WorldWideScience

Sample records for giant planet orbiting

  1. Outward Migration of Giant Planets in Orbital Resonance

    Science.gov (United States)

    D'Angelo, G.; Marzari, F.

    2013-05-01

    A pair of giant planets interacting with a gaseous disk may be subject to convergent orbital migration and become locked into a mean motion resonance. If the orbits are close enough, the tidal gaps produced by the planets in the disk may overlap. This represents a necessary condition to activate the outward migration of the pair. However, a number of other conditions must also be realized in order for this mechanism to operate. We have studied how disk properties, such as turbulence viscosity, temperature, surface density gradient, mass, and age, may affect the outcome of the outward migration process. We have also investigated the implications on this mechanism of the planets' gas accretion. If the pair resembles Jupiter and Saturn, the 3:2 orbital resonance may drive them outward until they reach stalling radii for migration, which are within ~10 AU of the star for disks representative of the early proto-solar nebula. However, planet post-formation conditions in the disk indicate that such planets become typically locked in the 1:2 orbital resonance, which does not lead to outward migration. Planet growth via gas accretion tends to alter the planets' mass-ratio and/or the disk accretion rate toward the star, reducing or inhibiting outward migration. Support from NASA Outer Planets Research Program and NASA Origins of Solar Systems Program is gratefully acknowledged.

  2. Measuring Precise Radii of Giants Orbiting Giants to Distinguish Between Planet Evolution Models

    Science.gov (United States)

    Grunblatt, Samuel; Huber, Daniel; Lopez, Eric; Gaidos, Eric; Livingston, John

    2017-10-01

    Despite more than twenty years since the initial discovery of highly irradiated gas giant planets, the mechanism for planet inflation remains unknown. However, proposed planet inflation mechanisms can now be separated into two general classes: those which allow for post-main sequence planet inflation by direct irradiation from the host star, and those which only allow for slowed cooling of the planet over its lifetime. The recent discovery of two inflated warm Jupiters orbiting red giant stars with the NASA K2 Mission allows distinction between these two classes, but uncertainty in the planet radius blurs this distinction. Observing transits of these planets with the Spitzer Space Telescope would reduce stellar variability and thus planet radius uncertainties by approximately 50% relative to K2, allowing distinction between the two planet inflation model classes at a 3-sigma level. We propose to observe one transit of both known warm Jupiters orbiting red giant stars, K2-97b and EPIC228754001.01, to distinguish between planet model inflation classes and measure the planetary heating efficiency to 3-sigma precision. These systems are benchmarks for the upcoming NASA TESS Mission, which is predicted to discover an order of magnitude more red giant planet systems after launching next year.

  3. Extrasolar Giant Planet in Earth-like Orbit

    Science.gov (United States)

    1999-07-01

    companion . iota Hor b has an orbital period of 320 days. From this period, the known mass of the central star (1.03 solar masses) and the amplitude of the velocity changes, a mass of at least 2.26 times that of planet Jupiter is deduced for the planet. It revolves around the host star in a somewhat elongated orbit (the eccentricity is 0.16). If it were located in our own solar system, this orbit would stretch from just outside the orbit of Venus (at 117 million km or 0.78 Astronomical Units from the Sun) to just outside the orbit of the Earth (the point farthest from the Sun, at 162 million km or 1.08 Astronomical Units) The new giant planet is thus moving in an orbit not unlike that of the Earth. In fact, of all the planets discovered so far, the orbit of iota Hor b is the most Earth-like. Also, with a spectral type of G0 V , its host star is quite similar to the Sun (G2 V). iota Hor b is, however, at least 720 times more massive than the Earth and it is probably more similar to planet Jupiter in our own solar system. While the radial velocity technique described above only determines a minimum value for the planet's mass, an analysis of the velocity with which the star turns around its own axis suggests that the true mass of iota Hor b is unlikely to be much higher. A difficult case Natural phenomena with periods near one solar year always present a particular challenge to astronomers. This is one of the reasons why it has been necessary to observe the iota Hor system for such a long time to be absolutely sure about the present result. First, special care must be taken to verify that the radial velocity variations found in the data are not an artefact of the Earth's movement around the Sun. In any case, the effect of this movement on the measurements must be accurately accounted for; it reaches about ± 30 km/sec over one year, i.e. much larger than the effect of the new planet. In the present case of iota Hor , this was thoroughly tested and any residual influence of

  4. A PLANET IN A 0.6 AU ORBIT AROUND THE K0 GIANT HD 102272

    International Nuclear Information System (INIS)

    Niedzielski, A.; Gozdziewski, K.; Nowak, G.; Zielinski, P.; Wolszczan, A.; Konacki, M.

    2009-01-01

    We report the discovery of one or more planet-mass companions to the K0-giant HD 102272 with the Hobby-Eberly Telescope. In the absence of any correlation of the observed periodicities with the standard indicators of stellar activity, the observed radial velocity variations are most plausibly explained in terms of a Keplerian motion of at least one planet-mass body around the star. With an estimated stellar mass of 1.9 M sun , the minimum mass of the confirmed planet is 5.9 M J . The planet's orbit is characterized by a small but nonzero eccentricity e = 0.05 and a semimajor axis of 0.61 AU, which makes it the most compact planet discovered so far around GK spectral type giants. This detection adds to the existing evidence that, as predicted by theory, the minimum size of planetary orbits around intermediate-mass giants is affected by both planet-formation processes and stellar evolution. The currently available evidence of another planet around HD 102272 is insufficient to obtain an unambiguous two-orbit solution.

  5. Extreme orbital evolution from hierarchical secular coupling of two giant planets

    International Nuclear Information System (INIS)

    Teyssandier, Jean; Naoz, Smadar; Lizarraga, Ian; Rasio, Frederic A.

    2013-01-01

    Observations of exoplanets over the last two decades have revealed a new class of Jupiter-size planets with orbital periods of a few days, the so-called 'hot Jupiters'. Recent measurements using the Rossiter-McLaughlin effect have shown that many (∼50%) of these planets are misaligned; furthermore, some (∼15%) are even retrograde with respect to the stellar spin axis. Motivated by these observations, we explore the possibility of forming retrograde orbits in hierarchical triple configurations consisting of a star-planet inner pair with another giant planet, or brown dwarf, in a much wider orbit. Recently, it was shown that in such a system, the inner planet's orbit can flip back and forth from prograde to retrograde and can also reach extremely high eccentricities. Here we map a significant part of the parameter space of dynamical outcomes for these systems. We derive strong constraints on the orbital configurations for the outer perturber (the tertiary) that could lead to the formation of hot Jupiters with misaligned or retrograde orbits. We focus only on the secular evolution, neglecting other dynamical effects such as mean-motion resonances, as well as all dissipative forces. For example, with an inner Jupiter-like planet initially on a nearly circular orbit at 5 AU, we show that a misaligned hot Jupiter is likely to be formed in the presence of a more massive planetary companion (>2 M J ) within ∼140 AU of the inner system, with mutual inclination >50° and eccentricity above ∼0.25. This is in striking contrast to the test particle approximation, where an almost perpendicular configuration can still cause large-eccentricity excitations, but flips of an inner Jupiter-like planet are much less likely to occur. The constraints we derive can be used to guide future observations and, in particular, searches for more distant companions in systems containing a hot Jupiter.

  6. THE ANGLO-AUSTRALIAN PLANET SEARCH. XXI. A GAS-GIANT PLANET IN A ONE YEAR ORBIT AND THE HABITABILITY OF GAS-GIANT SATELLITES

    International Nuclear Information System (INIS)

    Tinney, C. G.; Wittenmyer, Robert A.; Bailey, Jeremy A.; Horner, J.; Butler, R. Paul; Jones, Hugh R. A.; O'Toole, Simon J.; Carter, Brad D.

    2011-01-01

    We have detected the Doppler signature of a gas-giant exoplanet orbiting the star HD 38283, in an eccentric orbit with a period of almost exactly one year (P = 363.2 ± 1.6 d, m sin i = 0.34 ± 0.02 M Jup , e = 0.41 ± 0.16). The detection of a planet with period very close to one year critically relied on year-round observation of this circumpolar star. Discovering a planet in a 1 AU orbit around a G dwarf star has prompted us to look more closely at the question of the habitability of the satellites of such planets. Regular satellites orbit all the giant planets in our solar system, suggesting that their formation is a natural by-product of the planet formation process. There is no reason for exomoon formation not to be similarly likely in exoplanetary systems. Moreover, our current understanding of that formation process does not preclude satellite formation in systems where gas giants undergo migration from their formation locations into the terrestrial planet habitable zone. Indeed, regular satellite formation and Type II migration are both linked to the clearing of a gap in the protoplanetary disk by a planet, and so may be inextricably linked. Migration would also multiply the chances of capturing both irregular satellites and Trojan companions sufficiently massive to be habitable. The habitability of such exomoons and exo-Trojans will critically depend on their mass, whether or not they host a magnetosphere, and (for the exomoon case) their orbital radius around the host exoplanet.

  7. SHOCKS AND A GIANT PLANET IN THE DISK ORBITING BP PISCIUM?

    International Nuclear Information System (INIS)

    Melis, C.; Zuckerman, B.; Gielen, C.; Chen, C. H.; Rhee, Joseph H.; Song, Inseok

    2010-01-01

    Spitzer Infrared Spectrograph data support the interpretation that BP Piscium, a gas and dust enshrouded star residing at high Galactic latitude, is a first-ascent giant rather than a classical T Tauri star. Our analysis suggests that BP Piscium's spectral energy distribution can be modeled as a disk with a gap that is opened by a giant planet. Modeling the rich mid-infrared emission line spectrum indicates that the solid-state emitting grains orbiting BP Piscium are primarily composed of ∼75 K crystalline, magnesium-rich olivine; ∼75 K crystalline, magnesium-rich pyroxene; ∼200 K amorphous, magnesium-rich pyroxene; and ∼200 K annealed silica (cristobalite). These dust grains are all sub-micron sized. The giant planet and gap model also naturally explains the location and mineralogy of the small dust grains in the disk. Disk shocks that result from disk-planet interaction generate the highly crystalline dust which is subsequently blown out of the disk mid-plane and into the disk atmosphere.

  8. EUV-driven ionospheres and electron transport on extrasolar giant planets orbiting active stars

    Science.gov (United States)

    Chadney, J. M.; Galand, M.; Koskinen, T. T.; Miller, S.; Sanz-Forcada, J.; Unruh, Y. C.; Yelle, R. V.

    2016-03-01

    The composition and structure of the upper atmospheres of extrasolar giant planets (EGPs) are affected by the high-energy spectrum of their host stars from soft X-rays to the extreme ultraviolet (EUV). This emission depends on the activity level of the star, which is primarily determined by its age. In this study, we focus upon EGPs orbiting K- and M-dwarf stars of different ages - ɛ Eridani, AD Leonis, AU Microscopii - and the Sun. X-ray and EUV (XUV) spectra for these stars are constructed using a coronal model. These spectra are used to drive both a thermospheric model and an ionospheric model, providing densities of neutral and ion species. Ionisation - as a result of stellar radiation deposition - is included through photo-ionisation and electron-impact processes. The former is calculated by solving the Lambert-Beer law, while the latter is calculated from a supra-thermal electron transport model. We find that EGP ionospheres at all orbital distances considered (0.1-1 AU) and around all stars selected are dominated by the long-lived H+ ion. In addition, planets with upper atmospheres where H2 is not substantially dissociated (at large orbital distances) have a layer in which H3+ is the major ion at the base of the ionosphere. For fast-rotating planets, densities of short-lived H3+ undergo significant diurnal variations, with the maximum value being driven by the stellar X-ray flux. In contrast, densities of longer-lived H+ show very little day/night variability and the magnitude is driven by the level of stellar EUV flux. The H3+ peak in EGPs with upper atmospheres where H2 is dissociated (orbiting close to their star) under strong stellar illumination is pushed to altitudes below the homopause, where this ion is likely to be destroyed through reactions with heavy species (e.g. hydrocarbons, water). The inclusion of secondary ionisation processes produces significantly enhanced ion and electron densities at altitudes below the main EUV ionisation peak, as

  9. The Orbital and Planetary Phase Variations of Jupiter-sized Planets: Characterizing Present and Future Giants

    Science.gov (United States)

    Mayorga, Laura C.; Jackiewicz, Jason; Rages, Kathy; West, Robert; Knowles, Ben; Lewis, Nikole K.; Marley, Mark S.

    2018-01-01

    Knowledge of how the brightness and color of a planet varies with viewing angle is essential for the design of future direct imaging missions and deriving constraints on atmospheric properties. However, measuring the phase curves for the solar system gas giants is impossible from the ground. Using data Cassini/ISS obtained during its flyby of Jupiter, I measured Jupiter's phase curve in six bands spanning 400-1000 nm. I found that Jupiter's brightness is less than that of a Lambertian scatterer and that its color varies more with phase angle than predicted by theoretical models. For hot Jupiters, the light from the planet cannot be spatially isolated from that of the star. As a result, determining the planetary phase curve requires removing the phase-dependent contributions from the host star. I consider the effect of varying the stellar model and present a parameterization of the Doppler beaming amplitude that depends upon the planetary mass, orbital period, and the stellar temperature. I consider the detectability of Doppler beaming amplitudes with data from TESS and find that TESS will be less sensitive to this signal than Kepler. This work was supported by the National Science Foundation Graduate Research Fellowship Program and the New Mexico Higher Education Department Graduate Scholarship Program.

  10. On the Diversity in Mass and Orbital Radius of Giant Planets Formed via Disk Instability

    Science.gov (United States)

    Müller, Simon; Helled, Ravit; Mayer, Lucio

    2018-02-01

    We present a semi-analytical population synthesis model of protoplanetary clumps formed by disk instability at radial distances of 80–120 au. Various clump density profiles, initial mass functions, protoplanetary disk models, stellar masses, and gap opening criteria are considered. When we use more realistic gap opening criteria, we find that gaps open only rarely, which strongly affects clump survival rates and their physical properties (mass, radius, and radial distance). The inferred surviving population is then shifted toward less massive clumps at smaller radial distances. We also find that populations of surviving clumps are very sensitive to the model assumptions and used parameters. Depending on the chosen parameters, the protoplanets occupy a mass range between 0.01 and 16 M J and may either orbit close to the central star or as far out as 75 au, with a sweet spot at 10–30 au for the massive ones. However, in all of the cases we consider, we find that massive giant planets at very large radial distances are rare, in qualitative agreement with current direct imaging surveys. We conclude that caution should be taken in deriving population synthesis models as well as when comparing the models’ results with observations.

  11. KEPLER-63b: A GIANT PLANET IN A POLAR ORBIT AROUND A YOUNG SUN-LIKE STAR

    International Nuclear Information System (INIS)

    Sanchis-Ojeda, Roberto; Winn, Joshua N.; Albrecht, Simon; Marcy, Geoffrey W.; Isaacson, Howard; Howard, Andrew W.; Johnson, John Asher; Torres, Guillermo; Carter, Joshua A.; Dawson, Rebekah I.; Geary, John C.; Campante, Tiago L.; Chaplin, William J.; Davies, Guy R.; Lund, Mikkel N.; Buchhave, Lars A.; Everett, Mark E.; Fischer, Debra A.; Gilliland, Ronald L.; Horch, Elliott P.

    2013-01-01

    We present the discovery and characterization of a giant planet orbiting the young Sun-like star Kepler-63 (KOI-63, m Kp = 11.6, T eff = 5576 K, M * = 0.98 M ☉ ). The planet transits every 9.43 days, with apparent depth variations and brightening anomalies caused by large starspots. The planet's radius is 6.1 ± 0.2 R ⊕ , based on the transit light curve and the estimated stellar parameters. The planet's mass could not be measured with the existing radial-velocity data, due to the high level of stellar activity, but if we assume a circular orbit, then we can place a rough upper bound of 120 M ⊕ (3σ). The host star has a high obliquity (ψ = 104°), based on the Rossiter-McLaughlin effect and an analysis of starspot-crossing events. This result is valuable because almost all previous obliquity measurements are for stars with more massive planets and shorter-period orbits. In addition, the polar orbit of the planet combined with an analysis of spot-crossing events reveals a large and persistent polar starspot. Such spots have previously been inferred using Doppler tomography, and predicted in simulations of magnetic activity of young Sun-like stars

  12. KEPLER-63b: A GIANT PLANET IN A POLAR ORBIT AROUND A YOUNG SUN-LIKE STAR

    Energy Technology Data Exchange (ETDEWEB)

    Sanchis-Ojeda, Roberto; Winn, Joshua N.; Albrecht, Simon [Department of Physics, and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Marcy, Geoffrey W.; Isaacson, Howard [Astronomy Department, University of California, Berkeley, CA 94720 (United States); Howard, Andrew W. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Johnson, John Asher [Department of Astronomy, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 (United States); Torres, Guillermo; Carter, Joshua A.; Dawson, Rebekah I.; Geary, John C. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Campante, Tiago L.; Chaplin, William J.; Davies, Guy R. [School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Lund, Mikkel N. [Stellar Astrophysics Centre (SAC), Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Buchhave, Lars A. [Niels Bohr Institute, University of Copenhagen, Juliane Maries vej 30, DK-2100 Copenhagen (Denmark); Everett, Mark E. [National Optical Astronomy Observatory, 950 N. Cherry Ave, Tucson, AZ 85719 (United States); Fischer, Debra A. [Astronomy Department, Yale University, New Haven, CT (United States); Gilliland, Ronald L. [Center for Exoplanets and Habitable Worlds, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 (United States); Horch, Elliott P. [Southern Connecticut State University, New Haven, CT 06515 (United States); and others

    2013-09-20

    We present the discovery and characterization of a giant planet orbiting the young Sun-like star Kepler-63 (KOI-63, m{sub Kp} = 11.6, T{sub eff} = 5576 K, M{sub *} = 0.98 M{sub ☉}). The planet transits every 9.43 days, with apparent depth variations and brightening anomalies caused by large starspots. The planet's radius is 6.1 ± 0.2 R{sub ⊕}, based on the transit light curve and the estimated stellar parameters. The planet's mass could not be measured with the existing radial-velocity data, due to the high level of stellar activity, but if we assume a circular orbit, then we can place a rough upper bound of 120 M{sub ⊕} (3σ). The host star has a high obliquity (ψ = 104°), based on the Rossiter-McLaughlin effect and an analysis of starspot-crossing events. This result is valuable because almost all previous obliquity measurements are for stars with more massive planets and shorter-period orbits. In addition, the polar orbit of the planet combined with an analysis of spot-crossing events reveals a large and persistent polar starspot. Such spots have previously been inferred using Doppler tomography, and predicted in simulations of magnetic activity of young Sun-like stars.

  13. Giant Planets: Good Neighbors for Habitable Worlds?

    Science.gov (United States)

    Georgakarakos, Nikolaos; Eggl, Siegfried; Dobbs-Dixon, Ian

    2018-04-01

    The presence of giant planets influences potentially habitable worlds in numerous ways. Massive celestial neighbors can facilitate the formation of planetary cores and modify the influx of asteroids and comets toward Earth analogs later on. Furthermore, giant planets can indirectly change the climate of terrestrial worlds by gravitationally altering their orbits. Investigating 147 well-characterized exoplanetary systems known to date that host a main-sequence star and a giant planet, we show that the presence of “giant neighbors” can reduce a terrestrial planet’s chances to remain habitable, even if both planets have stable orbits. In a small fraction of systems, however, giant planets slightly increase the extent of habitable zones provided that the terrestrial world has a high climate inertia. In providing constraints on where giant planets cease to affect the habitable zone size in a detrimental fashion, we identify prime targets in the search for habitable worlds.

  14. A KECK HIRES DOPPLER SEARCH FOR PLANETS ORBITING METAL-POOR DWARFS. II. ON THE FREQUENCY OF GIANT PLANETS IN THE METAL-POOR REGIME

    International Nuclear Information System (INIS)

    Sozzetti, Alessandro; Torres, Guillermo; Latham, David W.; Stefanik, Robert P.; Korzennik, Sylvain G.; Boss, Alan P.; Carney, Bruce W.; Laird, John B.

    2009-01-01

    We present an analysis of three years of precision radial velocity (RV) measurements of 160 metal-poor stars observed with HIRES on the Keck 1 telescope. We report on variability and long-term velocity trends for each star in our sample. We identify several long-term, low-amplitude RV variables worthy of followup with direct imaging techniques. We place lower limits on the detectable companion mass as a function of orbital period. Our survey would have detected, with a 99.5% confidence level, over 95% of all companions on low-eccentricity orbits with velocity semiamplitude K ∼> 100 m s -1 , or M p sin i ∼> 3.0 M J (P/yr) (1/3) , for orbital periods P ∼ p p ≅ 1%. Our results can usefully inform theoretical studies of the process of giant-planet formation across two orders of magnitude in metallicity.

  15. ORBITAL PHASE VARIATIONS OF THE ECCENTRIC GIANT PLANET HAT-P-2b

    International Nuclear Information System (INIS)

    Lewis, Nikole K.; Showman, Adam P.; Knutson, Heather A.; Désert, Jean-Michel; Kao, Melodie; Cowan, Nicolas B.; Laughlin, Gregory; Fortney, Jonathan J.; Burrows, Adam; Bakos, Gáspár Á.; Hartman, Joel D.; Deming, Drake; Crepp, Justin R.; Mighell, Kenneth J.; Agol, Eric; Charbonneau, David; Fischer, Debra A.; Hinkley, Sasha; Johnson, John Asher; Howard, Andrew W.

    2013-01-01

    We present the first secondary eclipse and phase curve observations for the highly eccentric hot Jupiter HAT-P-2b in the 3.6, 4.5, 5.8, and 8.0 μm bands of the Spitzer Space Telescope. The 3.6 and 4.5 μm data sets span an entire orbital period of HAT-P-2b (P = 5.6334729 d), making them the longest continuous phase curve observations obtained to date and the first full-orbit observations of a planet with an eccentricity exceeding 0.2. We present an improved non-parametric method for removing the intrapixel sensitivity variations in Spitzer data at 3.6 and 4.5 μm that robustly maps position-dependent flux variations. We find that the peak in planetary flux occurs at 4.39 ± 0.28, 5.84 ± 0.39, and 4.68 ± 0.37 hr after periapse passage with corresponding maxima in the planet/star flux ratio of 0.1138% ± 0.0089%, 0.1162% ± 0.0080%, and 0.1888% ± 0.0072% in the 3.6, 4.5, and 8.0 μm bands, respectively. Our measured secondary eclipse depths of 0.0996% ± 0.0072%, 0.1031% ± 0.0061%, 0.071% -0.013% +0.029, and 0.1392% ± 0.0095% in the 3.6, 4.5, 5.8, and 8.0 μm bands, respectively, indicate that the planet cools significantly from its peak temperature before we measure the dayside flux during secondary eclipse. We compare our measured secondary eclipse depths to the predictions from a one-dimensional radiative transfer model, which suggests the possible presence of a transient day side inversion in HAT-P-2b's atmosphere near periapse. We also derive improved estimates for the system parameters, including its mass, radius, and orbital ephemeris. Our simultaneous fit to the transit, secondary eclipse, and radial velocity data allows us to determine the eccentricity (e = 0.50910 ± 0.00048) and argument of periapse (ω = 188.°09 ± 0.°39) of HAT-P-2b's orbit with a greater precision than has been achieved for any other eccentric extrasolar planet. We also find evidence for a long-term linear trend in the radial velocity data. This trend suggests the presence of

  16. ORBITAL PHASE VARIATIONS OF THE ECCENTRIC GIANT PLANET HAT-P-2b

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Nikole K.; Showman, Adam P. [Department of Planetary Sciences and Lunar and Planetary Laboratory, The University of Arizona, Tucson, AZ 85721 (United States); Knutson, Heather A.; Desert, Jean-Michel; Kao, Melodie [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States); Cowan, Nicolas B. [Center for Interdisciplinary Exploration and Research in Astrophysics and Department of Physics and Astronomy, Northwestern University, 2131 Tech Drive, Evanston, IL 60208 (United States); Laughlin, Gregory; Fortney, Jonathan J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Burrows, Adam; Bakos, Gaspar A.; Hartman, Joel D. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Deming, Drake [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Crepp, Justin R. [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Mighell, Kenneth J. [National Optical Astronomy Observatories, Tucson, AZ 85726 (United States); Agol, Eric [Department of Astronomy, University of Washington, Seattle, WA 98195 (United States); Charbonneau, David [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Fischer, Debra A. [Department of Astronomy, Yale University, New Haven, CT 06511 (United States); Hinkley, Sasha; Johnson, John Asher [Department of Astrophysics, California Institute of Technology, MC 249-17, Pasadena, CA 91125 (United States); Howard, Andrew W., E-mail: nklewis@mit.edu [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); and others

    2013-04-01

    We present the first secondary eclipse and phase curve observations for the highly eccentric hot Jupiter HAT-P-2b in the 3.6, 4.5, 5.8, and 8.0 {mu}m bands of the Spitzer Space Telescope. The 3.6 and 4.5 {mu}m data sets span an entire orbital period of HAT-P-2b (P = 5.6334729 d), making them the longest continuous phase curve observations obtained to date and the first full-orbit observations of a planet with an eccentricity exceeding 0.2. We present an improved non-parametric method for removing the intrapixel sensitivity variations in Spitzer data at 3.6 and 4.5 {mu}m that robustly maps position-dependent flux variations. We find that the peak in planetary flux occurs at 4.39 {+-} 0.28, 5.84 {+-} 0.39, and 4.68 {+-} 0.37 hr after periapse passage with corresponding maxima in the planet/star flux ratio of 0.1138% {+-} 0.0089%, 0.1162% {+-} 0.0080%, and 0.1888% {+-} 0.0072% in the 3.6, 4.5, and 8.0 {mu}m bands, respectively. Our measured secondary eclipse depths of 0.0996% {+-} 0.0072%, 0.1031% {+-} 0.0061%, 0.071%{sub -0.013%}{sup +0.029,} and 0.1392% {+-} 0.0095% in the 3.6, 4.5, 5.8, and 8.0 {mu}m bands, respectively, indicate that the planet cools significantly from its peak temperature before we measure the dayside flux during secondary eclipse. We compare our measured secondary eclipse depths to the predictions from a one-dimensional radiative transfer model, which suggests the possible presence of a transient day side inversion in HAT-P-2b's atmosphere near periapse. We also derive improved estimates for the system parameters, including its mass, radius, and orbital ephemeris. Our simultaneous fit to the transit, secondary eclipse, and radial velocity data allows us to determine the eccentricity (e = 0.50910 {+-} 0.00048) and argument of periapse ({omega} = 188. Degree-Sign 09 {+-} 0. Degree-Sign 39) of HAT-P-2b's orbit with a greater precision than has been achieved for any other eccentric extrasolar planet. We also find evidence for a long

  17. YOUNG SOLAR SYSTEM's FIFTH GIANT PLANET?

    International Nuclear Information System (INIS)

    Nesvorný, David

    2011-01-01

    Studies of solar system formation suggest that the solar system's giant planets formed and migrated in the protoplanetary disk to reach the resonant orbits with all planets inside ∼15 AU from the Sun. After the gas disk's dispersal, Uranus and Neptune were likely scattered by the gas giants, and approached their current orbits while dispersing the transplanetary disk of planetesimals, whose remains survived to this time in the region known as the Kuiper Belt. Here we performed N-body integrations of the scattering phase between giant planets in an attempt to determine which initial states are plausible. We found that the dynamical simulations starting with a resonant system of four giant planets have a low success rate in matching the present orbits of giant planets and various other constraints (e.g., survival of the terrestrial planets). The dynamical evolution is typically too violent, if Jupiter and Saturn start in the 3:2 resonance, and leads to final systems with fewer than four planets. Several initial states stand out in that they show a relatively large likelihood of success in matching the constraints. Some of the statistically best results were obtained when assuming that the solar system initially had five giant planets and one ice giant, with the mass comparable to that of Uranus and Neptune, and which was ejected to interstellar space by Jupiter. This possibility appears to be conceivable in view of the recent discovery of a large number of free-floating planets in interstellar space, which indicates that planet ejection should be common.

  18. Young Solar System's Fifth Giant Planet?

    Science.gov (United States)

    Nesvorný, David

    2011-12-01

    Studies of solar system formation suggest that the solar system's giant planets formed and migrated in the protoplanetary disk to reach the resonant orbits with all planets inside ~15 AU from the Sun. After the gas disk's dispersal, Uranus and Neptune were likely scattered by the gas giants, and approached their current orbits while dispersing the transplanetary disk of planetesimals, whose remains survived to this time in the region known as the Kuiper Belt. Here we performed N-body integrations of the scattering phase between giant planets in an attempt to determine which initial states are plausible. We found that the dynamical simulations starting with a resonant system of four giant planets have a low success rate in matching the present orbits of giant planets and various other constraints (e.g., survival of the terrestrial planets). The dynamical evolution is typically too violent, if Jupiter and Saturn start in the 3:2 resonance, and leads to final systems with fewer than four planets. Several initial states stand out in that they show a relatively large likelihood of success in matching the constraints. Some of the statistically best results were obtained when assuming that the solar system initially had five giant planets and one ice giant, with the mass comparable to that of Uranus and Neptune, and which was ejected to interstellar space by Jupiter. This possibility appears to be conceivable in view of the recent discovery of a large number of free-floating planets in interstellar space, which indicates that planet ejection should be common.

  19. RADIAL VELOCITY OBSERVATIONS AND LIGHT CURVE NOISE MODELING CONFIRM THAT KEPLER-91b IS A GIANT PLANET ORBITING A GIANT STAR

    International Nuclear Information System (INIS)

    Barclay, Thomas; Huber, Daniel; Rowe, Jason F.; Quintana, Elisa V.; Endl, Michael; Cochran, William D.; MacQueen, Phillip J.; Foreman-Mackey, Daniel

    2015-01-01

    Kepler-91b is a rare example of a transiting hot Jupiter around a red giant star, providing the possibility to study the formation and composition of hot Jupiters under different conditions compared to main-sequence stars. However, the planetary nature of Kepler-91b, which was confirmed using phase-curve variations by Lillo-Box et al., was recently called into question based on a re-analysis of Kepler data. We have obtained ground-based radial velocity observations from the Hobby-Eberly Telescope and unambiguously confirm the planetary nature of Kepler-91b by simultaneously modeling the Kepler and radial velocity data. The star exhibits temporally correlated noise due to stellar granulation which we model as a Gaussian Process. We hypothesize that it is this noise component that led previous studies to suspect Kepler-91b to be a false positive. Our work confirms the conclusions presented by Lillo-Box et al. that Kepler-91b is a 0.73 ± 0.13 M Jup planet orbiting a red giant star

  20. EFFECTS OF DYNAMICAL EVOLUTION OF GIANT PLANETS ON SURVIVAL OF TERRESTRIAL PLANETS

    International Nuclear Information System (INIS)

    Matsumura, Soko; Ida, Shigeru; Nagasawa, Makiko

    2013-01-01

    The orbital distributions of currently observed extrasolar giant planets allow marginally stable orbits for hypothetical, terrestrial planets. In this paper, we propose that many of these systems may not have additional planets on these ''stable'' orbits, since past dynamical instability among giant planets could have removed them. We numerically investigate the effects of early evolution of multiple giant planets on the orbital stability of the inner, sub-Neptune-like planets which are modeled as test particles, and determine their dynamically unstable region. Previous studies have shown that the majority of such test particles are ejected out of the system as a result of close encounters with giant planets. Here, we show that secular perturbations from giant planets can remove test particles at least down to 10 times smaller than their minimum pericenter distance. Our results indicate that, unless the dynamical instability among giant planets is either absent or quiet like planet-planet collisions, most test particles down to ∼0.1 AU within the orbits of giant planets at a few AU may be gone. In fact, out of ∼30% of survived test particles, about three quarters belong to the planet-planet collision cases. We find a good agreement between our numerical results and the secular theory, and present a semi-analytical formula which estimates the dynamically unstable region of the test particles just from the evolution of giant planets. Finally, our numerical results agree well with the observations, and also predict the existence of hot rocky planets in eccentric giant planet systems.

  1. Formation of giant planets

    International Nuclear Information System (INIS)

    Perri, F.

    1975-01-01

    When a planetary core composed of condensed matter is accumulated in the primitive solar nebula, the gas of the nebula becomes gravitationally concentrated as an envelope surrounding the planetary core. Models of such gaseous envelopes have been constructed subject to the assumption that the gas everywhere is on the same adiabat as that in the surrounding nebula. The gaseous envelope extends from the surface of the core to the distance at which the gravitational attraction of core plus envelope becomes equal to the gradient of the gravitational potential in the solar nebula; at this point the pressure and temperature of the gas in the envelope are required to attain the background values characteristic of the solar nebula. In general, as the mass of the condensed core increases, increasing amounts of gas became concentrated in the envelope, and these envelopes are stable against hydrodynamic instabilities. However, the core mass then goes through a maximum and starts to decrease. In most of the models tested the envelopes were hydrodynamically unstable beyond the peak in the core mass. An unstable situation was always created if it was insisted that the core mass contain a larger amount of matter than given by these solutions. For an initial adiabat characterized by a temperature of 450 0 K and a pressure of 5 x 10 -6 atmospheres, the maximum core mass at which instability occurs is approximately 115 earth masses. It is concluded that the giant planets obtained their large amounts of hydrogen and helium by a hydrodynamic collapse process in the solar nebula only after the nebula had been subjected to a considerable period of cooling

  2. Orbital Dynamics of Exomoons During Planet–Planet Scattering

    Science.gov (United States)

    Hong, Yu-Cian; Lunine, Jonathan I.; Nicholson, Philip; Raymond, Sean N.

    2018-04-01

    Planet–planet scattering is the leading mechanism to explain the broad eccentricity distribution of observed giant exoplanets. Here we study the orbital stability of primordial giant planet moons in this scenario. We use N-body simulations including realistic oblateness and evolving spin evolution for the giant planets. We find that the vast majority (~80%–90% across all our simulations) of orbital parameter space for moons is destabilized. There is a strong radial dependence, as moons past are systematically removed. Closer-in moons on Galilean-moon-like orbits (system, be captured by another planet, be ejected but still orbiting its free-floating host planet, or survive on heliocentric orbits as "planets." The survival rate of moons increases with the host planet mass but is independent of the planet's final (post-scattering) orbits. Based on our simulations, we predict the existence of an abundant galactic population of free-floating (former) moons.

  3. MMT/AO 5 μm IMAGING CONSTRAINTS ON THE EXISTENCE OF GIANT PLANETS ORBITING FOMALHAUT AT ∼13-40 AU

    International Nuclear Information System (INIS)

    Kenworthy, Matthew A.; Hinz, Philip M.; Meyer, Michael R.; Miller, Douglas L.; Sivanandam, Suresh; Freed, Melanie; Mamajek, Eric E.; Heinze, Aren N.

    2009-01-01

    A candidate ∼ Jup extrasolar planet was recently imaged by Kalas et al. using Hubble Space Telescope/Advanced Camera for Surveys and Keck II at 12.''7 (96 AU) separation from the nearby (d = 7.7 pc) young (∼200 Myr) A2V star Fomalhaut. Here, we report results from M-band (4.8 μm) imaging of Fomalhaut on 2006 December 5 using the Clio IR imager on the 6.5 m MMT with the adaptive secondary mirror. Our images are sensitive to giant planets at orbital radii comparable to the outer solar system (∼10-40 AU). Comparing our 5σ M-band photometric limits to theoretical evolutionary tracks for substellar objects, our results rule out the existence of planets with masses >2 M Jup from ∼13 to 40 AU and objects >13 M Jup from ∼8 to 40 AU.

  4. Migration of accreting giant planets

    Science.gov (United States)

    Robert, C.; Crida, A.; Lega, E.; Méheut, H.

    2017-09-01

    Giant planets forming in protoplanetary disks migrate relative to their host star. By repelling the gas in their vicinity, they form gaps in the disk's structure. If they are effectively locked in their gap, it follows that their migration rate is governed by the accretion of the disk itself onto the star, in a so-called type II fashion. Recent results showed however that a locking mechanism was still lacking, and was required to understand how giant planets may survive their disk. We propose that planetary accretion may play this part, and help reach this slow migration regime.

  5. Migration of accreting giant planets

    Science.gov (United States)

    Crida, A.; Bitsch, B.; Raibaldi, A.

    2016-12-01

    We present the results of 2D hydro simulations of giant planets in proto-planetary discs, which accrete gas at a more or less high rate. First, starting from a solid core of 20 Earth masses, we show that as soon as the runaway accretion of gas turns on, the planet is saved from type I migration : the gap opening mass is reached before the planet is lost into its host star. Furthermore, gas accretion helps opening the gap in low mass discs. Consequently, if the accretion rate is limited to the disc supply, then the planet is already inside a gap and in type II migration. We further show that the type II migration of a Jupiter mass planet actually depends on its accretion rate. Only when the accretion is high do we retrieve the classical picture where no gas crosses the gap and the planet follows the disc spreading. These results impact our understanding of planet migration and planet population synthesis models. The e-poster presenting these results in French can be found here: L'e-poster présentant ces résultats en français est disponible à cette adresse: http://sf2a.eu/semaine-sf2a/2016/posterpdfs/156_179_49.pdf.

  6. Giant Planets Can Act as Stabilizing Agents on Debris Disks

    Energy Technology Data Exchange (ETDEWEB)

    Muñoz-Gutiérrez, M. A.; Pichardo, B.; Peimbert, A., E-mail: mmunoz.astro@gmail.com [Instituto de Astronomía, Universidad Nacional Autónoma de México, Apdo. postal 70-264 Ciudad Universitaria, México (Mexico)

    2017-07-01

    We have explored the evolution of a cold debris disk under the gravitational influence of dwarf-planet-sized objects (DPs), both in the presence and absence of an interior giant planet. Through detailed long-term numerical simulations, we demonstrate that when the giant planet is not present, DPs can stir the eccentricities and inclinations of disk particles, in linear proportion to the total mass of the DPs; on the other hand, when the giant planet is included in the simulations, the stirring is approximately proportional to the mass squared. This creates two regimes: below a disk mass threshold (defined by the total mass of DPs), the giant planet acts as a stabilizing agent of the orbits of cometary nuclei, diminishing the effect of the scatterers; above the threshold, the giant contributes to the dispersion of the particles.

  7. Long Term Evolution of Planetary Systems with a Terrestrial Planet and a Giant Planet

    Science.gov (United States)

    Georgakarakos, Nikolaos; Dobbs-Dixon, Ian; Way, Michael J.

    2016-01-01

    We study the long term orbital evolution of a terrestrial planet under the gravitational perturbations of a giant planet. In particular, we are interested in situations where the two planets are in the same plane and are relatively close. We examine both possible configurations: the giant planet orbit being either outside or inside the orbit of the smaller planet. The perturbing potential is expanded to high orders and an analytical solution of the terrestrial planetary orbit is derived. The analytical estimates are then compared against results from the numerical integration of the full equations of motion and we find that the analytical solution works reasonably well. An interesting finding is that the new analytical estimates improve greatly the predictions for the timescales of the orbital evolution of the terrestrial planet compared to an octupole order expansion. Finally, we briefly discuss possible applications of the analytical estimates in astrophysical problems.

  8. Migration of planetesimals during last stages of giant planet accumulation

    International Nuclear Information System (INIS)

    Ipatov, S.I.

    1989-01-01

    The migration and accumulation of bodies from the giant planet's feeding zones are investigated after the main part of mass of these planets had been formed. These investigations are based on the computer simulation results for the evolving spatial disks which initially consisted of a few almost formed planets and hundreds of identical bodies in Uranus and Neptune zone. It is shown that the total mass of bodies penetrated in the asteroid zone from the giant planet zones could be ten times as large as the Earth mass. The beyond-Neptune belt could form during accumulation of the giant planets. Evolution of the planet orbits under encounters of planets with planetesimals is investigated

  9. Survival of extrasolar giant planet moons in planet-planet scattering

    Science.gov (United States)

    CIAN HONG, YU; Lunine, Jonathan; Nicholson, Phillip; Raymond, Sean

    2015-12-01

    Planet-planet scattering is the best candidate mechanism for explaining the eccentricity distribution of exoplanets. Here we study the survival and dynamics of exomoons under strong perturbations during giant planet scattering. During close encounters, planets and moons exchange orbital angular momentum and energy. The most common outcomes are the destruction of moons by ejection from the system, collision with the planets and the star, and scattering of moons onto perturbed but still planet-bound orbits. A small percentage of interesting moons can remain bound to ejected (free-floating) planets or be captured by a different planet. Moons' survival rate is correlated with planet observables such as mass, semi-major axis, eccentricity and inclination, as well as the close encounter distance and the number of close encounters. In addition, moons' survival rate and dynamical outcomes are predetermined by the moons' initial semi-major axes. The survival rate drops quickly as moons' distances increase, but simulations predict a good chance of survival for the Galilean moons. Moons with different dynamical outcomes occupy different regions of orbital parameter space, which may enable the study of moons' past evolution. Potential effects of planet obliquity evolution caused by close encounters on the satellites’ stability and dynamics will be reported, as well as detailed and systematic studies of individual close encounter events.

  10. Evolution of the giant planets

    International Nuclear Information System (INIS)

    Bodenheimer, P.

    1985-01-01

    The theory of the evolution of the giant planets is discussed with emphasis on detailed numerical calculations in the spherical approximation. Initial conditions are taken to be those provided by the two main hypotheses for the origin of the giant planets. If the planets formed by gravitational instability in the solar nebula, the initial mass is comparable to the present mass or larger. The evolution then goes through the following phases: (1) an initial contraction phase in hydrostatic equilibrium; (2) a hydrodynamic collapse induced by molecular dissociation; and (3) a second equilibrium phase involving contraction and cooling to the present state. During phase (1) a rock-ice core must form by precipitation or accretion. If, on the other hand, the giant planets formed by first accreting a solid core and then capturing gas from the surrounding nebula, then the evolutionary phases are as follows: (1) a period during which planetesimals accrete to form a core of about one earth mass, composed of rock and ice; (2) a gas accretion phase, during which a relatively low-mass gaseous envelope in hydrostatic equilibrium exists around the core, which itself continues to grow to 10 to 20 Earth masses; (3) the point of arrival at the ''critical'' core mass at which point the accretion of gas is much faster than the accretion of the core, and the envelope contracts rapidly; (4) continuation of accretion of gas from the nebula and buildup of the envelope mass to its present value (for the case of Jupiter or Saturn); and (5) a final phase, after termination of accretion, during which the protoplanet contracts and cools to its present state. Some observational constraints are described, and some problems with the two principal hypotheses are discussed

  11. IONIZATION OF EXTRASOLAR GIANT PLANET ATMOSPHERES

    International Nuclear Information System (INIS)

    Koskinen, Tommi T.; Cho, James Y-K.; Achilleos, Nicholas; Aylward, Alan D.

    2010-01-01

    Many extrasolar planets orbit close in and are subject to intense ionizing radiation from their host stars. Therefore, we expect them to have strong, and extended, ionospheres. Ionospheres are important because they modulate escape in the upper atmosphere and can modify circulation, as well as leave their signatures, in the lower atmosphere. In this paper, we evaluate the vertical location Z I and extent D I of the EUV ionization peak layer. We find that Z I ∼1-10 nbar-for a wide range of orbital distances (a = 0.047-1 AU) from the host star-and D I /H p ∼>15, where H p is the pressure scale height. At Z I , the plasma frequency is ∼80-450 MHz, depending on a. We also study global ion transport, and its dependence on a, using a three-dimensional thermosphere-ionosphere model. On tidally synchronized planets with weak intrinsic magnetic fields, our model shows only a small, but discernible, difference in electron density from the dayside to the nightside (∼9 x 10 13 m -3 to ∼2 x 10 12 m -3 , respectively) at Z I . On asynchronous planets, the distribution is essentially uniform. These results have consequences for hydrodynamic modeling of the atmospheres of close-in extrasolar giant planets.

  12. Capture of terrestrial-sized moons by gas giant planets.

    Science.gov (United States)

    Williams, Darren M

    2013-04-01

    Terrestrial moons with masses >0.1 M (symbol in text) possibly exist around extrasolar giant planets, and here we consider the energetics of how they might form. Binary-exchange capture can occur if a binary-terrestrial object (BTO) is tidally disrupted during a close encounter with a giant planet and one of the binary members is ejected while the other remains as a moon. Tidal disruption occurs readily in the deep gravity wells of giant planets; however, the large encounter velocities in the wells make binary exchange more difficult than for planets of lesser mass. In addition, successful capture favors massive binaries with large rotational velocities and small component mass ratios. Also, since the interaction tends to leave the captured moons on highly elliptical orbits, permanent capture is only possible around planets with sizable Hill spheres that are well separated from their host stars.

  13. The Giant Planet Satellite Exospheres

    Science.gov (United States)

    McGrath, Melissa A.

    2014-01-01

    Exospheres are relatively common in the outer solar system among the moons of the gas giant planets. They span the range from very tenuous, surface-bounded exospheres (e.g., Rhea, Dione) to quite robust exospheres with exobase above the surface (e.g., lo, Triton), and include many intermediate cases (e.g., Europa, Ganymede, Enceladus). The exospheres of these moons exhibit an interesting variety of sources, from surface sputtering, to frost sublimation, to active plumes, and also well illustrate another common characteristic of the outer planet satellite exospheres, namely, that the primary species often exists both as a gas in atmosphere, and a condensate (frost or ice) on the surface. As described by Yelle et al. (1995) for Triton, "The interchange of matter between gas and solid phases on these bodies has profound effects on the physical state of the surface and the structure of the atmosphere." A brief overview of the exospheres of the outer planet satellites will be presented, including an inter-comparison of these satellites exospheres with each other, and with the exospheres of the Moon and Mercury.

  14. Kepler-36: a pair of planets with neighboring orbits and dissimilar densities

    NARCIS (Netherlands)

    Carter, J.A.; Agol, E.; Chaplin, W.J.; Basu, S.; Bedding, T.R.; Buchhave, L.A.; Christensen-Dalsgaard, J.; Deck, K.M.; Elsworth, Y.; Fabrycky, D.C.; Ford, E.B.; Fortney, J.J.; Hale, S.J.; Handberg, R.; Hekker, S.; Holman, M.J.; Huber, D.; Karoff, C.; Kawaler, S.D.; Kjeldsen, H.; Lissauer, J.J.; Lopez, E.D.; Lund, M.N.; Lundkvist, M.; Metcalfe, T.S.; Miglio, A.; Rogers, L.A.; Stello, D.; Borucki, W.J.; Bryson, S.; Christiansen, J.L.; Cochran, W.D.; Geary, J.C.; Gilliland, R.L.; Haas, M.R.; Hall, J.; Howard, A.W.; Jenkins, J.M.; Klaus, T.; Koch, D.G.; Latham, D.W.; MacQueen, P.J.; Sasselov, D.; Steffen, J.H.; Twicken, J.D.; Winn, J.N.

    2012-01-01

    In the solar system, the planets’ compositions vary with orbital distance, with rocky planets in close orbits and lower-density gas giants in wider orbits. The detection of close-in giant planets around other stars was the first clue that this pattern is not universal and that planets’ orbits can

  15. Electrodynamics on extrasolar giant planets

    Energy Technology Data Exchange (ETDEWEB)

    Koskinen, T. T.; Yelle, R. V. [Lunar and Planetary Laboratory, University of Arizona, 1629 East University Boulevard, Tucson, AZ 85721-0092 (United States); Lavvas, P. [Groupe de Spectroscopie Moléculaire et Atmosphérique UMR CNRS 7331, Université Reims Champagne-Ardenne, F-51687 Reims (France); Cho, J. Y-K., E-mail: tommi@lpl.arizona.edu [Astronomy Unit, School of Mathematical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS (United Kingdom)

    2014-11-20

    Strong ionization on close-in extrasolar giant planets (EGPs) suggests that their atmospheres may be affected by ion drag and resistive heating arising from wind-driven electrodynamics. Recent models of ion drag on these planets, however, are based on thermal ionization only and do not include the upper atmosphere above the 1 mbar level. These models are also based on simplified equations of resistive magnetohydrodynamics that are not always valid in extrasolar planet atmospheres. We show that photoionization dominates over thermal ionization over much of the dayside atmosphere above the 100 mbar level, creating an upper ionosphere dominated by ionization of H and He and a lower ionosphere dominated by ionization of metals such as Na, K, and Mg. The resulting dayside electron densities on close-in exoplanets are higher than those encountered in any planetary ionosphere of the solar system, and the conductivities are comparable to the chromosphere of the Sun. Based on these results and assumed magnetic fields, we constrain the conductivity regimes on close-in EGPs and use a generalized Ohm's law to study the basic effects of electrodynamics in their atmospheres. We find that ion drag is important above the 10 mbar level where it can also significantly alter the energy balance through resistive heating. Due to frequent collisions of the electrons and ions with the neutral atmosphere, however, ion drag is largely negligible in the lower atmosphere below the 10 mbar level for a reasonable range of planetary magnetic moments. We find that the atmospheric conductivity decreases by several orders of magnitude in the night side of tidally locked planets, leading to a potentially interesting large-scale dichotomy in electrodynamics between the day and night sides. A combined approach that relies on UV observations of the upper atmosphere, phase curve and Doppler measurements of global dynamics, and visual transit observations to probe the alkali metals can potentially

  16. Dynamically hot Super-Earths from outer giant planet scattering

    OpenAIRE

    Huang, Chelsea X.; Petrovich, Cristobal; Deibert, Emily

    2016-01-01

    The hundreds of multiple planetary systems discovered by the \\textit{Kepler} mission are typically observed to reside in close-in ($\\lesssim0.5$ AU), low-eccentricity, and low-inclination orbits. We run N-body experiments to study the effect that unstable outer ($\\gtrsim1$ AU) giant planets, whose end orbital configurations resemble those in the Radial Velocity population, have on these close-in multiple super-Earth systems. Our experiments show that the giant planets greatly reduce the multi...

  17. THREE PLANETS ORBITING WOLF 1061

    Energy Technology Data Exchange (ETDEWEB)

    Wright, D. J.; Wittenmyer, R. A.; Tinney, C. G.; Bentley, J. S.; Zhao, Jinglin, E-mail: duncan.wright@unsw.edu.au [Department of Astronomy and Australian Centre for Astrobiology, School of Physics, University of New South Wales, NSW 2052 (Australia)

    2016-02-01

    We use archival HARPS spectra to detect three planets orbiting the M3 dwarf Wolf 1061 (GJ 628). We detect a 1.36 M{sub ⊕} minimum-mass planet with an orbital period P = 4.888 days (Wolf 1061b), a 4.25 M{sub ⊕} minimum-mass planet with orbital period P = 17.867 days (Wolf 1061c), and a likely 5.21 M{sub ⊕} minimum-mass planet with orbital period P = 67.274 days (Wolf 1061d). All of the planets are of sufficiently low mass that they may be rocky in nature. The 17.867 day planet falls within the habitable zone for Wolf 1061 and the 67.274 day planet falls just outside the outer boundary of the habitable zone. There are no signs of activity observed in the bisector spans, cross-correlation FWHMs, calcium H and K indices, NaD indices, or Hα indices near the planetary periods. We use custom methods to generate a cross-correlation template tailored to the star. The resulting velocities do not suffer the strong annual variation observed in the HARPS DRS velocities. This differential technique should deliver better exploitation of the archival HARPS data for the detection of planets at extremely low amplitudes.

  18. Tilting Saturn without Tilting Jupiter: Constraints on Giant Planet Migration

    Science.gov (United States)

    Brasser, R.; Lee, Man Hoi

    2015-11-01

    The migration and encounter histories of the giant planets in our solar system can be constrained by the obliquities of Jupiter and Saturn. We have performed secular simulations with imposed migration and N-body simulations with planetesimals to study the expected obliquity distribution of migrating planets with initial conditions resembling those of the smooth migration model, the resonant Nice model and two models with five giant planets initially in resonance (one compact and one loose configuration). For smooth migration, the secular spin-orbit resonance mechanism can tilt Saturn’s spin axis to the current obliquity if the product of the migration timescale and the orbital inclinations is sufficiently large (exceeding 30 Myr deg). For the resonant Nice model with imposed migration, it is difficult to reproduce today’s obliquity values, because the compactness of the initial system raises the frequency that tilts Saturn above the spin precession frequency of Jupiter, causing a Jupiter spin-orbit resonance crossing. Migration timescales sufficiently long to tilt Saturn generally suffice to tilt Jupiter more than is observed. The full N-body simulations tell a somewhat different story, with Jupiter generally being tilted as often as Saturn, but on average having a higher obliquity. The main obstacle is the final orbital spacing of the giant planets, coupled with the tail of Neptune’s migration. The resonant Nice case is barely able to simultaneously reproduce the orbital and spin properties of the giant planets, with a probability ˜ 0.15%. The loose five planet model is unable to match all our constraints (probability <0.08%). The compact five planet model has the highest chance of matching the orbital and obliquity constraints simultaneously (probability ˜0.3%).

  19. Giant planet population synthesis: comparing theory with observations

    International Nuclear Information System (INIS)

    Benz, W; Mordasini, C; Alibert, Y; Naef, D

    2008-01-01

    The characteristics of the now over 250 known extra-solar giant planets begin to provide a database with which current planet formation theories can be put to the test. To do this, we synthesize the expected planet population based on the core-accretion scenario by sampling initial conditions in a Monte Carlo fashion. We then apply appropriate observational detection biases and compare the resulting population with the one actually detected. Quantitative statistical tests allow us to determine how well the models are reproducing the observed samples. The model can be applied to compute the expected planet population detectable with different techniques (radial velocity measurements, transits, gravitational lensing, etc) or orbiting stars of different masses. In the latter case, we show that forming Jupiter-mass planets orbiting M dwarfs within the lifetime of proto-planetary disks is indeed possible. However, the models predict that with decreasing stellar mass, the ratio of Jupiter- to Neptune-mass planets will sharply decrease

  20. Giant planet population synthesis: comparing theory with observations

    Science.gov (United States)

    Benz, W.; Mordasini, C.; Alibert, Y.; Naef, D.

    2008-08-01

    The characteristics of the now over 250 known extra-solar giant planets begin to provide a database with which current planet formation theories can be put to the test. To do this, we synthesize the expected planet population based on the core-accretion scenario by sampling initial conditions in a Monte Carlo fashion. We then apply appropriate observational detection biases and compare the resulting population with the one actually detected. Quantitative statistical tests allow us to determine how well the models are reproducing the observed samples. The model can be applied to compute the expected planet population detectable with different techniques (radial velocity measurements, transits, gravitational lensing, etc) or orbiting stars of different masses. In the latter case, we show that forming Jupiter-mass planets orbiting M dwarfs within the lifetime of proto-planetary disks is indeed possible. However, the models predict that with decreasing stellar mass, the ratio of Jupiter- to Neptune-mass planets will sharply decrease.

  1. Giant planets. Holweck prize lecture 1982

    Energy Technology Data Exchange (ETDEWEB)

    Hide, R. (Meteorological Office, Bracknell (UK))

    1982-10-01

    The main characteristics of the giant planets, Jupiter and Saturn, are outlined. Studies which have been made of the circulation of their atmospheres, the structure of their interiors and the origin of their magnetic fields are discussed.

  2. Scenarios of giant planet formation and evolution and their impact on the formation of habitable terrestrial planets.

    Science.gov (United States)

    Morbidelli, Alessandro

    2014-04-28

    In our Solar System, there is a clear divide between the terrestrial and giant planets. These two categories of planets formed and evolved separately, almost in isolation from each other. This was possible because Jupiter avoided migrating into the inner Solar System, most probably due to the presence of Saturn, and never acquired a large-eccentricity orbit, even during the phase of orbital instability that the giant planets most likely experienced. Thus, the Earth formed on a time scale of several tens of millions of years, by collision of Moon- to Mars-mass planetary embryos, in a gas-free and volatile-depleted environment. We do not expect, however, that this clear cleavage between the giant and terrestrial planets is generic. In many extrasolar planetary systems discovered to date, the giant planets migrated into the vicinity of the parent star and/or acquired eccentric orbits. In this way, the evolution and destiny of the giant and terrestrial planets become intimately linked. This paper discusses several evolutionary patterns for the giant planets, with an emphasis on the consequences for the formation and survival of habitable terrestrial planets. The conclusion is that we should not expect Earth-like planets to be typical in terms of physical and orbital properties and accretion history. Most habitable worlds are probably different, exotic worlds.

  3. Evidence of an Upper Bound on the Masses of Planets and Its Implications for Giant Planet Formation

    Science.gov (United States)

    Schlaufman, Kevin C.

    2018-01-01

    Celestial bodies with a mass of M≈ 10 {M}{Jup} have been found orbiting nearby stars. It is unknown whether these objects formed like gas-giant planets through core accretion or like stars through gravitational instability. I show that objects with M≲ 4 {M}{Jup} orbit metal-rich solar-type dwarf stars, a property associated with core accretion. Objects with M≳ 10 {M}{Jup} do not share this property. This transition is coincident with a minimum in the occurrence rate of such objects, suggesting that the maximum mass of a celestial body formed through core accretion like a planet is less than 10 {M}{Jup}. Consequently, objects with M≳ 10 {M}{Jup} orbiting solar-type dwarf stars likely formed through gravitational instability and should not be thought of as planets. Theoretical models of giant planet formation in scaled minimum-mass solar nebula Shakura–Sunyaev disks with standard parameters tuned to produce giant planets predict a maximum mass nearly an order of magnitude larger. To prevent newly formed giant planets from growing larger than 10 {M}{Jup}, protoplanetary disks must therefore be significantly less viscous or of lower mass than typically assumed during the runaway gas accretion stage of giant planet formation. Either effect would act to slow the Type I/II migration of planetary embryos/giant planets and promote their survival. These inferences are insensitive to the host star mass, planet formation location, or characteristic disk dissipation time.

  4. On the Radii of Close-in Giant Planets.

    Science.gov (United States)

    Burrows; Guillot; Hubbard; Marley; Saumon; Lunine; Sudarsky

    2000-05-01

    The recent discovery that the close-in extrasolar giant planet HD 209458b transits its star has provided a first-of-its-kind measurement of the planet's radius and mass. In addition, there is a provocative detection of the light reflected off of the giant planet tau Bootis b. Including the effects of stellar irradiation, we estimate the general behavior of radius/age trajectories for such planets and interpret the large measured radii of HD 209458b and tau Boo b in that context. We find that HD 209458b must be a hydrogen-rich gas giant. Furthermore, the large radius of a close-in gas giant is not due to the thermal expansion of its atmosphere but to the high residual entropy that remains throughout its bulk by dint of its early proximity to a luminous primary. The large stellar flux does not inflate the planet but retards its otherwise inexorable contraction from a more extended configuration at birth. This implies either that such a planet was formed near its current orbital distance or that it migrated in from larger distances (>/=0.5 AU), no later than a few times 107 yr of birth.

  5. Full exploration of the giant planet population around β Pictoris

    Science.gov (United States)

    Lagrange, A.-M.; Keppler, M.; Meunier, N.; Lannier, J.; Beust, H.; Milli, J.; Bonnavita, M.; Bonnefoy, M.; Borgniet, S.; Chauvin, G.; Delorme, P.; Galland, F.; Iglesias, D.; Kiefer, F.; Messina, S.; Vidal-Madjar, A.; Wilson, P. A.

    2018-05-01

    Context. The search for extrasolar planets has been limited so far to close orbit (typ. ≤5 au) planets around mature solar-type stars on the one hand, and to planets on wide orbits (≥10 au) around young stars on the other hand. To get a better view of the full giant planet population, we have started a survey to search for giant planets around a sample of carefully selected young stars. Aims: This paper aims at exploring the giant planet population around one of our targets, β Pictoris, over a wide range of separations. With a disk and a planet already known, the β Pictoris system is indeed a very precious system for studies of planetary formation and evolution, as well as of planet-disk interactions. Methods: We analyse more than 2000 HARPS high-resolution spectra taken over 13 years as well as NaCo images recorded between 2003 and 2016. We combine these data to compute the detection probabilities of planets throughout the disk, from a fraction of au to a few dozen au. Results: We exclude the presence of planets more massive than 3 MJup closer than 1 au and further than 10 au, with a 90% probability. 15+ MJup companions are excluded throughout the disk except between 3 and 5 au with a 90% probability. In this region, we exclude companions with masses larger than 18 (resp. 30) MJup with probabilities of 60 (resp. 90) %. Based on data obtained with the ESO3.6 m/HARPS spectrograph at La Silla, and with NaCO on the VLT.The RV data are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/612/A108

  6. PLANETS AROUND THE K-GIANTS BD+20 274 AND HD 219415

    International Nuclear Information System (INIS)

    Gettel, S.; Wolszczan, A.; Niedzielski, A.; Nowak, G.; Adamów, M.; Zieliński, P.; Maciejewski, G.

    2012-01-01

    We present the discovery of planet-mass companions to two giant stars by the ongoing Penn State-Toruń Planet Search conducted with the 9.2 m Hobby-Eberly Telescope. The less massive of these stars, K5-giant BD+20 274, has a 4.2 M J minimum mass planet orbiting the star at a 578 day period and a more distant, likely stellar-mass companion. The best currently available model of the planet orbiting the K0-giant HD 219415 points to a ∼> Jupiter-mass companion in a 5.7 year, eccentric orbit around the star, making it the longest period planet yet detected by our survey. This planet has an amplitude of ∼18 m s –1 , comparable to the median radial velocity 'jitter', typical of giant stars.

  7. TERRESTRIAL PLANET FORMATION DURING THE MIGRATION AND RESONANCE CROSSINGS OF THE GIANT PLANETS

    International Nuclear Information System (INIS)

    Lykawka, Patryk Sofia; Ito, Takashi

    2013-01-01

    The newly formed giant planets may have migrated and crossed a number of mutual mean motion resonances (MMRs) when smaller objects (embryos) were accreting to form the terrestrial planets in the planetesimal disk. We investigated the effects of the planetesimal-driven migration of Jupiter and Saturn, and the influence of their mutual 1:2 MMR crossing on terrestrial planet formation for the first time, by performing N-body simulations. These simulations considered distinct timescales of MMR crossing and planet migration. In total, 68 high-resolution simulation runs using 2000 disk planetesimals were performed, which was a significant improvement on previously published results. Even when the effects of the 1:2 MMR crossing and planet migration were included in the system, Venus and Earth analogs (considering both orbits and masses) successfully formed in several runs. In addition, we found that the orbits of planetesimals beyond a ∼ 1.5-2 AU were dynamically depleted by the strengthened sweeping secular resonances associated with Jupiter's and Saturn's more eccentric orbits (relative to the present day) during planet migration. However, this depletion did not prevent the formation of massive Mars analogs (planets with more than 1.5 times Mars's mass). Although late MMR crossings (at t > 30 Myr) could remove such planets, Mars-like small mass planets survived on overly excited orbits (high e and/or i), or were completely lost in these systems. We conclude that the orbital migration and crossing of the mutual 1:2 MMR of Jupiter and Saturn are unlikely to provide suitable orbital conditions for the formation of solar system terrestrial planets. This suggests that to explain Mars's small mass and the absence of other planets between Mars and Jupiter, the outer asteroid belt must have suffered a severe depletion due to interactions with Jupiter/Saturn, or by an alternative mechanism (e.g., rogue super-Earths)

  8. Kepler-36: A Pair of Planets with Neighboring Orbits and Dissimilar Densities

    Energy Technology Data Exchange (ETDEWEB)

    Carter, J. A.; Agol, E.; Chaplin, W. J.; Basu, S.; Bedding, T. R.; Buchhave, L. A.; Christensen-Dalsgaard, J.; Deck, K. M.; Elsworth, Y.; Fabrycky, D. C.; Ford, E. B.; Fortney, J. J.; Hale, S. J.; Handberg, R.; Hekker, S.; Holman, M. J.; Huber, D.; Karoff, C.; Kawaler, S. D.; Kjeldsen, H.; Lissauer, J. J.; Lopez, E. D.; Lund, M. N.; Lundkvist, M.; Metcalfe, T. S.; Miglio, A.; Rogers, L. A.; Stello, D.; Borucki, W. J.; Bryson, S.; Christiansen, J. L.; Cochran, W. D.; Geary, J. C.; Gilliland, R. L.; Haas, M. R.; Hall, J.; Howard, A. W.; Jenkins, J. M.; Klaus, T.; Koch, D. G.; Latham, D. W.; MacQueen, P. J.; Sasselov, D.; Steffen, J. H.; Twicken, J. D.; Winn, J. N.

    2012-06-21

    In the Solar system the planets' compositions vary with orbital distance, with rocky planets in close orbits and lower-density gas giants in wider orbits. The detection of close-in giant planets around other stars was the first clue that this pattern is not universal, and that planets' orbits can change substantially after their formation. Here we report another violation of the orbit-composition pattern: two planets orbiting the same star with orbital distances differing by only 10%, and densities differing by a factor of 8. One planet is likely a rocky `super-Earth', whereas the other is more akin to Neptune. These planets are thirty times more closely spaced--and have a larger density contrast--than any adjacent pair of planets in the Solar system.

