WorldWideScience

Sample records for glacial transition climate

  1. Role of the Bering Strait on the hysteresis of the ocean conveyor belt circulation and glacial climate stability.

    Science.gov (United States)

    Hu, Aixue; Meehl, Gerald A; Han, Weiqing; Timmermann, Axel; Otto-Bliesner, Bette; Liu, Zhengyu; Washington, Warren M; Large, William; Abe-Ouchi, Ayako; Kimoto, Masahide; Lambeck, Kurt; Wu, Bingyi

    2012-04-24

    Abrupt climate transitions, known as Dansgaard-Oeschger and Heinrich events, occurred frequently during the last glacial period, specifically from 80-11 thousand years before present, but were nearly absent during interglacial periods and the early stages of glacial periods, when major ice-sheets were still forming. Here we show, with a fully coupled state-of-the-art climate model, that closing the Bering Strait and preventing its throughflow between the Pacific and Arctic Oceans during the glacial period can lead to the emergence of stronger hysteresis behavior of the ocean conveyor belt circulation to create conditions that are conducive to triggering abrupt climate transitions. Hence, it is argued that even for greenhouse warming, abrupt climate transitions similar to those in the last glacial time are unlikely to occur as the Bering Strait remains open.

  2. Bifurcation structure and noise assisted transitions in the Pleistocene glacial cycles

    DEFF Research Database (Denmark)

    Ditlevsen, Peter

    2009-01-01

    history. It indicates the dynamical origin of the mid-Pleistocene transition from the "41 ka world'' to the "100 ka world.'' The dominant forcing in the latter is still the 41 ka obliquity cycle, but the bifurcation structure of the climate system is changed. The model suggests that transitions between......The glacial cycles are attributed to the climatic response of the orbital changes in the irradiance to the Earth. These changes in the forcing are too small to explain the observed climate variations as simple linear responses. Nonlinear amplifications of the orbital forcing are necessary...... to account for the glacial cycles. Here an empirical model of the nonlinear response is presented. From the model it is possible to assess the role of stochastic noise in comparison to the deterministic orbital forcing of the ice ages. The model is based on the bifurcation structure derived from the climate...

  3. Climate Stability: Pathway to understand abrupt glacial climate shifts

    Science.gov (United States)

    Zhang, X.; Knorr, G.; Barker, S.; Lohmann, G.

    2017-12-01

    Glacial climate is marked by abrupt, millennial-scale climate changes known as Dansgaard-Oeschger (DO) cycles that have been linked to variations in the Atlantic meridional overturning circulation (AMOC). The most pronounced stadial coolings, Heinrich Stadials (HSs), are associated with massive iceberg discharges to the North Atlantic. This motivates scientists to consider that the North Atlantic freshwater perturbations is a common trigger of the associated abrupt transitions between weak and strong AMOC states. However, recent studies suggest that the Heinrich ice-surging events are triggered by ocean subsurface warming associated with an AMOC slow-down. Furthermore, the duration of ice-rafting events does not systematically coincide with the beginning and end of the pronounced cold conditions during HSs. In this context, we show that both, changes in atmospheric CO2 and ice sheet configuration can provide important control on the stability of the AMOC, using a coupled atmosphere-ocean model. Our simulations reveal that gradual changes in Northern Hemisphere ice sheet height and atmospheric CO2 can act as a trigger of abrupt glacial/deglacial climate changes. The simulated global climate responses—including abrupt warming in the North Atlantic, a northward shift of the tropical rain belts, and Southern Hemisphere cooling related to the bipolar seesaw—are generally consistent with empirical evidence. We further find that under a delicate configuration of atmospheric CO2 and ice sheet height the AMOC can be characterized by a self-oscillation (resonance) feature (Hopf Bifucation) with a 1000-year cycle that is comparable with observed small DO events during the MIS 3. This provides an alternative explanation for millennial-scale DO variability during glacial periods.

  4. Process-based modelling of fluvial system response to rapid climate change: 2. application to the River Maas (The Netherlands) during the Last Glacial-Interglacial Transition

    NARCIS (Netherlands)

    Bogaart, P.W.; Balen, van R.T.; Kasse, C.; Vandenberghe, J.

    2003-01-01

    A comprehensive process-based numerical model of catchment hydrology and alluvial channel dynamics is applied to the evolution of the river Maas during the Last Glacial-Interglacial Transition. Palaeo-climatological reconstructions based on a number of climatic and environmental proxies are combined

  5. Role of the Bering Strait on the hysteresis of the ocean conveyor belt circulation and glacial climate stability

    OpenAIRE

    Hu, Aixue; Meehl, Gerald A.; Han, Weiqing; Timmermann, Axel; Otto-Bliesner, Bette; Liu, Zhengyu; Washington, Warren M.; Large, William; Abe-Ouchi, Ayako; Kimoto, Masahide; Lambeck, Kurt; Wu, Bingyi

    2012-01-01

    Abrupt climate transitions, known as Dansgaard-Oeschger and Heinrich events, occurred frequently during the last glacial period, specifically from 80–11 thousand years before present, but were nearly absent during interglacial periods and the early stages of glacial periods, when major ice-sheets were still forming. Here we show, with a fully coupled state-of-the-art climate model, that closing the Bering Strait and preventing its throughflow between the Pacific and Arctic Oceans during the g...

  6. Human responses and non-responses to climatic variations during the last Glacial-Interglacial transition in the eastern Mediterranean

    Science.gov (United States)

    Roberts, Neil; Woodbridge, Jessie; Bevan, Andrew; Palmisano, Alessio; Shennan, Stephen; Asouti, Eleni

    2018-03-01

    We review and evaluate human adaptations during the last glacial-interglacial climatic transition in southwest Asia. Stable isotope data imply that climatic change was synchronous across the region within the limits of dating uncertainty. Changes in vegetation, as indicated from pollen and charcoal, mirror step-wise shifts between cold-dry and warm-wet climatic conditions, but with lag effects for woody vegetation in some upland and interior areas. Palaeoenvironmental data can be set against regional archaeological evidence for human occupancy and economy from the later Epipalaeolithic to the aceramic Neolithic. Demographic change is evaluated from summed radiocarbon date probability distributions, which indicating contrasting - and in some cases opposite - population trajectories in different regions. Abrupt warming transitions at ∼14.5 and 11.7 ka BP may have acted as pacemakers for rapid cultural change in some areas, notably at the start of the Natufian and Pre-Pottery Neolithic cultures. However temporal synchroneity does not mean that climatic changes had the same environmental or societal consequences in different regions. During cold-dry time intervals, regions such as the Levant acted as refugia for plant and animal resources and human population. In areas where socio-ecological continuity was maintained through periods of adverse climate (e.g. Younger Dryas) human communities were able to respond rapidly to subsequent climatic improvement. By contrast, in areas where there was a break in settlement at these times (e.g. central Anatolia), populations were slower to react to the new opportunities provided by the interglacial world.

  7. Glacial cycles: exogenous orbital changes vs. endogenous climate dynamics

    Science.gov (United States)

    Kaufmann, R. K.; Juselius, K.

    2010-04-01

    We use a statistical model, the cointegrated vector autoregressive model, to assess the degree to which variations in Earth's orbit and endogenous climate dynamics can be used to simulate glacial cycles during the late Quaternary (390 kyr-present). To do so, we estimate models of varying complexity and compare the accuracy of their in-sample simulations. Results indicate that strong statistical associations between endogenous climate variables are not enough for statistical models to reproduce glacial cycles. Rather, changes in solar insolation associated with changes in Earth's orbit are needed to simulate glacial cycles accurately. Also, results suggest that non-linear dynamics, threshold effects, and/or free oscillations may not play an overriding role in glacial cycles.

  8. Modeled seasonality of glacial abrupt climate events

    Energy Technology Data Exchange (ETDEWEB)

    Flueckiger, Jacqueline [Institute of Arctic and Alpine Research, University of Colorado, Boulder, CO (United States); Environmental Physics, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zuerich, Zurich (Switzerland); Knutti, Reto [Institute for Atmospheric and Climate Science, ETH Zuerich, Zurich (Switzerland); White, James W.C. [Institute of Arctic and Alpine Research, University of Colorado, Boulder, CO (United States); Renssen, Hans [Vrije Universiteit Amsterdam, Faculty of Earth and Life Sciences, Amsterdam (Netherlands)

    2008-11-15

    Greenland ice cores, as well as many other paleo-archives from the northern hemisphere, recorded a series of 25 warm interstadial events, the so-called Dansgaard-Oeschger (D-O) events, during the last glacial period. We use the three-dimensional coupled global ocean-atmosphere-sea ice model ECBILT-CLIO and force it with freshwater input into the North Atlantic to simulate abrupt glacial climate events, which we use as analogues for D-O events. We focus our analysis on the Northern Hemisphere. The simulated events show large differences in the regional and seasonal distribution of the temperature and precipitation changes. While the temperature changes in high northern latitudes and in the North Atlantic region are dominated by winter changes, the largest temperature increases in most other land regions are seen in spring. Smallest changes over land are found during the summer months. Our model simulations also demonstrate that the temperature and precipitation change patterns for different intensifications of the Atlantic meridional overturning circulation are not linear. The extent of the transitions varies, and local non-linearities influence the amplitude of the annual mean response as well as the response in different seasons. Implications for the interpretation of paleo-records are discussed. (orig.)

  9. In and out of glacial extremes by way of dust‑climate feedbacks

    Science.gov (United States)

    Shaffer, Gary; Lambert, Fabrice

    2018-03-01

    Mineral dust aerosols cool Earth directly by scattering incoming solar radiation and indirectly by affecting clouds and biogeochemical cycles. Recent Earth history has featured quasi-100,000-y, glacial‑interglacial climate cycles with lower/higher temperatures and greenhouse gas concentrations during glacials/interglacials. Global average, glacial maxima dust levels were more than 3 times higher than during interglacials, thereby contributing to glacial cooling. However, the timing, strength, and overall role of dust‑climate feedbacks over these cycles remain unclear. Here we use dust deposition data and temperature reconstructions from ice sheet, ocean sediment, and land archives to construct dust‑climate relationships. Although absolute dust deposition rates vary greatly among these archives, they all exhibit striking, nonlinear increases toward coldest glacial conditions. From these relationships and reconstructed temperature time series, we diagnose glacial‑interglacial time series of dust radiative forcing and iron fertilization of ocean biota, and use these time series to force Earth system model simulations. The results of these simulations show that dust‑climate feedbacks, perhaps set off by orbital forcing, push the system in and out of extreme cold conditions such as glacial maxima. Without these dust effects, glacial temperature and atmospheric CO2 concentrations would have been much more stable at higher, intermediate glacial levels. The structure of residual anomalies over the glacial‑interglacial climate cycles after subtraction of dust effects provides constraints for the strength and timing of other processes governing these cycles.

  10. Last Glacial vegetation and climate change in the southern Levant

    Science.gov (United States)

    Miebach, Andrea; Chen, Chunzhu; Litt, Thomas

    2015-04-01

    Reconstructing past climatic and environmental conditions is a key task for understanding the history of modern mankind. The interaction between environmental change and migration processes of the modern Homo sapiens from its source area in Africa into Europe is still poorly understood. The principal corridor of the first human dispersal into Europe and also later migration dynamics crossed the Middle East. Therefore, the southern Levant is a key area to investigate the paleoenvironment during times of human migration. In this sense, the Last Glacial (MIS 4-2) is particularly interesting to investigate for two reasons. Firstly, secondary expansions of the modern Homo sapiens are expected to occur during this period. Secondly, there are ongoing discussions on the environmental conditions causing the prominent lake level high stand of Lake Lisan, the precursor of the Dead Sea. This high stand even culminated in the merging of Lake Lisan and Lake Kinneret (Sea of Galilee). To provide an independent proxy for paleoenvironmental reconstructions in the southern Levant during the Last Glacial, we investigated pollen assemblages of the Dead Sea/Lake Lisan and Lake Kinneret. Located at the Dead Sea Transform, the freshwater Lake Kinneret is nowadays connected via the Jordan with the hypersaline Dead Sea, which occupies Earth's lowest elevation on land. The southern Levant is a transition area of three different vegetation types. Therefore, also small changes in the climate conditions effect the vegetation and can be registered in the pollen assemblage. In contrast to the Holocene, our preliminary results suggest another vegetation pattern during the Last Glacial. The vegetation belt of the fragile Mediterranean biome did no longer exist in the vicinity of Lake Kinneret. Moreover, the vegetation was rather similar in the whole study area. A steppe vegetation with dwarf shrubs, herbs, and grasses predominated. Thermophilous elements like oaks occurred in limited amounts. The

  11. A glacial record of the last termination in the southern tropical Andes

    Science.gov (United States)

    Bromley, G. R.; Schaefer, J. M.; Winckler, G.; Hall, B. L.; Todd, C. E.; Rademaker, K.

    2012-12-01

    The last glacial termination represents the highest-magnitude climate change of the last hundred thousand years. Accurate resolution of events during the termination is vital to our understanding of how - and why - the global climate system transitions from a full glacial to interglacial state, as well as the causes of abrupt climate change during the late-glacial period. Palaeoclimate data from low latitudes, though relatively sparse, are particularly valuable, since the tropical ocean and atmosphere likely play a crucial role in Quaternary climate variability on all timescales. We present a detailed glacier record from the Andes of southern Peru (15°S), resolved with 3He surface-exposure dating and spanning the last glacial maximum and termination. Our dataset reveals that glaciers in this part of the Southern Hemisphere maintained their Late Pleistocene maxima for several millennia and that the onset of the termination may have occurred relatively late. Deglaciation was punctuated by two major advances during the late-glacial period. Following the glacial-interglacial transition, our preliminary chronologic and morphologic data suggest that, in contrast to the Northern Hemisphere, glaciers in the southern tropical Andes have experienced overall shrinkage during the Holocene.

  12. The timing and cause of glacial activity during the last glacial in central Tibet based on 10Be surface exposure dating east of Mount Jaggang, the Xainza range

    Science.gov (United States)

    Dong, Guocheng; Zhou, Weijian; Yi, Chaolu; Fu, Yunchong; Zhang, Li; Li, Ming

    2018-04-01

    Mountain glaciers are sensitive to climate change, and can provide valuable information for inferring former climates on the Tibetan Plateau (TP). The increasing glacial chronologies indicate that the timing of the local Last Glacial Maximum (LGM) recorded across the TP is asynchronous, implying different local influences of the mid-latitude westerlies and Asian Summer Monsoon in triggering glacier advances. However, the well-dated sites are still too few, especially in the transition zone between regions controlled by the two climate systems. Here we present detailed last glacial chronologies for the Mount Jaggang area, in the Xainza range, central Tibet, with forty-three apparent 10Be exposure-ages ranging from 12.4 ± 0.8 ka to 61.9 ± 3.8 ka. These exposure-ages indicate that at least seven glacial episodes occurred during the last glacial cycle east of Mount Jaggang. These include: a local LGM that occurred at ∼61.9 ± 3.8 ka, possibly corresponding to Marine Isotope Stage 4 (MIS 4); subsequent glacial advances at ∼43.2 ± 2.6 ka and ∼35.1 ± 2.1 ka during MIS 3; one glacial re-advance/standstill at MIS3/2 transition (∼29.8 ± 1.8 ka); and three glacial re-advances/standstills that occurred following MIS 3 at ∼27.9 ± 1.7 ka, ∼21.8 ± 1.3 ka, and ∼15.1 ± 0.9 ka. The timing of these glacial activities is roughly in agreement with North Atlantic millennial-scale climate oscillations (Heinrich events), suggesting the potential correlations between these abrupt climate changes and glacial fluctuations in the Mount Jaggang area. The successively reduced glacial extent might have resulted from an overall decrease in Asian Summer Monsoon intensity over this timeframe.

  13. Decadal-scale climate drivers for glacial dynamics in Glacier National Park, Montana, USA

    Science.gov (United States)

    Pederson, Gregory T.; Fagre, Daniel B.; Gray, Stephen T.; Graumlich, Lisa J.

    2004-06-01

    Little Ice Age (14th-19th centuries A.D.) glacial maxima and 20th century retreat have been well documented in Glacier National Park, Montana, USA. However, the influence of regional and Pacific Basin driven climate variability on these events is poorly understood. We use tree-ring reconstructions of North Pacific surface temperature anomalies and summer drought as proxies for winter glacial accumulation and summer ablation, respectively, over the past three centuries. These records show that the 1850's glacial maximum was likely produced by ~70 yrs of cool/wet summers coupled with high snowpack. Post 1850, glacial retreat coincides with an extended period (>50 yr) of summer drought and low snowpack culminating in the exceptional events of 1917 to 1941 when retreat rates for some glaciers exceeded 100 m/yr. This research highlights potential local and ocean-based drivers of glacial dynamics, and difficulties in separating the effects of global climate change from regional expressions of decadal-scale climate variability.

  14. Weak oceanic heat transport as a cause of the instability of glacial climates

    NARCIS (Netherlands)

    Colin de Verdière, A.; Raa, L. te

    2010-01-01

    The stability of the thermohaline circulation of modern and glacial climates is compared with the help of a two dimensional ocean-atmosphere-sea ice coupled model. It turns out to be more unstable as less freshwater forcing is required to induce a polar halocline catastrophy in glacial climates. The

  15. Groundwater flow modelling of periods with periglacial and glacial climate conditions - Laxemar

    Energy Technology Data Exchange (ETDEWEB)

    Vidstrand, Patrik (TerraSolve AB, Floda (Sweden)); Rhen, Ingvar (SWECO Environment AB, Falun (Sweden)); Zugec, Nada (Bergab, Goeteborg (Sweden))

    2010-12-15

    As a part of the license application for a final repository for spent nuclear fuel at Forsmark, the Swedish Nuclear Fuel and Waste Management Company (SKB) has undertaken a series of groundwater flow modelling studies. These represent time periods with different hydraulic conditions and the simulations carried out contribute to the overall evaluation of the repository design and long-term radiological safety. This report is concerned with the modelling of a repository at the Laxemar-Simpevarp site during periglacial and glacial climate conditions as a comparison to corresponding modelling carried out for Forsmark /Vidstrand et al. 2010/. The groundwater flow modelling study reported here comprises a coupled thermal-hydraulic-chemical (T-H-C) analysis of periods with periglacial and glacial climate conditions. The objective of the report is to provide bounding hydrogeological estimates at different stages during glaciation and deglaciation of a glacial cycle at Laxemar. Three cases with different climate conditions are analysed here: (i) Temperate case, (ii) Glacial case without permafrost, and (iii) Glacial case with permafrost. The glacial periods are transient and encompass approximately 13,000 years. The simulation results comprise pressures, Darcy fluxes, and water salinities, as well as advective transport performance measures obtained by particle tracking such as flow path lengths, travel times and flow-related transport resistances. The modelling is accompanied by a sensitivity study that addresses the impact of the following matters: the direction of the ice sheet advance and the bedrock hydraulic and transport properties

  16. Millennial climatic fluctuations are key to the structure of last glacial ecosystems.

    Directory of Open Access Journals (Sweden)

    Brian Huntley

    Full Text Available Whereas fossil evidence indicates extensive treeless vegetation and diverse grazing megafauna in Europe and northern Asia during the last glacial, experiments combining vegetation models and climate models have to-date simulated widespread persistence of trees. Resolving this conflict is key to understanding both last glacial ecosystems and extinction of most of the mega-herbivores. Using a dynamic vegetation model (DVM we explored the implications of the differing climatic conditions generated by a general circulation model (GCM in "normal" and "hosing" experiments. Whilst the former approximate interstadial conditions, the latter, designed to mimic Heinrich Events, approximate stadial conditions. The "hosing" experiments gave simulated European vegetation much closer in composition to that inferred from fossil evidence than did the "normal" experiments. Given the short duration of interstadials, and the rate at which forest cover expanded during the late-glacial and early Holocene, our results demonstrate the importance of millennial variability in determining the character of last glacial ecosystems.

  17. Millennial climatic fluctuations are key to the structure of last glacial ecosystems.

    Science.gov (United States)

    Huntley, Brian; Allen, Judy R M; Collingham, Yvonne C; Hickler, Thomas; Lister, Adrian M; Singarayer, Joy; Stuart, Anthony J; Sykes, Martin T; Valdes, Paul J

    2013-01-01

    Whereas fossil evidence indicates extensive treeless vegetation and diverse grazing megafauna in Europe and northern Asia during the last glacial, experiments combining vegetation models and climate models have to-date simulated widespread persistence of trees. Resolving this conflict is key to understanding both last glacial ecosystems and extinction of most of the mega-herbivores. Using a dynamic vegetation model (DVM) we explored the implications of the differing climatic conditions generated by a general circulation model (GCM) in "normal" and "hosing" experiments. Whilst the former approximate interstadial conditions, the latter, designed to mimic Heinrich Events, approximate stadial conditions. The "hosing" experiments gave simulated European vegetation much closer in composition to that inferred from fossil evidence than did the "normal" experiments. Given the short duration of interstadials, and the rate at which forest cover expanded during the late-glacial and early Holocene, our results demonstrate the importance of millennial variability in determining the character of last glacial ecosystems.

  18. Late Glacial and Early Holocene Climatic Changes Based on a Multiproxy Lacustrine Sediment Record from Northeast Siberia

    Energy Technology Data Exchange (ETDEWEB)

    Kokorowski, H D; Anderson, P M; Sletten, R S; Lozhkin, A V; Brown, T A

    2008-05-20

    Palynological (species assemblage, pollen accumulation rate), geochemical (carbon to nitrogen ratios, organic carbon and biogenic silica content), and sedimentological (particle size, magnetic susceptibility) data combined with improved chronology and greater sampling resolution from a new core from Elikchan 4 Lake provide a stronger basis for defining paleoenvironmental changes than was previously possible. Persistence of herb-dominated tundra, slow expansion of Betula and Alnus shrubs, and low percentages of organic carbon and biogenic silica suggest that the Late-Glacial transition (ca. 16,000-11,000 cal. yr BP) was a period of gradual rather than abrupt vegetation and climatic change. Consistency of all Late-Glacial data indicates no Younger Dryas climatic oscillation. A dramatic peak in pollen accumulation rates (ca. 11,000-9800 cal. yr BP) suggests a possible summer temperature optimum, but finer grain-sizes, low magnetic susceptibility, and greater organic carbon and biogenic silica, while showing significant warming at ca. 11,000 cal. yr BP, offer no evidence of a Holocene thermal maximum. When compared to trends in other paleo-records, the new Elikchan data underscore the apparent spatial complexity of climatic responses in Northeast Siberia to global forcings between ca. 16,000-9000 cal. yr BP.

  19. Glacial changes in warm pool climate dominated by shelf exposure and ice sheet albedo

    Science.gov (United States)

    Di Nezio, P. N.; Tierney, J. E.; Otto-Bliesner, B. L.; Timmermann, A.; Bhattacharya, T.; Brady, E. C.; Rosenbloom, N. A.

    2017-12-01

    The mechanisms driving glacial-interglacial changes in the climate of the Indo-Pacific warm pool (IPWP) are unclear. We addressed this issue combining model simulations and paleoclimate reconstructions of the Last Glacial Maximum (LGM). Two drivers - the exposure of tropical shelves due to lower sea level and a monsoonal response to ice sheet albedo - explain the proxy-inferred patterns of hydroclimate change. Shelf exposure influences IPWP climate by weakening the ascending branch of the Walker circulation. This response is amplified by coupled interactions akin to the Bjerknes feedback involving a stronger sea-surface temperature (SST) gradient along the equatorial Indian Ocean (IO). Ice sheet albedo enhances the import of cold, dry air into the tropics, weakening the Afro-Asian monsoon system. This "ventilation" mechanism alters temperature contrasts between the Arabian Sea and surrounding land leading to further monsoon weakening. Additional simulations show that the altered SST patterns associated with these responses are essential for explaining the proxy-inferred changes. Together our results show that ice sheets are a first order driver of tropical climate on glacial-interglacial timescales. While glacial climates are not a straightforward analogue for the future, our finding of an active Bjerknes feedback deserves further attention in the context of future climate projections.

  20. Glacial cycles:exogenous orbital changes vs. endogenous climate dynamics

    OpenAIRE

    Kaufmann, R. K.; Juselius, Katarina

    2010-01-01

    We use a statistical model, the cointegrated vector autoregressive model, to assess the degree to which variations in Earth's orbit and endogenous climate dynamics can be used to simulate glacial cycles during the late Quaternary (390 kyr-present). To do so, we estimate models of varying complexity and compare the accuracy of their in-sample simulations. Results indicate that strong statistical associations between endogenous climate variables are not enough for statistical models to reproduc...

  1. Mid-Pleistocene climate transition drives net mass loss from rapidly uplifting St. Elias mountains, Alaska

    Digital Repository Service at National Institute of Oceanography (India)

    Gulick, S.P.S.; Jaeger, J.M.; Mix, A.C.; Asahi, H.; Bahlburg, H.; Belanger, C.L.; Berbel, G.B.B.; Childress, L.; Cowan, E.; Drab, L.; Forwick, M.; Fukumura, A.; Ge, S.; Gupta, S.M.; Kioka, A.; Konno, S.; LeVay, L.J.; Marz, C.; Matsuzaki, K.M.; McClymont, E.L.; Moy, C.; Muller, J.; Nakamura, A.; Ojima, T.; Ribeiro, F.R.; Ridgway, K.D.; Romero, O.E.; Slagle, A.L.; Stoner, J.S.; St-Onge, G.; Suto, I.; Walczak, M.D.; Worthington, L.L.; Bailey, I.; Enkelmann, E.; Reece, R.; Swartz, J.M.

    the onset of quasi-periodic (~100-ky) glacial cycles in the mid-Pleistocene climate transition (1.2–0.7 Ma). Since then, erosion and transport of material out of the orogen has outpaced tectonic influx by 50–80%. Such a rapid net mass loss explains apparent...

  2. Climate and landscape in Italy during Late Epigravettian. The Late Glacial small mammal sequence of Riparo Tagliente (Stallavena di Grezzana, Verona, Italy)

    Science.gov (United States)

    Berto, Claudio; Luzi, Elisa; Canini, Guido Montanari; Guerreschi, Antonio; Fontana, Federica

    2018-03-01

    The site of Riparo Tagliente (north-eastern Italy) contains one of the main Upper Pleistocene archaeological sequences of south-western Europe. It also represents a key site for the study of human adaptation to Late Glacial environmental changes in the southern Alpine area. These climatic and environmental conditions are here reconstructed based on small mammal assemblages, using the Bioclimatic model and Habitat Weighting methods. Climate proxies indicate a rise in temperature during the transition between HE1 and the Bølling-Allerød interstadial, while the landscape surrounding the shelter was still dominated by open grasslands. By comparing the data obtained from Riparo Tagliente with other coeval small mammal faunas from the Italian Peninsula and Europe we contribute to the reconstruction of the processes of faunal renewal registered during the Late Glacial across the continent and of the climatic and environmental context in which the Late Epigravettian hunter-gatherer groups lived.

  3. Climatic Forecasting of Net Infiltration at Yucca Mountain Using Analogue Meteorological Data

    International Nuclear Information System (INIS)

    B. Faybishenko

    2006-01-01

    At Yucca Mountain, Nevada, future changes in climatic conditions will most likely alter net infiltration, or the drainage below the bottom of the evapotranspiration zone within the soil profile or flow across the interface between soil and the densely welded part of the Tiva Canyon Tuff. The objectives of this paper are to: (a) develop a semi-empirical model and forecast average net infiltration rates, using the limited meteorological data from analogue meteorological stations, for interglacial (present day), and future monsoon, glacial transition, and glacial climates over the Yucca Mountain region, and (b) corroborate the computed net-infiltration rates by comparing them with the empirically and numerically determined groundwater recharge and percolation rates through the unsaturated zone from published data. In this paper, the author presents an approach for calculations of net infiltration, aridity, and precipitation-effectiveness indices, using a modified Budyko's water-balance model, with reference-surface potential evapotranspiration determined from the radiation-based Penman (1948) formula. Results of calculations show that net infiltration rates are expected to generally increase from the present-day climate to monsoon climate, to glacial transition climate, and then to the glacial climate. The forecasting results indicate the overlap between the ranges of net infiltration for different climates. For example, the mean glacial net-infiltration rate corresponds to the upper-bound glacial transition net infiltration, and the lower-bound glacial net infiltration corresponds to the glacial transition mean net infiltration. Forecasting of net infiltration for different climate states is subject to numerous uncertainties-associated with selecting climate analogue sites, using relatively short analogue meteorological records, neglecting the effects of vegetation and surface runoff and runon on a local scale, as well as possible anthropogenic climate changes

  4. The response of southern California ecosystems to Younger Dryas-like rapid climate change: Comparison of glacial terminations 1 and 5.

    Science.gov (United States)

    Heusser, L. E.; Hendy, I. L.

    2015-12-01

    The Younger Dryas is a well-known rapid climatic cooling that interrupted the Marine Isotope Stage (MIS) 1-2 deglacial warming of Termination 1. This cool event has been associated with ice sheet readvance, meridional overturning, circulation changes, and southward movement of the Intertropical Convergence Zone. In Southern California, the Younger Dryas has been associated with cooler SST, low marine productivity, a well-ventilated oxygen minimum zone, and a wetter climate. Similar rapid cooling events have been found at other terminations including Termination 5 at the MIS 11-12 deglaciation (~425 Ka) identified by ice rafting events in the North Atlantic. Here we present new pollen census data from a unique suite of cores taken from the sub-oxic sediments of Santa Barbara Basin (MV0508-15JC, MV0805-20JC, MV0508-33JC, 29JC and 21JC). These short cores, collected on a truncated anticline within SBB, provide the opportunity to examine the response of southern California terrestrial and marine ecosystems to rapid climate change during the MIS 11-12 deglaciation (Termination 5), which is identified by a bioturbated interval within a sequence of laminated sediments. During Termination 1, changes in Southern California precipitation are reflected in pollen- based reconstructions Southern California vegetation. The high precipitation of glacial montane-coniferous assemblages of pine (Pinus) and Juniper (Juniperus/Calocedrus) transitions into interglacial drought, as expresssed by arid oak (Quercus)/chaparral vegetation. The Younger Dryas interrupts the transition as a high-amplitude pulse in pine associated with increased Gramineae (grass). Termination 5 differs, as the high precipitation of glacial montane-coniferous assemblages do not transition into arid oak/chaparral vegetation. However, a Younger Dryas-like rapid climate event was associated with increased pine and grass.

  5. Glacial cycles

    DEFF Research Database (Denmark)

    Kaufmann, R. K.; Juselius, Katarina

    We use a statistical model, the cointegrated vector autoregressive model, to assess the degree to which variations in Earth's orbit and endogenous climate dynamics can be used to simulate glacial cycles during the late Quaternary (390 kyr-present). To do so, we estimate models of varying complexity...... and compare the accuracy of their in-sample simulations. Results indicate that strong statistical associations between endogenous climate variables are not enough for statistical models to reproduce glacial cycles. Rather, changes in solar insolation associated with changes in Earth's orbit are needed...... to simulate glacial cycles accurately. Also, results suggest that non-linear 10 dynamics, threshold effects, and/or free oscillations may not play an overriding role in glacial cycles....

  6. A Glacial Perspective on the Impact of Heinrich Stadials on North Atlantic Climate

    Science.gov (United States)

    Bromley, G. R.; Putnam, A. E.; Rademaker, K. M.; Balter, A.; Hall, B. L.

    2017-12-01

    The British Isles contain a rich geologic record of Late Pleistocene ice sheet behaviour in the NE North Atlantic basin. We are using cosmogenic 10Be surface-exposure dating, in conjunction with detailed glacial-geomorphic mapping, to reconstruct the timing and nature of cryospheric change - and thus climate variability - in northern Scotland since the Last Glacial Maximum. Our specific focus is Heinrich Stadial 1 (18,300-14,700 years ago), arguably the most significant abrupt climate event of the last glacial cycle and a major feature in global palaeoclimate records. Such constraint is needed because of currently conflicting models of how these events impact terrestrial environments and a recent hypothesis attributing this disparity to enhanced seasonality in the North Atlantic basin. To date, we have measured 10Be in > 30 samples from glacial erratics located on moraines deposited by the British Ice Sheet as it retreated from the continental shelf to its highland source regions. Our preliminary results indicate that the stadial was characterised by widespread deglaciation driven by atmospheric warming, a pattern that is suggestive of pronounced seasonality. Additionally, we report new exposure ages from moraines deposited during a subsequent phase of alpine glaciation (known locally as the Loch Lomond Readvance) that has long been attributed to the Younger Dryas stadial. With the growing focus on the full expression of stadials, and the inherent vulnerability of Europe to shifts in North Atlantic climate, developing the extant record of terrestrial glaciation and comparing these data to marine records is a critical step towards understanding the drivers of abrupt climate change.

  7. Climatic implications of correlated upper Pleistocene glacial and fluvial deposits on the Cinca and Gallego rivers, NE Spain

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Claudia J [Los Alamos National Laboratory; Mcdonald, Eric [NON LANL; Sancho, Carlos [NON LANL; Pena, Jose- Luis [NON LANL

    2008-01-01

    We correlate Upper Pleistocene glacial and fluvial deposits of the Cinca and Gallego River valleys (south central Pyrenees and Ebro basin, Spain) using geomorphic position, luminescence dates, and time-related trends in soil development. The ages obtained from glacial deposits indicate glacial periods at 85 {+-} 5 ka, 64 {+-} 11 ka, and 36 {+-} 3 ka (from glacial till) and 20 {+-} 3 ka (from loess). The fluvial drainage system, fed by glaciers in the headwaters, developed extensive terrace systems in the Cinca River valley at 178 {+-} 21 ka, 97 {+-} 16 ka, 61 {+-} 4 ka, 47 {+-} 4 ka, and 11 {+-} 1 ka, and in the Gallego River valley at 151 {+-} 11 ka, 68 {+-} 7 ka, and 45 {+-} 3 ka. The times of maximum geomorphic activity related to cold phases coincide with Late Pleistocene marine isotope stages and heinrich events. The maximum extent of glaciers during the last glacial occurred at 64 {+-} 11 ka, and the terraces correlated with this glacial phase are the most extensive in both the Cinca (61 {+-} 4 ka) and Gallego (68 {+-} 7 ka) valleys, indicating a strong increase in fluvial discharge and availability of sediments related to the transition to deglaciation. The global Last Glacial Maximum is scarcely represented in the south central Pyrenees owing to dominantly dry conditions at that time. Precipitation must be controlled by the position of the Iberian Peninsula with respect to the North Atlantic atmospheric circulation system. The glacial systems and the associated fluvial dynamic seem sensitive to (1) global climate changes controlled by insolation, (2) North Atlantic thermohaline circulation influenced by freshwater pulses into the North Atlantic, and (3) anomalies in atmospheric circulation in the North Atlantic controlling precipitation on the Iberian peninsula. The model of glacial and fluvial evolution during the Late Pleistocene in northern Spain could be extrapolated to other glaciated mountainous areas in southern Europe.

  8. Simulating the vegetation response in western Europe to abrupt climate changes under glacial background conditions

    Directory of Open Access Journals (Sweden)

    M.-N. Woillez

    2013-03-01

    Full Text Available The last glacial period has been punctuated by two types of abrupt climatic events, the Dansgaard–Oeschger (DO and Heinrich (HE events. These events, recorded in Greenland ice and in marine sediments, involved changes in the Atlantic Meridional Overturning Circulation (AMOC and led to major changes in the terrestrial biosphere. Here we use the dynamical global vegetation model ORCHIDEE to simulate the response of vegetation to abrupt changes in the AMOC strength. We force ORCHIDEE offline with outputs from the IPSL_CM4 general circulation model, in which the AMOC is forced to change by adding freshwater fluxes in the North Atlantic. We investigate the impact of a collapse and recovery of the AMOC, at different rates, and focus on Western Europe, where many pollen records are available for comparison. The impact of an AMOC collapse on the European mean temperatures and precipitations simulated by the GCM is relatively small but sufficient to drive an important regression of forests and expansion of grasses in ORCHIDEE, in qualitative agreement with pollen data for an HE event. On the contrary, a run with a rapid shift of the AMOC to a hyperactive state of 30 Sv, mimicking the warming phase of a DO event, does not exhibit a strong impact on the European vegetation compared to the glacial control state. For our model, simulating the impact of an HE event thus appears easier than simulating the abrupt transition towards the interstadial phase of a DO. For both a collapse or a recovery of the AMOC, the vegetation starts to respond to climatic changes immediately but reaches equilibrium about 200 yr after the climate equilibrates, suggesting a possible bias in the climatic reconstructions based on pollen records, which assume equilibrium between climate and vegetation. However, our study does not take into account vegetation feedbacks on the atmosphere.

  9. Groundwater flow modelling of periods with periglacial and glacial climate conditions - Forsmark

    International Nuclear Information System (INIS)

    Vidstrand, Patrik; Follin, Sven; Zugec, Nada

    2010-12-01

    As a part of the license application for a final repository for spent nuclear fuel at Forsmark, the Swedish Nuclear Fuel and Waste Management Company (SKB) has undertaken a series of groundwater flow modelling studies. These represent time periods with different hydraulic conditions and the simulations carried out contribute to the overall evaluation of the repository design and long-term radiological safety. The groundwater flow modelling study reported here comprises a coupled thermal-hydraulic-chemical (T-H-C) analysis of periods with periglacial and glacial climate conditions. Hydraulic-mechanical (H-M) issues are also handled but no coupled flow modelling is done. The objective of the report is to provide bounding hydrogeological estimates at different stages during glaciation and deglaciation of a glacial cycle for subsequent use in safety assessment applications within SKB's project SR-Site. Three cases with different climate conditions are analysed here: (i) Temperate case, (ii) Glacial case without permafrost, and (iii) Glacial case with permafrost. The glacial periods are transient and encompass approximately 19,000 years. The simulation results comprise residual fluid pressures, Darcy fluxes, and water salinities, as well as advective transport performance measures obtained by particle tracking such as flow path lengths, travel times and flow-related transport resistances. The modelling is accompanied by a sensitivity study that addresses the impact of the following matters: the direction of the ice sheet advance, the speed of the ice sheet margin, the bedrock hydraulic and transport properties, the temperature at the ice-subsurface interface close to the ice sheet margin, and the initial hydrochemical conditions

  10. Groundwater flow modelling of periods with periglacial and glacial climate conditions - Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Vidstrand, Patrik (TerraSolve AB, Floda (Sweden)); Follin, Sven (SF GeoLogic AB, Taeby (Sweden)); Zugec, Nada (Bergab, Stockholm (Sweden))

    2010-12-15

    As a part of the license application for a final repository for spent nuclear fuel at Forsmark, the Swedish Nuclear Fuel and Waste Management Company (SKB) has undertaken a series of groundwater flow modelling studies. These represent time periods with different hydraulic conditions and the simulations carried out contribute to the overall evaluation of the repository design and long-term radiological safety. The groundwater flow modelling study reported here comprises a coupled thermal-hydraulic-chemical (T-H-C) analysis of periods with periglacial and glacial climate conditions. Hydraulic-mechanical (H-M) issues are also handled but no coupled flow modelling is done. The objective of the report is to provide bounding hydrogeological estimates at different stages during glaciation and deglaciation of a glacial cycle for subsequent use in safety assessment applications within SKB's project SR-Site. Three cases with different climate conditions are analysed here: (i) Temperate case, (ii) Glacial case without permafrost, and (iii) Glacial case with permafrost. The glacial periods are transient and encompass approximately 19,000 years. The simulation results comprise residual fluid pressures, Darcy fluxes, and water salinities, as well as advective transport performance measures obtained by particle tracking such as flow path lengths, travel times and flow-related transport resistances. The modelling is accompanied by a sensitivity study that addresses the impact of the following matters: the direction of the ice sheet advance, the speed of the ice sheet margin, the bedrock hydraulic and transport properties, the temperature at the ice-subsurface interface close to the ice sheet margin, and the initial hydrochemical conditions.

  11. Early warming of tropical South America at the last glacial-interglacial transition.

    Science.gov (United States)

    Seltzer, G O; Rodbell, D T; Baker, P A; Fritz, S C; Tapia, P M; Rowe, H D; Dunbar, R B

    2002-05-31

    Glaciation in the humid tropical Andes is a sensitive indicator of mean annual temperature. Here, we present sedimentological data from lakes beyond the glacial limit in the tropical Andes indicating that deglaciation from the Last Glacial Maximum led substantial warming at high northern latitudes. Deglaciation from glacial maximum positions at Lake Titicaca, Peru/Bolivia (16 degrees S), and Lake Junin, Peru (11 degrees S), occurred 22,000 to 19,500 calendar years before the present, several thousand years before the Bølling-Allerød warming of the Northern Hemisphere and deglaciation of the Sierra Nevada, United States (36.5 degrees to 38 degrees N). The tropical Andes deglaciated while climatic conditions remained regionally wet, which reflects the dominant control of mean annual temperature on tropical glaciation.

  12. Wetland methane emissions during the Last Glacial Maximum estimated from PMIP2 simulations: climate, vegetation and geographic controls

    NARCIS (Netherlands)

    Weber, S.L.; Drury, A.J.; Toonen, W.H.J.; Weele, M. van

    2010-01-01

    It is an open question to what extent wetlands contributed to the interglacial‐glacial decrease in atmospheric methane concentration. Here we estimate methane emissions from glacial wetlands, using newly available PMIP2 simulations of the Last Glacial Maximum (LGM) climate from coupled

  13. Phylogenetic assemblage structure of North American trees is more strongly shaped by glacial-interglacial climate variability in gymnosperms than in angiosperms.

    Science.gov (United States)

    Ma, Ziyu; Sandel, Brody; Svenning, Jens-Christian

    2016-05-01

    How fast does biodiversity respond to climate change? The relationship of past and current climate with phylogenetic assemblage structure helps us to understand this question. Studies of angiosperm tree diversity in North America have already suggested effects of current water-energy balance and tropical niche conservatism. However, the role of glacial-interglacial climate variability remains to be determined, and little is known about any of these relationships for gymnosperms. Moreover, phylogenetic endemism, the concentration of unique lineages in restricted ranges, may also be related to glacial-interglacial climate variability and needs more attention. We used a refined phylogeny of both angiosperms and gymnosperms to map phylogenetic diversity, clustering and endemism of North American trees in 100-km grid cells, and climate change velocity since Last Glacial Maximum together with postglacial accessibility to recolonization to quantify glacial-interglacial climate variability. We found: (1) Current climate is the dominant factor explaining the overall patterns, with more clustered angiosperm assemblages toward lower temperature, consistent with tropical niche conservatism. (2) Long-term climate stability is associated with higher angiosperm endemism, while higher postglacial accessibility is linked to to more phylogenetic clustering and endemism in gymnosperms. (3) Factors linked to glacial-interglacial climate change have stronger effects on gymnosperms than on angiosperms. These results suggest that paleoclimate legacies supplement current climate in shaping phylogenetic patterns in North American trees, and especially so for gymnosperms.

  14. To what extent can global warming events influence scaling properties of climatic fluctuations in glacial periods?

    Science.gov (United States)

    Alberti, Tommaso; Lepreti, Fabio; Vecchio, Antonio; Carbone, Vincenzo

    2017-04-01

    The Earth's climate is an extremely unstable complex system consisting of nonlinear and still rather unknown interactions among atmosphere, land surface, ice and oceans. The system is mainly driven by solar irradiance, even if internal components as volcanic eruptions and human activities affect the atmospheric composition thus acting as a driver for climate changes. Since the extreme climate variability is the result of a set of phenomena operating from daily to multi-millennial timescales, with different correlation times, a study of the scaling properties of the system can evidence non-trivial persistent structures, internal or external physical processes. Recently, the scaling properties of the paleoclimate changes have been analyzed by distinguish between interglacial and glacial climates [Shao and Ditlevsen, 2016]. The results show that the last glacial record (20-120 kyr BP) presents some elements of multifractality, while the last interglacial period (0-10 kyr BP), say the Holocene period, seems to be characterized by a mono-fractal structure. This is associated to the absence of Dansgaard-Oeschger (DO) events in the interglacial climate that could be the cause for the absence of multifractality. This hypothesis is supported by the analysis of the period between 18 and 27 kyr BP, i.e. during the Last Glacial Period, in which a single DO event have been registred. Through the Empirical Mode Decomposition (EMD) we were able to detect a timescale separation within the Last Glacial Period (20-120 kyr BP) in two main components: a high-frequency component, related to the occurrence of DO events, and a low-frequency one, associated to the cooling/warming phase switch [Alberti et al., 2014]. Here, we investigate the scaling properties of the climate fluctuations within the Last Glacial Period, where abrupt climate changes, characterized by fast increase of temperature usually called Dansgaard-Oeschger (DO) events, have been particularly pronounced. By using the

  15. Was millennial scale climate change during the Last Glacial triggered by explosive volcanism?

    Science.gov (United States)

    Baldini, James U L; Brown, Richard J; McElwaine, Jim N

    2015-11-30

    The mechanisms responsible for millennial scale climate change within glacial time intervals are equivocal. Here we show that all eight known radiometrically-dated Tambora-sized or larger NH eruptions over the interval 30 to 80 ka BP are associated with abrupt Greenland cooling (>95% confidence). Additionally, previous research reported a strong statistical correlation between the timing of Southern Hemisphere volcanism and Dansgaard-Oeschger (DO) events (>99% confidence), but did not identify a causative mechanism. Volcanic aerosol-induced asymmetrical hemispheric cooling over the last few hundred years restructured atmospheric circulation in a similar fashion as that associated with Last Glacial millennial-scale shifts (albeit on a smaller scale). We hypothesise that following both recent and Last Glacial NH eruptions, volcanogenic sulphate injections into the stratosphere cooled the NH preferentially, inducing a hemispheric temperature asymmetry that shifted atmospheric circulation cells southward. This resulted in Greenland cooling, Antarctic warming, and a southward shifted ITCZ. However, during the Last Glacial, the initial eruption-induced climate response was prolonged by NH glacier and sea ice expansion, increased NH albedo, AMOC weakening, more NH cooling, and a consequent positive feedback. Conversely, preferential SH cooling following large SH eruptions shifted atmospheric circulation to the north, resulting in the characteristic features of DO events.

  16. Comparing Terrestrial Organic Carbon Cycle Dynamics in Interglacial and Glacial Climates in the South American Tropics

    Science.gov (United States)

    Fornace, K. L.; Galy, V.; Hughen, K. A.

    2014-12-01

    The application of compound-specific radiocarbon dating to molecular biomarkers has allowed for tracking of specific organic carbon pools as they move through the environment, providing insight into complex processes within the global carbon cycle. Here we use this technique to investigate links between glacial-interglacial climate change and terrestrial organic carbon cycling in the catchments of Cariaco Basin and Lake Titicaca, two tropical South American sites with well-characterized climate histories since the last glacial period. By comparing radiocarbon ages of terrestrial biomarkers (leaf wax compounds) with deposition ages in late glacial and Holocene sediments, we are able to gauge the storage time of these compounds in the catchments in soils, floodplains, etc. before transport to marine or lacustrine sediments. We are also able to probe the effects of temperature and hydrologic change individually by taking advantage of opposite hydrologic trends at the two sites: while both were colder during the last glacial period, precipitation at Titicaca decreased from the last glacial period to the Holocene, but the late glacial was marked by drier conditions at Cariaco. Preliminary data from both sites show a wide range of apparent ages of long-chain n-fatty acids (within error of 0 to >10,000 years older than sediment), with the majority showing ages on the order of several millennia at time of deposition and age generally increasing with chain length. While late glacial leaf waxes appear to be older relative to sediment than those deposited in the Holocene at both sites, at Cariaco we find a ~2-3 times larger glacial-interglacial age difference than at Titicaca. We hypothesize that at Titicaca the competing influences of wetter and colder conditions during the last glacial period, which respectively tend to increase and decrease the rate of organic carbon turnover on land, served to minimize the contrast between glacial and interglacial leaf wax storage time

  17. Last Glacial Maximum to Holocene climate evolution controlled by sea-level change, Leeuwin Current, and Australian Monsoon in the Northwestern Australia

    Science.gov (United States)

    Ishiwa, T.; Yokoyama, Y.; McHugh, C.; Reuning, L.; Gallagher, S. J.

    2017-12-01

    The transition from cold to warm conditions during the last deglaciation influenced climate variability in the Indian Ocean and Pacific as a result of submerge of continental shelf and variations in the Indonesian Throughflow and Australian Monsoon. The shallow continental shelf (Program Expedition 356 Indonesian Throughflow drilled in the northwestern Australian shallow continental shelf and recovered an interval from the Last Glacial Maximum to Holocene in Site U1461. Radiocarbon dating on macrofossils, foraminifera, and bulk organic matter provided a precise age-depth model, leading to high-resolved paleoclimate reconstruction. X-ray elemental analysis results are interpreted as an indicator of sedimentary environmental changes. The upper 20-m part of Site U1461 apparently records the climate transition from the LGM to Holocene in the northwestern Australia, which could be associated with sea-level change, Leeuwin Current activity, and the Australian Monsoon.

  18. Weak oceanic heat transport as a cause of the instability of glacial climates

    Energy Technology Data Exchange (ETDEWEB)

    Colin de Verdiere, Alain [Universite de Bretagne Occidentale, Laboratoire de Physique des Oceans, Alain Colin de Verdiere, Brest 3 (France); Te Raa, L. [Utrecht University, Institute for Marine and Atmospheric Research Utrecht, Utrecht (Netherlands); Netherlands Organisation for Applied Scientific Research TNO, The Hague (Netherlands)

    2010-12-15

    The stability of the thermohaline circulation of modern and glacial climates is compared with the help of a two dimensional ocean - atmosphere - sea ice coupled model. It turns out to be more unstable as less freshwater forcing is required to induce a polar halocline catastrophy in glacial climates. The large insulation of the ocean by the extensive sea ice cover changes the temperature boundary condition and the deepwater formation regions moves much further South. The nature of the instability is of oceanic origin, identical to that found in ocean models under mixed boundary conditions. With similar strengths of the oceanic circulation and rates of deep water formation for warm and cold climates, the loss of stability of the cold climate is due to the weak thermal stratification caused by the cooling of surface waters, the deep water temperatures being regulated by the temperature of freezing. Weaker stratification with similar overturning leads to a weakening of the meridional oceanic heat transport which is the major negative feedback stabilizing the oceanic circulation. Within the unstable regime periodic millennial oscillations occur spontaneously. The climate oscillates between a strong convective thermally driven oceanic state and a weak one driven by large salinity gradients. Both states are unstable. The atmosphere of low thermal inertia is carried along by the oceanic overturning while the variation of sea ice is out of phase with the oceanic heat content. During the abrupt warming events that punctuate the course of a millennial oscillation, sea ice variations are shown respectively to damp (amplify) the amplitude of the oceanic (atmospheric) response. This sensitivity of the oceanic circulation to a reduced concentration of greenhouse gases and to freshwater forcing adds support to the hypothesis that the millennial oscillations of the last glacial period, the so called Dansgaard - Oeschger events, may be internal instabilities of the climate system

  19. Simulation of the last glacial cycle with a coupled climate ice-sheet model of intermediate complexity

    Directory of Open Access Journals (Sweden)

    A. Ganopolski

    2010-04-01

    Full Text Available A new version of the Earth system model of intermediate complexity, CLIMBER-2, which includes the three-dimensional polythermal ice-sheet model SICOPOLIS, is used to simulate the last glacial cycle forced by variations of the Earth's orbital parameters and atmospheric concentration of major greenhouse gases. The climate and ice-sheet components of the model are coupled bi-directionally through a physically-based surface energy and mass balance interface. The model accounts for the time-dependent effect of aeolian dust on planetary and snow albedo. The model successfully simulates the temporal and spatial dynamics of the major Northern Hemisphere (NH ice sheets, including rapid glacial inception and strong asymmetry between the ice-sheet growth phase and glacial termination. Spatial extent and elevation of the ice sheets during the last glacial maximum agree reasonably well with palaeoclimate reconstructions. A suite of sensitivity experiments demonstrates that simulated ice-sheet evolution during the last glacial cycle is very sensitive to some parameters of the surface energy and mass-balance interface and dust module. The possibility of a considerable acceleration of the climate ice-sheet model is discussed.

  20. A simple conceptual model of abrupt glacial climate events

    Directory of Open Access Journals (Sweden)

    H. Braun

    2007-11-01

    Full Text Available Here we use a very simple conceptual model in an attempt to reduce essential parts of the complex nonlinearity of abrupt glacial climate changes (the so-called Dansgaard-Oeschger events to a few simple principles, namely (i the existence of two different climate states, (ii a threshold process and (iii an overshooting in the stability of the system at the start and the end of the events, which is followed by a millennial-scale relaxation. By comparison with a so-called Earth system model of intermediate complexity (CLIMBER-2, in which the events represent oscillations between two climate states corresponding to two fundamentally different modes of deep-water formation in the North Atlantic, we demonstrate that the conceptual model captures fundamental aspects of the nonlinearity of the events in that model. We use the conceptual model in order to reproduce and reanalyse nonlinear resonance mechanisms that were already suggested in order to explain the characteristic time scale of Dansgaard-Oeschger events. In doing so we identify a new form of stochastic resonance (i.e. an overshooting stochastic resonance and provide the first explicitly reported manifestation of ghost resonance in a geosystem, i.e. of a mechanism which could be relevant for other systems with thresholds and with multiple states of operation. Our work enables us to explicitly simulate realistic probability measures of Dansgaard-Oeschger events (e.g. waiting time distributions, which are a prerequisite for statistical analyses on the regularity of the events by means of Monte-Carlo simulations. We thus think that our study is an important advance in order to develop more adequate methods to test the statistical significance and the origin of the proposed glacial 1470-year climate cycle.

  1. Dust fluxes and iron fertilization in Holocene and Last Glacial Maximum climates

    Science.gov (United States)

    Lambert, Fabrice; Tagliabue, Alessandro; Shaffer, Gary; Lamy, Frank; Winckler, Gisela; Farias, Laura; Gallardo, Laura; De Pol-Holz, Ricardo

    2015-07-01

    Mineral dust aerosols play a major role in present and past climates. To date, we rely on climate models for estimates of dust fluxes to calculate the impact of airborne micronutrients on biogeochemical cycles. Here we provide a new global dust flux data set for Holocene and Last Glacial Maximum (LGM) conditions based on observational data. A comparison with dust flux simulations highlights regional differences between observations and models. By forcing a biogeochemical model with our new data set and using this model's results to guide a millennial-scale Earth System Model simulation, we calculate the impact of enhanced glacial oceanic iron deposition on the LGM-Holocene carbon cycle. On centennial timescales, the higher LGM dust deposition results in a weak reduction of pump. This is followed by a further ~10 ppm reduction over millennial timescales due to greater carbon burial and carbonate compensation.

  2. Volcanic CO2 Emissions and Glacial Cycles: Coupled Oscillations

    Science.gov (United States)

    Burley, J. M.; Huybers, P. J.; Katz, R. F.

    2016-12-01

    Following the mid-Pleistocene transition, the dominant period of glacial cycles changed from 40 ka to 100 ka. It is broadly accepted that the 40 ka glacial cycles were driven by cyclical changes in obliquity. However, this forcing does not explain the 100 ka glacial cycles. Mechanisms proposed for 100 ka cycles include isostatic bed depression and proglacial lakes destabilising the Laurentide ice sheet, non-linear responses to orbital eccentricity, and Antarctic ice sheets influencing deep-ocean stratification. None of these are universally accepted. Here we investigate the hypothesis that variations in volcanic CO2 emissions can cause 100 ka glacial cycles. Any proposed mechanism for 100 ka glacial cycles must give the Earth's climate system a memory of 10^4 - 10^5years. This timescale is difficult to achieve for surface processes, however it is possible for the solid Earth. Recent work suggests volcanic CO2 emissions change in response to glacial cycles [1] and that there could be a 50 ka delay in that response [2]. Such a lagged response could drive glacial cycles from 40 ka cycles to an integer multiple of the forcing period. Under what conditions could the climate system admit such a response? To address this, we use a simplified climate model modified from Huybers and Tziperman [3]. Our version comprises three component models for energy balance, ice sheet growth and atmospheric CO2 concentration. The model is driven by insolation alone with other components varying according to a system of coupled, differential equations. The model is run for 500 ka to produce several glacial cycles and the resulting changes in global ice volume and atmospheric CO2 concentration.We obtain a switch from 40 ka to 100 ka cycles as the volcanic CO2 response to glacial cycles is increased. These 100 ka cycles are phase-locked to obliquity, lasting 80 or 120 ka. Whilst the MOR response required (in this model) is larger than plausible estimates based on [2], it illustrates the

  3. Coupled European and Greenland last glacial dust activity driven by North Atlantic climate

    DEFF Research Database (Denmark)

    Újvári, Gábor; Stevens, Thomas; Molnár, Mihály

    2017-01-01

    Centennial-scale mineral dust peaks in last glacial Greenland ice cores match the timing of lowest Greenland temperatures, yet little is known of equivalent changes in dust-emitting regions, limiting our understanding of dust−climate interaction. Here, we present the most detailed and precise age...... model for European loess dust deposits to date, based on 125 accelerator mass spectrometry14C ages from Dunaszekcso, } Hungary. The record shows that variations in glacial dust deposition variability on centennial–millennial timescales in east central Europe and Greenland were synchronous within...

  4. Simulated Impact of Glacial Runoff on CO2 Uptake in the Gulf of Alaska

    Science.gov (United States)

    Pilcher, Darren J.; Siedlecki, Samantha A.; Hermann, Albert J.; Coyle, Kenneth O.; Mathis, Jeremy T.; Evans, Wiley

    2018-01-01

    The Gulf of Alaska (GOA) receives substantial summer freshwater runoff from glacial meltwater. The alkalinity of this runoff is highly dependent on the glacial source and can modify the coastal carbon cycle. We use a regional ocean biogeochemical model to simulate CO2 uptake in the GOA under different alkalinity-loading scenarios. The GOA is identified as a current net sink of carbon, though low-alkalinity tidewater glacial runoff suppresses summer coastal carbon uptake. Our model shows that increasing the alkalinity generates an increase in annual CO2 uptake of 1.9-2.7 TgC/yr. This transition is comparable to a projected change in glacial runoff composition (i.e., from tidewater to land-terminating) due to continued climate warming. Our results demonstrate an important local carbon-climate feedback that can significantly increase coastal carbon uptake via enhanced air-sea exchange, with potential implications to the coastal ecosystems in glaciated areas around the world.

  5. Assessing the sensitivity of the North Atlantic Ocean circulation to freshwater perturbation in various glacial climate states

    Energy Technology Data Exchange (ETDEWEB)

    Meerbeeck, Cedric J. van; Renssen, Hans [VU University Amsterdam, Section Climate Change and Landscape Dynamics, Department of Earth Sciences, Amsterdam (Netherlands); Roche, Didier M. [VU University Amsterdam, Section Climate Change and Landscape Dynamics, Department of Earth Sciences, Amsterdam (Netherlands); Laboratoire CEA/INSU-CNRS/UVSQ, Laboratoire des Sciences du Climat et de l' Environnement (LSCE/IPSL), Gif sur Yvette (France)

    2011-11-15

    A striking characteristic of glacial climate in the North Atlantic region is the recurrence of abrupt shifts between cold stadials and mild interstadials. These shifts have been associated with abrupt changes in Atlantic Meridional Overturning Circulation (AMOC) mode, possibly in response to glacial meltwater perturbations. However, it is poorly understood why they were more clearly expressed during Marine Isotope Stage 3 (MIS3, {proportional_to}60-27 ka BP) than during Termination 1 (T1, {proportional_to}18-10 ka BP) and especially around the Last Glacial Maximum (LGM, {proportional_to}23-19 ka BP). One clue may reside in varying climate forcings, making MIS3 and T1 generally milder than LGM. To investigate this idea, we evaluate in a climate model how ice sheet size, atmospheric greenhouse gas concentration and orbital insolation changes between 56 ka BP (=56k), 21k and 12.5k affect the glacial AMOC response to additional freshwater forcing. We have performed three ensemble simulations with the earth system model LOVECLIM using those forcings. We find that the AMOC mode in the mild glacial climate type (56k and 12.5k), with deep convection in the Labrador Sea and the Nordic Seas, is more sensitive to a constant 0.15 Sv freshwater forcing than in the cold type (21k), with deep convection mainly south of Greenland and Iceland. The initial AMOC weakening in response to freshwater forcing is larger in the mild type due to an early shutdown of Labrador Sea deep convection, which is completely absent in the 21k simulation. This causes a larger fraction of the freshwater anomaly to remain at surface in the mild type compared to the cold type. After 200 years, a weak AMOC is established in both climate types, as further freshening is compensated by an anomalous salt advection from the (sub-)tropical North Atlantic. However, the slightly fresher sea surface in the mild type facilitates further weakening of the AMOC, which occurs when a surface buoyancy threshold (-0.6 kg

  6. Sensitivity of Photosynthetic Gas Exchange and Growth of Lodgepole Pine to Climate Variability Depends on the Age of Pleistocene Glacial Surfaces

    Science.gov (United States)

    Osborn, B.; Chapple, W.; Ewers, B. E.; Williams, D. G.

    2014-12-01

    The interaction between soil conditions and climate variability plays a central role in the ecohydrological functions of montane conifer forests. Although soil moisture availability to trees is largely dependent on climate, the depth and texture of soil exerts a key secondary influence. Multiple Pleistocene glacial events have shaped the landscape of the central Rocky Mountains creating a patchwork of soils differing in age and textural classification. This mosaic of soil conditions impacts hydrological properties, and montane conifer forests potentially respond to climate variability quite differently depending on the age of glacial till and soil development. We hypothesized that the age of glacial till and associated soil textural changes exert strong control on growth and photosynthetic gas exchange of lodgepole pine. We examined physiological and growth responses of lodgepole pine to interannual variation in maximum annual snow water equivalence (SWEmax) of montane snowpack and growing season air temperature (Tair) and vapor pressure deficit (VPD) across a chronosequence of Pleistocene glacial tills ranging in age from 700k to 12k years. Soil textural differences across the glacial tills illustrate the varying degrees of weathering with the most well developed soils with highest clay content on the oldest till surfaces. We show that sensitivity of growth and carbon isotope discrimination, an integrated measure of canopy gas exchange properties, to interannual variation SWEmax , Tair and VPD is greatest on young till surfaces, whereas trees on old glacial tills with well-developed soils are mostly insensitive to these interannual climate fluctuations. Tree-ring widths were most sensitive to changes in SWEmax on young glacial tills (p < 0.01), and less sensitive on the oldest till (p < 0.05). Tair correlates strongly with δ13C values on the oldest and youngest tills sites, but shows no significant relationship on the middle aged glacial till. It is clear that

  7. Relative timing of last glacial maximum and late-glacial events in the central tropical Andes

    Science.gov (United States)

    Bromley, Gordon R. M.; Schaefer, Joerg M.; Winckler, Gisela; Hall, Brenda L.; Todd, Claire E.; Rademaker, Kurt M.

    2009-11-01

    Whether or not tropical climate fluctuated in synchrony with global events during the Late Pleistocene is a key problem in climate research. However, the timing of past climate changes in the tropics remains controversial, with a number of recent studies reporting that tropical ice age climate is out of phase with global events. Here, we present geomorphic evidence and an in-situ cosmogenic 3He surface-exposure chronology from Nevado Coropuna, southern Peru, showing that glaciers underwent at least two significant advances during the Late Pleistocene prior to Holocene warming. Comparison of our glacial-geomorphic map at Nevado Coropuna to mid-latitude reconstructions yields a striking similarity between Last Glacial Maximum (LGM) and Late-Glacial sequences in tropical and temperate regions. Exposure ages constraining the maximum and end of the older advance at Nevado Coropuna range between 24.5 and 25.3 ka, and between 16.7 and 21.1 ka, respectively, depending on the cosmogenic production rate scaling model used. Similarly, the mean age of the younger event ranges from 10 to 13 ka. This implies that (1) the LGM and the onset of deglaciation in southern Peru occurred no earlier than at higher latitudes and (2) that a significant Late-Glacial event occurred, most likely prior to the Holocene, coherent with the glacial record from mid and high latitudes. The time elapsed between the end of the LGM and the Late-Glacial event at Nevado Coropuna is independent of scaling model and matches the period between the LGM termination and Late-Glacial reversal in classic mid-latitude records, suggesting that these events in both tropical and temperate regions were in phase.

  8. Evidence for ephemeral middle Eocene to early Oligocene Greenland glacial ice and pan-Arctic sea ice.

    Science.gov (United States)

    Tripati, Aradhna; Darby, Dennis

    2018-03-12

    Earth's modern climate is defined by the presence of ice at both poles, but that ice is now disappearing. Therefore understanding the origin and causes of polar ice stability is more critical than ever. Here we provide novel geochemical data that constrain past dynamics of glacial ice on Greenland and Arctic sea ice. Based on accurate source determinations of individual ice-rafted Fe-oxide grains, we find evidence for episodic glaciation of distinct source regions on Greenland as far-ranging as ~68°N and ~80°N synchronous with ice-rafting from circum-Arctic sources, beginning in the middle Eocene. Glacial intervals broadly coincide with reduced CO 2 , with a potential threshold for glacial ice stability near ~500 p.p.m.v. The middle Eocene represents the Cenozoic onset of a dynamic cryosphere, with ice in both hemispheres during transient glacials and substantial regional climate heterogeneity. A more stable cryosphere developed at the Eocene-Oligocene transition, and is now threatened by anthropogenic emissions.

  9. Quantifying the influence of the terrestrial biosphere on glacial-interglacial climate dynamics

    Science.gov (United States)

    Davies-Barnard, Taraka; Ridgwell, Andy; Singarayer, Joy; Valdes, Paul

    2017-10-01

    The terrestrial biosphere is thought to be a key component in the climatic variability seen in the palaeo-record. It has a direct impact on surface temperature through changes in surface albedo and evapotranspiration (so-called biogeophysical effects) and, in addition, has an important indirect effect through changes in vegetation and soil carbon storage (biogeochemical effects) and hence modulates the concentrations of greenhouse gases in the atmosphere. The biogeochemical and biogeophysical effects generally have opposite signs, meaning that the terrestrial biosphere could potentially have played only a very minor role in the dynamics of the glacial-interglacial cycles of the late Quaternary. Here we use a fully coupled dynamic atmosphere-ocean-vegetation general circulation model (GCM) to generate a set of 62 equilibrium simulations spanning the last 120 kyr. The analysis of these simulations elucidates the relative importance of the biogeophysical versus biogeochemical terrestrial biosphere interactions with climate. We find that the biogeophysical effects of vegetation account for up to an additional -0.91 °C global mean cooling, with regional cooling as large as -5 °C, but with considerable variability across the glacial-interglacial cycle. By comparison, while opposite in sign, our model estimates of the biogeochemical impacts are substantially smaller in magnitude. Offline simulations show a maximum of +0.33 °C warming due to an increase of 25 ppm above our (pre-industrial) baseline atmospheric CO2 mixing ratio. In contrast to shorter (century) timescale projections of future terrestrial biosphere response where direct and indirect responses may at times cancel out, we find that the biogeophysical effects consistently and strongly dominate the biogeochemical effect over the inter-glacial cycle. On average across the period, the terrestrial biosphere has a -0.26 °C effect on temperature, with -0.58 °C at the Last Glacial Maximum. Depending on

  10. A transient fully coupled climate-ice-sheet simulation of the last glacial inception

    Science.gov (United States)

    Lofverstrom, M.; Otto-Bliesner, B. L.; Lipscomb, W. H.; Fyke, J. G.; Marshall, S.; Sacks, B.; Brady, E. C.

    2017-12-01

    The last glacial inception occurred around 115 ka, following a relative minimum in the Northern Hemisphere summer insolation. It is believed that small and spatially separated ice caps initially formed in the high elevation regions of northern Canada, Scandinavia, and along the Siberian Arctic coast. These ice caps subsequently migrated down in the valleys where they coalesced and formed the initial seeds of the large coherent ice masses that covered the northern parts of the North American and Eurasian continents over most of the last glacial cycle. Sea level records show that the initial growth period lasted for about 10 kyrs, and the resulting ice sheets may have lowered the global sea level by as much as 30 to 50 meters. Here we examine the transient climate system evolution over the period between 118 and 110 ka, using the fully coupled Community Earth System Model, version 2 (CESM2). This model features a two-way coupled high-resolution (4x4 km) ice-sheet component (Community Ice Sheet model, version 2; CISM2) that simulates ice sheets as an interactive component of the climate system. We impose a transient forcing protocol where the greenhouse gas concentrations and the orbital parameters follow the nominal year in the simulation; the model topography is also dynamically evolving in order to reflect changes in ice elevation throughout the simulation. The analysis focuses on how the climate system evolves over this time interval, with a special focus on glacial inception in the high-latitude continents. Results will highlight how the evolving ice sheets compare to data and previous model based reconstructions.

  11. Trans-pacific glacial response to the Antarctic Cold Reversal in the southern mid-latitudes

    Science.gov (United States)

    Sagredo, Esteban A.; Kaplan, Michael R.; Araya, Paola S.; Lowell, Thomas V.; Aravena, Juan C.; Moreno, Patricio I.; Kelly, Meredith A.; Schaefer, Joerg M.

    2018-05-01

    Elucidating the timing and regional extent of abrupt climate events during the last glacial-interglacial transition (∼18-11.5 ka) is critical for identifying spatial patterns and mechanisms responsible for large-magnitude climate events. The record of climate change in the Southern Hemisphere during this time period, however, remains scarce and unevenly distributed. We present new geomorphic, chronological, and equilibrium line altitude (ELA) data from a climatically sensitive mountain glacier at Monte San Lorenzo (47°S), Central Patagonia. Twenty-four new cosmogenic 10Be exposure ages from moraines provide a comprehensive glacial record in the mid-latitudes of South America, which constrain the timing, spatial extent and magnitude of glacial fluctuations during the Antarctic Cold Reversal (ACR, ∼14.5-12.9 ka). Río Tranquilo glacier advanced and reached a maximum extent at 13.9 ± 0.7 ka. Three additional inboard moraines afford statistically similar ages, indicating repeated glacier expansions or marginal fluctuations over the ACR. Our record represents the northernmost robust evidence of glacial fluctuations during the ACR in southern South America, documenting not only the timing of the ACR maximum, but also the sequence of glacier changes within this climate event. Based on ELA reconstructions, we estimate a cooling of >1.6-1.8 °C at the peak of the ACR. The Río Tranquilo record along with existing glacial reconstructions from New Zealand (43°S) and paleovegetation records from northwestern (41°S) and central-west (45°S) Patagonia, suggest an uniform trans-Pacific glacier-climate response to an ACR trigger across the southern mid-latitudes. We posit that the equatorial migration of the southern westerly winds provides an adequate mechanism to propagate a common ACR signal across the Southern Hemisphere.

  12. Strongly seasonal Proterozoic glacial climate in low palaeolatitudes: Radically different climate system on the pre-Ediacaran Earth

    Directory of Open Access Journals (Sweden)

    George E. Williams

    2016-07-01

    Full Text Available Proterozoic (pre-Ediacaran glaciations occurred under strongly seasonal climates near sea level in low palaeolatitudes. Metre-scale primary sand wedges in Cryogenian periglacial deposits are identical to those actively forming, through the infilling of seasonal (winter thermal contraction-cracks in permafrost by windblown sand, in present-day polar regions with a mean monthly air temperature range of 40 °C and mean annual air temperatures of −20 °C or lower. Varve-like rhythmites with dropstones in Proterozoic glacial successions are consistent with an active seasonal freeze–thaw cycle. The seasonal (annual oscillation of sea level recorded by tidal rhythmites in Cryogenian glacial successions indicates a significant seasonal cycle and extensive open seas. Palaeomagnetic data determined directly for Proterozoic glacial deposits and closely associated rocks indicate low palaeolatitudes: Cryogenian deposits in South Australia accumulated at ≤10°, most other Cryogenian deposits at 54° during Proterozoic low-latitude glaciations, whereby the equator would be cooler than the poles, on average, and global seasonality would be greatly amplified.

  13. The climate response of the Indo-Pacific warm pool to glacial sea level

    Science.gov (United States)

    Di Nezio, Pedro N.; Timmermann, Axel; Tierney, Jessica E.; Jin, Fei-Fei; Otto-Bliesner, Bette; Rosenbloom, Nan; Mapes, Brian; Neale, Rich; Ivanovic, Ruza F.; Montenegro, Alvaro

    2016-06-01

    Growing climate proxy evidence suggests that changes in sea level are important drivers of tropical climate change on glacial-interglacial timescales. These paleodata suggest that rainfall patterns over the Indo-Pacific warm pool (IPWP) are highly sensitive to the landmass configuration of the Maritime Continent and that lowered sea level contributed to large-scale drying during the Last Glacial Maximum (LGM, approximately 21,000 years B.P.). Using the Community Earth System Model Version 1.2 (CESM1), we investigate the mechanisms by which lowered sea level influenced the climate of the IPWP during the LGM. The CESM1 simulations show that, in agreement with previous hypotheses, changes in atmospheric circulation are initiated by the exposure of the Sunda and Sahul shelves. Ocean dynamical processes amplify the changes in atmospheric circulation by increasing the east-west sea surface temperature (SST) gradient along the equatorial Indian Ocean. The coupled mechanism driving this response is akin to the Bjerknes feedback and results in a large-scale climatic reorganization over the Indian Ocean with impacts extending from east Africa to the western tropical Pacific. Unlike exposure of the Sunda shelf, exposure of Sahul shelf and the associated changes in surface albedo play a key role because of the positive feedback. This mechanism could explain the pattern of dry (wet) eastern (western) Indian Ocean identified in climate proxies and LGM simulations. However, this response also requires a strengthened SST gradient along the equatorial Indian Ocean, a pattern that is not evident in marine paleoreconstructions. Strategies to resolve this issue are discussed.

  14. Andean glacial lakes and climate variability since the last glacial maximum

    Directory of Open Access Journals (Sweden)

    1995-01-01

    Full Text Available LES LACS GLACIAIRES ET LA VARIABILITÉ CLIMATIQUE DANS LES ANDES DEPUIS LE DERNIER MAXIMUM GLACIAIRE. Des carottages réalisés dans des lacs glaciaires des Andes tropicales et subtropicales ont fourni des registres paléoclimatiques continus couvrant le Dernier Maximum Glaciaire et l’Holocène. Des datations 14C sur sédiments lacustres et sur tourbes indiquent que le maximum de la dernière glaciation s’est produit antérieurement au Dernier Maximum Glaciaire Global (18 ka BP. La plupart des lacs ont un âge inférieur à 13 ka BP, ce qui signifie que l’avancée des glaciers correspondant au Pleistocène terminal aurait culminé aux alentours de 14 ka BP. Des avancées durant le Tardi-glaciaire sont enregistrées dans plusieurs sites lacustres. À partir de 10 ka BP, les glaciers ont reculé au-delà de leurs limites actuelles. La sécheresse de l’Holocène moyen est repérée dans la stratigraphie de nombre de lacs, y compris le lac Titicaca. Cette phase d’aridité est suivie par une remontée des niveaux lacustres et une réavancée des glaciers à la fin de l’Holocène. LAGOS GLACIARES ANDINOS Y VARIABILIDAD CLIMÁTICA DESDE EL ÚLTIMO MÁXIMO GLACIAL. Testigos de sedimentos de los lagos glaciares en los Andes tropicales/subtropicales proporcionan registros continuos de los paleoclimas del último glacial superior y del Holoceno. Dataciones del radiocarbón de los sedimentos profundos en los lagos y de las turberas indican que el máximo del último glacial fue antes del máximo glacial global con una fecha de 18 14C ka BP. La mayoría de los lagos tienen una antigüedad menor de 13 14C ka BP, lo que significa que hubo una fase de glaciación del Pleistoceno superior culminada alrededor de 14 14C ka BP. Los avances durante el glacial superior son indicados en varios testigos de sedimentos de los lagos y, después de 10 14C ka BP, los glaciares quedaron dentro de sus límites actuales. Una sequía durante el Holoceno medio est

  15. Glacier protection laws: Potential conflicts in managing glacial hazards and adapting to climate change.

    Science.gov (United States)

    Anacona, Pablo Iribarren; Kinney, Josie; Schaefer, Marius; Harrison, Stephan; Wilson, Ryan; Segovia, Alexis; Mazzorana, Bruno; Guerra, Felipe; Farías, David; Reynolds, John M; Glasser, Neil F

    2018-03-13

    The environmental, socioeconomic and cultural significance of glaciers has motivated several countries to regulate activities on glaciers and glacierized surroundings. However, laws written to specifically protect mountain glaciers have only recently been considered within national political agendas. Glacier Protection Laws (GPLs) originate in countries where mining has damaged glaciers and have been adopted with the aim of protecting the cryosphere from harmful activities. Here, we analyze GPLs in Argentina (approved) and Chile (under discussion) to identify potential environmental conflicts arising from law restrictions and omissions. We conclude that GPLs overlook the dynamics of glaciers and could prevent or delay actions needed to mitigate glacial hazards (e.g. artificial drainage of glacial lakes) thus placing populations at risk. Furthermore, GPL restrictions could hinder strategies (e.g. use of glacial lakes as reservoirs) to mitigate adverse impacts of climate change. Arguably, more flexible GPLs are needed to protect us from the changing cryosphere.

  16. The cold climate geomorphology of the Eastern Cape Drakensberg: A reevaluation of past climatic conditions during the last glacial cycle in Southern Africa

    OpenAIRE

    Mills, SC; Barrows, TT; Telfer, MW; Fifield, LK

    2017-01-01

    publisher: Elsevier articletitle: The cold climate geomorphology of the Eastern Cape Drakensberg: A reevaluation of past climatic conditions during the last glacial cycle in Southern Africa journaltitle: Geomorphology articlelink: http://dx.doi.org/10.1016/j.geomorph.2016.11.011 content_type: article copyright: Crown Copyright © 2016 Published by Elsevier B.V. All rights reserved.

  17. Late Pleistocene glacial fluctuations in Cordillera Oriental, subtropical Andes

    Science.gov (United States)

    Martini, Mateo A.; Kaplan, Michael R.; Strelin, Jorge A.; Astini, Ricardo A.; Schaefer, Joerg M.; Caffee, Marc W.; Schwartz, Roseanne

    2017-09-01

    The behavior of subtropical glaciers during Middle to Late Pleistocene global glacial maxima and abrupt climate change events, specifically in Earth's most arid low-latitude regions, remains an outstanding problem in paleoclimatology. The present-day climate of Cordillera Oriental, in arid northwestern Argentina, is influenced by shifts in subtropical climate systems, including the South American Summer Monsoon. To understand better past glacier-subtropical climates during the global Last Glacial Maximum (LGM, 26.5-19 ka) and other time periods, we combined geomorphic features with forty-two precise 10Be ages on moraine boulders and reconstructed paleo-equilibrium line altitudes (ELA) at Nevado de Chañi (24°S) in the arid subtropical Andes. We found a major glacial expansion at ∼23 ± 1.6 ka, that is, during the global LGM. Additional glacial expansions are observed before the global LGM (at ∼52-39 ka), and after, at 15 ± 0.5 and 12 ± 0.6 ka. The ∼15 ka glacial event was found on both sides of Chañi and the ∼12 ka event is only recorded on the east side. Reconstructed ELAs of the former glaciers exhibit a rise from east to west that resembles the present subtropical climate trajectory from the Atlantic side of the continent; hence, we infer that this climate pattern must have been present in the past. Based on comparison with other low-latitude paleoclimate records, such as those from lakes and caves, we infer that both temperature and precipitation influenced past glacial occurrence in this sector of the arid Andes. Our findings also imply that abrupt deglacial climate events associated with the North Atlantic, specifically curtailed meridional overturning circulation and regional cooling, may have had attendant impacts on low subtropical Southern Hemisphere latitudes, including the climate systems that affect glacial activity around Nevado de Chañi.

  18. Climatic Forecasting of Net Infiltration at Yucca Mountain Using Analogue Meteorological Data

    International Nuclear Information System (INIS)

    Faybishenko, Boris

    2005-01-01

    At Yucca Mountain, NV, future changes in climatic conditions will probably alter net infiltration, drainage below the bottom of the evapotranspiration zone within the soil profile, or flow across the interface between soil and the densely welded part of the Tiva Canyon Tuff. The objectives of this study were to: (1) develop a semiempirical model and forecast average net infiltration rates, using the limited meteorological data from analog meteorological stations, for interglacial(present day), and future monsoon, glacial transition, and glacial climates over the Yucca Mountain region; and (2) corroborate the computed net infiltration rates by comparing them with the empirically and numerically determined groundwater recharge and percolation rates through the unsaturated zone from published data. This study approached calculations of net infiltration, aridity, and precipitation effectiveness indices using a modified Budyko's water-balance model, with reference-surface potential evapotranspiration determined from the radiation-based Penman formula. Results of calculations show that net infiltration rates are expected to generally increase from the present-day climate to monsoon climate, to glacial transition climate, and then to the glacial climate, following a power law relationship between net infiltration and precipitation. The forecasting results indicate the overlap between the ranges of net infiltration for different climates. Forecasting of net infiltration for different climate states is subject to numerous uncertainties associated with selecting climate analog sites, using relatively short analog meteorological records, neglecting the effects of vegetation and surface runoff and run-on on a local scale, as well as possible anthropogenically induced climate changes

  19. Millennial and sub-millennial scale climatic variations recorded in polar ice cores over the last glacial period

    DEFF Research Database (Denmark)

    Capron, E.; Landais, A.; Chappellaz, J.

    2010-01-01

    Since its discovery in Greenland ice cores, the millennial scale climatic variability of the last glacial period has been increasingly documented at all latitudes with studies focusing mainly on Marine Isotopic Stage 3 (MIS 3; 28–60 thousand of years before present, hereafter ka) and characterized...... that when ice sheets are extensive, Antarctica does not necessarily warm during the whole GS as the thermal bipolar seesaw model would predict, questioning the Greenland ice core temperature records as a proxy for AMOC changes throughout the glacial period....

  20. Mid-latitude trans-Pacific reconstructions and comparisons of coupled glacial/interglacial climate cycles based on soil stratigraphy of cover-beds

    Science.gov (United States)

    Alloway, B. V.; Almond, P. C.; Moreno, P. I.; Sagredo, E.; Kaplan, M. R.; Kubik, P. W.; Tonkin, P. J.

    2018-06-01

    South Westland, New Zealand, and southern Chile, are two narrow continental corridors effectively confined between the Pacific Ocean in the west and high mountain ranges in the east which impart significant influence over regional climate, vegetation and soils. In both these southern mid-latitude regions, evidence for extensive and repeated glaciations during cold phases of the Quaternary is manifested by arrays of successively older glacial drift deposits with corresponding outwash plain remnants. In South Westland, these variably aged glacial landforms are mantled by layered (multisequal) soils characterised by slow loess accretion and pedogenesis in an extreme leaching and weathering environment. These cover-bed successions have undergone repeated coupled phases of topdown and upbuilding soil formation that have been related to fluctuating cycles of interglacial/warm and glacial/cold climate during the Quaternary. In this study, we recognise multisequal soils overlying glacial landforms in southern continental Chile but, unlike the spodic (podzolic) soil sequences of South Westland, these are of dominantly volcanigenic (andic) provenance and are very similar to multisequal soils of andic provenance that predominate in, and adjacent to, areas of rhyolitic to andesitic volcanism in North Island, New Zealand. Here we develop a soil-stratigraphic model to explain the observed occurrence of multisequal soils mantling dominantly glacial landforms of southern continental Chile. Based on proxy data from southern Chile, we propose that persistent vegetation cover and high precipitation on the western side of the Andes, during colder-than-present episodes tended to suppress the widespread production of glacially-derived loessial materials despite the pervasive occurrence of glacial and glacio-fluvial deposits that have frequently inundated large tracts of this landscape during the Quaternary. Given the lack of loess cover-beds that have traditionally assisted in the

  1. Role of CO2 and Southern Ocean winds in glacial abrupt climate change

    Directory of Open Access Journals (Sweden)

    M. Montoya

    2012-06-01

    Full Text Available The study of Greenland ice cores revealed two decades ago the abrupt character of glacial millennial-scale climate variability. Several triggering mechanisms have been proposed and confronted against growing proxy-data evidence. Although the implication of North Atlantic deep water (NADW formation reorganisations in glacial abrupt climate change seems robust nowadays, the final cause of these reorganisations remains unclear. Here, the role of CO2 and Southern Ocean winds is investigated using a coupled model of intermediate complexity in an experimental setup designed such that the climate system resides close to a threshold found in previous studies. An initial abrupt surface air temperature (SAT increase over the North Atlantic by 4 K in less than a decade, followed by a more gradual warming greater than 10 K on centennial timescales, is simulated in response to increasing atmospheric CO2 levels and/or enhancing southern westerlies. The simulated peak warming shows a similar pattern and amplitude over Greenland as registered in ice core records of Dansgaard-Oeschger (D/O events. This is accompanied by a strong Atlantic meridional overturning circulation (AMOC intensification. The AMOC strengthening is found to be caused by a northward shift of NADW formation sites into the Nordic Seas as a result of a northward retreat of the sea-ice front in response to higher temperatures. This leads to enhanced heat loss to the atmosphere as well as reduced freshwater fluxes via reduced sea-ice import into the region. In this way, a new mechanism that is consistent with proxy data is identified by which abrupt climate change can be promoted.

  2. Modelling snow accumulation on Greenland in Eemian, glacial inception, and modern climates in a GCM

    Directory of Open Access Journals (Sweden)

    H. J. Punge

    2012-11-01

    Full Text Available Changing climate conditions on Greenland influence the snow accumulation rate and surface mass balance (SMB on the ice sheet and, ultimately, its shape. This can in turn affect local climate via orography and albedo variations and, potentially, remote areas via changes in ocean circulation triggered by melt water or calving from the ice sheet. Examining these interactions in the IPSL global model requires improving the representation of snow at the ice sheet surface. In this paper, we present a new snow scheme implemented in LMDZ, the atmospheric component of the IPSL coupled model. We analyse surface climate and SMB on the Greenland ice sheet under insolation and oceanic boundary conditions for modern, but also for two different past climates, the last glacial inception (115 kyr BP and the Eemian (126 kyr BP. While being limited by the low resolution of the general circulation model (GCM, present-day SMB is on the same order of magnitude as recent regional model findings. It is affected by a moist bias of the GCM in Western Greenland and a dry bias in the north-east. Under Eemian conditions, the SMB decreases largely, and melting affects areas in which the ice sheet surface is today at high altitude, including recent ice core drilling sites as NEEM. In contrast, glacial inception conditions lead to a higher mass balance overall due to the reduced melting in the colder summer climate. Compared to the widely applied positive degree-day (PDD parameterization of SMB, our direct modelling results suggest a weaker sensitivity of SMB to changing climatic forcing. For the Eemian climate, our model simulations using interannually varying monthly mean forcings for the ocean surface temperature and sea ice cover lead to significantly higher SMB in southern Greenland compared to simulations forced with climatological monthly means.

  3. Effects of post-glacial phylogeny and genetic diversity on the growth variability and climate sensitivity of European silver fir

    Czech Academy of Sciences Publication Activity Database

    Bošela, M.; Popa, I.; Gömöry, D.; Longauer, R.; Tobin, B.; Kyncl, J.; Kyncl, T.; Nechita, C.; Petras, R.; Sidor, C. G.; Šebeň, V.; Büntgen, Ulf

    2016-01-01

    Roč. 104, č. 3 (2016), s. 716-724 ISSN 0022-0477 R&D Projects: GA MŠk(CZ) EE2.3.20.0248 Institutional support: RVO:67179843 Keywords : abies-alba mill. * western carpathians * time-series * mitochondrial-dna * glacial refugia * forest decline * air-pollution * consequences * quaternary * drought * air pollution * dendroecology * drought * ecology * global warming * plant-climate interactions * post-glacial migration * radial growth * tree decline Subject RIV: EH - Ecology, Behaviour Impact factor: 5.813, year: 2016

  4. Late Glacial to Early Holocene socio-ecological responses to climatic instability within the Mediterranean basin

    Science.gov (United States)

    Fernández-López de Pablo, Javier; Jones, Samantha E.; Burjachs, Francesc

    2018-03-01

    The period spanning the Late Glacial and the Early Holocene (≈19-8.2 ka) witnessed a dramatic sequence of climate and palaeoenvironmental changes (Rasmussen et al., 2014). Interestingly, some of the most significant transformations ever documented in human Prehistory took place during this period such as the intensification of hunter-gatherer economic systems, the domestication process of wild plants and animals, and the spread of farming across Eurasia. Understanding the role of climate and environmental dynamics on long-term cultural and economic trajectories, as well as specific human responses to episodes of rapid climate change, still remains as one of the main challenges of archaeological research (Kintigh et al., 2014).

