WorldWideScience

Sample records for girth weld defect

  1. Reality check on girth weld defect acceptance criteria

    Energy Technology Data Exchange (ETDEWEB)

    Brust, Bud; Kalyanam, Suresh; Shim, Do-Jun; Wilkowski, Gery [Engineering Mechanics Corporation of Columbus, Columbus, OH, (United States)

    2010-07-01

    Girth weld defect tolerance criteria for pipeline construction has evolved with time. Recently, ERPG recommended a new Tier 2 girth weld defect acceptance criterion. This paper described the new development on girth weld defect acceptance criteria. The inherent conservatisms of alternative girth weld defect acceptance criteria from the 2007 API 1104 Appendix A, CSA Z662 Appendix K, are compared to those from the proposed EPRG Tier 2 criteria. It is found that the API and CSA codes have the same empirical limit-load criteria. As well, there are conservatisms in the proposed EPRG Tier 2. The results showed that there are various reasons why large amounts of conservatism in the allowable flaw lengths in the CSA Appendix K,2007 API 1104 Appendix A, and proposed EPRG Tier 2 girth weld defect criterion exist. Small conservatisms on failure stress can result in large conservatisms in flaw size.

  2. Literature Review: Theory and Application of In-Line Inspection Technologies for Oil and Gas Pipeline Girth Weld Defection

    Science.gov (United States)

    Feng, Qingshan; Li, Rui; Nie, Baohua; Liu, Shucong; Zhao, Lianyu; Zhang, Hong

    2016-01-01

    Girth weld cracking is one of the main failure modes in oil and gas pipelines; girth weld cracking inspection has great economic and social significance for the intrinsic safety of pipelines. This paper introduces the typical girth weld defects of oil and gas pipelines and the common nondestructive testing methods, and systematically generalizes the progress in the studies on technical principles, signal analysis, defect sizing method and inspection reliability, etc., of magnetic flux leakage (MFL) inspection, liquid ultrasonic inspection, electromagnetic acoustic transducer (EMAT) inspection and remote field eddy current (RFDC) inspection for oil and gas pipeline girth weld defects. Additionally, it introduces the new technologies for composite ultrasonic, laser ultrasonic, and magnetostriction inspection, and provides reference for development and application of oil and gas pipeline girth weld defect in-line inspection technology. PMID:28036016

  3. Evaluating mechanical properties of hybrid laser arc girth welds

    Energy Technology Data Exchange (ETDEWEB)

    Pussegoda, L. N.; Begg, D.; Holdstock, R.; Jodoin, A. [BMT Fleet Technology Ltd Techonology, Kanata, ON, (Canada); Ligh, K.; Rondeau, D. [Appliead Thermal Sciences Inc., Sanford, ME, (United States); Hansen, E. [ESAB, Florence, SC, (United States)

    2010-07-01

    Hybrid laser arc welding (HLAW) is a promising new process for making girth welds on steel pipelines. This study investigated the mechanical properties of overmatched X80 and X100 pipeline steel girth welds made using the HLAW process. The testing of this process was conducted on NPS36 pipes of 10.4 mm and 14.3 mm thickness, respectively. Various weld positions were produced on X80 and X100 pipes. Laser inspection data were collected during the whole welding process. Also standard tests for girth welds, Charpy V-notch impact tests, CTOD tests, all weld metal (AWM) tension tests, were carried out. The results showed that the fracture transition temperature is higher at the 3 and 9 o'clock positions than at the 9 and 12 o'clock positions. The effect of clock position on fracture toughness is currently being explored; a modified CTOD has been developed to reduce the possibility of crack deviation.

  4. Fracture toughness testing of pipeline girth welds

    Energy Technology Data Exchange (ETDEWEB)

    Shen, G.; Gianetto, J.A.; Bouchard, R.; Bowker, J.T.; Tyson, W.R.

    2005-06-01

    This paper reviewed the fracture toughness test standards for pipeline girth welds outlined in CSA Z662-03, Annex K as well as the referenced testing standards BS 7448 and ASTM Standard E 1290. The requirements outlined in API 1104, appendix A were also reviewed given its application throughout the world. Crack tip opening displacement (CTOD) tests were conducted on a manual shielded-metal-arc weld (SMAW) that was prepared in a high strength X80 pipeline steel. Another girth weld test consisted of a mechanized gas metal arc weld (GMAW), but only the results for the SMAW were presented in this paper. Two tensile specimens were machined parallel to the pipe axis from the base metal of the X80 pipe used in preparing the pipeline girth welds. The tensile specimens from the pipe base metal and weld metal were tested at 20 degrees C. The yield strength at the CTOD test temperature was estimated by using the yield strength-temperature relationship given in BS 7448. The experimental results obtained by applying the two testing standards were compared. The intent was to identify the differences between these two standards and their influence on test results. The authors discussed critical issues for the fracture toughness tests, such as weld position and notch orientation, circumferential sampling location, residual stress and its modification, crack length measurement and the equations used to evaluate CTOD. The variation of strength and toughness with clock position around the circumference of the girth welds was also discussed. It was concluded that for a high-strength material, local compression may be needed to create a uniform fatigue crack front. For deep-cracked specimens, the maximum allowable difference of the measured fatigue crack length varies significantly between ASTM E 1290-02 and BS 7448 by a factor of about 1 to 3 for ASTM E 1290 and 3 to 15 for BS 7448. The CTOD calculated according to ASTM E 1290-02 and according to BS 7448 can also differ substantially

  5. Evaluation on ductile tearing properties of girth weld pipelines using SE(T) and SE(B) specimens

    Energy Technology Data Exchange (ETDEWEB)

    Mathias, Leonardo Luiz Siqueira; Ruggieri, Claudio [Universidade de Sao Paulo (USP), SP (Brazil). Dept. de Engenharia Naval e Oceanica

    2012-07-01

    Predictive methodologies aimed at quantifying the impact of defects in oil and gas pipelines play a key role in safety assessment procedures of in-service facilities. Current methodologies for structural integrity assessments advocate the use of geometry dependent resistance curves so that crack-tip constraint in the test specimen closely matches the crack tip constraint for the structural component. Testing standards now under development to measure fracture resistance of pipeline steels (J and CTOD) most often employ single edge notched specimens under tension (SENT) to match a postulated defect in the structural component. This paper presents an investigation of the ductile tearing properties for a girth weld of an API 5L X80 pipeline steel using experimentally measured crack growth resistance curves (J-R curves). Testing of the girth weld pipeline steels employed side-grooved, clamped SE(T) specimen with center-crack weld and side-grooved, three-point bending SE(B) (or SENB) specimens to determine the J-R curves. The methods were compared in terms of geometry, relative crack size and crack-tip constraint, and the results were applied to a case study, to evaluate the degree of conservativeness in defect acceptance criteria. The tests involving SE(B) specimens are usually considered conservative, however, the comparison between this two methods may point an accurate alternative for girth weld assessments, since adequate geometry is adopted to describe accurately the structure's behavior. (author)

  6. Stress indices for girth welded joints, including radial weld shrinkage, mismatch and tapered-wall transitions

    International Nuclear Information System (INIS)

    Rodabaugh, E.C.; Moore, S.E.

    1978-09-01

    A review is presented of B, C and K stress indices used in the ASME Nuclear Power Plant Code for girth butt welds and girth fillet welds. Theoretical stresses are presented to aid in evaluating C-indices. Fatigue test data are presented to aid in evaluating K-indices and CK-products. A limit load theory is presented to aid in evaluating B-indices. As a result of this review, recommendations are made for changes in the ASME Code. A major part of this consists of presenting definitions for girth welded joints and transitions and appropriate stress indices for those joints

  7. Characterization of Cassini GPHS fueled clad production girth welds

    International Nuclear Information System (INIS)

    Franco-Ferreira, E.A.; Moyer, M.W.; Reimus, M.A.H.; Placr, A.; Howard, B.D.

    2000-01-01

    Fueled clads for radioisotope power systems are produced by encapsulating 238 PuO 2 in iridium alloy cups, which are joined at their equators by gas tungsten arc welding. Cracking problems at the girth weld tie-in area during production of the Galileo/Ulysses GPHS capsules led to the development of a first-generation ultrasonic test for girth weld inspection at the Savannah River Plant. A second-generation test and equipment with significantly improved sensitivity and accuracy were jointly developed by the Oak Ridge Y-12 Plant and Westinghouse Savannah River Company for use during the production of Cassini GPHS capsules by the Los Alamos National Laboratory. The test consisted of Lamb wave ultrasonic scanning of the entire girth weld from each end of the capsule combined with a time-of-flight evaluation to aid in characterizing nonrelevant indications. Tangential radiography was also used as a supplementary test for further evaluation of reflector geometry. Each of the 317 fueled GP HS capsules, which were girth welded for the Cassini Program, was subjected to a series of nondestructive tests that included visual, dimensional, helium leak rate, and ultrasonic testing. Thirty-three capsules were rejected prior to ultrasonic testing. Of the 44 capsules rejected by the standard ultrasonic test, 22 were upgraded to flight quality through supplementary testing for an overall process acceptance rate of 82.6%. No confirmed instances of weld cracking were found

  8. Toward practical 3D radiography of pipeline girth welds

    International Nuclear Information System (INIS)

    Wassink, Casper; Hol, Martijn; Flikweert, Arjan; Meer, Philip van

    2015-01-01

    Digital radiography has made its way into in-the-field girth weld testing. With recent generations of detectors and x-ray tubes it is possible to reach the image quality desired in standards as well as the speed of inspection desired to be competitive with film radiography and automated ultrasonic testing. This paper will show the application of these technologies in the RTD Rayscan system. The method for achieving an image quality that complies with or even exceeds prevailing industrial standards will be presented, as well as the application on pipeline girth welds with CRA layers. A next step in development will be to also achieve a measurement of weld flaw height to allow for performing an Engineering Critical Assessment on the weld. This will allow for similar acceptance limits as currently used with Automated Ultrasonic Testing of pipeline girth welds. Although a sufficient sizing accuracy was already demonstrated and qualified in the TomoCAR system, testing in some applications is restricted to time limits. The paper will present some experiments that were performed to achieve flaw height approximation within these time limits

  9. Toward practical 3D radiography of pipeline girth welds

    Energy Technology Data Exchange (ETDEWEB)

    Wassink, Casper, E-mail: casper.wassink@applusrtd.com [Applus RTD Chief Scientist, Rivium 1e straat 80, 2909 LE Capelle a/d IJssel (Netherlands); Hol, Martijn, E-mail: martijn.hol@applusrtd.com; Flikweert, Arjan, E-mail: martijn.hol@applusrtd.com; Meer, Philip van, E-mail: martijn.hol@applusrtd.com [Applus RTD Technological Center, Delftweg 144, 3046 NC Rotterdam (Netherlands)

    2015-03-31

    Digital radiography has made its way into in-the-field girth weld testing. With recent generations of detectors and x-ray tubes it is possible to reach the image quality desired in standards as well as the speed of inspection desired to be competitive with film radiography and automated ultrasonic testing. This paper will show the application of these technologies in the RTD Rayscan system. The method for achieving an image quality that complies with or even exceeds prevailing industrial standards will be presented, as well as the application on pipeline girth welds with CRA layers. A next step in development will be to also achieve a measurement of weld flaw height to allow for performing an Engineering Critical Assessment on the weld. This will allow for similar acceptance limits as currently used with Automated Ultrasonic Testing of pipeline girth welds. Although a sufficient sizing accuracy was already demonstrated and qualified in the TomoCAR system, testing in some applications is restricted to time limits. The paper will present some experiments that were performed to achieve flaw height approximation within these time limits.

  10. Influence of Mn contents in 0Cr18Ni10Ti thin wall stainless steel tube on TIG girth weld quality

    Science.gov (United States)

    Liu, Bo

    2017-03-01

    Three kinds of cold worked 0Cr18Ni10Ti thin wall stainless steel tubes with the manganese contents of 1.27%, 1.35% and 1.44% and the cold worked 0Cr18Ni10Ti stainless steel end plug with manganese content of 1.35% were used for TIG girth welding in the present investigation. The effect of different manganese contents in stainless steel tube on weld quality was studied. The results showed that under the same welding conditions, the metallographic performance of the girth weld for the thin wall stainless steel tube with the manganese element content 1.44% welded with end plug was the best. Under the appropriate welding conditions, the quality of the girth weld increased with the increase of the manganese content till 1.44%. It was found that in the case of the Mn content of 1.44%, and under the proper welding condition the welding defects, such as welding cracks were effectively avoided, and the qualified weld penetration can be obtained.. It is concluded that the appropriate increase of the manganese content can significantly improve the TIG girth weld quality of the cold worked 0Cr18Ni10Ti stainless steel tube.

  11. The selection of ultrasonic transducers for inspection of pipeline girth welds. Vol. 2. Evaluation of a unique creeping wave probe for examination of the cap region in pipeline girth welds

    Energy Technology Data Exchange (ETDEWEB)

    Fingerhut, M P; Glover, A G; Dorling, D V

    1988-10-01

    This work is part of a program aimed at developing an ultrasonic inspection design for the nondestructive evaluation of pipeline girth welds made by the mechanized gas metal arc (GMA) welding process for onshore and offshore pipeline construction. The feasibility of using creeping waves for examination of the cap region was investigated and, as a result, a specification for an experimental creeping wave transducer developed and a probe was designed to provide a beam oriented nearly perpendicular to expected defects in the cap region of the weld. The performance of this experimental creeping wave transducer was evaluated with respect to its ability to detect simulated and real weld defects in the cap region of mechanized GMA welds in 9.5 mm material. The probe was successful in detecting planar lack of sidewall fusion welding defects with a signal-to-noise ratio of greater than 12 dB, at depths of up to 4.2 mm from the plate surface. This indicates maximum pipe wall thicknesses of 10.9 mm may be satisfactorily examined before additional probes are required, assuming complete coverage in the root region is provided by other probes. The creeping wave probe not only performed well in the detection of real weld defects in the cap region for which it was intended, but also showed potential for detecting and discriminating some planar defects in the root region. 9 refs., 23 figs., 3 tabs.

  12. Residual stress measurements in coil, linepipe and girth welded pipe

    International Nuclear Information System (INIS)

    Law, M.; Prask, H.; Luzin, V.; Gnaeupel-Herold, T.

    2006-01-01

    Residual stresses in gas pipelines come from forming operations in producing the coil and pipe, seam welding the pipe, and girth welding pipes together to form a gas pipeline. Welding is used extensively in gas pipelines, the welds are made without post weld heat treatment. The three normal stresses were measured by neutron diffraction for three types of sample: coil, unwelded rings cut from the pipe made from this coil, and girth welded rings cut from linepipe. All three specimens came from three thicknesses of manufacture (5.4, 6.4, and 7.1 mm). The welds are manual metal arc cellulosic electrode welds made in X70 linepipe, these were measured at 5 through-thickness positions at 19 locations (from the center of the weld up to 35 mm away from the weld) with a spatial resolution of 1 mm 3 . The coil and unwelded rings were measured at the same five through-thickness positions

  13. Welding technology transfer task/laser based weld joint tracking system for compressor girth welds

    Science.gov (United States)

    Looney, Alan

    1991-01-01

    Sensors to control and monitor welding operations are currently being developed at Marshall Space Flight Center. The laser based weld bead profiler/torch rotation sensor was modified to provide a weld joint tracking system for compressor girth welds. The tracking system features a precision laser based vision sensor, automated two-axis machine motion, and an industrial PC controller. The system benefits are elimination of weld repairs caused by joint tracking errors which reduces manufacturing costs and increases production output, simplification of tooling, and free costly manufacturing floor space.

  14. Residual strains in girth-welded linepipe

    International Nuclear Information System (INIS)

    MacEwen, S.R.; Holden, T.M.; Powell, B.M.; Lazor, R.B.

    1987-07-01

    High resolution neutron diffraction has been used to measure the axial residual strains in and adjacent to a multipass girth weld in a complete section of 914 mm (36 inches) diameter, 16 mm (5/8 inch) wall, linepipe. The experiments were carried out at the NRU reactor, Chalk River using the L3 triple-axis spectrometer. The through-wall distribution of axial residual strain was measured at 0, 4, 8, 20 and 50 mm from the weld centerline; the axial variation was determined 1, 5, 8, and 13 mm from the inside surface of the pipe wall. The results have been compared with strain gauge measurements on the weld surface and with through-wall residual stress distributions determined using the block-layering and removal technique

  15. Influence of weld-induced residual stresses on the hysteretic behavior of a girth-welded circular stainless steel tube

    Science.gov (United States)

    Lee, Chin-Hyung; Nguyen Van Do, Vuong; Chang, Kyong-Ho; Jeon, Jun-Tai; Um, Tae-Hwan

    2018-04-01

    The present study attempts to characterize the relevance of welding residual stresses to the hysteretic behaviour of a girth-welded circular stainless steel tube under cyclic mechanical loadings. Finite element (FE) thermal simulation of the girth butt welding process is first performed to identify the weld-induced residual stresses by using the one-way coupled three-dimensional (3-D) thermo-mechanical FE analysis method. 3-D elastic-plastic FE analysis equipped with the cyclic plasticity constitutive model capable of describing the cyclic response is next carried out to scrutinize the effects that the residual stresses have on the hysteretic performance of the girth-welded steel tube exposed to cyclic axial loading, which takes the residual stresses and plastic strains calculated from the preceding thermo-mechanical analysis as the initial condition. The analytical results demonstrate that the residual stresses bring about premature yielding and deterioration of the load carrying capacity in the elastic and the transition load ranges, whilst the residual stress effect is wiped out quickly in the plastic load domain since the residual stresses are nearly wholly relaxed after application of the cyclic plastic loading.

  16. Evaluation and characterization of General Purpose Heat Source girth welds for the Cassini mission

    International Nuclear Information System (INIS)

    Lynch, C.M.; Moniz, P.F.; Reimus, M.A.H.

    1998-01-01

    General Purpose Heat Sources (GPHSs) are components of Radioisotopic thermoelectric Generators (RTGs) which provide electric power for deep space missions. Each GPHS consists of a 238 Pu oxide ceramic pellet encapsulated in a welded iridium alloy shell which forms a protective barrier against the release of plutonia in the unlikely event of a launch-pad failure or reentry incident. GPHS fueled clad girth weld flaw detection was paramount to ensuring this safety function, and was accomplished using both destructive and non-destructive evaluation techniques. The first girth weld produced from each welding campaign was metallographically examined for flaws such as incomplete weld penetration, cracks, or porosity which would render a GPHS unacceptable for flight applications. After an acceptable example weld was produced, the subsequently welded heat sources were evaluated non-destructively for flaws using ultrasonic immersion testing. Selected heat sources which failed ultrasonic testing would be radiographed, and/or, destructively evaluated to further characterize and document anomalous indications. Metallography was also performed on impacted heat sources to determine the condition of the welds

  17. Health monitoring of pipeline girth weld using empirical mode decomposition

    Science.gov (United States)

    Rezaei, Davood; Taheri, Farid

    2010-05-01

    In the present paper the Hilbert-Huang transform (HHT), as a time-series analysis technique, has been combined with a local diagnostic approach in an effort to identify flaws in pipeline girth welds. This method is based on monitoring the free vibration signals of the pipe at its healthy and flawed states, and processing the signals through the HHT and its associated signal decomposition technique, known as empirical mode decomposition (EMD). The EMD method decomposes the vibration signals into a collection of intrinsic mode functions (IMFs). The deviations in structural integrity, measured from a healthy-state baseline, are subsequently evaluated by two damage sensitive parameters. The first is a damage index, referred to as the EM-EDI, which is established based on an energy comparison of the first or second IMF of the vibration signals, before and after occurrence of damage. The second parameter is the evaluation of the lag in instantaneous phase, a quantity derived from the HHT. In the developed methodologies, the pipe's free vibration is monitored by piezoceramic sensors and a laser Doppler vibrometer. The effectiveness of the proposed techniques is demonstrated through a set of numerical and experimental studies on a steel pipe with a mid-span girth weld, for both pressurized and nonpressurized conditions. To simulate a crack, a narrow notch is cut on one side of the girth weld. Several damage scenarios, including notches of different depths and at various locations on the pipe, are investigated. Results from both numerical and experimental studies reveal that in all damage cases the sensor located at the notch vicinity could successfully detect the notch and qualitatively predict its severity. The effect of internal pressure on the damage identification method is also monitored. Overall, the results are encouraging and promise the effectiveness of the proposed approaches as inexpensive systems for structural health monitoring purposes.

  18. Nuclear fuel rod end plug weld inspection

    International Nuclear Information System (INIS)

    Parker, M. A.; Patrick, S. S.; Rice, G. F.

    1985-01-01

    Apparatus and method for testing TIG (tungsten inert gas) welds of end plugs on a sealed nuclear reactor fuel rod. An X-ray fluorescent spectrograph testing unit detects tungsten inclusion weld defects in the top end plug's seal weld. Separate ultrasonic weld inspection system testing units test the top end plug's seal and girth welds and test the bottom end plug's girth weld for penetration, porosity and wall thinning defects. The nuclear fuel rod is automatically moved into and out from each testing unit and is automatically transported between the testing units by rod handling devices. A controller supervises the operation of the testing units and the rod handling devices

  19. Digitization of radiographic inspection for pipeline girth welded joints

    International Nuclear Information System (INIS)

    Uemura, Shimpei

    2016-01-01

    In radiographic inspection for the girth welded joints of natural gas pipeline, film radiographic testing (FRT) is applied presently in Japan. However, as of July 2016, the work of establishing JIS standard for radiographic inspection with digital detector is in progress. In order to provide users with the merit of digitization as soon as possible, the authors have developed NSDART (Nittetsu-Sumikin digital detector array technology) as a field X-ray inspection system for the girth welded joints of pipeline. This paper reports the required performances discussed in face of development of NSDART, selection of digital detector, and outline of NSDART, and shows part of the radiographic images acquired with NSDART. As required performances, the following were established: (1) required image quality for radiographic image, (2) identifiable minimum wire diameter of transmission meter, (3) density range of radiographic image and value of gradation meter, (4) spatial resolution via Duplex Wire, (5) X-ray generator, (6) real time performance, and (7) display for observing radiographic image. As for the selection of digital detector, flat panel detector was judged to be the most suitable, and its incorporation to NSDART was determined. NSDART devices are composed of a magnet-wheeled self-propelled imaging device, personal computer, controller, and externally installed display for judgment. (A.O.)

  20. Coating application procedure qualification for internal girth weld using a robot device

    Energy Technology Data Exchange (ETDEWEB)

    Koebsch, Andre; Cunha, Bruno Rocha Marques da; Barreto, Eduardo Chave; Nunes, Erik Barbosa; Solymossy, Victor [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)

    2009-12-19

    This year PETROBRAS complete 55 years old filling up our country of energy necessary to support our development. Some oil fields, especially from the northeast region, has being had their production decrease by their ageing. In order to have their live protracted some retrieval technical has being used. For example we can mention gas lift, production water injection, CO{sub 2} injection and so on. The produced water even treated has an elevated tenor of chloride, acid ph, presence of organics acids, H{sub 2}S and no O{sub 2}. The water became too corrosive by those characteristics. Due to it an anti corrosive coating application is demanded on the pipe internal surface and on the girth weld. The pipes are coated in a coating plant and it has a qualified coating procedure. Therefore an application of anti corrosive coating is demanded on the girth weld after the pipe welding. To accomplish this job an application procedure was developed using a robot. The PETROBRAS' Engineer witnesses the PQT of this procedure aiming to guarantee the applied coating quality. This paper will show the PQT results and a basic description of the robot operation. (author)

  1. Nondestructive inspection of General Purpose Heat Source (GPHS) fueled clad girth welds

    International Nuclear Information System (INIS)

    Reimus, M. A. H.; George, T. G.; Lynch, C.; Padilla, M.; Moniz, P.; Guerrero, A.; Moyer, M. W.; Placr, A.

    1998-01-01

    The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of 238 Pu decay to an array of thermoelectric elements. The GPHS is fabricated using an iridium-alloy to contain the 238 PuO 2 fuel pellet. GPHS capsules will be utilized in the upcoming Cassini mission to explore Saturn and its moons. The physical integrity of the girth weld is important to mission safety and performance. Because past experience had revealed a potential for initiation of small cracks in the girth weld overlap zone, a nondestructive inspection of each capsule weld is required. An ultrasonic method was used to inspect the welds of capsules fabricated for the Galileo mission. The instrument, transducer, and method used were state of the art at the time (early 1980s). The ultrasonic instrumentation and methods used to inspect the Cassini GPHSs was significantly upgraded from those used for the Galileo mission. GPHSs that had ultrasonic reflectors in excess of the reject specification level were subsequently inspected with radiography to provide additional engineering data used to accept/reject the heat source. This paper describes the Galileo-era ultrasonic instrumentation and methods and the subsequent upgrades made to support testing of Cassini GPHSs. Also discussed is the data obtained from radiographic examination and correlation to ultrasonic examination results

  2. Nondestructive inspection of General Purpose Heat Source (GPHS) fueled clad girth welds

    International Nuclear Information System (INIS)

    Reimus, M.A.; George, T.G.; Lynch, C.; Padilla, M.; Moniz, P.; Guerrero, A.; Moyer, M.W.; Placr, A.

    1998-01-01

    The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of 238 Pu decay to an array of thermoelectric elements. The GPHS is fabricated using an iridium-alloy to contain the 238 PuO 2 fuel pellet. GPHS capsules will be utilized in the upcoming Cassini mission to explore Saturn and its moons. The physical integrity of the girth weld is important to mission safety and performance. Because past experience had revealed a potential for initiation of small cracks in the girth weld overlap zone, a nondestructive inspection of each capsule weld is required. An ultrasonic method was used to inspect the welds of capsules fabricated for the Galileo mission. The instrument, transducer, and method used were state of the art at the time (early 1980s). The ultrasonic instrumentation and methods used to inspect the Cassini GPHSs was significantly upgraded from those used for the Galileo mission. GPHSs that had ultrasonic reflectors in excess of the reject specification level were subsequently inspected with radiography to provide additional engineering data used to accept/reject the heat source. This paper describes the Galileo-era ultrasonic instrumentation and methods and the subsequent upgrades made to support testing of Cassini GPHSs. Also discussed is the data obtained from radiographic examination and correlation to ultrasonic examination results. copyright 1998 American Institute of Physics

  3. On residual stress prescriptions for fitness for service assessment of pipe girth welds

    International Nuclear Information System (INIS)

    Dong, Pingsha; Song, Shaopin; Zhang, Jinmiao; Kim, Myung H.

    2014-01-01

    This paper aims to provide a detailed assessment of some of the existing residual stress profiles stipulated in widely used fitness-for-service assessment codes and standards, such as BS 7910 Appendix Q and API 579 RP Annex E, by taking advantage of some comprehensive residual stress studies that have recently become available. After presenting a case study on which residual stress measurements are available for validating finite element based residual stress analysis procedure, residual stress profiles stipulated in BS 7910 for pipe girth welds are selected for detailed evaluation by comparing residual stress distribution characteristics shown in parametric finite element results. A shell theory based full-field residual stress profile estimation scheme is then presented to illustrate how an improved estimation of residual stress profiles can be achieved in light of some of the deficiencies in BS 7910 and API 579 identified in this study. - Highlights: • Critically assessed girth weld residual stress profiles in major FFS Codes and Standards. • Identified deficiencies in relating to pipe geometry, heat input, and axial distance from weld. • Presented a shell theory based scheme for prescribing full-field residual stress profiles

  4. GMAW (Gas Metal Arc Welding) process development for girth welding of high strength pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Rajan, Vaidyanath; Daniel, Joe; Quintana, Marie [The Lincoln Electric Company, Cleveland, OH (United States); Chen, Yaoshan [Center for Reliable Energy Systems (CRES), Dublin, OH (United States); Souza, Antonio [Lincoln Electric do Brasil, Guarulhos, SP (Brazil)

    2009-07-01

    This paper highlights some of the results and findings from the first phase of a consolidated program co-funded by US Department of Transportation Pipeline and Hazardous Materials Safety Administration (PHMSA) and Pipeline Research Council Inc (PRCI) to develop pipe weld assessment and qualification methods and optimize X 100 pipe welding technologies. One objective of the program is to establish the range of viable welding options for X 100 line pipe, and define the essential variables to provide welding process control for reliable and consistent mechanical performance of the weldments. In this first phase, a series of narrow gap girth welds were made with pulsed gas metal arc welding (GMAW), instrumented with thermocouples in the heat affected zone (HAZ) and weld metal to obtain the associated thermal profiles, and instrumented to measure true energy input as opposed to conventional heat input. Results reveal that true heat input is 16%-22% higher than conventional heat input. The thermal profile measurements correlate very well with thermal model predictions using true energy input data, which indicates the viability of treating the latter as an essential variable. Ongoing microstructural and mechanical testing work will enable validation of an integrated thermal-microstructural model being developed for these applications. Outputs from this model will be used to correlate essential welding process variables with weld microstructure and hardness. This will ultimately enable development of a list of essential variables and the ranges needed to ensure mechanical properties are achieved in practice, recommendations for controlling and monitoring these essential variables and test methods suitable for classification of welding consumables. (author)

  5. The selection of ultrasonic transducers for inspection of pipeline girth welds. Vol. 3. Evaluation of the pitch-catch technique for examination of the body region

    Energy Technology Data Exchange (ETDEWEB)

    Glover, A G; Fingerhut, M P; Dorling, D V

    1988-10-01

    Research was conducted to develop an ultrasonic inspection design for the nondestructive evaluation of pipeline girth welds made by the mechanized gas metal arc (GMA) welding process for onshore and offshore pipeline construction. This report describes the work carried out to evaluate the performance to the pitch-catch technique with respect to its ability to examine the body region of mechanized GMA welds in 19.5 mm thick material. Evaluation of the pitch-catch technique was carried out on simulated and real weld defects. Results show that an inspection design method and criteria can be specified for the detection of lack of sidewall fusion defects in the body region of mechanized GMA welds. The criteria specified a pitch-catch technique using a 2.25 MHz 45{degrees} transmitter and a 2.25 MHz 55{degrees} receiver probe. A single pair of these transducers can inspect wall thickness from 9.7 mm to 23.0 mm. The pitch-catch technique evaluated on 19.5 mm wall thickness materials demonstrated that the detection goal of projected depth with a signal-to-noise ratio of greater than 12dB could be met, and that no problems occurred with false indications or missed defects. High sensitivities to small defects in the body region were obtained using a single pair of pitch-catch probes that inspected the body region as a single plane. 4 refs., 14 figs., 6 tabs.

  6. Effect of multiple repairs in girth welds of pipelines on the mechanical properties

    International Nuclear Information System (INIS)

    Vega, O.E.; Hallen, J.M.; Villagomez, A.; Contreras, A.

    2008-01-01

    This work presents the results of multiple weld repairs in the same area in seamless API X-52 microalloyed steel pipe. Four conditions of shielded metal arc welding repairs and one as-welded specimen of the girth weld were characterized to determine changes in the microstructure, grain size in the heat affected zone, and to evaluate their effect on the mechanical properties of the weld joints. The mechanical properties by means of tension tests, Charpy-V impact resistance and Vickers hardness of the welds were analyzed. The results indicate that significant changes are not generated in the microstructural constituents of the heat affected zone. Grain growth in the heat affected zone at the specimen mid-thickness with the number of repairs was observed. Tensile strength of the weld joints meets the requirement of the API 1104 standard even after the fourth weld repair. Significant reduction in Charpy-V impact resistance with the number of weld repairs was found when the notch location was in the intersection of the fusion line with the specimen mid-thickness. A significant increase in the Vickers hardness of the heat affected zone occurred after the first repair and a gradual decrease in the Vickers hardness occurred as the number of repairs increases

  7. X-ray tomographic in-service testing of girth welds - The European project TomoWELD

    International Nuclear Information System (INIS)

    Ewert, Uwe; Redmer, Bernhard; Walter, David; Thiessenhusen, Kai-Uwe; Bellon, Carsten; Nicholson, P. Ian; Clarke, Alan; Finke-Haerkoenen, Klaus-Peter; Scharfschwerdt, Joerg W.; Rohde, Karsten

    2015-01-01

    The new standard ISO 17636-2: 2013 'NDT of welded joints - Radiographic testing - Part 2: X- and gamma radiographic testing with digital detectors ''defines the testing practice for digital radiography of welds for the production and in-service inspection. Furthermore the DIN 25435-7:2014 ''In-service inspections of the components of the primary circuit of light water reactors - Part 7: Radiographic testing'' was published. The essential requirements are discussed. The new TomoWELD system can both perform measurements according to these standards as well as record tomographic cross-sectional images (equivalent to metallographic sections), to determine image sizes. Areas of application are chemical and nuclear facilities. It provides a fast testing of girth welds as compared to the use of film or imaging plates. In 2006 the mechanized planar tomography system, TomoCAR, was already introduced, with one could measure cross-sectional images. TomoWELD uses a new photon counting and energy resolving detector with CdTe-CMOS crystal hybrids. The new detector allows the choice of energy thresholds, and enables the reduction of the influence of scattered radiation on the radiographic images and the reconstructed cross-sectional images. An optimized irradiation geometry with a new manipulator design and a fast GPU-based reconstruction algorithm can be used to accelerate the reconstruction and to improve the reconstruction results. The size and the shape of planar and voluminous irregularities can be determined. The concept and the first pictures will be presented. (Contains mainly PowerPoint slides). [de

  8. J-integral analysis of heterogeneous mismatched girth welds in clamped single-edge notched tension specimens

    International Nuclear Information System (INIS)

    Hertelé, Stijn; De Waele, Wim; Verstraete, Matthias; Denys, Rudi; O'Dowd, Noel

    2014-01-01

    Flaw assessment procedures require a quantification of crack driving force, and such procedures are generally based on the assumption of weld homogeneity. However, welds generally have a heterogeneous microstructure, which will influence the crack driving force. This paper describes a stress-based methodology to assess complex heterogeneous welds using a J-based approach. Clamped single-edge notched tension specimens, representative of girth weld flaws, are analyzed and the influence of weld heterogeneity on crack driving force has been determined. The use of a modified limit load for heterogeneous welds is proposed, suitable for implementation in a ‘homogenized’ J-integral estimation scheme. It follows from an explicit modification of an existing solution for centre cracked tension specimens. The proposed solution provides a good estimate of crack driving force and any errors in the approximation may be accounted for by means of a small safety factor on load bearing capacity. - Highlights: • We present a crack driving force estimation procedure for heterogeneous welds. • The procedure is based on a ‘homogenized’ version of the EPRI equation. • Complex welds are translated into equivalent idealized mismatched welds. • The procedure is validated for clamped SE(T) specimens. • A mismatch limit load for clamped SE(T) specimens is developed

  9. Effect of yield stress matching on ductile fracture behavior of girth welds for X line pipe

    Energy Technology Data Exchange (ETDEWEB)

    Motohashi, Hiroyuki; Hagiwara, Naoto [Tokyo Gas Co., Ltd. (Japan)

    2005-07-01

    This paper describes the effects of yield stress matching on the ductile fracture behavior of girth welded joints for X linepipes. Three welded joints were made on an X line pipe using several consumables to obtain about a 20% overmatched, even matched and about a 20% under matched weld metal. For these three welded joints, curved wide plate tensile tests were then conducted with a surface notch in the weld metal. To determine the ductile crack initiation from the surface notch, these tests employed a direct-current electric potential (d-c E P) method. Crack opening displacement, gauge length strain and local strain adjacent to the surface notch were also measured. The ductile crack initiation was successfully detected using the d-c E P method. The yield stress matching significantly affected the ductile crack initiation and fracture behavior, that is, the overmatched welded joint had a higher resistance to ductile fracture than that of the under matched welded joint. The allowable strength matching level was determined from the relationship between the strength matching and the gauge length strain at the ductile crack initiation detected using the d-c E P method. (author)

  10. Modeling of residual stress mitigation in austenitic stainless steel pipe girth weldment

    International Nuclear Information System (INIS)

    Li, M.; Atteridge, D.G.; Anderson, W.E.; West, S.L.

    1994-01-01

    This study provides numerical procedures to model 40-cm-diameter, schedule 40, Type 304L stainless steel pipe girth welding and a newly proposed post-weld treatment. The treatment can be used to accomplish the goal of imparting compressive residual stresses at the inner surface of a pipe girth weldment to prevent/retard the intergranular stress corrosion cracking (IGSCC) of the piping system in nuclear reactors. This new post-weld treatment for mitigating residual stresses is cooling stress improvement (CSI). The concept of CSI is to establish and maintain a certain temperature gradient across the pipe wall thickness to change the final stress state. Thus, this process involves sub-zero low temperature cooling of the inner pipe surface of a completed girth weldment, while simultaneously keeping the outer pipe surface at a slightly elevated temperature with the help of a certain heating method. Analyses to obtain quantitative results on pipe girth welding and CSI by using a thermo-elastic-plastic finite element model are described in this paper. Results demonstrate the potential effectiveness of CSI for introducing compressive residual stresses to prevent/retard IGSCC. Because of the symmetric nature of CSI, it shows great potential for industrial application

  11. Study on the residual stress relaxation in girth-welded steel pipes under bending load using diffraction methods

    International Nuclear Information System (INIS)

    Hempel, Nico; Nitschke-Pagel, Thomas; Dilger, Klaus

    2017-01-01

    This research is dedicated to the experimental investigation of the residual stress relaxation in girth-welded pipes due to quasi-static bending loads. Ferritic-pearlitic steel pipes are welded with two passes, resulting in a characteristic residual stress state with high tensile residual stresses at the weld root. Also, four-point bending is applied to generate axial load stress causing changes in the residual stress state. These are determined both on the outer and inner surfaces of the pipes, as well as in the pipe wall, using X-ray and neutron diffraction. Focusing on the effect of tensile load stress, it is revealed that not only the tensile residual stresses are reduced due to exceeding the yield stress, but also the compressive residual stresses for equilibrium reasons. Furthermore, residual stress relaxation occurs both parallel and perpendicular to the applied load stress.

  12. Characterisation of girth pipe weld for primary heat transport system of pressurised heavy water reactors

    International Nuclear Information System (INIS)

    Singh, P.K.; Vaze, K.K.; Kushwaha, H.S.

    2002-01-01

    The weld and heat affected zone (HAZ) associated with the girth weld are most vulnerable regions of the piping system. The different regions of the weld joint such as the weld metal, HAZ and base metal lead to heterogeneous mechanical and metallurgical properties of the joints. Due to their different metallurgical and mechanical properties, the amounts of damage produced in these regions are different when the component is subjected to service condition. Thus, it is imperative to know the characteristics of these regions of a pipe weld in order to identify the weakest zone for safe designing of high energy piping components. In view of this necessity the present study has been planned to carry out complete characterisation of the weld joint of SA 333 Gr.6 steel pipe, in terms of its metallurgical, mechanical and fracture properties. The mechanical and fracture mechanics properties of the base metal, weld deposit and HAZ have been compared and correlated with reference to their microstructures. Weld joints of SA 333 Gr.6 steel pipe have been prepared by using GTAW root pass and SMAW filling of V-grove as per recommended welding procedure specifications (WPS) conforming to ASME Sec IX commonly used to fabricate nuclear piping system components. The emphasis of the study is to characterise base, weld and HAZ of the pipe weld in terms of chemical, metallurgical, mechanical and fracture mechanics properties. The fracture toughness behaviour of the welds and HAZ has been characterised by J-integral parameters. The fatigue crack growth rate has been characterised by Paris Law. Stretched zone width (SZW) has been measured under SEM to evaluate initiation fracture toughness. The estimated initiation fracture toughness based on SZW and blunting line given by EGF recommendation have been compared. The fracture mechanics properties of base, weld and HAZ has been determined and compared. The fracture mechanics properties of the weld and HAZ have been correlated to their

  13. Weld defect identification in friction stir welding using power spectral density

    Science.gov (United States)

    Das, Bipul; Pal, Sukhomay; Bag, Swarup

    2018-04-01

    Power spectral density estimates are powerful in extraction of useful information retained in signal. In the current research work classical periodogram and Welch periodogram algorithms are used for the estimation of power spectral density for vertical force signal and transverse force signal acquired during friction stir welding process. The estimated spectral densities reveal notable insight in identification of defects in friction stir welded samples. It was observed that higher spectral density against each process signals is a key indication in identifying the presence of possible internal defects in the welded samples. The developed methodology can offer preliminary information regarding presence of internal defects in friction stir welded samples can be best accepted as first level of safeguard in monitoring the friction stir welding process.

  14. The investigation of typical welding defects for 5456 aluminum alloy friction stir welds

    International Nuclear Information System (INIS)

    Chen Huabin; Yan Keng; Lin Tao; Chen Shanben; Jiang Chengyu; Zhao Yong

    2006-01-01

    The external factors on the friction stir welding defects are so abundant that the experiments of friction stir welding were conducted for 5456 aluminum alloy. With the changes of the tool tilt angle and material condition, defects can be generated. These defects can be conventional ones (lack of penetration or voids), or lazy S, which are unique to friction stir welding. However, the origin of the defects remains an area of uncertainty. In this study, an attempt has been made to investigate the formation of these defects. The typical welding defects of friction stir welding joint for 5456 aluminum alloy were analyzed and discussed, respectively, by using optical microscopy (OM), energy-dispersive X-ray spectroscopy (EDS) and scanning electron microscope (SEM). The microscopic examination of the nugget zone and fracture location of the weld confirms that the tilt angle can change the plastic material flow patterns in the stir zone and accordingly control the weld properties. In addition, the oxide layer from the initial butt surface during FSW is dispersed at the grain boundary. These A1 2 O 3 particles are actually the major cause of failure of the joint

  15. Artificial defects detection and location during welding

    International Nuclear Information System (INIS)

    Asty, M.

    1978-01-01

    Welding control by acoustic emission allows defects detection as soon as they are created. Acoustic testing saves time and gives better quality assurance in the case of multiple pass welding of plates. A welded joint was performed on A533B steel plates 250 mm thick by submerged arc welding. Artificial defects were implanted to determine significative parameters of acoustic reception. In operating conditions a significant acoustic activity takes place only during welding as shown by preliminary tests. At the same time an important noise is created by the arc, scories cooling and metal solidification and cooling. These problems are solved by an original processing in time-space detecting and locating defects with a good approximation [fr

  16. Eddy current inspection of weld defects in tubing

    Science.gov (United States)

    Katragadda, G.; Lord, W.

    1992-01-01

    An approach using differential probes for the inspection of weld defects in tubing is studied. Finite element analysis is used to model the weld regions and defects. Impedance plane signals are predicted for different weld defect types and compared wherever possible with signals from actual welds in tubing. Results show that detection and sizing of defects in tubing is possible using differential eddy current techniques. The phase angle of the impedance plane trajectory gives a good indication of the sizing of the crack. Data on the type of defect can be obtained from the shape of the impedance plane trajectory and the phase. Depending on the skin depth, detection of outer wall, inner wall, and subsurface defects is possible.

  17. An optimization method for defects reduction in fiber laser keyhole welding

    Science.gov (United States)

    Ai, Yuewei; Jiang, Ping; Shao, Xinyu; Wang, Chunming; Li, Peigen; Mi, Gaoyang; Liu, Yang; Liu, Wei

    2016-01-01

    Laser welding has been widely used in automotive, power, chemical, nuclear and aerospace industries. The quality of welded joints is closely related to the existing defects which are primarily determined by the welding process parameters. This paper proposes a defects optimization method that takes the formation mechanism of welding defects and weld geometric features into consideration. The analysis of welding defects formation mechanism aims to investigate the relationship between welding defects and process parameters, and weld features are considered to identify the optimal process parameters for the desired welded joints with minimum defects. The improved back-propagation neural network possessing good modeling for nonlinear problems is adopted to establish the mathematical model and the obtained model is solved by genetic algorithm. The proposed method is validated by macroweld profile, microstructure and microhardness in the confirmation tests. The results show that the proposed method is effective at reducing welding defects and obtaining high-quality joints for fiber laser keyhole welding in practical production.

  18. Ultrasonic defect detection method for socket welding joint

    International Nuclear Information System (INIS)

    Tominaga, Masaaki; Matsuo, Toshiyuki; Ueno, Akihiro; Watanabe, Kunimichi; Kawamata, Kunio.

    1995-01-01

    The present invention provides a method of detecting defects over a wide range of a socket weld portion of various kinds of pipelines used, for example, in a nuclear power plant. Namely, an inclined probe is disposed to a jig for detecting defects by ultrasonic waves. This is rotated at least by one turn along the peripheral surface of the material to be detected such as weld tube joints. Defects of weld portion of the material can be detected automatically by using ultrasonic waves during the rotation. The inclined probe for detecting defects by ultrasonic waves comprises a transmission portion having a planar transmittance oscillator disposed to a wedge on the transmission side and a receiving portion comprising a planar receiving oscillator disposed to a wedge on the receiving side. With such a constitution, ultrasonic waves are emitted from the transmission portion to the defect detection portion in the welded portion. If a defect is present, defective echo is reflected to the receiving portion disposed ahead of the probe. Since the defective echo changes depending on the height of the detective portion, the estimation of the height of the defect can be facilitated. (I.S.)

  19. Defect Detectability Improvement for Conventional Friction Stir Welds

    Science.gov (United States)

    Hill, Chris

    2013-01-01

    This research was conducted to evaluate the effects of defect detectability via phased array ultrasound technology in conventional friction stir welds by comparing conventionally prepped post weld surfaces to a machined surface finish. A machined surface is hypothesized to improve defect detectability and increase material strength.

  20. Development of high productivity pipeline girth welding

    International Nuclear Information System (INIS)

    Yapp, David; Liratzis, Theocharis

    2010-01-01

    The trend for increased oil and gas consumption implies a growth of long-distance pipeline installations. Welding is a critical factor in the installation of pipelines, both onshore and offshore, and the rate at which the pipeline can be laid is generally determined by the speed of welding. This has resulted in substantial developments in pipeline welding techniques. Arc welding is still the dominant process used in practice, and forge welding processes have had limited successful application to date, in spite of large investments in process development. Power beam processes have also been investigated in detail and the latest laser systems now show promise for practical application. In recent years the use of high strength steels has substantially reduced the cost of pipeline installation, with X70 and X80 being commonly used. This use of high strength pipeline produced by thermomechanical processing has also been researched. They must all meet three requirments, high productivity, satisfactory weld properties, and weld quality

  1. Comparison radiographic and automated ultrasonic inspection of pipeline tie-in welds

    International Nuclear Information System (INIS)

    Connelly, T.; Gross, B.

    2007-01-01

    In recent years the use of automated ultrasonic inspection (AUT) for pipeline girth welds has seen rapid growth and is now used almost exclusively for all gas metal arc welding (GMAW) girth weld inspection. The following paper reviews some of the major features of ultrasonic inspection by comparison to conventional Film Radiography (RT) and reviews the use of ultrasonic inspection for pipeline and tie-in welds. (author)

  2. Residual stress measurement of large scaled welded pipe using neutron diffraction method. Effect of SCC crack propagation and repair weld on residual stress distribution

    International Nuclear Information System (INIS)

    Suzuki, Hiroshi; Katsuyama, Jinya; Tobita, Tohru; Morii, Yukio

    2011-01-01

    The RESA-1 neutron engineering diffractometer in the JRR-3 (Japan Research Reactor No.3) at the Japan Atomic Energy Agency, which is used for stress measurements, was upgraded to realize residual stress measurements of large scaled mechanical components. A series of residual stress measurements was made to obtain through-thickness residual stress distributions in a Type 304 stainless steel butt-welded pipe of 500A-sch.80 using the upgraded RESA-1 diffractometer. We evaluated effects of crack propagation such as stress corrosion cracking (SCC) and a part-circumference repair weld on the residual stress distributions induced by girth welding. Measured residual stress distributions near original girth weld revealed good agreement with typical results shown in some previous works using finite element method, deep hole drilling as well as neutron diffraction. After introducing a mock crack with 10 mm depth in the heat affected zone on the inside wall of the pipe by electro discharge machining, the axial residual stresses were found to be released in the part of the mock crack. However, changes in the through-wall bending stress component and the self-equilibrated stress component were negligible and hence the axial residual stress distribution in the ligament was remained in the original residual stresses near girth weld without the mock crack. Furthermore, changes in hoop and radial residual stress were also small. The residual stress distributions after a part repair welding on the outer circumference of the girth weld were significantly different from residual stress distributions near the original girth weld. The through-thickness average axial residual stress was increased due to increase of the tensile membrane stress and mitigation of the bending stress after repair welding. Throughout above studies, we evidenced that the neutron diffraction technique is useful and powerful tool for measuring residual stress distributions in large as well as thick mechanical

  3. In-field Welding and Coating Protocols

    Science.gov (United States)

    2009-05-12

    Gas Technology Institute (GTI) and Edison Welding Institute (EWI) created both laboratory and infield girth weld samples to evaluate the effects of weld geometry and hydrogen off-gassing on the performance of protective coatings. Laboratory made plat...

  4. Investigation of a weld defect, reactor vessel head Ringhals 2

    International Nuclear Information System (INIS)

    Embring, G.; Pers-Anderson, E.B.

    1994-01-01

    During the summer-outage 1993 Ringhals unit 2 vessel head was inspected at weld-area of Alloy 182. One major defect was found Two plus two ''boat-samples'' were taken out from the zone between the weld and the stainless cladding. All samples were sent to Studsviks laboratories for detailed investigations. The metallographic and fractographic investigations revealed that the major weld-defect had been there from manufacturing. The defect was located between the Alloy 182-buttering and the pressure vessel steel SA 533 grB cl 1. No indications of PWSCC or IDSCC were found. An inspection programme was defined. Different types of reference blocks were provided by Ringhals in cooperation with ABB TRC. Reference reflectors of type flat bottom hole (FBH) and eroded notches (EDM), with different sizes and separation were manufactured. One weld sample with manufacturing defects -lack of fusion and slag was inclusions- was present. ABB TRC performed UT inspection in the gap between the penetration and the thermal sleeve. Inspection results like defect identification, defect separation and defect sizing accuracy were compared with result from the destructive inspection. No relevant additional defects were found. An analysing and repair program was performed. A special designed disc sealed off the defect area. (authors). 5 figs., 3 refs

  5. Formation Mechanisms for Entry and Exit Defects in Bobbin Friction Stir Welding

    Directory of Open Access Journals (Sweden)

    Abbas Tamadon

    2018-01-01

    Full Text Available Bobbin friction stir welding (BFSW is an innovative variant for the solid state welding process whereby a rotating symmetrical tool causes a fully penetrated bond. Despite the process development, there are still unknown variables in the characterization of the process parameters which can cause uncontrolled weld defects. The entry zone and the exit zone consist of two discontinuity-defects and removing them is one of the current challenges for improving the weld quality. In the present research, the characteristic features of the entry and exit defects in the weld structure and formation mechanism of them during the BFSW processing was investigated. Using stacked layers of multi-colour plasticine the material flow, analogous to metal flow, can be visualised. By using different colours as the path markers of the analogue model, the streamline flow can be easily delineated in the discontinuity defects compared with the metal welds. AA6082-T6 aluminium plates and multi-layered plasticine slabs were employed to replicate the entry-exit defects in the metal weld and analogue samples. The fixed-bobbin tool utilized for this research was optimized by adding a thread feature and tri-flat geometry to the pin and closed-end spiral scrolls on both shoulder surfaces. Samples were processed at different rotating and longitudinal speeds to show the degree of dependency on the welding parameters for the defects. The analogue models showed that the entry zone and the exit zone of the BFSW are affected by the inhomogeneity of the material flow regime which causes the ejection or disruption of the plastic flow in the gap between the bobbin shoulders. The trial aluminium welds showed that the elimination of entry-exit defects in the weld body is not completely possible but the size of the defects can be minimized by modification of the welding parameters. For the entry zone, the flow pattern evolution suggested formation mechanisms for a sprayed tail, island zone

  6. The Detection of Burn-Through Weld Defects Using Noncontact Ultrasonics

    Directory of Open Access Journals (Sweden)

    Zeynab Abbasi

    2018-01-01

    Full Text Available Nearly all manufactured products in the metal industry involve welding. The detection and correction of defects during welding improve the product reliability and quality, and prevent unexpected failures. Nonintrusive process control is critical for avoiding these defects. This paper investigates the detection of burn-through damage using noncontact, air-coupled ultrasonics, which can be adapted to the immediate and in-situ inspection of welded samples. The burn-through leads to a larger volume of degraded weld zone, providing a resistance path for the wave to travel which results in lower velocity, energy ratio, and amplitude. Wave energy dispersion occurs due to the increase of weld burn-through resulting in higher wave attenuation. Weld sample micrographs are used to validate the ultrasonic results.

  7. Defect detectability of eddy current testing for underwater laser beam welding

    International Nuclear Information System (INIS)

    Ueno, Souichi; Kobayashi, Noriyasu; Ochiai, Makoto; Kasuya, Takashi; Yuguchi, Yasuhiro

    2011-01-01

    We clarified defect detectability of eddy current testing (ECT) as a surface inspection technique for underwater laser beam welding works of dissimilar metal welding (DMW) of reactor vessel nozzle. The underwater laser beam welding procedure includes groove caving as a preparation, laser beam welding in the grooves and welded surface grinding as a post treatment. Therefore groove and welded surface inspections are required in the underwater condition. The ECT is a major candidate as this inspection technique because a penetrant testing is difficult to perform in the underwater condition. Several kinds of experiments were curried out using a cross coil an ECT probe and ECT data acquisition system in order to demonstrate the ECT defect detectability. We used specimens, simulating groove and DMW materials at an RV nozzle, with electro-discharge machining (EDM) slits over it. Additionally, we performed a detection test for artificial stress corrosion cracking (SCC) defects. From these experimental results, we confirmed that an ECT was possible to detect EDM slits 0.3 mm or more in depth and artificial SCC defects 0.02 mm to 0.48 mm in depth on machined surface. Furthermore, the underwater ECT defect detectability is equivalent to that in air. We clarified an ECT is sufficiently usable as a surface inspection technique for underwater laser beam welding works. (author)

  8. Automatic ultrasonic inspection of pipeline girth weldswith a corrosive resistant alloy (Cra) layer

    International Nuclear Information System (INIS)

    Ent, Jan Van Der; Portzgen, Niels; Findlay, Niele; Nupen, Oddbjorn; Endal, Geir; Forli, Olav

    2007-01-01

    There is very limited experience in the Offshore Pipeline industry regarding the Automated Ultrasonic Inspection of Austenitic Girth Welds with CRA layers. The AUT inspection technique to be used for Austenitic welds having CRA layers deviates from the standard approach, which is described within internationally available AUT inspection standards. Due to the coarse grain and anisotropic structure of the weld material, special designed ultrasonic probes and adapted AUT system inspection software were required for examination of the Nome Satellite CRA welds. The 'new' inspection approach was subject for qualification and validation in order to demonstrate that the proposed technique could fulfill stringent inspection requirements which are applicable for the reeling process. Experiences from former projects are difficult to find, since this was the first clad pipeline to be reeled. To determine the overall qualification program to be performed for the Nome Satellite project, reference has been made to the existing development experiences on CRA weld inspection from the Shell Bonga project. The available defect population was obtained out of real CRA pipeline production welds and were therefore of a naturally coarse. Representatives from Technip, Statoil and DNV performed an audit at RTD premises with the objective to draw up an inventory of the performed CRA qualification work and to judge whether this work could be used for the benefit of the Nome Satellite project. It has been concluded that the existing CRA qualification work could be used to complement the Nome Satellite scope of CRA qualification work. As a result the statistical uncertainties were reduced merging the both qualification program results (referenced qualification data and additional Nome Satellite Field qualification work)

  9. Synergy of corrosion activity and defects in weld bonds

    Directory of Open Access Journals (Sweden)

    Michal Černý

    2004-01-01

    Full Text Available Presented work evaluates synergism of atmosphere corrosive action and material defects. These defects appear not only during particular technological process of connecting of structural material but also during cooling and up to hundreds hours afterwards. The multiplication of degradation impact of defects in joint welds and heat-affected zone caused by activity of atmosphere acidic medium is simulated in condensation chambers. The verification is realized by use of mechanical uniaxial tension loading and following fractographic and metalgraphic analysis.The metal plasticity is sufficient factor to eliminate thermal stress in tough metal (11 373. This is reflected in more homogenous weld root area (with no cracks. The corrosion influence of environment is in case of such specimens limited to very slight decrease of weld maximum load. The ultimate strength value decreases approximately for 20MPa only in contrast to dramatic strength decrease in case of 11 503 material. Before metalographic examination was observed surprisingly great value of load capacity of spot welds. These welds were not ruptured nor in a single case even during maximum length of corrosion exploitation. The consequent material analysis discovered high qualitative material and strength properties of this kind of joint.

  10. In-Process Detection of Weld Defects Using Laser-Based Ultrasound

    International Nuclear Information System (INIS)

    Bacher, G.D.; Kercel, S.W.; Kisner, R.A.; Klein, M.B.; Pouet, B.

    1999-01-01

    Laser-based ultrasonic (LBU) measurement shows great promise for on-line monitoring of weld quality in tailor-welded blanks. Tailor-welded blanks are steel blanks made from plates of differing thickness and/or properties butt-welded together; they are used in automobile manufacturing to produce body, frame, and closure panels. LBU uses a pulsed laser to generate the ultrasound and a continuous wave (CW) laser interferometer to detect the ultrasound at the point of interrogation to perform ultrasonic inspection. LBU enables in-process measurements since there is no sensor contact or near-contact with the workpiece. The authors are using laser-generated plate (Lamb) waves to propagate from one plate into the weld nugget as a means of detecting defects. This paper reports the results of the investigation of a number of inspection architectures based on processing of signals from selected plate waves, which are either reflected from or transmitted through the weld zone. Bayesian parameter estimation and wavelet analysis (both continuous and discrete) have shown that the LBU time-series signal is readily separable into components that provide distinguishing features which describe weld quality. The authors anticipate that, in an on-line industrial application, these measurements can be implemented just downstream from the weld cell. Then the weld quality data can be fed back to control critical weld parameters or alert the operator of a problem requiring maintenance. Internal weld defects and deviations from the desired surface profile can then be corrected before defective parts are produced

  11. Welding the AT-400A Containment Vessel

    Energy Technology Data Exchange (ETDEWEB)

    Brandon, E.

    1998-11-01

    Early in 1994, the Department of Energy assigned Sandia National Laboratories the responsibility for designing and providing the welding system for the girth weld for the AT-400A containment vessel. (The AT-400A container is employed for the shipment and long-term storage of the nuclear weapon pits being returned from the nation's nuclear arsenal.) Mason Hanger Corporation's Pantex Plant was chosen to be the production facility. The project was successfully completed by providing and implementing a turnkey welding system and qualified welding procedure at the Pantex Plant. The welding system was transferred to Pantex and a pilot lot of 20 AT-400A containers with W48 pits was welded in August 1997. This document is intended to bring together the AT-400A welding system and product (girth weld) requirements and the activities conducted to meet those requirements. This document alone is not a complete compilation of the welding development activities but is meant to be a summary to be used with the applicable references.

  12. Application of artificial neural networks to evaluate weld defects of nuclear components

    International Nuclear Information System (INIS)

    Amin, E.S.

    2007-01-01

    Artificial neural networks (ANNs) are computational representations based on the biological neural architecture of the brain. ANNs have been successfully applied to a wide range of engineering and scientific applications, such as signal, image processing and data analysis. Although Radiographic testing is widely used for welding defects, it is unsuccessful in identifying some welding defects because of the nature of image formation and quality. Neoteric algorithms have been used for the purpose of weld defects identifications in radiographic images to replace the expert knowledge. The application of artificial neural networks in noise detection of radiographic films is used. Radial Basis (RB) and learning vector quantization (LVQ) were applied. The method shows good performance in weld defects recognition and classification problems.

  13. X-ray tomographic in-service testing of girth welds - The European project TomoWELD; Roentgen-tomographische In-Service-Pruefung von Rundschweissnaehten. Das Europaeische Projekt TomoWELD

    Energy Technology Data Exchange (ETDEWEB)

    Ewert, Uwe; Redmer, Bernhard; Walter, David; Thiessenhusen, Kai-Uwe; Bellon, Carsten [BAM Bundesanstalt fuer Materialforschung und -pruefung, Berlin (Germany); Nicholson, P. Ian; Clarke, Alan [TWI Technology Centre, Port Talbot (United Kingdom); Finke-Haerkoenen, Klaus-Peter [Ajat Oy Ltd., Espoo (Finland); Scharfschwerdt, Joerg W.; Rohde, Karsten [AREVA GmbH, Erlangen (Germany)

    2015-07-01

    The new standard ISO 17636-2: 2013 'NDT of welded joints - Radiographic testing - Part 2: X- and gamma radiographic testing with digital detectors ''defines the testing practice for digital radiography of welds for the production and in-service inspection. Furthermore the DIN 25435-7:2014 ''In-service inspections of the components of the primary circuit of light water reactors - Part 7: Radiographic testing'' was published. The essential requirements are discussed. The new TomoWELD system can both perform measurements according to these standards as well as record tomographic cross-sectional images (equivalent to metallographic sections), to determine image sizes. Areas of application are chemical and nuclear facilities. It provides a fast testing of girth welds as compared to the use of film or imaging plates. In 2006 the mechanized planar tomography system, TomoCAR, was already introduced, with one could measure cross-sectional images. TomoWELD uses a new photon counting and energy resolving detector with CdTe-CMOS crystal hybrids. The new detector allows the choice of energy thresholds, and enables the reduction of the influence of scattered radiation on the radiographic images and the reconstructed cross-sectional images. An optimized irradiation geometry with a new manipulator design and a fast GPU-based reconstruction algorithm can be used to accelerate the reconstruction and to improve the reconstruction results. The size and the shape of planar and voluminous irregularities can be determined. The concept and the first pictures will be presented. (Contains mainly PowerPoint slides). [German] Der neue Standard ISO 17636-2:2013 ''ZfP von Schweissnaehten - Durchstrahlungspruefung - Teil 2: Roentgen- und Gammastrahlungstechniken mit digitalen Detektoren'' definiert die Pruefpraxis fuer die digitale Radiographie von Schweissnaehten fuer die Herstellung und In-Service- Pruefung. Ausserdem wurde die DIN 25435

  14. Examination of weld defects by computed tomography

    Directory of Open Access Journals (Sweden)

    M. Jovanović

    2012-04-01

    Full Text Available Defects in metal arc gas (MAG welds made in S235JR low carbon steel of 6 mm thickness were examined. A sample containing lack of fusion (LOF and pores was examined by computed tomography – CT. The computed tomography examination was performed in order to define LOF size and position as well as dimensions and distribution of accompanying pores in the weld metal.

  15. Predicting of bead undercut defects in high-speed gas metal arc welding (GMAW)

    Institute of Scientific and Technical Information of China (English)

    Wen-jing XU; Chuan-song WU; De-gang ZOU

    2008-01-01

    In the gas metal arc welding (GMAW) process, when the welding speed reaches a certain threshold, there will be an onset of weld bead undercut defects which limit the further increase of the welding speed. Establishing a mathematical model for high-speed GMAW to predict the tendency of bead undercuts is of great significance to pre-vent such defects. Under the action of various forces, the transferred metal from filler wire to the weld pool, and the geometry and dimension of the pool itself decide if the bead undercut occurs or not. The previous model simpli-fied the pool shape too much. In this paper, based on the actual weld pool geometry and dimension calculated from a numerical model, a hydrostatic model for liquid metal surface is used to study the onset of bead undercut defects in the high-speed welding process and the effects of dif-ferent welding parameters on the bead undercut tendency.

  16. Ultrasonic test data acquisition and defect verification of stainless-steel welds at 4000F

    International Nuclear Information System (INIS)

    Mech, S.J.

    1983-01-01

    This paper describes techniques developed to characterize the features found during ultrasonic examination of stainless steel welds which are indicative of defects. Feature inspection technology allows reliable discrimination weld signals and other noise under remote, automatic, high temperature conditions. Ultrasonic feature inspection techniques have been successfully implemented under 400 0 F (200 0 C) flowing sodium pipe welds. The challenge is to develop techniques which find defects, but ignore variations associated with the normal cast type microstructure of the weld zone. This study was directed at gathering data on a welded pipe section with notches used to simulate defects and is an example of computer acquisition and analysis techniques of ultrasonic data. Various analysis methods were compared to find signal analysis algorithms sensitive to these simulated defects

  17. Grinding assembly, grinding apparatus, weld joint defect repair system, and methods

    Science.gov (United States)

    Larsen, Eric D.; Watkins, Arthur D.; Bitsoi, Rodney J.; Pace, David P.

    2005-09-27

    A grinding assembly for grinding a weld joint of a workpiece includes a grinder apparatus, a grinder apparatus includes a grinding wheel configured to grind the weld joint, a member configured to receive the grinding wheel, the member being configured to be removably attached to the grinder apparatus, and a sensor assembly configured to detect a contact between the grinding wheel and the workpiece. The grinding assembly also includes a processing circuitry in communication with the grinder apparatus and configured to control operations of the grinder apparatus, the processing circuitry configured to receive weld defect information of the weld joint from an inspection assembly to create a contour grinding profile to grind the weld joint in a predetermined shape based on the received weld defect information, and a manipulator having an end configured to carry the grinder apparatus, the manipulator further configured to operate in multiple dimensions.

  18. Optical sensor for real-time weld defect detection

    Science.gov (United States)

    Ancona, Antonio; Maggipinto, Tommaso; Spagnolo, Vincenzo; Ferrara, Michele; Lugara, Pietro M.

    2002-04-01

    In this work we present an innovative optical sensor for on- line and non-intrusive welding process monitoring. It is based on the spectroscopic analysis of the optical VIS emission of the welding plasma plume generated in the laser- metal interaction zone. Plasma electron temperature has been measured for different chemical species composing the plume. Temperature signal evolution has been recorded and analyzed during several CO2-laser welding processes, under variable operating conditions. We have developed a suitable software able to real time detect a wide range of weld defects like crater formation, lack of fusion, excessive penetration, seam oxidation. The same spectroscopic approach has been applied for electric arc welding process monitoring. We assembled our optical sensor in a torch for manual Gas Tungsten Arc Welding procedures and tested the prototype in a manufacturing industry production line. Even in this case we found a clear correlation between the signal behavior and the welded joint quality.