  9. Kepler-36: a pair of planets with neighboring orbits and dissimilar densities.

    Science.gov (United States)

    Carter, Joshua A; Agol, Eric; Chaplin, William J; Basu, Sarbani; Bedding, Timothy R; Buchhave, Lars A; Christensen-Dalsgaard, Jørgen; Deck, Katherine M; Elsworth, Yvonne; Fabrycky, Daniel C; Ford, Eric B; Fortney, Jonathan J; Hale, Steven J; Handberg, Rasmus; Hekker, Saskia; Holman, Matthew J; Huber, Daniel; Karoff, Christopher; Kawaler, Steven D; Kjeldsen, Hans; Lissauer, Jack J; Lopez, Eric D; Lund, Mikkel N; Lundkvist, Mia; Metcalfe, Travis S; Miglio, Andrea; Rogers, Leslie A; Stello, Dennis; Borucki, William J; Bryson, Steve; Christiansen, Jessie L; Cochran, William D; Geary, John C; Gilliland, Ronald L; Haas, Michael R; Hall, Jennifer; Howard, Andrew W; Jenkins, Jon M; Klaus, Todd; Koch, David G; Latham, David W; MacQueen, Phillip J; Sasselov, Dimitar; Steffen, Jason H; Twicken, Joseph D; Winn, Joshua N

    2012-08-03

    In the solar system, the planets' compositions vary with orbital distance, with rocky planets in close orbits and lower-density gas giants in wider orbits. The detection of close-in giant planets around other stars was the first clue that this pattern is not universal and that planets' orbits can change substantially after their formation. Here, we report another violation of the orbit-composition pattern: two planets orbiting the same star with orbital distances differing by only 10% and densities differing by a factor of 8. One planet is likely a rocky "super-Earth," whereas the other is more akin to Neptune. These planets are 20 times more closely spaced and have a larger density contrast than any adjacent pair of planets in the solar system.

  10. Thermal escape from extrasolar giant planets.

    Science.gov (United States)

    Koskinen, Tommi T; Lavvas, Panayotis; Harris, Matthew J; Yelle, Roger V

    2014-04-28

    The detection of hot atomic hydrogen and heavy atoms and ions at high altitudes around close-in extrasolar giant planets (EGPs) such as HD209458b implies that these planets have hot and rapidly escaping atmospheres that extend to several planetary radii. These characteristics, however, cannot be generalized to all close-in EGPs. The thermal escape mechanism and mass loss rate from EGPs depend on a complex interplay between photochemistry and radiative transfer driven by the stellar UV radiation. In this study, we explore how these processes change under different levels of irradiation on giant planets with different characteristics. We confirm that there are two distinct regimes of thermal escape from EGPs, and that the transition between these regimes is relatively sharp. Our results have implications for thermal mass loss rates from different EGPs that we discuss in the context of currently known planets and the detectability of their upper atmospheres.

  11. THE FORMATION MECHANISM OF GAS GIANTS ON WIDE ORBITS

    International Nuclear Information System (INIS)

    Dodson-Robinson, Sarah E.; Veras, Dimitri; Ford, Eric B.; Beichman, C. A.

    2009-01-01

    The recent discoveries of massive planets on ultra-wide orbits of HR 8799 and Fomalhaut present a new challenge for planet formation theorists. Our goal is to figure out which of three giant planet formation mechanisms-core accretion (with or without migration), scattering from the inner disk, or gravitational instability-could be responsible for Fomalhaut b, HR 8799 b, c and d, and similar planets discovered in the future. This paper presents the results of numerical experiments comparing the long-period planet formation efficiency of each possible mechanism in model A star, G star, and M star disks. First, a simple core accretion simulation shows that planet cores forming beyond 35 AU cannot reach critical mass, even under the most favorable conditions one can construct. Second, a set of N-body simulations demonstrates that planet-planet scattering does not create stable, wide-orbit systems such as HR 8799. Finally, a linear stability analysis verifies previous work showing that global spiral instabilities naturally arise in high-mass disks. We conclude that massive gas giants on stable orbits with semimajor axes a ∼> 35 AU form by gravitational instability in the disk. We recommend that observers examine the planet detection rate as a function of stellar age, controlling for the planets' dimming with time. Any age trend would indicate that planets on wide orbits are transient relics of scattering from the inner disk. If planet detection rate is found to be independent of stellar age, it would confirm our prediction that gravitational instability is the dominant mode of producing detectable planets on wide orbits. We also predict that the occurrence ratio of long-period to short-period gas giants should be highest for M dwarfs due to the inefficiency of core accretion and the expected small fragment mass (∼10 M Jup ) in their disks.

  12. Polarization Spectra of Extrasolar Giant Planets

    NARCIS (Netherlands)

    Stam, D.M.

    2004-01-01

    We present simulated spectra of the flux and degree of polarization of starlight that is reflected by extrasolar giant planets (EGPs). In particular the polarization depends strongly on the structure of the planetary atmosphere, and appears to be a valuable tool for the characterization of EGPs.

  13. THE CALIFORNIA PLANET SURVEY. I. FOUR NEW GIANT EXOPLANETS

    International Nuclear Information System (INIS)

    Howard, Andrew W.; Marcy, Geoffrey W.; Peek, Kathryn M. G.; Johnson, John Asher; Fischer, Debra A.; Isaacson, Howard; Wright, Jason T.; Bernat, David; Henry, Gregory W.; Apps, Kevin; Endl, Michael; Cochran, William D.; Valenti, Jeff A.; Anderson, Jay; Piskunov, Nikolai E.

    2010-01-01

    We present precise Doppler measurements of four stars obtained during the past decade at Keck Observatory by the California Planet Survey (CPS). These stars, namely, HD 34445, HD 126614, HD 13931, and Gl 179, all show evidence for a single planet in Keplerian motion. We also present Doppler measurements from the Hobby-Eberly Telescope (HET) for two of the stars, HD 34445 and Gl 179, that confirm the Keck detections and significantly refine the orbital parameters. These planets add to the statistical properties of giant planets orbiting near or beyond the ice line, and merit follow-up by astrometry, imaging, and space-borne spectroscopy. Their orbital parameters span wide ranges of planetary minimum mass (M sin i = 0.38-1.9 M Jup ), orbital period (P = 2.87-11.5 yr), semimajor axis (a = 2.1-5.2 AU), and eccentricity (e = 0.02-0.41). HD 34445 b (P = 2.87 yr, M sin i = 0.79 M Jup , e = 0.27) is a massive planet orbiting an old, G-type star. We announce a planet, HD 126614 Ab, and an M dwarf, HD 126614 B, orbiting the metal-rich star HD 126614 (which we now refer to as HD 126614 A). The planet, HD 126614 Ab, has minimum mass M sin i = 0.38 M Jup and orbits the stellar primary with period P = 3.41 yr and orbital separation a = 2.3 AU. The faint M dwarf companion, HD 126614 B, is separated from the stellar primary by 489 mas (33 AU) and was discovered with direct observations using adaptive optics and the PHARO camera at Palomar Observatory. The stellar primary in this new system, HD 126614 A, has the highest measured metallicity ([Fe/H] = +0.56) of any known planet-bearing star. HD 13931 b (P = 11.5 yr, M sin i = 1.88 M Jup , e = 0.02) is a Jupiter analog orbiting a near solar twin. Gl 179 b (P = 6.3 yr, M sin i = 0.82 M Jup , e = 0.21) is a massive planet orbiting a faint M dwarf. The high metallicity of Gl 179 is consistent with the planet-metallicity correlation among M dwarfs, as documented recently by Johnson and Apps.

  14. The accretion of migrating giant planets

    Science.gov (United States)

    Dürmann, Christoph; Kley, Wilhelm

    2017-02-01

    Aims: Most studies concerning the growth and evolution of massive planets focus either on their accretion or their migration only. In this work we study both processes concurrently to investigate how they might mutually affect one another. Methods: We modeled a two-dimensional disk with a steady accretion flow onto the central star and embedded a Jupiter mass planet at 5.2 au. The disk is locally isothermal and viscosity is modeled using a constant α. The planet is held on a fixed orbit for a few hundred orbits to allow the disk to adapt and carve a gap. After this period, the planet is released and free to move according to the gravitational interaction with the gas disk. The mass accretion onto the planet is modeled by removing a fraction of gas from the inner Hill sphere, and the removed mass and momentum can be added to the planet. Results: Our results show that a fast migrating planet is able to accrete more gas than a slower migrating planet. Utilizing a tracer fluid we analyzed the origin of the accreted gas originating predominantly from the inner disk for a fast migrating planet. In the case of slower migration, the fraction of gas from the outer disk increases. We also found that even for very high accretion rates, in some cases gas crosses the planetary gap from the inner to the outer disk. Our simulations show that the crossing of gas changes during the migration process as the migration rate slows down. Therefore, classical type II migration where the planet migrates with the viscous drift rate and no gas crosses the gap is no general process but may only occur for special parameters and at a certain time during the orbital evolution of the planet.

  15. On the Composition of Young, Directly Imaged Giant Planets

    Science.gov (United States)

    Moses, J. I.; Marley, M. S.; Zahnle, K.; Line, M. R.; Fortney, J. J.; Barman, T. S.; Visscher, C.; Lewis, N. K.; Wolff, M. J.

    2016-01-01

    The past decade has seen significant progress on the direct detection and characterization of young, self-luminous giant planets at wide orbital separations from their host stars. Some of these planets show evidence for disequilibrium processes like transport-induced quenching in their atmospheres; photochemistry may also be important, despite the typically large orbital distances. Disequilibrium chemical processes such as these can alter the expected composition, spectral behavior, thermal structure, and cooling history of the planets, and can potentially confuse determinations of bulk elemental ratios, which provide important insights into planet-formation mechanisms. Using a thermo/photochemical kinetics and transport model, we investigate the extent to which disequilibrium chemical processes affect the composition and spectra of directly imaged giant exoplanets. Results for specific "young Jupiters" such as HR 8799 b and c and 51 Eri b are presented, as are general trends as a function of planetary effective temperature, surface gravity, incident ultraviolet flux, and strength of deep atmospheric convection. We find that quenching is very important on young Jupiters, leading to CO/CH4 and N2/NH3 ratios much greater than; and H2O mixing ratios a factor of a few less than chemical equilibrium predictions. Photochemistry can also be important on such planets, with CO2 and HCN being key photochemical products. Carbon dioxide becomes a particularly major constituent when stratospheric temperatures are low and recycling of water following H2O photolysis becomes stifled. Young Jupiters with effective temperatures less than 700 degrees Kelvin are in a particularly interesting photochemical regime that differs from both transiting hot Jupiters and our own solar-system giant planets.

  16. PLANET ENGULFMENT BY ∼1.5-3 Msun RED GIANTS

    International Nuclear Information System (INIS)

    Kunitomo, M.; Ikoma, M.; Sato, B.; Ida, S.; Katsuta, Y.

    2011-01-01

    Recent radial-velocity surveys for GK clump giants have revealed that planets also exist around ∼1.5-3 M sun stars. However, no planets have been found inside 0.6 AU around clump giants, in contrast to solar-type main-sequence stars, many of which harbor short-period planets such as hot Jupiters. In this study, we examine the possibility that planets were engulfed by host stars evolving on the red-giant branch (RGB). We integrate the orbital evolution of planets in the RGB and helium-burning phases of host stars, including the effects of stellar tide and stellar mass loss. Then we derive the critical semimajor axis (or the survival limit) inside which planets are eventually engulfed by their host stars after tidal decay of their orbits. Specifically, we investigate the impact of stellar mass and other stellar parameters on the survival limit in more detail than previous studies. In addition, we make detailed comparisons with measured semimajor axes of planets detected so far, which no previous study has done. We find that the critical semimajor axis is quite sensitive to stellar mass in the range between 1.7 and 2.1 M sun , which suggests a need for careful comparison between theoretical and observational limits of the existence of planets. Our comparison demonstrates that all planets orbiting GK clump giants that have been detected are beyond the survival limit, which is consistent with the planet-engulfment hypothesis. However, on the high-mass side (>2.1M sun ), the detected planets are orbiting significantly far from the survival limit, which suggests that engulfment by host stars may not be the main reason for the observed lack of short-period giant planets. To confirm our conclusion, the detection of more planets around clump giants, especially with masses ∼> 2.5M sun , is required.

  17. Characterizing Cool Giant Planets in Reflected Light

    Science.gov (United States)

    Marley, Mark

    2016-01-01

    While the James Webb Space Telescope will detect and characterize extrasolar planets by transit and direct imaging, a new generation of telescopes will be required to detect and characterize extrasolar planets by reflected light imaging. NASA's WFIRST space telescope, now in development, will image dozens of cool giant planets at optical wavelengths and will obtain spectra for several of the best and brightest targets. This mission will pave the way for the detection and characterization of terrestrial planets by the planned LUVOIR or HabEx space telescopes. In my presentation I will discuss the challenges that arise in the interpretation of direct imaging data and present the results of our group's effort to develop methods for maximizing the science yield from these planned missions.

  18. LONG RANGE OUTWARD MIGRATION OF GIANT PLANETS, WITH APPLICATION TO FOMALHAUT b

    International Nuclear Information System (INIS)

    Crida, Aurelien; Masset, Frederic; Morbidelli, Alessandro

    2009-01-01

    Recent observations of exoplanets by direct imaging reveal that giant planets orbit at a few dozens to more than a hundred AU from their central star. The question of the origin of these planets challenges the standard theories of planet formation. We propose a new way of obtaining such far planets, by outward migration of a pair of planets formed in the 10 AU region. Two giant planets in mean motion resonance in a common gap in the protoplanetary disk migrate outward, if the inner one is significantly more massive than the outer one. Using hydrodynamical simulations, we show that their semimajor axes can increase by almost 1 order of magnitude. In a flared disk, the pair of planets should reach an asymptotic radius. This mechanism could account for the presence of Fomalhaut b; then, a second, more massive planet, should be orbiting Fomalhaut at about 75 AU.

  19. The interiors of the giant planets - 1983

    International Nuclear Information System (INIS)

    Smoluchowski, R.

    1983-01-01

    The last few years brought progress in understanding the interiors of the giant planets especially of the two larger ones which have been visited by Pioneer and Voyager spacecraft. An analysis of the formation of the giant planets also helped to clarify certain important common features. The presently available model of Jupiter is still based on certain somewhat bothersome approximations but it appears to satisfy the main observational constraints. Saturn's interior is much better understood than it was previously although the quantitative aspects of the role of the miscibility gap in the hydrogen-helium system have not yet been entirely resolved. Much attention has been directed at the interiors of Uranus and Neptune and the outstanding question appears to be the location and the amount of ices and methane present in their outer layers. Both the two- and the three-layer models are moderately successful. Serious difficulties arise from the considerable uncertainties concerning the rotational periods of both planets. Also the estimates of the internal heat fluxes and of the magnetic fields of both planets are not sufficiently certain. It is hoped that the forthcoming flyby of these two planets by a Voyager spacecraft will provide important new data for a future study of their interiors. (Auth.)

  20. DO GIANT PLANETS SURVIVE TYPE II MIGRATION?

    International Nuclear Information System (INIS)

    Hasegawa, Yasuhiro; Ida, Shigeru

    2013-01-01

    Planetary migration is one of the most serious problems to systematically understand the observations of exoplanets. We clarify that the theoretically predicted type II, migration (like type I migration) is too fast, by developing detailed analytical arguments in which the timescale of type II migration is compared with the disk lifetime. In the disk-dominated regime, the type II migration timescale is characterized by a local viscous diffusion timescale, while the disk lifetime is characterized by a global diffusion timescale that is much longer than the local one. Even in the planet-dominated regime where the inertia of the planet mass reduces the migration speed, the timescale is still shorter than the disk lifetime except in the final disk evolution stage where the total disk mass decays below the planet mass. This suggests that most giant planets plunge into the central stars within the disk lifetime, and it contradicts the exoplanet observations that gas giants are piled up at r ∼> 1 AU. We examine additional processes that may arise in protoplanetary disks: dead zones, photoevaporation of gas, and gas flow across a gap formed by a type II migrator. Although they make the type II migration timescale closer to the disk lifetime, we show that none of them can act as an effective barrier for rapid type II migration with the current knowledge of these processes. We point out that gas flow across a gap and the fraction of the flow accreted onto the planets are uncertain and they may have the potential to solve the problem. Much more detailed investigation for each process may be needed to explain the observed distribution of gas giants in extrasolar planetary systems

  1. Predicting the Atmospheric Composition of Extrasolar Giant Planets

    Science.gov (United States)

    Sharp, A. G.; Moses, J. I.; Friedson, A. J.; Fegley, B., Jr.; Marley, M. S.; Lodders, K.

    2004-01-01

    To date, approximately 120 planet-sized objects have been discovered around other stars, mostly through the radial-velocity technique. This technique can provide information about a planet s minimum mass and its orbital period and distance; however, few other planetary data can be obtained at this point in time unless we are fortunate enough to find an extrasolar giant planet that transits its parent star (i.e., the orbit is edge-on as seen from Earth). In that situation, many physical properties of the planet and its parent star can be determined, including some compositional information. Our prospects of directly obtaining spectra from extrasolar planets may improve in the near future, through missions like NASA's Terrestrial Planet Finder. Most of the extrasolar giant planets (EGPs) discovered so far have masses equal to or greater than Jupiter's mass, and roughly 16% have orbital radii less than 0.1 AU - extremely close to the parent star by our own Solar-System standards (note that Mercury is located at a mean distance of 0.39 AU and Jupiter at 5.2 AU from the Sun). Although all EGPs are expected to have hydrogen-dominated atmospheres similar to Jupiter, the orbital distance can strongly affect the planet's temperature, physical, chemical, and spectral properties, and the abundance of minor, detectable atmospheric constituents. Thermochemical equilibrium models can provide good zero-order predictions for the atmospheric composition of EGPs. However, both the composition and spectral properties will depend in large part on disequilibrium processes like photochemistry, chemical kinetics, atmospheric transport, and haze formation. We have developed a photochemical kinetics, radiative transfer, and 1-D vertical transport model to study the atmospheric composition of EGPs. The chemical reaction list contains H-, C-, O-, and N-bearing species and is designed to be valid for atmospheric temperatures ranging from 100-3000 K and pressures up to 50 bar. Here we examine

  2. How empty are disk gaps opened by giant planets?

    Energy Technology Data Exchange (ETDEWEB)

    Fung, Jeffrey [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, Ontario M5S 3H4 (Canada); Shi, Ji-Ming; Chiang, Eugene, E-mail: fung@astro.utoronto.ca [Department of Astronomy, UC Berkeley, Hearst Field Annex B-20, Berkeley, CA 94720-3411 (United States)

    2014-02-20

    Gap clearing by giant planets has been proposed to explain the optically thin cavities observed in many protoplanetary disks. How much material remains in the gap determines not only how detectable young planets are in their birth environments, but also how strong co-rotation torques are, which impacts how planets can survive fast orbital migration. We determine numerically how the average surface density inside the gap, Σ{sub gap}, depends on planet-to-star mass ratio q, Shakura-Sunyaev viscosity parameter α, and disk height-to-radius aspect ratio h/r. Our results are derived from our new graphics processing unit accelerated Lagrangian hydrodynamical code PEnGUIn and are verified by independent simulations with ZEUS90. For Jupiter-like planets, we find Σ{sub gap}∝q {sup –2.2}α{sup 1.4}(h/r){sup 6.6}, and for near brown dwarf masses, Σ{sub gap}∝q {sup –1}α{sup 1.3}(h/r){sup 6.1}. Surface density contrasts inside and outside gaps can be as large as 10{sup 4}, even when the planet does not accrete. We derive a simple analytic scaling, Σ{sub gap}∝q {sup –2}α{sup 1}(h/r){sup 5}, that compares reasonably well to empirical results, especially at low Neptune-like masses, and use discrepancies to highlight areas for progress.

  3. Giant Planet Candidates, Brown Dwarfs, and Binaries from the SDSS-III MARVELS Planet Survey.

    Science.gov (United States)

    Thomas, Neil; Ge, Jian; Li, Rui; de Lee, Nathan M.; Heslar, Michael; Ma, Bo; SDSS-Iii Marvels Team

    2015-01-01

    We report the discoveries of giant planet candidates, brown dwarfs, and binaries from the SDSS-III MARVELS survey. The finalized 1D pipeline has provided 18 giant planet candidates, 16 brown dwarfs, and over 500 binaries. An additional 96 targets having RV variability indicative of a giant planet companion are also reported for future investigation. These candidates are found using the advanced MARVELS 1D data pipeline developed at UF from scratch over the past three years. This pipeline carefully corrects most of the instrument effects (such as trace, slant, distortion, drifts and dispersion) and observation condition effects (such as illumination profile, fiber degradation, and tracking variations). The result is long-term RV precisions that approach the photon limits in many cases for the ~89,000 individual stellar observations. A 2D version of the pipeline that uses interferometric information is nearing completion and is demonstrating a reduction of errors to half the current levels. The 2D processing will be used to increase the robustness of the detections presented here and to find new candidates in RV regions not confidently detectable with the 1D pipeline. The MARVELS survey has produced the largest homogeneous RV measurements of 3300 V=7.6-12 FGK stars with a well defined cadence of 27 RV measurements over 2 years. The MARVELS RV data and other follow-up data (photometry, high contrast imaging, high resolution spectroscopy and RV measurements) will explore the diversity of giant planet companion formation and evolution around stars with a broad range in metallicity (Fe/H -1.5-0.5), mass ( 0.6-2.5M(sun)), and environment (thin disk and thick disk), and will help to address the key scientific questions identified for the MARVELS survey including, but not limited to: Do metal poor stars obey the same trends for planet occurrence as metal rich stars? What is the distribution of giant planets around intermediate-mass stars and binaries? Is the 'planet desert

  4. ON THE SURVIVABILITY AND METAMORPHISM OF TIDALLY DISRUPTED GIANT PLANETS: THE ROLE OF DENSE CORES

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shang-Fei; Lin, Douglas N. C. [Kavli Institute for Astronomy and Astrophysics and Department of Astronomy, Peking University, Beijing 100871 (China); Guillochon, James; Ramirez-Ruiz, Enrico, E-mail: liushangfei@pku.edu.cn [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

    2013-01-01

    A large population of planetary candidates in short-period orbits have been found recently through transit searches, mostly with the Kepler mission. Radial velocity surveys have also revealed several Jupiter-mass planets with highly eccentric orbits. Measurements of the Rossiter-McLaughlin effect indicate that the orbital angular momentum vector of some planets is inclined relative to the spin axis of their host stars. This diversity could be induced by post-formation dynamical processes such as planet-planet scattering, the Kozai effect, or secular chaos which brings planets to the vicinity of their host stars. In this work, we propose a novel mechanism to form close-in super-Earths and Neptune-like planets through the tidal disruption of gas giant planets as a consequence of these dynamical processes. We model the core-envelope structure of gas giant planets with composite polytropes which characterize the distinct chemical composition of the core and envelope. Using three-dimensional hydrodynamical simulations of close encounters between Jupiter-like planets and their host stars, we find that the presence of a core with a mass more than 10 times that of the Earth can significantly increase the fraction of envelope which remains bound to it. After the encounter, planets with cores are more likely to be retained by their host stars in contrast with previous studies which suggested that coreless planets are often ejected. As a substantial fraction of their gaseous envelopes is preferentially lost while the dense incompressible cores retain most of their original mass, the resulting metallicity of the surviving planets is increased. Our results suggest that some gas giant planets can be effectively transformed into either super-Earths or Neptune-like planets after multiple close stellar passages. Finally, we analyze the orbits and structure of known planets and Kepler candidates and find that our model is capable of producing some of the shortest-period objects.

  5. Search for giant planets in M 67. IV. Survey results

    Science.gov (United States)

    Brucalassi, A.; Koppenhoefer, J.; Saglia, R.; Pasquini, L.; Ruiz, M. T.; Bonifacio, P.; Bedin, L. R.; Libralato, M.; Biazzo, K.; Melo, C.; Lovis, C.; Randich, S.

    2017-07-01

    Context. We present the results of a seven-year-long radial velocity survey of a sample of 88 main-sequence and evolved stars to reveal signatures of Jupiter-mass planets in the solar-age and solar-metallicity open cluster M 67. Aims: We aim at studying the frequency of giant planets in this cluster with respect to the field stars. In addition, our sample is also ideal to perform a long-term study to compare the chemical composition of stars with and without giant planets in detail. Methods: We analyzed precise radial velocity (RV) measurements obtained with the HARPS spectrograph at the European Southern Observatory (La Silla), the SOPHIE spectrograph at the Observatoire de Haute-Provence (France), the HRS spectrograph at the Hobby Eberly Telescope (Texas), and the HARPS-N spectrograph at the Telescopio Nazionale Galileo (La Palma). Additional RV data come from the CORALIE spectrograph at the Euler Swiss Telescope (La Silla). We conducted Monte Carlo simulations to estimate the occurrence rate of giant planets in our radial velocity survey. We considered orbital periods between 1.0 day and 1000 days and planet masses between 0.2 MJ and 10.0 MJ. We used a measure of the observational detection efficiency to determine the frequency of planets for each star. Results: All the planets previously announced in this RV campaign with their properties are summarized here: 3 hot Jupiters around the main-sequence stars YBP1194, YBP1514, and YBP401, and 1 giant planet around the evolved star S364. Two additional planet candidates around the stars YBP778 and S978 are also analyzed in the present work. We discuss stars that exhibit large RV variability or trends individually. For 2 additional stars, long-term trends are compatible with new binary candidates or substellar objects, which increases the total number of binary candidates detected in our campaign to 14. Based on the Doppler-detected planets discovered in this survey, we find an occurrence of giant planets of 18

  6. THE RINGS OF CHARIKLO UNDER CLOSE ENCOUNTERS WITH THE GIANT PLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, R. A. N.; Sfair, R.; Winter, O. C., E-mail: ran.araujo@gmail.com, E-mail: rsfair@feg.unesp.br, E-mail: ocwinter@gmail.com [UNESP - Univ. Estadual Paulista, Grupo de Dinâmica Orbital e Planetologia, CEP 12516-410, Guaratingueta, SP (Brazil)

    2016-06-20

    The Centaur population is composed of minor bodies wandering between the giant planets that frequently perform close gravitational encounters with these planets, leading to a chaotic orbital evolution. Recently, the discovery of two well-defined narrow rings was announced around the Centaur 10199 Chariklo. The rings are assumed to be in the equatorial plane of Chariklo and to have circular orbits. The existence of a well-defined system of rings around a body in such a perturbed orbital region poses an interesting new problem. Are the rings of Chariklo stable when perturbed by close gravitational encounters with the giant planets? Our approach to address this question consisted of forward and backward numerical simulations of 729 clones of Chariklo, with similar initial orbits, for a period of 100 Myr. We found, on average, that each clone experiences during its lifetime more than 150 close encounters with the giant planets within one Hill radius of the planet in question. We identified some extreme close encounters that were able to significantly disrupt or disturb the rings of Chariklo. About 3% of the clones lose their rings and about 4% of the clones have their rings significantly disturbed. Therefore, our results show that in most cases (more than 90%), the close encounters with the giant planets do not affect the stability of the rings in Chariklo-like systems. Thus, if there is an efficient mechanism that creates the rings, then these structures may be common among these kinds of Centaurs.

  7. MAKING PLANET NINE: A SCATTERED GIANT IN THE OUTER SOLAR SYSTEM

    International Nuclear Information System (INIS)

    Bromley, Benjamin C.; Kenyon, Scott J.

    2016-01-01

    Correlations in the orbits of several minor planets in the outer solar system suggest the presence of a remote, massive Planet Nine. With at least 10 times the mass of the Earth and a perihelion well beyond 100 au, Planet Nine poses a challenge to planet formation theory. Here we expand on a scenario in which the planet formed closer to the Sun and was gravitationally scattered by Jupiter or Saturn onto a very eccentric orbit in an extended gaseous disk. Dynamical friction with the gas then allowed the planet to settle in the outer solar system. We explore this possibility with a set of numerical simulations. Depending on how the gas disk evolves, scattered super-Earths or small gas giants settle on a range of orbits, with perihelion distances as large as 300 au. Massive disks that clear from the inside out on million-year timescales yield orbits that allow a super-Earth or gas giant to shepherd the minor planets as observed. A massive planet can achieve a similar orbit in a persistent, low-mass disk over the lifetime of the solar system.

  8. MAKING PLANET NINE: A SCATTERED GIANT IN THE OUTER SOLAR SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Bromley, Benjamin C. [Department of Physics and Astronomy, University of Utah, 115 South 1400 East, Room 201, Salt Lake City, UT 84112 (United States); Kenyon, Scott J., E-mail: bromley@physics.utah.edu, E-mail: skenyon@cfa.harvard.edu [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States)

    2016-07-20

    Correlations in the orbits of several minor planets in the outer solar system suggest the presence of a remote, massive Planet Nine. With at least 10 times the mass of the Earth and a perihelion well beyond 100 au, Planet Nine poses a challenge to planet formation theory. Here we expand on a scenario in which the planet formed closer to the Sun and was gravitationally scattered by Jupiter or Saturn onto a very eccentric orbit in an extended gaseous disk. Dynamical friction with the gas then allowed the planet to settle in the outer solar system. We explore this possibility with a set of numerical simulations. Depending on how the gas disk evolves, scattered super-Earths or small gas giants settle on a range of orbits, with perihelion distances as large as 300 au. Massive disks that clear from the inside out on million-year timescales yield orbits that allow a super-Earth or gas giant to shepherd the minor planets as observed. A massive planet can achieve a similar orbit in a persistent, low-mass disk over the lifetime of the solar system.

  9. Making Planet Nine: A Scattered Giant in the Outer Solar System

    Science.gov (United States)

    Bromley, Benjamin C.; Kenyon, Scott J.

    2016-07-01

    Correlations in the orbits of several minor planets in the outer solar system suggest the presence of a remote, massive Planet Nine. With at least 10 times the mass of the Earth and a perihelion well beyond 100 au, Planet Nine poses a challenge to planet formation theory. Here we expand on a scenario in which the planet formed closer to the Sun and was gravitationally scattered by Jupiter or Saturn onto a very eccentric orbit in an extended gaseous disk. Dynamical friction with the gas then allowed the planet to settle in the outer solar system. We explore this possibility with a set of numerical simulations. Depending on how the gas disk evolves, scattered super-Earths or small gas giants settle on a range of orbits, with perihelion distances as large as 300 au. Massive disks that clear from the inside out on million-year timescales yield orbits that allow a super-Earth or gas giant to shepherd the minor planets as observed. A massive planet can achieve a similar orbit in a persistent, low-mass disk over the lifetime of the solar system.

  10. BD+15 2940 AND HD 233604: TWO GIANTS WITH PLANETS CLOSE TO THE ENGULFMENT ZONE

    International Nuclear Information System (INIS)

    Nowak, G.; Niedzielski, A.; Adamów, M.; Maciejewski, G.; Wolszczan, A.

    2013-01-01

    We report the discovery of planetary-mass companions to two red giants by the ongoing Penn State-Toruń Planet Search (PTPS) conducted with the 9.2 m Hobby-Eberly Telescope. The 1.1 M ☉ K0-giant, BD+15 2940, has a 1.1 M J minimum mass companion orbiting the star at a 137.5 day period in a 0.54 AU orbit what makes it the closest—in planet around a giant and possible subject of engulfment as the consequence of stellar evolution. HD 233604, a 1.5 M ☉ K5-giant, is orbited by a 6.6 M J minimum mass planet which has a period of 192 days and a semi-major axis of only 0.75 AU making it one of the least distant planets to a giant star. The chemical composition analysis of HD 233604 reveals a relatively high 7 Li abundance which may be a sign of its early evolutionary stage or recent engulfment of another planet in the system. We also present independent detections of planetary-mass companions to HD 209458 and HD 88133, and stellar activity-induced radial velocity variations in HD 166435, as part of the discussion of the observing and data analysis methods used in the PTPS project.

  11. Discovery of a warm, dusty giant planet around HIP 65426

    Science.gov (United States)

    Chauvin, G.; Desidera, S.; Lagrange, A.-M.; Vigan, A.; Gratton, R.; Langlois, M.; Bonnefoy, M.; Beuzit, J.-L.; Feldt, M.; Mouillet, D.; Meyer, M.; Cheetham, A.; Biller, B.; Boccaletti, A.; D'Orazi, V.; Galicher, R.; Hagelberg, J.; Maire, A.-L.; Mesa, D.; Olofsson, J.; Samland, M.; Schmidt, T. O. B.; Sissa, E.; Bonavita, M.; Charnay, B.; Cudel, M.; Daemgen, S.; Delorme, P.; Janin-Potiron, P.; Janson, M.; Keppler, M.; Le Coroller, H.; Ligi, R.; Marleau, G. D.; Messina, S.; Mollière, P.; Mordasini, C.; Müller, A.; Peretti, S.; Perrot, C.; Rodet, L.; Rouan, D.; Zurlo, A.; Dominik, C.; Henning, T.; Menard, F.; Schmid, H.-M.; Turatto, M.; Udry, S.; Vakili, F.; Abe, L.; Antichi, J.; Baruffolo, A.; Baudoz, P.; Baudrand, J.; Blanchard, P.; Bazzon, A.; Buey, T.; Carbillet, M.; Carle, M.; Charton, J.; Cascone, E.; Claudi, R.; Costille, A.; Deboulbe, A.; De Caprio, V.; Dohlen, K.; Fantinel, D.; Feautrier, P.; Fusco, T.; Gigan, P.; Giro, E.; Gisler, D.; Gluck, L.; Hubin, N.; Hugot, E.; Jaquet, M.; Kasper, M.; Madec, F.; Magnard, Y.; Martinez, P.; Maurel, D.; Le Mignant, D.; Möller-Nilsson, O.; Llored, M.; Moulin, T.; Origné, A.; Pavlov, A.; Perret, D.; Petit, C.; Pragt, J.; Puget, P.; Rabou, P.; Ramos, J.; Rigal, R.; Rochat, S.; Roelfsema, R.; Rousset, G.; Roux, A.; Salasnich, B.; Sauvage, J.-F.; Sevin, A.; Soenke, C.; Stadler, E.; Suarez, M.; Weber, L.; Wildi, F.; Antoniucci, S.; Augereau, J.-C.; Baudino, J.-L.; Brandner, W.; Engler, N.; Girard, J.; Gry, C.; Kral, Q.; Kopytova, T.; Lagadec, E.; Milli, J.; Moutou, C.; Schlieder, J.; Szulágyi, J.; Thalmann, C.; Wahhaj, Z.

    2017-09-01

    Aims: The SHINE program is a high-contrast near-infrared survey of 600 young, nearby stars aimed at searching for and characterizing new planetary systems using VLT/SPHERE's unprecedented high-contrast and high-angular-resolution imaging capabilities. It is also intended to place statistical constraints on the rate, mass and orbital distributions of the giant planet population at large orbits as a function of the stellar host mass and age to test planet-formation theories. Methods: We used the IRDIS dual-band imager and the IFS integral field spectrograph of SPHERE to acquire high-contrast coronagraphic differential near-infrared images and spectra of the young A2 star HIP 65426. It is a member of the 17 Myr old Lower Centaurus-Crux association. Results: At a separation of 830 mas (92 au projected) from the star, we detect a faint red companion. Multi-epoch observations confirm that it shares common proper motion with HIP 65426. Spectro-photometric measurements extracted with IFS and IRDIS between 0.95 and 2.2 μm indicate a warm, dusty atmosphere characteristic of young low-surface-gravity L5-L7 dwarfs. Hot-start evolutionary models predict a luminosity consistent with a 6-12 MJup, Teff = 1300-1600 K and R = 1.5 ± 0.1 RJup giant planet. Finally, the comparison with Exo-REM and PHOENIX BT-Settl synthetic atmosphere models gives consistent effective temperatures but with slightly higher surface gravity solutions of log (g) = 4.0-5.0 with smaller radii (1.0-1.3 RJup). Conclusions: Given its physical and spectral properties, HIP 65426 b occupies a rather unique placement in terms of age, mass, and spectral-type among the currently known imaged planets. It represents a particularly interesting case to study the presence of clouds as a function of particle size, composition, and location in the atmosphere, to search for signatures of non-equilibrium chemistry, and finally to test the theory of planet formation and evolution. Based on observations collected at La Silla

  12. Innocent Bystanders: Orbital Dynamics of Exomoons During Planet–Planet Scattering

    Science.gov (United States)

    Hong, Yu-Cian; Raymond, Sean N.; Nicholson, Philip D.; Lunine, Jonathan I.

    2018-01-01

    Planet–planet scattering is the leading mechanism to explain the broad eccentricity distribution of observed giant exoplanets. Here we study the orbital stability of primordial giant planet moons in this scenario. We use N-body simulations including realistic oblateness and evolving spin evolution for the giant planets. We find that the vast majority (∼80%–90% across all our simulations) of orbital parameter space for moons is destabilized. There is a strong radial dependence, as moons past ∼ 0.1 {R}{Hill} are systematically removed. Closer-in moons on Galilean-moon-like orbits (<0.04 R Hill) have a good (∼20%–40%) chance of survival. Destabilized moons may undergo a collision with the star or a planet, be ejected from the system, be captured by another planet, be ejected but still orbiting its free-floating host planet, or survive on heliocentric orbits as “planets.” The survival rate of moons increases with the host planet mass but is independent of the planet’s final (post-scattering) orbits. Based on our simulations, we predict the existence of an abundant galactic population of free-floating (former) moons.

  13. Stellar oscillations in planet-hosting giant stars

    Energy Technology Data Exchange (ETDEWEB)

    Hatzes, Artie P; Zechmeister, Mathias [Thueringer Landessternwarte, Sternwarte 5, D-07778 (Germany)], E-mail: artie@tls-tautenburg.de

    2008-10-15

    Recently a number of giant extrasolar planets have been discovered around giant stars. These discoveries are important because many of these giant stars have intermediate masses in the range 1.2-3 Msun. Early-type main sequence stars of this mass range have been avoided by radial velocity planet search surveys due the difficulty of getting the requisite radial velocity precision needed for planet discoveries. Thus, giant stars can tell us about planet formation for stars more massive than the sun. However, the determination of stellar masses for giant stars is difficult due to the fact that evolutionary tracks for stars covering a wide range of masses converge to the same region of the H-R diagram. We report here on stellar oscillations in three planet-hosting giant stars: HD 13189, {beta} Gem, and {iota} Dra. Precise stellar radial velocity measurements for these stars show variations whose periods and amplitudes are consistent with solar-like p-mode oscillations. The implied stellar masses for these objects based on the characteristics of the stellar oscillations are consistent with the predictions of stellar isochrones. An investigation of stellar oscillations in planet hosting giant stars offers us the possibility of getting an independent determination of the stellar mass for these objects which is of crucial importance for extrasolar planet studies.

  14. Orbital parameters of extrasolar planets derived from polarimetry

    Science.gov (United States)

    Fluri, D. M.; Berdyugina, S. V.

    2010-03-01

    Context. Polarimetry of extrasolar planets becomes a new tool for their investigation, which requires the development of diagnostic techniques and parameter case studies. Aims: Our goal is to develop a theoretical model which can be applied to interpret polarimetric observations of extrasolar planets. Here we present a theoretical parameter study that shows the influence of the various involved parameters on the polarization curves. Furthermore, we investigate the robustness of the fitting procedure. We focus on the diagnostics of orbital parameters and the estimation of the scattering radius of the planet. Methods: We employ the physics of Rayleigh scattering to obtain polarization curves of an unresolved extrasolar planet. Calculations are made for two cases: (i) assuming an angular distribution for the intensity of the scattered light as from a Lambert sphere and for polarization as from a Rayleigh-type scatterer; and (ii) assuming that both the intensity and polarization of the scattered light are distributed according to the Rayleigh law. We show that the difference between these two cases is negligible for the shapes of the polarization curves. In addition, we take the size of the host star into account, which is relevant for hot Jupiters orbiting giant stars. Results: We discuss the influence of the inclination of the planetary orbit, the position angle of the ascending node, and the eccentricity on the linearly polarized light curves both in Stokes Q/I and U/I. We also analyze errors that arise from the assumption of a point-like star in numerical modeling of polarization as compared to consistent calculations accounting for the finite size of the host star. We find that errors due to the point-like star approximation are reduced with the size of the orbit, but still amount to about 5% for known hot Jupiters. Recovering orbital parameters from simulated data is shown to be very robust even for very noisy data because the polarization curves react

  15. Two Earth-sized planets orbiting Kepler-20.

    Science.gov (United States)

    Fressin, Francois; Torres, Guillermo; Rowe, Jason F; Charbonneau, David; Rogers, Leslie A; Ballard, Sarah; Batalha, Natalie M; Borucki, William J; Bryson, Stephen T; Buchhave, Lars A; Ciardi, David R; Désert, Jean-Michel; Dressing, Courtney D; Fabrycky, Daniel C; Ford, Eric B; Gautier, Thomas N; Henze, Christopher E; Holman, Matthew J; Howard, Andrew; Howell, Steve B; Jenkins, Jon M; Koch, David G; Latham, David W; Lissauer, Jack J; Marcy, Geoffrey W; Quinn, Samuel N; Ragozzine, Darin; Sasselov, Dimitar D; Seager, Sara; Barclay, Thomas; Mullally, Fergal; Seader, Shawn E; Still, Martin; Twicken, Joseph D; Thompson, Susan E; Uddin, Kamal

    2011-12-20

    Since the discovery of the first extrasolar giant planets around Sun-like stars, evolving observational capabilities have brought us closer to the detection of true Earth analogues. The size of an exoplanet can be determined when it periodically passes in front of (transits) its parent star, causing a decrease in starlight proportional to its radius. The smallest exoplanet hitherto discovered has a radius 1.42 times that of the Earth's radius (R(⊕)), and hence has 2.9 times its volume. Here we report the discovery of two planets, one Earth-sized (1.03R(⊕)) and the other smaller than the Earth (0.87R(⊕)), orbiting the star Kepler-20, which is already known to host three other, larger, transiting planets. The gravitational pull of the new planets on the parent star is too small to measure with current instrumentation. We apply a statistical method to show that the likelihood of the planetary interpretation of the transit signals is more than three orders of magnitude larger than that of the alternative hypothesis that the signals result from an eclipsing binary star. Theoretical considerations imply that these planets are rocky, with a composition of iron and silicate. The outer planet could have developed a thick water vapour atmosphere.

  16. Tracking Advanced Planetary Systems (TAPAS) with HARPS-N. V. A Massive Jupiter orbiting the very-low-metallicity giant star BD+03 2562 and a possible planet around HD 103485

    Science.gov (United States)

    Villaver, E.; Niedzielski, A.; Wolszczan, A.; Nowak, G.; Kowalik, K.; Adamów, M.; Maciejewski, G.; Deka-Szymankiewicz, B.; Maldonado, J.

    2017-10-01

    planetary companions, they represent systems orbiting very evolved stars with very low metallicities, a challenge to the conditions required for the formation of massive giant gas planets. Based on observations obtained with the Hobby-Eberly Telescope, which is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximilians-Universität München, and Georg-August-Universität Göttingen.Based on observations made with the Italian Telescopio Nazionale Galileo (TNG) operated on the island of La Palma by the Fundación Galileo Galilei of the INAF (Istituto Nazionale di Astrofisica) at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.

  17. Four new planets around giant stars and the mass-metallicity correlation of planet-hosting stars

    Science.gov (United States)

    Jones, M. I.; Jenkins, J. S.; Brahm, R.; Wittenmyer, R. A.; Olivares E., F.; Melo, C. H. F.; Rojo, P.; Jordán, A.; Drass, H.; Butler, R. P.; Wang, L.

    2016-05-01

    Context. Exoplanet searches have revealed interesting correlations between the stellar properties and the occurrence rate of planets. In particular, different independent surveys have demonstrated that giant planets are preferentially found around metal-rich stars and that their fraction increases with the stellar mass. Aims: During the past six years we have conducted a radial velocity follow-up program of 166 giant stars to detect substellar companions and to characterize their orbital properties. Using this information, we aim to study the role of the stellar evolution in the orbital parameters of the companions and to unveil possible correlations between the stellar properties and the occurrence rate of giant planets. Methods: We took multi-epoch spectra using FEROS and CHIRON for all of our targets, from which we computed precision radial velocities and derived atmospheric and physical parameters. Additionally, velocities computed from UCLES spectra are presented here. By studying the periodic radial velocity signals, we detected the presence of several substellar companions. Results: We present four new planetary systems around the giant stars HIP 8541, HIP 74890, HIP 84056, and HIP 95124. Additionally, we study the correlation between the occurrence rate of giant planets with the stellar mass and metallicity of our targets. We find that giant planets are more frequent around metal-rich stars, reaching a peak in the detection of f = 16.7+15.5-5.9% around stars with [Fe/H] ~ 0.35 dex. Similarly, we observe a positive correlation of the planet occurrence rate with the stellar mass, between M⋆ ~ 1.0 and 2.1 M⊙, with a maximum of f = 13.0+10.1-4.2% at M⋆ = 2.1 M⊙. Conclusions: We conclude that giant planets are preferentially formed around metal-rich stars. In addition, we conclude that they are more efficiently formed around more massive stars, in the stellar mass range of ~1.0-2.1 M⊙. These observational results confirm previous findings for solar

  18. GIANT PLANET MIGRATION, DISK EVOLUTION, AND THE ORIGIN OF TRANSITIONAL DISKS

    International Nuclear Information System (INIS)

    Alexander, Richard D.; Armitage, Philip J.

    2009-01-01

    We present models of giant planet migration in evolving protoplanetary disks. Our disks evolve subject to viscous transport of angular momentum and photoevaporation, while planets undergo Type II migration. We use a Monte Carlo approach, running large numbers of models with a range in initial conditions. We find that relatively simple models can reproduce both the observed radial distribution of extrasolar giant planets, and the lifetimes and accretion histories of protoplanetary disks. The use of state-of-the-art photoevaporation models results in a degree of coupling between planet formation and disk clearing, which has not been found previously. Some accretion across planetary orbits is necessary if planets are to survive at radii ∼<1.5 AU, and if planets of Jupiter mass or greater are to survive in our models they must be able to form at late times, when the disk surface density in the formation region is low. Our model forms two different types of 'transitional' disks, embedded planets and clearing disks, which show markedly different properties. We find that the observable properties of these systems are broadly consistent with current observations, and highlight useful observational diagnostics. We predict that young transition disks are more likely to contain embedded giant planets, while older transition disks are more likely to be undergoing disk clearing.

  19. Library of Giant Planet Reflection Spectra for WFirst and Future Space Telescopes

    Science.gov (United States)

    Smith, Adam J. R. W.; Fortney, Jonathan; Morley, Caroline; Batalha, Natasha E.; Lewis, Nikole K.

    2018-01-01

    Future large space space telescopes will be able to directly image exoplanets in optical light. The optical light of a resolved planet is due to stellar flux reflected by Rayleigh scattering or cloud scattering, with absorption features imprinted due to molecular bands in the planetary atmosphere. To aid in the design of such missions, and to better understand a wide range of giant planet atmospheres, we have built a library of model giant planet reflection spectra, for the purpose of determining effective methods of spectral analysis as well as for comparison with actual imaged objects. This library covers a wide range of parameters: objects are modeled at ten orbital distances between 0.5 AU and 5.0 AU, which ranges from planets too warm for water clouds, out to those that are true Jupiter analogs. These calculations include six metalicities between solar and 100x solar, with a variety of different cloud thickness parameters, and across all possible phase angles.

  20. On the Terminal Rotation Rates of Giant Planets

    Science.gov (United States)

    Batygin, Konstantin

    2018-04-01

    Within the general framework of the core-nucleated accretion theory of giant planet formation, the conglomeration of massive gaseous envelopes is facilitated by a transient period of rapid accumulation of nebular material. While the concurrent build-up of angular momentum is expected to leave newly formed planets spinning at near-breakup velocities, Jupiter and Saturn, as well as super-Jovian long-period extrasolar planets, are observed to rotate well below criticality. In this work, we demonstrate that the large luminosity of a young giant planet simultaneously leads to the generation of a strong planetary magnetic field, as well as thermal ionization of the circumplanetary disk. The ensuing magnetic coupling between the planetary interior and the quasi-Keplerian motion of the disk results in efficient braking of planetary rotation, with hydrodynamic circulation of gas within the Hill sphere playing the key role of expelling spin angular momentum to the circumstellar nebula. Our results place early-stage giant planet and stellar rotation within the same evolutionary framework, and motivate further exploration of magnetohydrodynamic phenomena in the context of the final stages of giant planet formation.

  1. EFFECTS OF DYNAMICAL EVOLUTION OF GIANT PLANETS ON THE DELIVERY OF ATMOPHILE ELEMENTS DURING TERRESTRIAL PLANET FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Matsumura, Soko [School of Engineering, Physics, and Mathematics, University of Dundee, DD1 4HN, Scotland (United Kingdom); Brasser, Ramon; Ida, Shigeru, E-mail: s.matsumura@dundee.ac.uk [Earth-Life Science Institute, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8550 (Japan)

    2016-02-10

    Recent observations started revealing the compositions of protostellar disks and planets beyond the solar system. In this paper, we explore how the compositions of terrestrial planets are affected by the dynamical evolution of giant planets. We estimate the initial compositions of the building blocks of these rocky planets by using a simple condensation model, and numerically study the compositions of planets formed in a few different formation models of the solar system. We find that the abundances of refractory and moderately volatile elements are nearly independent of formation models, and that all the models could reproduce the abundances of these elements of the Earth. The abundances of atmophile elements, on the other hand, depend on the scattering rate of icy planetesimals into the inner disk, as well as the mixing rate of the inner planetesimal disk. For the classical formation model, neither of these mechanisms are efficient and the accretion of atmophile elements during the final assembly of terrestrial planets appears to be difficult. For the Grand Tack model, both of these mechanisms are efficient, which leads to a relatively uniform accretion of atmophile elements in the inner disk. It is also possible to have a “hybrid” scenario where the mixing is not very efficient but the scattering is efficient. The abundances of atmophile elements in this case increase with orbital radii. Such a scenario may occur in some of the extrasolar planetary systems, which are not accompanied by giant planets or those without strong perturbations from giants. We also confirm that the Grand Tack scenario leads to the distribution of asteroid analogues where rocky planetesimals tend to exist interior to icy ones, and show that their overall compositions are consistent with S-type and C-type chondrites, respectively.

  2. EFFECTS OF DYNAMICAL EVOLUTION OF GIANT PLANETS ON THE DELIVERY OF ATMOPHILE ELEMENTS DURING TERRESTRIAL PLANET FORMATION

    International Nuclear Information System (INIS)

    Matsumura, Soko; Brasser, Ramon; Ida, Shigeru

    2016-01-01

    Recent observations started revealing the compositions of protostellar disks and planets beyond the solar system. In this paper, we explore how the compositions of terrestrial planets are affected by the dynamical evolution of giant planets. We estimate the initial compositions of the building blocks of these rocky planets by using a simple condensation model, and numerically study the compositions of planets formed in a few different formation models of the solar system. We find that the abundances of refractory and moderately volatile elements are nearly independent of formation models, and that all the models could reproduce the abundances of these elements of the Earth. The abundances of atmophile elements, on the other hand, depend on the scattering rate of icy planetesimals into the inner disk, as well as the mixing rate of the inner planetesimal disk. For the classical formation model, neither of these mechanisms are efficient and the accretion of atmophile elements during the final assembly of terrestrial planets appears to be difficult. For the Grand Tack model, both of these mechanisms are efficient, which leads to a relatively uniform accretion of atmophile elements in the inner disk. It is also possible to have a “hybrid” scenario where the mixing is not very efficient but the scattering is efficient. The abundances of atmophile elements in this case increase with orbital radii. Such a scenario may occur in some of the extrasolar planetary systems, which are not accompanied by giant planets or those without strong perturbations from giants. We also confirm that the Grand Tack scenario leads to the distribution of asteroid analogues where rocky planetesimals tend to exist interior to icy ones, and show that their overall compositions are consistent with S-type and C-type chondrites, respectively

  3. The giant planets; Galileo Galilei to Project Galileo

    International Nuclear Information System (INIS)

    Hide, R.

    1984-01-01

    This article outlines some of the main characteristics of the giant planets Jupiter and Saturn, and discusses aspects of their study in which the author has been interested for a number of years, namely the circulation of their atmospheres, the structure of their interiors, and the origin of their magnetic fields. (author)

  4. LACK OF INFLATED RADII FOR KEPLER GIANT PLANET CANDIDATES RECEIVING MODEST STELLAR IRRADIATION

    International Nuclear Information System (INIS)

    Demory, Brice-Olivier; Seager, Sara

    2011-01-01

    The most irradiated transiting hot Jupiters are characterized by anomalously inflated radii, sometimes exceeding Jupiter's size by more than 60%. While different theoretical explanations have been applied, none of them provide a universal resolution to this observation, despite significant progress in the past years. We refine the photometric transit light curve analysis of 115 Kepler giant planet candidates based on public Q0-Q2 photometry. We find that 14% of them are likely false positives, based on their secondary eclipse depth. We report on planet radii versus stellar flux. We find an increase in planet radii with increased stellar irradiation for the Kepler giant planet candidates, in good agreement with existing hot Jupiter systems. We find that in the case of modest irradiation received from the stellar host, giant planets do not have inflated radii, and appear to have radii independent of the host star incident flux. This finding suggests that the physical mechanisms inflating hot Jupiters become ineffective below a given orbit-averaged stellar irradiation level of ∼2 × 10 8 erg s –1 cm –2 .

  5. AN UNDERSTANDING OF THE SHOULDER OF GIANTS: JOVIAN PLANETS AROUND LATE K DWARF STARS AND THE TREND WITH STELLAR MASS

    Energy Technology Data Exchange (ETDEWEB)

    Gaidos, Eric [Department of Geology and Geophysics, University of Hawai' i at Manoa, Honolulu, HI 96822 (United States); Fischer, Debra A. [Department of Astronomy, Yale University, New Haven, CT 06520 (United States); Mann, Andrew W.; Howard, Andrew W., E-mail: gaidos@hawaii.edu [Institute for Astronomy, University of Hawai' i at Manoa, Honolulu, HI 96822 (United States)

    2013-07-01

    Analyses of exoplanet statistics suggest a trend of giant planet occurrence with host star mass, a clue to how planets like Jupiter form. One missing piece of the puzzle is the occurrence around late K dwarf stars (masses of 0.5-0.75 M{sub Sun} and effective temperatures of 3900-4800 K). We analyzed four years of Doppler radial velocity (RVs) data for 110 late K dwarfs, one of which hosts two previously reported giant planets. We estimate that 4.0% {+-} 2.3% of these stars have Saturn-mass or larger planets with orbital periods <245 days, depending on the planet mass distribution and RV variability of stars without giant planets. We also estimate that 0.7% {+-} 0.5% of similar stars observed by Kepler have giant planets. This Kepler rate is significantly (99% confidence) lower than that derived from our Doppler survey, but the difference vanishes if only the single Doppler system (HIP 57274) with completely resolved orbits is considered. The difference could also be explained by the exclusion of close binaries (without giant planets) from the Doppler but not Kepler surveys, the effect of long-period companions and stellar noise on the Doppler data, or an intrinsic difference between the two populations. Our estimates for late K dwarfs bridge those for solar-type stars and M dwarfs, and support a positive trend with stellar mass. Small sample size precludes statements about finer structure, e.g., a ''shoulder'' in the distribution of giant planets with stellar mass. Future surveys such as the Next Generation Transit Survey and the Transiting Exoplanet Satellite Survey will ameliorate this deficiency.

  6. AN UNDERSTANDING OF THE SHOULDER OF GIANTS: JOVIAN PLANETS AROUND LATE K DWARF STARS AND THE TREND WITH STELLAR MASS

    International Nuclear Information System (INIS)

    Gaidos, Eric; Fischer, Debra A.; Mann, Andrew W.; Howard, Andrew W.

    2013-01-01

    Analyses of exoplanet statistics suggest a trend of giant planet occurrence with host star mass, a clue to how planets like Jupiter form. One missing piece of the puzzle is the occurrence around late K dwarf stars (masses of 0.5-0.75 M ☉ and effective temperatures of 3900-4800 K). We analyzed four years of Doppler radial velocity (RVs) data for 110 late K dwarfs, one of which hosts two previously reported giant planets. We estimate that 4.0% ± 2.3% of these stars have Saturn-mass or larger planets with orbital periods <245 days, depending on the planet mass distribution and RV variability of stars without giant planets. We also estimate that 0.7% ± 0.5% of similar stars observed by Kepler have giant planets. This Kepler rate is significantly (99% confidence) lower than that derived from our Doppler survey, but the difference vanishes if only the single Doppler system (HIP 57274) with completely resolved orbits is considered. The difference could also be explained by the exclusion of close binaries (without giant planets) from the Doppler but not Kepler surveys, the effect of long-period companions and stellar noise on the Doppler data, or an intrinsic difference between the two populations. Our estimates for late K dwarfs bridge those for solar-type stars and M dwarfs, and support a positive trend with stellar mass. Small sample size precludes statements about finer structure, e.g., a ''shoulder'' in the distribution of giant planets with stellar mass. Future surveys such as the Next Generation Transit Survey and the Transiting Exoplanet Satellite Survey will ameliorate this deficiency.

  7. WFIRST: Retrieval Studies of Directly Imaged Extrasolar Giant Planets

    Science.gov (United States)

    Marley, Mark; Lupu, Roxana; Lewis, Nikole K.; WFIRST Coronagraph SITs

    2018-01-01

    The typical direct imaging and spectroscopy target for the WFIRST Coronagraph will be a mature Jupiter-mass giant planet at a few AU from an FGK star. The spectra of such planets is expected to be shaped primarily by scattering from H2O clouds and absorption by gaseous NH3 and CH4. We have computed forward model spectra of such typical planets and applied noise models to understand the quality of photometry and spectra we can expect. Using such simulated datasets we have conducted Markov Chain Monte Carlo and MultiNest retrievals to derive atmospheric abundance of CH4, cloud scattering properties, gravity, and other parameters for various planets and observing modes. Our focus has primarily been to understand which combinations of photometry and spectroscopy at what SNR allow retrievals of atmospheric methane mixing ratios to within a factor of ten of the true value. This is a challenging task for directly imaged planets as the planet mass and radius--and thus surface gravity--are not as well constrained as in the case of transiting planets. We find that for plausible planets and datasets of the quality expected to be obtained by WFIRST it should be possible to place such constraints, at least for some planets. We present some examples of our retrieval results and explain how they have been utilized to help set design requirements on the coronagraph camera and integrated field spectrometer.

  8. THE HABITABILITY AND DETECTION OF EARTH-LIKE PLANETS ORBITING COOL WHITE DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Fossati, L.; Haswell, C. A.; Patel, M. R.; Busuttil, R. [Department of Physical Sciences, Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Bagnulo, S. [Armagh Observatory, College Hill, Armagh BT61 9DG (United Kingdom); Kowalski, P. M. [GFZ German Research Centre for Geosciences, Telegrafenberg, D-14473 Potsdam (Germany); Shulyak, D. V. [Institute of Astrophysics, Georg-August-University, Friedrich-Hund-Platz 1, D-37077 Goettingen (Germany); Sterzik, M. F., E-mail: l.fossati@open.ac.uk, E-mail: C.A.Haswell@open.ac.uk, E-mail: M.R.Patel@open.ac.uk, E-mail: r.busuttil@open.ac.uk, E-mail: sba@arm.ac.uk, E-mail: kowalski@gfz-potsdam.de, E-mail: denis.shulyak@gmail.com, E-mail: msterzik@eso.org [European Southern Observatory, Casilla 19001, Santiago 19 (Chile)

    2012-09-20

    Since there are several ways planets can survive the giant phase of the host star, we examine the habitability and detection of planets orbiting white dwarfs. As a white dwarf cools from 6000 K to 4000 K, a planet orbiting at 0.01 AU would remain in the continuous habitable zone (CHZ) for {approx}8 Gyr. We show that photosynthetic processes can be sustained on such planets. The DNA-weighted UV radiation dose for an Earth-like planet in the CHZ is less than the maxima encountered on Earth, and hence non-magnetic white dwarfs are compatible with the persistence of complex life. Polarization due to a terrestrial planet in the CHZ of a cool white dwarf (CWD) is 10{sup 2} (10{sup 4}) times larger than it would be in the habitable zone of a typical M-dwarf (Sun-like star). Polarimetry is thus a viable way to detect close-in rocky planets around white dwarfs. Multi-band polarimetry would also allow us to reveal the presence of a planet atmosphere, providing a first characterization. Planets in the CHZ of a 0.6 M{sub Sun} white dwarf will be distorted by Roche geometry, and a Kepler-11d analog would overfill its Roche lobe. With current facilities a super-Earth-sized atmosphereless planet is detectable with polarimetry around the brightest known CWD. Planned future facilities render smaller planets detectable, in particular by increasing the instrumental sensitivity in the blue.

  9. THE HABITABILITY AND DETECTION OF EARTH-LIKE PLANETS ORBITING COOL WHITE DWARFS

    International Nuclear Information System (INIS)

    Fossati, L.; Haswell, C. A.; Patel, M. R.; Busuttil, R.; Bagnulo, S.; Kowalski, P. M.; Shulyak, D. V.; Sterzik, M. F.

    2012-01-01

    Since there are several ways planets can survive the giant phase of the host star, we examine the habitability and detection of planets orbiting white dwarfs. As a white dwarf cools from 6000 K to 4000 K, a planet orbiting at 0.01 AU would remain in the continuous habitable zone (CHZ) for ∼8 Gyr. We show that photosynthetic processes can be sustained on such planets. The DNA-weighted UV radiation dose for an Earth-like planet in the CHZ is less than the maxima encountered on Earth, and hence non-magnetic white dwarfs are compatible with the persistence of complex life. Polarization due to a terrestrial planet in the CHZ of a cool white dwarf (CWD) is 10 2 (10 4 ) times larger than it would be in the habitable zone of a typical M-dwarf (Sun-like star). Polarimetry is thus a viable way to detect close-in rocky planets around white dwarfs. Multi-band polarimetry would also allow us to reveal the presence of a planet atmosphere, providing a first characterization. Planets in the CHZ of a 0.6 M ☉ white dwarf will be distorted by Roche geometry, and a Kepler-11d analog would overfill its Roche lobe. With current facilities a super-Earth-sized atmosphereless planet is detectable with polarimetry around the brightest known CWD. Planned future facilities render smaller planets detectable, in particular by increasing the instrumental sensitivity in the blue.

  10. Hot-start Giant Planets Form with Radiative Interiors

    Energy Technology Data Exchange (ETDEWEB)

    Berardo, David; Cumming, Andrew, E-mail: david.berardo@mcgill.ca, E-mail: andrew.cumming@mcgill.ca [Department of Physics and McGill Space Institute, McGill University, 3600 rue University, Montreal, QC H3A 2T8 (Canada)

    2017-09-10

    In the hot-start core accretion formation model for gas giants, the interior of a planet is usually assumed to be fully convective. By calculating the detailed internal evolution of a planet assuming hot-start outer boundary conditions, we show that such a planet will in fact form with a radially increasing internal entropy profile, so that its interior will be radiative instead of convective. For a hot outer boundary, there is a minimum value for the entropy of the internal adiabat S {sub min} below which the accreting envelope does not match smoothly onto the interior, but instead deposits high entropy material onto the growing interior. One implication of this would be to at least temporarily halt the mixing of heavy elements within the planet, which are deposited by planetesimals accreted during formation. The compositional gradient this would impose could subsequently disrupt convection during post-accretion cooling, which would alter the observed cooling curve of the planet. However, even with a homogeneous composition, for which convection develops as the planet cools, the difference in cooling timescale will change the inferred mass of directly imaged gas giants.