  5. Post-glacial climate forcing of surface processes in the Ganges-Brahmaputra river basin and implications for carbon sequestration

    Science.gov (United States)

    Hein, Christopher J.; Galy, Valier; Galy, Albert; France-Lanord, Christian; Kudrass, Hermann; Schwenk, Tilmann

    2017-11-01

    Climate has been proposed to control both the rate of terrestrial silicate weathering and the export rate of associated sediments and terrestrial organic carbon to river-dominated margins - and thus the rate of sequestration of atmospheric CO2 in the coastal ocean - over glacial-interglacial timescales. Focused on the Ganges-Brahmaputra rivers, this study presents records of post-glacial changes in basin-scale Indian summer monsoon intensity and vegetation composition based on stable hydrogen (δD) and carbon (δ13C) isotopic compositions of terrestrial plant wax compounds preserved in the channel-levee system of the Bengal Fan. It then explores the role of these changes in controlling the provenance and degree of chemical weathering of sediments exported by these rivers, and the potential climate feedbacks through organic-carbon burial in the Bengal Fan. An observed 40‰ shift in δD and a 3-4‰ shift in both bulk organic-carbon and plant-wax δ13C values between the late glacial and mid-Holocene, followed by a return to more intermediate values during the late Holocene, correlates well with regional post-glacial paleoclimate records. Sediment provenance proxies (Sr, Nd isotopic compositions) reveal that these changes likely coincided with a subtle focusing of erosion on the southern flank of the Himalayan range during periods of greater monsoon strength and enhanced sediment discharge. However, grain-size-normalized organic-carbon concentrations in the Bengal Fan remained constant through time, despite order-of-magnitude level changes in catchment-scale monsoon precipitation and enhanced chemical weathering (recorded as a gradual increase in K/Si* and detrital carbonate content, and decrease in H2O+/Si*, proxies) throughout the study period. These findings demonstrate a partial decoupling of climate change and silicate weathering during the Holocene and that marine organic-carbon sequestration rates primary reflect rates of physical erosion and sediment export

  6. On the role of model depth and hydraulic properties for groundwater flow modelling during glacial climate conditions

    International Nuclear Information System (INIS)

    Vidstrand, Patrik; Rhen, Ingvar

    2011-03-01

    A common assumption in regional groundwater flow simulations of periods with glacial climate conditions is that the salinity at the bottom boundary of the model domain is stable (constant over time). This assumption is partly based on the general fact that water density increases with increasing salinity, but also supported by measurements, e.g. the mobile (fracture water) and immobile (porewater) salinity typically increase with depth, whereas the conductive fracture frequency and fracture transmissivity often decrease with depth. Plausibly, the depth to stable hydrogeological conditions varies between sites, and the question studied here is whether hydrogeological disturbances could occur at 2-4 km depth during glacial climate conditions. With regard to the results of SDM-Site and SR-Site, the hydrogeological conditions at repository depth indicate less groundwater flow during glacial climate conditions at Forsmark than at Laxemar. For this reason, this study uses the Laxemar site as a hypothetical site of potentially more permeable conditions, hence more readily affected during glacial climate conditions. A series of flow simulations conducted with DarcyTools in an approximately 5 km deep, super-regional model domain centred on the Laxemar site are reported. The studied cases (model variants) represent a variety of different property specifications along with variations in initial conditions concerning salinity. The model domain is subjected to a transient top boundary representing an advancing ice sheet margin. The behaviour of the grid cell pressure, Darcy flux and mobile salinity is monitored at four different elevations along a vertical scan line through the centre of the suggested location for a KBS-3 repository at Laxemar. The studied monitoring points are located at -0.5 km, -2.5 km, -3.0 km, and -3.5 km. These elevations are chosen with the objective to study the range of hydrogeological disturbance that could occur at 2-4 km depth. The flow model is run

  7. On the role of model depth and hydraulic properties for groundwater flow modelling during glacial climate conditions

    Energy Technology Data Exchange (ETDEWEB)

    Vidstrand, Patrik (TerraSolve AB (Sweden)); Rhen, Ingvar (SWECO Environment AB (Sweden))

    2011-03-15

    A common assumption in regional groundwater flow simulations of periods with glacial climate conditions is that the salinity at the bottom boundary of the model domain is stable (constant over time). This assumption is partly based on the general fact that water density increases with increasing salinity, but also supported by measurements, e.g. the mobile (fracture water) and immobile (porewater) salinity typically increase with depth, whereas the conductive fracture frequency and fracture transmissivity often decrease with depth. Plausibly, the depth to stable hydrogeological conditions varies between sites, and the question studied here is whether hydrogeological disturbances could occur at 2-4 km depth during glacial climate conditions. With regard to the results of SDM-Site and SR-Site, the hydrogeological conditions at repository depth indicate less groundwater flow during glacial climate conditions at Forsmark than at Laxemar. For this reason, this study uses the Laxemar site as a hypothetical site of potentially more permeable conditions, hence more readily affected during glacial climate conditions. A series of flow simulations conducted with DarcyTools in an approximately 5 km deep, super-regional model domain centred on the Laxemar site are reported. The studied cases (model variants) represent a variety of different property specifications along with variations in initial conditions concerning salinity. The model domain is subjected to a transient top boundary representing an advancing ice sheet margin. The behaviour of the grid cell pressure, Darcy flux and mobile salinity is monitored at four different elevations along a vertical scan line through the centre of the suggested location for a KBS-3 repository at Laxemar. The studied monitoring points are located at -0.5 km, -2.5 km, -3.0 km, and -3.5 km. These elevations are chosen with the objective to study the range of hydrogeological disturbance that could occur at 2-4 km depth. The flow model is run

  8. Transient nature of late Pleistocene climate variability.

    Science.gov (United States)

    Crowley, Thomas J; Hyde, William T

    2008-11-13

    Climate in the early Pleistocene varied with a period of 41 kyr and was related to variations in Earth's obliquity. About 900 kyr ago, variability increased and oscillated primarily at a period of approximately 100 kyr, suggesting that the link was then with the eccentricity of Earth's orbit. This transition has often been attributed to a nonlinear response to small changes in external boundary conditions. Here we propose that increasing variablility within the past million years may indicate that the climate system was approaching a second climate bifurcation point, after which it would transition again to a new stable state characterized by permanent mid-latitude Northern Hemisphere glaciation. From this perspective the past million years can be viewed as a transient interval in the evolution of Earth's climate. We support our hypothesis using a coupled energy-balance/ice-sheet model, which furthermore predicts that the future transition would involve a large expansion of the Eurasian ice sheet. The process responsible for the abrupt change seems to be the albedo discontinuity at the snow-ice edge. The best-fit model run, which explains almost 60% of the variance in global ice volume during the past 400 kyr, predicts a rapid transition in the geologically near future to the proposed glacial state. Should it be attained, this state would be more 'symmetric' than the present climate, with comparable areas of ice/sea-ice cover in each hemisphere, and would represent the culmination of 50 million years of evolution from bipolar nonglacial climates to bipolar glacial climates.

  9. Climate versus carbon dioxide controls on biomass burning: a model analysis of the glacial-interglacial contrast

    Science.gov (United States)

    Calvo, M. Martin; Prentice, I. C.; Harrison, S. P.

    2014-11-01

    Climate controls fire regimes through its influence on the amount and types of fuel present and their dryness. CO2 concentration constrains primary production by limiting photosynthetic activity in plants. However, although fuel accumulation depends on biomass production, and hence on CO2 concentration, the quantitative relationship between atmospheric CO2 concentration and biomass burning is not well understood. Here a fire-enabled dynamic global vegetation model (the Land surface Processes and eXchanges model, LPX) is used to attribute glacial-interglacial changes in biomass burning to an increase in CO2, which would be expected to increase primary production and therefore fuel loads even in the absence of climate change, vs. climate change effects. Four general circulation models provided last glacial maximum (LGM) climate anomalies - that is, differences from the pre-industrial (PI) control climate - from the Palaeoclimate Modelling Intercomparison Project Phase~2, allowing the construction of four scenarios for LGM climate. Modelled carbon fluxes from biomass burning were corrected for the model's observed prediction biases in contemporary regional average values for biomes. With LGM climate and low CO2 (185 ppm) effects included, the modelled global flux at the LGM was in the range of 1.0-1.4 Pg C year-1, about a third less than that modelled for PI time. LGM climate with pre-industrial CO2 (280 ppm) yielded unrealistic results, with global biomass burning fluxes similar to or even greater than in the pre-industrial climate. It is inferred that a substantial part of the increase in biomass burning after the LGM must be attributed to the effect of increasing CO2 concentration on primary production and fuel load. Today, by analogy, both rising CO2 and global warming must be considered as risk factors for increasing biomass burning. Both effects need to be included in models to project future fire risks.

  10. Periodic isolation of the southern coastal plain of South Africa and the evolution of modern humans over late Quaternary glacial to interglacial cycles

    Science.gov (United States)

    Compton, J. S.

    2012-04-01

    Humans evolved in Africa, but where in Africa and by what mechanisms remain unclear. The evolution of modern humans over the last million years is associated with the onset of major global climate fluctuations, glacial to interglacial cycles, related to the build up and melting of large ice sheets in the Northern Hemisphere. During interglacial periods, such as today, warm and wet climates favored human expansion but during cold and dry glacial periods conditions were harsh and habitats fragmented. These large climate fluctuations periodically expanded and contracted African ecosystems and led to human migrations to more hospitable glacial refugia. Periodic isolation of relatively small numbers of humans may have allowed for their rapid evolutionary divergence from the rest of Africa. During climate transitions these divergent groups may have then dispersed and interbred with other groups (hybridization). Two areas at the opposite ends of Africa stand out as regions that were periodically isolated from the rest of Africa: North Africa (the Maghreb) and the southern coastal plain (SCP) of South Africa. The Maghreb is isolated by the Sahara Desert which periodically greens and is reconnected to the rest of Africa during the transition from glacial to interglacial periods. The SCP of South Africa is isolated from the rest of Africa by the rugged mountains of the Cape Fold Belt associated with inedible vegetation and dry climates to the north. The SCP is periodically opened when sea level falls by up to 130 m during glacial maxima to expose the present day submerged inner continental shelf. A five-fold expansion of the SCP receiving more rainfall in glacial periods may have served as a refuge to humans and large migratory herds. The expansive glacial SCP habitat abruptly contracts, by as much as one-third in 300 yr, during the rapid rise in sea level associated with glacial terminations. Rapid flooding may have increased population density and competition on the SCP to

  11. A stable-isotope tree-ring timescale of the Late Glacial/Holocene boundary

    International Nuclear Information System (INIS)

    Becker, Bernd; Kromer, Bernd; Trimborn, Peter

    1991-01-01

    Late Glacial and Holocene tree-ring chronologies, like deep-sea sediments or polar ice cores, contain information about past environments. Changes in tree-ring growth rates can be related to past climate anomalies and changes in the isotope composition of tree-ring cellulose reflect changes in the composition of the atmosphere and the hydrosphere. We have established a 9,928-year absolutely dated dendrochronological record of Holocene oak (Quercus robur, Quercus petraea)-and a 1,604-year floating Late Glacial and Early Holocene chronology of pine (Pinus sylvestris) from subfossil tree remnants deposited in alluvial terraces of south central European rivers. The pine sequence provides records of dendro-dated 14 C, 13 C and 2 H patterns for the late Younger Dryas and the entire Preboreal (10,100-9,000 yr BP). Through the use of dendrochronology, radiocarbon age calibration and stable isotope analysis, we suggest that the Late Glacial/Holocene transition may be identified and dated by 13 C and 2 H tree-ring chronologies. (author)

  12. Oxygen stable isotopes during the Last Glacial Maximum climate: perspectives from data-model (iLOVECLIM) comparison

    NARCIS (Netherlands)

    Caley, T.; Roche, D.M.V.A.P.; Waelbroeck, C.; Michel, E.

    2014-01-01

    We use the fully coupled atmosphere-ocean three-dimensional model of intermediate complexity iLOVECLIM to simulate the climate and oxygen stable isotopic signal during the Last Glacial Maximum (LGM, 21 000 years). By using a model that is able to explicitly simulate the sensor (Î18O), results can be

  13. Exploring the impact of climate variability during the Last Glacial Maximum on the pattern of human occupation of Iberia.

    Science.gov (United States)

    Burke, Ariane; Levavasseur, Guillaume; James, Patrick M A; Guiducci, Dario; Izquierdo, Manuel Arturo; Bourgeon, Lauriane; Kageyama, Masa; Ramstein, Gilles; Vrac, Mathieu

    2014-08-01

    The Last Glacial Maximum (LGM) was a global climate event, which had significant repercussions for the spatial distribution and demographic history of prehistoric populations. In Eurasia, the LGM coincides with a potential bottleneck for modern humans and may mark the divergence date for Asian and European populations (Keinan et al., 2007). In this research, the impact of climate variability on human populations in the Iberian Peninsula during the Last Glacial Maximum (LGM) is examined with the aid of downscaled high-resolution (16 × 16 km) numerical climate experiments. Human sensitivity to short time-scale (inter-annual) climate variability during this key time period, which follows the initial modern human colonisation of Eurasia and the extinction of the Neanderthals, is tested using the spatial distribution of archaeological sites. Results indicate that anatomically modern human populations responded to small-scale spatial patterning in climate variability, specifically inter-annual variability in precipitation levels as measured by the standard precipitation index. Climate variability at less than millennial scale, therefore, is shown to be an important component of ecological risk, one that played a role in regulating the spatial behaviour of prehistoric human populations and consequently affected their social networks. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Southern westerly winds: a pacemaker of Holocene glacial fluctuations in Patagonia?

    Science.gov (United States)

    Sagredo, E. A.; Reynhout, S.; Kaplan, M. R.; Patricio, M. I.; Aravena, J. C.; Martini, M. A.; Schaefer, J. M.

    2017-12-01

    A well-resolved glacial chronology is crucial to compare sequences of glacial/climate events within and between regions, and thus, to unravel mechanisms underlying past climate changes. Important efforts have been made towards understanding the Holocene climate evolution of the Southern Andes; however, the timing, patterns and causes of glacial fluctuations during this period still remain elusive. Recent advances in terrestrial cosmogenic nuclide surface exposure dating, together with the establishment of a Patagonian 10Be production rate, have opened new possibilities for establishing high-resolution glacial chronologies at centennial/decadal scale. Here we present a 10Be surface exposure chronology of fluctuations of a small, climate-sensitive mountain glacier at Mt. Fitz Roy area (49.3°S), spanning from the last glacial termination to the present. Thirty new 10Be ages show glacial advances and moraine building events at 17.1±0.9 ka, 13.5±0.5 ka, 10.2±0.7 ka or 9.9±0.5 ka, 6.9±0.2 ka, 6.1±0.3 ka, 4.5±0.2 ka and 0.5±0.1 ka. Similar to the pattern observed in New Zealand, this sequence features progressively less extensive glacial advances during the late-glacial and early Holocene, followed by advances of roughly similar extent during the mid- to late-Holocene. We suggest that while the magnitude of Holocene glacial fluctuations in Patagonia is modulated by SH summer insolation ("modulator"), the specific timing of these glacial events is influenced by centennial-scale shifts of the Southern Westerly Winds ("pacemaker").

  15. Uncertainties in modelling CH4 emissions from northern wetlands in glacial climates: effect of hydrological model and CH4 model structure

    Directory of Open Access Journals (Sweden)

    J. van Huissteden

    2009-07-01

    Full Text Available Methane (CH4 fluxes from northern wetlands may have influenced atmospheric CH4 concentrations at climate warming phases during the last 800 000 years and during the present global warming. Including these CH4 fluxes in earth system models is essential to understand feedbacks between climate and atmospheric composition. Attempts to model CH4 fluxes from wetlands have previously been undertaken using various approaches. Here, we test a process-based wetland CH4 flux model (PEATLAND-VU which includes details of soil-atmosphere CH4 transport. The model has been used to simulate CH4 emissions from continental Europe in previous glacial climates and the current climate. This paper presents results regarding the sensitivity of modeling glacial terrestrial CH4 fluxes to (a basic tuning parameters of the model, (b different approaches in modeling of the water table, and (c model structure. In order to test the model structure, PEATLAND-VU was compared to a simpler modeling approach based on wetland primary production estimated from a vegetation model (BIOME 3.5. The tuning parameters are the CH4 production rate from labile organic carbon and its temperature sensitivity. The modelled fluxes prove comparatively insensitive to hydrology representation, while sensitive to microbial parameters and model structure. Glacial climate emissions are also highly sensitive to assumptions about the extent of ice cover and exposed seafloor. Wetland expansion over low relief exposed seafloor areas have compensated for a decrease of wetland area due to continental ice cover.

  16. Impact of ice sheet meltwater fluxes on the climate evolution at the onset of the Last Interglacial

    NARCIS (Netherlands)

    Goelzer, Heiko; Huybrechts, Philippe; Loutre, Marie-France; Fichefet, Thierry

    2016-01-01

    Large climate perturbations occurred during the transition between the penultimate glacial period and the Last Interglacial (Termination II), when the ice sheets retreated from their glacial configuration. Here we investigate the impact of ice sheet changes and associated freshwater fluxes on the

  17. Glacial/Interglacial climate and vegetation history of North-East of Brazil during the last 1.5 Ma and their connection to the Amazonian rainforest

    Science.gov (United States)

    Kern, A.; Baker, P. A.; Cruz, F. W., Sr.; Dwyer, G. S.; Silva, C. G.; Oliveira, A. S.; Willard, D. A.

    2016-12-01

    Northeastern (NE) Brazil is characterized today by a dry climate and vegetation, which separate the humid forests of the Amazonia from those along the Atlantic coast. Species composition and molecular genetics suggest phases of exchange between these forests in the past and the NE region is the most likely corridor for migration. However, the vegetation history of the NE is largely unknown, leaving questions on the impact of glacial stages on the forest composition and the timing of cyclic transitions from tropical rainforest to semi-arid vegetation or vice versa. Here, we present preliminary results from a marine record recovered from the equatorial Brazilian continental margin covering the last 1.5 Ma. Pollen-based reconstructions across several glacial and interglacial stages provide data on vegetation expansion and retraction of these different biomes. Vegetation changes during drying/cooling events in the NE, which may be linked to movements of the Inter Tropical Convergence Zone or/and intensities of the South American Monsoon System. Increases in terrestrial input to the core site during these climatic events may be of NE origin or Amazon origin. In the latter case, these increases would mark a decrease or reversal of the strength of the North Brazil Current. This study is funded by FAPESP projects 2015/18314-7, 2014/05582-0 and the FAPESPBIOTA/NSF-Dimensions project 2012/50260-6).

  18. Insights into Penultimate Interglacial-Glacial Climate Change on Vegetation History at Lake Van, Turkey

    Science.gov (United States)

    Pickarski, N.; Litt, T.

    2017-12-01

    A new detailed pollen and oxygen isotope record of the penultimate interglacial-glacial cycle (ca. 250-129 ka; MIS 7-6), has been generated from the sediment core at Lake Van, Turkey. The integration of all available proxies (pollen, microscopic charcoal, δ18Obulk, and XRF) shows three temperate intervals of high effective soil moisture availability. This is evidenced by the predominance of oak steppe-forested landscapes similar to the present interglacial vegetation in this sensitive semiarid region. The wettest/warmest stage, as indicated by highest temperate tree percentages, can be broadly correlated with MIS 7c, while the amplitude of the tree population maximum during the oldest penultimate interglacial (MIS 7e) appears to be reduced due to warm but drier climatic conditions. A detailed comparison of the penultimate interglacial complex (MIS 7) to the last interglacial (MIS 5e) and the current interglacial (MIS 1) provides a vivid illustration of possible differences in the successive climatic cycles. Intervening periods of treeless vegetation (MIS 7d, 7a) were predominated by steppe elements. The occurrence of Artemisia and Chenopodiaceae during MIS 7d indicates very dry and cold climatic conditions, while higher temperate tree percentages (mainly deciduous Quercus) points to relatively humid and mild conditions throughout MIS 7b. Despite the general dominance of dry and cold desert-steppe vegetation during the penultimate glacial (MIS 6), this period can be divided into two parts: an early stage (ca. 193-157 ka) with higher oscillations in tree percentages and a later stage (ca. 157-131 ka) with lower tree percentages and subdued oscillations. Furthermore, we are able to identify the MIS 6e event (ca. 179-159 ka), which reveals clear climate variability due to rapid alternation in the vegetation cover. In comparison with long European pollen archives, speleothem isotope records from the Near East, and global climate parameters, the new high

  19. Climate vs. carbon dioxide controls on biomass burning: a model analysis of the glacial-interglacial contrast

    Science.gov (United States)

    Calvo, M. Martin; Prentice, I. C.; Harrison, S. P.

    2014-02-01

    Climate controls fire regimes through its influence on the amount and types of fuel present and their dryness; CO2 availability, in turn, constrains primary production by limiting photosynthetic activity in plants. However, although fuel accumulation depends on biomass production, and hence CO2 availability, the links between atmospheric CO2 and biomass burning are not well known. Here a fire-enabled dynamic global vegetation model (the Land surface Processes and eXchanges model, LPX) is used to attribute glacial-interglacial changes in biomass burning to CO2 increase, which would be expected to increase primary production and therefore fuel loads even in the absence of climate change, vs. climate change effects. Four general circulation models provided Last Glacial Maximum (LGM) climate anomalies - that is, differences from the pre-industrial (PI) control climate - from the Palaeoclimate Modelling Intercomparison Project Phase 2, allowing the construction of four scenarios for LGM climate. Modelled carbon fluxes in biomass burning were corrected for the model's observed biases in contemporary biome-average values. With LGM climate and low CO2 (185 ppm) effects included, the modelled global flux was 70 to 80% lower at the LGM than in PI time. LGM climate with pre-industrial CO2 (280 ppm) however yielded unrealistic results, with global and Northern Hemisphere biomass burning fluxes greater than in the pre-industrial climate. Using the PI CO2 concentration increased the modelled LGM biomass burning fluxes for all climate models and latitudinal bands to between four and ten times their values under LGM CO2 concentration. It is inferred that a substantial part of the increase in biomass burning after the LGM must be attributed to the effect of increasing CO2 concentration on productivity and fuel load. Today, by analogy, both rising CO2 and global warming must be considered as risk factors for increasing biomass burning. Both effects need to be included in models to

  20. Climate and vegetation since the Last Interglacial (MIS 5e) in a putative glacial refugium, northern Idaho, USA

    Science.gov (United States)

    Herring, Erin M.; Gavin, Daniel G.

    2015-06-01

    There are very few terrestrial sediment records from North America that contain a nearly continuous sequence spanning from the Last Interglacial period to the present. We present stratigraphic records of pollen and several other proxies from a Carex-dominated wetland, Star Meadows, located 140 km south of the maximum extent of the Cordilleran Ice Sheet and near the current southern extent of interior mesic forests in northern Idaho. Many species in this region are disjunct by 160 km of arid steppe and dry forest from their more extensive distribution along the Pacific Northwest coast and may have survived in an interior refugium. The chronology for the upper 251 cm was determined by six radiocarbon dates and one tephra deposit, and the age of the remainder of the core (251-809 cm) was estimated by correlation with SPECMAP δ18O. Fluctuating water levels were inferred from alternating peat, biogenic silica, and aquatic pollen types. During MIS 5e the region was warmer and drier than today and was dominated by Pinus (likely Pinus contorta) mixed conifer forest surrounding a Carex meadow. A cool-moist climate (MIS 5b-5d) soon developed, and the site was inundated with deep water. Pollen indicated wetland vegetation (Betula glandulosa, Typhaceae, and Salix) developed around a lake with a Pseudotsuga/Larix and Picea forest on the surrounding slopes. During MIS 5a, a warmer climate supported a Pseudotsuga/Larix, Abies, and Picea forest on the surrounding hillsides and a Carex-dominated environment within a dry meadow. From MIS 4 to MIS 3, a cool and wet Pinus and Picea forest predominated. Water levels rose, enabling Nuphar to persist within a perennial lake while a sedge fen established along the lake margin. As climate transitioned into MIS 2, a cooler and drier climate supported a Pinus and Picea subalpine parkland, though water levels remained high enough to support Nuphar. During the Last Glacial Maximum the sediment was mainly silt and clay with high Artemisia and

  1. Optimal tuning of a GCM using modern and glacial constraints

    Energy Technology Data Exchange (ETDEWEB)

    Gregoire, Lauren J.; Valdes, Paul J.; Payne, Antony J.; Kahana, Ron [University of Bristol, School of Geographical Sciences, Bristol (United Kingdom)

    2011-08-15

    In climate models, many parameters used to resolve subgrid scale processes can be adjusted through a tuning exercise to fit the model's output to target climatologies. We present an objective tuning of a low resolution Atmosphere-Ocean General Circulation Model (GCM) called FAMOUS where ten model parameters are varied together using a Latin hypercube sampling method to create an ensemble of 100 models. The target of the tuning consists of a wide range of modern climate diagnostics and also includes glacial tropical sea surface temperature. The ensemble of models created is compared to the target using an Arcsin Mielke score. We investigate how the tuning method used and the addition of glacial constraints impact on the present day and glacial climates of the chosen models. Rather than selecting a single configuration which optimises the metric in all the diagnostics, we obtain a subset of nine 'good' models which display great differences in their climate but which, in some sense, are all better than the original configuration. In those simulations, the global temperature response to last glacial maximum forcings is enhanced compared to the control simulation and the glacial Atlantic Ocean circulation is more in agreement with observations. Our study demonstrates that selecting a single 'optimal' configuration, relying only on present day constraints may lead to misrepresenting climates different to that of today. (orig.)

  2. Holocene glacial fluctuations in southern South America

    Science.gov (United States)

    Reynhout, S.; Sagredo, E. A.; Kaplan, M. R.; Aravena, J. C.; Martini, M. A.; Strelin, J. A.; Schaefer, J. M.

    2016-12-01

    Understanding the timing and magnitude of former glacier fluctuations is critical to decipher long-term climatic trends and to unravel both natural cycles and human impact on the current glacial behavior. Despite more than seven decades of research efforts, a unifying model of Holocene glacial fluctuations in Southern South America remains elusive. Here, we present the state-of-the-art regarding the timing of Holocene glacial fluctuation in southern Patagonia-Tierra del Fuego, with a focus on a new generation of high-resolution radiocarbon and 10Be surface exposure dating chronologies. Recently acquired evidence suggest that after receding from advanced Late Glacial positions, Patagonian glaciers were for the most part close to, or even behind, present ice margins during the Early Holocene. On the other hand, emerging chronologies indicate that in some areas there were extensive expansions (century scale?) that punctuated the warm interval. Subsequently, we have evidence of multiple millennial timescale glacial advances starting in the middle Holocene. Several glacial maxima are defined by moraines and other landforms from 7000 years ago to the 19th century, with a gap sometime between 4,500 and 2,500 years ago. The last set of advances began around 800-600 years ago. Although glacial activity is documented in Patagonia at the same time as the European Little Ice Age, the extent of these glacial events are less prominent than those of the mid-Holocene. The causes that may explain these glacial fluctuations remain elusive. Finally, we discuss ongoing efforts to better define the timing and extent of Holocene glaciations in southern South America, and to establish the basis to test competing hypothesis of regional Holocene climate variability.

  3. Reflections on the nature of non-linear responses of the climate to forcing

    Science.gov (United States)

    Ditlevsen, Peter

    2017-04-01

    On centennial to multi-millennial time scales the paleoclimatic record shows that climate responds in a very non-linear way to the external forcing. Perhaps most puzzling is the change in glacial period duration at the Middle Pleistocene Transition. From a dynamical systems perspective, this could be a change in frequency locking between the orbital forcing and the climatic response or it could be a non-linear resonance phenomenon. In both cases the climate system shows a non-trivial oscillatory behaviour. From the records it seems that this behaviour can be described by an effective dynamics on a low-dimensional slow manifold. These different possible dynamical behaviours will be discussed. References: Arianna Marchionne, Peter Ditlevsen, and Sebastian Wieczorek, "Three types of nonlinear resonances", arXiv:1605.00858 Peter Ashwin and Peter Ditlevsen, "The middle Pleistocene transition as a generic bifurcation on a slow manifold", Climate Dynamics, 45, 2683, 2015. Peter D. Ditlevsen, "The bifurcation structure and noise assisted transitions in the Pleistocene glacial cycles", Paleoceanography, 24, PA3204, 2009

  4. Triggers and consequences of glacial expansion across the Eocene - Oligocene Transition

    NARCIS (Netherlands)

    Houben, A.J.P.

    2012-01-01

    The results described in this thesis provide a rather complex picture of climatic, environmental and biotic changes preceding and arising from the onset of Antarctic glaciation. This period is commonly known as the greenhouse to icehouse transition across the Eocene-Oligocene Transition (EOT, 34-33

  5. Glacial ocean circulation and stratification explained by reduced atmospheric temperature.

    Science.gov (United States)

    Jansen, Malte F

    2017-01-03

    Earth's climate has undergone dramatic shifts between glacial and interglacial time periods, with high-latitude temperature changes on the order of 5-10 °C. These climatic shifts have been associated with major rearrangements in the deep ocean circulation and stratification, which have likely played an important role in the observed atmospheric carbon dioxide swings by affecting the partitioning of carbon between the atmosphere and the ocean. The mechanisms by which the deep ocean circulation changed, however, are still unclear and represent a major challenge to our understanding of glacial climates. This study shows that various inferred changes in the deep ocean circulation and stratification between glacial and interglacial climates can be interpreted as a direct consequence of atmospheric temperature differences. Colder atmospheric temperatures lead to increased sea ice cover and formation rate around Antarctica. The associated enhanced brine rejection leads to a strongly increased deep ocean stratification, consistent with high abyssal salinities inferred for the last glacial maximum. The increased stratification goes together with a weakening and shoaling of the interhemispheric overturning circulation, again consistent with proxy evidence for the last glacial. The shallower interhemispheric overturning circulation makes room for slowly moving water of Antarctic origin, which explains the observed middepth radiocarbon age maximum and may play an important role in ocean carbon storage.

  6. Glacial ocean circulation and stratification explained by reduced atmospheric temperature

    OpenAIRE

    Jansen, Malte F.

    2016-01-01

    To understand climatic swings between glacial and interglacial climates we need to explain the observed fluctuations in atmospheric carbon dioxide (CO2), which in turn are most likely driven by changes in the deep ocean circulation. This study presents a model for differences in the deep ocean circulation between glacial and interglacial climates consistent with both our physical understanding and various proxy observations. The results suggest that observed changes in ocean circulation and s...

  7. Glacial lakes of the Central and Patagonian Andes

    Science.gov (United States)

    Wilson, Ryan; Glasser, Neil F.; Reynolds, John M.; Harrison, Stephan; Anacona, Pablo Iribarren; Schaefer, Marius; Shannon, Sarah

    2018-03-01

    The prevalence and increased frequency of high-magnitude Glacial Lake Outburst Floods (GLOFs) in the Chilean and Argentinean Andes suggests this region will be prone to similar events in the future as glaciers continue to retreat and thin under a warming climate. Despite this situation, monitoring of glacial lake development in this region has been limited, with past investigations only covering relatively small regions of Patagonia. This study presents new glacial lake inventories for 1986, 2000 and 2016, covering the Central Andes, Northern Patagonia and Southern Patagonia. Our aim was to characterise the physical attributes, spatial distribution and temporal development of glacial lakes in these three sub-regions using Landsat satellite imagery and image datasets available in Google Earth and Bing Maps. Glacial lake water volume was also estimated using an empirical area-volume scaling approach. Results reveal that glacial lakes across the study area have increased in number (43%) and areal extent (7%) between 1986 and 2016. Such changes equate to a glacial lake water volume increase of 65 km3 during the 30-year observation period. However, glacial lake growth and emergence was shown to vary sub-regionally according to localised topography, meteorology, climate change, rate of glacier change and the availability of low gradient ice areas. These and other factors are likely to influence the occurrence of GLOFs in the future. This analysis represents the first large-scale census of glacial lakes in Chile and Argentina and will allow for a better understanding of lake development in this region, as well as, providing a basis for future GLOF risk assessments.

  8. Simulation of glacial ocean biogeochemical tracer and isotope distributions based on the PMIP3 suite of climate models

    Science.gov (United States)

    Khatiwala, Samar; Muglia, Juan; Kvale, Karin; Schmittner, Andreas

    2016-04-01

    In the present climate system, buoyancy forced convection at high-latitudes together with internal mixing results in a vigorous overturning circulation whose major component is North Atlantic Deep Water. One of the key questions of climate science is whether this "mode" of circulation persisted during glacial periods, and in particular at the Last Glacial Maximum (LGM; 21000 years before present). Resolving this question is both important for advancing our understanding of the climate system, as well as a critical test of numerical models' ability to reliably simulate different climates. The observational evidence, based on interpreting geochemical tracers archived in sediments, is conflicting, as are simulations carried out with state-of-the-art climate models (e.g., as part of the PMIP3 suite), which, due to the computational cost involved, do not by and large include biogeochemical and isotope tracers that can be directly compared with proxy data. Here, we apply geochemical observations to evaluate the ability of several realisations of an ocean model driven by atmospheric forcing from the PMIP3 suite of climate models to simulate global ocean circulation during the LGM. This results in a wide range of circulation states that are then used to simulate biogeochemical tracer and isotope (13C, 14C and Pa/Th) distributions using an efficient, "offline" computational scheme known as the transport matrix method (TMM). One of the key advantages of this approach is the use of a uniform set of biogeochemical and isotope parameterizations across all the different circulations based on the PMIP3 models. We compare these simulated distributions to both modern observations and data from LGM ocean sediments to identify similarities and discrepancies between model and data. We find, for example, that when the ocean model is forced with wind stress from the PMIP3 models the radiocarbon age of the deep ocean is systematically younger compared with reconstructions. Changes in

  9. Comparing modeled and observed changes in mineral dust transport and deposition to Antarctica between the Last Glacial Maximum and current climates

    Energy Technology Data Exchange (ETDEWEB)

    Albani, Samuel [University of Siena, Graduate School in Polar Sciences, Siena (Italy); University of Milano-Bicocca, Department of Environmental Sciences, Milano (Italy); Cornell University, Department of Earth and Atmospheric Sciences, Ithaca, NY (United States); Mahowald, Natalie M. [Cornell University, Department of Earth and Atmospheric Sciences, Ithaca, NY (United States); Delmonte, Barbara; Maggi, Valter [University of Milano-Bicocca, Department of Environmental Sciences, Milano (Italy); Winckler, Gisela [Columbia University, Lamont-Doherty Earth Observatory, Palisades, NY (United States); Columbia University, Department of Earth and Environmental Sciences, New York, NY (United States)

    2012-05-15

    Mineral dust aerosols represent an active component of the Earth's climate system, by interacting with radiation directly, and by modifying clouds and biogeochemistry. Mineral dust from polar ice cores over the last million years can be used as paleoclimate proxy, and provide unique information about climate variability, as changes in dust deposition at the core sites can be due to changes in sources, transport and/or deposition locally. Here we present results from a study based on climate model simulations using the Community Climate System Model. The focus of this work is to analyze simulated differences in the dust concentration, size distribution and sources in current climate conditions and during the Last Glacial Maximum at specific ice core locations in Antarctica, and compare with available paleodata. Model results suggest that South America is the most important source for dust deposited in Antarctica in current climate, but Australia is also a major contributor and there is spatial variability in the relative importance of the major dust sources. During the Last Glacial Maximum the dominant source in the model was South America, because of the increased activity of glaciogenic dust sources in Southern Patagonia-Tierra del Fuego and the Southernmost Pampas regions, as well as an increase in transport efficiency southward. Dust emitted from the Southern Hemisphere dust source areas usually follow zonal patterns, but southward flow towards Antarctica is located in specific areas characterized by southward displacement of air masses. Observations and model results consistently suggest a spatially variable shift in dust particle sizes. This is due to a combination of relatively reduced en route wet removal favouring a generalized shift towards smaller particles, and on the other hand to an enhanced relative contribution of dry coarse particle deposition in the Last Glacial Maximum. (orig.)

  10. Breakup of last glacial deep stratification in the South Pacific

    Science.gov (United States)

    Basak, Chandranath; Fröllje, Henning; Lamy, Frank; Gersonde, Rainer; Benz, Verena; Anderson, Robert F.; Molina-Kescher, Mario; Pahnke, Katharina

    2018-02-01

    Stratification of the deep Southern Ocean during the Last Glacial Maximum is thought to have facilitated carbon storage and subsequent release during the deglaciation as stratification broke down, contributing to atmospheric CO2 rise. Here, we present neodymium isotope evidence from deep to abyssal waters in the South Pacific that confirms stratification of the deepwater column during the Last Glacial Maximum. The results indicate a glacial northward expansion of Ross Sea Bottom Water and a Southern Hemisphere climate trigger for the deglacial breakup of deep stratification. It highlights the important role of abyssal waters in sustaining a deep glacial carbon reservoir and Southern Hemisphere climate change as a prerequisite for the destabilization of the water column and hence the deglacial release of sequestered CO2 through upwelling.

  11. Linking glacial and future climates through an ensemble of GCM simulations

    Directory of Open Access Journals (Sweden)

    J. C. Hargreaves

    2007-01-01

    Full Text Available In this paper we explore the relationships between the modelled climate of the Last Glacial Maximum (LGM and that for doubled atmospheric carbon dioxide compared to the pre-industrial climate by analysing the output from an ensemble of runs from the MIROC3.2 GCM. Our results lend support to the idea in other recent work that the Antarctic is a useful place to look for historical data which can be used to validate models used for climate forecasting of future greenhouse gas induced climate changes, at local, regional and global scales. Good results may also be obtainable using tropical temperatures, particularly those over the ocean. While the greater area in the tropics makes them an attractive area for seeking data, polar amplification of temperature changes may mean that the Antarctic provides a clearer signal relative to the uncertainties in data and model results. Our result for Greenland is not so strong, possibly due to difficulties in accurately modelling the sea ice extent. The MIROC3.2 model shows an asymmetry in climate sensitivity calculated by decreasing rather than increasing the greenhouse gases, with 80% of the ensemble having a weaker cooling than warming. This asymmetry, if confirmed by other studies would mean that direct estimates of climate sensitivity from the LGM are likely to be underestimated by the order of half a degree. Our suspicion is, however, that this result may be highly model dependent. Analysis of the parameters varied in the model suggest the asymmetrical response may be linked to the ice in the clouds, which is therefore indicated as an important area for future research.

  12. Size and shape stasis in late Pleistocene mammals and birds from Rancho La Brea during the Last Glacial-Interglacial cycle

    Science.gov (United States)

    Prothero, Donald R.; Syverson, Valerie J.; Raymond, Kristina R.; Madan, Meena; Molina, Sarah; Fragomeni, Ashley; DeSantis, Sylvana; Sutyagina, Anastasiya; Gage, Gina L.

    2012-11-01

    Conventional neo-Darwinian theory views organisms as infinitely sensitive and responsive to their environments, and considers them able to readily change size or shape when they adapt to selective pressures. Yet since 1863 it has been well known that Pleistocene animals and plants do not show much morphological change or speciation in response to the glacial-interglacial climate cycles. We tested this hypothesis with all of the common birds (condors, golden and bald eagles, turkeys, caracaras) and mammals (dire wolves, saber-toothed cats, giant lions, horses, camels, bison, and ground sloths) from Rancho La Brea tar pits in Los Angeles, California, which preserves large samples of many bones from many well-dated pits spanning the 35,000 years of the Last Glacial-Interglacial cycle. Pollen evidence showed the climate changed from chaparral/oaks 35,000 years ago to snowy piñon-juniper forests at the peak glacial 20,000 years ago, then back to the modern chaparral since the glacial-interglacial transition. Based on Bergmann's rule, we would expect peak glacial specimens to have larger body sizes, and based on Allen's rule, peak glacial samples should have shorter and more robust limbs. Yet statistical analysis (ANOVA for parametric samples; Kruskal-Wallis test for non-parametric samples) showed that none of the Pleistocene pit samples is statistically distinct from the rest, indicating complete stasis from 35 ka to 9 ka. The sole exception was the Pit 13 sample of dire wolves (16 ka), which was significantly smaller than the rest, but this did not occur in response to climate change. We also performed a time series analysis of the pit samples. None showed directional change; all were either static or showed a random walk. Thus, the data show that birds and mammals at Rancho La Brea show complete stasis and were unresponsive to the major climate change that occurred at 20 ka, consistent with other studies of Pleistocene animals and plants. Most explanations for such

  13. Climate proxy data as groundwater tracers in regional flow systems

    Science.gov (United States)

    Clark, J. F.; Morrissey, S. K.; Stute, M.

    2008-05-01

    The isotopic and chemical signatures of groundwater reflect local climate conditions. By systematically analyzing groundwater and determining their hydrologic setting, records of past climates can be constructed. Because of their chemistries and relatively uncomplicated source functions, dissolved noble gases have yielded reliable records of continental temperatures for the last 30,000 to 50,000 years. Variations in the stable isotope compositions of groundwater due to long term climate changes have also been documented over these time scales. Because glacial - interglacial climate changes are relatively well known, these climate proxies can be used as "stratigraphic" markers within flow systems and used to distinguish groundwaters that have recharged during the Holocene from those recharged during the last glacial period, important time scales for distinguishing regional and local flow systems in many aquifers. In southern Georgia, the climate proxy tracers were able to identify leakage from surface aquifers into the Upper Floridan aquifer in areas previously thought to be confined. In south Florida, the transition between Holocene and glacial signatures in the Upper Floridan aquifer occurs mid-way between the recharge area and Lake Okeechobee. Down gradient of the lake, the proxies are uniform, indicating recharge during the last glacial period. Furthermore, there is no evidence for leakage from the shallow aquifers into the Upper Floridan. In the Lower Floridan, the climate proxies indicate that the saline water entered the aquifer after sea level rose to its present level.

  14. Sound transit climate risk reduction project.

    Science.gov (United States)

    2013-09-01

    The Climate Risk Reduction Project assessed how climate change may affect Sound Transit commuter rail, light rail, and express bus : services. The project identified potential climate change impacts on agency operations, assets, and long-term plannin...

  15. Millennial-scale climate variability during the Last Glacial period in the tropical Andes

    Science.gov (United States)

    Fritz, S. C.; Baker, P. A.; Ekdahl, E.; Seltzer, G. O.; Stevens, L. R.

    2010-04-01

    Millennial-scale climate variation during the Last Glacial period is evident in many locations worldwide, but it is unclear if such variation occurred in the interior of tropical South America, and, if so, how the low-latitude variation was related to its high-latitude counterpart. A high-resolution record, derived from the deep drilling of sediments on the floor of Lake Titicaca in the southern tropical Andes, is presented that shows clear evidence of millennial-scale climate variation between ˜60 and 20 ka BP. This variation is manifested by alternations of two interbedded sedimentary units. The two units have distinctive sedimentary, geochemical, and paleobiotic properties that are controlled by the relative abundance of terrigenous or nearshore components versus pelagic components. The sediments of more terrigenous or nearshore nature likely were deposited during regionally wetter climates when river transport of water and sediment was higher, whereas the sediments of more pelagic character were deposited during somewhat drier climates regionally. The majority of the wet periods inferred from the Lake Titicaca sediment record are correlated with the cold events in the Greenland ice cores and North Atlantic sediment cores, indicating that increased intensity of the South American summer monsoon was part of near-global scale climate excursions.

  16. Glacial History of Southernmost South America and Implications for Movement of the Westerlies and Antarctic Frontal Zone

    Science.gov (United States)

    Kaplan, M. R.; Fogwill, C. J.; Hulton, N. R.; Sugden, D. E.; Peter, K. W.

    2004-12-01

    The ~1 Myr glacial geologic record in southern South American is one of the few available terrestrial paleoclimate proxies at orbital and suborbital time scales in the middle latitudes of the Southern Hemisphere. Presently, southernmost Patagonia lies about 3\\deg north of the Antarctic frontal zone and within the middle latitude westerlies and the climate is controlled by the surrounding maritime conditions. Thus, the long-term glacial record provides insight into the history of climatic boundaries over the middle and high latitude southern ocean, including the upwind SE Pacific Ocean, tectonic-glacial evolution of the Andes, and global climate. To date, cosmogenic nuclide and 14C dating have focused on glacial fluctuations between 51 and 53\\deg S (Torres del Paine to northern Tierra del Fuego) during the last glacial cycle, including the late glacial period. At least 4 advances occurred between ca. 25 and 17 ka, with the maximum expansion of ice ca. 25-24 ka. Major deglaciation commenced after ca. 17.5 ka, which was interrupted by a major glacial-climate event ca. 14-12 ka. Modelling experiments suggest that the ice mass needed to form the glacial maximum moraines required about a 6\\deg cooling and a slight drying relative to the present. Such a fundamental temperature reduction, despite high summer isolation, strongly suggests northward movement of the westerlies and the polar front on millennial timescales. The Patagonian record also indicates that on orbital timescales equatorward movement of climate boundaries and glacial growth was in phase with major Northern Hemisphere ice volume change, despite high local summer insolation. At suborbital timescales, the picture is more complex. While major facets of the last glacial maximum appear to be in phase between the hemispheres, at least some late glacial events may be in step with Antarctic climate change. Present and future research will further constrain the timing of glacial events over the last 1 Myr and

  17. Penultimate Glacial-Interglacial Climate Variability in the Southern Great Plains of North America

    Science.gov (United States)

    Bartow-Gillies, E.; Maupin, C. R.; Roark, E. B.; Chou, Y. C.; White, K.; Kampen-Lewis, S. V.; Shen, C. C.

    2017-12-01

    Projections of changes in rainfall under future warming scenarios vary in their sign and intensity over the Southern Great Plains (SGP). A scarcity of local paleoclimate information before the Last Glacial Maximum (LGM) limits our understanding of regional climate responses to changes in mean state and forcing. Here, we present absolutely U/Th-dated oxygen and carbon isotope records from a calcite stalagmite near Georgetown, Texas (30°N, 98°W), spanning 98 to 209 kyr before present (kyr BP). SGP moisture is primarily sourced from the Gulf of Mexico, and precipitation exhibits clear seasonality, with a biannual rainy season divided into late boreal spring and fall. We interpret the oxygen isotopic composition of the stalagmite to reflect changes in rainwater δ18O composition, as well as cave temperature, through time. There are no clear kinetic isotope effects observed within the stalagmite. More negative (positive) δ18O values are a reflection of warmer and wetter (cooler and drier) conditions based on modern observations of rainwater δ18O at the study site. Variations in stalagmite δ13C may be driven by shifts in overlying vegetation type and changes in the rates of karst flow and prior calcite precipitation. The stalagmite records include Marine Isotope Stage (MIS) 5e, an interval where global temperatures may have been as much as 2°C warmer and sea level 4-6 m higher than present. Thus, our δ18O record provides context of unique importance for how SGP hydroclimate may respond to future warming. Prominent features in the δ18O record, including a warm and wet MIS 5e appear to be paced by precession, with the timing of δ18O minima (maxima) broadly consistent with that of maxima (minima) in monthly insolation at 30°N. The δ13C record exhibits a striking similarity to canonical, sawtooth records of glacial-interglacial variability, which suggests Great Plains vegetation communities may be sensitive to the status of Northern Hemisphere glaciation. Our SGP

  18. A Chronologic Dual-Hemisphere Approach to the Last Glacial Termination from the Southern Alps of New Zealand and the Altai Mountains of Western Mongolia

    Science.gov (United States)

    Strand, P.; Putnam, A. E.; Schaefer, J. M.; Denton, G.; Barrell, D.; Putnam, D.; Schwartz, R.; Sambuu, O.; Radue, M. J.; Lindsay, B. J.; Stevens, J.

    2017-12-01

    Understanding the processes that drove the last glacial termination in the tropics and mid-latitudes is a major unresolved problem in paleoclimate. The most recent glacial to interglacial transition represents the last great global warming and the last time CO2 rose by a substantial amount before the industrial period. Determining the speed of this warming will help refine the global climate system sensitivity to CO2 and will place ongoing global warming into a paleoclimatic context. Here, we test possible drivers of the last glacial termination by comparing chronologies of mountain glaciers, which are highly sensitive to changes in atmospheric temperature, in the middle latitudes of both polar hemispheres. The dating of glacier landforms, such as moraine ridges constructed along glacier margins, affords quantitative insight into past climate conditions. We present 10Be surface-exposure chronologies and glacial geomorphologic maps of mountain glacier recession since the Last Glacial Maximum in the Southern Alps of New Zealand (44°S, 170°E) and in the Altai Mountains of western Mongolia (49°N, 88°E). On the basis of these chronologies from opposing hemispheres, we evaluate the relative roles of rising atmospheric CO2, local insolation forcing, and ocean-atmosphere reorganizations in driving the global warming that ended the last ice age.

  19. Workshop on Pliocene Climate

    Directory of Open Access Journals (Sweden)

    Nabil Khélifi

    2010-04-01

    Full Text Available The warm Pliocene epoch (5–3 million years ago is often cited as a good analog for the near future climate because of its striking resemblance to the predictions of the “Intergovernmental Panel on Climate Change” for the next decades. Indeed, relative to today, during the Pliocene epoch, surface temperatures were 3–4°C warmer, sea level was about 5–40 meters higher, atmospheric CO2 concentrationswere relatively similar or slightly higher (~400 ± 50 ppmv, and ice sheets were restrained to Antarctica. However, since 3.0 Ma ago, the Earth’s climate has undergone a major transition from a warm and relatively stable state towards cold conditions marked by amplified glacial/interglacial cycles and widespread ice sheets in the Northern Hemisphere (NHG, and to a lesser extent over Antarctica. The causes and consequences of this global climate transition—driving warm periods to “icehouse” conditions marked by “Quaternary-style” glacial/interglacial cycles—are still uncertain. Yet, they may include the interaction of several mechanisms tied to oceanic and atmospheric circulations, tectonic-, greenhouse gases-, and biological activity, biogeochemical processes, and changes in Earth’s orbit.

  20. Climate change and the global pattern of moraine-dammed glacial lake outburst floods

    Science.gov (United States)

    Harrison, Stephan; Kargel, Jeffrey S.; Huggel, Christian; Reynolds, John; Shugar, Dan H.; Betts, Richard A.; Emmer, Adam; Glasser, Neil; Haritashya, Umesh K.; Klimeš, Jan; Reinhardt, Liam; Schaub, Yvonne; Wiltshire, Andy; Regmi, Dhananjay; Vilímek, Vít

    2018-04-01

    Despite recent research identifying a clear anthropogenic impact on glacier recession, the effect of recent climate change on glacier-related hazards is at present unclear. Here we present the first global spatio-temporal assessment of glacial lake outburst floods (GLOFs) focusing explicitly on lake drainage following moraine dam failure. These floods occur as mountain glaciers recede and downwaste. GLOFs can have an enormous impact on downstream communities and infrastructure. Our assessment of GLOFs associated with the rapid drainage of moraine-dammed lakes provides insights into the historical trends of GLOFs and their distributions under current and future global climate change. We observe a clear global increase in GLOF frequency and their regularity around 1930, which likely represents a lagged response to post-Little Ice Age warming. Notably, we also show that GLOF frequency and regularity - rather unexpectedly - have declined in recent decades even during a time of rapid glacier recession. Although previous studies have suggested that GLOFs will increase in response to climate warming and glacier recession, our global results demonstrate that this has not yet clearly happened. From an assessment of the timing of climate forcing, lag times in glacier recession, lake formation and moraine-dam failure, we predict increased GLOF frequencies during the next decades and into the 22nd century.

  1. Bayesian hierarchical models for regional climate reconstructions of the last glacial maximum

    Science.gov (United States)

    Weitzel, Nils; Hense, Andreas; Ohlwein, Christian

    2017-04-01

    Spatio-temporal reconstructions of past climate are important for the understanding of the long term behavior of the climate system and the sensitivity to forcing changes. Unfortunately, they are subject to large uncertainties, have to deal with a complex proxy-climate structure, and a physically reasonable interpolation between the sparse proxy observations is difficult. Bayesian Hierarchical Models (BHMs) are a class of statistical models that is well suited for spatio-temporal reconstructions of past climate because they permit the inclusion of multiple sources of information (e.g. records from different proxy types, uncertain age information, output from climate simulations) and quantify uncertainties in a statistically rigorous way. BHMs in paleoclimatology typically consist of three stages which are modeled individually and are combined using Bayesian inference techniques. The data stage models the proxy-climate relation (often named transfer function), the process stage models the spatio-temporal distribution of the climate variables of interest, and the prior stage consists of prior distributions of the model parameters. For our BHMs, we translate well-known proxy-climate transfer functions for pollen to a Bayesian framework. In addition, we can include Gaussian distributed local climate information from preprocessed proxy records. The process stage combines physically reasonable spatial structures from prior distributions with proxy records which leads to a multivariate posterior probability distribution for the reconstructed climate variables. The prior distributions that constrain the possible spatial structure of the climate variables are calculated from climate simulation output. We present results from pseudoproxy tests as well as new regional reconstructions of temperatures for the last glacial maximum (LGM, ˜ 21,000 years BP). These reconstructions combine proxy data syntheses with information from climate simulations for the LGM that were

  2. Assessing the Impact of Laurentide Ice-sheet Topography on Glacial Climate

    Science.gov (United States)

    Ullman, D. J.; LeGrande, A. N.; Carlson, A. E.; Anslow, F. S.; Licciardi, J. M.

    2014-01-01

    Simulations of past climates require altered boundary conditions to account for known shifts in the Earth system. For the Last Glacial Maximum (LGM) and subsequent deglaciation, the existence of large Northern Hemisphere ice sheets caused profound changes in surface topography and albedo. While ice-sheet extent is fairly well known, numerous conflicting reconstructions of ice-sheet topography suggest that precision in this boundary condition is lacking. Here we use a high-resolution and oxygen-isotopeenabled fully coupled global circulation model (GCM) (GISS ModelE2-R), along with two different reconstructions of the Laurentide Ice Sheet (LIS) that provide maximum and minimum estimates of LIS elevation, to assess the range of climate variability in response to uncertainty in this boundary condition.We present this comparison at two equilibrium time slices: the LGM, when differences in ice-sheet topography are maximized, and 14 ka, when differences in maximum ice-sheet height are smaller but still exist. Overall, we find significant differences in the climate response to LIS topography, with the larger LIS resulting in enhanced Atlantic Meridional Overturning Circulation and warmer surface air temperatures, particularly over northeastern Asia and the North Pacific. These up- and downstream effects are associated with differences in the development of planetary waves in the upper atmosphere, with the larger LIS resulting in a weaker trough over northeastern Asia that leads to the warmer temperatures and decreased albedo from snow and sea-ice cover. Differences between the 14 ka simulations are similar in spatial extent but smaller in magnitude, suggesting that climate is responding primarily to the larger difference in maximum LIS elevation in the LGM simulations. These results suggest that such uncertainty in ice-sheet boundary conditions alone may significantly impact the results of paleoclimate simulations and their ability to successfully simulate past climates

  3. Synoptic climate change as a driver of late Quaternary glaciations in the mid-latitudes of the Southern Hemisphere

    Science.gov (United States)

    Rother, H.; Shulmeister, J.

    2006-05-01

    The relative timing of late Quaternary glacial advances in mid-latitude (40-55° S) mountain belts of the Southern Hemisphere (SH) has become a critical focus in the debate on global climate teleconnections. On the basis of glacial data from New Zealand (NZ) and southern South America it has been argued that interhemispheric synchrony or asynchrony of Quaternary glacial events is due to Northern Hemisphere (NH) forcing of SH climate through either the ocean or atmosphere systems. Here we present a glacial snow-mass balance model that demonstrates that large scale glaciation in the temperate and hyperhumid Southern Alps of New Zealand can be generated with moderate cooling. This is because the rapid conversion of precipitation from rainfall to snowfall drives massive ice accumulation at small thermal changes (1-4°C). Our model is consistent with recent paleo-environmental reconstructions showing that glacial advances in New Zealand during the Last Glacial Maximum (LGM) and the Last Glacial Interglacial Transition (LGIT) occurred under very moderate cooling. We suggest that such moderate cooling could be generated by changes in synoptic climatology, specifically through enhanced regional flow of moist westerly air masses. Our results imply that NH climate forcing may not have been the exclusive driver of Quaternary glaciations in New Zealand and that synoptic style climate variations are a better explanation for at least some late Quaternary glacial events, in particular during the LGIT (e.g. Younger Dryas and/or Antarctic Cold Reversal).

  4. Synoptic climate change as a driver of late Quaternary glaciations in the mid-latitudes of the Southern Hemisphere

    Directory of Open Access Journals (Sweden)

    H. Rother

    2006-01-01

    Full Text Available The relative timing of late Quaternary glacial advances in mid-latitude (40-55° S mountain belts of the Southern Hemisphere (SH has become a critical focus in the debate on global climate teleconnections. On the basis of glacial data from New Zealand (NZ and southern South America it has been argued that interhemispheric synchrony or asynchrony of Quaternary glacial events is due to Northern Hemisphere (NH forcing of SH climate through either the ocean or atmosphere systems. Here we present a glacial snow-mass balance model that demonstrates that large scale glaciation in the temperate and hyperhumid Southern Alps of New Zealand can be generated with moderate cooling. This is because the rapid conversion of precipitation from rainfall to snowfall drives massive ice accumulation at small thermal changes (1-4°C. Our model is consistent with recent paleo-environmental reconstructions showing that glacial advances in New Zealand during the Last Glacial Maximum (LGM and the Last Glacial Interglacial Transition (LGIT occurred under very moderate cooling. We suggest that such moderate cooling could be generated by changes in synoptic climatology, specifically through enhanced regional flow of moist westerly air masses. Our results imply that NH climate forcing may not have been the exclusive driver of Quaternary glaciations in New Zealand and that synoptic style climate variations are a better explanation for at least some late Quaternary glacial events, in particular during the LGIT (e.g. Younger Dryas and/or Antarctic Cold Reversal.

  5. Modeling Mediterranean Ocean climate of the Last Glacial Maximum

    Directory of Open Access Journals (Sweden)

    U. Mikolajewicz

    2011-03-01

    Full Text Available A regional ocean general circulation model of the Mediterranean is used to study the climate of the Last Glacial Maximum. The atmospheric forcing for these simulations has been derived from simulations with an atmospheric general circulation model, which in turn was forced with surface conditions from a coarse resolution earth system model. The model is successful in reproducing the general patterns of reconstructed sea surface temperature anomalies with the strongest cooling in summer in the northwestern Mediterranean and weak cooling in the Levantine, although the model underestimates the extent of the summer cooling in the western Mediterranean. However, there is a strong vertical gradient associated with this pattern of summer cooling, which makes the comparison with reconstructions complicated. The exchange with the Atlantic is decreased to roughly one half of its present value, which can be explained by the shallower Strait of Gibraltar as a consequence of lower global sea level. This reduced exchange causes a strong increase of salinity in the Mediterranean in spite of reduced net evaporation.

  6. Late glacial vegetation and climate changes in the high mountains of Bulgaria (Southeast Europe)

    International Nuclear Information System (INIS)

    Bozilova, E.D.; Tonkov, S.B.

    2005-01-01

    Full text: The Late glacial vegetation history in the high mountains of Southern Bulgaria (Rila, Pirin, Western Rhodopes) is reconstructed by means of pollen analysis, plant macrofossils and radiocarbon dating of sediments from lakes and peat-bogs located between 1300 and 2200 m a.s.l. The vegetation response to the climate fluctuations after 13000 14 C yrs. BP in the Rila Mountains is bound for the first time to a detailed chronological framework. Two stadial and one interstadial phases are delimited analogous with the Oldest Dryas-Bolling/Allerod-Younger Dryas cycle for Western Europe. During the stadials mountain-steppe vegetation composed of Artemisia, Chenopodiaceae, Poaceae and other cold-resistant herbs dominated at high elevation with sparse stands of Pinus, Betula, and shrubland of Juniperus and Ephedra. The climate improvement in the interstadial resulted in the initial spread of deciduous and coniferous trees (Quercus, Tilia, Corylus, Carpinus, Abies, Picea) from their local refugia below 1000 m. The palaeoecological record from the climate deterioration during the Younger Dryas is documented in thin sections of the cores investigated. (author)

  7. Climatic impacts of fresh water hosing under Last Glacial Maximum conditions: a multi-model study

    Directory of Open Access Journals (Sweden)

    M. Kageyama

    2013-04-01

    Full Text Available Fresh water hosing simulations, in which a fresh water flux is imposed in the North Atlantic to force fluctuations of the Atlantic Meridional Overturning Circulation, have been routinely performed, first to study the climatic signature of different states of this circulation, then, under present or future conditions, to investigate the potential impact of a partial melting of the Greenland ice sheet. The most compelling examples of climatic changes potentially related to AMOC abrupt variations, however, are found in high resolution palaeo-records from around the globe for the last glacial period. To study those more specifically, more and more fresh water hosing experiments have been performed under glacial conditions in the recent years. Here we compare an ensemble constituted by 11 such simulations run with 6 different climate models. All simulations follow a slightly different design, but are sufficiently close in their design to be compared. They all study the impact of a fresh water hosing imposed in the extra-tropical North Atlantic. Common features in the model responses to hosing are the cooling over the North Atlantic, extending along the sub-tropical gyre in the tropical North Atlantic, the southward shift of the Atlantic ITCZ and the weakening of the African and Indian monsoons. On the other hand, the expression of the bipolar see-saw, i.e., warming in the Southern Hemisphere, differs from model to model, with some restricting it to the South Atlantic and specific regions of the southern ocean while others simulate a widespread southern ocean warming. The relationships between the features common to most models, i.e., climate changes over the north and tropical Atlantic, African and Asian monsoon regions, are further quantified. These suggest a tight correlation between the temperature and precipitation changes over the extra-tropical North Atlantic, but different pathways for the teleconnections between the AMOC/North Atlantic region

  8. From monsoon to marine productivity in the Arabian Sea: insights from glacial and interglacial climates

    Science.gov (United States)

    Le Mézo, Priscilla; Beaufort, Luc; Bopp, Laurent; Braconnot, Pascale; Kageyama, Masa

    2017-07-01

    The current-climate Indian monsoon is known to boost biological productivity in the Arabian Sea. This paradigm has been extensively used to reconstruct past monsoon variability from palaeo-proxies indicative of changes in surface productivity. Here, we test this paradigm by simulating changes in marine primary productivity for eight contrasted climates from the last glacial-interglacial cycle. We show that there is no straightforward correlation between boreal summer productivity of the Arabian Sea and summer monsoon strength across the different simulated climates. Locally, productivity is fuelled by nutrient supply driven by Ekman dynamics. Upward transport of nutrients is modulated by a combination of alongshore wind stress intensity, which drives coastal upwelling, and by a positive wind stress curl to the west of the jet axis resulting in upward Ekman pumping. To the east of the jet axis there is however a strong downward Ekman pumping due to a negative wind stress curl. Consequently, changes in coastal alongshore stress and/or curl depend on both the jet intensity and position. The jet position is constrained by the Indian summer monsoon pattern, which in turn is influenced by the astronomical parameters and the ice sheet cover. The astronomical parameters are indeed shown to impact wind stress intensity in the Arabian Sea through large-scale changes in the meridional gradient of upper-tropospheric temperature. However, both the astronomical parameters and the ice sheets affect the pattern of wind stress curl through the position of the sea level depression barycentre over the monsoon region (20-150° W, 30° S-60° N). The combined changes in monsoon intensity and pattern lead to some higher glacial productivity during the summer season, in agreement with some palaeo-productivity reconstructions.

  9. Phylogeographic insights into cryptic glacial refugia.

    Science.gov (United States)

    Provan, Jim; Bennett, K D

    2008-10-01

    The glacial episodes of the Quaternary (2.6 million years ago-present) were a major factor in shaping the present-day distributions of extant flora and fauna, with expansions and contractions of the ice sheets rendering large areas uninhabitable for most species. Fossil records suggest that many species survived glacial maxima by retreating to refugia, usually at lower latitudes. Recently, phylogeographic studies have given support to the existence of previously unknown, or cryptic, refugia. Here we summarise many of these insights into the glacial histories of species in cryptic refugia gained through phylogeographic approaches. Understanding such refugia might be important as the Earth heads into another period of climate change, in terms of predicting the effects on species distribution and survival.

  10. Climate change and the global pattern of moraine-dammed glacial lake outburst floods

    Directory of Open Access Journals (Sweden)

    S. Harrison

    2018-04-01

    Full Text Available Despite recent research identifying a clear anthropogenic impact on glacier recession, the effect of recent climate change on glacier-related hazards is at present unclear. Here we present the first global spatio-temporal assessment of glacial lake outburst floods (GLOFs focusing explicitly on lake drainage following moraine dam failure. These floods occur as mountain glaciers recede and downwaste. GLOFs can have an enormous impact on downstream communities and infrastructure. Our assessment of GLOFs associated with the rapid drainage of moraine-dammed lakes provides insights into the historical trends of GLOFs and their distributions under current and future global climate change. We observe a clear global increase in GLOF frequency and their regularity around 1930, which likely represents a lagged response to post-Little Ice Age warming. Notably, we also show that GLOF frequency and regularity – rather unexpectedly – have declined in recent decades even during a time of rapid glacier recession. Although previous studies have suggested that GLOFs will increase in response to climate warming and glacier recession, our global results demonstrate that this has not yet clearly happened. From an assessment of the timing of climate forcing, lag times in glacier recession, lake formation and moraine-dam failure, we predict increased GLOF frequencies during the next decades and into the 22nd century.

  11. Ice/Bedrock Feedbacks as a Principle Contributor to Glacial-Interglacial Oscillations

    Science.gov (United States)

    Kimmel, J.; Lee, K.; Jackson, C. H.

    2014-12-01

    Since the mid-Pleistocene, the oscillation between glacial and interglacial climate states occurs with a period of approximately 100 kyr. Each cycle is comprised of a slow glaciation with a subsequent rapid deglaciation. While the solar forcing is clearly an important driver for these transitions, the power spectrum of the solar forcing is quite different from the subsequent climate response and, in general, does not have a noticeable correlation with global ice volume. Instead, previous studies have shown that internal climate processes and their interactions (e.g., CO2, water vapor, isostatic bed response) play a significant role in producing these global climate cycles. The rapid retreat of large ice sheets at the start of an interglacial is often attributed to the interaction between surface and atmospheric processes. While calving is thought to amplify this retreat, it is not typically considered a principle driver of the ice sheet response. Our study investigates the potential for ice/bedrock feedbacks to be a principle contributor in shaping the glacial-interglacial climate oscillation -- particularly the rapid deglaciation that precedes an interglacial. The ice sheet model we develop includes a piecewise linear ice/bedrock feedback while atmospheric and surface processes are taken to be as simple as possible. Due to the long timescale of the bedrock response and the rapid mass loss due to calving, the model ice sheet exhibits rapid deglaciation from a stable maximum when it retreats through an overdeepening. However, ice sheet advance is also shown to be as rapid unless a more complex bedrock response is considered. In particular, we show that a forebulge created by the displacement of the mantle adds a new stable branch to the volume/equilibrium line bifurcation diagram that results in slower growth of the ice sheet during glaciation.

  12. Modeled seasonality of glacial abrupt climate events

    NARCIS (Netherlands)

    Flueckiger, J.; Knutti, R.; White, J.W.C.; Renssen, H.

    2008-01-01

    Greenland ice cores, as well as many other paleo-archives from the northern hemisphere, recorded a series of 25 warm interstadial events, the so-called Dansgaard-Oeschger (D-O) events, during the last glacial period. We use the three-dimensional coupled global ocean-atmosphere-sea ice model

  13. Expanding Greenland’s Glacial Record

    DEFF Research Database (Denmark)

    Bjørk, Anders Anker

    . On order to expand the glacial history of Greenland, this thesis explores physical and geological archives for evidence of the glaciers’ past response to climatic variations. Using aerial photographs, the dynamic history of the Greenland Ice Sheet is extended back to 1900 C.E. Glacier changes covering...

  14. Pleistocene Arid and Wet Climatic Variability: Imprint of Glacial Climate, Tectonics and Oceanographic Events in the Sediments of the se Indian Ocean, Western Australia

    Science.gov (United States)

    McHugh, C. M.; Castaneda, J.; Kominz, M. A.; Gallagher, S. J.; Gurnis, M.; Ishiwa, T.; Mamo, B. L.; Henderiks, J.; Christensen, B. A.; Groeneveld, J.; Yokoyama, Y.; Mustaque, S.; Iqbal, F.

    2017-12-01

    The interaction between the evolving tectonic configuration of the Indo Pacific region as a result of the northward migration of the Australian continent, and its collision with the Banda Arc began in the Late Miocene ( 8 Ma ago). This constriction played an important role in the diversion of the Indonesian Throughflow and initiation of the Leeuwin Current. These events coupled to Pleistocene glaciations left a significant imprint in the sediments offshore western Australia. The International Ocean Discovery Program Expedition 356 drilled in shelf depths of the Carnarvon and Perth Basins recovering a thick section of Pleistocene sediment from Sites U1461 (440 m thick) and U1460 (306 m), respectively. Analyses of the lithology (logs, grain size), chemistry (X-ray elemental analyses) and an initial age model constructed from biostratigraphy and radiocarbon ages were interpreted within the framework of multichannel seismic profiles. Radiocarbon ages provide control for MIS 1-4, and the identification of glacial cycles is based on shipboard biostratigraphy best developed for Site U1460. Arid and high productivity signals are linked with glacial stages. Wet conditions are associated with river discharge, terrigenous sediments and linked with interglacial stages. Except for one very pronounced interval the productivity signal during interglacials is low. High productivity during glacial stages is related to upwelling linked to the southward flowing Leeuwin Current. Comparison of the northernmost (U1461) with southernmost (U1460) sites reveals a strong arid and wet climatic variability beginning in the Pleistocene. This variability is most pronounced in the late Pleistocene post 0.8-1.0 Ma and can be correlated with glacial-interglacial cycles, especially in the more humid southern Site that was closer to the Subantarctic Front and influenced by the Westerlies. In Site U1461 we recovered the 135m thick Gorgon slide. Its occurrence at 1 Ma coincides with a rapid tectonic

  15. Small Mammals as Indicators of Climate, Biodiversity, and Ecosystem Change

    Science.gov (United States)

    Hope, Andrew G.; Waltari, Eric; Morse, Nathan R.; Flamme, M.J.; Cook, Joseph A.; Talbot, Sandra L.

    2017-01-01

    Climate is a driving evolutionary force for biodiversity in high-latitude Alaska. This region is complex and dynamic with high annual variation in temperature and light. Through deeper time, Alaska has experienced major climate extremes over much longer periodicity. For example, the Quaternary Period (the last ~2.5 million years), commonly known as the Ice Age, was punctuated by more than 20 major glacial-interglacial cycles. During glacial phases, water was locked up in ice sheets that covered much of North America, and the resulting lower sea levels exposed a land connection between Alaska and Siberia, a combined region known as Beringia (Figure 1). This isthmus provided vast expanses of land for species to inhabit, provided they could withstand potentially harsh polar conditions. Each extended glacial phase periodically transitioned into a shorter interglacial warm phase. These climate reversals melted continental ice sheets to expose corridors for reinvasion of terrestrial species, particularly those associated with forested habitats further south. Those species that survived at northern latitudes through repeated glacial-interglacial cycles formed the Arctic tundra communities that persist today. At present, Alaska supports diverse communities associated with both tundra and forests (Figure 2). These communities often interact with one another across latitudinal and elevational gradients, with tundra species generally found further north or higher in elevation. Alaska’s climate is continuing to change today, strongly influencing local environments and the distribution and dynamics of wildlife species.

  16. Modeling glacial climates

    Science.gov (United States)

    North, G. R.; Crowley, T. J.

    1984-01-01

    Mathematical climate modelling has matured as a discipline to the point that it is useful in paleoclimatology. As an example a new two dimensional energy balance model is described and applied to several problems of current interest. The model includes the seasonal cycle and the detailed land-sea geographical distribution. By examining the changes in the seasonal cycle when external perturbations are forced upon the climate system it is possible to construct hypotheses about the origin of midlatitude ice sheets and polar ice caps. In particular the model predicts a rather sudden potential for glaciation over large areas when the Earth's orbital elements are only slightly altered. Similarly, the drift of continents or the change of atmospheric carbon dioxide over geological time induces radical changes in continental ice cover. With the advance of computer technology and improved understanding of the individual components of the climate system, these ideas will be tested in far more realistic models in the near future.

  17. Glacial evolution of the Ampato Volcanic Complex (Peru)

    Science.gov (United States)

    Alcalá, J.; Palacios, D.; Zamorano, J. J.; Vázquez, L.

    2009-04-01

    Ice masses on the Western range of the Central Andes are a main source of water resources and act as a geoindicator of variations in the climate of the tropics (Mark, 2008). The study of their evolution is of particular interest since they are situated in the transition zone between the tropical and mid-latitude circulation areas of the atmosphere (Zech et al., 2007). The function of this transition area is currently under debate, and understanding it is essential for the development of global climate models (Kull et al, 2008; Mark, 2008). However our understanding of the evolution of glaciers and their paleoclimatic factors for this sector of the Central Andes is still at a very basic level. This paper presents initial results of a study on the glacial evolution of the Ampato volcanic complex (15°24´- 15° 51´ S, 71° 51´ - 73° W; 6288 m a.s.l.) located in the Western Range of the Central Andes in Southern Peru, 70 km NW of the city of Arequipa. The main objectives are to identify the number of glacial phases the complex has undergone using geomorphological criteria to define a time frame for each phase, based on cosmogenic 36Cl dating of a sequence of moraine deposits; and to estimate the glacier Equilibrium Line Altitude (ELA) of each phase. The Ampato volcanic complex is formed by 3 great andesitic stratovolcanoes, the Nevados HualcaHualca-Sabancaya-Ampato, which started forming between the late Miocene and early Quaternary (Bulmer et al., 1999), aligned N-S and with summits covered with glaciers. The Sabancaya volcano is fully active, with its latest eruption occurring in 2001. Glacial landforms were identified and mapped using photointerpretation of vertical aerial photographs from 1955 (1:35,000 scale, National Geographic Institute of Peru), oblique photographs from 1943 (Aerophotographical Service of Peru), and a geo-referenced high-resolution Mrsid satellite image from 2000 (NASA). This cartography was corrected and improved through fieldwork. It was

  18. Pre-Incan Archeology of Peru: Paleo-Indians in the Paleo-Climate

    Science.gov (United States)

    Alibrandi, Marsha

    2011-01-01

    Peru's prehistory, climate, and terrain are the landscape upon which one of humankind's longest migrations occurred. When the glacial period ended, a geographic and cultural transition began when the meltwaters carved river valleys across the South American continent. Culture-rich communities of fishers, miners, artisans, and morticians populated…

  19. Evidence of a low-latitude glacial buzzsaw: Progressive hypsometry reveals height-limiting glacial erosion in tropical mountain belts

    Science.gov (United States)

    Cunningham, M.; Stark, C. P.; Kaplan, M. R.; Schaefer, J. M.; Winckler, G.

    2017-12-01

    It has been widely demonstrated that glacial erosion limits the height of mid-latitude mountain ranges—a phenomenon commonly referred to as the "glacial buzzsaw." The strength of the buzzsaw is thought to diminish, or die out completely, at lower latitudes, where glacial landscapes occupy only a small part of mountain belts affected by Pleistocene glaciation. Here we argue that glacial erosion has actually truncated the rise of many tropical orogens. To elicit signs of height-limiting glacial erosion in the tropics, we employ a new take on an old tool: we identify transient geomorphic features by tracking the evolution of (sub)catchment hypsometry with increasing elevation above base level, a method we term "progressive hypsometry." In several tropical mountain belts, including the Central Range of Taiwan, the Talamanca of Costa Rica, the Finisterres of Papua New Guinea, and the Rwenzoris of East Africa, progressive hypsometry reveals transient landscapes perched at various elevations, but the highest of these transient features are consistently glacial landscapes near the lower limit of late-Pleistocene glacial equilibrium line altitude (ELA) fluctuation. We attribute this pattern to an efficient glacial buzzsaw. In many cases, these glacial landscapes are undergoing contemporary destruction by headward propagating, fluvially-driven escarpments. We deduce that a duel between glacial buzzcutting and fluvially-driven scarp propagation has been ongoing throughout the Pleistocene in these places, and that the preservation potential of tropical glacial landscapes is low. To this end, we have identified possible remnants of glacial landscapes in the final stages of scarp consumption, and use 3He surface exposure age dating of boulders and bedrock surfaces in two of these landscapes to constrain major geomorphic activity to before the onset of the Last Glacial Maximum. Our work points to a profound climatic influence on the evolution of these warm, tectonically active

  20. The last glacial inception in continental northwestern Europe: characterization and timing of the Late Eemian Aridity Pulse (LEAP) recorded in multiple Belgian speleothems.

    Science.gov (United States)

    Vansteenberge, Stef; Verheyden, Sophie; Quinif, Yves; Genty, Dominique; Blamart, Dominique; Deprez, Maxim; Van Stappen, Jeroen; Cnudde, Veerle; Cheng, Hai; Edwards, R. Lawrence; Claeys, Philippe

    2017-04-01

    Interglacial-glacial transitions represent important turnovers in the climate system. In contrast with glacial terminations, they are described as a more gradual cooling. So far, the last interglacial has yielded a wealth of knowledge regarding climate dynamics during past warm periods. On top of the assumed gradual temperature drop starting at 119 ka, evidence for the presence of a drastic drying/cooling event in northern Europe has been observed. In lake records from Germany, a distinct shift in pollen assembly at 117.5 ka is interpreted as the consequence of a short dry event lasting 470 years, defined as the Late Eemian Aridity Pulse (LEAP, Sirocko et al., 2005). In a Belgian stalagmite from Han-sur-Lesse Cave, the LEAP is characterized by a 5‰ increase in δ13C occurring in just 200 years. The δ13C enrichment is dated at 117.5 ka and associated with a vegetation change above the cave, induced by a drying and/or cooling event (Vansteenberge et al., 2016). Also, within North Atlantic sediment cores, an increase in ice rafted debris was linked to the occurrence of a colder period at 117 ka (Irvali et al., 2016). Its coevality with the LEAP indicates a likely more regional extent than previously thought. Up to now, no independent chronology exists and little is known about the continental climatic expression of the LEAP. This study aims at 1) constructing an improved and independent chronology for the LEAP event, 2) characterizing this event in terms of its climatic expression and 3) placing the LEAP within the context of an interglacial-glacial transition. For this, two additional speleothems (Han-8, RSM-17) from two different Belgian caves (Han-sur-Lesse, Remouchamps) are added to the existing Han-9 dataset. Exceptionally high growth rates (0.5 mm yr-1) and a presumed annual layering of the RSM-17 sample enable an annual to decadal resolution to investigate the LEAP. U-Th age models covering the glacial inception are constructed with 25 dates on the three

  1. An improved land biosphere module for use in the DCESS Earth system model (version 1.1 with application to the last glacial termination

    Directory of Open Access Journals (Sweden)

    R. Eichinger

    2017-09-01

    Full Text Available Interactions between the land biosphere and the atmosphere play an important role for the Earth's carbon cycle and thus should be considered in studies of global carbon cycling and climate. Simple approaches are a useful first step in this direction but may not be applicable for certain climatic conditions. To improve the ability of the reduced-complexity Danish Center for Earth System Science (DCESS Earth system model DCESS to address cold climate conditions, we reformulated the model's land biosphere module by extending it to include three dynamically varying vegetation zones as well as a permafrost component. The vegetation zones are formulated by emulating the behaviour of a complex land biosphere model. We show that with the new module, the size and timing of carbon exchanges between atmosphere and land are represented more realistically in cooling and warming experiments. In particular, we use the new module to address carbon cycling and climate change across the last glacial transition. Within the constraints provided by various proxy data records, we tune the DCESS model to a Last Glacial Maximum state and then conduct transient sensitivity experiments across the transition under the application of explicit transition functions for high-latitude ocean exchange, atmospheric dust, and the land ice sheet extent. We compare simulated time evolutions of global mean temperature, pCO2, atmospheric and oceanic carbon isotopes as well as ocean dissolved oxygen concentrations with proxy data records. In this way we estimate the importance of different processes across the transition with emphasis on the role of land biosphere variations and show that carbon outgassing from permafrost and uptake of carbon by the land biosphere broadly compensate for each other during the temperature rise of the early last deglaciation.

  2. Hydrological and climate changes in southeast Siberia over the last 33 kyr

    Science.gov (United States)

    Katsuta, Nagayoshi; Ikeda, Hisashi; Shibata, Kenji; Saito-Kokubu, Yoko; Murakami, Takuma; Tani, Yukinori; Takano, Masao; Nakamura, Toshio; Tanaka, Atsushi; Naito, Sayuri; Ochiai, Shinya; Shichi, Koji; Kawakami, Shin-ichi; Kawai, Takayoshi

    2018-05-01

    Paleoenvironmental and paleoclimate changes in intracontinental Siberia were reconstructed by continuous, high-resolution records (biogenic silica, U, total organic carbon and N, total S, and grain size) from a sediment core retrieved from the Buguldeika Saddle, Lake Baikal, dating back to the last 33 cal. ka BP. The Holocene climate was wet relative to the last glacial period. The climate became gradually warm and wet from the early to middle Holocene, followed by a shift at ca. 6.5 cal. ka BP toward warm and dry, possibly because of evapotranspiration. This suggests that the climate system transition from the glacial to interglacial state occurred at that time. In the last glacial, the deposition of carbonate mud from the Primorsky Range was associated with Heinrich events (H3 and H1) and the Selenga River inflow during the Last Glacial Maximum was caused by meltwater of mountain glaciers in the Khamar-Daban Range. The anoxic bottom-water during the Allerød-Younger Dryas was probably a result of weakened ventilation associated with reduced Selenga River inflow and microbial decomposition of organic matters originating from moderate input of nutrients from the Primorsky Range. The rapid decline in precipitation during the early Holocene may have been a response to the 8.2 ka cooling event.

  3. The variability of the isotopic signal during the last Glacial as seen from the ultra-high resolution NEEM and NorthGRIP ice cores.

    Science.gov (United States)

    Gkinis, Vasileios; Møllesøe Vinther, Bo; Terkelsen Holme, Christian; Capron, Emilie; Popp, Trevor James; Olander Rasmussen, Sune

    2017-04-01

    The continuity and high resolution available in polar ice core records constitutes them an excellent tool for the study of the stadial-interstadial transitions, notably through the study of the water isotopic composition of polar precipitation (δ18O, δD ). The quest for the highest resolution possible has resulted in experimental sampling and analysis techniques that have yielded data sets with a potential to change the current picture on the climatic signals of the last Glacial. Specifically, the ultra-high resolution δ18O signals from the NorthGRIP and NEEM ice cores, present a variability at multi-annual and decadal time scales, whose interpretation gives rise to further puzzling though interesting questions and an obvious paradox. By means of simple firn isotope diffusion and densification calculations, we firstly demonstrate that the variability of observed signals is unlikely to be due to post depositional effects that are known to occur on the surface of the Greenland ice cap and alter the δ18O composition of the precipitated snow. Assuming specific values for the δ18O sensitivity to temperature (commonly referred to as the δ18O slope), we estimate that the temperature signal during the stadials has a variability that extents from interstadial to extremely cold levels with peak-to-peak fluctuations of almost 35 K occurring in a few years. Similarly, during interstadial phases the temperature varies rapidly from stadial to Holocene levels while the signal variability shows a maximum during the LGM, with magnitudes of up to 15‰ that translate to ≈ 50 K when a δ18O slope of 0.3‰K-1 is used. We assess the validity of these results and comment on the stability of the δ18O slope. Driven by a simple logical queue, we conclude that the observed δ18O variability reflects a climatic signal although not necessarily attributed 100% to temperature changes. From this we can assume that there occur climatic mechanisms during the previously thought stable

  4. Lake-level increasing under the climate cryoaridization conditions during the Last Glacial Maximum

    Science.gov (United States)

    Amosov, Mikhail; Strelkov, Ivan

    2017-04-01

    A lake genesis and lake-level increasing during the Last Glacial Maximum (LGM) are the paramount issues in paleoclimatology. Investigating these problems reveals the regularities of lake development and figures out an arid territory conditions at the LGM stage. Pluvial theory is the most prevalent conception of lake formation during the LGM. This theory is based on a fact that the water bodies emerged and their level increased due to torrential rainfalls. In this study, it is paid attention to an alternative assumption of lake genesis at the LGM stage, which is called climate cryoaridization. In accordance with this hypothesis, the endorheic water basins had their level enlarged because of a simultaneous climate aridity and temperature decrease. In this research, a lake-level increasing in endorheic regions of Central Asia and South American Altiplano of the Andes is described. The lake investigation is related to its conditions during the LGM. The study also includes a lake catalogue clearly presenting the basin conditions at the LGM stage and nowadays. The data compilation partly consists of information from an earlier work of Mikhail Amosov, Lake-levels, Vegetation And Climate In Central Asia During The Last Glacial Maximum (EGU2014-3015). According to the investigation, a lake catalogue on 27 lakes showed that most of the water bodies had higher level. This feature could be mentioned for the biggest lakes of the Aral Sea, Lake Balkhash, Issyk-Kul etc. and for the small ones located in the mountains, such as Pamir, Tian-Shan and Tibet. Yet some lakes that are situated in Central Asian periphery (Lake Qinghai and lakes in Inner Mongolia) used to be lower than nowadays. Also, the lake-level increasing of Altiplano turned to be a significant feature during the LGM in accordance with the data of 5 lakes, such as Titicaca, Coipasa-Uyuni, Lejia, Miscanti and Santa-Maria. Most of the current endorheic basins at the LGM stage were filled with water due to abundant

  5. Glacial climate sensitivity to different states of the Atlantic Meridional Overturning Circulation: results from the IPSL model

    Directory of Open Access Journals (Sweden)

    M. Kageyama

    2009-09-01

    Full Text Available Paleorecords from distant locations on the globe show rapid and large amplitude climate variations during the last glacial period. Here we study the global climatic response to different states of the Atlantic Meridional Overturning Circulation (AMOC as a potential explanation for these climate variations and their possible connections. We analyse three glacial simulations obtained with an atmosphere-ocean coupled general circulation model and characterised by different AMOC strengths (18, 15 and 2 Sv resulting from successive ~0.1 Sv freshwater perturbations in the North Atlantic. These AMOC states suggest the existence of a freshwater threshold for which the AMOC collapses. A weak (18 to 15 Sv AMOC decrease results in a North Atlantic and European cooling. This cooling is not homogeneous, with even a slight warming over the Norwegian Sea. Convection in this area is active in both experiments, but surprisingly stronger in the 15 Sv simulation, which appears to be related to interactions with the atmospheric circulation and sea-ice cover. Far from the North Atlantic, the climatic response is not significant. The climate differences for an AMOC collapse (15 to 2 Sv are much larger and of global extent. The timing of the climate response to this AMOC collapse suggests teleconnection mechanisms. Our analyses focus on the North Atlantic and surrounding regions, the tropical Atlantic and the Indian monsoon region. The North Atlantic cooling associated with the AMOC collapse induces a cyclonic atmospheric circulation anomaly centred over this region, which modulates the eastward advection of cold air over the Eurasian continent. This can explain why the cooling is not as strong over western Europe as over the North Atlantic. In the Tropics, the southward shift of the Inter-Tropical Convergence Zone appears to be strongest over the Atlantic and Eastern Pacific and results from an adjustment of the atmospheric and oceanic heat transports. Finally, the

  6. Are glacials "dry" - and in what sense?

    Science.gov (United States)

    Scheff, J.; Seager, R.; Coats, S.; Liu, H.