  19. Nondestructive Online Detection of Welding Defects in Track Crane Boom Using Acoustic Emission Technique

    Directory of Open Access Journals (Sweden)

    Yong Tao

    2014-04-01

    Full Text Available Nondestructive detection of structural component of track crane is a difficult and costly problem. In the present study, acoustic emission (AE was used to detect two kinds of typical welding defects, that is, welding porosity and incomplete penetration, in the truck crane boom. Firstly, a subsidiary test specimen with special preset welding defect was designed and added on the boom surface with the aid of steel plates to get the synchronous deformation of the main boom. Then, the AE feature information of the welding defect could be got without influencing normal operation of equipment. As a result, the rudimentary location analysis can be attained using the linear location method and the two kinds of welding defects can be distinguished clearly using AE characteristic parameters such as amplitude and centroid frequency. Also, through the comparison of two loading processes, we concluded that the signal produced during the first loading process was mainly caused by plastic deformation damage and during the second loading process the stress release and structure friction between sections in welding area are the main acoustic emission sources. Thus, the AE is an available tool for nondestructive online detection of latent welding defects of structural component of track crane.

  20. Influence of tool geometry and processing parameters on welding defects and mechanical properties for friction stir welding of 6061 Aluminium alloy

    Science.gov (United States)

    Daneji, A.; Ali, M.; Pervaiz, S.

    2018-04-01

    Friction stir welding (FSW) is a form of solid state welding process for joining metals, alloys, and selective composites. Over the years, FSW development has provided an improved way of producing welding joints, and consequently got accepted in numerous industries such as aerospace, automotive, rail and marine etc. In FSW, the base metal properties control the material’s plastic flow under the influence of a rotating tool whereas, the process and tool parameters play a vital role in the quality of weld. In the current investigation, an array of square butt joints of 6061 Aluminum alloy was to be welded under varying FSW process and tool geometry related parameters, after which the resulting weld was evaluated for the corresponding mechanical properties and welding defects. The study incorporates FSW process and tool parameters such as welding speed, pin height and pin thread pitch as input parameters. However, the weld quality related defects and mechanical properties were treated as output parameters. The experimentation paves way to investigate the correlation between the inputs and the outputs. The correlation between inputs and outputs were used as tool to predict the optimized FSW process and tool parameters for a desired weld output of the base metals under investigation. The study also provides reflection on the effect of said parameters on a welding defect such as wormhole.

  1. A Finite Element Model to Simulate Defect Formation during Friction Stir Welding

    Directory of Open Access Journals (Sweden)

    Zhi Zhu

    2017-07-01

    Full Text Available In this study, a 3D coupled thermo-mechanical finite element model is developed to predict and analyze the defect formation during friction stir welding based on coupled Eulerian Lagrangian method. The model is validated by comparing the estimated welding temperature, processed zone shape and void size with those obtained experimentally. The results compared indicate that the simulated temperature and the data measured are in good agreement with each other. In addition, the model can predict the plasticized zone shape and the presence of a void in the weld quite accurately. However, the void size is overestimated. The effects of welding parameters and tool pin profile are also analyzed. The results reveal that welding at low welding speed or high tool rotational speed could produce a smaller void. Moreover, compared to a smooth tool pin, a featured tool pin can enhance plastic flow in the weld and achieve defect-free weldment. The results are helpful for the optimization of the welding process and the design of welding tools.

  2. Evaluation of Hydrogen Cracking in Weld Metal Deposited using Cellulosic-Coated Electrodes

    Science.gov (United States)

    2009-06-16

    Cellulosic-coated electrodes (primarily AWS EXX10-type) are traditionally used for "stovepipe" welding of pipelines because they are well suited for deposition of pipeline girth welds and are capable of high deposition rates when welding downhill. De...

  3. Automatic classification of defects in weld pipe

    International Nuclear Information System (INIS)

    Anuar Mikdad Muad; Mohd Ashhar Hj Khalid; Abdul Aziz Mohamad; Abu Bakar Mhd Ghazali; Abdul Razak Hamzah

    2000-01-01

    With the advancement of computer imaging technology, the image on hard radiographic film can be digitized and stored in a computer and the manual process of defect recognition and classification may be replace by the computer. In this paper a computerized method for automatic detection and classification of common defects in film radiography of weld pipe is described. The detection and classification processes consist of automatic selection of interest area on the image and then classify common defects using image processing and special algorithms. Analysis of the attributes of each defect such as area, size, shape and orientation are carried out by the feature analysis process. These attributes reveal the type of each defect. These methods of defect classification result in high success rate. Our experience showed that sharp film images produced better results

  4. Automatic classification of defects in weld pipe

    International Nuclear Information System (INIS)

    Anuar Mikdad Muad; Mohd Ashhar Khalid; Abdul Aziz Mohamad; Abu Bakar Mhd Ghazali; Abdul Razak Hamzah

    2001-01-01

    With the advancement of computer imaging technology, the image on hard radiographic film can be digitized and stored in a computer and the manual process of defect recognition and classification may be replaced by the computer. In this paper, a computerized method for automatic detection and classification of common defects in film radiography of weld pipe is described. The detection and classification processes consist of automatic selection of interest area on the image and then classify common defects using image processing and special algorithms. Analysis of the attributes of each defect such area, size, shape and orientation are carried out by the feature analysis process. These attributes reveal the type of each defect. These methods of defect classification result in high success rate. Our experience showed that sharp film images produced better results. (Author)

  5. Evaluation of weld defects in stainless steel 316L pipe using guided wave

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Joon Hyun [School of Mechanical Engineering, Pusan National University, Busan (Korea, Republic of); Lee, Jin Kyung [Dept. of Mechanical Engineering, Dongeui University, Busan (Korea, Republic of)

    2015-02-15

    Stainless steel is a popular structural materials for liquid-hydrogen storage containers and piping components for transporting high-temperature fluids because of its superior material properties such as high strength and high corrosion resistance at elevated temperatures. In general, tungsten inert gas (TIG) arc welding is used for bonding stainless steel. However, it is often reported that the thermal fatigue cracks or initial defects in stainless steel after welding decreases the reliability of the material. The objective of this paper is to clarify the characteristics of ultrasonic guided wave propagation in relation to a change in the initial crack length in the welding zone of stainless steel. For this purpose, three specimens with different artificial defects of 5 mm, 10 mm, and 20 mm in stainless steel welds were prepared. By considering the thickness of s stainless steel pipe, special attention was given to both the L(0,1) mode and L(0,2) mode in this study. It was clearly found that the L(0,2) mode was more sensitive to defects than the L(0,1) mode. Based on the results of the L(0,1) and L(0,2) mode analyses, the magnitude ratio of the two modes was more effective than studying each mode when evaluating defects near the welded zone of stainless steel because of its linear relationship with the length of the artificial defect.

  6. Probability of defect detection of Posiva's electron beam weld

    International Nuclear Information System (INIS)

    Kanzler, D.; Mueller, C.; Pitkaenen, J.

    2013-12-01

    The report 'Probability of Defect Detection of Posiva's electron beam weld' describes POD curves of four NDT methods radiographic testing, ultrasonic testing, eddy current testing and visual testing. POD-curves are based on the artificial defects in reference blocks. The results are devoted to the demonstration of suitability of the methods for EB weld testing. Report describes methodology and procedure applied by BAM. Report creates a link from the assessment of the reliability and inspection performance to the risk assessment process of the canister final disposal project. Report ensures the confirmation of the basic quality of the NDT methods and their capability to describe the quality of the EB-weld. The probability of detection curves are determined based on the MIL-1823 standard and it's reliability guidelines. The MIL-1823 standard was developed for the determination of integrity of gas turbine engines for the US military. In the POD-process there are determined as a key parameter for the defect detectability the a90/95 magnitudes, i.e. the size measure a of the defect, for which the lower 95 % confidence band crosses the 90 % POD level. By this way can be confirmed that defects with a size of a90/95 will be detected with 90 % probability. In case the experiment will be repeated 5 % might fall outside this confidence limit. (orig.)

  7. Generalized classification of welds according to defect type based on raidation testing results

    International Nuclear Information System (INIS)

    Adamenko, A.A.; Demidko, V.G.

    1980-01-01

    Constructed is a generalized classification of welds according to defect type, with respect to real danger of defect, which in the first approximation is proportional to relatively decrease of the thickness, and with respect to defect potential danger which can be determined by its pointing. According to this classification the welded joints are divided into five classes according to COMECON guides. The division into classes is carried out according to two-fold numerical criterium which is applicable in case of the presence of experimental data on three defect linear sizes. The above classification is of main importance while automatic data processing of the radiation testing

  8. Automatic welding of stainless steel tubing

    Science.gov (United States)

    Clautice, W. E.

    1978-01-01

    The use of automatic welding for making girth welds in stainless steel tubing was investigated as well as the reduction in fabrication costs resulting from the elimination of radiographic inspection. Test methodology, materials, and techniques are discussed, and data sheets for individual tests are included. Process variables studied include welding amperes, revolutions per minute, and shielding gas flow. Strip chart recordings, as a definitive method of insuring weld quality, are studied. Test results, determined by both radiographic and visual inspection, are presented and indicate that once optimum welding procedures for specific sizes of tubing are established, and the welding machine operations are certified, then the automatic tube welding process produces good quality welds repeatedly, with a high degree of reliability. Revised specifications for welding tubing using the automatic process and weld visual inspection requirements at the Kennedy Space Center are enumerated.

  9. The study on defects in aluminum 2219-T6 thick butt friction stir welds with the application of multiple non-destructive testing methods

    International Nuclear Information System (INIS)

    Li, Bo; Shen, Yifu; Hu, Weiye

    2011-01-01

    Research highlights: → Friction stir weld-defect forming mechanisms of thick butt-joints. → Relationship between weld-defects and friction stir welding process parameters. → Multiple non-destructive testing methods applied to friction stir welds. → Empirical criterion basing on mass-conservation for inner material-loss defects. → Nonlinear correlation between weld strengths and root-flaw lengths. -- Abstract: The present study focused on the relationship between primary friction stir welding process parameters and varied types of weld-defect discovered in aluminum 2219-T6 friction stir butt-welds of thick plates, meanwhile, the weld-defect forming mechanisms were investigated. Besides a series of optical metallographic examinations for friction stir butt welds, multiple non-destructive testing methods including X-ray detection, ultrasonic C-scan testing, ultrasonic phased array inspection and fluorescent penetrating fluid inspection were successfully used aiming to examine the shapes and existence locations of different weld-defects. In addition, precipitated Al 2 Cu phase coarsening particles were found around a 'kissing-bond' defect within the weld stirred nugget zone by means of scanning electron microscope and energy dispersive X-ray analysis. On the basis of volume conservation law in material plastic deformation, a simple empirical criterion for estimating the existence of inner material-loss defects was proposed. Defect-free butt joints were obtained after process optimization of friction stir welding for aluminum 2219-T6 plates in 17-20 mm thickness. Process experiments proved that besides of tool rotation speed and travel speed, more other appropriate process parameter variables played important roles at the formation of high-quality friction stir welds, such as tool-shoulder target depth, spindle tilt angle, and fixture clamping conditions on the work-pieces. Furthermore, the nonlinear correlation between weld tensile strengths and weld crack

  10. The reliability of the repair weld joints of aged high temperature components in fossil power boilers

    Energy Technology Data Exchange (ETDEWEB)

    Okamura, Hiroyuki [Science Univ. of Tokyo (Japan); Ohtani, Ryuichi [Kyoto Univ. (Japan); Fujii, Kazuya [Japan Power Engineering and Inspection Corp., Tokyo (Japan); Yokoyama, Tomomitsu; Nishimura, Nobuhiko [Mitsubishi Heavy Industries Ltd., Tokyo (Japan); Suzuki, Komei [Japan Steel Works Ltd., Tokyo (Japan)

    1998-11-01

    It is of fundamental engineering importance to be able to give reliable assessments of the effective service life of the critical components used within fossil power plants, particularly for those operating for prolonged periods. It is common practice for such assessments to have been estimated using destructive tests, typically the stress rupture test, this having been recognized as one of the most reliable evaluation methods available. Its only drawback is that it often does not permit the component to be in use following the sampling of the test specimen without repairing. The current piece of work focuses on the reliability of the repair welds of components for specimens taken from fossil power plants, having been in service for prolonged periods. Several such repairs to welds have been made to an old power boiler, in particular to a superheater header which is fabricated from 2.25Cr-1Mo steel. Under close examination the repairs to the girth weldment showed susceptibilities of weld cracking, similar to that observed in as-manufactured material. Within the repaired region of the welded joint the microstructure, tensile properties and toughness seemed to be unaffected. The hardness attained its minimum value within the heat affected zone, HAZ of the repair weld, overlapping that of original girth weld HAZ. Furthermore, the stress rupture strength achieved its minimum value at the same position taking on the same value as the strength associated with the aged girth welded joint. (orig.)

  11. X-ray tomographic in-service inspection of girth welds - The European project TomoWELD

    International Nuclear Information System (INIS)

    Ewert, Uwe; Redmer, Bernhard; Walter, David; Thiessenhusen, Kai-Uwe; Bellon, Carsten; Nicholson, P. Ian; Clarke, Alan L.; Finke-Härkönen, Klaus-Peter

    2015-01-01

    The new standard 'ISO 17636-2:2013: Non-destructive testing of welds - Radiographic testing - Part 2: X- and gamma-ray techniques with digital detectors', defines the practice for radiographic inspection of welded pipes for manufacturing and in-service inspection. It is applied in Europe for inspections of pipe welds in nuclear power plants as well as in chemical plants and allows a faster inspection with digital detector arrays (DDA) than with film. Nevertheless, it does not allow the evaluation of the depth and shape of volumetric and planar indications. In 2001 a planar tomography scanner, TomoCAR, was introduced for mechanized radiographic testing (RT) inspection and non-destructive measurement of cross sections. The project TomoWELD is based on a new concept of the scan geometry, an enhanced GPU based reconstruction, and the application of a new generation of photon counting DDAs based on CdTe crystal CMOS hybrids. The new detector permits the selection of energy thresholds to obtain an optimum energy range and reduction of the influence of scattered radiation. The concept and first measurements are presented. Flaw depth and shape of volumetric and planar irregularities can be determined

  12. X-ray tomographic in-service inspection of girth welds - The European project TomoWELD

    Energy Technology Data Exchange (ETDEWEB)

    Ewert, Uwe, E-mail: uwe.ewert@bam.de; Redmer, Bernhard, E-mail: uwe.ewert@bam.de; Walter, David, E-mail: uwe.ewert@bam.de; Thiessenhusen, Kai-Uwe, E-mail: uwe.ewert@bam.de; Bellon, Carsten, E-mail: uwe.ewert@bam.de [BAM Bundesanstalt für Materialforschung, Berlin (Germany); Nicholson, P. Ian, E-mail: ian.nicholson@twi.co.uk [TWI Technology Centre Wales, Port Talbot (United Kingdom); Clarke, Alan L. [TWI Technology Centre Wales, Port Talbot (United Kingdom); Finke-Härkönen, Klaus-Peter, E-mail: klaus.harkonen@ajat.fi [Oy AJAT Ltd., Helsinki (Finland)

    2015-03-31

    The new standard 'ISO 17636-2:2013: Non-destructive testing of welds - Radiographic testing - Part 2: X- and gamma-ray techniques with digital detectors', defines the practice for radiographic inspection of welded pipes for manufacturing and in-service inspection. It is applied in Europe for inspections of pipe welds in nuclear power plants as well as in chemical plants and allows a faster inspection with digital detector arrays (DDA) than with film. Nevertheless, it does not allow the evaluation of the depth and shape of volumetric and planar indications. In 2001 a planar tomography scanner, TomoCAR, was introduced for mechanized radiographic testing (RT) inspection and non-destructive measurement of cross sections. The project TomoWELD is based on a new concept of the scan geometry, an enhanced GPU based reconstruction, and the application of a new generation of photon counting DDAs based on CdTe crystal CMOS hybrids. The new detector permits the selection of energy thresholds to obtain an optimum energy range and reduction of the influence of scattered radiation. The concept and first measurements are presented. Flaw depth and shape of volumetric and planar irregularities can be determined.

  13. Girth 5 graphs from relative difference sets

    DEFF Research Database (Denmark)

    Jørgensen, Leif Kjær

    2005-01-01

    We consider the problem of construction of graphs with given degree $k$ and girth 5 and as few vertices as possible. We give a construction of a family of girth 5 graphs based on relative difference sets. This family contains the smallest known graph of degree 8 and girth 5 which was constructed ...

  14. Girth 5 graphs from relative difference sets

    DEFF Research Database (Denmark)

    Jørgensen, Leif Kjær

    We consider the problem of construction of graphs with given degree and girth 5 and as few vertices as possible. We give a construction of a family of girth 5 graphs based on relative difference sets. This family contains the smallest known graph of degree 8 and girth 5 which was constructed by G...

  15. Influence of the Aluminium Alloy Type on Defects Formation in Friction Stir Lap Welding of Thin Sheets

    Directory of Open Access Journals (Sweden)

    M. I. Costa

    Full Text Available Abstract The weldability in Friction Stir Lap Welding (FSLW of heat and non-heat treatable aluminium alloys, the AA6082-T6 and the AA5754-H22 aluminium alloys, respectively, are compared. For both alloys, welds were produced in very thin sheets, using the same welding parameters and procedures, and strong differences in welds morphology were found. The strength of the welds was evaluated by performing tensile-shear tests under monotonic and cyclic loading conditions. As-welded and heat-treated samples of the AA6082- T6 were tested. It was found that the heat-treatable alloy is more sensitive to defects formation, in lap welding, than the non-heat-treatable alloy. The presence of defects has a strong influence on the monotonic and fatigue behaviour of the welds. In spite of this, for very high-applied stresses, the heat-treatable alloy welds perform better in fatigue than the non-heat-treatable alloy welds.

  16. TomoWELD. Precise detection of weld defects; TomoWELD. Defekte in Schweissnaehten praezise erkennen

    Energy Technology Data Exchange (ETDEWEB)

    Walter, David [Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin (Germany)

    2016-06-15

    Nuclear power plants are complex and technically elaborate systems whose aim is to produce electricity. They must meet the highest safety requirements. Within the reactors, nuclear reactions and radioactive transformations release energy which is used to evaporate water. The steam generated drives turbines that in turn are coupled with generators which convert the kinetic energy provided by the turbines into electrical energy. The process is easy to illustrate but difficult to control and requires technical equipment such as kilometre-long pipe systems. Austenitic steel is frequently used for this purpose because of its high strength and corrosion resistance. The individual pipe components are joined by welding. However, welds may contain hidden defects. Cracks, lack of fusion or pore nests that can remain undetected may have catastrophic consequences. Therefore, all welds in a nuclear power plant, without exception, must be checked. Approved non-destructive methods use ultrasound and X-ray. The technology developed at BAM is called TomoWELD. [German] Kernkraftwerke sind komplexe und technisch aufwendige Anlagen zur Gewinnung von Elektrizitaet. Sie muessen allerhoechsten Sicherheitsanspruechen genuegen. Die bei Kernreaktionen und radioaktiven Umwandlungen freiwerdende Energie wird genutzt, um Wasser zu verdampfen. Der Dampf treibt Turbinen an und die wiederum sind mit Generatoren gekoppelt, welche die durch die Turbinen bereitgestellte kinetische Energie in elektrische Energie umwandeln. Der Prozess laesst sich einfach darstellen, ihn zu steuern ist allerdings kompliziert und erfordert weitere technische Komponenten, wie beispielsweise kilometerlange Rohrleitungssysteme. Wegen seiner hohen Festigkeit sowie Korrosionsbestaendigkeit wird oft austenitischer Stahl dafuer verwendet. Gefuegt werden die einzelnen Rohrteile durch Schweissen. Doch Schweissnaehte koennen viele verborgene Defekte enthalten. Bleiben Risse, Bindefehler oder Porennester unentdeckt, kann das

  17. A contribution to phased array ultrasonic inspection of welds: defect patterns and sizing capability

    Energy Technology Data Exchange (ETDEWEB)

    Ciorau, P., E-mail: peter.ciorau@opg.com [Ontario Power Generation Inc., Inspection, Maintenance and Commercial Services, Tiverton, Ontario (Canada)

    2008-07-01

    The paper presents defect patterns for weld inspection detected with phased array ultrasonic technology (PAUT). The sizing capability for length, height, outer and inner ligament for specific implanted weld defects in training samples and mock-ups with thickness between 6.4-52 mm. It is discussed the influence of beam angle on sizing the lack of fusion defect. More than 50 implanted weld defects with 70% crack population were sized using high-frequency (5-10 MHz) linear array probes. The correlation between the design/manufacturer flaw size and PAUT data for length, height and ligament is graphically presented. It was concluded the length is oversized by 2-6 mm, height and inner ligament are undersized by 0.2 to 0.5 mm, and outer ligament is oversized by 0.5 mm. The sizing results were based on non-amplitude techniques and pattern display of S- and B-scan. The sizing capability is far better than ASME XI tolerances for performance demonstration and comparable to time of flight diffraction (TOFD) ideal tolerances. (author)

  18. A contribution to phased array ultrasonic inspection of welds: defect patterns and sizing capability

    International Nuclear Information System (INIS)

    Ciorau, P.

    2008-01-01

    The paper presents defect patterns for weld inspection detected with phased array ultrasonic technology (PAUT). The sizing capability for length, height, outer and inner ligament for specific implanted weld defects in training samples and mock-ups with thickness between 6.4-52 mm. It is discussed the influence of beam angle on sizing the lack of fusion defect. More than 50 implanted weld defects with 70% crack population were sized using high-frequency (5-10 MHz) linear array probes. The correlation between the design/manufacturer flaw size and PAUT data for length, height and ligament is graphically presented. It was concluded the length is oversized by 2-6 mm, height and inner ligament are undersized by 0.2 to 0.5 mm, and outer ligament is oversized by 0.5 mm. The sizing results were based on non-amplitude techniques and pattern display of S- and B-scan. The sizing capability is far better than ASME XI tolerances for performance demonstration and comparable to time of flight diffraction (TOFD) ideal tolerances. (author)

  19. Goniometry and Limb Girth in Miniature Dachshunds

    Directory of Open Access Journals (Sweden)

    Stephanie A. Thomovsky

    2016-01-01

    Full Text Available Purpose. To report the mean and median pelvic limb joint angles and girth measurements in miniature Dachshunds presenting with varying degrees of pelvic limb weakness secondary to thoracolumbar intervertebral disc extrusion. Methods. 15 miniature Dachshunds who presented to WSU-VTH for thoracolumbar disc extrusion. Dachshunds varied in neurologic status from ambulatory paraparetic to paraplegic at the time of measurements. Results. There were no significant differences in joint angles or girth among the three groups (ambulatory paraparetic, nonambulatory paraparetic, or paraplegic (P>0.05. When group was disregarded and values for extension, flexion, and girth combined, no differences existed. Conclusions. Goniometry and limb girth measurements can successfully be made in the miniature Dachshund; however, the shape of the Dachshund leg makes obtaining these values challenging. There were no differences in joint angle or girth measurements between dogs with varying neurologic dysfunction at the time of measurement.

  20. Goniometry and Limb Girth in Miniature Dachshunds.

    Science.gov (United States)

    Thomovsky, Stephanie A; Chen, Annie V; Kiszonas, Alecia M; Lutskas, Lori A

    2016-01-01

    Purpose. To report the mean and median pelvic limb joint angles and girth measurements in miniature Dachshunds presenting with varying degrees of pelvic limb weakness secondary to thoracolumbar intervertebral disc extrusion. Methods. 15 miniature Dachshunds who presented to WSU-VTH for thoracolumbar disc extrusion. Dachshunds varied in neurologic status from ambulatory paraparetic to paraplegic at the time of measurements. Results. There were no significant differences in joint angles or girth among the three groups (ambulatory paraparetic, nonambulatory paraparetic, or paraplegic) (P > 0.05). When group was disregarded and values for extension, flexion, and girth combined, no differences existed. Conclusions. Goniometry and limb girth measurements can successfully be made in the miniature Dachshund; however, the shape of the Dachshund leg makes obtaining these values challenging. There were no differences in joint angle or girth measurements between dogs with varying neurologic dysfunction at the time of measurement.

  1. Effects of weld residual stresses on crack-opening area analysis of pipes for LBB applications

    Energy Technology Data Exchange (ETDEWEB)

    Dong, P.; Rahman, S.; Wilkowski, G. [and others

    1997-04-01

    This paper summarizes four different studies undertaken to evaluate the effects of weld residual stresses on the crack-opening behavior of a circumferential through-wall crack in the center of a girth weld. The effect of weld residual stress on the crack-opening-area and leak-rate analyses of a pipe is not well understood. There are no simple analyses to account for these effects, and, therefore, they are frequently neglected. The four studies involved the following efforts: (1) Full-field thermoplastic finite element residual stress analyses of a crack in the center of a girth weld, (2) A comparison of the crack-opening displacements from a full-field thermoplastic residual stress analysis with a crack-face pressure elastic stress analysis to determine the residual stress effects on the crack-opening displacement, (3) The effects of hydrostatic testing on the residual stresses and the resulting crack-opening displacement, and (4) The effect of residual stresses on crack-opening displacement with different normal operating stresses.

  2. Effects of weld residual stresses on crack-opening area analysis of pipes for LBB applications

    International Nuclear Information System (INIS)

    Dong, P.; Rahman, S.; Wilkowski, G.

    1997-01-01

    This paper summarizes four different studies undertaken to evaluate the effects of weld residual stresses on the crack-opening behavior of a circumferential through-wall crack in the center of a girth weld. The effect of weld residual stress on the crack-opening-area and leak-rate analyses of a pipe is not well understood. There are no simple analyses to account for these effects, and, therefore, they are frequently neglected. The four studies involved the following efforts: (1) Full-field thermoplastic finite element residual stress analyses of a crack in the center of a girth weld, (2) A comparison of the crack-opening displacements from a full-field thermoplastic residual stress analysis with a crack-face pressure elastic stress analysis to determine the residual stress effects on the crack-opening displacement, (3) The effects of hydrostatic testing on the residual stresses and the resulting crack-opening displacement, and (4) The effect of residual stresses on crack-opening displacement with different normal operating stresses

  3. Strip specimen tests for pipeline materials and girth welds

    Energy Technology Data Exchange (ETDEWEB)

    Mohr, William C. [Edison Welding Institute (EWI), Columbus, Ohio (United States)

    2009-07-01

    Strip specimen testing of pipeline materials has been widely applied as a method of getting data relevant to the performance of pipelines under axial direction loading. Comparisons of strip specimen against smaller standard tests (round tensile bar, fracture toughness specimens, polished round bars) and against full-scale or large-scale testing will be explored. Data from early-generation pipe welds from the 1920's to the 1940's to the most recent materials for offshore reeled pipe will be used for examples. Strip samples can provide full thickness information to take account of varying material properties or imperfection distribution through the thickness. Strip samples can also accommodate measurement of effects of the original surface finish or weld surface shape. Strip samples have more design flexibility than standard tests, but must be designed to limit stress concentrations and effects of local bending. (author)

  4. Applicability of eddy current inversion techniques to the sizing of defects in Inconel welds of BWR internals

    International Nuclear Information System (INIS)

    Yusa, Noritaka; Janousek, Ladislav; Rebican, Mihai; Chen, Zhenmao; Miya, Kenzo; Machida, Eiji

    2004-01-01

    This paper evaluates the applicability of eddy current inversion techniques to the sizing of defects in Inconel welds with rough surfaces. For this purpose, a plate Inconel weld specimen, which models the welding of a stub tube in a boiling water nuclear reactor, is fabricated, and artificial notches machined into the specimen. Eddy current inspections using six probes in weld inspection evaluated. It is revealed that if suitable probes are applied, an Inconel weld does not provide large noise signals in eddy current inspections even though the surface of the weld is rough. Finally, reconstruction of the notches are performed using eddy current signals measured with the use of the uniform eddy current probe that showed the best results among the six probes in the inspection. A simplified configuration is proposed in order to consider the complicated configuration of the welded specimen in numerical simulations. While reconstructed profiles of the notches are slightly larger than the true profiles, quite good agreements are obtained in spite of the simple approximation of the configuration, which reveals that eddy current testing would be an efficient non-destructive testing method for the sizing of defects in Inconel welds. (author)

  5. Surface and near surface defect detection in thick copper EB-welds using eddy current testing

    International Nuclear Information System (INIS)

    Pitkaenen, J.; Lipponen, A.

    2010-01-01

    The surface inspection of thick copper electron beam (EB) welds plays an important role in the acceptance of nuclear fuel disposal. The main reasons to inspect these components are related to potential manufacturing and handling defects. In this work the data acquisition software, visualising tools for eddy current (EC) measurements and eddy current sensors were developed for detection of unwanted defects. The eddy current equipment was manufactured by IZFP and the visualising software in active co-operation with Posiva and IZFP for the inspections. The inspection procedure was produced during the development of the inspection techniques. The inspection method development aims to qualify the method for surface and near surface defect detection and sizing according to ENIQ. The study includes technical justification to be carried out, and compilation of a defect catalogue and experience from measurements within the Posiva's research on issues related to manufacturing. The depth of penetration in copper components in eddy current testing is rather small. To detect surface breaking defects the eddy current inspection is a good solution. A simple approach was adopted using two techniques: higher frequency was used to detect surface defects and to determine the dimensions of the defects except depth, lower frequency was used to detect defects having a ligament and for sizing of deeper surface breaking defects. The higher frequency was 30 kHz and the lower frequency was 200 Hz. The higher frequency probes were absolute bobbing coils and lower frequency probes combined transmitter - several receiver coils. To evaluate both methods, calibration blocks were manufactured by FNS for weld inspections. These calibration specimens mainly consisted of electron discharge machined notches and holes of varying shapes, lengths and diameters in the range of 1 mm to 20 mm of depth. Also one copper lid specimen with 152 defects was manufactured and used for evaluation of weld inspection

  6. Study on the Relationship Between Emission Signals and Weld Defect for In-Process Monitoring in CO{sub 2} Laser Welding of Zn-Coated Steel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Do; Lee, Chang Je [Korea Maritime University, Busan (Korea, Republic of)

    2010-10-15

    In this study, the plasma induced by CO{sub 2} laser lap welding of 6t Zn coated steel used for ship building was measured using photodiodes and a microphone. Then, the welding phenomenon with gap clearance of lap joint was compared with RMS-treated signal. Thus, we found that intensity of the RMS-treated signal increased with Zn vaporization; further, the presence of defects results in rapid variations with the RMS value as a function of lap-joint parameters. Besides, the FFT value of the raw signal with variations of changing welding parameters was calculated, and then the calculated FFT frequency value was set as the bandwidth of digital filter for a more accurate in-process monitoring. The RMS values were acquired by filtering the raw signal. By matching the weld beads and the calculated RMS values, we confirmed that there is a strong relationship between the signals and the defects.

  7. Analysis of residual stresses in girth welded type 304 stainless steel pipes

    International Nuclear Information System (INIS)

    Brust, F.W.; Kanninen, M.F.

    1981-01-01

    Intergranular stress corrosion cracking (IGSCC) in boiling water reactor (BWR) piping is a problem for the nuclear power industry. Tensile residual stresses induced by welding are an important factor in IGSCC of Type 304 stainless steel pipes. Backlay and heat sink welding can retard IGSCC. 17 refs

  8. A toughness and defect size assessment of welded stainless steel components

    International Nuclear Information System (INIS)

    Chipperfield, C.G.

    1978-01-01

    The results of an investigation of the effect of test temperature, stress relieving temperature and weld profile on the initiation toughness of 316 type steels are described. The data indicate that little improvement in weld metal toughness is obtained by stress relieving at temperatures of up to 850 0 C and the magnitude of the toughness is significantly below that of wrought 316 steel. The observed trends in toughness with test temperature or stress relieving temperature have been explained in terms of the effect of these variables on yield strength and work hardening rate. A defect size assessment of a particular component has been made for stress relieved and non-stress relieved conditions. Simple addition of residual to applied stress values indicated that the defect size is in many cases essentially controlled by the magnitude of the residual stress. The possible conservatism of this assessment and the use of initiation toughness values are discussed. (author)

  9. Application of eddy current inversion technique to the sizing of defects in Inconel welds with rough surfaces

    International Nuclear Information System (INIS)

    Yusa, Noritaka; Machida, Eiji; Janousek, Ladislav; Rebican, Mihai; Chen, Zhenmao; Miya, Kenzo

    2005-01-01

    This paper evaluates the applicability of eddy current inversion techniques to the sizing of defects in Inconel welds with rough surfaces. For this purpose, a plate Inconel weld specimen, which models the welding of a stub tube in a boiling water nuclear reactor is fabricated, and artificial notches machined into the specimen. Eddy current inspections using six different eddy current probes are conducted and efficiencies were evaluated for the six probes for weld inspection. It is revealed that if suitable probes are applied, an Inconel weld does not cause large noise levels during eddy current inspections even though the surface of the weld is rough. Finally, reconstruction of the notches is performed using eddy current signals measured using the uniform eddy current probe that showed the best results among the six probes in this study. A simplified configuration is proposed in order to consider the complicated configuration of the welded specimen in numerical simulations. While reconstructed profiles of the notches are slightly larger than the true profiles, quite good agreements are obtained in spite of the simple approximation of the configuration, which reveals that eddy current testing would be an efficient non-destructive testing method for the sizing of defects in Inconel welds

  10. Analysis of Using Acoustic Microscopy to Evaluate Defects in Spot Welding Joints

    Directory of Open Access Journals (Sweden)

    Korzeniowski M.

    2016-06-01

    Full Text Available The article presents the possibilities of using acoustic microscopy to evaluate defects in resistance spot welding joints. For this purpose, the welded joints were made from two grades of aluminium plates EN AW5754 H24 and EN AW6005 T606, which were then subjected to non-destructive testing using acoustic microscopy and conventional destructive testing using traditional light microscopy techniques. Additionally, the study examined the influence of the typical contaminants found in industrial conditions on the quality of the joint.

  11. A new surgical method for penile girth enhancement.

    Science.gov (United States)

    Li, Xiaoge; Tao, Ling; Cao, Chuan; Shi, Haishan; Li, Le; Chen, Liang; Li, Shirong

    2015-01-01

    We developed a new surgical model of penile girth enhancement in dog, with minimal damage, fewer complications, and high success rate, to enable the experimental investigation of penile implants. We obtained materials for penile girth enhancement by processing the pericardium and blood vessel wall collected from pigs. Incisions were made at the penile bulb for the implantation of the materials, and facilitate observation and data collection, based on the anatomical features of dog's penis. We measured the girth of the flaccid penis before and after the operation, and erectile function at 1-month postoperation. In addition to evaluation of recovery from the incision and local pathological changes, ultrasonic examination was performed to monitor the long-term changes associated with implantation. The mean girth of the flaccid penis significantly increased from 7.37±0.40 cm before the operation, to 8.70±0.56 cm postoperation. Dogs resumed normal mating at 1 month after the operation, without any significant change in the mating time. Ultrasonic examination clearly illustrated the implants, and helped in the measurement of the distance between the materials and the baculum. Chinese Rural dog is a promising animal model for penile girth enhancement surgery. The findings demonstrated that surgical implantation into penile bulb was associated with less damage, faster postoperative recovery, and higher success. For the first time, ultrasonic examination provided objective data on the surgical outcomes of penile girth enhancement.

  12. Weld defects analysis of 60 mm thick SS316L mock-ups of TIG and EB welds by ultrasonic inspection for fusion reactor vacuum vessel applications

    International Nuclear Information System (INIS)

    Buddu, Ramesh Kumar; Shaikh, Shamsuddin; Raole, P.M.; Sarkar, B.

    2015-01-01

    The present paper reports the weld quality inspections carried with 60 mm thick AISI welds of SS316L. The high thickness steel plates requirement is due to the specific applications in case of advanced fusion reactor structural components like vacuum vessel and others. Different kind welds are proposed for the thick plate joints like Tungsten Inert Gas (TIG) welding, Electron beam welding as per stringent conditions (like very low distortions and residual stresses) for the vacuum vessel fabrication. Mock-ups of laboratory scale welds are fabricated by TIG (multi-pass) and EB (double pass) process techniques and different weld quality inspections are carried by different NDT tests. The welds are examined with Liquid penetrant examination to check sub surface cracks/discontinuities towards the defects observation

  13. Investigation of the in-service development of weld defects

    International Nuclear Information System (INIS)

    Dubresson, J.

    1982-01-01

    The assessment of the fitness for purpose of a construction in service requires a periodical evaluation of its condition. In the particular case of a welded structure, inspections must be performed at regular intervals in order to prepare, at given moment, a chart showing the number, distribution and length of the observed defects, thus permitting to ascertain any change related to a previous state. Ultrasonic testing is generally regarded as quite appropriate for the purpose, especially in the case of structures in operation (pressure vessels). The nondestructive Testing Department of Institut de Soudure designed and developed an automatic system for analysing the weld defects, this permitting to suppress the problem related to manual inspection. The principle of the analysis method, as well as the results obtained with the system in preliminary experimentation are described. In the first part, the influence of the parameters, such as the testing sensitivity, the dimensional characteristics of artificial reflectors (saw cuts), on the obtained records are studied. The system is then used for the assessment of the fatigue behaviour of a real crack which had been repeatedly inspected at various stages of its development. The future possibilities of development of the method are also outlined [fr

  14. Spatially resolved positron annihilation spectroscopy on friction stir weld induced defects.

    Science.gov (United States)

    Hain, Karin; Hugenschmidt, Christoph; Pikart, Philip; Böni, Peter

    2010-04-01

    A friction stir welded (FSW) Al alloy sample was investigated by Doppler broadening spectroscopy (DBS) of the positron annihilation line. The spatially resolved defect distribution showed that the material in the joint zone becomes completely annealed during the welding process at the shoulder of the FSW tool, whereas at the tip, annealing is prevailed by the deterioration of the material due to the tool movement. This might be responsible for the increased probability of cracking in the heat affected zone of friction stir welds. Examination of a material pairing of steel S235 and the Al alloy Silafont36 by coincident Doppler broadening spectroscopy (CDBS) indicates the formation of annealed steel clusters in the Al alloy component of the sample. The clear visibility of Fe in the CDB spectra is explained by the very efficient trapping at the interface between steel cluster and bulk.

  15. Cause of defect in the end plug welding of the JOYO fuel pin

    International Nuclear Information System (INIS)

    Ouchi, Masaru; Otani, Seiji; Onisi, Koichi; Tateisi, Yoshinori; Ikawa, Yukio.

    1976-01-01

    About twelve thousand fuel pins for the JOYO core fuel were fabricated, and their end plug welding was inspected by X-ray radiography. The defect fractions were 0.2 percent for the lower end plugs and 1.8 percent for the upper, respectively. It had been known that the defect was due to ''line porosity''. In this study, the cause of the ''line porosity defect'' was investigated by the welding experiment performed on some dummy specimens of three different types; open end; closed end; and closed end with dummy pellets and a spring. The position of electrodes was varied for changing the arc gap from 0.3 mm to 1.2 mm. The experimental results are summarized in tables. The results showed that no defect was found in the open end type specimens even with the arc gap of 1.2 mm. Whereas in the other two types of specimens, the defect fraction of 60 to 75 percent was observed with the same arc gap. As for the effect of the arc gap, it was shown that 0.3 mm is the best among 0.3 mm, 0.5 mm and 1.2 mm. No defect was observed in the third type of specimens with the arc gap of 0.3 mm. In summary, it was found that the line porosity defect did not depend on the shape of the end plugs. It is considered to be dependent on both the structure of dummy fuel pins and the position of electrodes. (Aoki, K.)

  16. Radiographic assessment of welding connections defectiveness, state of art in Poland

    International Nuclear Information System (INIS)

    Swiatkowski, R.

    1995-01-01

    The assessment of welding connections defectiveness according to Polish regulations has been performed. The European regulations in interested matter and their relationships to Polish ones have been shown. The differences have been pointed out and discussed from the view point of law adaptation process preceding joining of Poland with the European Community. 12 refs, 7 figs, 2 tabs

  17. Grain boundary defects initiation at the outer surface of dissimilar welds: corrosion mechanism studies

    International Nuclear Information System (INIS)

    De Bouvier, O.; Yrieix, B.

    1995-11-01

    Dissimilar welds located on the primary coolant system of the French PWR I plants exhibit grain boundary defects in the true austenitic zones of the first buttering layer. If grain boundaries reach the interface, they can extend to the martensitic band. Those defects are filled with compact oxides. In addition, the ferritic base metal presents some pits along the interface. Nowadays, three mechanisms are proposed to explain the initiation of those defects: stress corrosion cracking, intergranular corrosion and high temperature intergranular oxidation. This paper is dealing with the study of the mechanisms involved in the corrosion phenomenon. Intergranular corrosion tests performed on different materials show that only the first buttering layer, even with some δ ferrite, is sensitized. The results of stress corrosion cracking tests in water solutions show that intergranular cracking is possible on a bulk material representative of the first buttering layer. It is unlikely on actual dissimilar welds where the ferritic base metal protects the first austenitic layer by galvanic coupling. Therefore, the stress corrosion cracking assumption cannot explain the initiation of the defects in aqueous environment. The results of the investigations and of the corrosion studies led to the conclusion that the atmosphere could be the only possible aggressive environment. This conclusion is based on natural atmospheric exposure and accelerated corrosion tests carried out with SO 2 additions in controlled atmosphere. They both induce a severe intergranular corrosion on true sensitized austenitic materials. This corrosion studies cannot conclude definitively on the causes of the defect initiation on field, but they show that the atmospheric corrosion could produce intergranular attacks in the pure austenitic zones of the first buttering layer of the dissimilar welds and that this corrosion is stress assisted. (author). 1 ref., 6 figs., 4 tabs

  18. Defects detection on the welded reinforcing steel with self-shielded wires by vibration tests

    Directory of Open Access Journals (Sweden)

    Crâştiu Ion

    2017-01-01

    Full Text Available The aim of this paper is the development and validation of a vibroacustic technique to welding defects detection, especially for welded reinforcing structures. In welded structures subjected to dynamic cyclic loads may appear and propagate fatigue cracks due to local structural damage. These cracks may initiate due to the technological parameters used in welding process, or due to environmental operating conditions. By the means of Finite Element Method (FEM, the natural frequencies and shape modes of more welded steel specimens are determined. The analysis is carried out in undamaged condition as well as damaged one, after artificially induced damages. The experimental measurement of the vibroacustic response is carried out by using a condenser microphone, which is suitable for high-fidelity acoustic measurements in the frequency range of 20 – 20.000 Hz. The vibration responses of the welded specimens, in free-free conditions, are carried out using algorithms based on Fast Fourier Transform (FFT, and Prony's series. The results are compared to modal parameters estimated using FE Analysis.

  19. Twin-Wire Pulsed Tandem Gas Metal Arc Welding of API X80 Steel Linepipe

    Directory of Open Access Journals (Sweden)

    Wenhao Wu

    2018-01-01

    Full Text Available Twin-Wire Pulsed Tandem Gas Metal Arc Welding process with high welding production efficiency was used to join the girth weld seam of API X80 steel linepipe of 18.4 mm wall thickness and 1422 mm diameter. The macrostructure, microstructure, hardness, and electrochemical corrosion behavior of welded joints were studied. Effects of temperature and Cl− concentration on the corrosion behavior of base metal and weld metal were investigated. Results show that the welded joint has good morphology, mechanical properties, and corrosion resistance. The corrosion resistance of both the base metal and the weld metal decreases with increasing temperature or Cl− concentration. In the solution with high Cl− concentration, the base metal and weld metal are more susceptible to pitting. The corrosion resistance of the weld metal is slightly lower than that of the base metal.

  20. Detection and evaluation of weld defects in stainless steel using alternating current field measurement

    Science.gov (United States)

    Wei-Li, Ma, Weiping; Pan-Qi, Wen-jiao, Dou; Yuan, Xin'an; Yin, Xiaokang

    2018-04-01

    Stainless steel is widely used in nuclear power plants, such as various high-radioactive pool, tools storage and fuel transportation channel, and serves as an important barrier to stop the leakage of high-radioactive material. NonDestructive Evaluation (NDE) methods, eddy current testing (ET), ultrasonic examination (UT), penetration testing (PT) and hybrid detection method, etc., have been introduced into the inspection of a nuclear plant. In this paper, the Alternating Current Field Measurement (ACFM) was fully applied to detect and evaluate the defects in the welds of the stainless steel. Simulations were carried out on different defect types, crack lengths, and orientation to reveal the relationship between the signals and dimensions to determine whether methods could be validated by the experiment. A 3-axis ACFM probe was developed and three plates including 16 defects, which served in nuclear plant before, were examined by automatic detection equipment. The result shows that the minimum detectable crack length on the surface is 2mm and ACFM shows excellent inspection results for a weld in stainless steel and gives an encouraging prospect of broader application.

  1. Optimization of pulsed laser welding process parameters in order to attain minimum underfill and undercut defects in thin 316L stainless steel foils

    Science.gov (United States)

    Pakmanesh, M. R.; Shamanian, M.

    2018-02-01

    In this study, the optimization of pulsed Nd:YAG laser welding parameters was done on the lap-joint of a 316L stainless steel foil with the aim of reducing weld defects through response surface methodology. For this purpose, the effects of peak power, pulse-duration, and frequency were investigated. The most important weld defects seen in this method include underfill and undercut. By presenting a second-order polynomial, the above-mentioned statistical method was managed to be well employed to balance the welding parameters. The results showed that underfill increased with the increased power and reduced frequency, it first increased and then decreased with the increased pulse-duration; and the most important parameter affecting it was the power, whose effect was 65%. The undercut increased with the increased power, pulse-duration, and frequency; and the most important parameter affecting it was the power, whose effect was 64%. Finally, by superimposing different responses, improved conditions were presented to attain a weld with no defects.

  2. Influence of weld discontinuities on strain controlled fatigue behavior of 308 stainless steel weld metal

    International Nuclear Information System (INIS)

    Bhanu Sankara Rao, K.; Valsan, M.; Sandhya, R.; Mannan, S.L.; Rodriguez, P.

    1994-01-01

    Detailed investigations have been performed for assessing the importance of weld discontinuities in strain controlled low cycle fatigue (LCF) behavior of 308 stainless steel (SS) welds. The LCF behavior of 308 SS welds containing defects was compared with that of type 304 SS base material and 308 SS sound weld metal. Weld pads were prepared by shielded metal arc welding process. Porosity and slag inclusions were introduced deliberately into the weld metal by grossly exaggerating the conditions normally causing such defects. Total axial strain controlled LCF tests have been conducted in air at 823 K on type 304 SS base and 308 SS sound weld metal employing strain amplitudes in the range from ±0.25 to ±0.8 percent. A single strain amplitude of ±0.25 percent was used for all the tests conducted on weld samples containing defects. The results indicated that the base material undergoes cyclic hardening whereas sound and defective welds experience cyclic softening. Base metal showed higher fatigue life than sound weld metal at all strain amplitudes. The presence of porosity and slag inclusions in the weld metal led to significant reduction in life. Porosity on the specimen surface has been found to be particularly harmful and caused a reduction in life by a factor of seven relative to sound weld metal

  3. Study of Defect Sizing in Carbon Steel Butt Welds using Conventional Ultrasonic Technique and Phased Array Ultrasonic

    International Nuclear Information System (INIS)

    Amry Amin Abas; Noorhazleena Azaman; Mohd Yusnisyam Mohd Yusoff

    2016-01-01

    Ultrasonic testing is a proven reliable method which is able to detect and measure the size of defects in butt welds with acceptable tolerance. Recent advancement of technology has introduced a computerized technique which is phased array. Phased array employs focal law that enable focusing and steering of beam at the active aperture axis. This enables one line scanning but covering the whole weld volume as compared to conventional technique which employs aster scan and multiple probes to completely cover the whole weld volume. Phased array also gives multiple data view which assist the interpreter. This paper is about the study of these two techniques and technical analysis of comparison between the two. The conventional technique is performed using GE USM GO with 4 MHz 45 degrees shear wave probe. The phased array technique uses OLYMPUS OMNISCAN MX2 with 5L64 linear array probe with 16 elements aperture and 55 degrees wedge emitting shear wave into the specimen. Sensitivity of both techniques are based on 1.5 mm Side Drilled Hole. The results are compared and analysis such as defect sizing and defect type determination are performed. (author)

  4. Evaluation of large girth LDPC codes for PMD compensation by turbo equalization.

    Science.gov (United States)

    Minkov, Lyubomir L; Djordjevic, Ivan B; Xu, Lei; Wang, Ting; Kueppers, Franko

    2008-08-18

    Large-girth quasi-cyclic LDPC codes have been experimentally evaluated for use in PMD compensation by turbo equalization for a 10 Gb/s NRZ optical transmission system, and observing one sample per bit. Net effective coding gain improvement for girth-10, rate 0.906 code of length 11936 over maximum a posteriori probability (MAP) detector for differential group delay of 125 ps is 6.25 dB at BER of 10(-6). Girth-10 LDPC code of rate 0.8 outperforms the girth-10 code of rate 0.906 by 2.75 dB, and provides the net effective coding gain improvement of 9 dB at the same BER. It is experimentally determined that girth-10 LDPC codes of length around 15000 approach channel capacity limit within 1.25 dB.

  5. Creep deformation and crack growth in a low alloy steel welded pressure vessel containing defects

    International Nuclear Information System (INIS)

    Coleman, M.C.

    1982-01-01

    A full-size pressure vessel was tested for effects of welding residual stresses on creep deformation and crack growth. The vessel, based on 1/2 Cr 1/2 Mo 1/4 V main steam pipe, contained four 2CrMo manual metal arc welds, two in the as-welded condition and two stress-relieved. All the welds contained pre-existing defects machined in the heat affected zones. Testing was carried out at two internal steam pressures, 250 and 350 bar, and 565 0 C. Cracked and uncracked areas of the vessel were monitored continuously. Results are presented for the continuous creep deformation observed in both the hoop and axial directions of the welds throughout the 11,400 h of testing, as well as the intermittent strain data obtained during inspections. Crack growth observations are described based on nondestructive examination. The residual stresses measured are also given for both the as-welded and stress relieved weldments. Results obtained are discussed in terms of the effects of welding residual stress on the hoop and axial deformations observed in the welds. Similarly, the effects of residual stress on creep crack growth are considered together with compositional and microstructural implications. 9 figures, 5 tables

  6. Key quality aspects for a new metallic composite pipe: corrosion testing, welding, weld inspection and manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Conder, Robert J.; Felton, Peter [Xodus Group Ltd., Aberdeen (United Kingdom); Smith, Richard [Shell Global Solutions Inc., Houston, TX (United States); Burke, Raymond [Pipestream Inc., Houston, TX (United States); Dikstra, Frits; Deleye, Xavier [Applus RTD Ltd., Rotterdam (Netherlands)

    2010-07-01

    XPipeTM is a new metallic composite pipe. This paper discusses three aspects of this new technology. The first subject is determination of the probability of hydrogen embrittlement by the XPipeTM manufacturing method. Two materials were analyzed in three tests: slow strain rate test, constant load test and notched tensile test. The results showed that the high strength steels used do not appear to be susceptible to hydrogen embrittlement. The second subject of this article is weld inspection. A non-destructive testing method of girth welds is developed to allow inspection of the thin-walled austenitic liner pipe. The results demonstrated that the welds can be inspected using the creeping wave technique. The third subject is quality control systems using the SCADA system, which maintains traceability of the materials and monitors and records all parameters during the production process. This system appears to be efficient in ensuring that the product pipe meets recognized quality standards.

  7. A new surgical method for penile girth enhancement

    OpenAIRE

    Li, Xiaoge; Tao, Ling; Cao, Chuan; Shi, Haishan; Li, Le; Chen, Liang; Li, Shirong

    2015-01-01

    Objective: We developed a new surgical model of penile girth enhancement in dog, with minimal damage, fewer complications, and high success rate, to enable the experimental investigation of penile implants. Methods: We obtained materials for penile girth enhancement by processing the pericardium and blood vessel wall collected from pigs. Incisions were made at the penile bulb for the implantation of the materials, and facilitate observation and data collection, based on the anatomical feature...

  8. Defect features, texture and mechanical properties of friction stir welded lap joints of 2A97 Al-Li alloy thin sheets

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Haiyan [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi' an 710072 (China); Shaanxi Key Laboratory of Friction Welding Technologies, Northwestern Polytechnical University, Xi' an 710072 (China); Fu, Li, E-mail: fuli@nwpu.edu.cn [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi' an 710072 (China); Shaanxi Key Laboratory of Friction Welding Technologies, Northwestern Polytechnical University, Xi' an 710072 (China); Liang, Pei; Liu, Fenjun [Shaanxi Key Laboratory of Friction Welding Technologies, Northwestern Polytechnical University, Xi' an 710072 (China)

    2017-03-15

    1.4 mm 2A97 Al-Li alloy thin sheets were welded by friction stir lap welding using the stirring tools with different pin length at different rotational speeds. The influence of pin length and rotational speed on the defect features and mechanical properties of lap joints were investigated in detail. Microstructure observation shows that the hook defect geometry and size mainly varies with the pin length instead of the rotational speed. The size of hook defects on both the advancing side (AS) and the retreating side (RS) increased with increasing the pin length, leading to the effective sheet thickness decreased accordingly. Electron backscatter diffraction analysis reveals that the weld zones, especially the nugget zone (NZ), have the much lower texture intensity than the base metal. Some new texture components are formed in the thermo-mechanical affected zone (TMAZ) and the NZ of joint. Lap shear test results show that the failure load of joints generally decreases with increasing the pin length and the rotational speed. The joints failed during the lap shear tests at three locations: the lap interface, the RS of the top sheet and the AS of the bottom sheet. The fracture locations are mainly determined by the hook defects. - Highlights: • Hook defect size mainly varies with the pin length of stirring tool. • The proportion of LAGBs and substructured grains increases from NZ to TMAZ. • Weld zones, especially the NZ, have the much lower texture intensity than the BM. • Lap shear failure load and fracture location of joints is relative to the hook defects.

  9. Defect features, texture and mechanical properties of friction stir welded lap joints of 2A97 Al-Li alloy thin sheets

    International Nuclear Information System (INIS)

    Chen, Haiyan; Fu, Li; Liang, Pei; Liu, Fenjun

    2017-01-01

    1.4 mm 2A97 Al-Li alloy thin sheets were welded by friction stir lap welding using the stirring tools with different pin length at different rotational speeds. The influence of pin length and rotational speed on the defect features and mechanical properties of lap joints were investigated in detail. Microstructure observation shows that the hook defect geometry and size mainly varies with the pin length instead of the rotational speed. The size of hook defects on both the advancing side (AS) and the retreating side (RS) increased with increasing the pin length, leading to the effective sheet thickness decreased accordingly. Electron backscatter diffraction analysis reveals that the weld zones, especially the nugget zone (NZ), have the much lower texture intensity than the base metal. Some new texture components are formed in the thermo-mechanical affected zone (TMAZ) and the NZ of joint. Lap shear test results show that the failure load of joints generally decreases with increasing the pin length and the rotational speed. The joints failed during the lap shear tests at three locations: the lap interface, the RS of the top sheet and the AS of the bottom sheet. The fracture locations are mainly determined by the hook defects. - Highlights: • Hook defect size mainly varies with the pin length of stirring tool. • The proportion of LAGBs and substructured grains increases from NZ to TMAZ. • Weld zones, especially the NZ, have the much lower texture intensity than the BM. • Lap shear failure load and fracture location of joints is relative to the hook defects.

  10. Molecular dynamics study on welding a defected graphene by a moving fullerene

    International Nuclear Information System (INIS)

    Cai, Kun; Wan, Jing; Yu, Jingzhou; Cai, Haifang; Qin, Qinghua

    2016-01-01

    Highlights: • Fullerene (FN) is adopted to weld the gap on a graphene (GN) sheet using molecular dynamics simulation. • The mechanism is that the dangling sp"1 carbon atoms on both sides of gap are excited by FN to form new sp"2-sp"2 carbon bonds. • The velocity of FN influences the welding result due to the fact that the deformation of GN depends on the velocity of FN. • A complex nanostructure, e.g., cone, can be formed by the present method, which will be applicable in nano fabrication/manufacturing. - Abstract: When a composite nanostructure is fabricated through van der Waals interaction only, the interaction among components may be sensitive to environmental conditions. To endow such a structure with relative stability, new covalent bonds should be applied. In this paper, a welding method for welding a circular graphene with a defect gap through a moving fullerene (C240 or C540 buckyball) is presented. When the buckyball moves above the gap, the two faces of the gap are attracted to each other and the distance between the two faces is shortened. When the dangling carbon atoms on both faces of the gap are excited to form new normal sp"2-sp"2 carbon bonds, the gap can be sewn up quickly. Molecular dynamics simulations are presented to demonstrate the welding process. When the gap is a sector, an ideal cone can be fabricated using the present method.

  11. Molecular dynamics study on welding a defected graphene by a moving fullerene

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Kun, E-mail: kuncai99@163.com [College of Water Resources and Architectural Engineering, Northwest A& F University, Yangling 712100 (China); Research School of Engineering, The Australian National University, ACT 2601 (Australia); Wan, Jing; Yu, Jingzhou; Cai, Haifang [College of Water Resources and Architectural Engineering, Northwest A& F University, Yangling 712100 (China); Qin, Qinghua [Research School of Engineering, The Australian National University, ACT 2601 (Australia)

    2016-07-30

    Highlights: • Fullerene (FN) is adopted to weld the gap on a graphene (GN) sheet using molecular dynamics simulation. • The mechanism is that the dangling sp{sup 1} carbon atoms on both sides of gap are excited by FN to form new sp{sup 2}-sp{sup 2} carbon bonds. • The velocity of FN influences the welding result due to the fact that the deformation of GN depends on the velocity of FN. • A complex nanostructure, e.g., cone, can be formed by the present method, which will be applicable in nano fabrication/manufacturing. - Abstract: When a composite nanostructure is fabricated through van der Waals interaction only, the interaction among components may be sensitive to environmental conditions. To endow such a structure with relative stability, new covalent bonds should be applied. In this paper, a welding method for welding a circular graphene with a defect gap through a moving fullerene (C240 or C540 buckyball) is presented. When the buckyball moves above the gap, the two faces of the gap are attracted to each other and the distance between the two faces is shortened. When the dangling carbon atoms on both faces of the gap are excited to form new normal sp{sup 2}-sp{sup 2} carbon bonds, the gap can be sewn up quickly. Molecular dynamics simulations are presented to demonstrate the welding process. When the gap is a sector, an ideal cone can be fabricated using the present method.

  12. Nonsurgical Medical Penile Girth Augmentation: Experience-Based Recommendations.

    Science.gov (United States)

    Oates, Jayson; Sharp, Gemma

    2017-10-01

    Penile augmentation is increasingly sought by men who are dissatisfied with the size and/or appearance of their penis. However, augmentation procedures are still considered to be highly controversial with no standardized recommendations reported in the medical literature and limited outcome data. Nevertheless, these procedures continue to be performed in increasing numbers in private settings. Therefore, there is a need for safe, effective, and minimally invasive procedures to be developed, evaluated, and reported in the research literature. In this article, we focus particularly on girth enhancement procedures rather than lengthening procedures as penile girth appears to be particularly important for sexual satisfaction. We discuss the advantages and disadvantages of the common techniques to date, with a focus on the minimally invasive injectable girth augmentation techniques. Based on considerable operative experience, we offer our own suggestions for patient screening, technique selection, and perioperative care. © 2017 The American Society for Aesthetic Plastic Surgery, Inc. Reprints and permission: journals.permissions@oup.com.

  13. Surface studies of iridium-alloy grain boundaries associated with weld cracking

    International Nuclear Information System (INIS)

    Mosley, W.C.

    1982-01-01

    Plutonium-238 oxide fuel pellets for the General Purpose Heat Source (GPHS) Radioisotopic Thermoelectric Generators to be used on the NASA Galileo Mission to Jupiter and the International Solar Polar Mission are produced and encapsulated in iridium alloy at the Savannah River Plant (SRP). Underbead cracks occasionally occur in the girth weld on the iridium-alloy-clad vent sets in the region where the gas tungsten arc is quenched. Grain-boundary structures and compositions were characterized by scanning electron microscopy/x-ray energy spectroscopy, electron microprobe analysis and scanning Auger microprobe analysis to determine the cause of weld quench area cracking. Results suggest that weld quench area cracking may be caused by gas porosity or liquation in the grain boundaries

  14. Estimated accuracy of classification of defects detected in welded joints by radiographic tests

    International Nuclear Information System (INIS)

    Siqueira, M.H.S.; De Silva, R.R.; De Souza, M.P.V.; Rebello, J.M.A.; Caloba, L.P.; Mery, D.

    2004-01-01

    This work is a study to estimate the accuracy of classification of the main classes of weld defects detected by radiography test, such as: undercut, lack of penetration, porosity, slag inclusion, crack or lack of fusion. To carry out this work non-linear pattern classifiers were developed, using neural networks, and the largest number of radiographic patterns as possible was used as well as statistical inference techniques of random selection of samples with and without repositioning (bootstrap) in order to estimate the accuracy of the classification. The results pointed to an estimated accuracy of around 80% for the classes of defects analyzed. (author)

  15. Estimated accuracy of classification of defects detected in welded joints by radiographic tests

    Energy Technology Data Exchange (ETDEWEB)

    Siqueira, M.H.S.; De Silva, R.R.; De Souza, M.P.V.; Rebello, J.M.A. [Federal Univ. of Rio de Janeiro, Dept., of Metallurgical and Materials Engineering, Rio de Janeiro (Brazil); Caloba, L.P. [Federal Univ. of Rio de Janeiro, Dept., of Electrical Engineering, Rio de Janeiro (Brazil); Mery, D. [Pontificia Unversidad Catolica de Chile, Escuela de Ingenieria - DCC, Dept. de Ciencia de la Computacion, Casilla, Santiago (Chile)

    2004-07-01

    This work is a study to estimate the accuracy of classification of the main classes of weld defects detected by radiography test, such as: undercut, lack of penetration, porosity, slag inclusion, crack or lack of fusion. To carry out this work non-linear pattern classifiers were developed, using neural networks, and the largest number of radiographic patterns as possible was used as well as statistical inference techniques of random selection of samples with and without repositioning (bootstrap) in order to estimate the accuracy of the classification. The results pointed to an estimated accuracy of around 80% for the classes of defects analyzed. (author)

  16. X-ray Radiographic Study of Simulated Voids-like Defects in Al-Castings and Welded in Steel

    International Nuclear Information System (INIS)

    Mahrok, M.; Juma, Th.; Saeed, F.

    2013-01-01

    the detection and evaluation of imperfections in internal structures of casting and welded joints by x - ray radiography were studied.Optimum radiography conditions that improved the radiographic detection were attempted.Mathematical equations for radiography were used to calculate the size and depth of defects in casting were tested for validity to a wide range of parameters commonly used in radiography and for variable density and shape of the defects with respect to surrounding.Two kinds of samples are prepared.The first is aluminum casting through which two different sizes of a regular steel spheres are included and then radio graphed from two opposite sides to estimate their dimensional information from the radiographs.The second sample is steel plates which are welded and then radio graphed by x - rays.Imperfections such as incomplete root penetration, undercut and porosity were detected in the radiographs.

  17. Influence of Hardening Model on Weld Residual Stress Distribution

    Energy Technology Data Exchange (ETDEWEB)

    Mullins, Jonathan; Gunnars, Jens (Inspecta Technology AB, Stockholm (Sweden))

    2009-06-15

    This study is the third stage of a project sponsored by the Swedish Radiation Safety Authority (SSM) to improve the weld residual stress modelling procedures currently used in Sweden. The aim of this study was to determine which material hardening model gave the best agreement with experimentally measured weld residual stress distributions. Two girth weld geometries were considered: 19mm and 65mm thick girth welds with Rin/t ratios of 10.5 and 2.8, respectively. The FE solver ABAQUS Standard v6.5 was used for analysis. As a preliminary step some improvements were made to the welding simulation procedure used in part one of the project. First, monotonic stress strain curves and a mixed isotropic/kinematic hardening model were sourced from the literature for 316 stainless steel. Second, more detailed information was obtained regarding the geometry and welding sequence for the Case 1 weld (compared with phase 1 of this project). Following the preliminary step, welding simulations were conducted using isotropic, kinematic and mixed hardening models. The isotropic hardening model gave the best overall agreement with experimental measurements; it is therefore recommended for future use in welding simulations. The mixed hardening model gave good agreement for predictions of the hoop stress but tended to under estimate the magnitude of the axial stress. It must be noted that two different sources of data were used for the isotropic and mixed models in this study and this may have contributed to the discrepancy in predictions. When defining a mixed hardening model it is difficult to delineate the relative contributions of isotropic and kinematic hardening and for the model used it may be that a greater isotropic hardening component should have been specified. The kinematic hardening model consistently underestimated the magnitude of both the axial and hoop stress and is not recommended for use. Two sensitivity studies were also conducted. In the first the effect of using a

  18. Influence of Hardening Model on Weld Residual Stress Distribution

    International Nuclear Information System (INIS)

    Mullins, Jonathan; Gunnars, Jens

    2009-06-01

    This study is the third stage of a project sponsored by the Swedish Radiation Safety Authority (SSM) to improve the weld residual stress modelling procedures currently used in Sweden. The aim of this study was to determine which material hardening model gave the best agreement with experimentally measured weld residual stress distributions. Two girth weld geometries were considered: 19mm and 65mm thick girth welds with Rin/t ratios of 10.5 and 2.8, respectively. The FE solver ABAQUS Standard v6.5 was used for analysis. As a preliminary step some improvements were made to the welding simulation procedure used in part one of the project. First, monotonic stress strain curves and a mixed isotropic/kinematic hardening model were sourced from the literature for 316 stainless steel. Second, more detailed information was obtained regarding the geometry and welding sequence for the Case 1 weld (compared with phase 1 of this project). Following the preliminary step, welding simulations were conducted using isotropic, kinematic and mixed hardening models. The isotropic hardening model gave the best overall agreement with experimental measurements; it is therefore recommended for future use in welding simulations. The mixed hardening model gave good agreement for predictions of the hoop stress but tended to under estimate the magnitude of the axial stress. It must be noted that two different sources of data were used for the isotropic and mixed models in this study and this may have contributed to the discrepancy in predictions. When defining a mixed hardening model it is difficult to delineate the relative contributions of isotropic and kinematic hardening and for the model used it may be that a greater isotropic hardening component should have been specified. The kinematic hardening model consistently underestimated the magnitude of both the axial and hoop stress and is not recommended for use. Two sensitivity studies were also conducted. In the first the effect of using a

  19. Welding metallurgy of austenitic stainless steels

    International Nuclear Information System (INIS)

    Ibrahim, A.N.