  11. Meteorologies of brown dwarfs and extrasolar giant planets

    Science.gov (United States)

    Cooper, Curtis Steven

    2006-06-01

    This dissertation explores the consequences of atmospheric dynamics for observations of substellar mass objects (SMOs). Discussed first is the growth of cloud particles of various compositions in brown dwarfs of different surface gravities and effective temperatures. The structure of these objects is calculated with a one-dimensional radiative transfer model. To determine particle sizes, the timescales for microphysical growth processes, including nucleation, coagulation, and coalescence, are compared to the timescale for gravitational sedimentation. The model also allows for sustained uplifting of condensable vapor in convective regions. The results show that particle sizes vary greatly over the range of objects studied. In most cases, clouds on brown dwarfs do not dominate the opacity. Rather, they smooth the emergent spectrum and partially redistribute the radiative energy. The focus then shifts to extrasolar giant planets (EGPs). Results are presented from a three-dimensional model of atmospheric dynamics on the transiting Jupiter-like planet HD 209458b. As a close-in orbiter (known as a "roaster"), HD 209458b is super-heated on its dayside. Due to tidal locking of the interior, the dayside hemisphere faces the star in perpetuity, which leads to very different dynamics than is seen on Jupiter. The flow is characterized by an eastward supersonic jet ( u ~ 4 kms - 1 ) extending from the equator to the mid-latitudes. Temperature contrasts are ~500 K at the photosphere. At 220 mbar, winds blow the hottest regions downstream from the substellar point by ~60°, with direct implications for the infrared light curve. These simulations are extended to the study of carbon chemistry in HD 209458b's atmosphere by coupling the CO/CH 4 reaction kinetics to the dynamics. Disequilibrium results from slow reaction rates at low temperatures and pressures. Effective vertical quenching near the ~3 bar level leads to uniformly high concentrations of CO at the photosphere, even in

  12. The SOPHIE search for northern extrasolar planets. X. Detection and characterization of giant planets by the dozen

    Science.gov (United States)

    Hébrard, G.; Arnold, L.; Forveille, T.; Correia, A. C. M.; Laskar, J.; Bonfils, X.; Boisse, I.; Díaz, R. F.; Hagelberg, J.; Sahlmann, J.; Santos, N. C.; Astudillo-Defru, N.; Borgniet, S.; Bouchy, F.; Bourrier, V.; Courcol, B.; Delfosse, X.; Deleuil, M.; Demangeon, O.; Ehrenreich, D.; Gregorio, J.; Jovanovic, N.; Labrevoir, O.; Lagrange, A.-M.; Lovis, C.; Lozi, J.; Moutou, C.; Montagnier, G.; Pepe, F.; Rey, J.; Santerne, A.; Ségransan, D.; Udry, S.; Vanhuysse, M.; Vigan, A.; Wilson, P. A.

    2016-04-01

    We present new radial velocity measurements of eight stars that were secured with the spectrograph SOPHIE at the 193 cm telescope of the Haute-Provence Observatory. The measurements allow detecting and characterizing new giant extrasolar planets. The host stars are dwarfs of spectral types between F5 and K0 and magnitudes of between 6.7 and 9.6; the planets have minimum masses Mp sin I of between 0.4 to 3.8 MJup and orbitalperiods of several days to several months. The data allow only single planets to be discovered around the first six stars (HD 143105, HIP 109600, HD 35759, HIP 109384, HD 220842, and HD 12484), but one of them shows the signature of an additional substellar companion in the system. The seventh star, HIP 65407, allows the discovery of two giant planets that orbit just outside the 12:5 resonance in weak mutual interaction. The last star, HD 141399, was already known to host a four-planet system; our additional data and analyses allow new constraints to be set on it. We present Keplerian orbits of all systems, together with dynamical analyses of the two multi-planet systems. HD 143105 is one of the brightest stars known to host a hot Jupiter, which could allow numerous follow-up studies to be conducted even though this is not a transiting system. The giant planets HIP 109600b, HIP 109384b, and HD 141399c are located in the habitable zone of their host star. Based on observations collected with the SOPHIE spectrograph on the 1.93-m telescope at Observatoire de Haute-Provence (CNRS), France, by the SOPHIE Consortium (programs 07A.PNP.CONS to 15A.PNP.CONS).Full version of the SOPHIE measurements (Table 1) is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/588/A145

  13. Giant Planets in Reflected Light: What Science Can We Expect?

    Science.gov (United States)

    Marley, Mark

    2016-01-01

    Interpreting the reflection spectra of cool giant planets will be a challenge. Spectra of such worlds are expected to be primarily shaped by scattering from clouds and hazes and punctuated by absorption bands of methane, water, and ammonia. While the warmest giants may be cloudless, their atmospheres will almost certainly sport substantial photochemical hazes. Furthermore the masses of most direct imaging targets will be constrained by radial velocity observations, their radii, and thus atmospheric gravity, will be imperfectly known. The uncertainty in planet radius and gravity will compound with uncertain aerosol properties to make estimation of key absorber abundances difficult. To address such concerns our group is developing atmospheric retrieval tools to constrain quantities of interest, particular gas mixing ratios. We have applied our Markov Chain Monte Carlo methods to simulated data of the quality expected from the WFIRST CGI instrument and found that given sufficiently high SNR data we can confidentially identify and constrain the abundance of methane, cloud top pressures, gravity, and the star-planet-observer phase angle. In my presentation I will explain the expected characteristics of cool extrasolar giant planet reflection spectra, discuss these and other challenges in their interpretation, and summarize the science results we can expect from direct imaging observations.

  14. Comparative ionospheres: Terrestrial and giant planets

    Science.gov (United States)

    Mendillo, Michael; Trovato, Jeffrey; Moore, Luke; Müller-Wodarg, Ingo

    2018-03-01

    The study of planetary ionospheres within our solar system offers a variety of settings to probe mechanisms of photo-ionization, chemical loss, and plasma transport. Ionospheres are a minor component of upper atmospheres, and thus their mix of ions observed depends on the neutral gas composition of their parent atmospheres. The same solar irradiance (x-rays and extreme-ultra-violet vs. wavelength) impinges upon each of these atmospheres, with solar flux magnitudes changed only by the inverse square of distance from the Sun. If all planets had the same neutral atmosphere-with ionospheres governed by photochemical equilibrium (production = loss)-their peak electron densities would decrease as the inverse of distance from the Sun, and any changes in solar output would exhibit coherent effects throughout the solar system. Here we examine the outer planet with the most observations of its ionosphere (Saturn) and compare its patterns of electron density with those at Earth under the same-day solar conditions. We show that, while the average magnitudes of the major layers of molecular ions at Earth and Saturn are approximately in accord with distance effects, only minor correlations exist between solar effects and day-to-day electron densities. This is in marked contrast to the strong correlations found between the ionospheres of Earth and Mars. Moreover, the variability observed for Saturn's ionosphere (maximum electron density and total electron content) is much larger than found at Earth and Mars. With solar irradiance changes far too small to cause such effects, we use model results to explore the roles of other agents. We find that water sources from Enceladus at low latitudes, and 'ring rain' at middle latitudes, contribute substantially to variability via water ion chemistry. Thermospheric winds and electrodynamics generated at auroral latitudes are suggested causes of high latitude ionospheric variability, but remain inconclusive due to the lack of relevant

  15. Spectral and Photometric Diagnostics of Giant Planet Formation Scenarios

    OpenAIRE

    Spiegel, David S.; Burrows, Adam

    2011-01-01

    Gas-giant planets that form via core accretion might have very different characteristics from those that form via disk-instability. Disk-instability objects are typically thought to have higher entropies, larger radii, and (generally) higher effective temperatures than core-accretion objects. We provide a large set of models exploring the observational consequences of high-entropy (hot) and low-entropy (cold) initial conditions, in the hope that this will ultimately help to distinguish betwee...

  16. Planet traps and first planets: The critical metallicity for gas giant formation

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Yasuhiro; Hirashita, Hiroyuki, E-mail: yasu@asiaa.sinica.edu.tw, E-mail: hirashita@asiaa.sinica.edu.tw [Institute of Astronomy and Astrophysics, Academia Sinica (ASIAA), P.O. Box 23-141, Taipei 10617, Taiwan (China)

    2014-06-10

    The ubiquity of planets poses an interesting question: when are first planets formed in galaxies? We investigate this by adopting a theoretical model where planet traps are combined with the standard core accretion scenario in which the efficiency of forming planetary cores directly relates to the metallicity ([Fe/H]) in disks. Three characteristic exoplanetary populations are examined: hot Jupiters, exo-Jupiters around 1 AU, and low-mass planets in tight orbits, such as super-Earths. We statistically compute planet formation frequencies (PFFs), as well as the orbital radius (〈R{sub rapid}〉) within which gas accretion becomes efficient enough to form Jovian planets, as a function of metallicity (–2 ≤ [Fe/H] ≤–0.6). We show that the total PFFs for these three populations increase steadily with metallicity. This is the direct outcome of the core accretion picture. For the metallicity range considered here, the population of low-mass planets dominates Jovian planets. The Jovian planets contribute to the PFFs above [Fe/H] ≅ –1. We find that the hot Jupiters form more efficiently than the exo-Jupiters at [Fe/H] ≲ –0.7. This arises from the slower growth of planetary cores and their more efficient radial inward transport by the host traps in lower metallicity disks. We show that the critical metallicity for forming Jovian planets is [Fe/H] ≅ –1.2 by comparing 〈R{sub rapid}〉 of hot Jupiters and low-mass planets. The comparison intrinsically links to the different gas accretion efficiency between these two types of planets. Therefore, this study implies that important physical processes in planet formation may be tested by exoplanet observations around metal-poor stars.

  17. Planet traps and first planets: The critical metallicity for gas giant formation

    International Nuclear Information System (INIS)

    Hasegawa, Yasuhiro; Hirashita, Hiroyuki

    2014-01-01

    The ubiquity of planets poses an interesting question: when are first planets formed in galaxies? We investigate this by adopting a theoretical model where planet traps are combined with the standard core accretion scenario in which the efficiency of forming planetary cores directly relates to the metallicity ([Fe/H]) in disks. Three characteristic exoplanetary populations are examined: hot Jupiters, exo-Jupiters around 1 AU, and low-mass planets in tight orbits, such as super-Earths. We statistically compute planet formation frequencies (PFFs), as well as the orbital radius (〈R rapid 〉) within which gas accretion becomes efficient enough to form Jovian planets, as a function of metallicity (–2 ≤ [Fe/H] ≤–0.6). We show that the total PFFs for these three populations increase steadily with metallicity. This is the direct outcome of the core accretion picture. For the metallicity range considered here, the population of low-mass planets dominates Jovian planets. The Jovian planets contribute to the PFFs above [Fe/H] ≅ –1. We find that the hot Jupiters form more efficiently than the exo-Jupiters at [Fe/H] ≲ –0.7. This arises from the slower growth of planetary cores and their more efficient radial inward transport by the host traps in lower metallicity disks. We show that the critical metallicity for forming Jovian planets is [Fe/H] ≅ –1.2 by comparing 〈R rapid 〉 of hot Jupiters and low-mass planets. The comparison intrinsically links to the different gas accretion efficiency between these two types of planets. Therefore, this study implies that important physical processes in planet formation may be tested by exoplanet observations around metal-poor stars.

  18. Giant Planets of Our Solar System Atmospheres, Composition, and Structure

    CERN Document Server

    Irwin, Patrick G. J

    2009-01-01

    This book reviews the current state of knowledge of the atmospheres of the giant gaseous planets: Jupiter, Saturn, Uranus, and Neptune. The current theories of their formation are reviewed and their recently observed temperature, composition and cloud structures are contrasted and compared with simple thermodynamic, radiative transfer and dynamical models. The instruments and techniques that have been used to remotely measure their atmospheric properties are also reviewed, and the likely development of outer planet observations over the next two decades is outlined. This second edition has been extensively updated following the Cassini mission results for Jupiter/Saturn and the newest ground-based measurements for Uranus/Neptune as well as on the latest development in the theories on planet formation.

  19. A SECOND GIANT PLANET IN 3:2 MEAN-MOTION RESONANCE IN THE HD 204313 SYSTEM

    International Nuclear Information System (INIS)

    Robertson, Paul; Endl, Michael; Cochran, William D.; MacQueen, Phillip J.; Brugamyer, Erik J.; Barnes, Stuart I.; Caldwell, Caroline; Horner, J.; Wittenmyer, Robert A.; Simon, Attila E.

    2012-01-01

    We present eight years of high-precision radial velocity (RV) data for HD 204313 from the 2.7 m Harlan J. Smith Telescope at McDonald Observatory. The star is known to have a giant planet (Msin i = 3.5 M J ) on a ∼1900 day orbit, and a Neptune-mass planet at 0.2 AU. Using our own data in combination with the published CORALIE RVs of Ségransan et al., we discover an outer Jovian (Msin i = 1.6 M J ) planet with P ∼ 2800 days. Our orbital fit suggests that the planets are in a 3:2 mean motion resonance, which would potentially affect their stability. We perform a detailed stability analysis and verify that the planets must be in resonance.

  20. Dust ablation on the giant planets: Consequences for stratospheric photochemistry

    Science.gov (United States)

    Moses, Julianne I.; Poppe, Andrew R.

    2017-11-01

    Ablation of interplanetary dust supplies oxygen to the upper atmospheres of Jupiter, Saturn, Uranus, and Neptune. Using recent dynamical model predictions for the dust influx rates to the giant planets (Poppe et al., 2016), we calculate the ablation profiles and investigate the subsequent coupled oxygen-hydrocarbon neutral photochemistry in the stratospheres of these planets. We find that dust grains from the Edgeworth-Kuiper Belt, Jupiter-family comets, and Oort-cloud comets supply an effective oxygen influx rate of 1.0-0.7+2.2 ×107 O atoms cm-2 s-1 to Jupiter, 7.4-5.1+16 ×104 cm-2 s-1 to Saturn, 8.9-6.1+19 ×104 cm-2 s-1 to Uranus, and 7.5-5.1+16 ×105 cm-2 s-1 to Neptune. The fate of the ablated oxygen depends in part on the molecular/atomic form of the initially delivered products, and on the altitude at which it was deposited. The dominant stratospheric products are CO, H2O, and CO2, which are relatively stable photochemically. Model-data comparisons suggest that interplanetary dust grains deliver an important component of the external oxygen to Jupiter and Uranus but fall far short of the amount needed to explain the CO abundance currently seen in the middle stratospheres of Saturn and Neptune. Our results are consistent with the theory that all of the giant planets have experienced large cometary impacts within the last few hundred years. Our results also suggest that the low background H2O abundance in Jupiter's stratosphere is indicative of effective conversion of meteoric oxygen to CO during or immediately after the ablation process - photochemistry alone cannot efficiently convert the H2O into CO on the giant planets.

  1. Seismology of Giant Planets: General Overview and Results from the Kepler K2 Observations of Neptune

    Directory of Open Access Journals (Sweden)

    Gaulme Patrick

    2017-01-01

    Full Text Available For this invited contribution, I was asked to give an overview about the application of helio and aster-oseismic techniques to study the interior of giant planets, and to specifically present the recent observations of Neptune by Kepler K2. Seismology applied to giant planets could drastically change our understanding of their deep interiors, as it has happened with the Earth, the Sun, and many main-sequence and evolved stars. The study of giant planets' composition is important for understanding both the mechanisms enabling their formation and the origins of planetary systems, in particular our own. Unfortunately, its determination is complicated by the fact that their interior is thought not to be homogeneous, so that spectroscopic determinations of atmospheric abundances are probably not representative of the planet as a whole. Instead, the determination of their composition and structure must rely on indirect measurements and interior models. Giant planets are mostly fluid and convective, which makes their seismology much closer to that of solar-like stars than that of terrestrial planets. Hence, helioseismology techniques naturally transfer to giant planets. In addition, two alternative methods can be used: photometry of the solar light reflected by planetary atmospheres, and ring seismology in the specific case of Saturn. The current decade has been promising thanks to the detection of Jupiter's acoustic oscillations with the ground-based imaging-spectrometer SYMPA and indirect detection of Saturn's f-modes in its rings by the NASA Cassini orbiter. This has motivated new projects of ground-based and space-borne instruments that are under development. The K2 observations represented the first opportunity to search for planetary oscillations with visible photometry. Despite the excellent quality of K2 data, the noise level of the power spectrum of the light curve was not low enough to detect Neptune's oscillations. The main results from the

  2. Seismology of Giant Planets: General Overview and Results from the Kepler K2 Observations of Neptune

    Science.gov (United States)

    Gaulme, Patrick

    2017-10-01

    For this invited contribution, I was asked to give an overview about the application of helio and aster-oseismic techniques to study the interior of giant planets, and to specifically present the recent observations of Neptune by Kepler K2. Seismology applied to giant planets could drastically change our understanding of their deep interiors, as it has happened with the Earth, the Sun, and many main-sequence and evolved stars. The study of giant planets' composition is important for understanding both the mechanisms enabling their formation and the origins of planetary systems, in particular our own. Unfortunately, its determination is complicated by the fact that their interior is thought not to be homogeneous, so that spectroscopic determinations of atmospheric abundances are probably not representative of the planet as a whole. Instead, the determination of their composition and structure must rely on indirect measurements and interior models. Giant planets are mostly fluid and convective, which makes their seismology much closer to that of solar-like stars than that of terrestrial planets. Hence, helioseismology techniques naturally transfer to giant planets. In addition, two alternative methods can be used: photometry of the solar light reflected by planetary atmospheres, and ring seismology in the specific case of Saturn. The current decade has been promising thanks to the detection of Jupiter's acoustic oscillations with the ground-based imaging-spectrometer SYMPA and indirect detection of Saturn's f-modes in its rings by the NASA Cassini orbiter. This has motivated new projects of ground-based and space-borne instruments that are under development. The K2 observations represented the first opportunity to search for planetary oscillations with visible photometry. Despite the excellent quality of K2 data, the noise level of the power spectrum of the light curve was not low enough to detect Neptune's oscillations. The main results from the K2 observations are

  3. Masses, Radii, and Orbits of Small Kepler Planets: The Transition from Gaseous to Rocky Planets

    NARCIS (Netherlands)

    Marcy, G.W.; et al., [Unknown; Hekker, S.

    2014-01-01

    We report on the masses, sizes, and orbits of the planets orbiting 22 Kepler stars. There are 49 planet candidates around these stars, including 42 detected through transits and 7 revealed by precise Doppler measurements of the host stars. Based on an analysis of the Kepler brightness measurements,

  4. Detecting Close-In Extrasolar Giant Planets with the Kepler Photometer via Scattered Light

    Science.gov (United States)

    Jenkins, J. M.; Doyle, L. R.; Kepler Discovery Mission Team

    2003-05-01

    NASA's Kepler Mission will be launched in 2007 primarily to search for transiting Earth-sized planets in the habitable zones of solar-like stars. In addition, it will be poised to detect the reflected light component from close-in extrasolar giant planets (CEGPs) similar to 51 Peg b. Here we use the DIARAD/SOHO time series along with models for the reflected light signatures of CEGPs to evaluate Kepler's ability to detect such planets. We examine the detectability as a function of stellar brightness, stellar rotation period, planetary orbital inclination angle, and planetary orbital period, and then estimate the total number of CEGPs that Kepler will detect over its four year mission. The analysis shows that intrinsic stellar variability of solar-like stars is a major obstacle to detecting the reflected light from CEGPs. Monte Carlo trials are used to estimate the detection threshold required to limit the total number of expected false alarms to no more than one for a survey of 100,000 stellar light curves. Kepler will likely detect 100-760 51 Peg b-like planets by reflected light with orbital periods up to 7 days. LRD was supported by the Carl Sagan Chair at the Center for the Study of Life in the Universe, a division of the SETI Institute. JMJ received support from the Kepler Mission Photometer and Science Office at NASA Ames Research Center.

  5. The Longevity of Water Ice on Ganymedes and Europas around Migrated Giant Planets

    International Nuclear Information System (INIS)

    Lehmer, Owen R.; Catling, David C.; Zahnle, Kevin J.

    2017-01-01

    The gas giant planets in the Solar System have a retinue of icy moons, and we expect giant exoplanets to have similar satellite systems. If a Jupiter-like planet were to migrate toward its parent star the icy moons orbiting it would evaporate, creating atmospheres and possible habitable surface oceans. Here, we examine how long the surface ice and possible oceans would last before being hydrodynamically lost to space. The hydrodynamic loss rate from the moons is determined, in large part, by the stellar flux available for absorption, which increases as the giant planet and icy moons migrate closer to the star. At some planet–star distance the stellar flux incident on the icy moons becomes so great that they enter a runaway greenhouse state. This runaway greenhouse state rapidly transfers all available surface water to the atmosphere as vapor, where it is easily lost from the small moons. However, for icy moons of Ganymede’s size around a Sun-like star we found that surface water (either ice or liquid) can persist indefinitely outside the runaway greenhouse orbital distance. In contrast, the surface water on smaller moons of Europa’s size will only persist on timescales greater than 1 Gyr at distances ranging 1.49–0.74 au around a Sun-like star for Bond albedos of 0.2 and 0.8, where the lower albedo becomes relevant if ice melts. Consequently, small moons can lose their icy shells, which would create a torus of H atoms around their host planet that might be detectable in future observations.

  6. The Longevity of Water Ice on Ganymedes and Europas around Migrated Giant Planets

    Energy Technology Data Exchange (ETDEWEB)

    Lehmer, Owen R.; Catling, David C. [Dept. of Earth and Space Sciences/Astrobiology Program, University of Washington, Seattle, WA (United States); Zahnle, Kevin J., E-mail: olehmer@gmail.com [NASA Ames Research Center, Moffett Field, CA (United States)

    2017-04-10

    The gas giant planets in the Solar System have a retinue of icy moons, and we expect giant exoplanets to have similar satellite systems. If a Jupiter-like planet were to migrate toward its parent star the icy moons orbiting it would evaporate, creating atmospheres and possible habitable surface oceans. Here, we examine how long the surface ice and possible oceans would last before being hydrodynamically lost to space. The hydrodynamic loss rate from the moons is determined, in large part, by the stellar flux available for absorption, which increases as the giant planet and icy moons migrate closer to the star. At some planet–star distance the stellar flux incident on the icy moons becomes so great that they enter a runaway greenhouse state. This runaway greenhouse state rapidly transfers all available surface water to the atmosphere as vapor, where it is easily lost from the small moons. However, for icy moons of Ganymede’s size around a Sun-like star we found that surface water (either ice or liquid) can persist indefinitely outside the runaway greenhouse orbital distance. In contrast, the surface water on smaller moons of Europa’s size will only persist on timescales greater than 1 Gyr at distances ranging 1.49–0.74 au around a Sun-like star for Bond albedos of 0.2 and 0.8, where the lower albedo becomes relevant if ice melts. Consequently, small moons can lose their icy shells, which would create a torus of H atoms around their host planet that might be detectable in future observations.

  7. Kepler-68: Three Planets, One with a Density between that of Earth and Ice Giants

    NARCIS (Netherlands)

    Gilliland, R.L.; Marcy, G.W.; Rowe, J.F.; Rogers, L.; Torres, G.; Fressin, F.; Lopez, E.D.; Buchhave, L.A.; Christensen-Dalsgaard, J.; Désert, J.M.; Henze, C.E.; Isaacson, H.; Jenkins, J.M.; Lissauer, J.J.; Chaplin, W.J.; Basu, S.; Metcalfe, T.S.; Elsworth, Y.; Handberg, R.; Hekker, S.; Huber, D.; Karoff, C.; Kjeldsen, H.; Lund, M.N.; Lundkvist, M.; Miglio, A.; Charbonneau, D.; Ford, E.B.; Fortney, J.J.; Haas, M.R.; Howard, A.W.; Howell, S.B.; Ragozzine, D.; Thompson, S.E.

    2013-01-01

    NASA's Kepler Mission has revealed two transiting planets orbiting Kepler-68. Follow-up Doppler measurements have established the mass of the innermost planet and revealed a third Jovian-mass planet orbiting beyond the two transiting planets. Kepler-68b, in a 5.4 day orbit, has Mp_{\\rm

  8. THE GRAVITATIONAL INTERACTION BETWEEN PLANETS ON INCLINED ORBITS AND PROTOPLANETARY DISKS AS THE ORIGIN OF PRIMORDIAL SPIN–ORBIT MISALIGNMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Matsakos, Titos; Königl, Arieh [Department of Astronomy and Astrophysics and The Enrico Fermi Institute, The University of Chicago, Chicago, IL 60637 (United States)

    2017-02-01

    Many of the observed spin–orbit alignment properties of exoplanets can be explained in the context of the primordial disk misalignment model, in which an initially aligned protoplanetary disk is torqued by a distant stellar companion on a misaligned orbit, resulting in a precessional motion that can lead to large-amplitude oscillations of the spin–orbit angle. We consider a variant of this model in which the companion is a giant planet with an orbital radius of a few astronomical units. Guided by the results of published numerical simulations, we model the dynamical evolution of this system by dividing the disk into inner and outer parts—separated at the location of the planet—that behave as distinct, rigid disks. We show that the planet misaligns the inner disk even as the orientation of the outer disk remains unchanged. In addition to the oscillations induced by the precessional motion, whose amplitude is larger the smaller the initial inner-disk-to-planet mass ratio, the spin–orbit angle also exhibits a secular growth in this case—driven by ongoing mass depletion from the disk—that becomes significant when the inner disk’s angular momentum drops below that of the planet. Altogether, these two effects can produce significant misalignment angles for the inner disk, including retrograde configurations. We discuss these results within the framework of the Stranded Hot Jupiter scenario and consider their implications, including the interpretation of the alignment properties of debris disks.

  9. THE McDONALD OBSERVATORY PLANET SEARCH: NEW LONG-PERIOD GIANT PLANETS AND TWO INTERACTING JUPITERS IN THE HD 155358 SYSTEM

    International Nuclear Information System (INIS)

    Robertson, Paul; Endl, Michael; Cochran, William D.; MacQueen, Phillip J.; Brugamyer, Erik J.; Barnes, Stuart I.; Caldwell, Caroline; Wittenmyer, Robert A.; Horner, J.; Simon, Attila E.

    2012-01-01

    We present high-precision radial velocity (RV) observations of four solar-type (F7-G5) stars—HD 79498, HD 155358, HD 197037, and HD 220773—taken as part of the McDonald Observatory Planet Search Program. For each of these stars, we see evidence of Keplerian motion caused by the presence of one or more gas giant planets in long-period orbits. We derive orbital parameters for each system and note the properties (composition, activity, etc.) of the host stars. While we have previously announced the two-gas-giant HD 155358 system, we now report a shorter period for planet c. This new period is consistent with the planets being trapped in mutual 2:1 mean-motion resonance. We therefore perform an in-depth stability analysis, placing additional constraints on the orbital parameters of the planets. These results demonstrate the excellent long-term RV stability of the spectrometers on both the Harlan J. Smith 2.7 m telescope and the Hobby-Eberly telescope.

  10. A hot Saturn on an eccentric orbit around the giant star K2-132

    Science.gov (United States)

    Jones, M. I.; Brahm, R.; Espinoza, N.; Jordán, A.; Rojas, F.; Rabus, M.; Drass, H.; Zapata, A.; Soto, M. G.; Jenkins, J. S.; Vučković, M.; Ciceri, S.; Sarkis, P.

    2018-06-01

    Although the majority of radial velocity detected planets have been found orbiting solar-type stars, a fraction of them have been discovered around giant stars. These planetary systems have revealed different orbital properties when compared to solar-type star companions. In particular, radial velocity surveys have shown that there is a lack of giant planets in close-in orbits around giant stars, in contrast to the known population of hot Jupiters orbiting solar-type stars. It has been theorized that the reason for this distinctive feature in the semimajor axis distribution is the result of the stellar evolution and/or that it is due to the effect of a different formation/evolution scenario for planets around intermediate-mass stars. However, in the past few years a handful of transiting short-period planets (P ≲ 10 days) have been found around giant stars, thanks to the high-precision photometric data obtained initially by the Kepler mission, and later by its two-wheel extension K2. These new discoveries have allowed us for the first time to study the orbital properties and physical parameters of these intriguing and elusive substellar companions. In this paper we report on an independent discovery of a transiting planet in field 10 of the K2 mission, also reported recently by Grunblatt et al. (2017, AJ, 154, 254). The host star has recently evolved to the giant phase, and has the following atmospheric parameters: Teff = 4878 ± 70 K, log g = 3.289 ± 0.004, and [Fe/H] = -0.11 ± 0.05 dex. The main orbital parameters of K2-132 b, obtained with all the available data for the system are: P = 9.1708 ± 0.0025 d, e = 0.290 ± 0.049, Mp = 0.495 ± 0.007 MJ and Rp = 1.089 ± 0.006 RJ. This is the fifth known planet orbiting any giant star with a K2-132 b a very interesting object. Tables of the photometry and of the radial velocities are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc

  11. THE PROPERTIES OF HEAVY ELEMENTS IN GIANT PLANET ENVELOPES

    Energy Technology Data Exchange (ETDEWEB)

    Soubiran, François; Militzer, Burkhard [Department of Earth and Planetary Science, University of California, Berkeley, CA 94720 (United States)

    2016-09-20

    The core-accretion model for giant planet formation suggests a two-layer picture for the initial structure of Jovian planets, with heavy elements in a dense core and a thick H–He envelope. Late planetesimal accretion and core erosion could potentially enrich the H–He envelope in heavy elements, which is supported by the threefold solar metallicity that was measured in Jupiter’s atmosphere by the Galileo entry probe. In order to reproduce the observed gravitational moments of Jupiter and Saturn, models for their interiors include heavy elements, Z , in various proportions. However, their effect on the equation of state of the hydrogen–helium mixtures has not been investigated beyond the ideal mixing approximation. In this article, we report results from ab initio simulations of fully interacting H–He– Z mixtures in order to characterize their equation of state and to analyze possible consequences for the interior structure and evolution of giant planets. Considering C, N, O, Si, Fe, MgO, and SiO{sub 2}, we show that the behavior of heavy elements in H–He mixtures may still be represented by an ideal mixture if the effective volumes and internal energies are chosen appropriately. In the case of oxygen, we also compute the effect on the entropy. We find the resulting changes in the temperature–pressure profile to be small. A homogeneous distribution of 2% oxygen by mass changes the temperature in Jupiter’s interior by only 80 K.

  12. SPECTRAL AND PHOTOMETRIC DIAGNOSTICS OF GIANT PLANET FORMATION SCENARIOS

    International Nuclear Information System (INIS)

    Spiegel, David S.; Burrows, Adam

    2012-01-01

    Gas-giant planets that form via core accretion might have very different characteristics from those that form via disk instability. Disk-instability objects are typically thought to have higher entropies, larger radii, and (generally) higher effective temperatures than core-accretion objects. In this paper, we provide a large set of models exploring the observational consequences of high-entropy (hot) and low-entropy (cold) initial conditions, in the hope that this will ultimately help to distinguish between different physical mechanisms of planet formation. However, the exact entropies and radii of newly formed planets due to these two modes of formation cannot, at present, be precisely predicted. It is possible that the distribution of properties of core-accretion-formed planets and the distribution of properties of disk-instability-formed planets overlap. We, therefore, introduce a broad range of 'warm-start' gas-giant planet models. Between the hottest and the coldest models that we consider, differences in radii, temperatures, luminosities, and spectra persist for only a few million to a few tens of millions of years for planets that are a few times Jupiter's mass or less. For planets that are ∼five times Jupiter's mass or more, significant differences between hottest-start and coldest-start models persist for on the order of 100 Myr. We find that out of the standard infrared bands (J, H, K, L', M, N) the K and H bands are the most diagnostic of the initial conditions. A hottest-start model can be from ∼4.5 mag brighter (at Jupiter's mass) to ∼9 mag brighter (at 10 times Jupiter's mass) than a coldest-start model in the first few million years. In more massive objects, these large differences in luminosity and spectrum persist for much longer than in less massive objects. Finally, we consider the influence of atmospheric conditions on spectra, and find that the presence or absence of clouds, and the metallicity of an atmosphere, can affect an object

  13. Planets around the evolved stars 24 Boötis and γ Libra: A 30 d-period planet and a double giant-planet system in possible 7:3 MMR

    Science.gov (United States)

    Takarada, Takuya; Sato, Bun'ei; Omiya, Masashi; Harakawa, Hiroki; Nagasawa, Makiko; Izumiura, Hideyuki; Kambe, Eiji; Takeda, Yoichi; Yoshida, Michitoshi; Itoh, Yoichi; Ando, Hiroyasu; Kokubo, Eiichiro; Ida, Shigeru

    2018-05-01

    We report the detection of planets around two evolved giant stars from radial velocity measurements at Okayama Astrophysical observatory. 24 Boo (G3 IV) has a mass of 0.99 M_{⊙}, a radius of 10.64 R_{⊙}, and a metallicity of [Fe/H] = -0.77. The star hosts one planet with a minimum mass of 0.91 MJup and an orbital period of 30.35 d. The planet has one of the shortest orbital periods among those ever found around evolved stars using radial-velocity methods. The stellar radial velocities show additional periodicity with 150 d, which can probably be attributed to stellar activity. The star is one of the lowest-metallicity stars orbited by planets currently known. γ Lib (K0 III) is also a metal-poor giant with a mass of 1.47 M_{⊙}, a radius of 11.1 R_{⊙}, and [Fe/H] = -0.30. The star hosts two planets with minimum masses of 1.02 MJup and 4.58 MJup, and periods of 415 d and 964 d, respectively. The star has the second-lowest metallicity among the giant stars hosting more than two planets. Dynamical stability analysis for the γ Lib system sets the minimum orbital inclination angle to be about 70° and suggests that the planets are in 7:3 mean-motion resonance, though the current best-fitting orbits for the radial-velocity data are not totally regular.

  14. Addressing the statistical mechanics of planet orbits in the solar system

    Science.gov (United States)

    Mogavero, Federico

    2017-10-01

    The chaotic nature of planet dynamics in the solar system suggests the relevance of a statistical approach to planetary orbits. In such a statistical description, the time-dependent position and velocity of the planets are replaced by the probability density function (PDF) of their orbital elements. It is natural to set up this kind of approach in the framework of statistical mechanics. In the present paper, I focus on the collisionless excitation of eccentricities and inclinations via gravitational interactions in a planetary system. The future planet trajectories in the solar system constitute the prototype of this kind of dynamics. I thus address the statistical mechanics of the solar system planet orbits and try to reproduce the PDFs numerically constructed by Laskar (2008, Icarus, 196, 1). I show that the microcanonical ensemble of the Laplace-Lagrange theory accurately reproduces the statistics of the giant planet orbits. To model the inner planets I then investigate the ansatz of equiprobability in the phase space constrained by the secular integrals of motion. The eccentricity and inclination PDFs of Earth and Venus are reproduced with no free parameters. Within the limitations of a stationary model, the predictions also show a reasonable agreement with Mars PDFs and that of Mercury inclination. The eccentricity of Mercury demands in contrast a deeper analysis. I finally revisit the random walk approach of Laskar to the time dependence of the inner planet PDFs. Such a statistical theory could be combined with direct numerical simulations of planet trajectories in the context of planet formation, which is likely to be a chaotic process.

  15. ON THE EFFECT OF GIANT PLANETS ON THE SCATTERING OF PARENT BODIES OF IRON METEORITE FROM THE TERRESTRIAL PLANET REGION INTO THE ASTEROID BELT: A CONCEPT STUDY

    International Nuclear Information System (INIS)

    Haghighipour, Nader; Scott, Edward R. D.

    2012-01-01

    In their model for the origin of the parent bodies of iron meteorites, Bottke et al. proposed differentiated planetesimals, formed in 1-2 AU during the first 1.5 Myr, as the parent bodies, and suggested that these objects and their fragments were scattered into the asteroid belt as a result of interactions with planetary embryos. Although viable, this model does not include the effect of a giant planet that might have existed or been growing in the outer regions. We present the results of a concept study where we have examined the effect of a planetary body in the orbit of Jupiter on the early scattering of planetesimals from the terrestrial region into the asteroid belt. We integrated the orbits of a large battery of planetesimals in a disk of planetary embryos and studied their evolutions for different values of the mass of the planet. Results indicate that when the mass of the planet is smaller than 10 M ⊕ , its effects on the interactions among planetesimals and planetary embryos are negligible. However, when the planet mass is between 10 and 50 M ⊕ , simulations point to a transitional regime with ∼50 M ⊕ being the value for which the perturbing effect of the planet can no longer be ignored. Simulations also show that further increase of the mass of the planet strongly reduces the efficiency of the scattering of planetesimals from the terrestrial planet region into the asteroid belt. We present the results of our simulations and discuss their possible implications for the time of giant planet formation.

  16. An Earth-mass planet orbiting α Centauri B.

    Science.gov (United States)

    Dumusque, Xavier; Pepe, Francesco; Lovis, Christophe; Ségransan, Damien; Sahlmann, Johannes; Benz, Willy; Bouchy, François; Mayor, Michel; Queloz, Didier; Santos, Nuno; Udry, Stéphane

    2012-11-08

    Exoplanets down to the size of Earth have been found, but not in the habitable zone--that is, at a distance from the parent star at which water, if present, would be liquid. There are planets in the habitable zone of stars cooler than our Sun, but for reasons such as tidal locking and strong stellar activity, they are unlikely to harbour water-carbon life as we know it. The detection of a habitable Earth-mass planet orbiting a star similar to our Sun is extremely difficult, because such a signal is overwhelmed by stellar perturbations. Here we report the detection of an Earth-mass planet orbiting our neighbour star α Centauri B, a member of the closest stellar system to the Sun. The planet has an orbital period of 3.236 days and is about 0.04 astronomical units from the star (one astronomical unit is the Earth-Sun distance).

  17. Changes in the metallicity of gas giant planets due to pebble accretion

    Science.gov (United States)

    Humphries, R. J.; Nayakshin, S.

    2018-06-01

    We run numerical simulations to study the accretion of gas and dust grains on to gas giant planets embedded into massive protoplanetary discs. The outcome is found to depend on the disc cooling rate, planet mass, grain size, and irradiative feedback from the planet. If radiative cooling is efficient, planets accrete both gas and pebbles rapidly, open a gap, and usually become massive brown dwarfs. In the inefficient cooling case, gas is too hot to accrete on to the planet but pebble accretion continues and the planets migrate inward rapidly. Radiative feedback from the planet tends to suppress gas accretion. Our simulations predict that metal enrichment of planets by dust grain accretion inversely correlates with the final planet mass, in accordance with the observed trend in the inferred bulk composition of Solar system and exosolar giant planets. To account for observations, however, as many as ˜30-50 per cent of the dust mass should be in the form of large grains.

  18. Final Masses of Giant Planets II: Jupiter Formation in a Gas-Depleted Disk

    OpenAIRE

    Tanigawa, Takayuki; Tanaka, Hidekazu

    2015-01-01

    Firstly, we study the final masses of giant planets growing in protoplanetary disks through capture of disk gas, by employing an empirical formula for the gas capture rate and a shallow disk gap model, which are both based on hydrodynamical simulations. The shallow disk gaps cannot terminate growth of giant planets. For planets less massive than 10 Jupiter masses, their growth rates are mainly controlled by the gas supply through the global disk accretion, rather than their gaps. The insuffic...

  19. Debris disks as signposts of terrestrial planet formation. II. Dependence of exoplanet architectures on giant planet and disk properties

    Science.gov (United States)

    Raymond, S. N.; Armitage, P. J.; Moro-Martín, A.; Booth, M.; Wyatt, M. C.; Armstrong, J. C.; Mandell, A. M.; Selsis, F.; West, A. A.

    2012-05-01

    We present models for the formation of terrestrial planets, and the collisional evolution of debris disks, in planetary systems that contain multiple marginally unstable gas giants. We previously showed that in such systems, the dynamics of the giant planets introduces a correlation between the presence of terrestrial planets and cold dust, i.e., debris disks, which is particularly pronounced at λ ~ 70 μm. Here we present new simulations that show that this connection is qualitatively robust to a range of parameters: the mass distribution of the giant planets, the width and mass distribution of the outer planetesimal disk, and the presence of gas in the disk when the giant planets become unstable. We discuss how variations in these parameters affect the evolution. We find that systems with equal-mass giant planets undergo the most violent instabilities, and that these destroy both terrestrial planets and the outer planetesimal disks that produce debris disks. In contrast, systems with low-mass giant planets efficiently produce both terrestrial planets and debris disks. A large fraction of systems with low-mass (M ≲ 30 M⊕) outermost giant planets have final planetary separations that, scaled to the planets' masses, are as large or larger than the Saturn-Uranus and Uranus-Neptune separations in the solar system. We find that the gaps between these planets are not only dynamically stable to test particles, but are frequently populated by planetesimals. The possibility of planetesimal belts between outer giant planets should be taken into account when interpreting debris disk SEDs. In addition, the presence of ~ Earth-mass "seeds" in outer planetesimal disks causes the disks to radially spread to colder temperatures, and leads to a slow depletion of the outer planetesimal disk from the inside out. We argue that this may explain the very low frequency of >1 Gyr-old solar-type stars with observed 24 μm excesses. Our simulations do not sample the full range of

  20. Detection of planet candidates around K giants. HD 40956, HD 111591, and HD 113996

    Science.gov (United States)

    Jeong, G.; Lee, B.-C.; Han, I.; Omiya, M.; Izumiura, H.; Sato, B.; Harakawa, H.; Kambe, E.; Mkrtichian, D.

    2018-02-01

    Aims: The purpose of this paper is to detect and investigate the nature of long-term radial velocity (RV) variations of K-type giants and to confirm planetary companions around the stars. Methods: We have conducted two planet search programs by precise RV measurement using the 1.8 m telescope at Bohyunsan Optical Astronomy Observatory (BOAO) and the 1.88 m telescope at Okayama Astrophysical Observatory (OAO). The BOAO program searches for planets around 55 early K giants. The OAO program is looking for 190 G-K type giants. Results: In this paper, we report the detection of long-period RV variations of three K giant stars, HD 40956, HD 111591, and HD 113996. We investigated the cause of the observed RV variations and conclude the substellar companions are most likely the cause of the RV variations. The orbital analyses yield P = 578.6 ± 3.3 d, m sin i = 2.7 ± 0.6 MJ, a = 1.4 ± 0.1 AU for HD 40956; P = 1056.4 ± 14.3 d, m sin i = 4.4 ± 0.4 MJ, a = 2.5 ± 0.1 AU for HD 111591; P = 610.2 ± 3.8 d, m sin i = 6.3 ± 1.0 MJ, a = 1.6 ± 0.1 AU for HD 113996. Based on observations made with the BOES at BOAO in Korea and HIDES at OAO in Japan.Tables 3-5 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/610/A3

  1. Survival of the Jovian planets with the Sun a red giant

    International Nuclear Information System (INIS)

    Vila, S.C.

    1985-01-01

    The survival of the Jovian planets and their satellites as the Sun becomes a Red Giant is considered. It is found that the Jovian planets would not lose any matter - not even hydrogen. The satellites would lose their gaseous or volatile envelopes. Their rocky cores would resist melting and survive. Both the planets and the satellites would be unsuited to support human life. (Auth.)

  2. Survival of the Jovian planets with the Sun a red giant

    Energy Technology Data Exchange (ETDEWEB)

    Vila, S C

    1985-12-01

    The survival of the Jovian planets and their satellites as the Sun becomes a Red Giant is considered. It is found that the Jovian planets would not lose any matter - not even hydrogen. The satellites would lose their gaseous or volatile envelopes. Their rocky cores would resist melting and survive. Both the planets and the satellites would be unsuited to support human life. (Auth.).

  3. Shedding light on the eccentricity valley: Gap heating and eccentricity excitation of giant planets in protoplanetary disks

    International Nuclear Information System (INIS)

    Tsang, David; Cumming, Andrew; Turner, Neal J.

    2014-01-01

    We show that the first order (non-co-orbital) corotation torques are significantly modified by entropy gradients in a non-barotropic protoplanetary disk. Such non-barotropic torques can dramatically alter the balance that, for barotropic cases, results in the net eccentricity damping for giant gap-clearing planets embedded in the disk. We demonstrate that stellar illumination can heat the gap enough for the planet's orbital eccentricity to instead be excited. We also discuss the 'Eccentricity Valley' noted in the known exoplanet population, where low-metallicity stars have a deficit of eccentric planets between ∼0.1 and ∼1 AU compared to metal-rich systems. We show that this feature in the planet distribution may be due to the self-shadowing of the disk by a rim located at the dust sublimation radius ∼0.1 AU, which is known to exist for several T Tauri systems. In the shadowed region between ∼0.1 and ∼1 AU, lack of gap insolation allows disk interactions to damp eccentricity. Outside such shadowed regions stellar illumination can heat the planetary gaps and drive eccentricity growth for giant planets. We suggest that the self-shadowing does not arise at higher metallicity due to the increased optical depth of the gas interior to the dust sublimation radius.

  4. Shedding light on the eccentricity valley: Gap heating and eccentricity excitation of giant planets in protoplanetary disks

    Energy Technology Data Exchange (ETDEWEB)

    Tsang, David; Cumming, Andrew [Department of Physics, McGill University, Montreal, QC H3A 2T8 (Canada); Turner, Neal J., E-mail: dtsang@physics.mcgill.ca [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States)

    2014-02-20

    We show that the first order (non-co-orbital) corotation torques are significantly modified by entropy gradients in a non-barotropic protoplanetary disk. Such non-barotropic torques can dramatically alter the balance that, for barotropic cases, results in the net eccentricity damping for giant gap-clearing planets embedded in the disk. We demonstrate that stellar illumination can heat the gap enough for the planet's orbital eccentricity to instead be excited. We also discuss the 'Eccentricity Valley' noted in the known exoplanet population, where low-metallicity stars have a deficit of eccentric planets between ∼0.1 and ∼1 AU compared to metal-rich systems. We show that this feature in the planet distribution may be due to the self-shadowing of the disk by a rim located at the dust sublimation radius ∼0.1 AU, which is known to exist for several T Tauri systems. In the shadowed region between ∼0.1 and ∼1 AU, lack of gap insolation allows disk interactions to damp eccentricity. Outside such shadowed regions stellar illumination can heat the planetary gaps and drive eccentricity growth for giant planets. We suggest that the self-shadowing does not arise at higher metallicity due to the increased optical depth of the gas interior to the dust sublimation radius.

  5. The dynamics of the multi-planet system orbiting Kepler-56

    Energy Technology Data Exchange (ETDEWEB)

    Li, Gongjie; Naoz, Smadar; Johnson, John Asher [Harvard Smithsonian Center for Astrophysics, Institute for Theory and Computation, 60 Garden Street, Cambridge, MA 02138 (United States); Valsecchi, Francesca; Rasio, Frederic A., E-mail: gli@cfa.harvard.edu, E-mail: snaoz@cfa.harvard.edu [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA), Northwestern University, Evanston, IL 60208 (United States)

    2014-10-20

    Kepler-56 is a multi-planet system containing two coplanar inner planets that are in orbits misaligned with respect to the spin axis of the host star, and an outer planet. Various mechanisms have been proposed to explain the broad distribution of spin-orbit angles among exoplanets, and these theories fall under two broad categories. The first is based on dynamical interactions in a multi-body system, while the other assumes that disk migration is the driving mechanism in planetary configuration and that the star (or disk) is titled with respect to the planetary plane. Here we show that the large observed obliquity of Kepler 56 system is consistent with a dynamical origin. In addition, we use observations by Huber et al. to derive the obliquity's probability distribution function, thus improving the constrained lower limit. The outer planet may be the cause of the inner planets' large obliquities, and we give the probability distribution function of its inclination, which depends on the initial orbital configuration of the planetary system. We show that even in the presence of precise measurement of the true obliquity, one cannot distinguish the initial configurations. Finally we consider the fate of the system as the star continues to evolve beyond the main sequence, and we find that the obliquity of the system will not undergo major variations as the star climbs the red giant branch. We follow the evolution of the system and find that the innermost planet will be engulfed in ∼129 Myr. Furthermore we put an upper limit of ∼155 Myr for the engulfment of the second planet. This corresponds to ∼3% of the current age of the star.

  6. The habitability of planets orbiting M-dwarf stars

    Science.gov (United States)

    Shields, Aomawa L.; Ballard, Sarah; Johnson, John Asher

    2016-12-01

    The prospects for the habitability of M-dwarf planets have long been debated, due to key differences between the unique stellar and planetary environments around these low-mass stars, as compared to hotter, more luminous Sun-like stars. Over the past decade, significant progress has been made by both space- and ground-based observatories to measure the likelihood of small planets to orbit in the habitable zones of M-dwarf stars. We now know that most M dwarfs are hosts to closely-packed planetary systems characterized by a paucity of Jupiter-mass planets and the presence of multiple rocky planets, with roughly a third of these rocky M-dwarf planets orbiting within the habitable zone, where they have the potential to support liquid water on their surfaces. Theoretical studies have also quantified the effect on climate and habitability of the interaction between the spectral energy distribution of M-dwarf stars and the atmospheres and surfaces of their planets. These and other recent results fill in knowledge gaps that existed at the time of the previous overview papers published nearly a decade ago by Tarter et al. (2007) and Scalo et al. (2007). In this review we provide a comprehensive picture of the current knowledge of M-dwarf planet occurrence and habitability based on work done in this area over the past decade, and summarize future directions planned in this quickly evolving field.

  7. The Automation and Exoplanet Orbital Characterization from the Gemini Planet Imager Exoplanet Survey

    Science.gov (United States)

    Jinfei Wang, Jason; Graham, James; Perrin, Marshall; Pueyo, Laurent; Savransky, Dmitry; Kalas, Paul; arriaga, Pauline; Chilcote, Jeffrey K.; De Rosa, Robert J.; Ruffio, Jean-Baptiste; Sivaramakrishnan, Anand; Gemini Planet Imager Exoplanet Survey Collaboration

    2018-01-01

    The Gemini Planet Imager (GPI) Exoplanet Survey (GPIES) is a multi-year 600-star survey to discover and characterize young Jovian exoplanets and their planet forming environments. For large surveys like GPIES, it is critical to have a uniform dataset processed with the latest techniques and calibrations. I will describe the GPI Data Cruncher, an automated data processing framework that is able to generate fully reduced data minutes after the data are taken and can also reprocess the entire campaign in a single day on a supercomputer. The Data Cruncher integrates into a larger automated data processing infrastructure which syncs, logs, and displays the data. I will discuss the benefits of the GPIES data infrastructure, including optimizing observing strategies, finding planets, characterizing instrument performance, and constraining giant planet occurrence. I will also discuss my work in characterizing the exoplanets we have imaged in GPIES through monitoring their orbits. Using advanced data processing algorithms and GPI's precise astrometric calibration, I will show that GPI can achieve one milliarcsecond astrometry on the extensively-studied planet Beta Pic b. With GPI, we can confidently rule out a possible transit of Beta Pic b, but have precise timings on a Hill sphere transit, and I will discuss efforts to search for transiting circumplanetary material this year. I will also discuss the orbital monitoring of other exoplanets as part of GPIES.

  8. A Possible Mechanism for Driving Oscillations in Hot Giant Planets

    International Nuclear Information System (INIS)

    Dederick, Ethan; Jackiewicz, Jason

    2017-01-01

    The κ -mechanism has been successful in explaining the origin of observed oscillations of many types of “classical” pulsating variable stars. Here we examine quantitatively if that same process is prominent enough to excite the potential global oscillations within Jupiter, whose energy flux is powered by gravitational collapse rather than nuclear fusion. Additionally, we examine whether external radiative forcing, i.e., starlight, could be a driver for global oscillations in hot Jupiters orbiting various main-sequence stars at defined orbital semimajor axes. Using planetary models generated by the Modules for Experiments in Stellar Astrophysics and nonadiabatic oscillation calculations, we confirm that Jovian oscillations cannot be driven via the κ -mechanism. However, we do show that, in hot Jupiters, oscillations can likely be excited via the suppression of radiative cooling due to external radiation given a large enough stellar flux and the absence of a significant oscillatory damping zone within the planet. This trend does not seem to be dependent on the planetary mass. In future observations, we can thus expect that such planets may be pulsating, thereby giving greater insight into the internal structure of these bodies.

  9. A Possible Mechanism for Driving Oscillations in Hot Giant Planets

    Energy Technology Data Exchange (ETDEWEB)

    Dederick, Ethan; Jackiewicz, Jason, E-mail: dederiej@nmsu.edu, E-mail: jasonj@nmsu.edu [New Mexico State University, Las Cruces, NM (United States)

    2017-03-10

    The κ -mechanism has been successful in explaining the origin of observed oscillations of many types of “classical” pulsating variable stars. Here we examine quantitatively if that same process is prominent enough to excite the potential global oscillations within Jupiter, whose energy flux is powered by gravitational collapse rather than nuclear fusion. Additionally, we examine whether external radiative forcing, i.e., starlight, could be a driver for global oscillations in hot Jupiters orbiting various main-sequence stars at defined orbital semimajor axes. Using planetary models generated by the Modules for Experiments in Stellar Astrophysics and nonadiabatic oscillation calculations, we confirm that Jovian oscillations cannot be driven via the κ -mechanism. However, we do show that, in hot Jupiters, oscillations can likely be excited via the suppression of radiative cooling due to external radiation given a large enough stellar flux and the absence of a significant oscillatory damping zone within the planet. This trend does not seem to be dependent on the planetary mass. In future observations, we can thus expect that such planets may be pulsating, thereby giving greater insight into the internal structure of these bodies.

  10. Habitability of super-Earth planets around other suns: models including Red Giant Branch evolution.

    Science.gov (United States)

    von Bloh, W; Cuntz, M; Schröder, K-P; Bounama, C; Franck, S

    2009-01-01

    The unexpected diversity of exoplanets includes a growing number of super-Earth planets, i.e., exoplanets with masses of up to several Earth masses and a similar chemical and mineralogical composition as Earth. We present a thermal evolution model for a 10 Earth-mass planet orbiting a star like the Sun. Our model is based on the integrated system approach, which describes the photosynthetic biomass production and takes into account a variety of climatological, biogeochemical, and geodynamical processes. This allows us to identify a so-called photosynthesis-sustaining habitable zone (pHZ), as determined by the limits of biological productivity on the planetary surface. Our model considers solar evolution during the main-sequence stage and along the Red Giant Branch as described by the most recent solar model. We obtain a large set of solutions consistent with the principal possibility of life. The highest likelihood of habitability is found for "water worlds." Only mass-rich water worlds are able to realize pHZ-type habitability beyond the stellar main sequence on the Red Giant Branch.

  11. Characterizing Young Giant Planets with the Gemini Planet Imager: An Iterative Approach to Planet Characterization

    Science.gov (United States)

    Marley, Mark

    2015-01-01

    After discovery, the first task of exoplanet science is characterization. However experience has shown that the limited spectral range and resolution of most directly imaged exoplanet data requires an iterative approach to spectral modeling. Simple, brown dwarf-like models, must first be tested to ascertain if they are both adequate to reproduce the available data and consistent with additional constraints, including the age of the system and available limits on the planet's mass and luminosity, if any. When agreement is lacking, progressively more complex solutions must be considered, including non-solar composition, partial cloudiness, and disequilibrium chemistry. Such additional complexity must be balanced against an understanding of the limitations of the atmospheric models themselves. For example while great strides have been made in improving the opacities of important molecules, particularly NH3 and CH4, at high temperatures, much more work is needed to understand the opacity of atomic Na and K. The highly pressure broadened fundamental band of Na and K in the optical stretches into the near-infrared, strongly influencing the spectral shape of Y and J spectral bands. Discerning gravity and atmospheric composition is difficult, if not impossible, without both good atomic opacities as well as an excellent understanding of the relevant atmospheric chemistry. I will present examples of the iterative process of directly imaged exoplanet characterization as applied to both known and potentially newly discovered exoplanets with a focus on constraints provided by GPI spectra. If a new GPI planet is lacking, as a case study I will discuss HR 8799 c and d will explain why some solutions, such as spatially inhomogeneous cloudiness, introduce their own additional layers of complexity. If spectra of new planets from GPI are available I will explain the modeling process in the context of understanding these new worlds.

  12. Using Orbital Platforms to Study Planet Formation

    Science.gov (United States)

    Brisset, J.; Colwell, J. E.; Dove, A.; Maukonen, D.

    2017-08-01

    We will present results from the ISS NanoRocks experiment as well as the design of the Q-PACE CubeSat to demonstrate how orbital miniaturized payloads can be used to collect unprecedented amounts of data on the collision behavior of PPD dust grains.

  13. A GIANT CONGENITAL ORBITAL TUMOR - AN UNUSUAL PRESENTATION OF RETINOBLASTOMA

    NARCIS (Netherlands)

    ZWAAN, CM; DEWAAL, FC; KOOLE, FD; MENKO, FH; VANDERVALK, P; SLATER, RM; SCHEFFER, H; VANWAVEREN, G; MOLL, AC; SCHOUTENVANMEETEREN, AYN; TAN, KEWP

    1994-01-01

    We report a case of an unusual giant congential tumor presenting in a newborn infant as a large exophytic mass emerging from the left orbit. After enucleation orbital recurrence developed within 14 days. No anti-tumor treatment was given and the child died at the age of 4 weeks. The

  14. Magnetic fields in giant planet formation and protoplanetary discs

    Science.gov (United States)

    Keith, Sarah Louise

    2015-12-01

    Protoplanetary discs channel accretion onto their host star. How this is achieved is critical to the growth of giant planets which capture their massive gaseous atmosphere from the surrounding flow. Theoretical studies find that an embedded magnetic field could power accretion by hydromagnetic turbulence or torques from a large-scale field. This thesis presents a study of the inuence of magnetic fields in three key aspects of this process: circumplanetary disc accretion, gas flow across gaps in protoplanetary discs, and magnetic-braking in accretion discs. The first study examines the conditions needed for self-consistent accretion driven by magnetic fields or gravitational instability. Models of these discs typically rely on hydromagnetic turbulence as the source of effective viscosity. However, magnetically coupled,accreting regions may be so limited that the disc may not support sufficient inflow. An improved Shakura-Sunyaev ? disc is used to calculate the ionisation fraction and strength of non-ideal effects. Steady magnetically-driven accretion is limited to the thermally ionised, inner disc so that accretion in the remainder of the disc is time-dependent. The second study addresses magnetic flux transport in an accretion gap evacuated by a giant planet. Assuming the field is passively drawn along with the gas, the hydrodynamical simulation of Tanigawa, Ohtsuki & Machida (2012) is used for an a posteriori analysis of the gap field structure. This is used to post-calculate magnetohydrodynamical quantities. This assumption is self-consistent as magnetic forces are found to be weak, and good magnetic coupling ensures the field is frozen into the gas. Hall drift dominates across much of the gap, with the potential to facilitate turbulence and modify the toroidal field according to the global field orientation. The third study considers the structure and stability of magnetically-braked accretion discs. Strong evidence for MRI dead-zones has renewed interest in

  15. KEPLER-68: THREE PLANETS, ONE WITH A DENSITY BETWEEN THAT OF EARTH AND ICE GIANTS

    Energy Technology Data Exchange (ETDEWEB)

    Gilliland, Ronald L. [Department of Astronomy, and Center for Exoplanets and Habitable Worlds, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 (United States); Marcy, Geoffrey W.; Isaacson, Howard [Department of Astronomy, University of California, Berkeley, CA 94720 (United States); Rowe, Jason F.; Henze, Christopher E.; Lissauer, Jack J. [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Rogers, Leslie [California Institute of Technology, Pasadena, CA 91125 (United States); Torres, Guillermo; Fressin, Francois; Desert, Jean-Michel [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Lopez, Eric D. [University of California, Santa Cruz, CA 95064 (United States); Buchhave, Lars A. [Niels Bohr Institute, Copenhagen University (Denmark); Christensen-Dalsgaard, Jorgen; Handberg, Rasmus [Stellar Astrophysics Centre, Department of Physics and Astronomy, DK-8000 Aarhus C (Denmark); Jenkins, Jon M. [SETI Institute/NASA Ames Research Center, Moffett Field, CA 94035 (United States); Chaplin, William J.; Elsworth, Yvonne [School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Basu, Sarbani [Department of Astronomy, Yale University, 260 Whitney Ave., New Haven, CT 06511 (United States); Metcalfe, Travis S. [White Dwarf Research Corporation, Boulder, CO 80301 (United States); Hekker, Saskia, E-mail: gillil@stsci.edu [Astronomical Institute Anton Pannekoek, University of Amsterdam, 1098 XH Amsterdam, Science Park 904 (Netherlands); and others

    2013-03-20

    NASA's Kepler Mission has revealed two transiting planets orbiting Kepler-68. Follow-up Doppler measurements have established the mass of the innermost planet and revealed a third Jovian-mass planet orbiting beyond the two transiting planets. Kepler-68b, in a 5.4 day orbit, has M{sub P}=8.3{sup +2.2}{sub -2.4} M{sub Circled-Plus }, R{sub P}=2.31{sup +0.06}{sub -0.09} R{sub Circled-Plus }, and {rho}{sub P}=3.32{sup +0.86}{sub -0.98} g cm{sup -3}, giving Kepler-68b a density intermediate between that of the ice giants and Earth. Kepler-68c is Earth-sized, with a radius R{sub P}=0.953{sup +0.037}{sub -0.042} R{sub Circled-Plus} and transits on a 9.6 day orbit; validation of Kepler-68c posed unique challenges. Kepler-68d has an orbital period of 580 {+-} 15 days and a minimum mass of M{sub P}sin i = 0.947 {+-} 0.035M{sub J} . Power spectra of the Kepler photometry at one minute cadence exhibit a rich and strong set of asteroseismic pulsation modes enabling detailed analysis of the stellar interior. Spectroscopy of the star coupled with asteroseismic modeling of the multiple pulsation modes yield precise measurements of stellar properties, notably T{sub eff} = 5793 {+-} 74 K, M{sub *} = 1.079 {+-} 0.051 M{sub Sun }, R{sub *} = 1.243 {+-} 0.019 R{sub Sun }, and {rho}{sub *} = 0.7903 {+-} 0.0054 g cm{sup -3}, all measured with fractional uncertainties of only a few percent. Models of Kepler-68b suggest that it is likely composed of rock and water, or has a H and He envelope to yield its density {approx}3 g cm{sup -3}.

  16. A giant planet undergoing extreme-ultraviolet irradiation by its hot massive-star host.

    Science.gov (United States)

    Gaudi, B Scott; Stassun, Keivan G; Collins, Karen A; Beatty, Thomas G; Zhou, George; Latham, David W; Bieryla, Allyson; Eastman, Jason D; Siverd, Robert J; Crepp, Justin R; Gonzales, Erica J; Stevens, Daniel J; Buchhave, Lars A; Pepper, Joshua; Johnson, Marshall C; Colon, Knicole D; Jensen, Eric L N; Rodriguez, Joseph E; Bozza, Valerio; Novati, Sebastiano Calchi; D'Ago, Giuseppe; Dumont, Mary T; Ellis, Tyler; Gaillard, Clement; Jang-Condell, Hannah; Kasper, David H; Fukui, Akihiko; Gregorio, Joao; Ito, Ayaka; Kielkopf, John F; Manner, Mark; Matt, Kyle; Narita, Norio; Oberst, Thomas E; Reed, Phillip A; Scarpetta, Gaetano; Stephens, Denice C; Yeigh, Rex R; Zambelli, Roberto; Fulton, B J; Howard, Andrew W; James, David J; Penny, Matthew; Bayliss, Daniel; Curtis, Ivan A; DePoy, D L; Esquerdo, Gilbert A; Gould, Andrew; Joner, Michael D; Kuhn, Rudolf B; Labadie-Bartz, Jonathan; Lund, Michael B; Marshall, Jennifer L; McLeod, Kim K; Pogge, Richard W; Relles, Howard; Stockdale, Christopher; Tan, T G; Trueblood, Mark; Trueblood, Patricia

    2017-06-22

    The amount of ultraviolet irradiation and ablation experienced by a planet depends strongly on the temperature of its host star. Of the thousands of extrasolar planets now known, only six have been found that transit hot, A-type stars (with temperatures of 7,300-10,000 kelvin), and no planets are known to transit the even hotter B-type stars. For example, WASP-33 is an A-type star with a temperature of about 7,430 kelvin, which hosts the hottest known transiting planet, WASP-33b (ref. 1); the planet is itself as hot as a red dwarf star of type M (ref. 2). WASP-33b displays a large heat differential between its dayside and nightside, and is highly inflated-traits that have been linked to high insolation. However, even at the temperature of its dayside, its atmosphere probably resembles the molecule-dominated atmospheres of other planets and, given the level of ultraviolet irradiation it experiences, its atmosphere is unlikely to be substantially ablated over the lifetime of its star. Here we report observations of the bright star HD 195689 (also known as KELT-9), which reveal a close-in (orbital period of about 1.48 days) transiting giant planet, KELT-9b. At approximately 10,170 kelvin, the host star is at the dividing line between stars of type A and B, and we measure the dayside temperature of KELT-9b to be about 4,600 kelvin. This is as hot as stars of stellar type K4 (ref. 5). The molecules in K stars are entirely dissociated, and so the primary sources of opacity in the dayside atmosphere of KELT-9b are probably atomic metals. Furthermore, KELT-9b receives 700 times more extreme-ultraviolet radiation (that is, with wavelengths shorter than 91.2 nanometres) than WASP-33b, leading to a predicted range of mass-loss rates that could leave the planet largely stripped of its envelope during the main-sequence lifetime of the host star.

