial hazards (e.g. artificial drainage of glacial lakes) thus placing populations at risk. Furthermore, GPL restrictions could hinder strategies (e.g. use of glacial lakes as reservoirs) to mitigate adverse impacts of climate change. Arguably, more flexible GPLs are needed to protect us from the changing cryosphere.

  15. Application of artificial neural networks in hydrological modeling: A case study of runoff simulation of a Himalayan glacier basin

    Science.gov (United States)

    Buch, A. M.; Narain, A.; Pandey, P. C.

    1994-01-01

    The simulation of runoff from a Himalayan Glacier basin using an Artificial Neural Network (ANN) is presented. The performance of the ANN model is found to be superior to the Energy Balance Model and the Multiple Regression model. The RMS Error is used as the figure of merit for judging the performance of the three models, and the RMS Error for the ANN model is the latest of the three models. The ANN is faster in learning and exhibits excellent system generalization characteristics.

  16. Landscape transformation under the Gåsbreen glacier recession since 1899, southwestern Spitsbergen

    Directory of Open Access Journals (Sweden)

    Ziaja Wiesław

    2016-06-01

    Full Text Available Landscape changes of the Gåsbreen glacier and its vicinity since 1899 are described. Maps at 1:50 000 scale of changes of the glacier’s elevation and extent for the periods 1938–1961, 1961–1990, 1990–2010, and 1938–2010 are analyzed in comparison with results of the authors’ field work in the summer seasons 1983, 1984, 2000, 2005 and 2008. During all the 20th century, the progressive recession of the glacier revealed in a dramatic decrease in the thickness of its lower part, with a small reduction of its area and length. However, further shrinkage produced significant shortening and reduction in area which resulted in final decline of the Goësvatnet glacial dammed lake in 2002. Hence, the lowest (and very thick, up to 150–160 m part of the former glacier tongue and dammed lake were transformed into a new terraced river valley south of the glacier and a typical marginal zone with glacial landforms north of the glacier. Since 1961, the equilibrium line altitude of the Gåsbreen glacier has risen from ca 350 to ca 500 m a.s.l. and now is located below the very steep rocky walls of the Mehesten mountain ridge, 1378 m a.s.l. Hence, the glacier is being fed by snow avalanches from these rocky walls and much more snow melts during the warmer summer seasons, stimulating a quicker recession of the lowest part of the glacier. This recession may be stopped only by significant climate cooling or increase in snow.

  17. Directly measuring melt at a vertical face tidewater glacier: is it possible?

    Science.gov (United States)

    Sutherland, D.; Amundson, J. M.; Duncan, D.; Jackson, R. H.; Kienholz, C.; Motyka, R. J.; Nash, J. D.

    2017-12-01

    Direct observations of melt on the underwater portion of tidewater glaciers have proved elusive, mostly due to the inherent dangers of making measurements next to a calving ice front. Additionally, the melting process itself is often masked by large ice speeds, variable calving across the glacier front, and enhanced melting due to rising subglacial discharge plumes. Here, we use repeat multibeam sonar images of LeConte Glacier to assess the possibility of measuring terminus melt in situ. LeConte Glacier is a fast-moving tidewater system in southeast Alaska with ice speeds of 25 m d-1 and previously estimated submarine melting that accounts for 50% of ice loss at the front. In August 2016, May 2017, and September 2017, we conducted intensive fieldwork at the 1.5 km long, 250 m deep glacier front, collecting dozens of repeat multibeam images of the underwater terminus. Combined with coincident time-lapse photography and surface radar measurements, we attempt to disentangle the ambient melt at the glacier face from ice motion and calving. We use a suite of oceanographic observations of the emerging subglacial discharge plume to separate portions of the glacier front that show evidence of enhanced melting versus portions outside of the affected plume areas. We find a complex, time-varying geometry, with regions of undercutting, overcutting, and large discharge channels. Measurements like these are critical to i) improving numerical model parameterizations of coupled glacier-ocean interactions and ii) developing a process-based understanding of how the literal ice-ocean boundary evolves in time and space.

  18. Inter- and intra-annual variability of fluvial sediment transport in the proglacial river Riffler Bach (Weißseeferner, Ötztal Alps, Tyrol)

    Science.gov (United States)