    1983-01-01

    Austenitic stainless steels welds are commonly found in nuclear reactor systems. The macrostructure and the transformation of delta -phase into γ - phase which occur during rapid solidification of such welds are discussed. Finally, several types of defects which are derived from the welding operation, particularly defects of crack type, are also discussed in brief. (author)

  20. Monitoring of Defects in a Pipe Weld by a Comparison of Magnetostrictive Guided Wave Signals

    International Nuclear Information System (INIS)

    Cheong, Yong-Moo; Oh, Se-Beom; Lee, Duck-Hyun

    2016-01-01

    In this study a computer program for an accurate comparison and subtraction of guided wave signals were developed. The program contains an algorithm for calibration with the flight time and phases of ultrasonic signals in the time domain. Once the reference signals were acquired at the beginning of the monitoring, the signals can be compared to the reference. The signals due to the geometry can be eliminated clearly and an evolution of defect in a pipe can be monitored accurately. In order to improve the detectability and solve the problems of the guided wave methods, a magnetostrictive guided wave sensor technique was proposed. Because the waveforms by the magnetostrictive sensors are quite clear and repeatable, it is possible to detect the defects at the weld regions or even monitor the small variations of the defects after a permanent installation of the magnetostrictive strip sensors. In order to eliminate the signals from the geometry, such as weld, pipe support, branch connection, a computer algorithm and program were developed. A notch with 1.5% of CSA of the pipe can be detected with increased accuracy. The guided wave monitoring technique developed in this study can be a promising tool for inspection of the pipe with limited accessibility, such as insulated or buried pipe

  1. Monitoring of Defects in a Pipe Weld by a Comparison of Magnetostrictive Guided Wave Signals

    Energy Technology Data Exchange (ETDEWEB)

    Cheong, Yong-Moo; Oh, Se-Beom; Lee, Duck-Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    In this study a computer program for an accurate comparison and subtraction of guided wave signals were developed. The program contains an algorithm for calibration with the flight time and phases of ultrasonic signals in the time domain. Once the reference signals were acquired at the beginning of the monitoring, the signals can be compared to the reference. The signals due to the geometry can be eliminated clearly and an evolution of defect in a pipe can be monitored accurately. In order to improve the detectability and solve the problems of the guided wave methods, a magnetostrictive guided wave sensor technique was proposed. Because the waveforms by the magnetostrictive sensors are quite clear and repeatable, it is possible to detect the defects at the weld regions or even monitor the small variations of the defects after a permanent installation of the magnetostrictive strip sensors. In order to eliminate the signals from the geometry, such as weld, pipe support, branch connection, a computer algorithm and program were developed. A notch with 1.5% of CSA of the pipe can be detected with increased accuracy. The guided wave monitoring technique developed in this study can be a promising tool for inspection of the pipe with limited accessibility, such as insulated or buried pipe.

  2. In process acoustic emission in multirun submerged arc welding

    International Nuclear Information System (INIS)

    Asty, M.; Birac, C.

    1980-01-01

    In order to avoid the formation of deep grooves when repairing defects in welded joints in heavy plates, an investigation was made aiming to detect and locate the defects by in-process acoustic emission in multirun submerged arc welding. Twelve defects (lack of penetration, cracks, inclusions, lack of fusion together with inclusions, blowholes) were intentionally introduced when the first plate was welded. A space-time method for processing the acoustic activity during welding allowed the detection and the location of the intentional defects as well as of the most important accidental defects evidenced by ultrasonic testing [fr

  3. Three dimensional multi-pass repair weld simulations

    International Nuclear Information System (INIS)

    Elcoate, C.D.; Dennis, R.J.; Bouchard, P.J.; Smith, M.C.

    2005-01-01

    Full 3-dimensional (3-D) simulation of multi-pass weld repairs is now feasible and practical given the development of improved analysis tools and significantly greater computer power. This paper presents residual stress results from 3-D finite element (FE) analyses simulating a long (arc length of 62 deg. ) and a short (arc length of 20 deg. ) repair to a girth weld in a 19.6 mm thick, 432 mm outer diameter cylindrical test component. Sensitivity studies are used to illustrate the importance of weld bead inter-pass temperature assumptions and to show where model symmetry can be used to reduce the analysis size. The predicted residual stress results are compared with measured axial, hoop and radial through-wall profiles in the heat affected zone of the test component repairs. A good overall agreement is achieved between neutron diffraction and deep hole drilling measurements and the prediction at the mid-length position of the short repair. These results demonstrate that a coarse 3-D FE model, using a 'block-dumped' weld bead deposition approach (rather than progressively depositing weld metal), can accurately capture the important components of a short repair weld residual stress field. However, comparisons of measured with predicted residual stress at mid-length and stop-end positions in the long repair are less satisfactory implying some shortcomings in the FE modelling approach that warrant further investigation

  4. The chromatic number of a graph of girth 5 on a fixed surface

    DEFF Research Database (Denmark)

    Thomassen, Carsten

    2003-01-01

    We prove a color extension result implying that, for every fixed surface S, there are only finitely many 4-color-critical graphs of girth 5 on S. The result is best possible in the sense that there are infinitely many 4-color-critical graphs of girth 4 on S, except when S is the sphere, As a cons......, As a consequence, the chromatic number of graphs of girth 5 on S can be found in polynomial time....

  5. The influence of zigzag-curve defect on the fatigue properties of friction stir welds in 7075-T6 Al alloy

    International Nuclear Information System (INIS)

    Di Shusheng; Yang Xinqi; Fang Dapeng; Luan Guohong

    2007-01-01

    The microstructure and fatigue properties of friction stir welded joints of 7075-T6 Al alloy were discussed. It was shown that the zigzag-curve defect at the root of welds is Key factor to reduce the fatigue performance of single-sided friction stir welded joints of 7075-T6 high strength aluminum alloy. On the other hand, the FSW joints of 7075-T6 Al alloy achieved higher fatigue strength compared to the traditional fusion design curves IIW FAT40 and Draft Eurocode 9 design category 55-6 for structural aluminum alloy components

  6. Welding nuclear reactor fuel rod end plugs

    International Nuclear Information System (INIS)

    Yeo, D.

    1984-01-01

    Apparatus for applying a vacuum to a nuclear fuel rod cladding tube's interior through its open end while girth welding an inserted end plug to its other end. An airtight housing has an orifice with a seal which can hermetically engage the tube's open end. A vacuum hose has one end connected to the housing and the other end connected to a vacuum pump. A mechanized device which moves the housing to engage or disengage its seal with the tube's open end includes at least one arm having one end attached to the housing and the other end pivotally attached to a movable table; an arm rotating device to coaxially align the housing's orifice with the welding-positioned tube; and a table moving device to engage the seal of the coaxially aligned orifice with the tube's open end. (author)

  7. Prediction of Weld Residual Stress of Narrow Gap Welds

    International Nuclear Information System (INIS)

    Yang, Jun Seog; Huh, Nam Su

    2010-01-01

    The conventional welding technique such as shield metal arc welding has been mostly applied to the piping system of the nuclear power plants. It is well known that this welding technique causes the overheating and welding defects due to the large groove angle of weld. On the other hand, the narrow gap welding(NGW) technique has many merits, for instance, the reduction of welding time, the shrinkage of weld and the small deformation of the weld due to the small groove angle and welding bead width comparing with the conventional welds. These characteristics of NGW affect the deformation behavior and the distribution of welding residual stress of NGW, thus it is believed that the residual stress results obtained from conventional welding procedure may not be applied to structural integrity evaluation of NGW. In this paper, the welding residual stress of NGW was predicted using the nonlinear finite element analysis to simulate the thermal and mechanical effects of the NGW. The present results can be used as the important information to perform the flaw evaluation and to improve the weld procedure of NGW

  8. How Big is Too Big? The Girth of Bestselling Insertive Sex Toys to Guide Maximal Neophallus Dimensions.

    Science.gov (United States)

    Isaacson, Dylan; Aghili, Roxana; Wongwittavas, Non; Garcia, Maurice

    2017-11-01

    In our practice we have encountered 4 female-to-male transgender patients seeking neophallus revision surgery for girth precluding penetrative vaginal or anal intercourse. Despite this, there is little evidence available to guide transitioning patients in neophallus sizing. In this work we examined the dimensions of bestselling realistic dildos, presuming that the most popular dimensions would reflect population preferences for penetrative toys and phalluses. To determine a maximal upper limit for girth compatible with penetrative intercourse based on measurements of bestselling realistic dildos and published erect penile dimensions. We collected measurements for "realistic dildos" designated as bestsellers for the top 5 Alexa.com-rated online adult retailers in the United States and for Amazon.com. We compared these with measurements of dildos available at Good Vibrations in San Francisco and with studies of erect natal dimensions. We compared all data with measurements of 4 index patients whose neophallus girth prevented penetrative intercourse. Length and circumference of overall bestselling and largest bestselling realistic dildos as reported on top websites and measured by investigators. The average insertive length of the compiled dildos (16.7 ± 1.6 cm) was 1 SD longer than natal functional erect penile length as reported in the literature (15.7 ± 2.6 cm); however, their average circumference (12.7 ± 0.8 cm) mirrored natal erect penile girth (12.3 ± 1.3). The average girth of vendors' top 3 largest-girth dildos was 15.1 ± 0.9 cm, 2 SD wider than natal erect penile girth. Index patients had an average length of 16.3 ± 3.2 cm and an average girth of 17.6 ± 1.3 cm. Index patient girth was 4 to 5 SD wider than the average natal erect girth. Based on our data, we suggest that a surgically created neophallus should have a girth no wider than 15.1 cm after implantation of an inflatable penile prosthesis. This corresponds to 2 SD wider than the average natal

  9. Feasibility study of pipe welding using a homopolar generator. Final report

    International Nuclear Information System (INIS)

    Keith, R.E.; Weldon, W.F.; Rylander, H.G.; Woodson, H.H.

    1979-12-01

    The technical feasibility was studied of making girth welds of the upset butt resistance type in type 304 stainless steel boiling water reactor pipe using a homopolar generator as the power supply and a preliminary study of the process economics as compared with the present arc welding practice was made. The design and construction of a welding fixture and its use in conjunction with a 5 megajoule homopolar generator to accomplish successful welds having a nominal 28.4 cm 2 (4.4 in. 2 ) area in less than 1 second are discussed. The nature of the homopolar pulse resistance welding (HPRW) process is such that the time to accomplish the weld is independent of the size of the weld. Welds were produced having 100 percent joint efficiency as measured by the tensile test. It proved possible to obtain smooth inner diameter weld contours, but the joint design that resulted in the best contour also resulted in harmless oxide particles in the weld interface. A slight modification to the joint design was shown to eliminate the oxide particles, but resulted in a somewhat less desirable inner contour. Because of the relatively short heating cycle of HPR welding, the heat-affected zone of the weld is in the 400 to 800 C sensitization region for a substantially shorter time than in multipass arc welding. ASTM A262 Procedure A tests did not show any sensitization in HPR welds. HPR welding promises substantial savings in variable costs (labor, overhead, and materials) compared to arc welding

  10. Sensor controlled robotic welding for nuclear power plant operations

    International Nuclear Information System (INIS)

    Chin, B.A.

    1989-01-01

    The objective of the proposed research is to apply real time monitoring, artificial intelligence and on-line correction to dynamically control the depth of weld penetration and weld integrity during the welding process. Welding is a major technique used in the fabrication, construction and maintenance of power generating and energy conversion systems. In the welding process, fluctuations in process variables lead to weld defects such as lack of penetration, cracks, porosity and undesirable metallurgical structures. This research will apply advanced infrared sensing techniques which have been successfully used in seam tracking to the equally complex problem of weld defect and weld puddle penetration control. Thermal temperature distributions of plates being welded will be dynamically measured during welding using infrared techniques. These temperature distributions will be used to interpret changes in the size and shape of the molten metal pool and the presence of conditions that may lead to defects in the solidified weld. The ultimate result of this research will be the development of machines which are capable of sensing and altering process variables to eliminate defective welds and increase the productivity of the welding process. Successful completion of this proposed research will lead to potential major improvements in the fabrication, construction and maintenance of advanced nuclear reactors and promote increased safety and reliability while decreasing construction costs. 47 refs., 50 figs

  11. Influence of the welding temperature and the welding speed on the mechanical properties of friction stir welds in EN AW-2219-T87

    Science.gov (United States)

    Bachmann, A.; Krutzlinger, M.; Zaeh, M. F.

    2018-06-01

    Friction Stir Welding (FSW) is an innovative joining technique, which has proven to produce high quality joints in high strength aluminum alloys. Consequently, it is commonly used to manufacture lightweight aerospace structures with stringent requirements. For these structures, it is necessary to ensure a high ultimate tensile strength (UTS). Various studies have reported that the UTS is significantly influenced by the welding parameters. Samples welded with different parameter sets showed a considerably different UTS, despite being free from detectable welding defects (e.g. tunnel defect, voids, or lack of penetration). Based on the observations in the literature, a hypothesis was posed. The welding temperature along with the welding speed determine the UTS of the weld. This study aims to prove this hypothesis experimentally by using temperature-controlled FSW to join plates of EN AW-2219-T87 in butt joint configuration. The welded samples were examined using visual inspection, metallography, X-ray imaging, and uniaxial tensile tests. Finally, a statistical analysis was conducted. Hereby, the hypothesis was confirmed.

  12. High Girth Column-Weight-Two LDPC Codes Based on Distance Graphs

    Directory of Open Access Journals (Sweden)

    Gabofetswe Malema

    2007-01-01

    Full Text Available LDPC codes of column weight of two are constructed from minimal distance graphs or cages. Distance graphs are used to represent LDPC code matrices such that graph vertices that represent rows and edges are columns. The conversion of a distance graph into matrix form produces an adjacency matrix with column weight of two and girth double that of the graph. The number of 1's in each row (row weight is equal to the degree of the corresponding vertex. By constructing graphs with different vertex degrees, we can vary the rate of corresponding LDPC code matrices. Cage graphs are used as examples of distance graphs to design codes with different girths and rates. Performance of obtained codes depends on girth and structure of the corresponding distance graphs.

  13. Problems in repair-welding of duplex-treated tool steels

    Directory of Open Access Journals (Sweden)

    T. Muhič

    2009-01-01

    Full Text Available The present paper addresses problems in laser welding of die-cast tools used for aluminum pressure die-castings and plastic moulds. To extend life cycle of tools various surface improvements are used. These surface improvements significantly reduce weldability of the material. This paper presents development of defects in repair welding of duplex-treated tool steel. The procedure is aimed at reduction of defects by the newly developed repair laser welding techniques. Effects of different repair welding process parameters and techniques are considered. A microstructural analysis is conducted to detect defect formation and reveal the best laser welding method for duplex-treated tools.

  14. Cu-Fe welding techniques by electromagnetic and electron beam welding processes

    International Nuclear Information System (INIS)

    Kumar, Satendra; Saroj, P.C.; Kulkarni, M.R.; Sharma, A.; Rajawat, R.K.; Saha, T.K.

    2015-01-01

    Electromagnetic welding being a solid state welding process has been found suitable for welding Copper and Iron which are conventionally very tricky. Owing to good electrical conductivity of both copper and iron, they are best suited combination for EM welding. For the experimental conditions presented above, 1.0 mm wall thickness of Cu tube was lap welded to Fe disc. A heavy duty four disc stainless steel coil was used for electromagnetic welding of samples. MSLD of the welded samples indicated leak proof joints. Metallographic examination of the welds also revealed defect free interfaces. Electron beam welding is also a non-conventional welding process used for joining dissimilar materials. Autogenous welding of the above specimen was carried out by EBW method for the sake of comparison. A characterization analysis of the above mentioned joining processes will be discussed in the paper. (author)

  15. The origin of weld seam defects related to metal flow in the hot extrusion of aluminium alloys en AW-6060 and en AW-6082

    NARCIS (Netherlands)

    Bakker, A.J. den; Werkhoven, R.J.; Sillekens, W.H.; Katgerman, L.

    2014-01-01

    Longitudinal weld seams are an intrinsic feature in hollow extrusions produced with porthole dies. As these joins occur along the entire extruded length, it is desirable that these weld seams have a minimal impact on the structural integrity of the extrudate. In particular, defects associated with

  16. Effect of welding speed on microstructural and mechanical properties of friction stir welded Inconel 600

    International Nuclear Information System (INIS)

    Song, K.H.; Fujii, H.; Nakata, K.

    2009-01-01

    In order to evaluate the properties of a friction stir welded Ni base alloy, Inconel 600 (single phase type) was selected. Sound friction stir welds without weld defect were obtained at 150 and 200 mm/min in welding speed, however, a groove like defect occurred at 250 mm/min. The electron back scattered diffraction (EBSD) method was used to analyze the grain boundary character distribution. As a result, dynamic recrystallization was observed at all conditions, and the grain refinement was achieved in the stir zone, and it was gradually accelerated from 19 μm in average grain size of the base material to 3.4 μm in the stir zone with increasing the welding speed. It also has an effect on the mechanical properties so that friction stir welded zone showed 20% higher microhardness and 10% higher tensile strength than those of base material.

  17. Recursive construction of (J,L (J,L QC LDPC codes with girth 6

    Directory of Open Access Journals (Sweden)

    Mohammad Gholami

    2016-06-01

    Full Text Available ‎In this paper‎, ‎a recursive algorithm is presented to generate some exponent matrices which correspond to Tanner graphs with girth at least 6‎. ‎For a J×L J×L exponent matrix E E‎, ‎the lower bound Q(E Q(E is obtained explicitly such that (J,L (J,L QC LDPC codes with girth at least 6 exist for any circulant permutation matrix (CPM size m≥Q(E m≥Q(E‎. ‎The results show that the exponent matrices constructed with our recursive algorithm have smaller lower-bound than the ones proposed recently with girth 6‎

  18. Examination of welds by digital radiography

    International Nuclear Information System (INIS)

    Ekinci, S.

    2004-01-01

    Industrial radiography is the oldest and most reliable non-destructive test method in the examination and two dimensional evaluation of weld defects. Digital radiographic methods provide more sensitive, faster and more reliable evaluation of defect images. One of the most important factors influencing the contrast and consequently the image quality is the noise on the film caused by scattered radiation. The digital image processing technique can eliminate the noise and improve the image quality. Digital radiography also enables three dimensional evaluation of weld defects. This work describes the use of digital radiography in the evaluation of defects in welds of different configurations by using a laser film digitizing system and an appropriate software programme. Advantages and limitations of the digital technique and conventional film radiography were discussed. (author)

  19. Examination of welds by digital radiography

    International Nuclear Information System (INIS)

    Ekinci, S.

    2004-01-01

    Full text: Industrial radiography is the oldest and most reliable non-destructive test method in the examination and two dimensional evaluation of weld defects. Digital radiographic methods provide more sensitive, faster and more reliable evaluation of defect images. One of the most important factors influencing the contrast and consequently the image quality is the noise on the film caused by scattered radiation. The digital image processing technique can eliminate the noise and improve the image quality. Digital radiography also enables three dimensional evaluation of weld defects. This work describes the use of digital radiography in the evaluation of defects in welds of different configurations by using a laser film digitizing system and an appropriate software programme. Advantages and limitations of the digital technique and conventional film radiography were discussed

  20. Real-time ultrasonic weld evaluation system

    Science.gov (United States)

    Katragadda, Gopichand; Nair, Satish; Liu, Harry; Brown, Lawrence M.

    1996-11-01

    Ultrasonic testing techniques are currently used as an alternative to radiography for detecting, classifying,and sizing weld defects, and for evaluating weld quality. Typically, ultrasonic weld inspections are performed manually, which require significant operator expertise and time. Thus, in recent years, the emphasis is to develop automated methods to aid or replace operators in critical weld inspections where inspection time, reliability, and operator safety are major issues. During this period, significant advances wee made in the areas of weld defect classification and sizing. Very few of these methods, however have found their way into the market, largely due to the lack of an integrated approach enabling real-time implementation. Also, not much research effort was directed in improving weld acceptance criteria. This paper presents an integrated system utilizing state-of-the-art techniques for a complete automation of the weld inspection procedure. The modules discussed include transducer tracking, classification, sizing, and weld acceptance criteria. Transducer tracking was studied by experimentally evaluating sonic and optical position tracking techniques. Details for this evaluation are presented. Classification is obtained using a multi-layer perceptron. Results from different feature extraction schemes, including a new method based on a combination of time and frequency-domain signal representations are given. Algorithms developed to automate defect registration and sizing are discussed. A fuzzy-logic acceptance criteria for weld acceptance is presented describing how this scheme provides improved robustness compared to the traditional flow-diagram standards.

  1. Development Of Ultrasonic Testing Based On Delphi Program As A Learning Media In The Welding Material Study Of Detection And Welding Disables In The Environment Of Vocational Education

    Science.gov (United States)

    Dwi Cahyono, Bagus; Ainur, Chandra

    2018-04-01

    The development of science and technology has a direct impact on the preparation of qualified workers, including the preparation of vocational high school graduates. Law Number 20 the Year 2003 on National Education System explains that the purpose of vocational education is to prepare learners to be ready to work in certain fields. One of the learning materials in Vocational High School is welding and detecting welding defects. Introduction of welding and detecting welding defects, one way that can be done is by ultrasonic testing will be very difficult if only capitalize the book only. Therefore this study aims to adopt ultrasonic testing in a computer system. This system is called Delphi Program-based Ultrasonic Testing Expert System. This system is used to determine the classification and type of welding defects of the welded defect indicator knew. In addition to the system, there is a brief explanation of the notion of ultrasonic testing, calibration procedures and inspection procedures ultrasonic testing. In this system, ultrasonic input data testing that shows defects entered into the computer manually. This system is built using Delphi 7 software and Into Set Up Compiler as an installer. The method used in this research is Research and Development (R & D), with the following stages: (1) preliminary research; (2) manufacture of software design; (3) materials collection; (4) early product development; (5) validation of instructional media experts; (6) product analysis and revision; (8) media trials in learning; And (9) result of end product of instructional media. The result of the research shows that: (1) the result of feasibility test according to ultrasonic material testing expert that the system is feasible to be used as instructional media in welding material subject and welding defect detection in vocational education environment, because it contains an explanation about detection method of welding defect using method Ultrasonic testing in detail; (2

  2. Detecting flaws in welds

    International Nuclear Information System (INIS)

    Woodacre, A.; Lawton, H.

    1979-01-01

    An apparatus and a method for detecting flaws in welds in a workpiece, the portion of the workpiece containing the weld is maintained at a constant temperature and the weld is scanned by an infra red detector. The weld is then scanned again with the workpiece in contact with a cooling probe to produce a steeper temperature gradient across the weld. Comparison of the signals produced by each scan reveals the existence of defects in the welds. The signals may be displayed on an oscilloscope and the display may be observed by a TV camera and recorded on videotape. (UK)

  3. Hybrid laser-gas metal arc welding (GMAW) of high strength steel gas transmission pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Ian D.; Norfolk, Mark I. [Edison Welding Institute (EWI), Columbus, Ohio (United States)

    2009-07-01

    Hybrid Laser/arc welding process (HLAW) can complete 5G welds, assure weld soundness, material properties, and an acceptable geometric profile. Combining new lasers and pulsed gas metal arc welding (GMAW-P) has led to important innovations in the HLAW process, increasing travel speed for successful root pass welding. High power Yb fiber lasers allow a 10 kW laser to be built the size of a refrigerator, allowing portability for use on the pipeline right-of-way. The objective was to develop and apply an innovative HLAW system for mechanized welding of high strength, high integrity, pipelines and develop 5G welding procedures for X80 and X100 pipe, including mechanical testing to API 1104. A cost-matched JIP developed a prototype HLAW head based on a commercially available bug and band system (CRC-Evans P450). Under the US Department of Transportation (DOT) project, the subject of this paper, the system was used to advance pipeline girth welding productivity. External hybrid root pass welding achieved full penetration welds with a 4-mm root at a travel speed of 2.3-m/min. Welds were made 'double down' using laser powers up to 10 kW and travel speeds up to 3-m/min. The final objective of the project was to demonstrate the hybrid LBW/GMAW system under simulated field conditions. (author)

  4. Effect of weld morphology on mechanical response and failure of friction stir welds in a naturally aged aluminium alloy

    International Nuclear Information System (INIS)

    Imam, Murshid; Biswas, Kajal; Racherla, Vikranth

    2013-01-01

    Highlights: ► Friction stir welds of AA 6063-T4 are obtained using three tool pin profiles. ► Signature of weld defects in mechanical response of welds is investigated. ► Correlation between peak temperatures in HAZs and their hardness is studied. ► Reasons for strengthening of WNZ and softening of HAZs are found using TEM and XRD. ► A FEM model for the weld zone is developed and validated. -- Abstract: Friction stir butt welds in 6063-T4 aluminium alloy were obtained using square and two tapered tool pin profiles. Tensile tests at 0°, 45°, and 90° to the weld line, hardness contours in the weld cross-section, temperatures in the heat affected zones, cross-sectional macrographs, transmission electron micrographs, and X-ray diffraction studies were used to characterize the welds. In transverse weld specimen, tunnel defects appearing at higher weld speeds for tapered pin profiles, were found to result in mechanical instabilities, i.e. sharp drops in load–displacement curves, much before macroscopic necking occured. Further, in comparison to the base metal, a marked reduction in ductility was observed even in transverse specimen with defect free welds. Hardness contours in the weld cross-section suggest that loss in ductility is due to significant softening in heat affected zone on the retreating side. Transmission electron microscopy images demonstrate that while recovery and overaging are responsible for softening in the heat affected zone, grain size refinement from dynamic recrystallization is responsible for strengthening of the weld nugget zone. X-ray diffraction studies in the three weld zones: weld nugget zone, heat affected zone, and the base metal corroborate these findings. A weld zone model, for use in forming simulations on friction stir welded plates of naturally aged aluminium alloys, was proposed based on mechanical characterization tests. The model was validated using finite element analysis.

  5. Weld pool and keyhole dynamic analysis based on visual system and neural network during laser keyhole welding

    OpenAIRE

    Luo, Masiyang

    2014-01-01

    In keyhole fiber laser welding processes, the weld pool behavior and keyhole dynamics are essential to determining welding quality. To observe and control the welding process, the accurate extraction of the weld pool boundary as well as the width is required. In addition, because of the cause-and-effect relationship between the welding defects and stability of the keyhole, which is primarily determined by keyhole geometry during the welding process, the stability of keyhole needs to be consid...

  6. Milestones in welding technology

    Science.gov (United States)

    Dolby, Richard E.

    2013-09-01

    Sir Alan's PhD thesis describes his research into cracking during arc welding of armour steels. Throughout his career, he had a strong interest in defects of all types, how they formed in metallic structures and how the larger ones could be detected and sized by non-destructive techniques. He was also vitally concerned with how defects impacted on the engineering integrity of welded structures, particularly the risk of fracture in nuclear plant. This study presents a view of some of the major milestones in global welding technology that took place over the 60 or more years of Sir Alan's career and highlights those where he had a personal and direct involvement.

  7. GMR-based eddy current probe for weld seam inspection and its non-scanning detection study

    Science.gov (United States)

    Gao, Peng; Wang, Chao; Li, Yang; Wang, Libin; Cong, Zheng; Zhi, Ya

    2017-04-01

    Eddy current testing is one of the most important non-destructive testing methods for welding defects detection. This paper presents the use of a probe consisting of 4 giant magneto-resistive (GMR) sensors to detect weld defects. Information from four measuring points above and on both sides of the weld seam is collected at the same time. By setting the GMR sensors' sensing axes perpendicular to the direction of the excitation magnetic field, the information collected mainly reflects the change in the eddy current which is caused by defects. Digital demodulation technology is applied to extract the real part and imaginary part of the GMR sensors' output signals. The variables containing directional information of the magnetic field are introduced. Based on the data from the four GMR (4-GMR) sensors' output signals, four values, Ran, Mean, Var and k are selected as the feature quantities for defect recognition. Experiments are carried out on weld seams with and without defects, and the detection outputs are given in this paper. The 4-GMR probe is also employed to investigate non-scanning weld defect detection and the four feature quantities (Ran, Mean, Var and k) are studied to evaluate weld quality. The non-scanning weld defect detection is presented. A support vector machine is used to classify and discriminate welds with and without defects. Experiments carried out show that through the method in this paper, the recognition rate is 92% for welds without defects and 90% for welds with defects, with an overall recognition rate of 90.9%, indicating that this method could effectively detect weld defects.

  8. Electron beam welding fundamentals and applications

    International Nuclear Information System (INIS)

    Mara, G.L.; Armstrong, R.E.

    1975-01-01

    The electron beam welding process is described and the unique mode of operation and penetration explained by a description of the forces operating within the weld pool. This penetration model is demonstrated by high speed cinematography of the weld pool on several materials. The conditions under which weld defects are formed are discussed and examples are presented. (auth)

  9. Thin-Sheet zinc-coated and carbon steels laser welding

    International Nuclear Information System (INIS)

    Pecas, P.; Gouveia, H.; Quintino, L.

    1998-01-01

    This paper describes the results of a research on CO 2 laser welding of thin-sheet carbon steels (Zinc-coated and uncoated), at several thicknesses combinations. Laser welding has an high potential to be applied on sub-assemblies welding before forming to the automotive industry-tailored blanks. The welding process is studied through the analysis of parameters optimization, metallurgical quality and induced distortions by the welding process. The clamping system and the gas protection system developed are fully described. These systems allow the minimization of common thin-sheet laser welding defects like misalignment, and zinc-coated laser welding defects like porous and zinc ventilation. The laser welding quality is accessed by DIN 8563 standard, and by tensile, microhardness and corrosion test. (Author) 8 refs

  10. ICT diagnostic method of beryllium welding quality

    International Nuclear Information System (INIS)

    Sun Lingxia; Wei Kentang; Ye Yunchang

    2002-01-01

    To avoid the interference of high density material for the quality assay of beryllium welding line, a slice by slice scanning method was proposed based upon the research results of the Industrial Computerized Tomography (ICT) diagnostics for weld penetration, weld width, off-centered deviation and weld defects of beryllium-ring welding seam with high density material inside

  11. Electron beam welding of heat exchangers

    International Nuclear Information System (INIS)

    Chergov, I.V.; Jarinov, V.I.; Minine, V.A.

    1983-01-01

    For a long time neither qualitative, nor quantitative criteria have been available that would have allowed choosing the most suitable welding techniques from the three stated below: 1) electron gun rotates relative to stationary tube; 2) electron beam is magnetically deviated relative to stationary tube; 3) permanent deviation magnet is rotated mechanically relative to stationary tube and gun. To our experience, the 2nd technique is most promising when welding 16x1.5 diameter stainless tubes. The e-b welds are vulnerable to root defects. With welding done in a movable manner, the root defect area will be found to locate in the tube plate body and, hence, the weldment, as a whole, will not be impaired [fr

  12. A final report on the performance achieved by non-destructive testing of defective butt welds in 50mm thick Type 316 stainless steel

    International Nuclear Information System (INIS)

    Ford, J.; Hudgell, R.J.

    1987-03-01

    This report concludes a programme of work started approximately eight years ago to fabricate deliberately defective austenitic downhand welds in 50 mm thick Type 316 plate and then to examine them non-destructively under ideal laboratory conditions. After completing and reporting the Non-Destructive Testing (NDT), the specimens were subjected to detailed metallography to locate, identify and size all the planned and unplanned flaws in the welds. The report gives the final analysis of this exercise on the relative merits of X-radiography, pulse echo ultrasonics and the time-of-flight technique for the detection, location and sizing of weld flaws. It was found that X-radiography and pulse echo ultrasonics were the best techniques for flaw detection but neither technique was reliable for flaw sizing. The time-of-flight technique provided accurate sizing data but the location of the flaws had to be known to identify the diffracted signals from the extremities of the flaws due to the poor signal to noise ratio. Observations are also reported on the fabrication of deliberately defective austenitic welds for use as reference specimens in the FR programme. (author)

  13. Plug-welding of ODS cladding tube for BOR-60 irradiation. Welding condition setting. Device remodeling and welding

    International Nuclear Information System (INIS)

    Seki, Masayuki; Ishibashi, Fujio; Kono, Syusaku; Hirako, Kazuhito; Tsukada, Tatsuya

    2003-04-01

    Irradiation test in BOR-60 at RIAR to judge practical use prospect of ODS cladding tube at early stage is planned as Japan-Russia a joint research. RIAR does fuel design of fuel pin used for this joint research. JNC manufactures ODS cladding tube and bar materials (two steel kind of martensite and ferrite), upper endplug production. They are welded by pressurized resistance welding, and are inspected in JNC Tokai, transported to RIAR. And RIAR manufactures vibration packing fuel pin. On the upper endplug welding by pressurized resistance welding method, we worded on the problems such as decision of welding condition by changing the size and crystallization of cladding tube and the design of endplug, and the chucking device remodeling to correspond to the long scale cladding tube welding system (included handling) and of quality assurance method. Especially, use of long scale cladding tube caused problem that bending transformation occurred in cladding tube by welding pressure. However, we solved this problem by shortening the distance of cladding tube colette chuck and pressure receiving, and by putting the sleeve in an internal space of welding machine, losing the bending of cladding tube. Moreover, welding defects were occurred by the difference of an inside state, an inside defect and recrystallization of cladding tube. We solved the problem by inside grinding for the edge of tube, angle beam method by ultrasonic wave, and ultrasonic wave form confirmation. Manufacturing process with long scale cladding tube including heat-treatment to remove combustion return and remaining stress was established besides, Afterwards, welding of ODS cladding tube and upper endplug. As the quality assurance system, we constructed [Documented procedure (referred to JOYO)] based on [Document of the QA plan] by OEC. Welding and inspection were executed by the document procedure. It is thought that the quality assurance method become references for the irradiation test in JOYO in the

  14. Recent development in low-constraint fracture toughness testing for structural integrity assessment of pipelines

    Science.gov (United States)

    Kang, Jidong; Gianetto, James A.; Tyson, William R.

    2018-03-01

    Fracture toughness measurement is an integral part of structural integrity assessment of pipelines. Traditionally, a single-edge-notched bend (SE(B)) specimen with a deep crack is recommended in many existing pipeline structural integrity assessment procedures. Such a test provides high constraint and therefore conservative fracture toughness results. However, for girth welds in service, defects are usually subjected to primarily tensile loading where the constraint is usually much lower than in the three-point bend case. Moreover, there is increasing use of strain-based design of pipelines that allows applied strains above yield. Low-constraint toughness tests represent more realistic loading conditions for girth weld defects, and the corresponding increased toughness can minimize unnecessary conservatism in assessments. In this review, we present recent developments in low-constraint fracture toughness testing, specifically using single-edgenotched tension specimens, SENT or SE(T). We focus our review on the test procedure development and automation, round-robin test results and some common concerns such as the effect of crack tip, crack size monitoring techniques, and testing at low temperatures. Examples are also given of the integration of fracture toughness data from SE(T) tests into structural integrity assessment.

  15. Ultrasonic testing of austenitic welds and its dependency on the welding process

    International Nuclear Information System (INIS)

    Tabatabaeipour, S.M.; Honarvar, F.

    2009-01-01

    This paper describes the ultrasonic testing of austenitic welds prepared by two different welding processes. The tests were carried out by the ultrasonic Time-of-Flight Diffraction (ToFD) technique. Shielded Metal Arc Welding (SMAW) and Gas Tungsten Arc Welding (GTAW) are the welding processes used for preparing the specimens. Identical artificial defects were implanted in both welds during the welding process. Both specimens were examined by the ToFD technique under similar conditions. Metallographic images were also obtained from the cross sectional plane of both the SMA and GTA welds. These images show that the grain orientation in the two welded specimens are different. D-scan images obtained by the ToFD technique from these welds indicates that inspecting the specimens prepared by the SMAW process is easier than the one made by the GTAW process. The results also show that the D-scan images cannot reveal the small vertical drilled holes implanted in the specimens. (author)

  16. Measuring penetration depth of electron beam welds. Final report

    International Nuclear Information System (INIS)

    Hill, J.W.; Collins, M.C.; Mentesana, C.P.; Watterson, C.E.

    1975-07-01

    The feasibility of evaluating electron beam welds using state-of-the-art techniques in the fields of holographic interferometry, micro-resistance measurements, and heat transfer was studied. The holographic study was aimed at evaluating weld defects by monitoring variations in weld strength under mechanical stress. The study, along with successful work at another facility, proved the feasibility of this approach for evaluating welds, but it did not assign any limitations to the technique. The micro-resistance study was aimed at evaluating weld defects by measuring the electrical resistance across the weld junction as a function of distance along the circumference. Experimentation showed this method, although sensitive, is limited by the same factors affecting other conventional nondestructive tests. Nevertheless, it was successful at distinguishing between various depths of penetration. It was also shown to be a sensitive thickness gage for thin-walled parts. The infrared study was aimed at evaluating weld defects by monitoring heat transfer through the weld under transient thermal conditions. Experimentation showed that this theoretically sound technique is not workable with the infrared equipment currently available at Bendix Kansas City. (U.S.)

  17. Penile epidermal inclusion cyst: a late complication of penile girth enhancement surgery.

    Science.gov (United States)

    Park, Hyun Jun; Park, Nam Cheol; Park, Sung Woo; Jern, Tae Kyung; Choi, Kyung-Un

    2008-09-01

    Epidermal inclusion cysts are benign lesions that can develop in any part of the body. However, the finding of an epidermal inclusion cyst in the penis is rare. The aim of this article was to present the management of a case of a penile epidermal inclusion cyst that occurred because of late complications of a penile girth enhancement surgery. A 52-year-old man presented with a painless, slowly growing mass in the penis, which was first noted after a penile girth enhancement surgery 20 years ago. A cystic mobile mass about 2 cm in depth was found surrounding the coronal sulcus. Excision of the mass was performed for diagnosis and treatment. There was no communication with the urethra. The pathological diagnosis was an epidermal inclusion cyst of the penis. A penile epidermal inclusion cyst in adult men is rare. It can develop after an inadequate procedure for penile girth enhancement, and should be treated by complete resection.

  18. Welding repair of a dissimilar weld and respective consequences for other German plants

    International Nuclear Information System (INIS)

    Brummer, G.; Dauwel, W.; Wesseling, U.; Ilg, U.; Lauer, P.; Widera, M.; Wachter, O.

    2002-01-01

    During a regular refueling outage in a German nuclear power plant in year 2000, additional non-destructive examinations have been performed on request of the Authority, to fulfill some recommendations of the independent experts with regard to the retrospective application of the Basic Safety Concept for the ferritic main coolant piping of this plant. During these inspections, indications were found in a dissimilar weld between one of the fifteen MCL (main coolant lines) nozzles and the ECC (emergency core cooling) system piping. By means of on-site metallography and laboratory investigations on three boat samples taken from this weld, it could be shown that the indications were due to hot cracking in the surface layer of the weld. In the course of these investigations, at three locations at the circumference of the weld, dis-bonding defects were found between the ferritic base metal of the nozzle and the austenitic weld butter, which has been applied to join the nozzle to the austenitic safe-end. According to the results of the extensive investigations, the dis-bonding occurred during the manufacturing process after stress-relief heat-treatment of the buttering during the welding of the austenitic safe-end to the butter material. There was no evidence for any crack growth during operation of the plant. Due to the large size of the boat-samples, a weld repair was mandatory. This repair has been performed using the so-called temper-bead technique as specified in the ASME Code, without subsequent stress relief heat treatment, using an advanced automatic orbital TIG welding process. The welding has been successfully performed without the need of further repair work. For those dissimilar welds, all other plants, except one, had used Inconel welding material for buttering the ferritic nozzle instead of stainless steel welding metal. For metallurgical reasons, dis-bonding along the fusion line for Inconel buttered dissimilar welds is unlikely to occur. Nevertheless all

  19. 75 FR 14243 - Pipeline Safety: Girth Weld Quality Issues Due to Improper Transitioning, Misalignment, and...

    Science.gov (United States)

    2010-03-24

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No..., and Welding Practices of Large Diameter Line Pipe AGENCY: Pipeline and Hazardous Materials Safety... bulletin to notify owners and operators of recently constructed large diameter natural gas pipeline and...

  20. Ultrasonic creeping wave test technique for dissimilar metal weld

    International Nuclear Information System (INIS)

    Yuan Jianzhong; Shang Junmin; Yan Zhi; Yuan Guanghua; Zhang Guofeng

    2009-01-01

    To solve the problem encountered in the defect inspection of the surface and near-surface of dissimilar metal weld effectively, a new ultrasonic creeping wave test technique is developed. In this paper, the test technique and its experimental verification are mainly described. The verification results show that linear defect, which is similar to the defect found in liquid penetrant test, on the surface and near-surface of dissimilar metal weld can be detected effectively, by using ultrasonic creeping wave test technique. And the depth, length and height of the defect can be determined easily. The effective covering depth of ultrasonic creeping wave test technique will reach 0-9 mm. Meanwhile, the planar defect, with equivalent area more than 3 mm 2 , existed in welds can be detected efficiently. So, accurate measurement, which self height dimension of planar defect is above 2 mm, will be realized. (authors)

  1. Problems in repair-welding of duplex-treated tool steels

    OpenAIRE

    T. Muhič; J. Tušek; M. Pleterski; D. Bombač

    2009-01-01

    The present paper addresses problems in laser welding of die-cast tools used for aluminum pressure die-castings and plastic moulds. To extend life cycle of tools various surface improvements are used. These surface improvements significantly reduce weldability of the material. This paper presents development of defects in repair welding of duplex-treated tool steel. The procedure is aimed at reduction of defects by the newly developed repair laser welding techniques. Effects of different repa...

  2. Study on crack generation at root of socket welds

    International Nuclear Information System (INIS)

    Iida, K.; Matsuda, F.; Sato, M.; Nayama, M.; Akitomo, N.

    1996-01-01

    Because a power generation facility is made up of structures that contain a large number of welds, the reliability of weld joints is important to ensure the safety of power plants. Surveys and research are conducted on special weld joints to verify the reliability of power plants. The results of the investigation to verify the relation between the welding conditions and quality of small-diameter socket joints are described. Some defects are observed in the roots of socket-pipe joints of carbon steel in this project. The authors investigate experimentally the effect of the welding parameters on the generation of defects. The defects of the root are found experimentally to be solidification cracking (hot cracking). It is also revealed that a higher heat input and lower wire feed rate generate more hot cracking at the root of a weld. The authors also give a hypothesis that explains the generation mechanism of hot cracks at the root of a socket-pipe joint, based on finite element modelling analysis and other information. (orig.)

  3. Time displacement pictures with multi-mode probes from circumferential welds

    International Nuclear Information System (INIS)

    Wustenberg, H.; Jaffrey, D.; Ludwig, B.; Bertus, N.; Erhard, A.

    1985-01-01

    If a creeping wave probe is applied to butt welds typical echo patterns from weld defects can be received. It seems possible that echoes from the geometric shape of the root or the crown and defect echoes can be separated by simple means. This has been the reason for the development of a special presentation of the echo patterns received by this multi-mode creeping wave probe. The so called time displacement pictures show the AD-converted A-scans in a gray scale along a line corresponding to the time axis of the propagation. Perpendicular to this time axis results obtained from displacement of the probe parallel to the weld are presented. This kind of picture immediately provides the whole A-scan information. This paper presents some first results on simulated welds with artificial defects and on circumferential welds with typical geometric imperfections

  4. Influence of Loading Direction and Weld Reinforcement on Fatigue Performance of TIG Weld Seam

    Directory of Open Access Journals (Sweden)

    HUI Li

    2018-02-01

    Full Text Available The influence of loading direction and weld reinforcement on fatigue performance of TC2 titanium alloy TIG weld seam was investigated via fatigue experiments and SEM fracture observation. The results show that the fatigue life of retaining weld reinforcement specimens is lower than that of removing one in the same weld direction. The fatigue life of oblique weld specimens is higher than that of straight one with the same weld reinforcement treatment. The initiation of removing weld reinforcement specimens' fatigue crack sources is in the hole defect, but the weld reinforcement specimen initiate at the weld toes. During the early stage of fatigue crack propagation, the cracks all grow inside the weld seam metal with obvious fatigue striation. And the fatigue cracks of oblique weld specimens pass through the weld seam into the base with a typical toughness fatigue striation during the last stage of fatigue crack propagation. The dimple of straight weld specimens is little and shallow in the final fracture zone. The oblique weld specimens broke in the base metal area, and the dimple is dense.

  5. Friction Stir Welding

    Science.gov (United States)

    Nunes, Arthur C., Jr.

    2008-01-01

    Friction stir welding (FSW) is a solid state welding process invented in 1991 at The Welding Institute in the United Kingdom. A weld is made in the FSW process by translating a rotating pin along a weld seam so as to stir the sides of the seam together. FSW avoids deleterious effects inherent in melting and promises to be an important welding process for any industries where welds of optimal quality are demanded. This article provides an introduction to the FSW process. The chief concern is the physical effect of the tool on the weld metal: how weld seam bonding takes place, what kind of weld structure is generated, potential problems, possible defects for example, and implications for process parameters and tool design. Weld properties are determined by structure, and the structure of friction stir welds is determined by the weld metal flow field in the vicinity of the weld tool. Metal flow in the vicinity of the weld tool is explained through a simple kinematic flow model that decomposes the flow field into three basic component flows: a uniform translation, a rotating solid cylinder, and a ring vortex encircling the tool. The flow components, superposed to construct the flow model, can be related to particular aspects of weld process parameters and tool design; they provide a bridge to an understanding of a complex-at-first-glance weld structure. Torques and forces are also discussed. Some simple mathematical models of structural aspects, torques, and forces are included.

  6. Testing of electron beam welding by ultrasonic transducers

    International Nuclear Information System (INIS)

    Touffait, A.-M.; Roule, M.; Destribats, M.-T.

    1978-01-01

    Focalized ultrasonic testing is well adapted to the study of electron beam welding. This type of welding leads to narrow weld beads and to small dimension testing zones. Focalized transducers can be used enabling very small defects to be detected [fr

  7. Welding of Thin Steel Plates by Hybrid Welding Process Combined TIG Arc with YAG Laser

    Science.gov (United States)

    Kim, Taewon; Suga, Yasuo; Koike, Takashi

    TIG arc welding and laser welding are used widely in the world. However, these welding processes have some advantages and problems respectively. In order to improve problems and make use of advantages of the arc welding and the laser welding processes, hybrid welding process combined the TIG arc with the YAG laser was studied. Especially, the suitable welding conditions for thin steel plate welding were investigated to obtain sound weld with beautiful surface and back beads but without weld defects. As a result, it was confirmed that the shot position of the laser beam is very important to obtain sound welds in hybrid welding. Therefore, a new intelligent system to monitor the welding area using vision sensor is constructed. Furthermore, control system to shot the laser beam to a selected position in molten pool, which is formed by TIG arc, is constructed. As a result of welding experiments using these systems, it is confirmed that the hybrid welding process and the control system are effective on the stable welding of thin stainless steel plates.

  8. Phenotypic stability and genetic gains in six-year girth growth of Hevea clones

    Directory of Open Access Journals (Sweden)

    Paulo de Souza Gonçalves

    1999-07-01

    Full Text Available Rubber tree [Hevea brasiliensis (Willd. ex Adr. de Juss. Müell. Arg.] budgrafts of seven clones were evaluated on five contrasting sites in the plateau region of the São Paulo State, Brazil. The objective of this work was to study the phenotypic stability for girth growth. The experimental design was a randomized block design with three replications and seven treatments. Analysis of variance of girth at six-year plant growth indicated a highly significant clone x site interaction. Only linear sites and clone x site components of clone x year interaction were significant, indicating that the performance of clones over sites for this trait could be predicted. The clones GT 1 and PB 235 showed the greatest stability in relation to girth growth, with foreseen responses to change, introduced in the sites. The clones PB 235 and IAN 873 showed significative difference in relation to regression coefficient, representing clones with specific adaptability on favorable and unfavorable sites respectively. The clone GT 1 became the most promissory one in the study of stability and adaptability even showing low girth growth. Expected genetic gains from planting sites, along with estimates of clonal variance and repeatability of clonal means are generally greatest or close to the greatest when selection is done at the same site.

  9. Characterization of appendage weld quality by on line monitoring of electrical parameters

    Energy Technology Data Exchange (ETDEWEB)

    Setty, D.S.; Somani, A.K.; Ram, A.M.; Rao, A.R.; Jayaraj, R.N.; Kalidas, R. [Nuclear Fuel Complex, Dept. of Atomic Energy, Hyderabad (India)

    2005-07-01

    Resistance projection welding of zirconium alloy appendages is one of the most critical processes in the PHWR fuel fabrication. Appendages like Spacers and Bearing pads having multi projections are joined to the fuel sheath using capacitor discharge power source. Variations in the projection sizes, weld parameters and cleanliness of the work pieces have significant effect on the weld quality, in addition to material properties like hardness, tensile strength and surface finish. Defects like metal expulsion and weak welds are occasionally observed in appendage welding process, which need to be identified and segregated. Though numerous off-line inspection methods are available for the weld quality evaluation, on-line monitoring of weld quality is essential for identifying defective welds. For this purpose, various monitoring techniques like acoustic emission, analyzing derived electrical parameters and weld upset/deformation measurements are employed. The derived electrical parameters like A{sup 2}-Sec and Ohm-Sec can also be monitored. The present paper highlights development of suitable acceptance criteria for the monitoring technique by employing derived electrical parameters covering a wide range of weld variables like watt-sec and squeeze force. Excellent correlation could be achieved in identifying the weak welds and weld expulsion defects in mass production. (author)

  10. Thermal-deformation effect of welding on A 1 reactor pressure vessel weld joints properties and state of stress

    International Nuclear Information System (INIS)

    Becka, J.; Kupka, I.

    1976-01-01

    The methods are compared of electroslag welding and of arc welding with a view to their possible application in welding the Bohunice A-1 reactor pressure vessel. Considered are the thermal deformation effects of welding on the physical properties and the stress present in welded joints. For testing, plates were used having the dimensions of 1100x2300x200 mm and rings with 4820 mm outer diameter, 1800 mm height and 170 mm thickness made of steel CSN 413O30 modified with Ni, Al+Ti. The deformation effect of welding on the residual surface and triaxial stress, the specific stored energy, the initiation temperature of brittle crack and the critical size of the initiation defect corresponding to the thermal deformation effect of welding were determined. It was found that for electroslag welding, there is a low probability of crack formation in the joints, a low level of residual stress and a low level of specific stored energy in a relatively wide joint zone. For arc welding there is a considerable probability of defect formation in the vicinity of the sharp boundary of the joint, a high level of the triaxial state of stress in the tensile region, and a high level of specific stored energy concentrated in the narrow zone of weld joints. The recommended thermal process is given for welding pressure vessels made of the CSN 413030 steel modified with Ni, Al+Ti, and 150 to 200 mm in thickness. (J.P.)

  11. Interpretation of aluminum-alloy weld radiography

    Science.gov (United States)

    Duren, P. C.; Risch, E. R.

    1971-01-01

    Report proposes radiographic terminology standardization which allows scientific interpretation of radiographic films to replace dependence on individual judgement and experience. Report includes over 50 photographic pages where radiographs of aluminum welds with defects are compared with prepared weld sections photomacrographs.

  12. An unusual delayed complication of paraffin self-injection for penile girth augmentation.

    Science.gov (United States)

    De Siati, Mario; Selvaggio, Oscar; Di Fino, Giuseppe; Liuzzi, Giuseppe; Massenio, Paolo; Sanguedolce, Francesca; Carrieri, Giuseppe; Cormio, Luigi

    2013-12-01

    Penile self-injection of various oils is still carried out among Eastern Europe people for penile girth augmentation despite the potential destructive complications of this practice are well known. Penile reactions to such foreign bodies include scarring, abscess formation, ulceration, and even Fournier's gangrene; voiding problems due to mineral oil self-injection have been reported only once. To our knowledge, we describe the first case of paraffin self-injection for penile girth augmentation presenting with acute urinary retention. A 27-year-old Romanian man presented with severe penile pain and acute urinary retention five years after having practiced repeated penile self-injections of paraffin for penile girth augmentation. The penile shaft was massively enlarged, fibrotic and phymotic; urethral catheterization failed due to severe stricture of the proximal pendulum urethra. The patients refused placement of a suprapubic catheter and underwent immediate penile surgical exploration. The scarred tissue between dartos and Buck's fascia and a fibrotic ring occluding the urethra were removed and the penile skin reconstructed. Pathology confirmed the diagnosis of paraffinoma. The patient resumed normal voiding immediately after catheter removal on second postoperative day; he was very pleased with cosmetic, sexual and voiding results at six weeks, six months and 1 year follow-up. The present report describes a novel complication of penile self-injection for penile girth augmentation. Because of the increasing number of patients seeking penile augmentation, physicians dealing with sexual medicine should pay more attention to such request to prevent the use of non medical treatments that can turn into medical disasters.

  13. Damage Tolerance Behavior of Friction Stir Welds in Aluminum Alloys

    Science.gov (United States)

    McGill, Preston; Burkholder, Jonathan

    2012-01-01

    Friction stir welding is a solid state welding process used in the fabrication of various aerospace structures. Self-reacting and conventional friction stir welding are variations of the friction stir weld process employed in the fabrication of cryogenic propellant tanks which are classified as pressurized structure in many spaceflight vehicle architectures. In order to address damage tolerance behavior associated with friction stir welds in these safety critical structures, nondestructive inspection and proof testing may be required to screen hardware for mission critical defects. The efficacy of the nondestructive evaluation or the proof test is based on an assessment of the critical flaw size. Test data describing fracture behavior, residual strength capability, and cyclic mission life capability of friction stir welds at ambient and cryogenic temperatures have been generated and will be presented in this paper. Fracture behavior will include fracture toughness and tearing (R-curve) response of the friction stir welds. Residual strength behavior will include an evaluation of the effects of lack of penetration on conventional friction stir welds, the effects of internal defects (wormholes) on self-reacting friction stir welds, and an evaluation of the effects of fatigue cycled surface cracks on both conventional and selfreacting welds. Cyclic mission life capability will demonstrate the effects of surface crack defects on service load cycle capability. The fracture data will be used to evaluate nondestructive inspection and proof test requirements for the welds.

  14. Fracture toughness evaluation of a low upper-shelf weld metal from the Midland Reactor using the master curve

    International Nuclear Information System (INIS)

    McCabe, D.E.; Sokolov, M.A.; Nanstad, R.K.

    1997-01-01

    The primary objective of the Heavy-Section Steel Irradiation (HSSI) Program Tenth Irradiation Series was to develop a fracture mechanics evaluation of weld metal WF-70, which was taken from the beltline and nozzle course girth weld joints of the Midland Reactor vessel. This material became available when Consumers Power Company of Midland, Michigan, decided to abort plans to operate their nuclear power plant. WF-70 is classified as a low upper-shelf steel primarily due to the Linde 80 flux that was used in the submerged-arc welding process. The master curve concept is introduced to model the transition range fracture toughness when the toughness is quantified in terms of K Jc values. K Jc is an elastic-plastic stress intensity factor calculated by conversion from J c ; i.e., J-integral at onset of cleavage instability

  15. Applicability evaluation of eddy current testing for underwater laser beam welding

    International Nuclear Information System (INIS)

    Kobayashi, Noriyasu; Kasuya, Takashi; Ueno, Souichi; Ochiai, Makoto; Yuguchi, Yasuhiro

    2010-01-01

    We clarified a defect detecting capability of eddy current testing (ECT) as a surface inspection technique for underwater laser beam welding. An underwater laser beam welding procedure includes groove caving as a preparation, laser beam welding in groove and welding surface grinding as a post treatment. Therefore groove and grinded welding surface inspections are required underwater. We curried out defect detection tests using three kinds of specimens simulated a groove, reactor vessel nozzle dissimilar metal welding materials and a laser beam welding material with a cross coil ECT probe. From experimental results, we confirmed that it is possible to detect 0.3 mm or more depth electro-discharge machining slits on machining surfaces in all specimens and an ECT has possibility as a surface inspection technique for underwater laser beam welding. (author)

  16. Repair welding and online radiography

    International Nuclear Information System (INIS)

    Nuding, W.; Grimm, R.; Link, R.; Schroeder, P.; Schroeder, G.

    1990-01-01

    The status of a joint project is reported, which is to develop a computerized testing and welding system for repair work in turbine blades. An X-ray radiographic testing device consisting of microfocus tube, manipulator and image processing system, is modified for this purpose so as to offer a greater number of image points scanned for image processing, and to thus achieve a better resolution for reliable detection of even very small defects. The consistency of the X-ray tube performance, which is a pre-requisite for automation, is to be achieved by a wa tercooled, high-duty tube head. The recording of defect coordinates in the repair zone is done for input into a welding robot to be developed by other partners in the project, so as to allow automated welding work. (orig.) [de

  17. Determination of Elements and Carbon Content of Stainless Steel Welded Pipeline

    Directory of Open Access Journals (Sweden)

    Pavel Hudeček

    2016-01-01

    Full Text Available Find out defects or problems of welds are not so simple from time to time. Specially, if weld has been made in rough environmental conditions like high temperature, dusty wind and humidity. It is important to assure have good conditions to realize basic step of welding. For welding, have been used welding procedures specification and procedure qualification record. However, difficult conditions, documentations rightness or human errors are always here. Common weld defects like cracks, porosity, lack of penetration and distortion can compromise the strength of the base metal, as well as the integrity of the weld. According of site inspection, there were suspicion of inclusions, leaker or segregation in root of weld. Surface treatment after welding and keep the intervals between single welds to not overheat the pipes. To recognize those suspicions, mechanical testing around weld joint, determination of carbon content and inductively coupled plasma atomic emission spectroscopy will be done.

  18. Goniometry and Limb Girth in Miniature Dachshunds

    OpenAIRE

    Thomovsky, Stephanie A.; Chen, Annie V.; Kiszonas, Alecia M.; Lutskas, Lori A.

    2016-01-01

    Purpose. To report the mean and median pelvic limb joint angles and girth measurements in miniature Dachshunds presenting with varying degrees of pelvic limb weakness secondary to thoracolumbar intervertebral disc extrusion. Methods. 15 miniature Dachshunds who presented to WSU-VTH for thoracolumbar disc extrusion. Dachshunds varied in neurologic status from ambulatory paraparetic to paraplegic at the time of measurements. Results. There were no significant differences in joint angles or girt...

  19. Leak in spiral weld in a 16 inches gas pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Fazzini, Pablo G; Bona, Jeremias de [GIE S.A., Mar del Plata (Argentina); Otegui, Jose L [University of Mar del Plata (Argentina)

    2009-07-01

    This paper discusses a failure analysis after a leak in the spiral weld of a 16 inches natural gas pipeline, in service since 1974. The leak was the result of the coalescence of two different defects, on each surface of the pipe wall, located in the center of the inner cord of the helical DSAW weld. Fractographic and metallographic studies revealed that the leak was a combination of three conditions. During fabrication of the pipe, segregation in grain boundary grouped in mid weld. During service, these segregations underwent a process of selective galvanic corrosion. One of these volumetric defects coincided with a tubular pore in the outer weld. Pigging of the pipeline in 2005 for cleaning likely contributed to the increase of the leak flow, when eliminating corrosion product plugs. Although these defects are likely to repeat, fracture mechanics shows that a defect of this type is unlikely to cause a blowout. (author)

  20. Feasibility study of electron beam welding of spent nuclear fuel canisters

    International Nuclear Information System (INIS)

    Sanderson, A.; Szluha, T.F.; Turner, J.L.; Leggatt, R.H.

    1983-04-01

    A thick walled copper container is presently the prime Swedish alternative for encapsulation of spent nuclear fuel. In order to demonstrate the feasibility of encapsulating high-level nuclear waste in copper containers, a study of electron beam welding of thick copper has been performed. Two copper qualities have been investigated, oxygen free high conductivity (OFHC) copper and phosphorous desoxydized high conductivity copper (PDO). The findings in this study are summarized below. In 100 mm thick copper penetration can be achived at power level of about 75 kW (typically 150 kV x 500 mA) at welding speed of 100 mm/min. The welds in OFHC copper made under these conditions are free from major defects during constant welding conditions. The welds in PDO copper show a microporosity level considerably higher than those in OFHC copper, but no major defects are produced in the welds in PDO copper. In the ending of the weld (ie the fade out) it is still not possible to completely eliminate root and cold-shut defects. A semi-full-scale lid weld has been performed successfully. Automatic ultrasonic C-scan has been shown to be useful in detecting and displaying defects, but some problems still remain with defect sizing. The different speciments of OFHS copper had different attenuation of the ultrasonic signal, forged copper showing a far lower attenuation than hot extruded copper, indicating that attention must be paid in choosing copper that allows accurate ultrasonic testing. Resiudal stresses in the welded zone has been measured and are found to lie in the range -32N/mm 2 to +36N/mm 2 . The peak stress was less than half the assumed value of the proof stress of the fused metal. (authors)

  1. The lack of penetration effect on fatigue crack propagation resistance of atmospheric corrosion resistant steel welded joints

    International Nuclear Information System (INIS)

    Martins, Geraldo de Paula; Cimini Junior, Carlos Alberto; Godefroid, Leonardo Barbosa

    2005-01-01

    The welding process introduces defects on the welded joints, as lack of fusion and penetration, porosity, between others. These defects can compromise the structures or components, relative to the crack propagation. This engagement can be studied by fatigue crack propagation tests. The efficiency of the structure, when submitted to a cyclic loading can be evaluated by these tests. The aim of this work is to study the behavior of welded joints containing defects as lack of penetration at the root or between welding passes relative to crack propagation resistance properties, and to compare these properties with the properties of the welded joints without defects. This study was accomplished from fatigue crack propagation test results, in specimens containing lack of penetration between welding passes. With the obtained results, the Paris equation coefficients and exponents that relate the crack propagation rate with the stress intensity cyclic factor for welded joints with and without defects were obtained. (author)

  2. Weld quality inspection using laser-EMAT ultrasonic system and C-scan method

    Science.gov (United States)

    Yang, Lei; Ume, I. Charles

    2014-02-01

    Laser/EMAT ultrasonic technique has attracted more and more interests in weld quality inspection because of its non-destructive and non-contact characteristics. When ultrasonic techniques are used to detect welds joining relative thin plates, the dominant ultrasonic waves present in the plates are Lamb waves, which propagate all through the thickness. Traditional Time of Flight(ToF) method loses its power. The broadband nature of laser excited ultrasound plus dispersive and multi-modal characteristic of Lamb waves make the EMAT acquired signals very complicated in this situation. Challenge rises in interpreting the received signals and establishing relationship between signal feature and weld quality. In this paper, the laser/EMAT ultrasonic technique was applied in a C-scan manner to record full wave propagation field over an area close to the weld. Then the effect of weld defect on the propagation field of Lamb waves was studied visually by watching an movie resulted from the recorded signals. This method was proved to be effective to detect the presence of hidden defect in the weld. Discrete wavelet transform(DWT) was applied to characterize the acquired ultrasonic signals and ideal band-pass filter was used to isolate wave components most sensitive to the weld defect. Different interactions with the weld defect were observed for different wave components. Thus this C-Scan method, combined with DWT and ideal band-pass filter, proved to be an effective methodology to experimentally study interactions of various laser excited Lamb Wave components with weld defect. In this work, the method was demonstrated by inspecting a hidden local incomplete penetration in weld. In fact, this method can be applied to study Lamb Wave interactions with any type of structural inconsistency. This work also proposed a ideal filtered based method to effectively reduce the total experimental time.

  3. A Case Study for the Welding of Dissimilar EN AW 6082 and EN AW 5083 Aluminum Alloys by Friction Stir Welding

    Directory of Open Access Journals (Sweden)

    Sefika Kasman

    2016-12-01

    Full Text Available The aim of this study is to investigate the effect of keeping constant the tool rotational speed to the welding speed ratio (υ ratio on the mechanical properties of the dissimilar friction stir welding of EN AW6082-T6 and EN AW5083-H111. Two different pins shaped as triangular and pentagonal were associated with the constant υ ratio. From the tensile test results, it was found that the υ ratio does not create an evident change in the weld joint strength. The small cavity- and tunnel-type defects were observed at the nugget zone and located on the advancing side of the pin. These defects caused a decrease in the strength and elongation of the weld joint. The most important inference obtained from the experimental results is that if the υ ratio is kept constant, the weld joint strength for each weld does not correspond to a constant value.

  4. Practical application of COD measurement in welded assemblies

    International Nuclear Information System (INIS)

    Beghe, S.

    1975-01-01

    Measurement of the COD makes it possible to evaluate sensitivity to brittle fracture initiation. This technique is ideal for welded structures, owing to the types of defect likely to affect them, and the magnitude of the residual stresses introduced. Moreover, the COD concept, based on thickness and temperature experiments on materials, enables evaluation of the critical defect size in these structures. However, its application to welded joints encounters certain problems. The presence of fatigue cracks in the molten zone of a welded joint is frequently disturbed by the residual stresses caused by welding. An additional difficulty is created by the problem of stable growth of the crack during the bending test. This discussion covers all these matters and suggests some solutions [fr

  5. Influence of girth strap placement and panel flocking material on the saddle pressure pattern during riding of horses.

    Science.gov (United States)

    Byström, A; Stalfelt, A; Egenvall, A; Von Peinen, K; Morgan, K; Roepstorff, L

    2010-11-01

    Saddle fit is well recognised as an important factor for the health and performance of riding horses. However, only few studies have addressed general effects of different saddle construction details within a group of horses. To assess the influence of girth strap placement, traditional vs. v-system, and panel flocking material, wool vs. synthetic foam, on the saddle pressure pattern during riding. Six horses were ridden by 3 riders in sitting and rising trot and sitting canter. Saddle pressure was measured with 3 different saddle variants: 1) wool flocked panels and traditional girthing (baseline); 2) wool flocked panels and v-system girthing; and 3) foam filled panels and traditional girthing. From the pressure data, a number of descriptive variables were extracted. These were analysed using ANCOVA models with horse, rider, saddle, seat (sitting/rising, trot only) and speed as independent variables. With foam filled panels stride maximum pressures under the hind part of the saddle increased by 7-12% and the area under the saddle with a stride mean pressure >11 kPa increased by 114 cm(2) in trot and 127 cm(2) in canter. With v-system girthing, the latter variable also increased, but only by 53 and 38 cm(2) in trot and canter, respectively. In addition, stride maximum pressures under the front part of the saddle tended to increase (≤ 9%). Both flocking material and girthing have a significant influence on the saddle pressure and should thus be considered in saddle fitting. Wool seems a better flocking material than foam of the type used in the current study. For girthing, traditional placement seems equally good if not better than the v-system. However, further studies are needed to show if these results are valid for a larger population of riding horses. © 2010 EVJ Ltd.