  17. Disk Evolution, Element Abundances and Cloud Properties of Young Gas Giant Planets

    NARCIS (Netherlands)

    Helling, Christiane; Woitke, Peter; Rimmer, Paul B.; Kamp, Inga; Thi, Wing-Fai; Meijerink, Rowin

    We discuss the chemical pre-conditions for planet formation, in terms of gas and ice abundances in a protoplanetary disk, as function of time and position, and the resulting chemical composition and cloud properties in the atmosphere when young gas giant planets form, in particular discussing the

  18. ORBITS AND MASSES OF THE SATELLITES OF THE DWARF PLANET HAUMEA (2003 EL61)

    International Nuclear Information System (INIS)

    Ragozzine, D.; Brown, M. E.

    2009-01-01

    Using precise relative astrometry from the Hubble Space Telescope and the W. M. Keck Telescope, we have determined the orbits and masses of the two dynamically interacting satellites of the dwarf planet (136108) Haumea, formerly 2003 EL61. The orbital parameters of Hi'iaka, the outer, brighter satellite, match well the previously derived orbit. On timescales longer than a few weeks, no Keplerian orbit is sufficient to describe the motion of the inner, fainter satellite Namaka. Using a fully interacting three-point-mass model, we have recovered the orbital parameters of both orbits and the mass of Haumea and Hi'iaka; Namaka's mass is marginally detected. The data are not sufficient to uniquely determine the gravitational quadrupole of the nonspherical primary (described by J 2 ). The nearly coplanar nature of the satellites, as well as an inferred density similar to water ice, strengthen the hypothesis that Haumea experienced a giant collision billions of years ago. The excited eccentricities and mutual inclination point to an intriguing tidal history of significant semimajor axis evolution through satellite mean-motion resonances. The orbital solution indicates that Namaka and Haumea are currently undergoing mutual events and that the mutual event season will last for next several years.

  19. Isotopic ratios D/H and 15N/14N in giant planets

    Science.gov (United States)

    Marboeuf, Ulysse; Thiabaud, Amaury; Alibert, Yann; Benz, Willy

    2018-04-01

    The determination of isotopic ratios in planets is important since it allows us to investigate the origins and initial composition of materials. The present work aims to determine the possible range of values for isotopic ratios D/H and 15N/14N in giant planets. The main objective is to provide valuable theoretical assumptions on the isotopic composition of giant planets, their internal structure, and the main reservoirs of species. We use models of ice formation and planet formation that compute the composition of ices and gas accreted in the core and the envelope of planets. Assuming a single initial value for isotopic ratios in volatile species, and disruption of planetesimals in the envelope of gaseous planets, we obtain a wide variety of D/H and 15N/14N ratios in low-mass planets (≤100 Mearth) due to the migration pathway of planets, the accretion time of gas species whose relative abundance evolves with time, and isotope exchanges among species. If giant planets with mass greater than 100 Mearth have solar isotopic ratios such as Jupiter and Saturn due to their higher envelope mass, Neptune-type planets present values ranging between one and three times the solar value. It seems therefore difficult to use isotopic ratios in the envelope of these planets to get information about their formation in the disc. For giant planets, the ratios allow us to constrain the mass fraction of volatile species in the envelope needed to reproduce the observational data by assuming initial values for isotopic ratios in volatile species.

  20. LO2/LH2 propulsion for outer planet orbiter spacecraft

    Science.gov (United States)

    Garrison, P. W.; Sigurdson, K. B.

    1983-01-01

    Galileo class orbiter missions (750-1500 kg) to the outer planets require a large postinjection delta-V for improved propulsion performance. The present investigation shows that a pump-fed low thrust LO2/LH2 propulsion system can provide a significantly larger net on-orbit mass for a given delta-V than a state-of-the-art earth storable, N2O4/monomethylhydrazine pressure-fed propulsion system. A description is given of a conceptual design for a LO2/LH2 pump-fed propulsion system developed for a Galileo class mission to the outer planets. Attention is given to spacecraft configuration, details regarding the propulsion system, the thermal control of the cryogenic propellants, and aspects of mission performance.

  1. Very high-density planets: a possible remnant of gas giants.

    Science.gov (United States)

    Mocquet, A; Grasset, O; Sotin, C

    2014-04-28

    Data extracted from the Extrasolar Planets Encyclopaedia (see http://exoplanet.eu) show the existence of planets that are more massive than iron cores that would have the same size. After meticulous verification of the data, we conclude that the mass of the smallest of these planets is actually not known. However, the three largest planets, Kepler-52b, Kepler-52c and Kepler-57b, which are between 30 and 100 times the mass of the Earth, have indeed density larger than an iron planet of the same size. This observation triggers this study that investigates under which conditions these planets could represent the naked cores of gas giants that would have lost their atmospheres during their migration towards the star. This study shows that for moderate viscosity values (10(25) Pa s or lower), large values of escape rate and associated unloading stress rate during the atmospheric loss process lead to the explosion of extremely massive planets. However, for moderate escape rate, the bulk viscosity and finite-strain incompressibility of the cores of giant planets can be large enough to retain a very high density during geological time scales. This would make those a new kind of planet, which would help in understanding the interior structure of the gas giants. However, this new family of exoplanets adds some degeneracy for characterizing terrestrial exoplanets.

  2. Orbital Eccentricity and the Stability of Planets in the Alpha Centauri System

    Science.gov (United States)

    Lissauer, Jack

    2016-01-01

    Planets on initially circular orbits are typically more dynamically stable than planets initially having nonzero eccentricities. However, the presence of a major perturber that forces periodic oscillations of planetary eccentricity can alter this situation. We investigate the dependance of system lifetime on initial eccentricity for planets orbiting one star within the alpha Centauri system. Our results show that initial conditions chosen to minimize free eccentricity can substantially increase stability compared to planets on circular orbits.

  3. On the Lack of Circumbinary Planets Orbiting Isolated Binary Stars

    Science.gov (United States)

    Fleming, David P.; Barnes, Rory; Graham, David E.; Luger, Rodrigo; Quinn, Thomas R.

    2018-05-01

    We outline a mechanism that explains the observed lack of circumbinary planets (CBPs) via coupled stellar–tidal evolution of isolated binary stars. Tidal forces between low-mass, short-period binary stars on the pre-main sequence slow the stellar rotations transferring rotational angular momentum to the orbit as the stars approach the tidally locked state. This transfer increases the binary orbital period, expanding the region of dynamical instability around the binary, and destabilizing CBPs that tend to preferentially orbit just beyond the initial dynamical stability limit. After the stars tidally lock, we find that angular momentum loss due to magnetic braking can significantly shrink the binary orbit, and hence the region of dynamical stability, over time, impacting where surviving CBPs are observed relative to the boundary. We perform simulations over a wide range of parameter space and find that the expansion of the instability region occurs for most plausible initial conditions and that, in some cases, the stability semimajor axis doubles from its initial value. We examine the dynamical and observable consequences of a CBP falling within the dynamical instability limit by running N-body simulations of circumbinary planetary systems and find that, typically, at least one planet is ejected from the system. We apply our theory to the shortest-period Kepler binary that possesses a CBP, Kepler-47, and find that its existence is consistent with our model. Under conservative assumptions, we find that coupled stellar–tidal evolution of pre-main sequence binary stars removes at least one close-in CBP in 87% of multi-planet circumbinary systems.

  4. MODELING THE FORMATION OF GIANT PLANET CORES. I. EVALUATING KEY PROCESSES

    International Nuclear Information System (INIS)

    Levison, Harold F.; Thommes, Edward; Duncan, Martin J.

    2010-01-01

    One of the most challenging problems we face in our understanding of planet formation is how Jupiter and Saturn could have formed before the solar nebula dispersed. The most popular model of giant planet formation is the so-called core accretion model. In this model a large planetary embryo formed first, mainly by two-body accretion. This is then followed by a period of inflow of nebular gas directly onto the growing planet. The core accretion model has an Achilles heel, namely the very first step. We have undertaken the most comprehensive study of this process to date. In this study, we numerically integrate the orbits of a number of planetary embryos embedded in a swarm of planetesimals. In these experiments, we have included a large number of physical processes that might enhance accretion. In particular, we have included (1) aerodynamic gas drag, (2) collisional damping between planetesimals, (3) enhanced embryo cross sections due to their atmospheres, (4) planetesimal fragmentation, and (5) planetesimal-driven migration. We find that the gravitational interaction between the embryos and the planetesimals leads to the wholesale redistribution of material-regions are cleared of material and gaps open near the embryos. Indeed, in 90% of our simulations without fragmentation, the region near those embryos is cleared of planetesimals before much growth can occur. Thus, the widely used assumption that the surface density distribution of planetesimals is smooth can lead to misleading results. In the remaining 10% of our simulations, the embryos undergo a burst of outward migration that significantly increases growth. On timescales of ∼10 5 years, the outer embryo can migrate ∼6 AU and grow to roughly 30 M + . This represents a largely unexplored mode of core formation. We also find that the inclusion of planetesimal fragmentation tends to inhibit growth except for a narrow range of fragment migration rates.

  5. The effect of J2 on equatorial and halo orbits around a magnetic planet

    International Nuclear Information System (INIS)

    Inarrea, Manuel; Lanchares, Victor; Palacian, Jesus F.; Pascual, Ana I.; Pablo Salas, J.; Yanguas, Patricia

    2009-01-01

    We calculate equatorial and halo orbits around a non-spherical (both oblate and prolate) magnetic planet. It is known that circular equatorial and halo orbits exist for a dust grain orbiting a spherical magnetic planet. However, the frequency of the orbit is constrained by the charge-mass ratio of the particle. If the non-sphericity of the planet is taken into account this constraint is modified or, in some cases, it disappears.

  6. The effect of J{sub 2} on equatorial and halo orbits around a magnetic planet

    Energy Technology Data Exchange (ETDEWEB)

    Inarrea, Manuel [Universidad de la Rioja, Area de Fisica, 26006 Logrono (Spain); Lanchares, Victor [Dpto. de Matematicas y Computacion, CIEMUR: Centro de Investigacion en Informatica, Estadistica y Matematicas, Universidad de la Rioja, 26004 Logrono (Spain)], E-mail: vlancha@unirioja.es; Palacian, Jesus F. [Universidad Publica de Navarra, Departamento de Ingenieria Matematica e Informatica, 31006 Pamplona (Spain); Pascual, Ana I. [Dpto. de Matematicas y Computacion, CIEMUR: Centro de Investigacion en Informatica, Estadistica y Matematicas, Universidad de la Rioja, 26004 Logrono (Spain); Pablo Salas, J. [Universidad de la Rioja, Area de Fisica, 26006 Logrono (Spain); Yanguas, Patricia [Universidad Publica de Navarra, Departamento de Ingenieria Matematica e Informatica, 31006 Pamplona (Spain)

    2009-10-15

    We calculate equatorial and halo orbits around a non-spherical (both oblate and prolate) magnetic planet. It is known that circular equatorial and halo orbits exist for a dust grain orbiting a spherical magnetic planet. However, the frequency of the orbit is constrained by the charge-mass ratio of the particle. If the non-sphericity of the planet is taken into account this constraint is modified or, in some cases, it disappears.

  7. Richest Planetary System Discovered - Up to seven planets orbiting a Sun-like star

    Science.gov (United States)

    2010-08-01

    good reasons to believe that two other planets are present," says Lovis. One would be a Saturn-like planet (with a minimum mass of 65 Earth masses) orbiting in 2200 days. The other would be the least massive exoplanet ever discovered [2], with a mass of about 1.4 times that of the Earth. It is very close to its host star, at just 2 percent of the Earth-Sun distance. One "year" on this planet would last only 1.18 Earth-days. "This object causes a wobble of its star of only about 3 km/hour - slower than walking speed - and this motion is very hard to measure," says team member Damien Ségransan. If confirmed, this object would be another example of a hot rocky planet, similar to Corot-7b (eso0933). The newly discovered system of planets around HD 10180 is unique in several respects. First of all, with at least five Neptune-like planets lying within a distance equivalent to the orbit of Mars, this system is more populated than our Solar System in its inner region, and has many more massive planets there [3]. Furthermore, the system probably has no Jupiter-like gas giant. In addition, all the planets seem to have almost circular orbits. So far, astronomers know of fifteen systems with at least three planets. The last record-holder was 55 Cancri, which contains five planets, two of them being giant planets. "Systems of low-mass planets like the one around HD 10180 appear to be quite common, but their formation history remains a puzzle," says Lovis. Using the new discovery as well as data for other planetary systems, the astronomers found an equivalent of the Titius-Bode law that exists in our Solar System: the distances of the planets from their star seem to follow a regular pattern [4]. "This could be a signature of the formation process of these planetary systems," says team member Michel Mayor. Another important result found by the astronomers while studying these systems is that there is a relationship between the mass of a planetary system and the mass and chemical

  8. The impact of red noise in radial velocity planet searches: only three planets orbiting GJ 581?

    Science.gov (United States)

    Baluev, Roman V.

    2013-03-01

    We perform a detailed analysis of the latest HARPS and Keck radial velocity data for the planet-hosting red dwarf GJ 581, which attracted a lot of attention in recent time. We show that these data contain important correlated noise component (`red noise') with the correlation time-scale of the order of 10 d. This red noise imposes a lot of misleading effects while we work in the traditional white-noise model. To eliminate these misleading effects, we propose a maximum-likelihood algorithm equipped by an extended model of the noise structure. We treat the red noise as a Gaussian random process with an exponentially decaying correlation function. Using this method we prove that (i) planets b and c do exist in this system, since they can be independently detected in the HARPS and Keck data, and regardless of the assumed noise models; (ii) planet e can also be confirmed independently by both the data sets, although to reveal it in the Keck data it is mandatory to take the red noise into account; (iii) the recently announced putative planets f and g are likely just illusions of the red noise; (iv) the reality of the planet candidate GJ 581 d is questionable, because it cannot be detected from the Keck data, and its statistical significance in the HARPS data (as well as in the combined data set) drops to a marginal level of ˜2σ, when the red noise is taken into account. Therefore, the current data for GJ 581 really support the existence of no more than four (or maybe even only three) orbiting exoplanets. The planet candidate GJ 581 d requests serious observational verification.

  9. The formation of giant planets and its effects on protoplanetary disks: the case of Jupiter and the Jovian Early Bombardment

    Science.gov (United States)

    Turrini, D.; ISSI Team "Vesta, the key to the origins of the Solar System"; EChO "Planetary Formation" Working Group

    The formation of giant planets is accompanied by a short but intense primordial bombardment \\citep{safronov69,weidenschilling75,weidenschilling01,turrini11}: the prototype for this class of events is the Jovian Early Bombardment (JEB) caused by the formation of Jupiter in the Solar System \\citep{turrini11,turrini12}. The JEB affected the collisional evolution of the minor bodies in the inner Solar System by inflicting mass loss to planetesimals \\citep{turrini12,turrini14a,turrini14b} due to cratering erosion and, at the same time, delivering water and volatile materials to the asteroid belt \\citep{turrini14b}. The JEB also resulted in a significant number of collisions between Jupiter and planetesimals formed over a wide orbital range, delivering volatile and refractory materials to the giant planet and its circumplanetary disk \\citep{turrini14c}. In this talk I'll discuss how the study of the effects of the JEB on Vesta can be used to constrain the early evolution of the Solar System \\citep{turrini14a,turrini14b} and how these constraints can, in turn, provide insight on the composition of Jupiter and of its satellites. Finally, I'll discuss the implications of the JEB model for extrasolar planets \\citep{turrini14c}.

  10. Unusual intraconal localization of orbital giant cell angiofibroma.

    Science.gov (United States)

    Ekin, Meryem Altin; Ugurlu, Seyda Karadeniz; Cakalagaoglu, Fulya

    2018-01-01

    Giant cell angiofibroma (GCA) is a recently reported rare soft-tissue tumor that can develop in various sites including orbit. Orbital GCAs were mainly located in the eyelid or extraconal regions such as lacrimal gland and conjunctiva. We report an atypical case of a GCA arising in the intraconal area of the orbit in a 65-year-old male patient. The tumor was excised in total by lateral orbitotomy. Histological and immunohistochemical features were consistent with the diagnosis of GCA. No recurrence was observed during the follow-up of over 2 years. GCA is a rare tumor that should be considered in the differential diagnosis of intraconal orbital tumors. Complete surgical removal is the current optimal treatment option.

  11. Unusual intraconal localization of orbital giant cell angiofibroma

    Directory of Open Access Journals (Sweden)

    Meryem Altin Ekin

    2018-01-01

    Full Text Available Giant cell angiofibroma (GCA is a recently reported rare soft-tissue tumor that can develop in various sites including orbit. Orbital GCAs were mainly located in the eyelid or extraconal regions such as lacrimal gland and conjunctiva. We report an atypical case of a GCA arising in the intraconal area of the orbit in a 65-year-old male patient. The tumor was excised in total by lateral orbitotomy. Histological and immunohistochemical features were consistent with the diagnosis of GCA. No recurrence was observed during the follow-up of over 2 years. GCA is a rare tumor that should be considered in the differential diagnosis of intraconal orbital tumors. Complete surgical removal is the current optimal treatment option.

  12. Transits of extrasolar moons around luminous giant planets

    Science.gov (United States)

    Heller, R.

    2016-04-01

    Beyond Earth-like planets, moons can be habitable, too. No exomoons have been securely detected, but they could be extremely abundant. Young Jovian planets can be as hot as late M stars, with effective temperatures of up to 2000 K. Transits of their moons might be detectable in their infrared photometric light curves if the planets are sufficiently separated (≳10 AU) from the stars to be directly imaged. The moons will be heated by radiation from their young planets and potentially by tidal friction. Although stellar illumination will be weak beyond 5 AU, these alternative energy sources could liquify surface water on exomoons for hundreds of Myr. A Mars-mass H2O-rich moon around β Pic b would have a transit depth of 1.5 × 10-3, in reach of near-future technology.

  13. TRANSITING PLANETS WITH LSST. II. PERIOD DETECTION OF PLANETS ORBITING 1 M{sub ⊙} HOSTS

    Energy Technology Data Exchange (ETDEWEB)

    Jacklin, Savannah [Department of Astrophysics and Planetary Science, Villanova University, Villanova, PA 19085 (United States); Lund, Michael B.; Stassun, Keivan G. [Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235 (United States); Pepper, Joshua [Department of Physics, Lehigh University, Bethlehem, PA 18015 (United States)

    2015-07-15

    The Large Synoptic Survey Telescope (LSST) will photometrically monitor ∼10{sup 9} stars for 10 years. The resulting light curves can be used to detect transiting exoplanets. In particular, as demonstrated by Lund et al., LSST will probe stellar populations currently undersampled in most exoplanet transit surveys, including out to extragalactic distances. In this paper we test the efficiency of the box-fitting least-squares (BLS) algorithm for accurately recovering the periods of transiting exoplanets using simulated LSST data. We model planets with a range of radii orbiting a solar-mass star at a distance of 7 kpc, with orbital periods ranging from 0.5 to 20 days. We find that standard-cadence LSST observations will be able to reliably recover the periods of Hot Jupiters with periods shorter than ∼3 days; however, it will remain a challenge to confidently distinguish these transiting planets from false positives. At the same time, we find that the LSST deep-drilling cadence is extremely powerful: the BLS algorithm successfully recovers at least 30% of sub-Saturn-size exoplanets with orbital periods as long as 20 days, and a simple BLS power criterion robustly distinguishes ∼98% of these from photometric (i.e., statistical) false positives.

  14. A Search for Giant Planet Companions to T Tauri Stars

    Science.gov (United States)

    2012-12-20

    detection – stars: pre-main sequence – techniques: radial velocities Online-only material: color figures 1. INTRODUCTION The discovery of over 760...exoplanets8 in the past twenty years has revealed that planetary systems are common and diverse. Pulsar planets (Wolszczan 1994), hot Jupiters (Mayor... discoveries , the processes underlying planet formation remain unclear. Lacking direct observational inputs, theorists must deduce formation mechanisms from

  15. Friends of hot Jupiters. I. A radial velocity search for massive, long-period companions to close-in gas giant planets

    Energy Technology Data Exchange (ETDEWEB)

    Knutson, Heather A.; Ngo, Henry; Johnson, John Asher [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States); Fulton, Benjamin J.; Howard, Andrew W. [Institute for Astronomy, University of Hawaii at Manoa, Honolulu, HI (United States); Montet, Benjamin T.; Kao, Melodie; Hinkley, Sasha; Morton, Timothy D.; Muirhead, Philip S. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, 1200 East California Boulevard, MC 249-17, Pasadena, CA 91125 (United States); Crepp, Justin R. [Department of Physics, University of Notre Dame, Notre Dame, IN (United States); Bakos, Gaspar Á. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ (United States); Batygin, Konstantin, E-mail: hknutson@caltech.edu [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States)

    2014-04-20

    In this paper we search for distant massive companions to known transiting gas giant planets that may have influenced the dynamical evolution of these systems. We present new radial velocity observations for a sample of 51 planets obtained using the Keck HIRES instrument, and find statistically significant accelerations in fifteen systems. Six of these systems have no previously reported accelerations in the published literature: HAT-P-10, HAT-P-22, HAT-P-29, HAT-P-32, WASP-10, and XO-2. We combine our radial velocity fits with Keck NIRC2 adaptive optics (AO) imaging data to place constraints on the allowed masses and orbital periods of the companions responsible for the detected accelerations. The estimated masses of the companions range between 1-500 M {sub Jup}, with orbital semi-major axes typically between 1-75 AU. A significant majority of the companions detected by our survey are constrained to have minimum masses comparable to or larger than those of the transiting planets in these systems, making them candidates for influencing the orbital evolution of the inner gas giant. We estimate a total occurrence rate of 51% ± 10% for companions with masses between 1-13 M {sub Jup} and orbital semi-major axes between 1-20 AU in our sample. We find no statistically significant difference between the frequency of companions to transiting planets with misaligned or eccentric orbits and those with well-aligned, circular orbits. We combine our expanded sample of radial velocity measurements with constraints from transit and secondary eclipse observations to provide improved measurements of the physical and orbital characteristics of all of the planets included in our survey.

  16. Some inner satellites of giant planets are still outgassing: Triton, Enceladus, Io

    Science.gov (United States)

    Kochemasov, Gennady G.

    2010-05-01

    Process of atmospheric formation in the Solar system continues. There are three celestial bodies (except Earth) still emitting considerable amounts of volatiles though these bodies' masses do not allow keeping appreciable amounts of emitted volatiles in their vicinity and creating real atmospheres. It was earlier shown that the wave oscillations in form of stationary waves more or less rapidly changing their phases (plus to minus and inversely) sweep out volatiles from planetary depths [1]. These stationary waves, proportional in their amplitudes to the radii of tectonic granules (Mercury πR/16, Venus πR/6, Earth πR/4, Mars πR/2) and inversely proportional to orbital frequencies, form the planetary surface relief range of which increases with the solar distance [2]. In the opposite direction increases the sweeping out force of these waves and, consequently, atmospheric masses increase [3]. In the satellite systems of the outer giant planets this regularity is preserved in that the inner satellites (even small as Enceladus) surprisingly continue to push out volatiles. To do so, really very thorough washing out of entire body should be executed by very fine oscillations. Very fast orbits (Triton - 5.9 days; Enceladus - 1.37 d.; Io - 1.769 d.) secure this. Titan with rather fast orbit (16 d.) has enough mass and gravity to create and keep an atmosphere. Triton has a tenuous nitrogen atmosphere with small amounts of methane. A part of its crust (the southern "continental" segment) is dotted with geysers believed to erupt nitrogen with some admixture of dust entrained from beneath the surface. The geyser plumes are up to 8 km high. There are many streaks of dark material laid down by the geyser activity. Enceladus spews out icy material from the south pole region called "Tiger stripes". Some of the tiny ice particles go into Saturn orbit, forming the doughnut-shaped E ring ("detached Enceladus' atmosphere"). Io has at the moment more than 150 active volcanoes making

  17. Kepler-91b: a planet at the end of its life. Planet and giant host star properties via light-curve variations

    Science.gov (United States)

    Lillo-Box, J.; Barrado, D.; Moya, A.; Montesinos, B.; Montalbán, J.; Bayo, A.; Barbieri, M.; Régulo, C.; Mancini, L.; Bouy, H.; Henning, T.

    2014-02-01

    Context. The evolution of planetary systems is intimately linked to the evolution of their host stars. Our understanding of the whole planetary evolution process is based on the wide planet diversity observed so far. Only a few tens of planets have been discovered orbiting stars ascending the red giant branch. Although several theories have been proposed, the question of how planets die remains open owing to the small number statistics, making it clear that the sample of planets around post-main sequence stars needs to be enlarged. Aims: In this work we study the giant star Kepler-91 (KOI-2133) in order to determine the nature of a transiting companion. This system was detected by the Kepler Space Telescope, which identified small dims in its light curve with a period of 6.246580 ± 0.000082 days. However, its planetary confirmation is needed due to the large pixel size of the Kepler camera, which can hide other stellar configurations able to mimic planet-like transit events. Methods: We analysed Kepler photometry to 1) re-calculate transit parameters; 2) study the light-curve modulations; and 3) to perform an asteroseismic analysis (accurate stellar parameter determination) by identifying solar-like oscillations on the periodogram. We also used a high-resolution and high signal-to-noise ratio spectrum obtained with the Calar Alto Fiber-fed Échelle spectrograph (CAFE) to measure stellar properties. Additionally, false-positive scenarios were rejected by obtaining high-resolution images with the AstraLux lucky imaging camera on the 2.2 m telescope at the Calar Alto Observatory. Results: We confirm the planetary nature of the object transiting the star Kepler-91 by deriving a mass of Mp=0.88+0.17-0.33 MJup and a planetary radius of Rp=1.384+0.011-0.054 RJup. Asteroseismic analysis produces a stellar radius of R⋆ = 6.30 ± 0.16 R⊙ and a mass of M⋆ = 1.31 ± 0.10 M⊙. We find that its eccentric orbit (e=0.066+0.013-0.017) is just 1.32+0.07-0.22 R⋆ away from

  18. Conditions of Passage and Entrapment of Terrestrial Planets in Spin-Orbit Resonances

    Science.gov (United States)

    2012-06-10

    May 25 ABSTRACT The dynamical evolution of terrestrial planets resembling Mercury in the vicinity of spin-orbit resonances is investigated using... planet and assuming a zero obliquity. We find that a Mercury -like planet with a current value of orbital eccentricity (0.2056) is always captured in... Mercury rarely fails to align itself into this state of unstable equilibrium before it traverses 2:1 resonance. Key words: celestial mechanics – planets

  19. X-rays from HD 100546- A Young Herbig Star Orbited by Giant Protoplanets

    Science.gov (United States)

    Skinner, Stephen

    A protoplanetary system consisting of at least two giant planets has beendetected orbiting the young nearby Herbig Be star HD 100546. The inner protoplanet orbits inside a gap within 14 AU of the star and is exposed to strong stellar UV and X-ray radiation. The detection of very warm disk gas provides evidence that stellar heating is affecting physical conditions in the planet-forming environment. We obtained a deep 74 ksec X-ray observation of HD 100546 in 2015 with XMM-Newton yielding an excellent-quality spectrum. We propose here to analyze the XMM-Newton data to determine the X-ray ionization and heating rates in the disk. X-ray ionization and heating affect the thermal and chemical structure of the disk and are key parameters for constructing realistic planet formation models. We are requesting ADAP funding to support the analysis and publication of this valuable XMM-Newton data set, which is now in the public archive.

  20. Modeling the Formation of Giant Planet Cores I: Evaluating Key Processes

    OpenAIRE

    Levison, H. F.; Thommes, E.; Duncan, M. J.

    2009-01-01

    One of the most challenging problems we face in our understanding of planet formation is how Jupiter and Saturn could have formed before the the solar nebula dispersed. The most popular model of giant planet formation is the so-called 'core accretion' model. In this model a large planetary embryo formed first, mainly by two-body accretion. This is then followed by a period of inflow of nebular gas directly onto the growing planet. The core accretion model has an Achilles heel, namely the very...

  1. The physical characteristics of the surface of the satellites and rings of giant planets

    Science.gov (United States)

    Vidmachenko, A. P.; Morozhenko, O. V.

    2017-10-01

    The book gives the main results of the study of the optical characteristics of the field diffusely reflected radiation and physical characteristics of the surface of the satellites of giant planets and their rings. The publication is intended for teachers of higher educational institutions, students - graduate students and professionals who specialize in experimental physics and astrophysics and solar system surfaces.

  2. SOLUBILITY OF IRON IN METALLIC HYDROGEN AND STABILITY OF DENSE CORES IN GIANT PLANETS

    International Nuclear Information System (INIS)

    Wahl, Sean M.; Wilson, Hugh F.; Militzer, Burkhard

    2013-01-01

    The formation of the giant planets in our solar system, and likely a majority of giant exoplanets, is most commonly explained by the accretion of nebular hydrogen and helium onto a large core of terrestrial-like composition. The fate of this core has important consequences for the evolution of the interior structure of the planet. It has recently been shown that H 2 O, MgO, and SiO 2 dissolve in liquid metallic hydrogen at high temperature and pressure. In this study, we perform ab initio calculations to study the solubility of an innermost metallic core. We find dissolution of iron to be strongly favored above 2000 K over the entire pressure range (0.4-4 TPa) considered. We compare with and summarize the results for solubilities on other probable core constituents. The calculations imply that giant planet cores are in thermodynamic disequilibrium with surrounding layers, promoting erosion and redistribution of heavy elements. Differences in solubility behavior between iron and rock may influence evolution of interiors, particularly for Saturn-mass planets. Understanding the distribution of iron and other heavy elements in gas giants may be relevant in understanding mass-radius relationships, as well as deviations in transport properties from pure hydrogen-helium mixtures

  3. Giant planet migration during FU Orionis outbursts: 1D disc models

    Science.gov (United States)

    Dunhill, A. C.

    2018-05-01

    I present the results of semi-analytic calculations of migrating planets in young, outbursting circumstellar discs. Formed far out in the disc via gravitational fragmentation early on in its lifetime, these planets typically migrate at very slow rates and are therefore mostly expected to remain at large radii (such as is the case in HR 8799). I show that changes in the disc structure during FUor outbursts affect the planet's ability to maintain a gap and can allow a massive giant planet's semimajor axis to reduce by almost 5 per cent in a single outburst under the most optimistic conditions. Given that a single disc will likely undergo ˜10 such outbursts this process can significantly alter the expected radial distribution for GI-formed planets.

  4. REVISITING THE MICROLENSING EVENT OGLE 2012-BLG-0026: A SOLAR MASS STAR WITH TWO COLD GIANT PLANETS

    International Nuclear Information System (INIS)

    Beaulieu, J.-P.; Batista, V.; Marquette, J.-B.

    2016-01-01

    Two cold gas giant planets orbiting a G-type main-sequence star in the galactic disk were previously discovered in the high-magnification microlensing event OGLE-2012-BLG-0026. Here, we present revised host star flux measurements and a refined model for the two-planet system using additional light curve data. We performed high angular resolution adaptive optics imaging with the Keck and Subaru telescopes at two epochs while the source star was still amplified. We detected the lens flux, H = 16.39 ± 0.08. The lens, a disk star, is brighter than predicted from the modeling in the original study. We revisited the light curve modeling using additional photometric data from the B and C telescope in New Zealand and CTIO 1.3 m H -band light curve. We then include the Keck and Subaru adaptive optic observation constraints. The system is composed of a ∼4–9 Gyr lens star of M lens = 1.06 ± 0.05 M ⊙ at a distance of D lens = 4.0 ± 0.3 kpc, orbited by two giant planets of 0.145 ± 0.008 M Jup and 0.86 ± 0.06 M Jup , with projected separations of 4.0 ± 0.5 au and 4.8 ± 0.7 au, respectively. Because the lens is brighter than the source star by 16 ± 8% in H, with no other blend within one arcsec, it will be possible to estimate its metallicity using subsequent IR spectroscopy with 8–10 m class telescopes. By adding a constraint on the metallicity it will be possible to refine the age of the system.

  5. Revisiting the Microlensing Event OGLE 2012-BLG-0026: A Solar Mass Star with Two Cold Giant Planets

    Science.gov (United States)

    Beaulieu, J.-P.; Bennett, D. P.; Batista, V.; Fukui, A.; Marquette, J.-B.; Brillant, S.; Cole, A. A.; Rogers, L. A.; Sumi, T.; Abe, F.

    2016-01-01

    Two cold gas giant planets orbiting a G-type main-sequence star in the galactic disk were previously discovered in the high-magnification microlensing event OGLE-2012-BLG-0026. Here, we present revised host star flux measurements and a refined model for the two-planet system using additional light curve data. We performed high angular resolution adaptive optics imaging with the Keck and Subaru telescopes at two epochs while the source star was still amplified. We detected the lens flux, H = 16.39 +/- 0.08. The lens, a disk star, is brighter than predicted from the modeling in the original study. We revisited the light curve modeling using additional photometric data from the B and C telescope in New Zealand and CTIO 1.3 m H-band light curve. We then include the Keck and Subaru adaptive optic observation constraints. The system is composed of an approximately 4-9 Gyr lens star of M(sub lens) = 1.06 +/- 0.05 solar mass at a distance of D(sub lens) = 4.0 +/- 0.3 kpc, orbited by two giant planets of 0.145 +/- 0.008 M(sub Jup) and 0.86 +/- 0.06 M(sub Jup), with projected separations of 4.0 +/- 0.5 au and 4.8 +/- 0.7 au, respectively. Because the lens is brighter than the source star by 16 +/- 8% in H, with no other blend within one arcsec, it will be possible to estimate its metallicity using subsequent IR spectroscopy with 8-10 m class telescopes. By adding a constraint on the metallicity it will be possible to refine the age of the system.

  6. ANALYTICAL SOLUTIONS FOR RADIATIVE TRANSFER: IMPLICATIONS FOR GIANT PLANET FORMATION BY DISK INSTABILITY

    International Nuclear Information System (INIS)

    Boss, Alan P.

    2009-01-01

    The disk instability mechanism for giant planet formation is based on the formation of clumps in a marginally gravitationally unstable protoplanetary disk, which must lose thermal energy through a combination of convection and radiative cooling if they are to survive and contract to become giant protoplanets. While there is good observational support for forming at least some giant planets by disk instability, the mechanism has become theoretically contentious, with different three-dimensional radiative hydrodynamics codes often yielding different results. Rigorous code testing is required to make further progress. Here we present two new analytical solutions for radiative transfer in spherical coordinates, suitable for testing the code employed in all of the Boss disk instability calculations. The testing shows that the Boss code radiative transfer routines do an excellent job of relaxing to and maintaining the analytical results for the radial temperature and radiative flux profiles for a spherical cloud with high or moderate optical depths, including the transition from optically thick to optically thin regions. These radial test results are independent of whether the Eddington approximation, diffusion approximation, or flux-limited diffusion approximation routines are employed. The Boss code does an equally excellent job of relaxing to and maintaining the analytical results for the vertical (θ) temperature and radiative flux profiles for a disk with a height proportional to the radial distance. These tests strongly support the disk instability mechanism for forming giant planets.

  7. On the minimum core mass for giant planet formation at wide separations

    International Nuclear Information System (INIS)

    Piso, Ana-Maria A.; Youdin, Andrew N.

    2014-01-01

    In the core accretion hypothesis, giant planets form by gas accretion onto solid protoplanetary cores. The minimum (or critical) core mass to form a gas giant is typically quoted as 10 M ⊕ . The actual value depends on several factors: the location in the protoplanetary disk, atmospheric opacity, and the accretion rate of solids. Motivated by ongoing direct imaging searches for giant planets, this study investigates core mass requirements in the outer disk. To determine the fastest allowed rates of gas accretion, we consider solid cores that no longer accrete planetesimals, as this would heat the gaseous envelope. Our spherical, two-layer atmospheric cooling model includes an inner convective region and an outer radiative zone that matches onto the disk. We determine the minimum core mass for a giant planet to form within a typical disk lifetime of 3 Myr. The minimum core mass declines with disk radius, from ∼8.5 M ⊕ at 5 AU to ∼3.5 M ⊕ at 100 AU, with standard interstellar grain opacities. Lower temperatures in the outer disk explain this trend, while variations in disk density are less influential. At all distances, a lower dust opacity or higher mean molecular weight reduces the critical core mass. Our non-self-gravitating, analytic cooling model reveals that self-gravity significantly affects early atmospheric evolution, starting when the atmosphere is only ∼10% as massive as the core.

  8. The Effect of Protoplanetary Disk Cooling Times on the Formation of Gas Giant Planets by Gravitational Instability

    Energy Technology Data Exchange (ETDEWEB)

    Boss, Alan P., E-mail: aboss@carnegiescience.edu [Department of Terrestrial Magnetism, Carnegie Institution for Science, 5241 Broad Branch Road, NW, Washington, DC 20015-1305 (United States)

    2017-02-10

    Observational evidence exists for the formation of gas giant planets on wide orbits around young stars by disk gravitational instability, but the roles of disk instability and core accretion for forming gas giants on shorter period orbits are less clear. The controversy extends to population synthesis models of exoplanet demographics and to hydrodynamical models of the fragmentation process. The latter refers largely to the handling of radiative transfer in three-dimensional (3D) hydrodynamical models, which controls heating and cooling processes in gravitationally unstable disks, and hence dense clump formation. A suite of models using the β cooling approximation is presented here. The initial disks have masses of 0.091 M {sub ⊙} and extend from 4 to 20 au around a 1 M {sub ⊙} protostar. The initial minimum Toomre Qi values range from 1.3 to 2.7, while β ranges from 1 to 100. We show that the choice of Q {sub i} is equal in importance to the β value assumed: high Q{sub i} disks can be stable for small β , when the initial disk temperature is taken as a lower bound, while low Q{sub i} disks can fragment for high β . These results imply that the evolution of disks toward low Q{sub i} must be taken into account in assessing disk fragmentation possibilities, at least in the inner disk, i.e., inside about 20 au. The models suggest that if low Q{sub i} disks can form, there should be an as yet largely undetected population of gas giants orbiting G dwarfs between about 6 au and 16 au.

  9. Extrasolar planets : - From gaseous giant planets to rocky planets. - Steps towards the detection of life biomarkers.

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    Today, great efforts are made to detect Earth-mass rocky planets in the so-called habitable zone of their host stars. What are the difficulties, the instrumental projects  and the already detected interesting systems ?

  10. Masses, radii, and orbits of small Kepler planets

    DEFF Research Database (Denmark)

    Marcy, Geoffrey W.; Isaacson, Howard; Howard, Andrew W.

    2014-01-01

    We report on the masses, sizes, and orbits of the planets orbiting 22 Kepler stars. There are 49 planet candidates around these stars, including 42 detected through transits and 7 revealed by precise Doppler measurements of the host stars. Based on an analysis of the Kepler brightness measurement...

  11. [Extrasolar terrestrial planets and possibility of extraterrestrial life].

    Science.gov (United States)

    Ida, Shigeru

    2003-12-01

    Recent development of research on extrasolar planets are reviewed. About 120 extrasolar Jupiter-mass planets have been discovered through the observation of Doppler shift in the light of their host stars that is caused by acceleration due to planet orbital motions. Although the extrasolar planets so far observed may be limited to gas giant planets and their orbits differ from those of giant planets in our Solar system (Jupiter and Saturn), the theoretically predicted probability of existence of extrasolar terrestrial planets that can have liquid water ocean on their surface is comparable to that of detectable gas giant planets. Based on the number of extrasolar gas giants detected so far, about 100 life-sustainable planets may exist within a range of 200 light years. Indirect observation of extrasolar terrestrial planets would be done with space telescopes within several years and direct one may be done within 20 years. The latter can detect biomarkers on these planets as well.

  12. NH4SH and cloud cover in the atmospheres of the giant planets

    Science.gov (United States)

    Ibragimov, K. Iu.; Solodovnik, A. A.

    1991-02-01

    The probability of the formation of NH4SH and (NH4)2S is examined on the basis of the Le Chatelier principle. It is shown that it is very doubtful if NH4SH can be created in the atmospheres of the giant planets in quantities sufficient for cloud formation. Thus (NH4)2S is considered as a more likely candidate for cloud formation in the atmospheres of these planets, inasmuch as the conditions for its production there are more favorable.

  13. Modelling of deep gaps created by giant planets in protoplanetary disks

    Science.gov (United States)

    Kanagawa, Kazuhiro D.; Tanaka, Hidekazu; Muto, Takayuki; Tanigawa, Takayuki

    2017-12-01

    A giant planet embedded in a protoplanetary disk creates a gap. This process is important for both theory and observation. Using results of a survey for a wide parameter range with two-dimensional hydrodynamic simulations, we constructed an empirical formula for the gap structure (i.e., the radial surface density distribution), which can reproduce the gap width and depth obtained by two-dimensional simulations. This formula enables us to judge whether an observed gap is likely to be caused by an embedded planet or not. The propagation of waves launched by the planet is closely connected to the gap structure. It makes the gap wider and shallower as compared with the case where an instantaneous wave damping is assumed. The hydrodynamic simulations show that the waves do not decay immediately at the launching point of waves, even when the planet is as massive as Jupiter. Based on the results of hydrodynamic simulations, we also obtained an empirical model of wave propagation and damping in cases of deep gaps. The one-dimensional gap model with our wave propagation model is able to reproduce the gap structures in hydrodynamic simulations well. In the case of a Jupiter-mass planet, we also found that the waves with a smaller wavenumber (e.g., m = 2) are excited and transport the angular momentum to a location far away from the planet. The wave with m = 2 is closely related with a secondary wave launched by a site opposite from the planet.

  14. THEY MIGHT BE GIANTS: LUMINOSITY CLASS, PLANET OCCURRENCE, AND PLANET-METALLICITY RELATION OF THE COOLEST KEPLER TARGET STARS

    Energy Technology Data Exchange (ETDEWEB)

    Mann, Andrew W.; Hilton, Eric J. [Institute for Astronomy, University of Hawaii, Honolulu, HI 96822 (United States); Gaidos, Eric [Department of Geology and Geophysics, University of Hawaii, Honolulu, HI 96822 (United States); Lepine, Sebastien, E-mail: amann@ifa.hawaii.edu [Department of Astrophysics, American Museum of Natural History, New York, NY 10024 (United States)

    2012-07-01

    We estimate the stellar parameters of late K- and early M-type Kepler target stars. We obtain medium-resolution visible spectra of 382 stars with K{sub P} - J > 2 ({approx_equal}K5 and later spectral type). We determine luminosity class by comparing the strength of gravity-sensitive indices (CaH, K I, Ca II, and Na I) to their strength in a sample of stars of known luminosity class. We find that giants constitute 96% {+-} 1% of the bright (K{sub P} < 14) Kepler target stars, and 7% {+-} 3% of dim (K{sub P} > 14) stars, significantly higher than fractions based on the stellar parameters quoted in the Kepler Input Catalog (KIC). The KIC effective temperatures are systematically (110{sup +15}{sub -35} K) higher than temperatures we determine from fitting our spectra to PHOENIX stellar models. Through Monte Carlo simulations of the Kepler exoplanet candidate population, we find a planet occurrence of 0.36 {+-} 0.08 when giant stars are properly removed, somewhat higher than when a KIC log g > 4 criterion is used (0.27 {+-} 0.05). Last, we show that there is no significant difference in g - r color (a probe of metallicity) between late-type Kepler stars with transiting Earth-to-Neptune-size exoplanet candidates and dwarf stars with no detected transits. We show that a previous claimed offset between these two populations is most likely an artifact of including a large number of misidentified giants.

  15. Modules for Experiments in Stellar Astrophysics (MESA): Giant Planets, Oscillations, Rotation, and Massive Stars

    OpenAIRE

    Paxton, Bill; Cantiello, Matteo; Arras, Phil; Bildsten, Lars; Brown, Edward F.; Dotter, Aaron; Mankovich, Christopher; Montgomery, M. H.; Stello, Dennis; Timmes, F. X.; Townsend, Richard

    2013-01-01

    We substantially update the capabilities of the open source software package Modules for Experiments in Stellar Astrophysics (MESA), and its one-dimensional stellar evolution module, MESA Star. Improvements in MESA Star's ability to model the evolution of giant planets now extends its applicability down to masses as low as one-tenth that of Jupiter. The dramatic improvement in asteroseismology enabled by the space-based Kepler and CoRoT missions motivates our full coupling of the ADIPLS adiab...

  16. Opportunities for Laboratory Opacity Chemistry Studies to Facilitate Characterization of Young Giant Planets and Brown Dwarfs

    Science.gov (United States)

    Marley, Mark; Freedman, Richard S.

    2015-01-01

    The thermal emission spectra of young giant planets is shaped by the opacity of atoms and molecules residing in their atmospheres. While great strides have been made in improving the opacities of important molecules, particularly NH3 and CH4, at high temperatures, much more work is needed to understand the opacity and chemistry of atomic Na and K. The highly pressure broadened fundamental band of Na and K in the optical stretches into the near-infrared, strongly influencing the shape of the Y and K spectral bands. Since young giant planets are bright in these bands it is important to understand the influences on the spectral shape. Discerning gravity and atmospheric composition is difficult, if not impossible, without both good atomic opacities as well as an excellent understanding of the relevant atmospheric chemistry. Since Na and K condense at temperatures near 500 to 600 K, the chemistry of the condensation process must be well understood as well, particularly any disequilibrium chemical pathways. Comparisons of the current generation of sophisticated atmospheric models and available data, however, reveal important shortcomings in the models. We will review the current state of observations and theory of young giant planets and will discuss these and other specific examples where improved laboratory measurements for alkali compounds have the potential of substantially improving our understanding of these atmospheres.

  17. A planet in a polar orbit of 1.4 solar-mass star

    Directory of Open Access Journals (Sweden)

    Guenther E.W.

    2015-01-01

    Full Text Available Although more than a thousand transiting extrasolar planets have been discovered, only very few of them orbit stars that are more massive than the Sun. The discovery of such planets is interesting, because they have formed in disks that are more massive but had a shorter life time than those of solar-like stars. Studies of planets more massive than the Sun thus tell us how the properties of the proto-planetary disks effect the formation of planets. Another aspect that makes these planets interesting is that they have kept their original orbital inclinations. By studying them we can thus find out whether the orbital axes planets are initially aligned to the stars rotational axes, or not. Here we report on the discovery of a planet of a 1.4 solar-mass star with a period of 5.6 days in a polar orbit made by CoRoT. This new planet thus is one of the few known close-in planets orbiting a star that is substantially more massive than the Sun.

  18. M2K. II. A TRIPLE-PLANET SYSTEM ORBITING HIP 57274

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Debra A.; Giguere, Matthew J.; Moriarty, John; Brewer, John; Spronck, Julien F. P.; Schwab, Christian; Szymkowiak, Andrew [Department of Astronomy, Yale University, New Haven, CT 06511 (United States); Gaidos, Eric [Department of Geology and Geophysics, University of Hawaii, Honolulu, HI 96822 (United States); Howard, Andrew W.; Marcy, Geoffrey W. [Department of Astronomy, University of California at Berkeley, Berkeley, CA 94720 (United States); Johnson, John A. [Department of Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Wright, Jason T. [Center for Exoplanets and Habitable Worlds, 525 Davey Lab, The Pennsylvania State University, University Park, PA 16803 (United States); Valenti, Jeff A. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Piskunov, Nikolai [Department of Astronomy and Space Physics, Uppsala University, Box 515, 751 20 Uppsala (Sweden); Clubb, Kelsey I.; Isaacson, Howard [Pufendorf Institute for Advanced Studies, Lund University, Lund (Sweden); Apps, Kevin [75B Cheyne Walk, Surrey RH6 7LR (United Kingdom); Lepine, Sebastien [American Museum of Natural History, New York, NY 10023 (United States); Mann, Andrew, E-mail: debra.fischer@yale.edu [Institute for Astronomy, University of Hawaii, Honolulu, HI 96822 (United States)

    2012-01-20

    Doppler observations from Keck Observatory have revealed a triple-planet system orbiting the nearby K4V star, HIP 57274. The inner planet, HIP 57274b, is a super-Earth with Msin i = 11.6 M{sub Circled-Plus} (0.036 M{sub Jup}), an orbital period of 8.135 {+-} 0.004 days, and slightly eccentric orbit e = 0.19 {+-} 0.1. We calculate a transit probability of 6.5% for the inner planet. The second planet has Msin i = 0.4 M{sub Jup} with an orbital period of 32.0 {+-} 0.02 days in a nearly circular orbit (e = 0.05 {+-} 0.03). The third planet has Msin i = 0.53 M{sub Jup} with an orbital period of 432 {+-} 8 days (1.18 years) and an eccentricity e = 0.23 {+-} 0.03. This discovery adds to the number of super-Earth mass planets with M sin i < 12 M{sub Circled-Plus} that have been detected with Doppler surveys. We find that 56% {+-} 18% of super-Earths are members of multi-planet systems. This is certainly a lower limit because of observational detectability limits, yet significantly higher than the fraction of Jupiter mass exoplanets, 20% {+-} 8%, that are members of Doppler-detected, multi-planet systems.

  19. M2K. II. A TRIPLE-PLANET SYSTEM ORBITING HIP 57274

    International Nuclear Information System (INIS)

    Fischer, Debra A.; Giguere, Matthew J.; Moriarty, John; Brewer, John; Spronck, Julien F. P.; Schwab, Christian; Szymkowiak, Andrew; Gaidos, Eric; Howard, Andrew W.; Marcy, Geoffrey W.; Johnson, John A.; Wright, Jason T.; Valenti, Jeff A.; Piskunov, Nikolai; Clubb, Kelsey I.; Isaacson, Howard; Apps, Kevin; Lepine, Sebastien; Mann, Andrew

    2012-01-01

    Doppler observations from Keck Observatory have revealed a triple-planet system orbiting the nearby K4V star, HIP 57274. The inner planet, HIP 57274b, is a super-Earth with Msin i = 11.6 M ⊕ (0.036 M Jup ), an orbital period of 8.135 ± 0.004 days, and slightly eccentric orbit e = 0.19 ± 0.1. We calculate a transit probability of 6.5% for the inner planet. The second planet has Msin i = 0.4 M Jup with an orbital period of 32.0 ± 0.02 days in a nearly circular orbit (e = 0.05 ± 0.03). The third planet has Msin i = 0.53 M Jup with an orbital period of 432 ± 8 days (1.18 years) and an eccentricity e = 0.23 ± 0.03. This discovery adds to the number of super-Earth mass planets with M sin i ⊕ that have been detected with Doppler surveys. We find that 56% ± 18% of super-Earths are members of multi-planet systems. This is certainly a lower limit because of observational detectability limits, yet significantly higher than the fraction of Jupiter mass exoplanets, 20% ± 8%, that are members of Doppler-detected, multi-planet systems.

  20. SECRETLY ECCENTRIC: THE GIANT PLANET AND ACTIVITY CYCLE OF GJ 328

    International Nuclear Information System (INIS)

    Robertson, Paul; Endl, Michael; Cochran, William D.; MacQueen, Phillip J.; Boss, Alan P.

    2013-01-01

    We announce the discovery of a ∼2 Jupiter-mass planet in an eccentric 11 yr orbit around the K7/M0 dwarf GJ 328. Our result is based on 10 years of radial velocity (RV) data from the Hobby-Eberly and Harlan J. Smith telescopes at McDonald Observatory, and from the Keck Telescope at Mauna Kea. Our analysis of GJ 328's magnetic activity via the Na I D features reveals a long-period stellar activity cycle, which creates an additional signal in the star's RV curve with amplitude 6-10 m s –1 . After correcting for this stellar RV contribution, we see that the orbit of the planet is more eccentric than suggested by the raw RV data. GJ 328b is currently the most massive, longest-period planet discovered around a low-mass dwarf

  1. PLANET-PLANET SCATTERING IN PLANETESIMAL DISKS

    International Nuclear Information System (INIS)

    Raymond, Sean N.; Armitage, Philip J.; Gorelick, Noel

    2009-01-01

    We study the final architecture of planetary systems that evolve under the combined effects of planet-planet and planetesimal scattering. Using N-body simulations we investigate the dynamics of marginally unstable systems of gas and ice giants both in isolation and when the planets form interior to a planetesimal belt. The unstable isolated systems evolve under planet-planet scattering to yield an eccentricity distribution that matches that observed for extrasolar planets. When planetesimals are included the outcome depends upon the total mass of the planets. For M tot ∼> 1 M J the final eccentricity distribution remains broad, whereas for M tot ∼ J a combination of divergent orbital evolution and recircularization of scattered planets results in a preponderance of nearly circular final orbits. We also study the fate of marginally stable multiple planet systems in the presence of planetesimal disks, and find that for high planet masses the majority of such systems evolve into resonance. A significant fraction leads to resonant chains that are planetary analogs of Jupiter's Galilean satellites. We predict that a transition from eccentric to near-circular orbits will be observed once extrasolar planet surveys detect sub-Jovian mass planets at orbital radii of a ≅ 5-10 AU.

  2. Challenges in forming the solar system's giant planet cores via pebble accretion

    International Nuclear Information System (INIS)

    Kretke, K. A.; Levison, H. F.

    2014-01-01

    Though ∼10 M ⊕ mass rocky/icy cores are commonly held as a prerequisite for the formation of gas giants, theoretical models still struggle to explain how these embryos can form within the lifetimes of gaseous circumstellar disks. In recent years, aerodynamic-aided accretion of 'pebbles', objects ranging from centimeters to meters in size, has been suggested as a potential solution to this long-standing problem. While pebble accretion has been demonstrated to be extremely effective in local simulations that look at the detailed behavior of these pebbles in the vicinity of a single planetary embryo, to date there have been no global simulations demonstrating the effectiveness of pebble accretion in a more complicated, multi-planet environment. Therefore, we have incorporated the aerodynamic-aided accretion physics into LIPAD, a Lagrangian code that can follow the collisional/accretional/dynamical evolution of a protoplanetary system, to investigate how pebble accretion manifests itself in the larger planet formation picture. We find that under generic circumstances, pebble accretion naturally leads to an 'oligarchic' type of growth in which a large number of planetesimals grow to similar-sized planets. In particular, our simulations tend to form hundreds of Mars- and Earth-mass objects between 4 and 10 AU. While merging of some oligarchs may grow massive enough to form giant planet cores, leftover oligarchs lead to planetary systems that cannot be consistent with our own solar system. We investigate various ideas presented in the literature (including evaporation fronts and planet traps) and find that none easily overcome this tendency toward oligarchic growth.

  3. Exploring H2O Prominence in Reflection Spectra of Cool Giant Planets

    Science.gov (United States)

    MacDonald, Ryan J.; Marley, Mark S.; Fortney, Jonathan J.; Lewis, Nikole K.

    2018-05-01

    The H2O abundance of a planetary atmosphere is a powerful indicator of formation conditions. Inferring H2O in the solar system giant planets is challenging, due to condensation depleting the upper atmosphere of water vapor. Substantially warmer hot Jupiter exoplanets readily allow detections of H2O via transmission spectroscopy, but such signatures are often diminished by the presence of clouds composed of other species. In contrast, highly scattering water clouds can brighten planets in reflected light, enhancing molecular signatures. Here, we present an extensive parameter space survey of the prominence of H2O absorption features in reflection spectra of cool (T eff clouds brighten the planet: T eff ∼ 150 K, g ≳ 20 ms‑2, f sed ≳ 3, m ≲ 10× solar. In contrast, planets with g ≲ 20 ms‑2 and T eff ≳ 180 K display substantially prominent H2O features embedded in the Rayleigh scattering slope from 0.4 to 0.73 μm over a wide parameter space. High f sed enhances H2O features around 0.94 μm, and enables these features to be detected at lower temperatures. High m results in dampened H2O absorption features, due to water vapor condensing to form bright, optically thick clouds that dominate the continuum. We verify these trends via self-consistent modeling of the low-gravity exoplanet HD 192310c, revealing that its reflection spectrum is expected to be dominated by H2O absorption from 0.4 to 0.73 μm for m ≲ 10× solar. Our results demonstrate that H2O is manifestly detectable in reflected light spectra of cool giant planets only marginally warmer than Jupiter, providing an avenue to directly constrain the C/O and O/H ratios of a hitherto unexplored population of exoplanetary atmospheres.

  4. Planet Formation in Disks with Inclined Binary Companions: Can Primordial Spin-Orbit Misalignment be Produced?

    Science.gov (United States)

    Zanazzi, J. J.; Lai, Dong

    2018-04-01

    Many hot Jupiter (HJ) systems have been observed to have their stellar spin axis misaligned with the planet's orbital angular momentum axis. The origin of this spin-orbit misalignment and the formation mechanism of HJs remain poorly understood. A number of recent works have suggested that gravitational interactions between host stars, protoplanetary disks, and inclined binary companions may tilt the stellar spin axis with respect to the disk's angular angular momentum axis, producing planetary systems with misaligned orbits. These previous works considered idealized disk evolution models and neglected the gravitational influence of newly formed planets. In this paper, we explore how disk photoevaporation and planet formation and migration affect the inclination evolution of planet-star-disk-binary systems. We take into account planet-disk interactions and the gravitational spin-orbit coupling between the host star and the planet. We find that the rapid depletion of the inner disk via photoevaporation reduces the excitation of stellar obliquities. Depending on the formation and migration history of HJs, the spin-orbit coupling between the star and the planet may reduces and even completely suppress the excitation of stellar obliquities. Our work constrains the formation/migration history of HJs. On the other hand, planetary systems with "cold" Jupiters or close-in super-earths may experience excitation of stellar obliquities in the presence of distant inclined companions.

  5. DISCOVERY AND ATMOSPHERIC CHARACTERIZATION OF GIANT PLANET KEPLER-12b: AN INFLATED RADIUS OUTLIER

    International Nuclear Information System (INIS)

    Fortney, Jonathan J.; Nutzman, Philip; Demory, Brice-Olivier; Désert, Jean-Michel; Buchhave, Lars A.; Charbonneau, David; Fressin, François; Rowe, Jason; Caldwell, Douglas A.; Jenkins, Jon M.; Marcy, Geoffrey W.; Isaacson, Howard; Howard, Andrew; Knutson, Heather A.; Ciardi, David; Gautier, Thomas N.; Batalha, Natalie M.; Bryson, Stephen T.; Howell, Steve B.; Everett, Mark

    2011-01-01

    We report the discovery of planet Kepler-12b (KOI-20), which at 1.695 ± 0.030 R J is among the handful of planets with super-inflated radii above 1.65 R J . Orbiting its slightly evolved G0 host with a 4.438 day period, this 0.431 ± 0.041 M J planet is the least irradiated within this largest-planet-radius group, which has important implications for planetary physics. The planet's inflated radius and low mass lead to a very low density of 0.111 ± 0.010 g cm –3 . We detect the occultation of the planet at a significance of 3.7σ in the Kepler bandpass. This yields a geometric albedo of 0.14 ± 0.04; the planetary flux is due to a combination of scattered light and emitted thermal flux. We use multiple observations with Warm Spitzer to detect the occultation at 7σ and 4σ in the 3.6 and 4.5 μm bandpasses, respectively. The occultation photometry timing is consistent with a circular orbit at e < 0.01 (1σ) and e < 0.09 (3σ). The occultation detections across the three bands favor an atmospheric model with no dayside temperature inversion. The Kepler occultation detection provides significant leverage, but conclusions regarding temperature structure are preliminary, given our ignorance of opacity sources at optical wavelengths in hot Jupiter atmospheres. If Kepler-12b and HD 209458b, which intercept similar incident stellar fluxes, have the same heavy-element masses, the interior energy source needed to explain the large radius of Kepler-12b is three times larger than that of HD 209458b. This may suggest that more than one radius-inflation mechanism is at work for Kepler-12b or that it is less heavy-element rich than other transiting planets.

  6. The World is Spinning: Constraining the Origin of Supermassive Gas Giant Planets at Wide Separations Using Planetary Spin

    Science.gov (United States)

    Bryan, Marta; Knutson, Heather; Batygin, Konstantin; Benneke, Björn; Bowler, Brendan

    2017-01-01

    Planetary spin can inform our understanding of planet accretion histories, which determine final masses and atmospheric compositions, as well as the formation of moons and rings. At present, the physics behind how gas giant planets spin up is still very poorly understood. We know that when giant planets form, they accrete material and angular momentum via a circumplanetary disk, causing the planet to spin up. In order to prevent planet spins from reaching break-up velocity, some mechanism must regulate these spins. However, there is currently no well-formulated picture for how planet spins evolve. This is in part due to the fact that there are very few measurements of giant planet spin rates currently available. Outside the solar system, to date there has only been one published spin measurement of a directly imaged planet, beta Pic b. We use Keck/NIRSPEC to measure spin rates for a sample of bound and free-floating directly imaged planetary mass objects, providing a first look at the distribution of spin rates for these objects.

  7. Solar flux incident on an orbiting surface after reflection from a planet

    Science.gov (United States)

    Modest, M. F.

    1980-01-01

    Algorithms describing the solar radiation impinging on an infinitesimal surface after reflection from a gray and diffuse planet are derived. The following conditions apply: only radiation from the sunny half of the planet is taken into account; the radiation must fall on the top of the orbiting surface, and radiation must come from that part of the planet that can be seen from the orbiting body. A simple approximate formula is presented which displays excellent accuracy for all significant situations, with an error which is always less than 5% of the maximum possible reflected flux. Attention is also given to solar albedo flux on a surface directly facing the planet, the influence of solar position on albedo flux, and to solar albedo flux as a function of the surface-planet tilt angle.

  8. VLT/SPHERE robust astrometry of the HR8799 planets at milliarcsecond-level accuracy. Orbital architecture analysis with PyAstrOFit

    Science.gov (United States)

    Wertz, O.; Absil, O.; Gómez González, C. A.; Milli, J.; Girard, J. H.; Mawet, D.; Pueyo, L.

    2017-02-01

    Context. HR8799 is orbited by at least four giant planets, making it a prime target for the recently commissioned Spectro-Polarimetric High-contrast Exoplanet REsearch (VLT/SPHERE). As such, it was observed on five consecutive nights during the SPHERE science verification in December 2014. Aims: We aim to take full advantage of the SPHERE capabilities to derive accurate astrometric measurements based on H-band images acquired with the Infra-Red Dual-band Imaging and Spectroscopy (IRDIS) subsystem, and to explore the ultimate astrometric performance of SPHERE in this observing mode. We also aim to present a detailed analysis of the orbital parameters for the four planets. Methods: We performed thorough post-processing of the IRDIS images with the Vortex Imaging Processing (VIP) package to derive a robust astrometric measurement for the four planets. This includes the identification and careful evaluation of the different contributions to the error budget, including systematic errors. Combining our astrometric measurements with the ones previously published in the literature, we constrain the orbital parameters of the four planets using PyAstrOFit, our new open-source python package dedicated to orbital fitting using Bayesian inference with Monte-Carlo Markov Chain sampling. Results: We report the astrometric positions for epoch 2014.93 with an accuracy down to 2.0 mas, mainly limited by the astrometric calibration of IRDIS. For each planet, we derive the posterior probability density functions for the six Keplerian elements and identify sets of highly probable orbits. For planet d, there is clear evidence for nonzero eccentricity (e 0.35), without completely excluding solutions with smaller eccentricities. The three other planets are consistent with circular orbits, although their probability distributions spread beyond e = 0.2, and show a peak at e ≃ 0.1 for planet e. The four planets have consistent inclinations of approximately 30° with respect to the sky

  9. Homes for extraterrestrial life: extrasolar planets.

    Science.gov (United States)

    Latham, D W

    2001-12-01

    Astronomers are now discovering giant planets orbiting other stars like the sun by the dozens. But none of these appears to be a small rocky planet like the earth, and thus these planets are unlikely to be capable of supporting life as we know it. The recent discovery of a system of three planets is especially significant because it supports the speculation that planetary systems, as opposed to single orbiting planets, may be common. Our ability to detect extrasolar planets will continue to improve, and space missions now in development should be able to detect earth-like planets.

  10. Over 100 Validated and Candidate Planets Orbiting Bright Stars in K2 Campaigns 0-10

    Science.gov (United States)

    Mayo, Andrew; Vanderburg, Andrew; Latham, David; Bieryla, Allyson; Morton, Timothy

    2018-01-01

    Since 2014, NASA's K2 mission has observed large portions of the ecliptic plane in search of transiting planets and has detected hundreds of planet candidates. With observations planned until at least early 2018, K2 will continue to identify more planet candidates. We present here over 250 planet candidates observed during Campaigns 0-10 of the K2 mission that are orbiting stars brighter than 13th magnitude and for which we have obtained high-resolution spectra. We analyze these candidates using the VESPA package in order to calculate the false positive probability (FPP), and find that more than half are validated with a FPP less than 0.1%. We show that like the population of planets found during the original Kepler mission, large planets discovered by K2 tend to orbit metal-rich stars. We also show tentative evidence of a gap in the planet radius distribution. We compare our sample to the Kepler candidate sample investigated by Fulton and collaborators and conclude that more planets are required to confirm the gap. This work, in addition to increasing the population of validated K2 planets and providing new targets for follow-up observations, will also serve as a framework for validating candidates from upcoming K2 campaigns and the Transiting Exoplanet Survey Satellite (TESS), expected to launch in 2018.