    2016-12-01

    Glacial maxima during the Pleistocene are generally thought to be arid on land, with a few regional exceptions. Recent work on future climate change, however, has found that different wetness-related variables have opposite-signed responses over large portions of the continents, belying simple ideas of local "drying" or "wetting" with global temperature change in models. Here, we show that this behavior extends to simulations of the Last Glacial Maximum as well: the continents are modeled to have generally wetter topsoils and higher values of standard climate-wetness metrics in the LGM than in the preindustrial, as well as generally lower precipitation and ubiquitously lower photosynthesis (likely driven by the low CO2), with the streamflow response falling in between. Is this model-derived view of the LGM an accurate one? Using a large community pollen and plant-fossil compilation, we confirm that LGM grasslands and open woodlands grew at many sites of present potential forest, seasonal or dry forests at many sites of present potential rain- or seasonal forests, and so forth, while changes in the opposite sense were extremely few and spatially confined. We show that this strongly resembles the simulated photosynthesis changes, but not the simulated streamflow or soil moisture changes. Meanwhile, published LGM lake-level estimates resemble the simulated streamflow changes, but not the photosynthesis changes. Thus, the last glacial does not appear to be systematically "dry" outside the high latitudes, but merely carbon-starved. Similarly, local findings of reduced or more open vegetation at the LGM (e.g. from pollen, carbon isotopes, or dustiness) do not indicate local "aridity" unless corroborating hydrological proxies are also found. Finally, this work suggests that glacial-era evidence of open vegetation with high lake levels (as in the eastern Mediterranean) is not odd or paradoxical, but entirely consistent with climate model output.

  7. Changes in atmospheric variability in a glacial climate and the impacts on proxy data: a model intercomparison

    Directory of Open Access Journals (Sweden)

    F. S. R. Pausata

    2009-09-01

    Full Text Available Using four different climate models, we investigate sea level pressure variability in the extratropical North Atlantic in the preindustrial climate (1750 AD and at the Last Glacial Maximum (LGM, 21 kyrs before present in order to understand how changes in atmospheric circulation can affect signals recorded in climate proxies.

    In general, the models exhibit a significant reduction in interannual variance of sea level pressure at the LGM compared to pre-industrial simulations and this reduction is concentrated in winter. For the preindustrial climate, all models feature a similar leading mode of sea level pressure variability that resembles the leading mode of variability in the instrumental record: the North Atlantic Oscillation (NAO. In contrast, the leading mode of sea level pressure variability at the LGM is model dependent, but in each model different from that in the preindustrial climate. In each model, the leading (NAO-like mode of variability explains a smaller fraction of the variance and also less absolute variance at the LGM than in the preindustrial climate.

    The models show that the relationship between atmospheric variability and surface climate (temperature and precipitation variability change in different climates. Results are model-specific, but indicate that proxy signals at the LGM may be misinterpreted if changes in the spatial pattern and seasonality of surface climate variability are not taken into account.

  8. CLIMATIC FORECASTING OF NET INFILTRATION AT YUCCA MOUNTAIN, USING ANALOGUE METEOROLOGICAL DATA

    International Nuclear Information System (INIS)

    B. Faybishenko

    2005-01-01

    Net infiltration is a key hydrologic parameter that controls the rate of deep percolation through the unsaturated zone, the groundwater recharge, radionuclide transport, and seepage into the underground tunnels. Because net infiltration is largely affected by climatic conditions, future changes in climatic conditions will potentially alter net infiltration. The objectives of this presentation are to: (1) Present a conceptual model and a semi-empirical approach for regional, climatic forecasting of net infiltration, based on the precipitation and temperature data from analogue meteorological stations, and (2) Demonstrate the results of forecasting net infiltration for future climates--interglacial, monsoon and glacial--over the Yucca Mountain region for the period of 500,000 years. Calculations of the net infiltration were performed using a modified Budyko's water-balance model, for which potential evapotranspiration was evaluated from the temperature-based Thornthwaite formula. (Both Budyko's and Thornthwaite's formulae have been used broadly in hydrological studies.) The results of calculations were used for ranking net infiltration, along with the aridity and precipitation-effectiveness (P-E) indexes, for future climatic scenarios. Using this approach, we determined a general trend of increasing net infiltration from the present-day (interglacial) climate to monsoon, intermediate (glacial transition), and then to the glacial climate. Ranking of the aridity and P-E indexes is practically the same as that of net infiltration. The validation of the computed net infiltration rates yielded a good match with other field and modeling study results of groundwater recharge and net infiltration evaluation

  9. Last Glacial Maximum CO2 and d13C successfully reconciled

    NARCIS (Netherlands)

    Bouttes, N.; Paillard, D.; Roche, D.M.V.A.P.; Brovkin, V.; Bopp, L.

    2011-01-01

    During the Last Glacial Maximum (LGM, ∼21,000 years ago) the cold climate was strongly tied to low atmospheric CO2 concentration (∼190 ppm). Although it is generally assumed that this low CO2 was due to an expansion of the oceanic carbon reservoir, simulating the glacial level

  10. Gigantic landslides versus glacial deposits: on origin of large hummock deposits in Alai Valley, Northern Pamir

    Science.gov (United States)

    Reznichenko, Natalya

    2015-04-01

    As glaciers are sensitive to local climate, their moraines position and ages are used to infer past climates and glacier dynamics. These chronologies are only valid if all dated moraines are formed as the result of climatically driven advance and subsequent retreat. Hence, any accurate palaeoenvironmental reconstruction requires thorough identification of the landform genesis by complex approach including geomorphological, sedimentological and structural landform investigation. Here are presented the implication of such approach for the reconstruction of the mega-hummocky deposits formation both of glacial and landslide origin in the glaciated Alai Valley of the Northern Pamir with further discussion on these and similar deposits validity for palaeoclimatic reconstructions. The Tibetan Plateau valleys are the largest glaciated regions beyond the ice sheets with high potential to provide the best geological record of glacial chronologies and, however, with higher probabilities of the numerous rock avalanche deposits including those that were initially considered of glacial origin (Hewitt, 1999). The Alai Valley is the largest intermountain depression in the upper reaches of the Amudarja River basin that has captured numerous unidentified extensive hummocky deposits descending from the Zaalai Range of Northern Pamir, covering area in more than 800 km2. Such vast hummocky deposits are usually could be formed either: 1) glacially by rapid glacial retreat due to the climate signal or triggered a-climatically glacial changes, such as glacial surge or landslide impact, or 2) during the landslide emplacement. Combination of sediment tests on agglomerates forming only in rock avalanche material (Reznichenko et al., 2012) and detailed geomorphological and sedimentological descriptions of these deposits allowed reconstructing the glacial deposition in the Koman and Lenin glacial catchments with identification of two gigantic rock avalanches and their relation to this glacial

  11. Glacial wetland distribution and methane emissions estimated from PMIP2 climate simulations

    NARCIS (Netherlands)

    Weber, S.L.; Drury, A.J.; Toonen, W.H.J.; Weele, M. van

    2010-01-01

    The interglacial–glacial decrease in atmospheric methane concentration is often attributed to a strong decline in the wetland source. This seems consistent with the extreme coldness and vastly expanded ice sheets. Here we analyse coupled model simulations for the last glacial maximum from the

  12. An improved active contour model for glacial lake extraction

    Science.gov (United States)

    Zhao, H.; Chen, F.; Zhang, M.

    2017-12-01

    Active contour model is a widely used method in visual tracking and image segmentation. Under the driven of objective function, the initial curve defined in active contour model will evolve to a stable condition - a desired result in given image. As a typical region-based active contour model, C-V model has a good effect on weak boundaries detection and anti noise ability which shows great potential in glacial lake extraction. Glacial lake is a sensitive indicator for reflecting global climate change, therefore accurate delineate glacial lake boundaries is essential to evaluate hydrologic environment and living environment. However, the current method in glacial lake extraction mainly contains water index method and recognition classification method are diffcult to directly applied in large scale glacial lake extraction due to the diversity of glacial lakes and masses impacted factors in the image, such as image noise, shadows, snow and ice, etc. Regarding the abovementioned advantanges of C-V model and diffcults in glacial lake extraction, we introduce the signed pressure force function to improve the C-V model for adapting to processing of glacial lake extraction. To inspect the effect of glacial lake extraction results, three typical glacial lake development sites were selected, include Altai mountains, Centre Himalayas, South-eastern Tibet, and Landsat8 OLI imagery was conducted as experiment data source, Google earth imagery as reference data for varifying the results. The experiment consequence suggests that improved active contour model we proposed can effectively discriminate the glacial lakes from complex backgound with a higher Kappa Coefficient - 0.895, especially in some small glacial lakes which belongs to weak information in the image. Our finding provide a new approach to improved accuracy under the condition of large proportion of small glacial lakes and the possibility for automated glacial lake mapping in large-scale area.

  13. Millennial and sub-millennial scale climatic variations recorded in polar ice cores over the last glacial period

    Directory of Open Access Journals (Sweden)

    E. Capron

    2010-06-01

    Full Text Available Since its discovery in Greenland ice cores, the millennial scale climatic variability of the last glacial period has been increasingly documented at all latitudes with studies focusing mainly on Marine Isotopic Stage 3 (MIS 3; 28–60 thousand of years before present, hereafter ka and characterized by short Dansgaard-Oeschger (DO events. Recent and new results obtained on the EPICA and NorthGRIP ice cores now precisely describe the rapid variations of Antarctic and Greenland temperature during MIS 5 (73.5–123 ka, a time period corresponding to relatively high sea level. The results display a succession of abrupt events associated with long Greenland InterStadial phases (GIS enabling us to highlight a sub-millennial scale climatic variability depicted by (i short-lived and abrupt warming events preceding some GIS (precursor-type events and (ii abrupt warming events at the end of some GIS (rebound-type events. The occurrence of these sub-millennial scale events is suggested to be driven by the insolation at high northern latitudes together with the internal forcing of ice sheets. Thanks to a recent NorthGRIP-EPICA Dronning Maud Land (EDML common timescale over MIS 5, the bipolar sequence of climatic events can be established at millennial to sub-millennial timescale. This shows that for extraordinary long stadial durations the accompanying Antarctic warming amplitude cannot be described by a simple linear relationship between the two as expected from the bipolar seesaw concept. We also show that when ice sheets are extensive, Antarctica does not necessarily warm during the whole GS as the thermal bipolar seesaw model would predict, questioning the Greenland ice core temperature records as a proxy for AMOC changes throughout the glacial period.

  14. Coupled ice sheet - climate simulations of the last glacial inception and last glacial maximum with a model of intermediate complexity that includes a dynamical downscaling of heat and moisture

    Science.gov (United States)

    Quiquet, Aurélien; Roche, Didier M.

    2017-04-01

    Comprehensive fully coupled ice sheet - climate models allowing for multi-millenia transient simulations are becoming available. They represent powerful tools to investigate ice sheet - climate interactions during the repeated retreats and advances of continental ice sheets of the Pleistocene. However, in such models, most of the time, the spatial resolution of the ice sheet model is one order of magnitude lower than the one of the atmospheric model. As such, orography-induced precipitation is only poorly represented. In this work, we briefly present the most recent improvements of the ice sheet - climate coupling within the model of intermediate complexity iLOVECLIM. On the one hand, from the native atmospheric resolution (T21), we have included a dynamical downscaling of heat and moisture at the ice sheet model resolution (40 km x 40 km). This downscaling accounts for feedbacks of sub-grid precipitation on large scale energy and water budgets. From the sub-grid atmospheric variables, we compute an ice sheet surface mass balance required by the ice sheet model. On the other hand, we also explicitly use oceanic temperatures to compute sub-shelf melting at a given depth. Based on palaeo evidences for rate of change of eustatic sea level, we discuss the capability of our new model to correctly simulate the last glacial inception ( 116 kaBP) and the ice volume of the last glacial maximum ( 21 kaBP). We show that the model performs well in certain areas (e.g. Canadian archipelago) but some model biases are consistent over time periods (e.g. Kara-Barents sector). We explore various model sensitivities (e.g. initial state, vegetation, albedo) and we discuss the importance of the downscaling of precipitation for ice nucleation over elevated area and for the surface mass balance of larger ice sheets.

  15. Modelling large-scale ice-sheet-climate interactions at the last glacial inception

    Science.gov (United States)

    Browne, O. J. H.; Gregory, J. M.; Payne, A. J.; Ridley, J. K.; Rutt, I. C.

    2010-05-01

    In order to investigate the interactions between coevolving climate and ice-sheets on multimillenial timescales, a low-resolution atmosphere-ocean general circulation model (AOGCM) has been coupled to a three-dimensional thermomechanical ice-sheet model. We use the FAMOUS AOGCM, which is almost identical in formulation to the widely used HadCM3 AOGCM, but on account of its lower resolution (7.5° longitude × 5° latitude in the atmosphere, 3.75°× 2.5° in the ocean) it runs about ten times faster. We use the community ice-sheet model Glimmer at 20 km resolution, with the shallow ice approximation and an annual degree-day scheme for surface mass balance. With the FAMOUS-Glimmer coupled model, we have simulated the growth of the Laurentide and Fennoscandian ice sheets at the last glacial inception, under constant orbital forcing and atmospheric composition for 116 ka BP. Ice grows in both regions, totalling 5.8 m of sea-level equivalent in 10 ka, slower than proxy records suggest. Positive climate feedbacks reinforce this growth at local scales (order hundreds of kilometres), where changes are an order of magnitude larger than on the global average. The albedo feedback (higher local albedo means a cooler climate) is important in the initial expansion of the ice-sheet area. The topography feedback (higher surface means a cooler climate) affects ice-sheet thickness and is not noticeable for the first 1 ka. These two feedbacks reinforce each other. Without them, the ice volume is ~90% less after 10 ka. In Laurentia, ice expands initially on the Canadian Arctic islands. The glaciation of the islands eventually cools the nearby mainland climate sufficiently to produce a positive mass balance there. Adjacent to the ice-sheets, cloud feedbacks tend to reduce the surface mass balance and restrain ice growth; this is an example of a local feedback whose simulation requires a model that includes detailed atmospheric physics.

  16. Modelling the inorganic ocean carbon cycle under past and future climate change

    International Nuclear Information System (INIS)

    Ewan, T.L.

    2004-01-01

    This study used a coupled ocean-atmosphere-sea ice model with an inorganic carbon component to examine the inorganic ocean carbon cycle with particular reference to how climate feedback influences future uptake. In the last 150 years, the increase in atmosphere carbon dioxide (CO 2 ) concentrations have been higher than any time during the Earth's history. Although the oceans are the largest sink for carbon dioxide, it is not know how the ocean carbon cycle will respond to increasing anthropogenic carbon dioxide concentrations in the future. Climate feedbacks could potentially reduce further uptake of carbon by the ocean. In addition to examining past climate transitions, including both abrupt and glacial-interglacial climate transitions, this study also examined the sensitivity of the inorganic carbon cycle to increased atmospheric carbon dioxide. Atmospheric carbon dioxide levels were also projected under a range of global warming scenarios. Most simulations identified a transient weakening of the North Atlantic and increased sea surface temperatures (SST). These positive feedbacks act on the carbon system to reduce uptake. However, the ocean has the capacity to take up 65 to 75 per cent of the anthropogenic carbon dioxide increases. An analysis of climate feedback on future carbon uptake shows that oceans store 7 per cent more carbon when there are no climate feedbacks acting on the system. Sensitivity experiments using the Gent McWilliams parameterization for mixing associated with mesoscale eddies show a further 6 per cent increase in oceanic uptake. Inclusion of sea ice dynamics resulted in a 2 per cent difference in uptake. This study also examined changes in atmospheric carbon dioxide concentration that occur during abrupt climate change events. Changes in ocean circulation and carbon solubility cause significant increases in atmospheric carbon dioxide concentrations when melt water episodes are simulated in both hemispheres. The response of the carbon

  17. The glacial record of New Zealand's Southern Alps

    Science.gov (United States)

    Schaefer, J. M.; Denton, G.; Lowell, T.; Anderson, B.; Rinterknecht, V.; Schlosser, P.; Ivy-Ochs, S.; Kubik, P.; Schluechter, C.; Chinn, T.; Barrell, D.; Lifton, N.; Jull, T.

    2004-12-01

    We present detailed mapping and surface exposure dating using in-situ Be-10 and C-14 of the moraine set of Lake Pukaki, New Zealand's Southern Alps, spanning from the penultimate glaciation, over several Last Glacial Maximum (LGM) moraines, the late glacial event to Holocene glacial advances. New Zealand, a mountain ridge in the middle of the Southern Ocean, has one of the best preserved moraine records world-wide, offering the opportunity to reconstruct amplitude and timing of climate changes from Southern mid-latitudes, an area where paleoclimate data is scarce. The extensive mapping effort by G. Denton and colleagues (http://wyvern.gns.cri.nz/website/csigg/) provides a unique background for sample selection for Surface Exposure Dating. Our extensive data set (>40 samples analyzed so far) indicate that (i) the LGM in New Zealand terminated clearly prior to the Boelling/Alleroed warming, (ii) the late glacial advance is within uncertainties consistent with the timing of the Younger Dryas cold reversal; (iii) there occurred an early Holocene glacial event of the same amplitude than the Little Ice Age. This latter event is the first Holocene glacial event from the Southern Hemisphere dated by in-situ Be-10 and C-14.

  18. Climate and vegetational regime shifts in the late Paleozoic ice age earth.

    Science.gov (United States)

    DiMichele, W A; Montañez, I P; Poulsen, C J; Tabor, N J

    2009-03-01

    The late Paleozoic earth experienced alternation between glacial and non-glacial climates at multiple temporal scales, accompanied by atmospheric CO2 fluctuations and global warming intervals, often attended by significant vegetational changes in equatorial latitudes of Pangaea. We assess the nature of climate-vegetation interaction during two time intervals: middle-late Pennsylvanian transition and Pennsylvanian-Permian transition, each marked by tropical warming and drying. In case study 1, there is a catastrophic intra-biomic reorganization of dominance and diversity in wetland, evergreen vegetation growing under humid climates. This represents a threshold-type change, possibly a regime shift to an alternative stable state. Case study 2 is an inter-biome dominance change in western and central Pangaea from humid wetland and seasonally dry to semi-arid vegetation. Shifts between these vegetation types had been occurring in Euramerican portions of the equatorial region throughout the late middle and late Pennsylvanian, the drier vegetation reaching persistent dominance by Early Permian. The oscillatory transition between humid and seasonally dry vegetation appears to demonstrate a threshold-like behavior but probably not repeated transitions between alternative stable states. Rather, changes in dominance in lowland equatorial regions were driven by long-term, repetitive climatic oscillations, occurring with increasing intensity, within overall shift to seasonal dryness through time. In neither case study are there clear biotic or abiotic warning signs of looming changes in vegetational composition or geographic distribution, nor is it clear that there are specific, absolute values or rates of environmental change in temperature, rainfall distribution and amount, or atmospheric composition, approach to which might indicate proximity to a terrestrial biotic-change threshold.

  19. Modelling large-scale ice-sheet–climate interactions following glacial inception

    Directory of Open Access Journals (Sweden)

    J. M. Gregory

    2012-10-01

    Full Text Available We have coupled the FAMOUS global AOGCM (atmosphere-ocean general circulation model to the Glimmer thermomechanical ice-sheet model in order to study the development of ice-sheets in north-east America (Laurentia and north-west Europe (Fennoscandia following glacial inception. This first use of a coupled AOGCM–ice-sheet model for a study of change on long palæoclimate timescales is made possible by the low computational cost of FAMOUS, despite its inclusion of physical parameterisations similar in complexity to higher-resolution AOGCMs. With the orbital forcing of 115 ka BP, FAMOUS–Glimmer produces ice caps on the Canadian Arctic islands, on the north-west coast of Hudson Bay and in southern Scandinavia, which grow to occupy the Keewatin region of the Canadian mainland and all of Fennoscandia over 50 ka. Their growth is eventually halted by increasing coastal ice discharge. The expansion of the ice-sheets influences the regional climate, which becomes cooler, reducing the ablation, and ice accumulates in places that initially do not have positive surface mass balance. The results suggest the possibility that the glaciation of north-east America could have begun on the Canadian Arctic islands, producing a regional climate change that caused or enhanced the growth of ice on the mainland. The increase in albedo (due to snow and ice cover is the dominant feedback on the area of the ice-sheets and acts rapidly, whereas the feedback of topography on SMB does not become significant for several centuries, but eventually has a large effect on the thickening of the ice-sheets. These two positive feedbacks are mutually reinforcing. In addition, the change in topography perturbs the tropospheric circulation, producing some reduction of cloud, and mitigating the local cooling along the margin of the Laurentide ice-sheet. Our experiments demonstrate the importance and complexity of the interactions between ice-sheets and local climate.

  20. Asynchronous Glacial Chronologies in the Central Andes (15-40°S) and Paleoclimatic Implications

    Science.gov (United States)

    Zech, R.; Kull, C.; Kubik, P. W.; Veit, H.

    2006-12-01

    We have established glacial chronologies along a N-S transect over the Central Andes using 10Be surface exposure dating. Our results show that maximum glacial advances occurred asynchronously and reflect the varying influence and shifts of the major atmospheric circulation systems during the Late Quaternary: the tropical circulation in the north and the westerlies in the south. In Bolivia (three research areas in the Cordillera Real and the Cordillera Cochabamba, ~15°S) glacial advances could be dated to ~20 and 12 ka BP. This is in good agreement with published exposure age data from moraines in Bolivia and Peru (provided that all ages are calculated following the same scaling system). Accordingly, the maximum glaciation there probably occurred roughly synchronous to the temperature minimum of the global Last Glacial Maximum (LGM) and the lateglacial cold reversals. Strict correlation with neither the Younger Dryas in the northern hemisphere, nor the Antarctic Cold Reversal is possible due to the current systematic exposure age uncertainties (~10%). Glacier-Climate-Modelling corroborates the sensitivity of the reconstructed glaciers to temperature changes, rather than precipitation. On the contrary, there is good evidence for the dominant role of precipitation changes on the glacial chronologies in the lee of the Cordillera Occidental, i.e. on the Altiplano and further south. The pronounced lateglacial wet phase, which is well documented in lake transgression phases as far south as 28°S (-> tropical moisture source), seems to have caused glacial advances even at ~30°S. In two research areas in Chile at that latitude, we were able to date several lateglacial moraines. Besides, the maximum datable glaciation there occurred at ~30 ka BP. That is significantly earlier than the LGM (sensu strictu) and points to favourable climate conditions for glaciation at that time (particularly increased precipitation). We conclude that the westerlies were more intensive or

  1. Response of spatial vegetation distribution in China to climate changes since the Last Glacial Maximum (LGM)

    Science.gov (United States)

    Wang, Siyang; Xu, Xiaoting; Shrestha, Nawal; Zimmermann, Niklaus E.; Tang, Zhiyao; Wang, Zhiheng

    2017-01-01

    Analyzing how climate change affects vegetation distribution is one of the central issues of global change ecology as this has important implications for the carbon budget of terrestrial vegetation. Mapping vegetation distribution under historical climate scenarios is essential for understanding the response of vegetation distribution to future climatic changes. The reconstructions of palaeovegetation based on pollen data provide a useful method to understand the relationship between climate and vegetation distribution. However, this method is limited in time and space. Here, using species distribution model (SDM) approaches, we explored the climatic determinants of contemporary vegetation distribution and reconstructed the distribution of Chinese vegetation during the Last Glacial Maximum (LGM, 18,000 14C yr BP) and Middle-Holocene (MH, 6000 14C yr BP). The dynamics of vegetation distribution since the LGM reconstructed by SDMs were largely consistent with those based on pollen data, suggesting that the SDM approach is a useful tool for studying historical vegetation dynamics and its response to climate change across time and space. Comparison between the modeled contemporary potential natural vegetation distribution and the observed contemporary distribution suggests that temperate deciduous forests, subtropical evergreen broadleaf forests, temperate deciduous shrublands and temperate steppe have low range fillings and are strongly influenced by human activities. In general, the Tibetan Plateau, North and Northeast China, and the areas near the 30°N in Central and Southeast China appeared to have experienced the highest turnover in vegetation due to climate change from the LGM to the present. PMID:28426780

  2. The INTIMATE event stratigraphy of the last glacial period

    Science.gov (United States)

    Olander Rasmussen, Sune; Svensson, Anders

    2015-04-01

    The North Atlantic INTIMATE (INtegration of Ice-core, MArine and TErrestrial records) group has previously recommended an Event Stratigraphy approach for the synchronisation of records of the Last Termination using the Greenland ice core records as the regional stratotypes. A key element of these protocols has been the formal definition of numbered Greenland Stadials (GS) and Greenland Interstadials (GI) within the past glacial period as the Greenland expressions of the characteristic Dansgaard-Oeschger events that represent cold and warm phases of the North Atlantic region, respectively. Using a recent synchronization of the NGRIP, GRIP, and GISP2 ice cores that allows the parallel analysis of all three records on a common time scale, we here present an extension of the GS/GI stratigraphic template to the entire glacial period. In addition to the well-known sequence of Dansgaard-Oeschger events that were first defined and numbered in the ice core records more than two decades ago, a number of short-lived climatic oscillations have been identified in the three synchronized records. Some of these events have been observed in other studies, but we here propose a consistent scheme for discriminating and naming all the significant climatic events of the last glacial period that are represented in the Greenland ice cores. In addition to presenting the updated event stratigraphy, we make a series of recommendations on how to refer to these periods in a way that promotes unambiguous comparison and correlation between different proxy records, providing a more secure basis for investigating the dynamics and fundamental causes of these climatic perturbations. The work presented is a part of a newly published paper in an INTIMATE special issue of Quaternary Science Reviews: Rasmussen et al., 'A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event

  3. Risk and resilience in the late glacial: A case study from the western Mediterranean

    Science.gov (United States)

    Barton, C. Michael; Aura Tortosa, J. Emili; Garcia-Puchol, Oreto; Riel-Salvatore, Julien G.; Gauthier, Nicolas; Vadillo Conesa, Margarita; Pothier Bouchard, Geneviève

    2018-03-01

    The period spanning the Last Glacial Maximum through early Holocene encompasses dramatic and rapid environmental changes that offered both increased risk and new opportunities to human populations of the Mediterranean zone. The regional effects of global climate change varied spatially with latitude, topography, and distance from a shifting coastline; and human adaptations to these changes played out at these regional scales. To better understand the spatial and temporal dynamics of climate change and human social-ecological-technological systems (or SETS) during the transition from full glacial to interglacial, we carried out a meta-analysis of archaeological and paleoenvironmental datasets across the western Mediterranean region. We compiled information on prehistoric technology, land-use, and hunting strategies from 291 archaeological assemblages, recovered from 122 sites extending from southern Spain, through Mediterranean France, to northern and peninsular Italy, as well as 2,386 radiocarbon dates from across this region. We combine these data on human ecological dynamics with paleoenvironmental information derived from global climate models, proxy data, and estimates of coastlines modeled from sea level estimates and digital terrain. The LGM represents an ecologically predictable period for over much of the western Mediterranean, while the remainder of the Pleistocene was increasingly unpredictable, making it a period of increased ecological risk for hunter-gatherers. In response to increasing spatial and temporal uncertainty, hunter-gatherers reorganized different constituents of their SETS, allowing regional populations to adapt to these conditions up to a point. Beyond this threshold, rapid environmental change resulted in significant demographic change in Mediterranean hunter-gatherer populations.

  4. Indian monsoon variations during three contrasting climatic periods: the Holocene, Heinrich Stadial 2 and the last interglacial-glacial transition

    Science.gov (United States)

    Zorzi, Coralie; Fernanda Sanchez Goñi, Maria; Anupama, Krishnamurthy; Prasad, Srinivasan; Hanquiez, Vincent; Johnson, Joel; Giosan, Liviu

    2016-04-01

    In contrast to the East Asian and African monsoons the Indian monsoon is still poorly documented throughout the last climatic cycle (last 135,000 years). Pollen analysis from two marine sediment cores (NGHP-01-16A and NGHP-01-19B) collected from the offshore Godavari and Mahanadi basins, both located in the Core Monsoon Zone (CMZ) reveals changes in Indian summer monsoon variability and intensity during three contrasting climatic periods: the Holocene, the Heinrich Stadial (HS) 2 and the Marine Isotopic Stage (MIS) 5/4 during the ice sheet growth transition. During the first part of the Holocene between 11,300 and 4,200 cal years BP, characterized by high insolation (minimum precession, maximum obliquity), the maximum extension of the coastal forest and mangrove reflects high monsoon rainfall. This climatic regime contrasts with that of the second phase of the Holocene, from 4,200 cal years BP to the present, marked by the development of drier vegetation in a context of low insolation (maximum precession, minimum obliquity). The historical period in India is characterized by an alternation of strong and weak monsoon centennial phases that may reflect the Medieval Climate Anomaly and the Little Ice Age, respectively. During the HS 2, a period of low insolation and extensive iceberg discharge in the North Atlantic Ocean, vegetation was dominated by grassland and dry flora indicating pronounced aridity as the result of a weak Indian summer monsoon. The MIS 5/4 glaciation, also associated with low insolation but moderate freshwater fluxes, was characterized by a weaker reduction of the Indian summer monsoon and a decrease of seasonal contrast as recorded by the expansion of dry vegetation and the development of Artemisia, respectively. Our results support model predictions suggesting that insolation changes control the long term trend of the Indian monsoon precipitation, but its millennial scale variability and intensity are instead modulated by atmospheric

  5. Subtropical Climate Variability since the Last Glacial Maximum from Speleothem Precipitation Reconstructions in Florida

    Science.gov (United States)

    Polk, J.; van Beynen, P.; DeLong, K. L.; Asmerom, Y.; Polyak, V. J.

    2017-12-01

    Teleconnections between the tropical-subtropical regions of the Americas since the Last Glacial Maximum (LGM), particularly the Mid- to Late-Holocene, and high-resolution proxy records refining climate variability over this period continue to receive increasing attention. Here, we present a high-resolution, precisely dated speleothem record spanning multiple periods of time since the LGM ( 30 ka) for the Florida peninsula. The data indicate that the amount effect plays a significant role in determining the isotopic signal of the speleothem calcite. Collectively, the records indicate distinct differences in climate in the region between the LGM, Mid-Holocene, and Late Holocene, including a progressive shift in ocean composition and precipitation isotopic values through the period, suggesting Florida's sensitivity to regional and global climatic shifts. Comparisons between speleothem δ18O values and Gulf of Mexico marine records reveal a strong connection between the Gulf region and the terrestrial subtropical climate in the Late Holocene, while the North Atlantic's influence is clear in the earlier portions of the record. Warmer sea surface temperatures correspond to enhanced evaporation, leading to more intense atmospheric convection in Florida, and thereby modulating the isotopic composition of rainfall above the cave. These regional signals in climate extend from the subtropics to the tropics, with a clear covariance between the speleothem signal and other proxy records from around the region, as well as global agreement during the LGM period with other records. These latter connections appear to be driven by changes in the mean position of the Intertropical Convergence Zone and time series analysis of the δ18O values reveals significant multidecadal periodicities in the record, which are evidenced by agreement with the AMV and other multidecadal influences (NAO and PDO) likely having varying influence throughout the period of record. The climate variability

  6. Ultra-high resolution pollen record from the northern Andes reveals rapid shifts in montane climates within the last two glacial cycles

    Directory of Open Access Journals (Sweden)

    M. H. M. Groot

    2011-03-01

    Full Text Available Here we developed a composite pollen-based record of altitudinal vegetation changes from Lake Fúquene (5° N in Colombia at 2540 m elevation. We quantitatively calibrated Arboreal Pollen percentages (AP% into mean annual temperature (MAT changes with an unprecedented ~60-year resolution over the past 284 000 years. An age model for the AP% record was constructed using frequency analysis in the depth domain and tuning of the distinct obliquity-related variations to the latest marine oxygen isotope stacked record. The reconstructed MAT record largely concurs with the ~100 and 41-kyr (obliquity paced glacial cycles and is superimposed by extreme changes of up to 7 to 10° Celsius within a few hundred years at the major glacial terminations and during marine isotope stage 3, suggesting an unprecedented North Atlantic – equatorial link. Using intermediate complexity transient climate modelling experiments, we demonstrate that ice volume and greenhouse gasses are the major forcing agents causing the orbital-related MAT changes, while direct precession-induced insolation changes had no significant impact on the high mountain vegetation during the last two glacial cycles.

  7. Late Glacial to Holocene climate change and human impact in the Mediterranean : The last ca. 17ka diatom record of Lake Prespa (Macedonia/Albania/Greece)

    NARCIS (Netherlands)

    Cvetkoska, Aleksandra; Levkov, Zlatko; Reed, Jane M.; Wagner, Bernd

    2014-01-01

    Lake Prespa (Macedonia/Albania/Greece) occupies an important location between Mediterranean and central European climate zones. Although previous multi-proxy research on the Late Glacial to Holocene sequence, core Co1215 (320cm; ca. 17cal ka BP to present), has demonstrated its great value as an

  8. New tree-ring evidence for the Late Glacial period from the northern pre-Alps in eastern Switzerland

    Science.gov (United States)

    Reinig, Frederick; Nievergelt, Daniel; Esper, Jan; Friedrich, Michael; Helle, Gerhard; Hellmann, Lena; Kromer, Bernd; Morganti, Sandro; Pauly, Maren; Sookdeo, Adam; Tegel, Willy; Treydte, Kerstin; Verstege, Anne; Wacker, Lukas; Büntgen, Ulf

    2018-04-01

    The rate and magnitude of temperature variability at the transition from the Last Glacial Maximum into the early Holocene represents a natural analog to current and predicted climate change. A limited number of high-resolution proxy archives, however, challenges our understanding of environmental conditions during this period. Here, we present combined dendrochronological and radiocarbon evidence from 253 newly discovered subfossil pine stumps from Zurich, Switzerland. The individual trees reveal ages of 41-506 years and were growing between the Allerød and Preboreal (∼13‧900-11‧300 cal BP). Together with previously collected pines from this region, this world's best preserved Late Glacial forest substantially improves the earliest part of the absolutely dated European tree-ring width chronology between 11‧300 and 11‧900 cal BP. Radiocarbon measurements from 65 Zurich pines between ∼12‧320 and 13‧950 cal BP provide a perspective to prolong the continuous European tree-ring record by another ∼2000 years into the Late Glacial era. These data will also be relevant for pinpointing the Laacher See volcanic eruption (∼12‧900 cal BP) and two major Alpine earthquakes (∼13‧770 and ∼11‧600 cal BP). In summary, this study emphasizes the importance of dating precision and multi-proxy comparison to disentangle environmental signals from methodological noise, particularly during periods of high climate variability but low data availability, such as the Younger Dryas cold spell (∼11‧700 and 12‧900 cal BP).

  9. Constraining Glacial Runoff Contributions to Water Resources in the Cordillera Real, Bolivia using Environmental Tracers

    Science.gov (United States)

    Guido, Z.; McIntosh, J. C.; Papuga, S. A.

    2013-12-01

    Warming temperatures in recent decades have contributed to substantial reductions in glaciers in many mountain regions around the globe, including the South American Andes. Melting of these glaciers taps water resources accumulated in past climates, and the diminishing ice marks a decrease in a nonrenewable water source that begs the question: how will future water supplies be impacted by climate change. Water resource management and climate adaptation efforts can be informed by knowledge of the extent to which glaciers contribute to seasonal streamflows, but remote locations and scant monitoring often limit this quantification. In Bolivia, more than two million people draw water from watersheds fed, in part, by glaciers. The amount to which these glaciers contribute to the water supply, however, is not well constrained. We apply elemental and isotopic tracers in an end-member mixing model to quantify glacial runoff contributions to local water supplies. We present oxygen and deuterium isotopes and major anion concentrations (sulfate and chloride) of shallow groundwater, streams, reservoirs, small arroyos, and glacial runoff. Isotopic and anion mixing models suggest between 45-67% of the water measured in high altitude streams originated from within the glacial footprint during the 2011 wet season, while glacial runoff contributed about 42-53% of the water in reservoirs in the 2012 dry season. Data also show that shallow groundwater is connected to glacial-fed streams. Any future decrease in glacial runoff may contribute to a reduction in surface water supplies and lower groundwater levels downstream, perhaps below the depth of hand-dug wells common in rural communities.

  10. Climate change mitigation through livestock system transitions

    Science.gov (United States)

    Havlík, Petr; Valin, Hugo; Herrero, Mario; Obersteiner, Michael; Schmid, Erwin; Rufino, Mariana C.; Mosnier, Aline; Thornton, Philip K.; Böttcher, Hannes; Conant, Richard T.; Frank, Stefan; Fritz, Steffen; Fuss, Sabine; Kraxner, Florian; Notenbaert, An

    2014-01-01

    Livestock are responsible for 12% of anthropogenic greenhouse gas emissions. Sustainable intensification of livestock production systems might become a key climate mitigation technology. However, livestock production systems vary substantially, making the implementation of climate mitigation policies a formidable challenge. Here, we provide results from an economic model using a detailed and high-resolution representation of livestock production systems. We project that by 2030 autonomous transitions toward more efficient systems would decrease emissions by 736 million metric tons of carbon dioxide equivalent per year (MtCO2e⋅y−1), mainly through avoided emissions from the conversion of 162 Mha of natural land. A moderate mitigation policy targeting emissions from both the agricultural and land-use change sectors with a carbon price of US$10 per tCO2e could lead to an abatement of 3,223 MtCO2e⋅y−1. Livestock system transitions would contribute 21% of the total abatement, intra- and interregional relocation of livestock production another 40%, and all other mechanisms would add 39%. A comparable abatement of 3,068 MtCO2e⋅y−1 could be achieved also with a policy targeting only emissions from land-use change. Stringent climate policies might lead to reductions in food availability of up to 200 kcal per capita per day globally. We find that mitigation policies targeting emissions from land-use change are 5 to 10 times more efficient—measured in “total abatement calorie cost”—than policies targeting emissions from livestock only. Thus, fostering transitions toward more productive livestock production systems in combination with climate policies targeting the land-use change appears to be the most efficient lever to deliver desirable climate and food availability outcomes. PMID:24567375

  11. Seasonality intensification and long-term winter cooling as a part of the Late Pliocene climate development

    Science.gov (United States)

    Klotz, Stefan; Fauquette, Séverine; Combourieu-Nebout, Nathalie; Uhl, Dieter; Suc, Jean-Pierre; Mosbrugger, Volker

    2006-01-01

    A mutual climatic range method is applied to the Mediterranean marine pollen record of Semaforo (Vrica section, Calabria, Italy) covering the period from ∼2.46 Ma to ∼2.11 Ma. The method yields detailed information on summer, annual and winter temperatures and on precipitation during the nine obliquity and precession-controlled 'glacial' periods (marine isotope stages 96 to 80) and eight 'interglacial' periods (marine isotope stages 95 to 81) characterising this time interval. The reconstruction reveals higher temperatures of at least 2.8 °C in mean annual and 2.2 °C in winter temperatures, and 500 mm in precipitation during the 'interglacials' as compared to the present-day climate in the study area. During the 'glacials', temperatures are generally lower as compared to the present-day climate in the region, but precipitation is equivalent. Along the consecutive 'interglacials', a trend toward a reduction in annual and winter temperatures by more than 2.3 °C, and toward a higher seasonality is observed. Along the consecutive 'glacials', a trend toward a strong reduction in all temperature parameters of at least 1.6 °C is reconstructed. Climatic amplitudes of 'interglacial-glacial' transitions increase from the older to the younger cycles for summer and annual temperatures. The cross-spectral analyses suggest obliquity related warm/humid-cold/dry 'interglacial-glacial' cycles which are superimposed by precession related warm/dry- cold/humid cycles. A time displacement in the development of temperatures and precipitation is indicated for the obliquity band by temperatures generally leading precipitation change at ∼4 kyr, and on the precession band of ∼9.6 kyr in maximum.

  12. Limiting factors for vegetation development during the early late glacial in Denmark

    DEFF Research Database (Denmark)

    Mortensen, Morten Fischer; Odgaard, Bent Vad; Jessen, Cathrine

    Slotseng, a small basin in southern Jutland, is the first Danish site with a bio- and chronostratigraphy that unambiguously reflects the environment of the earliest late glacial, the Bølling period. Results of pollen and macrofossil analyses show that the vegetation of the Bølling and Older Dryas...... periods at Slotseng was dominated by Betula nana and Dryas octopetala and associated with many herbs of open habitats. Late-glacial pollen records are frequently interpreted only in the context of climate change. However, the forcing mechanisms of vegetational change may shift over time between e...... to climate change suggests that other factors limited vegetational development. These factors included soil instability, aridity and low soil nitrogen.. This study highlights the multitude of climatic, physical, chemical and biological interactions important for the formation of pollen records of late...

  13. Glacial conditions in the Red Sea

    Science.gov (United States)

    Rohling, Eelco J.

    1994-10-01

    In this paper, results from previous studies on planktonic foraminifera, δ18O, and global sea level are combined to discuss climatic conditions in the Red Sea during the last glacial maximum (18,000 B.P.). First, the influence of 120-m sea level lowering on the exchange transport through the strait of Bab-el-Mandab is considered. This strait is the only natural connection of the Red Sea to the open ocean. Next, glacial Red Sea outflow salinity is estimated (about 48 parts per thousand) from the foraminiferal record. Combined, these results yield an estimate of the glacial net water deficit, which appears to have been quite similar to the present (about 2 m yr-1). Finally, budget calculation of δ18O fluxes suggests that the glacial δ18O value of evaporation was about 50% of the present value. This is considered to have resulted from substantially increased mean wind speeds over the glacial Red Sea, which would have caused a rapid drop in the kinematic fractionation factor for 18O. The sensitivity of the calculated values for water deficit and isotopic fractionation to the various assumptions and estimates is evaluated in the discussion. Improvents are to be expected especially through research on the glacial salinity contrast between the Red Sea and Gulf of Aden. It is argued, however, that such future improvement will likely result in a worsening of the isotopic discrepancy, thus increasing the need for an additional mechanism that influenced fractionation (such as mean wind speed). This study demonstrates the need for caution when calculating paleosalinities from δ18O records under the assumption that the modern S∶δ18O relation has remained constant through time. Previously overlooked factors, such as mean wind speed, may have significantly altered that relation in the past.

  14. A first look at the ACER-SST dataset: Mapping the spatio-temporal variability of sea-surface temperatures in the last Glacial and the Holocene

    Science.gov (United States)

    Rehfeld, Kira; Laepple, Thomas; Bassinot, Franck; Daniau, Anne-Laure; Desprat, Stéphanie; Kim, Jung-Hyun; Fernanda Sánchez-Goñi, Maria; Harrison, Sandy

    2016-04-01

    Climate in the last Glacial was characterized by abrupt and large-scale changes around cold Heinrich-Events and warm Dansgaard-Oeschger excursions in the Northern high latitudes. The global repercussions of these periods of rapid dynamics are, to date, unconstrained. Here, we present a first statistical analysis of the global multi-proxy ACER (Abrupt Climate Changes and Environmental Responses) sea surface temperature dataset, spanning the last 80 thousand years, to investigate the spatial footprints of glacial climate dynamics. In a first step we evaluate the spatial and temporal variability throughout the Glacial period, and contrast them with that during the Holocene. In a second step we investigate to which extent a temporal synchroneity of extreme events during the Glacial is detectable in the proxy records, and analyze the reversibility of Glacial dynamics.

  15. Vegetation, climate and fire-dynamics in East Africa inferred from the Maundi crater pollen record from Mt Kilimanjaro during the last glacial-interglacial cycle

    Science.gov (United States)

    Schüler, Lisa; Hemp, Andreas; Zech, Wolfgang; Behling, Hermann

    2012-04-01

    The pollen, charcoal and sedimentological record from the Maundi crater, located at 2780 m elevation on the south-eastern slope of Mt Kilimanjaro, is one of the longest terrestrial records in equatorial East Africa, giving an interesting insight into the vegetation and climate dynamics back to the early last Glacial period. Our sediment record has a reliable chronology until 42 ka BP. An extrapolation of the age-depth model, as well as matching with other palaeo-records from tropical East Africa, suggest a total age of about 90 ka BP at the bottom of the record. During the last Glacial the distribution as well as the composition of the vegetation belts classified as colline savanna, submontane woodland, montane forest, ericaceous belt, and alpine vegetation changed. The early last Glacial is characterized by high amounts of Poaceae and Asteraceae pollen suggesting a climatically dry but stable phase. Based on the absence of pollen grains in samples deposited around 70 ka BP, we assume the occurrence of distinct drought periods. During the pre-LGM (Last Glacial Maximum) a higher taxa diversity of the ericaceous and montane zone is recorded and suggests a spread of forest and shrub vegetation, thus indicating a more humid period. The taxa diversity increases steadily during the recorded time span. The decent of vegetation zones indicate dry and cold conditions during the LGM and seem to have been detrimental for many taxa, especially those of the forest vegetation; however, the early last Glacial seems to have been markedly drier than the LGM. The reappearance of most of the taxa (most importantly Alchemilla, Araliaceae, Dodonea, Hagenia, Ilex, Myrsine, Moraceae, Piperaceae) during the deglacial and Holocene period suggest a shift into humid conditions. An increase in ferns and the decrease in grasses during the Holocene also indicate increasing humidity. Fire played an important role in controlling the development and elevation of the ericaceous zone and the tree

  16. Sudden disintegration of ice in the glacial-proglacial transition zone of the largest glacier in Austria

    Science.gov (United States)

    Kellerer-Pirklbauer, Andreas; Avian, Michael; Hirschmann, Simon; Lieb, Gerhard Karl; Seier, Gernot; Sulzer, Wolfgang; Wakonigg, Herwig

    2017-04-01

    Rapid deglaciation does not only reveal a landscape which is prone to rapid geomorphic changes and sediment reworking but also the glacier ice itself might be in a state of disintegration by ice melting, pressure relief, crevasse formation, ice collapse or changes in the glacier's hydrology. In this study we considered the sudden disintegration of glacier ice in the glacial-proglacial transition zone of Pasterze Glacier. Pasterze Glacier is a typical alpine valley glacier and covers currently some 16.5 km2 making it to the largest glacier in Austria. This glacier is an important site for alpine mass tourism in Austria related to a public high alpine road and a cable car which enable access to the glacier rather easily also for unexperienced mountaineers. Spatial focus in our research is given on two particular study areas where several ice-mass movement events occurred during the 2015- and 2016-melting seasons. The first study area is a crevasse field at the lower third of the glacier tongue. This lateral crevasse field has been substantially modified during the last two melting seasons particularly because of thermo-erosional effects of a glacial stream which changed at this site from subglacial (until 2015) to glacier-lateral revealing a several tens of meters high unstable ice cliff prone to ice falls of different magnitudes. The second study area is located at the proglacial area. At Pasterze Glacier the proglacial area is widely influenced by dead-ice bodies of various dimensions making this area prone to slow to sudden geomorphic changes caused by ice mass changes. A particular ice-mass movement event took place on 20.09.2016. Within less than one hour the surface of the proglacial area changed substantially by tilting, lateral shifting, and subsidence of the ground accompanied by complete ice disintegration of once-debris covered ice. To understand acting processes at both areas of interest and to quantify mass changes we used field observations, terrain

  17. Municipal Climate Governance and Formation of Local Transition places

    DEFF Research Database (Denmark)

    Søndergård, Bent; Stauning, Inger; Holm, Jesper

    for the need of studies of local situated transition arenas and how they by integrating specific local conditions become sites of development of innovative practices. Jesper Holm, Inger Stauning and Jesper Holm, Department of Department of Environmental, Social and Spatial Change, Roskilde University (RUC......Theme: Sustainable spaces Municipal Climate Governance and Formation of Local Transition Places The paper examines how municipalities develop new local governance efforts for climate mitigation and analyses how these efforts contributes to the development of local transition places. It is based...... authorities and policy networks tend to show more willingness for performing experimentation in transition. • Reduction of CO2-emission and transformation of social-technical energy systems has a complexity and a dependency of local context (bio resources, companies, energy systems, technologies, build...

  18. Pollen record of the penultimate glacial period in Yuchi Basin, Central Taiwan

    Science.gov (United States)

    Lai, Hsiao-Yin; Liew, Ping-Mei

    2010-05-01

    Pollen records of the penultimate glacial period are scare not only in Taiwan, but also in East Asia area. Hence, this study intends to provide a new pollen record from a site, Yuchi Basin, in central Taiwan, which may improve our knowledge of the penultimate glacial period. The sediment core, CTN6, was drilled in the northern part of Yuchi Basin. The core is 29.4 m in length and the sampling interval is 10 cm. In total, 86 samples are processed for pollen analysis. Three pollen zones (I,II and III) are determined according to the ratio of arboreal pollens (AP) and non-arboreal pollens (NAP). Because of the scarcity of dating data, pollen assemblages compared with previous pollen records at peripheral areas is utilized to estimate the ages of each pollen zone. AP dominate (60%) Zone I and III, which consist mainly of Cyclobalanopsis-Castanopsis. Thus, Zone I may mark the MIS 5 because of a Cyclobalanopsis-Castanopsis dominant condition. In Zone II, the increase in NAP and pollen of Taxodiaceae and decrease in pollens of Cyclobalanopsis-Castanopsis indicates the penultimate glacial period, i.e. MIS 6. In contrast to the evergreen broadleaved forest found there today, the herbs occupied the basin in Zone II, indicating a relatively dry climate condition than present. Furthermore, during the penultimate glacial period, the climate condition of early part is wetter, evidenced by a higher AP/NAP in Zone IIb. Finally, comparing with the last glacial period in Toushe, we suggest that the penultimate glacial period is drier due to the lower AP/NAP.

  19. The ACER pollen and charcoal database: a global resource to document vegetation and fire response to abrupt climate changes during the last glacial period

    Science.gov (United States)

    Sánchez Goñi, María Fernanda; Desprat, Stéphanie; Daniau, Anne-Laure; Bassinot, Frank C.; Polanco-Martínez, Josué M.; Harrison, Sandy P.; Allen, Judy R. M.; Anderson, R. Scott; Behling, Hermann; Bonnefille, Raymonde; Burjachs, Francesc; Carrión, José S.; Cheddadi, Rachid; Clark, James S.; Combourieu-Nebout, Nathalie; Mustaphi, Colin. J. Courtney; Debusk, Georg H.; Dupont, Lydie M.; Finch, Jemma M.; Fletcher, William J.; Giardini, Marco; González, Catalina; Gosling, William D.; Grigg, Laurie D.; Grimm, Eric C.; Hayashi, Ryoma; Helmens, Karin; Heusser, Linda E.; Hill, Trevor; Hope, Geoffrey; Huntley, Brian; Igarashi, Yaeko; Irino, Tomohisa; Jacobs, Bonnie; Jiménez-Moreno, Gonzalo; Kawai, Sayuri; Kershaw, A. Peter; Kumon, Fujio; Lawson, Ian T.; Ledru, Marie-Pierre; Lézine, Anne-Marie; Liew, Ping Mei; Magri, Donatella; Marchant, Robert; Margari, Vasiliki; Mayle, Francis E.; Merna McKenzie, G.; Moss, Patrick; Müller, Stefanie; Müller, Ulrich C.; Naughton, Filipa; Newnham, Rewi M.; Oba, Tadamichi; Pérez-Obiol, Ramón; Pini, Roberta; Ravazzi, Cesare; Roucoux, Katy H.; Rucina, Stephen M.; Scott, Louis; Takahara, Hikaru; Tzedakis, Polichronis C.; Urrego, Dunia H.; van Geel, Bas; Valencia, B. Guido; Vandergoes, Marcus J.; Vincens, Annie; Whitlock, Cathy L.; Willard, Debra A.; Yamamoto, Masanobu

    2017-09-01

    Quaternary records provide an opportunity to examine the nature of the vegetation and fire responses to rapid past climate changes comparable in velocity and magnitude to those expected in the 21st-century. The best documented examples of rapid climate change in the past are the warming events associated with the Dansgaard-Oeschger (D-O) cycles during the last glacial period, which were sufficiently large to have had a potential feedback through changes in albedo and greenhouse gas emissions on climate. Previous reconstructions of vegetation and fire changes during the D-O cycles used independently constructed age models, making it difficult to compare the changes between different sites and regions. Here, we present the ACER (Abrupt Climate Changes and Environmental Responses) global database, which includes 93 pollen records from the last glacial period (73-15 ka) with a temporal resolution better than 1000 years, 32 of which also provide charcoal records. A harmonized and consistent chronology based on radiometric dating (14C, 234U/230Th, optically stimulated luminescence (OSL), 40Ar/39Ar-dated tephra layers) has been constructed for 86 of these records, although in some cases additional information was derived using common control points based on event stratigraphy. The ACER database compiles metadata including geospatial and dating information, pollen and charcoal counts, and pollen percentages of the characteristic biomes and is archived in Microsoft AccessTM at PANGAEA.870867" target="_blank">https://doi.org/10.1594/PANGAEA.870867.

  20. Glacially derived material in an Inner Mongolian desert lake during Marine Isotope Stage 2

    Digital Repository Service at National Institute of Oceanography (India)

    Selvaraj, K.; Chen, C-T.A; PrakashBabu, C.; Lou, J-Y.; Liu, C-L.; Hsu, K.J.

    Establishing the precise timing of continental glacial dynamics and abrupt high-latitude climate events is crucial to understanding the causes of global climate change. Multi-proxy records in a lake sediment core from arid Inner Mongolia...

  1. Post-glacial landform evolution in the middle Satluj River valley, India

    Indian Academy of Sciences (India)

    incision. Climatically, the event corresponds to the post-glacial strengthened Indian summer monsoon. (ISM). ... middle Satluj valley extreme events shape the land- scape besides ...... District Disaster Management Authority (DDMA), Kinnaur,.

  2. (CH4)-C-14 Measurements in Greenland Ice: Investigating Last Glacial Termination CH4 Sources

    DEFF Research Database (Denmark)

    Petrenko, V. V.; Smith, A. M.; Brook, E. J.

    2009-01-01

    by direct cosmogenic C-14 production in ice. C-14 of CO was measured to better understand this process and correct the sample (CH4)-C-14. Corrected results suggest that wetland sources were likely responsible for the majority of the Younger Dryas-Preboreal CH4 rise.......The cause of a large increase of atmospheric methane concentration during the Younger Dryas-Preboreal abrupt climatic transition (similar to 11,600 years ago) has been the subject of much debate. The carbon-14 (C-14) content of methane ((CH4)-C-14) should distinguish between wetland and clathrate...... contributions to this increase. We present measurements of (CH4)-C-14 in glacial ice, targeting this transition, performed by using ice samples obtained from an ablation site in west Greenland. Measured (CH4)-C-14 values were higher than predicted under any scenario. Sample (CH4)-C-14 appears to be elevated...

  3. The ACER pollen and charcoal database: a global resource to document vegetation and fire response to abrupt climate changes during the last glacial period

    Directory of Open Access Journals (Sweden)

    M. F. Sánchez Goñi

    2017-09-01

    Full Text Available Quaternary records provide an opportunity to examine the nature of the vegetation and fire responses to rapid past climate changes comparable in velocity and magnitude to those expected in the 21st-century. The best documented examples of rapid climate change in the past are the warming events associated with the Dansgaard–Oeschger (D–O cycles during the last glacial period, which were sufficiently large to have had a potential feedback through changes in albedo and greenhouse gas emissions on climate. Previous reconstructions of vegetation and fire changes during the D–O cycles used independently constructed age models, making it difficult to compare the changes between different sites and regions. Here, we present the ACER (Abrupt Climate Changes and Environmental Responses global database, which includes 93 pollen records from the last glacial period (73–15 ka with a temporal resolution better than 1000 years, 32 of which also provide charcoal records. A harmonized and consistent chronology based on radiometric dating (14C, 234U∕230Th, optically stimulated luminescence (OSL, 40Ar∕39Ar-dated tephra layers has been constructed for 86 of these records, although in some cases additional information was derived using common control points based on event stratigraphy. The ACER database compiles metadata including geospatial and dating information, pollen and charcoal counts, and pollen percentages of the characteristic biomes and is archived in Microsoft AccessTM at https://doi.org/10.1594/PANGAEA.870867.

  4. Glacial greenhouse-gas fluctuations controlled by ocean circulation changes.

    Science.gov (United States)

    Schmittner, Andreas; Galbraith, Eric D

    2008-11-20

    Earth's climate and the concentrations of the atmospheric greenhouse gases carbon dioxide (CO(2)) and nitrous oxide (N(2)O) varied strongly on millennial timescales during past glacial periods. Large and rapid warming events in Greenland and the North Atlantic were followed by more gradual cooling, and are highly correlated with fluctuations of N(2)O as recorded in ice cores. Antarctic temperature variations, on the other hand, were smaller and more gradual, showed warming during the Greenland cold phase and cooling while the North Atlantic was warm, and were highly correlated with fluctuations in CO(2). Abrupt changes in the Atlantic meridional overturning circulation (AMOC) have often been invoked to explain the physical characteristics of these Dansgaard-Oeschger climate oscillations, but the mechanisms for the greenhouse-gas variations and their linkage to the AMOC have remained unclear. Here we present simulations with a coupled model of glacial climate and biogeochemical cycles, forced only with changes in the AMOC. The model simultaneously reproduces characteristic features of the Dansgaard-Oeschger temperature, as well as CO(2) and N(2)O fluctuations. Despite significant changes in the land carbon inventory, CO(2) variations on millennial timescales are dominated by slow changes in the deep ocean inventory of biologically sequestered carbon and are correlated with Antarctic temperature and Southern Ocean stratification. In contrast, N(2)O co-varies more rapidly with Greenland temperatures owing to fast adjustments of the thermocline oxygen budget. These results suggest that ocean circulation changes were the primary mechanism that drove glacial CO(2) and N(2)O fluctuations on millennial timescales.

  5. Glacial Fluctuation in the Source Region of the Yangtze River

    International Nuclear Information System (INIS)

    Shengyi, Gao; Qingsong, Fan; Xi, Cao; Li, Ma

    2014-01-01

    Glaciers in the source region of the Yangtze River are not only water resources but also important energy and environmental resources. Glacial fluctuation is an important component of the study of changes in the natural environment, including climate change. We investigated the glaciers in the source region of the Yangtze River, and analyzed the fluctuations using multi-temporal remote sensing data. The trend in glacial fluctuation and the factors that influence it were determined. The results have implications for water resource management and environmental conservation in the Yangtze River region

  6. Late Ordovician (Ashgillian) glacial deposits in southern Jordan

    Science.gov (United States)

    Turner, Brian R.; Makhlouf, Issa M.; Armstrong, Howard A.

    2005-11-01

    The Late Ordovician (Ashgillian) glacial deposits in southern Jordan, comprise a lower and upper glacially incised palaeovalley system, occupying reactivated basement and Pan-African fault-controlled depressions. The lower palaeovalley, incised into shoreface sandstones of the pre-glacial Tubeiliyat Formation, is filled with thin glaciofluvial sandstones at the base, overlain by up to 50 m of shoreface sandstone. A prominent glaciated surface near the top of this palaeovalley-fill contains intersecting glacial striations aligned E-W and NW-SE. The upper palaeovalley-fill comprises glaciofluvial and marine sandstones, incised into the lower palaeovalley or, where this is absent, into the Tubeiliyat Formation. Southern Jordan lay close to the margin of a Late Ordovician terrestrial ice sheet in Northwest Saudi Arabia, characterised by two major ice advances. These are correlated with the lower and upper palaeovalleys in southern Jordan, interrupted by two subsidiary glacial advances during late stage filling of the lower palaeovalley when ice advanced from the west and northwest. Thus, four ice advances are now recorded from the Late Ordovician glacial record of southern Jordan. Disturbed and deformed green sandstones beneath the upper palaeovalley-fill in the Jebel Ammar area, are confined to the margins of the Hutayya graben, and have been interpreted as structureless glacial loessite or glacial rock flour. Petrographic and textural analyses of the deformed sandstones, their mapped lateral transition into undeformed Tubeiliyat marine sandstones away from the fault zone, and the presence of similar sedimentary structures to those in the pre-glacial marine Tubeiliyat Formation suggest that they are a locally deformed facies equivalent of the Tubeiliyat, not part of the younger glacial deposits. Deformation is attributed to glacially induced crustal stresses and seismic reactivation of pre-existing faults, previously weakened by epeirogenesis, triggering sediment

  7. Testing Hypotheses About Glacial Cycles Against the Observational Record

    DEFF Research Database (Denmark)

    Kaufmann, Robert; Juselius, Katarina

    2013-01-01

    We estimate an identified cointegrated vector autoregression (CVAR) model of the climate system to test hypotheses about the physical mechanisms that may drive glacial cycles during the late Pleistocene. Results indicate that a permanent doubling of CO2 generates a 11.1oC rise in Antarctic...

  8. Luminescence dating of paleolake deltas and glacial deposits in Garwood Valley, Antarctica: Implications for climate, Ross ice sheet dynamics, and paleolake duration

    Science.gov (United States)

    Levy, Joseph S.; Rittenour, Tammy M.; Fountain, Andrew G.; O'Connor, Jim E.

    2017-01-01

    The formation of perched deltas and other lacustrine deposits in the McMurdo Dry Valleys of Antarctica is widely considered to be evidence of valley-filling lakes dammed by the grounded Ross Sea ice sheet during the local Last Glacial Maximum, with lake drainage interpreted as a record of grounding line retreat. We used luminescence dating to determine the age of paleolake deltas and glacial tills in Garwood Valley, a coastal dry valley that opens to the Ross Sea. Luminescence ages are stratigraphically consistent with radiocarbon results from algal mats within the same delta deposits but suggest radiocarbon dates from lacustrine carbonates may overestimate deposit ages by thousands of years. Results suggest that late Holocene delta deposition into paleolake Howard in Garwood Valley persisted until ca. 3.5 ka. This is significantly younger than the date when grounded ice is thought to have retreated from the Ross Sea. Our evidence suggests that the local, stranded ice-cored till topography in Garwood Valley, rather than regional ice-sheet dynamics, may have controlled lake levels for some McMurdo Dry Valleys paleolakes. Age control from the supraglacial Ross Sea drift suggests grounding and up-valley advance of the Ross Sea ice sheet into Garwood valley during marine oxygen isotope stage (MIS) 4 (71–78 ka) and the local Last Glacial Maximum (9–10 ka). This work demonstrates the power of combining luminescence dating with existing radiocarbon data sets to improve understanding of the relationships among paleolake formation, glacial position, and stream discharge in response to climate change.

  9. South American climate during the Last Glacial Maximum: Delayed onset of the South American monsoon

    Science.gov (United States)

    Cook, K. H.; Vizy, E. K.

    2006-01-01

    The climate of the Last Glacial Maximum (LGM) over South America is simulated using a regional climate model with 60-km resolution, providing a simulation that is superior to those available from global models that do not resolve the topography and regional-scale features of the South American climate realistically. LGM conditions on SST, insolation, vegetation, and reduced atmospheric CO2 on the South American climate are imposed together and individually. Remote influences are not included. Annual rainfall is 25-35% lower in the LGM than in the present day simulation throughout the Amazon basin. A primary cause is a 2-3 month delay in the onset of the rainy season, so that the dry season is about twice as long as in the present day. The delayed onset occurs because the low-level inflow from the tropical Atlantic onto the South American continent is drier than in the present day simulation due to reduced evaporation from cooler surface waters, and this slows the springtime buildup of moist static energy that is needed to initiate convection. Once the monsoon begins in the Southern Hemisphere, LGM rainfall rates are similar to those in the present day. In the Northern Hemisphere, however, rainfall is lower throughout the (shortened) rainy season. Regional-scale structure includes slight precipitation increases in the Nordeste region of Brazil and along the eastern foothills of the Andes, and a region in the center of the Amazon basin that does not experience annual drying. In the Andes Mountains, the signal is complicated, with regions of significant rainfall increases adjacent to regions with reduced precipitation.

  10. A {approx}180,000 years sedimentation history of a perialpine overdeepened glacial trough (Wehntal, N-Switzerland)

    Energy Technology Data Exchange (ETDEWEB)

    Anselmetti, F. S. [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Duebendorf (Switzerland); Drescher-Schneider, R. [Institut fuer Pflanzenwissenschaften, Karl-Fanzen-Universitaet Graz, Graz (Austria); Furrer, H. [Palaeontologisches Institut und Museum, Universitaet Zuerich, Zuerich (Switzerland); Graf, H. R. [Matousek, Baumann und Niggli AG, Baden (Switzerland); Lowick, S. E.; Preusser, F. [Institut fuer Geologie, Universitaet Bern, Bern (Switzerland); Riedi, M. A. [Marc A. Riedi, Susenbuehlstrasse 41, Chur (Switzerland)

    2010-11-15

    A 30 m-deep drill core from a glacially overdeepened trough in Northern Switzerland recovered a {approx} 180 ka old sedimentary succession that provides new insights into the timing and nature of erosion-sedimentation processes in the Swiss lowlands. The luminescence-dated stratigraphic succession starts at the bottom of the core with laminated carbonate-rich lake sediments reflecting deposition in a proglacial lake between {approx} 180 and 130 ka ago (Marine Isotope Stage MIS 6). Anomalies in geotechnical properties and the occurrence of deformation structures suggest temporary ice contact around 140 ka. Up-core, organic content increases in the lake deposits indicating a warming of climate. These sediments are overlain by a peat deposit characterised by pollen assemblages typical of the late Eemian (MIS 5e). An abrupt transition following this interglacial encompasses a likely hiatus and probably marks a sudden lowering of the water level. The peat unit is overlain by deposits of a cold unproductive lake dated to late MIS 5 and MIS 4, which do not show any direct influence from glaciers. An upper peat unit, the so-called {sup M}ammoth peat{sup ,} previously encountered in construction pits, interrupts this cold lacustrine phase and marks more temperate climatic conditions between 60 and 45 ka (MIS 3). In the upper part of the core, a succession of fluvial and alluvial deposits documents the Late Glacial and Holocene sedimentation in the basin. The sedimentary succession at Wehntal confirms that the glaciation during MIS 6 did not apparently cause the overdeepening of the valley, as the lacustrine basin fill covering most of MIS 6 is still preserved. Consequently, erosion of the basin is most likely linked to an older glaciation. This study shows that new dating techniques combined with paleoenvironmental interpretations of sediments from such overdeepened troughs provide valuable insights into the past glacial history. (authors)

  11. A ∼180,000 years sedimentation history of a perialpine overdeepened glacial trough (Wehntal, N-Switzerland)

    International Nuclear Information System (INIS)

    Anselmetti, F. S.; Drescher-Schneider, R.; Furrer, H.; Graf, H. R.; Lowick, S. E.; Preusser, F.; Riedi, M. A.

    2010-01-01

    A 30 m-deep drill core from a glacially overdeepened trough in Northern Switzerland recovered a ∼ 180 ka old sedimentary succession that provides new insights into the timing and nature of erosion-sedimentation processes in the Swiss lowlands. The luminescence-dated stratigraphic succession starts at the bottom of the core with laminated carbonate-rich lake sediments reflecting deposition in a proglacial lake between ∼ 180 and 130 ka ago (Marine Isotope Stage MIS 6). Anomalies in geotechnical properties and the occurrence of deformation structures suggest temporary ice contact around 140 ka. Up-core, organic content increases in the lake deposits indicating a warming of climate. These sediments are overlain by a peat deposit characterised by pollen assemblages typical of the late Eemian (MIS 5e). An abrupt transition following this interglacial encompasses a likely hiatus and probably marks a sudden lowering of the water level. The peat unit is overlain by deposits of a cold unproductive lake dated to late MIS 5 and MIS 4, which do not show any direct influence from glaciers. An upper peat unit, the so-called M ammoth peat , previously encountered in construction pits, interrupts this cold lacustrine phase and marks more temperate climatic conditions between 60 and 45 ka (MIS 3). In the upper part of the core, a succession of fluvial and alluvial deposits documents the Late Glacial and Holocene sedimentation in the basin. The sedimentary succession at Wehntal confirms that the glaciation during MIS 6 did not apparently cause the overdeepening of the valley, as the lacustrine basin fill covering most of MIS 6 is still preserved. Consequently, erosion of the basin is most likely linked to an older glaciation. This study shows that new dating techniques combined with paleoenvironmental interpretations of sediments from such overdeepened troughs provide valuable insights into the past glacial history. (authors)

  12. How did Marine Isotope Stage 3 and Last Glacial Maximum climates differ? – Perspectives from equilibrium simulations

    Directory of Open Access Journals (Sweden)

    C. J. Van Meerbeeck

    2009-03-01

    Full Text Available Dansgaard-Oeschger events occurred frequently during Marine Isotope Stage 3 (MIS3, as opposed to the following MIS2 period, which included the Last Glacial Maximum (LGM. Transient climate model simulations suggest that these abrupt warming events in Greenland and the North Atlantic region are associated with a resumption of the Thermohaline Circulation (THC from a weak state during stadials to a relatively strong state during interstadials. However, those models were run with LGM, rather than MIS3 boundary conditions. To quantify the influence of different boundary conditions on the climates of MIS3 and LGM, we perform two equilibrium climate simulations with the three-dimensional earth system model LOVECLIM, one for stadial, the other for interstadial conditions. We compare them to the LGM state simulated with the same model. Both climate states are globally 2°C warmer than LGM. A striking feature of our MIS3 simulations is the enhanced Northern Hemisphere seasonality, July surface air temperatures being 4°C warmer than in LGM. Also, despite some modification in the location of North Atlantic deep water formation, deep water export to the South Atlantic remains unaffected. To study specifically the effect of orbital forcing, we perform two additional sensitivity experiments spun up from our stadial simulation. The insolation difference between MIS3 and LGM causes half of the 30–60° N July temperature anomaly (+6°C. In a third simulation additional freshwater forcing halts the Atlantic THC, yielding a much colder North Atlantic region (−7°C. Comparing our simulation with proxy data, we find that the MIS3 climate with collapsed THC mimics stadials over the North Atlantic better than both control experiments, which might crudely estimate interstadial climate. These results suggest that freshwater forcing is necessary to return climate from warm interstadials to cold stadials during MIS3. This changes our perspective, making the stadial

  13. Identification of glacial flood hazards in karakorum range using remote sensing technique and risk analysis

    International Nuclear Information System (INIS)

    Ashraf, A.; Roohi, R.; Naz, R.

    2011-01-01

    Glacial Lake Outburst Floods (GLOFs) are great hazard for the downstream communities in context of changing climatic conditions in the glaciated region of Pakistan. The remote sensing data of Landsat ETM+ was utilized for the identification of glacial lakes susceptible to posing GLOF hazard in Karakoram Range. Overall, 887 glacial lakes are identified in different river-basins of Karakoram Range, out of which 16 lakes are characterized as potentially dangerous in terms of GLOF. The analysis of community's response to GLOF events of 2008 in the central Karakoram Range indicated gaps in coordination and capacity of the local communities to cope with such natural hazards. A regular monitoring of hot spots and potential GLOF lakes along with capacity- of local communities and institutions in coping future disaster situation is necessary, especially in the context of changing climatic conditions in Himalayan region. (author)

  14. Mid-Holocene to Present Climate Transition in Tropical South America

    Science.gov (United States)

    Turcq, B.; Cordeiro, R.; Sifeddine, A.; Braconnot, P.; Dias, P. S.; Costa, R.; Jorgetti, T.

    2008-12-01

    The classical illustration of Holocene climate changes in tropical South America is the huge rising of Titicaca lake level from 4400 to 4000 cal BP. Because the Amazon basin is the source of Andean rainfalls we have explored Amazonian data of climate changes during the Holocene to better understand the cause of this abrupt transition. Amazonian data confirm the existence of mid-Holocene dryness: (1) lacustrine level studies show a lower precipitation/evaporation budget than present, with the lowest lake levels between 8500 and 6800 cal BP; (2) although the dominant Holocene vegetation has always been the rainforest in the heart of Amazonia, this forest expanded towards the northwestern and southwestern regions from 6800 to 1550 cal BP, moreover, pioneer elements of the rainforest developed during the mid-Holocene and the best example is those of Cecropia, between 9000 and 5000 cal BP. (3) soil d13C indicates a forest expansion over savannas areas in Roraima (north), Mato Grosso and Rondonia (southwest), during the Holocene. (4) the mid-Holocene (8000- 4000 cal BP) is characterized by repeated occurrences of forest fires, marked by the presence of charcoals in soils and lacustrine sediments. However these different records are not characterized by abrupt transitions at the end of the Middle Holocene in Amazonia. In the Andean records there is a clear north-south shift in the timing of the transition. Analysis of coupled Ocean Atmosphere Model simulations suggest that convection in Amazon basin is directly controlled by insolation leading to an almost linear response of local climate to the global forcing. Differently, in the eastern and south-western regions where the rain is brought by the South American Monsoon, the climate transition appears more abrupt. It may be because the involved climate mechanisms are more complex and depend on Ocean/Atmosphere/Vegetation coupled process (ITCZ position, ZCAS formation, etc.). Tectonic movements or threshold links to

  15. Glacial magnetite dissolution in abyssal NW Pacific sediments - evidence for carbon trapping?

    Science.gov (United States)

    Korff, Lucia; von Dobeneck, Tilo; Frederichs, Thomas; Kasten, Sabine; Kuhn, Gerhard; Gersonde, Rainer; Diekmann, Bernhard

    2016-04-01

    The abyssal North Pacific Ocean's large volume, depth, and terminal position on the deep oceanic conveyor make it a candidate site for deep carbon trapping as postulated by climate theory to explain the massive glacial drawdown of atmospheric CO2. As the major basins of the North Pacific have depths of 5500-6500m, far below the modern and glacial Calcite Compensation Depths (CCD), these abyssal sediments are carbonate-free and therefore not suitable for carbonate-based paleoceanographic proxy reconstructions. Instead, paleo-, rock and environmental magnetic methods are generally well applicable to hololytic abyssal muds and clays. In 2009, the international paleoceanographic research cruise SO 202 INOPEX ('Innovative North Pacific Experiment') of the German RV SONNE collected two ocean-spanning EW sediment core transects of the North Pacific and Bering Sea recovering a total of 50 piston and gravity cores from 45 sites. Out of seven here considered abyssal Northwest Pacific piston cores collected at water depths of 5100 to 5700m with mostly coherent shipboard susceptibility logs, the 20.23m long SO202-39-3, retrieved from 5102 m water depth east of northern Shatsky Rise (38°00.70'N, 164°26.78'E), was rated as the stratigraphically most promising record of the entire core transect and selected for detailed paleo- and environmental magnetic, geochemical and sedimentological investigations. This core was dated by correlating its RPI and Ba/Ti records to well-dated reference records and obviously provides a continuous sequence of the past 940 kyrs. The most striking orck magnetic features are coherent magnetite-depleted zones corresponding to glacial periods. In the interglacial sections, detrital, volcanic and even submicron bacterial magnetite fractions are excellently preserved. These alternating magnetite preservation states seem to reflect dramatic oxygenation changes in the deep North Pacific Ocean and hint at large-scale benthic glacial carbon trapping

  16. Influence of boundary conditions on the Southern Hemisphere atmospheric circulation during the last glacial maximum Influência das condições de fronteira na circulação atmosférica do Hemisfério Sul durante o último máximo glacial

    Directory of Open Access Journals (Sweden)

    F. Justino

    2008-12-01

    Full Text Available Based upon coupled climate simulations driven by present day and glacial boundary conditions, we demonstrate that although the ice sheet topography modifications during the glacial period are primarily placed in the Northern Hemisphere (NH, a climate simulation that employs the ICE-5G glacial topography delivers significantly enhanced climate anomalies in the Southern Hemisphere (SH as well. These conditions, in association with climate anomalies produced by the modification of the atmospheric CO² concentration characteristic of the Last Glacial Maximum (LGM interval, are shown to be the primary forcing of the SH climate during this epoch. Climate anomalies up to -6°C over the Antarctic region and -4°C over South America are predicted to occur in respect to present day conditions. Accompanying the SH cooling in the LGM simulation there exists a remarkable reduction in the specific humidity, which in turn enforces the overall Southern Hemisphere cooling due to the weaker greenhouse capacity of the dry atmosphere.Com base em simulações numéricas conduzidas com condições de fronteiras características dos períodos glaciais e atual, demonstra-se que embora as maiores anomalias da topografia da Terra no período glacial estejam no Hemisfério Norte, esta inclusão dos blocos de gelo leva a substanciais mudanças na circulação atmosférica austral para aquela época, indicando uma forte teleconexão inter-hemisférica. Em associação com a redução nos níveis de carbono atmosférico para 200 ppm, anomalias de temperatura de -6°C em torno da região antártica, e -4°C no continente sul-americano são simuladas para o último máximo glacial (UMG em relação a condições atuais. Concomitantemente, o UMG é caracterizado por uma drástica redução na umidade específica, que por sua vez intensifica o esfriamento inicial devido à mais fraca capacidade de estufa da atmosfera mais seca.

  17. Perceived school climate across the transition from elementary to middle school.

    Science.gov (United States)

    Madjar, Nir; Cohen-Malayev, Maya

    2016-06-01

    The implications of the transition from elementary to middle school are of major concern for educators and researchers worldwide. Previous studies have yielded ambiguous findings; some have indicated negative outcomes of school transition, whereas others have demonstrated null or even positive effects. The aim of the current research was to explore the impact of school transition on students' perceived educational climate while distinguishing between transition effects and age-related effects by comparing students who transitioned to middle schools at the end of the sixth grade versus those who did not. The research included 2 complementary studies. Study 1 was based on a large-scale national survey in Israel (N = 71,739) that compared students from fifth to eighth grades using a cross-sectional design, in which the students completed a survey once in the middle of the school year. Study 2 followed a sample of 415 students across 2 years including 4 waves of survey completion, at the beginning and the end of 2 consecutive school years, during which 55% of the students experienced a transition and 45% remained in elementary school. In both studies, the students completed self-report surveys assessing the perceived school climate. Both multilevel and nonlinear growth-curve analyses consistently indicated that the students who transitioned reported positive perceptions of the school climate before the transition that declined more quickly and become equal to or lower than those of the nontransitioning students. Teachers should apply practices that enhance students' sense of support, specifically following school transitions. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  18. Changes in Fe Oxidation Rate in Hydrothermal Plumes as a Potential Driver of Enhanced Hydrothermal Input to Near-Ridge Sediments During Glacial Terminations

    Science.gov (United States)

    Cullen, J. T.; Coogan, L. A.

    2017-12-01

    Recent studies have hypothesized that changes in sea level due to glacial-interglacial cycles lead to changes in the rate of melt addition to the crust at mid-ocean ridges with globally significant consequences. Arguably the most compelling evidence for this comes from increases in the hydrothermal component in near-ridge sediments during glacial-interglacial transitions. Here we explore the hypothesis that changes in ocean bottom water [O2] and pH across glacial-interglacial transitions would lead to changes in the rate of Fe oxidation in hydrothermal plumes. A simple model shows that a several fold increase in the rate of Fe oxidation is expected at glacial-interglacial transitions. Uncertainty in bottom water chemistry and the relationship between oxidation and sedimentation rates prevent direct comparison of the model and data. However, it appears that the null hypothesis of invariant hydrothermal vent fluxes into ocean bottom water that changed in O2 content and pH across these transitions cannot currently be discounted.

  19. Reconstruction of North American drainage basins and river discharge since the Last Glacial Maximum

    Directory of Open Access Journals (Sweden)

    A. D. Wickert

    2016-11-01

    Full Text Available Over the last glacial cycle, ice sheets and the resultant glacial isostatic adjustment (GIA rearranged river systems. As these riverine threads that tied the ice sheets to the sea were stretched, severed, and restructured, they also shrank and swelled with the pulse of meltwater inputs and time-varying drainage basin areas, and sometimes delivered enough meltwater to the oceans in the right places to influence global climate. Here I present a general method to compute past river flow paths, drainage basin geometries, and river discharges, by combining models of past ice sheets, glacial isostatic adjustment, and climate. The result is a time series of synthetic paleohydrographs and drainage basin maps from the Last Glacial Maximum to present for nine major drainage basins – the Mississippi, Rio Grande, Colorado, Columbia, Mackenzie, Hudson Bay, Saint Lawrence, Hudson, and Susquehanna/Chesapeake Bay. These are based on five published reconstructions of the North American ice sheets. I compare these maps with drainage reconstructions and discharge histories based on a review of observational evidence, including river deposits and terraces, isotopic records, mineral provenance markers, glacial moraine histories, and evidence of ice stream and tunnel valley flow directions. The sharp boundaries of the reconstructed past drainage basins complement the flexurally smoothed GIA signal that is more often used to validate ice-sheet reconstructions, and provide a complementary framework to reduce nonuniqueness in model reconstructions of the North American ice-sheet complex.

  20. A Short Guide to the Climatic Variables of the Last Glacial Maximum for Biogeographers.

    Directory of Open Access Journals (Sweden)

    Sara Varela

    Full Text Available Ecological niche models are widely used for mapping the distribution of species during the last glacial maximum (LGM. Although the selection of the variables and General Circulation Models (GCMs used for constructing those maps determine the model predictions, we still lack a discussion about which variables and which GCM should be included in the analysis and why. Here, we analyzed the climatic predictions for the LGM of 9 different GCMs in order to help biogeographers to select their GCMs and climatic layers for mapping the species ranges in the LGM. We 1 map the discrepancies between the climatic predictions of the nine GCMs available for the LGM, 2 analyze the similarities and differences between the GCMs and group them to help researchers choose the appropriate GCMs for calibrating and projecting their ecological niche models (ENM during the LGM, and 3 quantify the agreement of the predictions for each bioclimatic variable to help researchers avoid the environmental variables with a poor consensus between models. Our results indicate that, in absolute values, GCMs have a strong disagreement in their temperature predictions for temperate areas, while the uncertainties for the precipitation variables are in the tropics. In spite of the discrepancies between model predictions, temperature variables (BIO1-BIO11 are highly correlated between models. Precipitation variables (BIO12-BIO19 show no correlation between models, and specifically, BIO14 (precipitation of the driest month and BIO15 (Precipitation Seasonality (Coefficient of Variation show the highest level of discrepancy between GCMs. Following our results, we strongly recommend the use of different GCMs for constructing or projecting ENMs, particularly when predicting the distribution of species that inhabit the tropics and the temperate areas of the Northern and Southern Hemispheres, because climatic predictions for those areas vary greatly among GCMs. We also recommend the exclusion of

  1. From the Last Interglacial to the Anthropocene: Modelling a Complete Glacial Cycle (PalMod)

    Science.gov (United States)

    Brücher, Tim; Latif, Mojib

    2017-04-01

    We will give a short overview and update on the current status of the national climate modelling initiative PalMod (Paleo Modelling, www.palmod.de). PalMod focuses on the understanding of the climate system dynamics and its variability during the last glacial cycle. The initiative is funded by the German Federal Ministry of Education and Research (BMBF) and its specific topics are: (i) to identify and quantify the relative contributions of the fundamental processes which determined the Earth's climate trajectory and variability during the last glacial cycle, (ii) to simulate with comprehensive Earth System Models (ESMs) the climate from the peak of the last interglacial - the Eemian warm period - up to the present, including the changes in the spectrum of variability, and (iii) to assess possible future climate trajectories beyond this century during the next millennia with sophisticated ESMs tested in such a way. The research is intended to be conducted over a period of 10 years, but with shorter funding cycles. PalMod kicked off in February 2016. The first phase focuses on the last deglaciation (app. the last 23.000 years). From the ESM perspective PalMod pushes forward model development by coupling ESM with dynamical ice sheet models. Computer scientists work on speeding up climate models using different concepts (like parallelisation in time) and one working group is dedicated to perform a comprehensive data synthesis to validate model performance. The envisioned approach is innovative in three respects. First, the consortium aims at simulating a full glacial cycle in transient mode and with comprehensive ESMs which allow full interactions between the physical and biogeochemical components of the Earth system, including ice sheets. Second, we shall address climate variability during the last glacial cycle on a large range of time scales, from interannual to multi-millennial, and attempt to quantify the relative contributions of external forcing and processes

  2. Evolution of high-Arctic glacial landforms during deglaciation

    Science.gov (United States)

    Midgley, N. G.; Tonkin, T. N.; Graham, D. J.; Cook, S. J.

    2018-06-01

    Glacial landsystems in the high-Arctic have been reported to undergo geomorphological transformation during deglaciation. This research evaluates moraine evolution over a decadal timescale at Midtre Lovénbreen, Svalbard. This work is of interest because glacial landforms developed in Svalbard have been used as an analogue for landforms developed during Pleistocene mid-latitude glaciation. Ground penetrating radar was used to investigate the subsurface characteristics of moraines. To determine surface change, a LiDAR topographic data set (obtained 2003) and a UAV-derived (obtained 2014) digital surface model processed using structure-from-motion (SfM) are also compared. Evaluation of these data sets together enables subsurface character and landform response to climatic amelioration to be linked. Ground penetrating radar evidence shows that the moraine substrate at Midtre Lovénbreen includes ice-rich (radar velocities of 0.17 m ns-1) and debris-rich (radar velocities of 0.1-0.13 m ns-1) zones. The ice-rich zones are demonstrated to exhibit relatively high rates of surface change (mean thresholded rate of -4.39 m over the 11-year observation period). However, the debris-rich zones show a relatively low rate of surface change (mean thresholded rate of -0.98 m over the 11-year observation period), and the morphology of the debris-rich landforms appear stable over the observation period. A complex response of proglacial landforms to climatic warming is shown to occur within and between glacier forelands as indicated by spatially variable surface lowering rates. Landform response is controlled by the ice-debris balance of the moraine substrate, along with the topographic context (such as the influence of meltwater). Site-specific characteristics such as surface debris thickness and glaciofluvial drainage are, therefore, argued to be a highly important control on surface evolution in ice-cored terrain, resulting in a diverse response of high-Arctic glacial landsystems

  3. Invertebrate metacommunity structure and dynamics in an andean glacial stream network facing climate change

    DEFF Research Database (Denmark)

    Cauvy-Fraunié, Sophie; Espinosa, Rodrigo; Andino, Patricio

    2015-01-01

    .g., overland, watercourse, and downstream directional dispersal) in organizing the aquatic metacommunity. Results revealed that both environmental and spatial variables significantly explained community variation among sites. Among all environmental variables, the glacial influence component best explained...... macroinvertebrate metacommunity structure in many ways. Indeed, the harsh environmental conditions characterizing glacial influence not only constitute the primary environmental filter but also, limit water-borne macroinvertebrate dispersal. Therefore, glacier runoff acts as an aquatic dispersal barrier, isolating...

  4. Generalized hydrogeologic framework and groundwater budget for a groundwater availability study for the glacial aquifer system of the United States

    Science.gov (United States)

    Reeves, Howard W.; Bayless, E. Randall; Dudley, Robert W.; Feinstein, Daniel T.; Fienen, Michael N.; Hoard, Christopher J.; Hodgkins, Glenn A.; Qi, Sharon L.; Roth, Jason L.; Trost, Jared J.

    2017-12-14

    The glacial aquifer system groundwater availability study seeks to quantify (1) the status of groundwater resources in the glacial aquifer system, (2) how these resources have changed over time, and (3) likely system response to future changes in anthropogenic and environmental conditions. The glacial aquifer system extends from Maine to Alaska, although the focus of this report is the part of the system in the conterminous United States east of the Rocky Mountains. The glacial sand and gravel principal aquifer is the largest source of public and self-supplied industrial supply for any principal aquifer and also is an important source for irrigation supply. Despite its importance for water supply, water levels in the glacial aquifer system are generally stable varying with climate and only locally from pumping. The hydrogeologic framework developed for this study includes the information from waterwell records and classification of material types from surficial geologic maps into likely aquifers dominated by sand and gravel deposits. Generalized groundwater budgets across the study area highlight the variation in recharge and discharge primarily driven by climate.

  5. Phosphorus burial in the ocean over glacial-interglacial time scales

    Directory of Open Access Journals (Sweden)

    F. Tamburini

    2009-04-01

    Full Text Available The role of nutrients, such as phosphorus (P, and their impact on primary productivity and the fluctuations in atmospheric CO2 over glacial-interglacial periods are intensely debated. Suggestions as to the importance of P evolved from an earlier proposal that P actively participated in changing productivity rates and therefore climate change, to most recent ones that changes in the glacial ocean inventory of phosphorus were important but not influential if compared to other macronutrients, such as nitrate. Using new data coming from a selection of ODP sites, we analyzed the distribution of oceanic P sedimentary phases and calculate reactive P burial fluxes, and we show how P burial fluxes changed over the last glacial-interglacial period at these sites. Concentrations of reactive P are generally lower during glacial times, while mass accumulation rates (MAR of reactive P show higher variability. If we extrapolate for the analyzed sites, we may assume that in general glacial burial fluxes of reactive P are lower than those during interglacial periods by about 8%, because the lack of burial of reactive P on the glacial shelf reduced in size, was apparently not compensated by burial in other regions of the ocean. Using the calculated changes in P burial, we evaluate their possible impact on the phosphate inventory in the world oceans. Using a simple mathematical approach, we find that these changes alone could have increased the phosphate inventory of glacial ocean waters by 17–40% compared to interglacial stages. Variations in the distribution of sedimentary P phases at the investigated sites seem to indicate that at the onset of interglacial stages, shallower sites experienced an increase in reactive P concentrations, which seems to point to P-richer waters at glacial terminations. All these findings would support the Shelf-Nutrient Hypothesis, which assumes that during glacial low stands nutrients are transferred from shallow sites

  6. Glacial-interglacial vegetation dynamics in South Eastern Africa coupled to sea surface temperature variations in the Western Indian Ocean

    NARCIS (Netherlands)

    Dupont, L.M.; Caley, T.; Kim, J.H.; Castañeda, I.S; Malaize, B.; Giraudeau, J.