  6. Nondestructive online testing method for friction stir welding using acoustic emission

    Science.gov (United States)

    Levikhina, Anastasiya

    2017-12-01

    The paper reviews the possibility of applying the method of acoustic emission for online monitoring of the friction stir welding process. It is shown that acoustic emission allows the detection of weld defects and their location in real time. The energy of an acoustic signal and the median frequency are suggested to be used as informative parameters. The method of calculating the median frequency with the use of a short time Fourier transform is applied for the identification of correlations between the defective weld structure and properties of the acoustic emission signals received during welding.

  7. Laser Welding Test Results with Gas Atmospheres in Welding Chamber

    Energy Technology Data Exchange (ETDEWEB)

    Joung, Chang-Young; Hong, Jin-Tae; Ahn, Sung-Ho; Heo, Sung-Ho; Jang, Seo-Yun; Yang, Tae-Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The weld beads of specimens welded under identical conditions in the helium and argon gas were cleaner, more regular, and steadier than those in a vacuum. The penetration depth of the FZ in the vacuum was much deeper than those in the helium and argon gas. To measure the irradiation properties of nuclear fuel in a test reactor, a nuclear fuel test rod instrumented with various sensors must be fabricated with assembly processes. A laser welding system to assemble the nuclear fuel test rod was designed and fabricated to develop various welding technologies of the fuel test rods to joint between a cladding tube and end-caps. It is an air-cooling optical fiber type and its emission modes are a continuous (CW) mode of which the laser generates continuous emission, and pulse (QCW) mode in which the laser internally generates sequences of pulses. We considered the system welding a sample in a chamber that can weld a specimen in a vacuum and inert gas atmosphere, and the chamber was installed on the working plate of the laser welding system. In the chamber, the laser welding process should be conducted to have no defects on the sealing area between a cladding tube and an end-cap.

  8. Microstructural evolution and properties of friction stir welded aluminium alloy AA2219

    International Nuclear Information System (INIS)

    Gupta, R. K.; Biju, S.; Ghosh, B. R.; Sinha, P. P.

    2007-01-01

    Low weld strength of fusion welded joints of aluminium alloy AA2219 is a concern in fabrication of pressure vessels and is attributable to the presence of weld defects, as well as various metallurgical factors. Friction stir welding (FSW), being a solid state joining process has obvious advantages over fusion welding. Results of preliminary FSW experiments conducted on 10 mm thick plate using a particular tool configuration are presented here. Microscopic studies show the presence of very fine equiaxed recrystallised grain at the weld nugget and a flow pattern of grains due to heavy deformation in defect-free weld coupons. Mechanical properties are correlated with the microstructure and process variables. Fractographic analysis complements the observations of optical microscopy and mechanical properties

  9. Quality improvement of steel cast-welded constructions

    Directory of Open Access Journals (Sweden)

    Аркадій Васильович Лоза

    2017-06-01

    Full Text Available Among the various types of metallurgical equipment there are structures which are welded compounds of a cast base and additional elements produced by casting or any other means. Such structures are called cast-welded constructions. Besides new working properties such constructions appear to be more efficient and provide better durability as compared to the similar structures produced by other industrial means. Meanwhile the advantages of the technology are not used in full. One reason is low quality of the compound products caused by lack of proper preparation of the elements to be welded and poor quality of the welds themselves. In the article the methods of quality production and the maintenance of steel cast-welded constructions have been considered. A ladle of a blast-furnace slag car is used as the subject of investigation and further testing of the mentioned above technologies. The ladle is a cast product. Under operating conditions, the ladle undergoes mechanical and thermal load, which results in deformation of its sides that deflect inside. To prevent the deflection stiffening ribs are welded onto the outer surface of the ladle. However, there may be casting defects in the base metal that could reduce the durability of the welds. It has been proved that welds on the unprepared cast base of the steel product cannot guarantee the combination’s durability and reliability. To prevent the influence of the casting defects it has been recommended to cover the base metal with one more metal layer before welding the elements on. Two-layer surfacing provides best result as the first layer serves for the weld penetration of the casting defects since this layer has a significant share of base metal therefore it is less malleable; the second layer is necessary for making the layer viscous enough. The viscous layer ensures the absence of sharp transition from the deposited metal to the base metal and increases the crack resistance of the weld. In

  10. Deconvoluting the Friction Stir Weld Process for Optimizing Welds

    Science.gov (United States)

    Schneider, Judy; Nunes, Arthur C.

    2008-01-01

    In the friction stir welding process, the rotating surfaces of the pin and shoulder contact the weld metal and force a rotational flow within the weld metal. Heat, generated by the metal deformation as well as frictional slippage with the contact surface, softens the metal and makes it easier to deform. As in any thermo-mechanical processing of metal, the flow conditions are critical to the quality of the weld. For example, extrusion of metal from under the shoulder of an excessively hot weld may relax local pressure and result in wormhole defects. The trace of the weld joint in the wake of the weld may vary geometrically depending upon the flow streamlines around the tool with some geometry more vulnerable to loss of strength from joint contamination than others. The material flow path around the tool cannot be seen in real time during the weld. By using analytical "tools" based upon the principles of mathematics and physics, a weld model can be created to compute features that can be observed. By comparing the computed observations with actual data, the weld model can be validated or adjusted to get better agreement. Inputs to the model to predict weld structures and properties include: hot working properties ofthe metal, pin tool geometry, travel rate, rotation and plunge force. Since metals record their prior hot working history, the hot working conditions imparted during FSW can be quantified by interpreting the final microstructure. Variations in texture and grain size result from variations in the strain accommodated at a given strain rate and temperature. Microstructural data from a variety of FSWs has been correlated with prior marker studies to contribute to our understanding of the FSW process. Once this stage is reached, the weld modeling process can save significant development costs by reducing costly trial-and-error approaches to obtaining quality welds.

  11. Monitoring and Control of the Hybrid Laser-Gas Metal-Arc Welding Process

    Energy Technology Data Exchange (ETDEWEB)

    Kunerth, D. C.; McJunkin, T. R.; Nichol, C. I.; Clark, D.; Todorov, E.; Couch, R. D.; Yu, F.

    2013-07-01

    Methods are currently being developed towards a more robust system real time feedback in the high throughput process combining laser welding with gas metal arc welding. A combination of ultrasonic, eddy current, electronic monitoring, and visual techniques are being applied to the welding process. Initial simulation and bench top evaluation of proposed real time techniques on weld samples are presented along with the concepts to apply the techniques concurrently to the weld process. Consideration for the eventual code acceptance of the methods and system are also being researched as a component of this project. The goal is to detect defects or precursors to defects and correct when possible during the weld process.

  12. Detection of defects in laser welding of AZ31B magnesium alloy in zero-gap lap joint configuration by a real-time spectroscopic analysis

    Science.gov (United States)

    Harooni, Masoud; Carlson, Blair; Kovacevic, Radovan

    2014-05-01

    The effect of surface oxide layer existing at the lap-joint faying surface of magnesium sheets is investigated on the keyhole dynamics of the weld pool and weld bead qualities. It is observed that by removing the oxide layer from the faying surface of the lap joint, a high quality weld can be achieved in the laser welding process. However, the presence of an oxide layer deteriorates the quality of the weld by forming pores at the interface of the two overlapped sheets. The purpose of this paper is to identify the correlation between the integrity of the weld and the interaction between the laser and material. A spectroscopy sensor was applied to detect the spectra emitted from a plasma plume during the laser welding of AZ31B magnesium alloy in a zero-gap lap joint configuration. The electron temperature was calculated by applying a Boltzmann plot method based on the detected spectra, and the correlation between the pore formation and the spectral signals was studied. The laser molten pool and the keyhole condition were monitored in real-time by a high speed charge-coupled device (CCD) camera. A green laser was used as an illumination source in order to detect the influence of the oxide layer on the dynamic behavior of the molten pool. Results revealed that the detected spectrum and weld defects had a meaningful correlation for real-time monitoring of the weld quality during laser welding of magnesium alloys.

  13. Ultrasonic inspection of austenitic welds

    International Nuclear Information System (INIS)

    Baikie, B.L.; Wagg, A.R.; Whittle, M.J.; Yapp, D.

    1976-01-01

    Optical and X-ray metallography combined with ultrasonic testing by compression waves was used for inspection of stainless steel weld metal produced by three different welding techniques. X-ray diffraction showed that each weld possessed a characteristic fibre textured structure which was shown by optical microscopy to be parallel to columnar grain boundaries. Metallographic evidence suggested that the development of fibre texture is due to the mechanism of competitive growth. From observations made as a result of optical metallographic examination the orientation of the fibre axis could be predicted if the weld geometry and welding procedure were known. Ultrasonic velocity and attenuation measurements as a continuous function of grain orientation, made on cylinders machined from weld samples, showed that attenuation was strongly orientation dependent. It was concluded that the sensitivity of ultrasonic inspection to small defects is unlikely to be as high for austenitic welds as for ferritic even when transmission is improved by modifying the welding procedure to improve the ultrasonic transmission. (U.K.)

  14. Laser welding of thin polymer films to container substrates for aseptic packaging

    Science.gov (United States)

    Brown, N.; Kerr, D.; Jackson, M. R.; Parkin, R. M.

    2000-03-01

    Keyhole laser welding of polymers is a subject well covered and researched, but relatively little information exists regarding the welding of thin polymer films, particularly to a heavier substrate. This paper presents the design of a suitable test apparatus for laser welding thin film to a heavier substrate, and shows the results of an investigation into the feasibility of laser welding multi-layer polymer film lids to tubs for the manufacture of aseptic food containers. A consistent weld, free from defects, is the key to process success. Typical welding defects have been synthesised in order to investigate, and consequently remove, their cause. The result is a reliable welding method based on even film clamping. With careful attention to machine design, a seal of high mechanical strength and chemical integrity is possible.

  15. ADVANCED INTEGRATION OF MULTI-SCALE MECHANICS AND WELDING PROCESS SIMULATION IN WELD INTEGRITY ASSESSMENT

    Energy Technology Data Exchange (ETDEWEB)

    Wilkowski, Gery M.; Rudland, David L.; Shim, Do-Jun; Brust, Frederick W.; Babu, Sundarsanam

    2008-06-30

    The potential to save trillions of BTU’s in energy usage and billions of dollars in cost on an annual basis based on use of higher strength steel in major oil and gas transmission pipeline construction is a compelling opportunity recognized by both the US Department of Energy (DOE). The use of high-strength steels (X100) is expected to result in energy savings across the spectrum, from manufacturing the pipe to transportation and fabrication, including welding of line pipe. Elementary examples of energy savings include more the 25 trillion BTUs saved annually based on lower energy costs to produce the thinner-walled high-strength steel pipe, with the potential for the US part of the Alaskan pipeline alone saving more than 7 trillion BTU in production and much more in transportation and assembling. Annual production, maintenance and installation of just US domestic transmission pipeline is likely to save 5 to 10 times this amount based on current planned and anticipated expansions of oil and gas lines in North America. Among the most important conclusions from these studies were: • While computational weld models to predict residual stress and distortions are well-established and accurate, related microstructure models need improvement. • Fracture Initiation Transition Temperature (FITT) Master Curve properly predicts surface-cracked pipe brittle-to-ductile initiation temperature. It has value in developing Codes and Standards to better correlate full-scale behavior from either CTOD or Charpy test results with the proper temperature shifts from the FITT master curve method. • For stress-based flaw evaluation criteria, the new circumferentially cracked pipe limit-load solution in the 2007 API 1104 Appendix A approach is overly conservative by a factor of 4/π, which has additional implications. . • For strain-based design of girth weld defects, the hoop stress effect is the most significant parameter impacting CTOD-driving force and can increase the crack

  16. Technology of electron beam welding for Zr-4 alloy spacer grid

    International Nuclear Information System (INIS)

    Pei Qiusheng; Wu Xueyi; Yang Qishun

    1989-10-01

    The welding technology for Zr-4 alloy spacer grid by using vacuum electron beam was studied. Through a series of welding technological experiments, metallographic examinations of seam structure and detecting tests for welding defect by X-ray defectoscopy, a good welding technology was selected to meet the requirements. The experimental results indicated that the Zr-4 alloy spacer grid welded by vacuum electron beam welding is feasible

  17. Independence, Odd Girth, and Average Degree

    DEFF Research Database (Denmark)

    Löwenstein, Christian; Pedersen, Anders Sune; Rautenbach, Dieter

    2011-01-01

      We prove several tight lower bounds in terms of the order and the average degree for the independence number of graphs that are connected and/or satisfy some odd girth condition. Our main result is the extension of a lower bound for the independence number of triangle-free graphs of maximum...... degree at most three due to Heckman and Thomas [Discrete Math 233 (2001), 233–237] to arbitrary triangle-free graphs. For connected triangle-free graphs of order n and size m, our result implies the existence of an independent set of order at least (4n−m−1) / 7.  ...

  18. ADIMEW: Fracture assessment and testing of an aged dissimilar metal weld pipe assembly

    International Nuclear Information System (INIS)

    Wintle, J.B.; Hayes, B.; Goldthorpe, M.R.

    2004-01-01

    ADIMEW (Assessment of Aged Piping Dissimilar Metal Weld Integrity) was a three-year collaborative research programme carried out under the EC 5th Framework Programme. The objective of the study was to advance the understanding of the behaviour and safety assessment of defects in dissimilar metal welds between pipes representative of those found in nuclear power plant. ADIMEW studied and compared different methods for predicting the behaviour of defects located near the fusion boundaries of dissimilar metal welds typically used to join sections of austenitic and ferritic piping operating at high temperature. Assessment of such defects is complicated by issues that include: severe mis-match of yield strength of the constituent parent and weld metals, strong gradients of material properties, the presence of welding residual stresses and mixed mode loading of the defect. The study includes the measurement of material properties and residual stresses, predictive engineering analysis and validation by means of a large-scale test. The particular component studied was a 453mm diameter pipe that joins a section of type A508 Class 3 ferritic pipe to a section of type 316L austenitic pipe by means of a type 308 austenitic weld with type 308/309L buttering laid on the ferritic pipe. A circumferential, surface-breaking defect was cut using electro discharge machining into the 308L/309L weld buttering layer parallel to the fusion line. The test pipe was subjected to four-point bending to promote ductile tearing of the defect. This paper presents the results of TWI contributions to ADIMEW including: fracture toughness testing, residual stress measurements and assessments of the ADIMEW test using elastic-plastic, cracked body, finite element analysis. (orig.)

  19. Body girth as an alternative to body mass for establishing condition indexes in field studies: a validation in the king penguin.

    Science.gov (United States)

    Viblanc, Vincent A; Bize, Pierre; Criscuolo, François; Le Vaillant, Maryline; Saraux, Claire; Pardonnet, Sylvia; Gineste, Benoit; Kauffmann, Marion; Prud'homme, Onésime; Handrich, Yves; Massemin, Sylvie; Groscolas, René; Robin, Jean-Patrice

    2012-01-01

    Body mass and body condition are often tightly linked to animal health and fitness in the wild and thus are key measures for ecophysiologists and behavioral ecologists. In some animals, such as large seabird species, obtaining indexes of structural size is relatively easy, whereas measuring body mass under specific field circumstances may be more of a challenge. Here, we suggest an alternative, easily measurable, and reliable surrogate of body mass in field studies, that is, body girth. Using 234 free-living king penguins (Aptenodytes patagonicus) at various stages of molt and breeding, we measured body girth under the flippers, body mass, and bill and flipper length. We found that body girth was strongly and positively related to body mass in both molting (R(2) = 0.91) and breeding (R(2) = 0.73) birds, with the mean error around our predictions being 6.4%. Body girth appeared to be a reliable proxy measure of body mass because the relationship did not vary according to year and experimenter, bird sex, or stage within breeding groups. Body girth was, however, a weak proxy of body mass in birds at the end of molt, probably because most of those birds had reached a critical depletion of energy stores. Body condition indexes established from ordinary least squares regressions of either body girth or body mass on structural size were highly correlated (r(s) = 0.91), suggesting that body girth was as good as body mass in establishing body condition indexes in king penguins. Body girth may prove a useful proxy to body mass for estimating body condition in field investigations and could likely provide similar information in other penguins and large animals that may be complicated to weigh in the wild.

  20. NDT of friction stir welds PLFW 1 to PLFW 5 (FSWL 98, FSWL 100, FSWL 101, FSWL 102, FSWL 103). NDT data report

    International Nuclear Information System (INIS)

    Pitkaenen, J.; Haapalainen, J.; Lipponen, A.; Sarkimo, M.

    2014-09-01

    The inspection methods of friction stir welding were tested in test manufacturing of 5 FS-weld. In the welding several parameters were applied also outside of good parameter window. This may have caused some additional defects which were good test for inspection methods. Only one weld was manufactured with optimum parameters and it was clearly best weld and acceptable for final disposal. This test was also a trial to apply the acceptance criteria in real inspections. The strategy of NDT inspections bases on the defect types in the FS-weld, which item is studied in this trial. The applied inspection methods are described in this report. Different sizing methods were tested for being able to apply acceptance criteria. Each found defect except root defects, which are typical in FS-welding, were sized separately using different NDT-methods other than just raw data-analysis. The goal was to determine depth/length -relation (a/l-relation) of each found defect. In case of ordinary root defect the depths were less than 5 mm in raw data-analysis and it was sufficient for acceptance of the weld. If there were no other defect present than typical root defects there were no need for more accurate sizing than raw data analysis. The remaining wall thickness was used as an final acceptance criteria in the evaluation of the welds when defect size in wall thickness direction was taken away from the theoretical minimum wall thickness (48.5 mm). In spite of variable parameters in the FS-welding all the inspected welds was regarded to be acceptable according to preliminary acceptance criteria. Advanced sizing methods must still develop for certain defect types in order to be able to size all found defects with sufficient small inaccuracy. The defect detection, sizing and acceptance process were applied successfully in this trial. (orig.)

  1. Ultrasonic inspection of austenitic welds

    Energy Technology Data Exchange (ETDEWEB)

    Tomlinson, J R; Wagg, A R; Whittle, M J [N.D.T. Applications Centre, CEGB, Manchester (United Kingdom)

    1980-11-01

    The metallurgical structure of austenitic welds is described and contrasted with that found in ferritic welds. It is shown that this structure imparts a marked elastic anisotropy in the ultrasonic propagation parameters. Measurements of variations in the apparent attenuation of sound and deviations in the beam direction are described. The measurements are interpreted in terms of the measured velocity anisotropy. Two applications of the fundamental work are described. In the first it is shown how, by using short pulse compression wave probes, and with major modification of the welding procedure, a stainless steel fillet weld in an AGR boiler can be inspected. In the second application, alternative designs of a transition butt weld have been compared for ease of ultrasonic inspection. The effects of two different welding processes on such an inspection are described. Finally, the paper examines the prospects for future development of inspection and defect-sizing techniques for austenitic welds. (author)

  2. HIGH FREQUENCY INDUCTION WELDING OF HIGH SILICON STEEL TUBES

    Directory of Open Access Journals (Sweden)

    Ricardo Miranda Alé

    2012-06-01

    Full Text Available High-Si steel is a low cost alternative for the fabrication of tubular structures resistant to atmospheric corrosion. However, the literature has often pointed out that steels presenting a higher Si content and/or a lower Mn/Si ratio have higher susceptibility to defects at the weld bond line during HFIW (High Frequency Induction Welding process, which has been widely used for manufacturing small diameter tubes. In this study the effect of the HFIW conditions on the quality of steel tubes with high-Si content and low Mn/Si ratio is investigated. The quality of welded tubes was determined by flare test and the defects in the bond line were identified by SEM. It has been found that higher welding speeds, V-convergence angles and power input should be applied in welding of high-Si steel, when compared to similar strength C-Mn steel.

  3. Desire for penile girth enhancement and the effects of the self-injection of hyaluronic Acid gel.

    Science.gov (United States)

    Coskuner, Enis Rauf; Canter, Halil Ibrahim

    2012-07-01

    Penile girth enhancement is a controversial subject but demands for enhancement are increasing steadily. Although various fillers have been widely used for soft tissue augmentation, there is no reliable material for this particular situation. Here we report a case of an acute hypersensitivity reaction in a man after his first self-injection of a filler material, which, he claimed, was hyaluronic acid gel for penile girth enhancement and glans penis augmentation.

  4. Desire for Penile Girth Enhancement and the Effects of the Self-Injection of Hyaluronic Acid Gel

    OpenAIRE

    Coskuner, Enis Rauf; Canter, Halil Ibrahim

    2012-01-01

    Penile girth enhancement is a controversial subject but demands for enhancement are increasing steadily. Although various fillers have been widely used for soft tissue augmentation, there is no reliable material for this particular situation. Here we report a case of an acute hypersensitivity reaction in a man after his first self-injection of a filler material, which, he claimed, was hyaluronic acid gel for penile girth enhancement and glans penis augmentation.

  5. Peyronie's Reconstruction for Maximum Length and Girth Gain: Geometrical Principles

    Directory of Open Access Journals (Sweden)

    Paulo H. Egydio

    2008-01-01

    Full Text Available Peyronie's disease has been associated with penile shortening and some degree of erectile dysfunction. Surgical reconstruction should be based on giving a functional penis, that is, rectifying the penis with rigidity enough to make the sexual intercourse. The procedure should be discussed preoperatively in terms of length and girth reconstruction in order to improve patient satisfaction. The tunical reconstruction for maximum penile length and girth restoration should be based on the maximum length of the dissected neurovascular bundle possible and the application of geometrical principles to define the precise site and size of tunical incision and grafting procedure. As penile rectification and rigidity are required to achieve complete functional restoration of the penis and 20 to 54% of patients experience associated erectile dysfunction, penile straightening alone may not be enough to provide complete functional restoration. Therefore, phosphodiesterase inhibitors, self-injection, or penile prosthesis may need to be added in some cases.

  6. Crack initiation and growth in welded structures

    International Nuclear Information System (INIS)

    Assire, A.

    2000-01-01

    This work concerns the remaining life assessment of a structure containing initial defects of manufacturing. High temperature crack initiation and growth are studied for austenitic stainless steels, and defect assessment methods are improved in order to take into account welded structures. For these one, the probability to have a defect is significant. Two kinds of approaches are commonly used for defect assessment analysis. Fracture mechanics global approach with an energetic criterion, and local approach with a model taking into account the physical damage mechanism. For both approaches mechanical fields (stress and strain) have to be computed everywhere within the structure. Then, Finite Element computation is needed. The first part of the thesis concerns the identification of non linear kinematic and isotropic constitutive models. A pseudo-analytical method is proposed for a 'Two Inelastic Strain' model. This method provides a strategy of identification with a mechanical meaning, and this enables to associate each parameter to a physical phenomenon. Existing identifications are improved for cyclic plasticity and creep on a large range of stress levels. The second part concerns high temperature crack initiation and growth in welded structures. Finite Element analysis on plate and tube experimental configuration enable to understand the phenomenons of interaction between base metal and weld metal under mechanical and thermal loading. Concerning global approach, criteria based on C* parameter (Rice integral for visco-plasticity) are used. Finite Element computations underline the fact that for a defect located in the weld metal, C* values strongly depend on the base metal creep strain rate, because widespread visco-plasticity is located in both metals. A simplified method, based on the reference stress approach, is proposed and validated with Finite Element results. Creep crack growth simplified assessment is a quite good validation of the experimental results

  7. Investigation of UT procedure for crack depth sizing by phased array UT in Ni-based alloy weld

    International Nuclear Information System (INIS)

    Hirasawa, Taiji; Fukutomi, Hiroyuki

    2013-01-01

    Recently, it has been reported that the primary water stress corrosion cracking (PWSCC) has occurred in nickel based alloy weld components such as steam generator safe end weld, reactor vessel safe end weld, and so on, in PWR. Defect detection and sizing are important in order to ensure the reliable operation and life extension of nuclear power plants. In the reactor vessel safe end weld, it was impossible to measure crack depth of PWSCC. The cracks have occurred in the axial direction of the safe end weld. Furthermore, the cracks had some features such as deep, large aspect ratio (ratio of crack depth and length), sharp geometry of crack tip, and so on. Therefore, development and improvement of defect depth sizing capabilities by ultrasonic testing (UT) have been required. Phased array UT technique was applied with regard to defect depth sizing at the inside inspection in Ni-based alloy welds. Phased array UT was examined a standard block specimen with side drilled holes (SDHs). From the experimental results, the performance of linear array probes and dual matrix array probe were investigated. In the basis of the results, UT procedure for defect depth sizing was investigated and proposed. The UT procedure was applied to the defect depth measurement in Ni-based alloy weld specimen with electric discharge machine (EDM) notches. From these results, good accuracy of defect depth sizing by phased array UT for the inside inspection was shown. Therefore, it was clarified the effectiveness of the UT procedure for defect depth sizing in Ni-based alloy weld. (author)

  8. On use of weld zone temperatures for online monitoring of weld quality in friction stir welding of naturally aged aluminium alloys

    International Nuclear Information System (INIS)

    Imam, Murshid; Biswas, Kajal; Racherla, Vikranth

    2013-01-01

    Highlights: • FSWs for 6063-T4 AA are done at different process parameters and sheet thicknesses. • Weld nugget zone and heat affected zone temperatures are monitored for each case. • Microstructural and mechanical characterisation of welds is done in all cases. • Weld ductility is found to be particularly sensitive to weld zone temperatures. • Strong correlation is found between WNZ and HAZ temperatures and weld properties. - Abstract: 6063-T4 aluminium alloy sheets of 3 and 6 mm thicknesses were friction stir butt welded using a square tool pin at a wide range of tool rotational speeds. Properties of obtained welds were characterised using tensile tests, optical micrographs, X-ray diffraction, and transmission electron microscopy. Shape, size, and distribution of precipitates in weld zones, and strength and ductility of welds were seen to directly correlate with peak temperatures in weld nugget and heat affected zones, independent of sheet thickness. In addition, fluctuations in measured temperature profiles, for 3 mm sheets, were seen to correlate with an increase in scatter of weld nugget zone properties for 3 mm sheets. Optimal weld strength and ductility were obtained for peak weld nugget zone temperatures of around 450 °C and corresponding peak heat affected zone temperatures of around 360–380 °C. Results obtained suggest that, at least for naturally aged aluminium alloys, nature of temperature evolution and magnitudes of peak temperatures in weld nugget and heat affected zones provide information on uniformity of properties in weld zones, overaging of heat affected zones, and formation of tunnel defects from improper material mixing at low weld zone temperatures

  9. Stress Distribution in the Dissimilar Metal Butt Weld of Nuclear Reactor Piping due to the Simulation Technique for the Repair Welding

    International Nuclear Information System (INIS)

    Lee, Hweeseung; Huh, Namsu; Kim, Jinsu; Lee, Jinho

    2013-01-01

    During welding, the dissimilar metal butt welds of nuclear piping are typically subjected to repair welding in order to eliminate defects that are found during post-weld inspection. It has been found that the repair weld can significantly increase the tensile residual stress in the weldment, and therefore, accurate estimation of the weld residual stress due to repair weld, especially for dissimilar metal welds using Ni-based alloy 82/182 in nuclear components, is of great importance in order to assess susceptibility to primary water stress corrosion cracking. In the present study, the stress distributions of dissimilar metal butt welds in nuclear reactor piping subjected to repair weld were investigated based on detailed nonlinear finite element analyses. Particular emphasis was placed on the variation of the stress distribution in the dissimilar metal butt weld according to the finite element welding analysis sequence for the repair welding process

  10. The laser beam welding test of ODS fuel claddings

    International Nuclear Information System (INIS)

    Uwaba, Tomoyuki; Ukai, Shigeharu

    2004-06-01

    As a alternative method of pressurized resistance welding being currently developed, integrity evaluations for a laser beam welding joint between a ODS cladding tube and a FMS end plug were conducted for the purpose of studying the applicability of the laser beam welding technique to the welding with the lower end plug. The laser beam welding causes blowholes in the welding zone, whose effect on the high cycle fatigue strength of the joint is essential because of the flow-induced vibration during irradiation. The rotary bending tests using specimens with laser beam welding between ODS cladding tubes and FMS end plugs were carried out to evaluate the fatigue strength of the welding joint containing blowholes. The fatigue limit of stress amplitude about 200 MPa from 10 6 -10 7 cycles suggested that the laser beam welding joint had enough strength against the flow-induced vibration. Sizing of blowholes in the welding zone by using a micro X ray CT technique estimated the rate of defect areas due to blowholes at 1-2%. It is likely that the fatigue strength remained nearly unaffected by blowholes because of the no correlation between the breach of the rotary bending test specimen and the rate of defect area. Based on results of tensile test, internal burst test, Charpy impact test and fatigue test of welded zone, including study of allowable criteria of blowholes in the inspection, it is concluded that the laser beam welding can be probably applied to the welding between the ODS cladding tube and the FMS lower end plug. (author)

  11. Aspects of welding of zircaloy thin tube to end plugin the experimental welding facility of fuel element fabrication laboratory

    International Nuclear Information System (INIS)

    Shafy, M.; El-Hakim, E.

    1997-01-01

    The work was achieved within the scope of developing egyptian nuclear fuel fabrication laboratory in inshas. It showed the results of developing a welding facility for performing a qualified zircaloy-2 and 4 thin tubes to end weld joints. The welding chamber design was developed to get qualified weld for both PWR and CANDU fuel rod configurations. Experimental works for optimizing the welding parameters of tungsten inert gas (TIG) welding and electron beam (EB) welding processes were achieved. The ld penetration deeper than the wall tube thickness can be obtained for qualified end plug weld joints. It recommended to use steel compensating block for radiographic inspection of end plug weld joints. The predominate defects that can be expected in end plug weld joints, are lack of penetration and cavity. The microstructure of the fusion zone and heat affected zones are Widmanstaetten structure and its grain size is drastically sensible to the heat generation and removal of arc welding. 16 figs

  12. STUDIES OF ACOUSTIC EMISSION SIGNATURES FOR QUALITY ASSURANCE OF SS 316L WELDED SAMPLES UNDER DYNAMIC LOAD CONDITIONS

    Directory of Open Access Journals (Sweden)

    S. V. RANGANAYAKULU

    2016-10-01

    Full Text Available Acoustic Emission (AE signatures of various weld defects of stainless steel 316L nuclear grade weld material are investigated. The samples are fabricated by Tungsten Inert Gas (TIG Welding Method have final dimension of 140 mm x 15 mm x 10 mm. AE signals from weld defects such as Pinhole, Porosity, Lack of Penetration, Lack of Side Fusion and Slag are recorded under dynamic load conditions by specially designed mechanical jig. AE features of the weld defects were attained using Linear Location Technique (LLT. The results from this study concluded that, stress release and structure deformation between the sections in welding area are load conditions major part of Acoustic Emission activity during loading.

  13. Desire for penile girth enhancement and the effects of the self-injection of hyaluronic acid gel

    Directory of Open Access Journals (Sweden)

    Enis Rauf Coskuner

    2012-01-01

    Full Text Available Penile girth enhancement is a controversial subject but demands for enhancement are increasing steadily. Although various fillers have been widely used for soft tissue augmentation, there is no reliable material for this particular situation. Here we report a case of an acute hypersensitivity reaction in a man after his first self-injection of a filler material, which, he claimed, was hyaluronic acid gel for penile girth enhancement and glans penis augmentation.

  14. Electron beam welding of dissimilar metals

    International Nuclear Information System (INIS)

    Metzger, G.; Lison, R.

    1976-01-01

    Thirty-three two-memeber combinations of dissimilar metals were electron beam welded as square-groove butt joints in 0.08 and 0.12 in. sheet material. Many joints were ''braze welded'' by offsetting the electron beam about 0.02 in. from the butt joint to achieve fusion of the lower melting point metal, but no significant fusion of the other member of the pair. The welds were evaluated by visual and metallographic examination, transverse tensile tests, and bend tests. The welds Ag/Al, Ag/Ni15Cr7Fe, Cu/Ni15Cr7Fe, Cu/V, Cu20Ni/Ni15Cr7Fe, Fe18Cr8Ni/Ni, Fe18Cr8Ni/Ni15Cr7Fe, Nb/Ti, Nb/V, Ni/Ni15Cr7Fe, and Cb/V10Ti were readily welded and weld properties were excellent. Others which had only minor defects included the Ag/Cu20Ni, Ag/Ti, Ag/V, Cu/Fe18Cr8Ni, Cu/V10Ti, Cu20Ni/Fe18Cr8Ni, and Ti/Zr2Sn welds. The Cu/Ni weld had deep undercut, but was in other respects excellent. The mechanical properties of the Ag/Fe18Cr8Ni weld were poor, but the defect could probably be corrected. Difficulty with cracking was experienced with the Al/Ni and Fe18Cr8Ni/V welds, but sound welds had excellent mechanical properties. The remaining welds Al-Cu, Al/Cu20Ni, Al/Fe18Cr8Ni, Al/Ni15Cr7Fe, Cu20Ni/V, Cu20Ni/V10Ti, Cb/Zr2Sn, Ni/Ti, Ni15Cr7Fe/V, Ni15Cr7Fe/V10Ti, and Ti/V were unsuccessful, due to brittle phases, primarily at the weld metal-base metal interface. In addition to the two-member specimens, several joints were made by buttering. Longitudinal weld specimens of the three-member combination Al/Ni/Fe18Cr8Ni and the five member combination Fe18Cr8Ni/V/Cb/Ti/Zr2Sn showed good tensile strength and satisfactory elongation. 6 tables, 16 figures

  15. Investigate The Effect Of Welding Parameters On Mechanical Properties During The Welding Of Al-6061 Alloy

    Directory of Open Access Journals (Sweden)

    Rajendra Prasad

    2017-10-01

    Full Text Available Friction welding is a solid state welding technique which is being used in recent times to weld similar as well as dissimilar metals for getting defect free weld. Many combinations like low carbon to stainless steel austenitic to ferrite stainless steel aluminium to copper and titanium to aluminium or steel have been tried out by various solid state welding processes with quite good results. In the present work the 3 level full factorial design has been employed to investigate the effect of welding parameters on tensile strength toughness and heat generation during the welding of Al-6061 alloy. Mathematical relationships between friction welding parameters and mechanical properties like heat generation tensile strength and toughness have also been developed. An attempt has also been made to examine the fracture surfaces of test specimens using SEM. It has been found that welding speed is the most significant parameter thats affect the heat generation tensile strength and toughness. it has been found that tensile strength and toughness during welding increases with increased in welding speed while tensile strength and toughness initially increased as the welding time increases after that it decreased with increase in welding time. The difference in weight of alloying elements can be clearly seen by analyzing spectrum of elements.

  16. Mechanical properties of the weld line defect in micro injection molding for various nano filled polypropylene composites

    International Nuclear Information System (INIS)

    Xie Lei; Ziegmann, Gerhard

    2011-01-01

    is increased to 30%, the E modulus and tensile strength of micro weld line were increased again compared with the low loading level. → Finally, an empirical prediction equation for micro injection molded weld line strength of nano PP composites was proposed for higher nano filler loading fraction than 10 wt%. - Abstract: The nano filled functional polymer materials have been widely processed with micro injection molding technology for micro electromechanical systems (MEMS) fabrication. As the unfavorable defect in micro injection molding parts, weld line brings reduced mechanical and physical properties, especially for nano filled composites. In this study, polypropylene (PP) was compounded respectively with carbon nano fibers (CNFs) and TiO 2 nano particles at various weight fractions (10, 20, 30, 35 wt%) through co-screws internal mixing. The morphological, thermal and rheological properties of nano composites were characterized by wider angle X-ray diffraction (WXRD), different scanning calorimeter (DSC) and high pressure capillary rheometer. Additionally, under the constant setting of injection molding process parameters in injection molding machine, micro tensile samples with weld lines for each nano filled PP composite were produced. The tensile tests were served as the characterizing method for weld line mechanical properties. The results show that when the CNFs is filled higher than 10 wt%, the tensile strength of samples with weld lines made of nano composites become lower than neat PP. While the raising CNFs content contributes to the improved E modulus of micro injection molded weld lines. Additionally, with the increasing fraction of CNFs in PP, the weld line area's elongation percent is decreased. Whereas for case of TiO 2 , the 10 wt% is the threshold for micro injection molded weld line tensile strength turning from decrease trend to increase. The same as CNFs, elongation of micro weld line samples were in general lower than neat PP as well, due to

  17. Infrared sensing techniques for adaptive robotic welding

    International Nuclear Information System (INIS)

    Lin, T.T.; Groom, K.; Madsen, N.H.; Chin, B.A.

    1986-01-01

    The objective of this research is to investigate the feasibility of using infrared sensors to monitor the welding process. Data were gathered using an infrared camera which was trained on the molten metal pool during the welding operation. Several types of process perturbations which result in weld defects were then intentionally induced and the resulting thermal images monitored. Gas tungsten arc using ac and dc currents and gas metal arc welding processes were investigated using steel, aluminum and stainless steel plate materials. The thermal images obtained in the three materials and different welding processes revealed nearly identical patterns for the same induced process perturbation. Based upon these results, infrared thermography is a method which may be very applicable to automation of the welding process

  18. Remote Welding, NDE and Repair of DOE Standardized Canisters

    Energy Technology Data Exchange (ETDEWEB)

    Eric Larsen; Art Watkins; Timothy R. McJunkin; Dave Pace; Rodney Bitsoi

    2006-05-01

    The U.S. Department of Energy (DOE) created the National Spent Nuclear Fuel Program (NSNFP) to manage DOE’s spent nuclear fuel (SNF). One of the NSNFP’s tasks is to prepare spent nuclear fuel for storage, transportation, and disposal at the national repository. As part of this effort, the NSNFP developed a standardized canister for interim storage and transportation of SNF. These canisters will be built and sealed to American Society of Mechanical Engineers (ASME) Section III, Division 3 requirements. Packaging SNF usually is a three-step process: canister loading, closure welding, and closure weld verification. After loading SNF into the canisters, the canisters must be seal welded and the welds verified using a combination of visual, surface eddy current, and ultrasonic inspection or examination techniques. If unacceptable defects in the weld are detected, the defective sections of weld must be removed, re-welded, and re-inspected. Due to the high contamination and/or radiation fields involved with this process, all of these functions must be performed remotely in a hot cell. The prototype apparatus to perform these functions is a floor-mounted carousel that encircles the loaded canister; three stations perform the functions of welding, inspecting, and repairing the seal welds. A welding operator monitors and controls these functions remotely via a workstation located outside the hot cell. The discussion describes the hardware and software that have been developed and the results of testing that has been done to date.

  19. Unraveling the Processing Parameters in Friction Stir Welding

    Science.gov (United States)

    Schneider, Judy; Nunes, Arthur C., Jr.

    2005-01-01

    In friction stir welding (FSW), a rotating threaded pin tool is translated along a weld seam, literally stirring the edges of the seam together. To determine optimal processing parameters for producing a defect free weld, a better understanding of the resulting metal deformation flow path or paths is required. In this study, various markers are used to trace the flow paths of the metal. X-ray radiographs record the segmentation and position of the wire. Several variations in the trajectories can be differentiated within the weld zone.

  20. Analysis of Pulsed Laser Welding Parameters Effect on Weld Geometry of 316L Stainless Steel using DOE

    Directory of Open Access Journals (Sweden)

    M. R. Pakmanesh

    2018-03-01

    Full Text Available In the present study, the optimization of pulsed Nd:YAG laser welding parameters was done on a lap-joint of a 316L stainless steel foil in order to predict the weld geometry through response surface methodology. For this purpose, the effects of laser power, pulse duration, and frequency were investigated. By presenting a second-order polynomial, the above-mentioned statistical method was managed to be well employed to evaluate the effect of welding parameters on weld width. The results showed that the weld width at the upper, middle and lower surfaces of weld cross section increases by increasing pulse durationand laser power; however, the effects of these parameters on the mentioned levels are different. The effect of pulse duration in the models of weld upper, middle and lower widths was calculated as 76, 73 and 68%, respectively. Moreover, the effect of power on theses widths was determined as 18, 24 and 28%, respectively. Finally, by superimposing these models, optimum conditions were obtained to attain a full penetration weld and the weld with no defects.

  1. Welding of the A1 reactor pressure vessel

    International Nuclear Information System (INIS)

    Becka, J.

    1975-01-01

    As concerns welding, the A-1 reactor pressure vessel represents a geometrically complex unit containing 1492 welded joints. The length of welded sections varies between 10 and 620 mm. At an operating temperature of 120 degC and a pressure of 650 N/cm 2 the welded joints in the reactor core are exposed to an integral dose of 3x10 18 n/cm 2 . The chemical composition is shown for pressure vessel steel as specified by CSN 413090.9 modified by Ni, Ti and Al additions, and for the welding electrodes used. The requirements are also shown for the mechanical properties of the base and the weld metals. The technique and conditions of welding are described. No defects were found in ultrasonic testing of welded joints. (J.B.)

  2. Butt Weldability for SS400 Using Laser-Arc Hybrid Welding

    International Nuclear Information System (INIS)

    Kim, Jong Do; Myoung, Gi Hoon; Park, Duck; Myoung, Gi Hoon; Park, In Duck

    2016-01-01

    This study presents results of an experimental investigation of the laser-arc, hybrid, butt welding process of SS400 structural steel. Welding parameters including laser power, welding current and speed were varied in order to obtain one-pass, full-penetration welds without defects. The conditions that resulted in optimal beads were identified. After welding, hardness measurements and microstructure observations were carried out in order to study weld properties. The mechanical properties of both the base material and welded specimen were compared based on the results of tensile strength measurements. The yield and tensile strengths were found to be similar

  3. Butt Weldability for SS400 Using Laser-Arc Hybrid Welding

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Do; Myoung, Gi Hoon; Park, Duck [Korea Maritime and Ocean Univ., Busan (Korea, Republic of); Myoung, Gi Hoon; Park, In Duck [Korea Institute of Machinery and Materials, Busan (Korea, Republic of)

    2016-07-15

    This study presents results of an experimental investigation of the laser-arc, hybrid, butt welding process of SS400 structural steel. Welding parameters including laser power, welding current and speed were varied in order to obtain one-pass, full-penetration welds without defects. The conditions that resulted in optimal beads were identified. After welding, hardness measurements and microstructure observations were carried out in order to study weld properties. The mechanical properties of both the base material and welded specimen were compared based on the results of tensile strength measurements. The yield and tensile strengths were found to be similar.

  4. Sensing the gas metal arc welding process

    Science.gov (United States)

    Carlson, N. M.; Johnson, J. A.; Smartt, H. B.; Watkins, A. D.; Larsen, E. D.; Taylor, P. L.; Waddoups, M. A.

    1994-01-01

    Control of gas metal arc welding (GMAW) requires real-time sensing of the process. Three sensing techniques for GMAW are being developed at the Idaho National Engineering Laboratory (INEL). These are (1) noncontacting ultrasonic sensing using a laser/EMAT (electromagnetic acoustic transducer) to detect defects in the solidified weld on a pass-by-pass basis, (2) integrated optical sensing using a CCD camera and a laser stripe to obtain cooling rate and weld bead geometry information, and (3) monitoring fluctuations in digitized welding voltage data to detect the mode of metal droplet transfer and assure that the desired mass input is achieved.

  5. A full-field residual stress estimation scheme for fitness-for-service assessment of pipe girth welds: Part II – A shell theory based implementation

    International Nuclear Information System (INIS)

    Song, Shaopin; Dong, Pingsha; Pei, Xianjun

    2015-01-01

    With the two key controlling parameters identified and their effectiveness demonstrated in Part I of this study series for constructing a continuous residual stress profile at weld region, a classical shell theory based model is proposed in this paper (Part II) for describing through-thickness residual stress distributions of both axial and hoop components at any axial location beyond weld region. The shell theory based model is analytically constructed through an assembly of two parts: One represents weld region and the other represents the remaining component section away from weld. The final assembly of the two parts leads to a closed form solution to both axial and hoop residual stress components as a function of axial distance from weld toe position. The effectiveness of the full-field residual stress estimation scheme is demonstrated by comparing with a series of finite element modeling results over a broad range of pipe weld geometries and welding conditions. The present development should provide a consistent and effective means for estimating through-thickness residual stress profile as a continuous function of pipe geometry, welding heat input, as well as material characteristics. - Highlights: • A shell theory based two-part assembly model is developed for generalizing residual stress distributions. • A full-field estimation of through-thickness residual stress profiles can be achieved. • The proposed estimation scheme offers both consistency and mechanics basis in residual stress profile generation. • An estimation scheme for welding-induced plastic zone size is proposed and validated. • The shell theory based estimation scheme can also provide a reasonable estimate on distortion in radial direction

  6. Nondestructive Evaluation of Friction Stir-Welded Aluminum Alloy to Coated Steel Sheet Lap Joint

    Science.gov (United States)

    Das, H.; Kumar, A.; Rajkumar, K. V.; Saravanan, T.; Jayakumar, T.; Pal, Tapan Kumar

    2015-11-01

    Dissimilar lap joints of aluminum sheet (AA 6061) of 2 mm thickness and zinc-coated steel sheet of 1 mm thickness were produced by friction stir welding with different combinations of rotational speed and travel speed. Ultrasonic C- and B-scanning, and radiography have been used in a complementary manner for detection of volumetric (cavity and flash) and planar (de bond) defects as the defects are in micron level. Advanced ultrasonic C-scanning did not provide any idea about the defects, whereas B-scanning cross-sectional image showed an exclusive overview of the micron-level defects. A digital x-ray radiography methodology is proposed for quality assessment of the dissimilar welds which provide three-fold increase in signal-to-noise ratio with improved defect detection sensitivity. The present study clearly shows that the weld tool rotational speed and travel speed have a decisive role on the quality of the joints obtained by the friction stir welding process. The suitability of the proposed NDE techniques to evaluate the joint integrity of dissimilar FSW joints is thus established.

  7. Low Cycle Fatigue behavior of SMAW welded Alloy28 superaustenitic stainless steel at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Kchaou, Y., E-mail: yacinekchaou@yahoo.fr [Institut Pprime, Département Physique et Mécanique des Matériaux, UPR 3346 CNRS ISAE-ENSMA Université de Poitiers, Téléport 2, 1, avenue Clément Ader, BP 40109, F – 86961 Futuroscope Chasseneuil Cedex (France); Laboratoire de Génie des Matériaux et Environnement (LGME), ENIS, BPW 1173, Sfax (Tunisia); Pelosin, V.; Hénaff, G. [Institut Pprime, Département Physique et Mécanique des Matériaux, UPR 3346 CNRS ISAE-ENSMA Université de Poitiers, Téléport 2, 1, avenue Clément Ader, BP 40109, F – 86961 Futuroscope Chasseneuil Cedex (France); Haddar, N.; Elleuch, K. [Laboratoire de Génie des Matériaux et Environnement (LGME), ENIS, BPW 1173, Sfax (Tunisia)

    2016-01-10

    This paper focused on the study of Low Cycle Fatigue of welded joints of superaustenitic (Alloy28) stainless steels. Chemical composition and microstructure investigation of Base Metal (BM) and Weld Metal (WM) were identified. The results showed that both of composition is fully austenitic with a dendritic microstructure in the WM. Low cycle fatigue tests at different strain levels were performed on Base Metal (BM) and Welded Joint (WJ) specimens with a strain ratio R{sub ε}=−1. The results indicated that the fatigue life of welded joints is lower than the base metal. This is mainly due to the low ductility of the Welded Metal (WM) and the presence of welding defects. Simultaneously, Scanning Electron Microscope (SEM) observations of fractured specimens show that WJ have brittle behavior compared to BM with the presence of several welding defects especially in the crack initiation site. An estimation of the crack growth rate during LCF tests of BM and WJ was performed using distance between striations. The results showed that the crack initiation stage is shorter in the case of WJ compared to BM because of the presence of welding defects in WJ specimens.

  8. Alternative welding reconditioning solutions without post welding heat treatment of pressure vessel

    Science.gov (United States)

    Cicic, D. T.; Rontescu, C.; Bogatu, A. M.; Dijmărescu, M. C.

    2017-08-01

    In pressure vessels, working on high temperature and high pressure may appear some defects, cracks for example, which may lead to failure in operation. When these nonconformities are identified, after certain examination, testing and result interpretation, the decision taken is to repair or to replace the deteriorate component. In the current legislation it’s stipulated that any repair, alteration or modification to an item of pressurised equipment that was originally post-weld heat treated after welding (PWHT) should be post-weld heat treated again after repair, requirement that cannot always be respected. For that reason, worldwide, there were developed various welding repair techniques without PWHT, among we find the Half Bead Technique (HBT) and Controlled Deposition Technique (CDT). The paper presents the experimental results obtained by applying the welding reconditioning techniques HBT and CDT in order to restore as quickly as possible the pressure vessels made of 13CrMo4-5. The effects of these techniques upon the heat affected zone are analysed, the graphics of the hardness variation are drawn and the resulted structures are compared in the two cases.

  9. Mechanical properties of dissimilar friction welded steel bars in relation to post weld heat treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Yu Sik; Kim, Seon Jin [Pukyong National University, Busan (Korea, Republic of)

    2006-04-15

    Dissimilar friction welding were produced using 15(mm) diameter solid bar in chrome molybedenum steel(KS SCM440) to carbon steel(KS S45C) to investigate their mechanical properties. The main friction welding parameters were selected to endure good quality welds on the basis of visual examination, tensile tests, Vickers hardness surveys of the bond of area and H.A.Z and microstructure investigations. The specimens were tested as-welded and Post-Weld Heat Treated(PWHT). The tensile strength of the friction welded steel bars was increased up to 100% of the S45C base metal under the condition of all heating time. Optimal welding conditions were n=2,000(rpm), P{sub 1}=60(MPa), P{sub 2}=100(MPa), t{sub 1}=4(s), t{sub 2}=5(s) when the total upset length is 5.4 and 5.7(mm), respectively. The peak of hardness distribution of the friction welded joints can be eliminated by PWHT. Two different kinds of materials are strongly mixed to show a well-combined structure of macro-particles without any molten material and particle growth or any defects.

  10. Welding in repair of nuclear reactor pressure vessels

    International Nuclear Information System (INIS)

    Pilous, V.; Kovarik, R.

    1987-01-01

    Specific welding conditions are described in repair of the pressure vessels of nuclear reactors in operation and the effect is pointed out to of neutrons on changes in steel properties. Some of the special regulations are discussed to be observed in welding jobs. The welding methods are briefly described; the half-bead method is most frequently used. It is stressed that the defect must first be identified using a nondestructive method and the stages must be defined of the welding repair of the pressure vessel. (J.B.). 4 figs., 1 tab., 16 refs

  11. Fatigue Strength of Titanium Risers - Defect Sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Babalola, Olusegun Tunde

    2001-07-01

    This study is centred on assessment of the fatigue strength of titanium fusion welds for deep-water riser's applications. Deep-water risers are subjected to significant fatigue loading. Relevant fatigue data for titanium fusion welds are very scarce. Hence there is a need for fatigue data and life prediction models for such weldments. The study has covered three topics: Fatigue testing, Fractography and defect assessment, and Fracture Mechanics modelling of fatigue crack growth. Two series of welded grade of titanium consisting of 14 specimens in each series were fatigue tested under constant amplitude loading. Prior to fatigue testing, strain gauge measurements of some specimens was conducted to enable the definition of stress range in the fatigue assessment procedure. The results were compared with finite solid element analysis and related to fatigue stresses in a riser pipe wall. Distribution and geometry of internal and surface defects both in the as-welded and in the post-weld machined conditions were assessed using fractography. This served as a tool to determine the fatigue initiation point in the welds. Fracture mechanics was applied to model fatigue strength of titanium welds with initiation from weld defects. Two different stress intensity factor formulations for embedded eccentrically placed cracks were used for analysis of elliptical cracks with the major axis parallel and close to one of the free surfaces. The methods were combined to give a satisfactory model for crack growth analysis. The model analyses crack growth of elliptical and semi-elliptical cracks in two directions, with updating of the crack geometry. Fatigue strength assessment was conducted using two crack growth models, the Paris-Erdogan relation with no threshold and the Donahue et al. relation with an implied threshold. The model was validated against experimental data, with a discussion on the choice of crack growth model. (author)

  12. Radiographic and ultrasonic testings of welded joints of 6063 aluminium alloy

    International Nuclear Information System (INIS)

    Oliveira e Silva Mury, A.G. de.

    1980-05-01

    A study on evaluation of weld defects in aluminium butt joints was made in a comparative way through the radiographic and ultrasonic testing. This work was conducted with pipes 5 IPS (6,35 mm thickness) of 6063 aluminium alloy, circumferential TIG welded, due to the difficulty on performing non-destructive testing with this schedule. It was concluded thta ultrasonic testing has adequate sensitivity when setting gain adjustment is made with aid of a reference curve constructed by using a Reference Block (among others studied) with 1,5 mm dia. Hole as reference reflector, and a 5 MHz angle beam search-unit. In this case the ultrasonic testing is more accurate than radiographic testing to detect planar defects like lack of fusion and lack of penetration. Defect sizing by ultrasonic methods employed were 6 and 20 dB drop methods. In spite of your observed limitations concerning the establishment of the real size of defects, the procedure applied was precise for locate and define the weld defects that where found in this study. (author) [pt

  13. Effect of Scratches on Pinch Welds

    International Nuclear Information System (INIS)

    Korinko, P

    2005-01-01

    Fill stems for tritium reservoirs have stringent scratch requirements such that any indications that appear to have depth are cause for rework or rejection. A scoping study was undertaken to evaluate the effect of scratches approximately 0.0015 to 0.002 inch deep on the fitness for service and bond quality. The stems were characterized using borescope before and after welding. The four stems were welded with near optimal weld parameters, proof tested, and examined metallographically. The stems were radiographed, proof tested, and examined metallographically. The scratches did not adversely affect (1) the weld integrity based on radiography, (2) the ability to withstand the proof pressure, and (3) the weld quality based on metallographic cross-sections. Based on these limited results at a nominal weld current, the weld process is very robust. It may be able to recover from manufacturing defects and inspection anomalies worse than those expected for typical fill stem manufacturing processes; additional testing specific to each application over a range of weld heats is needed to verify applicability of these results

  14. The measurement of chest girth as an alternative to weight determination in the performance recording of meat sheep

    Directory of Open Access Journals (Sweden)

    Francesco Panella

    2010-01-01

    Full Text Available The aim of this study was to assess, for two Italian meat sheep breeds (Appenninica and Merinizzata italiana, the relationshipbetween an easily recorded measurement (girth of chest and the character used for selection purposes (weight,and to define the most appropriate mathematical methods to infer the second from the first.For the Appenninica 1392 lambs were measured, for the Merinizzata italiana 1559 lambs were measured. The possibilityof estimating weight through chest girth (CG measurement was evaluated, separately for each breed, by taking themost suitable model between those including different kinds of regression effect. The model was chosen in relation to thevalue of the determination coefficient and the sum of square residuals. The prediction accuracy of the model was assessedby comparing the expected values with the observed ones through a number of statistical tests.A further prediction analysis was carried out using the mean values of the observed weights that fell in each 1 cm classof girth, in order to reduce the error derived by the varying numbers of observations per unit of chest girth.The model including the square regression nested within the sex effect and the flock random effect nested within the sexeffect was observed to be the most suitable one to predict the weight from the chest girth; the determination coefficientsranged between 0.944 (Appenninica and 0.955 (Merinizzata. The prediction parameters were: -10.458+ 0.241 (CG +0.004 (CG2 for the Appenninica males; -6.121 + 0.093 (CG + 0.005 (CG2 for the Appenninica females; -6.325 + 0.189(CG + 0.004 (CG2 for the Merinizzata males; -4.676 + 0.078 (CG + 0.005 (CG2 for the Merinizzata females. The correlationbetween the observed and expected values was always higher than 0.97. The equations estimated using themean weights for each girth showed extremely high determination coefficients (˜ = 0.99 due to the reduction of variabilityimplied by this method. Choosing between the

  15. Circumferential welding of API X80 steel pipes; Soldagem circunferencial em tubos de aco da classe API X80

    Energy Technology Data Exchange (ETDEWEB)

    Castello Branco, J.F.; Bott, Ivani de S. [Pontificia Univ. Catolica do Rio de Janeiro, RJ (Brazil). Dept. de Ciencia dos Materiais e Metalurgia]. E-mails: joaofcb@uol.com.br; bott@dcmm.puc-rio.br; Fedele, R.A. [Boehler Thyssen Welding, Sao Paulo, SP (Brazil)]. E-mail: engenharia@btwbr.com.br; Souza, Luis Felipe G. de [Centro Federal de Educacao Tecnologica Celso Suckow da Fonseca (CEFET-RJ), Rio de Janeiro, RJ (Brazil). Dept. de Engenharia Industrial Mecanica]. E-mail: lfelipe@cefet-rj.br

    2003-07-01

    The present work is a part of an extensive program for the development of API 5L Gr.X80 grade steel , produced by the well-known UOE production process, for pipeline fabrication. The current stage of this program involves the characterization and performance evaluation/qualification of girth welds produced by Shield Metal Arc Weld (SMAW) under simulated field conditions, with tubes fixed in the horizontal position. Three types of electrodes were utilized for the basic tasks; the root pass, the hot pass and fill and cap passes. The root pass was carried out with an E-6010 electrode to avoid incomplete joint penetration. The hot pass, applied over the root pass, was performed with an E-9010-G electrode. The fill and cap passes were executed with E-10018-G electrodes. The welded joints produced were evaluated according to the API 1104 specification, which requires: side bend, nick- break and tensile tests. Additionally, non-destructive tests, Charpy-V impact tests and metallographic characterization were undertaken. It was verified that this welding procedure, based on three types of electrodes, could produce welded joints in accordance to the API 1104 specification. These results ensure the applicability of the API 5L Gr. X80 steel developed in this research project for use in pipeline construction. (author)

  16. Analysis of probability of defects in the disposal canisters

    International Nuclear Information System (INIS)

    Holmberg, J.-E.; Kuusela, P.

    2011-06-01

    This report presents a probability model for the reliability of the spent nuclear waste final disposal canister. Reliability means here that the welding of the canister lid has no critical defects from the long-term safety point of view. From the reliability point of view, both the reliability of the welding process (that no critical defects will be born) and the non-destructive testing (NDT) process (all critical defects will be detected) are equally important. In the probability model, critical defects in a weld were simplified into a few types. Also the possibility of human errors in the NDT process was taken into account in a simple manner. At this moment there is very little representative data to determine the reliability of welding and also the data on NDT is not well suited for the needs of this study. Therefore calculations presented here are based on expert judgements and on several assumptions that have not been verified yet. The Bayesian probability model shows the importance of the uncertainty in the estimation of the reliability parameters. The effect of uncertainty is that the probability distribution of the number of defective canisters becomes flat for larger numbers of canisters compared to the binomial probability distribution in case of known parameter values. In order to reduce the uncertainty, more information is needed from both the reliability of the welding and NDT processes. It would also be important to analyse the role of human factors in these processes since their role is not reflected in typical test data which is used to estimate 'normal process variation'.The reported model should be seen as a tool to quantify the roles of different methods and procedures in the weld inspection process. (orig.)

  17. Pressure vessel integrity and weld inspection procedure

    International Nuclear Information System (INIS)

    Solomon, K.A.; Okrent, D.; Kastenberg, W.E.

    1975-01-01

    The primary objective of this paper is to develop a simple methodology which, when coupled with existing observations on pressure vessel behavior, provides an inter-relation between pressure vessel integrity, and the parameters of the in-service inspection program, including inspection sample size, frequency and efficiency. A modified Markov process is employed and a computer code was written to obtain numerical results. The Markov process mathematically describes the following physical events. In a nuclear reactor pressure vessel weld, some defects may exist prior to the zeroth inspection (i.e., prior to vessel operation). During the zeroth inspection and repair processes, some of these defects are removed. During the first cycle of vessel operation, the existing defects may grow and some new defects may be generated. Those defects that are found at the first (and succeeding) inspection interval and warrant repair, are repaired. The above process continues through several operating cycles to the end of vessel life. During any inspection, only a portion of the welds may be inspected, and with less than perfect efficiency

  18. Nuclear Technology. Course 28: Welding Inspection. Module 28-3, Tungsten Inert Gas (TIG), Metal Inert Gas (MIG) and Submerged Arc Welding.

    Science.gov (United States)

    Espy, John

    This third in a series of ten modules for a course titled Welding Inspection presents the apparatus, process techniques, procedures, applications, associated defects, and inspection for the tungsten inert gas, metal inert gas, and submerged arc welding processes. The module follows a typical format that includes the following sections: (1)…

  19. MAGNETIC ARC WELDING STABILIZATION USING NON-CONSUMABLE ELECTRODE

    Directory of Open Access Journals (Sweden)

    Павло Юрійович Сидоренко

    2017-06-01

    Full Text Available Results of development torch to magnetically operated   welding arc are defined. Changing the design of the electrode unit is provided the ability to create within the area of the arc magnetic field and induction given configuration without additional equipment. The features of the arc in an axial magnetic field which make it possible to avoid the welding process of unsteady abnormalities resulted in the inappropriate formation of defects in welds. Significant increase in the depth of  weld penetration is connected with the more concentrated magnetically operated   welding arc transmission energy to the product. It is concluded about the feasibility of using a designed torch for the implementation of modern technological processes non-consumable electrode welding.

  20. Gamma-radiography techniques applied to quality control of welds in water pipe lines

    International Nuclear Information System (INIS)

    Sanchez, W.; Oki, H.

    1974-01-01

    Non-destructive testing of welds may be done by the gamma-radiography technique, in order to detect the presence or absence of discontinuities and defects in the bulk of deposited metal and near the base metal. Gamma-radiography allows the documentation of the test with a complete inspection record, which is a fact not common in other non-destructive testing methods. In the quality control of longitudinal or transversal welds in water pipe lines, two exposition techniques are used: double wall and panoramic exposition. Three different water pipe lines systems have analysed for weld defects, giving a total of 16,000 gamma-radiographies. The tests were made according to the criteria established by the ASME standard. The principal metallic discontinuites found in the weld were: porosity (32%), lack of penetration (29%), lack of fusion (20%), and slag inclusion (19%). The percentage of gamma-radiographies showing welds without defects was 39% (6168 gamma-radiographies). On the other hand, 53% (8502 gamma-radiographies) showed the presence of acceptable discontinuities and 8% (1330 gamma-radiographies) were rejected according to the ASME standards [pt

  1. Stress corrosion crack initiation of alloy 182 weld metal in primary coolant - Influence of chemical composition

    Energy Technology Data Exchange (ETDEWEB)

    Calonne, O.; Foucault, M.; Steltzlen, F. [AREVA (France); Amzallag, C. [EDF SEPTEN (France)

    2011-07-01

    Nickel-base alloys 182 and 82 have been used extensively for dissimilar metal welds. Typical applications are the J-groove welds of alloy 600 vessel head penetrations, pressurizer penetrations, heater sleeves and bottom mounted instrumented nozzles as well as some safe end butt welds. While the overall performance of these weld metals has been good, during the last decade, an increasing number of cases of stress corrosion cracking of Alloy 182 weld metal have been reported in PWRs. In this context, the role of weld defects has to be examined. Their contribution in the crack initiation mechanism requires laboratory investigations with small scale characterizations. In this study, the influence of both alloy composition and weld defects on PWSCC (Stress Corrosion Cracking in Primary Water) initiation was investigated using U-bend specimens in simulated primary water at 320 C. The main results are the following: -) the chemical compositions of the weld deposits leading to a large propensity to hot cracking are not the most susceptible to PWSCC initiation, -) macroscopically, superficial defects did not evolve during successive exposures. They can be included in large corrosion cracks but their role as 'precursors' is not yet established. (authors)

  2. Tensile Properties of Friction Stir Welded Joints of AA 2024-T6 Alloy at Different Welding Speeds

    Science.gov (United States)

    Avula, Dhananjayulu; Devuri, Venkateswarlu; Cheepu, Muralimohan; Dwivedi, Dheerendra Kumar

    2018-03-01

    The influence of welding speed on the friction stir welded joint properties of hardness, tensile properties, defects and microstructure characterization are studied in the present study. The friction stir welding was conducted on AA2014-T6 heat treated alloy with 5 mm thickness plate in butt joint configuration. The welding speed was varied from 8 mm/min to 120 mm/min at the fixed travel speed and load conditions. It is observed that the welding speeds at higher rate with wide range can be possible to weld this alloy at higher rates of tool revolution suggesting that the inherent capability of friction stir welding technique for aluminum 2014 alloys. The strength of the joints gradually increases with enhancing of welding speed. The micro structural observations exhibited the formation of equiaxed grains in the stir zone and slightly in the thermo-mechanically affected zone. In addition, the size of the grains decreases with increase in welding speed owing to the presence of low heat input. Hence the hardness of the joints slightly increased in the stir zones over the other zones of the weld nugget. The joint strength initially increases with the welding speed and starts to decreases after reaching to the maximum value. The relationship between the welding conditions and friction stir welded joint properties has been discussed.

  3. Real-time nondestructive monitoring of the gas tungsten arc welding (GTAW) process by combined airborne acoustic emission and non-contact ultrasonics

    Science.gov (United States)

    Zhang, Lu; Basantes-Defaz, Alexandra-Del-Carmen; Abbasi, Zeynab; Yuhas, Donald; Ozevin, Didem; Indacochea, Ernesto

    2018-03-01

    Welding is a key manufacturing process for many industries and may introduce defects into the welded parts causing significant negative impacts, potentially ruining high-cost pieces. Therefore, a real-time process monitoring method is important to implement for avoiding producing a low-quality weld. Due to high surface temperature and possible contamination of surface by contact transducers, the welding process should be monitored via non-contact transducers. In this paper, airborne acoustic emission (AE) transducers tuned at 60 kHz and non-contact ultrasonic testing (UT) transducers tuned at 500 kHz are implemented for real time weld monitoring. AE is a passive nondestructive evaluation method that listens for the process noise, and provides information about the uniformity of manufacturing process. UT provides more quantitative information about weld defects. One of the most common weld defects as burn-through is investigated. The influences of weld defects on AE signatures (time-driven data) and UT signals (received signal energy, change in peak frequency) are presented. The level of burn-through damage is defined by using single method or combine AE/UT methods.