  11. ALL SIX PLANETS KNOWN TO ORBIT KEPLER-11 HAVE LOW DENSITIES

    Energy Technology Data Exchange (ETDEWEB)

    Lissauer, Jack J.; Jontof-Hutter, Daniel; Rowe, Jason F.; Howell, Steve B.; Jenkins, Jon M. [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Fabrycky, Daniel C. [Department of Astronomy and Astrophysics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Lopez, Eric D.; Fortney, Jonathan J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Agol, Eric [Department of Astronomy, Box 351580, University of Washington, Seattle, WA 98195 (United States); Marcy, Geoffrey W.; Isaacson, Howard; Kolbl, Rea [Astronomy Department, University of California, Berkeley, CA 94720 (United States); Deck, Katherine M. [Department of Physics and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139 (United States); Fischer, Debra A. [Department of Astronomy, Yale University, New Haven, CT 06520-8101 (United States); Sasselov, Dimitar [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Short, Donald R. [Department of Mathematics, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182 (United States); Welsh, William F., E-mail: Jack.Lissauer@nasa.gov [Astronomy Department, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182 (United States)

    2013-06-20

    The Kepler-11 planetary system contains six transiting planets ranging in size from 1.8 to 4.2 times the radius of Earth. Five of these planets orbit in a tightly packed configuration with periods between 10 and 47 days. We perform a dynamical analysis of the system based upon transit timing variations observed in more than three years of Kepler photometric data. Stellar parameters are derived using a combination of spectral classification and constraints on the star's density derived from transit profiles together with planetary eccentricity vectors provided by our dynamical study. Combining masses of the planets relative to the star from our dynamical study and radii of the planets relative to the star from transit depths together with deduced stellar properties yields measurements of the radii of all six planets, masses of the five inner planets, and an upper bound to the mass of the outermost planet, whose orbital period is 118 days. We find mass-radius combinations for all six planets that imply that substantial fractions of their volumes are occupied by constituents that are less dense than rock. Moreover, we examine the stability of these envelopes against photoevaporation and find that the compositions of at least the inner two planets have likely been significantly sculpted by mass loss. The Kepler-11 system contains the lowest mass exoplanets for which both mass and radius have been measured.

  12. The effect of lunarlike satellites on the orbital infrared light curves of Earth-analog planets.

    Science.gov (United States)

    Moskovitz, Nicholas A; Gaidos, Eric; Williams, Darren M

    2009-04-01

    We have investigated the influence of lunarlike satellites on the infrared orbital light curves of Earth-analog extrasolar planets. Such light curves will be obtained by NASA's Terrestrial Planet Finder (TPF) and ESA's Darwin missions as a consequence of repeat observations to confirm the companion status of a putative planet and determine its orbit. We used an energy balance model to calculate disk-averaged infrared (bolometric) fluxes from planet-satellite systems over a full orbital period (one year). The satellites are assumed to lack an atmosphere, have a low thermal inertia like that of the Moon, and span a range of plausible radii. The planets are assumed to have thermal and orbital properties that mimic those of Earth, while their obliquities and orbital longitudes of inferior conjunction remain free parameters. Even if the gross thermal properties of the planet can be independently constrained (e.g., via spectroscopy or visible-wavelength detection of specular glint from a surface ocean), only the largest (approximately Mars-sized) lunarlike satellites can be detected by light curve data from a TPF-like instrument (i.e., one that achieves a photometric signal-to-noise ratio of 10 to 20 at infrared wavelengths). Nondetection of a lunarlike satellite can obfuscate the interpretation of a given system's infrared light curve so that it may resemble a single planet with high obliquity, different orbital longitude of vernal equinox relative to inferior conjunction, and in some cases drastically different thermal characteristics. If the thermal properties of the planet are not independently established, then the presence of a lunarlike satellite cannot be inferred from infrared data, which would thus demonstrate that photometric light curves alone can only be used for preliminary study, and the addition of spectroscopic data will be necessary.

  13. Ammonium hydrosulfide and clouds in the atmospheres of the giant planets.

    Science.gov (United States)

    Ibragimov, K. Yu.; Solodovnik, A. A.

    The physicochemical properties of two possible compounds - ammonium hydrosulfide (NH4SH) and ammonium sulfide (NH4)2S - that may be formed in a reaction of ammonia NH3 with hydrogen sulfide H2S are discussed, and the probability of their formation is analyzed on the basis of the Le Chatelier principle. It is shown that the conditions of their formation on the basis of available data on the concentration ratio of the reagents (NH3 and H2S) in the atmospheres of giant planets make the appearance of enough NH4SH for cloud formation highly problematic. Accordingly, the authors propose as an alternative candidate for a cloud-forming role ammonium sulfide (NH4)2S, for whose formation the conditions in the atmospheres of the giant planets are more favorable. The possible spatial localization of (NH4)2S clouds is estimated, and the result is used in an attempt to identify this compound as one of the chromophores.

  14. Building the giant planet cores by convergent migration of pebble-accreting embryos

    Science.gov (United States)

    Chrenko, Ondrej; Broz, Miroslav

    2016-10-01

    An explanation of the accretion buildup of giant planet cores on rather short (~Myr) time scales remains a long-standing challenge for scenarios of planetary system formation. One of the recently proposed processes that can take part during this evolutionary stage is the convergent Type I migration of Earth-sized embryos towards the zero-torque radius, occurring at an opacity transition within the dusty-gaseous protoplanetary disk (e.g. Pierens et al. 2013). Inconveniently, simulations show that such groups of embryos do not merge easily because they often get locked in mutual mean-motion resonances and consequently form an inward-migrating convoy.We revise this possibility of merging embryos while taking into account their ongoing growth by pebble accretion. Our aim is to check whether the rapid changes of masses combined with the migration of embryos through the feeding zone can break the resonant chain and allow for the giant planet core formation.The environment of the protoplanetary disk is modeled with the 2D FARGO code (Masset 2000), which we modified in order to perform non-isothermal hydrodynamic simulations, assuming flux-limited radiative diffusion (Levermore & Pomraning 1981). The embedded massive bodies are evolved simultaneously in 3D using the hybrid Wisdom-Holman/Gauss-Radau integrator from the Rebound package (Rein & Spiegel 2015). A semi-analytic method is used to evolve the masses of embryos by pebble accretion (e.g. Levison et al. 2015).

  15. Disk Evolution, Element Abundances and Cloud Properties of Young Gas Giant Planets

    Directory of Open Access Journals (Sweden)

    Christiane Helling

    2014-04-01

    Full Text Available We discuss the chemical pre-conditions for planet formation, in terms of gas and ice abundances in a protoplanetary disk, as function of time and position, and the resulting chemical composition and cloud properties in the atmosphere when young gas giant planets form, in particular discussing the effects of unusual, non-solar carbon and oxygen abundances. Large deviations between the abundances of the host star and its gas giants seem likely to occur if the planet formation follows the core-accretion scenario. These deviations stem from the separate evolution of gas and dust in the disk, where the dust forms the planet cores, followed by the final run-away accretion of the left-over gas. This gas will contain only traces of elements like C, N and O, because those elements have frozen out as ices. PRODIMO protoplanetary disk models are used to predict the chemical evolution of gas and ice in the midplane. We find that cosmic rays play a crucial role in slowly un-blocking the CO, where the liberated oxygen forms water, which then freezes out quickly. Therefore, the C/O ratio in the gas phase is found to gradually increase with time, in a region bracketed by the water and CO ice-lines. In this regions, C/O is found to approach unity after about 5 Myrs, scaling with the cosmic ray ionization rate assumed. We then explore how the atmospheric chemistry and cloud properties in young gas giants are affected when the non-solar C/O ratios predicted by the disk models are assumed. The DRIFT cloud formation model is applied to study the formation of atmospheric clouds under the influence of varying premordial element abundances and its feedback onto the local gas. We demonstrate that element depletion by cloud formation plays a crucial role in converting an oxygen-rich atmosphere gas into carbon-rich gas when non-solar, premordial element abundances are considered as suggested by disk models.

  16. ELEMENTAL ABUNDANCE DIFFERENCES IN THE 16 CYGNI BINARY SYSTEM: A SIGNATURE OF GAS GIANT PLANET FORMATION?

    International Nuclear Information System (INIS)

    RamIrez, I.; Roederer, I. U.; Fish, J. R.; Melendez, J.; Cornejo, D.

    2011-01-01

    The atmospheric parameters of the components of the 16 Cygni binary system, in which the secondary has a gas giant planet detected, are measured accurately using high-quality observational data. Abundances relative to solar are obtained for 25 elements with a mean error of σ([X/H]) = 0.023 dex. The fact that 16 Cyg A has about four times more lithium than 16 Cyg B is normal considering the slightly different masses of the stars. The abundance patterns of 16 Cyg A and B, relative to iron, are typical of that observed in most of the so-called solar twin stars, with the exception of the heavy elements (Z > 30), which can, however, be explained by Galactic chemical evolution. Differential (A-B) abundances are measured with even higher precision (σ(Δ[X/H]) = 0.018 dex, on average). We find that 16 Cyg A is more metal-rich than 16 Cyg B by Δ[M/H] = +0.041 ± 0.007 dex. On an element-to-element basis, no correlation between the A-B abundance differences and dust condensation temperature (T C ) is detected. Based on these results, we conclude that if the process of planet formation around 16 Cyg B is responsible for the observed abundance pattern, the formation of gas giants produces a constant downward shift in the photospheric abundance of metals, without a T C correlation. The latter would be produced by the formation of terrestrial planets instead, as suggested by other recent works on precise elemental abundances. Nevertheless, a scenario consistent with these observations requires the convective envelopes of ≅ 1 M sun stars to reach their present-day sizes about three times quicker than predicted by standard stellar evolution models.

  17. Prevalence of Earth-size planets orbiting Sun-like stars.

    Science.gov (United States)

    Petigura, Erik A; Howard, Andrew W; Marcy, Geoffrey W

    2013-11-26

    Determining whether Earth-like planets are common or rare looms as a touchstone in the question of life in the universe. We searched for Earth-size planets that cross in front of their host stars by examining the brightness measurements of 42,000 stars from National Aeronautics and Space Administration's Kepler mission. We found 603 planets, including 10 that are Earth size ( ) and receive comparable levels of stellar energy to that of Earth (1 - 2 R[Symbol: see text] ). We account for Kepler's imperfect detectability of such planets by injecting synthetic planet-caused dimmings into the Kepler brightness measurements and recording the fraction detected. We find that 11 ± 4% of Sun-like stars harbor an Earth-size planet receiving between one and four times the stellar intensity as Earth. We also find that the occurrence of Earth-size planets is constant with increasing orbital period (P), within equal intervals of logP up to ~200 d. Extrapolating, one finds 5.7(-2.2)(+1.7)% of Sun-like stars harbor an Earth-size planet with orbital periods of 200-400 d.

  18. Connecting Young Brown Dwarfs and Directly Imaged Gas-Giant Planets

    Science.gov (United States)

    Liu, Michael; Dupuy, Trent; Allers, Katelyn; Aller, Kimberly; Best, William; Magnier, Eugene

    2015-12-01

    Direct detections of gas-giant exoplanets and discoveries of young (~10-100 Myr) field brown dwarfs from all-sky surveys are strengthening the link between the exoplanet and brown dwarf populations, given the overlapping ages, masses, temperatures, and surface gravities. In light of the relatively small number of directly imaged planets and the modest associated datasets, the large census of young field brown dwarfsprovides a compelling laboratory for enriching our understanding of both classes of objects. However, work to date on young field objects has typically focused on individual discoveries.We present a large comprehensive study of the youngest field brown dwarfs, comprising both previously known objects and our new discoveries from the latest wide-field surveys (Pan-STARRS-1 and WISE). With masses now extending down to ~5 Jupiter masses, these objects have physical properties that largely overlap young gas-giant planets and thus are promising analogs for studying exoplanet atmospheres at unparalleled S/N, spectral resolution, and wavelength coverage. We combine high-quality spectra and parallaxes to determine spectral energy distributions, luminosities, temperatures, and ages for young field objects. We demonstrate that this population spans a continuum in the color-magnitude diagram, thereby forming a bridge between the hot and cool extremes of directly imaged planets. We find that the extremely dusty properties of the planets around 2MASS J1207-39 and HR 8799 do occur in some young brown dwarfs, but these properties do not have a simple correspondence with age, perhaps contrary to expectations. We find young field brown dwarfs can have unusually low temperatures and suggest a new spectral type-temperature scale appropriate for directly imaged planets.To help provide a reference for extreme-contrast imaging surveys, we establish a grid of spectral standards and benchmarks, based on membership in nearby young moving groups, in order to calibrate gravity

  19. A new method for the determination of the mixing ratio hydrogen to helium in the giant planets.

    Science.gov (United States)

    Gautier, D.; Grossman, K.

    1972-01-01

    By using a numerical iterative method, it is demonstrated that the mixing ratio H2/He on the giant planets can be inferred from spectral measurements of the intensity emitted by these planets in the far infrared range. The method is successfully applied to synthetic spectra of Saturn computed from atmospheric thermal models. The effect of random and systematic measurement errors on the determination of the mixing ratio is also studied.

  20. A desert of gas giant planets beyond tens of au: from feast to famine

    Science.gov (United States)

    Nayakshin, Sergei

    2017-09-01

    It is argued that frequency of gravitational fragmentation of young massive discs around FGK stars may be much higher than commonly believed. Numerical simulations presented here show that survival of gas giant planets at large separations from their host stars is very model dependent. Low-mass clumps in slowly cooling discs are found to accrete gas very slowly and migrate inward very rapidly in the well-known type I regime (no gap open). They are either tidally disrupted or survive as planets inwards of about 10 au. In this regime, probability of clump survival at large separations is extremely low, perhaps as low as 0.001, requiring up to a dozen clumps per star early on to explain the observed population. In contrast, initially massive clumps or low-mass clumps born in rapidly cooling discs accrete gas rapidly. Opening deep gaps in the disc, they migrate in the much slower type II regime and are more likely to survive beyond tens of au. The frequency of disc fragmentation in this case is at the per cent level if the clump growth saturates at brown dwarf masses but may be close to 100 per cent if clumps evolve into low stellar mass companions. Taking these theoretical uncertainties into account, current observations limit the number of planet mass clumps hatched by young massive discs around FGK stars to between 0.01 and ˜10. A deeper theoretical understanding of such discs is needed to narrow this uncertainty down.

  1. STABLE CONIC-HELICAL ORBITS OF PLANETS AROUND BINARY STARS: ANALYTICAL RESULTS

    Energy Technology Data Exchange (ETDEWEB)

    Oks, E. [Physics Department, 206 Allison Lab., Auburn University, Auburn, AL 36849 (United States)

    2015-05-10

    Studies of planets in binary star systems are especially important because it was estimated that about half of binary stars are capable of supporting habitable terrestrial planets within stable orbital ranges. One-planet binary star systems (OBSS) have a limited analogy to objects studied in atomic/molecular physics: one-electron Rydberg quasimolecules (ORQ). Specifically, ORQ, consisting of two fully stripped ions of the nuclear charges Z and Z′ plus one highly excited electron, are encountered in various plasmas containing more than one kind of ion. Classical analytical studies of ORQ resulted in the discovery of classical stable electronic orbits with the shape of a helix on the surface of a cone. In the present paper we show that despite several important distinctions between OBSS and ORQ, it is possible for OBSS to have stable planetary orbits in the shape of a helix on a conical surface, whose axis of symmetry coincides with the interstellar axis; the stability is not affected by the rotation of the stars. Further, we demonstrate that the eccentricity of the stars’ orbits does not affect the stability of the helical planetary motion if the center of symmetry of the helix is relatively close to the star of the larger mass. We also show that if the center of symmetry of the conic-helical planetary orbit is relatively close to the star of the smaller mass, a sufficiently large eccentricity of stars’ orbits can switch the planetary motion to the unstable mode and the planet would escape the system. We demonstrate that such planets are transitable for the overwhelming majority of inclinations of plane of the stars’ orbits (i.e., the projections of the planet and the adjacent start on the plane of the sky coincide once in a while). This means that conic-helical planetary orbits at binary stars can be detected photometrically. We consider, as an example, Kepler-16 binary stars to provide illustrative numerical data on the possible parameters and the

  2. White dwarf planets

    Directory of Open Access Journals (Sweden)

    Bonsor Amy

    2013-04-01

    Full Text Available The recognition that planets may survive the late stages of stellar evolution, and the prospects for finding them around White Dwarfs, are growing. We discuss two aspects governing planetary survival through stellar evolution to the White Dwarf stage. First we discuss the case of a single planet, and its survival under the effects of stellar mass loss, radius expansion, and tidal orbital decay as the star evolves along the Asymptotic Giant Branch. We show that, for stars initially of 1 − 5 M⊙, any planets within about 1 − 5 AU will be engulfed, this distance depending on the stellar and planet masses and the planet's eccentricity. Planets engulfed by the star's envelope are unlikely to survive. Hence, planets surviving the Asymptotic Giant Branch phase will probably be found beyond ∼ 2 AU for a 1  M⊙ progenitor and ∼ 10 AU for a 5 M⊙ progenitor. We then discuss the evolution of two-planet systems around evolving stars. As stars lose mass, planet–planet interactions become stronger, and many systems stable on the Main Sequence become destabilised following evolution of the primary. The outcome of such instabilities is typically the ejection of one planet, with the survivor being left on an eccentric orbit. These eccentric planets could in turn be responsible for feeding planetesimals into the neighbourhood of White Dwarfs, causing observed pollution and circumstellar discs.

  3. On the tidal interaction of massive extrasolar planets on highly eccentric orbits

    Science.gov (United States)

    Ivanov, P. B.; Papaloizou, J. C. B.

    2004-01-01

    In this paper we develop a theory of disturbances induced by the stellar tidal field in a fully convective slowly rotating planet orbiting on a highly eccentric orbit around a central star. In this case it is appropriate to treat the tidal influence as a succession of impulsive tidal interactions occurring at periastron passage. For a fully convective planet mainly the l= 2 fundamental mode of oscillation is excited. We show that there are two contributions to the mode energy and angular momentum gain due to impulsive tidal interaction: (i) `the quasi-static' contribution, which requires dissipative processes operating in the planet, and (ii) the dynamical contribution associated with excitation of modes of oscillation. These contributions are obtained self-consistently from a single set of the governing equations. We calculate a critical `equilibrium' value of angular velocity of the planet Ωcrit determined by the condition that action of the dynamic tides does not alter the angular velocity at this rotation rate. We show that this can be much larger than the corresponding rate associated with quasi-static tides and that at this angular velocity, the rate of energy exchange is minimized. We also investigate the conditions for the stochastic increase in oscillation energy that may occur if many periastron passages are considered and dissipation is not important. We provide a simple criterion for this instability to occur. Finally, we make some simple estimates of the time-scale of evolution of the orbital semimajor axis and circularization of the initially eccentric orbit due to tides, using a realistic model of the planet and its cooling history, for orbits with periods after circularization typical of those observed for extrasolar planets Pobs>~ 3 d. Quasi-static tides are found to be ineffective for semimajor axes >~0.1 au. On the other hand, dynamic tides could have produced a very large decrease of the semimajor axis of a planet with mass of the order of the

  4. THE FIRST H-BAND SPECTRUM OF THE GIANT PLANET β PICTORIS b

    International Nuclear Information System (INIS)

    Chilcote, Jeffrey; Fitzgerald, Michael P.; Larkin, James E.; Barman, Travis; Graham, James R.; Kalas, Paul; Macintosh, Bruce; Ingraham, Patrick; Bauman, Brian; Burrows, Adam S.; Cardwell, Andrew; Hartung, Markus; Hibon, Pascale; De Rosa, Robert J.; Dillon, Daren; Gavel, Donald; Doyon, René; Dunn, Jennifer; Erikson, Darren; Goodsell, Stephen J.

    2015-01-01

    Using the recently installed Gemini Planet Imager (GPI), we have obtained the first H-band spectrum of the planetary companion to the nearby young star β Pictoris. GPI is designed to image and provide low-resolution spectra of Jupiter-sized, self-luminous planetary companions around young nearby stars. These observations were taken covering the H band (1.65 μm). The spectrum has a resolving power of ∼45 and demonstrates the distinctive triangular shape of a cool substellar object with low surface gravity. Using atmospheric models, we find an effective temperature of 1600-1700 K and a surface gravity of log (g) = 3.5-4.5 (cgs units). These values agree well with ''hot-start'' predictions from planetary evolution models for a gas giant with mass between 10 and 12 M Jup and age between 10 and 20 Myr

  5. Sonora: A New Generation Model Atmosphere Grid for Brown Dwarfs and Young Extrasolar Giant Planets

    Science.gov (United States)

    Marley, Mark S.; Saumon, Didier; Fortney, Jonathan J.; Morley, Caroline; Lupu, Roxana Elena; Freedman, Richard; Visscher, Channon

    2017-01-01

    Brown dwarf and giant planet atmospheric structure and composition has been studied both by forward models and, increasingly so, by retrieval methods. While indisputably informative, retrieval methods are of greatest value when judged in the context of grid model predictions. Meanwhile retrieval models can test the assumptions inherent in the forward modeling procedure. In order to provide a new, systematic survey of brown dwarf atmospheric structure, emergent spectra, and evolution, we have constructed a new grid of brown dwarf model atmospheres. We ultimately aim for our grid to span substantial ranges of atmospheric metallilcity, C/O ratios, cloud properties, atmospheric mixing, and other parameters. Spectra predicted by our modeling grid can be compared to both observations and retrieval results to aid in the interpretation and planning of future telescopic observations. We thus present Sonora, a new generation of substellar atmosphere models, appropriate for application to studies of L, T, and Y-type brown dwarfs and young extrasolar giant planets. The models describe the expected temperature-pressure profile and emergent spectra of an atmosphere in radiative-convective equilibrium for ranges of effective temperatures and gravities encompassing 200 less than or equal to T(sub eff) less than or equal to 2400 K and 2.5 less than or equal to log g less than or equal to 5.5. In our poster we briefly describe our modeling methodology, enumerate various updates since our group's previous models, and present our initial tranche of models for cloudless, solar metallicity, and solar carbon-to-oxygen ratio, chemical equilibrium atmospheres. These models will be available online and will be updated as opacities and cloud modeling methods continue to improve.

  6. Inferring giant planets from ALMA millimeter continuum and line observations in (transition) disks

    Science.gov (United States)

    Facchini, S.; Pinilla, P.; van Dishoeck, E. F.; de Juan Ovelar, M.

    2018-05-01

    Context. Radial gaps or cavities in the continuum emission in the IR-mm wavelength range are potential signatures of protoplanets embedded in their natal protoplanetary disk are. Hitherto, models have relied on the combination of mm continuum observations and near-infrared scattered light images to put constraints on the properties of embedded planets. Atacama Large Millimeter/submillimeter Array (ALMA) observations are now probing spatially resolved rotational line emission of CO and other chemical species. These observations can provide complementary information on the mechanism carving the gaps in dust and additional constraints on the purported planet mass. Aims: We investigate whether the combination of ALMA continuum and CO line observations can constrain the presence and mass of planets embedded in protoplanetary disks. Methods: We post-processed azimuthally averaged 2D hydrodynamical simulations of planet-disk models, in which the dust densities and grain size distributions are computed with a dust evolution code that considers radial drift, fragmentation, and growth. The simulations explored various planet masses (1 MJ ≤ Mp ≤ 15 MJ) and turbulent parameters (10-4 ≤ α ≤ 10-3). The outputs were then post-processed with the thermochemical code DALI, accounting for the radially and vertically varying dust properties. We obtained the gas and dust temperature structures, chemical abundances, and synthetic emission maps of both thermal continuum and CO rotational lines. This is the first study combining hydrodynamical simulations, dust evolution, full radiative transfer, and chemistry to predict gas emission of disks hosting massive planets. Results: All radial intensity profiles of 12CO, 13CO, and C18O show a gap at the planet location. The ratio between the location of the gap as seen in CO and the peak in the mm continuum at the pressure maximum outside the orbit of the planet shows a clear dependence on planet mass and is independent of disk

  7. Confirmation of Earth-Mass Planets Orbiting the Millisecond Pulsar PSR B1257 + 12.

    Science.gov (United States)

    Wolszczan, A

    1994-04-22

    The discovery of two Earth-mass planets orbiting an old ( approximately 10(9) years), rapidly spinning neutron star, the 6.2-millisecond radio pulsar PSR B1257+12, was announced in early 1992. It was soon pointed out that the approximately 3:2 ratio of the planets' orbital periods should lead to accurately predictable and possibly measurable gravitational perturbations of their orbits. The unambiguous detection of this effect, after 3 years of systematic timing observations of PSR B1257+12 with the 305-meter Arecibo radiotelescope, as well as the discovery of another, moon-mass object in orbit around the pulsar, constitutes irrefutable evidence that the first planetary system around a star other than the sun has been identified.

  8. ORBITAL MIGRATION OF LOW-MASS PLANETS IN EVOLUTIONARY RADIATIVE MODELS: AVOIDING CATASTROPHIC INFALL

    International Nuclear Information System (INIS)

    Lyra, Wladimir; Mac Low, Mordecai-Mark; Paardekooper, Sijme-Jan

    2010-01-01

    Outward migration of low-mass planets has recently been shown to be a possibility in non-barotropic disks. We examine the consequences of this result in evolutionary models of protoplanetary disks. Planet migration occurs toward equilibrium radii with zero torque. These radii themselves migrate inwards because of viscous accretion and photoevaporation. We show that as the surface density and temperature fall the planet orbital migration and disk depletion timescales eventually become comparable, with the precise timing depending on the mass of the planet. When this occurs, the planet decouples from the equilibrium radius. At this time, however, the gas surface density is already too low to drive substantial further migration. A higher mass planet, of 10 M + , can open a gap during the late evolution of the disk, and stops migrating. Low-mass planets, with 1 or 0.1 M + , released beyond 1 AU in our models avoid migrating into the star. Our results provide support for the reduced migration rates adopted in recent planet population synthesis models.

  9. The Gemini NICI planet-finding campaign: the orbit of the young exoplanet β Pictoris b

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Eric L.; Liu, Michael C.; Chun, Mark; Ftaclas, Christ [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Wahhaj, Zahed [European Southern Observatory, Alonso de Cordova 3107, Vitacura, Casilla 19001, Santiago (Chile); Biller, Beth A. [Institute for Astronomy, The University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Hayward, Thomas L. [Gemini Observatory, Southern Operations Center, c/o AURA, Casilla 603, La Serena (Chile); Males, Jared R.; Close, Laird M.; Morzinski, Katie M.; Skemer, Andrew J.; Hinz, Philip M. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Kuchner, Marc J. [Goddard Space Flight Center, Code 667, Greenbelt, MD 20771 (United States); Rodigas, Timothy J. [Department of Terrestrial Magnetism, Carnegie Institute of Washington, 5241 Broad Branch Road, NW, Washington, DC 20015 (United States); Toomey, Douglas W. [Mauna Kea Infrared, LLC, 21 Pookela Street, Hilo, HI 96720 (United States)

    2014-10-20

    We present new astrometry for the young (12-21 Myr) exoplanet β Pictoris b taken with the Gemini/NICI and Magellan/MagAO instruments between 2009 and 2012. The high dynamic range of our observations allows us to measure the relative position of β Pic b with respect to its primary star with greater accuracy than previous observations. Based on a Markov Chain Monte Carlo analysis, we find the planet has an orbital semi-major axis of 9.1{sub −0.5}{sup +5.3} AU and orbital eccentricity <0.15 at 68% confidence (with 95% confidence intervals of 8.2-48 AU and 0.00-0.82 for semi-major axis and eccentricity, respectively, due to a long narrow degenerate tail between the two). We find that the planet has reached its maximum projected elongation, enabling higher precision determination of the orbital parameters than previously possible, and that the planet's projected separation is currently decreasing. With unsaturated data of the entire β Pic system (primary star, planet, and disk) obtained thanks to NICI's semi-transparent focal plane mask, we are able to tightly constrain the relative orientation of the circumstellar components. We find the orbital plane of the planet lies between the inner and outer disks: the position angle (P.A.) of nodes for the planet's orbit (211.8 ± 0.°3) is 7.4σ greater than the P.A. of the spine of the outer disk and 3.2σ less than the warped inner disk P.A., indicating the disk is not collisionally relaxed. Finally, for the first time we are able to dynamically constrain the mass of the primary star β Pic to 1.76{sub −0.17}{sup +0.18} M {sub ☉}.

  10. CAN TiO EXPLAIN THERMAL INVERSIONS IN THE UPPER ATMOSPHERES OF IRRADIATED GIANT PLANETS?

    International Nuclear Information System (INIS)

    Spiegel, David S.; Silverio, Katie; Burrows, Adam

    2009-01-01

    Spitzer Space Telescope infrared observations indicate that several transiting extrasolar giant planets have thermal inversions in their upper atmospheres. Above a relative minimum, the temperature appears to increase with altitude. Such an inversion probably requires a species at high altitude that absorbs a significant amount of incident optical/UV radiation. Some authors have suggested that the strong optical absorbers titanium oxide (TiO) and vanadium oxide (VO) could provide the needed additional opacity, but if regions of the atmosphere are cold enough for Ti and V to be sequestered into solids they might rain out and be severely depleted. With a model of the vertical distribution of a refractory species in gaseous and condensed form, we address the question of whether enough TiO (or VO) could survive aloft in an irradiated planet's atmosphere to produce a thermal inversion. We find that it is unlikely that VO could play a critical role in producing thermal inversions. Furthermore, we find that macroscopic mixing is essential to the TiO hypothesis; without macroscopic mixing, such a heavy species cannot persist in a planet's upper atmosphere. The amount of macroscopic mixing that is required depends on the size of condensed titanium-bearing particles that form in regions of an atmosphere that are too cold for gaseous TiO to exist. We parameterize the macroscopic mixing with the eddy diffusion coefficient K zz and find, as a function of particle size a, the values that K zz must assume on the highly irradiated planets HD 209458b, HD 149026b, TrES-4, and OGLE-TR-56b to loft enough titanium to the upper atmosphere for the TiO hypothesis to be correct. On these planets, we find that for TiO to be responsible for thermal inversions K zz must be at least a few times 10 7 cm 2 s -1 , even for a = 0.1 μm, and increases to nearly 10 11 cm 2 s -1 for a = 10 μm. Such large values may be problematic for the TiO hypothesis, but are not impossible.

  11. Methane, carbon monoxide, and ammonia in brown dwarfs and self-luminous giant planets

    Energy Technology Data Exchange (ETDEWEB)

    Zahnle, Kevin J.; Marley, Mark S., E-mail: Kevin.J.Zahnle@NASA.gov, E-mail: Mark.S.Marley@NASA.gov [NASA Ames Research Center, MS-245-3, Moffett Field, CA 94035 (United States)

    2014-12-10

    We address disequilibrium abundances of some simple molecules in the atmospheres of solar composition brown dwarfs and self-luminous extrasolar giant planets using a kinetics-based one-dimensional atmospheric chemistry model. Our approach is to use the full kinetics model to survey the parameter space with effective temperatures between 500 K and 1100 K. In all of these worlds, equilibrium chemistry favors CH{sub 4} over CO in the parts of the atmosphere that can be seen from Earth, but in most disequilibrium favors CO. The small surface gravity of a planet strongly discriminates against CH{sub 4} when compared to an otherwise comparable brown dwarf. If vertical mixing is like Jupiter's, the transition from methane to CO occurs at 500 K in a planet. Sluggish vertical mixing can raise this to 600 K, but clouds or more vigorous vertical mixing could lower this to 400 K. The comparable thresholds in brown dwarfs are 1100 ± 100 K. Ammonia is also sensitive to gravity, but, unlike CH{sub 4}/CO, the NH{sub 3}/N{sub 2} ratio is insensitive to mixing, which makes NH{sub 3} a potential proxy for gravity. HCN may become interesting in high-gravity brown dwarfs with very strong vertical mixing. Detailed analysis of the CO-CH{sub 4} reaction network reveals that the bottleneck to CO hydrogenation goes through methanol, in partial agreement with previous work. Simple, easy to use quenching relations are derived by fitting to the complete chemistry of the full ensemble of models. These relations are valid for determining CO, CH{sub 4}, NH{sub 3}, HCN, and CO{sub 2} abundances in the range of self-luminous worlds we have studied, but may not apply if atmospheres are strongly heated at high altitudes by processes not considered here (e.g., wave breaking).

  12. Extrasolar binary planets. I. Formation by tidal capture during planet-planet scattering

    International Nuclear Information System (INIS)

    Ochiai, H.; Nagasawa, M.; Ida, S.

    2014-01-01

    We have investigated (1) the formation of gravitationally bounded pairs of gas-giant planets (which we call 'binary planets') from capturing each other through planet-planet dynamical tide during their close encounters and (2) the subsequent long-term orbital evolution due to planet-planet and planet-star quasi-static tides. For the initial evolution in phase 1, we carried out N-body simulations of the systems consisting of three Jupiter-mass planets taking into account the dynamical tide. The formation rate of the binary planets is as much as 10% of the systems that undergo orbital crossing, and this fraction is almost independent of the initial stellarcentric semimajor axes of the planets, while ejection and merging rates sensitively depend on the semimajor axes. As a result of circularization by the planet-planet dynamical tide, typical binary separations are a few times the sum of the physical radii of the planets. After the orbital circularization, the evolution of the binary system is governed by long-term quasi-static tide. We analytically calculated the quasi-static tidal evolution in phase 2. The binary planets first enter the spin-orbit synchronous state by the planet-planet tide. The planet-star tide removes angular momentum of the binary motion, eventually resulting in a collision between the planets. However, we found that the binary planets survive the tidal decay for the main-sequence lifetime of solar-type stars (∼10 Gyr), if the binary planets are beyond ∼0.3 AU from the central stars. These results suggest that the binary planets can be detected by transit observations at ≳ 0.3 AU.

  13. UV SURFACE ENVIRONMENT OF EARTH-LIKE PLANETS ORBITING FGKM STARS THROUGH GEOLOGICAL EVOLUTION

    Energy Technology Data Exchange (ETDEWEB)

    Rugheimer, S.; Sasselov, D. [Harvard Smithsonian Center for Astrophysics, 60 Garden st., 02138 MA Cambridge (United States); Segura, A. [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, México (Mexico); Kaltenegger, L., E-mail: srugheimer@cfa.harvard.edu [Carl Sagan Institute, Cornell University, Ithaca, NY 14853 (United States)

    2015-06-10

    The UV environment of a host star affects the photochemistry in the atmosphere, and ultimately the surface UV environment for terrestrial planets and therefore the conditions for the origin and evolution of life. We model the surface UV radiation environment for Earth-sized planets orbiting FGKM stars in the circumstellar Habitable Zone for Earth through its geological evolution. We explore four different types of atmospheres corresponding to an early-Earth atmosphere at 3.9 Gyr ago and three atmospheres covering the rise of oxygen to present-day levels at 2.0 Gyr ago, 0.8 Gyr ago, and modern Earth. In addition to calculating the UV flux on the surface of the planet, we model the biologically effective irradiance, using DNA damage as a proxy for biological damage. We find that a pre-biotic Earth (3.9 Gyr ago) orbiting an F0V star receives 6 times the biologically effective radiation as around the early Sun and 3520 times the modern Earth–Sun levels. A pre-biotic Earth orbiting GJ 581 (M3.5 V) receives 300 times less biologically effective radiation, about 2 times modern Earth–Sun levels. The UV fluxes calculated here provide a grid of model UV environments during the evolution of an Earth-like planet orbiting a range of stars. These models can be used as inputs into photo-biological experiments and for pre-biotic chemistry and early life evolution experiments.

  14. UV SURFACE ENVIRONMENT OF EARTH-LIKE PLANETS ORBITING FGKM STARS THROUGH GEOLOGICAL EVOLUTION

    International Nuclear Information System (INIS)

    Rugheimer, S.; Sasselov, D.; Segura, A.; Kaltenegger, L.

    2015-01-01

    The UV environment of a host star affects the photochemistry in the atmosphere, and ultimately the surface UV environment for terrestrial planets and therefore the conditions for the origin and evolution of life. We model the surface UV radiation environment for Earth-sized planets orbiting FGKM stars in the circumstellar Habitable Zone for Earth through its geological evolution. We explore four different types of atmospheres corresponding to an early-Earth atmosphere at 3.9 Gyr ago and three atmospheres covering the rise of oxygen to present-day levels at 2.0 Gyr ago, 0.8 Gyr ago, and modern Earth. In addition to calculating the UV flux on the surface of the planet, we model the biologically effective irradiance, using DNA damage as a proxy for biological damage. We find that a pre-biotic Earth (3.9 Gyr ago) orbiting an F0V star receives 6 times the biologically effective radiation as around the early Sun and 3520 times the modern Earth–Sun levels. A pre-biotic Earth orbiting GJ 581 (M3.5 V) receives 300 times less biologically effective radiation, about 2 times modern Earth–Sun levels. The UV fluxes calculated here provide a grid of model UV environments during the evolution of an Earth-like planet orbiting a range of stars. These models can be used as inputs into photo-biological experiments and for pre-biotic chemistry and early life evolution experiments

  15. 275 Candidates and 149 Validated Planets Orbiting Bright Stars in K2 Campaigns 0–10

    DEFF Research Database (Denmark)

    Mayo, Andrew W.; Vanderburg, Andrew; Latham, David W.

    2018-01-01

    Since 2014, NASA’s K2 mission has observed large portions of the ecliptic plane in search of transiting planets and has detected hundreds of planet candidates. With observations planned until at least early 2018, K2 will continue to identify more planet candidates. We present here 275 planet...... candidates observed during Campaigns 0–10 of the K2 mission that are orbiting stars brighter than 13 mag (in Kepler band) and for which we have obtained high-resolution spectra ( R = 44,000). These candidates are analyzed using the vespa package in order to calculate their false-positive probabilities (FPP......). We find that 149 candidates are validated with an FPP lower than 0.1%, 39 of which were previously only candidates and 56 of which were previously undetected. The processes of data reduction, candidate identification, and statistical validation are described, and the demographics of the candidates...

  16. Extrasolar planets: constraints for planet formation models.

    Science.gov (United States)

    Santos, Nuno C; Benz, Willy; Mayor, Michel

    2005-10-14

    Since 1995, more than 150 extrasolar planets have been discovered, most of them in orbits quite different from those of the giant planets in our own solar system. The number of discovered extrasolar planets demonstrates that planetary systems are common but also that they may possess a large variety of properties. As the number of detections grows, statistical studies of the properties of exoplanets and their host stars can be conducted to unravel some of the key physical and chemical processes leading to the formation of planetary systems.

  17. Thermal-orbital coupled tidal heating and habitability of Martian-sized extrasolar planets around M stars

    Energy Technology Data Exchange (ETDEWEB)

    Shoji, D.; Kurita, K. [Earthquake Research Institute, University of Tokyo, Tokyo (Japan)

    2014-07-01

    M-type stars are good targets in the search for habitable extrasolar planets. Due to their low effective temperatures, the habitable zone of M stars is very close to the stars themselves. For planets that are close to their stars, tidal heating plays an important role in thermal and orbital evolutions, especially when the planet's orbit has a relatively large eccentricity. Although tidal heating interacts with the thermal state and the orbit of the planet, such coupled calculations for extrasolar planets around M stars have not been conducted. We perform coupled calculations using simple structural and orbital models and analyze the thermal state and habitability of a terrestrial planet. Considering this planet to be Martian-sized, the tide heats up and partially melts the mantle, maintaining an equilibrium state if the mass of the star is less than 0.2 times the mass of the Sun and the initial eccentricity of the orbit is more than 0.2. The reduction of heat dissipation due to the melted mantle allows the planet to stay in the habitable zone for more than 10 Gyr even though the orbital distance is small. The surface heat flux at the equilibrium state is between that of Mars and Io. The thermal state of the planet mainly depends on the initial value of the eccentricity and the mass of the star.

  18. Thermal-orbital coupled tidal heating and habitability of Martian-sized extrasolar planets around M stars

    International Nuclear Information System (INIS)

    Shoji, D.; Kurita, K.

    2014-01-01

    M-type stars are good targets in the search for habitable extrasolar planets. Due to their low effective temperatures, the habitable zone of M stars is very close to the stars themselves. For planets that are close to their stars, tidal heating plays an important role in thermal and orbital evolutions, especially when the planet's orbit has a relatively large eccentricity. Although tidal heating interacts with the thermal state and the orbit of the planet, such coupled calculations for extrasolar planets around M stars have not been conducted. We perform coupled calculations using simple structural and orbital models and analyze the thermal state and habitability of a terrestrial planet. Considering this planet to be Martian-sized, the tide heats up and partially melts the mantle, maintaining an equilibrium state if the mass of the star is less than 0.2 times the mass of the Sun and the initial eccentricity of the orbit is more than 0.2. The reduction of heat dissipation due to the melted mantle allows the planet to stay in the habitable zone for more than 10 Gyr even though the orbital distance is small. The surface heat flux at the equilibrium state is between that of Mars and Io. The thermal state of the planet mainly depends on the initial value of the eccentricity and the mass of the star.

  19. Orbital alignment of circumbinary planets that form in misaligned circumbinary discs: the case of Kepler-413b

    Science.gov (United States)

    Pierens, A.; Nelson, R. P.

    2018-06-01

    Although most of the circumbinary planets detected by the Kepler spacecraft are on orbits that are closely aligned with the binary orbital plane, the systems Kepler-413 and Kepler-453 exhibit small misalignments of ˜2.5°. One possibility is that these planets formed in a circumbinary disc whose midplane was inclined relative to the binary orbital plane. Such a configuration is expected to lead to a warped and twisted disc, and our aim is to examine the inclination evolution of planets embedded in these discs. We employed 3D hydrodynamical simulations that examine the disc response to the presence of a modestly inclined binary with parameters that match the Kepler-413 system, as a function of disc parameters and binary inclinations. The discs all develop slowly varying warps, and generally display very small amounts of twist. Very slow solid body precession occurs because a large outer disc radius is adopted. Simulations of planets embedded in these discs resulted in the planet aligning with the binary orbit plane for disc masses close to the minimum mass solar nebular, such that nodal precession of the planet was controlled by the binary. For higher disc masses, the planet maintains near coplanarity with the local disc midplane. Our results suggest that circumbinary planets born in tilted circumbinary discs should align with the binary orbit plane as the disc ages and loses mass, even if the circumbinary disc remains misaligned from the binary orbit. This result has important implications for understanding the origins of the known circumbinary planets.

  20. THE OCCURRENCE RATE OF EARTH ANALOG PLANETS ORBITING SUN-LIKE STARS

    International Nuclear Information System (INIS)

    Catanzarite, Joseph; Shao, Michael

    2011-01-01

    Kepler is a space telescope that searches Sun-like stars for planets. Its major goal is to determine η Earth , the fraction of Sun-like stars that have planets like Earth. When a planet 'transits' or moves in front of a star, Kepler can measure the concomitant dimming of the starlight. From analysis of the first four months of those measurements for over 150,000 stars, Kepler's Science Team has determined sizes, surface temperatures, orbit sizes, and periods for over a thousand new planet candidates. In this paper, we characterize the period probability distribution function of the super-Earth and Neptune planet candidates with periods up to 132 days, and find three distinct period regimes. For candidates with periods below 3 days, the density increases sharply with increasing period; for periods between 3 and 30 days, the density rises more gradually with increasing period, and for periods longer than 30 days, the density drops gradually with increasing period. We estimate that 1%-3% of stars like the Sun are expected to have Earth analog planets, based on the Kepler data release of 2011 February. This estimate of η Earth is based on extrapolation from a fiducial subsample of the Kepler planet candidates that we chose to be nominally 'complete' (i.e., no missed detections) to the realm of the Earth-like planets, by means of simple power-law models. The accuracy of the extrapolation will improve as more data from the Kepler mission are folded in. Accurate knowledge of η Earth is essential for the planning of future missions that will image and take spectra of Earth-like planets. Our result that Earths are relatively scarce means that a substantial effort will be needed to identify suitable target stars prior to these future missions.

  1. The fate of scattered planets

    Energy Technology Data Exchange (ETDEWEB)

    Bromley, Benjamin C. [Department of Physics and Astronomy, University of Utah, 115 S 1400 E, Rm 201, Salt Lake City, UT 84112 (United States); Kenyon, Scott J., E-mail: bromley@physics.utah.edu, E-mail: skenyon@cfa.harvard.edu [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States)

    2014-12-01

    As gas giant planets evolve, they may scatter other planets far from their original orbits to produce hot Jupiters or rogue planets that are not gravitationally bound to any star. Here, we consider planets cast out to large orbital distances on eccentric, bound orbits through a gaseous disk. With simple numerical models, we show that super-Earths can interact with the gas through dynamical friction to settle in the remote outer regions of a planetary system. Outcomes depend on planet mass, the initial scattered orbit, and the evolution of the time-dependent disk. Efficient orbital damping by dynamical friction requires planets at least as massive as the Earth. More massive, longer-lived disks damp eccentricities more efficiently than less massive, short-lived ones. Transition disks with an expanding inner cavity can circularize orbits at larger distances than disks that experience a global (homologous) decay in surface density. Thus, orbits of remote planets may reveal the evolutionary history of their primordial gas disks. A remote planet with an orbital distance ∼100 AU from the Sun is plausible and might explain correlations in the orbital parameters of several distant trans-Neptunian objects.

  2. The formation of co-orbital planets and their resulting transit signatures

    Science.gov (United States)

    Granados Contreras, Agueda Paula; Boley, Aaron

    2018-04-01

    Systems with Tightly-packed Inner Planets (STIPs) are metastable, exhibiting sudden transitions to an unstable state that can potentially lead to planet consolidation. When these systems are embedded in a gaseous disc, planet-disc interactions can significantly reduce the frequency of instabilities, and if they do occur, disc torques alter the dynamical outcomes. We ran a suite of N-body simulations of synthetic 6-planet STIPs using an independent implementation of IAS15 that includes a prescription for gaseous tidal damping. The algorithm is based on the results of disc simulations that self-consistently evolve gas and planets. Even for very compact configurations, the STIPS are resistant to instability when gas is present. However, instability can still occur, and in some cases, the combination of system instability and gaseous damping leads to the formation of co-orbiting planets that are stable even when gas damping is removed. While rare, such systems should be detectable in transit surveys, although the dynamics of the system can make the transit signature difficult to identify.

  3. Tracking Advanced Planetary Systems (TAPAS) with HARPS-N. VI. HD 238914 and TYC 3318-01333-1: two more Li-rich giants with planets

    Science.gov (United States)

    Adamów, M.; Niedzielski, A.; Kowalik, K.; Villaver, E.; Wolszczan, A.; Maciejewski, G.; Gromadzki, M.

    2018-05-01

    Context. We present the latest results of our search for planets with HARPS-N at the 3.6 m Telescopio Nazionale Galileo under the Tracking Advanced Planetary Systems project: an in-depth study of the 15 most Li abundant giants from the PennState - Toruń Planet Search sample. Aims: Our goals are first, to obtain radial velocities of the most Li-rich giants we identified in our sample to search for possible low-mass substellar companions, and second, to perform an extended spectral analysis to define the evolutionary status of these stars. Methods: This work is based on high-resolution spectra obtained with the Hobby-Eberly Telescope and its High Resolution Spectrograph, and with the HARPS-N spectrograph at the Telescopio Nazionale Galileo. Two stars, HD 181368 and HD 188214, were also observed with UVES at the VLT to determine beryllium abundances. Results: We report i) the discovery of two new planetary systems around the Li-rich giant stars: HD 238914 and TYC 3318-01333-1 (a binary system); ii) reveal a binary Li-rich giant, HD 181368; iii) although our current phase coverage is not complete, we suggest the presence of planetary mass companions around TYC 3663-01966-1 and TYC 3105-00152-1; iv) we confirm the previous result for BD+48 740 and present updated orbital parameters, and v) we find a lack of a relation between the Li enhancement and the Be abundance for the stars HD 181368 and HD 188214, for which we acquired blue spectra. Conclusions: We found seven stars with stellar or potential planetary companions among the 15 Li-rich giant stars. The binary star frequency of the Li-rich giants in our sample appears to be normal, but the planet frequency is twice that of the general sample, which suggests a possible connection between hosting a companion and enhanced Li abundance in giant stars. We also found most of the companions orbits to be highly eccentric. Based on observations obtained with the Hobby-Eberly Telescope, which is a joint project of the

  4. No large population of unbound or wide-orbit Jupiter-mass planets.

    Science.gov (United States)

    Mróz, Przemek; Udalski, Andrzej; Skowron, Jan; Poleski, Radosław; Kozłowski, Szymon; Szymański, Michał K; Soszyński, Igor; Wyrzykowski, Łukasz; Pietrukowicz, Paweł; Ulaczyk, Krzysztof; Skowron, Dorota; Pawlak, Michał

    2017-08-10

    Planet formation theories predict that some planets may be ejected from their parent systems as result of dynamical interactions and other processes. Unbound planets can also be formed through gravitational collapse, in a way similar to that in which stars form. A handful of free-floating planetary-mass objects have been discovered by infrared surveys of young stellar clusters and star-forming regions as well as wide-field surveys, but these studies are incomplete for objects below five Jupiter masses. Gravitational microlensing is the only method capable of exploring the entire population of free-floating planets down to Mars-mass objects, because the microlensing signal does not depend on the brightness of the lensing object. A characteristic timescale of microlensing events depends on the mass of the lens: the less massive the lens, the shorter the microlensing event. A previous analysis of 474 microlensing events found an excess of ten very short events (1-2 days)-more than known stellar populations would suggest-indicating the existence of a large population of unbound or wide-orbit Jupiter-mass planets (reported to be almost twice as common as main-sequence stars). These results, however, do not match predictions of planet-formation theories and surveys of young clusters. Here we analyse a sample of microlensing events six times larger than that of ref. 11 discovered during the years 2010-15. Although our survey has very high sensitivity (detection efficiency) to short-timescale (1-2 days) microlensing events, we found no excess of events with timescales in this range, with a 95 per cent upper limit on the frequency of Jupiter-mass free-floating or wide-orbit planets of 0.25 planets per main-sequence star. We detected a few possible ultrashort-timescale events (with timescales of less than half a day), which may indicate the existence of Earth-mass and super-Earth-mass free-floating planets, as predicted by planet-formation theories.

  5. GASEOUS MEAN OPACITIES FOR GIANT PLANET AND ULTRACOOL DWARF ATMOSPHERES OVER A RANGE OF METALLICITIES AND TEMPERATURES

    Energy Technology Data Exchange (ETDEWEB)

    Freedman, Richard S. [SETI Institute, Mountain View, CA (United States); Lustig-Yaeger, Jacob [Department of Physics, University of California, Santa Cruz, CA 95064 (United States); Fortney, Jonathan J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Lupu, Roxana E.; Marley, Mark S. [Space Science and Astrobiology Division, NASA Ames Research Center, Moffett Field, CA (United States); Lodders, Katharina, E-mail: Richard.S.Freedman@nasa.gov [Planetary Chemistry Laboratory, Washington University, St. Louis, MO (United States)

    2014-10-01

    We present new calculations of Rosseland and Planck gaseous mean opacities relevant to the atmospheres of giant planets and ultracool dwarfs. Such calculations are used in modeling the atmospheres, interiors, formation, and evolution of these objects. Our calculations are an expansion of those presented in Freedman et al. to include lower pressures, finer temperature resolution, and also the higher metallicities most relevant for giant planet atmospheres. Calculations span 1 μbar to 300 bar, and 75-4000 K, in a nearly square grid. Opacities at metallicities from solar to 50 times solar abundances are calculated. We also provide an analytic fit to the Rosseland mean opacities over the grid in pressure, temperature, and metallicity. In addition to computing mean opacities at these local temperatures, we also calculate them with weighting functions up to 7000 K, to simulate the mean opacities for incident stellar intensities, rather than locally thermally emitted intensities. The chemical equilibrium calculations account for the settling of condensates in a gravitational field and are applicable to cloud-free giant planet and ultracool dwarf atmospheres, but not circumstellar disks. We provide our extensive opacity tables for public use.

  6. Precise Masses & Radii of the Planets Orbiting K2-3 and GJ3470

    Science.gov (United States)

    Kosiarek, Molly; Crossfield, Ian; Hardegree-Ullman, Kevin; Livingston, John; Howard, Andrew; Fulton, Benjamin; Hirsch, Lea; Isaacson, Howard; Petigura, Erik; Sinukoff, Evan; Weiss, Lauren; Knutson, Heather; Bonfils, Xavier; Benneke, Björn; Beichman, Charles; Dressing, Courtney

    2018-01-01

    We report improved masses, radii, and densities for two planetary systems, K2-3 and GJ3470, derived from a combination of new radial velocity and transit observations. Both stars are nearby, early M dwarfs. K2-3 hosts three super-Earth planets between 1.5 and 2 Earth-radii at orbital periods between 10 and 45 days, while GJ 3470 hosts one 4 Earth-radii planet with a period of 3.3 days. Furthermore, we confirmed GJ3470's rotation period through multi-year ground-based photometry; RV analysis must account for this rotation signature. Due to the planets' low densities (all stars, they are among the best candidates for transmission spectroscopy with JWST and HST in order to characterize their atmospheric compositions.

  7. CARBON-RICH GIANT PLANETS: ATMOSPHERIC CHEMISTRY, THERMAL INVERSIONS, SPECTRA, AND FORMATION CONDITIONS

    Energy Technology Data Exchange (ETDEWEB)

    Madhusudhan, Nikku [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Mousis, Olivier [Institut UTINAM, CNRS-UMR 6213, Observatoire de Besancon, BP 1615, F-25010 Besancon Cedex (France); Johnson, Torrence V. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Lunine, Jonathan I., E-mail: nmadhu@astro.princeton.edu [Department of Astronomy, Cornell University, Ithaca, NY 14853 (United States)

    2011-12-20

    The recent inference of a carbon-rich atmosphere, with C/O {>=} 1, in the hot Jupiter WASP-12b motivates the exotic new class of carbon-rich planets (CRPs). We report a detailed study of the atmospheric chemistry and spectroscopic signatures of carbon-rich giant (CRG) planets, the possibility of thermal inversions in their atmospheres, the compositions of icy planetesimals required for their formation via core accretion, and the apportionment of ices, rock, and volatiles in their envelopes. Our results show that CRG atmospheres probe a unique region in composition space, especially at high temperature (T). For atmospheres with C/O {>=} 1, and T {approx}> 1400 K in the observable atmosphere, most of the oxygen is bound up in CO, while H{sub 2}O is depleted and CH{sub 4} is enhanced by up to two or three orders of magnitude each, compared to equilibrium compositions with solar abundances (C/O = 0.54). These differences in the spectroscopically dominant species for the different C/O ratios cause equally distinct observable signatures in the spectra. As such, highly irradiated transiting giant exoplanets form ideal candidates to estimate atmospheric C/O ratios and to search for CRPs. We also find that the C/O ratio strongly affects the abundances of TiO and VO, which have been suggested to cause thermal inversions in highly irradiated hot Jupiter atmospheres. A C/O = 1 yields TiO and VO abundances of {approx}100 times lower than those obtained with equilibrium chemistry assuming solar abundances, at P {approx} 1 bar. Such a depletion is adequate to rule out thermal inversions due to TiO/VO even in the most highly irradiated hot Jupiters, such as WASP-12b. We estimate the compositions of the protoplanetary disk, the planetesimals, and the envelope of WASP-12b, and the mass of ices dissolved in the envelope, based on the observed atmospheric abundances. Adopting stellar abundances (C/O = 0.44) for the primordial disk composition and low-temperature formation conditions

  8. The solar neighborhood. XXXIV. A search for planets orbiting nearby M dwarfs using astrometry

    International Nuclear Information System (INIS)

    Lurie, John C.; Henry, Todd J.; Ianna, Philip A.; Jao, Wei-Chun; Quinn, Samuel N.; Winters, Jennifer G.; Koerner, David W.; Riedel, Adric R.; Subasavage, John P.

    2014-01-01

    Astrometric measurements are presented for seven nearby stars with previously detected planets: six M dwarfs (GJ 317, GJ 667C, GJ 581, GJ 849, GJ 876, and GJ 1214) and one K dwarf (BD-10 -3166). Measurements are also presented for six additional nearby M dwarfs without known planets, but which are more favorable to astrometric detections of low mass companions, as well as three binary systems for which we provide astrometric orbit solutions. Observations have baselines of 3 to 13 years, and were made as part of the RECONS long-term astrometry and photometry program at the CTIO/SMARTS 0.9 m telescope. We provide trigonometric parallaxes and proper motions for all 16 systems, and perform an extensive analysis of the astrometric residuals to determine the minimum detectable companion mass for the 12 M dwarfs not having close stellar secondaries. For the six M dwarfs with known planets, we are not sensitive to planets, but can rule out the presence of all but the least massive brown dwarfs at periods of 2–12 years. For the six more astrometrically favorable M dwarfs, we conclude that none have brown dwarf companions, and are sensitive to companions with masses as low as 1 M Jup for periods longer than two years. In particular, we conclude that Proxima Centauri has no Jovian companions at orbital periods of 2–12 years. These results complement previously published M dwarf planet occurrence rates by providing astrometrically determined upper mass limits on potential super-Jupiter companions at orbits of two years and longer. As part of a continuing survey, these results are consistent with the paucity of super-Jupiter and brown dwarf companions we find among the over 250 red dwarfs within 25 pc observed longer than five years in our astrometric program.

  9. The solar neighborhood. XXXIV. A search for planets orbiting nearby M dwarfs using astrometry

    Energy Technology Data Exchange (ETDEWEB)

    Lurie, John C. [Department of Astronomy, University of Washington, Seattle, WA 98195 (United States); Henry, Todd J.; Ianna, Philip A. [RECONS Institute, Chambersburg, PA 17201 (United States); Jao, Wei-Chun; Quinn, Samuel N.; Winters, Jennifer G. [Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30302 (United States); Koerner, David W. [Department of Physics and Astronomy, Northern Arizona University, Flagstaff, AZ 86011 (United States); Riedel, Adric R. [Department of Astrophysics, American Museum of Natural History, New York, NY 10034 (United States); Subasavage, John P., E-mail: lurie@uw.edu [United States Naval Observatory, Flagstaff, AZ 86001 (United States)

    2014-11-01

    Astrometric measurements are presented for seven nearby stars with previously detected planets: six M dwarfs (GJ 317, GJ 667C, GJ 581, GJ 849, GJ 876, and GJ 1214) and one K dwarf (BD-10 -3166). Measurements are also presented for six additional nearby M dwarfs without known planets, but which are more favorable to astrometric detections of low mass companions, as well as three binary systems for which we provide astrometric orbit solutions. Observations have baselines of 3 to 13 years, and were made as part of the RECONS long-term astrometry and photometry program at the CTIO/SMARTS 0.9 m telescope. We provide trigonometric parallaxes and proper motions for all 16 systems, and perform an extensive analysis of the astrometric residuals to determine the minimum detectable companion mass for the 12 M dwarfs not having close stellar secondaries. For the six M dwarfs with known planets, we are not sensitive to planets, but can rule out the presence of all but the least massive brown dwarfs at periods of 2–12 years. For the six more astrometrically favorable M dwarfs, we conclude that none have brown dwarf companions, and are sensitive to companions with masses as low as 1 M{sub Jup} for periods longer than two years. In particular, we conclude that Proxima Centauri has no Jovian companions at orbital periods of 2–12 years. These results complement previously published M dwarf planet occurrence rates by providing astrometrically determined upper mass limits on potential super-Jupiter companions at orbits of two years and longer. As part of a continuing survey, these results are consistent with the paucity of super-Jupiter and brown dwarf companions we find among the over 250 red dwarfs within 25 pc observed longer than five years in our astrometric program.

  10. Influence of tides in viscoelastic bodies of planet and satellite on the satellite's orbital motion

    Science.gov (United States)

    Emelyanov, N. V.

    2018-06-01

    The problem of influence of tidal friction in both planetary and satellite bodies upon satellite's orbital motion is considered. Using the differential equations in satellite's rectangular planetocentric coordinates, the differential equations describing the changes in semimajor axis and eccentricity are derived. The equations in rectangular coordinates were taken from earlier works on the problem. The calcultations carried out for a number of test examples prove that the averaged solutions of equations in coordinates and precise solutions of averaged equations in the Keplerian elements are identical. For the problem of tides raised on planet's body, it was found that, if satellite's mean motion n is equal to 11/18 Ω, where Ω is the planet's angular rotation rate, the orbital eccentricity does not change. This conclusion is in agreement with the results of other authors. It was also found that there is essential discrepancy between the equations in the elements obtained in this paper and analogous equations published by earlier researchers.

  11. CONDITIONS OF PASSAGE AND ENTRAPMENT OF TERRESTRIAL PLANETS IN SPIN-ORBIT RESONANCES

    International Nuclear Information System (INIS)

    Makarov, Valeri V.

    2012-01-01

    The dynamical evolution of terrestrial planets resembling Mercury in the vicinity of spin-orbit resonances is investigated using comprehensive harmonic expansions of the tidal torque taking into account the frequency-dependent quality factors and Love numbers. The torque equations are integrated numerically with a small step in time, including the oscillating triaxial torque components but neglecting the layered structure of the planet and assuming a zero obliquity. We find that a Mercury-like planet with a current value of orbital eccentricity (0.2056) is always captured in 3:2 resonance. The probability of capture in the higher 2:1 resonance is approximately 0.23. These results are confirmed by a semi-analytical estimation of capture probabilities as functions of eccentricity for both prograde and retrograde evolutions of spin rate. As follows from analysis of equilibrium torques, entrapment in 3:2 resonance is inevitable at eccentricities between 0.2 and 0.41. Considering the phase space parameters at the times of periastron, the range of spin rates and phase angles for which an immediate resonance passage is triggered is very narrow, and yet a planet like Mercury rarely fails to align itself into this state of unstable equilibrium before it traverses 2:1 resonance.

  12. CROWDING-OUT OF GIANTS BY DWARFS: AN ORIGIN FOR THE LACK OF COMPANION PLANETS IN HOT JUPITER SYSTEMS

    International Nuclear Information System (INIS)

    Ogihara, Masahiro; Inutsuka, Shu-ichiro; Kobayashi, Hiroshi

    2013-01-01

    We investigate the formation of close-in terrestrial planets from planetary embryos under the influence of a hot Jupiter (HJ) using gravitational N-body simulations that include gravitational interactions between the gas disk and the terrestrial planet (e.g., type I migration). Our simulations show that several terrestrial planets efficiently form outside the orbit of the HJ, making a chain of planets, and all of them gravitationally interact directly or indirectly with the HJ through resonance, which leads to inward migration of the HJ. We call this mechanism of induced migration of the HJ ''crowding-out''. The HJ is eventually lost through collision with the central star, and only several terrestrial planets remain. We also find that the efficiency of the crowding-out effect depends on the model parameters; for example, the heavier the disk is, the more efficient the crowding-out is. When planet formation occurs in a massive disk, the HJ can be lost to the central star and is never observed. On the other hand, for a less massive disk, the HJ and terrestrial planets can coexist; however, the companion planets may be below the detection limit of current observations. In both cases, systems with a HJ and terrestrial planets have little chance of detection. Therefore, our model naturally explains the lack of companion planets in HJ systems regardless of the disk mass. In effect, our model provides a theoretical prediction for future observations; additional planets can be discovered just outside the HJ, and their masses should generally be small

  13. CLOUDLESS ATMOSPHERES FOR L/T DWARFS AND EXTRASOLAR GIANT PLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Tremblin, P.; Amundsen, D. S.; Chabrier, G.; Baraffe, I.; Drummond, B.; Hinkley, S. [Astrophysics Group, University of Exeter, Exeter EX4 4QL (United Kingdom); Mourier, P. [Ecole Normale Supérieure de Lyon, CRAL, UMR CNRS 5574, F-69364 Lyon Cedex 07 (France); Venot, O., E-mail: tremblin@astro.ex.ac.uk, E-mail: pascal.tremblin@cea.fr [Instituut voor Sterrenkunde, Katholieke Universiteit Leuven, Celestijnenlaan 200D, B-3001 Leuven (Belgium)

    2016-02-01

    The admitted, conventional scenario to explain the complex spectral evolution of brown dwarfs (BDs) since their first detection 20 years ago has always been the key role played by micron-size condensates, called “dust” or “clouds,” in their atmosphere. This scenario, however, faces major problems, in particular the J-band brightening and the resurgence of FeH absorption at the L to T transition, and a physical first-principle understanding of this transition is lacking. In this Letter, we propose a new, completely different explanation for BD and extrasolar giant planet (EGP) spectral evolution, without the need to invoke clouds. We show that, due to the slowness of the CO/CH{sub 4} and N{sub 2}/NH{sub 3} chemical reactions, brown dwarf (L and T, respectively) and EGP atmospheres are subject to a thermo-chemical instability similar in nature to the fingering or chemical convective instability present in Earth oceans and at the Earth core/mantle boundary. The induced small-scale turbulent energy transport reduces the temperature gradient in the atmosphere, explaining the observed increase in near-infrared J–H and J–K colors of L dwarfs and hot EGPs, while a warming up of the deep atmosphere along the L to T transition, as the CO/CH{sub 4} instability vanishes, naturally solves the two aforementioned puzzles, and provides a physical explanation of the L to T transition. This new picture leads to a drastic revision of our understanding of BD and EGP atmospheres and their evolution.