    2011-01-01

    Glacial-interglacial fluctuations in the vegetation of South Africa might elucidate the climate system at the edge of the tropics between the Indian and Atlantic Oceans. However, vegetation records covering a full glacial cycle have only been published from the eastern South Atlantic. We present a

  7. Inherent characteristics of sawtooth cycles can explain different glacial periodicities

    NARCIS (Netherlands)

    Omta, A.W.; Kooi, B.W.; van Voorn, G.A.K.; Rickaby, R.E.M; Follows, M.J.

    2016-01-01

    At the Mid-Pleistocene Transition about 1 Ma, the dominant periodicity of the glacial-interglacial cycles shifted from ~40 to ~100 kyr. Here, we use a previously developed mathematical model to investigate the possible dynamical origin of these different periodicities. The model has two variables,

  8. Inherent characteristics of sawtooth cycles can explain different glacial periodicities

    NARCIS (Netherlands)

    Omta, Anne Willem; Kooi, Bob W.; Voorn, van G.A.K.; Rickaby, Rosalind E.M.; Follows, Michael J.

    2016-01-01

    At the Mid-Pleistocene Transition about 1 Ma, the dominant periodicity of the glacial-interglacial cycles shifted from ~40 to ~100 kyr. Here, we use a previously developed mathematical model to investigate the possible dynamical origin of these different periodicities. The model has two

  9. TESTING THE LINK BETWEEN TERRESTRIAL CLIMATE CHANGE AND GALACTIC SPIRAL ARM TRANSIT

    International Nuclear Information System (INIS)

    Overholt, Andrew C.; Melott, Adrian L.; Pohl, Martin

    2009-01-01

    We re-examine past suggestions of a close link between terrestrial climate change and the Sun's transit of spiral arms in its path through the Milky Way galaxy. These links produced concrete fits, deriving the unknown spiral pattern speed from terrestrial climate correlations. We test these fits against new data on spiral structure based on CO data that do not make simplifying assumptions about symmetry and circular rotation. If we compare the times of these transits with changes in the climate of Earth, the claimed correlations not only disappear, but we also find that they cannot be resurrected for any reasonable pattern speed.

  10. The role of orbital forcing, carbon dioxide and regolith in 100 kyr glacial cycles

    Directory of Open Access Journals (Sweden)

    A. Ganopolski

    2011-12-01

    Full Text Available The origin of the 100 kyr cyclicity, which dominates ice volume variations and other climate records over the past million years, remains debatable. Here, using a comprehensive Earth system model of intermediate complexity, we demonstrate that both strong 100 kyr periodicity in the ice volume variations and the timing of glacial terminations during past 800 kyr can be successfully simulated as direct, strongly nonlinear responses of the climate-cryosphere system to orbital forcing alone, if the atmospheric CO2 concentration stays below its typical interglacial value. The existence of long glacial cycles is primarily attributed to the North American ice sheet and requires the presence of a large continental area with exposed rocks. We show that the sharp, 100 kyr peak in the power spectrum of ice volume results from the long glacial cycles being synchronized with the Earth's orbital eccentricity. Although 100 kyr cyclicity can be simulated with a constant CO2 concentration, temporal variability in the CO2 concentration plays an important role in the amplification of the 100 kyr cycles.

  11. Glacial vs. Interglacial Period Contrasts in Midlatitude Fluvial Systems, with Examples from Western Europe and the Texas Coastal Plain

    Science.gov (United States)

    Blum, M.

    2001-12-01

    Mixed bedrock-alluvial valleys are the conveyor belts for sediment delivery to passive continental margins. Mapping, stratigraphic and sedimentologic investigations, and development of geochronological frameworks for large midlatitude rivers of this type, in Western Europe and the Texas Coastal Plain, provide for evaluation of fluvial responses to climate change over the last glacial-interglacial period, and the foundations for future quantitative evaluation of long profile evolution, changes through time in flood magnitude, and changes in storage and flux of sediments. This paper focuses on two issues. First, glacial vs. interglacial period fluvial systems are fundamentally different in terms of channel geometry, depositional style, and patterns of sediment storage. Glacial-period systems were dominated by coarse-grained channel belts (braided channels in Europe, large-wavelength meandering in Texas), and lacked fine-grained flood-plain deposits, whereas Holocene units, especially those of late Holocene age, contain appreciable thicknesses of flood-plain facies. Hence, extreme overbank flooding was not significant during the long glacial period, most flood events were contained within bankfull channel perimeters, and fine sediments were bypassed through the system to marine basins. By contrast, extreme overbank floods have been increasingly important during the relatively short Holocene, and a significant volume of fine sediment is sequestered in flood-plain settings. Second, glacial vs. interglacial systems exhibit different amplitudes and frequencies of fluvial adjustment to climate change. High-amplitude but low-frequency adjustments characterized the long glacial period, with 2-3 extended periods of lateral migration and sediment storage puncuated by episodes of valley incision. Low-amplitude but high-frequency adjustments have been more typical of the short Holocene, when there has been little net valley incision or net changes in sediment storage, but

  12. Abrupt climate changes during Termination III in Southern Europe.

    Science.gov (United States)

    Pérez-Mejías, Carlos; Moreno, Ana; Sancho, Carlos; Bartolomé, Miguel; Stoll, Heather; Cacho, Isabel; Cheng, Hai; Edwards, R Lawrence

    2017-09-19

    The Late Quaternary glacial-interglacial transitions represent the highest amplitude climate changes over the last million years. Unraveling the sequence of events and feedbacks at Termination III (T-III), including potential abrupt climate reversals similar to those of the last Termination, has been particularly challenging due to the scarcity of well-dated records worldwide. Here, we present speleothem data from southern Europe covering the interval from 262.7 to 217.9 kyBP, including the transition from marine isotope stage (MIS) 8 to MIS 7e. High-resolution δ 13 C, δ 18 O, and Mg/Ca profiles reveal major millennial-scale changes in aridity manifested in changing water availability and vegetation productivity. uranium-thorium dates provide a solid chronology for two millennial-scale events (S8.1 and S8.2) which, compared with the last two terminations, has some common features with Heinrich 1 and Heinrich 2 in Termination I (T-I).

  13. Climate change and its potential impact on mechanical, hydraulic and chemical conditions

    International Nuclear Information System (INIS)

    Naslund, J.O.

    2009-01-01

    The strategy for managing climate related conditions in SKB ' s safety assessments are based on the notion that it is not possible to predict climate in a 100 000-year time perspective. Instead, the approach in the SR-Can safety assessment was to identify and analyse both moderate climate evolutions as well as extremes within which the climate in Scandinavia may vary. To this end, knowledge on general climate variations in Scandinavia was used to identify characteristic climate domains which in turn were used to build a number of selected climate scenarios. The relevant climate domains for the Forsmark and Laxemar sites in the 100 000-year time perspective are; 1) a temperate climate domain, 2) a peri-glacial climate domain, and 3) a glacial climate domain. Also submerged/non-submerged conditions at the sites are of importance. In the SR-Can safety assessment several climate scenarios were investigated, including a reference evolution based on a repetition of reconstructed conditions for last glacial cycle (the Weichselian glaciation and the Holocene interglacial). For this reconstruction, extensive numerical simulations of ice sheets, isostatic changes, and permafrost were conducted. The resulting scenario showed site-specific timing and duration of the three climate domains and submerged periods for the full glacial cycle. This scenario is not a prediction of a future climate evolution. Instead it is one example of a future evolution that in a realistic and consistent way covers all relevant climate related changes that can be expected in a 100 000-year time perspective. Subsequently, this scenario formed the basis for the construction of additional climate scenarios that were used to analyse the effects of more extreme climate evolutions than during the last glacial cycle. Examples of complementary scenarios are a warmer and wetter climate scenario caused by an increased greenhouse effect, and colder scenarios with deeper permafrost or thicker ice sheets than in

  14. Roosevelt Island Climate Evolution Project (RICE): A 65 Kyr ice core record of black carbon aerosol deposition to the Ross Ice Shelf, West Antarctica.

    Science.gov (United States)

    Edwards, Ross; Bertler, Nancy; Tuohy, Andrea; Neff, Peter; Proemse, Bernedette; Feiteng, Wang; Goodwin, Ian; Hogan, Chad

    2015-04-01

    Emitted by fires, black carbon aerosols (rBC) perturb the atmosphere's physical and chemical properties and are climatically active. Sedimentary charcoal and other paleo-fire records suggest that rBC emissions have varied significantly in the past due to human activity and climate variability. However, few paleo rBC records exist to constrain reconstructions of the past rBC atmospheric distribution and its climate interaction. As part of the international Roosevelt Island Climate Evolution (RICE) project, we have developed an Antarctic rBC ice core record spanning the past ~65 Kyr. The RICE deep ice core was drilled from the Roosevelt Island ice dome in West Antarctica from 2011 to 2013. The high depth resolution (~ 1 cm) record was developed using a single particle intracavity laser-induced incandescence soot photometer (SP2) coupled to an ice core melter system. The rBC record displays sub-annual variability consistent with both austral dry-season and summer biomass burning. The record exhibits significant decadal to millennial-scale variability consistent with known changes in climate. Glacial rBC concentrations were much lower than Holocene concentrations with the exception of several periods of abrupt increases in rBC. The transition from glacial to interglacial rBC concentrations occurred over a much longer time relative to other ice core climate proxies such as water isotopes and suggests . The protracted increase in rBC during the transition may reflected Southern hemisphere ecosystem / fire regime changes in response to hydroclimate and human activity.

  15. Carbonate cementation in the late glacial outwash and beach deposits in northern Estonia

    Directory of Open Access Journals (Sweden)

    Maris Rattas

    2014-02-01

    Full Text Available The sedimentary environments, morphology and formation of carbonate cement in the late glacial glaciofluvial outwash and beach deposits in northern Estonia are discussed. Cementation is observed in well-drained, highly porous carbonaceous debris-rich gravel and sand-forming, resistant ledges in otherwise unconsolidated sediments. The cemented units occur as laterally continuous layers or as isolated lenticular patches with thicknesses from a few centimetres to 3 m. The cement is found in two main morphologies: (1 cement crusts or coatings around detrital grains and (2 massive cement almost entirely filling interparticle pores and intraparticle voids. It is exclusively composed of low-Mg calcite with angular equant to slightly elongated rhombohedral and scalenohedral or prismatic crystals, which indicate precipitation from meteoric or connate fresh surface (glacial lake water and/or near-surface groundwater under low to moderate supersaturation and flow conditions. The absence of organic structures within the cement suggests that cementation is essentially inorganic. The cement exhibits both meteoric vadose and phreatic features and most probably occurred close to the vadose–phreatic interface, where the conditions were transitional and/or fluctuating. Cementation has mainly taken place by CO2-degassing in response to fluctuations in groundwater level and flow conditions, controlled by the Baltic Ice Lake water level, and seasonal cold and/or dry climate conditions.

  16. On the differences between Last Glacial Maximum and Mid-Holocene climates in southern South America simulated by PMIP3 models

    Science.gov (United States)

    Berman, Ana Laura; Silvestri, Gabriel E.; Tonello, Marcela S.

    2018-04-01

    Differences between climate conditions during the Last Glacial Maximum (LGM) and the Mid-Holocene (MH) in southern South America inferred from the state-of-the-art PMIP3 paleoclimatic simulations are described for the first time in this paper. The aim is to expose characteristics of past climate changes occurred without human influence. In this context, numerical simulations are an indispensable tool for inferring changes in near-surface air temperature and precipitation in regions where proxy information is scarce or absent. The analyzed PMIP3 models describe MH temperatures significantly warmer than those of LGM with magnitudes of change depending on the season and the specific geographic region. In addition, models indicate that seasonal mean precipitation during MH increased with respect to LGM values in wide southern continental areas to the east of the Andes Cordillera whereas seasonal precipitation developed in areas to the west of Patagonian Andes reduced from LGM to MH.

  17. Dominant factors controlling glacial and interglacial variations in the treeline elevation in tropical Africa.

    Science.gov (United States)

    Wu, Haibin; Guiot, Joël; Brewer, Simon; Guo, Zhengtang; Peng, Changhui

    2007-06-05

    The knowledge of tropical palaeoclimates is crucial for understanding global climate change, because it is a test bench for general circulation models that are ultimately used to predict future global warming. A longstanding issue concerning the last glacial maximum in the tropics is the discrepancy between the decrease in sea-surface temperatures reconstructed from marine proxies and the high-elevation decrease in land temperatures estimated from indicators of treeline elevation. In this study, an improved inverse vegetation modeling approach is used to quantitatively reconstruct palaeoclimate and to estimate the effects of different factors (temperature, precipitation, and atmospheric CO(2) concentration) on changes in treeline elevation based on a set of pollen data covering an altitudinal range from 100 to 3,140 m above sea level in Africa. We show that lowering of the African treeline during the last glacial maximum was primarily triggered by regional drying, especially at upper elevations, and was amplified by decreases in atmospheric CO(2) concentration and perhaps temperature. This contrasts with scenarios for the Holocene and future climates, in which the increase in treeline elevation will be dominated by temperature. Our results suggest that previous temperature changes inferred from tropical treeline shifts may have been overestimated for low-CO(2) glacial periods, because the limiting factors that control changes in treeline elevation differ between glacial and interglacial periods.

  18. Towards a climate event stratigraphy for New Zealand over the past 30 000 years (NZ-INTIMATE project)

    Science.gov (United States)

    Alloway, Brent V.; Lowe, David J.; Barrell, David J. A.; Newnham, Rewi M.; Almond, Peter C.; Augustinus, Paul C.; Bertler, Nancy A. N.; Carter, Lionel; Litchfield, Nicola J.; McGlone, Matt S.; Shulmeister, Jamie; Vandergoes, Marcus J.; Williams, Paul W.; Members, Nz-Intimate

    2007-01-01

    It is widely recognised that the acquisition of high-resolution palaeoclimate records from southern mid-latitude sites is essential for establishing a coherent picture of inter-hemispheric climate change and for better understanding of the role of Antarctic climate dynamics in the global climate system. New Zealand is considered to be a sensitive monitor of climate change because it is one of a few sizeable landmasses in the Southern Hemisphere westerly circulation zone, a critical transition zone between subtropical and Antarctic influences. New Zealand has mountainous axial ranges that amplify the climate signals and, consequently, the environmental gradients are highly sensitive to subtle changes in atmospheric and oceanic conditions. Since 1995, INTIMATE has, through a series of international workshops, sought ways to improve procedures for establishing the precise ages of climate events, and to correlate them with high precision, for the last 30 000 calendar years. The NZ-INTIMATE project commenced in late 2003, and has involved virtually the entire New Zealand palaeoclimate community. Its aim is to develop an event stratigraphy for the New Zealand region over the past 30 000 years, and to reconcile these events against the established climatostratigraphy of the last glacial cycle which has largely been developed from Northern Hemisphere records (e.g. Last Glacial Maximum (LGM), Termination I, Younger Dryas). An initial outcome of NZ-INTIMATE has been the identification of a series of well-dated, high-resolution onshore and offshore proxy records from a variety of latitudes and elevations on a common calendar timescale from 30 000 cal. yr BP to the present day. High-resolution records for the last glacial coldest period (LGCP) (including the LGM sensu stricto) and last glacial-interglacial transition (LGIT) from Auckland maars, Kaipo and Otamangakau wetlands on eastern and central North Island, marine core MD97-2121 east of southern North Island, speleothems

  19. Climate Change Adaptation Decision Making for Glacial Lake Outburst Floods From Palcacocha Lake in Peru

    Science.gov (United States)

    Cuellar, A. D.; McKinney, D. C.

    2014-12-01

    Climate change has accelerated glacial retreat in high altitude glaciated regions of Peru leading to the growth and formation of glacier lakes. Glacial lake outburst floods (GLOF) are sudden events triggered by an earthquake, avalanche into the lake or other shock that causes a sudden outflow of water. These floods are catastrophic because of their sudden onset, the difficulty predicting them, and enormous quantity of water and debris rapidly flooding downstream areas. Palcacocha Lake in the Peruvian Andes has experienced accelerated growth since it burst in 1941 and threatens the major city of Huaraz and surrounding communities. Since the 1941 flood stakeholders have advocated for projects to adapt to the increasing threat posed by Palcacocha Lake. Nonetheless, discussions surrounding projects for Palcacocha have not included a rigorous analysis of the potential consequences of a flood, probability of an event, or costs of mitigation projects. This work presents the first step to rationally analyze the risks posed by Palcacocha Lake and the various adaptation projects proposed. In this work the authors use decision analysis to asses proposed adaptation measures that would mitigate damage in downstream communities from a GLOF. We use an existing hydrodynamic model of the at-risk area to determine how adaptation projects will affect downstream flooding. Flood characteristics are used in the HEC-FIA software to estimate fatalities and injuries from an outburst flood, which we convert to monetary units using the value of a statistical life. We combine the monetary consequences of a GLOF with the cost of the proposed projects and a diffuse probability distribution for the likelihood of an event to estimate the expected cost of the adaptation plans. From this analysis we found that lowering the lake level by 15 meters has the least expected cost of any proposal despite uncertainty in the effect of lake lowering on flooding downstream.

  20. Point Climat no. 29 'Managing France's energy transition while safeguarding economic competitiveness: be productive'

    International Nuclear Information System (INIS)

    Sartor, Oliver; Leguet, Benoit

    2013-01-01

    Among the publications of CDC Climat Research, 'Climate Briefs' presents, in a few pages, hot topics in climate change policy. This issue addresses the following points: - Is the French energy transition compatible with economic growth and a 'competitive' French economy? Our answer is 'yes, with some conditions'. - The French economy is better positioned today for a meaningful energy transition than it has been for over 40 years. At the level of the macro-economy, a steady shift to higher energy prices is now much easier without hurting economic growth than it once was. - A small percentage of energy-intensive sectors may need targeted and temporary assistance with this transition

  1. Mainstreaming Low-Carbon Climate-Resilient growth pathways into Development Finance Institutions' activities. A research project on the standards, tools and metrics to support transition to the low-carbon climate-resilient development models. Paper 1 - Climate and development finance institutions: linking climate finance, development finance and the transition to low-carbon, climate-resilient economic models

    International Nuclear Information System (INIS)

    Eschalier, Claire; Cochran, Ian; Deheza, Mariana; Risler, Ophelie; Forestier, Pierre

    2015-10-01

    Development finance institutions (DFIs) are in a position to be key actors in aligning development and the 2 deg. challenge. One of the principal challenges today is to scale-up the financial flows to the trillions of dollars per year necessary to achieve the 2 deg. C long-term objectives. Achieving this transition to a low-carbon, climate resilient (LCCR) economic model requires the integration or 'mainstreaming' of climate issues as a prism through which all investment decisions should be made. This paper presents an overview of the opportunities and challenges of linking a LCCR transition with the objectives of development finance. It first presents the two-fold challenge of climate change and development for countries around the world. Second, the paper explores the role of development finance institutions and their support for the transition to a low-carbon, climate-resilient economic model. Finally, it examines a necessary paradigm shift to integrate climate and development objectives to establish a 'LCCR development model' able to simultaneously tackling development priorities and needs for resilient, low-carbon growth. This will necessitate a move from focusing on a 'siloed' vision of climate finance to a means of aligning activities across the economy with the LCCR objectives to ensure that the majority of investments are coherent with this long-term transition. (authors)

  2. Links between Patagonian Ice Sheet fluctuations and Antarctic dust variability during the last glacial period (MIS 4-2)

    Science.gov (United States)

    Kaiser, Jérôme; Lamy, Frank

    2010-06-01

    Antarctic and Greenland ice-core records reveal large fluctuations of dust input on both orbital and millennial time-scales with potential global climate implications. At least during glacial periods, the Antarctic dust fluctuations appear to be largely controlled by environmental changes in southern South America. We compare dust flux records from two Antarctic ice-cores to variations in the composition of the terrigenous supply at ODP Site 1233 located off southern Chile and known to record fluctuations in the extent of the northern part of the Patagonian ice-sheet (NPIS) during the last glacial period (Marine Isotope Stage, MIS, 4 to 2). Within age uncertainties, millennial-scale glacial advances (retreats) of the NPIS correlate to Antarctic dust maxima (minima). In turn, NPIS fluctuations were closely related to offshore sea surface temperature (SST) changes. This pattern suggests a causal link involving changes in temperature, in rock flour availability, in latitudinal extensions of the westerly winds and in foehn winds in the southern Pampas and Patagonia. We further suggest that the long-term trend of dust accumulation is partly linked to the sea-level related changes in the size if the Patagonian source area due to the particular morphology of the Argentine shelf. We suggest that sea-level drops at the beginning of MIS 4 and MIS 2 were important for long-term dust increases, while changes in the Patagonian dust source regions primarily control the early dust decrease during the MIS 4/3 transition and Termination 1.

  3. Vegetation dynamics during the Last Interglacial-Glacial cycle in the Arno coastal plain (Tuscany, western Italy): location of a new tree refuge

    Science.gov (United States)

    Lucchi, M. Ricci

    2008-12-01

    Pollen analysis of the pre-Last Glacial Maximum succession of a 105 m-long continuous core from Tirrenia (Tuscany) provides evidence for the existence of an area of relatively high ecological stability where the effects of climate change were mitigated. The chronological framework of the vegetation record, spanning the Last Interglacial-Glacial cycle, was established by (i) AMS 14C dating, (ii) correlation with well-dated pollen sequences, and (iii) local stratigraphical constraints. A high lithological and sedimentological variability, with facies associations changing from fluvial to alluvial and coastal plain, enhances the palaeoenvironmental control on pollen distribution, thus helping to discriminate the impact of local factors on vegetation history. The most remarkable evidence, however, is represented by the continuous record of temperate trees throughout the whole glacial period, which provides useful indications on the location and nature of cold stage refugia. Most of the vegetation changes recorded in the core can be compared to the vegetation history of the Last Interglacial-Glacial cycle from southern Europe as a whole. In addition, local geographic and environmental features account for a more complex and varied floristic composition. Only the last phase of the Penultimate Glacial (MIS6), which was characterized by the diffusion of an arid steppe tundra, is recorded at the base of the core. The subsequent Last Interglacial (MIS5e) interval shows a poor and scattered pollen content due to the instability of the sedimentary environment. Nevertheless, it provides evidence of both global and local controls on vegetation dynamics, as indicated by the initial expansion of thermophilous forests and the remarkably late diffusion of conifers ( Pinus-Abies-Picea forests), respectively. Similarly, the transition to the Last Glacial (MIS5b and 5a in the core) is characterized by a reduced vegetation response to the typical stadial/interstadial climate variability

  4. Skill and reliability of climate model ensembles at the Last Glacial Maximum and mid-Holocene

    Directory of Open Access Journals (Sweden)

    J. C. Hargreaves

    2013-03-01

    Full Text Available Paleoclimate simulations provide us with an opportunity to critically confront and evaluate the performance of climate models in simulating the response of the climate system to changes in radiative forcing and other boundary conditions. Hargreaves et al. (2011 analysed the reliability of the Paleoclimate Modelling Intercomparison Project, PMIP2 model ensemble with respect to the MARGO sea surface temperature data synthesis (MARGO Project Members, 2009 for the Last Glacial Maximum (LGM, 21 ka BP. Here we extend that work to include a new comprehensive collection of land surface data (Bartlein et al., 2011, and introduce a novel analysis of the predictive skill of the models. We include output from the PMIP3 experiments, from the two models for which suitable data are currently available. We also perform the same analyses for the PMIP2 mid-Holocene (6 ka BP ensembles and available proxy data sets. Our results are predominantly positive for the LGM, suggesting that as well as the global mean change, the models can reproduce the observed pattern of change on the broadest scales, such as the overall land–sea contrast and polar amplification, although the more detailed sub-continental scale patterns of change remains elusive. In contrast, our results for the mid-Holocene are substantially negative, with the models failing to reproduce the observed changes with any degree of skill. One cause of this problem could be that the globally- and annually-averaged forcing anomaly is very weak at the mid-Holocene, and so the results are dominated by the more localised regional patterns in the parts of globe for which data are available. The root cause of the model-data mismatch at these scales is unclear. If the proxy calibration is itself reliable, then representativity error in the data-model comparison, and missing climate feedbacks in the models are other possible sources of error.

  5. The Dorsa Argentea Formation and the Noachian-Hesperian climate transition

    Science.gov (United States)

    Scanlon, K. E.; Head, J. W.; Fastook, J. L.; Wordsworth, R. D.

    2018-01-01

    The Dorsa Argentea Formation (DAF), a set of geomorphologic units covering ∼1.5 million square kilometers in the south circumpolar region of Mars, has been interpreted as the remnants of a large south polar ice sheet that formed near the Noachian-Hesperian boundary and receded in the early Hesperian. Determining the extent and thermal regime of the DAF ice sheet, as well as the mechanism and timing of its recession, can therefore provide insight into the ancient martian climate and the timing of the transition from a presumably thicker CO2 atmosphere to the present climate. We used the Laboratoire de Météorologie Dynamique (LMD) early Mars global climate model (GCM) and the University of Maine Ice Sheet Model (UMISM) glacial flow model to constrain climates allowing development of a south polar ice sheet of DAF-like size and shape. In addition, we modeled basal melting of this ice sheet in amounts and locations consistent with observed glaciofluvial landforms. A large, asymmetric region of ice stability surrounding the south pole is a robust feature of GCM simulations with spin-axis obliquity of 15° or 25° and a 600-1000 mb CO2 atmosphere. The shape results from the large-scale south polar topography of Mars and the strong dependence of surface temperature on altitude under a thicker atmosphere. Of the scenarios considered in this study, the extent of the modeled DAF ice sheet in UMISM simulations most closely matches that of the DAF when the surface water ice inventory of Mars is a ∼137 m global equivalent layer (GEL) and spin-axis obliquity is 15°. In climates warmed only by CO2, significant basal melting does not occur except when the ice inventory is larger than plausible estimates for early Mars. In this case, the extent of the south polar ice sheet is also much larger than that of the DAF, and basal melting is more widespread than observed landforms indicate. When an idealized greenhouse gas warms the surface by at least 20°C near the poles relative

  6. Vegetation history since the last glacial maximum in the Ozark highlands (USA): A new record from Cupola Pond, Missouri

    Science.gov (United States)

    Jones, Rachel A.; Williams, John W.; Jackson, Stephen T.

    2017-08-01

    The timing and drivers of vegetation dynamics and formation of no-analog plant communities during the last deglaciation in the unglaciated southeastern US are poorly understood. We present a multi-proxy record spanning the past 19,800 years from Cupola Pond in the Ozarks Mountains, consisting of replicate high-resolution pollen records, 25 AMS radiocarbon dates, and macrofossil, charcoal, and coprophilous spore analyses. Full-glacial Pinus and Picea forests gave way to no-analog vegetation after 17,400 yr BP, followed by development of Quercus-dominated Holocene forests, with late Holocene rises in Pinus and Nyssa. Vegetation transitions, replicated in different cores, are closely linked to hemispheric climate events. Rising Quercus abundances coincide with increasing Northern Hemisphere temperatures and CO2 at 17,500 yr BP, declining Pinus and Picea at 14,500 yr BP are near the Bølling-Allerød onset, and rapid decline of Fraxinus and rise of Ostrya/Carpinus occur 12,700 yr BP during the Younger Dryas. The Cupola no-analog vegetation record is unusual for its early initiation (17,000 yr BP) and for its three vegetation zones, representing distinct rises of Fraxinus and Ostrya/Carpinus. Sporormiella was absent and sedimentary charcoal abundances were low throughout, suggesting that fire and megaherbivores were not locally important agents of disturbance and turnover. The Cupola record thus highlights the complexity of the late-glacial no-analog communities and suggests direct climatic regulation of their formation and disassembly.

  7. The Middle Miocene Climate Transition in the Central Mediterranean. Geologica Ultraiectina (326)

    NARCIS (Netherlands)

    Mourik, A.A.|info:eu-repo/dai/nl/304849383

    2010-01-01

    The Middle Miocene Climate Transition (~15-13.7 Ma) is one of the major steps in Cenozoic climate evolution. The rapid expansion of the East Antarctic Ice Sheet at ~13.9 – 13.7 Ma caused important climate changes on a global scale. The aim of this PhD research has been to study the effects of the

  8. Isotopic evidence for climatic conditions in Southeast Asia at the last glacial maximum

    International Nuclear Information System (INIS)

    Aggarwal, P.K.; Gibson, J.J.; Kulkarni, K.M.; Froehlich, K.

    2002-01-01

    Stable isotope composition of dated groundwater archives from the Philippines, Vietnam, Thailand and Bangladesh trace changes in monsoon conditions, primarily rainout processes between the Last Glacial Maximum (LGM) and present day in southeast Asia. Today, isotope-climate relations are well established by the IAEA/WMO Global Network of Isotopes in Precipitation survey which reveals more depleted δ 18 O and δ 2 H for the Pacific Ocean monsoon regime than for the Indian Ocean monsoon regime, primarily due to proximal ocean sources and subdued continental moisture recycling for the latter region. Groundwater archives, reflecting past isotopic composition of precipitation, strongly suggest that this distinction was preserved or slightly enhanced at the time of the LGM, despite an apparent weakening of the summer monsoon and associated rainout processes. Overall, precipitation and moisture recycling, and enhanced continental effects are inferred to be the primary controls on δ 18 O signals in groundwater in southeast Asia. Comparison of groundwater isotope signatures and an ECHAM4 model simulation of the isotopic distribution in precipitation at 21ka reveal similar patterns, but the impacts of increased air mass contributions from high latitudes and reduced Eurasian moisture recycling at the LGM are shown to be potentially greater for the Pacific region than predicted by the model. (author)

  9. Impacts of land surface properties and atmospheric CO2 on the Last Glacial Maximum climate: a factor separation analysis

    Directory of Open Access Journals (Sweden)

    G. Munhoven

    2009-06-01

    Full Text Available Many sensitivity studies have been carried out, using climate models of different degrees of complexity to test the climate response to Last Glacial Maximum boundary conditions. Here, instead of adding the forcings successively as in most previous studies, we applied the separation method of U. Stein et P. Alpert 1993, in order to determine rigorously the different contributions of the boundary condition modifications, and isolate the pure contributions from the interactions among the forcings. We carried out a series of sensitivity experiments with the model of intermediate complexity Planet Simulator, investigating the contributions of the ice sheet expansion and elevation, the lowering of the atmospheric CO2 and of the vegetation cover change on the LGM climate. The separation of the ice cover and orographic contributions shows that the ice albedo effect is the main contributor to the cooling of the Northern Hemisphere, whereas orography has only a local cooling impact over the ice sheets. The expansion of ice cover in the Northern Hemisphere causes a disruption of the tropical precipitation, and a southward shift of the ITCZ. The orographic forcing mainly contributes to the disruption of the atmospheric circulation in the Northern Hemisphere, leading to a redistribution of the precipitation, but weakly impacts the tropics. The isolated vegetation contribution also induces strong cooling over the continents of the Northern Hemisphere that further affects the tropical precipitation and reinforce the southward shift of the ITCZ, when combined with the ice forcing. The combinations of the forcings generate many non-linear interactions that reinforce or weaken the pure contributions, depending on the climatic mechanism involved, but they are generally weaker than the pure contributions. Finally, the comparison between the LGM simulated climate and climatic reconstructions over Eurasia suggests that our results reproduce well the south-west to

  10. Etude Climat no. 36 'Regional Climate - Air - Energy Plans: a tool for guiding the energy and climate transition in French regions'

    International Nuclear Information System (INIS)

    De Charentenay, Jeremie; Leseur, Alexia; Bordier, Cecile

    2012-01-01

    Among the publications of CDC Climat Research, 'Climate Reports' offer in-depth analyses on a given subject. This issue addresses the following points: The Regional Climate-Air-Energy Plan (SRCAE - Schema Regional Climat-Air-Energie) was introduced by the Grenelle II legislation. The Plans are co-authored by the State through its decentralised services and the 'Conseil Regionaux' (regional councils) with the objective to guide climate and energy policy in the 26 French regions through to 2020 and 2050. Starting from an assessment of regional greenhouse gas (GHG) emissions, the SRCAE establishes energy transition scenarios based on the sectoral and structural guidelines that constitute the principal framework of the regional strategy. This report offers a detailed analysis of the strategies chosen by the various Regions for a successful transition to low-carbon energy sources, via the study of eleven SRCAEs that were opened to public consultation before the end of July 2012 (Alsace, Aquitaine, Auvergne, Bourgogne, Centre, Champagne-Ardenne, Ile-de-France, Midi-Pyrenees, Nord-Pas de Calais, Picardie and Rhone-Alpes regions). The wide range of methodologies used by the Regions, both to draw up their inventories of GHG emissions and for their scenarios, means that a quantitative comparison between regions or against the national objectives is not possible. Nevertheless, the report establishes a typology of regions and identifies policies that are common to all regions and those chosen in response to local characteristics. Certain guidelines could be applied by other regions of the same type, or could feed into discussions at national level. The report also indicates that the SRCAEs go beyond the competencies of the Regions, highlighting the role of local, national and European decision-making in the success of a regional energy transition. Particular attention was paid to the building and transport sectors, often identified as having the largest potential for reducing

  11. Glacial lakes in the Horgos river basin and their outbreak risk assessment

    Directory of Open Access Journals (Sweden)

    A. P. Medeu

    2013-01-01

    Full Text Available The river Khorgos (in Kazakhstan – Korgas is a boundary river between Kazakhstan and China. Its basin is located in the central part of southern slope of Dzhungarskiy (Zhetysu Alatau range. According to agreement between Kazakhstan and China at the boundary transition of Khorgos in the floodplain of the river Khorgos the large Center of Frontier Cooperation is erected. Estimation of safety of the mentioned object including connection with possible glacial lakes outbursts has the importance of political-economical value. Nowadays development of glacial lakes in the overhead part of Khorgos river basin has reached apogee. As a roof we can mention the maximum of total glacial lakes area (1,7 million m² in 41 lakes and emptied kettles of former glacial lakes. Six lakes reached highly dangerous outburst stage: the volume of lakes reached some million m³, maximum depth up to 30–40 m. Focal ground filtration of the water from lakes takes place. Development of glacial lakes in Khorgos river basin will continue, and these lakes give and will give real danger for the Center of Frontier Cooperation in case of outburst of naturally dammed lake Kazankol with the similar mechanism of Issyk lake outburst, occurred in 1963 in ZailijskiyAlatau (Ile Alatau.

  12. Large temperature variability in the southern African tropics since the Last Glacial Maximum

    NARCIS (Netherlands)

    Powers, L.A.; Johnson, T.C.; Werne, J.P.; Castañeda, I.S.; Hopmans, E.; Sinninghe Damsté, J.S.; Schouten, S.

    2005-01-01

    The role of the tropics in global climate change is actively debated, particularly in regard to the timing and magnitude of thermal and hydrological response. Continuous, high-resolution temperature records through the Last Glacial Maximum (LGM) from tropical oceans have provided much insight

  13. Differences between the last two glacial maxima and implications for ice-sheet, δ18O, and sea-level reconstructions

    NARCIS (Netherlands)

    Rohling, Eelco J; Hibbert, Fiona D.; Williams, Felicity H.; Grant, Katharine M; Marino, Gianluca; Foster, Gavin L; Hennekam, Rick|info:eu-repo/dai/nl/357286081; de Lange, Gert J.|info:eu-repo/dai/nl/073930962; Roberts, Andrew P.; Yu, Jimin; Webster, Jody M.; Yokoyama, Yusuke

    2017-01-01

    Studies of past glacial cycles yield critical information about climate and sea-level (ice-volume) variability, including the sensitivity of climate to radiative change, and impacts of crustal rebound on sea-level reconstructions for past interglacials. Here we identify significant differences

  14. High-resolution record of Northern Hemisphere climate extending into the last interglacial period

    DEFF Research Database (Denmark)

    North Greenland Ice Core Project members; Andersen, Katrine K.; Azuma, N.

    2004-01-01

    Two deep ice cores from central Greenland, drilled in the 1990s, have played a key role in climate reconstructions of the Northern Hemisphere, but the oldest sections of the cores were disturbed in chronology owing to ice folding near the bedrock. Here we present an undisturbed climate record from...... the initiation of the last glacial period. Our record reveals a hitherto unrecognized warm period initiated by an abrupt climate warming about 115,000 years ago, before glacial conditions were fully developed. This event does not appear to have an immediate Antarctic counterpart, suggesting that the climate see......-saw between the hemispheres (which dominated the last glacial period) was not operating at this time....

  15. Influence of glacial meltwater on global seawater δ234U

    Science.gov (United States)

    Arendt, Carli A.; Aciego, Sarah M.; Sims, Kenneth W. W.; Das, Sarah B.; Sheik, Cody; Stevenson, Emily I.

    2018-03-01

    We present the first published uranium-series measurements from modern Greenland Ice Sheet (GrIS) runoff and proximal seawater, and investigate the influence of glacial melt on global seawater δ234U over glacial-interglacial (g-ig) timescales. Climate reconstructions based on closed-system uranium-thorium (U/Th) dating of fossil corals assume U chemistry of seawater has remained stable over time despite notable fluctuations in major elemental compositions, concentrations, and isotopic compositions of global seawater on g-ig timescales. Deglacial processes increase weathering, significantly increasing U-series concentrations and changing the δ234U of glacial meltwater. Analyses of glacial discharge from GrIS outlet glaciers indicate that meltwater runoff has elevated U concentrations and differing 222Rn concentrations and δ234U compositions, likely due to variations in subglacial residence time. Locations with high δ234U have the potential to increase proximal seawater δ234U. To better understand the impact of bulk glacial melt on global seawater δ234U over time, we use a simple box model to scale these processes to periods of extreme deglaciation. We account for U fluxes from the GrIS, Antarctica, and large Northern Hemisphere Continental Ice Sheets, and assess sensitivity by varying melt volumes, duration and U flux input rates based on modern subglacial water U concentrations and compositions. All scenarios support the hypothesis that global seawater δ234U has varied by more than 1‰ through time as a function of predictable perturbations in continental U fluxes during g-ig periods.

  16. Resilience, Regime Shifts, and Guided Transition under Climate Change: Examining the Practical Difficulties of Managing Continually Changing Systems

    Directory of Open Access Journals (Sweden)

    Brenda B. Lin

    2013-03-01

    Full Text Available Managing terrestrial systems has become increasingly difficult under climate change as unidirectional shifts in climate conditions challenge the resilience of ecosystems to maintain their compositional structure and function. Despite the increased attention of resilience management to guide transformational change, questions remain as to how to apply resilience to manage transitions. Rather than pushing systems across thresholds into alternative states, climate change may create a stepwise progression of unknown transitional states that track changing climate conditions. Because of this uncertainty, we must find ways to guide transitioning systems across climate boundaries towards states that are socially and environmentally desirable. We propose to ease the uncertainty of managing shifting systems by providing an approach to adaptive management that we call guided transition, where socially and environmentally important ecosystem functions are preserved through transitions by considering and maintaining the species and structures needed for the desired functions. Scientifically, it will require a better understanding of the relationships between structure, species composition, and function for specific systems. Managers will also need to identify important functions at the local, regional, and national scale, and to determine how best to transition systems to a desired state based on existing scientific knowledge. Guided transition, therefore, helps guide the process of adaptive management by specifying a function-based management pathway that guides transitions through climatic changes.

  17. Glacial history of a modern invader: phylogeography and species distribution modelling of the Asian tiger mosquito Aedes albopictus.

    Directory of Open Access Journals (Sweden)

    Daniele Porretta

    Full Text Available BACKGROUND: The tiger mosquito, Aedes albopictus, is one of the 100 most invasive species in the world and a vector of human diseases. In the last 30 years, it has spread from its native range in East Asia to Africa, Europe, and the Americas. Although this modern invasion has been the focus of many studies, the history of the species' native populations remains poorly understood. Here, we aimed to assess the role of Pleistocene climatic changes in shaping the current distribution of the species in its native range. METHODOLOGY/PRINCIPAL FINDINGS: We investigated the phylogeography, historical demography, and species distribution of Ae. albopictus native populations at the Last Glacial Maximum (LGM. Individuals from 16 localities from East Asia were analyzed for sequence variation at two mitochondrial genes. No phylogeographic structure was observed across the study area. Demographic analyses showed a signature of population expansion that started roughly 70,000 years BP. The occurrence of a continuous and climatically suitable area comprising Southeast China, Indochinese Peninsula, and Sundaland during LGM was indicated by species distribution modelling. CONCLUSIONS/SIGNIFICANCE: Our results suggest an evolutionary scenario in which, during the last glacial phase, Ae. albopictus did not experience a fragmentation phase but rather persisted in interconnected populations and experienced demographic growth. The wide ecological flexibility of the species probably played a crucial role in its response to glacial-induced environmental changes. Currently, there is little information on the impact of Pleistocene climatic changes on animal species in East Asia. Most of the studies focused on forest-associated species and suggested cycles of glacial fragmentation and post-glacial expansion. The case of Ae. albopictus, which exhibits a pattern not previously observed in the study area, adds an important piece to our understanding of the Pleistocene history

  18. Nutrient acquisition by symbiotic fungi governs Palaeozoic climate transition.

    Science.gov (United States)

    Mills, Benjamin J W; Batterman, Sarah A; Field, Katie J

    2018-02-05

    Fossil evidence from the Rhynie chert indicates that early land plants, which evolved in a high-CO 2 atmosphere during the Palaeozoic Era, hosted diverse fungal symbionts. It is hypothesized that the rise of early non-vascular land plants, and the later evolution of roots and vasculature, drove the long-term shift towards a high-oxygen, low CO 2 climate that eventually permitted the evolution of mammals and, ultimately, humans. However, very little is known about the productivity of the early terrestrial biosphere, which depended on the acquisition of the limiting nutrient phosphorus via fungal symbiosis. Recent laboratory experiments have shown that plant-fungal symbiotic function is specific to fungal identity, with carbon-for-phosphorus exchange being either enhanced or suppressed under superambient CO 2 By incorporating these experimental findings into a biogeochemical model, we show that the differences in these symbiotic nutrient acquisition strategies could greatly alter the plant-driven changes to climate, allowing drawdown of CO 2 to glacial levels, and altering the nature of the rise of oxygen. We conclude that an accurate depiction of plant-fungal symbiotic systems, informed by high-CO 2 experiments, is key to resolving the question of how the first terrestrial ecosystems altered our planet.This article is part of a discussion meeting issue 'The Rhynie cherts: our earliest terrestrial ecosystem revisited'. © 2017 The Authors.

  19. Genetic and palaeo-climatic evidence for widespread persistence of the coastal tree species Eucalyptus gomphocephala (Myrtaceae) during the Last Glacial Maximum.

    Science.gov (United States)

    Nevill, Paul G; Bradbury, Donna; Williams, Anna; Tomlinson, Sean; Krauss, Siegfried L

    2014-01-01

    Few phylogeographic studies have been undertaken of species confined to narrow, linear coastal systems where past sea level and geomorphological changes may have had a profound effect on species population sizes and distributions. In this study, a phylogeographic analysis was conducted of Eucalyptus gomphocephala (tuart), a tree species restricted to a 400 × 10 km band of coastal sand-plain in south west Australia. Here, there is little known about the response of coastal vegetation to glacial/interglacial climate change, and a test was made as to whether this species was likely to have persisted widely through the Last Glacial Maximum (LGM), or conforms to a post-LGM dispersal model of recovery from few refugia. The genetic structure over the entire range of tuart was assessed using seven nuclear (21 populations; n = 595) and four chloroplast (24 populations; n = 238) microsatellite markers designed for eucalypt species. Correlative palaeodistribution modelling was also conducted based on five climatic variables, within two LGM models. The chloroplast markers generated six haplotypes, which were strongly geographically structured (GST = 0·86 and RST = 0·75). Nuclear microsatellite diversity was high (overall mean HE 0·75) and uniformly distributed (FST = 0·05), with a strong pattern of isolation by distance (r(2) = 0·362, P = 0·001). Distribution models of E. gomphocephala during the LGM showed a wide distribution that extended at least 30 km westward from the current distribution to the palaeo-coastline. The chloroplast and nuclear data suggest wide persistence of E. gomphocephala during the LGM. Palaeodistribution modelling supports the conclusions drawn from genetic data and indicates a widespread westward shift of E. gomphocephala onto the exposed continental shelf during the LGM. This study highlights the importance of the inclusion of complementary, non-genetic data (information on geomorphology and palaeoclimate) to interpret phylogeographic patterns.

  20. Emerging Glacial Lakes in the Cordillera Blanca, Peru: A Case Study at Arteson Glacier

    Science.gov (United States)

    Chisolm, R. E.; Mckinney, D. C.; Gomez, J.; Voss, K.

    2012-12-01

    Tropical glaciers are an essential component of the water resources systems in the mountainous regions where they are located, and a warming climate has resulted in the accelerated retreat of Andean glaciers in recent decades. The shrinkage of Andean glaciers influences the flood risk for communities living downstream as new glacial lakes have begun to form at the termini of some glaciers. As these lakes continue to grow in area and volume, they pose an increasing risk of glacial lake outburst floods (GLOFs). Ice thickness measurements have been a key missing link in studying the tropical glaciers in Peru and how climate change is likely to impact glacial melt and the growth of glacial lakes. Ground penetrating radar (GPR) has rarely been applied to glaciers in Peru to measure ice thickness, and these measurements can tell us a lot about how a warming climate will affect glacier mass balance. This study presents GPR data taken in July 2012 at the Arteson glacier in the Cordillera Blanca, Peru. A new lake has begun to form at the terminus of the Arteson glacier, and this lake has key features, including overhanging ice and loose rock likely to create landslides, that could trigger a catastrophic GLOF if the lake continues to grow. This new lake is part of a series of three lakes that have formed below the Arteson glacier. The two lower lakes, Artesonraju and Paron, are much larger so that if there were an avalanche or landslide into the new lake below Arteson glacier, the impact could potentially be more catastrophic than a GLOF from one single lake. Estimates of how the lake mass balance is likely to evolve due to the retreating glacier are key to assessing the flood risk from this dynamic three-lake system. Because the glacier mass balance and lake mass balance are closely linked, the ice thickness measurements and measurements of the bed slope of the Arteson glacier and underlying bedrock give us a clue to how the lake is likely to evolve. GPR measurements of

  1. Edge states in the climate system: exploring global instabilities and critical transitions

    Science.gov (United States)

    Lucarini, Valerio; Bódai, Tamás

    2017-07-01

    Multistability is a ubiquitous feature in systems of geophysical relevance and provides key challenges for our ability to predict a system’s response to perturbations. Near critical transitions small causes can lead to large effects and—for all practical purposes—irreversible changes in the properties of the system. As is well known, the Earth climate is multistable: present astronomical and astrophysical conditions support two stable regimes, the warm climate we live in, and a snowball climate characterized by global glaciation. We first provide an overview of methods and ideas relevant for studying the climate response to forcings and focus on the properties of critical transitions in the context of both stochastic and deterministic dynamics, and assess strengths and weaknesses of simplified approaches to the problem. Following an idea developed by Eckhardt and collaborators for the investigation of multistable turbulent fluid dynamical systems, we study the global instability giving rise to the snowball/warm multistability in the climate system by identifying the climatic edge state, a saddle embedded in the boundary between the two basins of attraction of the stable climates. The edge state attracts initial conditions belonging to such a boundary and, while being defined by the deterministic dynamics, is the gate facilitating noise-induced transitions between competing attractors. We use a simplified yet Earth-like intermediate complexity climate model constructed by coupling a primitive equations model of the atmosphere with a simple diffusive ocean. We refer to the climatic edge states as Melancholia states and provide an extensive analysis of their features. We study their dynamics, their symmetry properties, and we follow a complex set of bifurcations. We find situations where the Melancholia state has chaotic dynamics. In these cases, we have that the basin boundary between the two basins of attraction is a strange geometric set with a nearly zero

  2. Glacial cold-water coral growth in the Gulf of Cádiz: Implications of increased palaeo-productivity

    Science.gov (United States)

    Wienberg, Claudia; Frank, Norbert; Mertens, Kenneth N.; Stuut, Jan-Berend; Marchant, Margarita; Fietzke, Jan; Mienis, Furu; Hebbeln, Dierk

    2010-10-01

    A set of 40 Uranium-series datings obtained on the reef-forming scleractinian cold-water corals Lophelia pertusa and Madrepora oculata revealed that during the past 400 kyr their occurrence in the Gulf of Cádiz (GoC) was almost exclusively restricted to glacial periods. This result strengthens the outcomes of former studies that coral growth in the temperate NE Atlantic encompassing the French, Iberian and Moroccan margins dominated during glacial periods, whereas in the higher latitudes (Irish and Norwegian margins) extended coral growth prevailed during interglacial periods. Thus it appears that the biogeographical limits for sustained cold-water coral growth along the NE Atlantic margin are strongly related to climate change. By focussing on the last glacial-interglacial cycle, this study shows that palaeo-productivity was increased during the last glacial. This was likely driven by the fertilisation effect of an increased input of aeolian dust and locally intensified upwelling. After the Younger Dryas cold event, the input of aeolian dust and productivity significantly decreased concurrent with an increase in water temperatures in the GoC. This primarily resulted in reduced food availability and caused a widespread demise of the formerly thriving coral ecosystems. Moreover, these climate induced changes most likely caused a latitudinal shift of areas with optimum coral growth conditions towards the northern NE Atlantic where more suitable environmental conditions established with the onset of the Holocene.

  3. Climatic changes and uplift patterns - past, present and future

    International Nuclear Information System (INIS)

    Bjoerck, S.; Svensson, N.O.

    1992-11-01

    Our knowledge about the Pleistocene (= last 2.5 million years) climatic changes and their global environmental effects on the Earth system, e.g. the glacial-interglacial cycles, the sea level changes, and the significant crustal movements in glaciated regions, has increased greatly during the last decades. This report outlines the historical background and the present state-of-the-arts on these matters. Because the driving mechanisms and feed-back effects behind these changes have been more and more discussed in earth-science literature, analysed, and probably also better and better understood, it has become possible to present theoretical models for future climates (not including mans influence on the earth system). The report presents and discusses one such climate model (short of predicting mans future behaviour and its consequent effect on climate) and its likely implications on future climatic and glacial conditions, and bedrock movements, with focus on the Stockholm region. Possibilities for quaternary geologists to establish and map post glacial fault zones, related to irregular bedrock movements, are also briefly outlined in the report. (222 refs.)

  4. Variations in Mediterranean-Atlantic exchange across the late Pliocene climate transition

    Science.gov (United States)

    García-Gallardo, Ángela; Grunert, Patrick; Piller, Werner E.

    2018-03-01

    Mediterranean-Atlantic exchange through the Strait of Gibraltar plays a significant role in the global ocean-climate dynamics in two ways. On one side, the injection of the saline and warm Mediterranean Outflow Water (MOW) contributes to North Atlantic deep-water formation. In return, the Atlantic inflow is considered a sink of less saline water for the North Atlantic Ocean. However, while the history of MOW is the focus of numerous studies, the Pliocene Atlantic inflow has received little attention so far. The present study provides an assessment of the Mediterranean-Atlantic exchange with a focus on the Atlantic inflow strength and its response to regional and global climate from 3.33 to 2.60 Ma. This time interval comprises the mid-Pliocene warm period (MPWP; 3.29-2.97 Ma) and the onset of the Northern Hemisphere glaciation (NHG). For this purpose, gradients in surface δ18O records of the planktonic foraminifer Globigerinoides ruber between the Integrated Ocean Drilling Program (IODP) Hole U1389E (Gulf of Cádiz) and Ocean Drilling Program (ODP) Hole 978A (Alboran Sea) have been evaluated. Interglacial stages and warm glacials of the MPWP revealed steep and reversed (relative to the present) W-E δ18O gradients suggesting a weakening of Mediterranean-Atlantic exchange likely caused by high levels of relative humidity in the Mediterranean region. In contrast, periods of stronger inflow are indicated by flat δ18O gradients due to more intense arid conditions during the severe glacial Marine Isotope Stage (MIS) M2 and the initiation of NHG (MIS G22, G14, G6-104). Intensified Mediterranean-Atlantic exchange in cold periods is linked to the occurrence of ice-rafted debris (IRD) at low latitudes and a weakening of the Atlantic Meridional Overturning Circulation (AMOC). Our results thus suggest the development of a negative feedback between AMOC and exchange rates at the Strait of Gibraltar in the latest Pliocene as it has been proposed for the late Quaternary.

  5. The importance of precessional signals in the tropical climate

    Energy Technology Data Exchange (ETDEWEB)

    Clement, A C [Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149 (United States); Hall, A [UCLA, 7955 Math Sciences Building, 405 Hilgard Ave., Box 951565, Los Angeles, CA 90095 (United States); Broccoli, A J [Rutgers University, 14 College Farm Road, New Brunswick, NJ 08901-8551 (United States)

    2004-04-01

    Past research on the climate response to orbital forcing has emphasized the glacial-interglacial variations in global ice volume, global-mean temperature, and the global hydrologic cycle. This emphasis may be inappropriate in the tropics, where the response to precessional forcing is likely to be somewhat independent of the glacial-interglacial variations, particularly in variables relating to the hydrologic cycle. To illustrate this point, we use an atmospheric general circulation model coupled to a slab ocean model, performing experiments that quantify the tropical climate's response to (1) opposite phases of precessional forcing, and (2) Last Glacial Maximum boundary conditions. While the glacially-forced tropical temperature changes are typically more than an order of magnitude larger than those arising from precessional forcing, the hydrologic signals stemming from the two forcings are comparable in magnitude. The mechanisms behind these signals are investigated and shown to be quite distinct for the precessional and glacial forcing. Because of strong dynamical linkages in the tropics, the model results illustrate the impossibility of predicting the local hydrologic response to external forcing without understanding the response at much larger spatial scales. Examples from the paleoclimate record are presented as additional evidence for the importance of precessional signals in past variations of the tropical climate. (orig.)

  6. 'Sauvons le Climat' presents its '15 proposals of the National debate on energy transition'

    International Nuclear Information System (INIS)

    2013-01-01

    This document presents the background, meaning and objectives of the 15 proposals made by 'Sauvons le Climat' (Save the Climate) within the French national debate on energy transition. These proposals are: a transition which gives an orientation on the long term and complies with France commitments; a transition by all and for all; priority to the struggle against energy poverty; integration of energy efficiency and sobriety in the growth model; to bring the whole built environment at a high level of thermal performance by 2030; for a sustainable mobility; energy transition as a competitiveness lever for France; energy transition as booster for rural world revival; a valorisation of French values and strengths; a resilient, diversified, balanced and competitive energy mix, marked by a development of renewable energies; to massively attract and orient investors towards energy transition; to strengthen local abilities in order to ease the decentralisation of the implementation of energy transition; to develop jobs, anticipate, prepare and be successful in professional transitions; a more ambitious and better coordinated European policy; to conduct and adapt energy transition

  7. San Francisco Bay Area Rapid Transit District (BART) climate change adaptation assessment pilot.

    Science.gov (United States)

    2013-12-01

    The objective of this pilot study was to evaluate the impacts of climate change on the San Francisco Bay Area Rapid Transit District : (BART) infrastructure and to develop and implement adaptation strategies against those impacts. Climate change haza...

  8. Some comments on the terminology of the Late Glacial in Central Europe and the problem of its application to SW Europe

    Directory of Open Access Journals (Sweden)

    Olaf JÖRIS

    2013-05-01

    Full Text Available Today, the Late Glacial interstadials Bølling and Allerød, originally defined in northern Europe, are often applied as chronozones in different palaeoclimate contexts across the Northern Hemisphere. The scientific community in both palaeoclimate research and archaeology often disregards the fact that the Meiendorf interstadial has long been identified as preceding the Bølling-Allerød sequence, and that there are lots of difficulties with the synchronization of the Oldest Dryas-Bølling-Older Dryas-sequence. Synchronization of important Central European high-resolution pollen records with the Greenland GRIP ice core demonstrates a strong climatic gradient from the South to the North of Europe over the entire Late Glacial. Therefore, the northern European interstadials (Meiendorf, Bølling, Allerød cannot serve universally as Late Glacial chronozones with reference to their characteristic pollen compositions, even though they are of greatest importance for the understanding of the regional vegetational history. The Greenland ice cores offer continous climate information over the entire Late Glacial and may serve as chronostratigraphical type sections. In the close future, detailed synchronization of terrestrial sequences with the Greenland ice core records will be achieved, using high-precision radiocarbon calibration based on Late Glacial dendrochronologies.

  9. A geochemical record of polycyclic aromatic hydrocarbons (PAHs) during the late Paleozoic Ice Age: The relationship between atmospheric pCO2, climate and fire.

    Science.gov (United States)

    Hren, M. T.; Harris, G.; Montanez, I. P.; DiMichele, W.; Eley, Y.; White, J. D.; Wilson, J. P.; McElwain, J.; Poulsen, C. J.

    2017-12-01

    The late Paleozoic Ice Age (LPIA) represents a dynamic period of widespread glacial/interglacial cycling as the earth underwent a major transition from an icehouse to greenhouse climate. During this transition period, pCO2 is shown to have varied by several hundred ppm and within the predicted range for anthropogenic change. Glacial/interglacial changes in atmospheric pCO2 during this time are associated with restructuring of tropical forests and carbon cycle dynamics. At present however, there is considerable debate over the potential hydrologic and fire-frequency feedbacks associated with this climatic variability. Polycyclic aromatic hydrocarbons (PAHs) are produced from the incomplete combustion of organic matter and are shown to be preserved over hundreds of millions of years. Thus, these organic compounds provide a potential record of the feedbacks between global biogeochemical systems and fire. We analyzed sedimentary organic matter from the Illinois Basin spanning the late Carboniferous glacial-interglacial cycles to assess the evolution of fire during this period. Our data show a decrease in the overall abundance of high molecular weight PAHs (HMW) from 312 to 304 Myr with significant variability that is coincident with the general timing of pCO2 cycling. Decreasing PAH abundance is also coincident with a proposed long-term change in pO2 and may reflect the influence of atmospheric oxygen in regulating fire occurrence and hydrologic cycling in tropical ecosystems in the late Carboniferous.

  10. Uncertainties in modelling CH4 emissions from northern wetlands in glacial climates: the role of vegetation parameters

    Directory of Open Access Journals (Sweden)

    J. van Huissteden

    2011-10-01

    Full Text Available Marine Isotope Stage 3 (MIS 3 interstadials are marked by a sharp increase in the atmospheric methane (CH4 concentration, as recorded in ice cores. Wetlands are assumed to be the major source of this CH4, although several other hypotheses have been advanced. Modelling of CH4 emissions is crucial to quantify CH4 sources for past climates. Vegetation effects are generally highly generalized in modelling past and present-day CH4 fluxes, but should not be neglected. Plants strongly affect the soil-atmosphere exchange of CH4 and the net primary production of the vegetation supplies organic matter as substrate for methanogens. For modelling past CH4 fluxes from northern wetlands, assumptions on vegetation are highly relevant since paleobotanical data indicate large differences in Last Glacial (LG wetland vegetation composition as compared to modern wetland vegetation. Besides more cold-adapted vegetation, Sphagnum mosses appear to be much less dominant during large parts of the LG than at present, which particularly affects CH4 oxidation and transport. To evaluate the effect of vegetation parameters, we used the PEATLAND-VU wetland CO2/CH4 model to simulate emissions from wetlands in continental Europe during LG and modern climates. We tested the effect of parameters influencing oxidation during plant transport (fox, vegetation net primary production (NPP, parameter symbol Pmax, plant transport rate (Vtransp, maximum rooting depth (Zroot and root exudation rate (fex. Our model results show that modelled CH4 fluxes are sensitive to fox and Zroot in particular. The effects of Pmax, Vtransp and fex are of lesser relevance. Interactions with water table modelling are significant for Vtransp. We conducted experiments with different wetland vegetation types for Marine Isotope Stage 3 (MIS 3 stadial and interstadial climates and the present-day climate, by coupling PEATLAND-VU to high resolution climate model simulations for Europe. Experiments assuming

  11. Uncertainties in modelling CH4 emissions from northern wetlands in glacial climates: the role of vegetation parameters

    Science.gov (United States)

    Berrittella, C.; van Huissteden, J.

    2011-10-01

    Marine Isotope Stage 3 (MIS 3) interstadials are marked by a sharp increase in the atmospheric methane (CH4) concentration, as recorded in ice cores. Wetlands are assumed to be the major source of this CH4, although several other hypotheses have been advanced. Modelling of CH4 emissions is crucial to quantify CH4 sources for past climates. Vegetation effects are generally highly generalized in modelling past and present-day CH4 fluxes, but should not be neglected. Plants strongly affect the soil-atmosphere exchange of CH4 and the net primary production of the vegetation supplies organic matter as substrate for methanogens. For modelling past CH4 fluxes from northern wetlands, assumptions on vegetation are highly relevant since paleobotanical data indicate large differences in Last Glacial (LG) wetland vegetation composition as compared to modern wetland vegetation. Besides more cold-adapted vegetation, Sphagnum mosses appear to be much less dominant during large parts of the LG than at present, which particularly affects CH4 oxidation and transport. To evaluate the effect of vegetation parameters, we used the PEATLAND-VU wetland CO2/CH4 model to simulate emissions from wetlands in continental Europe during LG and modern climates. We tested the effect of parameters influencing oxidation during plant transport (fox), vegetation net primary production (NPP, parameter symbol Pmax), plant transport rate (Vtransp), maximum rooting depth (Zroot) and root exudation rate (fex). Our model results show that modelled CH4 fluxes are sensitive to fox and Zroot in particular. The effects of Pmax, Vtransp and fex are of lesser relevance. Interactions with water table modelling are significant for Vtransp. We conducted experiments with different wetland vegetation types for Marine Isotope Stage 3 (MIS 3) stadial and interstadial climates and the present-day climate, by coupling PEATLAND-VU to high resolution climate model simulations for Europe. Experiments assuming dominance of

  12. Point Climat no. 26 'Regional Climate - Air - Energy Plans at the heart of the debate on the energy transition'

    International Nuclear Information System (INIS)

    Bordier, Cecile; Leseur, Alexia

    2013-01-01

    Among the publications of CDC Climat Research, 'Climate Briefs' presents, in a few pages, hot topics in climate change policy. This issue addresses the following points: On the eve of the introduction of the environmental assessment procedure for planning documents, almost all Regional Climate - Air - Energy Plans have now been published. This Climate Brief assesses regional climate strategies, which rely on significant commitment from those involved, including citizens by changing their behaviour, companies by improving their energy efficiency and the banking sector through financial support. Identification of these challenges and areas for action will feed into the national debate on energy transition which began last autumn

  13. Dansgaard–Oeschger events: bifurcation points in the climate system

    Directory of Open Access Journals (Sweden)

    A. A. Cimatoribus

    2013-02-01

    Full Text Available Dansgaard–Oeschger events are a prominent mode of variability in the records of the last glacial cycle. Various prototype models have been proposed to explain these rapid climate fluctuations, and no agreement has emerged on which may be the more correct for describing the palaeoclimatic signal. In this work, we assess the bimodality of the system, reconstructing the topology of the multi-dimensional attractor over which the climate system evolves. We use high-resolution ice core isotope data to investigate the statistical properties of the climate fluctuations in the period before the onset of the abrupt change. We show that Dansgaard–Oeschger events have weak early warning signals if the ensemble of events is considered. We find that the statistics are consistent with the switches between two different climate equilibrium states in response to a changing external forcing (e.g. solar, ice sheets, either forcing directly the transition or pacing it through stochastic resonance. These findings are most consistent with a model that associates Dansgaard–Oeschger with changing boundary conditions, and with the presence of a bifurcation point.

  14. Vegetation and Climate Change during the Last Deglaciation in the Great Khingan Mountain, Northeastern China.

    Science.gov (United States)

    Wu, Jing; Liu, Qiang; Wang, Luo; Chu, Guo-qiang; Liu, Jia-qi

    2016-01-01

    The Great Khingan Mountain range, Northeast China, is located on the northern limit of modern East Asian Summer Monsoon (EASM) and thus highly sensitive to the extension of the EASM from glacial to interglacial modes. Here, we present a high-resolution pollen record covering the last glacial maximum and the early Holocene from a closed crater Lake Moon to reconstruct vegetation history during the glacial-interglacial transition and thus register the evolution of the EASM during the last deglaciation. The vegetation history has gone through distinct changes from subalpine meadow in the last glacial maximum to dry steppe dominated by Artemisia from 20.3 to 17.4 ka BP, subalpine meadow dominated by Cyperaceae and Artemisia between 17.4 and 14.4 ka BP, and forest steppe dominated by Betula and Artemisia after 14.4 ka BP. The pollen-based temperature index demonstrates a gradual warming trend started at around 20.3 ka BP with interruptions of several brief events. Two cold conditions occurred around at 17.2-16.6 ka BP and 12.8-11.8 ka BP, temporally correlating to the Henrich 1 and the Younger Dryas events respectively, 1and abrupt warming events occurred around at 14.4 ka BP and 11.8 ka BP, probably relevant to the beginning of the Bølling-Allerød stages and the Holocene. The pollen-based moisture proxy shows distinct drought condition during the last glacial maximum (20.3-18.0 ka BP) and the Younger Dryas. The climate history based on pollen record of Lake Moon suggests that the regional temperature variability was coherent with the classical climate in the North Atlantic, implying the dominance of the high latitude processes on the EASM evolution from the Last Glacial Maximum (LGM) to early Holocene. The local humidity variability was influenced by the EASM limitedly before the Bølling-Allerød warming, which is mainly controlled by the summer rainfall due to the EASM front covering the Northeast China after that.

  15. Vegetation and Climate Change during the Last Deglaciation in the Great Khingan Mountain, Northeastern China.

    Directory of Open Access Journals (Sweden)

    Jing Wu

    Full Text Available The Great Khingan Mountain range, Northeast China, is located on the northern limit of modern East Asian Summer Monsoon (EASM and thus highly sensitive to the extension of the EASM from glacial to interglacial modes. Here, we present a high-resolution pollen record covering the last glacial maximum and the early Holocene from a closed crater Lake Moon to reconstruct vegetation history during the glacial-interglacial transition and thus register the evolution of the EASM during the last deglaciation. The vegetation history has gone through distinct changes from subalpine meadow in the last glacial maximum to dry steppe dominated by Artemisia from 20.3 to 17.4 ka BP, subalpine meadow dominated by Cyperaceae and Artemisia between 17.4 and 14.4 ka BP, and forest steppe dominated by Betula and Artemisia after 14.4 ka BP. The pollen-based temperature index demonstrates a gradual warming trend started at around 20.3 ka BP with interruptions of several brief events. Two cold conditions occurred around at 17.2-16.6 ka BP and 12.8-11.8 ka BP, temporally correlating to the Henrich 1 and the Younger Dryas events respectively, 1and abrupt warming events occurred around at 14.4 ka BP and 11.8 ka BP, probably relevant to the beginning of the Bølling-Allerød stages and the Holocene. The pollen-based moisture proxy shows distinct drought condition during the last glacial maximum (20.3-18.0 ka BP and the Younger Dryas. The climate history based on pollen record of Lake Moon suggests that the regional temperature variability was coherent with the classical climate in the North Atlantic, implying the dominance of the high latitude processes on the EASM evolution from the Last Glacial Maximum (LGM to early Holocene. The local humidity variability was influenced by the EASM limitedly before the Bølling-Allerød warming, which is mainly controlled by the summer rainfall due to the EASM front covering the Northeast China after that.

  16. The De Long Trough: a newly discovered glacial trough on the East Siberian continental margin

    Directory of Open Access Journals (Sweden)

    M. O'Regan

    2017-09-01

    Full Text Available Ice sheets extending over parts of the East Siberian continental shelf have been proposed for the last glacial period and during the larger Pleistocene glaciations. The sparse data available over this sector of the Arctic Ocean have left the timing, extent and even existence of these ice sheets largely unresolved. Here we present new geophysical mapping and sediment coring data from the East Siberian shelf and slope collected during the 2014 SWERUS-C3 expedition (SWERUS-C3: Swedish – Russian – US Arctic Ocean Investigation of Climate-Cryosphere-Carbon Interactions. The multibeam bathymetry and chirp sub-bottom profiles reveal a set of glacial landforms that include grounding zone formations along the outer continental shelf, seaward of which lies a  >  65 m thick sequence of glacio-genic debris flows. The glacial landforms are interpreted to lie at the seaward end of a glacial trough – the first to be reported on the East Siberian margin, here referred to as the De Long Trough because of its location due north of the De Long Islands. Stratigraphy and dating of sediment cores show that a drape of acoustically laminated sediments covering the glacial deposits is older than ∼ 50 cal kyr BP. This provides direct evidence for extensive glacial activity on the Siberian shelf that predates the Last Glacial Maximum and most likely occurred during the Saalian (Marine Isotope Stage (MIS 6.

  17. Origin of last-glacial loess in the western Yukon-Tanana Upland, central Alaska, USA

    Science.gov (United States)

    Muhs, Daniel; Pigati, Jeffrey S.; Budahn, James R.; Skipp, Gary L.; Bettis, E. Arthur; Jensen, Britta

    2018-01-01

    Loess is widespread over Alaska, and its accumulation has traditionally been associated with glacial periods. Surprisingly, loess deposits securely dated to the last glacial period are rare in Alaska, and paleowind reconstructions for this time period are limited to inferences from dune orientations. We report a rare occurrence of loess deposits dating to the last glacial period, ~19 ka to ~12 ka, in the Yukon-Tanana Upland. Loess in this area is very coarse grained (abundant coarse silt), with decreases in particle size moving south of the Yukon River, implying that the drainage basin of this river was the main source. Geochemical data show, however, that the Tanana River valley to the south is also a likely distal source. The occurrence of last-glacial loess with sources to both the south and north is explained by both regional, synoptic-scale winds from the northeast and opposing katabatic winds that could have developed from expanded glaciers in both the Brooks Range to the north and the Alaska Range to the south. Based on a comparison with recent climate modeling for the last glacial period, seasonality of dust transport may also have played a role in bringing about contributions from both northern and southern sources.

  18. Phylogenetic assemblage structure of North American trees is more strongly shaped by glacial–interglacial climate variability in gymnosperms than in angiosperms

    DEFF Research Database (Denmark)

    Ma, Ziyu; Sandel, Brody Steven; Svenning, Jens-Christian

    2016-01-01

    and tropical niche conservatism. However, the role of glacial-interglacial climate variability remains to be determined, and little is known about any of these relationships for gymnosperms. Moreover, phylogenetic edemism, patterns of unique lineages in restricted ranges is also related to glacial...... to recolonization to quantify glacial-interglacial climate variability. We found: i) Current climate is the dominant factor explaining the overall patterns, with more clustered angiosperm assemblages towards lower temperature, consistent with tropical niche conservatism. ii) Long-term climate stability...

  19. Sea ice dynamics across the Mid-Pleistocene transition in the Bering Sea.

    Science.gov (United States)

    Detlef, H; Belt, S T; Sosdian, S M; Smik, L; Lear, C H; Hall, I R; Cabedo-Sanz, P; Husum, K; Kender, S

    2018-03-05

    Sea ice and associated feedback mechanisms play an important role for both long- and short-term climate change. Our ability to predict future sea ice extent, however, hinges on a greater understanding of past sea ice dynamics. Here we investigate sea ice changes in the eastern Bering Sea prior to, across, and after the Mid-Pleistocene transition (MPT). The sea ice record, based on the Arctic sea ice biomarker IP 25 and related open water proxies from the International Ocean Discovery Program Site U1343, shows a substantial increase in sea ice extent across the MPT. The occurrence of late-glacial/deglacial sea ice maxima are consistent with sea ice/land ice hysteresis and land-glacier retreat via the temperature-precipitation feedback. We also identify interactions of sea ice with phytoplankton growth and ocean circulation patterns, which have important implications for glacial North Pacific Intermediate Water formation and potentially North Pacific abyssal carbon storage.

  20. Post-Glacial and Paleo-Environmental History of the West Coast of Vancouver Island

    Science.gov (United States)

    Dallimore, A.; Enkin, R. J.

    2005-12-01

    Annually laminated sediments in anoxic fjords are potentially ideal paleoclimate recorders, particularly once proxy measurements for atmospheric, oceanographic and sedimentological conditions have been calibrated. On the west coast of Canada, these sediments also record the changing environment as glaciers retreated from this area about 12 ka y BP. In Effingham Inlet, a 40 m core taken from the French ship the Marion Dufresne as part of the international IMAGES/PAGES program, gives evidence of an isolation basin at maximum glacial isostatic rebound and lowest paleo-sea level followed by eustatic sea level rise about 10 ka y BP. The Late Pleistocene record also marks dramatic changes in glacial sedimentary source and transport. Excellent chronological control is provided by complementary yet independent dating methods including radiocarbon dates on both plants and shells, identification of the Mazama Ash, varve counting and paleomagnetic, paleosecular variation correlations in the lower, pro-glacial section of the core which does not contain organic material. Paleoenvironmental evidence from this core provides information on immediate post-glacial conditions along the coast and rapid climatic changes throughout the Holocene, with implications for the possibility of early human migration routes and refugia.

  1. Numerical Modeling of Rocky Mountain Paleoglaciers - Insights into the Climate of the Last Glacial Maximum and the Subsequent Deglaciation

    Science.gov (United States)

    Leonard, E. M.; Laabs, B. J. C.; Plummer, M. A.

    2014-12-01

    Numerical modeling of paleoglaciers can yield information on the climatic conditions necessary to sustain those glaciers. In this study we apply a coupled 2-d mass/energy balance and flow model (Plummer and Phillips, 2003) to reconstruct local last glacial maximum (LLGM) glaciers and paleoclimate in ten study areas along the crest of the U.S. Rocky Mountains between 33°N and 49°N. In some of the areas, where timing of post-LLGM ice recession is constrained by surface exposure ages on either polished bedrock upvalley from the LLGM moraines or post-LLGM recessional moraines, we use the model to assess magnitudes and rates of climate change during deglaciation. The modeling reveals a complex pattern of LLGM climate. The magnitude of LLGM-to-modern climate change (temperature and/or precipitation change) was greater in both the northern (Montana) Rocky Mountains and southern (New Mexico) Rocky Mountains than in the middle (Wyoming and Colorado) Rocky Mountains. We use temperature depression estimates from global and regional climate models to infer LLGM precipitation from our glacier model results. Our results suggest a reduction of precipitation coupled with strongly depressed temperatures in the north, contrasted with strongly enhanced precipitation and much more modest temperature depression in the south. The middle Rocky Mountains of Colorado and Wyoming appear to have experienced a reduction in precipitation at the LLGM without the strong temperature depression of the northern Rocky Mountains. Preliminary work on modeling of deglaciation in the Sangre de Cristo Range in southern Colorado suggests that approximately half of the LLGM-to-modern climate change took place during the initial ~2400 years of deglaciation. If increasing temperature and changing solar insolation were the sole drivers of this initial deglaciation, then temperature would need to have risen by slightly more than 1°C/ky through this interval to account for the observed rate of ice recession.

  2. A multi-decadal remote sensing study on glacial change in the North Patagonia Ice Field Chile

    Science.gov (United States)

    Tetteh, Lucy Korlekwor

    Glaciers in the North Patagonian Ice Fields are temperate glaciers and can be studied to understand the dynamics of climate change. However, the ice field has been neglected in mass balance studies. In this study, multi decadal study of glacial mass balance, glacier retreat and glacial lake expansion in the North Patagonia were studied. Landsat (TM, ETM+ and 8) and ASTER images were used. San Quintin glacier experienced the highest retreat. Demarcation of glacier lakes boundaries indicated an increase in glacial lake area an addition of 4 new glacial lakes. Nef glacier recorded the highest mass gain of 9.91 plus or minus 1.96 m.w.e.a.-1 and HPN-4 glacier recorded the highest mass loss of -8.9 plus or minus 1.96 m.w.e.a. -1. However, there is a high uncertainty in the elevation values in the DEM due to the rugged nature of the terrain and presence of the heavy snow cover.

  3. Inventory and recently increasing GLOF susceptibility of glacial lakes in Sikkim, Eastern Himalaya

    Czech Academy of Sciences Publication Activity Database

    Aggarwai, S.; Rai, S. C.; Thakur, P. K.; Emmer, Adam

    2017-01-01

    Roč. 30, č. 295 (2017), s. 39-54 ISSN 0169-555X Institutional support: RVO:86652079 Keywords : climate change * sikkim * glacial lake outburst flood (glof) * ahp * hazard assessment Subject RIV: EH - Ecology, Behaviour OBOR OECD: Environmental sciences (social aspects to be 5.7) Impact factor: 2.958, year: 2016

  4. NALPS: a precisely dated European climate record 120–60 ka

    Directory of Open Access Journals (Sweden)

    R. Boch

    2011-11-01

    Full Text Available Accurate and precise chronologies are essential in understanding the rapid and recurrent climate variations of the Last Glacial – known as Dansgaard-Oeschger (D-O events – found in the Greenland ice cores and other climate archives. The existing chronological uncertainties during the Last Glacial, however, are still large. Radiometric age data and stable isotopic signals from speleothems are promising to improve the absolute chronology. We present a record of several precisely dated stalagmites from caves located at the northern rim of the Alps (NALPS, a region that favours comparison with the climate in Greenland. The record covers most of the interval from 120 to 60 ka at an average temporal resolution of 2 to 22 yr and 2σ-age uncertainties of ca. 200 to 500 yr. The rapid and large oxygen isotope shifts of 1 to 4.5‰ occurred within decades to centuries and strongly mimic the Greenland D-O pattern. Compared to the updated Greenland ice-core timescale (GICC05modelext the NALPS record confirms the timing of rapid warming and cooling transitions between 118 and 106 ka, but suggests younger ages for D-O events between 106 and 60 ka. As an exception, the timing of the rapid transitions into and out of the stadial following GI 22 is earlier in NALPS than in the Greenland ice-core timescale. In addition, there is a discrepancy in the duration of this stadial between the ice-core and the stalagmite chronology (ca. 2900 vs. 3650 yr. The short-lived D-O events 18 and 18.1 are not recorded in NALPS, provoking questions with regard to the nature and the regional expression of these events. NALPS resolves recurrent short-lived climate changes within the cold Greenland stadial and warm interstadial successions, i.e. abrupt warming events preceding GI 21 and 23 (precursor-type events and at the end of GI 21 and 25 (rebound-type events, as well as intermittent cooling events during GI 22 and 24. Such superimposed events have not yet been documented

  5. An overview of climate change

    International Nuclear Information System (INIS)

    Masson-Delmotte, V.; Paillard, D.

    2004-01-01

    We describe briefly here the main mechanisms and time scales involved in natural and anthropogenic climate variability, based on quantitative paleo-climatic reconstructions from natural archives and climate model simulations: the large glacial-interglacial cycles of the last million years (the Quaternary), lasting typically a hundred thousand years, triggered by changes in the solar radiation received by the Earth due to its position around the Sun; the century-long climatic changes occurring during last glacial period and triggered by recurrent iceberg discharges of the large northern hemisphere ice caps, massive freshwater flux to the north Atlantic, and changes in the ocean heat transport. We show the strong coupling between past climatic changes and global biogeochemical cycles, namely here atmospheric greenhouse gases. We also discuss the decadal climatic fluctuations during the last thousand years, showing an unprecedented warming attributed to the anthropogenic greenhouse gas emissions. We show the range of atmospheric greenhouse concentrations forecasted for the end of the 21. century and the climate model predictions for global temperature changes during the 21. century. We also discuss the possible climatic changes at longer time scales involving the possibility of north Atlantic heat transport collapse (possibility of abrupt climate change), and the duration of the current interglacial period. (author)

  6. Differences in Bacterial Diversity and Communities Between Glacial Snow and Glacial Soil on the Chongce Ice Cap, West Kunlun Mountains.

    Science.gov (United States)

    Yang, Guang Li; Hou, Shu Gui; Le Baoge, Ri; Li, Zhi Guo; Xu, Hao; Liu, Ya Ping; Du, Wen Tao; Liu, Yong Qin

    2016-11-04

    A detailed understanding of microbial ecology in different supraglacial habitats is important due to the unprecedented speed of glacier retreat. Differences in bacterial diversity and community structure between glacial snow and glacial soil on the Chongce Ice Cap were assessed using 454 pyrosequencing. Based on rarefaction curves, Chao1, ACE, and Shannon indices, we found that bacterial diversity in glacial snow was lower than that in glacial soil. Principal coordinate analysis (PCoA) and heatmap analysis indicated that there were major differences in bacterial communities between glacial snow and glacial soil. Most bacteria were different between the two habitats; however, there were some common bacteria shared between glacial snow and glacial soil. Some rare or functional bacterial resources were also present in the Chongce Ice Cap. These findings provide a preliminary understanding of the shifts in bacterial diversity and communities from glacial snow to glacial soil after the melting and inflow of glacial snow into glacial soil.

  7. Effects of glaciological and hydro-meteorological conditions on the glacial danger in Zailiyskiy Alatau

    Directory of Open Access Journals (Sweden)

    A. R. Medeu

    2017-01-01

    Full Text Available A need to estimate a hazard of a mudflow stream appearance in the glacial-nival zone of the Northern slope of Zailiyskiy Alatau (Kasakhstan is now one of the really urgent problems. The objective of this study was to inves‑ tigate influence of glacial and hydrometeorological factors on the condition of snow-glacial zone of Zailiyskiy Alatau and find out a mudflow-forming role of the mudflow centers arising due to climate warming and degra‑ dation of glaciation: periglacial lakes, intramoraine channels and reservoirs, and also talik massifs of morainic deposits. We analyzed glacial processes in the Zailiysky Alatau over a long period using meteorological data of the Almaty weather station and its close correlations with data from weather stations in the mountains. The area of glaciations was found out to be reduced after the maximum of the Little Ice Age. A combined diagram of occurrence of the mudflow manifestations and factors causing them had been constructed on the basis of sta‑ tistical data on the landslide phenomena. Glacial mudflows were the most frequent in 1960–1990, and later on activity of them became weaker. We believe, that in the next 10–20 years, the glacial mudflow hazard in Zailiys‑ kiy Alatau can sharply decrease, but at the same time, a probability of occurrence of the rainfall mudflows can increase in the mountainous zone of the ridge due the increase of areas with melted moraine and slope deposits.

  8. Response of the Amazon rainforest to late Pleistocene climate variability

    Science.gov (United States)

    Häggi, Christoph; Chiessi, Cristiano M.; Merkel, Ute; Mulitza, Stefan; Prange, Matthias; Schulz, Michael; Schefuß, Enno

    2017-12-01

    Variations in Amazonian hydrology and forest cover have major consequences for the global carbon and hydrological cycles as well as for biodiversity. Yet, the climate and vegetation history of the lowland Amazon basin and its effect on biogeography remain debated due to the scarcity of suitable high-resolution paleoclimate records. Here, we use the isotopic composition (δD and δ13C) of plant-waxes from a high-resolution marine sediment core collected offshore the Amazon River to reconstruct the climate and vegetation history of the integrated lowland Amazon basin for the period from 50,000 to 12,800 yr before present. Our results show that δD values from the Last Glacial Maximum were more enriched than those from Marine Isotope Stage (MIS) 3 and the present-day. We interpret this trend to reflect long-term changes in precipitation and atmospheric circulation, with overall drier conditions during the Last Glacial Maximum. Our results thus suggest a dominant glacial forcing of the climate in lowland Amazonia. In addition to previously suggested thermodynamic mechanisms of precipitation change, which are directly related to temperature, we conclude that changes in atmospheric circulation are crucial to explain the temporal evolution of Amazonian rainfall variations, as demonstrated in climate model experiments. Our vegetation reconstruction based on δ13C values shows that the Amazon rainforest was affected by intrusions of savannah or more open vegetation types in its northern sector during Heinrich Stadials, while it was resilient to glacial drying. This suggests that biogeographic patterns in tropical South America were affected by Heinrich Stadials in addition to glacial-interglacial climate variability.

  9. Chronology of fast climatic changes during the last glacial period; Chronologie des variations climatiques rapides pendant la derniere periode glaciaire

    Energy Technology Data Exchange (ETDEWEB)

    Bard, E.; Rostek, F.; Menot-Combes, G. [Cerege, UMR 6635 et College de France, 13 - Aix-en-Provence (France)

    2006-01-15

    The history of the glacial climate is punctuated by events occurring at the scale of a human life. They are characterised by temperature changes of large amplitude, simultaneously in Greenland and the North Atlantic. These events affected not only the surface hydrology, but also the deep circulation of this oceanic basin. A by-product of the obvious correspondence between Dansgaard-Oeschger and Heinrich in the polar ice and marine sediments is to allow, by correlation, the construction of a calendar chronology for the marine records. This chronostratigraphic approach was validated by means of radiocarbon dating of deep-sea sediments raised on the Iberian Margin. Our study also contributes to the international effort of calibration of the radiocarbon time scale by providing significant results in the interval between 33000 and 41000 years calendar BP. (authors)

  10. Timing of maximum glacial extent and deglaciation from HualcaHualca volcano (southern Peru), obtained with cosmogenic 36Cl.

    Science.gov (United States)

    Alcalá, Jesus; Palacios, David; Vazquez, Lorenzo; Juan Zamorano, Jose

    2015-04-01

    Andean glacial deposits are key records of climate fluctuations in the southern hemisphere. During the last decades, in situ cosmogenic nuclides have provided fresh and significant dates to determine past glacier behavior in this region. But still there are many important discrepancies such as the impact of Last Glacial Maximum or the influence of Late Glacial climatic events on glacial mass balances. Furthermore, glacial chronologies from many sites are still missing, such as HualcaHualca (15° 43' S; 71° 52' W; 6,025 masl), a high volcano of the Peruvian Andes located 70 km northwest of Arequipa. The goal of this study is to establish the age of the Maximum Glacier Extent (MGE) and deglaciation at HualcaHualca volcano. To achieve this objetive, we focused in four valleys (Huayuray, Pujro Huayjo, Mollebaya and Mucurca) characterized by a well-preserved sequence of moraines and roches moutonnées. The method is based on geomorphological analysis supported by cosmogenic 36Cl surface exposure dating. 36Cl ages have been estimated with the CHLOE calculator and were compared with other central Andean glacial chronologies as well as paleoclimatological proxies. In Huayuray valley, exposure ages indicates that MGE occurred ~ 18 - 16 ka. Later, the ice mass gradually retreated but this process was interrupted by at least two readvances; the last one has been dated at ~ 12 ka. In the other hand, 36Cl result reflects a MGE age of ~ 13 ka in Mollebaya valley. Also, two samples obtained in Pujro-Huayjo and Mucurca valleys associated with MGE have an exposure age of 10-9 ka, but likely are moraine boulders affected by exhumation or erosion processes. Deglaciation in HualcaHualca volcano began abruptly ~ 11.5 ka ago according to a 36Cl age from a polished and striated bedrock in Pujro Huayjo valley, presumably as a result of reduced precipitation as well as a global increase of temperatures. The glacier evolution at HualcaHualca volcano presents a high correlation with

  11. Spurious Additional Warming Reconstructed From Borehole Temperatures Corrected for the Effect of the Last Glacial Cycle

    Science.gov (United States)

    Šafanda, Jan

    2018-03-01

    Reconstructions of past ground surface temperature changes from temperature logs conducted in several hundred meter deep boreholes have proved to be a valuable independent source of information on climate variations over the last millennium. The reconstruction techniques have been evolving for more than two decades to extract optimally the climate signal of the last millennium contained in the temperature logs of different length performed in sites with different histories of the Last Glacial Cycle. This paper analyzes the method of the Last Glacial Cycle thermal effect removal from such borehole temperature profiles used by Beltrami et al. (2017, https://doi.org/10.1002/2016GL071317) in reconstructing the last 500 year history. I show that the reported results of additional warming in this period reconstructed from the corrected borehole data for North America are an artifact generated by the correction.