  4. Measuring weld heat to evaluate weld integrity

    Energy Technology Data Exchange (ETDEWEB)

    Schauder, V., E-mail: schauder@hks-prozesstechnik.de [HKS-Prozesstechnik GmbH, Halle (Germany)

    2015-11-15

    Eddy current and ultrasonic testing are suitable for tube and pipe mills and have been used for weld seam flaw detection for decades, but a new process, thermography, is an alternative. By measuring the heat signature of the weld seam as it cools, it provides information about weld integrity at and below the surface. The thermal processes used to join metals, such as plasma, induction, laser, and gas tungsten arc welding (GTAW), have improved since they were developed, and they get better with each passing year. However, no industrial process is perfect, so companies that conduct research in flaw detection likewise continue to develop and improve the technologies used to verify weld integrity: ultrasonic testing (UT), eddy current testing (ET), hydrostatic, X-ray, magnetic particle, and liquid penetrant are among the most common. Two of these are used for verifying the integrity of the continuous welds such as those used on pipe and tube mills: UT and ET. Each uses a transmitter to send waves of ultrasonic energy or electrical current through the material and a receiver (probe) to detect disturbances in the flow. The two processes often are combined to capitalize on the strengths of each. While ET is good at detecting flaws at or near the surface, UT penetrates the material, detecting subsurface flaws. One drawback is that sound waves and electrical current waves have a specific direction of travel, or an alignment. A linear defect that runs parallel to the direction of travel of the ultrasonic sound wave or a flaw that is parallel to the coil winding direction of the ET probe can go undetected. A second drawback is that they don't detect cold welds. An alternative process, thermography, works in a different fashion: It monitors the heat of the material as the weld cools. Although it measures the heat at the surface, the heat signature provides clues about cooling activity deep in the material, resulting in a thorough assessment of the weld's integrity It

  5. Welding robot package; Arc yosetsu robot package

    Energy Technology Data Exchange (ETDEWEB)

    Nishikawa, S. [Yaskawa Electric Corp., Kitakyushu (Japan)

    1998-09-01

    For the conventional high-speed welding robot, the welding current was controlled mainly for reducing the spatters during short circuits and for stabilizing the beads by the periodic short circuits. However, an increase of deposition amount in response to the speed is required for the high-speed welding. Large-current low-spatter welding current region control was added. Units were integrated into a package by which the arc length is kept in short without dispersion of arc length for welding without defects such as undercut and unequal beads. In automobile industry, use of aluminum parts is extended for the light weight. The welding is very difficult, and automation is not so progressing in spite of the poor environment. Buckling of welding wire is easy to occur, and supply of wire is obstructed by the deposition of chipped powders on the torch cable, which stay within the contact chip resulting in the deposition. Dislocation of locus is easy to occur at the corner of rectangular pipe during the welding. By improving these troubles, an aluminum MIG welding robot package has been developed. 13 figs.

  6. Micromechanical and internal discontinuity aspects in fusion welded joints

    International Nuclear Information System (INIS)

    Nur Azida Che Lah; Aidy Ali

    2009-01-01

    Full text: This paper deals with characterization of macrostructure, microstructure, hardness, elemental compositions and internal discontinuities of ASTM A516 grade 70 fusion welded joints. The welded joints of ASTM A516 grade 70 carbon steel, which are widely used in pressure vessel fabrication were prepared using welding procedures of Manual Metal Arc (MMA), Metal Inert Gas (MIG) and Tungsten Inert Gas (TIG). Local microstructural condition and elemental composition of the welds were characterised using scanning electron microscopy (SEM) in association with energy dispersive X-ray (EDX). Radiography testing was applied to study the common internal weld defects. This comprehensive information provides a practical guide in order to determine the most adequate welding procedure and assisting in understanding the behaviour of the weld zones. (author)

  7. Contribution to the study of an on line inspection system for pulsed Nd:YAG laser welding operations

    International Nuclear Information System (INIS)

    Charton, Stephane

    1999-01-01

    This thesis deals with the study of a on line inspection system for pulsed Nd 3+ :YAG laser welding operations. During a welding operation, laser-material interaction results in the emission of signals (optical, acoustical, electrical, thermal), characteristic of its behavior. On line inspection is based on the hypothesis that the signals evolutions, measured by sensors such as photodiodes, microphones.., may be correlated with the welding defects. Laser weld quality inspection can be done by the machine qualification (before and during welding), and by on line monitoring of the welding operation. The similarity of the signals produced by pulsed lasers (machine or interaction) has led us to develop a specific data acquisition and processing software. Signal processing tools utilization (Fourier and wavelets transforms) in conjunction with classification techniques (stress polytopes), introduces an innovating on line inspection approach. Discriminant parameters determination (signals/defect correlation) becomes thus automatic and non subjective. The developed prototype is not dedicated to the detection of a particular defect because the classification operator is a supervised one and needs a learning phase. lt has been validated on welding defects which are easy to deal with, and then applied to a precise production control at the Nuclear Fabrications and Technology Division of the Valduc Center of the French Atomic Energy Agency. (author) [fr

  8. A comparative study of laser beam welding and laser-MIG hybrid welding of Ti-Al-Zr-Fe titanium alloy

    International Nuclear Information System (INIS)

    Li Ruifeng; Li Zhuguo; Zhu Yanyan; Rong Lei

    2011-01-01

    Research highlights: → Ti-Al-Zr-Fe titanium alloy sheets were welded by LBW and LAMIG methods. → LAMIG welded joints have better combination of strength and ductility. → LAMIG welding is proved to be feasible for the production of titanium sheet joints. - Abstract: Ti-Al-Zr-Fe titanium alloy sheets with thickness of 4 mm were welded using laser beam welding (LBW) and laser-MIG hybrid welding (LAMIG) methods. To investigate the influence of the methods difference on the joint properties, optical microscope observation, microhardness measurement and mechanical tests were conducted. Experimental results show that the sheets can be welded at a high speed of 1.8 m/min and power of 8 kW, with no defects such as, surface oxidation, porosity, cracks and lack of penetration in the welding seam. In addition, all tensile test specimens fractured at the parent metal. Compared with the LBW, the LAMIG welding method can produce joints with higher ductility, due to the improvement of seam formation and lower microhardness by employing a low strength TA-10 welding wire. It can be concluded that LAMIG is much more feasible for welding the Ti-Al-Zr-Fe titanium alloy sheets.

  9. Laser beam welding and friction stir welding of 6013-T6 aluminium alloy sheet

    International Nuclear Information System (INIS)

    Braun, R.; Dalle Donne, C.; Staniek, G.

    2000-01-01

    Butt welds of 1.6 mm thick 6013-T6 sheet were produced using laser beam welding and friction stir welding processes. Employing the former joining technique, filler powders of the alloys Al-5%Mg and Al-12%Si were used. Microstructure, hardness profiles, tensile properties and the corrosion behaviour of the welds in the as-welded condition were investigated. The hardness in the weld zone was lower compared to that of the base material in the peak-aged temper. Hardness minima were measured in the fusion zone and in the thermomechanically affected zone for laser beam welded and friction stir welded joints, respectively. Metallographic and fractographic examinations revealed pores in the fusion zone of the laser beam welds. Porosity was higher in welds made using the filler alloy Al-5%Mg than using the filler metal Al-12%Si. Transmission electron microscopy indicated that the β '' (Mg 2 Si) hardening precipitates were dissolved in the weld zone due to the heat input of the joining processes. Joint efficiencies achieved for laser beam welds depended upon the filler powders, being about 60 and 80% using the alloys Al-5%Mg and Al-12%Si, respectively. Strength of the friction stir weld approached over 80% of the ultimate tensile strength of the 6013-T6 base material. Fracture occurred in the region of hardness minima unless defects in the weld zone led to premature failure. The heat input during welding did not cause a degradation of the corrosion behaviour of the welds, as found in continuous immersion tests in an aqueous chloride-peroxide solution. In contrast to the 6013-T6 parent material, the weld zone was not sensitive to intergranular corrosion. Alternate immersion tests in 3.5% NaCl solution indicated high stress corrosion cracking resistance of the joints. For laser beam welded sheet, the weld zone of alternately immersed specimens suffered severe degradation by pitting and intergranular corrosion, which may be associated with galvanic coupling of filler metal and

  10. Laser repair welding of molds with various pulse shapes

    Directory of Open Access Journals (Sweden)

    M. Pleterski

    2010-01-01

    Full Text Available Repair welding of cold-work tool steels with conventional methods is very difficult due to cracking during remelting or cladding and is generally performed with preheating. As an alternative, repair welding with laser technology has recently been used. This paper presents the influence of different pulse shapes on welding of such tools with the pulsed Nd:YAG laser. Repair welding tests were carried out on AISI D2 tool steel, quenched and tempered to hardness of 56 HRc, followed by microstructural analysis and investigation of defects with scanning electron microscopy. Test results suggest that it is possible to obtain sound welds without preheating, with the right selection of welding parameters and appropriate pulse shape.

  11. An introduction to acoustic emission technology for in-process inspection of welds

    International Nuclear Information System (INIS)

    Goswami, G.L.

    1983-01-01

    Weld quality monitoring, as it stands today, is primarily done by X-ray radiography and ultrasonic testing which is applied after welding is complete. Acoustic Emission Technique (AET) also presents a possible substitute for weld quality monitoring which can be used during welding. Acoustic signals are generated during welding and the sound waves of weld defects are picked up by using AE sensors. With the introduction of sophisticated instrumentation in AET, it is possible to carry out the test even in noisy shop floor environments. Large number of reports on the subject of acoustic emission in recent years is a clear indication that it is gaining importance in welding industry. The present day status of the acoustic emission technology as an on-line weld quality monitoring technique has been reviewed. This report discusses the technique and system along with the acoustic emission parameters important for weld quality analysis. This also deals with the application of this technique in different welding processes like TIG, resistance, electro slag and submerged arc. It has been reported that monitoring of emission during welding can detect crack formation, crack growth and lack of fusion precisely. Static defects like porosity and inclusion do not generate very strong acoustic signals and are therefore difficult to intercept, but, however, lately they have detected successfully. (author)

  12. Austenitic stainless steel weld inspection

    International Nuclear Information System (INIS)

    Mech, S.J.; Emmons, J.S.; Michaels, T.E.

    1978-01-01

    Analytical techniques applied to ultrasonic waveforms obtained from inspection of austenitic stainless steel welds are described. Experimental results obtained from a variety of geometric and defect reflectors are presented. Specifically, frequency analyses parameters, such as simple moments of the power spectrum, cross-correlation techniques, and adaptive learning network analysis, all represent improvements over conventional time domain analysis of ultrasonic waveforms. Results for each of these methods are presented, and the overall inspection difficulties of austenitic stainless steel welds are discussed

  13. PDC IC WELD FAILURE EVALUATION AND RESOLUTION

    Energy Technology Data Exchange (ETDEWEB)

    Korinko, P.; Howard, S.; Maxwell, D.; Fiscus, J.

    2012-04-16

    During final preparations for start of the PDCF Inner Can (IC) qualification effort, welding was performed on an automated weld system known as the PICN. During the initial weld, using a pedigree canister and plug, a weld defect was observed. The defect resulted in a hole in the sidewall of the canister, and it was observed that the plug sidewall had not been consumed. This was a new type of failure not seen during development and production of legacy Bagless Transfer Cans (FB-Line/Hanford). Therefore, a team was assembled to determine the root cause and to determine if the process could be improved. After several brain storming sessions (MS and T, R and D Engineering, PDC Project), an evaluation matrix was established to direct this effort. The matrix identified numerous activities that could be taken and then prioritized those activities. This effort was limited by both time and resources (the number of canisters and plugs available for testing was limited). A discovery process was initiated to evaluate the Vendor's IC fabrication process relative to legacy processes. There were no significant findings, however, some information regarding forging/anneal processes could not be obtained. Evaluations were conducted to compare mechanical properties of the PDC canisters relative to the legacy canisters. Some differences were identified, but mechanical properties were determined to be consistent with legacy materials. A number of process changes were also evaluated. A heat treatment procedure was established that could reduce the magnetic characteristics to levels similar to the legacy materials. An in-situ arc annealing process was developed that resulted in improved weld characteristics for test articles. Also several tack welds configurations were addressed, it was found that increasing the number of tack welds (and changing the sequence) resulted in decreased can to plug gaps and a more stable weld for test articles. Incorporating all of the process

  14. Pre-Industry-Optimisation of the Laser Welding Process

    DEFF Research Database (Denmark)

    Gong, Hui

    This dissertation documents the investigations into on-line monitoring the CO2 laser welding process and optimising the process parameters for achieving high quality welds. The requirements for realisation of an on-line control system are, first of all, a clear understanding of the dynamic...... phenomena of the laser welding process including the behaviour of the keyhole and plume, and the correlation between the adjustable process parameters: laser power, welding speed, focal point position, gas parameters etc. and the characteristics describing the quality of the weld: seam depth and width......, porosity etc. Secondly, a reliable monitoring system for sensing the laser-induced plasma and plume emission and detecting weld defects and process parameter deviations from the optimum conditions. Finally, an efficient control system with a fast signal processor and a precise feed-back controller...

  15. Study of Dissimilar Welding AA6061 Aluminium Alloy and AZ31B Magnesium Alloy with ER5356 Filler Using Friction Stir Welding

    Science.gov (United States)

    Mahamud, M. I. I.; Ishak, M.; Halil, A. M.

    2017-09-01

    This paper is to study of dissimilar welding AA6061 aluminium alloy and AZ31B magnesium alloy with ER5356 filler using friction stir welding. 2 mm thick plates of aluminium and magnesium were used. Friction stir welding operations were performed at different rotation and travel speeds and used the fixed tilt angle which is 3°. The rotation speeds varied from 800 to 1100 rpm, and the travel speed varied from 80 to 100 mm/min. In the range rotation speed of 800 to 1000 rpm and welding speed of 80 to 100 mm/min there are no defect at the weld. Tensile test show the higher tensile strength is 198 MPa and the welding efficiency is about 76%.

  16. Unstable Temperature Distribution in Friction Stir Welding

    Directory of Open Access Journals (Sweden)

    Sadiq Aziz Hussein

    2014-01-01

    Full Text Available In the friction stir welding process, a nonuniform and high generated temperature is undesirable. Unstable temperature and distribution affect thermal and residual stresses along the welding line, thus necessitating mitigation. This paper presents a simple method to prevent significant temperature difference along the welding line and also to help nullifying some defect types associated with this welding, such as end-hole, initial unwelded line, and deformed areas. In the experimental investigation, a heat and force thermocouple and dynamometer were utilized while couple-field thermomechanical models were used to evaluate temperature and its distribution, plastic strain, and material displacement. The suggested method generated uniform temperature distributions. Measurement results are discussed, showing a good correlation with predictions.

  17. Metallurgical and fatigue assessments of welds in cast welded hydraulic turbine runners

    International Nuclear Information System (INIS)

    Trudel, A; Sabourin, M

    2014-01-01

    Decades of hydraulic turbine operation around the world have shown one undeniable fact; welded turbine runners can be prone to fatigue cracking, especially in the vicinity of welds. In this regard, three factors are essential to consider in runner fatigue assessments: (1) the runner's design, which can induce stress concentrations in the fillets, (2) the casting process, which inherently creates defects such as shrinkage cavities and (3) the welding process, which induces significant residual stresses as well as a heat affected zone in the cast pieces near the interface with the filler metal. This study focuses on the latter, the welding process, with emphasis on the influence of the heat affected zone on the runner's fatigue behavior. In a recently concluded study by a large research consortium in Montreal, the microstructure and fatigue crack propagation properties of a CA6NM runner weld heat affected zone were thoroughly investigated to find if this zone deteriorates the runner's resistance to fatigue cracking. The main results showed that this zone's intrinsic fatigue crack propagation resistance is only slightly lower than the unaffected base metal because of its somewhat finer martensitic microstructure leading to a less tortuous crack path. However, it was also confirmed that weld-induced residual stresses represent the dominant influencing factor regarding fatigue crack propagation, though post-weld heat treatments are usually very effective in reducing such residual stresses. This paper aims to further confirm, through a case study, that the weld-induced heat affected zone does not compromise the reliability of welded turbine runners when its fatigue crack propagation properties are considered in fatigue damage models

  18. Nanoindentation of Electropolished FeCrAl Alloy Welds

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, Jordan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Aydogan, Eda [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mara, Nathan Allan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Maloy, Stuart Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-13

    The present report summarizes Berkovich nanoindentation modulus and hardness measurements on two candidate FeCrAl alloys (C35M and C37M) on as-received (AR) and welded samples. In addition, spherical nanoindentation stress-strain measurements were performed on individual grains to provide further information and demonstrate the applicability of these protocols to mechanically characterizing welds in FeCrAl alloys. The indentation results are compared against the reported tensile properties for these alloys to provide relationships between nanoindentation and tensile tests and insight into weldsoftening for these FeCrAl alloys. Hardness measurements revealed weld-softening for both alloys in good agreement with tensile test results. C35M showed a larger reduction in hardness at the weld center from the AR material compared to C37M; this is also consistent with tensile tests. In general, nanohardness was shown to be a good predictor of tensile yield strength and ultimate tensile stress for FeCrAl alloys. Spherical nanoindentation measurements revealed that the fusion zone (FZ) + heat affected zone (HAZ) has a very low defect density typical of well-annealed metals as indicated by the frequent pop-in events. Spherical nanoindentation yield strength, Berkovich hardness, and tensile yield strength measurements on the welded material all show that the C37M welded material has a higher strength than C35M welded material. From the comparison of nanoindentation and tensile tests, EBSD microstructure analysis, and information on the processing history, it can be deduced that the primary driver for weld-softening is a change in the defect structure at the grain-scale between the AR and welded material. These measurements serve as baseline data for utilizing nanoindentation for studying the effects of radiation damage on these alloys.

  19. Development of an ultrasonic weld inspection system based on image processing and neural networks

    Science.gov (United States)

    Roca Barceló, Fernando; Jaén del Hierro, Pedro; Ribes Llario, Fran; Real Herráiz, Julia

    2018-04-01

    Several types of discontinuities and defects may be present on a weld, thus leading to a considerable reduction of its resistance. Therefore, ensuring a high welding quality and reliability has become a matter of key importance for many construction and industrial activities. Among the non-destructive weld testing and inspection techniques, the time-of-flight diffraction (TOFD) arises as a very safe (no ionising radiation), precise, reliable and versatile practice. However, this technique presents a relevant drawback, associated to the appearance of speckle noise that should be addressed. In this regard, this paper presents a new, intelligent and automatic method for weld inspection and analysis, based on TOFD, image processing and neural networks. The developed system is capable of detecting weld defects and imperfections with accuracy, and classify them into different categories.

  20. Investigations on tunneling and kissing bond defects in FSW joints for dissimilar aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Noor Zaman, E-mail: noor_0315@yahoo.com [Department of Mechanical Engineering, Jamia Millia Islamia (A Central University), New Delhi (India); Siddiquee, Arshad Noor; Khan, Zahid A. [Department of Mechanical Engineering, Jamia Millia Islamia (A Central University), New Delhi (India); Shihab, Suha K. [Department of Mechanical Engineering, Engineering College, Diyala University, Diyala (Iraq)

    2015-11-05

    In this paper an attempt has been made to investigate the effect of two Friction Stir Welding (FSW) parameters i.e. tool pin offset and tool plunge depth on the formation of defects such as tunnel (tunneling defect) and kissing bond (KB) during welding of dissimilar aluminum alloys. 4.75 mm thick plates of AA5083-H116 and AA6063-T6 were welded using a novel work-fixture developed in-house which, apart from clamping the plated also imparted continuous variation of offset on both side of the faying line. The tunneling defect was modeled as a function of offset and plunge depth. The welds were characterised using optical microscopy (OM), scanning electron microscopy (SEM) and mechanical testing. The causes of such defects have been analyzed and discussed and recommendations have been made to prevent their occurrence. The findings of the study have revealed that the tunneling defects are formed at all offset (including zero offset) values towards stronger material (advancing side). And the cross-section of the tunnel varied with the amount of offset. Further, KBs are formed at the interface for all pin offset values except 0.5 mm towards weaker material and high plunge depth resulting in the poor mechanical properties. - Highlights: • Two dissimilar aluminum alloys are welded using FSW. • Formation of kissing bond and tunneling defects are investigated. • Defects are formed at pin offsets towards stronger material and also without offset. • The size of tunnel reduces significantly by increasing the plunge depth. • Tool pin offset towards weaker material prevent tunneling defects.

  1. Fracture resistance of welded panel specimen with perpendicular crack in tensile

    International Nuclear Information System (INIS)

    Gochev, Todor; Adziev, Todor

    1998-01-01

    Defects caused by natural crack in welded joints of high-strength low-alloy (HSLA) steels are very often. Perpendicular crack in welded joints and its heat treatment after the welding has also an influence on the fracture resistance. The fracture resistance of welded joints by crack in tense panel specimens was investigated by crack mouse opening displesment (CMOD), the parameter of fracture mechanic. Crack propagation was analysed by using a metallographic analysis of fractured specimens after the test. (Author)

  2. Effect of beam oscillation on borated stainless steel electron beam welds

    Energy Technology Data Exchange (ETDEWEB)

    RajaKumar, Guttikonda [Tagore Engineering College, Chennai (India). Dept. of Mechanical Engineering; Ram, G.D. Janaki [Indian Institute of Technology (IIT), Chennai (India). Dept. of Metallurgical and Materials Engineering; Rao, S.R. Koteswara [SSN College of Engineering, Chennai (India). Mechanical Engineering

    2015-07-01

    Borated stainless steels are used in nuclear power plants to control neutron criticality in reactors as control rods, shielding material, spent fuel storage racks and transportation casks. In this study, bead on plate welds were made using gas tungsten arc welding (GTAW) and electron beam welding (EBW) processes. Electron beam welds made using beam oscillation technique exhibited higher tensile strength values compared to that of GTA welds. Electron beam welds were found to show fine dendritic microstructure while GTA welds exhibited larger dendrites. While both processes produced defect free welds, GTA welds are marked by partially melted zone (PMZ) where the hardness is low. EBW obviate the PMZ failure due to low heat input and in case of high heat input GTA welding process failure occurs in the PMZ.

  3. Effect of beam oscillation on borated stainless steel electron beam welds

    International Nuclear Information System (INIS)

    RajaKumar, Guttikonda; Ram, G.D. Janaki; Rao, S.R. Koteswara

    2015-01-01

    Borated stainless steels are used in nuclear power plants to control neutron criticality in reactors as control rods, shielding material, spent fuel storage racks and transportation casks. In this study, bead on plate welds were made using gas tungsten arc welding (GTAW) and electron beam welding (EBW) processes. Electron beam welds made using beam oscillation technique exhibited higher tensile strength values compared to that of GTA welds. Electron beam welds were found to show fine dendritic microstructure while GTA welds exhibited larger dendrites. While both processes produced defect free welds, GTA welds are marked by partially melted zone (PMZ) where the hardness is low. EBW obviate the PMZ failure due to low heat input and in case of high heat input GTA welding process failure occurs in the PMZ.

  4. Measurement of Laser Weld Temperatures for 3D Model Input

    Energy Technology Data Exchange (ETDEWEB)

    Dagel, Daryl [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Grossetete, Grant [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Maccallum, Danny O. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-10-01

    Laser welding is a key joining process used extensively in the manufacture and assembly of critical components for several weapons systems. Sandia National Laboratories advances the understanding of the laser welding process through coupled experimentation and modeling. This report summarizes the experimental portion of the research program, which focused on measuring temperatures and thermal history of laser welds on steel plates. To increase confidence in measurement accuracy, researchers utilized multiple complementary techniques to acquire temperatures during laser welding. This data serves as input to and validation of 3D laser welding models aimed at predicting microstructure and the formation of defects and their impact on weld-joint reliability, a crucial step in rapid prototyping of weapons components.

  5. Evaluation of Carcass Production of PO Cattle Based on Heart Girth Measurement, Body Condition Score and Slaughter Weight

    OpenAIRE

    Haryoko, I; Suparman, P

    2009-01-01

    The objective of study was to evaluate of carcass production of PO beef cattle based on measurement of heart girth, body condition score (BCS), and slaughter weight. It was conducted in the slaughtering house at Mersi Purwokerto city. The materials for this study were 60 heads of male PO breed cattle. Simple random sampling was used for taking samples. Data was analyzed by using multiple regression equation to determine the effects of heart girth, BCS, and slaughter weight on carcass weig...

  6. Development of a process model for intelligent control of gas metal arc welding

    International Nuclear Information System (INIS)

    Smartt, H.B.; Johnson, J.A.; Einerson, C.J.; Watkins, A.D.; Carlson, N.M.

    1991-01-01

    This paper discusses work in progress on the development of an intelligent control scheme for arc welding. A set of four sensors is used to detect weld bead cooling rate, droplet transfer mode, weld pool and joint location and configuration, and weld defects during welding. A neural network is being developed as the bridge between the multiple sensor set a conventional proportional-integral controller that provides independent control of process variables. This approach is being developed for the gas metal arc welding process. 20 refs., 8 figs

  7. Effect of post-weld heat treatment and electrolytic plasma processing on tungsten inert gas welded AISI 4140 alloy steel

    International Nuclear Information System (INIS)

    Dewan, Mohammad W.; Liang, Jiandong; Wahab, M.A.; Okeil, Ayman M.

    2014-01-01

    Highlights: • The effects of PWHT and EPP were explored on TIG welded AISI4140 alloy steel. • All welded samples were checked with PAUT and ensured defect-free before testing. • Residual stresses, hardness, and tensile properties were measured experimentally. • PWHT resulted higher ductility but lower tensile strength for grain refinement. • EPP-treated samples showed higher tensile strength but lower ductility. - Abstract: Post-weld heat treatment (PWHT) is commonly adopted on welded joints and structures to relieve post-weld residual stresses; and restore the mechanical properties and structural integrity. An electrolytic plasma process (EPP) has been developed to improve corrosion behavior and wear resistance of structural materials; and can be employed in other applications and surface modifications aspects. In this study the effects of PWHT and EPP on the residual stresses, micro-hardness, microstructures, and uniaxial tensile properties are explored on tungsten inert gas (TIG) welded AISI-4140 alloys steel with SAE-4130 chromium–molybdenum alloy welding filler rod. For rational comparison all of the welded samples are checked with nondestructive Phased Array Ultrasonic Testing (PAUT) and to ensure defect-free samples before testing. Residual stresses are assessed with ultrasonic testing at different distances from weld center line. PWHT resulted in relief of tensile residual stress due to grain refinement. As a consequence higher ductility but lower strength existed in PWHT samples. In comparison, EPP-treated samples revealed lower residual stresses, but no significant variation on the grain refinement. Consequently, EPP-treated specimens exhibited higher tensile strength but lower ductility and toughness for the martensitic formation due to the rapid heating and quenching effects. EPP was also applied on PWHT samples, but which did not reveal any substantial effect on the tensile properties after PWHT at 650 °C. Finally the microstructures and

  8. Inspection from outside of weld bead on tubes by gamma absorptiometry

    International Nuclear Information System (INIS)

    Heintz, L.; Lefevre, C.; Bergey, C.

    1983-07-01

    In this method used when it is impossible to place the gamma source inside the tube, the gamma rays pass through the tube twice. The thickness of the weld bead is determined by only one coordinate of space: the polar angle in the plane of the weld. The method was tested with an uranium ring with machined defects. The position of the defects was determined with an accuracy of 1 degree and resolution is of the order of the tube thickness [fr

  9. Comparison of laser welds in thick section S700 high-strength steel manufactured in flat (1G) and horizontal (2G) positions

    OpenAIRE

    Guo, Wei; Liu, Qiang; Francis, John Anthony; Crowther, Dave; Thompson, Alan; Liu, Zhu; Li, Lin

    2015-01-01

    Lack of penetration, undercut and melt sagging are common welding defects for single-pass laser welds in thick plates, particularly when using a traditional 1G welding position (laser directed towards ground). This investigation shows, for the first time, that welding 13 mm thick high-strength S700 steel plates in the 2G position (laser beam perpendicular to the direction of gravity) can mitigate some of the common welding defects including undercut and sagging. A computational fluid dynamic ...

  10. Upgraded HFIR Fuel Element Welding System

    International Nuclear Information System (INIS)

    Sease, John D.

    2010-01-01

    The welding of aluminum-clad fuel plates into aluminum alloy 6061 side plate tubing is a unique design feature of the High Flux Isotope Reactor (HFIR) fuel assemblies as 101 full-penetration circumferential gas metal arc welds (GMAW) are required in the fabrication of each assembly. In a HFIR fuel assembly, 540 aluminum-clad fuel plates are assembled into two nested annular fuel elements 610 mm (24-inches) long. The welding process for the HFIR fuel elements was developed in the early 1960 s and about 450 HFIR fuel assemblies have been successfully welded using the GMAW process qualified in the 1960 s. In recent years because of the degradation of the electronic and mechanical components in the old HFIR welding system, reportable defects in plate attachment or adapter welds have been present in almost all completed fuel assemblies. In October 2008, a contract was awarded to AMET, Inc., of Rexburg, Idaho, to replace the old welding equipment with standard commercially available welding components to the maximum extent possible while maintaining the qualified HFIR welding process. The upgraded HFIR welding system represents a major improvement in the welding system used in welding HFIR fuel elements for the previous 40 years. In this upgrade, the new inner GMAW torch is a significant advancement over the original inner GMAW torch previously used. The innovative breakthrough in the new inner welding torch design is the way the direction of the cast in the 0.762 mm (0.030-inch) diameter aluminum weld wire is changed so that the weld wire emerging from the contact tip is straight in the plane perpendicular to the welding direction without creating any significant drag resistance in the feeding of the weld wire.

  11. Critical Gap distance in Laser Butt-welding

    DEFF Research Database (Denmark)

    Bagger, Claus; Olsen, Flemming Ove

    of "reference" welds are made and compared to sheets with the edges shear cut. The gap distance is precisely controlled by inserting spacers between the sheets. In the tests the gap is set at 0.00, 0.02, 0.05, 0.08 and 0.10 mm. Mild steel (St 1203) with thickness? of 0.75 and 1.25 mm with and without zinc......When butt-welding metal sheets with high power lasers the gap distance between the sheets determine the final quality of the seam. In a number of systematic laboratory experiments the critical gap distance that results in sound beads is identified. By grinding the edges of the sheets, a number...... coating were analysed. A total of 120 welds are made at different welding speeds.As quality norm DIN 8563 is used to divide the welds into quality classes. Since this norm only deals with surface defects a number of welds are also x-ray photographed.According to DIN 8563 the welds have classes of either B...

  12. Comparison between sensitivities of quality control methods using ultrasonic waves, radiography and acoustic emission for the thick welded joint testing

    International Nuclear Information System (INIS)

    Asty, Michel; Birac, Claude

    1981-09-01

    The testing of the thick welded joints of the nuclear industry is carried out by radiography and ultrasonics on completion of welding. When a fault is found, its repair requires a sometimes deep cut down to the position of the fault, then filling in of the cut by hand welding with a coated electrode. This very costly operation also involves the risk of causing new defects when building up by hand. Listening to the acoustic emission during the welding has been considered in order to seek the possibility of detecting defects when they appear, or soon after. The industrial use of this method would make an instant repair of the defective areas possible at less cost and with greater reliability. The study presented concerns the comparison between the results of the various non-destructive testing methods: radiography, ultrasonics and acoustic emission, for a thick welded joint in which the defects have been brought about [fr

  13. Numerical modelling of steel arc welding

    International Nuclear Information System (INIS)

    Hamide, M.

    2008-07-01

    Welding is a highly used assembly technique. Welding simulation software would give access to residual stresses and information about the weld's microstructure, in order to evaluate the mechanical resistance of a weld. It would also permit to evaluate the process feasibility when complex geometrical components are to be made, and to optimize the welding sequences in order to minimize defects. This work deals with the numerical modelling of arc welding process of steels. After describing the industrial context and the state of art, the models implemented in TransWeld (software developed at CEMEF) are presented. The set of macroscopic equations is followed by a discussion on their numerical implementation. Then, the theory of re-meshing and our adaptive anisotropic re-meshing strategy are explained. Two welding metal addition techniques are investigated and are compared in terms of the joint size and transient temperature and stresses. The accuracy of the finite element model is evaluated based on experimental results and the results of the analytical solution. Comparative analysis between experimental and numerical results allows the assessment of the ability of the numerical code to predict the thermomechanical and metallurgical response of the welded structure. The models limitations and the phenomena identified during this study are finally discussed and permit to define interesting orientations for future developments. (author)

  14. Contributions of welding technology to power plant performance

    International Nuclear Information System (INIS)

    Childs, W.J.

    1995-01-01

    Welding repairs can be a very major factor in the time and cost of maintenance outages of a power plant. The use of advanced equipment and procedures for welding can contribute significantly to reducing maintenance costs and increasing reliability. Plant failures have too often been caused by problems associated with welding, some due to improper choice of base materials, others due to welding defects. For example, stress corrosion cracking in weldments in BWR austenitic stainless steel piping was a major source of loss of availability in the 1980s. Examples of the use of improved welding equipment and procedures has been demonstrated to reduce outage time and improved weld integrity in several major areas. New welding techniques, such as laser welding, have the potential for addressing maintenance problems that can not be addressed at all with conventional welding technology and/or may provide a means of reducing greatly the time and cost of welding fabrications or repair. Methods of ensuring that the best available technology is applied in weld repair is a major problem today in the utility industry. Solutions need to be sought to remedy this situation. The key role of welding in minimizing plant outages is being recognized and steps taken to further the development and use of optimum technology

  15. Toughness study of an under matched welded joint: application to the mechanical integrity of the electron beam welded joint of 6016-T6 aluminium alloy

    International Nuclear Information System (INIS)

    Rekik, Wissal

    2016-01-01

    For the demonstration of the integrity of the most sensitive nuclear components, conventional defects, as cracks for example, must be considered within the design step as required by the nuclear safety authority. This phase is particularly crucial for dimensioning of welded structures. To ensure a conservative prediction, the position of the initial crack within the welded joint must be the most detrimental in fracture behavior. Commonly used analyzes consider homogeneous structure with the behavior of the base metal of the welded joint, considered as the weakest metallurgical zone in the case of an overmatched weld. In contrast, similar analysis is not conservative in case of under matched weld. The thesis contributes by the development of an experimental and numerical methodology allowing the identification of the detrimental metallurgical zone in fracture behavior of an under matched welded joint. The methodology proposed is applied to an electron beam welded joint on al 6061-T6. To reach this goal, the gradient of the mechanical behavior along the welded joint was first identified. This is particularly interesting to conduct an advanced analysis based on a multi material approach. In a second step, the fracture behavior of the welded joint was studied on CT specimen. The transferability of the J integral at initiation was approved on another geometry: this represents an important foundation for the transferability assumption to structure. Finally, a numerical analysis on full scale tube was developed. Residual welding stresses and structural effects were considered. The results demonstrate that the heat affected zone located at 13 mm from the middle of the welded joint is the most detrimental zone for fracture analysis. This contradicts the conventional methods conducted on fracture analysis which consider a conventional defect within the fusion zone. (author) [fr

  16. Origin and significance of defects in welds

    International Nuclear Information System (INIS)

    Lundin, C.D.

    1984-01-01

    In the past 10 to 15 years significant advances have taken place in the understanding of the origin and nature of weld discontinuities. The furthering of the knowledge of hot cracking, cold cracking, lamellar tearing and porosity formation is due to the development and utilization of sophisticated techniques for microscopy and microanalysis and the concerted efforts of many researchers in the U.S. and abroad. Concurrent with the progress toward better definition of the metallurgical mechanisms for discontinuity formation, the development of the fracture mechanics approach for the assessment of the significance of the discontinuities was brought into focus. It is the marriage of the metallurgical understanding of formation and the mechanics assessment of relevance that permits discontinuities to be treated with a new degree of sophistication. The many types of cracking and porosity formation were the subjects of numerous studies in the intervening years. This presentation will treat the various types of weld discontinuities which have their origin closely related to a metallurgical mechanism. Emphasis will be placed on hot cracking, and porosity formation with information presented on cold cracking, reheat cracking and lamellar tearing. The employment of the newer metallurgical tools will be discussed in terms of their utilization in determining the cause of discontinuity formation

  17. Welding processes for Inconel 718- A brief review

    Science.gov (United States)

    Tharappel, Jose Tom; Babu, Jalumedi

    2018-03-01

    Inconel 718 is being extensively used for high-temperature applications, rocket engines, gas turbines, etc. due to its ability to maintain high strength at temperatures range 450-700°C complimented by excellent oxidation and corrosion resistance and its outstanding weldability in either the age hardened or annealed condition. Though alloy 718 is reputed to possess good weldability in the context of their resistance to post weld heat treatment cracking, heat affected zone (HAZ) and weld metal cracking problems persist. This paper presents a brief review on welding processes for Inconel 718 and the weld defects, such as strain cracking during post weld heat treatment, solidification cracking, and liquation cracking. The effect of alloy chemistry, primary and secondary processing on the HAZ cracking susceptibility, influence of post/pre weld heat treatments on precipitation, segregation reactions, and effect of grain size etc. discussed and concluded with future scope for research.

  18. Arc-Welding Spectroscopic Monitoring based on Feature Selection and Neural Networks.

    Science.gov (United States)

    Garcia-Allende, P Beatriz; Mirapeix, Jesus; Conde, Olga M; Cobo, Adolfo; Lopez-Higuera, Jose M

    2008-10-21

    A new spectral processing technique designed for application in the on-line detection and classification of arc-welding defects is presented in this paper. A noninvasive fiber sensor embedded within a TIG torch collects the plasma radiation originated during the welding process. The spectral information is then processed in two consecutive stages. A compression algorithm is first applied to the data, allowing real-time analysis. The selected spectral bands are then used to feed a classification algorithm, which will be demonstrated to provide an efficient weld defect detection and classification. The results obtained with the proposed technique are compared to a similar processing scheme presented in previous works, giving rise to an improvement in the performance of the monitoring system.

  19. Arc-Welding Spectroscopic Monitoring based on Feature Selection and Neural Networks

    Directory of Open Access Journals (Sweden)

    Jose M. Lopez- Higuera

    2008-10-01

    Full Text Available A new spectral processing technique designed for application in the on-line detection and classification of arc-welding defects is presented in this paper. A noninvasive fiber sensor embedded within a TIG torch collects the plasma radiation originated during the welding process. The spectral information is then processed in two consecutive stages. A compression algorithm is first applied to the data, allowing real-time analysis. The selected spectral bands are then used to feed a classification algorithm, which will be demonstrated to provide an efficient weld defect detection and classification. The results obtained with the proposed technique are compared to a similar processing scheme presented in previous works, giving rise to an improvement in the performance of the monitoring system.

  20. Mechanical Behaviour Investigation Of Aluminium Alloy Tailor Welded Blank Developed By Using Friction Stir Welding Technique

    Science.gov (United States)

    Dwi Anggono, Agus; Sugito, Bibit; Hariyanto, Agus; Subroto; Sarjito

    2017-10-01

    The objective on the research was to investigate the mechanical properties and microstructure of tailor welded blank (TWB) made from AA6061-T6 and AA1100 using friction stir welding (FSW) process. Due to the dissimilar mechanical properties of the two aluminium alloys, microhardness test was conducted to measure the hardness distribution across the weld nugget. The mixing of two distinct materials was influenced by tool rotation speed. Therefore, microstructure analysis was carried out to investigate the grain size and shape. The grain size of AA6061-T6 has increased in the heat affected zone (HAZ) while for AA1100 has decreased. In the weld nugget, it has found a hook defects in the dissimilar aluminium joining. By using monotonic tensile load, the different weld line direction was observed with the expansion in tool rotation. The joints failure were consistently on the area of AA1100 series. Furthermore, two specimens were investigated, one through the dissimilar aluminium and the other through similiar material. Inspection of the weld nugget hardness was shown that nonhomogen material intermixing during the stiring process as confirmed by microhardness measurement.

  1. Qualifying program on Non-Destructive Testing, Visual Inspection of the welding (level 2)

    International Nuclear Information System (INIS)

    Shafee, M. A.

    2011-01-01

    Nondestructive testing is a wide group of analysis technique used in science and industry to evaluate the properties of a material, component or system without causing damage. Common Non-Destructive Testing methods include ultrasonic, magnetic-particle, liquid penetrate, radiographic, visual inspection and eddy-current testing. AAEA put the new book of the Non-Destructive Testing publication series that focused on Q ualifying program on Non-Destructive Testing, visual inspection of welding-level 2 . This book was done in accordance with the Arab standard certification of Non-Destructive Testing (ARAB-NDT-CERT-002) which is agreeing with the ISO-9712 (2005) and IAEA- TEC-DOC-487. It includes twenty one chapters dealing with engineering materials used in industry, the mechanical behavior of metals, metal forming equipments, welding, metallurgy, testing of welds, introduction to Non-Destructive Testing, defects in metals, welding defects and discontinuities, introduction to visual inspection theory, properties and tools of visual testing, visual testing, quality control regulations, standards, codes and specifications, procedures of welding inspections, responsibility of welding test inspector, qualification of Non-Destructive Testing inspector and health safety during working.

  2. Advanced Gas Tungsten Arc Weld Surfacing Current Status and Application

    Directory of Open Access Journals (Sweden)

    Stephan Egerland

    2015-09-01

    Full Text Available Abstract Gas Shielded Tungsten Arc Welding (GTAW – a process well-known providing highest quality weld results joined though by lower performance. Gas Metal Arc Welding (GMAW is frequently chosen to increase productivity along with broadly accepted quality. Those industry segments, especially required to produce high quality corrosion resistant weld surfacing e.g. applying nickel base filler materials, are regularly in consistent demand to comply with "zero defect" criteria. In this conjunction weld performance limitations are overcome employing advanced 'hot-wire' GTAW systems. This paper, from a Welding Automation perspective, describes the technology of such devices and deals with the current status is this field – namely the application of dual-cathode hot-wire electrode GTAW cladding; considerably broadening achievable limits.

  3. Computerized ultrasonic quality control system in the production of helical welded tubes

    International Nuclear Information System (INIS)

    Tar, J.

    1976-01-01

    The inspection of helical welded steel tubes by means of an ultrasonic automatic equipment is described. This equipment is able to recognize the defects of the weld, to identify them and to continuously report back the informations necessary for their elimination

  4. Fiber laser welding of nickel based superalloy Inconel 625

    Science.gov (United States)

    Janicki, Damian M.

    2013-01-01

    The paper describes the application of single mode high power fiber laser (HPFL) for the welding of nickel based superalloy Inconel 625. Butt joints of Inconel 625 sheets 0,8 mm thick were laser welded without an additional material. The influence of laser welding parameters on weld quality and mechanical properties of test joints was studied. The quality and mechanical properties of the joints were determined by means of tensile and bending tests, and micro hardness tests, and also metallographic examinations. The results showed that a proper selection of laser welding parameters provides non-porous, fully-penetrated welds with the aspect ratio up to 2.0. The minimum heat input required to achieve full penetration butt welded joints with no defect was found to be 6 J/mm. The yield strength and ultimate tensile strength of the joints are essentially equivalent to that for the base material.

  5. Electron Beam Welding of Thick Copper Material

    Energy Technology Data Exchange (ETDEWEB)

    Broemssen, Bernt von [IVF Industriforskning och utveckling AB, Stockholm (Sweden)

    2002-08-01

    The purpose of this study was to review the two variants of the Electron Beam Welding (EBW) processes developed (or used) by 1- SKB, Sweden with assistance from TWI, England and 2 - POSIVA, Finland with assistance from Outokumpu, Finland. The aim was also to explain the principle properties of the EBW method: how it works, the parameters controlling the welding result but also giving rise to benefits, and differences between the EBW variants. The main conclusions are that both SKB and POSIVA will within a few years succeed to qualify their respective EBW method for welding of copper canisters. The Reduced Pressure EBW that SKB use today seems to be very promising in order to avoid root defects. If POSIVA does not succeed to avoid root defects with the high vacuum method and the beam oscillation technique it should be possible for POSIVA to incorporate the Reduced Pressure technique albeit with significant changes to the EBW equipment. POSIVA has possibly an advantage over SKB with the beam oscillation technique used, which gives an extra degree of freedom to affect the weld quality. The beam oscillation could be of importance for closing of the keyhole. Before EBW of lids, the material certification showing the alloy content (specifying min and max impurity percentages) and the mechanical properties should be checked. The welded material needs also to be tested for mechanical properties. If possible the weld should have a toughness level equal to that of the unwelded parent material. Specifically some conclusions are reported regarding the SKB equipment. Suggestions for further development are also given in the conclusion chapter.

  6. Electron Beam Welding of Thick Copper Material

    International Nuclear Information System (INIS)

    Broemssen, Bernt von

    2002-08-01

    The purpose of this study was to review the two variants of the Electron Beam Welding (EBW) processes developed (or used) by 1- SKB, Sweden with assistance from TWI, England and 2 - POSIVA, Finland with assistance from Outokumpu, Finland. The aim was also to explain the principle properties of the EBW method: how it works, the parameters controlling the welding result but also giving rise to benefits, and differences between the EBW variants. The main conclusions are that both SKB and POSIVA will within a few years succeed to qualify their respective EBW method for welding of copper canisters. The Reduced Pressure EBW that SKB use today seems to be very promising in order to avoid root defects. If POSIVA does not succeed to avoid root defects with the high vacuum method and the beam oscillation technique it should be possible for POSIVA to incorporate the Reduced Pressure technique albeit with significant changes to the EBW equipment. POSIVA has possibly an advantage over SKB with the beam oscillation technique used, which gives an extra degree of freedom to affect the weld quality. The beam oscillation could be of importance for closing of the keyhole. Before EBW of lids, the material certification showing the alloy content (specifying min and max impurity percentages) and the mechanical properties should be checked. The welded material needs also to be tested for mechanical properties. If possible the weld should have a toughness level equal to that of the unwelded parent material. Specifically some conclusions are reported regarding the SKB equipment. Suggestions for further development are also given in the conclusion chapter

  7. Spectroscopic analysis technique for arc-welding process control

    Science.gov (United States)

    Mirapeix, Jesús; Cobo, Adolfo; Conde, Olga; Quintela, María Ángeles; López-Higuera, José-Miguel

    2005-09-01

    The spectroscopic analysis of the light emitted by thermal plasmas has found many applications, from chemical analysis to monitoring and control of industrial processes. Particularly, it has been demonstrated that the analysis of the thermal plasma generated during arc or laser welding can supply information about the process and, thus, about the quality of the weld. In some critical applications (e.g. the aerospace sector), an early, real-time detection of defects in the weld seam (oxidation, porosity, lack of penetration, ...) is highly desirable as it can reduce expensive non-destructive testing (NDT). Among others techniques, full spectroscopic analysis of the plasma emission is known to offer rich information about the process itself, but it is also very demanding in terms of real-time implementations. In this paper, we proposed a technique for the analysis of the plasma emission spectrum that is able to detect, in real-time, changes in the process parameters that could lead to the formation of defects in the weld seam. It is based on the estimation of the electronic temperature of the plasma through the analysis of the emission peaks from multiple atomic species. Unlike traditional techniques, which usually involve peak fitting to Voigt functions using the Levenberg-Marquardt recursive method, we employ the LPO (Linear Phase Operator) sub-pixel algorithm to accurately estimate the central wavelength of the peaks (allowing an automatic identification of each atomic species) and cubic-spline interpolation of the noisy data to obtain the intensity and width of the peaks. Experimental tests on TIG-welding using fiber-optic capture of light and a low-cost CCD-based spectrometer, show that some typical defects can be easily detected and identified with this technique, whose typical processing time for multiple peak analysis is less than 20msec. running in a conventional PC.

  8. Exemplification of Tomographic Method to Evaluate the Quality of Welded Joints Made from EN 5754-H22 Alloy

    Directory of Open Access Journals (Sweden)

    Błachnio Józef

    2016-12-01

    Full Text Available The quality of welded joints depends on many factors. The relevant standards stipulate technical conditions of welds quality assessment, which provides the basis for stating whether the given joint is compatible with the requirements or whether it is defective. In practice, making welded joints that are totally devoid of defects is extremely difficult. To conduct the control of inner structure of the given joint a non-destructive method with the application of industrial CT scanner might be applied. This modern diagnosing method combines the x-ray examination with advanced computer technology. The basic advantage of computer-assisted tomography consists in examining objects in three dimensions and the possibility to carry out three-dimensional reconstructions. The aim of this article is to discuss the use of this method to evaluate the quality of welded joints made of aluminium alloys. Capabilities of computer-assisted tomography were depicted by the case of weld probes constructed with TIG (ang. Tungsten Inert Gas welding by different process variables. One has made the analysis of the quality of probes showing the smallest and the biggest internal and external welding defects.

  9. Evaluation of residual stress on pipe welded joints using laser interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Ho Seob; Na, Man Gyun; Kim, Koung Suk [Chosun University, Gwangju (Korea, Republic of)

    2014-02-15

    Residual stresses that occur during the welding process, are the main cause of failure and defects in welded structures. This paper, presents the use of an electronic processing laser speckle interferometer to measure the residual stress of a welded pipe for a nuclear power plant. A tensile testing machine was used to evaluate a welded pipe that failed in compression. The inform plane deformation and modulus of elasticity of the base metal and welds were measured using an interferometer. Varying the load on the welded pipe had a larger effect on the deformation of the base metal the other properties of the base metal and welds. The elastic moduli of the base metal and weld of the welded pipe were 202.46 and 212.14 GPa, respectively, the residual stress was measured to be 6.29 MPa.

  10. CO2 and diode laser welding of AZ31 magnesium alloy

    International Nuclear Information System (INIS)

    Zhu Jinhong; Li Lin; Liu Zhu

    2005-01-01

    Magnesium alloys are being increasingly used in automotive and aerospace structures. Laser welding is an important joining method in such applications. There are several kinds of industrial lasers available at present, including the conventional CO 2 and Nd:YAG lasers as well as recently available high power diode lasers. A 1.5 kW diode laser and a 2 kW CO 2 laser are used in the present study for the welding of AZ31 alloys. It is found that different welding modes exist, i.e., keyhole welding with the CO 2 laser and conduction welding with both the CO 2 and the diode lasers. This paper characterizes welds in both welding modes. The effect of beam spot size on the weld quality is analyzed. The laser processing parameters are optimized to obtain welds with minimum defects

  11. Quality evaluation of PHWR fuel element end cap weld joints by ultrasonic testing technique

    Energy Technology Data Exchange (ETDEWEB)

    Singh, J L; Nair, V R; Ramadasan, E; Majumdar, S; Sahoo, K C [Bhabha Atomic Research Centre, Bombay (India). Radiometallurgy Div.; Kumar, Arun [Atomic Fuel Fabrication Facility, Tarapur (India)

    1994-12-31

    An ultrasonic testing technique has been developed for effective quality evaluation of Pressurised Heavy Water Reactor (PHWR) fuel end plug welds. A focused high frequency shear wave is directed to the weld zone from half skip distance to detect lack of fusion, porosities and wall cracks in the weld zone. A tentative select/reject level has been evolved to sort out the defective weld by examining more than 700 PHWR fuel pin welds. (author). 5 refs., 5 figs.

  12. Thermite welding of Cu-Nb microcomposite wires

    Energy Technology Data Exchange (ETDEWEB)

    Visniakov, Nikolaj; Mikalauskas, Gediminas; Lukauskaite, Raimonda; Cernasejus, Olegas; Rudzinskas, Vitalijus [Vilnius Gediminas Technical Univ. (Lithuania). Faculty of Mechanics; Skamat, Jelena; Boris, Renata [Vilnius Gediminas Technical Univ. (Lithuania). Inst. of Thermal Insulation

    2017-10-15

    Thermite welding of Cu-Nb microcomposite wires was investigated. Suitable compositions of thermite material and slag were determined from the equation of the exothermic combustion synthesis reaction. The phase compositions of the thermite mixture and slag determined by X-ray diffraction analysis correspond to those assessed from the equation. According to non-destructive radiographic testing, the joint structure does not have welding defects. Microstructural examination of the joint cross-section with scanning electron microscopy showed that the Cu-Nb wire retained its shape and microstructure and only a thin surface layer of wire was melted during welding. The difference in electrical resistances of the conductor and welded joint was below 20 %. The thermite joint can withstand a maximum load equal to 62.5 % of the load-bearing capacity of microcomposite conductor.

  13. Effect of Processing Parameters on Plastic Flow and Defect Formation in Friction-Stir-Welded Aluminum Alloy

    Science.gov (United States)

    Zeng, X. H.; Xue, P.; Wang, D.; Ni, D. R.; Xiao, B. L.; Ma, Z. Y.

    2018-04-01

    The effect of processing parameters on material flow and defect formation during friction stir welding (FSW) was investigated on 6.0-mm-thick 2014Al-T6 rolled plates with an artificially thickened oxide layer on the butt surface as the marker material. It was found that the "S" line in the stir zone (SZ) rotated with the pin and stayed on the retreating side (RS) and advancing side (AS) at low and high heat inputs, respectively. When the tool rotation rate was extremely low, the oxide layer under the pin moved to the RS first and then to the AS perpendicular to the welding direction, rather than rotating with the pin. The material flow was driven by the shear stresses produced by the forces at the pin-workpiece interface. With increases of the rotation rate, the depth of the shoulder-affected zone (SAZ) first decreased and then increased due to the decreasing shoulder friction force and increasing heat input. Insufficient material flow appeared in the whole of the SZ at low rotation rates and in the bottom of the SZ at high rotation rates, resulting in the formation of the "S" line. The extremely inadequate material flow is the reason for the lack of penetration and the kissing bonds in the bottom of the SZ at extremely low and low rotation rates, respectively.

  14. Joint program for the improvement of bimetallic weld inspection

    International Nuclear Information System (INIS)

    Serre, M.; Rattoni, B.; Coquillay; Samman; Billet; Bodson; Olivera

    1985-02-01

    The aim of this program is to improve the in-service monitoring of austenitic and bimetallic welds in PWR Main Coolant Systems. This paper presents the work performed on the bimetallic weld connecting the safe end to the reactor vessel nozzle: suitability of ultrasonic testing for determining the size and location of defects, automation and calibration, gamma-ray examination in three different planes

  15. Friction stir welding of T joints of dissimilar aluminum alloy: A review

    Science.gov (United States)

    Thakare, Shrikant B.; Kalyankar, Vivek D.

    2018-04-01

    Aluminum alloys are preferred in the mechanical design due to their advantages like high strength, good corrosion resistance, low density and good weldability. In various industrial applications T joints configuration of aluminum alloys are used. In different fields, T joints having skin (horizontal sheet) strengthen by stringers (vertical sheets) were used to increase the strength of structure without increasing the weight. T joints are usually carried out by fusion welding which has limitations in joining of aluminum alloy due to significant distortion and metallurgical defects. Some aluminum alloys are even non weldable by fusion welding. The friction stir welding (FSW) has an excellent replacement of conventional fusion welding for T joints. In this article, FSW of T joints is reviewed by considering aluminum alloy and various joint geometries for defect analysis. The previous experiments carried out on T joints shows the factors such as tool geometry, fixturing device and joint configurations plays significant role in defect free joints. It is essential to investigate the material flow during FSW to know joining mechanism and the formation of joint. In this study the defect occurred in the FSW are studied for various joint configurations and parameters. Also the effect of the parameters and defects occurs on the tensile strength are studied. It is concluded that the T-joints of different joint configurations can be pretended successfully. Comparing to base metal some loss in tensile strength was observed in the weldments as well as overall reduction of the hardness in the thermos mechanically affected zone also observed.

  16. The probable types, sizes, positions and orientations of the defects which may appear in connection with manufacture of reactor vessels

    International Nuclear Information System (INIS)

    Bergh, S.

    1980-02-01

    An review of welding technology in manufacture of reactor vessels is made. An inventory of principal defects appearing in connection with manual ARC-welding and coated electrodes is presented. Some important welded joints of BWR reactor vessels are scrutinized. Reheating cracks may appear during stress relief annealing beneath the cladding, and this problem is discussed in the third part. The interest is focussed towards the defects which depend on the conditions during the welding. Slag and incomplete fusion might be found. The review can serve for the guidance of nondestructive testing. The defects are estimated to have the size of a few MM with a maximum to approx. 10 MM right across the weld, possibly with exception for the electroslag welds of the OKG-1 reactor vessel. (GBn)

  17. Scan posture definition and hip girth measurement: the impact on clothing design and body scanning.

    Science.gov (United States)

    Gill, Simeon; Parker, Christopher J

    2017-08-01

    Ergonomic measurement is central to product design and development; especially for body worn products and clothing. However, there is a large variation in measurement definitions, complicated by new body scanning technology that captures measurements in a posture different to traditional manual methods. Investigations of hip measurement definitions in current clothing measurement practices supports analysis of the effect of scan posture and hip measurement definition on the circumferences of the hip. Here, the hip girth is a key clothing measurement that is not defined in current body scanning measurement standards. Sixty-four participants were scanned in the standard scan posture of a [TC] 2 body scanner, and also in a natural posture similar to that of traditional manual measurement collection. Results indicate that scan posture affects hip girth circumferences, and that some current clothing measurement practices may not define the largest lower body circumference. Recommendations are made concerning how the hip is defined in measurement practice and within body scanning for clothing product development. Practitioner Summary: The hip girth is an important measurement in garment design, yet its measurement protocol is not currently defined. We demonstrate that body posture during body scanning affects hip circumferences, and that current clothing measurement practices may not define the largest lower body circumference. This paper also provides future measurement practice recommendations.

  18. Structural integrity and fatigue crack propagation life assessment of welded and weld-repaired structures

    Science.gov (United States)

    Alam, Mohammad Shah

    2005-11-01

    Structural integrity is the science and technology of the margin between safety and disaster. Proper evaluation of the structural integrity and fatigue life of any structure (aircraft, ship, railways, bridges, gas and oil transmission pipelines, etc.) is important to ensure the public safety, environmental protection, and economical consideration. Catastrophic failure of any structure can be avoided if structural integrity is assessed and necessary precaution is taken appropriately. Structural integrity includes tasks in many areas, such as structural analysis, failure analysis, nondestructive testing, corrosion, fatigue and creep analysis, metallurgy and materials, fracture mechanics, fatigue life assessment, welding metallurgy, development of repairing technologies, structural monitoring and instrumentation etc. In this research fatigue life assessment of welded and weld-repaired joints is studied both in numerically and experimentally. A new approach for the simulation of fatigue crack growth in two elastic materials has been developed and specifically, the concept has been applied to butt-welded joint in a straight plate and in tubular joints. In the proposed method, the formation of new surface is represented by an interface element based on the interface potential energy. This method overcomes the limitation of crack growth at an artificial rate of one element length per cycle. In this method the crack propagates only when the applied load reaches the critical bonding strength. The predicted results compares well with experimental results. The Gas Metal Arc welding processes has been simulated to predict post-weld distortion, residual stresses and development of restraining forces in a butt-welded joint. The effect of welding defects and bi-axial interaction of a circular porosity and a solidification crack on fatigue crack propagation life of butt-welded joints has also been investigated. After a weld has been repaired, the specimen was tested in a universal

  19. Development and application of specially-focused ultrasonic transducers to location and sizing of defects in 75 mm- to 127 mm-thick austenitic stainless steel weld metals

    Energy Technology Data Exchange (ETDEWEB)

    Dalder, E.N.C.; Benson, S.; McKinley, B.J.; Carodiskey, T.

    1992-08-01

    Special UT transducer parts, capable of focusing incident signals within a 25 mm {times} 25 mm {times} 25 mm volume in an austenitic stainless weld metal at depths that varied from 25 mm to 127 mm, were developed and demonstrated to be capable of detecting a defect with cross section equivalent to that of a 4.76 mm-dia flat-bottom hole. Defect length sizing could be accomplished to {plus_minus}50% for 100% of the time and to {plus_minus}25% on selected defect types as follows: porosity groups, 100%; cracks, 67%; combined slag and porosity, 60%; and linear slag indications, 59%. Extensive linear elastic-fracture-mechanics analyses were performed to establish allowable defect sizes at functions of stress, based on a cyclic-life criterion of 10{sup 3} full power cycles of the MFTF-B magnet system. These defect sizes were used to determine which UT indicating were to be removed and repaired and which were to be retained and their recorded sizes and locations.

  20. Friction Stir Weld Inspection Through Conductivity Imaging Using Shaped Field MWM(Registered Trademark) - Arrays

    Science.gov (United States)

    Goldfine, Neil; Grundy, David; Zilberstein, Vladimir; Kinchen, David G.; McCool, Alex (Technical Monitor)

    2002-01-01

    Friction Stir Welds (FSW) of Al 2195-T8 and Al 2219-T8, provided by Lockheed Martin Michoud Operations, were inspected for lack-of-penetration (LOP) defects using a custom designed MWM-Array, a multi-element eddy-current sensor. MWM (registered trademark) electrical conductivity mapping demonstrated high sensitivity to LOP as small as 0.75 mm (0.03 in.), as confirmed by metallographic data that characterized the extent of LOP defects. High sensitivity and high spatial resolution was achieved via a 37-element custom designed MWM-Array allowing LOP detection using the normalized longitudinal component of the MWM measured conductivity. This permitted both LOP detection and correlation of MWM conductivity features with the LOP defect size, as changes in conductivity were apparently associated with metallurgical features within the near-surface layer of the LOP defect zone. MWM conductivity mapping reveals information similar to macro-etching as the MWM-Array is sensitive to small changes in conductivity due to changes in microstructure associated with material thermal processing, in this case welding. The electrical conductivity measured on the root side of FSWs varies across the weld due to microstructural differences introduced by the FSW process, as well as those caused by planar flaws. Weld metal, i.e., dynamically recrystallized zone (DXZ), thermomechanically affected zone (TMZ), heat-affected zone (HAZ), and parent metal (PM) are all evident in the conductivity maps. While prior efforts had met with limited success for NDE (Nondestructive Evaluation) of dissimilar alloy, Al2219 to Al2195 FSW, the new custom designed multi-element MWM-Array achieved detection of all LOP defects even in dissimilar metal welds.

  1. Investigation of fracture in pressurized gas metal arc welded beryllium

    International Nuclear Information System (INIS)

    Heiple, C.R.; Merlini, R.J.; Adams, R.O.

    1976-01-01

    Premature failures during proof testing of pressurized-gas-metal-arc (PGMA) welded beryllium assemblies were investigated. The failures were almost entirely within the beryllium (a forming grade, similar to HP-10 or S-240), close to and parallel to the weld interface. The aluminum-silicon weld filler metal deposit was not centered in the weld groove in the failed assemblies, and failure occurred on the side of the weld opposite the bias in the weld deposit. Tensile tests of welded samples demonstrated that the failures were unrelated to residual machining damage from cutting the weld groove, and indicated small lack-of-fusion areas near the weld start to be the most likely origin of the failures. Acoustic emission was monitored during tensile tests of the welds. The majority of acoustic emission was probably from crack propagation through the weld filler metal. Tensile bars cut from the region of the weld start behaved differently; they failed at lower loads and exhibited an acoustic emission behavior believed to be from cracking in the weld metal-beryllium interface. Improvement in the quality of these and similar beryllium welds can therefore most likely be made by centering the weld deposit and reducing the size of the weld start defect. 21 fig

  2. Assessment of weld joints of steam generator of prototype fast breeder reactor by microfocal radiography

    International Nuclear Information System (INIS)

    Venkatraman, B.; Saravanan, T.; Jayakumar, T.; Kalyanasundaram, P.; Raj, B.

    2004-01-01

    The tube to tubesheet (TTS) welds of steam generator of Prototype Fast Breeder Reactor (PFBR) are quite critical. Sodium flows on shell side and water on tube side. Any failure would thus be catastrophic. Apart from defects such as porosities, wall thinning due to concavity is endemic in such joints and needs to be detected. This paper presents the methodologies developed for quantitative evaluation of defects including wall thinning due to concavity in the TTS welds by micro focal radiography. The method has been successfully adopted in the shop floor for the evaluation of TTS welds of steam generator and evaporator. (author)

  3. Nuclear Technology. Course 28: Welding Inspection. Module 28-6, Process Controls.

    Science.gov (United States)

    Espy, John

    This sixth in a series of ten modules for a course titled Welding Inspection describes procedures review, process monitoring, and weld defect analysis. The module follows a typical format that includes the following sections: (1) introduction, (2) module prerequisites, (3) objectives, (4) notes to instructor/student, (5) subject matter, (6)…

  4. Assessment of cracking in dissimilar metal welds

    International Nuclear Information System (INIS)

    Jenssen, Anders; Norrgaard, K.; Lagerstroem, J.; Embring, G.; Tice, D.R.

    2001-08-01

    During the refueling in 2000, indications were observed by non-destructive testing at four locations in the reactor pressure vessel (RPV) nozzle to safe end weld in Ringhals 4. All indications were confined to the outlet nozzle (hotleg) oriented at 25 deg, a nozzle with documented repair welding. Six boat samples were removed from the four locations, and the samples were subsequently subjected to a metallographic examination. The objectives were to establish the fracture morphology, and if possible the root cause for cracking. The examination revealed that cracks were present at all four boat sample locations and that they all were confined to the weld metal, alloy 182. Cracking extended in the axial direction of the safe-end. There was no evidence of any cracks extending into the RPV-steel, or the stainless steel safe-end. All cracking was interdendritic and significantly branched. Among others, these observations strongly suggested crack propagation mainly was caused by interdendritic stress corrosion cracking. In addition, crack type defects and isolated areas on the fracture surfaces suggested the presence of hot cracking, which would have been formed during fabrication. The reason for crack initiation could not be established based on the boat samples examined. However, increased stress levels due to repair welding, cold work from grinding, and defects produced during fabrication, e. g. hot cracks, may alone or in combination have contributed to crack initiation

  5. Preliminary study on detection technology of the cladding weld of spent fuel storage pool

    Science.gov (United States)

    Qi, Pan; Cui, Hongyan; Feng, Meiming; Shao, Wenbin; Liao, Shusheng; Li, Wei

    2018-04-01

    As the first barrier of the Spent fuel storage pool, the steel cladding using different sizes (length×width) of 304L stainless steel with 3˜6mm thickness plate argon arc welded together which is direct contacted with boric acid water. Environmental humidity between the back of steel cladding and concrete, makes phosphate, chloride ion overflowed from the concrete that corroded on the weld zone with different mechanism. Part of the corrosion defects can penetrate leaded to leakage of boric acid water in penetration position accelerated crack propagation. In view of the above situation and combined with the actual needs of the power plant, the development of effective underwater nondestructive testing means of the weld area for periodic inspection and monitoring is necessary. A single method may lead to the missing of defects detection due to weld reinforcement unpolished. In this paper, eddy current array (ARRAY) and Alternating Current Field Measurement (ACFM) are adapted to test the limit sensitivity and resolution through by the specimens with artificial defects which make their detection abilities close to satisfy engineering requirements. The preliminary study found that Φ0.5mm through-wall hole and with 2mm length and 0.3mm width through-wall crack in the weld can be good inspected.