    Baewert, Henning; Weber, Martin; Morche, David

    2015-04-01

    The hydrology of a proglacial river is strongly affected by glacier melting. Due to glacier retreat the effects of snow melt and rain storms will become more important in future decades. Additionally, the development of periglacial landscapes will play a more important role in the hydrology of proglacial rivers. The importance of paraglacial sediment sources in sediment budgets of glacier forefields is increasing, while the role of glacial erosion is declining. In two consecutive ablation seasons the fluvial sediment transport of the river Riffler Bach in the Kaunertal (Tyrol/Austria) was quantified. The catchment area of this station is 20 km² with an altitudinal range from 1929 m to 3518 m above msl. The "Weißseeferner" glacier (2.34 km² in 2012) is the greatest of the remaining glaciers. An automatic water sampler (AWS 2002) and a probe for water level were installed were installed at the outlet of the catchment. In order to calculate annual stage-discharge-relations, discharge (Q) was repeatedly measured with current meters. Concurrent to the discharge measurements bed load was collected using a portable Helley-Smith sampler. Bed load (BL) samples were weighted and sieved in the laboratory to gain annual bed load rating curves and grain size distributions. In 2012, 154 water samples were sampled during 7 periods and subsequently filtered to quantify suspended sediment concentrations (SSC). A Q-SSC-relation was calculated for every period due to the high variability in suspended sediment transport. In addition, the grain size distribution of the filtered material was determined by laser diffraction analysis. In 2013, the same procedure was performed for 232 water samples which were collected during 9 periods. Meteorological data were logged at the climate station "Weißsee", which is located in the centre of the study area. First results show a high variability of discharge and solid sediment transport both at the inter-annual as well as at the intra-annual

  19. Neoglacial fluctuations of terrestrial, tidewater, and calving lacustrine glaciers, Blackstone-Spencer Ice Complex, Kenai Mountains, Alaska

    Science.gov (United States)

    Crossen, Kristine June

    1997-12-01

    The glaciers surrounding the Blackstone-Spencer Ice Complex display a variety of termini types: Tebenkov, Spencer, Bartlett, Skookum, Trail, Burns, Shakespeare, Marquette, Lawrence, and Ripon glaciers end in terrestrial margins; Blackstone and Beloit glaciers have tidewater termini; and Portage Glacier has a calving lacustrine margin. In addition, steep temperature and precipitation gradients exist across the ice complex from the maritime environment of Prince William Sound to the colder, drier interior. The Neoglacial history of Tebenkov Glacier, as based on overrun trees near the terminus, shows advances ca. 250- 430 AD (calibrated date), ca. 1215-1275 AD (calibrated date), and ca. 1320-1430 AD (tree ring evidence), all intervals of glacier advance around the Gulf of Alaska. However, two tidewater glaciers in Blackstone Bay retreated from their outermost moraines by 1350 AD, apparently asynchronously with respect to the regional climate signal. The most extensive Kenai Mountain glacier expansions during Neoglaciation occurred in the late Little Ice Age. The outermost moraines are adjacent to mature forest stands and bog peats that yield dates as old as 5,600 BP. Prince William Sound glaciers advanced during two Little Ice Age cold periods, 1380-1680 and 1830-1900 AD. The terrestrial glaciers around the Blackstone-Spencer Ice Complex all built moraines during the 19th century and began retreating between 1875 and 1900 AD. Portage and Burns glaciers began retreating between 1790 and 1810 AD, but their margins remained close to the outermost moraines during the 19th century. Regional glacier fluctuations are broadly synchronous in the Gulf of Alaska region. With the exception of the two tidewater glaciers in Blackstone Bay, all glaciers in the Kenai Mountains, no matter their sizes, altitudes, orientations, or types of margins, retreated at the end of the Little Ice Age. The climate signal, especially temperature, appears to be the strongest control on glacier

  20. Inspection of Alpine glaciers with cosmic-ray muon radiography

    Science.gov (United States)

    Nishiyama, Ryuichi; Ariga, Akitaka; Ariga, Tomoko; Ereditato, Antonio; Lechmann, Alessandro; Mair, David; Scampoli, Paola; Schlunegger, Fritz; Vladymyrov, Mykhailo

    2016-04-01

    Radiography using cosmic-ray muons represents a challenging method for probing the bedrock topography beneath Alpine glaciers. We present the current status of our feasibility study at Eiger glacier, situated on the western flank of the Eiger in the Jungfrau region, Central Swiss Alps. The muon radiography is a technique that has been recently developed to investigate the internal density profiles of geoscientific targets. It is based on the measurement of the absorption of the cosmic-ray muons inside a material. Because the energy spectrum of cosmic-ray muons and the energy dependence of muon range have been studied well during the past years, the attenuation of the muon flux can be used to derive the column density, i.e. the density integrated along the muon trajectories, of geoscientific targets. This technique has recently been applied for non-invasive inspection of volcanoes, nuclear reactors, seismic faults, caves and etc. The greatest advantage of the method in the field of glacier studies is that it yields a unique solution of the density underneath a glacier without any assumption of physical properties inside the target. Large density contrasts, as expected between glacier ice (˜ 1.0g/cm3) and bedrock (˜ 2.5g/cm3), would allow us to elucidate the shape of the bedrock in high resolution. Accordingly, this technology will provide for the first time information on the bedrock surface beneath a steep and non-accessible Alpine glacier, in a complementary way with respect to other exploration methods (drilling, ground penetrating radar, seismic survey, gravity explorations and etc.). Our first aim is to demonstrate the feasibility of the method through a case study at the Eiger glacier, situated in the Central Swiss Alps. The Eiger glacier straddles the western flank of the Eiger between 3700 and 2300 m above sea level (a.s.l.). The glacier has shortened by about 150 m during the past 30 years in response to the ongoing global warming, causing a concern for