  12. Geoengineering: Direct Mitigation of Climate Warming

    Science.gov (United States)

    For Frank Princiotta’s book, Global Climate Change—The Technology Challenge With the concentrations of atmospheric greenhouse gases (GHGs) rising to levels unprecedented in the current glacial epoch, the earth’s climate system appears to be rapidly shifting into a warmer regime....

  13. Late Glacial and Holocene Climate Change in the subantarctic Auckland Islands

    Science.gov (United States)

    Gilmer, G.; Moy, C. M.; Vandergoes, M.; Gadd, P.; Riesselman, C. R.; Jacobsen, G. E.; Wilson, G. S.; Visinand, C.

    2017-12-01

    Situated within the core of the Southern Hemisphere westerly winds, and between the subtropical and subantarctic fronts, the New Zealand subantarctic islands are uniquely positioned to evaluate past ocean and atmospheric change in the middle to high southern latitudes. We collected a series of sediment cores from Auckland Island fjords to produce a high-resolution record of climate change following the Last Glacial Maximum. Physical property and organic geochemical data, Itrax XRF, and visual core descriptions indicate the cores capture several phases of sedimentation. From these studies, we identify four primary sedimentary facies: 1) a deglacial facies exhibiting mm-scale laminae defined by magnetic susceptibility and density contrasts and high counts of elements associated with terrigenous sources; 2) a lacustrine facies defined by very low density, high organic carbon concentrations and low counts of lithophilic elements; 3) a marine transgression facies with moderate density, moderate bioturbation and alternating marine and lacustrine sedimentary components; 4) a marine facies that contains biogenic carbonate. Radiocarbon results indicate deglacial sedimentation was underway in the basin by approximately 19,000 cal yr BP. Lacustrine deposition in ice-free conditions began around 15,600 cal yr BP and continued until marine transgression at approximately 9,500 cal yr BP. During the early Holocene between 11 and 9.5 ka, we observe elevated n-alkane δD values and an overall increase in redox-sensitive elements that signal a combination of warmer atmospheric temperatures and reduced westerly wind strength that drives fjord stratification. Poleward-shifted westerlies south of the Auckland Islands could accommodate these results, but there are few records to corroborate this interpretation. We will discuss these results within the context of developing New Zealand and subantarctic paleoclimate records in order to provide a more comprehensive record of past change.

  14. High resolution record of the Last Glacial Maximum in eastern Australia

    Science.gov (United States)

    Petherick, Lynda; Moss, Patrick; McGowan, Hamish

    2010-05-01

    time than traditionally accepted, and was not uniformly cool and dry. Alloway, B. V., D. J. Lowe, D. J. A. Barrell, R. M. Newnham, P. C. Almond, P. C. Augustinus, N. A. N. Bertler, L. Carter, N. J. Litchfield, M. S. McGlone, J. Shulmeister, M. J. Vandergoes, P. W. Williams and N.-I. members (2007). Towards a climate event stratigraphy for New Zealand over the past 30 000 years (NZ-INTIMATE project). Journal of Quaternary Science 22(1): 9-35. Denton, G. H., T. V. Lowell, C. J. Heusser, C. Schluchter, B. G. Andersen, L. E. Heusser, P. I. Moreno and D. R. Marchant (1999). Geomorrphology, stratigraphy, and radiocarbon chronology of Llanquihe Drift in the area of the Southern Lake District, Seno Reloncavi, and Isal Grande de Chiloe, Chile. Geografiska Annaler 81A: 167-229. EPICA (2006). One-to-one coupling of glacial climate variability in Greenland and Antarctica. Nature 444: 195-198. Kershaw, A. P., G. M. McKenzie, N. Porch, R. G. Roberts, J. Brown, H. Heijnis, M. L. Orr, G. Jacobsen and P. R. Newall (2007). A high-resolution record of vegetation and climate through the last glacial cycles from Caledonia Fen, southeastern highlands of Australia. Journal of Quaternary Science 22(5): 481-500. Newnham, R. M., D. J. Lowe, T. Giles and B. V. Alloway (2007). Vegetation and climate of Auckland, New Zealand, since ca. 32 000 cal. yr ago: support for an extended LGM Journal of Quaternary Science 22(5): 517-534. Petherick, L. M., H. A. McGowan and P. T. Moss (2008). Climate variability during the Last Glacial Maximum in eastern Australia: Evidence of two stadials? Journal of Quaternary Science 23(8): 787-802. Röthlisberger, R., R. Mulvaney, E. W. Wolff, M. A. Hutterli, M. Bigler, S. Sommer and J. Jouzel (2002). Dust and sea salt variability in central East Antarctica (Dome C) over the last 45 kyr and its implications for southern high latitude climate. Geophysical Research Letters 29(20): Art # 1963. Smith, M. A. (2009). Late Quaternary landscapes in Central Australia: sedimentary

  15. Assessing transition trajectories towards a sustainable energy system: A case study on the Dutch transition to climate-neutral transport fuel chains

    NARCIS (Netherlands)

    Suurs, R.A.A.; Hekkert, M.P.; Meeus, M.T.H.; Nieuwlaar, E.

    2004-01-01

    This paper proposes a method for the ex ante evaluation of technological trajectories. As a case we study the Dutch transport energy system and its transition to climate neutrality. Two technological trajectories are proposed: (i) a sequence of transition steps based on radical infrastructural

  16. Holocene environmental changes recorded in Dicksonfjorden and Woodfjorden, Svalbard: impacts of global climate changes in a glacial-marine system

    Science.gov (United States)

    Joo, Y. J.; Nam, S. I.; Son, Y. J.; Forwick, M.

    2017-12-01

    Fjords in the Svalbard archipelago are characterized by an extreme environmental gradient between 1) the glacial system affected by tidewater glaciers and seasonal sea ice inside the fjords and 2) the warm Atlantic Water intrusion by the West Spitsbergen Current from open ocean. As sediment is largely supplied from the terrestrial source area exposed along the steep slopes of the fjords, the changes in the surface processes affected by glaciers are likely preserved in the sediments in the inner fjords. On the other hand, variations in the influence of the warm Atlantic Water in the marine realm (e.g. marine productivity) can be archived in the sediment deposited in the vicinity of the entrance to the fjords. Since the last deglaciation of the Svalbard-Barents ice sheet ( 13000 yrs BP), the Svalbard fjords have faced dramatic climate changes including the early Holocene Climate Optimum (HCO) and subsequent cooling that eventually led to the current cold and dry climate. We investigate the Holocene environmental changes in both terrestrial and marine realms based on stable isotopic and inorganic geochemical analyses of sediments deposited in Dicksonfjorden and Woodfjorden in the western and northern Spitsbergen, respectively. The two fjords are expected to provide intriguing information regarding how terrestrial and marine realms of the Arctic fjords system responded to regional and global climate changes. Being a branch of the larger Isfjorden, Dicksonfjorden penetrates deeply to the land, whereas Woodfjorden is rather directly connected to the open ocean. Accordingly, the results suggest that the Dicksonfjorden sediment records mainly terrestrial signals with marked fluctuations in sediment composition that coincide with major climate changes (e.g. HCO). On the contrary, the two Woodfjorden cores collected from different parts of the fjord exhibit contrasting results, likely illustrating differing response of terrestrial and marine realms to the climate changes in

  17. Earth's glacial record and its tectonic setting

    Science.gov (United States)

    Eyles, N.

    1993-09-01

    Glaciations have occurred episodically at different time intervals and for different durations in Earth's history. Ice covers have formed in a wide range of plate tectonic and structural settings but the bulk of Earth's glacial record can be shown to have been deposited and preserved in basins within extensional settings. In such basins, source area uplift and basin subsidence fulfill the tectonic preconditions for the initiation of glaciation and the accomodation and preservation of glaciclastic sediments. Tectonic setting, in particular subsidence rates, also dictates the type of glaciclastic facies and facies successions that are deposited. Many pre-Pleistocene glaciated basins commonly contain well-defined tectonostratigraphic successions recording the interplay of tectonics and sedimentation; traditional climatostratigraphic approaches involving interpretation in terms of either ice advance/retreat cycles or glacio-eustatic sea-level change require revision. The direct record of continental glaciation in Earth history, in the form of classically-recognised continental glacial landforms and "tillites", is meagre; it is probable that more than 95% of the volume of preserved "glacial" strata are glacially-influenced marine deposits that record delivery of large amounts of glaciclastic sediment to offshore basins. This flux has been partially or completely reworked by "normal" sedimentary processes such that the record of glaciation and climate change is recorded in marine successions and is difficult to decipher. The dominant "glacial" facies in the rock record are subaqueous debris flow diamictites and turbidites recording the selective preservation of poorly-sorted glaciclastic sediment deposited in deep water basins by sediment gravity flows. However, these facies are also typical of many non-glacial settings, especially volcanically-influenced environments; numerous Archean and Proterozoic diamictites, described in the older literature as tillites, have no

  18. The Last Interglacial-Glacial cycle (MIS 5-2) re-examined based on long proxy records from central and northern Europe

    Science.gov (United States)

    Helmens, Karin F.

    2014-02-01

    Current multi-proxy studies on a long sediment sequence preserved at Sokli (N Finland), i.e. in the central area of Fennoscandian glaciations, are drastically changing classic ideas of glaciations, vegetation and climate in northern Europe during the Late Pleistocene. The sediments in the Sokli basin have escaped major glacial erosion due to non-typical bedrock conditions. In this review, the Sokli record is compared in great detail with other long proxy records from central, temperate and northern, boreal Europe. These comprise the classic records of La Grande Pile (E France) and Oerel (N Germany) and more recently obtained records from Horoszki Duże (E Poland) and Lake Yamozero (NW Russia). The focus of the review is on pollen, lithology and macrofossil- and insect-based temperature inferences. The long records are further compared with recent proxy data from nearby terrestrial sites as well as with the rapidly accumulating high-resolution proxy data from the ocean realm. The comparison allows a re-examination of the environmental history and climate evolution of the Last Interglacial-Glacial (LI-G) cycle (MIS 5-2). It shows that environmental and climate conditions during MIS 5 (ca 130-70 ka BP) were distinctly different from those during MIS 4-2 (ca 70-15 ka BP). MIS 5 is characterized by three long forested intervals (broadly corresponding to MIS 5e, 5c, 5a), both in temperate and northern boreal Europe. These mild periods were interrupted by two short, relatively cold and dry intervals (MIS 5d and 5b) with mountain-centered glaciation in Fennoscandia. Millennial scale climate events were superimposed upon these longer lasting climate fluctuations. The time interval encompassing MIS 4-2 shows open vegetation. It is characterized by two glacial maxima (MIS 4 and 2) with sub-continental scale glaciation over northern Europe and dry conditions in strongly continental eastern European settings. High amplitude climate oscillations of millennial duration

  19. Millennial-scale variability during the last glacial in vegetation records from North America

    Science.gov (United States)

    Jiménez-Moreno, Gonzalo; Anderson, R. Scott; Desprat, S.; Grigg, L.D.; Grimm, E.C.; Heusser, L.E.; Jacobs, Brian F.; Lopez-Martinez, C.; Whitlock, C.L.; Willard, D.A.

    2010-01-01

    High-resolution pollen records from North America show that terrestrial environments were affected by Dansgaard-Oeschger (D-O) and Heinrich climate variability during the last glacial. In the western, more mountainous regions, these climate changes are generally observed in the pollen records as altitudinal movements of climate-sensitive plant species, whereas in the southeast, they are recorded as latitudinal shifts in vegetation. Heinrich (HS) and Greenland (GS) stadials are generally correlated with cold and dry climate and Greenland interstadials (GI) with warm-wet phases. The pollen records from North America confirm that vegetation responds rapidly to millennial-scale climate variability, although the difficulties in establishing independent age models for the pollen records make determination of the absolute phasing of the records to surface temperatures in Greenland somewhat uncertain. ?? 2009 Elsevier Ltd.

  20. Ice age climate, evolutionary constraints and diversity patterns of European dung beetles

    DEFF Research Database (Denmark)

    Hortal, Joaquín; Diniz-Filho, José Alexandre F.; Bini, Luis Mauricio

    2011-01-01

    spatial stationarity in climate variability since the last glacial maximum (LGM), we find that current scarab richness is related to the location of their limits of thermal tolerance during the LGM. These limits mark a strong change in their current species richness–environment relationships. Furthermore...... that occupied relatively climatically stable areas during the Pleistocene, and by post-glacial dispersal in those that were strongly affected by glaciations....

  1. Linking environmental filtering and disequilibrium to biogeography with a community climate framework.

    Science.gov (United States)

    Blonder, Benjamin; Nogués-Bravo, David; Borregaard, Michael K; Donoghue, John C; Jørgensen, Peter M; Kraft, Nathan J B; Lessard, Jean-Philippe; Morueta-Holme, Naia; Sandel, Brody; Svenning, Jens-Christian; Violle, Cyrille; Rahbek, Carsten; Enquist, Brian J

    2015-04-01

    We present a framework to measure the strength of environmental filtering and disequilibrium of the species composition of a local community across time, relative to past, current, and future climates. We demonstrate the framework by measuring the impact of climate change on New World forests, integrating data for climate niches of more than 14000 species, community composition of 471 New World forest plots, and observed climate across the most recent glacial-interglacial interval. We show that a majority of communities have species compositions that are strongly filtered and are more in equilibrium with current climate than random samples from the regional pool. Variation in the level of current community disequilibrium can be predicted from Last Glacial Maximum climate and will increase with near-future climate change.

  2. A synthesis of post-glacial diatom records from Lake Baikal

    Science.gov (United States)

    Bradbury, J. Platt; Bezrukova, E.; Chernyaeva, G.; Colman, S.M.; Khursevich, G.; King, J.W.; Likoshway, Ye. V.

    1994-01-01

    The biostratigraphy of fossil diatoms contributes important chronologic, paleolimnologic, and paleoclimatic information from Lake Baikal in southeastern Siberia. Diatoms are the dominant and best preserved microfossils in the sediments, and distinctive assemblages and species provide inter-core correlations throughout the basin at millennial to centennial scales, in both high and low sedimentation-rate environments. Distributions of unique species, once dated by radiocarbon, allow diatoms to be used as dating tools for the Holocene history of the lake.Diatom, pollen, and organic geochemical records from site 305, at the foot of the Selenga Delta, provide a history of paleolimnologic and paleoclimatic changes from the late glacial (15 ka) through the Holocene. Before 14 ka diatoms were very rare, probably because excessive turbidity from glacial meltwater entering the lake impeded productivity. Between 14 and 12 ka, lake productivity increased, perhaps as strong winds promoted deep mixing and nutrient regeneration. Pollen evidence suggests a cold shrub — steppe landscape dominated the central Baikal depression at this time. As summer insolation increased, conifers replaced steppe taxa, but diatom productivity declined between 11 and 9 ka perhaps as a result of increased summer turbidity resulting from violent storm runoff entering the lake via short, steep drainages. After 8 ka, drier, but more continental climates prevailed, and the modern diatom flora of Lake Baikal came to prominence.On Academician Ridge, a site of slow sedimentation rates, Holocene diatom assemblages at the top of 10-m cores reappear at deeper levels suggesting that such cores record at least two previous interglacial (or interstadial?) periods. Nevertheless, distinctive species that developed prior to the last glacial period indicate that the dynamics of nutrient cycling in Baikal and the responsible regional climatic environments were not entirely analogous to Holocene conditions. During

  3. Interhemispheric correlation of late pleistocene glacial events.

    Science.gov (United States)

    Lowell, T V; Heusser, C J; Andersen, B G; Moreno, P I; Hauser, A; Heusser, L E; Schlüchter, C; Marchant, D R; Denton, G H

    1995-09-15

    A radiocarbon chronology shows that piedmont glacier lobes in the Chilean Andes achieved maxima during the last glaciation at 13,900 to 14,890, 21,000, 23,060, 26,940, 29,600, and >/=33,500 carbon-14 years before present ((14)C yr B.P.) in a cold and wet Subantarctic Parkland environment. The last glaciation ended with massive collapse of ice lobes close to 14,000(14)C yr B.P., accompanied by an influx of North Patagonian Rain Forest species. In the Southern Alps of New Zealand, additional glacial maxima are registered at 17,720(14)C yr B.P., and at the beginning of the Younger Dryas at 11,050 (14)C yr B. P. These glacial maxima in mid-latitude mountains rimming the South Pacific were coeval with ice-rafting pulses in the North Atlantic Ocean. Furthermore, the last termination began suddenly and simultaneously in both polar hemispheres before the resumption of the modern mode of deep-water production in the Nordic Seas. Such interhemispheric coupling implies a global atmospheric signal rather than regional climatic changes caused by North Atlantic thermohaline switches or Laurentide ice surges.

  4. Westerly Winds and the Southern Ocean CO2 Sink Since the Last Glacial-Interglacial Transition

    Science.gov (United States)

    Hodgson, D. A.; Saunders, K. M.; Roberts, S. J.; Perren, B.; Butz, C.; Sime, L. C.; Davies, S. J.; Grosjean, M.

    2017-12-01

    The capacity of the Southern Ocean carbon sink is partly controlled by the Southern Hemisphere westerly winds (SHW) and sea ice. These regulate the upwelling of dissolved carbon-rich deep water to Antarctic surface waters, determine the surface area for air-sea gas exchange and therefore modulate the net uptake of atmospheric CO2. Some models have proposed that strengthened SHW will result in a weakening of the Southern Ocean CO2 sink. If these models are correct, then one would expect that reconstructions of changes in SHW intensity on centennial to millennial timescales would show clear links with Antarctic ice core and Southern Ocean marine geological records of atmospheric CO2, temperature and sea ice. Here, we present a 12,300 year reconstruction of past wind strength based on three independent proxies that track the changing inputs of sea salt aerosols and minerogenic particles into lake sediments on sub-Antarctic Macquarie Island. The proxies are consistent in showing that periods of high wind intensity corresponded with the increase in CO2 across the late Last Glacial-Interglacial Transition and in the last 7,000 years, suggesting that the winds have contributed to the long term outgassing of CO2 from the ocean during these periods.

  5. Causes of ice age intensification across the Mid-Pleistocene Transition

    Science.gov (United States)

    Chalk, Thomas B.; Hain, Mathis P.; Foster, Gavin L.; Rohling, Eelco J.; Sexton, Philip F.; Badger, Marcus P. S.; Cherry, Soraya G.; Hasenfratz, Adam P.; Haug, Gerald H.; Jaccard, Samuel L.; Martínez-García, Alfredo; Pälike, Heiko; Pancost, Richard D.; Wilson, Paul A.

    2017-12-01

    During the Mid-Pleistocene Transition (MPT; 1,200–800 kya), Earth's orbitally paced ice age cycles intensified, lengthened from ˜40,000 (˜40 ky) to ˜100 ky, and became distinctly asymmetrical. Testing hypotheses that implicate changing atmospheric CO2 levels as a driver of the MPT has proven difficult with available observations. Here, we use orbitally resolved, boron isotope CO2 data to show that the glacial to interglacial CO2 difference increased from ˜43 to ˜75 μatm across the MPT, mainly because of lower glacial CO2 levels. Through carbon cycle modeling, we attribute this decline primarily to the initiation of substantive dust-borne iron fertilization of the Southern Ocean during peak glacial stages. We also observe a twofold steepening of the relationship between sea level and CO2-related climate forcing that is suggestive of a change in the dynamics that govern ice sheet stability, such as that expected from the removal of subglacial regolith or interhemispheric ice sheet phase-locking. We argue that neither ice sheet dynamics nor CO2 change in isolation can explain the MPT. Instead, we infer that the MPT was initiated by a change in ice sheet dynamics and that longer and deeper post-MPT ice ages were sustained by carbon cycle feedbacks related to dust fertilization of the Southern Ocean as a consequence of larger ice sheets.

  6. Late-glacial recolonization and phylogeography of European red deer (Cervus elaphus L.).

    Science.gov (United States)

    Meiri, Meirav; Lister, Adrian M; Higham, Thomas F G; Stewart, John R; Straus, Lawrence G; Obermaier, Henriette; González Morales, Manuel R; Marín-Arroyo, Ana B; Barnes, Ian

    2013-09-01

    The Pleistocene was an epoch of extreme climatic and environmental changes. How individual species responded to the repeated cycles of warm and cold stages is a major topic of debate. For the European fauna and flora, an expansion-contraction model has been suggested, whereby temperate species were restricted to southern refugia during glacial times and expanded northwards during interglacials, including the present interglacial (Holocene). Here, we test this model on the red deer (Cervus elaphus) a large and highly mobile herbivore, using both modern and ancient mitochondrial DNA from the entire European range of the species over the last c. 40,000 years. Our results indicate that this species was sensitive to the effects of climate change. Prior to the Last Glacial Maximum (LGM) haplogroups restricted today to South-East Europe and Western Asia reached as far west as the UK. During the LGM, red deer was mainly restricted to southern refugia, in Iberia, the Balkans and possibly in Italy and South-Western Asia. At the end of the LGM, red deer expanded from the Iberian refugium, to Central and Northern Europe, including the UK, Belgium, Scandinavia, Germany, Poland and Belarus. Ancient DNA data cannot rule out refugial survival of red deer in North-West Europe through the LGM. Had such deer survived, though, they were replaced by deer migrating from Iberia at the end of the glacial. The Balkans served as a separate LGM refugium and were probably connected to Western Asia with genetic exchange between the two areas. © 2013 John Wiley & Sons Ltd.

  7. Hydrology of surface waters and thermohaline circulation during the last glacial period

    International Nuclear Information System (INIS)

    Vidal, L.

    1996-01-01

    Sedimentological studies on oceanic cores from the north Atlantic have revealed, over the last glacial period, abrupt climatic changes with a periodicity of several thousand years which contrasts strongly with the glacial-interglacial periodicity (several tens of thousand years). These periods of abrupt climate changes correspond to massive icebergs discharges into the north Atlantic. The aim of this work was to study the evolution of the thermohaline circulation in relation to these episodic iceberg discharges which punctuated the last 60 ka. To reconstruct the oceanic circulation in the past, we have analysed oxygen and carbon stable isotopes on benthic foraminifera from north Atlantic deep-sea cores. First of all, the higher temporal resolution of sedimentary records has enabled us to establish a precise chrono-stratigraphy for the different cores. Then, we have shown the close linkage between surface water hydrology and deep circulation, giving evidence of the sensibility of thermohaline circulation to melt water input in the north Atlantic ocean. Indeed, changes in deep circulation are synchronous from those identified in surface waters and are recorded on a period which lasted ∼ 1500 years. Deep circulation reconstructions, before and during a typical iceberg discharge reveal several modes of circulation linked to different convection sites at the high latitudes of the Atlantic basin. Moreover, the study of the last glacial period gives the opportunity to differentiate circulation changes due to the external forcing (variations of the orbital parameters) and those linked to a more local forcing (icebergs discharges). 105 refs., 50 figs., 14 tabs., 4 appends

  8. Belgian speleothems from the Last Interglacial: insights in the onset of glacial conditions in north western Europe.

    Science.gov (United States)

    Vansteenberge, Stef; Verheyden, Sophie; Cheng, Hai; Edwards, Lawrence R.; Keppens, Eddy; Claeys, Philippe

    2015-04-01

    Currently, a dataset combining at least four speleothems from two different cave systems in southern Belgium (Han-sur-Lesse and Remouchamps) is being constructed to improve the understanding of the termination of the Eemian and the millennial to decadal variability of the Early Glacial times in north western Europe. Here, one of those speleothems is presented. The Han-stm-9 (or 'Triptyque') speleothem is a broken, 68 cm long and candle-shaped stalagmite from the Han-sur-Lesse cave system. The stalagmite was collected in summer 2013 within the southern part of the cave network and was dated between ~126 and ~99ka. Most likely, climate optimum conditions during the 130-125ka interval are linked to the growth of this and other speleothems from Belgian caves. This particular speleothem gained interest because of the partial conformity with the continental interglacial period in northern western Europe (130 - 118ka) and its dense calcite composition with visible layering, excluding post-depositional deformation. Furthermore, the stalagmite displays a complex growth history, with large variations in growth rates (ranging from and periods of ceased speleothem formation. Two hiatuses, with a distinct macroscopic expression, occur. The first one starts at 118.4ka and lasts until 113.0ka. A second hiatus is situated between ~108ka and 103.7ka. A trend in growth rate, consisting of slow growth gradually increasing towards very fast speleothem formation before both hiatuses, is observed. These intervals with very high growth rates, for instance around 118ka, enable high-resolution climate reconstructions via stable isotopes (δ18O and δ13C) and trace elements (Mg, Sr, Ba and P), down to centennial and decadal scale. The timing of the first hiatus corresponds with Greenland Stadial 26 and with the generally accepted termination of the Eemian in northern Europe at 119-118ka. Also, preliminary stable isotope studies have indicated a large detoriation of δ13C occurring right

  9. Ice stratigraphy at the Pakitsoq ice margin, West Greenland, derived from gas records

    DEFF Research Database (Denmark)

    Schaefer, H.; Petrenko, V. V.; Brook, E. J.

    2009-01-01

    at Pakitsoq. Sections containing ice from every distinct climatic interval during Termination I, including Last Glacial Maximum, Bolling/Allerod, Younger Dryas and the early Holocene, are identified. In the early Holocene, we find evidence for climatic fluctuations similar to signals found in deep ice cores...... from Greenland. A second glacial-interglacial transition exposed at the extreme margin of the ice is identified as another outcrop of Termination I (rather than the onset of the Eemian interglacial as postulated in earlier work). Consequently, the main structural feature at Pakitsoq is a large......-scale anticline with accordion-type folding in both exposed sequences of the glacial-Holocene transition, leading to multiple layer duplications and age reversals....

  10. Vegetation history since the last glacial maximum in the Ozark highlands (USA): A new record from Cupola Pond, Missouri

    Science.gov (United States)

    Jones, Rachel A.; Williams, John W.; Jackson, Stephen T.

    2017-01-01

    The timing and drivers of vegetation dynamics and formation of no-analog plant communities during the last deglaciation in the unglaciated southeastern US are poorly understood. We present a multi-proxy record spanning the past 19,800 years from Cupola Pond in the Ozarks Mountains, consisting of replicate high-resolution pollen records, 25 AMS radiocarbon dates, and macrofossil, charcoal, and coprophilous spore analyses. Full-glacial Pinus and Picea forests gave way to no-analog vegetation after 17,400 yr BP, followed by development of Quercus-dominated Holocene forests, with late Holocene rises in Pinus and Nyssa. Vegetation transitions, replicated in different cores, are closely linked to hemispheric climate events. Rising Quercus abundances coincide with increasing Northern Hemisphere temperatures and CO2 at 17,500 yr BP, declining Pinus and Picea at 14,500 yr BP are near the Bølling-Allerød onset, and rapid decline of Fraxinus and rise of Ostrya/Carpinus occur 12,700 yr BP during the Younger Dryas. The Cupola no-analog vegetation record is unusual for its early initiation (17,000 yr BP) and for its three vegetation zones, representing distinct rises of Fraxinus and Ostrya/Carpinus. Sporormiella was absent and sedimentary charcoal abundances were low throughout, suggesting that fire and megaherbivores were not locally important agents of disturbance and turnover. The Cupola record thus highlights the complexity of the late-glacial no-analog communities and suggests direct climatic regulation of their formation and disassembly.

  11. Influence of dynamic vegetation on climate change and terrestrial carbon storage in the Last Glacial Maximum

    Science.gov (United States)

    O'ishi, R.; Abe-Ouchi, A.

    2013-07-01

    When the climate is reconstructed from paleoevidence, it shows that the Last Glacial Maximum (LGM, ca. 21 000 yr ago) is cold and dry compared to the present-day. Reconstruction also shows that compared to today, the vegetation of the LGM is less active and the distribution of vegetation was drastically different, due to cold temperature, dryness, and a lower level of atmospheric CO2 concentration (185 ppm compared to a preindustrial level of 285 ppm). In the present paper, we investigate the influence of vegetation change on the climate of the LGM by using a coupled atmosphere-ocean-vegetation general circulation model (AOVGCM, the MIROC-LPJ). The MIROC-LPJ is different from earlier studies in the introduction of a bias correction method in individual running GCM experiments. We examined four GCM experiments (LGM and preindustrial, with and without vegetation feedback) and quantified the strength of the vegetation feedback during the LGM. The result shows that global-averaged cooling during the LGM is amplified by +13.5 % due to the introduction of vegetation feedback. This is mainly caused by the increase of land surface albedo due to the expansion of tundra in northern high latitudes and the desertification in northern middle latitudes around 30° N to 60° N. We also investigated how this change in climate affected the total terrestrial carbon storage by using offline Lund-Potsdam-Jena dynamic global vegetation model (LPJ-DGVM). Our result shows that the total terrestrial carbon storage was reduced by 597 PgC during the LGM, which corresponds to the emission of 282 ppm atmospheric CO2. In the LGM experiments, the global carbon distribution is generally the same whether the vegetation feedback to the atmosphere is included or not. However, the inclusion of vegetation feedback causes substantial terrestrial carbon storage change, especially in explaining the lowering of atmospheric CO2 during the LGM.

  12. Influence of dynamic vegetation on climate change and terrestrial carbon storage in the Last Glacial Maximum

    Directory of Open Access Journals (Sweden)

    R. O'ishi

    2013-07-01

    Full Text Available When the climate is reconstructed from paleoevidence, it shows that the Last Glacial Maximum (LGM, ca. 21 000 yr ago is cold and dry compared to the present-day. Reconstruction also shows that compared to today, the vegetation of the LGM is less active and the distribution of vegetation was drastically different, due to cold temperature, dryness, and a lower level of atmospheric CO2 concentration (185 ppm compared to a preindustrial level of 285 ppm. In the present paper, we investigate the influence of vegetation change on the climate of the LGM by using a coupled atmosphere-ocean-vegetation general circulation model (AOVGCM, the MIROC-LPJ. The MIROC-LPJ is different from earlier studies in the introduction of a bias correction method in individual running GCM experiments. We examined four GCM experiments (LGM and preindustrial, with and without vegetation feedback and quantified the strength of the vegetation feedback during the LGM. The result shows that global-averaged cooling during the LGM is amplified by +13.5 % due to the introduction of vegetation feedback. This is mainly caused by the increase of land surface albedo due to the expansion of tundra in northern high latitudes and the desertification in northern middle latitudes around 30° N to 60° N. We also investigated how this change in climate affected the total terrestrial carbon storage by using offline Lund-Potsdam-Jena dynamic global vegetation model (LPJ-DGVM. Our result shows that the total terrestrial carbon storage was reduced by 597 PgC during the LGM, which corresponds to the emission of 282 ppm atmospheric CO2. In the LGM experiments, the global carbon distribution is generally the same whether the vegetation feedback to the atmosphere is included or not. However, the inclusion of vegetation feedback causes substantial terrestrial carbon storage change, especially in explaining the lowering of atmospheric CO2 during the LGM.

  13. Impact of climate changes during the last 5 million years on groundwater in basement aquifers.

    Science.gov (United States)

    Aquilina, Luc; Vergnaud-Ayraud, Virginie; Les Landes, Antoine Armandine; Pauwels, Hélène; Davy, Philippe; Pételet-Giraud, Emmanuelle; Labasque, Thierry; Roques, Clément; Chatton, Eliot; Bour, Olivier; Ben Maamar, Sarah; Dufresne, Alexis; Khaska, Mahmoud; Le Gal La Salle, Corinne; Barbecot, Florent

    2015-09-22

    Climate change is thought to have major effects on groundwater resources. There is however a limited knowledge of the impacts of past climate changes such as warm or glacial periods on groundwater although marine or glacial fluids may have circulated in basements during these periods. Geochemical investigations of groundwater at shallow depth (80-400 m) in the Armorican basement (western France) revealed three major phases of evolution: (1) Mio-Pliocene transgressions led to marine water introduction in the whole rock porosity through density and then diffusion processes, (2) intensive and rapid recharge after the glacial maximum down to several hundred meters depths, (3) a present-day regime of groundwater circulation limited to shallow depth. This work identifies important constraints regarding the mechanisms responsible for both marine and glacial fluid migrations and their preservation within a basement. It defines the first clear time scales of these processes and thus provides a unique case for understanding the effects of climate changes on hydrogeology in basements. It reveals that glacial water is supplied in significant amounts to deep aquifers even in permafrosted zones. It also emphasizes the vulnerability of modern groundwater hydrosystems to climate change as groundwater active aquifers is restricted to shallow depths.

  14. Climate Change Adaptation via U.S. Land Use Transitions: A Spatial Econometric Analysis

    OpenAIRE

    Cho, Sung Ju; McCarl, Bruce A.; Wu, Ximing

    2015-01-01

    Climate change, coupled with biofuels development and other factors may well be changing US land usage patterns. We use a spatial econometric approach to estimate the drivers of US land use transitions in recent years. We consider transitions between six major land uses: agricultural land, forest, grassland, water, urban, and other uses. To examine drivers, we use a two-step linearized, spatial, multinomial logit model and estimate land use transition probabilities. Our results indicate that ...

  15. The role of meltwater-induced subsurface ocean warming in regulating the Atlantic meridional overturning in glacial climate simulations

    Energy Technology Data Exchange (ETDEWEB)

    Brady, Esther C.; Otto-Bliesner, Bette L. [National Center for Atmospheric Research, Boulder, CO (United States)

    2011-10-15

    The Community Climate System Model version 3, (CCSM3) is used to investigate the effect of the high latitude North Atlantic subsurface ocean temperature response in idealized freshwater hosing experiments on the strength of the Atlantic meridional overturning circulation (AMOC). The hosing experiments covered a range of input magnitudes at two locations in a glacial background state. Subsurface subpolar ocean warms when freshwater is added to the high latitude North Atlantic (NATL cases) and weakly cools when freshwater is added to the Gulf of Mexico (GOM cases). All cases show subsurface ocean warming in the Southern Hemisphere (SH). The sensitivity of the AMOC response to the location and magnitude of hosing is related to the induced subsurface temperature response, which affects the magnitude of the large-scale meridional pressure gradient at depth through the effect on upper ocean density. The high latitude subsurface warming induced in the NATL cases lowers the upper ocean density in the deepwater formation region enhancing a density reduction by local freshening. In the GOM cases the effect of SH warming partially offsets the effect of the high latitude freshening on the meridional density gradient. Following the end of hosing, a brief convective event occurs in the largest NATL cases which flushes some of the heat stored in the subsurface layers. This fuels a rapid rise in AMOC that lasts less than a couple of decades before subsequent freshening from increases in precipitation and sea ice melt reverses the initial increase in the meridional density gradient. Thereafter AMOC recovery slows to the rate found in comparable GOM cases. The result for these glacial transient hosing experiments is that the pace of the longer recovery is not sensitive to location of the imposed freshwater forcing. (orig.)

  16. Farming transitions under socioeconomic and climatic constraints in the southern part of Sétif, Algeria

    Directory of Open Access Journals (Sweden)

    Amar Rouabhi

    2016-06-01

    Full Text Available This study was carried out on a sample of 224 farms in the southern region of Sétif-Algeria, aimed to identify the different typologies and the agricultural changes caused by the climatic constrains experienced in recent decades. Indeed, the combined effect of climatic and anthropogenic factors on agricultural practices transitions is too tangled. A series of multivariate and classification statistical tests have been implemented to demonstrate the main trends and adaptation tactics of farmers in such conditions. The farming characterization analysis showed that the medium scale farming was more economically efficient than small and large scale farming. Moreover, the study showed the effect of climate change on some farming transitions, where farming practices transited to bovine and poultry farming as well as for market gardening cultivation. Indeed, these changes were occurred at the expense of rainfed agriculture (cereals and ovine breeding. These transitions have impacted the economic performance of farms in some municipalities. However, greenhouse crops and tobacco cultivation were observed as being a Local Production Systems (LPS that could be a good alternative to mitigate the natural and socioeconomic constraints. The emergence of Local Production Systems in agricultural system may facilitate farmer adaptation that will provide a tool for agricultural development policies, through financial and technical assistance. Key words: Climate change, Farming, Local Production Systems, Sétif

  17. Alternative glacial-interglacial refugia demographic hypotheses tested on Cephalocereus columna-trajani (Cactaceae) in the intertropical Mexican drylands.

    Science.gov (United States)

    Cornejo-Romero, Amelia; Vargas-Mendoza, Carlos Fabián; Aguilar-Martínez, Gustavo F; Medina-Sánchez, Javier; Rendón-Aguilar, Beatriz; Valverde, Pedro Luis; Zavala-Hurtado, Jose Alejandro; Serrato, Alejandra; Rivas-Arancibia, Sombra; Pérez-Hernández, Marco Aurelio; López-Ortega, Gerardo; Jiménez-Sierra, Cecilia

    2017-01-01

    Historic demography changes of plant species adapted to New World arid environments could be consistent with either the Glacial Refugium Hypothesis (GRH), which posits that populations contracted to refuges during the cold-dry glacial and expanded in warm-humid interglacial periods, or with the Interglacial Refugium Hypothesis (IRH), which suggests that populations contracted during interglacials and expanded in glacial times. These contrasting hypotheses are developed in the present study for the giant columnar cactus Cephalocereus columna-trajani in the intertropical Mexican drylands where the effects of Late Quaternary climatic changes on phylogeography of cacti remain largely unknown. In order to determine if the historic demography and phylogeographic structure of the species are consistent with either hypothesis, sequences of the chloroplast regions psbA-trnH and trnT-trnL from 110 individuals from 10 populations comprising the full distribution range of this species were analysed. Standard estimators of genetic diversity and structure were calculated. The historic demography was analysed using a Bayesian approach and the palaeodistribution was derived from ecological niche modelling to determine if, in the arid environments of south-central Mexico, glacial-interglacial cycles drove the genetic divergence and diversification of this species. Results reveal low but statistically significant population differentiation (FST = 0.124, P < 0.001), although very clear geographic clusters are not formed. Genetic diversity, haplotype network and Approximate Bayesian Computation (ABC) demographic analyses suggest a population expansion estimated to have taken place in the Last Interglacial (123.04 kya, 95% CI 115.3-130.03). The species palaeodistribution is consistent with the ABC analyses and indicates that the potential area of palaedistribution and climatic suitability were larger during the Last Interglacial and Holocene than in the Last Glacial Maximum. Overall

  18. Climate and Provenance Evolution Recorded in the Sub-aqueous Indus Delta since the Last Glacial Maximum

    Science.gov (United States)

    Limmer, D. R.; Clift, P. D.; Koehler, C.; Giosan, L.; Ponton, C.; Henstock, T.; Tabrez, A.

    2010-12-01

    Source to sink processes in large fluvial systems are complicated by large transport distances and the potential to store and rework material on route to the submarine fan. We target the Indus river system and assess how climate change since the Last Glacial Maximum (LGM) may have affected the storage and deposition of sediment in the nearshore shelf setting. While sediment reworking within the floodplain appears to have been strong during the Holocene, it is unclear whether this can be observed in the deep sea or in the submarine delta. We present a multi-proxy record of mineralogical and geochemical change from two cores obtained from the Indus Shelf during Winter 2008/9, one located close to the modern river and one located in the north-west shelf. Results show a strong contrast in the geochemistry, reflectance spectroscopy and clay mineralogy between Holocene sediments from the two cores. We propose that these differences are caused by both local variations in sediment source and transport mechanisms. Trends common in both cores could be related to climatic processes, such as low values in the chemical alteration index (CIA) and low 87Sr/86Sr that rise between 11 and 8ka suggests more intense chemical weathering at that time. This period coincides with presumed warmer, wet conditions and a stronger summer monsoon. A small decline in chemical weathering after 8ka could be caused by an apparent weakening of the monsoon since that time. These data suggest that sediment weathered in the floodplains is transported quickly to the submarine delta during the Holocene, but that this material has not yet been re-deposited into the deep water via the Indus Canyon.

  19. A multiple-proxy approach to understanding rapid Holocene climate change in Southeast Greenland

    Science.gov (United States)

    Davin, S. H.; Bradley, R. S.; Balascio, N. L.; de Wet, G.

    2012-12-01

    The susceptibility of the Arctic to climate change has made it an excellent workshop for paleoclimatological research. Although there have been previous studies concerning climate variability carried out in the Arctic, there remains a critical dearth of knowledge due the limited number of high-resolution Holocene climate-proxy records available from this region. This gap skews our understanding of observed and predicted climate change, and fuels uncertainty both in the realms of science and policy. This study takes a comprehensive approach to tracking Holocene climate variability in the vicinity of Tasiilaq, Southeast Greenland using a ~5.6 m sediment core from Lower Sermilik Lake. An age-depth model for the core has been established using 8 radiocarbon dates, the oldest of which was taken at 4 m down core and has been been dated to approximately 6.2 kyr BP. The bottom meter of the core below the final radiocarbon date contains a transition from cobbles and coarse sand to organic-rich laminations, indicating the termination of direct glacial influence and therefore likely marking the end of the last glacial period in this region. The remainder of the core is similarly organic-rich, with light-to-dark brown laminations ranging from 0.5 -1 cm in thickness and riddled with turbidites. Using this core in tandem with findings from an on-site assessment of the geomorphic history of the locale we attempt to assess and infer the rapid climatic shifts associated with the Holocene on a sub-centennial scale. Such changes include the termination of the last glacial period, the Mid-Holocene Climatic Optimum, the Neoglacial Period, the Medieval Climatic Optimum, and the Little Ice Age. A multiple proxy approach including magnetic susceptibility, bulk organic geochemistry, elemental profiles acquired by XRF scanning, grain-size, and spectral data will be used to characterize the sediment and infer paleoclimate conditions. Additionally, percent biogenic silica by weight has been

  20. Climate change with Korea as the center

    International Nuclear Information System (INIS)

    Kim, Yeon Ok

    1998-04-01

    This book deals with climate change with Korea as the center, which is divided into ten chapters. It explain climate change by human life. The contents of this book are climate change, climate before human period, great ice age of prehistoric period, prehistoric times of last glacial era, climate change in historical era, change during observation time for 100 years, warming period, global environment period, the cause of climate change and climate and human. It has reference and an index.

  1. Sediment core and glacial environment reconstruction - a method review

    Science.gov (United States)

    Bakke, Jostein; Paasche, Øyvind

    2010-05-01

    Alpine glaciers are often located in remote and high-altitude regions of the world, areas that only rarely are covered by instrumental records. Reconstructions of glaciers has therefore proven useful for understanding past climate dynamics on both shorter and longer time-scales. One major drawback with glacier reconstructions based solely on moraine chronologies - by far the most common -, is that due to selective preservation of moraine ridges such records do not exclude the possibility of multiple Holocene glacier advances. This problem is true regardless whether cosmogenic isotopes or lichenometry have been used to date the moraines, or also radiocarbon dating of mega-fossils buried in till or underneath the moraines themselves. To overcome this problem Karlén (1976) initially suggested that glacial erosion and the associated production of rock-flour deposited in downstream lakes could provide a continuous record of glacial fluctuations, hence overcoming the problem of incomplete reconstructions. We want to discuss the methods used to reconstruct past glacier activity based on sediments deposited in distal glacier-fed lakes. By quantifying physical properties of glacial and extra-glacial sediments deposited in catchments, and in downstream lakes and fjords, it is possible to isolate and identify past glacier activity - size and production rate - that subsequently can be used to reconstruct changing environmental shifts and trends. Changes in average sediment evacuation from alpine glaciers are mainly governed by glacier size and the mass turnover gradient, determining the deformation rate at any given time. The amount of solid precipitation (mainly winter accumulation) versus loss due to melting during the ablation-season (mainly summer temperature) determines the mass turnover gradient in either positive or negative direction. A prevailing positive net balance will lead to higher sedimentation rates and vice versa, which in turn can be recorded in downstream

  2. Influence of glacial ice sheets on the Atlantic meridional overturning circulation through surface wind change

    Science.gov (United States)

    Sherriff-Tadano, Sam; Abe-Ouchi, Ayako; Yoshimori, Masakazu; Oka, Akira; Chan, Wing-Le

    2018-04-01

    Coupled modeling studies have recently shown that the existence of the glacial ice sheets intensifies the Atlantic meridional overturning circulation (AMOC). However, most models show a strong AMOC in their simulations of the Last Glacial Maximum (LGM), which is biased compared to reconstructions that indicate both a weaker and stronger AMOC during the LGM. Therefore, a detailed investigation of the mechanism behind this intensification of the AMOC is important for a better understanding of the glacial climate and the LGM AMOC. Here, various numerical simulations are conducted to focus on the effect of wind changes due to glacial ice sheets on the AMOC and the crucial region where the wind modifies the AMOC. First, from atmospheric general circulation model experiments, the effect of glacial ice sheets on the surface wind is evaluated. Second, from ocean general circulation model experiments, the influence of the wind stress change on the AMOC is evaluated by applying wind stress anomalies regionally or at different magnitudes as a boundary condition. These experiments demonstrate that glacial ice sheets intensify the AMOC through an increase in the wind stress at the North Atlantic mid-latitudes, which is induced by the North American ice sheet. This intensification of the AMOC is caused by the increased oceanic horizontal and vertical transport of salt, while the change in sea ice transport has an opposite, though minor, effect. Experiments further show that the Eurasian ice sheet intensifies the AMOC by directly affecting the deep-water formation in the Norwegian Sea.

  3. Glacial flour in lacustrine sediments: Records of alpine glaciation in the western U.S.A. during the last glacial interval

    Science.gov (United States)

    Rosenbaum, J. G.; Reynolds, R. L.

    2010-12-01

    Sediments in Bear Lake (UT/ID) and Upper Klamath Lake (OR) contain glacial flour derived during the last glacial interval from the Uinta Mountains and the southern Cascade Range, respectively. Magnetic properties provide measures of glacial-flour content and, in concert with elemental and grain-size analyses, yield high-resolution records of glacial growth and decay. Creation and preservation of such records requires that (1) properties of glacial flour contrast with those of other sedimentary components and (2) magnetic minerals are neither formed nor destroyed after deposition. In the Bear Lake watershed, glaciers were confined to a small headwater area of the Bear River underlain by hematite-rich rocks of the Uinta Mountain Group (UMG), which are not exposed elsewhere in the catchment. Because UMG detritus is abundant only in Bear Lake sediments of glacial age, hard isothermal remanent magnetization (a measure of hematite content) provides a proxy for glacial flour. In contrast, the entire Upper Klamath Lake catchment, which lies to the east of the Cascade Range in southern Oregon, is underlain largely by basalt and basaltic andesite. Magnetic properties of fresh titanomagnetite-rich rock flour from glaciers on a composite volcano contrast sharply with those of detritus from unglaciated areas in which weathering destroyed some of the titanomagnetite. Ideally, well-dated records of the flux of glacial flour can be compared to ages of glacial features (e.g., moraines). For Upper Klamath Lake, quantitative measures of rock-flour content (from magnetic properties) and excellent chronology allow accurate calculation of flux. However, ages of glacial features are lacking and mafic volcanic rocks, which weather rapidly in this environment, are not well suited for cosmogenic exposure dating. At Bear Lake, estimates of glacial-flour content are less quantitative and chronology within the glacial interval must be interpolated from radiocarbon ages above and below the

  4. Glacial refugia and migration routes of the Neotropical genus Trizeuxis (Orchidaceae

    Directory of Open Access Journals (Sweden)

    Marta Kolanowska

    2013-09-01

    Full Text Available The morphology and anatomy of the monotypic genus Trizeuxis make this taxon almost impossible to recognize in fossil material and hereby difficult object of historical geographic studies. To estimate the distribution of potential refugia during the last glacial maximum and migration routes for Trizeuxis the ecological niche modeling was performed. The potential niche modeling was done using maximum entropy method implemented in Maxent application based on the species presence-only observations. As input data climatic variables and the digital elevation model were used. Two models of suitable glacial habitats distribution were prepared – for the studied species and for its host. The compiled map of the suitable habitats distribution of T. falcata and P. guajava during the last glacial maximum (LGM indicate two possible refugia for the studied orchid genus. The first one was located in the Madre de Dios region and the other one in the Mosquito Coast. The models suggest the existence of two migration routes of Trizeuxis species. The results indicate that the ecological niche modeling (ENM is a useful tool for analyzing not only the possible past distribution of the species, but may be also applied to determine the migration routes of the organisms not found in the fossil material.

  5. An integrated approach to climate adaptation at the Chicago Transit Authority.

    Science.gov (United States)

    2013-08-01

    CTA was selected as one of seven pilots funded by FTA to advance the state of practice for adapting transit systems to the impacts of : climate change. This effort is in keeping with broader long-term goals to address state-of-good-repair needs and t...

  6. Livestock in a changing climate: production system transitions as an adaptation strategy for agriculture

    International Nuclear Information System (INIS)

    Weindl, Isabelle; Lotze-Campen, Hermann; Popp, Alexander; Müller, Christoph; Schmitz, Christoph; Rolinski, Susanne; Havlík, Petr; Herrero, Mario

    2015-01-01

    Livestock farming is the world’s largest land use sector and utilizes around 60% of the global biomass harvest. Over the coming decades, climate change will affect the natural resource base of livestock production, especially the productivity of rangeland and feed crops. Based on a comprehensive impact modeling chain, we assess implications of different climate projections for agricultural production costs and land use change and explore the effectiveness of livestock system transitions as an adaptation strategy. Simulated climate impacts on crop yields and rangeland productivity generate adaptation costs amounting to 3% of total agricultural production costs in 2045 (i.e. 145 billion US$). Shifts in livestock production towards mixed crop-livestock systems represent a resource- and cost-efficient adaptation option, reducing agricultural adaptation costs to 0.3% of total production costs and simultaneously abating deforestation by about 76 million ha globally. The relatively positive climate impacts on grass yields compared with crop yields favor grazing systems inter alia in South Asia and North America. Incomplete transitions in production systems already have a strong adaptive and cost reducing effect: a 50% shift to mixed systems lowers agricultural adaptation costs to 0.8%. General responses of production costs to system transitions are robust across different global climate and crop models as well as regarding assumptions on CO 2 fertilization, but simulated values show a large variation. In the face of these uncertainties, public policy support for transforming livestock production systems provides an important lever to improve agricultural resource management and lower adaptation costs, possibly even contributing to emission reduction. (letter)

  7. Abrupt millennial variability and interdecadal-interstadial oscillations in a global coupled model: sensitivity to the background climate state

    Energy Technology Data Exchange (ETDEWEB)

    Arzel, Olivier [The University of New South Wales, Climate Change Research Centre (CCRC), Sydney (Australia); Universite de Bretagne Occidentale, Laboratoire de Physique des Oceans (LPO), Brest (France); England, Matthew H. [The University of New South Wales, Climate Change Research Centre (CCRC), Sydney (Australia); Verdiere, Alain Colin de; Huck, Thierry [Universite de Bretagne Occidentale, Laboratoire de Physique des Oceans (LPO), Brest (France)

    2012-07-15

    The origin and bifurcation structure of abrupt millennial-scale climate transitions under steady external solar forcing and in the absence of atmospheric synoptic variability is studied by means of a global coupled model of intermediate complexity. We show that the origin of Dansgaard-Oeschger type oscillations in the model is caused by the weaker northward oceanic heat transport in the Atlantic basin. This is in agreement with previous studies realized with much simpler models, based on highly idealized geometries and simplified physics. The existence of abrupt millennial-scale climate transitions during glacial times can therefore be interpreted as a consequence of the weakening of the negative temperature-advection feedback. This is confirmed through a series of numerical experiments designed to explore the sensitivity of the bifurcation structure of the Atlantic meridional overturning circulation to increased atmospheric CO{sub 2} levels under glacial boundary conditions. Contrasting with the cold, stadial, phases of millennial oscillations, we also show the emergence of strong interdecadal variability in the North Atlantic sector during warm interstadials. The instability driving these interdecadal-interstadial oscillations is shown to be identical to that found in ocean-only models forced by fixed surface buoyancy fluxes, that is, a large-scale baroclinic instability developing in the vicinity of the western boundary current in the North Atlantic. Comparisons with modern observations further suggest a physical mechanism similar to that driving the 30-40 years time scale associated with the Atlantic multidecadal oscillation. (orig.)

  8. The Response of Eastern African Terrestrial Environments to the Mid-Pleistocene Climate Transition: Paleosol Isotopic Evidence from the Turkana Basin, Kenya

    Science.gov (United States)

    Quinn, R.; Lepre, C. J.

    2017-12-01

    Heightened aridity and C4 grass expansion are recorded in Africa during the Mid-Pleistocene Climate Transition (MPCT, 1.3-0.7 Ma), potentially as consequences of decreasing atmospheric CO2. Whether all of Africa responded to the MPCT in the same manner is unclear. Recent studies of a Malawi Basin lake core and paleosols show abundant C3 flora across the MPCT. African climate change is often suggested as a primary cause of hominin speciation, extinction, and technological innovations. Competing environmental-based evolutionary hypotheses propose increased aridity, humidity pulses, and climatic variability as influences of water availability and vegetation structure in Plio-Pleistocene hominin habitats. The Turkana Basin in northern Kenya preserves a rich fossil record of hominins from 4.3-0.7 Ma and offers high-resolution age control via paleomagnetic stratigraphy, isotopic geochronology, and tephrostratigraphy. Turkana's large paleosol isotopic database demonstrates a gradual increase in C4 grass abundance and aridity from 4-1 Ma. Faunal evidence for increasing abundances of C4 grazers corroborates the spread of C4 grasslands from 2-1 Ma. However, there is a dearth of terrestrial environmental records after 1.5 Ma and through the MPCT at Turkana, during which time eastern Africa witnessed the extinction of Paranthropus and the disperal of genus Homo. Here we report a stable isotopic (δ13C, δ18O) record of paleosol carbonates from the Turkana Basin from 1.4 to 0.7 Ma. Based on our findings and comparisons with comparable datasets from other hominin locales, we suggest that eastern African environments responded to the MPCT in a phased shift from south to north, possibly as a consequence of the compression of the ITCZ during glacial maxima and/or to changes to the Indian Ocean Dipole.

  9. Regional Analysis of the Hazard Level of Glacial Lakes in the Cordillera Blanca, Peru

    Science.gov (United States)

    Chisolm, Rachel E.; Jhon Sanchez Leon, Walter; McKinney, Daene C.; Cochachin Rapre, Alejo

    2016-04-01

    The Cordillera Blanca mountain range is the highest in Peru and contains many of the world's tropical glaciers. This region is severely impacted by climate change causing accelerated glacier retreat. Secondary impacts of climate change on glacier retreat include stress on water resources and the risk of glacial lake outburst floods (GLOFs) from the many lakes that are forming and growing at the base of glaciers. A number of GLOFs originating from lakes in the Cordillera Blanca have occurred over the last century, several of which have had catastrophic impacts on cities and communities downstream. Glaciologists and engineers in Peru have been studying the lakes of the Cordillera Blanca for many years and have identified several lakes that are considered dangerous. However, a systematic analysis of all the lakes in the Cordillera Blanca has never before been attempted. Some methodologies for this type of systematic analysis have been proposed (eg. Emmer and Vilimek 2014; Wang, et al. 2011), but as yet they have only been applied to a few select lakes in the Cordillera Blanca. This study uses remotely sensed data to study all of the lakes of the Glacial Lake Inventory published by the Glaciology and Water Resources Unit of Peru's National Water Authority (UGRH 2011). The objective of this study is to assign a level of potential hazard to each glacial lake in the Cordillera Blanca and to ascertain if any of the lakes beyond those that have already been studied might pose a danger to nearby populations. A number of parameters of analysis, both quantitative and qualitative, have been selected to assess the hazard level of each glacial lake in the Cordillera Blanca using digital elevation models, satellite imagery, and glacier outlines. These parameters are then combined to come up with a preliminary assessment of the hazard level of each lake; the equation weighting each parameter draws on previously published methodologies but is tailored to the regional characteristics

  10. Biogeochemical Cycling and Sea Ice Dynamics in the Bering Sea across the Mid-Pleistocene Transition

    Science.gov (United States)

    Detlef, H.; Sosdian, S. M.; Belt, S. T.; Smik, L.; Lear, C. H.; Hall, I. R.; Kender, S.; Leng, M. J.; Husum, K.; Cabedo-Sanz, P.

    2017-12-01

    Today the Bering Sea is characterized by high primary productivity (PP) along the eastern shelf, maintained by CO2 and nutrient rich upwelled deep waters and nutrient release during spring sea ice melting. As such, low oxygen concentrations are pervasive in mid-depth waters. Changes in ventilation and export productivity in the past have been shown to impact this oxygen minimum zone. On glacial/interglacial (G/IG) timescales sea ice formation plays a pivotal role on intermediate water ventilation with evidence pointing to the formation of North Pacific Intermediate Water (NPIW) in the Bering Sea during Pleistocene glacial intervals. In addition, sea ice plays a significant role in both long- and short-term climate change via associated feedback mechanisms. Thus, records of sea ice dynamics and biogeochemical cycling in the Bering Sea are necessary to fully understand the interaction between PP, circulation patterns, and past G/IG climates with potential implications for the North Pacific carbon cycle. Here we use a multi-proxy approach to study sea ice dynamics and bottom water oxygenation, across three intervals prior to, across, and after the Mid-Pleistocene Transition (MPT, 1.2-0.7 Ma) from International Ocean Discovery Program Site U1343. The MPT, most likely driven by internal climate mechanisms, is ideal to study changes in sea ice dynamics and sedimentary redox conditions on orbital timescales and to investigate the implications for associated feedback mechanisms. The sea ice record, based on various biomarkers, including IP25, shows substantial increase in sea ice extent across the MPT and the occurrence of a late-glacial/deglacial sea ice spike, with consequences for glacial NPIW formation and land glacier retreat via the temperature-precipitation feedback. U/Mn of foraminiferal authigenic coatings, a novel proxy for bottom water oxygenation, also shows distinct variability on G/IG timescales across the MPT, most likely a result of PP and water mass

  11. A vulnerability and risk assessment of SEPTA's regional rail : a transit climate change adaptation assessment pilot.

    Science.gov (United States)

    2013-08-01

    This final report for the Federal Transit Administration (FTA) Transit Climate Change Adaptation Assessment Pilot describes the actions : taken, information gathered, analyses performed, and lessons learned throughout the pilot project. This report d...

  12. Simulation of the European ice sheet through the last glacial cycle and prediction of future glaciation

    International Nuclear Information System (INIS)

    Boulton, G.S.; Payne, A.

    1992-12-01

    Global climates of the recent past appear to correlate with patterns of variation in the earths orbit round the sun. As such orbital changes can be predicted into the future, it is argued that the pattern of natural long-term future change can also be estimated. From this, future trends of glaciation can be inferred. The physical and mathematical basis of a time-dependent, thermo mechanically coupled, three dimensional ice sheet model is described. The model is driven by changes in the equilibrium line altitude (ELA) on its surface. This causes flexure of the underlying lithosphere. The model is tuned to the maximum extension of the last (Weichselian) ice sheet and driven by an ELA fluctuation which reflects the NE Atlantic sea surface temperature fluctuation pattern during the last glacial cycle in such a way that the model reproduces the ice sheet margin at the glacial maximum. The distribution of internal ice sheet velocity, temperature, basal melting rate and sub glacial permafrost penetration are all computed. The model is then tested against its predictions of the areal pattern of ice sheet expansion and decay, the pattern of crustal flexure and relative sea level change, and the distribution of till produced by the last European ice sheet. The tested model is then driven by predictions of future climate change to produce simulations of future ice sheet glaciation in northern Europe

  13. Alaska Harbor Seal Glacial Surveys

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Floating glacial ice serves as a haul-out substrate for a significant number (10-15%) of Alaskan harbor seals, and thus surveying tidewater glacial fjords is an...

  14. Postglacial Human resilience and susceptibility to abrupt climate change new insights from Star Carr

    Science.gov (United States)

    Blockley, Simon; Abrook, Ashley; Bayliss, Alex; Candy, Ian; Conneller, Chantal; Darvill, Chris; Deeprose, Laura; Kearney, Rebecca; Langdon, Pete; Langdon Langdon, Cath; Lincoln, Paul; Macleod, Alison; Matthews, Ian; Palmer, Adrian; Schreve, Danielle; Taylor, Barry; Milner, Nicky

    2017-04-01

    We know little about the lives of the early humans who lived during the early Postglacial period (the Lateglacial and Early Holocene), a time characterised by abrupt climate change after 16,000, which includes a series of abrupt climatic transitions linked to the reorganisation of the global environment after the glacial maximum and the last major global warming event at the onset of the Holocene. The hunter-gatherers who lived during the early Postglacial have been characterised as highly mobile, dispersed and living within small groups, and there is much debate as to how they adapted to climatic and environmental change: did they move in response to climatic transitions (and if so what was the climatic threshold), or instead adapt their lifeways to the new environmental conditions? A key area for examining these ideas is the British Isles as it sits on the Atlantic fringe of Northwest Europe with a climate that is highly responsive to the wider climate forcing experienced in the northern Hemisphere. Furthermore, in this period, Britain is directly linked to continental Europe due to lowered global sea levels allowing for the ease of human migration in and out of this region. In general the British record has been seen as being dominated by abandonment and reoccupation in the Postglacial during periods of climatic transition with hunter-gatherer mobility being closely linked to the prevailing environment. Recent discoveries at the Early Mesolithic site of Star Carr and surrounding area, linked to local and regional climate records, based on isotopic, chironomid and pollen proxy data and dated at high chronological resolution, offer a new picture. Postglacial human occupation of the area commences at the Pleistocene/Holocene transition but is short lived and appears to end close to the Pre-Boreal Oscillation, However, this is followed by a period where hunter-gatherers occupy Star Carr and settle and invest time and effort into building huts and large scale wooden

  15. Quantitative Morphometric Analysis of Terrestrial Glacial Valleys and the Application to Mars

    Science.gov (United States)

    Allred, Kory

    Although the current climate on Mars is very cold and dry, it is generally accepted that the past environments on the planet were very different. Paleo-environments may have been warm and wet with oceans and rivers. And there is abundant evidence of water ice and glaciers on the surface as well. However, much of that comes from visual interpretation of imagery and other remote sensing data. For example, some of the characteristics that have been utilized to distinguish glacial forms are the presence of landscape features that appear similar to terrestrial glacial landforms, constraining surrounding topography, evidence of flow, orientation, elevation and valley shape. The main purpose of this dissertation is to develop a model that uses quantitative variables extracted from elevation data that can accurately categorize a valley basin as either glacial or non-glacial. The application of this model will limit the inherent subjectivity of image analysis by human interpretation. The model developed uses hypsometric attributes (elevation-area relationship), a newly defined variable similar to the equilibrium line altitude for an alpine glacier, and two neighborhood search functions intended to describe the valley cross-sectional curvature, all based on a digital elevation model (DEM) of a region. The classification model uses data-mining techniques trained on several terrestrial mountain ranges in varied geologic and geographic settings. It was applied to a select set of previously catalogued locations on Mars that resemble terrestrial glaciers. The results suggest that the landforms do have a glacial origin, thus supporting much of the previous research that has identified the glacial landforms. This implies that the paleo-environment of Mars was at least episodically cold and wet, probably during a period of increased planetary obliquity. Furthermore, the results of this research and the implications thereof add to the body of knowledge for the current and past

  16. Holocene Glacier Fluctuations in the Peruvian Andes Indicate Northern Climate Linkages

    Science.gov (United States)

    Licciardi, Joseph M.; Schaefer, Joerg M.; Taggart, Jean R.; Lund, David C.

    2009-09-01

    The role of the tropics in triggering, transmitting, and amplifying interhemispheric climate signals remains a key debate in paleoclimatology. Tropical glacier fluctuations provide important insight on regional paleoclimatic trends and forcings, but robust chronologies are scarce. Here, we report precise moraine ages from the Cordillera Vilcabamba (13°20‧S) of southern Peru that indicate prominent glacial events and associated climatic shifts in the outer tropics during the early Holocene and late in the “Little Ice Age” period. Our glacier chronologies differ from the New Zealand record but are broadly correlative with well-dated glacial records in Europe, suggesting climate linkages between the tropics and the North Atlantic region.

  17. Causes of strong ocean heating during glacial periods

    Science.gov (United States)

    Zimov, N.; Zimov, S. A.

    2013-12-01

    During the last deglaciation period, the strongest climate changes occurred across the North Atlantic regions. Analyses of borehole temperatures from the Greenland ice sheet have yielded air temperature change estimates of 25°C over the deglaciation period (Dahl-Jensen et al. 1998). Such huge temperature changes cannot currently be explained in the frames of modern knowledge about climate. We propose that glacial-interglacial cycles are connected with gradual warming of ocean interior waters over the course of glaciations and quick transport of accumulated heat from ocean to the atmosphere during the deglaciation periods. Modern day ocean circulation is dominated by thermal convection with cold waters subsiding in the Northern Atlantic and filling up the ocean interior with cold and heavy water. However during the glaciation thermal circulation stopped and ocean circulation was driven by 'haline pumps' -Red and Mediterranean seas connected with ocean with only narrow but deep straights acts as evaporative basins, separating ocean water into fresh water which returns to the ocean surface (precipitation) and warm but salty, and therefore heavy, water which flows down to the ocean floor. This haline pump is stratifying the ocean, allowing warmer water locate under the colder water and thus stopping thermal convection in the ocean. Additional ocean interior warming is driven by geothermal heat flux and decomposition of organic rain. To test the hypothesis we present simple ocean box model that describes thermohaline circulation in the World Ocean. The first box is the Red and Mediterranean sea, the second is united high-latitude seas, the third is the ocean surface, and the fourth the ocean interior. The volume of these water masses and straight cross-sections are taken to be close to real values. We have accepted that the exchange of water between boxes is proportional to the difference in water density in these boxes, Sun energy inputs to the ocean and sea surface

  18. Land Use Transition and Human Health in the context of Climate ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Land Use Transition and Human Health in the context of Climate Change in the ... Water management challenges in the context of agricultural intensification and ... to announce that the first call for applications for the new Early Career Women. ... International Water Resources Association, in close collaboration with IDRC, ...

  19. Climate deteriorations and Neanderthal demise in interior Iberia.

    Science.gov (United States)

    Wolf, D; Kolb, T; Alcaraz-Castaño, M; Heinrich, S; Baumgart, P; Calvo, R; Sánchez, J; Ryborz, K; Schäfer, I; Bliedtner, M; Zech, R; Zöller, L; Faust, D

    2018-05-04

    Time and circumstances for the disappearance of Neanderthals and its relationship with the advent of Modern Humans are not yet sufficiently resolved, especially in case of the Iberian Peninsula. Reconstructing palaeoenvironmental conditions during the last glacial period is crucial to clarifying whether climate deteriorations or competition and contacts with Modern Humans played the pivotal role in driving Neanderthals to extinction. A high-resolution loess record from the Upper Tagus Basin in central Spain demonstrates that the Neanderthal abandonment of inner Iberian territories 42 kyr ago coincided with the evolvement of hostile environmental conditions, while archaeological evidence testifies that this desertion took place regardless of modern humans' activities. According to stratigraphic findings and stable isotope analyses, this period corresponded to the driest environmental conditions of the last glacial apart from an even drier period linked to Heinrich Stadial 3. Our results show that during Marine Isotope Stages (MIS) 4 and 2 climate deteriorations in interior Iberia temporally coincided with northern hemisphere cold periods (Heinrich stadials). Solely during the middle MIS 3, in a period surrounding 42 kyr ago, this relation seems not straightforward, which may demonstrate the complexity of terrestrial climate conditions during glacial periods.

  20. Impact of increasing antarctic glacial freshwater release on regional sea-ice cover in the Southern Ocean

    Science.gov (United States)

    Merino, Nacho; Jourdain, Nicolas C.; Le Sommer, Julien; Goosse, Hugues; Mathiot, Pierre; Durand, Gael

    2018-01-01

    The sensitivity of Antarctic sea-ice to increasing glacial freshwater release into the Southern Ocean is studied in a series of 31-year ocean/sea-ice/iceberg model simulations. Glaciological estimates of ice-shelf melting and iceberg calving are used to better constrain the spatial distribution and magnitude of freshwater forcing around Antarctica. Two scenarios of glacial freshwater forcing have been designed to account for a decadal perturbation in glacial freshwater release to the Southern Ocean. For the first time, this perturbation explicitly takes into consideration the spatial distribution of changes in the volume of Antarctic ice shelves, which is found to be a key component of changes in freshwater release. In addition, glacial freshwater-induced changes in sea ice are compared to typical changes induced by the decadal evolution of atmospheric states. Our results show that, in general, the increase in glacial freshwater release increases Antarctic sea ice extent. But the response is opposite in some regions like the coastal Amundsen Sea, implying that distinct physical mechanisms are involved in the response. We also show that changes in freshwater forcing may induce large changes in sea-ice thickness, explaining about one half of the total change due to the combination of atmospheric and freshwater changes. The regional contrasts in our results suggest a need for improving the representation of freshwater sources and their evolution in climate models.

  1. Large Scale Anthropogenic Reduction of Forest Cover in Last Glacial Maximum Europe.

    Science.gov (United States)

    Kaplan, Jed O; Pfeiffer, Mirjam; Kolen, Jan C A; Davis, Basil A S

    2016-01-01

    Reconstructions of the vegetation of Europe during the Last Glacial Maximum (LGM) are an enigma. Pollen-based analyses have suggested that Europe was largely covered by steppe and tundra, and forests persisted only in small refugia. Climate-vegetation model simulations on the other hand have consistently suggested that broad areas of Europe would have been suitable for forest, even in the depths of the last glaciation. Here we reconcile models with data by demonstrating that the highly mobile groups of hunter-gatherers that inhabited Europe at the LGM could have substantially reduced forest cover through the ignition of wildfires. Similar to hunter-gatherers of the more recent past, Upper Paleolithic humans were masters of the use of fire, and preferred inhabiting semi-open landscapes to facilitate foraging, hunting and travel. Incorporating human agency into a dynamic vegetation-fire model and simulating forest cover shows that even small increases in wildfire frequency over natural background levels resulted in large changes in the forested area of Europe, in part because trees were already stressed by low atmospheric CO2 concentrations and the cold, dry, and highly variable climate. Our results suggest that the impact of humans on the glacial landscape of Europe may be one of the earliest large-scale anthropogenic modifications of the earth system.

  2. Glacier Change, Supraglacial Debris Expansion and Glacial Lake Evolution in the Gyirong River Basin, Central Himalayas, between 1988 and 2015

    Directory of Open Access Journals (Sweden)

    Sheng Jiang

    2018-06-01

    Full Text Available Himalayan glacier changes in the context of global climate change have attracted worldwide attention due to their profound cryo-hydrological ramifications. However, an integrated understanding of the debris-free and debris-covered glacier evolution and its interaction with glacial lake is still lacking. Using one case study in the Gyirong River Basin located in the central Himalayas, this paper applied archival Landsat imagery and an automated mapping method to understand how glaciers and glacial lakes interactively evolved between 1988 and 2015. Our analyses identified 467 glaciers in 1988, containing 435 debris-free and 32 debris-covered glaciers, with a total area of 614.09 ± 36.69 km2. These glaciers decreased by 16.45% in area from 1988 to 2015, with an accelerated retreat rate after 1994. Debris-free glaciers retreated faster than debris-covered glaciers. As a result of glacial downwasting, supraglacial debris coverage expanded upward by 17.79 km2 (24.44%. Concurrent with glacial retreat, glacial lakes increased in both number (+41 and area (+54.11%. Glacier-connected lakes likely accelerated the glacial retreat via thermal energy transmission and contributed to over 15% of the area loss in their connected glaciers. On the other hand, significant glacial retreats led to disconnections from their proglacial lakes, which appeared to stabilize the lake areas. Continuous expansions in the lakes connected with debris-covered glaciers, therefore, need additional attention due to their potential outbursts. In comparison with precipitation variation, temperature increase was the primary driver of such glacier and glacial lake changes. In addition, debris coverage, size, altitude, and connectivity with glacial lakes also affected the degree of glacial changes and resulted in the spatial heterogeneity of glacial wastage across the Gyirong River Basin.

  3. The amount of glacial erosion of the bedrock

    International Nuclear Information System (INIS)

    Paasse, Tore

    2004-11-01

    The purpose of this study is to estimate an upper bound for the average erosion of fresh bedrock that can reasonably be expected during a glacial period or a single glaciation. The study is based on the assumption that classic sediments, formed by Scandinavian ice erosion during the Quaternary period, still exist within the formerly glaciated area or its periphery. The volume of these sediments thus constitutes the maximum average glacial erosion of bedrock within this area. This volume is calculated by estimating the thickness of the minerogenic Quaternary from well data in Sweden and Denmark and from seismic measurements in adjacent sea areas. The average thickness of the Quaternary deposits and other reogolith in the investigated area was estimated to 16 m. Assuming that the whole volume is the result of glacial erosion of fresh bedrock this corresponds to 12 m depth. However, a great part of the sediments may consist of glacially redistributed Tertiary regolith. As the amount of Tertiary regolith is uncertain the estimated maximum average glacial erosion rate in fresh bedrock is uncertain, and assuming that the total sediment volume is the result of glacial erosion leads to an overestimation of the glacial erosion depth. Considering this, the average glacial erosion during a full glacial period has been estimated to between 0.2 m and 4 m. If the extremes in the made assumptions are excluded the glacial erosion during a glacial cycle can be estimated to about 1 m

  4. The amount of glacial erosion of the bedrock

    Energy Technology Data Exchange (ETDEWEB)

    Paasse, Tore [Geological Survey of Sweden, Uppsala (Sweden)

    2004-11-01

    The purpose of this study is to estimate an upper bound for the average erosion of fresh bedrock that can reasonably be expected during a glacial period or a single glaciation. The study is based on the assumption that classic sediments, formed by Scandinavian ice erosion during the Quaternary period, still exist within the formerly glaciated area or its periphery. The volume of these sediments thus constitutes the maximum average glacial erosion of bedrock within this area. This volume is calculated by estimating the thickness of the minerogenic Quaternary from well data in Sweden and Denmark and from seismic measurements in adjacent sea areas. The average thickness of the Quaternary deposits and other reogolith in the investigated area was estimated to 16 m. Assuming that the whole volume is the result of glacial erosion of fresh bedrock this corresponds to 12 m depth. However, a great part of the sediments may consist of glacially redistributed Tertiary regolith. As the amount of Tertiary regolith is uncertain the estimated maximum average glacial erosion rate in fresh bedrock is uncertain, and assuming that the total sediment volume is the result of glacial erosion leads to an overestimation of the glacial erosion depth. Considering this, the average glacial erosion during a full glacial period has been estimated to between 0.2 m and 4 m. If the extremes in the made assumptions are excluded the glacial erosion during a glacial cycle can be estimated to about 1 m.

  5. The sensitivity of the Greenland Ice Sheet to glacial-interglacial oceanic forcing

    Science.gov (United States)

    Tabone, Ilaria; Blasco, Javier; Robinson, Alexander; Alvarez-Solas, Jorge; Montoya, Marisa

    2018-04-01

    Observations suggest that during the last decades the Greenland Ice Sheet (GrIS) has experienced a gradually accelerating mass loss, in part due to the observed speed-up of several of Greenland's marine-terminating glaciers. Recent studies directly attribute this to warming North Atlantic temperatures, which have triggered melting of the outlet glaciers of the GrIS, grounding-line retreat and enhanced ice discharge into the ocean, contributing to an acceleration of sea-level rise. Reconstructions suggest that the influence of the ocean has been of primary importance in the past as well. This was the case not only in interglacial periods, when warmer climates led to a rapid retreat of the GrIS to land above sea level, but also in glacial periods, when the GrIS expanded as far as the continental shelf break and was thus more directly exposed to oceanic changes. However, the GrIS response to palaeo-oceanic variations has yet to be investigated in detail from a mechanistic modelling perspective. In this work, the evolution of the GrIS over the past two glacial cycles is studied using a three-dimensional hybrid ice-sheet-shelf model. We assess the effect of the variation of oceanic temperatures on the GrIS evolution on glacial-interglacial timescales through changes in submarine melting. The results show a very high sensitivity of the GrIS to changing oceanic conditions. Oceanic forcing is found to be a primary driver of GrIS expansion in glacial times and of retreat in interglacial periods. If switched off, palaeo-atmospheric variations alone are not able to yield a reliable glacial configuration of the GrIS. This work therefore suggests that considering the ocean as an active forcing should become standard practice in palaeo-ice-sheet modelling.

  6. A palaeoclimate investigation of the lacustrine sediments from Chew Bahir in Ethiopia spanning multiple glacial-interglacial cycles

    Science.gov (United States)

    Leng, Melanie; Dean, Jonathan; Asrat, Asfawossen; Chapot, Melissa; Cohen, Andrew; Deino, Alan; Foerster, Verena; Lamb, Henry; Roberts, Helen; Schäbitz, Frank; Trauth, Martin; Viehberg, Finn

    2017-04-01

    There are few long, continuous, terrestrial Pleistocene records from eastern Africa, therefore it has been difficult to establish the relative influences of different climate forcings on the region's hydroclimate and to understand the climatic conditions at the time of anatomically modern human origin and dispersal out of Africa. To address these gaps in our knowledge, we have cored lake sediments from Chew Bahir in southern Ethiopia, close to the site of the oldest-known anatomically modern human fossils at Omo-Kibish. Several dating techniques are being employed and preliminary results suggest that the record covers the past 500-550ka. Several proxy records are being produced; here we use the oxygen and carbon isotope composition of endogenic calcite to reconstruct changes in hydroclimate. The data suggest significant fluctuations in water balance, with seemingly more evaporative conditions during glacial periods and less evaporative conditions during interglacials. The sawtooth structure of the isotope data through glacial-interglacial cycles suggests a strong linkage between high latitude forcing and Ethiopian hydroclimate fluctuations. We make inferences about the possible correlation between climate and the dispersal of anatomically modern humans out of Africa.

  7. Changes in vegetation and climate as reflected in tooth enamel isotopes of Quaternary mammalian faunas from Indonesia

    Science.gov (United States)

    Janssen, Renee; Joordens, Josephine; Koutamanis, Dafne; Puspaningrum, Mika; de Vos, John; den Ouden, Natasja; van der Lubbe, Jeroen; Reijmer, John; Hampe, Oliver; Davies, Gareth; Vonhof, Hubert

    2017-04-01

    Climate and sea level fluctuations play a dominant role in the Quaternary biodiversity dynamics of Indonesia, with glacial-interglacial cycles affecting hydroclimate, vegetation, and animal migrations. We analyzed the carbon (δ13C), oxygen (δ18O), and strontium (87Sr/86Sr) isotopes of bovid, cervid, and suid teeth from several Pleistocene and Holocene sites on Java and Sumatra, in order to refine reconstructions of the paleohabitats of these faunas, gain more insight into their climatic background, and constrain their chronology. Our carbon isotope data indicate that individual sites are strongly dominated by the presence of either C3-browsers or C4-grazers. Herbivores from the Padang Highlands (Sumatra) and Hoekgrot (Java) cave faunas were mainly C3-browsers, while the studied herbivores from Homo erectus-bearing sites Trinil and Sangiran (Java) utilized an almost exclusive C4 diet. The C4 signal of Trinil herbivores confirms that the Hauptknochenschicht (Trinil HK) was deposited during glacial conditions, allowing us to hypothesize that it can be dated to MIS 16, 14 or 12. We propose that the dominant vegetation signals in Indonesian fossil sites, as revealed by δ13C data, reflect a glacial-interglacial contrast. The scarcity of δ13C values typically indicating mixed C3/C4 feeding may indicate that the transition between glacial and interglacial precipitation regimes was relatively abrupt. The observed positive correlation between δ13C and δ18O values can be attributed to the glacial-interglacial contrast between precipitation δ18O values, caused by differences in monsoon intensity. The 87Sr/86Sr data show that the dominant C4 signal observed in the Sangiran and Trinil herbivore faunas corresponds with roaming in a variety of landscape settings, corroborating our hypothesis that the δ13C values are representative of the overall C3/C4vegetation balance in these areas. These results provide a framework that will allow interpretation of future isotope data

  8. The Glacial-Interglacial summer monsoon recorded in southwest Sulawesi speleothems: Evidence for sea level thresholds driving tropical monsoon strength

    Science.gov (United States)

    Kimbrough, A. K.; Gagan, M. K.; Dunbar, G. B.; Krause, C.; Di Nezio, P. N.; Hantoro, W. S.; Cheng, H.; Edwards, R. L.; Shen, C. C.; Sun, H.; Cai, B.; Rifai, H.

    2016-12-01

    Southwest Sulawesi lies within the Indo-Pacific Warm Pool (IPWP), at the center of atmospheric convection for two of the largest circulation cells on the planet, the meridional Hadley Cell and zonal Indo-Pacific Walker Circulation. Due to the geographic coincidence of these circulation cells, southwest Sulawesi serves as a hotspot for changes in tropical Pacific climate variability and Australian-Indonesian summer monsoon (AISM) strength over glacial-interglacial (G-I) timescales. The work presented here spans 386 - 127 ky BP, including glacial terminations IV ( 340 ky BP) and both phases of TIII (TIII 248 ky BP and TIIIa 217 ky BP). This record, along with previous work from southwest Sulawesi spanning the last 40 kyr, reveals coherent climatic features over three complete G-I cycles. The multi-stalagmite Sulawesi speleothem δ18O record demonstrates that on G-I timescales, the strength of the AISM is most sensitive to changes in sea level and its impact on the regional distribution of land and shallow ocean. Stalagmite δ18O and trace element (Mg/Ca) data indicate a rapid increase in rainfall at glacial terminations and wet interglacials. TIV, TIII, TIIIa, and TI are each characterized by an abrupt 3‰ decrease in δ18O that coincides with sea level rise and flooding of the Sunda and Sahul shelves. Strong evidence for a sea level (flooding/exposure) threshold is found throughout the southwest Sulawesi record. This is most clearly demonstrated over the period 230 - 212 ky BP (MIS 7d-7c), when a sea level fall to only -80 to -60 m for 10 kyr results in a weakened AISM and glacial conditions, followed by a full termination. Taken together, both glaciations and glacial terminations imply a sea level threshold driving the AISM between two primary levels of intensity (`interglacial' & `glacial'). These massive, sea-level driven shifts in AISM strength are superimposed on precession-scale variability associated with boreal fall insolation at the equator, indicating

  9. Land Use Transition and Human Health in the context of Climate ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Land Use Transition and Human Health in the context of Climate Change in the Eastern Himalayas. Land use change is ... it at the communal level. The overall goal is to reduce the vulnerability of mountain people to health issues caused by land use change using ecosystem approaches to human health (Ecohealth).

  10. Impact of climate variability on terrestrial environment in Western Europe between 45 and 9 kyr cal. BP: vegetation dynamics recorded by the Bergsee Lake (Black Forest, Germany).

    Science.gov (United States)

    Duprat-Oualid, Fanny; Begeot, Carole; Rius, Damien; Millet, Laurent; Magny, Michel

    2016-04-01

    Between 9 and 45 kyr cal. BP, two great transitions lead the global climate system to evolve from the Last-Glacial period (115-14.7 kyr cal. BP), to two successive warmer periods, the Late-Glacial Interstadial (14.7-11.7 kyr cal. BP) and the Holocene (11.7-0 kyr cal. BP). δ18O variations recorded in Greenland ice cores (GRIP & NGRIP) revealed high frequency climate variability within the Last Glacial. These reference isotopic records highlighted a succession of centennial-to-millennial warm/cold events, the so-called Greenland Interstadials (GI) and Greenland Stadials (GS). The number continental records about the period 14.7-0 kyr cal. BP is substantial. This allowed to understand the vegetation dynamics in response to climate changes this period at the North-Atlantic scale. However, sequences covering the glacial period (beyond 20 kyr cal.BP) remain rare, because of hiatuses mostly due to local glaciers. Therefore, sedimentary continuous records of vegetation dynamics are still needed to better understand climate changes during the Last Glacial in Western Europe (Heiri et al. 2014). Here we present a new high-resolution pollen record from Lake Bergsee (47°34'20''N, 7°56'11''E, 382 m a.s.l). This lake is located south of Black Forest and north of the Alps, beyond the zone of glaciers maximal extension. Therefore it could have recorded the whole last climatic cycle, i.e. 120-0 kyr cal. BP. In 2013, a 29 m long core was extracted from the Bergsee. According to the depth-age model based on 14C AMS dating and the Laacher See Tephra (LST), the record spans continuously at least the last 45 kyrs. The first series of pollen analysis, focused on the 45-9 kyr cal. BP time window, allows us to reconstruct a precise, faithful and continuous vegetation history at the centennial scale. This high temporal resolution enabled to assess the response of vegetation to secular climate events (e.g. GI-4 = 200 yrs). First, our results show that vegetation responded to climate

  11. Long-term climate: interpretation of the Vostok Antarctica drilling data, development of a zonally averaged dynamic model of the atmosphere

    International Nuclear Information System (INIS)

    Genthon, Christophe

    1988-01-01

    In a first part of the dissertation, data related to the evolution of the Earth climate and environment are analysed in order to elucidate some possible mechanisms of climatic transition on the time scale of the recent Pleistocene glacial to interglacial cycles. The Vostok (East Antarctica) temperature and the carbon dioxide atmospheric concentration (global) profiles, obtained on a time range of ∼160000 years from analysing a deep ice core drilled at Vostok are the basis of this study. A simple model for statistically reconstructing the temperature profile is implemented, the input functions of which are selected from hypotheses on the forcing of the climate at Vostok. These hypotheses are supported by the presence of the astronomical theory of paleo-climate's characteristic spectral bands in the two signals, by the high correlation between the variations of temperature with that of CO 2 , and by the fair coherence of these records with other paleo-climatic series from ocean sediment cores. An important contribution of the thermal greenhouse effect of CO 2 is suggested through this approach, in reasonable agreement with results obtained by other researchers using general circulation models. We also describe a dynamical model of the atmosphere which uses the zonally averaged primitive equations. This model is being developed as part of a project on modelling the globally coupled climatic System (atmosphere, ocean, cryo-sphere). For both the dynamical and diabatic physical parts, it is a reduction to two dimensions (latitude and altitude) of a general circulation atmospheric model. The large scale turbulence of the middle and high latitudes cannot be resolved with such a configuration: we describe parametrizations of the transports of sensible and latent heat by the baro-clinic eddies, and a preliminary study of the transport of momentum. These parametrizations make use of the mixing length theory, the mixing coefficients being determined from the local

  12. Glacial refugia and the prediction of future habitat coverage of the South American lichen species Ochrolechia austroamericana.

    Science.gov (United States)

    Kukwa, Martin; Kolanowska, Marta

    2016-12-08

    The biogeographic history of lichenized fungi remains unrevealed because those organisms rarely fossilize due to their delicate, often tiny and quickly rotting thalli. Also the ecology and factors limiting occurrence of numerous taxa, especially those restricted in their distribution to tropical areas are poorly recognized. The aim of this study was to determine localization of glacial refugia of South American Ochrolechia austroamericana and to estimate the future changes in the coverage of its habitats using ecological niche modeling tools. The general glacial potential range of the studied species was wider than it is nowadays and its niches coverage decreased by almost 25% since last glacial maximum. The refugial areas were covered by cool and dry grasslands and scrubs and suitable niches in South America were located near the glacier limit. According to our analyses the further climate changes will not significantly influence the distribution of the suitable niches of O. austroamericana.

  13. Coupled Northern Hemisphere permafrost-ice-sheet evolution over the last glacial cycle

    Science.gov (United States)

    Willeit, M.; Ganopolski, A.