  6. Evaluation of endcap welds in thin walled fuel elements of pressurised heavy water reactor by ultrasonic testing

    International Nuclear Information System (INIS)

    Subramanian, C.V.; Thavasimuthu, M.; Kalyansundaram, P.; Bhattacharya, D.K.; Raj, Baldev

    1992-01-01

    In the pressurised heavy water reactor systems of India, the fuel is encapsulated in thin-walled tubes (0.342 mm) closed with endcaps by resistance welding. The integrity of these fuel elements should be such that no fission gas leakage takes place during reactor operation. The quality control of the endcap welds needed to satisfy this requirement includes helium leak test and destructive metallographic test (on sample basis). This paper discusses the feasibility study that has been carried out in the author's laboratory to develop an immersion ultrasonic test method for evaluating the integrity of the endcap weld region. Through holes of various sizes (0.15mm, 0.2mm, 0.4mm diameter and 0.185mm and 0.342mm deep) were machined by spark erosion machining at the weld joints to simulate defects of various sizes. Line focussed probe of 10 MHz frequency was used for the testing. It was possible to detect clearly all the machined holes. Based on the above standardised procedure, further testing was done on endcap welds which were rejected during fabrication on account of showing leak rate of 3 x 10 -6 std. c.c/sec. or more during helium leak test. Though it was possible to get echoes from the natural defects in the rejected tubes with echo amplitude of 70%, the signal was accompanied by the geometrical reflection (noise) giving an amplitude of 20% from the weld region, giving rise to the problem of resolving the defect indication from the geometric indications. Therefore, signal analysis approach was adopted. The signal obtained from the weld zone were subjected to various analysis procedures like a) autopower spectrum, b) total energy content and c) demodulated auto correlation function. It was possible by all the three methods to differentiate the defect signal from those due to weld geometry or due to noise. Subsequently, metallography was carried out to characterise the type of defects observed during the ultrasonic testing. (author). 4 figs

  7. Development of an auto-welding system for CRD nozzle repair welds using a 3D laser vision sensor

    International Nuclear Information System (INIS)

    Park, K.; Kim, Y.; Byeon, J.; Sung, K.; Yeom, C.; Rhee, S.

    2007-01-01

    A control rod device (CRD) nozzle attaches to the hemispherical surface of a reactor head with J-groove welding. Primary water stress corrosion cracking (PWSCC) causes degradation in these welds, which requires that these defect areas be repaired. To perform this repair welding automatically on a complicated weld groove shape, an auto-welding system was developed incorporating a laser vision sensor that measures the 3-dimensional (3D) shape of the groove and a weld-path creation program that calculates the weld-path parameters. Welding trials with a J-groove workpiece were performed to establish a basis for developing this auto-welding system. Because the reactor head is placed on a lay down support, the outer-most region of the CRD nozzle has restricted access. Due to this tight space, several parameters of the design, such as size, weight and movement of the auto-welding system, had to be carefully considered. The cross section of the J-groove weld is basically an oval shape where the included angle of the J-groove ranges from 0 to 57 degrees. To measure the complex shape, we used double lasers coupled to a single charge coupled device (CCD) camera. We then developed a program to generate the weld-path parameters using the measured 3D shape as a basis. The program has the ability to determine the first and final welding positions and to calculate all weld-path parameters. An optimized image-processing algorithm was applied to resolve noise interference and diffused reflection of the joint surfaces. The auto-welding system is composed of a 4-axis manipulator, gas tungsten arc welding (GTAW) power supply, an optimized designed and manufactured GTAW torch and a 3D laser vision sensor. Through welding trials with 0 and 38-degree included-angle workpieces with both J-groove and U-groove weld, the performance of this auto-welding system was qualified for field application

  8. Qualification of phased array ultrasonic examination on T-joint weld of austenitic stainless steel for ITER vacuum vessel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, G.H. [ITER Korea, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Park, C.K., E-mail: love879@hanmail.net [ITER Korea, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Jin, S.W.; Kim, H.S.; Hong, K.H.; Lee, Y.J.; Ahn, H.J.; Chung, W. [ITER Korea, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Jung, Y.H.; Roh, B.R. [Hyundai Heavy Industries Co. Ltd., Ulsan 682-792 (Korea, Republic of); Sa, J.W.; Choi, C.H. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France)

    2016-11-01

    Highlights: • PAUT techniques has been developed by Hyundai Heavy Industries Co., LTD (HHI) and Korea Domestic Agency (KODA) to verify and settle down instrument calibration, test procedures, image processing, and so on. As the first step of development for PAUT technique, Several dozens of qualification blocks with artificial defects, which are parallel side drilled hole, embedded lack of fusion, embedded repair weld notch, and so on, have been designed and fabricated to simulate all potential defects during welding process. Real UT qualification group-1 for T-joint weld was successfully conducted in front of ANB inspector. • In this paper, remarkable progresses of UT qualification are presented for ITER vacuum vessel. - Abstract: Full penetration welding and 100% volumetric examination are required for all welds of pressure retaining parts of the ITER Vacuum Vessel (VV) according to RCC-MR Code and French Order of Nuclear Pressure Equipment (ESPN). The NDE requirement is one of important technical issues because radiographic examination (RT) is not applicable to many welding joints. Therefore the ultrasonic examination (UT) has been selected as an alternative method. Generally the UT on the austenitic welds is regarded as a great challenge due to the high attenuation and dispersion of the ultrasonic signal. In this paper, Phased array ultrasonic examination (PAUT) has been introduced on double sided T-shape austenitic welds of the ITER VV as a major NDE method as well as RT. Several dozens of qualification blocks with artificial defects, which are parallel side drilled hole, embedded lack of fusion, embedded repair weld notch, embedded parallel vertical notch, and so on, have been designed and fabricated to simulate all potential defects during welding process. PAUT techniques on the thick austenitic welds have been developed taking into account the acceptance criteria. Test procedure including calibration of equipment is derived and qualified through

  9. Genotype-environment interaction and phenotypic stability for girth growth and rubber yield of Hevea clones in São Paulo State, Brazil

    Directory of Open Access Journals (Sweden)

    Gonçalves Paulo de Souza

    2003-01-01

    Full Text Available The best-yielding, best vigour and most stable Hevea clones are identified by growing clones in different environments. However, research on the stability in Hevea brasiliensis (Willd. Adr. ex Juss. Muell.-Arg. is scarce. The objectives of this work were to assess genotype-environment interaction and determine stable genotypes. Stability analysis were performed on results for girth growth and rubber yield of seven clones from five comparative trials conducted over 10 years (girth growth and four years (rubber yield in São Paulo State, Brazil. Stability was estimated using the Eberhart and Russell (1966 method. Year by location and location variability were the dominant sources of interactions. The stability analysis identified GT 1 and IAN 873 as the most stable clones for girth growth and rubber yield respectively since their regression coefficients were almost the unity (b = 1 and they had one of the lowest deviations from regressions (S2di. Their coefficient of determination (R² was as high as 89.5% and 89.8% confirming their stability. In contrast, clones such as PB 235, PR 261, and RRIM 701 for girth growth and clones such as GT 1 for rubber yield with regression coefficients greater than one were regarded as sensitive to environment changes.

  10. Penile Girth Enhancement With Polymethylmethacrylate-Based Soft Tissue Fillers.

    Science.gov (United States)

    Casavantes, Luis; Lemperle, Gottfried; Morales, Palmira

    2016-09-01

    An unknown percentage of men will take every risk to develop a larger penis. Thus far, most injectables have caused serious problems. Polymethylmethacrylate (PMMA) microspheres have been injected as a wrinkle filler and volumizer with increasing safety since 1989. To report on a safe and permanently effective method to enhance penile girth and length with an approved dermal filler (ie, PMMA). Since 2007, the senior author has performed penile augmentation in 752 men mainly with Metacrill, a suspension of PMMA microspheres in carboxymethyl-cellulose. The data of 729 patients and 203 completed questionnaires were evaluated statistically. The overall satisfaction rate was 8.7 on a scale of 1 to 10. After one to three injection sessions, average girth increased by 3.5 cm, or 134% (10.2 to 13.7 cm = 134.31%). Penile length also increased by weight and stretching force of the implant from an average of 9.8 to 10.5 cm. Approximately half the patients perceived some irregularities of the implant, which caused no problems. Complications occurred in 0.4%, when PMMA nodules had to be surgically removed in three of the 24% of patients who had a non-circumcised penis. After 5 years of development, penile augmentation with PMMA microspheres appears to be a natural, safe, and permanently effective method. The only complication of nodule formation and other irregularities can be overcome by an improved injection technique and better postimplantation care. Copyright © 2016 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.

  11. Dissimilar steel welding and overlay covering with nickel based alloys using SWAM (Shielded Metal Arc Welding) and GTAW (Gas Tungsten Arc Welding) processes in the nuclear industry

    Energy Technology Data Exchange (ETDEWEB)

    Arce Chilque, Angel Rafael [Centro Tecnico de Engenharia e Inovacao Empresarial Ltda., Belo Horizonte, MG (Brazil); Bracarense, Alexander Queiroz; Lima, Luciana Iglesias Lourenco [Federal University of Minas Gerais (UFMG), Belo Horizonte, MG (Brazil); Quinan, Marco Antonio Dutra; Schvartzman, Monica Maria de Abreu Mendonca [Nuclear Technology Development Centre (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Marconi, Guilherme [Federal Center of Technological Education (CEFET-MG), Belo Horizonte, MG (Brazil)

    2009-07-01

    This work presents the welding of dissimilar ferritic steel type A508 class 3 and austenitic stainless steel type AISI 316 L using Inconel{sup R} 600 (A182 and A82) and overlay covering with Inconel{sup R} 690 (A52) as filler metal. Dissimilar welds with these materials without defects and weldability problems such as hot, cold, reheat cracking and Ductility Dip Crack were obtained. Comparables mechanical properties to those of the base metal were found and signalized the efficiency of the welding procedure and thermal treatment selected and used. This study evidences the importance of meeting compromised properties between heat affected zone of the ferritic steel and the others regions presents in the dissimilar joint, to elaborate the dissimilar metal welding procedure specification and weld overlay. Metallographic studies with optical microscopy and Vickers microhardness were carried out to justified and support the results, showing the efficiency of the technique of elaboration of dissimilar metal welding procedure and overlay. The results are comparables and coherent with the results found by others. Some alternatives of welding procedures are proposed to attain the efficacy. Further studies are proposed like as metallographic studies of the fine microstructure, making use, for example, of scanning electron microscope (SEM adapted with an EDS) to explain looking to increase the resistance to primary water stress corrosion (PWSCC) in nuclear equipment. (author)

  12. Formation of Oxides in the Interior of Friction Stir Welds

    Science.gov (United States)

    Schneider, Judy; Chen, Po; Nunes, Arthur C., Jr.

    2016-01-01

    In friction stir welding (FSWing) the actual solid state joining takes place between the faying surfaces which form the weld seam. Thus the seam trace is often investigated for clues when the strength of the weld is reduced. Aluminum and its alloys are known to form a native, protective oxide on the surface. If these native surface oxides are not sufficiently broken up during the FSW process, they are reported to remain in the FSW interior and weaken the bond strength. This type of weld defect has been referred to as a lazy "S", lazy "Z", joint line defect, kissing bond, or residual oxide defect. Usually these defects are mitigated by modification of the process parameters, such as increased tool rotation rate, which causes a finer breakup of the native oxide particles. This study proposes that there may be an alternative mechanism for formation of oxides found within the weld nugget. As the oxidation rate increases at elevated temperatures above 400ºC, it may be possible for enhanced oxidation to occur on the interior surfaces during the FSW process from entrained air entering the seam gap. Normally, FSWs of aluminum alloys are made without a purge gas and it is unknown how process parameters and initial fit up could affect a potential air path into the interior during the processing. In addition, variations in FSW parameters, such as the tool rotation, are known to have a strong influence on the FSW temperature which may affect the oxidation rate if internal surfaces are exposed to entrained air. A series of FSWs were made in 3 different thickness panels of AA2219 (0.95, 1.27 and 1.56 cm) at 2 different weld pitches. As the thickness of the panels increased, there was an increased tendency for a gap to form in advance of the weld tool. If sufficient air is able to enter the workpiece gap prior to consolidation, the weld temperature can increase the oxidation rate on the interior surfaces. These oxidation rates would also be accelerated in areas of localized

  13. Hot-crack test for aluminium alloys welds using TIG process

    Science.gov (United States)

    Niel, A.; Deschaux-Beaume, F.; Bordreuil, C.; Fras, G.

    2010-06-01

    Hot cracking is a critical defect frequently observed during welding of aluminium alloys. In order to better understand the interaction between cracking phenomenon, process parameters, mechanical factors and microstructures resulting from solidification after welding, an original hot-cracking test during welding is developed. According to in-situ observations and post mortem analyses, hot cracking mechanisms are investigated, taking into account the interaction between microstructural parameters, depending on the thermal cycles, and mechanical parameters, depending on geometry and clamping conditions of the samples and on the thermal field on the sample. Finally, a process map indicating the limit between cracking and non-cracking zones according to welding parameters is presented.

  14. Qualification of a digital radiographic equipment for thin weld inspection

    International Nuclear Information System (INIS)

    Boulanger, G.; Furlan, J.

    1988-04-01

    The level of quality asked for welding plugs to fuel pins requires to test all the welds, that is to say about 200 000 welds of the fuel assemblies of the fast reactor Super-Phenix. X-ray radiography is one of the tests. Before the operation was done on a film by the personnel automatic selection of tested material and image processing are substituted to the film in the digital radiographic equipment IRENE. Main advantages are: elimination of human factor in defect appreciation, reliability of image processing and instant availability. On 1000 welds a good correlation is obtained between results on films and those of image processing [fr

  15. Development of Managing Program for Small Bore Piping Socket Weld on the Secondary System of NPP

    International Nuclear Information System (INIS)

    Lee, Dong Min; Ryu, Jong Myeong; Cho, Hong Seok; Cho, Ki Hyun; Choi, Sang Hoon; Kim, Man Hee

    2011-01-01

    Kori unit 3 had stopped operation due to leakage at steam generator drain line socket weld on June 6th, 2008. The cause of socket weld damage was known as welding defect and fatigue by vibration under normal operation. With above reason, the government has been required developing management program for small bore piping socket weld. Therefore, we have developed the socket weld management program to secure reliability and soundness of socket welds which are located at all domestic NPPs

  16. Microstructures and mechanical properties of friction stir welded dissimilar steel-copper joints

    Energy Technology Data Exchange (ETDEWEB)

    Jafari, M.; Abbasi, M.; Poursina, D.; Gheysarian, A. [University of Kashan, Kashan (Iran, Islamic Republic of); Bagheri, B. [Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)

    2017-03-15

    Welding dissimilar metals by fusion welding is challenging. It results in welding defects. Friction stir welding (FSW) as a solid-state joining method can overcome these problems. In this study, 304L stainless steel was joined to copper by FSW. The optimal values of the welding parameters traverse speed, rotational speed, and tilt angle were obtained through Response surface methodology (RSM). Under optimal welding conditions, the effects of welding pass number on the microstructures and mechanical properties of the welded joints were investigated. Results indicated that appropriate values of FSW parameters could be obtained by RSM and grain size refinement during FSW mainly affected the hardness in the weld regions. Furthermore, the heat from the FSW tool increased the grain size in the Heat-affected zones (HAZs), especially on the copper side. Therefore, the strength and ductility decreased as the welding pass number increased because of grain size enhancement in the HAZs as the welding pass number increased.

  17. Damage Tolerance Assessment of Friction Pull Plug Welds in an Aluminum Alloy

    Science.gov (United States)

    McGill, Preston; Burkholder, Jonathan

    2012-01-01

    Friction stir welding is a solid state welding process used in the fabrication of cryogenic propellant tanks. Self-reacting friction stir welding is one variation of the friction stir weld process being developed for manufacturing tanks. Friction pull plug welding is used to seal the exit hole that remains in a circumferential self-reacting friction stir weld. A friction plug weld placed in a self-reacting friction stir weld results in a non-homogenous weld joint where the initial weld, plug weld, their respective heat affected zones and the base metal all interact. The welded joint is a composite plastically deformed material system with a complex residual stress field. In order to address damage tolerance concerns associated with friction plug welds in safety critical structures, such as propellant tanks, nondestructive inspection and proof testing may be required to screen hardware for mission critical defects. The efficacy of the nondestructive evaluation or the proof test is based on an assessment of the critical flaw size. Test data relating residual strength capability to flaw size in an aluminum alloy friction plug weld will be presented.

  18. Robotic and automatic welding development at the Marshall Space Flight Center

    Science.gov (United States)

    Jones, C. S.; Jackson, M. E.; Flanigan, L. A.

    1988-01-01

    Welding automation is the key to two major development programs to improve quality and reduce the cost of manufacturing space hardware currently undertaken by the Materials and Processes Laboratory of the NASA Marshall Space Flight Center. Variable polarity plasma arc welding has demonstrated its effectiveness on class 1 aluminum welding in external tank production. More than three miles of welds were completed without an internal defect. Much of this success can be credited to automation developments which stabilize the process. Robotic manipulation technology is under development for automation of welds on the Space Shuttle's main engines utilizing pathfinder systems in development of tooling and sensors for the production applications. The overall approach to welding automation development undertaken is outlined. Advanced sensors and control systems methodologies are described that combine to make aerospace quality welds with a minimum of dependence on operator skill.

  19. Defect analysis program for LOFT. Progress report, 1977

    International Nuclear Information System (INIS)

    Doyle, R.E.; Scoonover, T.M.

    1978-03-01

    In order to alleviate problems encountered while performing previous defect analyses on components of the LOFT system, regions of LOFT most likely to require defect analysis have been identified. A review of available documentation has been conducted to identify shapes, sizes, materials, and welding procedures and to compile mechanical property data. The LOFT Reactor Vessel Material Surveillance Program has also been reviewed, and a survey of available literature describing existing techniques for conducting elastic-plastic defect analysis was initiated. While large amounts of mechanical property data were obtained from the available documentation and the literature, much information was not available, especially for weld heat-affected zones. Therefore, a program of mechanical property testing is recommended for FY-78 as well as continued literature search. It is also recommended that fatigue-crack growth-rate data be sought from the literature and that evaluation of the various techniques of elastic-plastic defect analysis be continued. Review of additional regions of the LOFT system in the context of potential defect analysis will be conducted as time permits

  20. Micro friction stir welding of copper electrical contacts

    Directory of Open Access Journals (Sweden)

    D. Klobčar

    2014-10-01

    Full Text Available The paper presents an analysis of micro friction stir welding (μFSW of electrolytic tough pitch copper (CuETP in a lap and butt joint. Experimental plan was done in order to investigate the influence of tool design and welding parameters on the formation of defect free joints. The experiments were done using universal milling machine where the tool rotation speed varied between 600 and 1 900 rpm, welding speed between 14 and 93 mm/min and tilt angle between 3° and 5°. From the welds samples for analysis of microstructure and samples for tensile tests were prepared. The grain size in the nugget zone was greatly reduced compared to the base metal and the joint tensile strength exceeded the strength of the base metal.

  1. Microstructures and Mechanical Properties of Friction Tapered Stud Overlap Welding for X65 Pipeline Steel Under Wet Conditions

    Science.gov (United States)

    Xu, Y. C.; Jing, H. Y.; Han, Y. D.; Xu, L. Y.

    2017-08-01

    This paper exhibits a novel in situ remediation technique named friction tapered stud overlap welding (FTSOW) to repair a through crack in structures and components in extremely harsh environments. Furthermore, this paper presents variations in process data, including rotational speed, stud displacement, welding force, and torque for a typical FTSOW weld. In the present study, the effects of welding parameters on the microstructures and mechanical properties of the welding joints were investigated. Inapposite welding parameters consisted of low rotational speeds and welding forces, and when utilized, they increased the occurrence of a lack of bonding and unfilled defects within the weld. The microstructures with a welding zone and heat-affected zone mainly consisted of upper bainite. The hardness value was highest in the welding zone and lowest in the base material. During the pull-out tests, all the welds failed in the stud. Moreover, the defect-free welds broke at the interface of the lap plate and substrate during the cruciform uniaxial tensile test. The best tensile test results at different depths and shear tests were 721.6 MPa and 581.9 MPa, respectively. The favorable Charpy impact-absorbed energy was 68.64 J at 0 °C. The Charpy impact tests revealed a brittle fracture characteristic with a large area of cleavage.

  2. Subminiature eddy-current transducers designed to study welded joints of titanium alloys

    Science.gov (United States)

    Malikov, V. N.; Dmitriev, S. F.; Katasonov, A. O.; Sagalakov, A. M.; Ishkov, A. V.

    2017-12-01

    Eddy current transducers (ECT) are used to construct a sensor for investigating titanium sheets connected by a welded joint. The paper provides key technical information about the eddy current transducer used and describes the procedure of measurements that makes it possible to control defects in welded joints of titanium alloys. It is capable of automatically changing the filtering cutoff frequency and operating frequency of the device. Experiments were conducted on welded VT1-0 titanium plates. The paper contains the results of these measurements. The dependence data facilitates the assessment of the quality of the welded joints and helps make an educated conclusion about welding quality.

  3. The effects of penile girth enhancement using injectable hyaluronic acid gel, a filler.

    Science.gov (United States)

    Kwak, Tae Il; Oh, MiMi; Kim, Je Jong; Moon, Du Geon

    2011-12-01

    Despites the debates on penile girth enhancement (PGE), demands for enhancement are increasing. Recently, various fillers have been widely used for soft tissue augmentation with proven efficacy and safety. To identify the feasibility and efficacy of PGE by injection of filler. Fifty patients with subjective small penis who visited Korea University Guro outpatient clinic were enrolled and prospectively followed. Restylane Sub-Q (Q-med, Upssala, Sweden) was injected into the fascial layer of penile body via 21G cannula with "Back & Forth Technique" and homogenized with a roller. From April 2006 to February 2008, 50 patients were enrolled and 41 patients were followed until 18 months after PGE. Changes in penile girth at midshaft were measured by tapeline at 1 and 18 months. Patient's visual estimation of residual volume (Gr 0-4), patient's satisfaction (Gr 0-4), and any adverse reactions were also evaluated. Mean injected volume was 20.56 cc (18-22). Compared with basal girth of 7.48 ± 0.35 cm, maximal circumference was significantly increased to 11.41 ± 0.34 cm at 1 month (P < 0.0001) and maintained as 11.26 ± 0.33 cm until 18 months. In patient's visual estimation, two patients complained the decrease as Gr 3 with focal depression at 1 month. At 18 months, all patients answered as Gr 4 without asymmetry. Patient's and partner's satisfaction score was 3.71 ± 0.46 and 3.65 ± 0.48 at 1 month and 3.34 ± 0.53 and 3.38 ± 0.49 at 18 months. There were no inflammatory signs or serious adverse reactions in all cases. Considering the property of material, methods, and follow-up results of 18 months, PGE using filler is a very effective and safe technique for penile augmentation. © 2010 International Society for Sexual Medicine.

  4. Distribution of Argon Arc Contaminated with Nitrogen as Function of Frequency in Pulsed TIG Welding

    Science.gov (United States)

    Takahashi, Hiroki; Tanaka, Tatsuro; Yamamoto, Shinji; Iwao, Toru

    2016-09-01

    TIG arc welding is the high-quality and much applicable material joining technology. However, the current has to be small because the cathode melting should be prevented. In this case, the heat input to the welding pool becomes low, then, the welding defect sometimes occurs. The pulsed TIG arc welding is used to improve this disadvantage This welding can be controlled by some current parameters such as frequency However, few report has reported the distribution of argon arc contaminated with nitrogen It is important to prevent the contamination of nitrogen because the melting depth increases in order to prevent the welding defects. In this paper, the distribution of argon arc contaminated as function of frequency with nitrogen in pulsed TIG welding is elucidated. The nitrogen concentration, the radial flow velocity, the arc temperature were calculated using the EMTF simulation when the time reached at the base current. As a result, the nitrogen concentration into the arc became low with increasing the frequency The diffusion coefficient decreased because of the decrement of temperature over 4000 K. In this case, the nitrogen concentration became low near the anode. Therefore, the nitrogen concentration became low because the frequency is high.

  5. Development of phased array UT procedure for crack depth sizing on nickel based alloy weld

    International Nuclear Information System (INIS)

    Hirasawa, Taiji; Okada, Hisao; Fukutomi, Hiroyuki

    2012-01-01

    Recently, it is reported that the primary water stress corrosion cracking (PWSCC) has been occurred at the nickel based alloy weld components such as steam generator safe end weld, reactor vessel safe end weld, and so on, in PWR. Defect detection and sizing is important in order to ensure the reliable operation and life extension of nuclear power plants. In the reactor vessel safe end weld, it was impossible to measure crack depth of PWSCC. The crack was detected in the axial direction of the safe end weld. Furthermore, the crack had some features such as shallow, large aspect ratio (ratio of crack depth and length), sharp geometry of crack tip, and so on. Therefore, development and improvement of defect detection and sizing capabilities for ultrasonic inspection technique is required. Phased array UT technique was applied to nickel based alloy weld specimen with SCC cracks. From the experimental results, good accuracy of crack depth sizing by phased array UT for the inside inspection was shown. From these results, UT procedure for crack depth sizing was verified. Therefore, effectiveness of phased array UT for crack depth sizing in the nickel based alloy welds was shown. (author)

  6. Mechanical behaviour of cracked welded structures including mismatch effect

    International Nuclear Information System (INIS)

    Hornet, P.

    2002-01-01

    The most important parameters for predicting more precisely the fracture behaviour of welded structures have been identified. In particular, the plasticity development at the crack tip in the ligament appeared as a major parameter to evaluate the yield load of such a complex structure. In this way defect assessments procedures have been developed or modified to take into account the mismatch effect that is to say the mechanical properties of the different material constituting the weld joint. This paper is a synthesis of the work done in the past at Electricite de France on this topic in regards with other work done in France or around the World. The most important parameters which control the plasticity development at the crack tip and so mainly influence the fracture behaviour of welded structures are underlined: the mismatch ratio (weld to base metal yield strength ratio), the mismatch ratio (weld to base metal yield strength ratio), the ligament size and the weld width. Moreover, commonly used fracture toughness testing procedures developed in case of homogeneous specimens cannot be used in a straight forward manner and so has to be modified to take into account the mismatch effect. Number or defect assessment procedures taking into account the mismatch effect by considering the yield load of the welded structure are shortly described. Then, the 'Equivalent Material Method' developed at EDF which allows a good prediction of the applied J-Integral at the crack tip is more detailed. This procedure includes not only both weld and base metal yield strength, the structure geometry, the crack size and the weld dimension using the yield load of the real structures but also includes the effect of both weld and base metal strain hardening exponents. Some validations of this method are proposed. Finally, the ability of finite element modelling to predict the behaviour of such welded structures is demonstrated by modelling real experiments: crack located in the middle of

  7. Development and modeling of hot tearing test in TIG welding of aluminum alloy 6056

    OpenAIRE

    Niel , Aurélie; Fras , Gilles; Deschaux-Beaume , Frédéric; Bordreuil , Cyril

    2010-01-01

    International audience; TIG welding process is widely used in the aeronautic industry. However, the increase of productivity which generally require an increase of welding speed is limited by the appearance of defects, such as hot tearing. This study focuses on the analysis of hot tearing in TIG welding on a 6056 aluminum alloy, used in aircraft manufacturing. Thanks to the developpement of an original hot tearing test and to numerical simulation of welding process, the influence of various p...

  8. In situ laser-induced breakdown spectroscopy measurements of chemical compositions in stainless steels during tungsten inert gas welding

    Science.gov (United States)

    Taparli, Ugur Alp; Jacobsen, Lars; Griesche, Axel; Michalik, Katarzyna; Mory, David; Kannengiesser, Thomas

    2018-01-01

    A laser-induced breakdown spectroscopy (LIBS) system was combined with a bead-on-plate Tungsten Inert Gas (TIG) welding process for the in situ measurement of chemical compositions in austenitic stainless steels during welding. Monitoring the weld pool's chemical composition allows governing the weld pool solidification behavior, and thus enables the reduction of susceptibility to weld defects. Conventional inspection methods for weld seams (e.g. ultrasonic inspection) cannot be performed during the welding process. The analysis system also allows in situ study of the correlation between the occurrence of weld defects and changes in the chemical composition in the weld pool or in the two-phase region where solid and liquid phase coexist. First experiments showed that both the shielding Ar gas and the welding arc plasma have a significant effect on the selected Cr II, Ni II and Mn II characteristic emissions, namely an artificial increase of intensity values via unspecific emission in the spectra. In situ investigations showed that this artificial intensity increase reached a maximum in presence of weld plume. Moreover, an explicit decay has been observed with the termination of the welding plume due to infrared radiation during sample cooling. Furthermore, LIBS can be used after welding to map element distribution. For austenitic stainless steels, Mn accumulations on both sides of the weld could be detected between the heat affected zone (HAZ) and the base material.

  9. Welding of Zr-based bulk metallic glasses

    International Nuclear Information System (INIS)

    Elahi, M.

    2010-01-01

    Recently, many bulk metallic glass (BMG) materials with high specific strength, hardness and superior corrosion resistance have been developed and the maximum thickness of some Zr-based BMGs have reached several tenths of millimeters. Nevertheless, homogeneous glassy BMGs are not thick enough to be used for structural applications. In order to extend the engineering applications of BMG materials, BMG welding technologies needed to be developed. Specifically, the welding technologies of dissimilar materials such as BMG materials to crystalline alloys are to be developed. The functional use of the specific properties of each material in dissimilar material combination provides flexible design possibilities for products. In this project electron beam welding is employed to join BMG with BMG of different composition as well as with different crystalline materials (i.e. Hastealoy C-276, Inconel-625 and pure Ti metal). Defects free weld joint was achieved in BMG-BMG welding. Some cracks were produced in melt zone of BMG-Ti and BMG-Hastealoy C-276 welding while at joint they fuse properly with BMG. Inconel-625 could not properly weld with BMG. In all cases, hardness of melt zone was found to be higher than the base metals and the heat affected zone (HAZ). (author)

  10. Scaling of spiking and humping in keyhole welding

    Energy Technology Data Exchange (ETDEWEB)

    Wei, P S; Chuang, K C [Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan (China); DebRoy, T [Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802 (United States); Ku, J S, E-mail: pswei@mail.nsysu.edu.tw, E-mail: cielo.zhuang@gmail.com, E-mail: rtd1@psu.edu, E-mail: jsku@mail.nsysu.edu.tw [Institute of Materials Science and Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan (China)

    2011-06-22

    Spiking, rippling and humping seriously reduce the strength of welds. The effects of beam focusing, volatile alloying element concentration and welding velocity on spiking, coarse rippling and humping in keyhole mode electron-beam welding are examined through scale analysis. Although these defects have been studied in the past, the mechanisms for their formation are not fully understood. This work relates the average amplitudes of spikes to fusion zone depth for the welding of Al 6061, SS 304 and carbon steel, and Al 5083. The scale analysis introduces welding and melting efficiencies and an appropriate power distribution to account for the focusing effects, and the energy which is reflected and escapes through the keyhole opening to the surroundings. The frequency of humping and spiking can also be predicted from the scale analysis. The analysis also reveals the interrelation between coarse rippling and humping. The data and the mechanistic findings reported in this study are useful for understanding and preventing spiking and humping during keyhole mode electron and laser beam welding.

  11. Comparing weld inspection codes: radiography vs. ultrasonics

    International Nuclear Information System (INIS)

    Moles, M.; Ginzel, E.

    2007-01-01

    Requirements for weld quality are continually increasing. This is due to a combination of factors: increased public awareness; bigger legal penalties; improved and thinner steels; better analysis techniques such as Engineering Critical Assessment (ECA); higher material costs. Weld quality is primarily dictated by construction codes, which should reflect the needs of society and industry: safety, the environment, society, and cost-effectiveness. As R and D produces new products, techniques and procedures, ideally these developments should be reflected in the codes. While pressure vessel and structural welding are certainly included here, it is really pipeline weld inspections that are setting the pace on new developments. For pipelines, a major shift was made from radiography to ultrasonics in Alberta some decades ago. This was driven by the 'need for speed', plus the requirement to size defects in the vertical plane for ECA (also called Fracture Mechanics or Fitness-For-Purpose). One of the main objectives of ECA was to benefit from the calculated fracture toughness of materials, and not to rely on the overly conservative workmanship criteria in radiography. In practice, performing repairs on higher quality material often does more harm than good; changing the microstructure can seriously compromise the material properties. Rising steel costs are another major driving force, so higher strength, thinner materials are being used. Under these conditions, ECA and defect sizing are critical. This paper compares where the various North American codes for pipelines, pressure vessels and structural welds stand on using advanced inspection techniques: ultrasonics, phased arrays, ECA, sizing techniques. For those codes which are not using the latest technologies, there are typical routes for incorporating them. (author)

  12. High Temperature Fatigue Crack Growth Rate Studies in Stainless Steel 316L(N Welds Processed by A-TIG and MP-TIG Welding.

    Directory of Open Access Journals (Sweden)

    Thomas Manuel

    2018-01-01

    Full Text Available Welded stainless steel components used in power plants and chemical industries are subjected to mechanical load cycles at elevated temperatures which result in early fatigue failures. The presence of weld makes the component to be liable to failure in view of residual stresses at the weld region or in the neighboring heat affected zone apart from weld defects. Austenitic stainless steels are often welded using Tungsten Inert Gas (TIG process. In case of single pass welding, there is a reduced weld penetration which results in a low depth-to-width ratio of weld bead. If the number of passes is increased (Multi-Pass TIG welding, it results in weld distortion and subsequent residual stress generation. The activated flux TIG welding, a variant of TIG welding developed by E.O. Paton Institute, is found to reduce the limitation of conventional TIG welding, resulting in a higher depth of penetration using a single pass, reduced weld distortion and higher welding speeds. This paper presents the fatigue crack growth rate characteristics at 823 K temperature in type 316LN stainless steel plates joined by conventional multi-pass TIG (MP-TIG and Activated TIG (A-TIG welding process. Fatigue tests were conducted to characterize the crack growth rates of base metal, HAZ and Weld Metal for A-TIG and MP-TIG configurations. Micro structural evaluation of 316LN base metal suggests a primary austenite phase, whereas, A-TIG weld joints show an equiaxed grain distribution along the weld center and complete penetration during welding (Fig. 1. MP-TIG microstructure shows a highly inhomogeneous microstructure, with grain orientation changing along the interface of each pass. This results in tortuous crack growth in case of MP-TIG welded specimens. Scanning electron microscopy studies have helped to better understand the fatigue crack propagation modes during high temperature testing.

  13. Microstructure feature of friction stir butt-welded ferritic ductile iron

    International Nuclear Information System (INIS)

    Chang, Hung-Tu; Wang, Chaur-Jeng; Cheng, Chin-Pao

    2014-01-01

    Highlights: • Defect-free ferritic ductile iron joints is fabricated by FSW. • The welding nugget is composed of graphite, martensite, and recrystallized ferrite. • The graphite displays a striped pattern in the surface and advancing side. • The ferritic matrix transforms into martensite structure during welding. • High degree of plastic deformation is found on the advancing side. - Abstract: This study conducted friction stir welding (FSW) by using the butt welding process to join ferritic ductile iron plates and investigated the variations of microsturcture in the joined region formed after welding. No defects appeared in the resulting experimental weld, which was formed using a 3-mm thick ductile iron plate and tungsten carbide alloy stir rod to conduct FSW at a rotational speed of 982 rpm and traveling speed of 72 mm/min. The welding region was composed of deformed graphite, martensite phase, and dynamically recrystallized ferrite structures. In the surface region and on the advancing side (AS), the graphite displayed a striped configuration and the ferritic matrix transformed into martensite. On the retreating side (RS), the graphite surrounded by martensite remained as individual granules and the matrix primarily comprised dynamically recrystallized ferrite. After welding, diffusion increased the carbon content of the austenite around the deformed graphite nodules, which transformed into martensite during the subsequent cooling process. A micro Vickers hardness test showed that the maximum hardness value of the martensite structures in the weld was approximately 800 HV. An analysis using an electron probe X-ray microanalyzer (EPMA) indicated that its carbon content was approximately 0.7–1.4%. The peak temperature on the RS, 8 mm from the center of the weld, measured 630 °C by the thermocouple. Overall, increased severity of plastic deformation and process temperature near the upper stir zone (SZ) resulted in distinct phase transformation

  14. A novel tool for automated evaluation of radiographic weld images

    International Nuclear Information System (INIS)

    Rajagopalan, C.; Venkatraman, B.; Jayakumar, T.; Kalyanasundaram, P.; Raj, B.

    2004-01-01

    Radiography is one of the oldest and the most widely used NDT method for the detection of volumetric defects in welds and castings. Once a radiograph of a weld or a casting or an assembly is taken, the radiographer examines the same. The task of the radiographer consists of identifying the defects and quantitatively evaluating the same based on codes and specifications. Radiographic interpretation primarily depends on the expertise of the individual radiographer. To overcome the subjectivity involved in human interpretation, it is thus desirable to develop a computer based automated system to aid in the interpretation of radiographs. Towards this goal, the authors have developed a flowchart chalking out the various stages involved. Typical weld images of tube to tubesheet weld joints were digitised using high resolution digitiser. The images were segmented and 52 invariant moments were computed to be used as features. The results of these are presented in this paper. Once the features (invariant moments) are extracted and ranked, a neural network classifier based on error back-propagation has to classify the (top ranking) features and evaluate the image for acceptance or rejection. (author)

  15. A study of electron beam welding of Mo based TZM alloy

    International Nuclear Information System (INIS)

    Chakraborty, S.P.; Krishnamurthy, N.

    2013-12-01

    Mo based TZM alloy is one of the most promising refractory alloy having several unique high temperature properties suitable for structural applications in the new generation advanced nuclear reactors. However, this alloy easily picks up interstitial impurities such as N 2 , H 2 and C from air during welding due to its reactive nature. High melting point of TZM alloy also restricts use of conventional welding technique for welding. Hence, Electron beam welding (EBW) technique with its deep penetration power to produce narrow heat affected zones under high vacuum was employed to overcome the above welding constraints by conducting a systematic study using both processes of bead on plate and butt joint configuration. Uniform and defect free weld joints were produced. Weld joints were subjected to optical characterization, chemical homogeneity analysis and microhardness profile study across the width of welds. Improved grain structure with equiaxed grains was obtained in the weld zone as compared to fibrous base structure. Original chemical composition was retained in the weld zone. The detailed results are described in this report. (author)

  16. Helium-induced weld degradation of HT-9 steel

    International Nuclear Information System (INIS)

    Wang, Chin-An; Chin, B.A.; Lin, Hua T.; Grossbeck, M.L.

    1992-01-01

    Helium-bearing Sandvik HT-9 ferritic steel was tested for weldability to simulate the welding of structural components of a fusion reactor after irradiation. Helium was introduced into HT-9 steel to 0.3 and 1 atomic parts per million (appm) by tritium doping and decay. Autogenous single pass full penetration welds were produced using the gas tungsten arc (GTA) welding process under laterally constrained conditions. Macroscopic examination showed no sign of any weld defect in HT-9 steel containing 0.3 appm helium. However, intergranular micro cracks were observed in the HAZ of HT-9 steel containing 1 appm helium. The microcracking was attributed to helium bubble growth at grain boundaries under the influence of high stresses and temperatures that were present during welding. Mechanical test results showed that both yield strength (YS) and ultimate tensile strength (UTS) decreased with increasing temperature, while the total elongation increased with increasing temperature for all control and helium-bearing HT-9 steels

  17. Repair welding of cast iron coated electrodes

    Science.gov (United States)

    Żuk, M.; Górka, J.; Dojka, R.; Czupryński, A.

    2017-08-01

    Welding cast iron is a complex production procedure. Repair welding was used to repair damaged or poorly made castings. This is due to a tendency to cracking of the material during welding as well as after it. Welding cast iron can be carried out on hot or on cold. Hot welding requires high heat material and the use of welding material in the form of cast iron. In the case of cold welding, it is possible to use different materials. Mostly used filler metals are nickel and copper based. The work shows the course of research concerning repairmen of ductile iron with arc welding method. For the reparation process four types of ESAB company coated electrodes dedicated for cast iron were used with diameter 3.2 and 4 mm: ES 18-8-6B (4mm), EB 150 (4mm), OK NiCl, EŻM. In the cast iron examined during the testing grooves were made using plasma methods, in order to simulate the removed casting flaws. Then the welding process with coated electrodes was executed. The process utilized low welding current row of 100A, so there would only be a small amount of heat delivered to the heat affected zone (HAZ). Short stitches were made, after welding it was hammered, in order to remove stresses. After the repair welding the part of studies commenced which purpose was finding surface defects using visual testing (VT) and penetration testing (PT). In the second part, a series of macro and microscopic studies were executed witch the purpose of disclosuring the structure. Then the hardness tests for welds cross sections were performed. An important aspect of welding cast iron is the colour of the padding weld after welding, more precisely the difference between the base material and padding weld, the use of different materials extra gives the extra ability to select the best variant. The research of four types of coated electrode was executed, based on the demands the best option in terms of aesthetic, strength and hardness.

  18. Qualification of final closure for disposal container I - applicability of TIG and EBW for overpack welding

    International Nuclear Information System (INIS)

    Asano, H.; Kawahara, K.; Ishii, J.; Shige, T.

    2002-01-01

    Regarding the final sealing technique of the overpack using carbon steel, one of the candidate materials for the disposal container in the geological disposal of high-level radioactive waste in Japan, welding tests were conducted using TIG (GTAW), a typical arc welding process, and electron beam welding (EBW), a high-energy beam welding process. The purpose of the tests was to evaluate the applicability, the scope of the applications and the conditions for the application of the existing techniques; while also examining the welding conditions and the weld quality. Regarding TIG, the optimum welding conditions (the conditions pertaining to the welding procedures and the groove geometry) were checked by using a specimen with a plate thickness of 50 mm, and then circumferential welding tests were conducted for cylindrical specimens with a groove depth of 100 mm and 150 mm. Radiographic testing showed that there was no significant weld defect in the weld and that the welding characteristics were satisfactory. The results of the test of the mechanical properties of the joint were also satisfactory. Measurement of the temperature distribution and the residual stress distribution at the time of the welding was conducted for an evaluation of the residual stress caused by the welding, and an appropriate residual stress analysis method was developed, which confirmed the generation of tensile stress along the circumferential direction of the weld. Then it was pointed out that a necessity of further consideration of how to reduce the stress and to examine the influence that residual stress has on corrosion property. The goal in the EBW test was to achieve a one-pass full penetration welding process for 190 mm while conducting a partial penetration welding test for a welding depth of 80 mm. Subsequent radiographic testing confirmed that there was no significant weld defect. (orig.)

  19. Identification of internal defects of hardfacing coatings in regeneration of machine parts

    Directory of Open Access Journals (Sweden)

    Józwik Jerzy

    2017-01-01

    Full Text Available The quality control of hardfacing is one of the areas where non-destructive testing is applied. To detect defects and inconsistencies in the industrial practice one uses the same methods as in the testing of welded joints. Computed Tomography is a type of X-ray spectroscopy. It is used as a diagnostic method that allows to obtain layered images of examined hardfacing. The paper presents the use of Computed Tomography for the evaluation of defects of hardfacing parts and errors. Padding welds were produced using GMA consumable electrode welding with CO2 active gas. The padding material used were cored wires FILTUB DUR 16, and ones produced from a Fe-Mn-C-Si-Cr-Mo-Ti-W alloy. The layers were padded on to different surfaces: C45, 165CrV12, 42CrMo4, S235JR steel. Typical defects occurring in the pads and the influence of the type of wire on the concentration of defects were characterized. The resulting pads were characterized by occurring inconsistencies taking the form of pores, intrusions and fractures.

  20. Identification of internal defects of hardfacing coatings in regeneration of machine parts

    Science.gov (United States)

    Józwik, Jerzy; Dziedzic, Krzysztof; Pashechko, Mykhalo; Łukasiewicz, Andrzej

    2017-10-01

    The quality control of hardfacing is one of the areas where non-destructive testing is applied. To detect defects and inconsistencies in the industrial practice one uses the same methods as in the testing of welded joints. Computed Tomography is a type of X-ray spectroscopy. It is used as a diagnostic method that allows to obtain layered images of examined hardfacing. The paper presents the use of Computed Tomography for the evaluation of defects of hardfacing parts and errors. Padding welds were produced using GMA consumable electrode welding with CO2 active gas. The padding material used were cored wires FILTUB DUR 16, and ones produced from a Fe-Mn-C-Si-Cr-Mo-Ti-W alloy. The layers were padded on to different surfaces: C45, 165CrV12, 42CrMo4, S235JR steel. Typical defects occurring in the pads and the influence of the type of wire on the concentration of defects were characterized. The resulting pads were characterized by occurring inconsistencies taking the form of pores, intrusions and fractures.

  1. Defect accumulation in welded joints of 12Kh1MF steel steam pipelines during creep

    International Nuclear Information System (INIS)

    Anokhov, A.E.; Alekhova, I.A.

    1982-01-01

    Technique for investigation of micropore accumulation in 12Kh1MF steel welded joints is proposed. The micropore density in different zones of welded joints in non-uniform. It is shown that failure localization in welded joint in the softening zone during the creep takes place due to the micropore priority accumulation in this zone. It is found out that accumulation of residual deformations in different zones of 12Kh1MF welded joints under creep runs more uniformly as the level of working stresses decreases and test duration increases

  2. Improving fatigue performance of rail thermite welds

    Science.gov (United States)

    Jezzini-Aouad, M.; Flahaut, P.; Hariri, S.; Winiar, L.

    2010-06-01

    Rail transport development offers economic and ecological interests. Nevertheless, it requires heavy investments in rolling material and infrastructure. To be competitive, this transportation means must rely on safe and reliable infrastructure, which requires optimization of all implemented techniques and structure. Rail thermite (or aluminothermic) welding is widely used within the railway industry for in-track welding during re-rail and defect replacement. The process provides numerous advantages against other welding technology commonly used. Obviously, future demands on train traffic are heavier axle loads, higher train speeds and increased traffic density. Thus, a new enhanced weld should be developed to prevent accidents due to fracture of welds and to lower maintenance costs. In order to improve such assembly process, a detailed metallurgical study coupled to a thermomechanical modelling of the phenomena involved in the thermite welding process is carried out. Obtained data enables us to develop a new improved thermite weld (type A). This joint is made by modifying the routinely specified procedure (type B) used in a railway rail by a standard gap alumino-thermic weld. Joints of type A and B are tested and compared. Based on experimental temperature measurements, a finite element analysis is used to calculate the thermal residual stresses induced. In the vicinity of the weld, the residual stress patterns depend on the thermal conditions during welding as it also shown by litterature [1, 2]. In parallel, X-Ray diffraction has been used to map the residual stress field that is generated in welded rail of types A and B. Their effect on fatigue crack growth in rail welds is studied. An experimental study based on fatigue tests of rails welded by conventional and improved processes adjudicates on the new advances and results will be shown.

  3. Hot-crack test for aluminium alloys welds using TIG process

    Directory of Open Access Journals (Sweden)

    Deschaux-beaume F.

    2010-06-01

    Full Text Available Hot cracking is a critical defect frequently observed during welding of aluminium alloys. In order to better understand the interaction between cracking phenomenon, process parameters, mechanical factors and microstructures resulting from solidification after welding, an original hot-cracking test during welding is developed. According to in-situ observations and post mortem analyses, hot cracking mechanisms are investigated, taking into account the interaction between microstructural parameters, depending on the thermal cycles, and mechanical parameters, depending on geometry and clamping conditions of the samples and on the thermal field on the sample. Finally, a process map indicating the limit between cracking and non-cracking zones according to welding parameters is presented.

  4. Automatic visual monitoring of welding procedure in stainless steel kegs

    Science.gov (United States)

    Leo, Marco; Del Coco, Marco; Carcagnì, Pierluigi; Spagnolo, Paolo; Mazzeo, Pier Luigi; Distante, Cosimo; Zecca, Raffaele

    2018-05-01

    In this paper a system for automatic visual monitoring of welding process, in dry stainless steel kegs for food storage, is proposed. In the considered manufacturing process the upper and lower skirts are welded to the vessel by means of Tungsten Inert Gas (TIG) welding. During the process several problems can arise: 1) residuals on the bottom 2) darker weld 3) excessive/poor penetration and 4) outgrowths. The proposed system deals with all the four aforementioned problems and its inspection performances have been evaluated by using a large set of kegs demonstrating both the reliability in terms of defect detection and the suitability to be introduced in the manufacturing system in terms of computational costs.

  5. Weld characterization of RAFM steel. EBP structural materials milestone 3

    Energy Technology Data Exchange (ETDEWEB)

    Alamo, A. [Service de Recherches Metallurgiques Appliquees, CEA Centre d' Etudes Nucleaires de Saclay, Saclay (France); Fontes, A. [Service de Techniques Avancees, CEA Centre d' Etudes Nucleaires de Saclay, Saclay (France); Schaefer, L. [Forschungszentrum Karlsruhe, Karlsruhe (Germany); Gauthier, A.; Tavassoli, A.A. [CEA Centre d' Etudes Nucleaires de Saclay, Saclay (France); Van Osch, E.V.; Van der Schaaf [ed.] [ECN Netherlands Energy Research Foundation, Petten (Netherlands)

    1999-07-01

    In the long term part of the European Fusion technology programme welding of reduced activation ferritic martensitic (RAFM)steels takes a prominent place. The blanket structures are complex and welding is an important element in manufacturing procedures. In the 95-98 program several Structural Materials tasks of the European Blanket Project are devoted to welding of RAFM steels. In the milestone 3 defined for the program a review of the weld characterization was foreseen in 1998. The present report gives the status of tasks and the major conclusions and recommendations of the welding milestone meeting. The major conclusion is that defect free GTAW (Gas Tungsten Arc Welding), EBW (Electron Beam Welding) and diffusion welds can be accomplished, but further work is needed to assure quantitatively the service boundary conditions. Also for irradiated steel additional work is recommended for the 99-02 period. Development of filler wire material for the European reference RAFM: EUROFER97 is necessary. Establishment of weldability tests must be settled in the next period also. 14 refs.

  6. Heat input effect of friction stir welding on aluminum alloy AA 6061-T6 welded joint

    Czech Academy of Sciences Publication Activity Database

    Sedmak, A.; Kumar, R.; Chattopadhyaya, S.; Hloch, Sergej; Tadić, S.; Djurdjević, A. A.; Čeković, I. R.; Dončeva, E.

    2016-01-01

    Roč. 20, č. 2 (2016), s. 637-641 ISSN 0354-9836 Institutional support: RVO:68145535 Keywords : friction stir welding * defect * heat input * maximum temperature Subject RIV: JQ - Machines ; Tools Impact factor: 1.093, year: 2016 http://www.doiserbia.nb.rs/img/doi/0354-9836/2016/0354-98361500147D.pdf

  7. Inspection of bottom and lid welds for disposal canisters

    International Nuclear Information System (INIS)

    Pitkaenen, J.

    2010-09-01

    This report presents the inspection techniques of copper electron beam and friction stir welds. Both welding methods are described briefly and a more detailed description of the defects occurring in each welding methods is given. The defect types form a basis for the design of non-destructive testing. The inspection of copper material is challenging due to the anisotropic properties of the weld and local changes in the grain size of the base material. Four different methods are used for inspection. Ultrasonic and radiographic testing techniques are used for inspection of volume. Eddy current and visual testing techniques are used for inspection of the surface and near surface area. All these methods have some limitations which are related to the physics of the used method. All inspection methods need to be carried out remotely because of the radiation from the spent nuclear fuel. All methods have been described in detail and the use of the chosen inspection techniques has been justified. Phased array technology has been applied in ultrasonic testing. Ultrasonic phased array technology enables the electrical modification of the sound field during inspection so that the sound field can be adjusted dynamically for different situations and detection of different defect types. The frequency of the phased array probe has been chosen to be 3.5 MHz. It is a compromise between good sizing and defect detectability. It must be taken into account that ultrasonic testing is not suitable for detection of defect types which are in the direction of the beam. Ultrasonic and radiographic testing techniques complement each other in case of planar defects. Positioning of the indication in the radial direction is rather limited in radiographic testing. Surface inspection has been added to the inspection routine because indications from the outer surface of the canister cannot be distinguished from weld defects in the radiographic image. A 9 MeV linear accelerator has been used in the

  8. Ultrasonic examination for safe end to nozzle dissimilar metal welds of steam generator

    International Nuclear Information System (INIS)

    Wang Zhuowei; Yu Jingsheng; Wang Jianjun

    2014-01-01

    The safe-end weld of steam generator is narrow seam weld with dissimilar metal, the filling material is nickel alloy 152/182 (material 690). The interior structure is of great anisotropic, and fake signal may occur during the defect detection by ultrasonic wave and the error for defect location may be increased. Stratified inspection by ultrasonic transducers with different angle and focus is a practical method which is verified by the real inspection while the linear indication in the inside surface besides the interior flaws are detected. (authors)

  9. Mechanical properties of friction stir welded 11Cr-ferritic/martensitic steel

    International Nuclear Information System (INIS)

    Yano, Y.; Sato, Y.S.; Sekio, Y.; Ohtsuka, S.; Kaito, T.; Ogawa, R.; Kokawa, H.

    2013-01-01

    Friction stir welding was applied to the wrapper tube materials, 11Cr-ferritic/martensitic steel, designed for fast reactors and defect-free welds were successfully produced. The mechanical and microstructural properties of the friction stir welded steel were subsequently investigated. The hardness values of the stir zone were approximately 550 Hv (5.4 GPa) with minimal dependence on the rotational speed, even though they were much higher than those of the base material. However, tensile strengths and elongations of the stir zones were high at 298 K, compared to those of the base material. The excellent tensile properties are attributable to the fine grain formation during friction stir welding

  10. Improvement in accuracy of the measurements of residual stresses due to circumferential welds in thin-walled pipe using Rayleigh wave method

    International Nuclear Information System (INIS)

    Akhshik, Siamak; Moharrami, Rasool

    2009-01-01

    To achieve an acceptable safety in many industrial applications such as nuclear power plants and power generation, it is extremely important to gain an understanding of the magnitudes and distributions of the residual stresses in a pipe formed by joining two sections with a girth butt weld. Most of the methods for high-accuracy measurement of residual stress are destructive. These destructive measurement methods cannot be applied to engineering systems and structures during actual operation. In this paper, we present a method based on the measurement of ultrasonic Rayleigh wave velocity variations versus the stress state for nondestructive evaluation of residual stress in dissimilar pipe welded joint. We show some residual stress profile obtained by this method. These are then compared with other profiles determined using a semi-destructive technique (hole-drilling) that makes it possible to check our results. According to the results, we also present a new method for adjusting the ultrasonic measurements to improve the agreement with the results obtained from other techniques.

  11. Electron beam welding of the dissimilar Zr-based bulk metallic glass and Ti metal

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jonghyun [Department of Material Science, Kumamoto University, Kumamoto 860-8555 (Japan)], E-mail: joindoc@kumamoto-u.ac.jp; Kawamura, Y. [Department of Material Science, Kumamoto University, Kumamoto 860-8555 (Japan)

    2007-04-15

    We successfully welded 3 mm thick Zr{sub 41}Be{sub 23}Ti{sub 14}Cu{sub 12}Ni{sub 10} bulk metallic glass plate to Ti metal by electron beam welding with a beam irradiated 0.4 mm on the BMG side of the interface. There was no crystallization or defects in the weld because changes in the chemical composition of the weld metal were prevented. Bending showed that the welded sample had a higher strength than the Ti base metal. The interface had a 10 {mu}m thick interdiffusion layer of Zr and Ti.

  12. Thin-sheet zinc-coated and carbon steels laser welding

    Directory of Open Access Journals (Sweden)

    Peças, P.

    1998-04-01

    Full Text Available This paper describes the results of a research on CO2 laser welding of thin-sheet carbon steels (zinccoated and uncoated, at several thicknesses combinations. Laser welding has an high potential to be applied on sub-assemblies welding before forming to the automotive industry-tailored blanks. The welding process is studied through the analysis of parameters optimization, metallurgical quality and induced distortions by the welding process. The clamping system and the gas protection system developed are fully described. These systems allow the minimization of common thin-sheet laser welding defects like misalignement, and zinc-coated laser welding defects like porous and zinc volatilization. The laser welding quality is accessed by DIN 8563 standard, and by tensile, microhardness and corrosion tests.

    Este artigo descreve os resultados da investigação da soldadura laser de CO2 de chapa fina de acó carbono (simples e galvanizado, em diferentes combinações de espessura. A soldadura laser é um processo de elevado potencial no fabrico de tailored-blanks (sub-conjuntos para posterior enformação, constituidos por varias partes de diferentes materiais e espessuras para a indústria automóvel. São analisados os aspectos de optimização paramétrica, de qualidade metalúrgica da junta soldada e das deformações resultantes da soldadura. São descritos os mecanismos desenvolvidos de fixação das chapas e protecção gasosa, por forma a minimizar os defeitos típicos na soldadura laser de chapa fina como o desalinhamento e da soldadura laser de chapa galvanizada como os poros e a volatilização do zinco. Por fim apresentam-se resultados da avaliação da qualidade da soldadura do ponto de vista qualitativo através da norma DIN 8563, e do pontos de vista quantitativo através de ensaios de tracção, dureza e corrosão.

  13. Coping with residual stresses in the integrity assessment of an as-welded repair

    International Nuclear Information System (INIS)

    Knee, N.

    1989-11-01

    One of a series of large scale tests on pressure vessels is described, in which a defect was deliberately introduced into an as-welded (i.e. not stress relieved) repair weld. The behaviour of the vessel during pressurization to failure was carefully monitored and the actual performance compared with theoretical predictions. The influence of residual welding stresses on ductile crack growth from pre-existing defects is discussed in the light of the results of this test and of previous tests in the series. The tests have confirmed that residual stresses can exert a significant effect on the growth of fatigue cracks. However, in tests for which the failure mechanism is predominantly controlled by collapse of the remaining ligament, the development of plasticity during pressurization to failure will tend to remove any local residual stresses. (author)

  14. CO2 laser welding of galvanized steel sheets using vent holes

    International Nuclear Information System (INIS)

    Chen Weichiat; Ackerson, Paul; Molian, Pal

    2009-01-01

    Joining of galvanized steels is a challenging issue in the automotive industry because of the vaporization of zinc at 906 deg. C during fusion welding of steel (>1530 deg. C). In this work, hot-dip galvanized steel sheets of 0.68 mm thick (24-gage) were pre-drilled using a pulsed Nd:YAG laser to form vent holes along the weld line and then seam welded in the lap-joint configuration using a continuous wave CO 2 laser. The welds were evaluated through optical and scanning electron microscopy and tensile/hardness tests. The vent holes allowed zinc vapors to escape through the weld zone without causing expulsion of molten metal, thereby eliminating the defects such as porosity, spatter, and loss of penetration. In addition, riveting of welds occurred so long as the weld width was greater than the hole diameter that in turn provided much higher strength over the traditional 'joint gap' method

  15. Joining of fuel pin end plugs. Pulsed magnetic welding (PMW), pressurized resistance welding (PRW) and their inspection

    International Nuclear Information System (INIS)

    Kamimura, Katsuichiro; Seki, Masayuki

    1996-01-01

    In Power Reactor and Nuclear Fuel Development Corporation, in order to attain the high burnup of FBR fuel, the development of new cladding tube materials mainly aiming at the improvement of swelling resistance has been advanced. Oxide dispersion-strengthened ferritic steel has excellent swelling characteristics and high temperature creep strength, but the strength of its welded parts lowers remarkably. As the result of the investigation of solid phase joining, the conclusion that PMW and PRW are promising was obtained. So far, the manufacture of a welder was started first, the welding test was advanced, and the ultrasonic flaw detection technology of high accuracy was developed for the inspection of welding defects. The features, the principle of welding, the welders and the examples of application of the PMW and the PRW are reported. The features of the ultrasonic inspection apparatus are explained. The inspection apparatus comprises 5 pulse motors for driving probes and one pulse motor for turning a sample. The example of flaw detection test results is shown. (K.I.)

  16. Modification of the grain structure of austenitic welds for improved ultrasonic inspectability

    International Nuclear Information System (INIS)

    Wagner, S.; Dugan, S.; Stubenrauch, S.; Jacobs, O.

    2012-01-01

    Austenitic stainless steel welds, which are widely used for example in nuclear power plants and chemical installations, present major challenges for ultrasonic inspection due to the grain structure of the weld. Large grains in combination with the elastic anisotropy of the material lead to increased scattering and affect sound wave propagation in the weld. This results in a reduced signal-to-noise ratio, and complicates the interpretation of signals and the localization of defects. The aim of this project is to influence grain growth in the weld during the welding process to produce smaller grains, in order to improve sound propagation through the weld, thus improving inspectability. Metallographic sections of the first test welds have shown that a modification of the grain structure can be achieved by influencing the grain growth with magnetic fields. For further optimization, test blocks for ultrasonic testing were manufactured to study sound propagation through the weld and detectability of test flaws.

  17. Stress and Strain State Analysis of Defective Pipeline Portion

    Science.gov (United States)

    Burkov, P. V.; Burkova, S. P.; Knaub, S. A.

    2015-09-01

    The paper presents computer simulation results of the pipeline having defects in a welded joint. Autodesk Inventor software is used for simulation of the stress and strain state of the pipeline. Places of the possible failure and stress concentrators are predicted on the defective portion of the pipeline.

  18. Characterization of electromagnetic pulse welding joints for advanced steels (ODS) welding applications

    International Nuclear Information System (INIS)

    Buddu, Ramesh Kumar; Shaikh, Shamsuddin; Raole, P.M.; Sarkar, B.

    2015-01-01

    Advanced fusion reactors structural materials (like in case of TBM and, first wall components) have several operation challenges due to the demanding high temperature exposure conditions (∼800°C) and low neutron radiation effects. The present paper reports the preliminary case studies carried out on steel and copper EMP joints and their properties characterization towards establishing this technology for ODS alloys. The EMP joints in form of tubes are fabricated and tested (typical process parameters ∼ Voltage 25 kV, Current ∼600-800 kA, Max. energy ∼ 50 kJ, and 50 sec duty cycle as major process parameters). The weld joints are further characterized by X-ray radiography and found that there were no measureable defects/discontinuities across the weld interface. This indicates the good process of joining and acceptable. Characterization studies like microstructure, interface grain orientation features, deformation, hardness has been carried out. SEM studies also carried to check the interface status and some interesting features of discontinuities are observed which are not exclusively revealed by radiography tests. Hardness survey also revealed that there is no much variation in the both parent materials as well at weld zone indicating the no hardening affects like in arc/beam weld process. EMP joining has potential features for the joining requirements of ODS kind typical metallurgical requirements

  19. Study on the abnormal image appeared in radiographs of welds, 3

    International Nuclear Information System (INIS)

    Hayashi, Morihiro; Sugimura, Seiichi; Umemura, Kunio; Imamura, Senji; Kanno, Munekazu.

    1984-01-01

    On the abnormal images arising at times in the X-ray radiographs of austenitic stainless steel welded parts, the cause of occurrence was clarified before. In this study, the authors made the welded parts of austenitic stainless steel SUS 304 and SUS 316 with abnormal images of different clearness by making heat input into respective layers of welds large or small, and compared the static and dynamic strength. Moreover, the relation of the form of abnormal images in radiographs to metal structures was studied. The welding method employed was TIG welding and submerged arc welding. The images of X-ray radiographs and the metal structures of the welded parts tested are shown. The mechanical strength test was carried out by tension, bending and impact. Also fatigue test was performed. In the welded parts of SUS 304 and SUS 316, even if abnormal images appeared in radiographs, when sound welding was made, they possessed sufficient strength statically and dynamically. In the macroscopic and microscopic cross-sectional structures of the welded parts with remarkable abnormal images, defect was not observed at all. The cause of abnormal image appearance is the diffraction of X-ray. (Kako, I.)

  20. Very High Cycle Fatigue Crack Initiation Mechanism in Nugget Zone of AA 7075 Friction Stir Welded Joint

    Directory of Open Access Journals (Sweden)

    Chao He

    2017-01-01

    Full Text Available Very high cycle fatigue behavior of nugget zone in AA 7075 friction stir welded joint was experimentally investigated using ultrasonic fatigue testing system (20 kHz to clarify the crack initiation mechanism. It was found that the fatigue strength of nugget zone decreased continuously even beyond 107 cycles with no traditional fatigue limits. Fatigue cracks initiated from the welding defects located at the bottom side of the friction stir weld. Moreover, a special semicircular zone could be characterized around the crack initiation site, of which the stress intensity factor approximately equaled the threshold of fatigue crack propagation rate. Finally, a simplified model was proposed to estimate the fatigue life by correlating the welding defect size and applied stress. The predicted results are in good agreement with the experimental results.

  1. Abdominal girth and vertebral column length aid in predicting intrathecal hyperbaric bupivacaine dose for elective cesarean section.

    Science.gov (United States)

    Wei, Chang-Na; Zhou, Qing-He; Wang, Li-Zhong

    2017-08-01

    Currently, there is no consensus on how to determine the optimal dose of intrathecal bupivacaine for an individual undergoing an elective cesarean section. In this study, we developed a regression equation between intrathecal 0.5% hyperbaric bupivacaine volume and abdominal girth and vertebral column length, to determine a suitable block level (T5) for elective cesarean section patients.In phase I, we analyzed 374 parturients undergoing an elective cesarean section that received a suitable dose of intrathecal 0.5% hyperbaric bupivacaine after a combined spinal-epidural (CSE) was performed at the L3/4 interspace. Parturients with T5 blockade to pinprick were selected for establishing the regression equation between 0.5% hyperbaric bupivacaine volume and vertebral column length and abdominal girth. Six parturient and neonatal variables, intrathecal 0.5% hyperbaric bupivacaine volume, and spinal anesthesia spread were recorded. Bivariate line correlation analyses, multiple line regression analyses, and 2-tailed t tests or chi-square test were performed, as appropriate. In phase II, another 200 parturients with CSE for elective cesarean section were enrolled to verify the accuracy of the regression equation.In phase I, a total of 143 parturients were selected to establish the following regression equation: YT5 = 0.074X1 - 0.022X2 - 0.017 (YT5 = 0.5% hyperbaric bupivacaine volume for T5 block level; X1 = vertebral column length; and X2 = abdominal girth). In phase II, a total of 189 participants were enrolled in the study to verify the accuracy of the regression equation, and 155 parturients with T5 blockade were deemed eligible, which accounted for 82.01% of all participants.This study evaluated parturients with T5 blockade to pinprick after a CSE for elective cesarean section to establish a regression equation between parturient vertebral column length and abdominal girth and 0.5% hyperbaric intrathecal bupivacaine volume. This equation can accurately

  2. Resistance welding of ODS cladding fuel a nuclear reactor of the fourth generation

    International Nuclear Information System (INIS)

    Corpace, F.