  14. Cloudless Atmospheres for L/T Dwarfs and Extrasolar Giant Planets

    Science.gov (United States)

    Tremblin, P.; Amundsen, D. S.; Chabrier, G.; Baraffe, I.; Drummond, B.; Hinkley, S.; Mourier, P.; Venot, O.

    2016-01-01

    The admitted, conventional scenario to explain the complex spectral evolution of brown dwarfs (BDs) since their first detection 20 years ago has always been the key role played by micron-size condensates, called "dust" or "clouds," in their atmosphere. This scenario, however, faces major problems, in particular the J-band brightening and the resurgence of FeH absorption at the L to T transition, and a physical first-principle understanding of this transition is lacking. In this Letter, we propose a new, completely different explanation for BD and extrasolar giant planet (EGP) spectral evolution, without the need to invoke clouds. We show that, due to the slowness of the CO/ CH4 and N2/NH3 chemical reactions, brown dwarf (L and T, respectively) and EGP atmospheres are subject to a thermo-chemical instability similar in nature to the fingering or chemical convective instability present in Earth oceans and at the Earth core/mantle boundary. The induced small-scale turbulent energy transport reduces the temperature gradient in the atmosphere, explaining the observed increase in near-infrared J-H and J-K colors of L dwarfs and hot EGPs, while a warming up of the deep atmosphere along the L to T transition, as the CO/CH4 instability vanishes, naturally solves the two aforementioned puzzles, and provides a physical explanation of the L to T transition. This new picture leads to a drastic revision of our understanding of BD and EGP atmospheres and their evolution.

  15. CLOUDLESS ATMOSPHERES FOR L/T DWARFS AND EXTRASOLAR GIANT PLANETS

    International Nuclear Information System (INIS)

    Tremblin, P.; Amundsen, D. S.; Chabrier, G.; Baraffe, I.; Drummond, B.; Hinkley, S.; Mourier, P.; Venot, O.

    2016-01-01

    The admitted, conventional scenario to explain the complex spectral evolution of brown dwarfs (BDs) since their first detection 20 years ago has always been the key role played by micron-size condensates, called “dust” or “clouds,” in their atmosphere. This scenario, however, faces major problems, in particular the J-band brightening and the resurgence of FeH absorption at the L to T transition, and a physical first-principle understanding of this transition is lacking. In this Letter, we propose a new, completely different explanation for BD and extrasolar giant planet (EGP) spectral evolution, without the need to invoke clouds. We show that, due to the slowness of the CO/CH 4 and N 2 /NH 3 chemical reactions, brown dwarf (L and T, respectively) and EGP atmospheres are subject to a thermo-chemical instability similar in nature to the fingering or chemical convective instability present in Earth oceans and at the Earth core/mantle boundary. The induced small-scale turbulent energy transport reduces the temperature gradient in the atmosphere, explaining the observed increase in near-infrared J–H and J–K colors of L dwarfs and hot EGPs, while a warming up of the deep atmosphere along the L to T transition, as the CO/CH 4 instability vanishes, naturally solves the two aforementioned puzzles, and provides a physical explanation of the L to T transition. This new picture leads to a drastic revision of our understanding of BD and EGP atmospheres and their evolution

  16. Possible Outcomes of Coplanar High-eccentricity Migration: Hot Jupiters, Close-in Super-Earths, and Counter-orbiting Planets

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Yuxin; Masuda, Kento; Suto, Yasushi, E-mail: yuxin@utap.phys.s.u-tokyo.ac.jp [Department of Physics, The University of Tokyo, Tokyo 113-0033 (Japan)

    2017-02-01

    We investigate the formation of close-in planets in near-coplanar eccentric hierarchical triple systems via the secular interaction between an inner planet and an outer perturber (Coplanar High-eccentricity Migration; CHEM). We generalize the previous work on the analytical condition for successful CHEM for point masses interacting only through gravity by taking into account the finite mass effect of the inner planet. We find that efficient CHEM requires that the systems should have m {sub 1}≪m {sub 0} and m {sub 1} ≪ m {sub 2}. In addition to the gravity for point masses, we examine the importance of the short-range forces, and provide an analytical estimate of the migration timescale. We perform a series of numerical simulations in CHEM for systems consisting of a Sun-like central star, giant gas inner planet, and planetary outer perturber, including the short-range forces and stellar and planetary dissipative tides. We find that most of such systems end up with a tidal disruption; a small fraction of the systems produce prograde hot Jupiters (HJs), but no retrograde HJ. In addition, we extend CHEM to super-Earth mass range, and show that the formation of close-in super-Earths in prograde orbits is also possible. Finally, we carry out CHEM simulation for the observed hierarchical triple and counter-orbiting HJ systems. We find that CHEM can explain a part of the former systems, but it is generally very difficult to reproduce counter-orbiting HJ systems.

  17. Turbulent convection in an anelastic rotating sphere: A model for the circulation on the giant planets

    Science.gov (United States)

    Kaspi, Yohai

    This thesis studies the dynamics of a rotating compressible gas sphere, driven by internal convection, as a model for the dynamics on the giant planets. We develop a new general circulation model for the Jovian atmosphere, based on the MITgcm dynamical core augmenting the nonhydrostatic model. The grid extends deep into the planet's interior allowing the model to compute the dynamics of a whole sphere of gas rather than a spherical shell (including the strong variations in gravity and the equation of state). Different from most previous 3D convection models, this model is anelastic rather than Boussinesq and thereby incorporates the full density variation of the planet. We show that the density gradients caused by convection drive the system away from an isentropic and therefore barotropic state as previously assumed, leading to significant baroclinic shear. This shear is concentrated mainly in the upper levels and associated with baroclinic compressibility effects. The interior flow organizes in large cyclonically rotating columnar eddies parallel to the rotation axis, which drive upgradient angular momentum eddy fluxes, generating the observed equatorial superrotation. Heat fluxes align with the axis of rotation, contributing to the observed flat meridional emission. We show the transition from weak convection cases with symmetric spiraling columnar modes similar to those found in previous analytic linear theory, to more turbulent cases which exhibit similar, though less regular and solely cyclonic, convection columns which manifest on the surface in the form of waves embedded within the superrotation. We develop a mechanical understanding of this system and scaling laws by studying simpler configurations and the dependence on physical properties such as the rotation period, bottom boundary location and forcing structure. These columnar cyclonic structures propagate eastward, driven by dynamics similar to that of a Rossby wave except that the restoring planetary

  18. ON THE VARIATION OF ZONAL GRAVITY COEFFICIENTS OF A GIANT PLANET CAUSED BY ITS DEEP ZONAL FLOWS

    International Nuclear Information System (INIS)

    Kong Dali; Zhang Keke; Schubert, Gerald

    2012-01-01

    Rapidly rotating giant planets are usually marked by the existence of strong zonal flows at the cloud level. If the zonal flow is sufficiently deep and strong, it can produce hydrostatic-related gravitational anomalies through distortion of the planet's shape. This paper determines the zonal gravity coefficients, J 2n , n = 1, 2, 3, ..., via an analytical method taking into account rotation-induced shape changes by assuming that a planet has an effective uniform density and that the zonal flows arise from deep convection and extend along cylinders parallel to the rotation axis. Two different but related hydrostatic models are considered. When a giant planet is in rigid-body rotation, the exact solution of the problem using oblate spheroidal coordinates is derived, allowing us to compute the value of its zonal gravity coefficients J-bar 2n , n=1,2,3,..., without making any approximation. When the deep zonal flow is sufficiently strong, we develop a general perturbation theory for estimating the variation of the zonal gravity coefficients, ΔJ 2n =J 2n -J-bar 2n , n=1,2,3,..., caused by the effect of the deep zonal flows for an arbitrarily rapidly rotating planet. Applying the general theory to Jupiter, we find that the deep zonal flow could contribute up to 0.3% of the J 2 coefficient and 0.7% of J 4 . It is also found that the shape-driven harmonics at the 10th zonal gravity coefficient become dominant, i.e., ΔJ 2n >=J-bar 2n for n ≥ 5.

  19. SDSS-III MARVELS Planet Candidate RV Follow-up

    Science.gov (United States)

    Ge, Jian; Thomas, Neil; Ma, Bo; Li, Rui; SIthajan, Sirinrat

    2014-02-01

    Planetary systems, discovered by the radial velocity (RV) surveys, reveal strong correlations between the planet frequency and stellar properties, such as metallicity and mass, and a greater diversity in planets than found in the solar system. However, due to the sample sizes of extant surveys (~100 to a few hundreds of stars) and their heterogeneity, many key questions remained to be addressed: Do metal poor stars obey the same trends for planet occurrence as metal rich stars? What is the distribution of giant planets around intermediate- mass stars and binaries? Is the ``planet desert'' within 0.6 AU in the planet orbital distribution of intermediate-mass stars real? The MARVELS survey has produced the largest homogeneous RV measurements of 3300 V=7.6-12 FGK stars. The latest data pipeline effort at UF has been able to remove long term systematic errors suffered in the earlier data pipeline. 18 high confident giant planet candidates have been identified among newly processed data. We propose to follow up these giant planet candidates with the KPNO EXPERT instrument to confirm the detection and also characterize their orbits. The confirmed planets will be used to measure occurrence rates, distributions and multiplicity of giants planets around F,G,K stars with a broad range of mass (~0.6-2.5 M_⊙) and metallicity ([Fe/H]~-1.5-0.5). The well defined MARVELS survey cadence allows robust determinations of completeness limits for rigorously testing giant planet formation theories and constraining models.

  20. FORMATION, SURVIVAL, AND DETECTABILITY OF PLANETS BEYOND 100 AU

    International Nuclear Information System (INIS)

    Veras, Dimitri; Crepp, Justin R.; Ford, Eric B.

    2009-01-01

    Direct imaging searches have begun to detect planetary and brown dwarf companions and to place constraints on the presence of giant planets at large separations from their host star. This work helps to motivate such planet searches by predicting a population of young giant planets that could be detectable by direct imaging campaigns. Both the classical core accretion and the gravitational instability model for planet formation are hard pressed to form long-period planets in situ. Here, we show that dynamical instabilities among planetary systems that originally formed multiple giant planets much closer to the host star could produce a population of giant planets at large (∼ 10 2 -10 5 AU) separations. We estimate the limits within which these planets may survive, quantify the efficiency of gravitational scattering into both stable and unstable wide orbits, and demonstrate that population analyses must take into account the age of the system. We predict that planet scattering creates detectable giant planets on wide orbits that decreases in number on timescales of ∼ 10 Myr. We demonstrate that several members of such populations should be detectable with current technology, quantify the prospects for future instruments, and suggest how they could place interesting constraints on planet formation models.

  1. HAT-P-65b and HAT-P-66b: Two Transiting Inflated Hot Jupiters and Observational Evidence for the Reinflation of Close-in Giant Planets

    Science.gov (United States)

    Hartman, J. D.; Bakos, G. Á.; Bhatti, W.; Penev, K.; Bieryla, A.; Latham, D. W.; Kovács, G.; Torres, G.; Csubry, Z.; de Val-Borro, M.; Buchhave, L.; Kovács, T.; Quinn, S.; Howard, A. W.; Isaacson, H.; Fulton, B. J.; Everett, M. E.; Esquerdo, G.; Béky, B.; Szklenar, T.; Falco, E.; Santerne, A.; Boisse, I.; Hébrard, G.; Burrows, A.; Lázár, J.; Papp, I.; Sári, P.

    2016-12-01

    We present the discovery of the transiting exoplanets HAT-P-65b and HAT-P-66b, with orbital periods of 2.6055 and 2.9721 days, masses of 0.527+/- 0.083 {M}{{J}} and 0.783+/- 0.057 {M}{{J}}, and inflated radii of 1.89+/- 0.13 {R}{{J}} and {1.59}-0.10+0.16 {R}{{J}}, respectively. They orbit moderately bright (V=13.145+/- 0.029 and V=12.993+/- 0.052) stars of mass 1.212+/- 0.050 {M}⊙ and {1.255}-0.054+0.107 {M}⊙ . The stars are at the main-sequence turnoff. While it is well known that the radii of close-in giant planets are correlated with their equilibrium temperatures, whether or not the radii of planets increase in time as their hosts evolve and become more luminous is an open question. Looking at the broader sample of well-characterized close-in transiting giant planets, we find that there is a statistically significant correlation between planetary radii and the fractional ages of their host stars, with a false-alarm probability of only 0.0041%. We find that the correlation between the radii of planets and the fractional ages of their hosts is fully explained by the known correlation between planetary radii and their present-day equilibrium temperatures; however, if the zero-age main-sequence equilibrium temperature is used in place of the present-day equilibrium temperature, then a correlation with age must also be included to explain the planetary radii. This suggests that, after contracting during the pre-main-sequence, close-in giant planets are reinflated over time due to the increasing level of irradiation received from their host stars. Prior theoretical work indicates that such a dynamic response to irradiation requires a significant fraction of the incident energy to be deposited deep within the planetary interiors. Based on observations obtained with the Hungarian-made Automated Telescope Network. Based on observations obtained at the W. M. Keck Observatory, which is operated by the University of California and the California Institute of Technology

  2. A DISK AROUND THE PLANETARY-MASS COMPANION GSC 06214-00210 b: CLUES ABOUT THE FORMATION OF GAS GIANTS ON WIDE ORBITS

    International Nuclear Information System (INIS)

    Bowler, Brendan P.; Liu, Michael C.; Kraus, Adam L.; Mann, Andrew W.; Ireland, Michael J.

    2011-01-01

    We present Keck OSIRIS 1.1-1.8 μm adaptive optics integral field spectroscopy of the planetary-mass companion to GSC 06214-00210, a member of the ∼5 Myr Upper Scorpius OB association. We infer a spectral type of L0 ± 1, and our spectrum exhibits multiple signs of youth. The most notable feature is exceptionally strong Paβ emission (EW = –11.4 ± 0.3 Å), which signals the presence of a circumplanetary accretion disk. The luminosity of GSC 06214-00210 b combined with its age yields a model-dependent mass of 14 ± 2 M Jup , making it the lowest-mass companion to show evidence of a disk. With a projected separation of 320 AU, the formation of GSC 06214-00210 b and other very low mass companions on similarly wide orbits is unclear. One proposed mechanism is formation at close separations followed by planet-planet scattering to much larger orbits. Since that scenario involves a close encounter with another massive body, which is probably destructive to circumplanetary disks, it is unlikely that GSC 06214-00210 b underwent a scattering event in the past. This implies that planet-planet scattering is not solely responsible for the population of gas giants on wide orbits. More generally, the identification of disks around young planetary companions on wide orbits offers a novel method to constrain the formation pathway of these objects, which is otherwise notoriously difficult to do for individual systems. We also refine the spectral type of the primary from M1 to K7 and detect a mild (2σ) excess at 22 μm using Wide-Field Infrared Survey Explorer photometry.

  3. Faint-Source-Star Planetary Microlensing: The Discovery of the Cold Gas-Giant Planet OGLE-2014-BLG-0676Lb

    Science.gov (United States)

    Rattenbury, N. J.; Bennett, D. P.; Sumi, T.; Koshimoto, N.; Bond, I. A.; Udalski, A.; Shvartzvald, Y.; Maoz, D.; Jorgensen, U. G.; Barry, R.; hide

    2016-01-01

    We report the discovery of a planet OGLE-2014-BLG-0676Lb via gravitational microlensing. Observations for the lensing event were made by the following groups: Microlensing Observations in Astrophysics; Optical Gravitational Lensing Experiment; Wise Observatory; RoboNETLas Cumbres Observatory Global Telescope; Microlensing Network for the Detection of Small Terrestrial Exoplanets; and -FUN. All analyses of the light-curve data favoura lens system comprising a planetary mass orbiting a host star. The most-favoured binary lens model has a mass ratio between the two lens masses of (4.78 +/- 0.13) 10(exp -3). Subject to some important assumptions, a Bayesian probability density analysis suggests the lens system comprises a 3.09(+1.02/-1.12) MJ planet orbiting a 0.62(+0.20/-0.22) solar mass host star at a deprojected orbital separation of 4.40(+2.16/-1.46) au. The distance to the lens system is 2.22(+0.96/-0.83) kpc. Planet OGLE-2014-BLG-0676Lb provides additional data to the growing number of cool planets discover redusing gravitational microlensing against which planetary formation theories may be tested. Most of the light in the baseline of this event is expected to come from the lens and thus high-resolution imaging observations could confirm our planetary model interpretation.

  4. Magnetospheric structure and atmospheric Joule heating of habitable planets orbiting M-dwarf stars

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, O.; Drake, J. J.; Garraffo, C.; Poppenhaeger, K. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Glocer, A. [NASA/GSFC, Code 673, Greenbelt, MD 20771 (United States); Bell, J. M. [Center for Planetary Atmospheres and Flight Sciences, National Institute of Aerospace, Hampton, VA 23666 (United States); Ridley, A. J.; Gombosi, T. I. [Center for Space Environment Modeling, University of Michigan, 2455 Hayward Street, Ann Arbor, MI 48109 (United States)

    2014-07-20

    We study the magnetospheric structure and the ionospheric Joule Heating of planets orbiting M-dwarf stars in the habitable zone using a set of magnetohydrodynamic models. The stellar wind solution is used to drive a model for the planetary magnetosphere, which is coupled with a model for the planetary ionosphere. Our simulations reveal that the space environment around close-in habitable planets is extreme, and the stellar wind plasma conditions change from sub- to super-Alfvénic along the planetary orbit. As a result, the magnetospheric structure changes dramatically with a bow shock forming in the super-Alfvénic sectors, while no bow shock forms in the sub-Alfvénic sectors. The planets reside most of the time in the sub-Alfvénic sectors with poor atmospheric protection. A significant amount of Joule Heating is provided at the top of the atmosphere as a result of the intense stellar wind. For the steady-state solution, the heating is about 0.1%-3% of the total incoming stellar irradiation, and it is enhanced by 50% for the time-dependent case. The significant Joule Heating obtained here should be considered in models for the atmospheres of habitable planets in terms of the thickness of the atmosphere, the top-side temperature and density, the boundary conditions for the atmospheric pressure, and particle radiation and transport. Here we assume constant ionospheric Pedersen conductance similar to that of the Earth. The conductance could be greater due to the intense EUV radiation leading to smaller heating rates. We plan to quantify the ionospheric conductance in future study.

  5. A Neptune-sized transiting planet closely orbiting a 5–10-million-year-old star.

    Science.gov (United States)

    David, Trevor J; Hillenbrand, Lynne A; Petigura, Erik A; Carpenter, John M; Crossfield, Ian J M; Hinkley, Sasha; Ciardi, David R; Howard, Andrew W; Isaacson, Howard T; Cody, Ann Marie; Schlieder, Joshua E; Beichman, Charles A; Barenfeld, Scott A

    2016-06-30

    Theories of the formation and early evolution of planetary systems postulate that planets are born in circumstellar disks, and undergo radial migration during and after dissipation of the dust and gas disk from which they formed. The precise ages of meteorites indicate that planetesimals—the building blocks of planets—are produced within the first million years of a star’s life. Fully formed planets are frequently detected on short orbital periods around mature stars. Some theories suggest that the in situ formation of planets close to their host stars is unlikely and that the existence of such planets is therefore evidence of large-scale migration. Other theories posit that planet assembly at small orbital separations may be common. Here we report a newly born, transiting planet orbiting its star with a period of 5.4 days. The planet is 50 per cent larger than Neptune, and its mass is less than 3.6 times that of Jupiter (at 99.7 per cent confidence), with a true mass likely to be similar to that of Neptune. The star is 5–10 million years old and has a tenuous dust disk extending outward from about twice the Earth–Sun separation, in addition to the fully formed planet located at less than one-twentieth of the Earth–Sun separation.

  6. A Bayesian approach shows no correlation between transit-depth and stellar metallicity for confirmed and candidates Kepler gas giants planets

    International Nuclear Information System (INIS)

    Nehmé, C; Sarkis, P

    2017-01-01

    Previous study to investigate the correlation between the transit depth and the stellar metallicity of Kepler’s (Q1-Q12) gas giant planets (radii of 5-20R ⊙ ) has led to a weakly significant negative correlation. We use the cumulative catalog of planets detected by the NASA Kepler mission Q1-Q17 catalog, as of April 2015, to perform a solid statistical analysis of this correlation. In the present work, we revise this correlation, within a Bayesian framework, for two large samples: sample A confirmed planets and sample B (confirmed + candidates). We expand a hierarchical method to account for false positives in the studied samples. Our statistical analysis reveals no correlation between the transit depth and the stellar metallicity. This has implications for planet formation theory and interior structure of giant planets. (paper)

  7. EFFECT OF UV RADIATION ON THE SPECTRAL FINGERPRINTS OF EARTH-LIKE PLANETS ORBITING M STARS

    Energy Technology Data Exchange (ETDEWEB)

    Rugheimer, S. [Harvard Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Kaltenegger, L. [Carl Sagan Institute, Cornell University, Ithaca, NY 14853 (United States); Segura, A. [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, México (Mexico); Linsky, J. [JILA, University of Colorado and NIST, 440 UCB, Boulder, CO 80309-0440 (United States); Mohanty, S. [Imperial College London, 1010 Blackett Lab, Prince Consort Road, London SW7 2AZ (United Kingdom)

    2015-08-10

    We model the atmospheres and spectra of Earth-like planets orbiting the entire grid of M dwarfs for active and inactive stellar models with T{sub eff} = 2300 K to T{sub eff} = 3800 K and for six observed MUSCLES M dwarfs with UV radiation data. We set the Earth-like planets at the 1 AU equivalent distance and show spectra from the visible to IR (0.4–20 μm) to compare detectability of features in different wavelength ranges with the James Webb Space Telescope and other future ground- and spaced-based missions to characterize exo-Earths. We focus on the effect of UV activity levels on detectable atmospheric features that indicate habitability on Earth, namely, H{sub 2}O, O{sub 3}, CH{sub 4}, N{sub 2}O, and CH{sub 3}Cl. To observe signatures of life—O{sub 2}/O{sub 3} in combination with reducing species like CH{sub 4}—we find that early and active M dwarfs are the best targets of the M star grid for future telescopes. The O{sub 2} spectral feature at 0.76 μm is increasingly difficult to detect in reflected light of later M dwarfs owing to low stellar flux in that wavelength region. N{sub 2}O, another biosignature detectable in the IR, builds up to observable concentrations in our planetary models around M dwarfs with low UV flux. CH{sub 3}Cl could become detectable, depending on the depth of the overlapping N{sub 2}O feature. We present a spectral database of Earth-like planets around cool stars for directly imaged planets as a framework for interpreting future light curves, direct imaging, and secondary eclipse measurements of the atmospheres of terrestrial planets in the habitable zone to design and assess future telescope capabilities.

  8. EFFECT OF UV RADIATION ON THE SPECTRAL FINGERPRINTS OF EARTH-LIKE PLANETS ORBITING M STARS

    International Nuclear Information System (INIS)

    Rugheimer, S.; Kaltenegger, L.; Segura, A.; Linsky, J.; Mohanty, S.

    2015-01-01

    We model the atmospheres and spectra of Earth-like planets orbiting the entire grid of M dwarfs for active and inactive stellar models with T eff = 2300 K to T eff = 3800 K and for six observed MUSCLES M dwarfs with UV radiation data. We set the Earth-like planets at the 1 AU equivalent distance and show spectra from the visible to IR (0.4–20 μm) to compare detectability of features in different wavelength ranges with the James Webb Space Telescope and other future ground- and spaced-based missions to characterize exo-Earths. We focus on the effect of UV activity levels on detectable atmospheric features that indicate habitability on Earth, namely, H 2 O, O 3 , CH 4 , N 2 O, and CH 3 Cl. To observe signatures of life—O 2 /O 3 in combination with reducing species like CH 4 —we find that early and active M dwarfs are the best targets of the M star grid for future telescopes. The O 2 spectral feature at 0.76 μm is increasingly difficult to detect in reflected light of later M dwarfs owing to low stellar flux in that wavelength region. N 2 O, another biosignature detectable in the IR, builds up to observable concentrations in our planetary models around M dwarfs with low UV flux. CH 3 Cl could become detectable, depending on the depth of the overlapping N 2 O feature. We present a spectral database of Earth-like planets around cool stars for directly imaged planets as a framework for interpreting future light curves, direct imaging, and secondary eclipse measurements of the atmospheres of terrestrial planets in the habitable zone to design and assess future telescope capabilities

  9. Using Schumann Resonance Measurements for Constraining the Water Abundance on the Giant Planets - Implications for the Solar System Formation

    Science.gov (United States)

    Simoes, Fernando; Pfaff, Robert; Hamelin, Michel; Klenzing, Jeffrey; Freudenreich, Henry; Beghin, Christian; Berthelier, Jean-Jacques; Bromund, Kenneth; Grard, Rejean; Lebreton, Jean-Pierre; hide

    2012-01-01

    The formation and evolution of the Solar System is closely related to the abundance of volatiles, namely water, ammonia, and methane in the protoplanetary disk. Accurate measurement of volatiles in the Solar System is therefore important to understand not only the nebular hypothesis and origin of life but also planetary cosmogony as a whole. In this work, we propose a new, remote sensing technique to infer the outer planets water content by measuring Tremendously and Extremely Low Frequency (TLF-ELF) electromagnetic wave characteristics (Schumann resonances) excited by lightning in their gaseous envelopes. Schumann resonance detection can be potentially used for constraining the uncertainty of volatiles of the giant planets, mainly Uranus and Neptune, because such TLF-ELF wave signatures are closely related to the electric conductivity profile and water content.

  10. Giant-Planet Chemistry: Ammonium Hydrosulfide (NH4SH), Its IR Spectra and Thermal and Radiolytic Stabilities

    Science.gov (United States)

    Loeffler, Mark J.; Hudson, Reggie L.; Chanover, Nancy J.; Simon, Amy A.

    2015-01-01

    Here we present our recent studies of proton-irradiated and unirradiated ammonium hydrosulfide, NH4SH, a compound predicted to be an important tropospheric cloud component of Jupiter and other giant planets. We irradiated both crystalline and amorphous NH4SH at 10-160 K and used IR spectroscopy to observe and identify reaction products in the ice, specifically NH3 and long-chained sulfur-containing ions. Crystalline NH4SH was amorphized during irradiation at all temperatures studied with the rate being the fastest at the lowest temperatures. Irradiation of amorphous NH4SH at approximately 10-75 K showed that 60-80% of the NH4 + remained when equilibrium was reached, and that NH4SH destruction rates were relatively constant within this temperature range. Irradiations at higher temperatures produced different dose dependence and were accompanied by pressure outbursts that, in some cases, fractured the ice. The thermal stability of irradiated NH4SH was found to be greater than that of unirradiated NH4SH, suggesting that an irradiated giant-planet cloud precipitate can exist at temperatures and altitudes not previously considered.

  11. THE LAST GASP OF GAS GIANT PLANET FORMATION: A SPITZER STUDY OF THE 5 Myr OLD CLUSTER NGC 2362

    International Nuclear Information System (INIS)

    Currie, Thayne; Lada, Charles J.; Robitaille, Thomas P.; Irwin, Jonathan; Kenyon, Scott J.; Plavchan, Peter

    2009-01-01

    Expanding upon the Infrared Array Camera (IRAC) survey from Dahm and Hillenbrand, we describe Spitzer IRAC and Multiband Imaging Photometer for Spitzer observations of the populous, 5 Myr old open cluster NGC 2362. We analyze the mid-IR colors of cluster members and compared their spectral energy distributions (SEDs) to star+circumstellar disk models to constrain the disk morphologies and evolutionary states. Early/intermediate-type confirmed/candidate cluster members either have photospheric mid-IR emission or weak, optically thin IR excess emission at λ ≥ 24 μm consistent with debris disks. Few late-type, solar/subsolar-mass stars have primordial disks. The disk population around late-type stars is dominated by disks with inner holes (canonical 'transition disks') and 'homologously depleted' disks. Both types of disks represent an intermediate stage between primordial disks and debris disks. Thus, in agreement with previous results, we find that multiple paths for the primordial-to-debris disk transition exist. Because these 'evolved primordial disks' greatly outnumber primordial disks, our results undermine standard arguments in favor of a ∼ 5 yr timescale for the transition based on data from Taurus-Auriga. Because the typical transition timescale is far longer than 10 5 yr, these data also appear to rule out standard ultraviolet photoevaporation scenarios as the primary mechanism to explain the transition. Combining our data with other Spitzer surveys, we investigate the evolution of debris disks around high/intermediate-mass stars and investigate timescales for giant planet formation. Consistent with Currie et al., the luminosity of 24 μm emission in debris disks due to planet formation peaks at ∼10-20 Myr. If the gas and dust in disks evolve on similar timescales, the formation timescale for gas giant planets surrounding early-type, high/intermediate-mass (∼>1.4 M sun ) stars is likely 1-5 Myr. Most solar/subsolar-mass stars detected by Spitzer

  12. Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors

    KAUST Repository

    Zhu, Zhiyong

    2011-10-14

    Fully relativistic first-principles calculations based on density functional theory are performed to study the spin-orbit-induced spin splitting in monolayer systems of the transition-metal dichalcogenides MoS2, MoSe2, WS2, and WSe2. All these systems are identified as direct-band-gap semiconductors. Giant spin splittings of 148–456 meV result from missing inversion symmetry. Full out-of-plane spin polarization is due to the two-dimensional nature of the electron motion and the potential gradient asymmetry. By suppression of the Dyakonov-Perel spin relaxation, spin lifetimes are expected to be very long. Because of the giant spin splittings, the studied materials have great potential in spintronics applications.

  13. Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors

    KAUST Repository

    Zhu, Zhiyong; Cheng, Yingchun; Schwingenschlö gl, Udo

    2011-01-01

    Fully relativistic first-principles calculations based on density functional theory are performed to study the spin-orbit-induced spin splitting in monolayer systems of the transition-metal dichalcogenides MoS2, MoSe2, WS2, and WSe2. All these systems are identified as direct-band-gap semiconductors. Giant spin splittings of 148–456 meV result from missing inversion symmetry. Full out-of-plane spin polarization is due to the two-dimensional nature of the electron motion and the potential gradient asymmetry. By suppression of the Dyakonov-Perel spin relaxation, spin lifetimes are expected to be very long. Because of the giant spin splittings, the studied materials have great potential in spintronics applications.

  14. On the possibility of Earth-type habitable planets in the 55 Cancri system.

    Science.gov (United States)

    von Bloh, W; Cuntz, M; Franck, S; Bounama, C

    2003-01-01

    We discuss the possibility of Earth-type planets in the planetary system of 55 Cancri, a nearby G8 V star, which is host to two, possibly three, giant planets. We argue that Earth-type planets around 55 Cancri are in principle possible. Several conditions are necessary. First, Earth-type planets must have formed despite the existence of the close-in giant planet(s). In addition, they must be orbitally stable in the region of habitability considering that the stellar habitable zone is relatively close to the star compared to the Sun because of 55 Cancri's low luminosity and may therefore be affected by the close-in giant planet(s). We estimate the likelihood of Earth-type planets around 55 Cancri based on the integrated system approach previously considered, which provides a way of assessing the long-term possibility of photosynthetic biomass production under geodynamic conditions.

  15. SPIN-ORBIT ALIGNMENT FOR THE CIRCUMBINARY PLANET HOST KEPLER-16 A

    International Nuclear Information System (INIS)

    Winn, Joshua N.; Albrecht, Simon; Johnson, John Asher; Torres, Guillermo; Carter, Joshua A.; Ragozzine, Darin; Quinn, Samuel N.; Latham, David W.; Cochran, William D.; Marcy, Geoffrey W.; Howard, Andrew W.; Isaacson, Howard; Fischer, Debra; Doyle, Laurance; Welsh, William; Orosz, Jerome; Fabrycky, Daniel C.; Shporer, Avi; Howell, Steve B.; Prsa, Andrej

    2011-01-01

    Kepler-16 is an eccentric low-mass eclipsing binary with a circumbinary transiting planet. Here, we investigate the angular momentum of the primary star, based on Kepler photometry and Keck spectroscopy. The primary star's rotation period is 35.1 ± 1.0 days, and its projected obliquity with respect to the stellar binary orbit is 1. 0 6 ± 2. 0 4. Therefore, the three largest sources of angular momentum-the stellar orbit, the planetary orbit, and the primary's rotation-are all closely aligned. This finding supports a formation scenario involving accretion from a single disk. Alternatively, tides may have realigned the stars despite their relatively wide separation (0.2 AU), a hypothesis that is supported by the agreement between the measured rotation period and the 'pseudosynchronous' period of tidal evolution theory. The rotation period, chromospheric activity level, and fractional light variations suggest a main-sequence age of 2-4 Gyr. Evolutionary models of low-mass stars can match the observed masses and radii of the primary and secondary stars to within about 3%.

  16. Turbulent Convection in an Anelastic Rotating Sphere: A Model for the Circulation on the Giant Planets

    National Research Council Canada - National Science Library

    Kaspi, Yohai

    2008-01-01

    ... (including the strong variations in gravity and the equation of state). Different from most previous 3D convection models, this model is anelastic rather than Boussinesq and thereby incorporates the full density variation of the planet...

  17. Electromagnetic spin–orbit interaction and giant spin-Hall effect in dielectric particle clusters

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yineng [Department of Physics, Beijing Normal University, Beijing 100875 (China); Zhang, Xiangdong, E-mail: zhangxd@bit.edu.cn [School of Physics and Beijing Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems, Beijing Institute of Technology, 100081, Beijing (China)

    2013-12-09

    We report a phenomenon that electromagnetic spin–orbit interactions can be tailored by dielectric nanoparticles, and self-similar giant spin-Hall effect has been observed in the dielectric particle cluster. The near-field phase singularities and phase vorticity in the longitudinal component of scattered field can also be controlled by such a dielectric structure. The origin of phenomena is believed to be due to the collective resonance excitation in the dielectric particle cluster. It is expected to find applications in optics information processing and designing new nanophotonic devices.

  18. Exploring Disks Around Planets

    Science.gov (United States)

    Kohler, Susanna

    2017-07-01

    masses on the properties of the disks. Szulgyi specifically examines a range of planetary temperatures between 10,000 K and 1,000 K for the 1 MJ planet. Since the planet cools as it radiates away its formation heat, the different temperatures represent an evolutionary sequence over time.Predicted CharacteristicsSzulgyis work produced a number of intriguing observations, including the following:For the 1 MJ planet, a spherical circumplanetary envelope forms at high temperatures, flattening into a disk as the planet cools. Higher-mass planets form disks even at high temperatures.The disk has a steep temperature profile from inside to outside, and the whole disk is too hot for water to remain frozen. This suggests that satellites couldnt form in the disk earlier than 1 Myr after the planet birth. The outskirts of the disk cool first as the planet cools, indicating that satellites may eventually form in these outer parts and then migrate inward.The planets open gaps in the circumstellar disk as they orbit. As a planet radiates away its formation heat, the gap it opens becomes deeper and wider (though this is a small effect). For high-mass planets (5 MJ), the gap eccentricity increases, which creates a hostile environment for satellite formation.Szulgyi discusses a number of features of these disks that we can plan to search for in the future with our increasing telescope power including signatures in direct imaging and observations of their kinematics. The results from these simulations will help us both to detect these circumplanetary disks and to understand our observations when we do. These future observations will then allow us to learn about late-stage giant-planet formation as well as the formation of their satellites.CitationJ. Szulgyi 2017 ApJ 842 103. doi:10.3847/1538-4357/aa7515

  19. A Direct Imaging Survey of Spitzer-detected Debris Disks: Occurrence of Giant Planets in Dusty Systems

    Science.gov (United States)

    Meshkat, Tiffany; Mawet, Dimitri; Bryan, Marta L.; Hinkley, Sasha; Bowler, Brendan P.; Stapelfeldt, Karl R.; Batygin, Konstantin; Padgett, Deborah; Morales, Farisa Y.; Serabyn, Eugene; Christiaens, Valentin; Brandt, Timothy D.; Wahhaj, Zahed

    2017-12-01

    We describe a joint high-contrast imaging survey for planets at the Keck and Very Large Telescope of the last large sample of debris disks identified by the Spitzer Space Telescope. No new substellar companions were discovered in our survey of 30 Spitzer-selected targets. We combine our observations with data from four published surveys to place constraints on the frequency of planets around 130 debris disk single stars, the largest sample to date. For a control sample, we assembled contrast curves from several published surveys targeting 277 stars that do not show infrared excesses. We assumed a double power-law distribution in mass and semimajor axis (SMA) of the form f(m,a)={{Cm}}α {a}β , where we adopted power-law values and logarithmically flat values for the mass and SMA of planets. We find that the frequency of giant planets with masses 5-20 M Jup and separations 10-1000 au around stars with debris disks is 6.27% (68% confidence interval 3.68%-9.76%), compared to 0.73% (68% confidence interval 0.20%-1.80%) for the control sample of stars without disks. These distributions differ at the 88% confidence level, tentatively suggesting distinctness of these samples. Some of the data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation.

  20. THE COMPOSITIONAL DIVERSITY OF EXTRASOLAR TERRESTRIAL PLANETS. II. MIGRATION SIMULATIONS

    International Nuclear Information System (INIS)

    Carter-Bond, Jade C.; O'Brien, David P.; Raymond, Sean N.

    2012-01-01

    Prior work has found that a variety of terrestrial planetary compositions are expected to occur within known extrasolar planetary systems. However, such studies ignored the effects of giant planet migration, which is thought to be very common in extrasolar systems. Here we present calculations of the compositions of terrestrial planets that formed in dynamical simulations incorporating varying degrees of giant planet migration. We used chemical equilibrium models of the solid material present in the disks of five known planetary host stars: the Sun, GJ 777, HD4203, HD19994, and HD213240. Giant planet migration has a strong effect on the compositions of simulated terrestrial planets as the migration results in large-scale mixing between terrestrial planet building blocks that condensed at a range of temperatures. This mixing acts to (1) increase the typical abundance of Mg-rich silicates in the terrestrial planets' feeding zones and thus increase the frequency of planets with Earth-like compositions compared with simulations with static giant planet orbits, and (2) drastically increase the efficiency of the delivery of hydrous phases (water and serpentine) to terrestrial planets and thus produce waterworlds and/or wet Earths. Our results demonstrate that although a wide variety of terrestrial planet compositions can still be produced, planets with Earth-like compositions should be common within extrasolar planetary systems.

  1. THE NASA-UC ETA-EARTH PROGRAM. III. A SUPER-EARTH ORBITING HD 97658 AND A NEPTUNE-MASS PLANET ORBITING Gl 785

    International Nuclear Information System (INIS)

    Howard, Andrew W.; Marcy, Geoffrey W.; Isaacson, Howard; Johnson, John Asher; Fischer, Debra A.; Wright, Jason T.; Henry, Gregory W.; Valenti, Jeff A.; Anderson, Jay; Piskunov, Nikolai E.

    2011-01-01

    We report the discovery of planets orbiting two bright, nearby early K dwarf stars, HD 97658 and Gl 785. These planets were detected by Keplerian modeling of radial velocities measured with Keck-HIRES for the NASA-UC Eta-Earth Survey. HD 97658 b is a close-in super-Earth with minimum mass Msin i = 8.2 ± 1.2 M + , orbital period P = 9.494 ± 0.005 days, and an orbit that is consistent with circular. Gl 785 b is a Neptune-mass planet with Msin i = 21.6 ± 2.0 M + , P = 74.39 ± 0.12 days, and orbital eccentricity e = 0.30 ± 0.09. Photometric observations with the T12 0.8 m automatic photometric telescope at Fairborn Observatory show that HD 97658 is photometrically constant at the radial velocity period to 0.09 mmag, supporting the existence of the planet.

  2. A NEW HYBRID N-BODY-COAGULATION CODE FOR THE FORMATION OF GAS GIANT PLANETS

    International Nuclear Information System (INIS)

    Bromley, Benjamin C.; Kenyon, Scott J.

    2011-01-01

    We describe an updated version of our hybrid N-body-coagulation code for planet formation. In addition to the features of our 2006-2008 code, our treatment now includes algorithms for the one-dimensional evolution of the viscous disk, the accretion of small particles in planetary atmospheres, gas accretion onto massive cores, and the response of N-bodies to the gravitational potential of the gaseous disk and the swarm of planetesimals. To validate the N-body portion of the algorithm, we use a battery of tests in planetary dynamics. As a first application of the complete code, we consider the evolution of Pluto-mass planetesimals in a swarm of 0.1-1 cm pebbles. In a typical evolution time of 1-3 Myr, our calculations transform 0.01-0.1 M sun disks of gas and dust into planetary systems containing super-Earths, Saturns, and Jupiters. Low-mass planets form more often than massive planets; disks with smaller α form more massive planets than disks with larger α. For Jupiter-mass planets, masses of solid cores are 10-100 M + .

  3. K2-137 b: an Earth-sized planet in a 4.3-h orbit around an M-dwarf

    DEFF Research Database (Denmark)

    Smith, A. M. S.; Cabrera, J.; Csizmadia, Sz

    2018-01-01

    We report the discovery in K2's Campaign 10 of a transiting terrestrial planet in an ultra-short-period orbit around an M3-dwarf. K2-137 b completes an orbit in only 4.3 h, the second shortest orbital period of any known planet, just 4 min longer than that of KOI 1843.03, which also orbits an M-d...

  4. A SUPER-EARTH-SIZED PLANET ORBITING IN OR NEAR THE HABITABLE ZONE AROUND A SUN-LIKE STAR

    Energy Technology Data Exchange (ETDEWEB)

    Barclay, Thomas; Burke, Christopher J.; Howell, Steve B.; Rowe, Jason F.; Huber, Daniel; Jenkins, Jon M.; Quintana, Elisa V.; Still, Martin; Twicken, Joseph D.; Bryson, Stephen T.; Borucki, William J.; Caldwell, Douglas A.; Clarke, Bruce D.; Christiansen, Jessie L; Coughlin, Jeffrey L. [NASA Ames Research Center, M/S 244-30, Moffett Field, CA 94035 (United States); Isaacson, Howard; Kolbl, Rea; Marcy, Geoffrey W. [Department of Astronomy, University of California at Berkeley, Berkeley, CA 94720 (United States); Ciardi, David [NASA Exoplanet Science Institute, California Institute of Technology, 770 South Wilson Avenue, Pasadena, CA 91125 (United States); Fischer, Debra A. [Department of Astronomy, Yale University, New Haven, CT 06520 (United States); and others

    2013-05-10

    We present the discovery of a super-Earth-sized planet in or near the habitable zone of a Sun-like star. The host is Kepler-69, a 13.7 mag G4V-type star. We detect two periodic sets of transit signals in the 3-year flux time series of Kepler-69, obtained with the Kepler spacecraft. Using the very high precision Kepler photometry, and follow-up observations, our confidence that these signals represent planetary transits is >99.3%. The inner planet, Kepler-69b, has a radius of 2.24{sup +0.44}{sub -0.29} R{sub Circled-Plus} and orbits the host star every 13.7 days. The outer planet, Kepler-69c, is a super-Earth-sized object with a radius of 1.7{sup +0.34}{sub -0.23} R{sub Circled-Plus} and an orbital period of 242.5 days. Assuming an Earth-like Bond albedo, Kepler-69c has an equilibrium temperature of 299 {+-} 19 K, which places the planet close to the habitable zone around the host star. This is the smallest planet found by Kepler to be orbiting in or near the habitable zone of a Sun-like star and represents an important step on the path to finding the first true Earth analog.

  5. HOW WELL DO WE KNOW THE ORBITS OF THE OUTER PLANETS?

    International Nuclear Information System (INIS)

    Page, Gary L.; Wallin, John F.; Dixon, David S.

    2009-01-01

    This paper deals with the problem of astrometric determination of the orbital elements of the outer planets, in particular by assessing the ability of astrometric observations to detect perturbations of the sort expected from the Pioneer effect or other small perturbations to gravity. We also show that while using simplified models of the dynamics can lead to some insights, one must be careful to not oversimplify the issues involved lest one be misled by the analysis onto false paths. Specifically, we show that the current ephemeris of Pluto does not preclude the existence of the Pioneer effect. We show that the orbit of Pluto is simply not well enough characterized at present to make such an assertion. A number of misunderstandings related to these topics have now propagated through the literature and have been used as a basis for drawing conclusions about the dynamics of the solar system. Thus, the objective of this paper is to address these issues. Finally, we offer some comments dealing with the complex topic of model selection and comparison.

  6. Very Low-mass Stellar and Substellar Companions to Solar-like Stars from MARVELS. VI. A Giant Planet and a Brown Dwarf Candidate in a Close Binary System HD 87646

    Science.gov (United States)

    Ma, Bo; Ge, Jian; Wolszczan, Alex; Muterspaugh, Matthew W.; Lee, Brian; Henry, Gregory W.; Schneider, Donald P.; Martín, Eduardo L.; Niedzielski, Andrzej; Xie, Jiwei; Fleming, Scott W.; Thomas, Neil; Williamson, Michael; Zhu, Zhaohuan; Agol, Eric; Bizyaev, Dmitry; Nicolaci da Costa, Luiz; Jiang, Peng; Martinez Fiorenzano, A. F.; González Hernández, Jonay I.; Guo, Pengcheng; Grieves, Nolan; Li, Rui; Liu, Jane; Mahadevan, Suvrath; Mazeh, Tsevi; Nguyen, Duy Cuong; Paegert, Martin; Sithajan, Sirinrat; Stassun, Keivan; Thirupathi, Sivarani; van Eyken, Julian C.; Wan, Xiaoke; Wang, Ji; Wisniewski, John P.; Zhao, Bo; Zucker, Shay

    2016-11-01

    We report the detections of a giant planet (MARVELS-7b) and a brown dwarf (BD) candidate (MARVELS-7c) around the primary star in the close binary system, HD 87646. To the best of our knowledge, it is the first close binary system with more than one substellar circumprimary companion that has been discovered. The detection of this giant planet was accomplished using the first multi-object Doppler instrument (KeckET) at the Sloan Digital Sky Survey (SDSS) telescope. Subsequent radial velocity observations using the Exoplanet Tracker at the Kitt Peak National Observatory, the High Resolution Spectrograph at the Hobby Eberley telescope, the “Classic” spectrograph at the Automatic Spectroscopic Telescope at the Fairborn Observatory, and MARVELS from SDSS-III confirmed this giant planet discovery and revealed the existence of a long-period BD in this binary. HD 87646 is a close binary with a separation of ˜22 au between the two stars, estimated using the Hipparcos catalog and our newly acquired AO image from PALAO on the 200 inch Hale Telescope at Palomar. The primary star in the binary, HD 87646A, has {T}{eff} = 5770 ± 80 K, log g = 4.1 ± 0.1, and [Fe/H] = -0.17 ± 0.08. The derived minimum masses of the two substellar companions of HD 87646A are 12.4 ± 0.7 {M}{Jup} and 57.0 ± 3.7 {M}{Jup}. The periods are 13.481 ± 0.001 days and 674 ± 4 days and the measured eccentricities are 0.05 ± 0.02 and 0.50 ± 0.02 respectively. Our dynamical simulations show that the system is stable if the binary orbit has a large semimajor axis and a low eccentricity, which can be verified with future astrometry observations.

  7. Transiting circumbinary planets Kepler-34 b and Kepler-35 b

    Energy Technology Data Exchange (ETDEWEB)

    Welsh, William F.; Orosz, Jerome A.; Carter, Joshua A.; Fabrycky, Daniel C.; Ford, Eric B.; Lissauer, Jack J.; Prša, Andrej; Quinn, Samuel N.; Ragozzine, Darin; Short, Donald R.; Torres, Guillermo; Winn, Joshua N.; Doyle, Laurance R.; Barclay, Thomas; Batalha, Natalie; Bloemen, Steven; Brugamyer, Erik; Buchhave, Lars A.; Caldwell, Caroline; Caldwell, Douglas A.; Christiansen, Jessie L.; Ciardi, David R.; Cochran, William D.; Endl, Michael; Fortney, Jonathan J.; Gautier III, Thomas N.; Gilliland, Ronald L.; Haas, Michael R.; Hall, Jennifer R.; Holman, Matthew J.; Howard, Andrew W.; Howell, Steve B.; Isaacson, Howard; Jenkins, Jon M.; Klaus, Todd C.; Latham, David W.; Li, Jie; Marcy, Geoffrey W.; Mazeh, Tsevi; Quintana, Elisa V.; Robertson, Paul; Shporer, Avi; Steffen, Jason H.; Windmiller, Gur; Koch, David G.; Borucki, William J.

    2012-01-11

    Most Sun-like stars in the Galaxy reside in gravitationally-bound pairs of stars called 'binary stars'. While long anticipated, the existence of a 'circumbinary planet' orbiting such a pair of normal stars was not definitively established until the discovery of Kepler-16. Incontrovertible evidence was provided by the miniature eclipses ('transits') of the stars by the planet. However, questions remain about the prevalence of circumbinary planets and their range of orbital and physical properties. Here we present two additional transiting circumbinary planets, Kepler-34 and Kepler-35. Each is a low-density gas giant planet on an orbit closely aligned with that of its parent stars. Kepler-34 orbits two Sun-like stars every 289 days, while Kepler-35 orbits a pair of smaller stars (89% and 81% of the Sun's mass) every 131 days. Due to the orbital motion of the stars, the planets experience large multi-periodic variations in incident stellar radiation. The observed rate of circumbinary planets implies > ~1% of close binary stars have giant planets in nearly coplanar orbits, yielding a Galactic population of at least several million.

  8. Transiting circumbinary planets Kepler-34 b and Kepler-35 b.

    Science.gov (United States)

    Welsh, William F; Orosz, Jerome A; Carter, Joshua A; Fabrycky, Daniel C; Ford, Eric B; Lissauer, Jack J; Prša, Andrej; Quinn, Samuel N; Ragozzine, Darin; Short, Donald R; Torres, Guillermo; Winn, Joshua N; Doyle, Laurance R; Barclay, Thomas; Batalha, Natalie; Bloemen, Steven; Brugamyer, Erik; Buchhave, Lars A; Caldwell, Caroline; Caldwell, Douglas A; Christiansen, Jessie L; Ciardi, David R; Cochran, William D; Endl, Michael; Fortney, Jonathan J; Gautier, Thomas N; Gilliland, Ronald L; Haas, Michael R; Hall, Jennifer R; Holman, Matthew J; Howard, Andrew W; Howell, Steve B; Isaacson, Howard; Jenkins, Jon M; Klaus, Todd C; Latham, David W; Li, Jie; Marcy, Geoffrey W; Mazeh, Tsevi; Quintana, Elisa V; Robertson, Paul; Shporer, Avi; Steffen, Jason H; Windmiller, Gur; Koch, David G; Borucki, William J

    2012-01-11

    Most Sun-like stars in the Galaxy reside in gravitationally bound pairs of stars (binaries). Although long anticipated, the existence of a 'circumbinary planet' orbiting such a pair of normal stars was not definitively established until the discovery of the planet transiting (that is, passing in front of) Kepler-16. Questions remained, however, about the prevalence of circumbinary planets and their range of orbital and physical properties. Here we report two additional transiting circumbinary planets: Kepler-34 (AB)b and Kepler-35 (AB)b, referred to here as Kepler-34 b and Kepler-35 b, respectively. Each is a low-density gas-giant planet on an orbit closely aligned with that of its parent stars. Kepler-34 b orbits two Sun-like stars every 289 days, whereas Kepler-35 b orbits a pair of smaller stars (89% and 81% of the Sun's mass) every 131 days. The planets experience large multi-periodic variations in incident stellar radiation arising from the orbital motion of the stars. The observed rate of circumbinary planets in our sample implies that more than ∼1% of close binary stars have giant planets in nearly coplanar orbits, yielding a Galactic population of at least several million.

  9. Infrared radiation from an extrasolar planet

    OpenAIRE

    Deming, Drake; Seager, Sara; Richardson, L. Jeremy; Harrington, Joseph

    2005-01-01

    A class of extrasolar giant planets - the so-called `hot Jupiters' - orbit within 0.05 AU of their primary stars. These planets should be hot and so emit detectable infrared radiation. The planet HD 209458b is an ideal candidate for the detection and characterization of this infrared light because it is eclipsed by the star. This planet has an anomalously large radius (1.35 times that of Jupiter), which may be the result of ongoing tidal dissipation, but this explanation requires a non-zero o...

  10. Recent Variability Observations of Solar System Giant Planets: Fresh Context for Understanding Exoplanet and Brown Dwarf Weather

    Science.gov (United States)

    Marley, Mark Scott

    2016-01-01

    Over the past several years a number of high cadence photometric observations of solar system giant planets have been acquired by various platforms. Such observations are of interest as they provide points of comparison to the already expansive set of brown dwarf variability observations and the small, but growing, set of exoplanet variability observations. By measuring how rapidly the integrated light from solar system giant planets can evolve, variability observations of substellar objects that are unlikely to ever be resolved can be placed in a fuller context. Examples of brown dwarf variability observations include extensive work from the ground (e.g., Radigen et al. 2014), Spitzer (e.g., Metchev et al. 2015), Kepler (Gizis et al. 2015), and HST (Yang et al. 2015).Variability has been measured on the planetary mass companion to the brown dwarf 2MASS 1207b (Zhou et al. 2016) and further searches are planned in thermal emission for the known directly imaged planets with ground based telescopes (Apai et al. 2016) and in reflected light with future space based telescopes. Recent solar system variability observations include Kepler monitoring of Neptune (Simon et al. 2016) and Uranus, Spitzer observations of Neptune (Stauffer et al. 2016), and Cassini observations of Jupiter (West et al. in prep). The Cassini observations are of particular interest as they measured the variability of Jupiter at a phase angle of approximately 60 deg, comparable to the viewing geometry expected for space based direct imaging of cool extrasolar Jupiters in reflected light. These solar system analog observations capture many of the characteristics seen in brown dwarf variability, including large amplitudes and rapid light curve evolution on timescales as short as a few rotation periods. Simon et al. (2016) attribute such variations at Neptune to a combination of large scale, stable cloud structures along with smaller, more rapidly varying, cloud patches. The observed brown dwarf and

  11. Deciphering the Hot Giant Atmospheres Orbiting Nearby Extrasolar Systems with JWST

    Science.gov (United States)

    Afrin Badhan, Mahmuda; Batalha, Natasha; Deming, Drake; Domagal-Goldman, Shawn; HEBRARD, Eric; Kopparapu, Ravi Kumar; Irwin, Patrick Gerard Joseph

    2016-10-01

    Unique and exotic planets give us an opportunity to understand how planetary systems form and evolve over their lifetime, by placing our own planetary system in the context of the vastly different extrasolar systems that are being continually discovered by present space missions. With orbital separations that are less than one-tenth of the Mercury-Sun distance, these close-in planets provide us with valuable insights about the host stellar atmosphere and planetary atmospheres subjected to their enormous stellar insolation. Observed spectroscopic signatures reveal all spectrally active species in a planet, along with information about its thermal structure and dynamics, allowing us to characterize the planet's atmosphere. NASA's upcoming missions will give us the high-resolution spectra necessary to constrain the atmospheric properties with unprecedented accuracy. However, to interpret the observed signals from exoplanetary transit events with any certainty, we need reliable atmospheric retrieval tools that can model the expected observables adequately. In my work thus far, I have built a Markov Chain Monte Carlo (MCMC) convergence scheme, with an analytical radiative equilibrium formulation for the thermal structures, within the NEMESIS atmospheric modeling tool, to allow sufficient (and efficient) exploration of the parameter space. I also augmented the opacity tables to improve the speed and reliability of retrieval models. I then utilized this upgraded version to infer the pressure-temperature (P-T) structures and volume-mixing ratios (VMRs) of major gas species in hot Jupiter dayside atmospheres, from their emission spectra. I have employed a parameterized thermal structure to retrieve plausible P-T profiles, along with altitude-invariant VMRs. Here I show my retrieval results on published datasets of HD189733b, and compare them with both medium and high spectral resolution JWST/NIRSPEC simulations. In preparation for the upcoming JWST mission, my current work

  12. The Kepler Mission: A Mission to Determine the Frequency of Inner Planets Near the Habitable Zone of a Wide Range of Stars

    Science.gov (United States)

    Borucki, W. J.; Koch, D. G.; Dunham, E. W.; Jenkins, J. M.

    1997-01-01

    The surprising discovery of giant planets in inner orbits around solar-like stars has brought into question our understanding of the development and evolution of planetary systems, including our solar system. To make further progress, it is critical to detect and obtain data on the frequency and characteristics of Earth-class planets. The Kepler Mission is designed to be a quick, low-cost approach to accomplish that objective. Transits by Earth-class planets produce a fractional change. in stellar brightness of 5 x 10(exp -5) to 40 x 10(exp -5) lasting for 4 to 16 hours. From the period and depth of the transits, the orbit and size of the planets can be calculated. The proposed instrument is a one-meter aperture photometer with a 12 deg. field-of-view (FOV). To obtain the required precision and to avoid interruptions caused by day-night and seasonal cycles, the photometer will be launched into a heliocentric orbit. It will continuously and simultaneously monitor the flux from 80,000 dwarf stars brighter than 14th magnitude in the Cygnus constellation. The mission tests the hypothesis that the formation of most stars produces Earth-class planets in inner orbits. Based on this assumption and the recent observations that 2% of the stars have giant planets in inner orbits, several types of results are expected from the mission: 1. From transits of Earth-class planets, about 480 planet detections and 60 cases where two or more planets are found in the same system. 2. From transits of giant planets, about 160 detections of inner-orbit planets and 24 detections of outer-orbit planets. 3. From the phase modulation of the reflected light from giant planets, about 1400 planet detections with periods less than a week, albedos for 160 of these giant planets, and densities for seven planets.

  13. The Kepler Mission: A Mission to Determine the Frequency of Inner Planets Neat the Habitable Zone of a Wide Range of Stars

    Science.gov (United States)

    Borucki, W. J.; Koch, D. G.; Dunham, E. W.; Jenkins, J. M.; Young, Richard E. (Technical Monitor)

    1997-01-01

    The surprising discovery of giant planets in inner orbits around solar-like stars has brought into question our understanding of the development and evolution of planetary systems, including our solar system. To make further progress, it is critical to detect and obtain data on the frequency and characteristics of Earth-class planets. The Kepler Mission is designed to be a quick, low-cost approach to accomplish that objective. Transits by Earth-class planets produce a fractional change in stellar brightness of 5 x 10(exp -5) to 40 x 10(exp -5) lasting for 4 to 16 hours, From the period and depth of the transits, the orbit and size of the planets can be calculated. The proposed instrument is a one-meter aperture photometer with a 12 deg field-of-view (FOV). To obtain the required precision and to avoid interruptions caused by day-night and seasonal cycles, the photometer will be launched into a heliocentric orbit. It will continuously and simultaneously monitor the flux from 80,000 dwarf stars brighter than 14th magnitude in the Cygnus constellation. The mission tests the hypothesis that the formation of most stars produces Earth-class planets in inner orbits. Based on this assumption and the recent observations that 2% of the stars have giant planets in inner orbits, several types of results are expected from the mission: 1. From transits of Earth-class planets, about 480 planet detections and 60 cases where two or more planets are found in the same system. 2. From transits of giant planets, about 160 detections of inner-orbit planets and 24 detections of outer-orbit planets. 3. From the phase modulation of the reflected light from giant planets, about 1400 planet detections with periods less than a week, albedos for 160 of these giant planets, and densities for seven planets.

  14. Precision flux density measurements of the giant planets at 8420 MHz

    Science.gov (United States)

    Turegano, J. A.; Klein, M. J.

    1981-01-01

    Precision measurements of the 3.56 cm flux densities of Jupiter, Saturn, Uranus, and Neptune are reported. The results are compared with previously published measurements as a means of: remotely sensing long-term changes in the microwave emission from the atmospheres of these planets and measuring the effects of Saturn's rings on the disk temperature as observed from earth at different ring inclination angles.

  15. Constraints on the pre-impact orbits of Solar system giant impactors

    Science.gov (United States)

    Jackson, Alan P.; Gabriel, Travis S. J.; Asphaug, Erik I.

    2018-03-01

    We provide a fast method for computing constraints on impactor pre-impact orbits, applying this to the late giant impacts in the Solar system. These constraints can be used to make quick, broad comparisons of different collision scenarios, identifying some immediately as low-probability events, and narrowing the parameter space in which to target follow-up studies with expensive N-body simulations. We benchmark our parameter space predictions, finding good agreement with existing N-body studies for the Moon. We suggest that high-velocity impact scenarios in the inner Solar system, including all currently proposed single impact scenarios for the formation of Mercury, should be disfavoured. This leaves a multiple hit-and-run scenario as the most probable currently proposed for the formation of Mercury.

  16. Giant Optical Polarization Rotation Induced by Spin-Orbit Coupling in Polarons

    Science.gov (United States)

    Casals, Blai; Cichelero, Rafael; García Fernández, Pablo; Junquera, Javier; Pesquera, David; Campoy-Quiles, Mariano; Infante, Ingrid C.; Sánchez, Florencio; Fontcuberta, Josep; Herranz, Gervasi

    2016-07-01

    We have uncovered a giant gyrotropic magneto-optical response for doped ferromagnetic manganite La2 /3Ca1 /3MnO3 around the near room-temperature paramagnetic-to-ferromagnetic transition. At odds with current wisdom, where this response is usually assumed to be fundamentally fixed by the electronic band structure, we point to the presence of small polarons as the driving force for this unexpected phenomenon. We explain the observed properties by the intricate interplay of mobility, Jahn-Teller effect, and spin-orbit coupling of small polarons. As magnetic polarons are ubiquitously inherent to many strongly correlated systems, our results provide an original, general pathway towards the generation of magnetic-responsive gigantic gyrotropic responses that may open novel avenues for magnetoelectric coupling beyond the conventional modulation of magnetization.

  17. Discovery of a Gas Giant Planet in Microlensing Event Ogle-2014-BLG-1760

    Science.gov (United States)

    Bhattacharya, A.; Bennett, D. P.; Bond, I. A.; Sumi, T.; Udalski, A.; Street, R.; Tsapras, Y.; Abe, F.; Freeman, M.; Fukui, A.

    2016-01-01

    We present the analysis of the planetary microlensing event OGLE-2014-BLG-1760, which shows a strong light-curve signal due to the presence of a Jupiter mass ratio planet. One unusual feature of this event is that the source star is quite blue, with V-I = 1.48 +/- 0.08. This is marginally consistent with a source star in the Galactic bulge, but it could possibly indicate a young source star on the far side of the disk. Assuming a bulge source, we perform a Bayesian analysis assuming a standard Galactic model, and this indicates that the planetary system resides in or near the Galactic bulge at D(sub L) = 6.9 +/- 1.1 kpc. It also indicates a host-star mass of M(sub *) = 0.51(sup + 0.44/sub -0.28) M(sub theta), a planet mass of m(sub p ) = 0.56(sup +0.34/sub -0.26) M(sub J), and a projected star-planet separation of a(perpendicular) = 1.75(sup +0.33/sub -0.34) au. The lens-source relative proper motion is micro(sub rel) = 6.5 +/- 1.1mas per yr. The lens (and stellar host star) is estimated to be very faint compared to the source star, so it is most likely that it can be detected only when the lens and source stars start to separate. Due to the relatively high relative proper motion, the lens and source will be resolved to about approximately 46 mas in 6-8 yr after the peak magnification. So, by 2020-2022, we can hope to detect the lens star with deep, high-resolution images.