    2015-09-01

    Permafrost influences a number of processes which are relevant for local and global climate. For example, it is well known that permafrost plays an important role in global carbon and methane cycles. Less is known about the interaction between permafrost and ice sheets. In this study a permafrost module is included in the Earth system model CLIMBER-2, and the coupled Northern Hemisphere (NH) permafrost-ice-sheet evolution over the last glacial cycle is explored. The model performs generally well at reproducing present-day permafrost extent and thickness. Modeled permafrost thickness is sensitive to the values of ground porosity, thermal conductivity and geothermal heat flux. Permafrost extent at the Last Glacial Maximum (LGM) agrees well with reconstructions and previous modeling estimates. Present-day permafrost thickness is far from equilibrium over deep permafrost regions. Over central Siberia and the Arctic Archipelago permafrost is presently up to 200-500 m thicker than it would be at equilibrium. In these areas, present-day permafrost depth strongly depends on the past climate history and simulations indicate that deep permafrost has a memory of surface temperature variations going back to at least 800 ka. Over the last glacial cycle permafrost has a relatively modest impact on simulated NH ice sheet volume except at LGM, when including permafrost increases ice volume by about 15 m sea level equivalent in our model. This is explained by a delayed melting of the ice base from below by the geothermal heat flux when the ice sheet sits on a porous sediment layer and permafrost has to be melted first. Permafrost affects ice sheet dynamics only when ice extends over areas covered by thick sediments, which is the case at LGM.

  14. Coupled Northern Hemisphere permafrost–ice-sheet evolution over the last glacial cycle

    Directory of Open Access Journals (Sweden)

    M. Willeit

    2015-09-01

    Full Text Available Permafrost influences a number of processes which are relevant for local and global climate. For example, it is well known that permafrost plays an important role in global carbon and methane cycles. Less is known about the interaction between permafrost and ice sheets. In this study a permafrost module is included in the Earth system model CLIMBER-2, and the coupled Northern Hemisphere (NH permafrost–ice-sheet evolution over the last glacial cycle is explored. The model performs generally well at reproducing present-day permafrost extent and thickness. Modeled permafrost thickness is sensitive to the values of ground porosity, thermal conductivity and geothermal heat flux. Permafrost extent at the Last Glacial Maximum (LGM agrees well with reconstructions and previous modeling estimates. Present-day permafrost thickness is far from equilibrium over deep permafrost regions. Over central Siberia and the Arctic Archipelago permafrost is presently up to 200–500 m thicker than it would be at equilibrium. In these areas, present-day permafrost depth strongly depends on the past climate history and simulations indicate that deep permafrost has a memory of surface temperature variations going back to at least 800 ka. Over the last glacial cycle permafrost has a relatively modest impact on simulated NH ice sheet volume except at LGM, when including permafrost increases ice volume by about 15 m sea level equivalent in our model. This is explained by a delayed melting of the ice base from below by the geothermal heat flux when the ice sheet sits on a porous sediment layer and permafrost has to be melted first. Permafrost affects ice sheet dynamics only when ice extends over areas covered by thick sediments, which is the case at LGM.

  15. U.S. climate mitigation pathways post-2012: Transition scenarios in ADAGE

    International Nuclear Information System (INIS)

    Ross, Martin T.; Fawcett, Allen A.; Clapp, Christa S.

    2009-01-01

    The transition from the greenhouse gas (GHG) emission levels currently allowed under the Kyoto Protocol climate agreement to more ambitious, and internationally comprehensive, GHG reduction goals will have important implications for the global economic system. Given the major role that the United States plays in the global economy, and also as a major GHG emitter, this paper examines a range of climate policy pathways for the country in the context of international actions. The ADAGE model is used to examine policy impacts for climate scenarios, focusing on key factors such as emissions, technology deployment, macroeconomic indicators and international trade. In general, the simulations indicate that reductions in GHG emissions can be accomplished with limited economic adjustments, although impacts depend on the future availability of new low-carbon technologies.

  16. Electrical resistivity tomography (ERT surveys on glacial deposits in Romanian Carpathians

    Directory of Open Access Journals (Sweden)

    Andrei ZAMOSTEANU

    2014-11-01

    Full Text Available The study presents preliminary results regarding the use of electrical resistivity surveys in the assessment of the internal structure of the glacial deposits from the Romanian Carpathians.ERT is a geophysical method used to quantify changes in electrical resistivity of the ground towards passing electric current across an array of electrodes and simultaneous measurement of the induced potential gradient. Using specific software the measurements are further processed and correlated with the topography in order to obtain bedrock resistivity features. Therefore, the method is useful to evaluate the characteristics of geological strata and is widely used for mapping shallow subsurface geological structures. In the mountain regions ERT studies have been applied in different glacial and periglacial geomorphological studies - for permafrost detection (in Romanian Carpathians - Urdea et. al., 2008; Vespremeanu-Stroe et al., 2012, slope deformation analysis, the assessment of slip surface depths, sediment thickness, groundwater levels etc. One of the most commonly 2-D array used is the Wenner electrode configuration, which is moderately sensitive to both horizontal and vertical ground structures.Due to their elevations and Pleistocene’s climatic conditions, the Romanian Carpathians have been partially affected by Quaternary glaciations. The glaciers descended to about 1050-1200 m a.s.l. (Urdea and Reurther, 2009 in the Transylvanian Alps and Rodna Mountains (Eastern Carpathians carving a large number of U-shaped valleys and glacial cirques (Mîndrescu, 2006 and forming accumulations of unconsolidated glacial debris (moraines. Our study areas are two sites located in the northern (Rodna Mts. and southern (Iezer Păpuşa Mts. part of the mountain range.

  17. Glacial-interglacial variations of microbial communities in permafrost and lake deposits in the Siberian Arctic

    Science.gov (United States)

    Mangelsdorf, Kai; Bischoff, Juliane; Gattinger, Andreas; Wagner, Dirk

    2013-04-01

    The Artic regions are expected to be very sensitive to the currently observed climate change. When permafrost is thawing, the stored carbon becomes available again for microbial degradation, forming a potential source for the generation of carbon dioxide and methane with their positive feedback effect on the climate warming. For the prediction of future climate evolution it is, therefore, important to improve our knowledge about the microbial-driven greenhouse gas dynamics in the Siberian Arctic and their response to glacial-interglacial changes in the past. Sample material was drilled on Kurungnahk Island (Russian-German LENA expedition) located in the southern part of the Lena delta and in lake El'gygytgyn (ICDP-project) in the eastern part of Siberia. The Kurungnahk samples comprise Late Pleistocene to Holocene deposits, whereas the lake El'gygytgyn samples cover Middle to Late Pleistocene sediments. Samples were investigated applying a combined biogeochemical and microbiological approach. The methane profile of the Kurungnahk core reveals highest methane contents in the warm and wet Holocene and Late Pleistocene (LP) deposits and correlates largly to the organic carbon (TOC) contents. Archaeol concentrations, being a biomarker for past methanogenic archaea, are also high during the warm and wet Holocene and LP intervals and low during the cold and dry LP periods. This indicates that part of the methane might be produced and trapped in the past. However, biomarkers for living microorganisms (bacteria and archaea) and microbial activity measurements of methanogens point, especially, for the Holocene to a viable archaeal community, indicating a possible in-situ methane production. Furthermore, warm/wet-cold/dry climate cycles are recorded in the archaeal diversity as revealed by genetic fingerprint analysis. Although the overlying lake water buffers the temperature effect on the lake sediments, which never became permafrost, the bacterial and archaeal biomarker

  18. Glacial refugia, recolonization patterns and diversification forces in Alpine-endemic Megabunus harvestmen.

    Science.gov (United States)

    Wachter, Gregor A; Papadopoulou, Anna; Muster, Christoph; Arthofer, Wolfgang; Knowles, L Lacey; Steiner, Florian M; Schlick-Steiner, Birgit C

    2016-06-01

    The Pleistocene climatic fluctuations had a huge impact on all life forms, and various hypotheses regarding the survival of organisms during glacial periods have been postulated. In the European Alps, evidence has been found in support of refugia outside the ice shield (massifs de refuge) acting as sources for postglacial recolonization of inner-Alpine areas. In contrast, evidence for survival on nunataks, ice-free areas above the glacier, remains scarce. Here, we combine multivariate genetic analyses with ecological niche models (ENMs) through multiple timescales to elucidate the history of Alpine Megabunus harvestmen throughout the ice ages, a genus that comprises eight high-altitude endemics. ENMs suggest two types of refugia throughout the last glacial maximum, inner-Alpine survival on nunataks for four species and peripheral refugia for further four species. In some geographic regions, the patterns of genetic variation are consistent with long-distance dispersal out of massifs de refuge, repeatedly coupled with geographic parthenogenesis. In other regions, long-term persistence in nunataks may dominate the patterns of genetic divergence. Overall, our results suggest that glacial cycles contributed to allopatric diversification in Alpine Megabunus, both within and at the margins of the ice shield. These findings exemplify the power of ENM projections coupled with genetic analyses to identify hypotheses about the position and the number of glacial refugia and thus to evaluate the role of Pleistocene glaciations in driving species-specific responses of recolonization or persistence that may have contributed to observed patterns of biodiversity. © 2016 John Wiley & Sons Ltd.

  19. Exploring the data constrained phase space of the last Antarctic glacial cycle

    Science.gov (United States)

    Lecavalier, Benoit; Tarasov, Lev

    2017-04-01

    The evolution of the Antarctic Ice Sheet over the last two glacial cycles is studied using the Glacial Systems Model (GSM). Glaciological modelling is an effective tool to generate continental-scale reconstructions over glacial cycles, but the models depend on parameterizations to account for the deficiencies (e.g., missing physics, unresolved sub-grid processes, uncertain boundary conditions) inherent in any numerical model. These parameters, considered together, form a parameter phase space from which sets of parameters can be sampled; each set corresponds to an ice sheet reconstruction. The GSM has been updated with a number of recent developments: hybrid SIA-SSA physics, Schoof grounding line parameterization, broadened degrees of freedom in the climate forcing, sub-shelf melt explicitly dependent on ocean temperatures, improved hydrofracturing, cliff failure at the margins, basal topographic uncertainties, impact of basal drag roughness and subgrid statistics, and first order geoidal corrections in the coupled glacial isostatic adjustment component. Parametric uncertainties are defined in the GSM using >36 ensemble parameters. Prior to conducting a full Bayesian calibration, one must first validate the ability of the GSM to simulate a broad range of responses. We attempt this by latin hypercube sampling of the parameter phase space and comparing the model predictions against our constraint database consisting of past elevation, extent and relative sea level observations and the present day geometry. We document the capability of the GSM to envelope the observational constraints given the parametric uncertainties and discuss the implications for the evolution of the Antarctic Ice Sheet.

  20. Tropical climate and vegetation cover during Heinrich event 1: Simulations with coupled climate vegetation models

    OpenAIRE

    Handiani, Dian Noor

    2012-01-01

    This study focuses on the climate and vegetation responses to abrupt climate change in the Northern Hemisphere during the last glacial period. Two abrupt climate events are explored: the abrupt cooling of the Heinrich event 1 (HE1), followed by the abrupt warming of the Bølling-Allerød interstadial (BA). These two events are simulated by perturbing the freshwater balance of the Atlantic Ocean, with the intention of altering the Atlantic Meridional Overturning Circulation (AMOC) and also of in...

  1. Late Quaternary climate-change velocity: Implications for modern distributions and communities

    DEFF Research Database (Denmark)

    Sandel, Brody Steven; Dalsgaard, Bo; Arge, Lars Allan

    a global map of climate-change velocity since the Last Glacial Maximum and used this measure of climate instability to address a number of classic hypotheses. Results/Conclusions We show that historical climate-change velocity is related to a wide range of characteristics of modern distributions...

  2. Role of Social Climate in Habitual Transit Use by Young Adults to Work and Leisure Activities Evidence from Colombia and Mexico

    DEFF Research Database (Denmark)

    Salva, Julian R.; Sierra, Miguel; Alanis, Ana K. J.

    2015-01-01

    , especially in the younger populations that will shape the future of transport systems. This study proposes a behavioral framework founded on the theory of planned behavior and the social climate model. The study presents a tailor-made, web-based survey and a structural equation model for analyzing transit...... is significantly related to the perceived behavioral control of using transit and the social climate; (b) attitudes, norms, and perceived behavioral control are associated with perceived service quality; (c) gender differences exist in the user experience and appreciation of the social climate in transit; and (d...

  3. Atmospheric carbon dioxide and the long-term control of the Earth's climate

    Directory of Open Access Journals (Sweden)

    J. H. Carver

    1995-07-01

    Full Text Available A CO2-weathering model has been used to explore the possible evolution of the Earth's climate as the Sun steadily brightened throughout geologic time. The results of the model calculations can be described in terms of three, qualitatively different, "Megaclimates". Mega-climate 1 resulted from a period of rapid outgassing in the early Archean, with high, but declining, temperatures caused by the small weathering rates on a largely water-covered planet. Mega-climate 2 began about 3 Gyear ago as major continental land masses developed, increasing the weathering rate in the early Proterozoic and thereby depleting the atmospheric CO2 concentration. This process produced the first Precambrian glaciations about 2.3 Gyear ago. During Mega-climate 2, evolutionary biological processes increased the surface weatherability in incremental steps and plate tectonics modulated the CO2 outgassing rate with an estimated period of 150 Myear (approximately one-half the period for the formation and breakup of super continents. Throughout Mega-climate 2 the surface temperature was controlled by variations in the atmospheric CO2 level allowing transitions between glacial and non-glacial conditions. The results of the model for Mega-climate 2 are in agreement with the occurrence (and absence of glaciations in the geologic record. Extending the model to the future suggests that CO2 control of the Earth's temperature will no longer be able to compensate for a solar flux that continues to increase. The present level of atmospheric CO2 is so small that further reduction in CO2 cannot prevent the Earth from experiencing Mega-climate 3 with steadily increasing surface temperatures caused by the continued brightening of the Sun. During Mega-climate 3, the main danger to the biosphere would come not from an increasing temperature but from a decreasing (rather than an increasing CO2 level which could, in time, fall below 0.5 PAL, causing serious damage to the biosphere

  4. The glacial inception as recorded in the NorthGRIP Greenland ice core: timing, structure and associated abrupt temperature changes

    Energy Technology Data Exchange (ETDEWEB)

    Landais, Amaelle [UMR CEA-CNRS, CEA Saclay, IPSL/Laboratoire des Sciences du Climat et de l' Environnement, Gif-sur -Yvette (France); Hebrew University, Institute of Earth Sciences, Givat Ram, Jerusalem (Israel); Masson-Delmotte, Valerie; Jouzel, Jean; Minster, Benedicte [UMR CEA-CNRS, CEA Saclay, IPSL/Laboratoire des Sciences du Climat et de l' Environnement, Gif-sur -Yvette (France); Raynaud, Dominique [LGGE, UMR CNRS-UJF, St Martin d' Heres (France); Johnsen, Sigfus [University of Copenhagen, Department of Geophysics, Copenhagen (Denmark); Huber, Christof; Leuenberger, Markus; Schwander, Jakob [University of Bern, Physics Institute, Bern (Switzerland)

    2006-02-01

    The mechanisms involved in the glacial inception are still poorly constrained due to a lack of high resolution and cross-dated climate records at various locations. Using air isotopic measurements in the recently drilled NorthGRIP ice core, we show that no evidence exists for stratigraphic disturbance of the climate record of the last glacial inception ({proportional_to}123-100 kyears BP) encompassing Dansgaard-Oeschger events (DO) 25, 24 and 23, even if we lack sufficient resolution to completely rule out disturbance over DO 25. We quantify the rapid surface temperature variability over DO 23 and 24 with associated warmings of 10{+-}2.5 and 16{+-}2.5 C, amplitudes which mimic those observed in full glacial conditions. We use records of {delta}{sup 18}O of O{sub 2} to propose a common timescale for the NorthGRIP and the Antarctic Vostok ice cores, with a maximum uncertainty of 2,500 years, and to examine the interhemispheric sequence of events over this period. After a synchronous North-South temperature decrease, the onset of rapid events is triggered in the North through DO 25. As for later events, DO 24 and 23 have a clear Antarctic counterpart which does not seem to be the case for the very first abrupt warming (DO 25). This information, when added to intermediate levels of CO{sub 2} and to the absence of clear ice rafting associated with DO 25, highlights the uniqueness of this first event, while DO 24 and 23 appear similar to typical full glacial DO events. (orig.)

  5. LATE GLACIAL AND HOLOCENE ENVIRONMENTAL CHANGE INFERRED FROM THE PÁRAMO OF CAJANUMA IN THE PODOCARPUS NATIONAL PARK, SOUTHERN ECUADOR

    Directory of Open Access Journals (Sweden)

    ANDREA VILLOTA

    2014-12-01

    Full Text Available To reconstruct the environmental history including vegetation, fire and climate dynamics, from the Cajanuma valley area ( 3285 m elevation in the Podocarpus National Park, southern Ecuador , we address the following major research question: (1 How did the mountain vegetation developed during the late Glacial and Holocene? (2 Did fire played an important control on the vegetation change and was it natural or of anthropogenic origin?. Palaeoenvironmental changes were investigated using multiple proxies such as pollen, spores, charcoal analyses and radiocarbon dating. Pollen data indicated that during the late Glacial and transition to the early Holocene (ca. 16 000-10 500 cal yr BP herb páramo was the main vegetation type around the study area, while subpáramo and mountain rainforest were scarcely represented. The early and mid-Holocene (ca. 10 500 to 5600 cal yr BP is marked by high abundance of páramo during the early Holocene followed by a slight expansion of mountain forest during the mid-Holocene. During the mid- to late Holocene (ca. 5600-1200 cal yr BP there is a significant presence of páramo and subpáramo while Lower Mountain Forest decreased substantially, although, Upper Mountain Forest remained relatively stable during this period. The late Holocene, from ca. 1200 cal yr BP to present, was characterized by páramo; however, mountain forest and subpáramo presented significantly abundance compared to the previous periods. Fires became frequent since the late Holocene. The marked increased local and regional fire intensity during the wetter late Holocene strongly suggests that were of anthropogenic origin. During the late Glacial and early Holocene, the upper forest line was located at low elevations; but shifted slightly upslope to higher elevations during the mid-Holocene.

  6. Integration of ice-core, marine and terrestrial records for the Australian Last Glacial Maximum and Termination: a contribution from the OZ INTIMATE group

    Science.gov (United States)

    Turney, C. S. M.; Haberle, S.; Fink, D.; Kershaw, A. P.; Barbetti, M.; Barrows, T. T.; Black, M.; Cohen, T. J.; Corrège, T.; Hesse, P. P.; Hua, Q.; Johnston, R.; Morgan, V.; Moss, P.; Nanson, G.; van Ommen, T.; Rule, S.; Williams, N. J.; Zhao, J.-X.; D'Costa, D.; Feng, Y.-X.; Gagan, M.; Mooney, S.; Xia, Q.

    2006-10-01

    The degree to which Southern Hemisphere climatic changes during the end of the last glacial period and early Holocene (30-8 ka) were influenced or initiated by events occurring in the high latitudes of the Northern Hemisphere is a complex issue. There is conflicting evidence for the degree of hemispheric teleconnection and an unresolved debate as to the principle forcing mechanism(s). The available hypotheses are difficult to test robustly, however, because the few detailed palaeoclimatic records in the Southern Hemisphere are widely dispersed and lack duplication. Here we present climatic and environmental reconstructions from across Australia, a key region of the Southern Hemisphere because of the range of environments it covers and the potentially important role regional atmospheric and oceanic controls play in global climate change. We identify a general scheme of events for the end of the last glacial period and early Holocene but a detailed reconstruction proved problematic. Significant progress in climate quantification and geochronological control is now urgently required to robustly investigate change through this period. Copyright

  7. Correlating Ice Cores from Quelccaya Ice Cap with Chronology from Little Ice Age Glacial Extents

    Science.gov (United States)

    Stroup, J. S.; Kelly, M. A.; Lowell, T. V.

    2010-12-01

    Proxy records indicate Southern Hemisphere climatic changes during the Little Ice Age (LIA; ~1300-1850 AD). In particular, records of change in and around the tropical latitudes require attention because these areas are sensitive to climatic change and record the dynamic interplay between hemispheres (Oerlemans, 2005). Despite this significance, relatively few records exist for the southern tropics. Here we present a reconstruction of glacial fluctuations of Quelccaya Ice Cap (QIC), Peruvian Andes, from pre-LIA up to the present day. In the Qori Kalis valley, extensive sets of moraines exist beginning with the 1963 AD ice margin (Thompson et al., 2006) and getting progressively older down valley. Several of these older moraines can be traced and are continuous with moraines in the Challpa Cocha valley. These moraines have been dated at chronology of past ice cap extents are correlated with ice core records from QIC which show an accumulation increase during ~1500-1700 AD and an accumulation decrease during ~1720-1860 AD (Thompson et al., 1985; 1986; 2006). In addition, other proxy records from Peru and the tropics are correlated with the records at QIC as a means to understand climate conditions during the LIA. This work forms the basis for future modeling of the glacial system during the LIA at QIC and for modeling of past temperature and precipitation regimes at high altitude in the tropics.

  8. Paleo-dust insights onto dust-climate interactions

    Science.gov (United States)

    Albani, S.; Mahowald, N. M.

    2017-12-01

    Mineral dust emissions are affected by changing climate conditions, and in turn dust impacts the atmospheric radiation budget, clouds and biogeochemical cycles. Climate and public health dust-related issues call for attention on the fate of the dust cycle in the future, and the representation of the dust cycle is now part of the strategy of the Paleoclimate Modelling Intercomparison Project phase 4 and the Coupled Model Intercomparison Project phase 6 (PMIP4-CMIP6). Since mineral aerosols are one of the most important natural aerosols, understanding past dust responses to climate in the paleoclimate will allow us to better understand mineral aerosol feedbacks with climate and biogeochemistry in the Anthropocene. Modern observations and paleoclimate records offer the possibility of multiple, complementary views on the global dust cycle, and allow to validate and/or constrain the numerical representation of dust in climate and Earth system models. We present our results from a set of simulations with the Community Earth System Model for different climate states, including present and past climates such as the pre-industrial, the mid-Holocene and the Last Glacial Maximum. A set of simulations including a prognostic dust cycle was thoroughly compared with a wide set of present day observations from different platforms and regions, in order to realistically constrain the magnitude of dust load, surface concentration, deposition, optical properties, and particle size distributions. The magnitude of emissions for past climate regimes was constrained based on compilations of paleodust mass accumulation rates and size distributions, as well as based on information on dust provenance. The comparison with a parallel set of simulations without dust allows estimating the impacts of dust on surface climate. We analyze impacts of dust on the mean and variability of surface temperature and precipitation in each climate state, as well as the impacts that changing dust emissions had

  9. Reconstructing turbidity in a glacially influenced lake using the Landsat TM and ETM+ surface reflectance climate data record archive, Lake Clark, Alaska

    Science.gov (United States)

    Baughman, Carson; Jones, Benjamin M.; Bartz, Krista K.; Young, Daniel B.; Zimmerman, Christian E.

    2015-01-01

    Lake Clark is an important nursery lake for sockeye salmon (Oncorhynchus nerka) in the headwaters of Bristol Bay, Alaska, the most productive wild salmon fishery in the world. Reductions in water clarity within Alaska lake systems as a result of increased glacial runoff have been shown to reduce salmon production via reduced abundance of zooplankton and macroinvertebrates. In this study, we reconstruct long-term, lake-wide water clarity for Lake Clark using the Landsat TM and ETM+ surface reflectance products (1985–2014) and in situwater clarity data collected between 2009 and 2013. Analysis of a Landsat scene acquired in 2009, coincident with in situ measurements in the lake, and uncertainty analysis with four scenes acquired within two weeks of field data collection showed that Band 3 surface reflectance was the best indicator of turbidity (r2 = 0.55,RMSE turbidity for Lake Clark between 1991 and 2014. We did, however, detect interannual variation that exhibited a non-significant (r2 = 0.20) but positive correlation (r = 0.20) with regional mean summer air temperature and found the month of May exhibited a significant positive trend (r2 = 0.68, p = 0.02) in turbidity between 2000 and 2014. This study demonstrates the utility of hindcasting turbidity in a glacially influenced lake using the Landsat surface reflectance products. It may also help land and resource managers reconstruct turbidity records for lakes that lack in situ monitoring, and may be useful in predicting future water clarity conditions based on projected climate scenarios.

  10. Climate change and sustainable energy: actions and transition to a lower carbon economy

    International Nuclear Information System (INIS)

    Rosen, M.A.

    2009-01-01

    'Full text:' This presentation will address climate change and transition to a lower carbon economy in general and the importance of sustainable energy in such initiatives. The talk has two main parts. In the first part, the presenter discuss why non-fossil fuel energy options, which are diverse and range from renewables through to nuclear energy, are needed to help humanity combat climate change and transition to a lower carbon economy. Such energy options reduce or eliminate emissions of greenhouse gases and thus often form the basis of sustainable energy solutions. Nonetheless, carbon dioxide capture and sequestration may allow fossil fuels to be less carbon emitting. Sustainable energy options are not sufficient for avoiding climate change, in that they are not necessarily readily utilizable in their natural forms. Hydrogen energy systems are needed to facilitate the use of non-fossil fuels by allowing them to be converted to two main classes of energy carriers: hydrogen and select hydrogen-derived fuels and electricity. As hydrogen is not an energy resource, but rather is an energy carrier that must be produced, it complements non-fossil energy sources, which often need to be converted into more convenient forms. In addition, high efficiency is needed to allow the greatest benefits to be attained from all energy options, including non-fossil fuel ones, in terms of climate change and other factors. Efficiency improvements efforts have many dimensions, including energy conservation, improved energy management, fuel substitution, better matching of energy carriers and energy demands, and more efficiency utilization of both energy quantity and quality. The latter two concepts are best considered via the use of exergy analysis, an advanced thermodynamic tool. In the second part of the presentation, actions to address climate change more generally and to help society transition to a lower carbon economy are described. The role of sustainable energy in this

  11. Timing of glacier advances and climate in the High Tatra Mountains (Western Carpathians) during the Last Glacial Maximum

    Science.gov (United States)

    Makos, Michał; Dzierżek, Jan; Nitychoruk, Jerzy; Zreda, Marek

    2014-07-01

    During the Last Glacial Maximum (LGM), long valley glaciers developed on the northern and southern sides of the High Tatra Mountains, Poland and Slovakia. Chlorine-36 exposure dating of moraine boulders suggests two major phases of moraine stabilization, at 26-21 ka (LGM I - maximum) and at 18 ka (LGM II). The dates suggest a significantly earlier maximum advance on the southern side of the range. Reconstructing the geometry of four glaciers in the Sucha Woda, Pańszczyca, Mlynicka and Velicka valleys allowed determining their equilibrium-line altitudes (ELAs) at 1460, 1460, 1650 and 1700 m asl, respectively. Based on a positive degree-day model, the mass balance and climatic parameter anomaly (temperature and precipitation) has been constrained for LGM I advance. Modeling results indicate slightly different conditions between northern and southern slopes. The N-S ELA gradient finds confirmation in slightly higher temperature (at least 1 °C) or lower precipitation (15%) on the south-facing glaciers during LGM I. The precipitation distribution over the High Tatra Mountains indicates potentially different LGM atmospheric circulation than at the present day, with reduced northwesterly inflow and increased southerly and westerly inflows of moist air masses.

  12. Application of sediment core modelling to interpreting the glacial-interglacial record of Southern Ocean silica cycling

    Directory of Open Access Journals (Sweden)

    A. Ridgwell

    2007-07-01

    Full Text Available Sediments from the Southern Ocean reveal a meridional divide in biogeochemical cycling response to the glacial-interglacial cycles of the late Neogene. South of the present-day position of the Antarctic Polar Front in the Atlantic sector of the Southern Ocean, biogenic opal is generally much more abundant in sediments during interglacials compared to glacials. To the north, an anti-phased relationship is observed, with maximum opal abundance instead occurring during glacials. This antagonistic response of sedimentary properties provides an important model validation target for testing hypotheses of glacial-interglacial change against, particularly for understanding the causes of the concurrent variability in atmospheric CO2. Here, I illustrate a time-dependent modelling approach to helping understand climates of the past by means of the mechanistic simulation of marine sediment core records. I find that a close match between model-predicted and observed down-core changes in sedimentary opal content can be achieved when changes in seasonal sea-ice extent are imposed, whereas the predicted sedimentary response to iron fertilization on its own is not consistent with sedimentary observations. The results of this sediment record model-data comparison supports previous inferences that the changing cryosphere is the primary driver of the striking features exhibited by the paleoceanographic record of this region.

  13. Lake Sediment Records as an Indicator of Holocene Fluctuations of Quelccaya Ice Cap, Peru and Regional Climate

    Science.gov (United States)

    Stroup, J. S.; Kelly, M. A.; Lowell, T. V.; Beal, S. A.; Smith, C. A.; Baranes, H. E.

    2012-12-01

    The past fluctuations of Quelccaya Ice Cap, (QIC; 13°S, 70°W, 5200 m asl) located in the southeastern Peruvian Andes, provide a record of tropical climate since the last glacial-interglacial transition. A detailed surficial geomorphic record of past glacial extents developed over the last several decades (e.g. Mercer and Palacios 1977; Buffen et al. 2009; Kelly et al. 2012 accepted) demonstrates that QIC is a dynamic glacial system. These records show that the ice cap was larger than present and retreating by ~11,500 yr BP, and smaller than present between ~7,000 and ~4,600 yr BP. The most recent advance occurred during the late Holocene (Little Ice Age;LIA), dated with 10Be surface exposure ages (510±90 yrs (n = 8)) (Stroup et al. in prep.). This overrode earlier deposits obscuring a complete Holocene record; we aim to address the gaps in glacial chronology using the sedimentary record archived in lakes. We retrieved two sets cores (8 and 5 m-long) from Laguna Challpacocha (13.91°S, 70.86°W, 5040 m asl), a lake that currently receives meltwater from QIC. Four radiocarbon ages from the cores suggest a continuous record dating to at least ~10,500 cal. yr BP. Variations in magnetic susceptibility, percent organic and inorganic carbon, bulk density, grayscale and X-ray fluorescence chemistry indicate changes in the amount of clastic sediment deposition. We interpret clastic sediments to have been deposited from ice cap meltwater, thus indicating more extensive ice. Clastic sediments compose the top of the core from 4 to 30 cm depth, below there is a sharp transition to organic sediments radiocarbon dated to (500±30 and 550±20 cal. yr BP). The radiocarbon ages are similar to the 10Be dated (LIA) glacial position. At least three other clastic units exist in the core; dating to ~2600-4300, ~4800-7300 and older then ~10,500 cal. yr BP based on a linear age model with four radiocarbon dates. We obtained two, ~4 m long, cores from Laguna Yanacocha (13.95°S,70.87

  14. Quaternary climate changes explain diversity among reptiles and amphibians

    DEFF Research Database (Denmark)

    Bastos Araujo, Miguel; Nogués-Bravo, David; Diniz-Filho, Alexandre F.

    2008-01-01

    debated without reaching consensus. Here, we test the proposition that European species richness of reptiles and amphibians is driven by climate changes in the Quaternary. We find that climate stability between the Last Glacial Maximum (LGM) and the present day is a better predictor of species richness...

  15. Phylogeographical analysis of mtDNA data indicates postglacial expansion from multiple glacial refugia in woodland caribou (Rangifer tarandus caribou.

    Directory of Open Access Journals (Sweden)

    Cornelya F C Klütsch

    Full Text Available Glacial refugia considerably shaped the phylogeographical structure of species and may influence intra-specific morphological, genetic, and adaptive differentiation. However, the impact of the Quaternary ice ages on the phylogeographical structure of North American temperate mammalian species is not well-studied. Here, we surveyed ~1600 individuals of the widely distributed woodland caribou (Rangifer tarandus caribou using mtDNA control region sequences to investigate if glacial refugia contributed to the phylogeographical structure in this subspecies. Phylogenetic tree reconstruction, a median-joining network, and mismatch distributions supported postglacial expansions of woodland caribou from three glacial refugia dating back to 13544-22005 years. These three lineages consisted almost exclusively of woodland caribou mtDNA haplotypes, indicating that phylogeographical structure was mainly shaped by postglacial expansions. The putative centres of these lineages are geographically separated; indicating disconnected glacial refugia in the Rocky Mountains, east of the Mississippi, and the Appalachian Mountains. This is in congruence with the fossil record that caribou were distributed in these areas during the Pleistocene. Our results suggest that the last glacial maximum substantially shaped the phylogeographical structure of this large mammalian North American species that will be affected by climatic change. Therefore, the presented results will be essential for future conservation planning in woodland caribou.

  16. Large Scale Anthropogenic Reduction of Forest Cover in Last Glacial Maximum Europe.

    Directory of Open Access Journals (Sweden)

    Jed O Kaplan

    Full Text Available Reconstructions of the vegetation of Europe during the Last Glacial Maximum (LGM are an enigma. Pollen-based analyses have suggested that Europe was largely covered by steppe and tundra, and forests persisted only in small refugia. Climate-vegetation model simulations on the other hand have consistently suggested that broad areas of Europe would have been suitable for forest, even in the depths of the last glaciation. Here we reconcile models with data by demonstrating that the highly mobile groups of hunter-gatherers that inhabited Europe at the LGM could have substantially reduced forest cover through the ignition of wildfires. Similar to hunter-gatherers of the more recent past, Upper Paleolithic humans were masters of the use of fire, and preferred inhabiting semi-open landscapes to facilitate foraging, hunting and travel. Incorporating human agency into a dynamic vegetation-fire model and simulating forest cover shows that even small increases in wildfire frequency over natural background levels resulted in large changes in the forested area of Europe, in part because trees were already stressed by low atmospheric CO2 concentrations and the cold, dry, and highly variable climate. Our results suggest that the impact of humans on the glacial landscape of Europe may be one of the earliest large-scale anthropogenic modifications of the earth system.

  17. Changes in Glaciers and Glacial Lakes and the Identification of Dangerous Glacial Lakes in the Pumqu River Basin, Xizang (Tibet

    Directory of Open Access Journals (Sweden)

    Tao Che

    2014-01-01

    Full Text Available Latest satellite images have been utilized to update the inventories of glaciers and glacial lakes in the Pumqu river basin, Xizang (Tibet, in the study. Compared to the inventories in 1970s, the areas of glaciers are reduced by 19.05% while the areas of glacial lakes are increased by 26.76%. The magnitudes of glacier retreat rate and glacial lake increase rate during the period of 2001–2013 are more significant than those for the period of the 1970s–2001. The accelerated changes in areas of the glaciers and glacial lakes, as well as the increasing temperature and rising variability of precipitation, have resulted in an increased risk of glacial lake outburst floods (GLOFs in the Pumqu river basin. Integrated criteria were established to identify potentially dangerous glacial lakes based on a bibliometric analysis method. It is found, in total, 19 glacial lakes were identified as dangerous. Such finding suggests that there is an immediate need to conduct field surveys not only to validate the findings, but also to acquire information for further use in order to assure the welfare of the humans.

  18. Greenland's glacial fjords and their role in regional biogeochemical dynamics.

    Science.gov (United States)

    Crosby, J.; Arndt, S.

    2017-12-01

    Greenland's coastal fjords serve as important pathways that connect the Greenland Ice Sheet (GrIS) and the surrounding oceans. They export seasonal glacial meltwater whilst being significant sites of primary production. These fjords are home to some of the most productive ecosystems in the world and possess high socio-economic value via fisheries. A growing number of studies have proposed the GrIS as an underappreciated yet significant source of nutrients to surrounding oceans. Acting as both transfer routes and sinks for glacial nutrient export, fjords have the potential to act as significant biogeochemical processors, yet remain underexplored. Critically, an understanding of the quantitative contribution of fjords to carbon and nutrient budgets is lacking, with large uncertainties associated with limited availability of field data and the lack of robust upscaling approaches. To close this knowledge gap we developed a coupled 2D physical-biogeochemical model of the Godthåbsfjord system, a sub-Arctic sill fjord in southwest Greenland, to quantitatively assess the impact of nutrients exported from the GrIS on fjord primary productivity and biogeochemical dynamics. Glacial meltwater is found to be a key driver of fjord-scale circulation patterns, whilst tracer simulations reveal the relative nutrient contributions from meltwater-driven upwelling and meltwater export from the GrIS. Hydrodynamic circulation patterns and freshwater transit times are explored to provide a first understanding of the glacier-fjord-ocean continuum, demonstrating the complex pattern of carbon and nutrient cycling at this critical land-ocean interface.

  19. The Preboreal-like Asian monsoon climate in the early last interglacial period recorded from the Dark Cave, Southwest China

    Science.gov (United States)

    Jiang, Xiuyang; He, Yaoqi; Wang, Xiaoyan; Sun, Xiaoshuang; Hong, Hui; Liu, Juan; Yu, Tsai-Luen; Li, Zhizhong; Shen, Chuan-Chou

    2017-08-01

    Transitions of glacial-interglacial cycles are critical periods for Quaternary climate shifts. Here, we present new, decadal resolution Asian summer monsoon (ASM) record from three stalagmites obtained from the Dark Cave in southwestern China over 130-114 thousand years ago (ka, before CE 1950). Chronology was anchored by 28 230Th dates with typical uncertainties of ±0.3-1.0 kyr, allowing an assessment of timing and transition of climate changes during the onset and end of the last interglacial. An agreement between this new and previous stalagmite δ18O records supports that summer insolation predominates orbital-scale ASM evolution. A 2-3 kyr-long gradually increasing ASM period, analogous to the classical Preboreal episode in the early Holocene, follows the termination of a weak monsoon interval at 129.0 ± 0.8 ka. This finding suggests a strong influence of high-latitude ice-sheet dynamics on Asian monsoonal conditions during the early interglacial period. An abrupt end of the marine isotope stage 5e at 118.8 ± 0.6 ka was probably caused by the internal climate system threshold effects.

  20. 10Be dating of late-glacial moraines near the Cordillera Vilcanota and the Quelccaya Ice Cap, Peru

    Science.gov (United States)

    Kelly, M. A.; Thompson, L. G.

    2004-12-01

    The surface exposure method, based on the measurement of cosmogenic 10Be produced in quartz, is applied to determine the age of deposition of glacial moraines near the Cordillera Vilcanota and the Quelccaya Ice Cap (about 13° S, 70° W) in southeastern Peru. These data are useful for examining the timing of past glaciation in the tropical Andes and for comparison with chronologies of glaciation at higher latitudes. The preliminary data set consists of more than ten surface exposure ages. Samples used for dating are from the surfaces of boulders on a set of prominent moraines about four kilometers away from the present ice margins. The age of the moraine set was previously bracketed by radiocarbon dating of peat associated with the glacial deposits. Based on radiocarbon ages, these moraines were formed during the late-glacial period, just prior to the last glacial-interglacial transition. The surface exposure dating method enables the direct dating of the moraines. Surface exposure dates are cross-checked with the previously existing radiocarbon dates and provide a means to improve the chronology of past glaciation in the tropical Andes.

  1. LATE GLACIAL AND HOLOCENE BIOCLIMATIC RECONSTRUCTION IN SOUTHERN ITALY: THE TRIFOGLIETTI LAKE

    Directory of Open Access Journals (Sweden)

    E. Brugiapaglia

    2013-04-01

    Full Text Available The pollen record from Trifoglietti lake (Calabria region provides new information about the paleoenvironmental and palaeoclimatic changes occurred during the LateGlacial and Holocene period. The LateGlacial part of the record, for which only preliminary data is available, is a new and original sequence from southern Italy. The Holocene sequence, with 11 AMS radiocarbon dates shows a stable Fagus forest for the entire period. Apart from sporadic pastoralism activities and the selective exploitation of Abies, only a weak human impact is recognized in the pollen records. Lake level oscillations have been reconstructed and annual precipitations quantified using the Modern Analogue Technique. The reconstruction was effectuated both at millennial and centennial scale: the first shows an increasing of moisture from 11000 to 9400 cal BP and a maximum of humidity from 9400 to 6200 cal BP. Moreover, several climatic oscillations punctuated the Holocene and therefore superimposed the millennial trend.

  2. The last glacial maximum

    Science.gov (United States)

    Clark, P.U.; Dyke, A.S.; Shakun, J.D.; Carlson, A.E.; Clark, J.; Wohlfarth, B.; Mitrovica, J.X.; Hostetler, S.W.; McCabe, A.M.

    2009-01-01

    We used 5704 14C, 10Be, and 3He ages that span the interval from 10,000 to 50,000 years ago (10 to 50 ka) to constrain the timing of the Last Glacial Maximum (LGM) in terms of global ice-sheet and mountain-glacier extent. Growth of the ice sheets to their maximum positions occurred between 33.0 and 26.5 ka in response to climate forcing from decreases in northern summer insolation, tropical Pacific sea surface temperatures, and atmospheric CO2. Nearly all ice sheets were at their LGM positions from 26.5 ka to 19 to 20 ka, corresponding to minima in these forcings. The onset of Northern Hemisphere deglaciation 19 to 20 ka was induced by an increase in northern summer insolation, providing the source for an abrupt rise in sea level. The onset of deglaciation of the West Antarctic Ice Sheet occurred between 14 and 15 ka, consistent with evidence that this was the primary source for an abrupt rise in sea level ???14.5 ka.

  3. Palaeocirculation across New Zealand during the last glacial maximum at ˜21 ka

    Science.gov (United States)

    Lorrey, Andrew M.; Vandergoes, Marcus; Almond, Peter; Renwick, James; Stephens, Tom; Bostock, Helen; Mackintosh, Andrew; Newnham, Rewi; Williams, Paul W.; Ackerley, Duncan; Neil, Helen; Fowler, Anthony M.

    2012-03-01

    What circulation pattern drove Southern Alps glacial advances at ˜21 ka? Late 20th century glacial advances in New Zealand are commonly attributed to a dual precipitation increase and cooler than normal temperatures associated with enhanced westerly flow that occur under synoptic pressure patterns termed 'zonal' regimes (Kidson, 2000). But was the circulation pattern that supported major Southern Alps glacial advances during the global LGM similar to the modern analog? Here, a Regional Climate Regime Classification (RCRC) time slice was used to infer past circulation for New Zealand during the LGM at ˜21 ka. Palaeoclimate information that supported the construction of the ˜21 ka time slice was derived from the NZ-INTIMATE Climate Event Stratigraphy (CES), one new Auckland maar proxy record, and additional low-resolution data sourced from the literature. The terrestrial evidence at ˜21 ka implicates several possibilities for past circulation, depending on how interpretations for some proxies are made. The interpretation considered most tenable for the LGM, based on the agreement between terrestrial evidence, marine reconstructions and palaeoclimate model results is an 'anticyclonic/zonal' circulation regime characterized by increased influences from blocking 'highs' over the South Island during winter and an increase in zonal and trough synoptic types (with southerly to westerly quarter wind flow) during summer. These seasonal circulation traits would have generated lower mean annual temperatures, cooler than normal summer temperatures, and overall lower mean annual precipitation for New Zealand (particularly in the western South Island) at ˜21 ka. The anticyclonic/zonal time slice reconstruction presented in this study has different spatial traits than the late 20th Century and the early Little Ice Age signatures, suggesting more than one type of regional circulation pattern can drive Southern Alps glacial activity. This finding lends support to the hypothesis

  4. Direct evidence of the feedback between climate and nutrient, major, and trace element transport to the oceans

    Science.gov (United States)

    Eiriksdottir, Eydis Salome; Gislason, Sigurður Reynir; Oelkers, Eric H.

    2015-10-01

    Climate changes affect weathering, denudation and riverine runoff, and therefore elemental fluxes to the ocean. This study presents the climate effect on annual fluxes of 28 dissolved elements, and organic and inorganic particulate fluxes, determined over 26-42 year period in three glacial and three non-glacial river catchments located in Eastern Iceland. Annual riverine fluxes were determined by generating robust correlations between dissolved element concentrations measured from 1998 to 2003 and suspended inorganic matter concentrations measured from 1962 to 2002 with instantaneous discharge measured at the time of sampling in each of these rivers. These correlations were used together with measured average daily discharge to compute daily elemental fluxes. Integration of these daily fluxes yielded the corresponding annual fluxes. As the topography and lithology of the studied glacial and non-glacial river catchments are similar, we used the records of average annual temperature and annual runoff to examine how these parameters and glacier melting influenced individual element fluxes to the oceans. Significant variations were found between the individual elements. The dissolved fluxes of the more soluble elements, such as Mo, Sr, and Na are less affected by increasing temperature and runoff than the insoluble nutrients and trace elements including Fe, P, and Al. This variation between the elements tends to be more pronounced for the glacial compared to the non-glacial rivers. These observations are interpreted to stem from the stronger solubility control on the concentrations of the insoluble elements such that they are less affected by dilution. The dilution of the soluble elements by increasing discharge in the glacial rivers is enhanced by a relatively low amount of water-rock interaction; increased runoff due to glacial melting tend to be collected rapidly into river channels limiting water-rock interaction. It was found that the climate effect on particle

  5. Timing, cause and consequences of mid-Holocene climate transition in the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Saraswat, R.; Naik, Dinesh K.; Nigam, R.; Gaur, A.S.

    -50,000 years cal BP. Radiocarbon 51, 1111-1150. Roberts, N., Brayshaw, D., Kuzucuoglu, C., Perez, R., Sadori, L., 2011. The mid-Holocene climatic transition in the Mediterranean: Causes and consequences. The Holocene 21, 3-13. Ruddiman, W.F., Ellis, E...

  6. The Holocene history of Nares Strait: Transition from glacial bay to Arctic-Atlantic throughflow

    Science.gov (United States)

    Jennings, Anne E.; Sheldon, Christina; Cronin, Thomas M.; Francus, Pierre; Stoner, Joseph; Andrews, John

    2011-01-01

    Retreat of glacier ice from Nares Strait and other straits in the Canadian Arctic Archipelago after the end of the last Ice Age initiated an important connection between the Arctic and the North Atlantic Oceans, allowing development of modern ocean circulation in Baffin Bay and the Labrador Sea. As low-salinity, nutrient-rich Arctic Water began to enter Baffin Bay, it contributed to the Baffin and Labrador currents flowing southward. This enhanced freshwater inflow must have influenced the sea ice regime and likely is responsible for poor calcium carbonate preservation that characterizes the Baffin Island margin today. Sedimentologic and paleoceanographic data from radiocarbon-dated core HLY03-05GC, Hall Basin, northern Nares Strait, document the timing and paleoenvironments surrounding the retreat of waning ice sheets from Nares Strait and opening of this connection between the Arctic Ocean and Baffin Bay. Hall Basin was deglaciated soon before 10,300 cal BP (calibrated years before present) and records ice-distal sedimentation in a glacial bay facing the Arctic Ocean until about 9,000 cal BP. Atlantic Water was present in Hall Basin during deglaciation, suggesting that it may have promoted ice retreat. A transitional unit with high ice-rafted debris content records the opening of Nares Strait at approximately 9,000 cal BP. High productivity in Hall Basin between 9,000 and 6,000 cal BP reflects reduced sea ice cover and duration as well as throughflow of nutrient-rich Pacific Water. The later Holocene is poorly resolved in the core, but slow sedimentation rates and heavier carbon isotope values support an interpretation of increased sea ice cover and decreased productivity during the Neoglacial period.

  7. Towards a climate event stratigraphy for New Zealand over the past 30,000 years

    International Nuclear Information System (INIS)

    Barrell, D.J.A.; Alloway, B.V.; Shulmeister, J.; Newnham, R.M.

    2005-01-01

    A poster summarizing a representative selection of evidence for environmental conditions and climate change in New Zealand during the last 30,000 years has been prepared as a 'first-step' contribution to the INTIMATE (INTegration of Ice-core, Marine and TerrEstrial records) initiative of the INQUA Paleoclimate Commission. This international initiative aims to establish a more detailed knowledge of the nature, timing and regional to global extent of climatic and environmental changes associated with the Last Termination. The poster depicts key New Zealand onshore and offshore records for the Last Glacial Maximum and the Last Glacial-Interglacial Transition, from a variety of latitudes and elevations. Inset maps show New Zealand's oceanographic setting, principal currents and water masses, extent of glaciers, and distribution of vegetation zones at approximately 22,000 calendar years ago and at modern times (incorporating the inferred vegetation distribution at c. 1250 AD, before deforestation associated with human settlement). A calendar-age timescale is based on a combination of volcanic ash (tephra) and radiometric dates. Paleoclimate records from ice cores from Antarctica and Greenland are presented for comparison with New Zealand records. High-resolution records are presented for sediment-filled volcanic craters in Auckland (total carbon, carbon isotopes and pollen), wetlands in northeast North Island, central North Island and western South Island (pollen), marine sediments off eastern North Island (oxygen isotopes), and stalagmites in caves in northwest South Island (carbon and oxygen isotopes). In addition, the poster includes a range of lower resolution or fragmentary records of climate events, based on glacial landforms and deposits (central Southern Alps, South Island), river terraces and deposits, loess deposits (eastern North and South Islands), and Aeolian quartz silt in non-quartzose, loess-like, andesitic tephric deposits of western North Island. The

  8. The importance of snow albedo for ice sheet evolution over the last glacial cycle

    Directory of Open Access Journals (Sweden)

    M. Willeit

    2018-05-01

    Full Text Available The surface energy and mass balance of ice sheets strongly depends on the amount of solar radiation absorbed at the surface, which is mainly controlled by the albedo of snow and ice. Here, using an Earth system model of intermediate complexity, we explore the role played by surface albedo for the simulation of glacial cycles. We show that the evolution of the Northern Hemisphere ice sheets over the last glacial cycle is very sensitive to the representation of snow albedo in the model. It is well known that the albedo of snow depends strongly on snow grain size and the content of light-absorbing impurities. Excluding either the snow aging effect or the dust darkening effect on snow albedo leads to an excessive ice build-up during glacial times and consequently to a failure in simulating deglaciation. While the effect of snow grain growth on snow albedo is well constrained, the albedo reduction due to the presence of dust in snow is much more uncertain because the light-absorbing properties of dust vary widely as a function of dust mineral composition. We also show that assuming slightly different optical properties of dust leads to very different ice sheet and climate evolutions in the model. Conversely, ice sheet evolution is less sensitive to the choice of ice albedo in the model. We conclude that a proper representation of snow albedo is a fundamental prerequisite for a successful simulation of glacial cycles.

  9. Impact of a realistic river routing in coupled ocean-atmosphere simulations of the Last Glacial Maximum climate

    Energy Technology Data Exchange (ETDEWEB)

    Alkama, Ramdane [IPSL, Laboratoire des Sciences du Climat et de l' Environnement, Gif-sur-Yvette Cedex (France); Universite Pierre et Marie Curie, Structure et fonctionnement des systemes hydriques continentaux (Sisyphe), Paris (France); Kageyama, M.; Ramstein, G.; Marti, O.; Swingedouw, D. [IPSL, Laboratoire des Sciences du Climat et de l' Environnement, Gif-sur-Yvette Cedex (France); Ribstein, P. [Universite Pierre et Marie Curie, Structure et fonctionnement des systemes hydriques continentaux (Sisyphe), Paris (France)

    2008-06-15

    The presence of large ice sheets over North America and North Europe at the Last Glacial Maximum (LGM) strongly impacted Northern hemisphere river pathways. Despite the fact that such changes may significantly alter the freshwater input to the ocean, modified surface hydrology has never been accounted for in coupled ocean-atmosphere general circulation model simulations of the LGM climate. To reconstruct the LGM river routing, we use the ICE-5G LGM topography. Because of the uncertainties in the extent of the Fennoscandian ice sheet in the Eastern part of the Kara Sea, we consider two more realistic river routing scenarios. The first scenario is characterised by the presence of an ice dammed lake south of the Fennoscandian ice sheet, and corresponds to the ICE-5G topography. This lake is fed by the Ob and Yenisei rivers. In the second scenario, both these rivers flow directly into the Arctic Ocean, which is more consistent with the latest QUEEN ice sheet margin reconstructions. We study the impact of these changes on the LGM climate as simulated by the IPSL{sub C}M4 model and focus on the overturning thermohaline circulation. A comparison with a classical LGM simulation performed using the same model and modern river basins as designed in the PMIP2 exercise leads to the following conclusions: (1) The discharge into the North Atlantic Ocean is increased by 2,000 m{sup 3}/s between 38 and 54 N in both simulations that contain LGM river routing, compared to the classical LGM experiment. (2) The ice dammed lake is shown to have a weak impact, relative to the classical simulation, both in terms of climate and ocean circulation. (3) In contrast, the North Atlantic deep convection and meridional overturning are weaker than during the classical LGM run if the Ob and Yenisei rivers flow directly into the Arctic Ocean. The total discharge into the Arctic Ocean is increased by 31,000 m{sup 3}/s, relative to the classical LGM simulation. Consequentially, northward ocean heat

  10. Eastern South Pacific water mass geometry during the last glacial-interglacial transition

    Science.gov (United States)

    De Pol-Holz, R.; Reyes, D.; Mohtadi, M.

    2012-12-01

    The eastern South Pacific is characterized today by a complex thermocline structure where large salinity and oxygen changes as a function of depth coexist. Surface waters from tropical origin float on top of subantarctic fresher water (the so-called 'shallow salinity minimum of the eastern south Pacific'), which in turn, flow above aged equatorial and deeper recently ventilated Antarctic Intermediate waters. Little is known however about the water mass geometry changes that could have occurred during the last glacial maximum boundary conditions (about 20,000 years before the present), despite this information being critical for the assessment of potential mechanisms that have been proposed as explanations for the deglacial onset of low oxygen conditions in the area and the atmospheric CO2 increase during the same time. Here we present benthic and planktonic foraminifera stable isotope and radiocarbon data from a set of sediment cores from the Chilean continental margin covering a large -yet still limited- geographical area and depth range. Sedimentations rates were relatively high (>10 cm/kyr) precluding major caveats from bioturbation in all of our archives. The distribution of δ13C of ΣCO2 shows the presence of a very depleted (δ13C < -1‰ V-PDB) water mass overlaying more recently ventilated waters at intermediate depths as indicated by thermocline foraminifer dwellers being more depleted in 13C than the benthic species. The origin of this depleted end-member is probably upwelling from the Southern Ocean as expressed by the radiocarbon content and the large reservoir effect associated with the last glacial maximum and the beginning of the deglaciation along the margin. Our data suggest that the Tropical waters that today bath the lower latitude cores was displaced by surface waters of southern origin and therefore in line with the evidence of a latitudinal shift of the frontal systems.

  11. New tree-ring evidence for the Late Glacial period from the northern pre-Alps in eastern Switzerland

    Czech Academy of Sciences Publication Activity Database

    Reinig, F.; Nievergelt, D.; Esper, J.; Friedrich, M.; Helle, G.; Hellmann, L.; Kromer, B.; Morganti, S.; Pauly, M.; Sookdeo, A.; Tegel, W.; Treydte, K.; Verstege, A.; Wacker, L.; Büntgen, Ulf

    2018-01-01

    Roč. 186, APR (2018), s. 215-224 ISSN 0277-3791 Keywords : new-zealand kauri * laacher see volcano * ice-core records * radiocarbon calibration * central-europe * cal bp * southern-hemisphere * last deglaciation * hohenheim oak * climate * Central Europe * Dendrochronology * Late Glacial * Paleoclimatology * Radiocarbon * Subfossil wood * Switzerland * Tree rings * Younger Dryas Impact factor: 4.797, year: 2016

  12. Response of methane emissions from wetlands to the Last Glacial Maximum and an idealized Dansgaard–Oeschger climate event: insights from two models of different complexity

    Directory of Open Access Journals (Sweden)

    B. Ringeval

    2013-01-01

    Full Text Available The role of different sources and sinks of CH4 in changes in atmospheric methane ([CH4] concentration during the last 100 000 yr is still not fully understood. In particular, the magnitude of the change in wetland CH4 emissions at the Last Glacial Maximum (LGM relative to the pre-industrial period (PI, as well as during abrupt climatic warming or Dansgaard–Oeschger (D–O events of the last glacial period, is largely unconstrained. In the present study, we aim to understand the uncertainties related to the parameterization of the wetland CH4 emission models relevant to these time periods by using two wetland models of different complexity (SDGVM and ORCHIDEE. These models have been forced by identical climate fields from low-resolution coupled atmosphere–ocean general circulation model (FAMOUS simulations of these time periods. Both emission models simulate a large decrease in emissions during LGM in comparison to PI consistent with ice core observations and previous modelling studies. The global reduction is much larger in ORCHIDEE than in SDGVM (respectively −67 and −46%, and whilst the differences can be partially explained by different model sensitivities to temperature, the major reason for spatial differences between the models is the inclusion of freezing of soil water in ORCHIDEE and the resultant impact on methanogenesis substrate availability in boreal regions. Besides, a sensitivity test performed with ORCHIDEE in which the methanogenesis substrate sensitivity to the precipitations is modified to be more realistic gives a LGM reduction of −36%. The range of the global LGM decrease is still prone to uncertainty, and here we underline its sensitivity to different process parameterizations. Over the course of an idealized D–O warming, the magnitude of the change in wetland CH4 emissions simulated by the two models at global scale is very similar at around 15 Tg yr−1, but this is only around 25% of the ice-core measured

  13. Surface area changes of Himalayan ponds as a proxy of hydrological climate-driven fluctuations

    Science.gov (United States)

    Salerno, Franco; Thakuri, Sudeep; Guyennon, Nicolas; Viviano, Gaetano; Tartari, Gianni

    2016-04-01

    The meteorological measurements at high-elevations of the Himalayan range are scarce due to the harsh conditions of these environments which limit the suitable maintenance of weather stations. As a consequence, the meager knowledge on how the climate is changed in the last decades at Himalayan high-elevations sets a serious limit upon the interpretation of relationships between causes and recent observed effects on the cryosphere. Although the glaciers masses reduction in Himalaya is currently sufficiently well described, how changes in climate drivers (precipitation and temperature) have influenced the melting and shrinkage processes are less clear. Consequently, the uncertainty related to the recent past amplifies when future forecasts are done, both for climate and impacts. In this context, a substantial body of research has already demonstrated the high sensitivity of lakes and ponds to climate. Some climate-related signals are highly visible and easily measurable in lakes. For example, climate-driven fluctuations in lake surface area have been observed in many remote sites. On interior Tibetan Plateau the lake growth since the late 1990s is mainly attributed to increased regional precipitation and weakened evaporation. Differently, other authors attribute at the observed increases of lake surfaces at the enhanced glacier melting. In our opinion these divergences found in literature are due to the type of glacial lakes considered in the study and in particular their relationship with glaciers. In general, in Himalaya three types of glacial lakes can be distinguished: (i) lakes that are not directly connected with glaciers, but that may have a glacier located in their basin (unconnected glacial lakes); (ii) supraglacial lakes, which develop on the surface of the glacier downstream; or (iii) proglacial lakes, which are moraine-dammed lakes that are in contact with the glacier front. Some of these lakes store large quantities of water and are susceptible to GLOFs

  14. Frost for the trees: Did climate increase erosion in unglaciated landscapes during the late Pleistocene?

    Science.gov (United States)

    Marshall, Jill A; Roering, Joshua J; Bartlein, Patrick J; Gavin, Daniel G; Granger, Darryl E; Rempel, Alan W; Praskievicz, Sarah J; Hales, Tristram C

    2015-11-01

    Understanding climatic influences on the rates and mechanisms of landscape erosion is an unresolved problem in Earth science that is important for quantifying soil formation rates, sediment and solute fluxes to oceans, and atmospheric CO2 regulation by silicate weathering. Glaciated landscapes record the erosional legacy of glacial intervals through moraine deposits and U-shaped valleys, whereas more widespread unglaciated hillslopes and rivers lack obvious climate signatures, hampering mechanistic theory for how climate sets fluxes and form. Today, periglacial processes in high-elevation settings promote vigorous bedrock-to-regolith conversion and regolith transport, but the extent to which frost processes shaped vast swaths of low- to moderate-elevation terrain during past climate regimes is not well established. By combining a mechanistic frost weathering model with a regional Last Glacial Maximum (LGM) climate reconstruction derived from a paleo-Earth System Model, paleovegetation data, and a paleoerosion archive, we propose that frost-driven sediment production was pervasive during the LGM in our unglaciated Pacific Northwest study site, coincident with a 2.5 times increase in erosion relative to modern rates. Our findings provide a novel framework to quantify how climate modulates sediment production over glacial-interglacial cycles in mid-latitude unglaciated terrain.

  15. Biomarker Evidence of Relatively Stable Community Structure in the Northern South China Sea during the Last Glacial and Holocene

    Directory of Open Access Journals (Sweden)

    Juan He

    2008-01-01

    Full Text Available High-resolution molecular abundance records for several marine biomarkers during the last glacial and Holocene have been generated for core MD05-2904 (19 _ 116 _ 2066 mwater depth from the northern South China Sea. The UK' 37 SST record indicates a 4.4 C cooling during the Last Glacial Maximum for this site, consistent with previous reconstructions. The contents of C37 alkenones, dinosterol, brassicasterol, and C30 alkyl diols are used as productivity proxies for haptophytes, dinoflagellates, diatoms, and eustigmatophytes, respectively. These records reveal that both individual phytoplankton group and total productivity increased by several factors during the LGM compared with those for the Holocene, in response to increased nutrient supply. However, the community structure based on biomarker percentages remained relatively stable during the last glacial-Holocene transition, although there were short-term oscillations.

  16. Climate change, human health, and epidemiological transition.

    Science.gov (United States)

    Barrett, Bruce; Charles, Joel W; Temte, Jonathan L

    2015-01-01

    The health of populations depends on the availability of clean air, water, food, and sanitation, exposure to pathogens, toxins and environmental hazards, and numerous genetic, behavioral and social factors. For many thousands of years, human life expectancy was low, and population growth was slow. The development of technology-based civilizations facilitated what Abdel Omran called "epidemiological transition," with increasing life expectancy and rapid population growth. To a large extent, the spectacular growth of human populations during the past two centuries was made possible by the energy extracted from fossil fuels. We have now learned, however, that greenhouse gases from fossil fuel combustion are warming the planet's surface, causing changes in oceanic and atmospheric systems, and disrupting weather and hydrological patterns. Climate change poses unprecedented threats to human health by impacts on food and water security, heat waves and droughts, violent storms, infectious disease, and rising sea levels. Whether or not humanity can reduce greenhouse gas emissions quickly enough to slow climate change to a rate that will allow societies to successfully adapt is not yet known. This essay reviews the current state of relevant knowledge, and points in a few directions that those interested in human health may wish to consider. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Fossil Coral Records of ENSO during the Last Glacial Period

    Science.gov (United States)

    Partin, J. W.; Taylor, F. W.; Shen, C. C.; Edwards, R. L.; Quinn, T. M.; DiNezro, P.

    2017-12-01

    Only a handful of paleoclimate records exist that can resolve interannual changes, and hence El Nino/Southern Oscillation (ENSO) variability, during the last glacial period, a time of altered mean climate. The few existing data suggest reduced ENSO variability compared to the Holocene, possibly due to a weaker zonal sea surface temperature gradient across the tropical Pacific and/or a deeper thermocline in the eastern tropical Pacific. Our goal is to add crucial data to this extremely limited subset using sub-annually resolved fossil corals that grew during this time period to reconstruct ENSO. We seek to recover fossil corals from Vanuatu, SW Pacific (16°S, 167°E) with the objective of using coral δ18O to reconstruct changes in the ENSO during and near the Last Glacial Maximum (LGM). Modern δ18O coral records from Vanuatu show a high degree of skill in capturing ENSO variability, making it a suitable site for reconstructing ENSO variability. We have custom designed and are building a drill system that can rapidly core many 0-25 m holes resulting in much more meters of penetration than achieved by previous land-based reef drilling. As the new drill system is extremely portable and can be quickly relocated by workers without landing craft or vehicles, it is time and cost efficient. Because the proposed drilling sites have uplifted extremely fast, 7 mm/year, the LGM shoreline has been raised from 120-140 m depth to within a depth range of 10 below to 20 m above present sea level. This enables all the drilling to be within the time range of interest ( 15-25 ka). A last advantage is that the LGM corals either are still submersed in seawater or emerged only within the last 2000 years at the uplift rate of 7 mm/yr. This greatly reduces the chances of disruption of the original climate signal because sea water is less diagenetically damaging than meteoric water in the mixed, phreatic, or vadose zones. LGM coral records will enable us to compare the proxy variability

  18. A Collaborative Proposal: Simulating and Understanding Abrupt Climate-Ecosystem Changes During Holocene with NCAR-CCSM3.

    Energy Technology Data Exchange (ETDEWEB)

    Zhengyu Liu, Bette Otto-Bliesner

    2013-02-01

    We have made significant progress in our proposed work in the last 4 years (3 years plus 1 year of no cost extension). In anticipation of the next phase of study, we have spent time on the abrupt changes since the last glacial maximum. First, we have performed further model-data comparison based on our baseline TRACE-21 simulation and made important progress towards the understanding of several major climate transitions. Second, we have made a significant effort in processing the model output of TRACE-21 and have put this output on a website for access by the community. Third, we have completed many additional sensitivity experiments. In addition, we have organized synthesis workshops to facilitate and promote transient model-data comparison for the international community. Finally, we have identified new areas of interest for Holocene climate changes.

  19. Real-time analysis of insoluble particles in glacial ice using single-particle mass spectrometry

    Science.gov (United States)

    Osman, Matthew; Zawadowicz, Maria A.; Das, Sarah B.; Cziczo, Daniel J.

    2017-11-01

    Insoluble aerosol particles trapped in glacial ice provide insight into past climates, but analysis requires information on climatically relevant particle properties, such as size, abundance, and internal mixing. We present a new analytical method using a time-of-flight single-particle mass spectrometer (SPMS) to determine the composition and size of insoluble particles in glacial ice over an aerodynamic size range of ˜ 0.2-3.0 µm diameter. Using samples from two Greenland ice cores, we developed a procedure to nebulize insoluble particles suspended in melted ice, evaporate condensed liquid from those particles, and transport them to the SPMS for analysis. We further determined size-dependent extraction and instrument transmission efficiencies to investigate the feasibility of determining particle-class-specific mass concentrations. We find SPMS can be used to provide constraints on the aerodynamic size, composition, and relative abundance of most insoluble particulate classes in ice core samples. We describe the importance of post-aqueous processing to particles, a process which occurs due to nebulization of aerosols from an aqueous suspension of originally soluble and insoluble aerosol components. This study represents an initial attempt to use SPMS as an emerging technique for the study of insoluble particulates in ice cores.

  20. Atmospheric carbon dioxide and the long-term control of the Earth's climate

    Directory of Open Access Journals (Sweden)

    J. H. Carver

    Full Text Available A CO2-weathering model has been used to explore the possible evolution of the Earth's climate as the Sun steadily brightened throughout geologic time. The results of the model calculations can be described in terms of three, qualitatively different, "Megaclimates". Mega-climate 1 resulted from a period of rapid outgassing in the early Archean, with high, but declining, temperatures caused by the small weathering rates on a largely water-covered planet. Mega-climate 2 began about 3 Gyear ago as major continental land masses developed, increasing the weathering rate in the early Proterozoic and thereby depleting the atmospheric CO2 concentration. This process produced the first Precambrian glaciations about 2.3 Gyear ago. During Mega-climate 2, evolutionary biological processes increased the surface weatherability in incremental steps and plate tectonics modulated the CO2 outgassing rate with an estimated period of 150 Myear (approximately one-half the period for the formation and breakup of super continents. Throughout Mega-climate 2 the surface temperature was controlled by variations in the atmospheric CO2 level allowing transitions between glacial and non-glacial conditions. The results of the model for Mega-climate 2 are in agreement with the occurrence (and absence of glaciations in the geologic record. Extending the model to the future suggests that CO2 control of the Earth's temperature will no longer be able to compensate for a solar flux that continues to increase. The present level of atmospheric CO2 is so small that further reduction in CO2 cannot prevent the Earth from experiencing Mega-climate 3 with steadily increasing surface temperatures caused by the continued brightening of the Sun. During Mega-climate 3, the main danger to the biosphere would come not from an increasing temperature but from a decreasing (rather than an increasing CO2

  1. Inter-Tropical Convergence Zone Shifts During the Last Glacial Cycle Near the Line Islands Ridge.

    Science.gov (United States)

    Reimi Sipala, M. A.; Marcantonio, F.

    2015-12-01

    This research focuses on the shift in the inter-tropical convergence zone (ITCZ) during the last glacial cycle. Deep sea sediments from the Central Equatorial Pacific (CEP) are used to quantify and isolate the sources and sinks of atmospheric dust. Dust records and influences climate affecting a wide range of process from Earth's Albedo to carbon export. Our aim is to determine the provenance of windblown dust deposited in the CEP near the Line Islands Ridge using radiogenic Nd and Pb isotopes, and to infer the location of the ITCZ and the changes of atmospheric transport through ice-age climate transitions. We focus on three cores from the CEP, along a meridional transect at approximately 160° W --- 0° 28' N (ML1208-17PC), 4° 41' N (ML1208-31BB), and 7 ° 2'N (ML1208-31BB). Radiogenic isotopes (Sr, Nd, Pb) have been successfully used to distinguish between different potential dust sources in the aluminosilicates fractions of Pacific Sediments. Our preliminary data suggest that the equatorial core (17PC) predominantly receives its dust from South America and South American volcanics South America (206Pb/204Pb = 18.62, 207Pb/204Pb = 15.63, 208Pb/204Pb = 38.62; ; ɛNd = ~ -5). The middle core, which more closely reflects the modern position of the ITCZ, has varied dust provenance through time, at times consistent with Asian Loess (average ratios are 206Pb/204Pb = 18.88, 207Pb/204Pb = 15.69, 208Pb/204Pb = 39.06; ɛNd = ~ -7) and Asian Volcanics (ɛNd = ~-1) suggesting a shift in the ITCZ south of 4N before the LGM. Our results for the most northern core are forthcoming. Prior to Holocene time, the changes in Pb isotope ratios in both cores appear to be in anti-phase; the northern core becomes less radiogenic up to the LGM, while the southern core becomes more radiogenic. This is potentially due to a weakening of the ITCZ during glacial times. A secondary aim of this work is to determine if the ITCZ migrated further south than core 17PC during Heinrich stage II.

  2. North Atlantic ocean circulation and abrupt climate change during the last glaciation.

    Science.gov (United States)

    Henry, L G; McManus, J F; Curry, W B; Roberts, N L; Piotrowski, A M; Keigwin, L D

    2016-07-29

    The most recent ice age was characterized by rapid and hemispherically asynchronous climate oscillations, whose origin remains unresolved. Variations in oceanic meridional heat transport may contribute to these repeated climate changes, which were most pronounced during marine isotope stage 3, the glacial interval 25 thousand to 60 thousand years ago. We examined climate and ocean circulation proxies throughout this interval at high resolution in a deep North Atlantic sediment core, combining the kinematic tracer protactinium/thorium (Pa/Th) with the deep water-mass tracer, epibenthic δ(13)C. These indicators suggest reduced Atlantic overturning circulation during every cool northern stadial, with the greatest reductions during episodic Hudson Strait iceberg discharges, while sharp northern warming followed reinvigorated overturning. These results provide direct evidence for the ocean's persistent, central role in abrupt glacial climate change. Copyright © 2016, American Association for the Advancement of Science.

  3. Millennial-scale variability in dust deposition, marine export production, and nutrient consumption in the glacial subantarctic ocean (Invited)

    Science.gov (United States)

    Martinez-Garcia, A.; Sigman, D. M.; Anderson, R. F.; Ren, H. A.; Hodell, D. A.; Straub, M.; Jaccard, S.; Eglinton, T. I.; Haug, G. H.

    2013-12-01

    Based on the limitation of modern Southern Ocean phytoplankton by iron and the evidence of higher iron-bearing dust fluxes to the ocean during ice ages, it has been proposed that iron fertilization of Southern Ocean phytoplankton contributed to the reduction in atmospheric CO2 during ice ages. In the Subantarctic zone of the Atlantic Southern Ocean, glacial increases in dust flux and export production have been documented, supporting the iron fertilization hypothesis. However, these observations could be interpreted alternatively as resulting from the equatorward migration of Southern Ocean fronts during ice ages if the observed productivity rise was not accompanied by an increase in major nutrient consumption. Here, new 230Th-normalized lithogenic and opal fluxes are combined with high-resolution biomarker measurements to reconstruct millennial-scale changes in dust deposition and marine export production in the subantarctic Atlantic over the last glacial cycle. In the same record foraminifera-bound nitrogen isotopes are used to reconstruct ice age changes in surface nitrate utilization, providing a comprehensive test of the iron fertilization hypothesis. Elevation in foraminifera-bound δ15N, indicating more complete nitrate consumption, coincides with times of surface cooling and greater dust flux and export production. These observations indicate that the ice age Subantarctic was characterized by iron fertilized phytoplankton growth. The resulting strengthening of the Southern Ocean's biological pump can explain the ~40 ppm lowering of CO2 that characterizes the transitions from mid-climate states to full ice age conditions as well as the millennial-scale atmospheric CO2 fluctuations observed within the last ice age

  4. Glacial hazards: communicating the science and managing the risk

    Science.gov (United States)

    Reynolds, J. M.

    2009-04-01

    The recession of glaciers worldwide has received huge media coverage over the last few years in association with the issue of climate change. Young people at schools and colleges are increasingly aware of the environmental pressures due to ‘global warming'. Yet simultaneously, there appears to be an increasing move away from studying science both at pre-university and undergraduate levels. One of the oft cited reasons is that students cannot see the application of the subjects being taught them. Glacial hazards are one of the most obvious adverse effects of climate change, with many, often poor, communities in remote mountain areas being the most affected by frequently devastating Glacial Lake Outburst Floods (GLOFs). When students are exposed to examples of these hazards and the science behind them, many become enthused by the subject and want to study it further. There has been a huge increase in the number of students selecting projects on glacial hazards as well as a large increase in the number of institutions offering to teach modules on this subject. In an effort to provide a basic visualisation, Peter Kennett has taken the principle of GLOFs and developed a cheap but highly visual demonstration of the potentially devastating effect of melting ice within a moraine leading to subsidence and subsequent dam failure. This is available on www.earthlearningidea.com as ‘Dam burst danger - modelling the collapse of a natural dam in the mountains - and the disaster that might follow'. Furthermore, the methods by which glacial hazards are assessed provide excellent applications of geophysics, geology, geography (physical and Human), engineering, mathematics, and glaciology. By exploring the potential vulnerability of communities downstream, the applications can be extended to include sociology, economics, geopolitics and even psychology. Glacial hazards have been the subject of presentations to the Earth Science Teachers Association (ESTA) in the UK to demonstrate

  5. Glacial Features (Point) - Quad 168 (EPPING, NH)

    Data.gov (United States)

    University of New Hampshire — The Glacial Features (Point) layer describes point features associated with surficial geology. These glacial features include, but are not limited to, delta forsets,...

  6. Incorporating long-term climate change in performance assessment for the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Swift, P.N.; Baker, B.L.; Economy, K.; Garner, J.W.; Helton, J.C.; Rudeen, D.K.

    1993-01-01

    The United States Department of Energy (DOE) is developing the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico for the disposal of transuranic wastes generated by defense programs. Applicable regulations (40 CFR 191) require the DOE to evaluate disposal-system performance for 10,000 yr. Climatic changes may affect performance by altering groundwater flow. Paleoclimatic data from southeastern New Mexico and the surrounding area indicate that the wettest and coolest Quaternary climate at the site can be represented by that at the last glacial maximum, when mean annual precipitation was approximately twice that of the present. The hottest and driest climates have been similar to that of the present. The regularity of global glacial cycles during the late Pleistocene confirms that the climate of the last glacial maximum is suitable for use as a cooler and wetter bound for variability during the next 10,000 yr. Climate variability is incorporated into groundwater-flow modeling for WIPP PA by causing hydraulic head in a portion of the model-domain boundary to rise to the ground surface with hypothetical increases in precipitation during the next 10,000 yr. Variability in modeled disposal-system performance introduced by allowing head values to vary over this range is insignificant compared to variability resulting from other causes, including incomplete understanding of transport processes. Preliminary performance assessments suggest that climate variability will not affect regulatory compliance

  7. Incorporating long-term climate change in performance assessment for the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Swift, P.N.; Baker, B.L.; Economy, K.; Garner, J.W.; Helton, J.C.; Rudeen, D.K.

    1994-03-01

    The United States Department of Energy (DOE) is developing the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico for the disposal of transuranic wastes generated by defense programs. Applicable regulations (40 CFR 191) require the DOE to evaluate disposal-system performance for 10,000 yr. Climatic changes may affect performance by altering groundwater flow. Paleoclimatic data from southeastern New Mexico and the surrounding area indicate that the wettest and coolest Quaternary climate at the site can be represented by that at the last glacial maximum, when mean annual precipitation was approximately twice that of the present. The hottest and driest climates have been similar to that of the present. The regularity of global glacial cycles during the late Pleistocene confirms that the climate of the last glacial maximum is suitable for use as a cooler and wetter bound for variability during the next 10,000 yr. Climate variability is incorporated into groundwater-flow modeling for WIPP PA by causing hydraulic head in a portion of the model-domain boundary to rise to the ground surface with hypothetical increases in precipitation during the next 10,000 yr. Variability in modeled disposal-system performance introduced by allowing had values to vary over this range is insignificant compared to variability resulting from other causes, including incomplete understanding of transport processes. Preliminary performance assessments suggest that climate variability will not affect regulatory compliance

  8. Cosmogenic 10Be Dating of Northern Quebec-Labrador Glacial Lake Shorelines and Drainage Deposits: Implications for the Final Meltwater Discharges of the Last Deglaciation

    Science.gov (United States)

    Roy, M.; Dube-Loubert, H.; Schaefer, J. M.; Hébert, S.

    2017-12-01

    The decay of the Laurentide ice sheet played an important role in the climate variability of the last deglaciation, notably through large discharges of meltwater from glacial lakes that disturbed the Atlantic meridional overturning oceanic circulation (AMOC). These former climate-forcing events are now under focus due to growing evidence showing that the present-day increase in freshwater releases from Greenland and other Arctic glaciers may potentially lead to a slowdown of the AMOC and cause important climate feedbacks. In northern Quebec and Labrador, the end of the deglaciation led to the formation of at least 10 important glacial lakes that drained into the nearby Labrador Sea where repeated meltwater discharges could have destabilized the ocean surface conditions in this key sector of the North Atlantic Ocean. Although the drainage of these ice-dammed lakes may form a good analogue for modern processes, the lack of direct constraints on the physiographic configuration and temporal evolution of these lakes limits our understanding of the timing and climate impact of these final meltwater pulses. Here we applied cosmogenic 10Be dating to raised boulder shorelines belonging to Lake Naskaupi, one of the largest glacial lakes in northern Quebec and Labrador. We reconstructed the lake extent and meltwater volume, as well as its lake-level history by systematic mapping of geomorphic features. We sampled a total of 16 boulders at 4 sites along the valley. In addition, we dated five boulders belonging to a large-scale outburst flood deposit recording the abrupt drainage of the lake. The distribution of the 21 ages shows a remarkable consistency, yielding a mean age of 7.8 ± 0.4 ka (1 outlier excluded). The ages from the shorelines are indistinguishable from those of the outburst flood deposit, suggesting that Lake Naskaupi existed for a relatively short time span. These new chronological data constrain the timing of the lake development and attendant drainage

  9. Glacial-interglacial vegetation dynamics in South Eastern Africa coupled to sea surface temperature variations in the Western Indian Ocean

    Directory of Open Access Journals (Sweden)

    L. M. Dupont

    2011-11-01

    Full Text Available Glacial-interglacial fluctuations in the vegetation of South Africa might elucidate the climate system at the edge of the tropics between the Indian and Atlantic Oceans. However, vegetation records covering a full glacial cycle have only been published from the eastern South Atlantic. We present a pollen record of the marine core MD96-2048 retrieved by the Marion Dufresne from the Indian Ocean ∼120 km south of the Limpopo River mouth. The sedimentation at the site is slow and continuous. The upper 6 m (spanning the past 342 Ka have been analysed for pollen and spores at millennial resolution. The terrestrial pollen assemblages indicate that during interglacials, the vegetation of eastern South Africa and southern Mozambique largely consisted of evergreen and deciduous forests. During glacials open mountainous scrubland dominated. Montane forest with Podocarpus extended during humid periods was favoured by strong local insolation. Correlation with the sea surface temperature record of the same core indicates that the extension of mountainous scrubland primarily depends on sea surface temperatures of the Agulhas Current. Our record corroborates terrestrial evidence of the extension of open mountainous scrubland (including fynbos-like species of the high-altitude Grassland biome for the last glacial as well as for other glacial periods of the past 300 Ka.

  10. Pedo-chemical climate proxies in Late Pleistocene Serbian-Ukranian loess sequences

    NARCIS (Netherlands)

    Bokhorst, M.P.; Beets, C.J.; Markovic, S.B.; Gerasimenko, N.P.; Matviishina, Z.N.; Frechen, M.

    2009-01-01

    The last glacial-interglacial loess-paleosol sequences of Serbia and Ukraine provide a good climate reconstruction potential for this part of Europe. Four loess sections distributed over an area with present-day moist to semi-arid climates were studied. In addition to traditional paleoclimate

  11. Atmospheric sulfur and climate changes: a modelling study at mid and high-southern latitudes

    International Nuclear Information System (INIS)

    Castebrunet, H.

    2007-09-01

    The mid and high-southern latitudes are still marginally affected by anthropogenic sulfur emissions. They are the only regions in the world where the natural cycle of the atmospheric sulfur may still be observed. Sulfur aerosols are well-known for their radiative impact, and thus interact with climate. Climate can in turn affect atmospheric sulfur sources, distribution and chemistry. Antarctic ice cores provide information on the evolution of climate and sulfur deposition at the surface of the ice sheet at glacial-interglacial time scales. The aim of this thesis is to develop and use modeling towards a better understanding of the atmospheric sulfur cycle in antarctic and sub-antarctic regions. Ice core data are used to validate model results under glacial climate conditions. An Atmospheric General Circulation Model (AGCM) coupled to a sulfur chemistry module is used: the LMD-ZTSulfur model, version 4. An update of both the physical and chemical parts of the model. The model was first performed. The impact of there changes on modelled sulfur cycle are evaluated for modern climate. Further, boundary conditions are adapted to simulate the atmospheric circulation and sulfur cycle at the Last Glacial Maximum, approximately 20,000 years ago. In the model, sulfur is found to be highly sensitive to antarctic sea-ice coverage, which is still poorly known during the ice age. An original dataset of ice-age sea-ice coverage was developed. Its impact on the oceanic emissions of dimethyl sulfide, main precursor of sulfur aerosols at high-southern latitudes, is discussed. Using the same oceanic sulfur reservoirs as for present day climate, the model broadly reproduces the glacial deposits of sulfur aerosols on the Antarctic plateau, suggesting little impact of climate on oceanic sulfur production in the Antarctic region. Sensitivity tests were carried out to draw an up-to-date status of major uncertainties and difficulties facing future progress in understanding atmospheric

  12. Loess deposits in Beijing and their paleoclimatic implications during the last interglacial-glacial cycle

    Science.gov (United States)

    Tian, Shengchen; Sun, Jimin; Gong, Zhijun

    2017-12-01

    Loess-paleosol sequences are important terrestrial paleoclimatic archives in the semi-arid region of north-central China. Compared with the numerous studies on the loess of the Chinese Loess Plateau, the eolian deposits, near Beijing, have not been well studied. A new loess section in the northeast suburb of Beijing provides an opportunity for reconstructing paleoenvironmental changes in this region. An optically stimulated luminescence (OSL) chronology yields ages of 145.1 to 20.5 ka, demonstrating that the loess deposits accumulated during the last interglacial-glacial cycle. High-resolution climatic proxies, including color-index, particle size and magnetic parameters, reveal orbital-scale climatic cycles, corresponding to marine oxygen isotope stages (MIS) 6 to MIS 2. In contrast to the loess deposits of the central Loess Plateau, loess near Beijing is a mixture of distal dust materials from gobi and sand deserts in the arid part of northwestern China and proximal, local alluvial sediments. Climatic change in Beijing during the last interglacial-glacial cycle was controlled primarily by the changing strength of the East Asian monsoon. Paleosols developed during the last interglacial complex (between 144.0 and 73.0 ka) and the interstadial of the last glaciation (between 44.6 and 36.2 ka), being associated with an enhanced summer monsoon in response to increased low-latitude insolation and a weakened Siberia High. Loess accumulation occurred during cold-dry stages of the last glaciation, in response to the intensified winter monsoon driven by the strengthened Siberia High and its longer residence time.

  13. Carbon isotopic changes in benthic foraminifera from the western South Atlantic: Reconstruction of glacial abyssal circulation patterns

    Science.gov (United States)

    Curry, W. B.; Lohmann, G. P.

    1982-09-01

    Oxygen- and carbon-isotopic analyses have been performed on the benthic foraminifer Planulina wuellerstorfi in seven Late Quaternary cores from the Vema Channel-Rio Grande Rise region. The cores are distributed over the water-depth interval of 2340 to 3939 m, which includes the present transition from North Atlantic Deep Water (NADW) to Antarctic Bottom Water (AABW). The carbon-isotopic records in the cores vary as a function of water depth. The shallowest and deepest cores show no significant glacial-interglacial difference in δ 13C. Four of the five cores presently located in the NADW have benthic foraminiferal δ 13C that is lower during glacial isotopic stages. Based on bathymetric gradients in δ 13C, we conclude that, like today, there were two water masses present in the Vema Channel during glacial intervals: a water mass enriched in 13C overlying another water mass depleted in 13C. The largest gradient of change of δ 13C with depth, however, occurred at 2.7 km, ˜ 1 km shallower than the present position of this gradient. On the basis of paleontologic and sedimentologic evidence, we consider it unlikely that the NADW:AABW transition shallowed to this level. Reduced carbon-isotopic gradients between the deep basins of the North Atlantic and Pacific Oceans during the last glaciation suggest that production of NADW was reduced. Lower production of NADW may have modified the local abyssal circulation pattern in the Vema Channel region.

  14. Shaped by uneven Pleistocene climate

    DEFF Research Database (Denmark)

    Li, Xinlei; Dong, Feng; Lei, Fumin

    2016-01-01

    had different impacts on different populations: clade N expanded after the last glacial maximum (LGM), whereas milder Pleistocene climate of east Asia allowed clade SE a longer expansion time (since MIS 5); clade SW expanded over a similarly long time as clade SE, which is untypical for European...

  15. Stable isotopic fractionation, climate change and episodic stagnation in the eastern Mediterranean during the late Quaternary

    Energy Technology Data Exchange (ETDEWEB)

    Vergnaud-Grazzini, C [Laboratoire de Geologie Dynamique, Paris (France); Ryan, W B.F. [Columbia Univ., Palisades, NY (USA). Lamont-Doherty Geological Observatory; Cita, M B [Milan Univ. (Italy)

    1977-11-01

    Fluctuations in the delta/sup 18/O composition of planktonic foraminifers in eastern Mediterranean piston cores indicate cycles with amplitudes much greater than those which can be attributed alone to global ice-volume changes. Isotopic values become markedly negative within lithostratigraphic levels characterized by the apparition of organic-rich sapropels. These owe their origin to the development of euxinic bottom water during episodes of basin-wide stagnation. The depletion of delta/sup 18/O in many of the sapropels is accompanied by the occurrence of poorly diversified planktonic faunas, and both phenomena are attributed to a strong dilution of the local eastern Mediterranean surface water mass by a combination of glacial run off from large continental ice sheets and by an important increase of regional precipitation synchronous with the transition from pleniglacial to kataglacial climate. Although sapropel accumulation occurs generally during intervals of warming of the Mediterranean region as determined from a quantitative evaluation of planktonic foraminiferal assemblages, the pre-125,000 years, local warming of eastern Mediterranean surface water lagged the acme of glacial melting by up to 15,000 years. Climatic and isotopic cycles are correlative within the eastern Mediterranean for lateral distances in excess of 1000 km and, except for amplitude and phase, they are in most aspects remarkably similar to those recorded in the equatorial Pacific and Caribbean.