    2011-01-01

    defects or a modification of its microstructure and a modification of the oxide dispersion. Compactness defects are related to thermal and mechanical phenomena occurring at the contact surfaces between pieces. The modification of the microstructure is related to dynamical recrystallization or to a local fusion. The dynamical recrystallization occurring in the clad due to high deformations and high temperatures is linked to the modification of the oxide dispersion. Using the effects of the process parameters on the welding process and on the weld, it is possible to adjust the temperature and the deformation to avoid compactness defects and the modification of the oxide dispersion. All these results are then applied to the welding of a 9Cr-ODS steel which is a candidate alloy for the SFR fuel cladding. The effects of material properties on the welding process and the weld are then discussed by comparing the two alloys with different chromium content but also by comparing results on the 20Cr-ODS with a material of similar chemical composition but without the oxide dispersion. (author) [fr

  3. Numerical analysis of weld pool for galvanized steel with lap joint in GTAW

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hunchul; Park, Kyungbae; Kim, Yougjun; Cho, Jungho [Chungbuk National University, Cheongju (Korea, Republic of); Kim, Dong-Yoon; Kang, Moon-Jin [Korea Institute of Industrial Technology, Incheon (Korea, Republic of)

    2017-06-15

    Galvanized steel is widely used and its demand is growing in automotive industry due to high quality requirement for corrosion resistance. Although there are a lot of demands on using galvanized steel as automotive parts especially for outer body, it has a grave flaw in its welding process. The difficulty is low weldability due to various defects such as porosities and blow holes in weldment, which occurred during welding. A solution to prevent these defects is using hybrid welding process, with two more welding processes. One of the hybrid solutions is using Gas tungsten arc welding (GTAW) as leading position in order to remove the zinc (Zn) coating on the surface before the followed practical fusion welding process. In this research, a numerical analysis model which can predict the eliminated Zn coated layers and the area of Fusion zone (FZ). Developed numerical analysis model was validated through comparing experiment to simulation. Basically, arc heat flux, arc pressure, electromagnetic force and Marangoni flow were employed as the boundary conditions and body force terms. Governing equations such as the continuity, momentum, Volume of fluid (VOF) and energy equations were adopted as usual. In addition to previous model, concentrated arc heat flux and contact thermal conductance models are newly suggested and showed successful result. They are adopted to realize edge concentrated arc and interfacial thermal conductance in lap joint fillet arc welding. Developed numerical analysis model successfully simulated the weld pool and temperature profile therefore the predicted Zn removed area considerably coincided with experimental result.

  4. Numerical analysis of weld pool for galvanized steel with lap joint in GTAW

    International Nuclear Information System (INIS)

    Jeong, Hunchul; Park, Kyungbae; Kim, Yougjun; Cho, Jungho; Kim, Dong-Yoon; Kang, Moon-Jin

    2017-01-01

    Galvanized steel is widely used and its demand is growing in automotive industry due to high quality requirement for corrosion resistance. Although there are a lot of demands on using galvanized steel as automotive parts especially for outer body, it has a grave flaw in its welding process. The difficulty is low weldability due to various defects such as porosities and blow holes in weldment, which occurred during welding. A solution to prevent these defects is using hybrid welding process, with two more welding processes. One of the hybrid solutions is using Gas tungsten arc welding (GTAW) as leading position in order to remove the zinc (Zn) coating on the surface before the followed practical fusion welding process. In this research, a numerical analysis model which can predict the eliminated Zn coated layers and the area of Fusion zone (FZ). Developed numerical analysis model was validated through comparing experiment to simulation. Basically, arc heat flux, arc pressure, electromagnetic force and Marangoni flow were employed as the boundary conditions and body force terms. Governing equations such as the continuity, momentum, Volume of fluid (VOF) and energy equations were adopted as usual. In addition to previous model, concentrated arc heat flux and contact thermal conductance models are newly suggested and showed successful result. They are adopted to realize edge concentrated arc and interfacial thermal conductance in lap joint fillet arc welding. Developed numerical analysis model successfully simulated the weld pool and temperature profile therefore the predicted Zn removed area considerably coincided with experimental result.

  5. A remark on partial linear spaces of girth 5 with an application to strongly regular graphs

    NARCIS (Netherlands)

    Brouwer, A.E.; Neumaier, A.

    1988-01-01

    We derive a lower bound on the number of points of a partial linear space of girth 5. As an application, certain strongly regular graphs with=2 are ruled out by observing that the first subconstituents are partial linear spaces.

  6. Influence of deformation on structural-phase state of weld material in St3 steel

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, Alexander, E-mail: galvas.kem@gmail.ru; Ababkov, Nicolay, E-mail: n.ababkov@rambler.ru; Ozhiganov, Yevgeniy, E-mail: zhigan84@mail.ru [Kuzbass State Technical University, 25-54, Krasnaya Str., 650000, Kemerovo (Russian Federation); LLC “Kuzbass Center of Welding and Control”, 33/2, Lenin Str., 650055, Kemerovo (Russian Federation); Kozlov, Eduard, E-mail: kozlov@tsuab.ru [Kuzbass State Technical University, 25-54, Krasnaya Str., 650000, Kemerovo (Russian Federation); Tomsk State University of Architecture and Building, 2, Solyanaya Sq., 634003, Tomsk (Russian Federation); Popova, Natalya, E-mail: natalya-popova-44@mail.ru [Kuzbass State Technical University, 25-54, Krasnaya Str., 650000, Kemerovo (Russian Federation); Tomsk State University of Architecture and Building, 2, Solyanaya Sq., 634003, Tomsk (Russian Federation); Institute of Strength Physics and Materials Science, SB RAS, 2/4, Akademicheskii Ave., 634021, Tomsk (Russian Federation); Nikonenko, Elena, E-mail: vilatomsk@mail.ru [Kuzbass State Technical University, 25-54, Krasnaya Str., 650000, Kemerovo (Russian Federation); Tomsk State University of Architecture and Building, 2, Solyanaya Sq., 634003, Tomsk (Russian Federation); National Research Tomsk Polytechnic University, 30, Lenin Str., 634050, Tomsk (Russian Federation); Zboykova, Nadezhda, E-mail: tezaurusn@gmail.com; Koneva, Nina, E-mail: koneva@tsuab.ru [Tomsk State University of Architecture and Building, 2, Solyanaya Sq., 634003, Tomsk (Russian Federation)

    2016-01-15

    The structural-phase condition of the weld material subjected to the plastic deformation was investigated using the translucent diffraction electron microscopy method. The investigations were carried out near the joint of the weld and the base metal. The seam was done by the method of manual arc welding without artificial defects. The St3 steel was taken as the welded material. Influence of the plastic deformation on morphology, phase composition, defect structure and its parameters of weld metal was revealed. All investigations were done at the distance of 0.5 mm from the joint of the weld and the base metal at the deformation degrees from 0 to 5% and after destruction of a sample. It was established that deformation of the sample did not lead to qualitative changes in the structure (the structure is still presented by ferrite-pearlite mixture) but changed the quantitative parameters of the structure, namely, with the increase of plastic deformation a part of the pearlite component becomes more and more imperfect. In the beginning it turns into the destroyed pearlite then into ferrite, the volume fraction of pearlite is decreased. The polarization of dislocation structure takes place but it doesn’t lead to the internal stresses that can destroy the sample.

  7. Metallic glass coating on metals plate by adjusted explosive welding technique

    International Nuclear Information System (INIS)

    Liu, W.D.; Liu, K.X.; Chen, Q.Y.; Wang, J.T.; Yan, H.H.; Li, X.J.

    2009-01-01

    Using an adjusted explosive welding technique, an aluminum plate has been coated by a Fe-based metallic glass foil in this work. Scanning electronic micrographs reveal a defect-free metallurgical bonding between the Fe-based metallic glass foil and the aluminum plate. Experimental evidence indicates that the Fe-based metallic glass foil almost retains its amorphous state and mechanical properties after the explosive welding process. Additionally, the detailed explosive welding process has been simulated by a self-developed hydro-code and the bonding mechanism has been investigated by numerical analysis. The successful welding between the Fe-based metallic glass foil and the aluminum plate provides a new way to obtain amorphous coating on general metal substrates.

  8. Predicting failure response of spot welded joints using recent extensions to the Gurson model

    DEFF Research Database (Denmark)

    Nielsen, Kim Lau

    2010-01-01

    The plug failure modes of resistance spot welded shear-lab and cross-tension test specimens are studied, using recent extensions to the Gurson model. A comparison of the predicted mechanical response is presented when using either: (i) the Gurson-Tvergaard-Needleman model (GTN-model), (ii...... is presented. The models are applied to predict failure of specimens containing a fully intact weld nugget as well as a partly removed weld nugget to address the problems of shrinkage voids or larger weld defects. All analysis are carried out by full 3D finite element modelling....

  9. Study of Weld Imperfections on Thin Aluminum Tubes According To ISO 10042

    CERN Document Server

    Rizkallah, Rabel

    2014-01-01

    The following report presents the work done as part of my summer student internship at CERN in the EN/MME group, and is divided into two parts. Part I of the report is a continuation of the work started previously by the student Quentin Drouhet, which aims at studying and classifying welding imperfections on various materials of small thicknesses. Drouhet worked on the welding imperfections found on thin Stainless Steel plates of thicknesses of 2 and 6 millimeters, welded using the GTAW (or TIG welding) process. My job was to conduct a similar study on thin Aluminum tubes welded using this same process. Part II of the report will introduce a new method for defect analysis that is still not available at CERN: the micro-tomographic testing

  10. Ultrasonic modelling and imaging in dissimilar welds

    International Nuclear Information System (INIS)

    Shlivinski, A.; Langenberg, K.J.; Marklein, R.

    2004-01-01

    Non-destructive testing of defects in nuclear power plant dissimilar pipe weldings play an important part in safety inspections. Traditionally the imaging of such defects is performed using the synthetic aperture focusing technique (SAFT) algorithm, however since parts of the dissimilar welded structure are made of an anisotropic material, this algorithm may fail to produce correct results. Here we present a modified algorithm that enables a correct imaging of cracks in anisotropic and inhomogeneous complex structures by accounting for the true nature of the wave propagation in such structures, this algorithm is called inhomogeneous anisotropic SAFT (InASAFT). In InASAFT algorithm is shown to yield better results over the SAFT algorithm for complex environments. The InASAFT suffers, though, from the same difficulties of the SAFT algorithm, i.e. ''ghost'' images and lack of clear focused images. However these artefacts can be identified through numerical modelling of the wave propagation in the structure. (orig.)

  11. Ultrasonic modelling and imaging in dissimilar welds

    Energy Technology Data Exchange (ETDEWEB)

    Shlivinski, A.; Langenberg, K.J.; Marklein, R. [Dept. of Electrical Engineering, Univ. of Kassel, Kassel (Germany)

    2004-07-01

    Non-destructive testing of defects in nuclear power plant dissimilar pipe weldings play an important part in safety inspections. Traditionally the imaging of such defects is performed using the synthetic aperture focusing technique (SAFT) algorithm, however since parts of the dissimilar welded structure are made of an anisotropic material, this algorithm may fail to produce correct results. Here we present a modified algorithm that enables a correct imaging of cracks in anisotropic and inhomogeneous complex structures by accounting for the true nature of the wave propagation in such structures, this algorithm is called inhomogeneous anisotropic SAFT (InASAFT). In InASAFT algorithm is shown to yield better results over the SAFT algorithm for complex environments. The InASAFT suffers, though, from the same difficulties of the SAFT algorithm, i.e. ''ghost'' images and lack of clear focused images. However these artefacts can be identified through numerical modelling of the wave propagation in the structure. (orig.)

  12. Reduction of the number of defect signals in pressure vessel welds by a phased array ultrasonic test technology qualified beforehand in a blind test according to PDI specifications

    International Nuclear Information System (INIS)

    Mohr, F.

    2007-01-01

    In German-language countries, ultrasonic testing of reactor pressure vessel welds in the context of recurrent inspection is based on the KTA rules. This test philosophy is based on the recording of all data of a test section and repeated comparison of these data at regular intervals. Each and every change during operation is displayed. There are many components in which no changes are observed over longer periods of time. Optimisation of the test procedure and test periods requires accurate knowledge of the component condition. This necessitates accurate data of available defects. However, current techniques only provide data for comparative analysis on the basis of reflectivity. Data on the length and depth of a relevant defect can only be obtained by qualified sizing techniques. The PDI programme provides exact rules for qualification of techniques for a given application. Using a PDI qualification with personal blind tests for all data evaluators, one obtains a basis for accurate defect dimensioning and thus for optimisation. In cooperation with KKL, IntelligeNDT AREVA in 2006 successfully underwent the PDI qualification process for phased array testing of longitudinal and circumferential welds in reactor pressure vessels. In addition to this qualification, a comparison was made with the results of the conventionally applied, KTA-oriented test procedure. One of the key elements of qualification is the characterisation of defects, i.e. the distinction between relevant and non-relevant data, which will help to reduce the displayed data. The contribution presents the results and experience of the qualification as well as a comparison of standard testing with a tandem function with the results of phased array testing. (orig.)

  13. The microstructure and mechanical properties of a welded molybdenum alloy

    International Nuclear Information System (INIS)

    Wadsworth, J.; Morse, G.R.; Chewey, P.M.

    1983-01-01

    Wrought Ti-Zr-Mo (TZM) alloy has been welded using electron beam, laser and tungsten-inert gas welding techniques. The microstructure, tensile properties and fracture surfaces of these welded samples have been examined. Although the welds have been found to be defect free, a disparity in grain size leading to large strength differences exists between the weld and parent metal. Tensile tests have revealed that fusion zone strengths are typical of those expected for the grain size in the weld metal. However, brittle behavior is also always observed, with fracture initiating at grain boundaries and propagating by intergranular and cleavage modes. Auger electron spectroscopy analysis has eliminated oxygen or other interstitial elements as sources of grain boundary embrittlement. It is proposed that brittle behavior is a result of local high strain rates in the weld zone. These local high strain rates arise from the strength difference between the wrought parent metal and the weld metal as a result of the strong grain size dependence of TZM. It is shown that, either by reducing the strain rate of testing or by removing the grain size difference between the parent and weld metals by heat treatment, significant ductility can in fact be achieved in tensile-tested butt-welded TZM. Thus, it is proposed that TZM welds are not inherently brittle as had commonly been believed. (Auth.)

  14. Decomposing a planar graph of girth 5 into an independent set and a forest

    DEFF Research Database (Denmark)

    Kawarabayashi, Ken-ichi; Thomassen, Carsten

    2009-01-01

    We use a list-color technique to extend the result of Borodin and Glebov that the vertex set of every planar graph of girth at least 5 can be partitioned into an independent set and a set which induces a forest. We apply this extension to also extend Grötzsch's theorem that every planar triangle-...

  15. The reliability of ultrasonic inspection and the critical defect size

    International Nuclear Information System (INIS)

    Vasilchenko, G.S.; Bely, V.E.; Ovchinnikov, A.V.; Rivkin, E.Yu.

    1991-01-01

    The ability to detect fabrication and service-induced defects in the welded joints of components and pipelines in nuclear power stations by ultrasonic inspection when this is conducted by using standard instruments and procedures appears to be insufficient. This fact was confirmed by the research carried out in PISC program and other studies. In order to increase the accuracy of measurement and to obtain the additional information on the character of any defect in ultrasonic testing as well as the validity of applying nondestructive testing data to strength calculation, scientific researches have been promoted and carried out in the USSR in a program under the guidance of NPO CNIITMASH. The reliability of the ultrasonic control of welded joints and the ways and means for its improvement are discussed. The presentation of the parameters realized by the ultrasonic inspection of defects in the form of schema for the use in strength calculation is explained. The calculation of stress intensity factor, the estimation of critical defect size, and the estimation of acceptable defect size are reported. (K.I.)

  16. Feature Extraction of Weld Defectology in Digital Image of Radiographic Film Using Geometric Invariant Moment and Statistical Texture

    International Nuclear Information System (INIS)

    Muhtadan

    2009-01-01

    The purpose of this research is to perform feature extraction in weld defect of digital image of radiographic film using geometric invariant moment and statistical texture method. Feature extraction values can be use as values that used to classify and pattern recognition on interpretation of weld defect in digital image of radiographic film by computer automatically. Weld defectology type that used in this research are longitudinal crack, transversal crack, distributed porosity, clustered porosity, wormhole, and no defect. Research methodology on this research are program development to read digital image, then performing image cropping to localize weld position, and then applying geometric invariant moment and statistical texture formulas to find feature values. The result of this research are feature extraction values that have tested with RST (rotation, scale, transformation) treatment and yield moment values that more invariant there are ϕ 3 , ϕ 4 , ϕ 5 from geometric invariant moment method. Feature values from statistical texture that are average intensity, average contrast, smoothness, 3 rd moment, uniformity, and entropy, they used as feature extraction values. (author)

  17. The effect of laser welding process parameters on the mechanical and microstructural properties of V-4Cr-4Ti structural materials

    International Nuclear Information System (INIS)

    Reed, C.; Natesan, K.; Xu, Z.; Smith, D.

    2000-01-01

    This paper reports on a systematic study which was conducted to examine the use of a pulsed Nd:YAG laser to weld sheet materials of V-Cr-Ti alloys and to characterize the microstructural and mechanical properties of the resulting joints. Deep penetration and defect-free welds were achieved under an optimal combination of laser parameters including focal length of lens, pulse energy, pulse repetition rate, beam travel speed, and shielding gas arrangement. The key for defect-free welds was found to be the stabilization of the keyhole and providing an escape path for the gas trapped in the weld. An innovative method was developed to obtain deep penetration and oxygen contamination free welds. Oxygen and nitrogen uptake were reduced to levels only a few ppm higher than the base metal by design and development of an environmental control box. Effort directed at developing an acceptable postwelding heat treatment showed that five passes of a diffuse laser beam over the welded region softened the weld material, especially in the root region of the weld

  18. An assessment of composite repair system in offshore platform for corroded circumferential welds in super duplex steel pipe

    Directory of Open Access Journals (Sweden)

    Silvio de Barros

    2018-04-01

    Full Text Available The main aim of this study is to assess the effectiveness of a composite repair system in severely corroded circumferential welds in super duplex stainless steel pipes as a preventive measure against the premature corrosion damage at the welds. Artificial defects were fabricated on the super duplex steel tube in order to reproduce the localized corrosion damage defects found in real welded joints. Three kinds of through thickness defects were considered: 25%, 50% and 96% of the perimeter of the pipe. The performance of the repaired pipe was assessed by hydrostatic tests as per ISO 24817 standard. The results showed that the composite repair system can sustain the designed failure pressure even for the pipe damaged with through-wall defect up to 96% of the perimeter of the pipe. Hence, the composite repair system can be used as a preliminary tool to protect the unexpected or premature failure at the welds and maintain an adequate level of mechanical strength for a given operating pressure. This composite repair system can assure that the pipe will not leak until a planned maintenance of the line. Nevertheless, further work is still desirable to improve the confidence in the long-term performance of bonded composite

  19. Application of acoustic emission monitoring to pressure tests of a steam receiver vessel with flawed nozzle welds

    International Nuclear Information System (INIS)

    Woodward, B.; McDonald, N.R.; Hincksman, M.J.

    1976-01-01

    As part of the first stage of an Australian Welding Research Association co-operative research project, acoustic emission monitoring has been applied to a steam receiver vessel withdrawn from service owing to severe weld cracking. This technique is used to check acceptance standards for defects in nozzle welds and to apply modern methods of assessing the integrity of pressurised plant. Acoustic emission monitoring has been used, together with strain gauge measurements and ultrasonic scanning, to detect the occurrence of any significant defect growth during cyclic pressurisation of the vessel. During this first stage, no significant defect growth has been produced by 1000 cycles of pressure up to 24.1 MPa (3500 psi), subsequent pressurisation up to 35.8 MPa (5200 psi), or 97 per cent of the expected yield stress of the vessel shell. The small amount of acoustic emission detected was consistent with this result. (author)

  20. Friction Stir Welding of Low-Carbon AISI 1006 Steel: Room and High-Temperature Mechanical Properties

    Science.gov (United States)

    Shunmugasamy, Vasanth C.; Mansoor, Bilal; Ayoub, Georges; Hamade, Ramsey

    2018-03-01

    Friction stir welding (FSW) is an ecologically benign solid-state joining process. In this work, FSW of low-carbon AISI 1006 steel was carried out to study the microstructure and mechanical properties of the resulting joints at both room temperature (RT) and 200 °C. In the parameter space investigated here, a rotational tool speed and translation feed combination of 1200 rpm and 60 mm/min produced a defect-free weld with balanced mechanical properties and a superior Vickers microhardness profile compared to all other conditions and to base metal (BM). At faster translation feeds (100 and 150 mm/min), wormhole defects were observed in the weld microstructure and were attributed to higher strain rate experienced by the weld zone. Under tensile loading, welded material exhibited yield strength that was up to 86 and 91% of the BM at RT and 200 °C, respectively. On the other hand, tensile strength of welded material was nearly similar to that of the base metal at both RT and 200 °C. However, at both temperatures the tensile ductility of the welded joints was observed to be significantly lower than the BM. Annealing of the 1200 rpm and 60 mm/min FSW specimen resulted in tensile strength of 102% compared to base material and 47% increase in the strain at failure compared to the as-welded specimen. The Charpy impact values revealed up to 62 and 53% increase in the specific impact energy for the 1200 rpm and 60 mm/min welded joints as compared with the BM.

  1. Electron beam weld parameter set development and cavity cost

    International Nuclear Information System (INIS)

    John Brawley; John Mammossor; Larry Philips

    1997-01-01

    Various methods have recently been considered for use in the cost-effective manufacturing of large numbers of niobium cavities. A method commonly assumed to be too expensive is the joining of half cells by electron beam welding (EBW), as has been done with multipurpose EBW equipment for producing small numbers of cavities at accelerator laboratories. The authors have begun to investigate the advantages that would be available if a single-purpose, task-specific EBW processing tool were used to produce cavities in a high-volume commercial-industrial context. For such a tool and context they have sought to define an EBW parameter set that is cost-effective not only in terms of per-cavity production cost, but also in terms of the minimization of quench-producing weld defects. That is, they define cavity cost-effectiveness to include both production and performance costs. For such an EBW parameter set, they have developed a set of ideal characteristics, produced and tested samples and a complete cavity, studied the weld-defect question, and obtained industrial estimates of cavity high-volume production costs. The investigation in ongoing. This paper reports preliminary findings

  2. The study of the identification of minimal defects in radiograph, 2

    International Nuclear Information System (INIS)

    Senda, Tomio; Hirayama, Kazuo; Yokoyama, Keiji; Nakamura, Kazuo.

    1988-01-01

    In the first report, it was discussed in terms of the mass on the detectible limit of such minimal defects of cylindrical defect as a representative of ingot-defect and slit defect as a representative of plate-defect respectively which generally appear on the weld joints, using contrast distribution area of defects on the radiograph. In the second report, an experiment is done to vary the contrast of radiograph by dual exposure system and to vary the radiation by rotating photographing in order to investigate the corresponding relation of defectible limit of defect dimension between cylindrical defect and slit defect. (author)

  3. Using of methods of over-solution at expert testing of welded joints of tube-guides of AE stations

    International Nuclear Information System (INIS)

    Badalyan, V.G.; Bazulin, E.G.; Vopilkin, A.Kh.; Grebennikov, D.V.; Tikhonov, D.S.

    2000-01-01

    Results of practical application of superresolution method to the assessment of defect size in case of expert inspection of welds of the pipelines of atomic power plants are presented. It is shown that the application of above methods increases the frequency band that permits to additionally raise the quality of defect coherent image due to triple improve in radiation resolution, speckle noise reduction and increase in signal-to-structural noise ratio approximately 1.7 times. More precise determining the defect size permits to estimate more accurately the weld strength resource, especially in case of repeated expert inspection [ru

  4. Effect of microstructure on properties of friction stir welded Inconel Alloy 600

    International Nuclear Information System (INIS)

    Sato, Y.S.; Arkom, P.; Kokawa, H.; Nelson, T.W.; Steel, R.J.

    2008-01-01

    Friction stir welding (FSW) has been widely used to metals with moderate melting temperatures, primarily Al alloys. Recently, tool materials that withstand high stresses and temperatures necessary for FSW of materials with high melting temperatures have been developed. In the present study, polycrystalline cubic boron nitride (PCBN) tool was used for partially penetrated FSW of Inconel Alloy 600, and a defect-free weld was successfully produced. Microstructural characteristics, mechanical and corrosion properties in the weld were examined. The weld had better mechanical properties than the base material due to formation of fine grain structure in the stir zone, but exhibited slightly the lower corrosion resistance in a part of the stir zone and heat-affected zone (HAZ)

  5. Pulsed Nd-YAG laser welding of Prototype Fast Breeder Reactor fuel elements

    International Nuclear Information System (INIS)

    Suresh Varma, P.V.; Gupta, Amit; Amit, K.; Bhatt, R.B.; Afzal, Mohd.; Panakkal, J.P.; Kamath, H.S.

    2009-02-01

    End plug welding of Prototype Fast Breeder Reactor (PFBR) fuel elements involves welding of fully Austenitic Stainless Steel (ASS) of grade D9 clad tube with 316M end plug. Pulsed Gas Tungsten Arc Welding (GTAW) is being used for the production of PFBR fuel elements at Advanced Fuel Fabrication Facility (AFFF). GTAW is an established process for end plug welding and hence adopted by many countries. GTAW has got certain limitations like heat input, arc gap sensitivity and certain sporadic defects like tungsten inclusion. Experiments have been carried out at AFFF to use Laser Beam Welding (LBW) technique as LBW offers a number of advantages over the former process. This report mainly deals with the optimization of laser parameters for welding of PFBR fuel elements. To facilitate pulsed Nd-YAG laser spot welding, parameters like peak power, pulse duration, pulse energy, frequency and defocusing of laser beam on to the work piece have been optimized. On the basis of penetration requirement laser welding parameters have been optimized. (author)

  6. Real-time monitoring of the laser hot-wire welding process

    Science.gov (United States)

    Liu, Wei; Liu, Shuang; Ma, Junjie; Kovacevic, Radovan

    2014-04-01

    The laser hot-wire welding process was investigated in this work. The dynamics of the molten pool during welding was visualized by using a high-speed charge-coupled device (CCD) camera assisted by a green laser as an illumination source. It was found that the molten pool is formed by the irradiation of the laser beam on the filler wire. The effect of the hot-wire voltage on the stability of the welding process was monitored by using a spectrometer that captured the emission spectrum of the laser-induced plasma plume. The spectroscopic study showed that when the hot-wire voltage is above 9 V a great deal of spatters occur, resulting in the instability of the plasma plume and the welding process. The effect of spatters on the plasma plume was shown by the identified spectral lines of the element Mn I. The correlation between the Fe I electron temperature and the weld-bead shape was studied. It was noted that the electron temperature of the plasma plume can be used to real-time monitor the variation of the weld-bead features and the formation of the weld defects.

  7. Joining of Materials with Diferent Properties Through Submerged Arc Welding Process and Destructive and Non-Destructive Testing of the Joints

    Directory of Open Access Journals (Sweden)

    Yakup Kaya

    2013-01-01

    Full Text Available In this study, X60, X65 and X70 steels used in petroleum and natural gas pipeline were joined with Submerged Arc Welding by using different type of welding fluxes (LN761 and P223 and wires (S1 and S2Mo. Initially, visual and radiographic inspection techniques were subjected to welded joints for determining surface and subsurface defects. After that, spectral analyses were carried out in order to determine the compositions of wire-flux-base metal on the joints. Impact toughness test were performed for determining toughness properties the joints. Furthermore, hardness and microstructure studies were also carried out on the samples. As a result of the visual and radiographic inspection on the welded samples, there were no weld defects on joints were observed. It was clearly understood that carbon ratio in the compositions of weld metal higher than base metal but lower than filler metal in terms of spectral analyses results. According to impact toughness test results, the joints obtained by using S2Mo welding wire and P223 welding flux had better impact toughness value than the joints obtained by S1 welding wire and LN 761 welding flux. With respect to hardness test, the highest hardness values were measured on weld metal. When the microstructure images were examined, it is clearly understood that similar images for all the joints were shown adjacent zones to weld metals heat affected zones and welding boundary, due to heat input constant.

  8. Measurement of Dynamic Resistance in Resistance Spot Welding

    DEFF Research Database (Denmark)

    Wu, Pei; Zhang, Wenqi; Bay, Niels

    Through years, the dynamic resistance across the electrodes has been used for weld quality estimation and contact resistance measurement. However, the previous methods of determining the dynamic resistance were mostly based on measuring the voltage and current on the secondary side of the transfo......Through years, the dynamic resistance across the electrodes has been used for weld quality estimation and contact resistance measurement. However, the previous methods of determining the dynamic resistance were mostly based on measuring the voltage and current on the secondary side...... of the transformer in resistance welding machines, implying defects from induction noise and interference with the leads connected to the electrodes for measuring the voltage. In this study, the dynamic resistance is determined by measuring the voltage on the primary side and the current on the secondary side...

  9. Cracklike defects detection and sizing from co-occurrence matrices

    International Nuclear Information System (INIS)

    Moysan, J.; Benoist, P.; Magnin, I.

    1991-01-01

    The inspection of austenitic welds used in nuclear field with ultrasounds poses problems in interpretation: strong grain noise makes difficult the detection of the crack top and the crack bottom. Since corresponding echoes enable the defect sizing, defect sizing also becomes difficult. The formation of 2D images (BSCAN), and their processing enable an increase in the effectiveness of testing. We present a segmentation method, based on co-occurrence matrix, which separates defects zones and noise zones. Examples of segmentation improvement applied to artificial defects are presented

  10. A review on the effect of welding on the corrosion of magnesium alloys

    Science.gov (United States)

    Mohamed, N. S.; Alias, J.

    2017-10-01

    Welding is an important joining technique for lightweight alloys with their increasing applications in aerospace, aircraft, automotive, electronics and other industries. The applications of lightweight alloys particularly magnesium alloys increased rapidly due to their beneficial properties such as low density, high strength-to-mass ratio, good dimensional stability, electromagnetic shielding and good recyclability. The effect of welding on the corrosion of magnesium alloys are reviewed in this paper, which closely related to the developed microstructure by the welding process. The paper focuses particularly on friction stir and laser welding. The basic principles of friction stir and laser welding are discussed, to present the likelihood of defects which significantly affect the corrosion of magnesium alloy. The finding in corrosion demonstrated the morphology of corrosion occurrence on each welded region, and observation on the potential and current values are also included.

  11. Development and prevention of porosity in the fusion welding of thick titanium alloys

    International Nuclear Information System (INIS)

    Kulikov, F.R.; Redchits, V.V.; Khokhlov, V.V.

    1975-01-01

    This article describes the results of experimental investigations of the mechanics of formation of porosity in electron-beam welding, single-pass and multipass welding in argon with a consumable and non-consumable electrode, and also in the electroslag welding of alloys VT14 and VT22 from 10 to 60mm thick. It was established that nuclei of gas phase form at the moment of fusion of the edges of the parts being welded, the end surfaces of which have machining defects. The weld metal porosity can be prevented by: careful machining of the faying surfaces of the parts to be welded immediately before welding; the use of welding conditions ensuring long pool existence time, sufficient for hydrogen bubbles to float up and escape; intensification of the weld pool degassing process by using fluxes based on metal fluorides and chlorides, applied to the ends of the root part of the faying edges, and on the filler wire; reduction of the gas pressure in the beam channel by making gas-escape paths

  12. Crack sizing by the time-of-flight diffraction method, in the light of recent international round-robin trials, (UKAEA, DDT and PISC II)

    International Nuclear Information System (INIS)

    Curtis, G.J.

    1987-01-01

    In 1980-81, Harwell developed a mini-computer controlled multi-probe defect detection and sizing system based on the ultrasonic time-of-flight/diffraction principle introduced by Silk. This system proved to be capable of fully automatic data collection from the PWR girth-weld simulation Plates 1 and 2 in the Defect Detection Trials of 1981-82. The speed of collection and subsequent analysis was such that a report on the defects found could be filed within 48 hours. The mode of operation adopted simulated minimum time of access to the defects, and was intended to define that dimension of a defect which has greatest significance, i.e. the through-thickness dimension. In 1984, for the PISC II Trial, the approach adopted changed to emphasize the three-dimensional location and sizing capabilities of the time-of-flight/diffraction method. Data collection and analysis became highly interactive and the mode of operation simulated NDE at the manufacturing stage of a pressure vessel. The purpose of this paper is to indicate the defect through-thickness sizing capability of TOFD achieved in the 1981-82 Defect Detection Trials and the defect mapping capability achieved in the 1984 PISC II Trial

  13. Technical assistance to AECL: electron beam welding of thick-walled copper containers for nuclear fuel waste disposal

    International Nuclear Information System (INIS)

    Maak, P.Y.Y.

    1984-01-01

    This report describes the results of Phase Two of the copper electron beam welding project for the final closure of copper containers for nuclear fuel waste disposal. It has been demonstrated that single pass, electron beam square butt welds (depth of weld penetration > 25 mm) can be made without preheat in both electrolytic tough-pitch copper and oxygen-free copper plates. The present results show that oxygen-free copper exhibits better weldability than the electrolytic tough-pitch copper in terms of weld penetration and vulnerability to weld defects such as gas porosity, erratic metal overflow and blow holes. The results of ultrasonic inspection studies of the welds are also discussed

  14. Ultrasonic testing of electron beam closure weld on pressure vessel

    International Nuclear Information System (INIS)

    Andrews, R.W.

    1975-01-01

    One of the special products manufactured at the General Electric Neutron Devices Department (GEND) is a small stainless steel vessel designed to hold a component under high pressure for long periods. The vessel is a thick-walled cylinder with a threaded receptacle into which a plug is screwed and welded after receiving the unit to be tested. The test cavity is then pressurized through a small diameter opening in the bottom and that opening is welded closed. When x-ray inspection techniques did not reveal defective welds at the threaded plug in a pressured vessel, occasional ''leakers'' occurred. With normal equipment tolerances, the electron beam spike tends to wander from the desired path, particularly at the root of the weld. Ultrasonic techniques were used to successfully inspect the weld. The testing technique is based on the observation that ultrasonic energy is reflected from the unwelded screw threads and not from the regions where the threads are completely fused together by welding. Any gas pore or any threaded region outside the weld bead can produce an echo. The units are rotated while the ultrasonic transducer travels in a direction parallel to the axis of rotation and toward the welded end. This produces a helical scan which is converted to a two-dimensional presentation in which incomplete welds can be noted. (U.S.)

  15. Defense Waste Processing Facility Canister Closure Weld Current Validation Testing

    Energy Technology Data Exchange (ETDEWEB)

    Korinko, P. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Maxwell, D. N. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2018-01-29

    Two closure welds on filled Defense Waste Processing Facility (DWPF) canisters failed to be within the acceptance criteria in the DWPF operating procedure SW4-15.80-2.3 (1). In one case, the weld heat setting was inadvertently provided to the canister at the value used for test welds (i.e., 72%) and this oversight produced a weld at a current of nominally 210 kA compared to the operating procedure range (i.e., 82%) of 240 kA to 263 kA. The second weld appeared to experience an instrumentation and data acquisition upset. The current for this weld was reported as 191 kA. Review of the data from the Data Acquisition System (DAS) indicated that three of the four current legs were reading the expected values, approximately 62 kA each, and the fourth leg read zero current. Since there is no feasible way by further examination of the process data to ascertain if this weld was actually welded at either the target current or the lower current, a test plan was executed to provide assurance that these Nonconforming Welds (NCWs) meet the requirements for strength and leak tightness. Acceptance of the welds is based on evaluation of Test Nozzle Welds (TNW) made specifically for comparison. The TNW were nondestructively and destructively evaluated for plug height, heat tint, ultrasonic testing (UT) for bond length and ultrasonic volumetric examination for weld defects, burst pressure, fractography, and metallography. The testing was conducted in agreement with a Task Technical and Quality Assurance Plan (TTQAP) (2) and applicable procedures.

  16. Ultrasonic inspection for testing the PWR fuel rod endplug welds

    International Nuclear Information System (INIS)

    Pillet, C.; Destribats, M.T.; Papezyk, F.

    1976-01-01

    A method of ultrasonic testing with local immersion and transversal waves was developed. It is possible to detect defects as the lacks of fusion and penetration and porosity in the PWR fuel rod endplug welds [fr

  17. Applicability of gamma radiography and ultrasonic testing in welds and castings

    International Nuclear Information System (INIS)

    Krishnamurthy, K.; Wamorkar, R.R.; Jayakumar, T.K.

    1977-01-01

    Technical limitations and advantages of gamma radiography and ultrasonic techniques for flow detection in welds and castings, have been discussed. Limitations of both the testing methods due to orientation, shape and location of defects have been analysed and a few experimental results are presented. Dependence of inspection sensitivity of both the techniques for different types of targets and defects has been indicated. (author)

  18. Determination of weld defect characteristics using focused probes

    International Nuclear Information System (INIS)

    Saglio, Robert; Touffait, A.-M.; Prot, A.-C.

    1977-01-01

    A method is described which allows, by means of an experimentally discovered law, the determination of the geometrical characteristics of the detected defects. This determination is based on the properties of focused probes, and particularly on what is called their 'effective ultrasonic beam'. The main result is the ability to describe a defect with a given and known accuracy. Examples are given which show practical applications of the method [fr

  19. Improving Mechanical Properties of PVPPA Welded Joints of 7075 Aluminum Alloy by PWHT

    Directory of Open Access Journals (Sweden)

    Guowei Li

    2018-03-01

    Full Text Available In this study, 7075 aluminum alloy with a thickness of 10 mm was successfully welded with no obvious defects by pulsed variable polarity plasma arc (PVPPA welding. The mechanical properties of PVPPA welded joints have been researched by post weld heat treatment (PWHT. The results indicate that the heat treatment strongly affects the mechanical properties of the welded joints. The tensile strength and the microhardness of the welded joints gradually improved with the increase of the solution temperature. With the increase of the solution time, the tensile strength, and microhardness first dramatically increased and then decreased slightly. The best tensile strength of 537.5 MPa and the microhardness of 143.7 HV were obtained after 490 °C × 80 min + 120 °C × 24 h, and the strength was nearly 91.2% of that of the parent metal, and increased about 35% compared with as-welded. The improvement of strength and microhardness was mainly due to the precipitation of η′ phase.

  20. Soldadura (Welding). Spanish Translations for Welding.

    Science.gov (United States)

    Hohhertz, Durwin

    Thirty transparency masters with Spanish subtitles for key words are provided for a welding/general mechanical repair course. The transparency masters are on such topics as oxyacetylene welding; oxyacetylene welding equipment; welding safety; different types of welds; braze welding; cutting torches; cutting with a torch; protective equipment; arc…

  1. Double fillet lap of laser welding of thin sheet AZ31B Mg alloy

    Science.gov (United States)

    Ishak, Mahadzir; Salleh, M. N. M.

    2018-05-01

    In this paper, we describe the experimental laser welding of thin sheet AZ31B using double fillet lap joint method. Laser welding is capable of producing high quality weld seams especially for small weld bead on thin sheet product. In this experiment, both edges for upper and lower sheets were subjected to the laser beam from the pulse wave (PW) mode of fiber laser. Welded sample were tested their joint strength by tensile-shear strength method and the fracture loads were studied. Strength for all welded samples were investigated and the effect of laser parameters on the joint strength and appearances were studied. Pulsed energy (EP) from laser process give higher effect on joint strength compared to the welding speed (WS) and angle of irradiation (AOI). Highest joint strength was possessed by sample with high EP with the same value of WS and AOI. The strength was low due to the crack defect at the centre of weld region.

  2. Development of end plug welding method in the fabrication of FBR fuel pins

    International Nuclear Information System (INIS)

    Ohtani, Seiji; Sawayama, Takeo; Tateishi, Yoshinori

    1977-01-01

    As a part of the development of the automatic and remote controlled fabrication of FBR fuel pins, welding of fuel pin end plugs has been examined. Cladding tubes and end plugs used for this experiment are made of SUS 316, and they are the components of fuel pins for the prototype fast breeder reactor (Monju) or the second core of Joyo (Joyo MK-II). The welding tests of cladding tubes and four kinds of end plugs were carried out by means of two techniques; tungsten inert gas welding and laser welding. It can be said that no considerable difference was observed in weld penetration, occurrence rate of weld defects and breaking strength between the tight fit and the loose fit plugs. The face-to-face fit welding requires the least welding heat input, but involves much difficulty in the control of weld penetration and bead zone diameter. The good concentrative property and high energy density of laser beam make the face of weld hollow due to the vaporization of weld metal. However, this problem can be easily solved by changing the shape of end plugs. Good results in the other characteristics of the weld also were obtained by this laser welding. Further experiment is needed in connection with the compatibility of weld metal with sodium and neutron irradiation before final judgement is made on the laser welding technique. (Nakai, Y.)

  3. Elimination of the risk of brittle fracture in thick welded pressure vessels

    International Nuclear Information System (INIS)

    Leymonie, C.; Genevray, R.

    1975-01-01

    The builder of welded pressure vessels faces the risk of brittle fracture throughout fabrication. He is forced to observe many precautions, in selecting the following: materials possessing good impact strength in the service conditions of the vessels; filler materials preventing transverse cracking of the welds: welding parameters preventing cold cracking. Fracture mechanics establish the relationships between material characteristics and critical defect size for a given set of service conditions. These principles must be expanded to increase the safety of thick pressure vessels. However, in order to derive maximum benefit, a major effort must be applied to increasing the effectiveness of nondestructive testing [fr

  4. Optimization and verification of ultrasonic testability of acoustically anisotropic materials on austenitic and dissimilar welds

    International Nuclear Information System (INIS)

    Pudovikov, Sergey

    2013-01-01

    Austenitic and dissimilar welds with respect to the ultrasonic testing (UT) methods are considered normally as ''difficult-to-test'' objects. During the solidification process in such welds a distinct dendrite microstructure evolves, which is coarse-grained, anisotropic and inhomogeneous simultaneously. The reliability of available ultrasonic methods on austenitic welds depends significantly on the selected UT-parameters as well as on the inspection personnel experience. In the present dissertation, an ultrasonic testing method was developed, which allows the flaw detection and evaluation in acoustically anisotropic inhomogeneous materials, especially in austenitic and dissimilar welds with a quantitative statement to the defect size, type, and location. The principle of synthetic focusing with taking into account the material anisotropy and inhomogeneity along with two- and three-dimensional visualization provides a reliable and quantitative assessment of the inspection results in acoustically anisotropic inhomogeneous test objects. Among others, an iterative algorithm for the determination of unknown elastic properties of inhomogeneous anisotropic materials has been developed. It allows practical application of the developed UT method, since the anisotropy of most of austenitic and dissimilar welds (especially of hand-welded joints) in practice is usually unknown. The functionality of the developed inspection technique has been validated by many experiments on welded austenitic specimens having artificial and natural defects. For the practical application of the new ultrasonic technique different testing strategies are proposed, which can be used depending on the current inspection task.

  5. Effects of induction heating parameters on controlling residual stress in intermediate size pipes

    International Nuclear Information System (INIS)

    Rybicki, E.F.; McGuire, P.A.

    1981-01-01

    Induction heating for stress improvement (IHSI) is a method for reducing the tensile weld induced stresses on the inner surfaces of the girth welded pipes. The process entails inductively heating the outside of a welded pipe while cooling the inner surface with flowing water. A 10-inch schedule 80 Type 304 stainless steel pipe was selected for this study. Residual stresses due to welding were first determined using a finite element computational model. 26 refs

  6. Online quality monitoring of welding processes by means of plasma optical spectroscopy

    Science.gov (United States)

    Ferrara, Michele; Ancona, Antonio; Lugara, Pietro M.; Sibilano, Michele

    2000-02-01

    An optical monitoring system for the welding process has been developed; it is based on the study of the optical emission of the welding plasma plume, created during the welding of stainless steels and other iron-based materials. In the first approach a continuous wave CO2 laser of 2500-Watt maximum power, available at the INFM Research Unit labs in Bari University, has been used as welding source. A detailed spectroscopic study of the visible and UV welding plasma emission has been carried out; many transition lines corresponding to the elements composing the material to be welded have been found. By means of an appropriate selection of these lines and suitable algorithms, the electronic temperature of the plasma plume has been calculated and its evolution recorded as a function of several welding parameters. The behavior of the registered signal has resulted to be correlated to the welded joint quality. These findings have allowed to design and assemble a portable, non-intrusive and real-time welding quality optical sensor which has been successfully tested for laser welding of metals in different geometrical configurations; it has been capable of detecting a wide range of weld defects normally occurring during industrial laser metal-working. This sensor has also been tested in arc welding industrial processes (TIG) with promising results.

  7. Friction weld ductility and toughness as influenced by inclusion morphology

    International Nuclear Information System (INIS)

    Eberhard, B.J.; Schaaf, B.W. Jr.; Wilson, A.D.

    1983-01-01

    Friction welding consistently provides high strength, freedom from fusion defects, and high productivity. However, friction welds in carbon steel exhibit impact toughness and bend ductility that are significantly lower than that of the base metal. The inclusion content and morphology were suspected to be major contributors to the reduction in weld ductility. For this reason, four electric furnace steels - three types of ASTM A516 Grade 70, and an ASTM A737 Grade B steel - were investigated. Friction welds were made by both the inertia and direct drive process variations and the welds evaluated. It was shown that friction welds of inclusion-controlled steels exhibited much improved toughness and bend ductility were demonstrated. Upper shelf impact energy was equivalent to or greater than that of the base metal in the short transverse direction. The transition temperature range for all four materials was shifted to higher temperatures for both types of friction welds. Under the conditions of this test, the direct drive friction welds showed a greater shift than the inertia friction welds. The ductility and toughness of welds in A737 Grade B steel were superior to welds in A516 Grade 70 steels, reflecting the superior properties of the base metal. Welds of the A737 material had usable Charpy V-notch impact toughness of 20 to 30 ft-lb (27 to 41 J) at temperatures as low as -40 0 F (-40 0 C). All the welds had an acicular structure. The differences in properties between the inertia and direct drive friction welds appear associated with microstructural variations. These variations resulted from the different heat inputs and cooling rates of the two process variations were demonstrated. The beneficial effects of inclusion control on toughness and ductility. In addition, it also indicates that additional improvements may be attainable through control of the as-welded microstructure by process manipulation

  8. 46 CFR 59.10-5 - Cracks.

    Science.gov (United States)

    2010-10-01

    ..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING REPAIRS TO BOILERS, PRESSURE VESSELS AND... consecutive cracked ligaments nor more than a total of six cracked ligaments in any one girth joint. (c... ligaments may be repaired by welding. (n) Welding repairs to drums of power boilers, except as otherwise...

  9. Mismatch effect on CT specimen mechanical effect and consequences on the weld toughness characterization

    International Nuclear Information System (INIS)

    Marie, S.; Nedelec, M.

    2012-01-01

    The welded joints are particularly sensitive areas in the structures in terms of harmfulness of defects. Given the complexity of the problem (geometry poorly controlled, multi-material aspect, the potential influence of residual stresses), the tests are conducted based on pessimistic assumptions that can wrap all the uncertainties of the problem. In the case of a defect assessment, the considered toughness is deduced from conventional characterization tests with a crack in the welding, considering the current standards, ISO 12135 or ASTM E-1820 which are valid only for an homogeneous specimen. In 2010, a new standard ISO 16563 was published to address the specificity of welded joints. If it covers some of the difficulties, it remains incomplete. In nuclear piping, welds have a mismatch M, i.e. the ratio between the yield strength of the weld metal and the base metal, usually greater than 1: this avoids any problem of strain localization at the junction and ensure that the stresses in the base metal are also easily supported by the welded joint. In this configuration, it turns out that for a given mechanical loading, a crack in the weld located generally has a solicitation, quantified by the parameter J, less (depending on the size of the junction) to those that would see the same crack located in the base metal. Unfortunately, this phenomenon exists also potentially for a characterization test, which would overestimate the true toughness of the welded joint. Plasticity that develops from the crack tip can quickly reach this interface and be affected. To evaluate this phenomenon, we considered two types of representative welded joint (PWR secondary loop ferritic weld and a 316 stainless steel weld) and performed a F.E. analysis of the multi-material CT specimen mechanical answer and on the η coefficient conventionally used to derive the plastic component of J from the area under the curve force-opening displacement. (authors)

  10. Through the optical combiner monitoring in remote fiber laser welding of zinc coated steels

    Science.gov (United States)

    Colombo, Daniele; Colosimo, Bianca M.; Previtali, Barbara; Bassan, Daniele; Lai, Manuel; Masotti, Giovanni

    2012-03-01

    Thanks to the recent affirmation of the active fiber lasers, remote laser welding of zinc coated steels is under investigation with a particular emphasis on the overlap joint geometry. Due to the high power and high beam quality offered by these lasers, the remote laser welding process has become more practicable. However laser welding of lap zinc coated steels is still problematic because of the violent vaporisation of zinc. The presence of a gap between the plates allowing vapour degassing has been proven to avoid defects due to zinc vaporization. On the other hand variation in the gap value can lead to the welding defect formation. Therefore constant gap values should be ensured and deviation from the reference gap value has to be monitored during the execution of the welding process. Furthermore, the on-line monitoring of the gap values between the plates can be helpful for the on-line quality control of the welding process. The paper proposes a new monitoring solution for the measurement of the gap in remote fiber laser welding of overlapped zinc coated steels. In this solution, referred as Through the Optical Combiner Monitoring (TOCM) , the optical emissions from the welding process are directly observed through the optical combiner of the fiber laser source with spectroscopic equipment. The TOCM solution presented in the paper is integrated in an IPG YLS 3000 fiber laser source whose beam is deflected and focused by means of an El.En. ScanFiber scanning system with an equivalent focal length of 300 mm. After the definition of the right welding process conditions, spectroscopic tests are exploited to evaluate the optical emission from the welding plasma/plume. Acquired spectra are then analysed with multivariate data analysis approach in order to ensure gap monitoring. Results showed that with the proposed method it is possible to evaluate not only the gap between the plates but also the location inside the weld at which the variation occurs. Furthermore

  11. An investigation of fusion zone microstructures in electron beam welding of copper-stainless steel

    International Nuclear Information System (INIS)

    Magnabosco, I.; Ferro, P.; Bonollo, F.; Arnberg, L.

    2006-01-01

    The article presents a study of three different welded joints produced by electron beam welding dissimilar materials. The junctions were obtained between copper plates and three different austenitic stainless steel plates. Different welding parameters were used according to the different thicknesses of the samples. Morphological, microstructural and mechanical (micro-hardness test) analyses of the weld bead were carried out. The results showed complex heterogeneous fusion zone microstructures characterized both by rapid cooling and poor mixing of the materials which contain main elements which are mutually insoluble. Some defects such as porosity and microfissures were also found. They are mainly due to the process and geometry parameters

  12. Evaluation of a method to shield a welding electron beam from magnetic interference

    Science.gov (United States)

    Wall, W. A.

    1976-01-01

    It is known that electron beams are easily deflected by magnetic and electrostatic fields. Therefore, to prevent weld defects, stray electromagnetic fields are avoided in electron beam welding chambers if at all possible. The successful results of tests conducted at MSFC to evaluate a simple magnetic shield made from steel tubing are reported. Tests indicate that this shield was up to 85 percent effective in reducing magnetic effects on the electron beam of a welding machine. In addition, residual magnetic fields within the shield were so nearly uniform that the net effect on the beam alignment was negligible. It is concluded that the shield, with the addition of a tungsten liner, could be used in production welding.

  13. Type IIIa cracking at 2CrMo welds in 1/2CrMoV pipework

    Energy Technology Data Exchange (ETDEWEB)

    Brett, S J; Smith, P A [National Power plc, Swindon (United Kingdom)

    1999-12-31

    The most common form of in-service defect found today on the welds of National Power`s 1/2CrMoV pipework systems is Type IV cracking which occurs in intercritically transformed material at the edge of the heat affected zone. However an alternate form of cracking, termed IIIa, which occurs close to the weld fusion line in fully grain refined heat affected zones, has also been observed. The incidence of Type IIIa cracking has increased in recent years and these defects now constitute a significant part of the total recorded crack population. This presentation describes Type IIIa cracking and compares and contrasts it with the better documented Type IV cracking. Particular reference is made to the role of carbon diffusion at the weld fusion line in promoting Type IIIa damage in preference to Type IV. (orig.) 5 refs.

  14. Type IIIa cracking at 2CrMo welds in 1/2CrMoV pipework

    Energy Technology Data Exchange (ETDEWEB)

    Brett, S.J.; Smith, P.A. [National Power plc, Swindon (United Kingdom)

    1998-12-31

    The most common form of in-service defect found today on the welds of National Power`s 1/2CrMoV pipework systems is Type IV cracking which occurs in intercritically transformed material at the edge of the heat affected zone. However an alternate form of cracking, termed IIIa, which occurs close to the weld fusion line in fully grain refined heat affected zones, has also been observed. The incidence of Type IIIa cracking has increased in recent years and these defects now constitute a significant part of the total recorded crack population. This presentation describes Type IIIa cracking and compares and contrasts it with the better documented Type IV cracking. Particular reference is made to the role of carbon diffusion at the weld fusion line in promoting Type IIIa damage in preference to Type IV. (orig.) 5 refs.

  15. Effect of Process Variables on the Inertia Friction Welding of Superalloys LSHR and Mar-M247

    Science.gov (United States)

    Mahaffey, D. W.; Senkov, O. N.; Shivpuri, R.; Semiatin, S. L.

    2016-08-01

    The effect of inertia friction welding process parameters on microstructure evolution, weld plane quality, and the tensile behavior of welds between dissimilar nickel-base superalloys was established. For this purpose, the fine-grain, powder metallurgy alloy LSHR was joined to coarse-grain cast Mar-M247 using a fixed level of initial kinetic energy, but different combinations of the flywheel moment of inertia and initial rotation speed. It was found that welds made with the largest moment of inertia resulted in a sound bond with the best microstructure and room-temperature tensile strength equal to or greater than that of the parent materials. A relationship between the moment of inertia and weld process efficiency was established. The post-weld tensile behavior was interpreted in the context of observed microstructure gradients and weld-line defects.

  16. Prediction of mechanical properties in friction stir welds of pure copper

    International Nuclear Information System (INIS)

    Heidarzadeh, A.; Saeid, T.

    2013-01-01

    Highlights: • Range of parameters for defect-free friction stir welded pure copper was reached. • Models were developed for predicting UTS, TE and hardness of pure copper joints. • Analysis of variance was used to validate the developed models. • Effect of welding parameters on mechanical behavior of welded joints was explored. • The microstructure and fracture surface of welded joints were investigated. - Abstract: This research was carried out to predict the mechanical properties of friction stir welded pure copper joints. Response surface methodology based on a central composite rotatable design with three parameters, five levels, and 20 runs, was used to conduct the experiments and to develop the mathematical regression model by using of Design-Expert software. The three welding parameters considered were rotational speed, welding speed, and axial force. Analysis of variance was applied to validate the predicted models. Microstructural characterization and fractography of joints were examined using optical and scanning electron microscopes. Also, the effects of the welding parameters on mechanical properties of friction stir welded joints were analyzed in detail. The results showed that the developed models were reasonably accurate. The increase in welding parameters resulted in increasing of tensile strength of the joints up to a maximum value. Elongation percent of the joints increased with increase of rotational speed and axial force, but decreased by increasing of welding speed, continuously. In addition, hardness of the joints decreased with increase of rotational speed and axial force, but increased by increasing of welding speed. The joints welded at higher heat input conditions revealed more ductility fracture mode

  17. Crack initiation and growth in welded structures; Amorcage et propagation de la fissuration dans les jonctions soudees

    Energy Technology Data Exchange (ETDEWEB)

    Assire, A

    2000-10-13

    This work concerns the remaining life assessment of a structure containing initial defects of manufacturing. High temperature crack initiation and growth are studied for austenitic stainless steels, and defect assessment methods are improved in order to take into account welded structures. For these one, the probability to have a defect is significant. Two kinds of approaches are commonly used for defect assessment analysis. Fracture mechanics global approach with an energetic criterion, and local approach with a model taking into account the physical damage mechanism. For both approaches mechanical fields (stress and strain) have to be computed everywhere within the structure. Then, Finite Element computation is needed. The first part of the thesis concerns the identification of non linear kinematic and isotropic constitutive models. A pseudo-analytical method is proposed for a 'Two Inelastic Strain' model. This method provides a strategy of identification with a mechanical meaning, and this enables to associate each parameter to a physical phenomenon. Existing identifications are improved for cyclic plasticity and creep on a large range of stress levels. The second part concerns high temperature crack initiation and growth in welded structures. Finite Element analysis on plate and tube experimental configuration enable to understand the phenomenons of interaction between base metal and weld metal under mechanical and thermal loading. Concerning global approach, criteria based on C* parameter (Rice integral for visco-plasticity) are used. Finite Element computations underline the fact that for a defect located in the weld metal, C* values strongly depend on the base metal creep strain rate, because widespread visco-plasticity is located in both metals. A simplified method, based on the reference stress approach, is proposed and validated with Finite Element results. Creep crack growth simplified assessment is a quite good validation of the experimental results

  18. Fiscal 2000 achievement report on development of high-efficiency high-reliability welding technology through improvement on welding techniques; 2000 nendo yosetsu gijutsu no kodoka ni yoru kokoritsu koshinraisei yosetsu gijutsu no kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-04-01

    Efforts are made to develop a welding design support system capable of increasing reliability and enhancing welding efficiency. Activities are conducted in the six fields of (1) the development of welding process simulation models, (2) development of welded section structure simulation models, (3) development of simulation models for predicting welding caused deformation, (4) integration of the models, (5) analysis of the welding phenomenon, and (6) the elucidation of the defect generation mechanism. In field (1), efforts are made to develop an arc plasma model, a molten pool convective heat transportation model, and a welding process model. In the effort to develop an arc plasma model, studies are made about a stationary axisymmetric arc in its steady state and about a constitutive equation and computation algorithm for developing a model in which a tungsten electrode (cathode) and an arc plasma welding pool (anode) are integrated. Furthermore, the simulation outcomes are experimentally verified. Satisfactory models are obtained as far as qualitative properties are concerned. (NEDO)

  19. An ultrasonic methodology for in-service inspection of shell weld of core support structure in a sodium cooled fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Anish, E-mail: anish@igcar.gov.in; Rajkumar, K.V.; Sharma, Govind K.; Dhayalan, R.; Jayakumar, T.

    2015-02-15

    Highlights: • We demonstrate a novel ultrasonic methodology for in-service inspection of shell weld of core support structure in a sodium cooled fast breeder reactor. • The methodology comprises of the inspection of shell weld immersed in sodium from the outside surface of the main vessel using ultrasonic guided wave. • The formation and propagation of guided wave modes are validated by finite element simulation of the inspection methodology. • A defect down to 20% of 30 mm thick wall (∼6 mm) in the shell weld can be detected reliably using the developed methodology. - Abstract: The paper presents a novel ultrasonic methodology developed for in-service inspection (ISI) of shell weld of core support structure of main vessel of 500 MWe prototype fast breeder reactor (PFBR). The methodology comprises of the inspection of shell weld immersed in sodium from the outsider surface of the main vessel using a normal beam longitudinal wave ultrasonic transducer. Because of the presence of curvature in the knuckle region of the main vessel, the normal beam longitudinal wave enters the support shell plate at an angle and forms the guided waves by mode conversion and multiple reflections from the boundaries of the shell plate. Hence, this methodology can be used to detect defects in the shell weld of the core support structure. The successful demonstration of the methodology on a mock-up sector made of stainless steel indicated that an artificial defect down to 20% of 30 mm thick wall (∼6 mm) in the shell weld can be detected reliably.

  20. Development of fatigue resistance evaluation method for socket-weld-jointed pipes

    International Nuclear Information System (INIS)

    Noguchi, Shinji; Shibayama, Motoaki; Iwata, Masazumi; Matsuura, Masayuki

    2003-01-01

    Vent line, drain line and sampling line in nuclear power station have many socket welded-joints made of austenitic stainless steel. Their slenderness and stagnation yield some potential of vibration-induced cracking and stress corrosion cracking. For the joints under vibration, the authors firstly elucidated their welding-defect-related fatigue strength by using fracture mechanics. It could define the allowable sets of stress amplitude and defect size. Secondly, authors developed an ultra-sonic detecting apparatus by using a focus-type probe and its programmed crawl on socket part. The authors finally measured the stress amplitude and frequency by sticking strain gage on suspected joints, then evaluated the fatigue resistance of the joints. For more efficient procedure, the method of stress amplitude analysis through vibration measurement is being developed. (author)

  1. New developments for the ultrasonic inspection of austenitic stainless steel welds

    International Nuclear Information System (INIS)

    Chassignole, Bertrand; Doudet, Loic; Dupond, Olivier; Fouquet, Thierry; Richard, Benoit

    2006-01-01

    EDF R and D undertakes studies in non destructive testing (NDT) for better understanding the influence of various parameters (material, type of defect, geometry) on the 'controllability' of the critical components for nuclear safety. In the field of ultrasonic testing, one of the principal research orientations is devoted to the study of the austenitic stainless steel welds of the primary cooling system. Indeed, the structure of these welds present characteristics making difficult their examination, for example: - a strong anisotropy of the properties of elasticity which, coupled with the heterogeneity of the grain orientations, can involve phenomena of skewing, division and distortion of the beam; - a significant scattering of the waves by the grains involving an high attenuation and sometimes backscattered signals. For several years, actions have been launched to improve comprehension of these disturbing phenomena and to evaluate the controllability of those welds. This work is based on the one hand on experimental analyses on representative mock-ups and on the other hand on the developments of modelling codes taking into account the characteristics of the materials. We present in this document a synthesis of this work by developing the following points in particular: - a description of the phenomena of propagation; - the works undertaken to characterize the structure of the welds; - an example of study coupling experimental and modelling analyses for a butt weld achieved by manual arc welding with coated electrodes. The paper has the following contents: 1. Context; 2. Presentation of the problem; 3. Characterization of austenitic welds; 4. From comprehension to industrial application; 5. Conclusion and perspectives; 5. Conclusion and perspectives. This synthesis shows that each austenitic stainless steel weld is a particular case for the ultrasonic testing. This work allowed to better apprehend the disturbances of the ultrasonic propagation in the welds and thus

  2. The Variable Polarity Plasma Arc Welding Process: Its Application to the Space Shuttle External Tank

    Science.gov (United States)

    Nunes, A. C., Jr.; Bayless, E. O., Jr.; Wilson, W. A.

    1984-01-01

    This report describes progress in the implementation of the Variable Polarity Plasma Arc Welding (VPPAW) process at the External Tank (ET) assembly facility. Design allowable data has been developed for thicknesses up to 1.00 in. More than 24,000 in. of welding on liquid oxygen and liquid hydrogen cylinders has been made without an internal defect.

  3. End plug welding of nuclear fuel elements-AFFF experience

    International Nuclear Information System (INIS)

    Bhatt, R.B.; Singh, S.; Aniruddha Kumar; Amit; Arun Kumar; Panakkal, J.P.; Kamath, H.S.

    2004-01-01

    Advanced Fuel Fabrication Facility is engaged in the fabrication of mixed oxide (U,Pu)O 2 fuel elements of various types of nuclear reactors. Fabrication of fuel elements involves pellet fabrication, stack making, stack loading and end plug welding. The requirement of helium bonding gas inside the fuel elements necessitates the top end plug welding to be carried out with helium as the shielding gas. The severity of the service conditions inside a nuclear reactor imposes strict quality control criteria, which demands for almost defect free welds. The top end plug welding being the last process step in fuel element fabrication, any rejection at this stage would lead to loss of effort prior to this step. Moreover, the job becomes all the more difficult with mixed oxide (MOX) as the entire fabrication work has to be carried out in glove box trains. In the case of weld rejection, accepted pellets are salvaged by cutting the clad tube. This is a difficult task and recovery of pellets is low (requiring scrap recovery operation) and also leads to active metallic waste generation. This paper discusses the experience gained at AFFF, in the past 12 years in the area of end plug welding for different types of MOX fuel elements

  4. Three Transducer Ultrasonic Examination of Nuclear Fuel Rod Flush Welds At ENUSA

    International Nuclear Information System (INIS)

    Domingo, A.; Jimenez, J.M.

    1998-01-01

    From 1991 ENUSA are using UT microscope examination of flush weld with longitudinal wave (perpendicular to weld) looking for welding defects as porosity, weld thickness and penetration. In 1994 we included a new transducer off set placed, with shear waves to control cracks in welding. In 1997 we incorporated a new shear transducer, 30 degree centigrade angle, in order to control different orientation of cracks or Grain Boundary Separation (GBS) and to improve software capabilities. Then actual UT microscope equipment used to inspect rod welds consist, mainly in three transducer of 50 MHz mounted over a rotatory head. UT system is electronically synchronized and obtains 750 data points per revolution by transducer. A set of seven images of approx 100.000 data points is obtained for each weld. Thickness, pore size, pore depth, two of crack size and two of crack depth are presented and evaluated evaluated by the computer to obtain weld disposition. Resolution of 0,05 mm pore size is achieved by this equipment, thickness and penetration precision should be in the order of 0,005 mm and 0,05 mm respectively. Crack detection depend basically on its orientation, nevertheless position of transducer assures a high capability detection of cracks which should be formed at these welds. (Author)

  5. Tensile properties and strain-hardening behavior of double-sided arc welded and friction stir welded AZ31B magnesium alloy

    International Nuclear Information System (INIS)

    Chowdhury, S.M.; Chen, D.L.; Bhole, S.D.; Cao, X.; Powidajko, E.; Weckman, D.C.; Zhou, Y.