  18. A terrestrial planet candidate in a temperate orbit around Proxima Centauri.

    Science.gov (United States)

    Anglada-Escudé, Guillem; Amado, Pedro J; Barnes, John; Berdiñas, Zaira M; Butler, R Paul; Coleman, Gavin A L; de la Cueva, Ignacio; Dreizler, Stefan; Endl, Michael; Giesers, Benjamin; Jeffers, Sandra V; Jenkins, James S; Jones, Hugh R A; Kiraga, Marcin; Kürster, Martin; López-González, Marίa J; Marvin, Christopher J; Morales, Nicolás; Morin, Julien; Nelson, Richard P; Ortiz, José L; Ofir, Aviv; Paardekooper, Sijme-Jan; Reiners, Ansgar; Rodríguez, Eloy; Rodrίguez-López, Cristina; Sarmiento, Luis F; Strachan, John P; Tsapras, Yiannis; Tuomi, Mikko; Zechmeister, Mathias

    2016-08-25

    At a distance of 1.295 parsecs, the red dwarf Proxima Centauri (α Centauri C, GL 551, HIP 70890 or simply Proxima) is the Sun's closest stellar neighbour and one of the best-studied low-mass stars. It has an effective temperature of only around 3,050 kelvin, a luminosity of 0.15 per cent of that of the Sun, a measured radius of 14 per cent of the radius of the Sun and a mass of about 12 per cent of the mass of the Sun. Although Proxima is considered a moderately active star, its rotation period is about 83 days (ref. 3) and its quiescent activity levels and X-ray luminosity are comparable to those of the Sun. Here we report observations that reveal the presence of a small planet with a minimum mass of about 1.3 Earth masses orbiting Proxima with a period of approximately 11.2 days at a semi-major-axis distance of around 0.05 astronomical units. Its equilibrium temperature is within the range where water could be liquid on its surface.

  19. Direct Imaging of Warm Extrasolar Planets

    International Nuclear Information System (INIS)

    Macintosh, B

    2005-01-01

    One of the most exciting scientific discoveries in the last decade of the twentieth century was the first detection of planets orbiting a star other than our own. By now more than 130 extrasolar planets have been discovered indirectly, by observing the gravitational effects of the planet on the radial velocity of its parent star. This technique has fundamental limitations: it is most sensitive to planets close to their star, and it determines only a planet's orbital period and a lower limit on the planet's mass. As a result, all the planetary systems found so far are very different from our own--they have giant Jupiter-sized planets orbiting close to their star, where the terrestrial planets are found in our solar system. Such systems have overturned the conventional paradigm of planet formation, but have no room in them for habitable Earth-like planets. A powerful complement to radial velocity detections of extrasolar planets will be direct imaging--seeing photons from the planet itself. Such a detection would allow photometric measurements to determine the temperature and radius of a planet. Also, direct detection is most sensitive to planets in wide orbits, and hence more capable of seeing solar systems resembling our own, since a giant planet in a wide orbit does not preclude the presence of an Earth-like planet closer to the star. Direct detection, however, is extremely challenging. Jupiter is roughly a billion times fainter than our sun. Two techniques allowed us to overcome this formidable contrast and attempt to see giant planets directly. The first is adaptive optics (AO) which allows giant earth-based telescopes, such as the 10 meter W.M. Keck telescope, to partially overcome the blurring effects of atmospheric turbulence. The second is looking for young planets: by searching in the infrared for companions to young stars, we can see thermal emission from planets that are still warm with the heat of their formation. Together with a UCLA team that leads the

  20. Mechanism for the Coupled Photochemistry of Ammonia and Acetylene: Implications for Giant Planets, Comets and Interstellar Organic Synthesis

    Science.gov (United States)

    Keane, Thomas C.

    2017-09-01

    Laboratory studies provide a fundamental understanding of photochemical processes in planetary atmospheres. Photochemical reactions taking place on giant planets like Jupiter and possibly comets and the interstellar medium are the subject of this research. Reaction pathways are proposed for the coupled photochemistry of NH3 (ammonia) and C2H2 (acetylene) within the context Jupiter's atmosphere. We then extend the discussion to the Great Red Spot, Extra-Solar Giant Planets, Comets and Interstellar Organic Synthesis. Reaction rates in the form of quantum yields were measured for the decomposition of reactants and the formation of products and stable intermediates: HCN (hydrogen cyanide), CH3CN (acetonitrile), CH3CH = N-N = CHCH3 (acetaldazine), CH3CH = N-NH2 (acetaldehyde hydrazone), C2H5NH2 (ethylamine), CH3NH2 (methylamine) and C2H4 (ethene) in the photolysis of NH3/C2H2 mixtures. Some of these compounds, formed in our investigation of pathways for HCN synthesis, were not encountered previously in observational, theoretical or laboratory photochemical studies. The quantum yields obtained allowed for the formulation of a reaction mechanism that attempts to explain the observed results under varying experimental conditions. In general, the results of this work are consistent with the initial observations of Ferris and Ishikawa (1988). However, their proposed reaction pathway which centers on the photolysis of CH3CH = N-N = CHCH3 does not explain all of the results obtained in this study. The formation of CH3CH = N-N = CHCH3 by a radical combination reaction of CH3CH = N• was shown in this work to be inconsistent with other experiments where the CH3CH = N• radical is thought to form but where no CH3CH = N-N = CHCH3 was detected. The importance of the role of H atom abstraction reactions was demonstrated and an alternative pathway for CH3CH = N-N = CHCH3 formation involving nucleophilic reaction between N2H4 and CH3CH = NH is advanced.

  1. Problems of simulation of large, long-lived vortices in the atmospheres of the giant planets (jupiter, saturn, neptune)

    Science.gov (United States)

    Nezlin, Michael V.; Sutyrin, Georgi G.

    1994-01-01

    Large, long-lived vortices are abundant in the atmospheres of the giant planets. Some of them survive a few orders of magnitude longer than the dispersive linear Rossby wave packets, e.g. the Great Red Spot (GRS), Little Red Spot (LRS) and White Ovals (WO) of Jupiter, Big Bertha, Brown Spot and Anne's Spot of Saturn, the Great Dark Spot (GDS) of Neptune, etc. Nonlinear effects which prevent their dispersion spreading are the main subject of our consideration. Particular emphasis is placed on determining the dynamical processes which may explain the remarkable properties of observed vortices such as anticyclonic rotation in preference to cyclonic one and the uniqueness of the GRS, the largest coherent vortex, along the perimeter of Jupiter at corresponding latitude. We review recent experimental and theoretical studies of steadily translating solitary Rossby vortices (anticyclones) in a rotating shallow fluid. Two-dimensional monopolar solitary vortices trap fluid which is transported westward. These dualistic structures appear to be vortices, on the one hand, and solitary “waves”, on the other hand. Owing to the presence of the trapped fluid, such solitary structures collide inelastically and have a memory of the initial disturbance which is responsible for the formation of the structure. As a consequence, they have no definite relationship between the amplitude and characteristic size. Their vortical properties are connected with geostrophic advection of local vorticity. Their solitary properties (nonspreading and stationary translation) are due to a balance between Rossby wave dispersion and nonlinear effects which allow the anticyclones, with an elevation of a free surface, to propagate faster than the linear waves, without a resonance with linear waves, i.e. without wave radiation. On the other hand, cyclones, with a depression of a free surface, are dispersive and nonstationary features. This asymmetry in dispersion-nonlinear properties of cyclones and

  2. Mechanism for the Coupled Photochemistry of Ammonia and Acetylene: Implications for Giant Planets, Comets and Interstellar Organic Synthesis.

    Science.gov (United States)

    Keane, Thomas C

    2017-09-01

    Laboratory studies provide a fundamental understanding of photochemical processes in planetary atmospheres. Photochemical reactions taking place on giant planets like Jupiter and possibly comets and the interstellar medium are the subject of this research. Reaction pathways are proposed for the coupled photochemistry of NH 3 (ammonia) and C 2 H 2 (acetylene) within the context Jupiter's atmosphere. We then extend the discussion to the Great Red Spot, Extra-Solar Giant Planets, Comets and Interstellar Organic Synthesis. Reaction rates in the form of quantum yields were measured for the decomposition of reactants and the formation of products and stable intermediates: HCN (hydrogen cyanide), CH 3 CN (acetonitrile), CH 3 CH = N-N = CHCH 3 (acetaldazine), CH 3 CH = N-NH 2 (acetaldehyde hydrazone), C 2 H 5 NH 2 (ethylamine), CH 3 NH 2 (methylamine) and C 2 H 4 (ethene) in the photolysis of NH 3 /C 2 H 2 mixtures. Some of these compounds, formed in our investigation of pathways for HCN synthesis, were not encountered previously in observational, theoretical or laboratory photochemical studies. The quantum yields obtained allowed for the formulation of a reaction mechanism that attempts to explain the observed results under varying experimental conditions. In general, the results of this work are consistent with the initial observations of Ferris and Ishikawa (1988). However, their proposed reaction pathway which centers on the photolysis of CH 3 CH = N-N = CHCH 3 does not explain all of the results obtained in this study. The formation of CH 3 CH = N-N = CHCH 3 by a radical combination reaction of CH 3 CH = N• was shown in this work to be inconsistent with other experiments where the CH 3 CH = N• radical is thought to form but where no CH 3 CH = N-N = CHCH 3 was detected. The importance of the role of H atom abstraction reactions was demonstrated and an alternative pathway for CH 3 CH = N-N = CHCH 3 formation involving nucleophilic reaction

  3. A Gas-Poor Planetesimal Feeding Model for the Formation of Giant Planet Satellite Systems: Consequences for the Atmosphere of Titan

    Science.gov (United States)

    Estrada, P. R.; Mosqueira, I.

    2005-01-01

    Given our presently inadequate understanding of the turbulent state of the solar and planetary nebulae, we believe the way to make progress in satellite formation is to consider two end member models that avoid over-reliance on specific choices of the turbulence (alpha), which is essentially a free parameter. The first end member model postulates turbulence decay once giant planet accretion ends. If so, Keplerian disks must eventually pass through the quiescent phases, so that the survival of satellites (and planets) ultimately hinges on gap-opening. In this scenario, the criterion for gap-opening itself sets the value for the gas surface density of the satellite disk.

  4. MESSENGER, MErcury: Surface, Space ENvironment, GEochemistry, and Ranging; A Mission to Orbit and Explore the Planet Mercury

    Science.gov (United States)

    1999-01-01

    MESSENGER is a scientific mission to Mercury. Understanding this extraordinary planet and the forces that have shaped it is fundamental to understanding the processes that have governed the formation, evolution, and dynamics of the terrestrial planets. MESSENGER is a MErcury Surface, Space ENvironment, GEochemistry and Ranging mission to orbit Mercury for one Earth year after completing two flybys of that planet following two flybys of Venus. The necessary flybys return significant new data early in the mission, while the orbital phase, guided by the flyby data, enables a focused scientific investigation of this least-studied terrestrial planet. Answers to key questions about Mercury's high density, crustal composition and structure, volcanic history, core structure, magnetic field generation, polar deposits, exosphere, overall volatile inventory, and magnetosphere are provided by an optimized set of miniaturized space instruments. Our goal is to gain new insight into the formation and evolution of the solar system, including Earth. By traveling to the inner edge of the solar system and exploring a poorly known world, MESSENGER fulfills this quest.

  5. Conditions for oceans on Earth-like planets orbiting within the habitable zone: importance of volcanic CO2 degassing

    International Nuclear Information System (INIS)

    Kadoya, S.; Tajika, E.

    2014-01-01

    Earth-like planets in the habitable zone (HZ) have been considered to have warm climates and liquid water on their surfaces if the carbonate-silicate geochemical cycle is working as on Earth. However, it is known that even the present Earth may be globally ice-covered when the rate of CO 2 degassing via volcanism becomes low. Here we discuss the climates of Earth-like planets in which the carbonate-silicate geochemical cycle is working, with focusing particularly on insolation and the CO 2 degassing rate. The climate of Earth-like planets within the HZ can be classified into three climate modes (hot, warm, and snowball climate modes). We found that the conditions for the existence of liquid water should be largely restricted even when the planet is orbiting within the HZ and the carbonate-silicate geochemical cycle is working. We show that these conditions should depend strongly on the rate of CO 2 degassing via volcanism. It is, therefore, suggested that thermal evolution of the planetary interiors will be a controlling factor for Earth-like planets to have liquid water on their surface.

  6. EXTRASOLAR BINARY PLANETS. II. DETECTABILITY BY TRANSIT OBSERVATIONS

    International Nuclear Information System (INIS)

    Lewis, K. M.; Ida, S.; Ochiai, H.; Nagasawa, M.

    2015-01-01

    We discuss the detectability of gravitationally bound pairs of gas-giant planets (which we call “binary planets”) in extrasolar planetary systems that are formed through orbital instability followed by planet–planet dynamical tides during their close encounters, based on the results of N-body simulations by Ochiai et al. (Paper I). Paper I showed that the formation probability of a binary is as much as ∼10% for three giant planet systems that undergo orbital instability, and after post-capture long-term tidal evolution, the typical binary separation is three to five times the sum of the physical radii of the planets. The binary planets are stable during the main-sequence lifetime of solar-type stars, if the stellarcentric semimajor axis of the binary is larger than 0.3 AU. We show that detecting modulations of transit light curves is the most promising observational method to detect binary planets. Since the likely binary separations are comparable to the stellar diameter, the shape of the transit light curve is different from transit to transit, depending on the phase of the binary’s orbit. The transit durations and depth for binary planet transits are generally longer and deeper than those for the single planet case. We point out that binary planets could exist among the known inflated gas-giant planets or objects classified as false positive detections at orbital radii ≳0.3 AU, propose a binary planet explanation for the CoRoT candidate SRc01 E2 1066, and show that binary planets are likely to be present in, and could be detected using, Kepler-quality data

  7. The Thermal Expansion of Ring Particles and the Secular Orbital Evolution of Rings Around Planets and Asteroids

    Science.gov (United States)

    Rubincam, David P.

    2013-01-01

    The thermal expansion and contraction of ring particles orbiting a planet or asteroid can cause secular orbit evolution. This effect, called here the thermal expansion effect, depends on ring particles entering and exiting the shadow of the body they orbit. A particle cools off in the shadow and heats up again in the sunshine, suffering thermal contraction and expansion. The changing cross-section it presents to solar radiation pressure plus time lags due to thermal inertia lead to a net along-track force. The effect causes outward drift for rocky particles. For the equatorial orbits considered here, the thermal expansion effect is larger than Poynting-Robertson drag in the inner solar system for particles in the size range approx. 0.001 - 0.02 m. This leads to a net increase in the semimajor axis from the two opposing effects at rates ranging from approx. 0.1 R per million years for Mars to approx. 1 R per million years for Mercury, for distances approx. 2R from the body, where R is the body's radius. Asteroid 243 Ida has approx. 10 R per million years, while a hypothetical Near-Earth Asteroid (NEA) can have faster rates of approx. 0.5 R per thousand years, due chiefly to its small radius compared to the planets. The thermal expansion effect weakens greatly at Jupiter and is overwhelmed by Poynting-Robertson for icy particles orbiting Saturn. Meteoroids in eccentric orbits about the Sun also suffer the thermal expansion effect, but with only approx. 0.0003e2 AU change in semimajor axis over a million years for a 2 m meteoroid orbiting between Mercury and Earth.

  8. A Program to Detect and Characterize Extra-Solar Giant Planets

    Science.gov (United States)

    Lindstrom, David (Technical Monitor); Noyes, Robert W.

    2003-01-01

    We initiated a significant hardware upgrade to the AFOE, to increase its efficiency for precise radial velocity studies to the level where we can continue to contribute usefully to extrasolar planet research on relatively bright stars. The AFOE, at a 1.5-m telescope, will of course not have the sensitivity of radial velocity instruments at larger telescopes, such as the HIRES on Keck or the Hectochelle on the MMT telescope (about to come on line). However, it has been possible to increase its efficiency for precise radial velocity studies by a factor of 4 to 5, which-combined with the large amount of telescope time available at the 1.5-m telescope-will permit us to do intensive follow-up observations of stars brighter than about 8 magnitude. The AFOE was originally designed primarily for asteroseismology using a ThAr reference. This provided useful wavelength stability over tens of minutes as required for asteroseismology, but we were unable to get a long-term (month-to-month) velocity precision better than about 15 m/s with that setup. Hence, we implemented an iodine cell as a wavelength reference for extrasolar planet studies. However, the optical design of the original AFOE did not completely span the wavelength range covered by the iodine absorption spectrum, and furthermore the optics suffered significant light loss through optical obscuration in the camera secondary. To remedy this, we replaced the AFOE grating with a new one that covered the entire iodine spectral range at somewhat lower spectral resolution, and replaced the camera with a transmitting lens. (The use of a lens was made possible by restricting the spectral range covered by the upgraded AFOE to only the iodine region.) These upgrades were successfully completed, and the instrument was tested for three nights in fall of 2002. The expected improvement in sensitivity by a factor of 4 to 5 was observed: that is, the same velocity precision as previously attained (of order 5 to 7 m/s) was now

  9. Spiral Arms in the Asymmetrically Illuminated Disk of MWC 758 and Constraints on Giant Planets

    Science.gov (United States)

    Grady, C. A.; Muto, T.; Hashimoto, J.; Fukagawa, M.; Currie, T.; Biller, B.; Thalmann, C.; Sitko, M. L.; Russell, R.; Wisniewski, J.; hide

    2013-01-01

    We present the first near-IR scattered light detection of the transitional disk associated with the Herbig Ae star MWC 758 using data obtained as part of the Strategic Exploration of Exoplanets and Disks with Subaru, and 1.1 micrometer Hubble Space Telescope/NICMOS data. While submillimeter studies suggested there is a dust-depleted cavity with r = 0".35, we find scattered light as close as 0".1 (20-28 AU) from the star, with no visible cavity at H, K', or Ks . We find two small-scaled spiral structures that asymmetrically shadow the outer disk. We model one of the spirals using spiral density wave theory, and derive a disk aspect ratio of h approximately 0.18, indicating a dynamically warm disk. If the spiral pattern is excited by a perturber, we estimate its mass to be 5(exp +3)(sub -4) M(sub J), in the range where planet filtration models predict accretion continuing onto the star. Using a combination of non-redundant aperture masking data at L' and angular differential imaging with Locally Optimized Combination of Images at K' and Ks , we exclude stellar or massive brown dwarf companions within 300 mas of the Herbig Ae star, and all but planetary mass companions exterior to 0".5. We reach 5 sigma contrasts limiting companions to planetary masses, 3-4 M(sub J) at 1".0 and 2 M(sub J) at 1".55, using the COND models. Collectively, these data strengthen the case for MWC 758 already being a young planetary system.

  10. INTERACTION OF CLOSE-IN PLANETS WITH THE MAGNETOSPHERE OF THEIR HOST STARS. II. SUPER-EARTHS AS UNIPOLAR INDUCTORS AND THEIR ORBITAL EVOLUTION

    International Nuclear Information System (INIS)

    Laine, Randy O.; Lin, Douglas N. C.

    2012-01-01

    Planets with several Earth masses and orbital periods of a few days have been discovered through radial velocity and transit surveys. Regardless of their formation mechanism, an important evolution issue is the efficiency of their retention in the proximity of their host stars. If these 'super-Earths' attained their present-day orbits during or shortly after the T Tauri phase of their host stars, a large fraction of these planets would have encountered an intense stellar magnetic field. These rocky planets have a higher conductivity than the atmosphere of their host stars and, therefore, the magnetic flux tube connecting them would slip though the envelope of the host stars faster than across the planets. The induced electromotive force across the planet's diameter leads to a potential drop which propagates along a flux tube away from the planet with an Alfvén speed. The foot of the flux tube would sweep across the stellar surface and the potential drop across the field lines drives a DC current analogous to that proposed for the electrodynamics of the Io-Jupiter system. The ohmic dissipation of this current produces potentially observable hot spots in the star envelope. It also heats the planet and leads to a torque which drives the planet's orbit to evolve toward both circularization and a state of synchronization with the spin of the star. The net effect is the damping of the planet's orbital eccentricity. Around slowly (or rapidly) spinning stars, this process also causes rocky planets with periods less than a few days to undergo orbital decay (or expansion/stagnation) within a few Myr. In principle, this effect can determine the retention efficiency of short-period hot Earths. We also estimate the ohmic dissipation interior to these planets and show that it can lead to severe structure evolution and potential loss of volatile material in them. However, these effects may be significantly weakened by the reconnection of the induced field.

  11. PEGASE: a free flying interferometer for the spectroscopy of giant exo-planets

    Science.gov (United States)

    Le Duigou, J.-M.; Ollivier, M.; Léger, A.; Cassaing, F.; Sorrente, B.; Fleury, B.; Rousset, G.; Absil, O.; Mourard, D.; Rabbia, Y.; Escarrat, L.; Malbet, F.; Rouan, D.; Clédassou, R.; Delpech, M.; Duchon, P.; Meyssignac, B.; Guidotti, P.-Y.; Gorius, N.

    2017-11-01

    This paper presents a summary of the phase-0 performed in 2005 for the Pegase mission. The main scientific goal is the spectroscopy of hot Jupiters (Pegasides) and brown dwarfs from 2.5 to 5 μm. The mission can extend to the exploration of the inner part of protoplanetary disks, the study of dust clouds around AGN,... The instrument is basically a two-aperture (D=40 cm) interferometer composed of two siderostats and one beam-combiner. The formation is linear and orbits around L2, pointing in the anti-solar direction within a +/-30° cone. The baseline is adjustable from 50 to 500 m in both nulling and visibility measurement modes. The angular resolution ranges from 1 to 20 mas and the spectral resolution is 60. in the nulling mode, a 2.5 nm rms stability of the optical path difference (OPD) and a pointing stability of 30 mas rms impose a two level control architecture. It combines control loops implemented at satellite level and control loops operating inside the payload using fine mechanisms. According to our preliminary study, this mission is feasible within an 8 to 9 years development plan using existing or slightly improved space components, but its cost requires international cooperation. Pegase could be a valuable Darwin/TPF-I pathfinder, with a less demanding, but still ambitious, technological challenge and a highly associated scientific return.

  12. Atmospheric reconnaissance of the habitable-zone Earth-sized planets orbiting TRAPPIST-1

    Science.gov (United States)

    de Wit, Julien; Wakeford, Hannah R.; Lewis, Nikole K.; Delrez, Laetitia; Gillon, Michaël; Selsis, Frank; Leconte, Jérémy; Demory, Brice-Olivier; Bolmont, Emeline; Bourrier, Vincent; Burgasser, Adam J.; Grimm, Simon; Jehin, Emmanuël; Lederer, Susan M.; Owen, James E.; Stamenković, Vlada; Triaud, Amaury H. M. J.

    2018-03-01

    Seven temperate Earth-sized exoplanets readily amenable for atmospheric studies transit the nearby ultracool dwarf star TRAPPIST-1 (refs 1,2). Their atmospheric regime is unknown and could range from extended primordial hydrogen-dominated to depleted atmospheres3-6. Hydrogen in particular is a powerful greenhouse gas that may prevent the habitability of inner planets while enabling the habitability of outer ones6-8. An atmosphere largely dominated by hydrogen, if cloud-free, should yield prominent spectroscopic signatures in the near-infrared detectable during transits. Observations of the innermost planets have ruled out such signatures9. However, the outermost planets are more likely to have sustained such a Neptune-like atmosphere10, 11. Here, we report observations for the four planets within or near the system's habitable zone, the circumstellar region where liquid water could exist on a planetary surface12-14. These planets do not exhibit prominent spectroscopic signatures at near-infrared wavelengths either, which rules out cloud-free hydrogen-dominated atmospheres for TRAPPIST-1 d, e and f, with significance of 8σ, 6σ and 4σ, respectively. Such an atmosphere is instead not excluded for planet g. As high-altitude clouds and hazes are not expected in hydrogen-dominated atmospheres around planets with such insolation15, 16, these observations further support their terrestrial and potentially habitable nature.

  13. Prevalence of Earth-size planets orbiting Sun-like stars

    OpenAIRE

    Petigura, Erik A.; Howard, Andrew W.; Marcy, Geoffrey W.

    2013-01-01

    Determining whether Earth-like planets are common or rare looms as a touchstone in the question of life in the universe. We searched for Earth-size planets that cross in front of their host stars by examining the brightness measurements of 42,000 stars from National Aeronautics and Space Administration's Kepler mission. We found 603 planets, including 10 that are Earth size (1-2 Earth-radii) and receive comparable levels of stellar energy to that of Earth (within a factor of four). We account...

  14. Long-term evaluation of orbital dynamics in the Sun-planet system considering axial-tilt

    Science.gov (United States)

    Bakhtiari, Majid; Daneshjou, Kamran

    2018-05-01

    In this paper, the axial-tilt (obliquity) effect of planets on the motion of planets’ orbiter in prolonged space missions has been investigated in the presence of the Sun gravity. The proposed model is based on non-simplified perturbed dynamic equations of planetary orbiter motion. From a new point of view, in this work, the dynamic equations regarding a disturbing body in elliptic inclined three-dimensional orbit are derived. The accuracy of this non-simplified method is validated with dual-averaged method employed on a generalized Earth-Moon system. It is shown that the neglected short-time oscillations in dual-averaged technique can accumulate and propel to remarkable errors in the prolonged evolution. After validation, the effects of the planet’s axial-tilt on eccentricity, inclination and right ascension of the ascending node of the orbiter are investigated. Moreover, a generalized model is provided to study the effects of third-body inclination and eccentricity on orbit characteristics. It is shown that the planet’s axial-tilt is the key to facilitating some significant changes in orbital elements in long-term mission and short-time oscillations must be considered in accurate prolonged evaluation.

  15. K2-137 b: an Earth-sized planet in a 4.3-h orbit around an M-dwarf

    Science.gov (United States)

    Smith, A. M. S.; Cabrera, J.; Csizmadia, Sz; Dai, F.; Gandolfi, D.; Hirano, T.; Winn, J. N.; Albrecht, S.; Alonso, R.; Antoniciello, G.; Barragán, O.; Deeg, H.; Eigmüller, Ph; Endl, M.; Erikson, A.; Fridlund, M.; Fukui, A.; Grziwa, S.; Guenther, E. W.; Hatzes, A. P.; Hidalgo, D.; Howard, A. W.; Isaacson, H.; Korth, J.; Kuzuhara, M.; Livingston, J.; Narita, N.; Nespral, D.; Nowak, G.; Palle, E.; Pätzold, M.; Persson, C. M.; Petigura, E.; Prieto-Arranz, J.; Rauer, H.; Ribas, I.; Van Eylen, V.

    2018-03-01

    We report the discovery in K2's Campaign 10 of a transiting terrestrial planet in an ultra-short-period orbit around an M3-dwarf. K2-137 b completes an orbit in only 4.3 h, the second shortest orbital period of any known planet, just 4 min longer than that of KOI 1843.03, which also orbits an M-dwarf. Using a combination of archival images, adaptive optics imaging, radial velocity measurements, and light-curve modelling, we show that no plausible eclipsing binary scenario can explain the K2 light curve, and thus confirm the planetary nature of the system. The planet, whose radius we determine to be 0.89 ± 0.09 R⊕, and which must have an iron mass fraction greater than 0.45, orbits a star of mass 0.463 ± 0.052 M⊙ and radius 0.442 ± 0.044 R⊙.

  16. Conversion from HST ACS and STIS auroral counts into brightness, precipitated power and radiated power for H2 giant planets

    Science.gov (United States)

    Gustin, J.; Bonfond, B.; Grodent, D.; Gerard, J. C.

    2012-09-01

    The STIS and ACS instruments onboard HST are widely used to study the giant planet's aurora. Several assumptions have to be made to convert the instrumental counts into meaningful physical values (type and bandwidth of the filters, definition of the physical units, etc…), but these may significantly differ from one author to another, which makes it difficult to compare the auroral characteristics published in different studies. We present a method to convert the counts obtained in representative ACS and STIS imaging modes / filters used by the auroral scientific community to brightness, precipitated power and radiated power in the ultraviolet (700- 1800 Å). Since hydrocarbon absorption may considerably affect the observed auroral emission, the conversion factors are determined for several attenuation levels. Several properties of the auroral emission have been determined: the fraction of the H2 emission shortward and longward of the HLy-a line is 50.3 % and 49.7 % respectively, the contribution of HLy-a to the total unabsorbed auroral signal has been set to 9.1 % and an input of 1 mW m-2 produces 10 kR of H2 in the Lyman and Werner bands. A first application sets the order of magnitude of Saturn's auroral characteristics in the total UV bandwidth to a brightness of 10 kR and an emitted power of ~2.8 GW. A second application uses published brighnesses of Europa's footprint to determine the current density associated with the Europa auroral spot: 0.21 and 0.045 μA m-2 assuming no hydrocarbon absorption and a color ratio of 2, respectively.

  17. Pervasive orbital eccentricities dictate the habitability of extrasolar earths.

    Science.gov (United States)

    Kita, Ryosuke; Rasio, Frederic; Takeda, Genya

    2010-09-01

    The long-term habitability of Earth-like planets requires low orbital eccentricities. A secular perturbation from a distant stellar companion is a very important mechanism in exciting planetary eccentricities, as many of the extrasolar planetary systems are associated with stellar companions. Although the orbital evolution of an Earth-like planet in a stellar binary system is well understood, the effect of a binary perturbation on a more realistic system containing additional gas-giant planets has been very little studied. Here, we provide analytic criteria confirmed by a large ensemble of numerical integrations that identify the initial orbital parameters leading to eccentric orbits. We show that an extrasolar earth is likely to experience a broad range of orbital evolution dictated by the location of a gas-giant planet, which necessitates more focused studies on the effect of eccentricity on the potential for life.

  18. The effect of planets beyond the ice line on the accretion of volatiles by habitable-zone rocky planets

    International Nuclear Information System (INIS)

    Quintana, Elisa V.; Lissauer, Jack J.

    2014-01-01

    Models of planet formation have shown that giant planets have a large impact on the number, masses, and orbits of terrestrial planets that form. In addition, they play an important role in delivering volatiles from material that formed exterior to the snow line (the region in the disk beyond which water ice can condense) to the inner region of the disk where terrestrial planets can maintain liquid water on their surfaces. We present simulations of the late stages of terrestrial planet formation from a disk of protoplanets around a solar-type star and we include a massive planet (from 1 M ⊕ to 1 M J ) in Jupiter's orbit at ∼5.2 AU in all but one set of simulations. Two initial disk models are examined with the same mass distribution and total initial water content, but with different distributions of water content. We compare the accretion rates and final water mass fraction of the planets that form. Remarkably, all of the planets that formed in our simulations without giant planets were water-rich, showing that giant planet companions are not required to deliver volatiles to terrestrial planets in the habitable zone. In contrast, an outer planet at least several times the mass of Earth may be needed to clear distant regions of debris truncating the epoch of frequent large impacts. Observations of exoplanets from radial velocity surveys suggest that outer Jupiter-like planets may be scarce, therefore, the results presented here suggest that there may be more habitable planets residing in our galaxy than previously thought.

  19. The effect of planets beyond the ice line on the accretion of volatiles by habitable-zone rocky planets

    Energy Technology Data Exchange (ETDEWEB)

    Quintana, Elisa V. [SETI Institute, 189 Bernardo Avenue, Suite 100, Mountain View, CA 94043 (United States); Lissauer, Jack J., E-mail: elisa.quintana@nasa.gov [Space Science and Astrobiology Division 245-3, NASA Ames Research Center, Moffett Field, CA 94035 (United States)

    2014-05-01

    Models of planet formation have shown that giant planets have a large impact on the number, masses, and orbits of terrestrial planets that form. In addition, they play an important role in delivering volatiles from material that formed exterior to the snow line (the region in the disk beyond which water ice can condense) to the inner region of the disk where terrestrial planets can maintain liquid water on their surfaces. We present simulations of the late stages of terrestrial planet formation from a disk of protoplanets around a solar-type star and we include a massive planet (from 1 M {sub ⊕} to 1 M {sub J}) in Jupiter's orbit at ∼5.2 AU in all but one set of simulations. Two initial disk models are examined with the same mass distribution and total initial water content, but with different distributions of water content. We compare the accretion rates and final water mass fraction of the planets that form. Remarkably, all of the planets that formed in our simulations without giant planets were water-rich, showing that giant planet companions are not required to deliver volatiles to terrestrial planets in the habitable zone. In contrast, an outer planet at least several times the mass of Earth may be needed to clear distant regions of debris truncating the epoch of frequent large impacts. Observations of exoplanets from radial velocity surveys suggest that outer Jupiter-like planets may be scarce, therefore, the results presented here suggest that there may be more habitable planets residing in our galaxy than previously thought.

  20. ECCENTRIC JUPITERS VIA DISK–PLANET INTERACTIONS

    International Nuclear Information System (INIS)

    Duffell, Paul C.; Chiang, Eugene

    2015-01-01

    Numerical hydrodynamics calculations are performed to determine the conditions under which giant planet eccentricities can be excited by parent gas disks. Unlike in other studies, Jupiter-mass planets are found to have their eccentricities amplified—provided their orbits start off as eccentric. We disentangle the web of co-rotation, co-orbital, and external resonances to show that this finite-amplitude instability is consistent with that predicted analytically. Ellipticities can grow until they reach of order of the disk's aspect ratio, beyond which the external Lindblad resonances that excite eccentricity are weakened by the planet's increasingly supersonic epicyclic motion. Forcing the planet to still larger eccentricities causes catastrophic eccentricity damping as the planet collides into gap walls. For standard parameters, the range of eccentricities for instability is modest; the threshold eccentricity for growth (∼0.04) is not much smaller than the final eccentricity to which orbits grow (∼0.07). If this threshold eccentricity can be lowered (perhaps by non-barotropic effects), and if the eccentricity driving documented here survives in 3D, it may robustly explain the low-to-moderate eccentricities ≲0.1 exhibited by many giant planets (including Jupiter and Saturn), especially those without planetary or stellar companions

  1. ON THE VALIDITY OF THE 'HILL RADIUS CRITERION' FOR THE EJECTION OF PLANETS FROM STELLAR HABITABLE ZONES

    International Nuclear Information System (INIS)

    Cuntz, M.; Yeager, K. E.

    2009-01-01

    We challenge the customary assumption that the entering of an Earth-mass planet into the Hill radius (or multiples of the Hill radius) of a giant planet is a valid criterion for its ejection from the star-planet system. This assumption has widely been used in previous studies, especially those with an astrobiological focus. As intriguing examples, we explore the dynamics of the systems HD 20782 and HD 188015. Each system possesses a giant planet that remains in or crosses into the stellar habitable zone, thus effectively thwarting the possibility of habitable terrestrial planets. In the case of HD 188015, the orbit of the giant planet is almost circular, whereas in the case of HD 20782, it is extremely elliptical. Although it is found that Earth-mass planets are eventually ejected from the habitable zones of these systems, the 'Hill Radius Criterion' is identified as invalid for the prediction of when the ejection is actually occurring.

  2. The sdB pulsating star V391 Peg and its putative giant planet revisited after 13 years of time-series photometric data

    Science.gov (United States)

    Silvotti, R.; Schuh, S.; Kim, S.-L.; Lutz, R.; Reed, M.; Benatti, S.; Janulis, R.; Lanteri, L.; Østensen, R.; Marsh, T. R.; Dhillon, V. S.; Paparo, M.; Molnar, L.

    2018-04-01

    V391 Peg (alias HS 2201+2610) is a subdwarf B (sdB) pulsating star that shows both p- and g-modes. By studying the arrival times of the p-mode maxima and minima through the O-C method, in a previous article the presence of a planet was inferred with an orbital period of 3.2 years and a minimum mass of 3.2 MJup. Here we present an updated O-C analysis using a larger data set of 1066 h of photometric time series ( 2.5× larger in terms of the number of data points), which covers the period between 1999 and 2012 (compared with 1999-2006 of the previous analysis). Up to the end of 2008, the new O-C diagram of the main pulsation frequency (f1) is compatible with (and improves) the previous two-component solution representing the long-term variation of the pulsation period (parabolic component) and the giant planet (sine wave component). Since 2009, the O-C trend of f1 changes, and the time derivative of the pulsation period (p.) passes from positive to negative; the reason of this change of regime is not clear and could be related to nonlinear interactions between different pulsation modes. With the new data, the O-C diagram of the secondary pulsation frequency (f2) continues to show two components (parabola and sine wave), like in the previous analysis. Various solutions are proposed to fit the O-C diagrams of f1 and f2, but in all of them, the sinusoidal components of f1 and f2 differ or at least agree less well than before. The nice agreement found previously was a coincidence due to various small effects that are carefully analyzed. Now, with a larger dataset, the presence of a planet is more uncertain and would require confirmation with an independent method. The new data allow us to improve the measurement of p. for f1 and f2: using only the data up to the end of 2008, we obtain p.1 = (1.34 ± 0.04) × 10-12 and p.2 = (1.62 ± 0.22) × 10-12. The long-term variation of the two main pulsation periods (and the change of sign of p.1) is visible also in direct

  3. Infrared radiation from an extrasolar planet.

    Science.gov (United States)

    Deming, Drake; Seager, Sara; Richardson, L Jeremy; Harrington, Joseph

    2005-04-07

    A class of extrasolar giant planets--the so-called 'hot Jupiters' (ref. 1)--orbit within 0.05 au of their primary stars (1 au is the Sun-Earth distance). These planets should be hot and so emit detectable infrared radiation. The planet HD 209458b (refs 3, 4) is an ideal candidate for the detection and characterization of this infrared light because it is eclipsed by the star. This planet has an anomalously large radius (1.35 times that of Jupiter), which may be the result of ongoing tidal dissipation, but this explanation requires a non-zero orbital eccentricity (approximately 0.03; refs 6, 7), maintained by interaction with a hypothetical second planet. Here we report detection of infrared (24 microm) radiation from HD 209458b, by observing the decrement in flux during secondary eclipse, when the planet passes behind the star. The planet's 24-microm flux is 55 +/- 10 microJy (1sigma), with a brightness temperature of 1,130 +/- 150 K, confirming the predicted heating by stellar irradiation. The secondary eclipse occurs at the midpoint between transits of the planet in front of the star (to within +/- 7 min, 1sigma), which means that a dynamically significant orbital eccentricity is unlikely.

  4. Transiting exoplanets from the CoRoT space mission. IV. CoRoT-Exo-4b: a transiting planet in a 9.2 day synchronous orbit

    Science.gov (United States)

    Aigrain, S.; Collier Cameron, A.; Ollivier, M.; Pont, F.; Jorda, L.; Almenara, J. M.; Alonso, R.; Barge, P.; Bordé, P.; Bouchy, F.; Deeg, H.; de La Reza, R.; Deleuil, M.; Dvorak, R.; Erikson, A.; Fridlund, M.; Gondoin, P.; Gillon, M.; Guillot, T.; Hatzes, A.; Lammer, H.; Lanza, A. F.; Léger, A.; Llebaria, A.; Magain, P.; Mazeh, T.; Moutou, C.; Paetzold, M.; Pinte, C.; Queloz, D.; Rauer, H.; Rouan, D.; Schneider, J.; Wuchter, G.; Zucker, S.

    2008-09-01

    CoRoT, the first space-based transit search, provides ultra-high-precision light curves with continuous time-sampling over periods of up to 5 months. This allows the detection of transiting planets with relatively long periods, and the simultaneous study of the host star's photometric variability. In this Letter, we report the discovery of the transiting giant planet CoRoT-Exo-4b and use the CoRoT light curve to perform a detailed analysis of the transit and determine the stellar rotation period. The CoRoT light curve was pre-processed to remove outliers and correct for orbital residuals and artefacts due to hot pixels on the detector. After removing stellar variability about each transit, the transit light curve was analysed to determine the transit parameters. A discrete autocorrelation function method was used to derive the rotation period of the star from the out-of-transit light curve. We determine the periods of the planetary orbit and star's rotation of 9.20205 ± 0.00037 and 8.87 ± 1.12 days respectively, which is consistent with this being a synchronised system. We also derive the inclination, i = 90.00_-0.085+0.000 in degrees, the ratio of the orbital distance to the stellar radius, a/Rs = 17.36-0.25+0.05, and the planet-to-star radius ratio R_p/R_s=0.1047-0.0022+0.0041. We discuss briefly the coincidence between the orbital period of the planet and the stellar rotation period and its possible implications for the system's migration and star-planet interaction history. The CoRoT space mission, launched on December 27th 2006, has been developed and is operated by CNES, with the contribution of Austria, Belgium, Brazil, ESA, Germany, and Spain. The first CoRoT data will be available to the public in February 2009 from the CoRoT archive: http://idoc-corot.ias.u-psud.fr/ Figures 1, 4 and 5 are only available in electronic form at http://www.aanda.org

  5. Mars Express met l'Europe en orbite autour de la Planete rouge

    CERN Multimedia

    2003-01-01

    "Apres une nuit sans sommeil, le Centre europeen d'operations spatiales (ESOC) de Darmstadt, en Allemagne, a annonce la nouvelle, jeudi 25decembre au matin: la sonde Mars Express a bien ete "capturee" par la gravite de la Planete rouge, tandis que le petit atterrisseur Beagle-2 tentait de se poser dans la plaine d'Isidis Planitia" (1 page).

  6. Atmospheric mass-loss of extrasolar planets orbiting magnetically active host stars

    Science.gov (United States)

    Lalitha, Sairam; Schmitt, J. H. M. M.; Dash, Spandan

    2018-06-01

    Magnetic stellar activity of exoplanet hosts can lead to the production of large amounts of high-energy emission, which irradiates extrasolar planets, located in the immediate vicinity of such stars. This radiation is absorbed in the planets' upper atmospheres, which consequently heat up and evaporate, possibly leading to an irradiation-induced mass-loss. We present a study of the high-energy emission in the four magnetically active planet-bearing host stars, Kepler-63, Kepler-210, WASP-19, and HAT-P-11, based on new XMM-Newton observations. We find that the X-ray luminosities of these stars are rather high with orders of magnitude above the level of the active Sun. The total XUV irradiation of these planets is expected to be stronger than that of well-studied hot Jupiters. Using the estimated XUV luminosities as the energy input to the planetary atmospheres, we obtain upper limits for the total mass- loss in these hot Jupiters.

  7. USING SCHUMANN RESONANCE MEASUREMENTS FOR CONSTRAINING THE WATER ABUNDANCE ON THE GIANT PLANETS-IMPLICATIONS FOR THE SOLAR SYSTEM'S FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Simoes, Fernando; Pfaff, Robert; Klenzing, Jeffrey; Freudenreich, Henry; Bromund, Kenneth; Martin, Steven; Rowland, Douglas [NASA/GSFC, Heliophysics Science Division, Space Weather Laboratory (Code 674), Greenbelt, MD (United States); Hamelin, Michel; Berthelier, Jean-Jacques [LATMOS/IPSL, UPMC, Paris (France); Beghin, Christian; Lebreton, Jean-Pierre [LPC2E, CNRS/Universite d' Orleans (France); Grard, Rejean [ESA/ESTEC, Research Scientific Support Department, Noordwijk (Netherlands); Sentman, Davis [Institute of Geophysics, University of Alaska Fairbanks, Fairbanks, AK (United States); Takahashi, Yukihiro [Department of Geophysics, Tohoku University, Sendai (Japan); Yair, Yoav [Department Life Natural Sciences, Open University of Israel, Raanana (Israel)

    2012-05-01

    The formation and evolution of the solar system is closely related to the abundance of volatiles, namely water, ammonia, and methane in the protoplanetary disk. Accurate measurement of volatiles in the solar system is therefore important for understanding not only the nebular hypothesis and origin of life but also planetary cosmogony as a whole. In this work, we propose a new remote sensing technique to infer the outer planets' water content by measuring Tremendously and Extremely Low Frequency (TLF-ELF) electromagnetic wave characteristics (Schumann resonances) excited by lightning in their gaseous envelopes. Schumann resonance detection can be potentially used for constraining the uncertainty of volatiles of the giant planets, mainly Uranus and Neptune, because such TLF-ELF wave signatures are closely related to the electric conductivity profile and water content.

  8. Two planetary systems with transiting Earth-size and super-Earth planets orbiting late-type dwarf stars

    Science.gov (United States)

    Alonso, E. Díez; Hernández, J. I. González; Suárez Gómez, S. L.; Aguado, D. S.; González Gutiérrez, C.; Suárez Mascareño, A.; Cabrera-Lavers, A.; González-Nuevo, J.; Toledo-Padrón, B.; Gracia, J.; de Cos Juez, F. J.; Rebolo, R.

    2018-06-01

    We present two new planetary systems found around cool dwarf stars with data from the K2 mission. The first system was found in K2-XX1 (EPIC 248545986), characterized in this work as M3.0V and observed in the 14th campaign of K2. It consists of three Earth-size transiting planets with radii of 1.1, 1.0 and 1.1 R⊕, showing a compact configuration with orbital periods of 5.24, 7.78 and 10.1 days, close to 2:3:4 resonance. The second was found in K2-XX2 (EPIC 249801827), characterized in this work as M0.5V and observed in the 15th campaign. It consists of two transiting super-Earths with radii 2.0 and 1.8 R⊕ and orbital periods of 6.03 and 20.5 days. The equilibrium temperatures of the atmospheres of these planets are estimated to be in the range of 380-600 K and the amplitudes of signals in transmission spectroscopy are estimated at ˜ 10 ppm.

  9. On-Orbit Planetary Science Laboratories for Simulating Surface Conditions of Planets and Small Bodies

    Science.gov (United States)

    Thangavelautham, J.; Asphaug, E.; Schwartz, S.

    2017-02-01

    Our work has identified the use of on-orbit centrifuge science laboratories as a key enabler towards low-cost, fast-track physical simulation of off-world environments for future planetary science missions.

  10. Planet Mercury from pale pink dot to dynamic world

    CERN Document Server

    Rothery, David A

    2014-01-01

    A new and detailed picture of Mercury is emerging thanks to NASA's MESSENGER mission that spent four years in orbit about the Sun's innermost planet. Comprehensively illustrated by close-up images and other data, the author describes Mercury's landscapes from a geological perspective: from sublimation hollows, to volcanic vents, to lava plains, to giant thrust faults. He considers what its giant core, internal structure and weird composition have to tell us about the formation and evolution of a planet so close to the Sun. This is of special significance in view of the discovery of so many ex

  11. A resonant chain of four transiting, sub-Neptune planets.

    Science.gov (United States)

    Mills, Sean M; Fabrycky, Daniel C; Migaszewski, Cezary; Ford, Eric B; Petigura, Erik; Isaacson, Howard

    2016-05-26

    Surveys have revealed many multi-planet systems containing super-Earths and Neptunes in orbits of a few days to a few months. There is debate whether in situ assembly or inward migration is the dominant mechanism of the formation of such planetary systems. Simulations suggest that migration creates tightly packed systems with planets whose orbital periods may be expressed as ratios of small integers (resonances), often in a many-planet series (chain). In the hundreds of multi-planet systems of sub-Neptunes, more planet pairs are observed near resonances than would generally be expected, but no individual system has hitherto been identified that must have been formed by migration. Proximity to resonance enables the detection of planets perturbing each other. Here we report transit timing variations of the four planets in the Kepler-223 system, model these variations as resonant-angle librations, and compute the long-term stability of the resonant chain. The architecture of Kepler-223 is too finely tuned to have been formed by scattering, and our numerical simulations demonstrate that its properties are natural outcomes of the migration hypothesis. Similar systems could be destabilized by any of several mechanisms, contributing to the observed orbital-period distribution, where many planets are not in resonances. Planetesimal interactions in particular are thought to be responsible for establishing the current orbits of the four giant planets in the Solar System by disrupting a theoretical initial resonant chain similar to that observed in Kepler-223.

  12. Suppression of the water ice and snow albedo feedback on planets orbiting red dwarf stars and the subsequent widening of the habitable zone.

    Science.gov (United States)

    Joshi, Manoj M; Haberle, Robert M

    2012-01-01

    M stars comprise 80% of main sequence stars, so their planetary systems provide the best chance for finding habitable planets, that is, those with surface liquid water. We have modeled the broadband albedo or reflectivity of water ice and snow for simulated planetary surfaces orbiting two observed red dwarf stars (or M stars), using spectrally resolved data of Earth's cryosphere. The gradual reduction of the albedos of snow and ice at wavelengths greater than 1 μm, combined with M stars emitting a significant fraction of their radiation at these same longer wavelengths, means that the albedos of ice and snow on planets orbiting M stars are much lower than their values on Earth. Our results imply that the ice/snow albedo climate feedback is significantly weaker for planets orbiting M stars than for planets orbiting G-type stars such as the Sun. In addition, planets with significant ice and snow cover will have significantly higher surface temperatures for a given stellar flux if the spectral variation of cryospheric albedo is considered, which in turn implies that the outer edge of the habitable zone around M stars may be 10-30% farther away from the parent star than previously thought.

  13. Formation of giant molecular clouds in global spiral structures: the role of orbital dynamics and cloud-cloud collisions

    International Nuclear Information System (INIS)

    Roberts, W.W. Jr.; Stewart, G.R.

    1987-01-01

    The different roles played by orbital dynamics and dissipative cloud-cloud collisions in the formation of giant molecular clouds (GMCs) in a global spiral structure are investigated. The interstellar medium (ISM) is simulated by a system of particles, representing clouds, which orbit in a spiral-perturbed, galactic gravitational field. The overall magnitude and width of the global cloud density distribution in spiral arms is very similar in the collisional and collisionless simulations. The results suggest that the assumed number density and size distribution of clouds and the details of individual cloud-cloud collisions have relatively little effect on these features. Dissipative cloud-cloud collisions play an important steadying role for the cloud system's global spiral structure. Dissipative cloud-cloud collisions also damp the relative velocity dispersion of clouds in massive associations and thereby aid in the effective assembling of GMC-like complexes

  14. Gravitational Microlensing of Earth-mass Planets

    DEFF Research Database (Denmark)

    Harpsøe, Kennet Bomann West

    It was only 17 years ago that the first planet outside of our own solar system was detected in the form of 51 Pegasi b. This planet is unlike anything in our own solar system. In fact, this planet was the first representative of a class of planets later known as “hot Jupiters”– gas giants......, i.e. it is much easier to detect high mass planets in close orbits. With these two methods it is hard to detect planets in an exo-solar system with a structure similar to our own solar system; specifically, it is hard to detect Earth-like planets in Earth-like orbits. It is presently unknown how...... common such planets are in our galaxy. There are a few other known methods for detecting exoplanets which have very different bias patterns. This thesis has been divided into two parts, treating two of these other methods. Part I is dedicated to the method of gravitational microlensing, a method...

  15. The Fate of Exomoons when Planets Scatter

    Science.gov (United States)

    Kohler, Susanna

    2018-03-01

    Four examples of close-encounter outcomes: a) the moon stays in orbit around its host, b) the moon is captured into orbit around its perturber, c) and d) the moon is ejected from the system from two different starting configurations. [Adapted from Hong et al. 2018]Planet interactions are thought to be common as solar systems are first forming and settling down. A new study suggests that these close encounters could have a significant impact on the moons of giant exoplanets and they may generate a large population of free-floating exomoons.Chaos in the SystemIn the planetplanet scattering model of solar-system formation, planets are thought to initially form in closely packed systems. Over time, planets in a system perturb each other, eventually entering an instability phase during which their orbits cross and the planets experience close encounters.During this scattering process, any exomoons that are orbiting giant planets can be knocked into unstable orbits directly by close encounters with perturbing planets. Exomoons can also be disturbed if their host planets properties or orbits change as a consequence of scattering.Led by Yu-Cian Hong (Cornell University), a team of scientists has now explored the fate of exomoons in planetplanet scattering situations using a suite of N-body numerical simulations.Chances for SurvivalHong and collaborators find that the vast majority roughly 80 to 90% of exomoons around giant planets are destabilized during scattering and dont survive in their original place in the solar system. Fates of these destabilized exomoons include:moon collision with the star or a planet,moon capture by the perturbing planet,moon ejection from the solar system,ejection of the entire planetmoon system from the solar system, andmoon perturbation onto a new heliocentric orbit as a planet.Unsurprisingly, exomoons that have close-in orbits and those that orbit larger planets are the most likely to survive close encounters; as an example, exomoons on

  16. THE NASA-UC ETA-EARTH PROGRAM. II. A PLANET ORBITING HD 156668 WITH A MINIMUM MASS OF FOUR EARTH MASSES

    International Nuclear Information System (INIS)

    Howard, Andrew W.; Marcy, Geoffrey W.; Isaacson, Howard; Johnson, John Asher; Fischer, Debra A.; Wright, Jason T.; Henry, Gregory W.; Valenti, Jeff A.; Anderson, Jay; Piskunov, Nikolai E.

    2011-01-01

    We report the discovery of HD 156668 b, an extrasolar planet with a minimum mass of M P sin i = 4.15 M + . This planet was discovered through Keplerian modeling of precise radial velocities from Keck-HIRES and is the second super-Earth to emerge from the NASA-UC Eta-Earth Survey. The best-fit orbit is consistent with circular and has a period of P = 4.6455 days. The Doppler semi-amplitude of this planet, K = 1.89 m s -1 , is among the lowest ever detected, on par with the detection of GJ 581 e using HARPS. A longer period (P ∼ 2.3 years), low-amplitude signal of unknown origin was also detected in the radial velocities and was filtered out of the data while fitting the short-period planet. Additional data are required to determine if the long-period signal is due to a second planet, stellar activity, or another source. Photometric observations using the Automated Photometric Telescopes at Fairborn Observatory show that HD 156668 (an old, quiet K3 dwarf) is photometrically constant over the radial velocity period to 0.1 mmag, supporting the existence of the planet. No transits were detected down to a photometric limit of ∼3 mmag, ruling out transiting planets dominated by extremely bloated atmospheres, but not precluding a transiting solid/liquid planet with a modest atmosphere.

  17. Spin-Orbit Misalignments of Three Jovian Planets via Doppler Tomography

    Science.gov (United States)

    Johnson, Marshall C.; Cochran, William D.; Addison, Brett C.; Tinney, Chris G.; Wright, Duncan J.

    2017-10-01

    We present measurements of the spin-orbit misalignments of the hot Jupiters HAT-P-41 b and WASP-79 b, and the aligned warm Jupiter Kepler-448 b. We obtain these measurements with Doppler tomography, where we spectroscopically resolve the line profile perturbation during the transit due to the Rossiter-McLaughlin effect. We analyze time series spectra obtained during portions of five transits of HAT-P-41 b, and find a value of the spin-orbit misalignment of λ =-{22.1}-6.0{+0.8^\\circ }. We reanalyze the radial velocity Rossiter-McLaughlin data on WASP-79 b obtained by Addison et al. using Doppler tomographic methodology. We measure λ =-{99.1}-3.9{+4.1^\\circ }, consistent with but more precise than the value found by Addison et al. For Kepler-448 b we perform a joint fit to the Kepler light curve, Doppler tomographic data, and a radial velocity data set from Lillo-Box et al. We find an approximately aligned orbit (λ =-{7.1}-2.8{+4.2^\\circ }), in agreement with the value found by Bourrier et al. Through analysis of the Kepler light curve we measure a stellar rotation period of {P}{rot}=1.27+/- 0.11 days, and use this to argue that the full three-dimensional spin-orbit misalignment is small, \\psi ˜ 0^\\circ . Based in part on observations obtained with the Hobby-Eberly Telescope, which is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximilians-Universität München, and Georg-August-Universität Göttingen.

  18. Nuclear electric propulsion /NEP/ spacecraft for the outer planet orbiter mission

    International Nuclear Information System (INIS)

    Garrison, P.W.; Nock, K.T.

    1982-01-01

    The design, operating features, and a possible Neptune orbit for the spacecraft powered by the SP-100 nuclear electric propulsion (NEP) system under study by NASA and the DOE are described. The system features a reactor and a payload situated on opposite ends of a 0.5 m diam, 11 m long astromast. Mercury-ion thrusters are located beneath the reactor for side thrusting, and no contamination of the payload or obstruction of the viewing angles for scientific objectives occurs with the system, which would not degrade in performance even under high insolation during near-sun maneuvers. Results of a theoretical study of earth escapes are presented to show that an NEP powered spiral trajectory out of a 700 km Shuttle orbit and using a Triton gravity assist would be superior to departing from a 300 km orbit with a Centaur boost. The mission profile includes a 1249 kg Galileo payload. The SP-100 has a 1.4 MWth reactor with UO2 fuel tiles and weighs 19,904 kg

  19. TOWARD A DETERMINISTIC MODEL OF PLANETARY FORMATION. VII. ECCENTRICITY DISTRIBUTION OF GAS GIANTS

    International Nuclear Information System (INIS)

    Ida, S.; Lin, D. N. C.; Nagasawa, M.

    2013-01-01

    The ubiquity of planets and diversity of planetary systems reveal that planet formation encompasses many complex and competing processes. In this series of papers, we develop and upgrade a population synthesis model as a tool to identify the dominant physical effects and to calibrate the range of physical conditions. Recent planet searches have led to the discovery of many multiple-planet systems. Any theoretical models of their origins must take into account dynamical interactions between emerging protoplanets. Here, we introduce a prescription to approximate the close encounters between multiple planets. We apply this method to simulate the growth, migration, and dynamical interaction of planetary systems. Our models show that in relatively massive disks, several gas giants and rocky/icy planets emerge, migrate, and undergo dynamical instability. Secular perturbation between planets leads to orbital crossings, eccentricity excitation, and planetary ejection. In disks with modest masses, two or less gas giants form with multiple super-Earths. Orbital stability in these systems is generally maintained and they retain the kinematic structure after gas in their natal disks is depleted. These results reproduce the observed planetary mass-eccentricity and semimajor axis-eccentricity correlations. They also suggest that emerging gas giants can scatter residual cores to the outer disk regions. Subsequent in situ gas accretion onto these cores can lead to the formation of distant (∼> 30 AU) gas giants with nearly circular orbits

  20. HATS-43b, HATS-44b, HATS-45b, and HATS-46b: Four Short-period Transiting Giant Planets in the Neptune–Jupiter Mass Range

    Science.gov (United States)

    Brahm, R.; Hartman, J. D.; Jordán, A.; Bakos, G. Á.; Espinoza, N.; Rabus, M.; Bhatti, W.; Penev, K.; Sarkis, P.; Suc, V.; Csubry, Z.; Bayliss, D.; Bento, J.; Zhou, G.; Mancini, L.; Henning, T.; Ciceri, S.; de Val-Borro, M.; Shectman, S.; Crane, J. D.; Arriagada, P.; Butler, P.; Teske, J.; Thompson, I.; Osip, D.; Díaz, M.; Schmidt, B.; Lázár, J.; Papp, I.; Sári, P.

    2018-03-01

    We report the discovery of four short-period extrasolar planets transiting moderately bright stars from photometric measurements of the HATSouth network coupled to additional spectroscopic and photometric follow-up observations. While the planet masses range from 0.26 to 0.90 {M}{{J}}, the radii are all approximately a Jupiter radii, resulting in a wide range of bulk densities. The orbital period of the planets ranges from 2.7 days to 4.7 days, with HATS-43b having an orbit that appears to be marginally non-circular (e = 0.173 ± 0.089). HATS-44 is notable for having a high metallicity ([{Fe}/{{H}}] = 0.320 ± 0.071). The host stars spectral types range from late F to early K, and all of them are moderately bright (13.3 Carnegie Institute is operated by PU in conjunction with PUC, the station at the High Energy Spectroscopic Survey (H.E.S.S.) site is operated in conjunction with MPIA, and the station at Siding Spring Observatory (SSO) is operated jointly with ANU. This paper includes data gathered with the MPG 2.2 m and ESO 3.6 m telescopes at the ESO Observatory in La Silla. This paper includes data gathered with the 6.5 meter Magellan Telescopes located at Las Campanas Observatory, Chile.

  1. Verified solutions for the gravitational attraction to an oblate spheroid: Implications for planet mass and satellite orbits

    Science.gov (United States)

    Hofmeister, Anne M.; Criss, Robert E.; Criss, Everett M.

    2018-03-01

    Forces external to the oblate spheroid shape, observed from planetary to galactic scales, are demonstrably non-central, which has important ramifications for planetary science. We simplify historic formulae and derive new analytical solutions for the gravitational potential and force outside a constant density oblate. Numerical calculations that sum point mass contributions in a >109 element mesh confirm our equations. We show that contours of constant force and potential about oblate bodies are closely approximated by two confocal families whose foci (f) respectively are (9/10)½ae and (3/5)½ae for a body with f = ae. This leads to useful approximations that address internal density variations. We demonstrate that the force on a general point is not directed towards the oblate's center, nor are forces simply proportional to the inverse square of that distance, despite forces in the equatorial and axial directions pointing towards the center. Our results explain complex dynamics of galactic systems. Because most planets and stars have an aspect ratio >0.9, the spherical approximation is reasonable except for orbits within ∼2 body radii. We show that applying the "generalized" potential, which assumes central forces, yields J2 values half those expected for oblate bodies, and probably underestimates masses of Uranus and Neptune by ∼0.2%. We show that the inner Saturnian moons are subject to non-central forces, which may affect calculations of their orbital precession. Our new series should improve interpretation of flyby data.

  2. Atmospheric Mining in the Outer Solar System: Outer Planet Orbital Transfer and Lander Analyses

    Science.gov (United States)

    Palaszewski, Bryan

    2016-01-01

    Atmospheric mining in the outer solar system has been investigated as a means of fuel production for high energy propulsion and power. Fusion fuels such as Helium 3 (3He) and deuterium can be wrested from the atmospheres of Uranus and Neptune and either returned to Earth or used in-situ for energy production. Helium 3 and deuterium were the primary gases of interest with hydrogen being the primary propellant for nuclear thermal solid core and gas core rocket-based atmospheric flight. A series of analyses were undertaken to investigate resource capturing aspects of atmospheric mining in the outer solar system. This included the gas capturing rate, storage options, and different methods of direct use of the captured gases. While capturing 3He, large amounts of hydrogen and 4He are produced. Analyses of orbital transfer vehicles (OTVs), landers, and the issues with in-situ resource utilization (ISRU) mining factories are included. Preliminary observations are presented on near-optimal selections of moon base orbital locations, OTV power levels, and OTV and lander rendezvous points. For analyses of round trip OTV flights from Uranus to Miranda or Titania, a 10- Megawatt electric (MWe) OTV power level and a 200 metricton (MT) lander payload were selected based on a relative short OTV trip time and minimization of the number of lander flights. A similar optimum power level is suggested for OTVs flying from low orbit around Neptune to Thalassa or Triton. Several moon base sites at Uranus and Neptune and the OTV requirements to support them are also addressed.

  3. Detection and Characterization of Extrasolar Planets through Mean-motion Resonances. II. The Effect of the Planet’s Orbital Eccentricity on Debris Disk Structures

    Energy Technology Data Exchange (ETDEWEB)

    Tabeshian, Maryam; Wiegert, Paul A., E-mail: mtabeshi@uwo.ca [Department of Physics and Astronomy, The University of Western Ontario, London, ON N6A 3K7 (Canada)

    2017-09-20

    Structures observed in debris disks may be caused by gravitational interaction with planetary or stellar companions. These perturbed disks are often thought to indicate the presence of planets and offer insights into the properties of both the disk and the perturbing planets. Gaps in debris disks may indicate a planet physically present within the gap, but such gaps can also occur away from the planet’s orbit at mean-motion resonances (MMRs), and this is the focus of our interest here. We extend our study of planet–disk interaction through MMRs, presented in an earlier paper, to systems in which the perturbing planet has moderate orbital eccentricity, a common occurrence in exoplanetary systems. In particular, a new result is that the 3:1 MMR becomes distinct at higher eccentricity, while its effects are absent for circular planetary orbits. We also only consider gravitational interaction with a planetary body of at least 1 M {sub J}. Our earlier work shows that even a 1 Earth mass planet can theoretically open an MMR gap; however, given the narrow gap that can be opened by a low-mass planet, its observability would be questionable. We find that the widths, locations, and shapes of two prominent structures, the 2:1 and 3:1 MMRs, could be used to determine the mass, semimajor axis, and eccentricity of the planetary perturber and present an algorithm for doing so. These MMR structures can be used to narrow the position and even determine the planetary properties (such as mass) of any inferred but as-yet-unseen planets within a debris disk. We also briefly discuss the implications of eccentric disks on brightness asymmetries and their dependence on the wavelengths with which these disks are observed.