  16. Climatic responses to the shortwave and longwave direct radiative effects of sea salt aerosol in present day and the last glacial maximum

    Energy Technology Data Exchange (ETDEWEB)

    Yue, Xu [Chinese Academy of Sciences (CAS), Climate Change Research Center (CCRC), Beijing (China); Chinese Academy of Sciences (CAS), Nansen-Zhu International Research Center, Institute of Atmospheric Physics (IAP), Beijing (China); Harvard University, School of Engineering and Applied Sciences, Cambridge, MA (United States); Liao, Hong [Chinese Academy of Sciences (CAS), State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics (IAP), P.O. Box 9804, Beijing (China)

    2012-12-15

    We examine the climatic responses to the shortwave (SW) and longwave (LW) direct radiative effects (RE) of sea salt aerosol in present day and the last glacial maximum (LGM) using a general circulation model with online simulation of sea salt cycle. The 30-year control simulation predicts a present-day annual emission of sea salt of 4,253 Tg and a global burden of 8.1 Tg for the particles with dry radii smaller than 10 {mu}m. Predicted annual and global mean SW and LW REs of sea salt are, respectively, -1.06 and +0.14 W m{sup -2} at the top of atmosphere (TOA), and -1.10 and +0.54 W m{sup -2} at the surface. The LW warming of sea salt is found to decrease with altitude, which leads to a stronger net sea salt cooling in the upper troposphere. The changes in global mean air temperature by the present-day sea salt are simulated to be -0.55, -0.63, -0.86, and -0.91 K at the surface, 850, 500a, and 200 hPa, respectively. The emission of sea salt at the LGM is estimated to be 4,075 Tg year{sup -1}. Relative to present day, the LGM sea salt emission is higher by about 18% over the tropical and subtropical oceans, and is lower by about 35% in the mid- and high-latitudes in both hemispheres because of the expansion of sea ice. As a result of the weakened LGM water cycle, the LGM annual and global mean burden of sea salt is predicted to be higher by 4% as compared to the present-day value. Compared with the climatic effect of sea salt in present day, the sea-salt-induced reductions in surface air temperature at the LGM have similar magnitude in the tropics but are weakened by about 0.18 and 0.14 K in the high latitudes of the Southern and Northern Hemispheres, respectively. We also perform a sensitivity study to explore the upper limit of the climatic effect of the LGM sea salt. We assume an across-the-board 30% increase in the glacial wind speed and consider sea salt emissions over sea ice, so that the model can reproduce the ratio of sea salt deposition between the LGM and

  17. Long term effects on potential repository sites: climatic and geomorphological changes

    International Nuclear Information System (INIS)

    Seddon, M.B.; Worsley, P.

    1985-05-01

    A study of the effects of climatic variability on the geomorphological processes operating on the landscape are important in the study of radioactive waste repository sites. The effects of glacial erosion and deposition are fundamental to an examination of repository safety, particularly in North Britain. Rates of climatic shift need to be examined. Predictive simulation models, based on a knowledge of past climatic events, for future global climates are proposed. (UK)

  18. Rapid climate variability during warm and cold periods in polar regions and Europe

    DEFF Research Database (Denmark)

    Masson-Delmotte, V.; Landais, A.; Combourieu-Nebout, N.

    2005-01-01

    Typical rapid climate events punctuating the last glacial period in Greenland, Europe and Antarctica are compared to two rapid events occurring under warmer conditions: (i) Dansgaard-Oeschger event 25, the first abrupt warming occurring during last glacial inception; (ii) 8.2 ka BP event, the only...... rapid cooling recorded during the Holocene in Greenland ice cores and in Ammersee, Germany. The rate of warming during previous warmer interglacial periods is estimated from polar ice cores to 1.5 °C per millennium, without abrupt changes. Climate change expected for the 21st century should however...

  19. The abrupt climate change near 4,400 yr BP on the cultural transition in Yuchisi, China and its global linkage.

    Science.gov (United States)

    Wang, Jianjun; Sun, Liguang; Chen, Liqi; Xu, Libin; Wang, Yuhong; Wang, Xinming

    2016-06-10

    Extreme climatic events have profound impacts on human society. Here we present the results of a study of organic biomarkers within a sedimentary section at the archaeological site of Yuchisi, eastern China, in order to reconstruct climatic variability during the Dawenkou (5,050-4,400 yr BP) and Longshan (4,400-4,000 yr BP) cultures. At ~4,400 yr BP, within the cultural transition horizon, abrupt changes in biomarkers, such as the fatty acid ratio C18:2/C18:0, 2C31/(C27 + C29), n-C18-ol and n-C30-ol, indicate the occurrence of local climate changes over the course of a few decades. These changes occurred during the transition from the Holocene warm period to a subsequent cold period which lasted for the following 600 years. This climatic shift has been recorded at numerous sites worldwide, and it is likely to have been the main cause of the widespread collapse of many isolated cultures at that time. The palaeoclimatic and archaeological data from the Yuchisi sediments may provide new insights into the relationship between climate change and prehistoric cultural transitions.

  20. Reconstructing temperatures in the Maritime Alps, Italy, since the Last Glacial Maximum using cosmogenic noble gas paleothermometry

    Science.gov (United States)

    Tremblay, Marissa; Spagnolo, Matteo; Ribolini, Adriano; Shuster, David

    2016-04-01

    The Gesso Valley, located in the southwestern-most, Maritime portion of the European Alps, contains an exceptionally well-preserved record of glacial advances during the late Pleistocene and Holocene. Detailed geomorphic mapping, geochronology of glacial deposits, and glacier reconstructions indicate that glaciers in this Mediterranean region responded to millennial scale climate variability differently than glaciers in the interior of the European Alps. This suggests that the Mediterranean Sea somehow modulated the climate of this region. However, since glaciers respond to changes in temperature and precipitation, both variables were potentially influenced by proximity to the Sea. To disentangle the competing effects of temperature and precipitation changes on glacier size, we are constraining past temperature variations in the Gesso Valley since the Last Glacial Maximum (LGM) using cosmogenic noble gas paleothermometry. The cosmogenic noble gases 3He and 21Ne experience diffusive loss from common minerals like quartz and feldspars at Earth surface temperatures. Cosmogenic noble gas paleothermometry utilizes this open-system behavior to quantitatively constrain thermal histories of rocks during exposure to cosmic ray particles at the Earth's surface. We will present measurements of cosmogenic 3He in quartz sampled from moraines in the Gesso Valley with LGM, Bühl stadial, and Younger Dryas ages. With these 3He measurements and experimental data quantifying the diffusion kinetics of 3He in quartz, we will provide a preliminary temperature reconstruction for the Gesso Valley since the LGM. Future work on samples from younger moraines in the valley system will be used to fill in details of the more recent temperature history.

  1. The Late-Pleistocene sedimentation history in the Eastern Arabian Sea: Climate Weathering-Productivity linkage

    Digital Repository Service at National Institute of Oceanography (India)

    Chodankar, A.R.

    to understand the past climate variation because the region has been shown to contain valuable sedimentary records relating to evidences of regulating glacial-interglacial climate. However, the palaeoclimate studies from this region are very limited unlike...

  2. Climate Sensitivity, Sea Level, and Atmospheric Carbon Dioxide

    Science.gov (United States)

    Hansen, James; Sato, Makiko; Russell, Gary; Kharecha, Pushker

    2013-01-01

    Cenozoic temperature, sea level and CO2 covariations provide insights into climate sensitivity to external forcings and sea-level sensitivity to climate change. Climate sensitivity depends on the initial climate state, but potentially can be accurately inferred from precise palaeoclimate data. Pleistocene climate oscillations yield a fast-feedback climate sensitivity of 3+/-1deg C for a 4 W/sq m CO2 forcing if Holocene warming relative to the Last Glacial Maximum (LGM) is used as calibration, but the error (uncertainty) is substantial and partly subjective because of poorly defined LGM global temperature and possible human influences in the Holocene. Glacial-to-interglacial climate change leading to the prior (Eemian) interglacial is less ambiguous and implies a sensitivity in the upper part of the above range, i.e. 3-4deg C for a 4 W/sq m CO2 forcing. Slow feedbacks, especially change of ice sheet size and atmospheric CO2, amplify the total Earth system sensitivity by an amount that depends on the time scale considered. Ice sheet response time is poorly defined, but we show that the slow response and hysteresis in prevailing ice sheet models are exaggerated. We use a global model, simplified to essential processes, to investigate state dependence of climate sensitivity, finding an increased sensitivity towards warmer climates, as low cloud cover is diminished and increased water vapour elevates the tropopause. Burning all fossil fuels, we conclude, would make most of the planet uninhabitable by humans, thus calling into question strategies that emphasize adaptation to climate change.

  3. Managing the effects of accelerated glacial melting on volcanic collapse and debris flows: Planchon-Peteroa Volcano, Southern Andes

    Science.gov (United States)

    Tormey, Daniel

    2010-11-01

    Glaciated mountains are among the most sensitive environments to climatic changes, and recent work has shown that large-scale glacial melting, including at the end of the Pleistocene, caused a significant increase in the incidence of large volcanic sector collapse and debris flows on then-active volcanoes. With current accelerated rates of glacial melting, glaciated active volcanoes are at an increasing risk of sector collapse, debris flow and landslide. These catastrophic events are Earth's most damaging erosion phenomenon, causing extensive property damage and loss of life. This paper illustrates these effects in well-studied settings, focusing on the end-Pleistocene to Holocene glaciovolcanic growth and destruction of the cone of the active volcano Planchon-Peteroa in the Andean Southern Volcanic Zone at latitude 35° 15' S, along the border between Chile and Argentina. The development of the volcano over the last 14,000 years illustrates how glacial melting and magmatic activity can trigger landslides and sector collapses. Planchon had a large sector collapse that produced a highly mobile and erosive debris avalanche 11,000 years BP, and other slope instabilities during the end-Pleistocene/early Holocene deglaciation. The summit amphitheater left after the sector collapse was subject to alternating periods of glaciation and melting-induced lake formation. Breaching of the moraine dams then formed lahars and landslides originating at the western edge of the summit amphitheater, and the deposits are preserved along the western flank of the volcano. Deep incision of moraine deposits further down the western slope of the volcano indicates that the lahars and landslides were water-rich and had high erosive power. As illustrated by Planchon-Peteroa, the interplay among glacial growth and melting, magmatic activity, and slope stability is complex, but must be accounted for in volcanic hazard assessment. Planchon-Peteroa currently has the southernmost temperate zone

  4. Multiple glacial culminations from the Lateglacial to the late Holocene in central and southern Peru (Invited)

    Science.gov (United States)

    Licciardi, J. M.; Schaefer, J. M.; Rodbell, D. T.; Stansell, N.; Schweinsberg, A.; Finkel, R. C.; Zimmerman, S. R.

    2013-12-01

    Fluctuations in small tropical mountain glaciers serve as sensitive indicators of variations in past and present-day climate. Most of the world's modern tropical glaciers reside in the Peruvian Andes, where a growing number of well-dated glacial records have recently been developed. As additional records are documented, regional patterns of late Pleistocene to Holocene glacial activity have begun to emerge. Here we present a compilation of new and previously obtained 10Be surface exposure ages from boulders on well-preserved moraine successions in two glaciated Andean ranges: the Cordillera Vilcabamba of southern Peru (13°20'S, 72°32'W) and the Huaguruncho massif (10°32'S, 75°56'W), located in central Peru ~450 km northwest of the Vilcabamba. A high-resolution composite chronology that merges >100 10Be measurements on moraine sequences in five glaciated drainages of the Cordillera Vilcabamba reveals the occurrence of at least five discrete glacial culminations from the Lateglacial to the late Holocene. At the Huaguruncho massif, >20 10Be exposure ages obtained from moraine sequences in a south-facing cirque indicate at least three major glacial stages spanning the Lateglacial to the Little Ice Age. The moraine ages at Huaguruncho are broadly correlative with the Vilcabamba moraine chronologies, with some dated moraine belts exhibiting geomorphic expressions that closely resemble those of their coeval counterparts in the Vilcabamba. A recurring finding in both field areas is a mismatch between basal radiocarbon ages from bog and lake sediments and 10Be exposure ages on outboard moraines, which enclose the depositional basins. These age discrepancies suggest that cosmogenic 10Be production rates scaled to high altitudes in the tropics are substantially lower than previous estimates. While we anticipate that future refinements to scaled isotope production rates may significantly affect correlation of 10Be exposure ages in the high Andes with ages derived from

  5. CLIMATE CHANGES: CAUSES AND IMPACT

    Directory of Open Access Journals (Sweden)

    Camelia Slave

    2013-07-01

    Full Text Available Present brings several environmental problems for people. Many of these are closely related, but by far the most important problem is the climate change. In the course of Earth evolution, climate has changed many times, sometimes dramatically. Warmer eras always replaced and were in turn replaced by glacial ones. However, the climate of the past almost ten thousand years has been very stable. During this period human civilization has also developed. In the past nearly 100 years - since the beginning of industrialization - the global average temperature has increased by approx. 0.6 ° C (after IPCC (Intergovernmental Panel on Climate Change, faster than at any time in the last 1000 years.

  6. Late Pleistocene climate drivers of early human migration

    Science.gov (United States)

    Timmermann, Axel; Friedrich, Tobias

    2016-10-01

    On the basis of fossil and archaeological data it has been hypothesized that the exodus of Homo sapiens out of Africa and into Eurasia between ~50-120 thousand years ago occurred in several orbitally paced migration episodes. Crossing vegetated pluvial corridors from northeastern Africa into the Arabian Peninsula and the Levant and expanding further into Eurasia, Australia and the Americas, early H. sapiens experienced massive time-varying climate and sea level conditions on a variety of timescales. Hitherto it has remained difficult to quantify the effect of glacial- and millennial-scale climate variability on early human dispersal and evolution. Here we present results from a numerical human dispersal model, which is forced by spatiotemporal estimates of climate and sea level changes over the past 125 thousand years. The model simulates the overall dispersal of H. sapiens in close agreement with archaeological and fossil data and features prominent glacial migration waves across the Arabian Peninsula and the Levant region around 106-94, 89-73, 59-47 and 45-29 thousand years ago. The findings document that orbital-scale global climate swings played a key role in shaping Late Pleistocene global population distributions, whereas millennial-scale abrupt climate changes, associated with Dansgaard-Oeschger events, had a more limited regional effect.

  7. Relationship between plants in Europe and surface temperatures of the Atlantic Ocean during the glacial maximum

    Energy Technology Data Exchange (ETDEWEB)

    Van Campo, M

    1984-01-01

    In Europe and North America, the deciduous forest, whether or not mixed with conifers, prevails within boundaries which coincide with the 12 and 18/sup 0/C isotherms of Ocean surface temperatures in August; within Europe this forest points to the limit of the Atlantic influence and bevels out as it is squeezed between coniferous forest to the NE (thermic boundary) and steppe to the SE (hydric boundary). During the glacial age this forest disappeared from its main European area and remained only in mountain refuges. Thus, the temperature of the eastern Atlantic surface waters, off Europe, control the nature of its vegetation. Variations in the pollen curve of pines, birches, Artemisia, Chenopodiaceae and Ephedra are accounted for by the climatic variations in southern Europe before 13,000 yr BP. It is seen that a very arid climate culminated at about 15,000 yr BP. It corresponds to the most active iceberg calving which considerably lowered the Ocean surface temperature far to the south. In spite of the increasing summer temperatures, this temperature remained as cold as it was during the glacial maximum. The result is the lowest evaporation from the Ocean hence a minimum of clouds and a minimum of rain. The end of the first phase of the deglaciation at +/- 13,000 yr BP corresponds to a warming up of the Ocean surface bringing about increased evaporation, hence rains over the continent. The evolution of the vegetation in Europe at the end of the glacial times from south of the ice sheet down to the Mediterranean, depends as much, if not more, on rains than on temperatures.

  8. Release of Methane from Bering Sea Sediments During the Last Glacial Period

    Energy Technology Data Exchange (ETDEWEB)

    Mea Cook; Lloyd Keigwin

    2007-11-30

    Several lines of evidence suggest that during times of elevated methane flux the sulfate-methane transition zone (SMTZ) was positioned near the sediment-water interface. We studied two cores (from 700 m and 1457 m water depth) from the Umnak Plateau region. Anomalously low d13C and high d18O in benthic and planktonic foraminifera in these cores are the consequence of diagenetic overgrowths of authigenic carbonates. There are multiple layers of authigenic-carbonate-rich sediment in these cores, and the stable isotope compositions of the carbonates are consistent with those formed during anaerobic oxidation of methane (AOM). The carbonate-rich layers are associated with biomarkers produced by methane-oxidizing archaea, archaeol and glyceryl dibiphytanyl glyceryl tetraether (GDGT). The d13C of the archaeol and certain GDGTs are isotopically depleted. These carbonate- and AOM-biomarker-rich layers were emplaced in the SMTZ during episodes when there was a high flux of methane or methane-rich fluids upward in the sediment column. The sediment methane in the Umnak Plateau region appears to have been very dynamic during the glacial period, and interacted with the ocean-atmosphere system at millennial time scales. The upper-most carbonate-rich layers are in radiocarbon-dated sediment deposited during interstitials 2 and 3, 28-20 ka, and may be associated with the climate warming during this time.

  9. Glacial forcing of central Indonesian hydroclimate since 60,000 y B.P.

    Science.gov (United States)

    Russell, James M; Vogel, Hendrik; Konecky, Bronwen L; Bijaksana, Satria; Huang, Yongsong; Melles, Martin; Wattrus, Nigel; Costa, Kassandra; King, John W

    2014-04-08

    The Indo-Pacific warm pool houses the largest zone of deep atmospheric convection on Earth and plays a critical role in global climate variations. Despite the region's importance, changes in Indo-Pacific hydroclimate on orbital timescales remain poorly constrained. Here we present high-resolution geochemical records of surface runoff and vegetation from sediment cores from Lake Towuti, on the island of Sulawesi in central Indonesia, that continuously span the past 60,000 y. We show that wet conditions and rainforest ecosystems on Sulawesi present during marine isotope stage 3 (MIS3) and the Holocene were interrupted by severe drying between ∼33,000 and 16,000 y B.P. when Northern Hemisphere ice sheets expanded and global temperatures cooled. Our record reveals little direct influence of precessional orbital forcing on regional climate, and the similarity between MIS3 and Holocene climates observed in Lake Towuti suggests that exposure of the Sunda Shelf has a weaker influence on regional hydroclimate and terrestrial ecosystems than suggested previously. We infer that hydrological variability in this part of Indonesia varies strongly in response to high-latitude climate forcing, likely through reorganizations of the monsoons and the position of the intertropical convergence zone. These findings suggest an important role for the tropical western Pacific in amplifying glacial-interglacial climate variability.

  10. Climate bifurcation during the last deglaciation?

    Directory of Open Access Journals (Sweden)

    T. M. Lenton

    2012-07-01

    Full Text Available There were two abrupt warming events during the last deglaciation, at the start of the Bølling-Allerød and at the end of the Younger Dryas, but their underlying dynamics are unclear. Some abrupt climate changes may involve gradual forcing past a bifurcation point, in which a prevailing climate state loses its stability and the climate tips into an alternative state, providing an early warning signal in the form of slowing responses to perturbations, which may be accompanied by increasing variability. Alternatively, short-term stochastic variability in the climate system can trigger abrupt climate changes, without early warning. Previous work has found signals consistent with slowing down during the last deglaciation as a whole, and during the Younger Dryas, but with conflicting results in the run-up to the Bølling-Allerød. Based on this, we hypothesise that a bifurcation point was approached at the end of the Younger Dryas, in which the cold climate state, with weak Atlantic overturning circulation, lost its stability, and the climate tipped irreversibly into a warm interglacial state. To test the bifurcation hypothesis, we analysed two different climate proxies in three Greenland ice cores, from the Last Glacial Maximum to the end of the Younger Dryas. Prior to the Bølling warming, there was a robust increase in climate variability but no consistent slowing down signal, suggesting this abrupt change was probably triggered by a stochastic fluctuation. The transition to the warm Bølling-Allerød state was accompanied by a slowing down in climate dynamics and an increase in climate variability. We suggest that the Bølling warming excited an internal mode of variability in Atlantic meridional overturning circulation strength, causing multi-centennial climate fluctuations. However, the return to the Younger Dryas cold state increased climate stability. We find no consistent evidence for slowing down during the Younger Dryas, or in a longer

  11. High-latitude ocean ventilation and its role in Earth's climate transitions.

    Science.gov (United States)

    Naveira Garabato, Alberto C; MacGilchrist, Graeme A; Brown, Peter J; Evans, D Gwyn; Meijers, Andrew J S; Zika, Jan D

    2017-09-13

    The processes regulating ocean ventilation at high latitudes are re-examined based on a range of observations spanning all scales of ocean circulation, from the centimetre scales of turbulence to the basin scales of gyres. It is argued that high-latitude ocean ventilation is controlled by mechanisms that differ in fundamental ways from those that set the overturning circulation. This is contrary to the assumption of broad equivalence between the two that is commonly adopted in interpreting the role of the high-latitude oceans in Earth's climate transitions. Illustrations of how recognizing this distinction may change our view of the ocean's role in the climate system are offered.This article is part of the themed issue 'Ocean ventilation and deoxygenation in a warming world'. © 2017 The Authors.

  12. Response of northern hemisphere environmental and atmospheric conditions to climate changes using Greenland aerosol records from the Eemian to the Holocene

    Science.gov (United States)

    Fischer, H.

    2017-12-01

    The Northern Hemisphere experienced dramatic climate changes over the last glacial cycle, including vast ice sheet expansion and frequent abrupt climate events. Moreover, high northern latitudes during the last interglacial (Eemian) were warmer than today and may provide guidance for future climate change scenarios. However, little evidence exists regarding the environmental alterations connected to these climate changes. Using aerosol concentration records in decadal resolution from the North Greenland Eemian Ice Drilling (NEEM) over the last 128,000 years we extract quantitative information on environmental changes, including the first comparison of northern hemisphere environmental conditions between the warmer than present Eemian and the early Holocene. Separating source changes from transport effects, we find that changes in the ice concentration greatly overestimate the changes in atmospheric concentrations in the aerosol source region, the latter mirroring changes in aerosol emissions. Glacial times were characterized by a strong reduction in terrestrial biogenic emissions (only 10-20% of the early Holocene value) reflecting the net loss of vegetated area in mid to high latitudes, while rapid climate changes during the glacial had essentially no effect on terrestrial biogenic aerosol emissions. An increase in terrestrial dust emissions of approximately a factor of eight during peak glacial and cold stadial intervals indicates higher aridity and dust storm activity in Asian deserts. Glacial sea salt aerosol emissions increased only moderately (by approximately 50%), likely due to sea ice expansion, while marked stadial/interstadial variations in sea salt concentrations in the ice reflect mainly changes in wet deposition en route. Eemian ice contains lower aerosol concentrations than ice from the early Holocene, due to shortened atmospheric residence time during the warmer Eemian, suggesting that generally 2°C warmer climate in high northern latitudes did not

  13. Rapid climatic changes recorded in loess successions

    NARCIS (Netherlands)

    Vandenberghe, J.; Nugteren, G.D.

    2001-01-01

    Detailed grain-size analyses, both in China and western Europe, indicate the occurrence of short climatic cycles during loess deposition of the last glacial. Cold episodes coincided with enhanced deposition of relatively coarse loess and alternated with relatively warmer episodes with decreased

  14. Environmental inferences and chironomid-based temperature reconstructions from fragmentary records of the Weichselian Early Glacial and Pleniglacial periods in the Niederlausitz area (eastern Germany)

    NARCIS (Netherlands)

    Engels, S.; Bohncke, S.J.P.; Bos, J.A.A.; Heiri, O.; Vandenberghe, J.; Wallinga, J.

    2008-01-01

    We inferred past climate conditions from lacustrine sediments intercalated in Weichselian Early Glacial and Early Pleniglacial fluvial and aeolian sediments, exposed in two opencast lignite mines from the Niederlausitz area (eastern Germany). A chronology was established using radiocarbon and

  15. Invariance of the carbonate chemistry of the South China Sea from the glacial period to the Holocene and its implications to the Pacific Ocean carbonate system

    Science.gov (United States)

    Luo, Yiming; Kienast, Markus; Boudreau, Bernard P.

    2018-06-01

    Substantial and correlated changes in marine carbonate (CaCO3) content of oceanic sediments commonly accompany the transitions from cold glacial periods to warm interglacial periods. The South China Sea (SCS) is said to be ocean-dominated at depth, and its CaCO3 records should reflect and preserve the effects of changes in the carbonate chemistry of the (western) Pacific Ocean. Using published and newly acquired CaCO3 data and a model for carbonate compensation dynamics, we show that a significant change with respect to carbonate saturation is unlikely to have occurred in the SCS during the last glacial-interglacial transition. Instead, the results from a carbonate deposition model argue that the saturation state of the SCS was largely invariant; a separate diagenetic model argues that changes in sediment CaCO3 content can be explained by alterations in lithogenic input. In turn, this could indicate that the carbonate ion concentration of the (western) Pacific at depths shallower than the sill to the SCS (ca. 2,400 m) has not changed appreciably between the last glacial period and the present interglacial.

  16. The evolution of the Antarctic ice sheet at the Eocene-Oligocene Transition.

    Science.gov (United States)

    Ladant, Jean-Baptiste; Donnadieu, Yannick; Dumas, Christophe

    2017-04-01

    An increasing number of studies suggest that the Middle to Late Eocene has witnessed the waxing and waning of relatively small ephemeral ice sheets. These alternating episodes culminated in the Eocene-Oligocene transition (34 - 33.5 Ma) during which a sudden and massive glaciation occurred over Antarctica. Data studies have demonstrated that this glacial event is constituted of two 50 kyr-long steps, the first of modest (10 - 30 m of equivalent sea level) and the second of major (50 - 90 m esl) glacial amplitude, and separated by 200 kyrs. Since a decade, modeling studies have put forward the primary role of CO2 in the initiation of this glaciation, in doing so marginalizing the original "gateway hypothesis". Here, we investigate the impacts of CO2 and orbital parameters on the evolution of the ice sheet during the 500 kyrs of the EO transition using a tri-dimensional interpolation method. The latter allows precise orbital variations, CO2 evolution and ice sheet feedbacks (including the albedo) to be accounted for. Our results show that orbital variations are instrumental in initiating the first step of the EO glaciation but that the primary driver of the major second step is the atmospheric pCO2 crossing a modelled glacial threshold of 900 ppm. Although model-dependant, this higher glacial threshold makes a stronger case for ephemeral Middle-Late Eocene ice sheets. In addition, sensitivity tests demonstrate that the small first step only exists if the absolute pCO2 value remains within 100 ppm higher than the glacial threshold during the first 250 kyrs of the transition. Thereby, the pCO2 sufficiently counterbalances the strong insolation minima occurring at 33.9 and 33.8 Ma but is low enough to allow the ice sheet to nucleate. Nevertheless, questions remain as to what may cause this pCO2 drop.

  17. A paleoecological reconstruction of the Late Glacial and Holocene based on multidisciplinary studies at Steregoiu site (Gutai Mts., Romania

    Directory of Open Access Journals (Sweden)

    Angelica Feurdean

    2001-09-01

    Full Text Available High resolution analyses of pollen, mineral magnetic properties, loss of ignition, lithostratigraphy and AMS 14C measurements of lake sediments and peat deposits accumulated in the former crater lake of Steregoiu (Gutâiului Mts., NW Romania, gave new and important information about vegetation and climate changes from the period GS-2 to the present. During the Lateglacial, three cold events were recorded: before 14,700 cal. years BP (GS-2, 14,050–13,800 cal. years BP (GI-1d, 12,900-11,500 cal. years BP (GS-1, and a warm climatic event between 13,800-12,950 cal. years BP (GI-1c to GL-1a. The Late Glacial/Holocene transition around 11,500 cal. years BP, was determined by an expansion of Betula, Alnus and Picea, followed by a rapid and strong expansion of Ulmus. At 10,700 cal. years BP, dense and highly diverse forests with Ulmus, Quercus, Tilia, Fraxinus and a few Acer and Corylus individuals dominated the area. Corylus and Picea were the dominant species in the forests from 10,150 to 8,500 cal. years BP. The first occurrence of single Fagus pollen grains was around 8,000 cal years BP. Only at 4,700 cal year BP Fagus and Carpinus became widespread and established trees in the local woodlands.

  18. Glacial Boundary Features Delineated Using Enhanced-resolution Passive-microwave Data to Determine Melt Season Variation of the Vatnajokull Ice Cap, Iceland

    Science.gov (United States)

    Marzillier, D. M.; Ramage, J. M.

    2017-12-01

    Temperate glaciers such as those seen in Iceland experience high annual mass flux, thereby responding to small scale changes in Earth's climate. Decadal changes in the glacial margins of Iceland's ice caps are observable in the Landsat record, however twice daily AMSR-E Calibrated Enhanced-Resolution Passive Microwave Daily EASE-Grid 2.0 Brightness Temperature (CETB) Earth System Data Record (ESDR) allow for observation on a daily temporal scale and a 3.125 km spatial scale, which can in turn be connected to patterns seen over longer periods of time. Passive microwave data allow for careful observation of melt onset and duration in Iceland's glacial regions by recording changes in emissivity of the ice surface, known as brightness temperature (TB), which is sensitive to fluctuations in the liquid water content of snow and ice seen during melting in glaciated regions. Enhanced resolution of this data set allows for a determination of a threshold that defines the melting season. The XPGR snowmelt algorithm originally presented by Abdalati and Steffen (1995) is used as a comparison with the diurnal amplitude variation (DAV) values on Iceland's Vatnajokull ice cap located at 64.4N, -16.8W. Ground-based air temperature data in this region, digital elevation models (DEMs), and river discharge dominated by glacial runoff are used to confirm the glacial response to changes in global climate. Results show that Iceland glaciers have a bimodal distribution of brightness temperature delineating when the snow/ice is melting and refreezing. Ground based temperatures have increased on a decadal trend. Clear glacial boundaries are visible on the passive microwave delineating strong features, and we are working to understand their variability and contribution to glacier evolution. The passive microwave data set allows connections to be made between observations seen on a daily scale and the long term glacier changes observed by the Landsat satellite record that integrates the

  19. Tropical climate and vegetation changes during Heinrich Event 1: a model-data comparison

    Directory of Open Access Journals (Sweden)

    D. Handiani

    2012-01-01

    Full Text Available Abrupt climate changes from 18 to 15 thousand years before present (kyr BP associated with Heinrich Event 1 (HE1 had a strong impact on vegetation patterns not only at high latitudes of the Northern Hemisphere, but also in the tropical regions around the Atlantic Ocean. To gain a better understanding of the linkage between high and low latitudes, we used the University of Victoria (UVic Earth System-Climate Model (ESCM with dynamical vegetation and land surface components to simulate four scenarios of climate-vegetation interaction: the pre-industrial era, the Last Glacial Maximum (LGM, and a Heinrich-like event with two different climate backgrounds (interglacial and glacial. We calculated mega-biomes from the plant-functional types (PFTs generated by the model to allow for a direct comparison between model results and palynological vegetation reconstructions.

    Our calculated mega-biomes for the pre-industrial period and the LGM corresponded well with biome reconstructions of the modern and LGM time slices, respectively, except that our pre-industrial simulation predicted the dominance of grassland in southern Europe and our LGM simulation resulted in more forest cover in tropical and sub-tropical South America.

    The HE1-like simulation with a glacial climate background produced sea-surface temperature patterns and enhanced inter-hemispheric thermal gradients in accordance with the "bipolar seesaw" hypothesis. We found that the cooling of the Northern Hemisphere caused a southward shift of those PFTs that are indicative of an increased desertification and a retreat of broadleaf forests in West Africa and northern South America. The mega-biomes from our HE1 simulation agreed well with paleovegetation data from tropical Africa and northern South America. Thus, according to our model-data comparison, the reconstructed vegetation changes for the tropical regions around the Atlantic Ocean were physically consistent with the remote

  20. A new global reconstruction of temperature changes at the Last Glacial Maximum

    Directory of Open Access Journals (Sweden)

    J. D. Annan

    2013-02-01

    Full Text Available Some recent compilations of proxy data both on land and ocean (MARGO Project Members, 2009; Bartlein et al., 2011; Shakun et al., 2012, have provided a new opportunity for an improved assessment of the overall climatic state of the Last Glacial Maximum. In this paper, we combine these proxy data with the ensemble of structurally diverse state of the art climate models which participated in the PMIP2 project (Braconnot et al., 2007 to generate a spatially complete reconstruction of surface air (and sea surface temperatures. We test a variety of approaches, and show that multiple linear regression performs well for this application. Our reconstruction is significantly different to and more accurate than previous approaches and we obtain an estimated global mean cooling of 4.0 ± 0.8 °C (95% CI.

  1. The Labrador Sea during the Last Glacial Maximum: Calcite dissolution or low biogenic carbonate fluxes?

    Science.gov (United States)

    Marshall, Nicole; de Vernal, Anne; Mucci, Alfonso; Filippova, Alexandra; Kienast, Markus

    2017-04-01

    Low concentrations of biogenic carbonate characterize the sediments deposited in the Labrador Sea during the last glaciation. This may reflect poor calcite preservation and/or low biogenic carbonate productivity and fluxes. Regional bottom water ventilation was reduced during the Last Glacial Maximum (LGM), so the calcite lysocline might have been shallower than at present in the deep Labrador Sea making dissolution of calcite shells in the deep Labrador Sea possible. To address the issue, a multi-proxy approach based on micropaleontological counts (coccoliths, foraminifers, palynomorphs) and biogeochemical analyses (alkenones) was applied in the investigation of core HU2008-029-004-PC recovered in the northwestern Labrador Sea. Calcite dissolution indices based on the relative abundance benthic foraminifera shells to their organic linings as well as on fragmentation of planktonic foraminifera shells were used to evaluate changes in calcite dissolution/ preservation since the LGM. In addition, the ratio of the concentrations of coccoliths, specifically of the alkenone-producer Emiliania huxleyi, and alkenones (Emiliania huxleyi: alkenones) was explored as a potential new proxy of calcite dissolution. A sharp increase in coccoliths, foraminifers and organic linings from nearly none to substantial concentrations at 12 ka, reflect a jump to significantly greater biogenic fluxes at the glacial-interglacial transition. Furthermore, conventional dissolution indices (shells/linings of benthic foraminifera and fragmentation of planktic foraminifers) reveal that dissolution is not likely responsible for the lower glacial abundances of coccoliths and foraminifers. Only the low Emiliania huxleyi: alkenones ratios in glacial sediments could be interpreted as evidence of increased dissolution during the LGM. Given the evidence of allochthonous alkenone input into the glacial Labrador Sea, the latter observations must be treated with caution. Overall, the records indicate that

  2. Atmospheric CO2 variations over the last three glacial-interglacial climatic cycles deduced from the Dome Fuji deep ice core, Antarctica using a wet extraction technique

    International Nuclear Information System (INIS)

    Kawamura, Kenji; Nakazawa, Takakiyo; Aoki, Shuji

    2003-01-01

    A deep ice core drilled at Dome Fuji, East Antarctica was analyzed for the CO 2 concentration using a wet extraction method in order to reconstruct its atmospheric variations over the past 320 kyr, which includes three full glacial-interglacial climatic cycles, with a mean time resolution of about 1.1 kyr. The CO 2 concentration values derived for the past 65 kyr are very close to those obtained from other Antarctic ice cores using dry extraction methods, although the wet extraction method is generally thought to be inappropriate for the determination of the CO 2 concentration. The comparison between the CO 2 and Ca 2+ concentrations deduced from the Dome Fuji core suggests that calcium carbonate emitted from lands was mostly neutralized in the atmosphere before reaching the central part of Antarctica, or that only a small part of calcium carbonate was involved in CO 2 production during the wet extraction process. The CO 2 concentration for the past 320 kyr deduced from the Dome Fuji core varies between 190 and 300 ppmv, showing clear glacial-interglacial variations similar to the result of the Vostok ice core. However, for some periods, the concentration values of the Dome Fuji core are higher by up to 20 ppmv than those of the Vostok core. There is no clear indication that such differences are related to variations of chemical components of Ca 2+ , microparticle and acidity of the Dome Fuji core

  3. A first look at the dinoflagellate cysts abundance in the Bay of Bengal: implications on Late Quaternary productivity and climate change

    Digital Repository Service at National Institute of Oceanography (India)

    Naidu, P.D.; Patil, J.S.; Narale, D.D.; Anil, A.C.

    glacial period reflect the affinity to climate change between these two periods, like other regions. Greater abundance of heterotroph and autotroph cysts and higher species diversity were noticed during Holocene than in the last glacial period, which...

  4. Shortwave forcing and feedbacks in Last Glacial Maximum and Mid-Holocene PMIP3 simulations.

    Science.gov (United States)

    Braconnot, Pascale; Kageyama, Masa

    2015-11-13

    Simulations of the climates of the Last Glacial Maximum (LGM), 21 000 years ago, and of the Mid-Holocene (MH), 6000 years ago, allow an analysis of climate feedbacks in climate states that are radically different from today. The analyses of cloud and surface albedo feedbacks show that the shortwave cloud feedback is a major driver of differences between model results. Similar behaviours appear when comparing the LGM and MH simulated changes, highlighting the fingerprint of model physics. Even though the different feedbacks show similarities between the different climate periods, the fact that their relative strength differs from one climate to the other prevents a direct comparison of past and future climate sensitivity. The land-surface feedback also shows large disparities among models even though they all produce positive sea-ice and snow feedbacks. Models have very different sensitivities when considering the vegetation feedback. This feedback has a regional pattern that differs significantly between models and depends on their level of complexity and model biases. Analyses of the MH climate in two versions of the IPSL model provide further indication on the possibilities to assess the role of model biases and model physics on simulated climate changes using past climates for which observations can be used to assess the model results. © 2015 The Author(s).

  5. Factors influencing smallholder farmers' behavioural intention towards adaptation to climate change in transitional climatic zones: A case study of Hwedza District in Zimbabwe.

    Science.gov (United States)

    Zamasiya, Byron; Nyikahadzoi, Kefasi; Mukamuri, Billy Billiard

    2017-08-01

    This paper examines factors influencing behavioural change among smallholder farmers towards adaptation to climate change in transitional climatic zones of Africa, specifically, Hwedza District in Zimbabwe. Data for this study were collected from 400 randomly-selected smallholder farmers, using a structured questionnaire, focus group discussions and key informant interviews. The study used an ordered logit model to examine the factors that influence smallholder farmers' behavioural intention towards adaptation to climate change. Results from the study show that the gender of the household head, access to extension services on crop and livestock production, access to climate information, membership to social groups and experiencing a drought have a positive influence on farmers' attitude towards adaptation to climate change and variability. The study concluded that although the majority of smallholder farmers perceive that the climate is changing, they continue to habour negative attitudes towards prescribed climate change adaptation techniques. This study recommends more education on climate change, as well as adaptation strategies for both agricultural extension workers and farmers. This can be complemented by disseminating timely climate information through extension officers and farmers' groups. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Response of Glacier and Lake Dynamics in Four Inland Basins to Climate Change at the Transition Zone between the Karakorum And Himalayas.

    Directory of Open Access Journals (Sweden)

    Zhiguo Li

    Full Text Available Inland glacier and lake dynamics on the Tibetan Plateau (TP and its surroundings over recent decades are good indicators of climate change and have a significant impact on the local water supply and ecosystem. The glacier and lake changes in Karakoram are quite different from those of the Himalayas. The mechanisms of the complex and regionally heterogeneous behavior of the glacier and lake changes between the Karakorum and Himalayas are poorly understood. Based on satellite images and meteorological data of Shiquanhe, Hetian, and Yutian stations, we demonstrate that the overall retreat of glaciers and increase of lake area at the transition zone between the Karakoram and Himalayas (TKH have occurred since 1968 in response to a significant global climate change. Glacial areas in the Songmuxi Co basin, Zepu Co basin, Mang Co basin and Unnamed Co decreased by -1.98 ± 0.02 km2, -5.39 ± 0.02 km2, -0.01 ± 0.02 km2, and -0.12 ± 0.02 km2 during the study period, corresponding to losses of -1.42%, -2.86%, -1.54%, and -1.57%, respectively. The lake area of the Songmuxi Co, Zepu Co, Mang Co and Unnamed Co increased by 7.57 ± 0.02 km2, 8.53 ± 0.02 km2, 1.35 ± 0.02 km2, and 0.53 ± 0.02 km2, corresponding to growths of 30.22%, 7.55%, 11.39%, and 8.05%, respectively. Increases in temperature was the main reason for glacier retreat, whereas decreases in potential evapotranspiration of lakes, increases in precipitation, and increases in melt water from glaciers and frozen soil all contributed to lake area expansion.

  7. Estimating Past Temperature Change in Antarctica Based on Ice Core Stable Water Isotope Diffusion

    Science.gov (United States)

    Kahle, E. C.; Markle, B. R.; Holme, C.; Jones, T. R.; Steig, E. J.

    2017-12-01

    The magnitude of the last glacial-interglacial transition is a key target for constraining climate sensitivity on long timescales. Ice core proxy records and general circulation models (GCMs) both provide insight on the magnitude of climate change through the last glacial-interglacial transition, but appear to provide different answers. In particular, the magnitude of the glacial-interglacial temperature change reconstructed from East Antarctic ice-core water-isotope records is greater ( 9 degrees C) than that from most GCM simulations ( 6 degrees C). A possible source of this difference is error in the linear-scaling of water isotopes to temperature. We employ a novel, nonlinear temperature-reconstruction technique using the physics of water-isotope diffusion to infer past temperature. Based on new, ice-core data from the South Pole, this diffusion technique suggests East Antarctic temperature change was smaller than previously thought. We are able to confirm this result using a simple, water-isotope fractionation model to nonlinearly reconstruct temperature change at ice core locations across Antarctica based on combined oxygen and hydrogen isotope ratios. Both methods produce a temperature change of 6 degrees C for South Pole, agreeing with GCM results for East Antarctica. Furthermore, both produce much larger changes in West Antarctica, also in agreement with GCM results and independent borehole thermometry. These results support the fidelity of GCMs in simulating last glacial maximum climate, and contradict the idea, based on previous work, that the climate sensitivity of current GCMs is too low.

  8. Consideration of future climatic changes in three geologic settings

    International Nuclear Information System (INIS)

    Petrie, G.M.

    1984-09-01

    Staff at Pacific Northwest Laboratory are evaluating the potential for climatic change to affect the integrity of a nuclear waste repository at: (1) the Gibson Dome area of Utah; (2) the Palo Duro Basin of Texas; and (3) the Gulf Coast. Because a major assumption in this analysis is that a glacial age will recur, the climate of the last glacial period is examined for each location. Combining these paleoclimatic data with the current climatic data, each location is evaluated in light of the criteria given in Draft Revised General Guidelines for Recommendation of Sites for Nuclear Waste Repositories (10 CFR 960). The results of this analysis suggest that sites located in these areas are likely to meet the climate requirements set forth in the guidelines. However, further study is needed before a definitive statement can be made. In particular, modeling the effect of sea level change on the Gulf Coast groundwater system and obtaining an improved estimation for the increase in recharge during glacier times at the Texas and Utah locations would be useful. Several stragegies are presented for accomplishing this work. 94 references, 27 figures, 5 tables

  9. Astronomical theory of climate change

    Energy Technology Data Exchange (ETDEWEB)

    Berger, A.; Loutre, M.F. [Universite Catholique de Louvain (UCL), Louvain-la-Neuve (Belgium). Inst. d' Astronomie et de Geophysique G. Lemaitre

    2004-12-01

    The astronomical theory of paleo-climates aims to explain the climatic variations occurring with quasi-periodicities lying between tens and hundreds of thousands of years. The origin of these quasi-cycles lies in the astronomically driven changes in the latitudinal and seasonal distributions of the energy that the Earth receives from the Sun. These changes are then amplified by the feedback mechanisms which characterize the natural behaviour of the climate system like those involving the albedo-, the water vapor-, and the vegetation- temperature relationships. Climate models of different complexities are used to explain the chain of processes which finally link the long-term variations of three astronomical parameters to the long-term climatic variations at time scale of tens to hundreds of thousands of years. In particular, sensitivity analysis to the astronomically driven insolation changes and to the CO{sub 2} atmospheric concentrations have been performed with the 2-dimension climate model of Louvain-la-Neuve. It could be shown that this model simulates more or less correctly the entrance into glaciation around 2.75 million year (Myr) BP (before present), the late Pliocene-early Pleistocene 41-kyr (thousand years) cycle, the emergence of the 100-kyr cycle around 850 kyr BP and the glacial-interglacial cycles of the last 600 kyr. During the Late Pliocene (in an ice-free - warm world) ice sheets can only develop during times of sufficiently low summer insolation. This occurs during large eccentricity times when climatic precession and obliquity combine to obtain such low values, leading to the 41-kyr period between 3 and 1 million years BP. On the contrary in a glacial world, ice sheets persist most of the time except when insolation is very high in polar latitudes, requiring large eccentricity again, but leading this time to interglacial and finally to the 100-kyr period of the last 1 Myr. Using CO{sub 2} scenarios, it has been shown that stage 11 and stage 1

  10. Epistemic Uncertainty in Evalustion of Evapotranspiration and Net Infiltration Using Analogue Meteorological Data

    Energy Technology Data Exchange (ETDEWEB)

    B. Faybishenko

    2006-09-01

    Uncertainty is typically defined as a potential deficiency in the modeling of a physical process, owing to a lack of knowledge. Uncertainty can be categorized as aleatoric (inherent uncertainty caused by the intrinsic randomness of the system) or epistemic (uncertainty caused by using various model simplifications and their parameters). One of the main reasons for model simplifications is a limited amount of meteorological data. This paper is devoted to the epistemic uncertainty quantification involved in two components of the hydrologic balance-evapotranspiration and net infiltration for interglacial (present day), and future monsoon, glacial transition, and glacial climates at Yucca Mountain, using the data from analogue meteorological stations. In particular, the author analyzes semi-empirical models used for evaluating (1) reference-surface potential evapotranspiration, including temperature-based models (Hargreaves-Samani, Thornthwaite, Hamon, Jensen-Haise, and Turc) and radiation-based models (Priestly-Taylor and Penman), and (2) surface-dependent potential evapotranspiration (Penman-Monteith and Shuttleworth-Wallace models). Evapotranspiration predictions are then used as inputs for the evaluation of net infiltration using the semi-empirical models of Budyko, Fu, Milly, Turc-Pike, and Zhang. Results show that net infiltration ranges are expected to generally increase from the present-day climate to monsoon climate, to glacial transition climate, and then to the glacial climate. The propagation of uncertainties through model predictions for different climates is characterized using statistical measures. Predicted evapotranspiration ranges are reasonably corroborated against the data from Class A pan evaporometers (taking into account evaporation-pan adjustment coefficients), and ranges of net infiltration predictions are corroborated against the geochemical and temperature-based estimates of groundwater recharge and percolation rates through the unsaturated

  11. Epistemic Uncertainty in Evaluation of Evapotranspiration and Net Infiltration Using Analogue Meteorological Data

    International Nuclear Information System (INIS)

    B. Faybishenko

    2006-01-01

    Uncertainty is typically defined as a potential deficiency in the modeling of a physical process, owing to a lack of knowledge. Uncertainty can be categorized as aleatoric (inherent uncertainty caused by the intrinsic randomness of the system) or epistemic (uncertainty caused by using various model simplifications and their parameters). One of the main reasons for model simplifications is a limited amount of meteorological data. This paper is devoted to the epistemic uncertainty quantification involved in two components of the hydrologic balance-evapotranspiration and net infiltration for interglacial (present day), and future monsoon, glacial transition, and glacial climates at Yucca Mountain, using the data from analogue meteorological stations. In particular, the author analyzes semi-empirical models used for evaluating (1) reference-surface potential evapotranspiration, including temperature-based models (Hargreaves-Samani, Thornthwaite, Hamon, Jensen-Haise, and Turc) and radiation-based models (Priestly-Taylor and Penman), and (2) surface-dependent potential evapotranspiration (Penman-Monteith and Shuttleworth-Wallace models). Evapotranspiration predictions are then used as inputs for the evaluation of net infiltration using the semi-empirical models of Budyko, Fu, Milly, Turc-Pike, and Zhang. Results show that net infiltration ranges are expected to generally increase from the present-day climate to monsoon climate, to glacial transition climate, and then to the glacial climate. The propagation of uncertainties through model predictions for different climates is characterized using statistical measures. Predicted evapotranspiration ranges are reasonably corroborated against the data from Class A pan evaporometers (taking into account evaporation-pan adjustment coefficients), and ranges of net infiltration predictions are corroborated against the geochemical and temperature-based estimates of groundwater recharge and percolation rates through the unsaturated

  12. Climate evolution during the Pleniglacial and Late Glacial as recorded in quartz grain morphoscopy of fluvial to aeolian successions of the European Sand Belt

    Directory of Open Access Journals (Sweden)

    Woronko Barbara

    2015-06-01

    Full Text Available We present results of research into fluvial to aeolian successions at four sites in the foreland of the Last Glacial Maximum, i.e., the central part of the “European Sand Belt”. These sites include dune fields on higher-lying river terraces and alluvial fans. Sediments were subjected to detailed lithofacies analyses and sampling for morphoscopic assessment of quartz grains. Based on these results, three units were identified in the sedimentary succession: fluvial, fluvio-aeolian and aeolian. Material with traces of aeolian origin predominate in these sediments and this enabled conclusions on the activity of aeolian processes during the Pleniglacial and Late Glacial, and the source of sediment supply to be drawn. Aeolian processes played a major role in the deposition of the lower portions of the fluvial and fluvio-aeolian units. Aeolian material in the fluvial unit stems from aeolian accumulation of fluvial sediments within the valley as well as particles transported by wind from beyond the valley. The fluvio-aeolian unit is composed mainly of fluvial sediments that were subject to multiple redeposition, and long-term, intensive processing in an aeolian environment. In spite of the asynchronous onset of deposition of the fluvio-aeolian unit, it is characterised by the greatest homogeneity of structural and textural characteristics. Although the aeolian unit was laid down simultaneously, it is typified by the widest range of variation in quartz morphoscopic traits. It reflects local factors, mainly the origin of the source material, rather than climate. The duration of dune-formation processes was too short to be reflected in the morphoscopy of quartz grains.

  13. Preservation of a Late Glacial terrestrial and Holocene estuarine record on the margins of Kaipara Harbour, Northland, New Zealand

    International Nuclear Information System (INIS)

    Nichol, S.; Deng, Y.; Horrocks, M.; Zhou, W.; Hume, T.

    2009-01-01

    Subtidal to intertidal deposits from the margins of Kaipara Harbour in Northland preserve a c. 23,000 year incomplete sedimentary record of the transition from terrestrial to estuarine conditions. Cores are used to reconstruct the depositional setting for this transition, interpreted as a succession from dune and freshwater wetland to shallow estuarine environments. The fossil pollen record provides a proxy of Last Glacial Maximum and Late Glacial vegetation for the area. Stability of the Pleistocene dune landscape during the postglacial marine transgression is interpreted on the basis of strong dominance of tall forest taxa (Dacrydium) in the pollen record and soil development in dune sands, with preservation aided by location along the estuary margin. During the Holocene, reworking of the buried dune and wetland sediments has only reached to a depth of 1.5 m below the modern tidal flat. As such, the site provides a rare example of good preservation of Pleistocene deposits at the coast, where extensive reworking and loss of record are more typical. (author). 41 refs., 6 figs., 1 tab

  14. Peatlands as a unique climatic hotspots

    Science.gov (United States)

    Slowinska, S.; Marcisz, K.; Slowinski, M. M.; Blazejczyk, K.; Lamentowicz, M.

    2017-12-01

    Peatlands are unique environments, often acting as microrefugia of various taxa. High groundwater table, organic soils, specific vegetation and topography are important determinants of their local climatic conditions. However, relations between those determinants are not stable. For example, seasonal changes in weather patterns, hydrological dynamics, and local vegetation may alter microclimate. Additionally, long-term changes are important factor, as for example overgrowing due to significant change of microclimate conditions, what in turn changes geochemical and biological processes in the peat layer. We have been investigating interactions between abiotic and biotic factors of a small Sphagnum mire (ca. 6.0 ha) for over ten years now. The mire is located in Poland in transitional temperate climate and is the only place in polish lowlands where glacial relict Betula nana occurs. Identification of local climate of the mire, its microclimatic differentiation and its influence on surroundings were objectives of the study. We recorded water level fluctuations, photosynthetically active radiation (PAR), air temperature and humidity, and peat temperature at five monitoring plots at the mire and observed significant differences between them. We also investigated Sphagnum mosses growth and testate amoeba diversity and community structure to understand biological response of those differences. We observed that local climate of the mire was significantly different from open area reference place, it was much colder especially during nights. The average minimal temperature at the height 30 cm for growing seasons 2010-2012 was 3.7oC lower there and ground frosts occurred even in the summer. The climate of the mire affected the forest directly adjacent to it, and depending on weather conditions the strength and the distance of this interaction was different. Our results show that micro-environmental changes affects on biological processes and should be taken into consideration

  15. Variations in tropical convection as an amplifier of global climate change at the millennial scale

    NARCIS (Netherlands)

    Ivanochkoa, T.S.; Ganeshram, R.S.; Brummer, G.J.A.; Ganssen, G.M.; Jung, S.J.A.; Moreton, S.G.; Kroon, D.

    2005-01-01

    The global expression of millennial-scale climatic change during the glacial period and the persistence of this signal in Holocene records point to atmospheric teleconnections as the mechanism propagating rapid climate variations. We suggest rearrangements in the tropical convection system globally

  16. Submarine glacial landforms and interactions with volcanism around Sub-Antarctic Heard and McDonald Islands

    Science.gov (United States)

    Picard, K.; Watson, S. J.; Fox, J. M.; Post, A.; Whittaker, J. M.; Lucieer, V.; Carey, R.; Coffin, M. F.; Hodgson, D.; Hogan, K.; Graham, A. G. C.

    2017-12-01

    Unravelling the glacial history of Sub-Antarctic islands can provide clues to past climate and Antarctic ice sheet stability. The glacial history of many sub-Antarctic islands is poorly understood, including the Heard and McDonald Islands (HIMI) located on the Kerguelen Plateau in the southern Indian Ocean. The geomorphologic development of HIMI has involved a combination of construction via hotspot volcanism and mechanical erosion caused by waves, weather, and glaciers. Today, the 2.5 km2 McDonald Islands are not glacierised; in contrast, the 368 km2 Heard Island has 12 major glaciers, some extending from the summit of 2813 m to sea level. Historical accounts from Heard Island suggest that the glaciers were more extensive in the 1850s to 1870s, and have retreated at least 12% (33.89 km2) since 1997. However, surrounding bathymetry suggests a much more extensive previous glaciation of the HIMI region that encompassed 9,585 km2, likely dating back at least to the Last Glacial Maximum (LGM) ca. 26.5 -19 ka. We present analyses of multibeam bathymetry and backscatter data, acquired aboard RV Investigator in early 2016, that support the previous existence of an extensive icecap. These data reveal widespread ice-marginal and subglacial features including moraines, over-deepened troughs, drumlins and crag-and-tails. Glacial landforms suggest paleo-ice flow directions and a glacial extent that are consistent with previously documented broad scale morphological features. We identify >660 iceberg keel scours in water depths ranging from 150 - 530 m. The orientations of the iceberg keel scours reflect the predominantly east-flowing Antarctic Circumpolar Current and westerly winds in the region. 40Ar/39Ar dating of volcanic rocks from submarine volcanoes around McDonald Islands suggests that volcanism and glaciation coincided. The flat-topped morphology of these volcanoes may result from lava-ice interaction or erosion by glaciers post eruption during a time of extensive ice

  17. Glacial-interglacial changes in the surface water characteristics of the Andaman Sea: Evidence from stable isotopic ratios of planktonic foraminifera

    Digital Repository Service at National Institute of Oceanography (India)

    Ahmad, S.M.; Patil, D.J.; Rao, P.S.; Nath, B.N.; Rao, B.R.; Rajagopalan, G.

    ; Nature 343 549--551 Shackleton N J 1974 Attainment of isotopic equilibrium between ocean water and benthonic foraminifera genus Uvigerina: Isotopic changes in the ocean during the last glacial; In: Les Methodes quantitatives d'etude des variation du... climat au cours du pleistocene. Coll. Int. CNRS Paris 119 203--210 156 S M Ahmad et al ...

  18. Glacial terminations and the Last Interglacial in the Okhotsk Sea; Their implication to global climatic changes

    Science.gov (United States)

    Gorbarenko, Sergey; Velivetskaya, Tatyana; Malakhov, Mikhail; Bosin, Aleksandr

    2017-05-01

    Paleoclimate data from the Okhotsk Sea (OS) over Terminations II and I (TII, TI), and the Last and Present Interglacial (LIG, PIG) periods were compiled in order to examine Northern Hemisphere climate and sea level changes. Based on records of four AMS 14C-dated OS cores over TI-PIG, it is argued that the OS productivity/climate, IRD (ice-rafted debris), and benthic foraminiferal oxygen isotope (δ18Obf) proxies provide representative and in-phase evidence of the Northern Hemisphere climate and continental ice sheet changes consistent with the LR 04 δ18Obf curve. Chronologies for two central OS cores over TII-LIG-cooling event 23 (C23) were constructed by correlating OS productivity proxies with well-dated δ18O records of Chinese speleothems because OS environment is modulated by East Asian Monsoon; and, as well as correlating measured magnetic paleointensity excursions with those in the dated PISO-1500 paleointensity stack. Results show several OS climatic and environment states, including TII coeval with Asian Weak Monsoon Interval (WMI) II since 136 ka, LIG with a sharp two-step transition (130.2-129 ka) and demise at С25 (116.5 ka), and last glaciation with coolings at C24 (111 ka) and C23. The OS productivity and IRD records demonstrate certain climate amelioration in the middle of WMI-II, and two insignificant cooling events inside the LIG marked by C27 (126 ka) and C26 (120.6 ka). OS δ18Obf records of both cores demonstrate a gradual trend of lighter values since around 131.5 ka BP, continuing from the onset of LIG (129 ka) to minimum values at 126 ka BP (C27), then nearly constant values until 121.5 ka, followed by a slight increase up to 120.6 ka (C26), and a subsequent strong increase up to 116.5 ka (C25). The magnitude of OS δ18Obf oscillations is 1.35‰, which is less than those in the N. Atlantic. It may therefore be suggested that this OS index probably tracks changes in continental ice sheet volume and sea level.

  19. Terrestrial cooling in Northern Europe during the eocene-oligocene transition.

    Science.gov (United States)

    Hren, Michael T; Sheldon, Nathan D; Grimes, Stephen T; Collinson, Margaret E; Hooker, Jerry J; Bugler, Melanie; Lohmann, Kyger C

    2013-05-07

    Geochemical and modeling studies suggest that the transition from the "greenhouse" state of the Late Eocene to the "icehouse" conditions of the Oligocene 34-33.5 Ma was triggered by a reduction of atmospheric pCO2 that enabled the rapid buildup of a permanent ice sheet on the Antarctic continent. Marine records show that the drop in pCO2 during this interval was accompanied by a significant decline in high-latitude sea surface and deep ocean temperature and enhanced seasonality in middle and high latitudes. However, terrestrial records of this climate transition show heterogeneous responses to changing pCO2 and ocean temperatures, with some records showing a significant time lag in the temperature response to declining pCO2. We measured the Δ47 of aragonite shells of the freshwater gastropod Viviparus lentus from the Solent Group, Hampshire Basin, United Kingdom, to reconstruct terrestrial temperature and hydrologic change in the North Atlantic region during the Eocene-Oligocene transition. Our data show a decrease in growing-season surface water temperatures (~10 °C) during the Eocene-Oligocene transition, corresponding to an average decrease in mean annual air temperature of ~4-6 °C from the Late Eocene to Early Oligocene. The magnitude of cooling is similar to observed decreases in North Atlantic sea surface temperature over this interval and occurs during major glacial expansion. This suggests a close linkage between atmospheric carbon dioxide concentrations, Northern Hemisphere temperature, and expansion of the Antarctic ice sheets.

  20. Comparison of northern and central Greenland ice cores records of methanesulfonate covering the last glacial period

    DEFF Research Database (Denmark)

    Jonsell, U.; Hansson, M. E.; Siggaard-Andersen, M-L-

    2007-01-01

    Methanesulfonate (MS-) is measured in ice cores with the objective to obtain a proxy record of marine phytoplankton production of dimethylsulfide (DMS). We present a continuous MS- record covering the last glacial period from the North Greenland Ice Core Project (NGRIP) ice core and compare...... this record with the corresponding records previously presented from Greenland and, in particular, with the GISP2 ice core located 320 km south of NGRIP. Despite that the records have similar mean concentrations, their responses to climatic changes during the last glacial period are slightly different. NGRIP...... MS- concentrations were higher during the cold marine isotopic stages (MIS) 2 and 4 and lower during the warm MIS 5. This long-term trend in MS-, which is similar to the inverse of the corresponding trend in d 18O, is not detected in the GISP2 MS- record. A systematic response in MS- concentrations...

  1. Glacial to Holocene swings of the Australian-Indonesian monsoon

    Science.gov (United States)

    Mohtadi, Mahyar; Oppo, Delia W.; Steinke, Stephan; Stuut, Jan-Berend W.; de Pol-Holz, Ricardo; Hebbeln, Dierk; Lückge, Andreas

    2011-08-01

    The Australian-Indonesian monsoon is an important component of the climate system in the tropical Indo-Pacific region. However, its past variability, relation with northern and southern high-latitude climate and connection to the other Asian monsoon systems are poorly understood. Here we present high-resolution records of monsoon-controlled austral winter upwelling during the past 22,000 years, based on planktic foraminiferal oxygen isotopes and faunal composition in a sedimentary archive collected offshore southern Java. We show that glacial-interglacial variations in the Australian-Indonesian winter monsoon were in phase with the Indian summer monsoon system, consistent with their modern linkage through cross-equatorial surface winds. Likewise, millennial-scale variability of upwelling shares similar sign and timing with upwelling variability in the Arabian Sea. On the basis of element composition and grain-size distribution as precipitation-sensitive proxies in the same archive, we infer that (austral) summer monsoon rainfall was highest during the Bølling-Allerød period and the past 2,500 years. Our results indicate drier conditions during Heinrich Stadial 1 due to a southward shift of summer rainfall and a relatively weak Hadley cell south of the Equator. We suggest that the Australian-Indonesian summer and winter monsoon variability were closely linked to summer insolation and abrupt climate changes in the northern hemisphere.

  2. Providing the climatic component in human-climate interaction studies: 550,000 years of climate history in the Chew Bahir basin, a key HSPDP site in southern Ethiopia.

    Science.gov (United States)

    Foerster, V. E.; Asrat, A.; Bronk Ramsey, C.; Chapot, M. S.; Cohen, A. S.; Dean, J. R.; Deocampo, D.; Deino, A. L.; Guenter, C.; Junginger, A.; Lamb, H. F.; Leng, M. J.; Roberts, H. M.; Schaebitz, F.; Trauth, M. H.

    2017-12-01

    As a contribution towards an enhanced understanding of human-climate interactions, the Hominin Sites and Paleolakes Drilling Project (HSPDP) has cored six predominantly lacustrine archives of climate change spanning much of the last 3.5 Ma in eastern Africa. All six sites in Ethiopia and Kenya are adjacent to key paleoanthropological sites encompassing diverse milestones in human evolution, dispersal, and technological innovation. The 280 m-long Chew Bahir sediment core, recovered from a tectonically-bound basin in the southern Ethiopian rift in late 2014, covers the past 550 ka of environmental history, an interval marked by intense climatic changes and includes the transition to the Middle Stone Age and the origin and dispersal of modern Homo sapiens. We present the outcome of lithologic and stratigraphic investigations, first interpretations of high resolution MSCL and XRF scanning data, and initial results of detailed multi-indicator analysis of the Chew Bahir cores. These analyses are based on more than 14,000 discrete samples, including grain size analyses and X-ray diffraction. An initial chronology, based on Ar/Ar and OSL dating, allows temporal calibration of our reconstruction of dry-wet cycles. Both geochemical and sedimentological data show that the Chew Bahir deposits are sensitive recorders of climate change on millennial to centennial timescales. Initial statistical analyses identify phases marked by abrupt climatic changes, whereas several long-term wet-dry oscillations reveal variations mostly in the precession ( 15-25 kyr), but also in the obliquity ( 40 kyr) and eccentricity frequency bands ( 90-120 kyr). The Chew Bahir record will help decode climate variation on several different time scales, as a consequence of orbitally-driven high-latitude glacial-interglacial shifts and variations in greenhouse gases, Indian and Atlantic Ocean sea-surface temperatures, as well as local solar irradiance. This 550 ka record of environmental change in eastern

  3. Late Quaternary geomorphic history of a glacial landscape - new sedimentary and chronological data from the Cordillera de Cochabamba (Bolivia)

    Science.gov (United States)

    May, J.-H.; Preusser, F.; Zech, R.; Ilgner, J.; Veit, H.

    2009-04-01

    Throughout the Central Andes, glacial landscapes have long been used for the reconstruction of Late Quaternary glaciations and landscape evolution. Much work has focused on the Andes in Peru, Chile and the Bolivian Altiplano, whereas relatively little data has been published on glaciation history in the eastern Andean ranges and slopes. Even less is known with regard to the postglacial evolution of these glacial landscapes. In the Cordillera de Cochabamba (Bolivia), local maximum advances probably peaked around 20-25 ka BP and were followed by significant readvances between ~12-16 ka BP. This generally points to temperature controlled maximum glacial advances along the humid eastern slopes of the Central Andes, which is supported by glacier-climate-modelling studies. However, most studies include only marginal information with regard to the complex geomorphic and sedimentary situation in the Cordillera de Cochabamba. Furthermore, the chronological results are afflicted with several methodological uncertainties inherent to surface exposure dating and call for application of alternative, independent age dating methods. Therefore this study aims at i) documenting and interpreting the complex glacial geomorphology of the Huara Loma valley in the Cordillera de Cochabamba (Bolivia), ii) analyzing the involved units of glacial sediments, and iii) improving the chronological framework by applying optically stimulated luminescence (OSL) and radiocarbon dating (14C). For this purpose, geomorphic mapping was combined with field documentation of sedimentary profiles. The involved sediments were subject to geochemical and mineralogical analysis in order to deduce information on their erosional and weathering histories. In addition, the interpretation of OSL ages from glacial and proglacial sediments integrated several methodological procedures with regard to sample preparation and statistical analysis of the measurements in order to increase the degree of confidence. These

  4. A review of Early Weichselian climate (MIS 5d-a) in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Wohlfarth, Barbara [Dept. of Geological Sciences, Stockholm Univ., Stockholm (Sweden)

    2013-06-15

    This report addresses the transition from the last interglacial into the last glacial period in Europe, which corresponds to the time interval between approximately 122,000 and 70,000 years before present. Based on state-of-the-art paleoclimatic and paleoenvironmental information from selected terrestrial, marine and ice core records, questions regarding the magnitude, duration, and cyclicity of early glacial stadial and interstadials are discussed. One of the most important aspects in this respect is the timing of climatic/environmental changes seen in terrestrial, marine, ice core and speleothem records, and most importantly, how and on which basis and by which proxy these climatic shifts are defined. Since correlations between archives are made to understand the sequence of events and the response of different systems to a change in climate, timescales are of uttermost importance. Independent chronologies however only exist for a few archives (Greenland ice cores, U/Th dated speleothems, Lago Grande di Monticchio varve record), while the timescales for other records and archives have been obtained through tuning to an independent chronology or to the astronomical time scale. Ice core and speleothem isotopic records basically monitor atmospheric changes, but also contain an important local component. Marine records provide information on sea surface and deep-sea temperature and salinity changes, which vary with location; and terrestrial records (primarily pollen stratigraphies) allow reconstructing changing vegetation patterns. Each of these archives thus has its own multitude of proxies, which respond in different ways to an externally triggered shift in climate, such as changes in incoming solar radiation. Disentangling the response of these proxies in terms of climate is one challenge; another challenge is to obtain a detailed enough correlation between the archives in order to understand what is the trigger, what is the response, and which part adds

  5. A review of Early Weichselian climate (MIS 5d-a) in Europe

    International Nuclear Information System (INIS)

    Wohlfarth, Barbara

    2013-06-01

    This report addresses the transition from the last interglacial into the last glacial period in Europe, which corresponds to the time interval between approximately 122,000 and 70,000 years before present. Based on state-of-the-art paleoclimatic and paleoenvironmental information from selected terrestrial, marine and ice core records, questions regarding the magnitude, duration, and cyclicity of early glacial stadial and interstadials are discussed. One of the most important aspects in this respect is the timing of climatic/environmental changes seen in terrestrial, marine, ice core and speleothem records, and most importantly, how and on which basis and by which proxy these climatic shifts are defined. Since correlations between archives are made to understand the sequence of events and the response of different systems to a change in climate, timescales are of uttermost importance. Independent chronologies however only exist for a few archives (Greenland ice cores, U/Th dated speleothems, Lago Grande di Monticchio varve record), while the timescales for other records and archives have been obtained through tuning to an independent chronology or to the astronomical time scale. Ice core and speleothem isotopic records basically monitor atmospheric changes, but also contain an important local component. Marine records provide information on sea surface and deep-sea temperature and salinity changes, which vary with location; and terrestrial records (primarily pollen stratigraphies) allow reconstructing changing vegetation patterns. Each of these archives thus has its own multitude of proxies, which respond in different ways to an externally triggered shift in climate, such as changes in incoming solar radiation. Disentangling the response of these proxies in terms of climate is one challenge; another challenge is to obtain a detailed enough correlation between the archives in order to understand what is the trigger, what is the response, and which part adds

  6. Climate change issues of Nepal: challenges and perspectives for future generations

    International Nuclear Information System (INIS)

    Regmi, M.R.; Khanal, H.S.

    2009-01-01

    In Nepal Climate change has implications on reduction of snow pack on the mountains, water supply shortages, increase forest fires, increase in extreme weather, increase demand for irrigation, decreases power generation; wells dry up due to lower water table. Climate change seeks the two actions on the mitigation of greenhouse gases and adaptation to the climate change. This paper also describes the climate change issues of Nepal. In addition it deals with the potential threats of climate change to water Supply, agriculture and food security, temperature increase, run-off patterns, glacial melt and floods. (author)

  7. Evolution of the climatic tolerance and postglacial range changes of the most primitive orchids (Apostasioideae) within Sundaland, Wallacea and Sahul.

    Science.gov (United States)

    Kolanowska, Marta; Mystkowska, Katarzyna; Kras, Marta; Dudek, Magdalena; Konowalik, Kamil

    2016-01-01

    The location of possible glacial refugia of six Apostasioideae representatives is estimated based on ecological niche modeling analysis. The distribution of their suitable niches during the last glacial maximum (LGM) is compared with their current potential and documented geographical ranges. The climatic factors limiting the studied species occurrences are evaluated and the niche overlap between the studied orchids is assessed and discussed. The predicted niche occupancy profiles and reconstruction of ancestral climatic tolerances suggest high level of phylogenetic niche conservatism within Apostasioideae.

  8. A biomarker stable isotope record of late Quaternary climate and organic matter export in Southwestern Taiwan

    Science.gov (United States)

    Chang, Q.; Hren, M. T.; Lin, A. T.; Eley, Y.; Yu, S. W.; Harris, G.

    2017-12-01

    We present new leaf wax n-alkane hydrogen (δD) and carbon (δ13C) isotopic data from a 36-m-long core from off-shore southwestern Taiwan to evaluate late Quaternary changes in climate and the source of organic matter exported from the landscape. The core (MD178-3291) is located on the flank of the Gaoping Submarine Canyon that connects with the Gaoping river catchment in southwestern Taiwan. The sediment deposition in this core spans the last 26 kyr, providing a unique record of glacial-interglacial changes in organic matter export from the Taiwan orogen. The δD and δ13C both show a shift in isotopic compositions at 15 kyr, that coincides with the shift in planktonic foraminifera δ18O record from the same core as well as the global sea level. We therefore interpret this dominant shift as affected by the global glacial to interglacial transition. Following by this transition and through the interglacial period, both biomarker δD and δ13C data record fluctuations that we suggest result from short timescale changes in the distribution of organic inputs to the offshore site. This change in source is most likely caused by increases in storm and landslide frequency or intensity during warmer intervals. This interpretation is supported by terrestrial records that show an increase in landslides in the Gaoping catchment and evidence for enhanced rainfall intensity and a corresponding increase in the frequency of turbidity currents.

  9. Glacial/interglacial wetland, biomass burning, and geologic methane emissions constrained by dual stable isotopic CH4 ice core records

    Science.gov (United States)

    Bock, Michael; Schmitt, Jochen; Beck, Jonas; Seth, Barbara; Chappellaz, Jérôme; Fischer, Hubertus

    2017-07-01

    Atmospheric methane (CH4) records reconstructed from polar ice cores represent an integrated view on processes predominantly taking place in the terrestrial biogeosphere. Here, we present dual stable isotopic methane records [δ13CH4 and δD(CH4)] from four Antarctic ice cores, which provide improved constraints on past changes in natural methane sources. Our isotope data show that tropical wetlands and seasonally inundated floodplains are most likely the controlling sources of atmospheric methane variations for the current and two older interglacials and their preceding glacial maxima. The changes in these sources are steered by variations in temperature, precipitation, and the water table as modulated by insolation, (local) sea level, and monsoon intensity. Based on our δD(CH4) constraint, it seems that geologic emissions of methane may play a steady but only minor role in atmospheric CH4 changes and that the glacial budget is not dominated by these sources. Superimposed on the glacial/interglacial variations is a marked difference in both isotope records, with systematically higher values during the last 25,000 y compared with older time periods. This shift cannot be explained by climatic changes. Rather, our isotopic methane budget points to a marked increase in fire activity, possibly caused by biome changes and accumulation of fuel related to the late Pleistocene megafauna extinction, which took place in the course of the last glacial.

  10. Phylogeography and post-glacial recolonization in wolverines (Gulo gulo from across their circumpolar distribution.

    Directory of Open Access Journals (Sweden)

    Joanna Zigouris

    Full Text Available Interglacial-glacial cycles of the Quaternary are widely recognized in shaping phylogeographic structure. Patterns from cold adapted species can be especially informative - in particular, uncovering additional glacial refugia, identifying likely recolonization patterns, and increasing our understanding of species' responses to climate change. We investigated phylogenetic structure of the wolverine, a wide-ranging cold adapted carnivore, using a 318 bp of the mitochondrial DNA control region for 983 wolverines (n=209 this study, n=774 from GenBank from across their full Holarctic distribution. Bayesian phylogenetic tree reconstruction and the distribution of observed pairwise haplotype differences (mismatch distribution provided evidence of a single rapid population expansion across the wolverine's Holarctic range. Even though molecular evidence corroborated a single refugium, significant subdivisions of population genetic structure (0.01< ΦST <0.99, P<0.05 were detected. Pairwise ΦST estimates separated Scandinavia from Russia and Mongolia, and identified five main divisions within North America - the Central Arctic, a western region, an eastern region consisting of Ontario and Quebec/Labrador, Manitoba, and California. These data are in contrast to the nearly panmictic structure observed in northwestern North America using nuclear microsatellites, but largely support the nuclear DNA separation of contemporary Manitoba and Ontario wolverines from northern populations. Historic samples (c. 1900 from the functionally extirpated eastern population of Quebec/Labrador displayed genetic similarities to contemporary Ontario wolverines. To understand these divergence patterns, four hypotheses were tested using Approximate Bayesian Computation (ABC. The most supported hypothesis was a single Beringia incursion during the last glacial maximum that established the northwestern population, followed by a west-to-east colonization during the Holocene. This

  11. Phylogeography and post-glacial recolonization in wolverines (Gulo gulo) from across their circumpolar distribution.

    Science.gov (United States)

    Zigouris, Joanna; Schaefer, James A; Fortin, Clément; Kyle, Christopher J

    2013-01-01

    Interglacial-glacial cycles of the Quaternary are widely recognized in shaping phylogeographic structure. Patterns from cold adapted species can be especially informative - in particular, uncovering additional glacial refugia, identifying likely recolonization patterns, and increasing our understanding of species' responses to climate change. We investigated phylogenetic structure of the wolverine, a wide-ranging cold adapted carnivore, using a 318 bp of the mitochondrial DNA control region for 983 wolverines (n=209 this study, n=774 from GenBank) from across their full Holarctic distribution. Bayesian phylogenetic tree reconstruction and the distribution of observed pairwise haplotype differences (mismatch distribution) provided evidence of a single rapid population expansion across the wolverine's Holarctic range. Even though molecular evidence corroborated a single refugium, significant subdivisions of population genetic structure (0.01< ΦST <0.99, P<0.05) were detected. Pairwise ΦST estimates separated Scandinavia from Russia and Mongolia, and identified five main divisions within North America - the Central Arctic, a western region, an eastern region consisting of Ontario and Quebec/Labrador, Manitoba, and California. These data are in contrast to the nearly panmictic structure observed in northwestern North America using nuclear microsatellites, but largely support the nuclear DNA separation of contemporary Manitoba and Ontario wolverines from northern populations. Historic samples (c. 1900) from the functionally extirpated eastern population of Quebec/Labrador displayed genetic similarities to contemporary Ontario wolverines. To understand these divergence patterns, four hypotheses were tested using Approximate Bayesian Computation (ABC). The most supported hypothesis was a single Beringia incursion during the last glacial maximum that established the northwestern population, followed by a west-to-east colonization during the Holocene. This pattern is

  12. Genetic and ecological insights into glacial refugia of walnut (Juglans regia L..

    Directory of Open Access Journals (Sweden)

    Mallikarjuna Aradhya

    Full Text Available The distribution and survival of trees during the last glacial maximum (LGM has been of interest to paleoecologists, biogeographers, and geneticists. Ecological niche models that associate species occurrence and abundance with climatic variables are widely used to gain ecological and evolutionary insights and to predict species distributions over space and time. The present study deals with the glacial history of walnut to address questions related to past distributions through genetic analysis and ecological modeling of the present, LGM and Last Interglacial (LIG periods. A maximum entropy method was used to project the current walnut distribution model on to the LGM (21-18 kyr BP and LIG (130-116 kyr BP climatic conditions. Model tuning identified the walnut data set filtered at 10 km spatial resolution as the best for modeling the current distribution and to hindcast past (LGM and LIG distributions of walnut. The current distribution model predicted southern Caucasus, parts of West and Central Asia extending into South Asia encompassing northern Afghanistan, Pakistan, northwestern Himalayan region, and southwestern Tibet, as the favorable climatic niche matching the modern distribution of walnut. The hindcast of distributions suggested the occurrence of walnut during LGM was somewhat limited to southern latitudes from southern Caucasus, Central and South Asian regions extending into southwestern Tibet, northeastern India, Himalayan region of Sikkim and Bhutan, and southeastern China. Both CCSM and MIROC projections overlapped, except that MIROC projected a significant presence of walnut in the Balkan Peninsula during the LGM. In contrast, genetic analysis of the current walnut distribution suggested a much narrower area in northern Pakistan and the surrounding areas of Afghanistan, northwestern India, and southern Tajikistan as a plausible hotspot of diversity where walnut may have survived glaciations. Overall, the findings suggest that

  13. Munroa argentina, a Grass of the South American Transition Zone, Survived the Andean Uplift, Aridification and Glaciations of the Quaternary.

    Directory of Open Access Journals (Sweden)

    Leonardo D Amarilla

    Full Text Available The South American Transition Zone (SATZ is a biogeographic area in which not only orogeny (Andes uplift and climate events (aridification since the mid-Miocene, but also Quaternary glaciation cycles had an important impact on the evolutionary history of the local flora. To study this effect, we selected Munroa argentina, an annual grass distributed in the biogeographic provinces of Puna, Prepuna and Monte. We collected 152 individuals from 20 localities throughout the species' range, ran genetic and demographic analyses, and applied ecological niche modeling. Phylogenetic and population genetic analyses based on cpDNA and AFLP data identified three phylogroups that correspond to the previously identified subregions within the SATZ. Molecular dating suggests that M. argentina has inhabited the SATZ since approximately 3.4 (4.2-1.2 Ma and paleomodels predict suitable climate in these areas during the Interglacial period and the Last Glacial Maximum. We conclude that the current distribution of M. argentina resulted from the fragmentation of its once continuous range and that climate oscillations promoted ecological differences that favored isolation by creating habitat discontinuity.

  14. Munroa argentina, a Grass of the South American Transition Zone, Survived the Andean Uplift, Aridification and Glaciations of the Quaternary

    Science.gov (United States)

    Amarilla, Leonardo D.; Anton, Ana M.; Chiapella, Jorge O.; Manifesto, María M.; Angulo, Diego F.; Sosa, Victoria

    2015-01-01

    The South American Transition Zone (SATZ) is a biogeographic area in which not only orogeny (Andes uplift) and climate events (aridification) since the mid-Miocene, but also Quaternary glaciation cycles had an important impact on the evolutionary history of the local flora. To study this effect, we selected Munroa argentina, an annual grass distributed in the biogeographic provinces of Puna, Prepuna and Monte. We collected 152 individuals from 20 localities throughout the species’ range, ran genetic and demographic analyses, and applied ecological niche modeling. Phylogenetic and population genetic analyses based on cpDNA and AFLP data identified three phylogroups that correspond to the previously identified subregions within the SATZ. Molecular dating suggests that M. argentina has inhabited the SATZ since approximately 3.4 (4.2–1.2) Ma and paleomodels predict suitable climate in these areas during the Interglacial period and the Last Glacial Maximum. We conclude that the current distribution of M. argentina resulted from the fragmentation of its once continuous range and that climate oscillations promoted ecological differences that favored isolation by creating habitat discontinuity. PMID:26110533

  15. Munroa argentina, a Grass of the South American Transition Zone, Survived the Andean Uplift, Aridification and Glaciations of the Quaternary.

    Science.gov (United States)

    Amarilla, Leonardo D; Anton, Ana M; Chiapella, Jorge O; Manifesto, María M; Angulo, Diego F; Sosa, Victoria

    2015-01-01

    The South American Transition Zone (SATZ) is a biogeographic area in which not only orogeny (Andes uplift) and climate events (aridification) since the mid-Miocene, but also Quaternary glaciation cycles had an important impact on the evolutionary history of the local flora. To study this effect, we selected Munroa argentina, an annual grass distributed in the biogeographic provinces of Puna, Prepuna and Monte. We collected 152 individuals from 20 localities throughout the species' range, ran genetic and demographic analyses, and applied ecological niche modeling. Phylogenetic and population genetic analyses based on cpDNA and AFLP data identified three phylogroups that correspond to the previously identified subregions within the SATZ. Molecular dating suggests that M. argentina has inhabited the SATZ since approximately 3.4 (4.2-1.2) Ma and paleomodels predict suitable climate in these areas during the Interglacial period and the Last Glacial Maximum. We conclude that the current distribution of M. argentina resulted from the fragmentation of its once continuous range and that climate oscillations promoted ecological differences that favored isolation by creating habitat discontinuity.

  16. Holocene Substrate Influences on Plant and Fire Response to Climate Change

    Science.gov (United States)

    Briles, C.; Whitlock, C. L.

    2011-12-01

    The role of substrates in facilitating plant responses to climate change in the past has received little attention. Ecological studies, documenting the relative role of fertile and infertile substrates in mediating the effects of climate change, lack the temporal information that paleoecological lake studies provide on how plants have responded under equal, larger and more rapid past climate events than today. In this paper, pollen and macroscopic charcoal preserved in the sediments of eight lakes surrounded by infertile ultramafic soils and more fertile soils in the Klamath Mountains of northern California were analyzed. Comparison of late-Quaternary paleoecological sites suggests that infertile and fertile substrates supported distinctly different plant communities. Trees and shrubs on infertile substrates were less responsive to climate change than those on fertile substrates, with the only major compositional change occurring at the glacial/interglacial transition (~11.5ka), when temperature rose 5oC. Trees and shrubs on fertile substrates were more responsive to climate changes, and tracked climate by moving along elevational gradients, including during more recent climate events such as the Little Ice Age and Medieval Climate Anomaly. Fire regimes were similar until 4ka on both substrate types. After 4ka, understory fuels on infertile substrates became sparse and fire activity decreased, while on fertile substrates forests became increasingly denser and fire activity increased. The complacency of plant communities on infertile sites to climate change contrasts with the individualistic and rapid adjustments of species on fertile sites. The findings differ from observations on shorter time scales that show the most change in herb cover and richness in the last 60 years on infertile substrates. Thus, the paleorecord provides unique long-term ecological data necessary to evaluate the response of plants to future climate change under different levels of soil

  17. Species distributions and climate change - linking the past and the future

    DEFF Research Database (Denmark)

    Levinsky, Irina

    Climate change is predicted to have a marked impact on biodiversity, and changes in the distributions of numerous species have already been correlated with ongoing climate change. Climatic oscillations, however, were also the rule during the Pleistocene, and a look to the past may therefore shed ...... conditions during the Last Glacial Maximum, explore surrogates for the dispersal ability of African starlings and critically assess the tools I use and the assumptions behind them....

  18. Ice flow models and glacial erosion over multiple glacial–interglacial cycles

    OpenAIRE

    Headley, R. M.; Ehlers, T. A.

    2015-01-01

    Mountain topography is constructed through a variety of interacting processes. Over glaciological timescales, even simple representations of glacial-flow physics can reproduce many of the distinctive features formed through glacial erosion. However, detailed comparisons at orogen time and length scales hold potential for quantifying the influence of glacial physics in landscape evolution models. We present a comparison using two different numerical models for glacial flow ov...

  19. Millennial- to century-scale variability in Gulf of Mexico Holocene climate records

    Science.gov (United States)

    Poore, R.Z.; Dowsett, H.J.; Verardo, S.; Quinn, T.M.

    2003-01-01

    Proxy records from two piston cores in the Gulf of Mexico (GOM) provide a detailed (50-100 year resolution) record of climate variability over the last 14,000 years. Long-term (millennial-scale) trends and changes are related to the transition from glacial to interglacial conditions and movement of the average position of the Intertropical Convergence Zone (ITCZ) related to orbital forcing. The ??18O of the surface-dwelling planktic foraminifer Globigerinoides ruber show negative excursions between 14 and 10.2 ka (radiocarbon years) that reflect influx of meltwater into the western GOM during melting of the Laurentide Ice Sheet. The relative abundance of the planktic foraminifer Globigerinoides sacculifer is related to transport of Caribbean water into the GOM. Maximum transport of Caribbean surface waters and moisture into the GOM associated with a northward migration of the average position of the ITCZ occurs between about 6.5 and 4.5 ka. In addition, abundance variations of G. sacculifer show century-scale variability throughout most of the Holocene. The GOM record is consistent with records from other areas, suggesting that century-scale variability is a pervasive feature of Holocene climate. The frequency of several cycles in the climate records is similar to cycles identified in proxy records of solar variability, indicating that at least some of the century-scale climate variability during the Holocene is due to external (solar) forcing.

  20. Late Devonian glacial deposits from the eastern United States signal an end of the mid-Paleozoic warm period

    Science.gov (United States)

    Brezinski, D.K.; Cecil, C.B.; Skema, V.W.; Stamm, R.

    2008-01-01

    A Late Devonian polymictic diamictite extends for more than 400??km from northeastern Pennsylvania across western Maryland and into east-central West Virginia. The matrix-supported, unbedded, locally sheared diamictite contains subangular to rounded clasts up to 2??m in diameter. The mostly rounded clasts are both locally derived and exotic; some exhibit striations, faceting, and polish. The diamictite commonly is overlain by laminated siltstone/mudstone facies associations (laminites). The laminites contain isolated clasts ranging in size from sand and pebbles to boulders, some of which are striated. The diamictite/laminite sequence is capped by massive, coarse-grained, pebbly sandstone that is trough cross-bedded. A stratigraphic change from red, calcic paleo-Vertisols in strata below the diamictite to non-calcic paleo-Spodosols and coal beds at and above the diamictite interval suggests that the climate became much wetter during deposition of the diamictite. The diamictite deposit is contemporaneous with regressive facies that reflect fluvial incision during the Late Devonian of the Appalachian basin. These deposits record a Late Devonian episode of climatic cooling so extreme that it produced glaciation in the Appalachian basin. Evidence for this episode of climatic cooling is preserved as the interpreted glacial deposits of diamictite, overlain by glaciolacustrine varves containing dropstones, and capped by sandstone interpreted as braided stream outwash. The Appalachian glacigenic deposits are contemporaneous with glacial deposits in South America, and suggest that Late Devonian climatic cooling was global. This period of dramatic global cooling may represent the end of the mid-Paleozoic warm interval that began in the Middle Silurian. ?? 2008 Elsevier B.V. All rights reserved.