    2010-01-01

    Microstructures, tensile properties and work hardening behavior of double-sided arc welded (DSAWed) and friction stir welded (FSWed) AZ31B-H24 magnesium alloy sheet were studied at different strain rates. While the yield strength was higher, both the ultimate tensile strength and ductility were lower in the FSWed samples than in the DSAWed samples due to welding defects present at the bottom surface in the FSWed samples. Strain-hardening exponents were evaluated using the Hollomon relationship, the Ludwik equation and a modified equation. After welding, the strain-hardening exponents were nearly twice that of the base metal. The DSAWed samples exhibited stronger strain-hardening capacity due to the larger grain size coupled with the divorced eutectic structure containing β-Mg 17 Al 12 particles in the fusion zone, compared to the FSWed samples and base metal. Kocks-Mecking type plots were used to show strain-hardening stages. Stage III hardening occurred after yielding in both the base metal and the welded samples. At lower strains a higher strain-hardening rate was observed in the base metal, but it decreased rapidly with increasing net flow stress. At higher strains the strain-hardening rate of the welded samples became higher, because the recrystallized grains in the FSWed and the larger re-solidified grains coupled with β particles in the DSAWed provided more space to accommodate dislocation multiplication during plastic deformation. The strain-rate sensitivity evaluated via Lindholm's approach was observed to be higher in the base metal than in the welded samples.

  6. Mechanisms of joint and microstructure formation in high power ultrasonic spot welding 6111 aluminium automotive sheet

    International Nuclear Information System (INIS)

    Bakavos, D.; Prangnell, P.B.

    2010-01-01

    Resistance spot welding (RSW) is difficult to apply to aluminium automotive alloys. High power ultrasonic spot welding (HP-USW) is a new alternative method which is extremely efficient, using ∼2% of the energy of RSW. However, to date there have been few studies of the mechanisms of bond formation and the material interactions that take place with this process. Here, we report on a detailed investigation where we have used X-ray tomography, high resolution SEM, and EBSD, and dissimilar alloy welds, to track the interface position and characterise the stages of weld formation, and microstructure evolution, as a function of welding energy. Under optimum conditions high quality welds are produced, showing few defects. Welding proceeds by the development and spread of microwelds, until extensive plastic deformation occurs within the weld zone, where the temperature reaches ∼380 deg. C. The origin of the weld interface 'flow features' characteristic of HP-USW are discussed.

  7. Optimization of Friction Stir Welding Tool Advance Speed via Monte-Carlo Simulation of the Friction Stir Welding Process.

    Science.gov (United States)

    Fraser, Kirk A; St-Georges, Lyne; Kiss, Laszlo I

    2014-04-30

    Recognition of the friction stir welding process is growing in the aeronautical and aero-space industries. To make the process more available to the structural fabrication industry (buildings and bridges), being able to model the process to determine the highest speed of advance possible that will not cause unwanted welding defects is desirable. A numerical solution to the transient two-dimensional heat diffusion equation for the friction stir welding process is presented. A non-linear heat generation term based on an arbitrary piecewise linear model of friction as a function of temperature is used. The solution is used to solve for the temperature distribution in the Al 6061-T6 work pieces. The finite difference solution of the non-linear problem is used to perform a Monte-Carlo simulation (MCS). A polynomial response surface (maximum welding temperature as a function of advancing and rotational speed) is constructed from the MCS results. The response surface is used to determine the optimum tool speed of advance and rotational speed. The exterior penalty method is used to find the highest speed of advance and the associated rotational speed of the tool for the FSW process considered. We show that good agreement with experimental optimization work is possible with this simplified model. Using our approach an optimal weld pitch of 0.52 mm/rev is obtained for 3.18 mm thick AA6061-T6 plate. Our method provides an estimate of the optimal welding parameters in less than 30 min of calculation time.

  8. Friction stir weld-bonding defect inspection using phased array ultrasonic testing

    NARCIS (Netherlands)

    Fortunato, J.; Anand, C.; Braga, Daniel F.O.; Groves, R.M.; Moreira, P. M.G.P.; Infante, V

    2017-01-01

    Weight reduction is an important driver of the aerospace industry, which encourages the development of lightweight joining techniques to substitute rivet joints. Friction stir welding (FSW) is a solid-state process that enables the production of lighter joints with a small performance reduction

  9. The effect of different rutile electrodes on mechanical properties of underwater wet welded AH-36 steel plates

    Science.gov (United States)

    Winarto, Winarto; Purnama, Dewin; Churniawan, Iwan

    2018-04-01

    Underwater welding is an important role in the rescue of ships and underwater structures, in case of emergency. In this study, the marine steel plates used are AH-36 steel as parent material. This type of steel is included in the High Strength Low Alloy (HSLA). Electrodes used for welding AH-36 steel plates are commonly the E6013 and E 7024 which are the type of based rutile electrodes. Those electrodes are widely available on the market and they would be compared with the original electrode for underwater which is the type of E7014 with the trade name of Broco UW-CS-1. Welding method used is Shielding Metal Arc Welding (SMAW) with the variation of 5 m and 10 m underwater depth and also varied with the electric current of 120A, 140A and 250A. It was found that hardness value of increased in the area of weld metal and HAZ. HAZ also tends to have the highest hardness compared to both of weld metal and base metal. Non destructive test by radiographed test (RT) on welds showed that there are found welding defects in the form of incomplete penetration on all variations of welding parameters, but there is no porosity defect detected. The results of the hardness tests of underwater wet welded steel plates show that the hardness value of both rutile electrodes (E6013 and E 7024) is apparently similar hardness value compared with the existing commercial electrode (E7014 of Broco UW-CS- 1). The tensile test results of underwater wet welded steel plates show that the use of rutile electrode of E6013 gives a better tensile properties than other rutile electrodes.

  10. Polar gamma ray mode for testing weld quality natural gas pipeline

    International Nuclear Information System (INIS)

    Shahout, A. M.; Mahmood, A.Sh.

    2005-01-01

    The polar gamma-ray radiography method was studied extensively, gamma ray from Ir 192 source was used to detect weld defects in the main gas pipeline extending from Kh oms to Tripoli, gamma ray radiographic inspections were carried out according to the Astm(1) standards, and the radiographs were analyzed according to quality specifications API(2) standard-1104. The polar gamma ray mode has been applied to specimens of weld joints of pipes used in this pipeline in the reg [the kilometer 118(3)] and [the kilometer 123], and weld joints in the SLR 7 stz in the region [the kilometer 125]. The results obtained from gamma-rays have discussed and analyzed

  11. Welding rework data acquisition and automation

    Science.gov (United States)

    Romine, Peter L.

    1996-01-01

    Aluminum-Lithium is a modern material that NASA MSFC is evaluating as an option for the aluminum alloys and other aerospace metals presently in use. The importance of aluminum-lithium is in it's superior weight to strength characteristics. However, aluminum-lithium has produced many challenges in regards to manufacturing and maintenance. The solution to these problems are vital to the future uses of the shuttle for delivering larger payloads into earth orbit and are equally important to future commercial applications of aluminum-lithium. The Metals Processes Branch at MSFC is conducting extensive tests on aluminum-lithium which includes the collection of large amounts of data. This report discusses the automation and data acquisition for two processes: the initial weld and the repair. The new approach reduces the time required to collect the data, increases the accuracy of the data, and eliminates several types of human errors during data collection and entry. The same material properties that enhance the weight to strength characteristics of aluminum-lithium contribute to the problems with cracks occurring during welding, especially during the repair/rework process. The repairs are required to remove flaws or defects discovered in the initial weld, either discovered by x-ray, visual inspection, or some other type of nondestructive evaluation. It has been observed that cracks typically appear as a result of or beyond the second repair. MSFC scientists have determined that residual mechanical stress introduced by the welding process is a primary cause of the cracking. Two obvious solutions are to either prevent or minimize the stress introduced during the welding process, or remove or reduce the stress after the welding process and MSFC is investigating both of these.

  12. Friction welding of bulk metallic glasses to different ones

    International Nuclear Information System (INIS)

    Shoji, Takuo; Kawamura, Yoshihito; Ohno, Yasuhide

    2004-01-01

    For application of bulk metallic glasses (BMGs) as industrial materials, it is necessary to establish the metallurgical bonding technology. The BMGs exhibit high-strain-rate superplasticity in the supercooled liquid state. It has been reported that bulk metallic glasses were successfully welded together by friction, pulse-current, explosion and electron-beam methods. In this study, friction welding of the BMGs to different ones were tried for Pd 40 Ni 40 P 20 , Pd 40 Cu 30 P 20 Ni 10 , Zr 55 Cu 30 Al 10 Ni 5 and Zr 41 Be 23 Ti 14 Cu 12 Ni 10 BMGs. Successful welding was obtained in the combinations of the Pd 40 Ni 40 P 20 and Pd 40 Cu 30 P 20 Ni 10 BMGs, and the Zr 55 Cu 30 Al 10 Ni 5 and Zr 41 Be 23 Ti 14 Cu 12 Ni 10 ones. No crystallization was observed and no visible defect was recognized in the interface. The joining strength of the welded BMGs was the same as that of the parent BMG or more. BMGs seem to be successfully welded to the different ones with a difference below about 50 K in glass transition temperature

  13. Optimization of resistance spot welding on the assembly of refractory alloy 50Mo-50Re thin sheet

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jianhui [Department of Chemical and Materials Engineering, University of Kentucky, 177 Anderson Hall, Lexington, KY 40506 (United States); Jiang, Xiuping [Department of Chemical and Materials Engineering, University of Kentucky, 177 Anderson Hall, Lexington, KY 40506 (United States); Zeng, Qiang [Department of Chemical and Materials Engineering, University of Kentucky, 177 Anderson Hall, Lexington, KY 40506 (United States); Zhai, Tongguang [Department of Chemical and Materials Engineering, University of Kentucky, 177 Anderson Hall, Lexington, KY 40506 (United States)]. E-mail: tzhai0@engr.uky.edu; Leonhardt, Todd [Rhenium Alloys Inc., Elyria, OH 44036 (United States); Farrell, John [Semicon Associates, 695 Laco Drive, Lexington, KY 40510 (United States); Umstead, Williams [Semicon Associates, 695 Laco Drive, Lexington, KY 40510 (United States); Effgen, Michael P. [Semicon Associates, 695 Laco Drive, Lexington, KY 40510 (United States)

    2007-07-01

    Resistance spot welding (RSW) was employed to pre-join refractory alloy 50Mo-50Re (wt%) sheet with a 0.127 mm gage. Five important welding parameters (hold time, electrode, ramp time, weld current and electrode force) were adjusted in an attempt to optimize the welding quality. It was found that increasing the hold time from 50 ms to 999 ms improved the weld strength. Use of rod-shaped electrodes produced symmetric nugget and enhanced the weld strength. Use of a ramp time of 8 ms minimized electrode sticking and molten metal expulsion. The weld strength continuously increased with increasing the weld current up to 1100 A, but the probabilities of occurrence of electrode sticking and molten metal expulsion were also increased. Electrode force was increased from 4.44 N to 17.8 N, in order to reduce the inconsistency of the welding quality. Welding defects including porosities, columnar grains and composition segregation were also studied.

  14. Weldability and weld performance of a special grade Hastelloy-X modified for high-temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    Shimizu, S.; Mutoh, Y.

    1984-01-01

    The characteristics of weld defects in the electron beam (EB) welding and the tungsten inert gas (TIG) arc welding for Hastelloy-XR, a modified version of Hastelloy-X, are clarified through the bead-on-plate test and the Trans-Varestraint test. Based on the results, weldabilities on EB and TIG weldings for Hastelloy-XR are discussed and found to be almost the same as Hastelloy-X. The creep rupture behaviors of the welded joints are evaluated by employing data on creep properties of the base and the weld metals. According to the evaluation, the creep rupture strength of the EB-welded joint may be superior to that of the TIG-welded joint. The corrosion test in helium containing certain impurities is conducted for the weld metals. There is no significant difference of such corrosion characteristics as weight gain, internal oxidation, depleted zone, and so on between the base and the weld metals. Those are superior to Hastelloy-X

  15. Characterization of bond line discontinuities in a high-Mn TWIP steel pipe welded by HF-ERW

    Energy Technology Data Exchange (ETDEWEB)

    Park, Gitae; Kim, Bongyoon; Kang, Yongjoon [Division of Materials Science and Engineering, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul 04763 (Korea, Republic of); Kang, Heewoong [RD Team, Husteel, 131 Bugokgongdan-ro, Songak-eup, Dangjin-si, Chungnam 31721 (Korea, Republic of); Lee, Changhee, E-mail: chlee@hanyang.ac.kr [Division of Materials Science and Engineering, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul 04763 (Korea, Republic of)

    2016-08-15

    In this work, the microstructure and defects in a high-frequency electrical resistance welded (HF-ERW) pipe of high-Mn twinning-induced plasticity (TWIP) steel were characterized. The microstructure of the base metal and the bond line were examined using both optical microscopy and scanning electron microscopy. The features of the bond line were similar to those of conventional steel. Simultaneously, the circumferential ductility was evaluated via a flaring test. It was concluded that the deterioration of the circumferential ductility in a high-Mn TWIP steel pipe was caused by irregular shaped oxide defects and a penetrator that had been formed during welding. Specifically, the penetrator, which is composed of MnO and Mn{sub 2}SiO{sub 4}, was found to be the most influential on the circumferential ductility of the welded pipe. The penetrator was analyzed using both an electron probe micro analyzer and transmission electron microscopy, and the formation sequence of the penetrator was evaluated. - Highlights: •This study focused on applying the HF-ERW process to the seam welding of expandable pipe using TWIP steels. •For improvement of the circumferential ductility, deterioration factors were characterized. •Penetrator which would mainly deteriorate the circumferential ductility consisted of round MnO and Mn{sub 2}SiO{sub 4}. •Metallurgical evidence of existing theory regarding the mechanism of defect formation during the HF-ERW was characterized.

  16. Study of the mechanical properties of welded joints by wet sub sea welding technique with tubular electrode; Estudo das propriedades mecanicas de juntas soldadas pela tecnica de soldagem subaquatica molhada com eletrodo tubular

    Energy Technology Data Exchange (ETDEWEB)

    Teichmann, Erwin Werner; Baixo, Carlos Eduardo Iconomos; Dutra, Jair Carlos [Santa Catarina Univ., Florianopolis, SC (Brazil). Dept. de Engenharia Mecanica. Lab. de Soldagem e Mecatronica - LABSOLDA]. E-mail: erwin@labsolda.ufsc.br; Santos, Valter Rocha dos [Centro Federal de Educacao Tecnologica (CEFET), Rio de Janeiro, RJ (Brazil); Teixeira, Jose Claudio [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas

    1997-07-01

    Some experiments conducted at LABSOLDA/UFSC - a welding laboratory of Santa Catarina Univ., Florianopolis, Brazil - in order to identify mechanical properties, weld bead geometry and the quantity and dimensions of pores in weld beads produced by sub sea wet FCAW are described. Welding in shallow water with power source adjusted to operate in constant current characteristic mode and a set of parameters to establish an open arc transfer mode it was obtained weld beads with regular geometry and an acceptable profile, with low level of defects incidence, no pores and crack free. The tenacity measured by Charpy tests (0C) was 34 J and hardness of 119 HV-10 measured by Vickers tests. The methodology used in the experiments and the results obtained are discussed in the paper. (author)

  17. The investigation of abnormal particle-coarsening phenomena in friction stir repair weld of 2219-T6 aluminum alloy

    International Nuclear Information System (INIS)

    Li, Bo; Shen, Yifu

    2011-01-01

    Highlights: → Defective friction stir welds were repaired by overlapping FSW technique. → Abnormal Al 2 Cu-coarsening phenomena were found in 2219-T6 friction stir repair weld. → Three formation mechanisms were proposed for reasonable explanations. -- Abstract: The single-pass friction stir weld of aluminum 2219-T6 with weld-defects was repaired by overlapping friction stir welding technique. However, without any post weld heat treatment process, it was found that the phenomena of abnormal particle-coarsening of Al 2 Cu had occurred in the overlapping friction stir repair welds. The detecting results of non-destructive X-ray inspection proved that not only one group of repair FSW process parameters could lead to occurrence of the abnormal phenomena. And the abnormally coarsened particles always appeared on the advancing side of repair welds rather than the retreating side where the fracture behaviors occurred after mechanical tensile testing. The size of the biggest particle lying in the dark bands of 'Onion-rings' was more than 150 μm. After the related investigation by scanning electron microscope and X-ray energy spectrometer, three types of formation mechanisms were proposed for reasonably explaining the abnormal phenomenon: Aggregation Mechanism, Diffusion Mechanisms I and II. Aggregation Mechanism was according to the motion-laws of stir-pin. Diffusion Mechanisms were based on the classical theories of precipitate growth in metallic systems. The combined action of the three detailed mechanisms contributed to the abnormal coarsening behavior of Al 2 Cu particles in the friction stir repair weld.

  18. Inspection of welded zone and flat plate using flexible ECA probe

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang Jun; Lee, Kyu Sung; Shin, Chung Ho; Lee, Kyoung Jun; Jang, Yoon Young [ANSCO Inc., Daejeon (Korea, Republic of)

    2016-08-15

    This paper aims to compare the ability to detect notch defects existing in the plate and welded area using a flexible ECA (eddy current array) probe with OmniScan MX and MS-5800E. The characteristics of signals with various frequencies and lift-offs were also compared. As a result, when signals of frequencies 500, 1000, and 1500 kHz were used, the amplitude of the signal increased, as the depth of the notch increased, but reduced linearly in accordance with the lift-off variation. In addition, the detection sensitivity of the weld defect was found to be closely related to the contact surface of the probe and specimen. In this paper, it was demonstrated that the detection sensitivity was excellent when the contact surface of the probe and the specimen was sufficient, but it was poor when the contact surface was insufficient.

  19. Arc-welding quality assurance by means of embedded fiber sensor and spectral processing combining feature selection and neural networks

    Science.gov (United States)

    Mirapeix, J.; García-Allende, P. B.; Cobo, A.; Conde, O.; López-Higuera, J. M.

    2007-07-01

    A new spectral processing technique designed for its application in the on-line detection and classification of arc-welding defects is presented in this paper. A non-invasive fiber sensor embedded within a TIG torch collects the plasma radiation originated during the welding process. The spectral information is then processed by means of two consecutive stages. A compression algorithm is first applied to the data allowing real-time analysis. The selected spectral bands are then used to feed a classification algorithm, which will be demonstrated to provide an efficient weld defect detection and classification. The results obtained with the proposed technique are compared to a similar processing scheme presented in a previous paper, giving rise to an improvement in the performance of the monitoring system.

  20. Online process monitoring at quasi-simultaneous laser transmission welding using a 3D-scanner with integrated pyrometer

    Science.gov (United States)

    Schmailzl, A.; Steger, S.; Dostalek, M.; Hierl, S.

    2016-03-01

    Quasi-simultaneous laser transmission welding is a well-known joining technique for thermoplastics and mainly used in the automotive as well as in the medical industry. For process control usually the so called set-path monitoring is used, where the weld is specified as "good" if the irradiation time is inside a defined confidence interval. However, the detection of small-sized gaps or thermal damaged zones is not possible with this technique. The analyzation of the weld seam temperature during welding offers the possibility to overcome this problem. In this approach a 3D-scanner is used instead of a scanner with flat-field optic. By using a pyrometer in combination with a 3D-scanner no color-corrected optic is needed in order to provide that laser- and detection-spot are concentric. Experimental studies on polyethylene T-joints have shown that the quality of the signal is adequate, despite the use of an optical setup with a long working distance and a small optical aperture. The effects on temperature are studied for defects like a gap in the joining zone. Therefore a notch was milled into the absorbent polymer. In case of producing housings for electronic parts the effect of an electrical wire between the joining partners is also investigated. Both defects can be identified by a local temperature deviation even at a feed rate of four meters per second. Furthermore a strategy for signal-processing is demonstrated. By this, remaining defects can be identified. Consequently an online detection of local defects is possible, which makes a dynamic process control feasible.

  1. Microstructural characteristics of the laser welded joint of ITER correction coil sub case

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Chao, E-mail: fangchao@ipp.ac.cn [ASIPP, Shushan Hu Road 350, Hefei, Anhui 230031 (China); Lappeenranta University of Technology, Skinnarilankatu 34, 53850 Lappeenranta (Finland); Song, Yuntao; Wei, Jing; Xin, Jijun [ASIPP, Shushan Hu Road 350, Hefei, Anhui 230031 (China); Wu, Huapeng; Handroos, Hekki; Salminen, Antti [Lappeenranta University of Technology, Skinnarilankatu 34, 53850 Lappeenranta (Finland); Li, Hongwei [ITER China, 15B Fuxing Road, Beijing 100862 (China); Libeyre, Paul; Dolgetta, Nello [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul lez Durance (France)

    2015-10-15

    Highlights: • The multi-pass laser welding was developed for the ITER CC case manufacture. • The laser welding procedure was studied and optimized. • The microstructural characteristic of the welded joint was discussed. - Abstract: The ITER correction coil (CC) case reinforces the winding packs against the electromagnetic loads, minimizes stresses and deformations to the winding pack. The cases are made of high strength and high toughness austenitic stainless steel (316LN) hot rolled heavy plate and have a thickness of 20 mm. Considering the small cross-section and large dimensions of the case, deformation of the case when welding becomes a challenge in the case manufacturing. Therefore, laser welding was developed as the main welding technology for manufacturing. In this paper, multi-pass laser welding technology is used, the laser weldability of a 20 mm thick 316LN austenitic stainless steel plate is studied and the microstructure of the welded joint is analyzed. The welding experiment used an YLS-6000 fiber laser (IPG) and weld filler of 316LMn to match the base metal was used. The result shows that the welded joint has no obvious surface and internal defects based on the optimized welding parameters. The weld joint have a fine austenite microstructure and display columnar dendrites and cellular grains with strong directional characteristics. No apparent heat affected zone is observed and approximately 2 μm an austenite microstructure of the fusion line is clearly presented.

  2. Microstructural characteristics of the laser welded joint of ITER correction coil sub case

    International Nuclear Information System (INIS)

    Fang, Chao; Song, Yuntao; Wei, Jing; Xin, Jijun; Wu, Huapeng; Handroos, Hekki; Salminen, Antti; Li, Hongwei; Libeyre, Paul; Dolgetta, Nello

    2015-01-01

    Highlights: • The multi-pass laser welding was developed for the ITER CC case manufacture. • The laser welding procedure was studied and optimized. • The microstructural characteristic of the welded joint was discussed. - Abstract: The ITER correction coil (CC) case reinforces the winding packs against the electromagnetic loads, minimizes stresses and deformations to the winding pack. The cases are made of high strength and high toughness austenitic stainless steel (316LN) hot rolled heavy plate and have a thickness of 20 mm. Considering the small cross-section and large dimensions of the case, deformation of the case when welding becomes a challenge in the case manufacturing. Therefore, laser welding was developed as the main welding technology for manufacturing. In this paper, multi-pass laser welding technology is used, the laser weldability of a 20 mm thick 316LN austenitic stainless steel plate is studied and the microstructure of the welded joint is analyzed. The welding experiment used an YLS-6000 fiber laser (IPG) and weld filler of 316LMn to match the base metal was used. The result shows that the welded joint has no obvious surface and internal defects based on the optimized welding parameters. The weld joint have a fine austenite microstructure and display columnar dendrites and cellular grains with strong directional characteristics. No apparent heat affected zone is observed and approximately 2 μm an austenite microstructure of the fusion line is clearly presented.

  3. Laser and electron beam welding study on niobium based Nb-1Zr-0.1C alloy

    International Nuclear Information System (INIS)

    Badgujar, B.P.; Kushwaha, R.P.; Tewari, R.; Dey, G.K.

    2016-01-01

    The refractory metal based alloys are most suitable for the structural applications in high temperature reactors envisaged to operate at temperature higher than 1000°C. The Nb-1Zr-0.1C (wt. %) is being considered for structural applications in the proposed Compact High Temperature Reactors (CHTR). The welding of this alloy is a difficult task due to its reactive nature and higher thermal conductivity. Laser and Electron Beam (EB) welds were produced on sheet of Nb-1Zr-0.1C alloy at various processing parameters and their effects on weld quality was studied by characterizing their optical and SEM micrographs and microhardness profile. The joining efficiency of both welding processes were also studied. The laser welds done in air with argon shielding showed higher hardness values compared to EB welds indicating need for adequate shielding. This study will help to find the optimized welding parameters to produce defect free welds of Nb-1Zr-0.1C alloy. (author)

  4. Characterization of magnetically impelled arc butt welded T11 tubes for high pressure applications

    Directory of Open Access Journals (Sweden)

    R. Sivasankari

    2015-09-01

    Full Text Available Magnetically impelled arc butt (MIAB welding is a pressure welding process used for joining of pipes and tubes with an external magnetic field affecting arc rotation along the tube circumference. In this work, MIAB welding of low alloy steel (T11 tubes were carried out to study the microstructural changes occurring in thermo-mechanically affected zone (TMAZ. To qualify the process for the welding applications where pressure could be up to 300 bar, the MIAB welds are studied with variations of arc current and arc rotation time. It is found that TMAZ shows higher hardness than that in base metal and displays higher weld tensile strength and ductility due to bainitic transformation. The effect of arc current on the weld interface is also detailed and is found to be defect free at higher values of arc currents. The results reveal that MIAB welded samples exhibits good structural property correlation for high pressure applications with an added benefit of enhanced productivity at lower cost. The study will enable the use of MIAB welding for high pressure applications in power and defence sectors.

  5. Advances of orbital gas tungsten arc welding for Brazilian space applications – experimental setup

    Directory of Open Access Journals (Sweden)

    José A. Orlowski de Garcia

    2010-08-01

    Full Text Available The present work describes details of the several steps of the technology involved for the orbital Gas Tungsten Arc Welding (GTAW process of pure commercially titanium tubes. These pieces will be used to connect the several components of the propulsion system of the China-Brazilian Satellite CBERS, and is part of the Brazilian aerospace industry development. The implantation involved the steps of environment control; cut and facing of the base metal; cleaning procedures; piece alignment; choice of the type, geometry and installation of the tungsten electrode; system for the pressure of the purge gas; manual tack welding; choice of the welding parameters; and, finally, the qualification of welding procedures. Three distinct welding programs were studied, using pulsed current with increasing speed, continuous current and pulsed current with decreasing amperage levels. The results showed that the high quality criteria required to the aerospace segment is such that usual welding operations must be carefully designed and executed. The three welding developed programs generated welds free of defects and with adequate morphology, allowing to select the condition that better fits the Brazilian aerospace segment, and to be implanted in the welding of the CBERS Satellite Propulsion System.

  6. Damage mechanism of piping welded joints made from austenitic Steel for the type RBMK reactor

    International Nuclear Information System (INIS)

    Karzov, G.; Timofeev, B.; Gorbakony, A.; Petrov, V.; Chernaenko, T.

    1999-01-01

    In the process of operation of RBMK reactors the damages were taking place on welded piping, produced from austenitic stainless steel of the type 08X18H10T. The inspection of damaged sections in piping has shown that in most cases crack-like defects are of corrosion and mechanical character. The paper considers in details the reasons of damages appearance and their development for this type of welded joints of downcomers 325xl6 mm, which were fabricated from austenitic stainless steel using TlG and MAW welding methods. (author)

  7. Investigation of hot cracking in deep penetration electron beam welds

    Energy Technology Data Exchange (ETDEWEB)

    Thorvaldson, W.G.

    1978-06-10

    A defect in a deep penetration electron beam weld of 304L stainless steel to 21-6-9 stainless steel has been identified as a centerline hot crack. The study discussed in this report was made to define and to eliminate the cause of cracking.

  8. Eddy current testing system for bottom mounted instrumentation welds - 15206

    International Nuclear Information System (INIS)

    Kobayashi, N.; Ueno, S.; Suganuma, N.; Oodake, T.; Maehara, T.; Kasuya, T.; Ichikawa, H.

    2015-01-01

    We have demonstrated the scanning of eddy current testing (ECT) probe on the welds area including the nozzle, the J-welds and the buildup welds of the Bottom Mounted Instrumentation (BMI) mock-up using the developed ECT system and procedure. It is difficult to scan the probe on the BMI welds area because the area has a complex curved surface shape and narrow spaces. We made the space coordinates and the normal vectors on the scanning points as the scanning trajectory of probe on the welds area based on the measured results of welds surface shape on the mock-up. The multi-axis robot was used to scan the probe on the welds surface. Each motion axis position of the robot corresponding to each scanning point was calculated by the inverse kinematic algorithm. The BMI mock-up test was performed using the cross coil probe in the differential mode. The artificial stress corrosion cracking and the electrical discharge machining slits given on the mock-up surface were detected. The results show that the ECT can detect a defect of approximately 2.3 mm in length, 0.5 mm in depth and 0.2 mm in width for the BMI welds. From the output voltage of single coil, we estimated that the average and the maximum probe tilt angles on the mock-up surface under scanning were 2.6 degrees and 8.5 degrees, respectively

  9. Heat input effect of friction stir welding on aluminium alloy AA 6061-T6 welded joint

    Directory of Open Access Journals (Sweden)

    Sedmak Aleksandar

    2016-01-01

    Full Text Available This paper deals with the heat input and maximum temperature developed during friction stir welding with different parameters. Aluminium alloy (AA 6061-T6 has been used for experimental and numerical analysis. Experimental analysis is based on temperature measurements by using infrared camera, whereas numerical analysis was based on empirical expressions and finite element method. Different types of defects have been observed in respect to different levels of heat input.

  10. THE NEED FOR A NEW JOINING TECHNOLOGY FOR THE CLOSURE WELDING OF RADIOACTIVE MATERIALS CONTAINERS

    International Nuclear Information System (INIS)

    CANNELL GR; HILL BE; GRANT GJ

    2008-01-01

    One of the activities associated with cleanup throughout the Department of Energy (DOE) complex is packaging radioactive materials into storage containers. Much of this work will be performed in high-radiation environments requiring fully remote operations, for which existing, proven systems do not currently exist. These conditions demand a process that is capable of producing acceptable (defect-free) welds on a consistent basis; the need to perform weld repair, under fully-remote operations, can be extremely costly and time consuming. Current closure welding technology (fusion welding) is not well suited for this application and will present risk to cleanup cost and schedule. To address this risk, Fluor and the Pacific Northwest National Laboratory (PNNL), are proposing that a new and emerging joining technology, Friction Stir Welding (FSW), be considered for this work. FSW technology has been demonstrated in other industries (aerospace and marine) to produce near flaw-free welds on a consistent basis. FSW is judged capable of providing the needed performance for fully-remote closure welding of containers for radioactive materials for the following reasons: FSW is a solid-state process; material is not melted. As such, FSW does not produce the type of defects associated with fusion welding, e.g., solidification-induced porosity, cracking, distortion due to weld shrinkage, and residual stress. In addition, because FSW is a low-heat input process, material properties (mechanical, corrosion and environmental) are preserved and not degraded as can occur with 'high-heat' fusion welding processes. When compared to fusion processes, FSW produces extremely high weld quality. FSW is performed using machine-tool technology. The equipment is simple and robust and well-suited for high radiation, fully-remote operations compared to the relatively complex equipment associated with the fusion-welding processes. Additionally, for standard wall thicknesses of radioactive materials

  11. In-process monitoring and adaptive control for gap in micro butt welding with pulsed YAG laser

    International Nuclear Information System (INIS)

    Kawahito, Yousuke; Kito, Masayuki; Katayama, Seiji

    2007-01-01

    A gap is one of the most important issues to be solved in laser welding of a micro butt joint, because the gap results in welding defects such as underfilling or a non-bonded joint. In-process monitoring and adaptive control has been expected as one of the useful procedures for the stable production of sound laser welds without defects. The objective of this research is to evaluate the availability of in-process monitoring and adaptive control in micro butt welding of pure titanium rods with a pulsed neodymium : yttrium aluminium garnet (Nd : YAG) laser beam of a 150 μm spot diameter. It was revealed that a 45 μm narrow gap was detected by the remarkable jump in a reflected light intensity due to the formation of the molten pool which could bridge the gap. Heat radiation signal levels increased in proportion to the sizes of molten pools or penetration depths for the respective laser powers. As for adaptive control, the laser peak power was controlled on the basis of the reflected light or the heat radiation signals to stably produce a sound deeply penetrated weld reduced underfilling. In the case of a 100 μm gap, the underfilling was greatly reduced by half smaller than those made with a conventional rectangular pulse shape in seam welding as well as spot welding with a pulsed Nd : YAG laser beam. Consequently, the adaptive control of the laser peak power on the basis of in-process monitoring could reduce the harmful effects due to a gap in micro butt laser welding with a pulsed laser beam

  12. Dimensions of defects determined by radiographical testing

    International Nuclear Information System (INIS)

    Oesterberg, J.

    Normally industrial radiography using x-rays or radionuclides gives information on the existence of defects in welds. These defects may in some instances be harmless, the size of the flaw is important. Radiography may be used for determining the thickness of the defect in many cases, by measuring the blackening of the photographic film used. The report gives a theoretical treatment of the problems and goes on to practical examples of the application. For flaws that have a width of at least 0.3 mm, a thickness of the order 0.1 mm can be determined with sufficient accuracy in materials 40 mm thick.(P.Aa.)

  13. Determination of defects in depth (stereoradiography)

    International Nuclear Information System (INIS)

    Carvalho, Gilberto

    2000-01-01

    After the identification of an internal defect, by means of the single radiographic process, it can be necessary to determine it's position to evaluate the importance of the service and to specify which side of the weld the piece should be cut in order to reduce the amount of material to be removed and, in a lot, the cost of repair. The single radiography image does not have perspective and can not show the tri-dimensional vision, and so, do not clearly indicate the relative positions of the various parts of the object, in the direction of the vision. Stereoradiography was idealized to overcome that limitation of the standard radiography and it requests the accomplishment of two exposures, separated by the normal interpupillary distance. In the present work, we use this technique in a simulated pore defect, commonly found in the welding processes, and we present the efficiency of the technique. The material employed was SAE 1020 steel, in several thickness pieces, covering the range of thickness that the use Ir-192 source is recommended. (author)

  14. Simulation of Ultrasonic Beam Focusing on a Defect in Anisotropic, Inhomogeneous Media

    International Nuclear Information System (INIS)

    Jeong, Hyun Jo; Cho, Sung Jong; Erdenetuya, Sharaa; Jung, Duck Yong

    2011-01-01

    In ultrasonic testing of dissimilar metal welds, application of phased array technique in terms of incident beam focusing is not easy because of complicated material structures formed during the multi-pass welding process. Time reversal(TR) techniques can overcome some limitations of phased array since they are self-focusing that does not depend on the geometrical and physical properties of testing components. In this paper, we test the possibility of TR focusing on a defect within anisotropic, heterogeneous austenitic welds. A commercial simulation software is employed for TR focusing and imaging of a side-drilled hole. The performance of time reversed adaptive focal law is compared with those of calculated focal laws for both anisotropic and isotropic welds

  15. EDF field experience of 182 J-Groove welds on CRDMs and SG channel head nozzles

    International Nuclear Information System (INIS)

    Duisabeau, L.; Deforge, D.; Thebault, Y.; Stindel, M.; Lemaire, E.

    2011-01-01

    The Reactor Pressure Vessel Head (RPVH) replacement program, which began after a leak occurrence in a vessel head nozzle in Alloy 600 at Bugey Unit 3, was a unique opportunity to perform an extended inspection program on the welds from the decommissioned RPV heads. This paper presents the actual results of this program. More than 800 CRDM J groove welds from 18 decommissioned RPV heads were inspected by automatic dye penetrant testing. Detected indications were characterized by viewing tools specifically developed and in some specific cases, by destructive investigations in hot lab. Some welding defects were observed but no indication corresponding to stress corrosion cracking (SCC) was detected at the welds wet surface nor propagation from welding manufacturing defects, including the weld with the longest operating time on EDF power plants (170 000 h). Very few cases of SCC propagation from Alloy 600 to Alloy 182 are reported. One case of initiation at the weld root pass was observed. From design, the weld root pass (mechanically loaded) of CRDM (Control Rod Drive Mechanism) nozzles is not in contact with primary water and the cracking observed occurred after a through wall cracking of the Alloy 600 tube, enabling primary water to wet the root pass. Concerning the steam generator (SG) drain nozzle, the alloy 182 weld root is directly in contact with primary water. In June 2008, a primary water leakage was suspected on a steam generator bowl drain while conducting a bare metal visual examination during the plant's outage. Dye penetrant testing of the weld and metallographic replica were implemented during the 2008 and 2009 refuelling outages to confirm a leakage by SCC. Manufacturing reports analyses revealed that the drain nozzle weld was repaired and had not been stress relieved during manufacturing. EDF has decided to plug this nozzle and to enforce the maintenance policy for similar components with the same manufacturing specificity. Regarding national and

  16. Evaluation of the strong performance of the circular welded pipe connections with corrosion defects

    OpenAIRE

    Tarayevskyi, O. S.

    2013-01-01

    The paper shows the results of experimental studies and the analysis of the impact of long service life of the main gas pipelines, as well as of natural concentrators of stresses on the physical and mechanical p roperties of welded joints of steel 17G1S. A methodology was developed and patterns of gas pipeline welded joint material failure at static and low-frequency loads were established, as well as impact of stress concentrators during prolonged use. Some aspects of the mechanism of pipeli...

  17. Crack initiation and growth in welded structures; Amorcage et propagation de la fissuration dans les jonctions soudees

    Energy Technology Data Exchange (ETDEWEB)

    Assire, A

    2000-10-13

    This work concerns the remaining life assessment of a structure containing initial defects of manufacturing. High temperature crack initiation and growth are studied for austenitic stainless steels, and defect assessment methods are improved in order to take into account welded structures. For these one, the probability to have a defect is significant. Two kinds of approaches are commonly used for defect assessment analysis. Fracture mechanics global approach with an energetic criterion, and local approach with a model taking into account the physical damage mechanism. For both approaches mechanical fields (stress and strain) have to be computed everywhere within the structure. Then, Finite Element computation is needed. The first part of the thesis concerns the identification of non linear kinematic and isotropic constitutive models. A pseudo-analytical method is proposed for a 'Two Inelastic Strain' model. This method provides a strategy of identification with a mechanical meaning, and this enables to associate each parameter to a physical phenomenon. Existing identifications are improved for cyclic plasticity and creep on a large range of stress levels. The second part concerns high temperature crack initiation and growth in welded structures. Finite Element analysis on plate and tube experimental configuration enable to understand the phenomenons of interaction between base metal and weld metal under mechanical and thermal loading. Concerning global approach, criteria based on C* parameter (Rice integral for visco-plasticity) are used. Finite Element computations underline the fact that for a defect located in the weld metal, C* values strongly depend on the base metal creep strain rate, because widespread visco-plasticity is located in both metals. A simplified method, based on the reference stress approach, is proposed and validated with Finite Element results. Creep crack growth simplified assessment is a quite good validation of the experimental

  18. Design and development of Pc-based TOFD ultrasonic scanning system for welds inspection

    International Nuclear Information System (INIS)

    Suhairy Sani; Mohamad Pauzi Ismai; Muhammad Faiz Mohd Shukri; Amry Amin Abas

    2010-01-01

    This paper describes the design and development of a portable PC-based ultrasonic scanning system for industrial applications. The system which is called TOFD Ultrasonic Scanning System (TOFUSS) is used to create a gray scale imaging techniques are applied to the RF (AC) signal phase and enables weld integrity to be observed in real time. TOFD consists of a separate ultrasonic transmitter and receiver. The Probes are aimed at the same point in the weld volume. The entire weld is flooded with ultrasound allowing inspection of the weld. With a time of flight path, the ultrasonic velocity and the spatial relationship of the two probes, location and height of the defects can be very accurately calculated. The algorithm and complete system were implemented in a computer software developed using Microsoft Visual BASIC 6.0. (author)

  19. Development of Preemptive Repair Technology for Alloy 600 J-Groove Welds of Reactor Vessel Upper Head CEDM Nozzles

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Kwang Woon; Lee, Jang Wook; Cho, Ki Hyun; Choi, Kwang Min; Choi, Dong Chul; Cho, Sang Beum; Cho, Hong Seok [KEPCO, Daejeon (Korea, Republic of)

    2016-05-15

    After 2000, PWSCC in numerous NPPs around the world has been generated, and recently, PWSCC in several CEDM nozzles of domestic NPP Hanbit Unit 3 and 4 was founded and repaired with embedded flaw repair(EFR) welding method by Westinghouse. In this study, development status of EFR equipment and basic experimental results for preventive PWSCC of RVUH CEDM nozzles will be introduced. The development of EFR seal welding equipment and welding process for the preemptive repair with original Alloy 600 J-Groove welds of RVUHP was conducted. The EFR welding equipment was tested to be possible seal welding to track J-Groove welds with three dimensional curved surfaces and OD penetration with vertical welding position. Through several BOP and overlay welding experiments, it was verified that good weld beads with no defects, such as cracks, spatter, undercut at the stable welding conditions with heat input of 27.4-32.5 KJ/in were well produced. Consequently, it is expected that the EFR seal welding technique will be applicable on the site.

  20. Modeling and validation of multiple joint reflections for ultra- narrow gap laser welding

    Energy Technology Data Exchange (ETDEWEB)

    Milewski, J.; Keel, G. [Los Alamos National Lab., NM (United States); Sklar, E. [Opticad Corp., Santa Fe, New Mexico (United States)

    1995-12-01

    The effects of multiple internal reflections within a laser weld joint as a function of joint geometry and processing conditions have been characterized. A computer model utilizing optical ray tracing is used to predict the reflective propagation of laser beam energy focused into the narrow gap of a metal joint for the purpose of predicting the location of melting and coalescence which form the weld. The model allows quantitative analysis of the effects of changes to joint geometry, laser design, materials and processing variables. This analysis method is proposed as a way to enhance process efficiency and design laser welds which display deep penetration and high depth to width aspect ratios, reduced occurrence of defects and enhanced melting. Of particular interest to laser welding is the enhancement of energy coupling to highly reflective materials. The weld joint is designed to act as an optical element which propagates and concentrates the laser energy deep within the joint to be welded. Experimentation has shown that it is possible to produce welds using multiple passes to achieve deep penetration and high depth to width aspect ratios without the use of filler material. The enhanced laser melting and welding of aluminum has been demonstrated. Optimization through modeling and experimental validation has resulted in the development of a laser welding process variant we refer to as Ultra-Narrow Gap Laser Welding.

  1. Eddy current technique for detecting and sizing surface cracks in steel components

    International Nuclear Information System (INIS)

    Cecco, V.S.; Carter, J.R.; Sullivan, S.P.

    1995-01-01

    Cracking has occurred in pressure vessel nozzles and girth welds due to thermal fatigue. Pipe welds, welds in support structures, and welds in reactor vault liner panels in nuclear facilities have failed because of cracks. Cracking can also occur in turbine rotor bore surfaces due to high cycle fatigue. Dye penetrant, magnetic particle and other surface NDT methods are used to detect cracks but cannot be used for depth sizing. Crack depth can be measured with various NDT methods such as ultrasonic time-of-flight diffraction (TOFD), potential drop, and eddy current. The TOFD technique can be difficult to implement on nozzle welds and is best suited for sizing deep cracks (>5 mm). The conventional eddy current method is easy to implement, but crack sizing is normally limited to shallow cracks ( 2 mm) cracks. Eddy current testing (ET) techniques are readily amenable to remote/automatic inspections. These new probes could augment present magnetic particle (MT) and dye penetrant (PT) testing through provision of reliable defect depth information. Reliable crack sizing permits identification of critical cracks for plant life extension and licensing purposes. In addition, performing PT and MT generates low level radioactive waste in some inspection applications in nuclear facilities. Replacing these techniques with ET for some components will eliminate some of this radioactive waste. (author)

  2. Microstructural Evolution and Fracture Behavior of Friction-Stir-Welded Al-Cu Laminated Composites

    Science.gov (United States)

    Beygi, R.; Kazeminezhad, Mohsen; Kokabi, A. H.

    2014-01-01

    In this study, we attempt to characterize the microstructural evolution during friction stir butt welding of Al-Cu-laminated composites and its effect on the fracture behavior of the joint. Emphasis is on the material flow and particle distribution in the stir zone. For this purpose, optical microscopy and scanning electron microscopy (SEM) images, energy-dispersive spectroscopy EDS and XRD analyses, hardness measurements, and tensile tests are carried out on the joints. It is shown that intermetallic compounds exist in lamellas of banding structure formed in the advancing side of the welds. In samples welded from the Cu side, the banding structure in the advancing side and the hook formation in the retreating side determine the fracture behavior of the joint. In samples welded from the Al side, a defect is formed in the advancing side of the weld, which is attributed to insufficient material flow. It is concluded that the contact surface of the laminate (Al or Cu) with the shoulder of the FSW tool influences the material flow and microstructure of welds.

  3. INVESTIGATION OF SINGLE-PASS/DOUBLE-PASS TECHNIQUES ON FRICTION STIR WELDING OF ALUMINIUM

    Directory of Open Access Journals (Sweden)

    N.A.A. Sathari

    2014-12-01

    Full Text Available The aim of this research is to study the effects of single-pass/ double-pass techniques on friction stir welding of aluminium. Two pieces of AA1100 with a thickness of 6.0 mm were friction stir welded using a CNC milling machine at rotational speeds of 1400 rpm, 1600 rpm and 1800 rpm respectively for single-pass and double-pass. Microstructure observations of the welded area were studied using an optical microscope. The specimens were tested by using a tensile test and Vickers hardness test to evaluate their mechanical properties. The results indicated that, at low rotational speed, defects such as ‘surface lack of fill’ and tunnels in the welded area contributed to a decrease in mechanical properties. Welded specimens using double-pass techniques show increasing values of tensile strength and hardness. From this investigation it is found that the best parameters of FSW welded aluminium AA1100 plate were those using double-pass techniques that produce mechanically sound joints with a hardness of 56.38 HV and 108 MPa strength at 1800 rpm compared to the single-pass technique. Friction stir welding, single-pass/ double-pass techniques, AA1100, microstructure, mechanical properties.

  4. Narrow gap mechanised arc welding in nuclear components manufactured by AREVA NP

    International Nuclear Information System (INIS)

    Peigney, A.

    2007-01-01

    Nuclear components require welds of irreproachable and reproducible quality. Moreover, for a given welding process, productivity requirements lead to reduce the volume of deposited metal and thus to use narrow gap design. In the shop, narrow gap Submerged Arc Welding process (SAW) is currently used on rotating parts in flat position for thicknesses up to 300 mm. Welding is performed with one or two wires in two passes per layer. In Gas Tungsten Arc Welding process (GTAW), multiple applications can be found because this process presents the advantage of allowing welding in all positions. Welding is performed in one or two passes per layer. The process is used in factory and on the nuclear sites for assembling new components but also for replacing components and for repairs. Presently, an increase of productivity of the process is sought through the use of hot wire and/or two wires. Concerning Gas Metal Arc Welding process (GMAW), its use is growing for nuclear components, including narrow gap applications. This process, limited in its applications in the past on account of the defects it generated, draws benefit from the progress of the welding generators. Then it is possible to use this efficient process for high security components such as those of nuclear systems. It is to be noted that the process is applicable in the various welding positions as it is the case for GTAW, while being more efficient than the latter. This paper presents the state of the art in the use of narrow gap mechanised arc welding processes by AREVA NP units. (author) [fr

  5. Advanced ultrasonic techniques for nondestructive testing of austenitic and dissimilar welds in nuclear facilities

    Science.gov (United States)

    Juengert, Anne; Dugan, Sandra; Homann, Tobias; Mitzscherling, Steffen; Prager, Jens; Pudovikov, Sergey; Schwender, Thomas

    2018-04-01

    Austenitic stainless steel welds as well as dissimilar metal welds with nickel alloy filler material, used in safety relevant parts of nuclear power plants, still challenge the ultrasonic inspection. The weld material forms large oriented grains that lead, on the one hand, to high sound scattering and, on the other hand, to inhomogeneity and to the acoustic anisotropy of the weld structure. The ultrasonic wave fronts do not propagate linearly, as in ferritic weld joints, but along the curves, which depend on the specific grain structure of the weld. Due to the influence of these phenomena, it is difficult to analyze the inspection results and to classify the ultrasonic indications, which could be both from the weld geometry and from the material defects. A correct flaw sizing is not possible. In an ongoing research project, different techniques to improve the reliability of ultrasonic testing at these kinds of welds are investigated. In a first step (in the previous research project) two ultrasonic inspection techniques were developed and validated on plane test specimens with artificial and realistic flaws. In the ongoing project, these techniques are applied to circumferential pipe welds with longitudinal and transverse flaws. The technique developed at the Federal Institute for Materials Research and Testing (BAM) in Germany uses a combination of ray tracing and synthetic aperture focusing technique (SAFT). To investigate the unknown grain structure, the velocity distribution of weld-transmitting ultrasound waves is measured and used to model the weld by ray tracing. The second technique, developed at the Fraunhofer Institute for Nondestructive Testing (IZFP) in Germany, uses Sampling Phased Array (Full Matrix Capture) combined with the reverse phase matching (RPM) and the gradient elastic constant descent algorithm (GECDM). This inspection method is able to estimate the elastic constants of the columnar grains in the weld and offers an improvement of the

  6. The Influence of Flow and Type of Variation in The Welding Electrode SMAW Against Carbon Steel Mechanical Propertis

    Directory of Open Access Journals (Sweden)

    I Made Gatot Karohika

    2012-11-01

    Full Text Available Welding is a joining process of 2 or more metal that is widely used in industry. To obtain good welding result it is needed appropriate filler and weld parameters to avoid weld defect and wide deference of mechanic properties between welded metal and base metal.In this experiment we used different filler and current (E 6010, 7018 ? 2,5mm ? 350mm , 100 dan 130 Aand use material carbon steel AISI 1045 and SMAW welding method. Rockwell C Hardness tested in welded metal, HAZ, and base metal area.The hardness number in welded metal and HAZ is reported higher than base metal area, the hardness number of welded metal and HAZ that use current 130 is higher than that one than use current 100 A,and hardness number in base metal relatifely similar. The hardness number of welded metal that use electrode 7018 is higher than hardness number of welded metal that use electrode 6010, and hardness number of HAZ and base metal is not affected significantly by the types of electrode.

  7. An automatic approach for nondestructive radiographic inspection of pipeline weld joint; Uma abordagem automatica aplicada a inspecao radiografica nao-destrutiva de soldas em tubulacoes

    Energy Technology Data Exchange (ETDEWEB)

    Felisberto, Marcelo K.; Schneider, Guilherme A.; Centeno, Tania M.; Arruda, Lucia V.R. de [Centro Federal de Educacao Tecnologica do Parana, Curitiba, PR (Brazil). CPGEI - Programa de Pos-graduacao em Engenharia Eletrica e Informatica Industrial

    2005-07-01

    The current work contributes to the research in the area of pipelines non-destructive testing by presenting new methodologies for the automatic analysis of welds radiographs. Object recognition techniques based on genetic algorithms were used for the automatic weld bead detection. In addiction, an image digital filter was also tested in the weld bead images and, as a result, supposed defects are highlighted, making them easier to be detected. These methodologies were tested for 120 digital radiographs from carbon steel pipeline welded joints. These images were acquired by a storage phosphor system, using double-wall radiographic exposing technique with single-wall radiographic viewing, according to the ASME V code. As a result, even human vision hard-perceptible defects are automatically highlighted and extracted from the whole image to be separately analyzed. (author)

  8. The effects of alloying elements on microstructures and mechanical properties of tungsten inert gas welded AZ80 magnesium alloys joint

    Science.gov (United States)

    Li, Hui; Zhang, Jiansheng; Ding, Rongrong

    2017-11-01

    The effects of alloying elements on the macrostructures, microstructures and tensile strength of AZ80 Mg alloy weldments were studied in the present study. The results indicate that with the decrease of Al element content of filler wire, the welding defects of seam are gradually eliminated and the β-Mg17Al12 phases at α-Mg boundaries are refined and become discontinuous, which are beneficial to the improvement of tensile strength. With AZ31 Mg alloy filler wire, the maximum tensile strength of AZ80 weldment is 220 MPa and fracture occurs at the welding seam of joint. It is experimentally proved that robust AZ80 Mg alloy joints can be obtained by tungsten inert gas (TIG) welding process with AZ31 Mg alloy filler wire. However, further study is required to improve the microstructures and reduce welding defects of joint in order to further improve the joining strength of AZ80 Mg alloy joint.

  9. Effect of friction stir welding speed on the microstructure and mechanical properties of a duplex stainless steel

    International Nuclear Information System (INIS)

    Saeid, T.; Abdollah-zadeh, A.; Assadi, H.; Malek Ghaini, F.

    2008-01-01

    The present study focuses on the effect of the welding speed on the microstructure and mechanical properties of the stir zone (SZ) in friction stir welding (FSW) of SAF 2205 duplex stainless steel. A single tool, made of a WC-base material, was used to weld 2 mm-thick plates at a constant rotational speed of 600 rpm. X-ray radiography revealed that sound welds were successfully obtained for the welding speeds in the range of 50-200 mm/min, whereas a groove-like defect was formed at the higher speed of 250 mm/min. Moreover, increasing the welding speed decreased the size of the α and γ grains in the SZ, and hence, improved the mean hardness value and the tensile strength of the SZ. These results are interpreted with respect to interplay between the welding speed and the peak temperature in FSW

  10. The microstructure of aluminum A5083 butt joint by friction stir welding

    International Nuclear Information System (INIS)

    Jasri, M. A. H. M.; Afendi, M.; Ismail, A.; Ishak, M.

    2015-01-01

    This study presents the microstructure of the aluminum A5083 butt joint surface after it has been joined by friction stir welding (FSW) process. The FSW process is a unique welding method because it will not change the chemical properties of the welded metals. In this study, MILKO 37 milling machine was modified to run FSW process on 4 mm plate of aluminum A5083 butt joint. For the experiment, variables of travel speed and tool rotational speed based on capability of machine were used to run FSW process. The concentrated heat from the tool to the aluminum plate changes the plate form from solid to plastic state. Two aluminum plates is merged to become one plate during plastic state and return to solid when concentrated heat is gradually further away. After that, the surface and cross section of the welded aluminum were investigated with a microscope by 400 x multiplication zoom. The welding defect in the FSW aluminum was identified. Then, the result was compared to the American Welding Society (AWS) FSW standard to decide whether the plate can be accepted or rejected

  11. The microstructure of aluminum A5083 butt joint by friction stir welding

    Energy Technology Data Exchange (ETDEWEB)

    Jasri, M. A. H. M.; Afendi, M. [School of Mechatronic Engineering, Universiti Malaysia Perlis, Pauh, 02600, Arau, Perlis (Malaysia); Ismail, A. [UniKL MIMET, JalanPantaiRemis, 32200, Lumut, Perak (Malaysia); Ishak, M. [Faculty of Mechanical Engineering, Universiti Malaysia Pahang, 02600, Pekan, Pahang (Malaysia)

    2015-05-15

    This study presents the microstructure of the aluminum A5083 butt joint surface after it has been joined by friction stir welding (FSW) process. The FSW process is a unique welding method because it will not change the chemical properties of the welded metals. In this study, MILKO 37 milling machine was modified to run FSW process on 4 mm plate of aluminum A5083 butt joint. For the experiment, variables of travel speed and tool rotational speed based on capability of machine were used to run FSW process. The concentrated heat from the tool to the aluminum plate changes the plate form from solid to plastic state. Two aluminum plates is merged to become one plate during plastic state and return to solid when concentrated heat is gradually further away. After that, the surface and cross section of the welded aluminum were investigated with a microscope by 400 x multiplication zoom. The welding defect in the FSW aluminum was identified. Then, the result was compared to the American Welding Society (AWS) FSW standard to decide whether the plate can be accepted or rejected.

  12. Micro-focus x-ray inspection of the bearing pad welded by laser for CANDU fuel element

    International Nuclear Information System (INIS)

    Kim, W. K.; Kim, S. S.; Lee, J. W.; Yang, M. S.

    2001-01-01

    To attach the bearing pads on the surface of CANDU fuel element, laser welding technique has been reviewed to replace brazing technology which is complicate process and makes use of the toxic beryllium. In this study, to evaluate the soundness of the weld of the bearing pad of CANDU fuel element, a precise X-ray inspection system was developed using a micro-focus X-ray generator with an image intensifier and a real time camera system. The weld of the bearing pad welded by Nd:YAG laser has been inspected by the developed inspection system. Image processing technique has been applied to reduce random noise and to enhance the contrast of the X-ray image. A few defects on the weld of the bearing pads have been detected by the X-ray inspection process

  13. Short cracks in piping and piping welds. Seventh program report, March 1993-December 1994. Volume 4, Number 1

    Energy Technology Data Exchange (ETDEWEB)

    Wilkowski, G.M.; Ghadiali, N.; Rudland, D.; Krishnaswamy, P.; Rahman, S.; Scott, P. [Battelle, Columbus, OH (United States)

    1995-04-01

    This is the seventh progress report of the U.S. Nuclear Regulatory Commission`s research program entitled {open_quotes}Short Cracks in Piping and Piping Welds{close_quotes}. The program objective is to verify and improve fracture analyses for circumferentially cracked large-diameter nuclear piping with crack sizes typically used in leak-before-break (LBB) analyses and in-service flaw evaluations. All work in the eight technical tasks have been completed. Ten topical reports are scheduled to be published. Progress only during the reporting period, March 1993 - December 1994, not covered in the topical reports is presented in this report. Details about the following efforts are covered in this report: (1) Improvements to the two computer programs NRCPIPE and NRCPIPES to assess the failure behavior of circumferential through-wall and surface-cracked pipe, respectively; (2) Pipe material property database PIFRAC; (3) Circumferentially cracked pipe database CIRCUMCK.WKI; (4) An assessment of the proposed ASME Section III design stress rule changes on pipe flaw tolerance; and (5) A pipe fracture experiment on a section of pipe removed from service degraded by microbiologically induced corrosion (MIC) which contained a girth weld crack. Progress in the other tasks is not repeated here as it has been covered in great detail in the topical reports.

  14. Computer Tomography 3-D Imaging of the Metal Deformation Flow Path in Friction Stir Welding

    Science.gov (United States)

    Schneider, Judy; Beshears, Ronald; Nunes, Arthur C., Jr.

    2004-01-01

    In friction stir welding, a rotating threaded pin tool is inserted into a weld seam and literally stirs the edges of the seam together. This solid-state technique has been successfully used in the joining of materials that are difficult to fusion weld such as aluminum alloys. To determine optimal processing parameters for producing a defect free weld, a better understanding of the resulting metal deformation flow path is required. Marker studies are the principal method of studying the metal deformation flow path around the FSW pin tool. In our study, we have used computed tomography (CT) scans to reveal the flow pattern of a lead wire embedded in a FSW weld seam. At the welding temperature of aluminum, the lead becomes molten and thus tracks the aluminum deformation flow paths in a unique 3-dimensional manner. CT scanning is a convenient and comprehensive way of collecting and displaying tracer data. It marks an advance over previous more tedious and ambiguous radiographic/metallographic data collection methods.

  15. Computed Tomography 3-D Imaging of the Metal Deformation Flow Path in Friction Stir Welding

    Science.gov (United States)

    Schneider, Judy; Beshears, Ronald; Nunes, Arthur C., Jr.

    2005-01-01

    In friction stir welding (FSW), a rotating threaded pin tool is inserted into a weld seam and literally stirs the edges of the seam together. To determine optimal processing parameters for producing a defect free weld, a better understanding of the resulting metal deformation flow path is required. Marker studies are the principal method of studying the metal deformation flow path around the FSW pin tool. In our study, we have used computed tomography (CT) scans to reveal the flow pattern of a lead wire embedded in a FSW weld seam. At the welding temperature of aluminum, the lead becomes molten and is carried with the macro-flow of the weld metal. By using CT images, a 3-dimensional (3D) image of the lead flow pattern can be reconstructed. CT imaging was found to be a convenient and comprehensive way of collecting and displaying tracer data. It marks an advance over previous more tedious and ambiguous radiographic/metallographic data collection methods.

  16. Application of laser ultrasonic method for on-line monitoring of friction stir spot welding process.

    Science.gov (United States)

    Zhang, Kuanshuang; Zhou, Zhenggan; Zhou, Jianghua

    2015-09-01

    Application of a laser ultrasonic method is developed for on-line monitoring of the friction stir spot welding (FSSW) process. Based on the technology of FSSW, laser-generated ultrasonic waves in a good weld and nonweld area are simulated by a finite element method. The reflected and transmitted waves are analyzed to disclose the properties of the welded interface. The noncontact-laser ultrasonic-inspection system was established to verify the numerical results. The reflected waves in the good-weld and nonweld area can be distinguished by time-of-flight. The transmitted waves evidently attenuate in the nonweld area in contrast to signal amplitude in the good weld area because of interfacial impedance difference. Laser ultrasonic C-scan images can sufficiently evaluate the intrinsic character of the weld area in comparison with traditional water-immersion ultrasonic testing results. The research results confirm that laser ultrasonics would be an effective method to realize the characterization of FSSW defects.

  17. Efecto del procedimiento de soldadura sobre las propiedades de uniones soldadas de aceros microaleados para cañería Welding procedure effect on the properties of microalloyed steel welded joints for metal fabrication

    Directory of Open Access Journals (Sweden)

    Mónica Zalazar

    2009-03-01

    through Tekken tests at different temperatures, according to JIS Z 3158 standard. Pipes of these materials were used to carry out girth weldments utilizing different welding processes. Two welding procedures were designed: a all the welds with SMAW; b first bead with GMAW-CO2 shielding and the rest of them with FCAW-S. The welding procedures were qualified according to API 1104 Code. The results of metallographic studies and mechanical tests (tensile properties, Charpy-V and hardness showed welding consumable influence as well as that of the base metal on the properties of the joints. Consumables from different origins and same specification also generated different results. From the combinations used optimal conditions were determined for welding of these steels.

  18. Defect detection of wall thinning defect in pipes using lock-in photo-infrared thermography technique

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Su Ok; Park, Jong Hyun; Choi, Tae Ho; Jung, Hyun Chul; Kim, Kyoung Suk [Chosun Univ., Gwangju (Korea, Republic of)

    2008-07-01

    Piping in the Nuclear Power plants (NPP) are mostly consisted of carbon steel pipe. The wall thinning defect is mainly occurred by the affect of the Flow Accelerated Corrosion (FAC) of fluid which flows in carbon steel pipes. This type of defect becomes the cause of damage or destruction of piping. Therefore, it is very important to measure defect which is existed not only on the welding partbut also on the whole field of pipe. Over the years, Infrared Thermography (IRT) has been used as a non destructive testing methods of the various kinds of materials. This technique has many merits and applied to the industrial field but has limitation to the materials. Therefore, this method was combined with lock-in technique. So IRT detection resolution has been progressively improved using lock-in technique. In this paper, the quantitative analysis results of the location and the size of wall thinning defect that is artificially processed inside the carbon steel pipe by using IRT are obtained.

  19. Microstructure of bonding interface for resistance welding of Zr-based metallic glass sheets

    International Nuclear Information System (INIS)

    Kuroda, Toshio; Ikeuchi, Kenji; Shimada, Masahiro; Kobayashi, Akira; Kimura, Hisamichi; Inoue, Akihisa

    2009-01-01

    Resistance welding of Zr 55 Cu 30 Al 10 Ni 5 metallic glass sheets was investigated at 723 K in a supercooled liquid region. The welding time was changed from 5 s to 20 s at 723 K. The joint interface of the metallic glass was no defect and no crack. X-ray diffraction technique of the bonding interface of specimens was performed. The specimens showed halo patterns showing existence of only glassy phase, when the welding time was 5 s and 10 s. X-ray diffraction patterns of specimen bonded for 20 s showed crystalline peaks with halo patterns for the welding for 20 s. The crystalline phase at the bonding interface was small. Transmission electron micrograph at the bonding interface showed nanostructures of NiZr 2 and Al 5 Ni 3 Zr 2 . (author)

  20. Reduction in Repair rate of Welding Processes by Determination & Controlling of Critical KPIVs

    Directory of Open Access Journals (Sweden)

    Faheem Yousaf

    2014-01-01

    Full Text Available Six Sigma is being Implemented all over the World as a successful Quality Improvement Methodology. Many Companies are now days are using Six Sigma as an Approach towards zero defects. This article provides a practical case study regarding the implementation of Six Sigma Project in a Welding Facility and discusses the Statistical Analysis performed for bringing the welding processes in the desired sigma Limits.DMAIC was chosen as potential Six Sigma methodology with the help of findings of this Methodology, Six Sigma Team First Identified the critical Factors affecting the Process Yield and then certain Improvement Measures were taken to improve the Capability of Individual welding Processes and also of Overall Welding Facility.   Cost of Quality was also measured to Validate the Improvement results achieved after Conducting the Six Sigma Project.

  1. Thermo-mechanical process for treatment of welds

    International Nuclear Information System (INIS)

    Malik, R.K.

    1980-03-01

    Benefits from thermo-mechanical processing (TMP) of austenitic stainless steel weldments, analogous to hot isostatic pressing (HIP) of castings, most likely result from compressive plastic deformation, enhanced diffusion, and/or increased dislocation density. TMP improves ultrasonic inspectability of austenitic stainless steel welds owing to: conversion of cast dendrites into equiaxed austenitic grains, reduction in size and number of stringers and inclusions, and reduction of delta ferrite content. TMP induces structural homogenization and healing of void-type defects and thus contributes to an increase in elongation, impact strength, and fracture toughness as well as a significant reduction in data scatter for these properties. An optimum temperature for TMP or HIP of welds is one which causes negligible grain growth and an acceptable reduction in yield strength, and permits healing of porosity

  2. Problem of quality assurance during metal constructions welding via robotic technological complexes

    Science.gov (United States)

    Fominykh, D. S.; Rezchikov, A. F.; Kushnikov, V. A.; Ivashchenko, V. A.; Bogomolov, A. S.; Filimonyuk, L. Yu; Dolinina, O. N.; Kushnikov, O. V.; Shulga, T. E.; Tverdokhlebov, V. A.

    2018-05-01

    The problem of minimizing the probability for critical combinations of events that lead to a loss in welding quality via robotic process automation is examined. The problem is formulated, models and algorithms for its solution are developed. The problem is solved by minimizing the criterion characterizing the losses caused by defective products. Solving the problem may enhance the quality and accuracy of operations performed and reduce the losses caused by defective product

  3. Titanium Alloys Thin Sheet Welding with the Use of Concentrated Solar Energy

    Science.gov (United States)

    Pantelis, D. I.; Kazasidis, M.; Karakizis, P. N.

    2017-12-01

    The present study deals with the welding of titanium alloys thin sheets 1.3 mm thick, with the use of concentrated solar energy. The experimental part of the work took place at a medium size solar furnace at the installation of the Centre National de la Recherche Scientifique, at Odeillo, in Southern France, where similar and dissimilar defect-free welds of titanium Grades 4 and 6 were achieved, in the butt joint configuration. After the determination of the appropriate welding conditions, the optimum welded structures were examined and characterize