  1. Climatic reconstruction in Europe for 18,000 yr B.P. from pollen data

    NARCIS (Netherlands)

    Peyron, O; Guiot, J; Cheddadi, R; Tarasov, P; Reille, M; de Beaulieu, JL; Bottema, S; Andrieu, [No Value

    An improved concept of the best analogs method is used to reconstruct the climate of the last glacial maximum from pollen data in Europe. In order to deal with the lack of perfect analogs of fossil assemblages and therefore to obtain a more accurate climate reconstruction, we used a combination of

  2. The glacial cycles and cosmic rays

    CERN Document Server

    Kirkby, Jasper; Müller, R A

    2004-01-01

    The cause of the glacial cycles remains a mystery. The origin is widely accepted to be astronomical since paleoclimatic archives contain strong spectral components that match the frequencies of Earth's orbital modulation. Milankovitch insolation theory contains similar frequencies and has become established as the standard model of the glacial cycles. However, high precision paleoclimatic data have revealed serious discrepancies with the Milankovitch model that fundamentally challenge its validity and re-open the question of what causes the glacial cycles. We propose here that the ice ages are initially driven not by insolation cycles but by cosmic ray changes, probably through their effect on clouds. This conclusion is based on a wide range of evidence, including results presented here on speleothem growth in caves in Austria and Oman, and on a record of cosmic ray flux over the past 220 kyr obtained from the 10Be composition of deep-ocean sediments.

  3. Climate impacts on transocean dispersal and habitat in gray whales from the Pleistocene to 2100

    NARCIS (Netherlands)

    Alter, S Elizabeth; Meyer, Matthias; Post, Klaas; Czechowski, Paul; Gravlund, Peter; Gaines, Cork; Rosenbaum, Howard C; Kaschner, Kristin; Turvey, Samuel T; van der Plicht, Johannes; Shapiro, Beth; Hofreiter, Michael

    2015-01-01

    Arctic animals face dramatic habitat alteration due to ongoing climate change. Understanding how such species have responded to past glacial cycles can help us forecast their response to today's changing climate. Gray whales are among those marine species likely to be strongly affected by Arctic

  4. Global climate evolution during the last deglaciation

    OpenAIRE

    Clark, Peter U.; Shakun, Jeremy D.; Baker, Paul A.; Bartlein, Patrick J.; Brewer, Simon; Brook, Ed; Carlson, Anders E.; Cheng, Hai; Kaufman, Darrell S.; Liu, Zhengyu; Marchitto, Thomas M.; Mix, Alan C.; Morrill, Carrie; Otto-Bliesner, Bette L.; Pahnke, Katharina

    2012-01-01

    Deciphering the evolution of global climate from the end of the Last Glacial Maximum approximately 19 ka to the early Holocene 11 ka presents an outstanding opportunity for understanding the transient response of Earth’s climate system to external and internal forcings. During this interval of global warming, the decay of ice sheets caused global mean sea level to rise by approximately 80 m; terrestrial and marine ecosystems experienced large disturbances and range shifts; perturbations to th...

  5. Radiocarbon constraints on the glacial ocean circulation and its impact on atmospheric CO2

    Science.gov (United States)

    Skinner, L. C.; Primeau, F.; Freeman, E.; de la Fuente, M.; Goodwin, P. A.; Gottschalk, J.; Huang, E.; McCave, I. N.; Noble, T. L.; Scrivner, A. E.

    2017-01-01

    While the ocean’s large-scale overturning circulation is thought to have been significantly different under the climatic conditions of the Last Glacial Maximum (LGM), the exact nature of the glacial circulation and its implications for global carbon cycling continue to be debated. Here we use a global array of ocean–atmosphere radiocarbon disequilibrium estimates to demonstrate a ∼689±53 14C-yr increase in the average residence time of carbon in the deep ocean at the LGM. A predominantly southern-sourced abyssal overturning limb that was more isolated from its shallower northern counterparts is interpreted to have extended from the Southern Ocean, producing a widespread radiocarbon age maximum at mid-depths and depriving the deep ocean of a fast escape route for accumulating respired carbon. While the exact magnitude of the resulting carbon cycle impacts remains to be confirmed, the radiocarbon data suggest an increase in the efficiency of the biological carbon pump that could have accounted for as much as half of the glacial–interglacial CO2 change. PMID:28703126

  6. Two Late Pleistocene climate-driven incision/aggradation rhythms in the middle Dnieper River basin, west-central Russian Plain

    Science.gov (United States)

    Panin, Andrei; Adamiec, Grzegorz; Buylaert, Jan-Pieter; Matlakhova, Ekaterina; Moska, Piotr; Novenko, Elena

    2017-06-01

    In valleys of the River Seim and its tributaries in the middle Dnieper basin (west-central Russian Plain), two low terraces (T1, 10-16 m, and T0, 5-7 m above the river) and a floodplain (2-4 m) with characteristic large and small palaeochannels exist. A range of field and laboratory techniques was applied and ∼30 new numerical ages (OSL and 14C dates) were obtained to establish a chronology of incision and aggradation events that resulted in the current valley morphology. Two full incision/aggradation rhythms and one additional aggradation phase from the previous rhythm were recognized in the Late Pleistocene - Holocene climate cycle. The following events were detected. (1) Late MIS 5 - early MIS 4: aggradation of Terrace T1 following the deep incision at the end of MIS 6. (2) Late MIS 4 (40-30 ka): incision into Terrace T1 below the present-day river, formation of the main scarp in the bottom of the valley between Terrace T1 and Terrace T0/Floodplain levels. (3) MIS 2: aggradation of Terrace T0, lateral migrations of a shallow braided channel located few meters above the present-day river since ∼25 ka through the LGM. (4) 18-13 ka: incision into Terrace T0 below the modern river. Multiple-thread channels concentrated in a single flow that at some places formed large meanders. In the period 15-13 ka, high floods that rose above the present-day floods left large levees and overbank loams on Terrace T0. (5) Younger Dryas - Holocene transition: aggradation up to the modern channel level, transformation of large Late Glacial to small Holocene meanders. The established incision/aggradation rhythms are believed to be manifested over the Central Russian Plain outside the influence of ice sheets in the north and base level changes in the south. The two-phase deepening of the valley occurred in the last quarter of the last glacial epoch but can not be attributed directly to the glacial-interglacial transition. Both the detected incision events correspond to relatively

  7. Post-Younger Dryas climate interval linked to circumpolar vortex variability: isotopic evidence from Fayetteville Green Lake, New York

    Science.gov (United States)

    Kirby, M. E.; Patterson, W. P.; Mullins, H. T.; Burnett, A. W.

    2002-04-01

    The late-Glacial/Holocene transition in the North Atlantic-European sectors has long been known to be a period of rapid climate change. There is, however, a continued need for acquiring and developing paleoclimate archives spanning this interval from continental settings. Here we report on a lacustrine (Fayetteville Green Lake) isotope record sampled at a 10-year resolution from the NE USA over the late-Glacial/Holocene interval (14,600-8000 cal year BP). Based on prior isotopic and hydrologic research from Green Lake, the δ18O(calcite) values predominantly reflect winter moisture source and thus winter atmospheric patterns. Furthermore, we use historic (AD 1948-1980) winter circulation data and δ18O(calcite) values from varved sediments to examine the relationship between the circumpolar vortex latitude and isotopes which results in a strong (r = -0.79 r2 = 0.63) negative relationship. Using the linear regression from the isotope-vortex relationship, we model the winter vortex latitude for the late-Glacial/Holocene transition over the NE USA. In addition, we identify an interval from 11,600 to 10,300 cal year BP (the post-Younger Dryas climate interval) wherein the mean winter vortex over the NE USA was expanded by 6° latitude ( 36.1°N i.e., 630 km) from its mean historic position between AD 1948-1998 ( 41.8°N). Renewal of more vigorous thermohaline circulation following the Younger Dryas cold event may have forced the post-Younger Dryas climate interval. Increased poleward heat transport due to an active oceanic conveyor would have strengthened the thermal contrast between the NE USA and the North Atlantic thereby enhancing atmospheric pressure gradients and firmly establishing the semi-permanent winter trough over the NE USA. Consequently, storms tracked more frequently up the east coast of the United States from the Gulf of Mexico and Atlantic regions delivering precipitation with relatively high δ18O values to the NE USA. Alternatively, the relative

  8. The Search for Eight Glacial Cycles of Deep-Water Temperatures and Global ice Volume From the Southern Hemisphere

    Science.gov (United States)

    Ferretti, P.; Elderfield, H.; Greaves, M.; McCave, N.

    2007-12-01

    /Ca and B/Ca on planktonic species, which also provides evidence on carbonate saturation state. These results permit preliminary discussion of the magnitude of the deep-water temperature changes during glacial/interglacial transitions and the interglacials themselves. In particular, our deep-water temperature estimates confirm that interglacial stages before 430 ka were characterized by less pronounced warmth - at least in the deeper southern Pacific - than those of the past four climatic cycles, a pattern previously observed in the deuterium record from EPICA Dome C. We examine the relative contributions of deep-water temperature and ice volume to the benthic δ18O signal. The phase relationship between the two signals is tentatively assessed for the middle/late Pleistocene, when different patterns of climate variability have been inferred from marine and ice cores records.

  9. The impact of MIS-3 climate events at the transition from Neanderthals to modern humans in Europe

    Science.gov (United States)

    Staubwasser, M.; Dragusin, V.; Assonov, S.; Ersek, V.; Hoffmann, D.; Veres, D.; Onac, B. P.

    2017-12-01

    We report on last glacial stable C and O isotope records from two U-Th dated speleothems from Romania. The southerly record (Ascunsa Cave, South Carpathians) from the Danube region matches the pacing and relative change in amplitude of the Greenland ice temperature record at 30-50 ka BP as well as the abundance of coastal winter sea ice in the Black Sea. The northerly record (Tausoare Cave, East Carpathians) in parts shares the pacing of events with the Greenland or the southern Romanian record, but best matches northern Black Sea summer season temperature change. Heinrich events do not stand out in either record, but the temperature amplitudes of Greenland stadials and Black Sea records are generally reproduced. Based on similarity with the Black Sea we interpret the combined two speleothem records in terms of seasonal temperature change in central Eastern Europe. A climatic influence on the transition from Neanderthals to modern humans has long been suspected. However, the diachronous and spatially complex archaeologic succession across the Middle-Upper Paleolithic (MUPL) in Europe ( 38 - 48 ka) is difficult to reconcile with the millennial-scale pacing of northern hemisphere paleoclimate. Two extreme cold events at 44.0-43.3 recorded and 40.7-39.8 ka in the speleothems bracket the dates of the first known appearance of modern humans - the Aurignacian complex - and the disappearance of Neanderthals from most of Europe. These cold events are coeval with Greenland Stadials GS-12 and GS-10. The speleothem records generally match the paleosol/loess succession from central Europe across the MUPL. The combined record suggests that permafrost advance may have made central Europe uninhabitable at least during winter. The combined paleoclimate and archaeologic records suggest that depopulation-repopulation cycles may have occurred during and after each cold event. Repopulation of central Europe geographically favored the modern human Aurignacians from SE Europe.

  10. Thermodynamic and Dynamic Causes of Pluvial Conditions During the Last Glacial Maximum in Western North America

    Science.gov (United States)

    Morrill, Carrie; Lowry, Daniel P.; Hoell, Andrew

    2018-01-01

    During the last glacial period, precipitation minus evaporation increased across the currently arid western United States. These pluvial conditions have been commonly explained for decades by a southward deflection of the jet stream by the Laurentide Ice Sheet. Here analysis of state-of-the-art coupled climate models shows that effects of the Laurentide Ice Sheet on the mean circulation were more important than storm track changes in generating wet conditions. Namely, strong cooling by the ice sheet significantly reduced humidity over land, increasing moisture advection in the westerlies due to steepened humidity gradients. Additionally, the removal of moisture from the atmosphere by mass divergence associated with the subtropical high was diminished at the Last Glacial Maximum compared to present. These same dynamic and thermodynamic factors, working in the opposite direction, are projected to cause regional drying in western North America under increased greenhouse gas concentrations, indicating continuity from past to future in the mechanisms altering hydroclimate.

  11. The Downstream Fate of Glacial Runoff and Groundwater in the Cordillera Blanca, Peru

    Science.gov (United States)

    McKenzie, J. M.; Gordon, R.; Chavez, D.; Maharaj, L.; Baraer, M.; Mark, B. G.; Lautz, L. K.

    2013-12-01

    Rapid glacier recession in the Cordillera Blanca, Peru, is raising concerns about current and future water resources for the inhabitants of the Rio Santa watershed. Glacier meltwater buffers stream discharge throughout the range, reducing the variability of annual runoff and maintaining stream flows during the dry season. Groundwater is also an important component of dry season runoff as it can contribute as much as 50-70% to outflow in some Rio Santa tributaries. A better understanding of groundwater dynamics in high elevation watersheds is needed, including quantification of recharge, subsurface processes, and available storage. We present the results from recent groundwater studies in the Cordillera Blanca where numerous investigative techniques have been used, including ground penetrating radar, hydraulic conductivity measurements, tracer tests, and hydrochemical mixing models. Our research focuses primarily on the low-relief pampa valley floors across which glacial-melt derived rivers flow. Across the Cordillera, these valley systems cover approximately 65 km2 and are comprised of unconsolidated glacial, talus, and lacustrine deposits and wetlands. The valleys commonly have buried, permeable, talus aquifers that are overlain by relatively impermeable, glaciolacustrine deposits. Glaciofluvial outwash deposits also act as aquifers (hydraulic conductivity of 10-4 m/s). The travel time of water stored in these systems is generally less than 3-4 years and the maximum observed dry season groundwater velocity is 60 cm/day. While groundwater represents an important component of dry season water resources source of water in the Cordillera Blanca, it is also potentially vulnerable to climate change including changes in the precipitation regime and decrease in glacially derived recharge.

  12. Modeling Past Abrupt Climate Changes

    DEFF Research Database (Denmark)

    Marchionne, Arianna

    of the orbital variations on Earth's climate; however, the knowledge and tools needed to complete a unied theory for ice ages have not been developed yet. Here, we focus on the climatic variations that have occurred over the last few million years. Paleoclimatic records show that the glacial cycles are linked...... to those present in the astronomical forcing. We shall do this in terms of a general framework of conceptual dynamical models, which may or may not exhibit internal self-sustained oscillations. We introduce and discuss two distinct mechanisms for a periodic response at a dierent period to a periodic...

  13. A mechanism for overdeepenings of glacial valleys and fjords

    OpenAIRE

    Herman F.; Beaud F.; Champagnac J.-D.; Lemieux J.-M.; Sternai P.

    2011-01-01

    Most glacial erosion models assume that erosion rates are proportional to ice sliding velocity. While recent studies have shown that water plays a major role in modulating sliding velocities the impact it might have on erosion rates is still unclear. Here we incorporate subglacial hydrology into a glacial erosion model that is based on a sliding rule. Our results explicitly highlight that adding subglacial hydrology has profound impacts on the temporal and spatial patterns of glacial erosion....

  14. Climate conditions in Sweden in a 100,000-year time perspective

    Energy Technology Data Exchange (ETDEWEB)

    Kjellstroem, Erik; Strandberg, Gustav (Rossby Centre, SMHI, Norrkoeping (Sweden)); Brandefelt, Jenny (Dept. of Mechanics, Royal Inst. of Technology, Stockholm (Sweden)); Naeslund, Jens-Ove (Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)); Smith, Ben (Dept of Physical Geography and Ecosystems Analysis, Lund Univ., Lund (Sweden)); Wohlfarth, Barbara (Dept. of Geology and Geochemistry, Stockholm Univ., Stockholm (Sweden))

    2009-04-15

    This report presents results from a project devoted to describing the climatic extremes within which the climate in Fennoscandia may vary over a 100,000 year time span. Based on forcing conditions which have yielded extreme conditions during the last glacial-interglacial cycle, as well as possible future conditions following continued anthropogenic emissions, projections of climate conditions have been made with climate models. Three different periods have been studied; i) a stadial within Marine Isotope Stage 3 (MIS 3) during the last glacial cycle, representing a cold period with a relatively small ice sheet covering parts of Fennoscandia, ii) the Last Glacial Maximum (LGM), with an extensive ice sheet covering large parts of northern Europe and iii) a possible future period in a climate warmer than today. The future case is characterised by high greenhouse gas concentrations in the atmosphere and a complete loss of the Greenland ice sheet. The climate modelling involved the use of a global climate model (GCM) for producing boundary conditions that were used by a regional climate model (RCM). The regional model produced detailed information on climate variables like near-surface air temperature and precipitation over Europe. These climate variables were subsequently used to force a vegetation model that produced a vegetation cover over Europe, consistent with the simulated regional climate. In a final step, the new vegetation cover from the vegetation model was used in the regional climate model to produce the final regional climate. For the studied periods, data on relevant climate parameters have been extracted from the regional model for the Forsmark and Oskarshamn areas on the Swedish east coast and the Olkiluoto region on the west coast of Finland. Due to computational constraints, the modelling efforts include only one forcing scenario per time period. As there is a large degree of uncertainty in the choice of an appropriate forcing scenario, we perform

  15. Climate conditions in Sweden in a 100,000-year time perspective

    International Nuclear Information System (INIS)

    Kjellstroem, Erik; Strandberg, Gustav; Brandefelt, Jenny; Naeslund, Jens-Ove; Smith, Ben; Wohlfarth, Barbara

    2009-04-01

    This report presents results from a project devoted to describing the climatic extremes within which the climate in Fennoscandia may vary over a 100,000 year time span. Based on forcing conditions which have yielded extreme conditions during the last glacial-interglacial cycle, as well as possible future conditions following continued anthropogenic emissions, projections of climate conditions have been made with climate models. Three different periods have been studied; i) a stadial within Marine Isotope Stage 3 (MIS 3) during the last glacial cycle, representing a cold period with a relatively small ice sheet covering parts of Fennoscandia, ii) the Last Glacial Maximum (LGM), with an extensive ice sheet covering large parts of northern Europe and iii) a possible future period in a climate warmer than today. The future case is characterised by high greenhouse gas concentrations in the atmosphere and a complete loss of the Greenland ice sheet. The climate modelling involved the use of a global climate model (GCM) for producing boundary conditions that were used by a regional climate model (RCM). The regional model produced detailed information on climate variables like near-surface air temperature and precipitation over Europe. These climate variables were subsequently used to force a vegetation model that produced a vegetation cover over Europe, consistent with the simulated regional climate. In a final step, the new vegetation cover from the vegetation model was used in the regional climate model to produce the final regional climate. For the studied periods, data on relevant climate parameters have been extracted from the regional model for the Forsmark and Oskarshamn areas on the Swedish east coast and the Olkiluoto region on the west coast of Finland. Due to computational constraints, the modelling efforts include only one forcing scenario per time period. As there is a large degree of uncertainty in the choice of an appropriate forcing scenario, we perform

  16. Influential aspects of glacial resource for establishing Kuhl system (gravity flow irrigation) in the Hindu Kush, Karakoram and Himalaya ranges.

    Science.gov (United States)

    Ashraf, Arshad; Iqbal, Ayesha

    2018-04-27

    The meltwater components play an important role in the hydrological regime of the Hindu Kush, Karakorum and Himalaya (HKH) region, in terms of high demand of water for food and fiber from snow and glacial resource. The communities of Himalayan mountains are facing challenges of food security owing to lack of the resource information for meeting their water requirements. In this study, suitability index approach was adopted to assess glacier resource potential for establishing kuhl irrigation system in HKH ranges of Pakistan. The basis of indexing is glacier accessibility and water yield potential of the glacial resource for irrigation estimated in terms of number and ice reserve of the glaciers. The suitability index was found good for about 1.4% glaciers constituting about 80% of the total ice reserves of the HKH region. Medium suitability constitutes about 36.1% glaciers with 12.6% of the total ice reserves, while low suitability was assessed for about 60% glaciers containing 1.5% ice reserves only. Maximum unit glacial reserve was estimated for Shigar basin, i.e., 1.44 km 3 , and among HKH ranges, 0.46 km 3 for the Karakoram range. A regular monitoring of the glacial resource would prove helpful in assessing vulnerability of this resource to climate change in the high Himalayan region in future. Copyright © 2018. Published by Elsevier B.V.

  17. Glacial Isostatic Adjustment Derived Boundary Conditions for Paleoclimate Simulation: the Refined ICE-6G_D (VM5a) Model and the Dansgaard-Oeschger Oscillation

    Science.gov (United States)

    Peltier, W. R.; Vettoretti, G.; Argus, D. F.

    2017-12-01

    Global models of the glacial isostatic adjustment (GIA) process are designed to fit a wide range of geophysical and geomorphological observations that simultaneously constrain the internal viscoelastic structure of Earths interior and the history of grounded ice thickness variations that has occurred over the most recent ice-age cycle of the Late Quaternary interval of time. The most recent refinement of the ICE-NG (VMX) series of such global models from the University of Toronto, ICE-6G_C (VM5a), has recently been slightly modified insofar as its Antarctic component is concerned to produce a "_D" version of the structure. This has been chosen to provide the boundary conditions for the next round of model-data inter-comparisons in the context of the international Paleoclimate Modeling Inter-comparison Project (PMIP). The output of PMIP will contribute to the Sixth Assessment Report (AR6) of the Intergovernmental Panel on Climate Change which is now under way. A highly significant test of the utility of this latest model has recently been performed that is focused upon the Dansgaard-Oeschger oscillation that was the primary source of climate variability during Marine Isotope Stage 3 (MIS3) of the most recent glacial cycle. By introducing the surface boundary conditions for paleotopography and paleobathymetry, land-sea mask and surface albedo into the NCAR CESM1 coupled climate model configured at full one degree by one degree CMIP5 resolution, together with the appropriate trace gas and orbital insolation forcing, we show that the millennium timescale Dansgard-Oeschger oscillation naturally develops following spin- up of the model into the glacial state.

  18. Glacial Lake Outburst Flood Risk in Nepal and Their Mitigation Practices in Nepal

    Science.gov (United States)

    Gurung, S.

    2017-12-01

    Glacial lakes in Nepal face a huge risk of Glacial Lake Outburst Flood (GLOF) due to the ongoing effects of climate change leading to considerable amount of snow and glacier melt thus weakening the natural barriers holding these high altitude glacial lakes. Nepal is at an ever growing risk every year and always waiting for an inevitable natural disaster. Since GLOF can cause extreme huge loss of human lives and physical properties, it has now become very important to design a proper mechanism which helps in reducing hazards from such events. There is little we can do to stop natural disasters, but we can implement pro-active control measures to minimize the loss. Early Warning System is the provision of timely and effective information, which allows individuals exposed to hazards to take action, avoid or reduce risk to life and property and prepare for effective response. The basic idea behind Early Warning System is that, the earlier and more accurately we are able to predict potential risks associated with natural hazards especially flood, the more likely we will be able to manage and mitigate the disasters' impact on society, economies and environment. We are currently focused on the development of early warning system for Imja Glacial Lake. The objective of developing early warning system for Imja GLOF is to help reduce economic losses and mitigate the number of injuries or deaths by providing information that allows individuals and communities downstream of Imja Lake to protect their lives and properties by using the latest and most advanced technology available. We have installed one Automatic Weather Station near the left lateral moraine of Imja Lake to study the effects of different meteorological parameters so as to predict occurrence of any GLOF event. The sensor includes pluviometer, pyranometer, temperature and humidity sensor, wind sensor, Snowdepth sensor. Two radar level sensors are installed at the outlet of Imja Lake and downstream of Imja river

  19. Glacial modification of granite tors in the Cairngorms, Scotland

    Science.gov (United States)

    Hall, A.M.; Phillips, W.M.

    2006-01-01

    A range of evidence indicates that many granite tors in the Cairngorms have been modified by the flow of glacier ice during the Pleistocene. Comparisons with SW England and the use of a space-time transformation across 38 tor groups in the Cairngorms allow a model to be developed for progressive glacial modification. Tors with deeply etched surfaces and no, or limited, block removal imply an absence of significant glacial modification. The removal of superstructure and blocks, locally forming boulder trains, and the progressive reduction of tors to stumps and basal slabs represent the more advanced stages of modification. Recognition of some slabs as tor stumps from which glacial erosion has removed all superstructure allows the original distribution of tors to be reconstructed for large areas of the Cairngorms. Unmodified tors require covers of non-erosive, cold-based ice during all of the cold stages of the Middle and Late Pleistocene. Deformation beneath cold-based glacier ice is capable of the removal of blocks but advanced glacial modification requires former wet-based glacier ice. The depth of glacial erosion at former tor sites remains limited largely to the partial or total elimination of the upstanding tor form. Cosmogenic nuclide exposure ages (Phillips et al., 2006) together with data from weathering pit depths (Hall and Phillips, 2006), from the surfaces of tors and large erratic blocks require that the glacial entrainment of blocks from tors occurred in Marine Isotope Stages (MIS) 4-2, 6 and, probably, at least one earlier phase. The occurrence of glacially modified tors on or close to, the main summits of the Cairngorms requires full ice cover over the mountains during these Stages. Evidence from the Cairngorms indicates that tor morphology can be regarded as an important indicator of former ice cover in many formerly glaciated areas, particularly where other evidence of ice cover is sparse. Recognition of the glacial modification of tors is important

  20. Scottish landform examples : The Cairngorms - a pre-glacial upland granite landscape

    OpenAIRE

    Hall, A.M.; Gillespie, M.R.; Thomas, C.W.; Ebert, K.

    2013-01-01

    The Cairngorm massif in NE Scotland (Figure 1) is an excellent example of a preglacial upland landscape formed in granite. Glacial erosion in the mountains has been largely confined to valleys and corries (Rea, 1998) and so has acted to dissect a pre-existing upland (Figure 2). Intervening areas of the massif experienced negligible glacial erosion due to protective covers of cold-based ice (Sugden, 1968) and preserve a wide range of pre-glacial and non-glacial landforms and reg...

  1. Effects of Atlantic warm pool variability over climate of South America tropical transition zone

    Science.gov (United States)

    Ricaurte Villota, Constanza; Romero-Rodríguez, Deisy; Andrés Ordoñez-Zuñiga, Silvio; Murcia-Riaño, Magnolia; Coca-Domínguez, Oswaldo

    2016-04-01

    Colombia is located in the northwestern corner of South America in a climatically complex region due to the influence processes modulators of climate both the Pacific and Atlantic region, becoming in a transition zone between phenomena of northern and southern hemisphere. Variations in the climatic conditions of this region, especially rainfall, have been attributed to the influence of the El Nino Southern Oscillation (ENSO), but little is known about the interaction within Atlantic Ocean and specifically Caribbean Sea with the environmental conditions of this region. In this work We studied the influence of the Atlantic Warm Pool (AWP) on the Colombian Caribbean (CC) climate using data of Sea Surface Temperature (SST) between 1900 - 2014 from ERSST V4, compared with in situ data SIMAC (National System for Coral Reef Monitoring in Colombia - INVEMAR), rainfall between 1953-2013 of meteorological stations located at main airports in the Colombian Caribbean zone, administered by IDEAM, and winds data between 2003 - 2014 from WindSat sensor. The parameters analyzed showed spatial differences throughout the study area. SST anomalies, representing the variability of the AWP, showed to be associated with Multidecadal Atlantic Oscillation (AMO) and with the index of sea surface temperature of the North-tropical Atlantic (NTA), the variations was on 3 to 5 years on the ENSO scale and of approximately 11 years possibly related to solar cycles. Rainfall anomalies in the central and northern CC respond to changes in SST, while in the south zone these are not fully engage and show a high relationship with the ENSO. Finally, the winds also respond to changes in SST and showed a signal approximately 90 days possibly related to the Madden-Julian Oscillation, whose intensity depends on the CC region being analyzed. The results confirm that region is a transition zone in which operate several forcing, the variability of climate conditions is difficult to attribute only one, as ENSO

  2. The influence of Southern Ocean surface buoyancy forcing on glacial-interglacial changes in the global deep ocean stratification

    OpenAIRE

    Sun, S; Eisenman, I; Stewart, AL

    2016-01-01

    ©2016. American Geophysical Union. All Rights Reserved. Previous studies have suggested that the global ocean density stratification below ∼3000 m is approximately set by its direct connection to the Southern Ocean surface density, which in turn is constrained by the atmosphere. Here the role of Southern Ocean surface forcing in glacial-interglacial stratification changes is investigated using a comprehensive climate model and an idealized conceptual model. Southern Ocean surface forcing is f...

  3. Rapid global ocean-atmosphere response to Southern Ocean freshening during the last glacial.

    Science.gov (United States)

    Turney, Chris S M; Jones, Richard T; Phipps, Steven J; Thomas, Zoë; Hogg, Alan; Kershaw, A Peter; Fogwill, Christopher J; Palmer, Jonathan; Bronk Ramsey, Christopher; Adolphi, Florian; Muscheler, Raimund; Hughen, Konrad A; Staff, Richard A; Grosvenor, Mark; Golledge, Nicholas R; Rasmussen, Sune Olander; Hutchinson, David K; Haberle, Simon; Lorrey, Andrew; Boswijk, Gretel; Cooper, Alan

    2017-09-12

    Contrasting Greenland and Antarctic temperatures during the last glacial period (115,000 to 11,650 years ago) are thought to have been driven by imbalances in the rates of formation of North Atlantic and Antarctic Deep Water (the 'bipolar seesaw'). Here we exploit a bidecadally resolved 14 C data set obtained from New Zealand kauri (Agathis australis) to undertake high-precision alignment of key climate data sets spanning iceberg-rafted debris event Heinrich 3 and Greenland Interstadial (GI) 5.1 in the North Atlantic (~30,400 to 28,400 years ago). We observe no divergence between the kauri and Atlantic marine sediment 14 C data sets, implying limited changes in deep water formation. However, a Southern Ocean (Atlantic-sector) iceberg rafted debris event appears to have occurred synchronously with GI-5.1 warming and decreased precipitation over the western equatorial Pacific and Atlantic. An ensemble of transient meltwater simulations shows that Antarctic-sourced salinity anomalies can generate climate changes that are propagated globally via an atmospheric Rossby wave train.A challenge for testing mechanisms of past climate change is the precise correlation of palaeoclimate records. Here, through climate modelling and the alignment of terrestrial, ice and marine 14 C and 10 Be records, the authors show that Southern Ocean freshwater hosing can trigger global change.

  4. Predicting Pleistocene climate from vegetation in North America

    Directory of Open Access Journals (Sweden)

    C. Loehle

    2007-01-01

    Full Text Available Climates at the Last Glacial Maximum have been inferred from fossil pollen assemblages, but these inferred climates are colder for eastern North America than those produced by climate simulations. It has been suggested that low CO2 levels could account for this discrepancy. In this study biogeographic evidence is used to test the CO2 effect model. The recolonization of glaciated zones in eastern North America following the last ice age produced distinct biogeographic patterns. It has been assumed that a wide zone south of the ice was tundra or boreal parkland (Boreal-Parkland Zone or BPZ, which would have been recolonized from southern refugia as the ice melted, but the patterns in this zone differ from those in the glaciated zone, which creates a major biogeographic anomaly. In the glacial zone, there are few endemics but in the BPZ there are many across multiple taxa. In the glacial zone, there are the expected gradients of genetic diversity with distance from the ice-free zone, but no evidence of this is found in the BPZ. Many races and related species exist in the BPZ which would have merged or hybridized if confined to the same refugia. Evidence for distinct southern refugia for most temperate species is lacking. Extinctions of temperate flora were rare. The interpretation of spruce as a boreal climate indicator may be mistaken over much of the region if the spruce was actually an extinct temperate species. All of these anomalies call into question the concept that climates in the zone south of the ice were extremely cold or that temperate species had to migrate far to the south. An alternate hypothesis is that low CO2 levels gave an advantage to pine and spruce, which are the dominant trees in the BPZ, and to herbaceous species over trees, which also fits the observed pattern. Thus climate reconstruction from pollen data is probably biased and needs to incorporate CO2 effects. Most temperate species could have survived across their current

  5. Abiotic landscape and vegetation patterns in the Netherlands during the Weichselian Late Glacial

    NARCIS (Netherlands)

    Hoek, W.Z.

    2000-01-01

    The Late Glacial landscape of the Netherlands was a landscape with changing geomorphology and vegetation. Glacial, eolian and fluvial processes in the time before the Late Glacial initially had formed the main landscape types that still existed during the Late Glacial. In these landscape types,

  6. MIGRATION OF HOMININS WITH MEGAHERBIVORES INTO EUROPE VIA THE DANUBE-PO GATEWAY IN THE LATE MATUYAMA CLIMATE REVOLUTION

    Directory of Open Access Journals (Sweden)

    GIOVANNI MUTTONI

    2014-11-01

    Full Text Available We update critical reviews of sites bearing hominin remains and/or tools from Europe (including the Balkans and Greece and conclude that the only compelling evidence of hominin presence in these regions was after ~0.9 Ma (million-years-ago, bracketed by the end of the Jaramillo subchron (0.99 Ma and the Brunhes-Matuyama boundary (0.78 Ma and straddling the climatic late Early Pleistocene revolution (EPR at the onset of enhanced glacial/interglacial activity that reverberated worldwide. Europe may have become initially populated during the EPR when, possibly for the first time in the Pleistocene, vast and exploitable ecosystems were generated along the Danube-Po Gateway. These newly formed settings, characterized by lowlands with open grasslands and reduced woody cover during glacial/interglacial transitions, represented the closest analogues to the savanna environment to which several large mammals linked with hominins in a common food web were adapted. It was only after stable and vast grassland-savanna environments opened that large mammals (e.g. megaherbivores could expand into Europe along the Danube-Po Gateway in conjunction with the attached food web to which hominins belonged.

  7. Combining state-and-transition simulations and species distribution models to anticipate the effects of climate change

    Science.gov (United States)

    Miller, Brian W.; Frid, Leonardo; Chang, Tony; Piekielek, N. B.; Hansen, Andrew J.; Morisette, Jeffrey T.

    2015-01-01

    State-and-transition simulation models (STSMs) are known for their ability to explore the combined effects of multiple disturbances, ecological dynamics, and management actions on vegetation. However, integrating the additional impacts of climate change into STSMs remains a challenge. We address this challenge by combining an STSM with species distribution modeling (SDM). SDMs estimate the probability of occurrence of a given species based on observed presence and absence locations as well as environmental and climatic covariates. Thus, in order to account for changes in habitat suitability due to climate change, we used SDM to generate continuous surfaces of species occurrence probabilities. These data were imported into ST-Sim, an STSM platform, where they dictated the probability of each cell transitioning between alternate potential vegetation types at each time step. The STSM was parameterized to capture additional processes of vegetation growth and disturbance that are relevant to a keystone species in the Greater Yellowstone Ecosystem—whitebark pine (Pinus albicaulis). We compared historical model runs against historical observations of whitebark pine and a key disturbance agent (mountain pine beetle, Dendroctonus ponderosae), and then projected the simulation into the future. Using this combination of correlative and stochastic simulation models, we were able to reproduce historical observations and identify key data gaps. Results indicated that SDMs and STSMs are complementary tools, and combining them is an effective way to account for the anticipated impacts of climate change, biotic interactions, and disturbances, while also allowing for the exploration of management options.

  8. Pollen-based continental climate reconstructions at 6 and 21 ka: a global synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Bartlein, P.J. [University of Oregon, Department of Geography, Eugene, Oregon (United States); Harrison, S.P. [University of Bristol, School of Geographical Sciences, Bristol (United Kingdom); Macquarie University, School of Biological Sciences, North Ryde, NSW (Australia); Brewer, S. [University of Wyoming, Botany Department, Wyoming (United States); Connor, S. [University of the Algarve, Centre for Marine and Environmental Research, Faro (Portugal); Davis, B.A.S. [Ecole Polytechnique Federale de Lausanne, School of Architecture, Civil and Environmental Engineering, Lausanne (Switzerland); Gajewski, K.; Viau, A.E. [University of Ottawa, Department of Geography, Ottawa, ON (Canada); Guiot, J. [CEREGE, Aix-en-Provence cedex 4 (France); Harrison-Prentice, T.I. [GTZ, PAKLIM, Jakarta (Indonesia); Henderson, A. [University of Minnesota, Department of Geology and Geophysics, Minneapolis, MN (United States); Peyron, O. [Laboratoire Chrono-Environnement UMR 6249 CNRS-UFC UFR Sciences et Techniques, Besancon Cedex (France); Prentice, I.C. [Macquarie University, School of Biological Sciences, North Ryde, NSW (Australia); University of Bristol, QUEST, Department of Earth Sciences, Bristol (United Kingdom); Scholze, M. [University of Bristol, QUEST, Department of Earth Sciences, Bristol (United Kingdom); Seppae, H. [University of Helsinki, Department of Geology, P.O. Box 65, Helsinki (Finland); Shuman, B. [University of Wyoming, Department of Geology and Geophysics, Laramie, WY (United States); Sugita, S. [Tallinn University, Institute of Ecology, Tallinn (Estonia); Thompson, R.S. [US Geological Survey, PO Box 25046, Denver, CO (United States); Williams, J. [University of Wisconsin, Department of Geography, Madison, WI (United States); Wu, H. [Chinese Academy of Sciences, Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Beijing (China)

    2011-08-15

    Subfossil pollen and plant macrofossil data derived from {sup 14}C-dated sediment profiles can provide quantitative information on glacial and interglacial climates. The data allow climate variables related to growing-season warmth, winter cold, and plant-available moisture to be reconstructed. Continental-scale reconstructions have been made for the mid-Holocene (MH, around 6 ka) and Last Glacial Maximum (LGM, around 21 ka), allowing comparison with palaeoclimate simulations currently being carried out as part of the fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change. The synthesis of the available MH and LGM climate reconstructions and their uncertainties, obtained using modern-analogue, regression and model-inversion techniques, is presented for four temperature variables and two moisture variables. Reconstructions of the same variables based on surface-pollen assemblages are shown to be accurate and unbiased. Reconstructed LGM and MH climate anomaly patterns are coherent, consistent between variables, and robust with respect to the choice of technique. They support a conceptual model of the controls of Late Quaternary climate change whereby the first-order effects of orbital variations and greenhouse forcing on the seasonal cycle of temperature are predictably modified by responses of the atmospheric circulation and surface energy balance. (orig.)

  9. Reconstructing the Mineralogy and Bioavailability of Dust-Borne Iron Deposited to the Southern Ocean through the Last Glacial Cycle

    Science.gov (United States)

    Shoenfelt, E. M.; Winckler, G.; Lamy, F.; Bostick, B. C.

    2017-12-01

    The iron (Fe) in dust deposited to the Fe-limited Southern Ocean plays an important role in ocean biogeochemistry and global climate. For instance, increases in dust-borne Fe deposition in the subantarctic Southern Ocean have been linked to increases in productivity and part of the CO2 drawdown of the last glacial cycle [1]. Notably, bioavailable Fe impacts productivity rather than total Fe. While it has long been understood that Fe mineralogy impacts Fe bioavailability in general, our understanding of the mineralogy of Fe in dust in specific is limited to that in modern dust sources. Reduced mineral Fe in dust has been shown to be more bioavailable than oxidized mineral iron, as it is more readily dissolved [2], and it is more easily utilized directly by a model diatom [3]. Our previous work focusing on South American dust sources shows that glacial activity is associated with higher Fe(II) fractions in dust-borne minerals, due to the physical weathering of Fe(II)-rich silicates in bedrock [3]. Thus, we hypothesize that there were higher Fe(II) fractions in dust deposited during cold glacial periods where ice sheets were more widespread. Using synchrotron-based X-ray absorption spectroscopy, we have reconstructed the mineralogy of Fe deposited to Southern Ocean sediment cores from the subantarctic South Atlantic (TN057-6/ODP Site 1090) and South Pacific (PS7/56-1) through the last glacial cycle, creating the first paleorecord of Fe mineralogy and its associated bioavailability. During cold glacial periods there is a higher fraction of reduced Fe - in the form of Fe(II) silicates - deposited to the sediments compared to warm interglacial periods. Thus, Fe(II) content is directly correlated with dust input. The presence of Fe(II) silicates rather than products of diagenesis such as pyrite suggests that these Fe(II) minerals are physically weathered from bedrock and preserved rather than produced in the sediment. This result suggests that not only was there more dust

  10. Terrestrial cooling in Northern Europe during the Eocene–Oligocene transition

    Science.gov (United States)

    Hren, Michael T.; Sheldon, Nathan D.; Grimes, Stephen T.; Collinson, Margaret E.; Hooker, Jerry J.; Bugler, Melanie; Lohmann, Kyger C.

    2013-01-01

    Geochemical and modeling studies suggest that the transition from the “greenhouse” state of the Late Eocene to the “icehouse” conditions of the Oligocene 34–33.5 Ma was triggered by a reduction of atmospheric pCO2 that enabled the rapid buildup of a permanent ice sheet on the Antarctic continent. Marine records show that the drop in pCO2 during this interval was accompanied by a significant decline in high-latitude sea surface and deep ocean temperature and enhanced seasonality in middle and high latitudes. However, terrestrial records of this climate transition show heterogeneous responses to changing pCO2 and ocean temperatures, with some records showing a significant time lag in the temperature response to declining pCO2. We measured the Δ47 of aragonite shells of the freshwater gastropod Viviparus lentus from the Solent Group, Hampshire Basin, United Kingdom, to reconstruct terrestrial temperature and hydrologic change in the North Atlantic region during the Eocene–Oligocene transition. Our data show a decrease in growing-season surface water temperatures (∼10 °C) during the Eocene–Oligocene transition, corresponding to an average decrease in mean annual air temperature of ∼4–6 °C from the Late Eocene to Early Oligocene. The magnitude of cooling is similar to observed decreases in North Atlantic sea surface temperature over this interval and occurs during major glacial expansion. This suggests a close linkage between atmospheric carbon dioxide concentrations, Northern Hemisphere temperature, and expansion of the Antarctic ice sheets. PMID:23610424

  11. Enhancing rates of erosion and uplift through glacial perturbations

    Science.gov (United States)

    Norton, Kevin; Schlunegger, Fritz; Abbühl, Luca

    2010-05-01

    Research over the past decade has shown that the pattern of modern rock uplift in the Swiss Alps correlates with both long-term (thermochronometers) and short-term (cosmogenic nuclide-derived denudation rates, sediment loads, lake fills) measures of erosion. This correlation has been attributed alternately to isostatic causes (compensation to erosion and/or glacial unloading) and tectonic forces (ongoing collision and partial delamination). Of these potential driving forces, only isostatic compensation to erosion fits all available structural, geodetic, and flexural models. We explore this uplift-erosion relationship by analyzing river channel steepness for Alpine rivers. Zones of oversteepening, and hence enhanced stream power, are associated with glacial erosion and deposition during LGM and earlier glaciations, resulting in the focusing of erosion into the inner gorges which connect hanging tributary valleys to the main glacial trunk valley. These inner gorges are transient zones in which fluvial and hillslope processes are in the process of re-adjusting this glacially perturbed landscape. Bedrock properties also play a major role in the response time of these adjustments. Glacially generated knickzones are located within 5 km of the trunk stream in the Rhone valley where resistant lithologies dominate (gneiss), whereas the knickzones have migrated as much as 10 km or further in the less resistant rocks (buendnerschists) of the Rhine valley. We suggest that the rock uplift pattern is controlled by surface denudation as set by the glacial-interglacial history of the Alps. Rapid, focused erosion results in rapid rock uplift rates in the Central Swiss Alps, where glaciers were most active. An interesting ramification of this reasoning is that in the absence of glacial perturbation, both rock uplift rates and denudation rates would be substantially lower in this isostatically compensated mountain belt.

  12. Jurassic Paleolatitudes, Paleogeography, and Climate Transitions In the Mexican Subcontinen

    Science.gov (United States)

    Molina-Garza, R. S.; Geissman, J. W.; Lawton, T. F.

    2014-12-01

    Jurassic northward migration of Mexico, trailing the North America plate, resulted in temporal evolution of climate-sensitive depositional environments. Lower-Middle Jurassic rocks in central Mexico contain a record of warm-humid conditions, which are indicated by coal and compositionally mature sandstone deposited in continental environments. Preliminary paleomagnetic data indicate that these rocks were deposited at near-equatorial paleolatitudes. The Middle Jurassic (ca. 170 Ma) Diquiyú volcanic sequence in central Oaxaca give an overall mean of D=82.2º/ I= +4.1º (n=10; k=17.3, α95=12º). In the Late Jurassic, the Gulf of Mexico formed as a subsidiary basin of the Atlantic Ocean, when the supercontinent Pangaea ruptured. Upper Jurassic strata, including eolianite and widespread evaporite deposits, across Mexico indicate dry-arid conditions. Available paleomagnetic data (compaction-corrected) from eolianites in northeast Mexico indicate deposition at ~15-20ºN. As North America moved northward during Jurassic opening of the Atlantic, different latitudinal regions experienced coeval Late Jurassic climatic shifts. Climate transitions have been widely recognized in the Colorado plateau region. The plateau left the horse-latitudes in the late Middle Jurassic to reach temperate humid climates at ~40ºN in the latest Jurassic. In turn, the southern end of the North America plate (central Mexico) reached arid horse-latitudes in the Late Jurassic. At that time, epeiric platforms developed in the circum-Gulf region after a long period of margin extension. We suggest that Upper Jurassic hydrocarbon source rocks in the circum-Gulf region accumulated on these platforms as warm epeiric hypersaline seas and the Gulf of Mexico itself were fertilized by an influx of wind-blown silt from continental regions. Additional nutrients were brought to shallow zones of photosynthesis by ocean upwelling driven by changes in the continental landmass configuration.

  13. Development of Petrov glacial-lake system (Tien Shan and outburst risk assessment

    Directory of Open Access Journals (Sweden)

    I. A. Torgoev

    2013-01-01

    Full Text Available Global climate warming causes an intensive melting and retreat of glaciers in the Tien Shan mountains. Melting water of glaciers causes overfilling of high mountain lakes. The increase of the surface and volume of the Petrov Lake accompanied with the decrease of stability of the dam represents an extremely dangerous situation that can produce a natural disaster. Failure can happen due to erosion, a buildup of water pressure, an earthquake or if a large enough portion of a glacier breaks off and massively displaces the waters in a glacial lake at its base. In case of the lake dam rupture, flooding of a disposal site of highly toxic tailing from the gold mine Kumtor is a threat. If this happens, the toxic waste containing cyanides would contaminate a large area in the Naryn (Syrdarya river basin. Even if the flooding of the disposal site does not occur, the damage after lake dam fracture will be immense due to the glacial lake outburst flood may be a devastating mudslide. In order to prevent or reduce the risk of this event we recommend performing engineering surveys for the development and implementation of the project for the controlled reduction of water level in the Blue Bay of the Petrov Lake to a safe volume.

  14. The regional species richness and genetic diversity of Arctic vegetation reflect both past glaciations and current climate

    DEFF Research Database (Denmark)

    Stewart, L.; Alsos, Inger G.; Bay, Christian

    2016-01-01

    Aim The Arctic has experienced marked climatic differences between glacial and interglacial periods and is now subject to a rapidly warming climate. Knowledge of the effects of historical processes on current patterns of diversity may aid predictions of the responses of vegetation to future climate...... species richness of the vascular plant flora of 21 floristic provinces and examined local species richness in 6215 vegetation plots distributed across the Arctic. We assessed levels of genetic diversity inferred from amplified fragment length polymorphism variation across populations of 23 common Arctic...... size compared to the models of bryophyte and lichen richness. Main conclusion Our study suggests that imprints of past glaciations in Arctic vegetation diversity patterns at the regional scale are still detectable today. Since Arctic vegetation is still limited by post-glacial migration lag...

  15. Investigating the evolution of major Northern Hemisphere ice sheets during the last glacial-interglacial cycle

    Directory of Open Access Journals (Sweden)

    S. Bonelli

    2009-07-01

    Full Text Available A 2.5-dimensional climate model of intermediate complexity, CLIMBER-2, fully coupled with the GREMLINS 3-D thermo-mechanical ice sheet model is used to simulate the evolution of major Northern Hemisphere ice sheets during the last glacial-interglacial cycle and to investigate the ice sheets responses to both insolation and atmospheric CO2 concentration. This model reproduces the main phases of advance and retreat of Northern Hemisphere ice sheets during the last glacial cycle, although the amplitude of these variations is less pronounced than those based on sea level reconstructions. At the last glacial maximum, the simulated ice volume is 52.5×1015 m3 and the spatial distribution of both the American and Eurasian ice complexes is in reasonable agreement with observations, with the exception of the marine parts of these former ice sheets.
    A set of sensitivity studies has also been performed to assess the sensitivity of the Northern Hemisphere ice sheets to both insolation and atmospheric CO2. Our results suggest that the decrease of summer insolation is the main factor responsible for the early build up of the North American ice sheet around 120 kyr BP, in agreement with benthic foraminifera δ18O signals. In contrast, low insolation and low atmospheric CO2 concentration are both necessary to trigger a long-lasting glaciation over Eurasia.

  16. Continuous 500,000-year climate record from vein calcite in Devils Hole, Nevada

    International Nuclear Information System (INIS)

    Winograd, I.J.; Coplen, T.B.; Landwehr, J.M.; Revesz, K.M.; Riggs, A.C.; Ludwig, K.R.; Szabo, B.J.; Kolesar, P.T.

    1992-01-01

    Oxygen-18 (δ 18 O) variations in a 36-centimeter-long core (DH-11) of vein calcite from Devils Hole, Nevada, yield an uninterrupted 500,000-year paleotemperature record that closely mimics all major features in the Vostok (Antarctica) paleotemperature and marine δ 18 O ice-volume records. The chronology for this continental record is based on 21 replicated mass-spectrometric uranium-series dates. Between the middle and latest Pleistocene, the duration of the last four glacial cycles recorded in the calcite increased from 80,000 to 130,000 years; this variation suggests that major climate changes were aperiodic. The timing of specific climatic events indicates that orbitally controlled variations in solar insolation were not a major factor in trigering deglaciations. Interglacial climates lasted about 20,000 years. Collectively, these observations are inconsistent with the Milankovitch hypothesis for the origin of the Pleistocene glacial cycles but they are consistent with the thesis that these cycles originated from internal nonlinear feedbacks within the atmosphere-ice sheet-ocean system

  17. The integration of multiple independent data reveals an unusual response to Pleistocene climatic changes in the hard tick Ixodes ricinus.

    Science.gov (United States)

    Porretta, Daniele; Mastrantonio, Valentina; Mona, Stefano; Epis, Sara; Montagna, Matteo; Sassera, Davide; Bandi, Claudio; Urbanelli, Sandra

    2013-03-01

    In the last few years, improved analytical tools and the integration of genetic data with multiple sources of information have shown that temperate species exhibited more complex responses to ice ages than previously thought. In this study, we investigated how Pleistocene climatic changes affected the current distribution and genetic diversity of European populations of the tick Ixodes ricinus, an ectoparasite with high ecological plasticity. We first used mitochondrial and nuclear genetic markers to investigate the phylogeographic structure of the species and its Pleistocene history using coalescent-based methods; then we used species distribution modelling to infer the climatic niche of the species at last glacial maximum; finally, we reviewed the literature on the I. ricinus hosts to identify the locations of their glacial refugia. Our results support the scenario that during the last glacial phase, I. ricinus never experienced a prolonged allopatric divergence in separate glacial refugia, but persisted with interconnected populations across Southern and Central Europe. The generalist behaviour in host choice of I. ricinus would have played a major role in maintaining connections between its populations. Although most of the hosts persisted in separate refugia, from the point of view of I. ricinus, they represented a continuity of 'bridges' among populations. Our study highlights the importance of species-specific ecology in affecting responses to Pleistocene glacial-interglacial cycles. Together with other cases in Europe and elsewhere, it contributes to setting new hypotheses on how species with wide ecological plasticity coped with Pleistocene climatic changes. © 2013 Blackwell Publishing Ltd.

  18. Interpreting last glacial to Holocene dust changes at Talos Dome (East Antarctica: implications for atmospheric variations from regional to hemispheric scales

    Directory of Open Access Journals (Sweden)

    S. Albani

    2012-04-01

    Full Text Available Central East Antarctic ice cores preserve stratigraphic records of mineral dust originating from remote sources in the Southern Hemisphere, and represent useful indicators of climatic variations on glacial-interglacial time scales. The peripheries of the East Antarctic Ice Sheet, where ice-free areas with the potential to emit dust exist, have been less explored from this point of view. Here, we present a new profile of dust deposition flux and grain size distributions from an ice core drilled at Talos Dome (TALDICE, Northern Victoria Land, East Antarctica, where there is a significant input of dust from proximal Antarctic ice-free areas. We analyze dust and stable water isotopes variations from the Last Glacial Maximum to the Late Holocene, and compare them to the EPICA Dome C profiles from central East Antarctica. The smaller glacial-interglacial variations at Talos Dome compared to Dome C and a distinctive decreasing trend during the Holocene characterize the TALDICE dust profile. By deciphering the composite dust signal from both remote and local sources, we show the potential of this combined proxy of source activity and atmospheric transport to give information on both regional and larger spatial scales. In particular, we show how a regional signal, which we relate to the deglaciation history of the Ross Sea embayment, can be superimposed to the broader scale glacial-interglacial variability that characterizes other Antarctic sites.

  19. Glacial origin for cave rhythmite during MIS 5d-c in a glaciokarst landscape, Picos de Europa (Spain)

    Science.gov (United States)

    Ballesteros, Daniel; Jiménez-Sánchez, Montserrat; Giralt, Santiago; DeFelipe, Irene; García-Sansegundo, Joaquín

    2017-06-01

    Laminated slackwater deposits have been identified in many karst caves related to fluvial and lacustrine sedimentation. However, sedimentological evidence rarely supports a glacial origin for these deposits, which was proposed by previous studies. The Torca La Texa shaft is located in a glaciokarst area that comprises numerous slackwater-type deposits, piled up in fining-upward sequences. A basal sandy erosive layer and millimeter-sized laminated rhythmite with interbedded flowstone characterize these sequences. Fining-upward layers of carbonate silt, clay, and minor quartz sand deposited in flooded conduits define the rhythmite lamination. The presence of allochthonous minerals indicates that the rhythmite sediment comes from the glacial erosion of nearby carbonate mountains. Two 234U/230Th radiometric ages dated the rhythmite deposits around 109 and 95 ka, coinciding with relative cold periods included in the MIS 5d-c. These cold periods were marked by a high annual seasonality, immediately after the glacial local maximum extension, in agreement with a varve-type deposit. The combination of these sedimentological mineralogical, geomorphological and paleoclimate information indicates that the rhythmite should be introduced into the studied cave during the summer melting of the glaciers, which produced the recharge of the karst aquifer, triggering cave floods. In addition, punctual glacier collapses would also have their imprint in the slackwater sequences with thicker, coarser and erosive sand deposits and the spring blocking by glaciers may have promoted floods inside the cave. Therefore, the studied rhythmite can be interpreted as glacial varves decanted during the relatively cold climate conditions.

  20. Periodical climate variations and their impact on Earth rotation for the last 800Kyr

    Science.gov (United States)

    Chapanov, Yavor; Gambis, Daniel

    2010-05-01

    The Earth rotation variations are highly affected by climatic variations associated with the glacial cycles in the late Pleistocene. The processes of glaciation, followed by ice melting, are connected with significant changes of the mean sea level. These processes redistribute great amount of water masses between oceans and ice sheets, which lead to changes of the axial moment of inertia and corresponding variations of the Universal Time UT1 and Length of Day LOD, according to the law of angular momentum conservation. The climatic variations for the last 800Kyr are analyzed by means of time series of temperature changes, determined by deuterium data from Antarctica ice core. Reconstructed glacial sea level variations for the last 380Kyr, determined by the sediments from the Red sea, are used, too. Common periodicities of the temperature and mean sea level variations are determined. Time series of the long-periodical UT1 and LOD oscillations for the last 380Kyr and 800Kyr are reconstructed by means of empirical hydrological model of global water redistribution between the ocean and ice sheets during the last glacial events.

  1. Dissolved organic matter export in glacial and non-glacial streams along the Gulf of Alaska

    Science.gov (United States)

    Hood, E. W.; Scott, D.; Jeffery, A.; Schreiber, S.; Heavner, M.; Edwards, R.; D'Amore, D. V.; Fellman, J.

    2009-12-01

    The Gulf of Alaska drainage basin contains more than 75,000 km2 of glaciers, many of which are rapidly thinning and receding. We are using a paired watershed approach to evaluate how changes in glacier ecosystems will impact the export dissolved organic matter (DOM) into the Gulf of Alaska. Our primary study watersheds, Lemon Creek and Montana Creek, are similar in size, bedrock lithology and elevation range and extend from near sea level to the margin or interior of the Juneau Icefield. Lemon Creek has a glacial coverage of ~60%, while Montana Creek is free of glacier ice. Our goal is to evaluate seasonal differences in the quantity, chemical character and reactivity of DOM being exported from these watersheds to downstream near-shore marine ecosystems. In addition, we are monitoring a variety of physical parameters that influence instream DOM metabolism in both watersheds. Our initial results from the 2009 runoff season indicate that concentrations of dissolved organic carbon (DOC) are substantially higher in the non-glacial watershed. However, fluorescence analyses indicate that DOM from the glacier watershed has a higher protein and lower humic material content compared to DOM from the non-glacial watershed. After the spring snowmelt season, physical parameters between the two watersheds diverged, with higher streamflow and turbidity as well as colder water temperatures in the glacial watershed. Although our previous yield calculations show significantly higher DOC fluxes from the forested watershed, our results here suggest that glacier watersheds may be an important source of labile carbon to the near shore marine ecosystem. The contrast in the physical habitat between the two rivers (e.g glacier stream = cold, low light penetration, unstable substrate) supports the hypothesis that that in-stream DOM processing is limited within glacier dominated rivers, therefore delivering a higher percentage of labile DOM downstream.

  2. A 33,000-year-old incipient dog from the Altai Mountains of Siberia: evidence of the earliest domestication disrupted by the Last Glacial Maximum.

    Directory of Open Access Journals (Sweden)

    Nikolai D Ovodov

    Full Text Available BACKGROUND: Virtually all well-documented remains of early domestic dog (Canis familiaris come from the late Glacial and early Holocene periods (ca. 14,000-9000 calendar years ago, cal BP, with few putative dogs found prior to the Last Glacial Maximum (LGM, ca. 26,500-19,000 cal BP. The dearth of pre-LGM dog-like canids and incomplete state of their preservation has until now prevented an understanding of the morphological features of transitional forms between wild wolves and domesticated dogs in temporal perspective. METHODOLOGY/PRINCIPAL FINDING: We describe the well-preserved remains of a dog-like canid from the Razboinichya Cave (Altai Mountains of southern Siberia. Because of the extraordinary preservation of the material, including skull, mandibles (both sides and teeth, it was possible to conduct a complete morphological description and comparison with representative examples of pre-LGM wild wolves, modern wolves, prehistoric domesticated dogs, and early dog-like canids, using morphological criteria to distinguish between wolves and dogs. It was found that the Razboinichya Cave individual is most similar to fully domesticated dogs from Greenland (about 1000 years old, and unlike ancient and modern wolves, and putative dogs from Eliseevichi I site in central Russia. Direct AMS radiocarbon dating of the skull and mandible of the Razboinichya canid conducted in three independent laboratories resulted in highly compatible ages, with average value of ca. 33,000 cal BP. CONCLUSIONS/SIGNIFICANCE: The Razboinichya Cave specimen appears to be an incipient dog that did not give rise to late Glacial-early Holocene lineages and probably represents wolf domestication disrupted by the climatic and cultural changes associated with the LGM. The two earliest incipient dogs from Western Europe (Goyet, Belguim and Siberia (Razboinichya, separated by thousands of kilometers, show that dog domestication was multiregional, and thus had no single place of

  3. Varying Influence of Different Forcings on the Indo-Pacific Warm Pool Climate

    Science.gov (United States)

    Mohtadi, M.; Huang, E.; Hollstein, M.; Chen, Y.; Schefuß, E.; Rosenthal, Y.; Prange, M.; Oppo, D.; Liu, J.; Steinke, S.; Martinez-Mendez, G.; Tian, J.; Moffa-Sanchez, P.; Lückge, A.

    2017-12-01

    Proxy records of rainfall in marine archives from the eastern and western parts of the Indo-Pacific Warm Pool (IPWP) vary at precessional band and suggest a dominant role of orbital forcing by modulating monsoon rainfall and the position of the Inter Tropical Convergence Zone. Rainfall changes recorded in marine archives from the northern South China Sea reveal a more complex history. They are largely consistent with those recorded in the Chinese cave speleothems during glacial periods, but show opposite changes during interglacial peaks that coincide with strong Northern Hemisphere summer insolation maxima. During glacial periods, the establishment of massive Northern Hemisphere ice sheets and the exposure of broad continental shelves in East and Southeast Asia alter the large-scale routes and amounts of water vapor transport onto land relative to interglacials. Precipitation over China during glacials varies at precessional band and is dominated by water vapor transport from the nearby tropical and northwest Pacific, resulting in consistent changes in precipitation over large areas. In the absence of ice forcing during peak interglacials with a strong summer insolation, the low-level southerly monsoonal winds mainly of the Indian Ocean origin penetrate further landward and rainout along their path over China. Subsurface temperatures from the IPWP lack changes on glacial-interglacial timescales but follow the obliquity cycle, and suggest that obliquity-paced climate variations at mid-latitudes remotely control subsurface temperatures in the IPWP. Temperature and rainfall in the IPWP respond primarily to abrupt climate changes in the North Atlantic on millennial timescales, and to ENSO and solar forcing on interannual to decadal timescales. In summary, results from marine records reveal that the IPWP climate is sensitive to changes in spatial and temporal distribution of heat by many types of forcing, the influence of which seems to vary in time and space.

  4. LGM and Late Glacial glacier advances in the Cordillera Real and Cochabamba (Bolivia deduced from 10Be surface exposure dating

    Directory of Open Access Journals (Sweden)

    H. Veit

    2007-10-01

    Full Text Available Surface exposure dating (SED is an innovative tool already being widely applied for moraine dating and for Late Quaternary glacier and climate reconstruction. Here we present exposure ages of 28 boulders from the Cordillera Real and the Cordillera Cochabamba, Bolivia. Our results indicate that the local Last Glacial Maximum (LGM in the Eastern Cordilleras occurred at ~22–25 ka and was thus synchronous to the global temperature minimum. We were also able to date several Late Glacial moraines to ~11–13 ka, which likely document lower temperatures and increased precipitation ("Coipasa" humid phase. Additionally, we recognize the existence of older Late Glacial moraines re-calculated to ~15 ka from published cosmogenic nuclide data. Those may coincide with the cold Heinrich 1 event in the North Atlantic region and the pronounced "Tauca" humid phase. We conclude that (i exposure ages in the tropical Andes may have been overestimated so far due to methodological uncertainties, and (ii although precipitation plays an important role for glacier mass balances in the tropical Andes, it becomes the dominant forcing for glaciation only in the drier and thus more precipitation-sensitive regions farther west and south.

  5. Records of millennial-scale climate change from the Great Basin of the Western United States

    Science.gov (United States)

    Benson, Larry

    High-resolution (decadal) records of climate change from the Owens, Mono, and Pyramid Lake basins of California and Nevada indicate that millennialscale oscillations in climate of the Great Basin occurred between 52.6 and 9.2 14C ka. Climate records from the Owens and Pyramid Lake basins indicate that most, but not all, glacier advances (stades) between 52.6 and ˜15.0 14C ka occurred during relatively dry times. During the last alpine glacial period (˜60.0 to ˜14.0 14C ka), stadial/interstadial oscillations were recorded in Owens and Pyramid Lake sediments by the negative response of phytoplankton productivity to the influx of glacially derived silicates. During glacier advances, rock flour diluted the TOC fraction of lake sediments and introduction of glacially derived suspended sediment also increased the turbidity of lake water, decreasing light penetration and photosynthetic production of organic carbon. It is not possible to correlate objectively peaks in the Owens and Pyramid Lake TOC records (interstades) with Dansgaard-Oeschger interstades in the GISP2 ice-core δ18O record given uncertainties in age control and difference in the shapes of the OL90, PLC92 and GISP2 records. In the North Atlantic region, some climate records have clearly defined variability/cyclicity with periodicities of 102 to 103 yr; these records are correlatable over several thousand km. In the Great Basin, climate proxies also have clearly defined variability with similar time constants, but the distance over which this variability can be correlated remains unknown. Globally, there may be minimal spatial scales (domains) within which climate varies coherently on centennial and millennial scales, but it is likely that the sizes of these domains vary with geographic setting and time. A more comprehensive understanding of the mechanisms of climate forcing and the physical linkages between climate forcing and system response is needed in order to predict the spatial scale(s) over which

  6. Integrated regional changes in arctic climate feedbacks: Implications for the global climate system

    Science.gov (United States)

    McGuire, A.D.; Chapin, F. S.; Walsh, J.E.; Wirth, C.; ,

    2006-01-01

    The Arctic is a key part of the global climate system because the net positive energy input to the tropics must ultimately be resolved through substantial energy losses in high-latitude regions. The Arctic influences the global climate system through both positive and negative feedbacks that involve physical, ecological, and human systems of the Arctic. The balance of evidence suggests that positive feedbacks to global warming will likely dominate in the Arctic during the next 50 to 100 years. However, the negative feedbacks associated with changing the freshwater balance of the Arctic Ocean might abruptly launch the planet into another glacial period on longer timescales. In light of uncertainties and the vulnerabilities of the climate system to responses in the Arctic, it is important that we improve our understanding of how integrated regional changes in the Arctic will likely influence the evolution of the global climate system. Copyright ?? 2006 by Annual Reviews. All rights reserved.

  7. Earth system model simulations show different feedback strengths of the terrestrial carbon cycle under glacial and interglacial conditions

    Directory of Open Access Journals (Sweden)

    M. Adloff

    2018-04-01

    Full Text Available In simulations with the MPI Earth System Model, we study the feedback between the terrestrial carbon cycle and atmospheric CO2 concentrations under ice age and interglacial conditions. We find different sensitivities of terrestrial carbon storage to rising CO2 concentrations in the two settings. This result is obtained by comparing the transient response of the terrestrial carbon cycle to a fast and strong atmospheric CO2 concentration increase (roughly 900 ppm in Coupled Climate Carbon Cycle Model Intercomparison Project (C4MIP-type simulations starting from climates representing the Last Glacial Maximum (LGM and pre-industrial times (PI. In this set-up we disentangle terrestrial contributions to the feedback from the carbon-concentration effect, acting biogeochemically via enhanced photosynthetic productivity when CO2 concentrations increase, and the carbon–climate effect, which affects the carbon cycle via greenhouse warming. We find that the carbon-concentration effect is larger under LGM than PI conditions because photosynthetic productivity is more sensitive when starting from the lower, glacial CO2 concentration and CO2 fertilization saturates later. This leads to a larger productivity increase in the LGM experiment. Concerning the carbon–climate effect, it is the PI experiment in which land carbon responds more sensitively to the warming under rising CO2 because at the already initially higher temperatures, tropical plant productivity deteriorates more strongly and extratropical carbon is respired more effectively. Consequently, land carbon losses increase faster in the PI than in the LGM case. Separating the carbon–climate and carbon-concentration effects, we find that they are almost additive for our model set-up; i.e. their synergy is small in the global sum of carbon changes. Together, the two effects result in an overall strength of the terrestrial carbon cycle feedback that is almost twice as large in the LGM experiment

  8. Earth system model simulations show different feedback strengths of the terrestrial carbon cycle under glacial and interglacial conditions

    Science.gov (United States)

    Adloff, Markus; Reick, Christian H.; Claussen, Martin

    2018-04-01

    In simulations with the MPI Earth System Model, we study the feedback between the terrestrial carbon cycle and atmospheric CO2 concentrations under ice age and interglacial conditions. We find different sensitivities of terrestrial carbon storage to rising CO2 concentrations in the two settings. This result is obtained by comparing the transient response of the terrestrial carbon cycle to a fast and strong atmospheric CO2 concentration increase (roughly 900 ppm) in Coupled Climate Carbon Cycle Model Intercomparison Project (C4MIP)-type simulations starting from climates representing the Last Glacial Maximum (LGM) and pre-industrial times (PI). In this set-up we disentangle terrestrial contributions to the feedback from the carbon-concentration effect, acting biogeochemically via enhanced photosynthetic productivity when CO2 concentrations increase, and the carbon-climate effect, which affects the carbon cycle via greenhouse warming. We find that the carbon-concentration effect is larger under LGM than PI conditions because photosynthetic productivity is more sensitive when starting from the lower, glacial CO2 concentration and CO2 fertilization saturates later. This leads to a larger productivity increase in the LGM experiment. Concerning the carbon-climate effect, it is the PI experiment in which land carbon responds more sensitively to the warming under rising CO2 because at the already initially higher temperatures, tropical plant productivity deteriorates more strongly and extratropical carbon is respired more effectively. Consequently, land carbon losses increase faster in the PI than in the LGM case. Separating the carbon-climate and carbon-concentration effects, we find that they are almost additive for our model set-up; i.e. their synergy is small in the global sum of carbon changes. Together, the two effects result in an overall strength of the terrestrial carbon cycle feedback that is almost twice as large in the LGM experiment as in the PI experiment

  9. Glacial reduction and millennial-scale variations in Drake Passage throughflow.

    Science.gov (United States)

    Lamy, Frank; Arz, Helge W; Kilian, Rolf; Lange, Carina B; Lembke-Jene, Lester; Wengler, Marc; Kaiser, Jérôme; Baeza-Urrea, Oscar; Hall, Ian R; Harada, Naomi; Tiedemann, Ralf

    2015-11-03

    The Drake Passage (DP) is the major geographic constriction for the Antarctic Circumpolar Current (ACC) and exerts a strong control on the exchange of physical, chemical, and biological properties between the Atlantic, Pacific, and Indian Ocean basins. Resolving changes in the flow of circumpolar water masses through this gateway is, therefore, crucial for advancing our understanding of the Southern Ocean's role in global ocean and climate variability. Here, we reconstruct changes in DP throughflow dynamics over the past 65,000 y based on grain size and geochemical properties of sediment records from the southernmost continental margin of South America. Combined with published sediment records from the Scotia Sea, we argue for a considerable total reduction of DP transport and reveal an up to ∼ 40% decrease in flow speed along the northernmost ACC pathway entering the DP during glacial times. Superimposed on this long-term decrease are high-amplitude, millennial-scale variations, which parallel Southern Ocean and Antarctic temperature patterns. The glacial intervals of strong weakening of the ACC entering the DP imply an enhanced export of northern ACC surface and intermediate waters into the South Pacific Gyre and reduced Pacific-Atlantic exchange through the DP ("cold water route"). We conclude that changes in DP throughflow play a critical role for the global meridional overturning circulation and interbasin exchange in the Southern Ocean, most likely regulated by variations in the westerly wind field and changes in Antarctic sea ice extent.

  10. Strengthening national coal transitions to raise climate ambition. Issue Brief. Part of the 'Coal Transitions: Research and Dialogue on the Future of Coal' Project

    International Nuclear Information System (INIS)

    Sartor, Oliver

    2017-11-01

    The issue of coal transitions is coming into focus in both national and international climate policy discussions. There are several drivers of this. At one level, the Paris Agreement marked a significant shift in the pace, scope and ambition of global climate change mitigation action. Consequently, it is now clear that coal will need to play a more and more diminished role in the global energy mix in the coming decades, despite carbon capture and storage (CCS) technologies. It is also increasingly clear that non-climate policy-related factors, such as rapid declines in the cost of renewable energy and battery storage, will continue to challenge the previously strong role of steam coal in the global energy mix (Randall, 2015). The business-as-usual scenario is therefore evolving quickly and the downside risks to coal demand appear to be increasing. The accumulation of these factors has in turn led to a call for an assurance of 'just transition', especially from stakeholders-notably coal sector workers and their communities-whose economic livelihoods depend on the future of an industry that will be in decline. In this context, parties to the UNFCCC will be called upon via the Facilitative Dialogue of 2018 to re-evaluate the adequacy progress and subsequently to revise their levels of ambition in their nationally determined contributions (NDCs). This moment presents an important opportunity for governments to raise the overall ambition of their policies on coal transition. But how should they do this? (author)

  11. Deglacial climate modulated by the storage and release of Arctic sea ice

    Science.gov (United States)

    Condron, A.; Coletti, A. J.; Bradley, R. S.

    2017-12-01

    Periods of abrupt climate cooling during the last deglaciation (20 - 8 kyr ago) are often attributed to glacial outburst floods slowing the Atlantic meridional overturning circulation (AMOC). Here, we present results from a series of climate model simulations showing that the episodic break-up and mobilization of thick, perennial, Arctic sea ice during this time would have released considerable volumes of freshwater directly to the Nordic Seas, where processes regulating large-scale climate occur. Massive sea ice export events to the North Atlantic are generated whenever the transport of sea ice is enhanced, either by changes in atmospheric circulation, rising sea level submerging the Bering land bridge, or glacial outburst floods draining into the Arctic Ocean from the Mackenzie River. We find that the volumes of freshwater released to the Nordic Seas are similar to, or larger than, those estimated to have come from terrestrial outburst floods, including the discharge at the onset of the Younger Dryas. Our results provide the first evidence that the storage and release of Arctic sea ice helped drive deglacial climate change by modulating the strength of the AMOC.

  12. Magnetic Signature of Glacial Flour in Sediments From Bear Lake, Utah/Idaho

    Science.gov (United States)

    Rosenbaum, J. G.; Dean, W. E.; Colman, S. M.; Reynolds, R. L.

    2002-12-01

    Variations in magnetic properties within an interval of Bear Lake sediments correlative with oxygen isotope stage 2 (OIS 2) and OIS 3 provide a record of glacial flour production for the Uinta Mountains. Like sediments of the same age from Upper Klamath Lake (OR), these Bear Lake sediments have high magnetic susceptibilities (MS) relative to non-glacial-age sediments and contain well-defined millennial-scale variations in magnetic properties. In contrast to glacial flour derived from volcanic rocks surrounding Upper Klamath Lake, glacial flour derived from the Uinta Mountains and deposited in Bear Lake by the Bear River has low magnetite content but high hematite content. The relatively low MS values of younger and older non-glacial-age sediments are due entirely to dilution by non-magnetic endogenic carbonate and to the effects of sulfidic alteration of detrital Fe-oxides. Analysis of samples from streams entering Bear Lake and from along the course of the Bear River demonstrates that, in comparison to other areas of the catchment, sediment derived from the Uinta Mountains is rich in hematite (high HIRM) and aluminum, and poor in magnetite (low MS) and titanium. Within the glacial-age lake sediments, there are strong positive correlations among HIRM, Al/Ti, and fine sediment grain size. MS varies inversely with theses three variables. These relations indicate that the observed millennial-scale variations in magnetic and chemical properties arise from varying proportions of two detrital components: (1) very fine-grained glacial flour derived from Proterozoic metasedimentary rocks in the Uinta Mountains and characterized by high HIRM and low MS, and (2) somewhat coarser material, characterized by higher MS and lower HIRM, derived from widespread sedimentary rocks along the course of the Bear River and around Bear Lake. Measurement of glacial flour incorporated in lake sediments can provide a continuous history of alpine glaciation, because the rate of accumulation

  13. Late Glacial and Holocene Flow Dynamics of the Denmark Strait Overflow Water

    Science.gov (United States)

    Williams, M.; Schmidt, D. N.; Andersen, M. B.; Barker, S.; McCave, I. N. N.

    2014-12-01

    The overflow of dense water from the Nordic Seas to the North Atlantic across the Greenland-Scotland Ridge forms a major component of the deep branch of the Atlantic Meridional Overturning Circulation and influences the climate system in Northwest Europe. Research has focused on deep convection of the Iceland Scotland Overflow Water (ISOW) and its links to climate variability in the North Atlantic. Our understanding of the history of the Denmark Strait Overflow Water (DSOW) is significantly less constrained and yet it accounts for half of the total overflow production today. We focus on the Eirik Drift south of Greenland in the vicinity of the DSOW. Down-core 230Thxs derived sediment focusing factors (Ψ) and measurements of the mean size of sortable silt reveal winnowed sediments during the Last Glacial Maximum and Heinrich 1 suggesting an influx of vigorous southern sourced waters and restricted DSOW production. Reduced overflow may be due to glacial isostatic processes which shoaled the Denmark Strait sill combined with a southward shift of deep convection sites in response to enhanced ice cover in the Nordic Seas. Intensification of the DSOW is evident between 9 and 13ka BP indicating initial deepening of the Denmark Strait sill and northward migration of the locus of deep water production. Ψ values for the Holocene suggest an active DSOW with a shift in the flow regime at 6.8 ka BP indicated by a reduction and subsequent stabilization of mean size sortable silt during the mid-late Holocene. This is corroborated by other studies showing a reorganization of the deep water after 7ka. An establishment of the Labrador Sea Water at intermediate depths altered the density structure of the deep western boundary current and weakened the ISOW. Changes in deep water circulation occur as North Atlantic climate entered Neoglacial cooling determined by Mg/Ca derived sea surface temperatures and abundances of the polar planktic foraminifera species N. pachyderma. They

  14. Combining state-and-transition simulations and species distribution models to anticipate the effects of climate change

    Directory of Open Access Journals (Sweden)

    Brian W. Miller

    2015-05-01

    Full Text Available State-and-transition simulation models (STSMs are known for their ability to explore the combined effects of multiple disturbances, ecological dynamics, and management actions on vegetation. However, integrating the additional impacts of climate change into STSMs remains a challenge. We address this challenge by combining an STSM with species distribution modeling (SDM. SDMs estimate the probability of occurrence of a given species based on observed presence and absence locations as well as environmental and climatic covariates. Thus, in order to account for changes in habitat suitability due to climate change, we used SDM to generate continuous surfaces of species occurrence probabilities. These data were imported into ST-Sim, an STSM platform, where they dictated the probability of each cell transitioning between alternate potential vegetation types at each time step. The STSM was parameterized to capture additional processes of vegetation growth and disturbance that are relevant to a keystone species in the Greater Yellowstone Ecosystem—whitebark pine (Pinus albicaulis. We compared historical model runs against historical observations of whitebark pine and a key disturbance agent (mountain pine beetle, Dendroctonus ponderosae, and then projected the simulation into the future. Using this combination of correlative and stochastic simulation models, we were able to reproduce historical observations and identify key data gaps. Results indicated that SDMs and STSMs are complementary tools, and combining them is an effective way to account for the anticipated impacts of climate change, biotic interactions, and disturbances, while also allowing for the exploration of management options.

  15. Southern Ocean Control of Glacial AMOC Stability and Dansgaard-Oeschger Interstadial Duration

    Science.gov (United States)

    Buizert, C.; Schmittner, A.

    2016-12-01

    Glacial periods exhibit abrupt Dansgaard-Oeschger (DO) climatic oscillations that are thought to be linked to instabilities in the Atlantic meridional overturning circulation (AMOC). Great uncertainty remains regarding the dynamics of the DO cycle, as well as controls on the timing and duration of individual events. Using ice core data we show that the duration of warm (interstadial) periods is strongly correlated with Antarctic climate, and presumably with Southern Ocean (SO) temperature and the position of the Southern Hemisphere (SH) westerlies. We propose a SO control on AMOC stability and interstadial duration via the rate of Antarctic bottom water formation, meridional density/pressure gradients, Agulhas Leakage, and SO adiabatic upwelling. This hypothesis is supported by climate model experiments that demonstrate SO warming leads to a stronger AMOC that is less susceptible to freshwater perturbations. In the AMOC stability diagram, SO warming and strengthening of the SH westerlies both shift the vigorous AMOC branch toward higher freshwater values, thus raising the threshold for AMOC collapse. The proposed mechanism could provide a consistent explanation for several diverse observations, including maximum DO activity during intermediate ice volume/SH temperature, and successively shorter DO durations within each Bond cycle. It may further have implications for the fate of the AMOC under future global warming.

  16. Abrupt climatic changes as triggering mechanisms of massive volcanic collapses: examples from Mexico (Invited)

    Science.gov (United States)

    Capra, L.

    2010-12-01

    Climate changes have been considered to be a triggering mechanism for large magmatic eruptions. However they can also trigger volcanic collapses, phenomena that cause the destruction of the entire sector of a volcano, including its summit. During the past 30 ka, major volcanic collapses occurred just after main glacial peaks that ended with a rapid deglaciation. Glacial debuttressing, load discharge and fluid circulation coupled with the post-glacial increase of humidity and heavy rains can activate the failure of unstable edifices. Looking at the synchronicity of the maximum glaciations during the late Pleistocene and Holocene in the northern and southern hemispheres it is evident that several volcanic collapses are absent during a glacial climax, but start immediately after it during a period of rapid retreat. Several examples can be detected around the world and Mexico is not an exception. The 28 ka Nevado de Toluca volcanic collapse occurred during an intraglacial stage, under humid conditions as evidenced by paleoclimatic studies on lacustrine sediments of the area. The debris avalanche deposit associated to this event clearly shows evidence of a large amount of water into the mass previous to the failure that enhanced its mobility. It also contains peculiar, plastically deformed, m-sized fragment of lacustrine sediments eroded from glacial berms. The 17 ka BP collapse of the Colima Volcano corresponds to the initial stage of glacial retreat in Mexico after the Last Glacial Maximum (22-17.5ka). Also in this case the depositional sequence reflects high humidity conditions with voluminous debris flow containing a large amount logs left by pine trees. The occurrence of cohesive debris flows originating from the failure of a volcanic edifice can also reflect the climatic conditions, indicating important hydrothermal alteration and fluid circulation from ice-melting at an ice-capped volcano, as observed for example at the Pico de Orizaba volcano for the Tetelzingo

  17. Simulated variations of eolian dust from inner Asian deserts at the mid-Pliocene, last glacial maximum, and present day: contributions from the regional tectonic uplift and global climate change

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Zhengguo; Liu, Xiaodong; An, Zhisheng [Chinese Academy of Sciences, State Key Laboratory of Loess Quaternary Geology (SKLLQG), Institute of Earth Environment, Xi' an (China); Yi, Bingqi; Yang, Ping [Texas A and M University, College Station, TX (United States); Mahowald, Natalie [Cornell University, Ithaca, NY (United States)

    2011-12-15

    Northern Tibetan Plateau uplift and global climate change are regarded as two important factors responsible for a remarkable increase in dust concentration originating from inner Asian deserts during the Pliocene-Pleistocene period. Dust cycles during the mid-Pliocene, last glacial maximum (LGM), and present day are simulated with a global climate model, based on reconstructed dust source scenarios, to evaluate the relative contributions of the two factors to the increment of dust sedimentation fluxes. In the focused downwind regions of the Chinese Loess Plateau/North Pacific, the model generally produces a light eolian dust mass accumulation rate (MAR) of 7.1/0.28 g/cm{sup 2}/kyr during the mid-Pliocene, a heavier MAR of 11.6/0.87 g/cm{sup 2}/kyr at present, and the heaviest MAR of 24.5/1.15 g/cm{sup 2}/kyr during the LGM. Our results are in good agreement with marine and terrestrial observations. These MAR increases can be attributed to both regional tectonic uplift and global climate change. Comparatively, the climatic factors, including the ice sheet and sea surface temperature changes, have modulated the regional surface wind field and controlled the intensity of sedimentation flux over the Loess Plateau. The impact of the Tibetan Plateau uplift, which increased the areas of inland deserts, is more important over the North Pacific. The dust MAR has been widely used in previous studies as an indicator of inland Asian aridity; however, based on the present results, the interpretation needs to be considered with greater caution that the MAR is actually not only controlled by the source areas but the surface wind velocity. (orig.)

  18. Evidence for a dynamic East Antarctic ice sheet during the mid-Miocene climate transition

    Science.gov (United States)

    Pierce, Elizabeth L.; van de Flierdt, Tina; Williams, Trevor; Hemming, Sidney R.; Cook, Carys P.; Passchier, Sandra

    2017-11-01

    The East Antarctic ice sheet underwent a major expansion during the Mid-Miocene Climate Transition, around 14 Ma, lowering sea level by ∼60 m. However, direct or indirect evidence of where changes in the ice sheet occurred is limited. Here we present new insights on timing and locations of ice sheet change from two drill sites offshore East Antarctica. IODP Site U1356, Wilkes Land, and ODP Site 1165, Prydz Bay are located adjacent to two major ice drainage areas, the Wilkes Subglacial Basin and the Lambert Graben. Ice-rafted detritus (IRD), including dropstones, was deposited in concentrations far exceeding those known in the rest of the Miocene succession at both sites between 14.1 and 13.8 Ma, indicating that large amounts of IRD-bearing icebergs were calved from independent drainage basins during this relatively short interval. At Site U1356, the IRD was delivered in distinct pulses, suggesting that the overall ice advance was punctuated by short periods of ice retreat in the Wilkes Subglacial Basin. Provenance analysis of the mid-Miocene IRD and fine-grained sediments provides additional insights on the movement of the ice margin and subglacial geology. At Site U1356, the dominant 40Ar/39Ar thermochronological age of the ice-rafted hornblende grains is 1400-1550 Ma, differing from the majority of recent IRD in the area, from which we infer an inland source area of this thermochronological age extending along the eastern part of the Adélie Craton, which forms the western side of the Wilkes Subglacial Basin. Neodymium isotopic compositions from the terrigenous fine fraction at Site U1356 imply that the ice margin periodically expanded from high ground well into the Wilkes Subglacial Basin during periods of MMCT ice growth. At Site 1165, MMCT pebble-sized IRD are sourced from both the local Lambert Graben and the distant Aurora Subglacial Basin drainage area. Together, the occurrence and provenance of the IRD and glacially-eroded sediment at these two marine

  19. TECHNICAL BASIS DOCUMENT NO. 1: CLIMATE AND INFILTRATION

    International Nuclear Information System (INIS)

    NA

    2004-01-01

    For the past 20 years, extensive field, laboratory, and modeling investigations have been performed at Yucca Mountain, which have led to the development of a number of conceptual models of infiltration and climate for the Yucca Mountain region around the repository site (Flint, A.L. et al. 2001; Wang and Bodvarsson 2003). Evaluating the amount of infiltrating water entering the subsurface is important, because this water may affect the percolation flux, which, in turn, controls seepage into the waste emplacement drifts and radionuclide transport from the repository to the water table. Forecasting of climatic data indicates that during the next 10,000 years at Yucca Mountain, the present-day climate should persist for 400 to 600 years, followed by a warmer and much wetter monsoon climate for 900 to 1,400 years, and by a cooler and wetter glacial-transition climate for the remaining 8,000 to 8,700 years. The analysis of climatic forecasting indicates that long-term climate conditions are generally predictable from a past climate sequence, while short-term climate conditions and weather predictions may be more variable and uncertain. The use of past climate sequences to bound future climate sequences involves several types of uncertainties, such as (1) uncertainty in the timing of future climate, (2) uncertainty in the methodology of climatic forecasting, and (3) uncertainty in the earth's future physical processes. Some of the uncertainties of the climatic forecasting are epistemic (reducible) and aleatoric (irreducible). Because of the size of the model domain, INFIL treats many flow processes in a simplified manner. For example, uptake of water by roots occurs according to the ''distributed model'', in which available water in each soil layer is withdrawn in proportion to the root density in that layer, multiplied by the total evapotranspirative demand. Runoff is calculated simply as the excess of precipitation over a sum of infiltration and water storage in the

  20. Late Quaternary climate change shapes island biodiversity.

    Science.gov (United States)

    Weigelt, Patrick; Steinbauer, Manuel Jonas; Cabral, Juliano Sarmento; Kreft, Holger

    2016-04-07

    Island biogeographical models consider islands either as geologically static with biodiversity resulting from ecologically neutral immigration-extinction dynamics, or as geologically dynamic with biodiversity resulting from immigration-speciation-extinction dynamics influenced by changes in island characteristics over millions of years. Present climate and spatial arrangement of islands, however, are rather exceptional compared to most of the Late Quaternary, which is characterized by recurrent cooler and drier glacial periods. These climatic oscillations over short geological timescales strongly affected sea levels and caused massive changes in island area, isolation and connectivity, orders of magnitude faster than the geological processes of island formation, subsidence and erosion considered in island theory. Consequences of these oscillations for present biodiversity remain unassessed. Here we analyse the effects of present and Last Glacial Maximum (LGM) island area, isolation, elevation and climate on key components of angiosperm diversity on islands worldwide. We find that post-LGM changes in island characteristics, especially in area, have left a strong imprint on present diversity of endemic species. Specifically, the number and proportion of endemic species today is significantly higher on islands that were larger during the LGM. Native species richness, in turn, is mostly determined by present island characteristics. We conclude that an appreciation of Late Quaternary environmental change is essential to understand patterns of island endemism and its underlying evolutionary dynamics.