  4. Limb darkening of a K giant in the galactic bulge : Planet photometry of MACHO 97-BLG-28

    NARCIS (Netherlands)

    Albrow, MD; Beaulieu, JP; Caldwell, JAR; Dominik, M; Greenhill, J; Hill, K; Kane, S; Martin, R; Menzies, J; Pel, JW; Pollard, K; Sackett, PD; Sahu, KC; Vermaak, P; Watson, R; Williams, A; Sahu, MS

    1999-01-01

    We present the PLANET photometric data set(10) for the binary-lens microlensing event MACHO 97-BLG-28, consisting of 696 I- and V-band measurements, and analyze it to determine the radial surface brightness profile of the Galactic bulge source star. The microlensed source, demonstrated to be a K

  5. Reflected Light from Giant Planets in Habitable Zones: Tapping into the Power of the Cross-Correlation Function.

    Science.gov (United States)

    Martins, J H C; Santos, N C; Figueira, P; Melo, C

    2016-11-01

    The direct detection of reflected light from exoplanets is an excellent probe for the characterization of their atmospheres. The greatest challenge for this task is the low planet-to-star flux ratio, which even in the most favourable case is of the order of 10 -4 in the optical. This ratio decreases even more for planets in their host's habitable zone, typically lower than 10 -7 . To reach the signal-to-noise level required for such detections, we propose to unleash the power of the Cross Correlation Function in combination with the collecting power of next generation observing facilities. The technique we propose has already yielded positive results by detecting the reflected spectral signature of 51 Pegasi b (see Martins et al. 2015). In this work, we attempted to infer the number of hours required for the detection of several planets in their host's habitable zone using the aforementioned technique from theoretical EELT observations. Our results show that for 5 of the selected planets it should be possible to directly recover their reflected spectral signature.

  6. How Planet Nine could change the fate of the Solar system

    Science.gov (United States)

    Veras, D.

    2017-09-01

    The potential existence of a distant planet ('Planet Nine') in the Solar system has prompted a re-think about the evolution of planetary systems. As the Sun transitions from a main-sequence star into a white dwarf, Jupiter, Saturn, Uranus and Neptune are currently assumed to survive in expanded but otherwise unchanged orbits. However, a sufficiently distant and sufficiently massive extra planet would alter this quiescent end scenario through the combined effects of Solar giant branch mass-loss and Galactic tides. Here I estimate bounds for the mass and orbit of a distant extra planet that would incite future instability in systems with a Sun-like star and giant planets with masses and orbits equivalent to those of Jupiter, Saturn, Uranus and Neptune. I find that this boundary is diffuse and strongly dependent on each of the distant planet's orbital parameters. Nevertheless, I claim that instability occurs more often than not when the planet is as massive as Jupiter and harbours a semimajor axis exceeding about 300 au, or has a mass of a super-Earth and a semimajor axis exceeding about 3000 au. These results hold for orbital pericentres ranging from 100 to at least 400 au. This instability scenario might represent a common occurrence, as potentially evidenced by the ubiquity of metal pollution in white dwarf atmospheres throughout the Galaxy.

  7. Dance of the Planets

    Science.gov (United States)

    Riddle, Bob

    2005-01-01

    As students continue their monthly plotting of the planets along the ecliptic they should start to notice differences between inner and outer planet orbital motions, and their relative position or separation from the Sun. Both inner and outer planets have direct eastward motion, as well as retrograde motion. Inner planets Mercury and Venus,…

  8. Inner Super-Earths, Outer Gas Giants: How Pebble Isolation and Migration Feedback Keep Jupiters Cold

    Science.gov (United States)

    Fung, Jeffrey; Lee, Eve J.

    2018-06-01

    The majority of gas giants (planets of masses ≳102 M ⊕) are found to reside at distances beyond ∼1 au from their host stars. Within 1 au, the planetary population is dominated by super-Earths of 2–20 M ⊕. We show that this dichotomy between inner super-Earths and outer gas giants can be naturally explained should they form in nearly inviscid disks. In laminar disks, a planet can more easily repel disk gas away from its orbit. The feedback torque from the pile-up of gas inside the planet’s orbit slows down and eventually halts migration. A pressure bump outside the planet’s orbit traps pebbles and solids, starving the core. Gas giants are born cold and stay cold: more massive cores are preferentially formed at larger distances, and they barely migrate under disk feedback. We demonstrate this using two-dimensional hydrodynamical simulations of disk–planet interaction lasting up to 105 years: we track planet migration and pebble accretion until both come to an end by disk feedback. Whether cores undergo runaway gas accretion to become gas giants or not is determined by computing one-dimensional gas accretion models. Our simulations show that in an inviscid minimum mass solar nebula, gas giants do not form inside ∼0.5 au, nor can they migrate there while the disk is present. We also explore the dependence on disk mass and find that gas giants form further out in less massive disks.

  9. Debris disks as signposts of terrestrial planet formation

    Science.gov (United States)

    Raymond, S. N.; Armitage, P. J.; Moro-Martín, A.; Booth, M.; Wyatt, M. C.; Armstrong, J. C.; Mandell, A. M.; Selsis, F.; West, A. A.

    2011-06-01

    There exists strong circumstantial evidence from their eccentric orbits that most of the known extra-solar planetary systems are the survivors of violent dynamical instabilities. Here we explore the effect of giant planet instabilities on the formation and survival of terrestrial planets. We numerically simulate the evolution of planetary systems around Sun-like stars that include three components: (i) an inner disk of planetesimals and planetary embryos; (ii) three giant planets at Jupiter-Saturn distances; and (iii) an outer disk of planetesimals comparable to estimates of the primitive Kuiper belt. We calculate the dust production and spectral energy distribution of each system by assuming that each planetesimal particle represents an ensemble of smaller bodies in collisional equilibrium. Our main result is a strong correlation between the evolution of the inner and outer parts of planetary systems, i.e. between the presence of terrestrial planets and debris disks. Strong giant planet instabilities - that produce very eccentric surviving planets - destroy all rocky material in the system, including fully-formed terrestrial planets if the instabilities occur late, and also destroy the icy planetesimal population. Stable or weakly unstable systems allow terrestrial planets to accrete in their inner regions and significant dust to be produced in their outer regions, detectable at mid-infrared wavelengths as debris disks. Stars older than ~100 Myr with bright cold dust emission (in particular at λ ~ 70 μm) signpost dynamically calm environments that were conducive to efficient terrestrial accretion. Such emission is present around ~16% of billion-year old Solar-type stars. Our simulations yield numerous secondary results: 1) the typical eccentricities of as-yet undetected terrestrial planets are ~0.1 but there exists a novel class of terrestrial planet system whose single planet undergoes large amplitude oscillations in orbital eccentricity and inclination; 2) by

  10. The Surface UV Environment on Planets Orbiting M Dwarfs: Implications for Prebiotic Chemistry and the Need for Experimental Follow-up

    Science.gov (United States)

    Ranjan, Sukrit; Wordsworth, Robin; Sasselov, Dimitar D.

    2017-07-01

    Potentially habitable planets orbiting M dwarfs are of intense astrobiological interest because they are the only rocky worlds accessible to biosignature search over the next 10+ years because of a confluence of observational effects. Simultaneously, recent experimental and theoretical work suggests that UV light may have played a key role in the origin of life on Earth, especially the origin of RNA. Characterizing the UV environment on M-dwarf planets is important for understanding whether life as we know it could emerge on such worlds. In this work, we couple radiative transfer models to observed M-dwarf spectra to determine the UV environment on prebiotic Earth-analog planets orbiting M dwarfs. We calculate dose rates to quantify the impact of different host stars on prebiotically important photoprocesses. We find that M-dwarf planets have access to 100–1000 times less bioactive UV fluence than the young Earth. It is unclear whether UV-sensitive prebiotic chemistry that may have been important to abiogenesis, such as the only known prebiotically plausible pathways for pyrimidine ribonucleotide synthesis, could function on M-dwarf planets. This uncertainty affects objects like the recently discovered habitable-zone planets orbiting Proxima Centauri, TRAPPIST-1, and LHS 1140. Laboratory studies of the sensitivity of putative prebiotic pathways to irradiation level are required to resolve this uncertainty. If steady-state M-dwarf UV output is insufficient to power these pathways, transient elevated UV irradiation due to flares may suffice; laboratory studies can constrain this possibility as well.

  11. The Surface UV Environment on Planets Orbiting M Dwarfs: Implications for Prebiotic Chemistry and the Need for Experimental Follow-up

    Energy Technology Data Exchange (ETDEWEB)

    Ranjan, Sukrit; Sasselov, Dimitar D. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Wordsworth, Robin, E-mail: sranjan@cfa.harvard.edu [Harvard Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02140 (United States)

    2017-07-10

    Potentially habitable planets orbiting M dwarfs are of intense astrobiological interest because they are the only rocky worlds accessible to biosignature search over the next 10+ years because of a confluence of observational effects. Simultaneously, recent experimental and theoretical work suggests that UV light may have played a key role in the origin of life on Earth, especially the origin of RNA. Characterizing the UV environment on M-dwarf planets is important for understanding whether life as we know it could emerge on such worlds. In this work, we couple radiative transfer models to observed M-dwarf spectra to determine the UV environment on prebiotic Earth-analog planets orbiting M dwarfs. We calculate dose rates to quantify the impact of different host stars on prebiotically important photoprocesses. We find that M-dwarf planets have access to 100–1000 times less bioactive UV fluence than the young Earth. It is unclear whether UV-sensitive prebiotic chemistry that may have been important to abiogenesis, such as the only known prebiotically plausible pathways for pyrimidine ribonucleotide synthesis, could function on M-dwarf planets. This uncertainty affects objects like the recently discovered habitable-zone planets orbiting Proxima Centauri, TRAPPIST-1, and LHS 1140. Laboratory studies of the sensitivity of putative prebiotic pathways to irradiation level are required to resolve this uncertainty. If steady-state M-dwarf UV output is insufficient to power these pathways, transient elevated UV irradiation due to flares may suffice; laboratory studies can constrain this possibility as well.

  12. The Surface UV Environment on Planets Orbiting M Dwarfs: Implications for Prebiotic Chemistry and the Need for Experimental Follow-up

    International Nuclear Information System (INIS)

    Ranjan, Sukrit; Sasselov, Dimitar D.; Wordsworth, Robin

    2017-01-01

    Potentially habitable planets orbiting M dwarfs are of intense astrobiological interest because they are the only rocky worlds accessible to biosignature search over the next 10+ years because of a confluence of observational effects. Simultaneously, recent experimental and theoretical work suggests that UV light may have played a key role in the origin of life on Earth, especially the origin of RNA. Characterizing the UV environment on M-dwarf planets is important for understanding whether life as we know it could emerge on such worlds. In this work, we couple radiative transfer models to observed M-dwarf spectra to determine the UV environment on prebiotic Earth-analog planets orbiting M dwarfs. We calculate dose rates to quantify the impact of different host stars on prebiotically important photoprocesses. We find that M-dwarf planets have access to 100–1000 times less bioactive UV fluence than the young Earth. It is unclear whether UV-sensitive prebiotic chemistry that may have been important to abiogenesis, such as the only known prebiotically plausible pathways for pyrimidine ribonucleotide synthesis, could function on M-dwarf planets. This uncertainty affects objects like the recently discovered habitable-zone planets orbiting Proxima Centauri, TRAPPIST-1, and LHS 1140. Laboratory studies of the sensitivity of putative prebiotic pathways to irradiation level are required to resolve this uncertainty. If steady-state M-dwarf UV output is insufficient to power these pathways, transient elevated UV irradiation due to flares may suffice; laboratory studies can constrain this possibility as well.

  13. RE-INFLATED WARM JUPITERS AROUND RED GIANTS

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Eric D. [Institute for Astronomy, Royal Observatory Edinburgh, University of Edinburgh, Blackford Hill, Edinburgh (United Kingdom); Fortney, Jonathan J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

    2016-02-10

    Since the discovery of the first transiting hot Jupiters, models have sought to explain the anomalously large radii of highly irradiated gas giants. We now know that the size of hot Jupiter radius anomalies scales strongly with a planet's level of irradiation and numerous models like tidal heating, ohmic dissipation, and thermal tides have since been developed to help explain these inflated radii. In general, however, these models can be grouped into two broad categories: models that directly inflate planetary radii by depositing a fraction of the incident irradiation into the interior and models that simply slow a planet's radiative cooling, allowing it to retain more heat from formation and thereby delay contraction. Here we present a new test to distinguish between these two classes of models. Gas giants orbiting at moderate orbital periods around post-main-sequence stars will experience enormous increases to their irradiation as their host stars move up the sub-giant and red-giant branches. If hot Jupiter inflation works by depositing irradiation into the planet's deep interiors then planetary radii should increase in response to the increased irradiation. This means that otherwise non-inflated gas giants at moderate orbital periods of >10 days can re-inflate as their host stars evolve. Here we explore the circumstances that can lead to the creation of these “re-inflated” gas giants and examine how the existence or absence of such planets can be used to place unique constraints on the physics of the hot Jupiter inflation mechanism. Finally, we explore the prospects for detecting this potentially important undiscovered population of planets.

  14. A TIDALLY DESTRUCTED MASSIVE PLANET AS THE PROGENITOR OF THE TWO LIGHT PLANETS AROUND THE sdB STAR KIC 05807616

    International Nuclear Information System (INIS)

    Bear, Ealeal; Soker, Noam

    2012-01-01

    We propose that the two newly detected Earth-size planets around the hot B subdwarf star KIC 05807616 are remnant of the tidally destructed metallic core of a massive planet. A single massive gas-giant planet was spiralling-in inside the envelope of the red giant branch star progenitor of the extreme horizontal branch (EHB) star KIC 05807616. The released gravitational energy unbound most of the stellar envelope, turning it into an EHB star. The massive planet reached the tidal-destruction radius of ∼1 R ☉ from the core, where the planet's gaseous envelope was tidally removed. In our scenario, the metallic core of the massive planet was tidally destructed into several Earth-like bodies immediately after the gaseous envelope of the planet was removed. Two, and possibly more, Earth-size fragments survived at orbital separations of ∼> 1 R ☉ within the gaseous disk. The bodies interact with the disk and among themselves, and migrated to reach orbits close to a 3:2 resonance. These observed planets can have a planetary magnetic field about 10 times as strong as that of Earth. This strong magnetic field can substantially reduce the evaporation rate from the planets and explain their survivability against the strong UV radiation of the EHB star.

  15. Kepler planet-detection mission: introduction and first results.

    Science.gov (United States)

    Borucki, William J; Koch, David; Basri, Gibor; Batalha, Natalie; Brown, Timothy; Caldwell, Douglas; Caldwell, John; Christensen-Dalsgaard, Jørgen; Cochran, William D; DeVore, Edna; Dunham, Edward W; Dupree, Andrea K; Gautier, Thomas N; Geary, John C; Gilliland, Ronald; Gould, Alan; Howell, Steve B; Jenkins, Jon M; Kondo, Yoji; Latham, David W; Marcy, Geoffrey W; Meibom, Søren; Kjeldsen, Hans; Lissauer, Jack J; Monet, David G; Morrison, David; Sasselov, Dimitar; Tarter, Jill; Boss, Alan; Brownlee, Don; Owen, Toby; Buzasi, Derek; Charbonneau, David; Doyle, Laurance; Fortney, Jonathan; Ford, Eric B; Holman, Matthew J; Seager, Sara; Steffen, Jason H; Welsh, William F; Rowe, Jason; Anderson, Howard; Buchhave, Lars; Ciardi, David; Walkowicz, Lucianne; Sherry, William; Horch, Elliott; Isaacson, Howard; Everett, Mark E; Fischer, Debra; Torres, Guillermo; Johnson, John Asher; Endl, Michael; MacQueen, Phillip; Bryson, Stephen T; Dotson, Jessie; Haas, Michael; Kolodziejczak, Jeffrey; Van Cleve, Jeffrey; Chandrasekaran, Hema; Twicken, Joseph D; Quintana, Elisa V; Clarke, Bruce D; Allen, Christopher; Li, Jie; Wu, Haley; Tenenbaum, Peter; Verner, Ekaterina; Bruhweiler, Frederick; Barnes, Jason; Prsa, Andrej

    2010-02-19

    The Kepler mission was designed to determine the frequency of Earth-sized planets in and near the habitable zone of Sun-like stars. The habitable zone is the region where planetary temperatures are suitable for water to exist on a planet's surface. During the first 6 weeks of observations, Kepler monitored 156,000 stars, and five new exoplanets with sizes between 0.37 and 1.6 Jupiter radii and orbital periods from 3.2 to 4.9 days were discovered. The density of the Neptune-sized Kepler-4b is similar to that of Neptune and GJ 436b, even though the irradiation level is 800,000 times higher. Kepler-7b is one of the lowest-density planets (approximately 0.17 gram per cubic centimeter) yet detected. Kepler-5b, -6b, and -8b confirm the existence of planets with densities lower than those predicted for gas giant planets.

  16. Rapid formation of gas giants, ice giants and super-Earths

    Energy Technology Data Exchange (ETDEWEB)

    Boss, A P [DTM, Carnegie Institution of Washington, 5241 Broad Branch Road, NW, Washington, DC 20015 (United States)], E-mail: boss@dtm.ciw.edu

    2008-08-15

    Giant planets might have been formed by either of the two basic mechanisms, top-down (disk instability) or bottom-up (core accretion). The latter mechanism is the most generally accepted mechanism and it begins with the collisional accumulation of solid cores that may then accrete sufficient gas to become gas giants. The former mechanism is more heretical and begins with the gravitational instability of the protoplanetary disk gas, leading to the formation of self-gravitating protoplanets, within which the dust settles to form a solid core. The disk instability mechanism has been thought of primarily as a mechanism for the formation of gas giants, but if it occurs in a disk that is being photoevaporated by the ultraviolet radiation from nearby massive stars, then the outer gaseous protoplanets can be photoevaporated as well and stripped of their gaseous envelopes. The result would then be ice giants (cold super-Earths), such as the objects discovered recently by microlensing orbiting two presumed M dwarf stars. M dwarfs that form in regions of future high-mass star formation would be expected to produce cold super-Earths orbiting at distances of several astronomical units (AU) and beyond, while M dwarfs that form in regions of low-mass star formation would be expected to have gas giants at those distances. Given that most stars are born in the former rather than in the latter regions, M dwarfs should have significantly more super-Earths than gas giants on orbits of several AU or more.

  17. Rapid formation of gas giants, ice giants and super-Earths

    International Nuclear Information System (INIS)

    Boss, A P

    2008-01-01

    Giant planets might have been formed by either of the two basic mechanisms, top-down (disk instability) or bottom-up (core accretion). The latter mechanism is the most generally accepted mechanism and it begins with the collisional accumulation of solid cores that may then accrete sufficient gas to become gas giants. The former mechanism is more heretical and begins with the gravitational instability of the protoplanetary disk gas, leading to the formation of self-gravitating protoplanets, within which the dust settles to form a solid core. The disk instability mechanism has been thought of primarily as a mechanism for the formation of gas giants, but if it occurs in a disk that is being photoevaporated by the ultraviolet radiation from nearby massive stars, then the outer gaseous protoplanets can be photoevaporated as well and stripped of their gaseous envelopes. The result would then be ice giants (cold super-Earths), such as the objects discovered recently by microlensing orbiting two presumed M dwarf stars. M dwarfs that form in regions of future high-mass star formation would be expected to produce cold super-Earths orbiting at distances of several astronomical units (AU) and beyond, while M dwarfs that form in regions of low-mass star formation would be expected to have gas giants at those distances. Given that most stars are born in the former rather than in the latter regions, M dwarfs should have significantly more super-Earths than gas giants on orbits of several AU or more

  18. EVIDENCE FROM THE ASTEROID BELT FOR A VIOLENT PAST EVOLUTION OF JUPITER'S ORBIT

    International Nuclear Information System (INIS)

    Morbidelli, Alessandro; Brasser, Ramon; Gomes, Rodney; Levison, Harold F.; Tsiganis, Kleomenis

    2010-01-01

    We use the current orbital structure of large (>50 km) asteroids in the main asteroid belt to constrain the evolution of the giant planets when they migrated from their primordial orbits to their current ones. Minton and Malhotra showed that the orbital distribution of large asteroids in the main belt can be reproduced by an exponentially decaying migration of the giant planets on a timescale of τ ∼ 0.5 Myr. However, self-consistent numerical simulations show that the planetesimal-driven migration of the giant planets is inconsistent with an exponential change in their semi-major axes on such a short timescale. In fact, the typical timescale is τ ≥ 5 Myr. When giant planet migration on this timescale is applied to the asteroid belt, the resulting orbital distribution is incompatible with the observed one. However, the planet migration can be significantly sped up by planet-planet encounters. Consider an evolution where both Jupiter and Saturn have close encounters with a Neptune-mass planet (presumably Uranus or Neptune itself) and where this third planet, after being scattered inward by Saturn, is scattered outward by Jupiter. This scenario leads to a very rapid increase in the orbital separation between Jupiter and Saturn which we show here to have only mild effects on the structure of the asteroid belt. This type of evolution is called a 'jumping-Jupiter' case. Our results suggest that the total mass and dynamical excitation of the asteroid belt before migration were comparable to those currently observed. Moreover, they imply that, before migration, the orbits of Jupiter and Saturn were much less eccentric than their current ones.

  19. Evidence of a massive planet candidate orbiting the young active K5V star BD+20 1790

    Science.gov (United States)

    Hernán-Obispo, M.; Gálvez-Ortiz, M. C.; Anglada-Escudé, G.; Kane, S. R.; Barnes, J. R.; de Castro, E.; Cornide, M.

    2010-03-01

    Context. BD+20 1790 is a young active, metal-rich, late-type K5Ve star. We have undertaken a study of stellar activity and kinematics for this star over the past few years. Previous results show a high level of stellar activity, with the presence of prominence-like structures, spots on the surface, and strong flare events, despite the moderate rotational velocity of the star. In addition, radial velocity variations with a semi-amplitude of up to 1 km s-1 were detected. Aims: We investigate the nature of these radial velocity variations, in order to determine whether they are due to stellar activity or the reflex motion of the star induced by a companion. Methods: We have analysed high-resolution echelle spectra by measuring stellar activity indicators and computing radial velocity (RV) and bisector velocity spans. Two-band photometry was also obtained to produce the light curve and determine the photometric period. Results: Based upon the analysis of the bisector velocity span, as well as spectroscopic indices of chromospheric indicators, Ca ii H & K, Hα, and taking the photometric analysis into account, we report that the best explanation for the RV variation is the presence of a substellar companion. The Keplerian fit of the RV data yields a solution for a close-in massive planet with an orbital period of 7.78 days. The presence of the close-in massive planet could also be an interpretation for the high level of stellar activity detected. Since the RV data are not part of a planet search programme, we can consider our results as a serendipitous evidence of a planetary companion. To date, this is the youngest main sequence star for which a planetary candidate has been reported. Based on observations collected at the German-Spanish Astronomical Center, Calar Alto, jointly operated by the Max-Planck-Institut für Astronomie Heidelberg and the Instituto de Astrofísica de Andalucía (CSIC). Based on observations made with the Italian Telescopio Nazionale Galileo

  20. Conditions for oceans on Earth-like planets orbiting within the habitable zone: importance of volcanic CO{sub 2} degassing

    Energy Technology Data Exchange (ETDEWEB)

    Kadoya, S. [Department of Earth and Planetary Science, The University of Tokyo, Kiban Bldg. 408, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561 (Japan); Tajika, E., E-mail: kadoya@astrobio.k.u-tokyo.ac.jp, E-mail: tajika@astrobio.k.u-tokyo.ac.jp [Department of Complexity Science and Engineering, The University of Tokyo, Kiban Bldg. 409, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561 (Japan)

    2014-08-01

    Earth-like planets in the habitable zone (HZ) have been considered to have warm climates and liquid water on their surfaces if the carbonate-silicate geochemical cycle is working as on Earth. However, it is known that even the present Earth may be globally ice-covered when the rate of CO{sub 2} degassing via volcanism becomes low. Here we discuss the climates of Earth-like planets in which the carbonate-silicate geochemical cycle is working, with focusing particularly on insolation and the CO{sub 2} degassing rate. The climate of Earth-like planets within the HZ can be classified into three climate modes (hot, warm, and snowball climate modes). We found that the conditions for the existence of liquid water should be largely restricted even when the planet is orbiting within the HZ and the carbonate-silicate geochemical cycle is working. We show that these conditions should depend strongly on the rate of CO{sub 2} degassing via volcanism. It is, therefore, suggested that thermal evolution of the planetary interiors will be a controlling factor for Earth-like planets to have liquid water on their surface.

  1. Planets a very short introduction

    CERN Document Server

    Rothery, David A

    2010-01-01

    Planets: A Very Short Introduction demonstrates the excitement, uncertainties, and challenges faced by planetary scientists, and provides an overview of our Solar System and its origins, nature, and evolution. Terrestrial planets, giant planets, dwarf planets and various other objects such as satellites (moons), asteroids, trans-Neptunian objects, and exoplanets are discussed. Our knowledge about planets has advanced over the centuries, and has expanded at a rapidly growing rate in recent years. Controversial issues are outlined, such as What qualifies as a planet? What conditions are required for a planetary body to be potentially inhabited by life? Why does Pluto no longer have planet status? And Is there life on other planets?

  2. The science case for an orbital mission to Uranus: Exploring the origins and evolution of ice giant planets

    Czech Academy of Sciences Publication Activity Database

    Arridge, C. S.; Achilleos, N.; Agarwal, J.; Agnor, C. B.; Ambrosi, R.; André, N.; Badman, S. V.; Baines, K.; Banfield, D.; Barthélémy, M.; Bisi, M. M.; Blum, J.; Bocanegra-Bahamon, T.; Bonfond, B.; Bracken, C.; Brandt, P.; Briand, C.; Briois, C.; Brooks, S.; Castillo-Rogez, J.; Cavalié, T.; Christophe, B.; Coates, A. J.; Collinson, G.; Cooper, J. F.; Costa-Sitja, M.; Courtin, R.; Daglis, I. A.; de Pater, I.; Desai, M.; Dirkx, D.; Dougherty, M. K.; Ebert, R. W.; Filacchione, G.; Fletcher, L. N.; Fortney, J.; Gerth, I.; Grassi, D.; Grodent, D.; Grün, E.; Gustin, J.; Hedman, M.; Helled, R.; Henri, P.; Hess, S.; Hillier, J. K.; Hofstadter, M. H.; Holme, R.; Horanyi, M.; Hospodarsky, G.; Hsu, S.; Irwin, P.; Jackman, C. M.; Karatekin, O.; Kempf, S.; Khalisi, E.; Konstantinidis, K.; Krüger, H.; Kurth, W. S.; Labrianidis, C.; Lainey, V.; Lamy, L. L.; Laneuville, M.; Lucchesi, D.; Luntzer, A.; MacArthur, B.; Maier, A.; Masters, A.; McKenna-Lawlor, S.; Melin, H.; Milillo, A.; Moragas-Klostermeyer, G.; Morschhauser, A.; Moses, J. I.; Mousis, O.; Nettelmann, N.; Neubauer, F. M.; Nordheim, T.; Noyelles, B.; Orton, G. S.; Owens, M.; Peron, M.; Plainaki, C.; Postberg, F.; Rambaux, N.; Retherford, K.; Reynaud, S.; Roussos, E.; Russell, C. T.; Rymer, A. M.; Sallantin, R.; Sánchez-Lavega, A.; Santolík, Ondřej; Saur, J.; Sayanagi, K. M.; Schenk, P.; Schubert, J.; Sergis, N.; Sittler, E. C.; Smith, A.; Spahn, F.; Srama, R.; Stallard, B.; Sterken, V.; Sternovsky, Z.; Tiscareno, M.; Tobie, G.; Tosi, F.; Trielof, M.; Turrini, D.; Turtle, E. P.; Vinatier, S.; Wilson, R.; Zarka, P.

    2014-01-01

    Roč. 104, SI (2014), s. 122-140 ISSN 0032-0633 Institutional support: RVO:68378289 Keywords : Uranus * magnetosphere * atmosphere * natural satellites * rings * planetary interior Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 1.875, year: 2014 http://www.sciencedirect.com/science/article/pii/S0032063314002335#

  3. FORMING HABITABLE PLANETS AROUND DWARF STARS: APPLICATION TO OGLE-06-109L

    International Nuclear Information System (INIS)

    Wang Su; Zhou Jilin

    2011-01-01

    Dwarf stars are believed to have a small protostar disk where planets may grow up. During the planet formation stage, embryos undergoing type I migration are expected to be stalled at an inner edge of the magnetically inactive disk (a crit ∼ 0.2-0.3 AU). This mechanism makes the location around a crit a 'sweet spot' for forming planets. In dwarf stars with masses ∼0.5 M sun , a crit is roughly inside the habitable zone of the system. In this paper, we study the formation of habitable planets due to this mechanism using model system OGLE-06-109L, which has a 0.51 M sun dwarf star with two giant planets in 2.3 and 4.6 AU observed by microlensing. We model the embryos undergoing type I migration in the gas disk with a constant disk-accretion rate ( M-dot ). Giant planets in outside orbits affect the formation of habitable planets through secular perturbations at the early stage and secular resonance at the late stage. We find that the existence and the masses of the habitable planets in the OGLE-06-109L system depend on both M-dot and the speed of type I migration. If planets are formed earlier, so that M-dot is larger (∼10 -7 M sun yr -1 ), terrestrial planets cannot survive unless the type I migration rate is an order of magnitude less. If planets are formed later, so that M-dot is smaller (∼10 -8 M sun yr -1 ), single and high-mass terrestrial planets with high water contents (∼5%) will be formed by inward migration of outer planet cores. A slower-speed migration will result in several planets via collisions of embryos, and thus their water contents will be low (∼2%). Mean motion resonances or apsidal resonances among planets may be observed if multiple planets survive in the inner system.

  4. Planet hunters. VI. An independent characterization of KOI-351 and several long period planet candidates from the Kepler archival data

    International Nuclear Information System (INIS)

    Schmitt, Joseph R.; Wang, Ji; Fischer, Debra A.; Moriarty, John C.; Boyajian, Tabetha S.; Jek, Kian J.; LaCourse, Daryll; Omohundro, Mark R.; Winarski, Troy; Goodman, Samuel Jon; Jebson, Tony; Schwengeler, Hans Martin; Paterson, David A.; Schwamb, Megan E.; Lintott, Chris; Simpson, Robert; Lynn, Stuart; Smith, Arfon M.; Parrish, Michael; Schawinski, Kevin

    2014-01-01

    We report the discovery of 14 new transiting planet candidates in the Kepler field from the Planet Hunters citizen science program. None of these candidates overlapped with Kepler Objects of Interest (KOIs) at the time of submission. We report the discovery of one more addition to the six planet candidate system around KOI-351, making it the only seven planet candidate system from Kepler. Additionally, KOI-351 bears some resemblance to our own solar system, with the inner five planets ranging from Earth to mini-Neptune radii and the outer planets being gas giants; however, this system is very compact, with all seven planet candidates orbiting ≲ 1 AU from their host star. A Hill stability test and an orbital integration of the system shows that the system is stable. Furthermore, we significantly add to the population of long period transiting planets; periods range from 124 to 904 days, eight of them more than one Earth year long. Seven of these 14 candidates reside in their host star's habitable zone.

  5. The effect of a strong stellar flare on the atmospheric chemistry of an earth-like planet orbiting an M dwarf.

    Science.gov (United States)

    Segura, Antígona; Walkowicz, Lucianne M; Meadows, Victoria; Kasting, James; Hawley, Suzanne

    2010-09-01

    Main sequence M stars pose an interesting problem for astrobiology: their abundance in our galaxy makes them likely targets in the hunt for habitable planets, but their strong chromospheric activity produces high-energy radiation and charged particles that may be detrimental to life. We studied the impact of the 1985 April 12 flare from the M dwarf AD Leonis (AD Leo), simulating the effects from both UV radiation and protons on the atmospheric chemistry of a hypothetical, Earth-like planet located within its habitable zone. Based on observations of solar proton events and the Neupert effect, we estimated a proton flux associated with the flare of 5.9 × 10⁸ protons cm⁻² sr⁻¹ s⁻¹ for particles with energies >10 MeV. Then we calculated the abundance of nitrogen oxides produced by the flare by scaling the production of these compounds during a large solar proton event called the Carrington event. The simulations were performed with a 1-D photochemical model coupled to a 1-D radiative/convective model. Our results indicate that the UV radiation emitted during the flare does not produce a significant change in the ozone column depth of the planet. When the action of protons is included, the ozone depletion reaches a maximum of 94% two years after the flare for a planet with no magnetic field. At the peak of the flare, the calculated UV fluxes that reach the surface, in the wavelength ranges that are damaging for life, exceed those received on Earth during less than 100 s. Therefore, flares may not present a direct hazard for life on the surface of an orbiting habitable planet. Given that AD Leo is one of the most magnetically active M dwarfs known, this conclusion should apply to planets around other M dwarfs with lower levels of chromospheric activity.

  6. A Ninth Planet in Our Solar System?

    Science.gov (United States)

    Kohler, Susanna

    2016-01-01

    The recent discovery that the orbits of some Kuiper belt objects (KBOs) share properties has proved puzzling. A pair of scientists have now proposed a bold explanation: there may be a planet-sized object yet undetected in our solar system.Mysterious ClusteringKBOs, the population of mainly small objects beyond Neptune, have proven an especially interesting subject of study in the last decade as many small, distant bodies (such as Eris, the object that led to the demotion of Pluto to dwarf planet) have been discovered.Previous studies have recently discovered that some especially distant KBOs those that orbit with semimajor axes of a 150 AU, nearly four times that of Pluto all cross the ecliptic at a similar phase in their elliptical trajectories. This is unexpected, since gravitational tugs from the giant planets should have randomized this parameter over our solar systems multi-billion-year lifespan.Physical alignment of the orbits of Kuiper belt objects with a 250 AU (and two objects with a 150 AU that are dynamically stable). [Batygin Brown 2016]Two scientists at California Institute of Technology, Konstantin Batygin and Michael Brown (you might recognize Brown as the man who killed Pluto) have now increased the mystery. In a recently published a study, they demonstrate that for KBOs that have orbits with a 250 AU, the orbits are actually physically aligned.To explain this unexpected alignment which Batygin and Brown calculate has only a 0.007% probability of having occurred by chance the authors ask an exciting question: could this be caused by the presence of an unseen, large, perturbing body further out in the solar system?Simulating a Ninth PlanetThe authors test this hypothesis by carrying out both analytical calculations and numerical N-body simulations designed to determine if the gravitational influence of a distant, planetary-mass companion can explain the behavior we observe from the large-orbit KBOs.Simulation of the effect of a distant planet (M = 10

  7. Climate of Earth-Like Planets With and Without Ocean Heat Transport Orbiting a Range of M and K Stars

    Science.gov (United States)

    Kiang, N. Y.; Jablonski, Emma R.; Way, Michael J.; Del Genio, Anthony; Roberge, Aki

    2015-01-01

    The mean surface temperature of a planet is now acknowledged as insufficient to surmise its full potential habitability. Advancing our understanding requires exploration with 3D general circulation models (GCMs), which can take into account how gradients and fluxes across a planet's surface influence the distribution of heat, clouds, and the potential for heterogeneous distribution of liquid water. Here we present 3D GCM simulations of the effects of alternative stellar spectra, instellation, model resolution, and ocean heat transport, on the simulated distribution of heat and moisture of an Earth-like planet (ELP).

  8. Producing Distant Planets by Mutual Scattering of Planetary Embryos

    Science.gov (United States)

    Silsbee, Kedron; Tremaine, Scott

    2018-02-01

    It is likely that multiple bodies with masses between those of Mars and Earth (“planetary embryos”) formed in the outer planetesimal disk of the solar system. Some of these were likely scattered by the giant planets into orbits with semimajor axes of hundreds of au. Mutual torques between these embryos may lift the perihelia of some of them beyond the orbit of Neptune, where they are no longer perturbed by the giant planets, so their semimajor axes are frozen in place. We conduct N-body simulations of this process and its effect on smaller planetesimals in the region of the giant planets and the Kuiper Belt. We find that (i) there is a significant possibility that one sub-Earth mass embryo, or possibly more, is still present in the outer solar system; (ii) the orbit of the surviving embryo(s) typically has perihelion of 40–70 au, semimajor axis less than 200 au, and inclination less than 30° (iii) it is likely that any surviving embryos could be detected by current or planned optical surveys or have a significant effect on solar system ephemerides; (iv) whether or not an embryo has survived to the present day, its dynamical influence earlier in the history of the solar system can explain the properties of the detached disk (defined in this paper as containing objects with perihelia >38 au and semimajor axes between 80 and 500 au).

  9. Limits on stellar companions to exoplanet host stars with eccentric planets

    International Nuclear Information System (INIS)

    Kane, Stephen R.; Hinkel, Natalie R.; Howell, Steve B.; Horch, Elliott P.; Feng, Ying; Wright, Jason T.; Ciardi, David R.; Everett, Mark E.; Howard, Andrew W.

    2014-01-01

    Though there are now many hundreds of confirmed exoplanets known, the binarity of exoplanet host stars is not well understood. This is particularly true of host stars that harbor a giant planet in a highly eccentric orbit since these are more likely to have had a dramatic dynamical history that transferred angular momentum to the planet. Here we present observations of four exoplanet host stars that utilize the excellent resolving power of the Differential Speckle Survey Instrument on the Gemini North telescope. Two of the stars are giants and two are dwarfs. Each star is host to a giant planet with an orbital eccentricity >0.5 and whose radial velocity (RV) data contain a trend in the residuals to the Keplerian orbit fit. These observations rule out stellar companions 4-8 mag fainter than the host star at passbands of 692 nm and 880 nm. The resolution and field of view of the instrument result in exclusion radii of 0.''05-1.''4, which excludes stellar companions within several AU of the host star in most cases. We further provide new RVs for the HD 4203 system that confirm that the linear trend previously observed in the residuals is due to an additional planet. These results place dynamical constraints on the source of the planet's eccentricities, place constraints on additional planetary companions, and inform the known distribution of multiplicity amongst exoplanet host stars.

  10. Orbits

    CERN Document Server

    Xu, Guochang

    2008-01-01

    This is the first book of the satellite era which describes orbit theory with analytical solutions of the second order with respect to all possible disturbances. Based on such theory, the algorithms of orbits determination are completely revolutionized.

  11. MASSIVE SATELLITES OF CLOSE-IN GAS GIANT EXOPLANETS

    International Nuclear Information System (INIS)

    Cassidy, Timothy A.; Johnson, Robert E.; Mendez, Rolando; Arras, Phil; Skrutskie, Michael F.

    2009-01-01

    We study the orbits, tidal heating and mass loss from satellites around close-in gas giant exoplanets. The focus is on large satellites which are potentially observable by their transit signature. We argue that even Earth-size satellites around hot Jupiters can be immune to destruction by orbital decay; detection of such a massive satellite would strongly constrain theories of tidal dissipation in gas giants, in a manner complementary to orbital circularization. The star's gravity induces significant periodic eccentricity in the satellite's orbit. The resulting tidal heating rates, per unit mass, are far in excess of Io's and dominate radioactive heating out to planet orbital periods of months for reasonable satellite tidal Q. Inside planet orbital periods of about a week, tidal heating can completely melt the satellite. Lastly, we compute an upper limit to the satellite mass loss rate due to thermal evaporation from the surface, valid if the satellite's atmosphere is thin and vapor pressure is negligible. Using this upper limit, we find that although rocky satellites around hot Jupiters with orbital periods less than a few days can be significantly evaporated in their lifetimes, detectable satellites suffer negligible mass loss at longer orbital periods.

  12. N-body simulations of planet formation: understanding exoplanet system architectures

    Science.gov (United States)

    Coleman, Gavin; Nelson, Richard

    2015-12-01

    Observations have demonstrated the existence of a significant population of compact systems comprised of super-Earths and Neptune-mass planets, and a population of gas giants that appear to occur primarily in either short-period (100 days) orbits. The broad diversity of system architectures raises the question of whether or not the same formation processes operating in standard disc models can explain these planets, or if different scenarios are required instead to explain the widely differing architectures. To explore this issue, we present the results from a comprehensive suite of N-body simulations of planetary system formation that include the following physical processes: gravitational interactions and collisions between planetary embryos and planetesimals; type I and II migration; gas accretion onto planetary cores; self-consistent viscous disc evolution and disc removal through photo-evaporation. Our results indicate that the formation and survival of compact systems of super-Earths and Neptune-mass planets occur commonly in disc models where a simple prescription for the disc viscosity is assumed, but such models never lead to the formation and survival of gas giant planets due to migration into the star. Inspired in part by the ALMA observations of HL Tau, and by MHD simulations that display the formation of long-lived zonal flows, we have explored the consequences of assuming that the disc viscosity varies in both time and space. We find that the radial structuring of the disc leads to conditions in which systems of giant planets are able to form and survive. Furthermore, these giants generally occupy those regions of the mass-period diagram that are densely populated by the observed gas giants, suggesting that the planet traps generated by radial structuring of protoplanetary discs may be a necessary ingredient for forming giant planets.

  13. Lunar and terrestrial planet formation in the Grand Tack scenario

    Science.gov (United States)

    Jacobson, S. A.; Morbidelli, A.

    2014-01-01

    We present conclusions from a large number of N-body simulations of the giant impact phase of terrestrial planet formation. We focus on new results obtained from the recently proposed Grand Tack model, which couples the gas-driven migration of giant planets to the accretion of the terrestrial planets. The giant impact phase follows the oligarchic growth phase, which builds a bi-modal mass distribution within the disc of embryos and planetesimals. By varying the ratio of the total mass in the embryo population to the total mass in the planetesimal population and the mass of the individual embryos, we explore how different disc conditions control the final planets. The total mass ratio of embryos to planetesimals controls the timing of the last giant (Moon-forming) impact and its violence. The initial embryo mass sets the size of the lunar impactor and the growth rate of Mars. After comparing our simulated outcomes with the actual orbits of the terrestrial planets (angular momentum deficit, mass concentration) and taking into account independent geochemical constraints on the mass accreted by the Earth after the Moon-forming event and on the time scale for the growth of Mars, we conclude that the protoplanetary disc at the beginning of the giant impact phase must have had most of its mass in Mars-sized embryos and only a small fraction of the total disc mass in the planetesimal population. From this, we infer that the Moon-forming event occurred between approximately 60 and approximately 130 Myr after the formation of the first solids and was caused most likely by an object with a mass similar to that of Mars. PMID:25114304

  14. Orbital

    OpenAIRE

    Yourshaw, Matthew Stephen

    2017-01-01

    Orbital is a virtual reality gaming experience designed to explore the use of traditional narrative structure to enhance immersion in virtual reality. The story structure of Orbital was developed based on the developmental steps of 'The Hero's Journey,' a narrative pattern identified by Joseph Campbell. Using this standard narrative pattern, Orbital is capable of immersing the player quickly and completely for the entirety of play time. MFA

  15. DID FOMALHAUT, HR 8799, AND HL TAURI FORM PLANETS VIA THE GRAVITATIONAL INSTABILITY? PLACING LIMITS ON THE REQUIRED DISK MASSES

    International Nuclear Information System (INIS)

    Nero, D.; Bjorkman, J. E.

    2009-01-01

    Disk fragmentation resulting from the gravitational instability has been proposed as an efficient mechanism for forming giant planets. We use the planet Fomalhaut b, the triple-planetary system HR 8799, and the potential protoplanet associated with HL Tau to test the viability of this mechanism. We choose the above systems since they harbor planets with masses and orbital characteristics favored by the fragmentation mechanism. We do not claim that these planets must have formed as the result of fragmentation, rather the reverse: if planets can form from disk fragmentation, then these systems are consistent with what we should expect to see. We use the orbital characteristics of these recently discovered planets, along with a new technique to more accurately determine the disk cooling times, to place both lower and upper limits on the disk surface density-and thus mass-required to form these objects by disk fragmentation. Our cooling times are over an order of magnitude shorter than those of Rafikov, which makes disk fragmentation more feasible for these objects. We find that the required mass interior to the planet's orbital radius is ∼0.1 M sun for Fomalhaut b, the protoplanet orbiting HL Tau, and the outermost planet of HR 8799. The two inner planets of HR 8799 probably could not have formed in situ by disk fragmentation.

  16. Types of Information Expected from a Photometric Search for Extra-Solar Planets

    Science.gov (United States)

    Borucki, William; Koch, David; Bell, James, III; Cuzzi, Jeffrey N. (Technical Monitor)

    1994-01-01

    The current theory postulates that planets are a consequence of the formation of stars from viscous accretion disks. Condensation from the hotter, inner portion of the accretion disk favors the formation of small rocky planets in the inner portion and the formation of gas giants in the cuter, cooler part. Consequently, terrestrial-type planets in inner orbits must be commonplace (Wetheril 1991). From the geometry of the situation (Borucki and Summers 1984), it can be shown that 1% of those planetary systems that resemble our solar system should show transits for Earth-sized (or larger) planets. Thus a photometric satellite that uses a wide field of view telescope and a large CCD array to simultaneously monitor 5000 target stars should detect 50 planetary systems. To verify that regularly recurring transits are occurring rather than statistical fluctuations of the stellar flux, demands observations that extend over several orbital periods so that the constancy of the orbital period, signal amplitude, and duration can be measured. Therefore, to examine the region from Mercury's orbit to that of the Earth requires a duration of three years whereas a search out to the orbit of mars requires about six years. The results of the observations should provide estimates of the distributions of planetary size and orbital radius, and the frequency of planetary systems that have Earth-sized planets in inner orbits. Because approximately one half of the star systems observed will be binary systems, the frequency of planetary systems orbit ' ing either one or both of the stars can also be determined. Furthermore, the complexity of the photometric signature of a planet transiting a pair of stars provides enough information to estimate the eccentricities of the planetary orbits. In summary, the statistical evidence from a photometric search of solar-like stars should be able to either confirm or deny the applicability of the current theory of planet formation and provide new

  17. Solar system a visual exploration of the planets, moons, and other heavenly bodies that orbit our sun

    CERN Document Server

    Chown, Marcus

    2011-01-01

    Based on the latest ebook sensation developed by Theodore Gray and his company Touch Press, this beautiful print book presents a new and fascinating way to experience the wonders of the solar system Following the stunning success of both the print edition and the app of The Elements, Black Dog & Leventhal and Touch Press have teamed up again. Solar System is something completely new under the sun. Never before have the wonders of our solar system—all its planets, dwarf planets, the sun, moons, rocky Asteroid Belt, and icy Kuiper Belt—been so immediately accessible to readers of all ages. Beginning with a fascinating overview and then organized by planet, in order of its distance from the sun, Solar System takes us on a trip across time and space that includes a front-row seat to the explosive birth of the solar system, a journey to (and then deep inside) each of its eight planets, and even an in-depth exploration of asteroids and comets. With hundreds of gorgeous images produced especially for this...

  18. An Improved Transit Measurement for a 2.4 R ⊕ Planet Orbiting A Bright Mid-M Dwarf K2–28

    Science.gov (United States)

    Chen, Ge; Knutson, Heather A.; Dressing, Courtney D.; Morley, Caroline V.; Werner, Michael; Gorjian, Varoujan; Beichman, Charles; Benneke, Björn; Christiansen, Jessie L.; Ciardi, David; Crossfield, Ian; Howell, Steve B.; Krick, Jessica E.; Livingston, John; Morales, Farisa Y.; Schlieder, Joshua E.

    2018-05-01

    We present a new Spitzer transit observation of K2–28b, a sub-Neptune (R p = 2.45 ± 0.28 R ⊕) orbiting a relatively bright (V mag = 16.06, K mag = 10.75) metal-rich M4 dwarf (EPIC 206318379). This star is one of only seven with masses less than 0.2 {M}ȯ known to host transiting planets, and the planet appears to be a slightly smaller analogue of GJ 1214b (2.85+/- 0.20 {R}\\oplus ). Our new Spitzer observations were taken two years after the original K2 discovery data and have a significantly higher cadence, allowing us to derive improved estimates for this planet’s radius, semimajor axis, and orbital period, which greatly reduce the uncertainty in the prediction of near future transit times for the James Webb Space Telescope (JWST) observations. We also evaluate the system’s suitability for atmospheric characterization with JWST and find that it is currently the only small (K2–28b to be representative of the kind of mid-M systems that should be detectable in the TESS sample.

  19. The comparative effect of FUV, EUV and X-ray disc photoevaporation on gas giant separations

    Science.gov (United States)

    Jennings, Jeff; Ercolano, Barbara; Rosotti, Giovanni P.

    2018-04-01

    Gas giants' early (≲ 5 Myr) orbital evolution occurs in a disc losing mass in part to photoevaporation driven by high energy irradiance from the host star. This process may ultimately overcome viscous accretion to disperse the disc and halt migrating giants by starving their orbits of gas, imprinting on giant planet separations in evolved systems. Inversion of this distribution could then give insight into whether stellar FUV, EUV or X-ray flux dominates photoevaporation, constraining planet formation and disc evolution models. We use a 1D hydrodynamic code in population syntheses for gas giants undergoing Type II migration in a viscously evolving disc subject to either a primarily FUV, EUV or X-ray flux from a pre-solar T Tauri star. The photoevaporative mass loss profile's unique peak location and width in each energetic regime produces characteristic features in the distribution of giant separations: a severe dearth of ≲ 2 MJ planets interior to 5 AU in the FUV scenario, a sharp concentration of ≲ 3 MJ planets between ≈1.5 - 2 AU in the EUV case, and a relative abundance of ≈2 - 3.5 MJ giants interior to 0.5 AU in the X-ray model. These features do not resemble the observational sample of gas giants with mass constraints, though our results do show some weaker qualitative similarities. We thus assess how the differing photoevaporative profiles interact with migrating giants and address the effects of large model uncertainties as a step to better connect disc models with trends in the exoplanet population.

  20. How Do Earth-Sized, Short-Period Planets Form?

    Science.gov (United States)

    Kohler, Susanna

    2017-08-01

    Matching theory to observation often requires creative detective work. In a new study, scientists have used a clever test to reveal clues about the birth of speedy, Earth-sized planets.Former Hot Jupiters?Artists impression of a hot Jupiter with an evaporating atmosphere. [NASA/Ames/JPL-Caltech]Among the many different types of exoplanets weve observed, one unusual category is that of ultra-short-period planets. These roughly Earth-sized planets speed around their host stars at incredible rates, with periods of less than a day.How do planets in this odd category form? One popular theory is that they were previously hot Jupiters, especially massive gas giants orbiting very close to their host stars. The close orbit caused the planets atmospheres to be stripped away, leaving behind only their dense cores.In a new study, a team of astronomers led by Joshua Winn (Princeton University) has found a clever way to test this theory.Planetary radius vs. orbital period for the authors three statistical samples (colored markers) and the broader sample of stars in the California Kepler Survey. [Winn et al. 2017]Testing MetallicitiesStars hosting hot Jupiters have an interesting quirk: they typically have metallicities that are significantly higher than an average planet-hosting star. It is speculated that this is because planets are born from the same materials as their host stars, and hot Jupiters require the presence of more metals to be able to form.Regardless of the cause of this trend, if ultra-short-period planets are in fact the solid cores of former hot Jupiters, then the two categories of planets should have hosts with the same metallicity distributions. The ultra-short-period-planet hosts should therefore also be weighted to higher metallicities than average planet-hosting stars.To test this, the authors make spectroscopic measurements and gather data for a sample of stellar hosts split into three categories:64 ultra-short-period planets (orbital period shorter than a

  1. Finding A Planet Through the Dust

    Science.gov (United States)

    Kohler, Susanna

    2018-05-01

    Finding planets in the crowded galactic center is a difficult task, but infrared microlensing surveys give us a fighting chance! Preliminary results from such a study have already revealed a new exoplanet lurking in the dust of the galactic bulge.Detection BiasesUKIRT-2017 microlensing survey fields (blue), plotted over a map showing the galactic-plane dust extinction. The location of the newly discovered giant planet is marked with blue crosshairs. [Shvartzvald et al. 2018]Most exoplanets weve uncovered thus far were found either via transits dips in a stars light as the planet passes in front of its host star or via radial velocity wobbles of the star as the orbiting planet tugs on it. These techniques, while highly effective, introduce a selection bias in the types of exoplanets we detect: both methods tend to favor discovery of close-in, large planets orbiting small stars; these systems produce the most easily measurable signals on short timescales.For this reason, microlensing surveys for exoplanets have something new to add to the field.Search for a LensIn gravitational microlensing, we observe a background star as it is briefly magnified by a passing foreground star acting as a lens. If that foreground star hosts a planet, we observe a characteristic shape in the observed brightening of the background star, and the properties of that shape can reveal information about the foreground planet.A diagram of how planets are detected via gravitational microlensing. The detectable planet is in orbit around the foreground lens star. [NASA]This technique for planet detection is unique in its ability to explore untapped regions of exoplanet parameter space with microlensing, we can survey for planets around all different types of stars (rather than primarily small, dim ones), planets of all masses near the further-out snowlines where gas and ice giants are likely to form, and even free-floating planets.In a new study led by a Yossi Shvartzvald, a NASA postdoctoral

  2. OBJECTS IN KEPLER'S MIRROR MAY BE LARGER THAN THEY APPEAR: BIAS AND SELECTION EFFECTS IN TRANSITING PLANET SURVEYS

    International Nuclear Information System (INIS)

    Gaidos, Eric; Mann, Andrew W.

    2013-01-01

    Statistical analyses of large surveys for transiting planets such as the Kepler mission must account for systematic errors and biases. Transit detection depends not only on the planet's radius and orbital period, but also on host star properties. Thus, a sample of stars with transiting planets may not accurately represent the target population. Moreover, targets are selected using criteria such as a limiting apparent magnitude. These selection effects, combined with uncertainties in stellar radius, lead to biases in the properties of transiting planets and their host stars. We quantify possible biases in the Kepler survey. First, Eddington bias produced by a steep planet radius distribution and uncertainties in stellar radius results in a 15%-20% overestimate of planet occurrence. Second, the magnitude limit of the Kepler target catalog induces Malmquist bias toward large, more luminous stars and underestimation of the radii of about one-third of candidate planets, especially those larger than Neptune. Third, because metal-poor stars are smaller, stars with detected planets will be very slightly (<0.02 dex) more metal-poor than the target average. Fourth, uncertainties in stellar radii produce correlated errors in planet radius and stellar irradiation. A previous finding, that highly irradiated giants are more likely to have 'inflated' radii, remains significant, even accounting for this effect. In contrast, transit depth is negatively correlated with stellar metallicity even in the absence of any intrinsic correlation, and a previous claim of a negative correlation between giant planet transit depth and stellar metallicity is probably an artifact.

  3. Triple Microlens OGLE-2008-BLG-092L: Binary Stellar System with a Circumprimary Uranus-type Planet

    Science.gov (United States)

    Poleski, Radosław; Skowron, Jan; Udalski, Andrzej; Han, Cheongho; Kozłowski, Szymon; Wyrzykowski, Łukasz; Dong, Subo; Szymański, Michał K.; Kubiak, Marcin; Pietrzyński, Grzegorz; Soszyński, Igor; Ulaczyk, Krzysztof; Pietrukowicz, Paweł; Gould, Andrew

    2014-11-01

    We present the gravitational microlensing discovery of a 4 M Uranus planet that orbits a 0.7 M ⊙ star at ≈18 AU. This is the first known analog of Uranus. Similar planets, i.e., cold ice giants, are inaccessible to either radial velocity or transit methods because of the long orbital periods, while low reflected light prevents direct imaging. We discuss how similar planets may contaminate the sample of the very short microlensing events that are interpreted as free-floating planets with an estimated rate of 1.8 per main-sequence star. Moreover, the host star has a nearby stellar (or brown dwarf) companion. The projected separation of the planet is only about three times smaller than that of the companion star, suggesting significant dynamical interactions.

  4. Triple microlens OGLE-2008-BLG-092L: binary stellar system with a circumprimary uranus-type planet

    Energy Technology Data Exchange (ETDEWEB)

    Poleski, Radosław; Gould, Andrew [Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Skowron, Jan; Udalski, Andrzej; Kozłowski, Szymon; Wyrzykowski, Łukasz; Szymański, Michał K.; Kubiak, Marcin; Pietrzyński, Grzegorz; Soszyński, Igor; Ulaczyk, Krzysztof; Pietrukowicz, Paweł [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa (Poland); Han, Cheongho [Department of Physics, Chungbuk National University, Cheongju 371-763 (Korea, Republic of); Dong, Subo, E-mail: poleski@astronomy.ohio-state.edu [Kavli Institute for Astronomy and Astrophysics, Peking University, Yi He Yuan Road 5, Hai Dian District, Beijing 100871 (China)

    2014-11-01

    We present the gravitational microlensing discovery of a 4 M {sub Uranus} planet that orbits a 0.7 M {sub ☉} star at ≈18 AU. This is the first known analog of Uranus. Similar planets, i.e., cold ice giants, are inaccessible to either radial velocity or transit methods because of the long orbital periods, while low reflected light prevents direct imaging. We discuss how similar planets may contaminate the sample of the very short microlensing events that are interpreted as free-floating planets with an estimated rate of 1.8 per main-sequence star. Moreover, the host star has a nearby stellar (or brown dwarf) companion. The projected separation of the planet is only about three times smaller than that of the companion star, suggesting significant dynamical interactions.

  5. Short-duration Lensing Events: Wide-orbit Planets? Free-floating Dwarfs? Or Hypervelocity Stellar Remnants?

    Science.gov (United States)

    Di Stefano, Rosanne; Patel, B.; Kallivayalil, N.; Primini, F. A.

    2009-01-01

    Ongoing microlensing observations by OGLE and MOA regularly detect and conduct high-cadence sampling of lensing events with Einstein diameter crossing times shorter than a few days. We show that many short-duration events are likely to have been caused by planet-mass or brown-dwarf lenses. Many of these low-mass lenses are located within a kpc. Information about some individual systems can be derived through a combination of lensing, radial velocity, and transit studies. The present discovery rate is high enough that the study of short-duration events could soon become the primary channel for planet detection via microlensing. We develop a protocol for observing and modeling these events, and apply it to archived data. A small number of short events may be caused by hypervelocity (v 10^3 km/s) masses located within a kpc.

  6. An exact solution for orbit view-periods from a station on a tri-axial ellipsoidal planet

    Science.gov (United States)

    Tang, C. C. H.

    1986-01-01

    This paper presents the concise exact solution for predicting view-periods to be observed from a masked or unmasked tracking station on a tri-axial ellipsoidal surface. The new exact approach expresses the azimuth and elevation angles of a spacecraft in terms of the station-centered geodetic topocentric coordinates in an elegantly concise manner. A simple and efficient algorithm is developed to avoid costly repetitive computations in searching for neighborhoods near the rise and set times of each satellite orbit for each station. Only one search for each orbit is necessary for each station. Sample results indicate that the use of an assumed spherical earth instead of an 'actual' tri-axial ellipsoidal earth could introduce an error up to a few minutes in a view-period prediction for circular orbits of low or medium altitude. For an elliptical orbit of high eccentricity and long period, the maximum error could be even larger. The analytic treatment and the efficient algorithm are designed for geocentric orbits, but they should be applicable to interplanetary trajectories by an appropriate coordinates transformation at each view-period calculation. This analysis can be accomplished only by not using the classical orbital elements.

  7. An exact solution for orbit view-periods from a station on a tri-axial ellipsoidal planet

    Science.gov (United States)

    Tang, C. C. H.

    1986-08-01

    This paper presents the concise exact solution for predicting view-periods to be observed from a masked or unmasked tracking station on a tri-axial ellipsoidal surface. The new exact approach expresses the azimuth and elevation angles of a spacecraft in terms of the station-centered geodetic topocentric coordinates in an elegantly concise manner. A simple and efficient algorithm is developed to avoid costly repetitive computations in searching for neighborhoods near the rise and set times of each satellite orbit for each station. Only one search for each orbit is necessary for each station. Sample results indicate that the use of an assumed spherical earth instead of an 'actual' tri-axial ellipsoidal earth could introduce an error up to a few minutes in a view-period prediction for circular orbits of low or medium altitude. For an elliptical orbit of high eccentricity and long period, the maximum error could be even larger. The analytic treatment and the efficient algorithm are designed for geocentric orbits, but they should be applicable to interplanetary trajectories by an appropriate coordinates transformation at each view-period calculation. This analysis can be accomplished only by not using the classical orbital elements.

  8. TESTING THE METAL OF LATE-TYPE KEPLER PLANET HOSTS WITH IRON-CLAD METHODS

    International Nuclear Information System (INIS)

    Mann, Andrew W.; Hilton, Eric J.; Gaidos, Eric; Kraus, Adam

    2013-01-01

    It has been shown that F, G, and early K dwarf hosts of Neptune-sized planets are not preferentially metal-rich. However, it is less clear whether the same holds for late K and M dwarf planet hosts. We report metallicities of Kepler targets and candidate transiting planet hosts with effective temperatures below 4500 K. We use new metallicity calibrations to determine [Fe/H] from visible and near-infrared spectra. We find that the metallicity distribution of late K and M dwarfs monitored by Kepler is consistent with that of the solar neighborhood. Further, we show that hosts of Earth- to Neptune-sized planets have metallicities consistent with those lacking detected planets and rule out a previously claimed 0.2 dex offset between the two distributions at 6σ confidence. We also demonstrate that the metallicities of late K and M dwarfs hosting multiple detected planets are consistent with those lacking detected planets. Our results indicate that multiple terrestrial and Neptune-sized planets can form around late K and M dwarfs with metallicities as low as 0.25 solar. The presence of Neptune-sized planets orbiting such low-metallicity M dwarfs suggests that accreting planets collect most or all of the solids from the disk and that the potential cores of giant planets can readily form around M dwarfs. The paucity of giant planets around M dwarfs compared to solar-type stars must be due to relatively rapid disk evaporation or a slower rate of planet accretion, rather than insufficient solids to form a core.

  9. TESTING THE METAL OF LATE-TYPE KEPLER PLANET HOSTS WITH IRON-CLAD METHODS

    Energy Technology Data Exchange (ETDEWEB)

    Mann, Andrew W.; Hilton, Eric J. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Dr, Honolulu, HI 96822 (United States); Gaidos, Eric [Department of Geology and Geophysics, University of Hawaii, 1680 East-West Road, Honolulu, HI 96822 (United States); Kraus, Adam [Harvard-Smithsonian Center for Astrophysics, 60 Garden St, Cambridge, MA 02138 (United States)

    2013-06-10

    It has been shown that F, G, and early K dwarf hosts of Neptune-sized planets are not preferentially metal-rich. However, it is less clear whether the same holds for late K and M dwarf planet hosts. We report metallicities of Kepler targets and candidate transiting planet hosts with effective temperatures below 4500 K. We use new metallicity calibrations to determine [Fe/H] from visible and near-infrared spectra. We find that the metallicity distribution of late K and M dwarfs monitored by Kepler is consistent with that of the solar neighborhood. Further, we show that hosts of Earth- to Neptune-sized planets have metallicities consistent with those lacking detected planets and rule out a previously claimed 0.2 dex offset between the two distributions at 6{sigma} confidence. We also demonstrate that the metallicities of late K and M dwarfs hosting multiple detected planets are consistent with those lacking detected planets. Our results indicate that multiple terrestrial and Neptune-sized planets can form around late K and M dwarfs with metallicities as low as 0.25 solar. The presence of Neptune-sized planets orbiting such low-metallicity M dwarfs suggests that accreting planets collect most or all of the solids from the disk and that the potential cores of giant planets can readily form around M dwarfs. The paucity of giant planets around M dwarfs compared to solar-type stars must be due to relatively rapid disk evaporation or a slower rate of planet accretion, rather than insufficient solids to form a core.

  10. Observsational Planet Formation

    Science.gov (United States)

    Dong, Ruobing; Zhu, Zhaohuan; Fung, Jeffrey

    2017-06-01

    Planets form in gaseous protoplanetary disks surrounding newborn stars. As such, the most direct way to learn how they form from observations, is to directly watch them forming in disks. In the past, this was very difficult due to a lack of observational capabilities; as such, planet formation was largely a subject of pure theoretical astrophysics. Now, thanks to a fleet of new instruments with unprecedented resolving power that have come online recently, we have just started to unveil features in resolve images of protoplanetary disks, such as gaps and spiral arms, that are most likely associated with embedded (unseen) planets. By comparing observations with theoretical models of planet-disk interactions, the masses and orbits of these still forming planets may be constrained. Such planets may help us to directly test various planet formation models. This marks the onset of a new field — observational planet formation. I will introduce the current status of this field.

  11. Exterior Companions to Hot Jupiters Orbiting Cool Stars Are Coplanar

    Science.gov (United States)

    Becker, Juliette C.; Vanderburg, Andrew; Adams, Fred C.; Khain, Tali; Bryan, Marta

    2017-12-01

    The existence of hot Jupiters has challenged theories of planetary formation since the first extrasolar planets were detected. Giant planets are generally believed to form far from their host stars, where volatile materials like water exist in their solid phase, making it easier for giant planet cores to accumulate. Several mechanisms have been proposed to explain how giant planets can migrate inward from their birth sites to short-period orbits. One such mechanism, called Kozai-Lidov migration, requires the presence of distant companions in orbits inclined by more than ˜40° with respect to the plane of the hot Jupiter’s orbit. The high occurrence rate of wide companions in hot-Jupiter systems lends support to this theory for migration. However, the exact orbital inclinations of these detected planetary and stellar companions is not known, so it is not clear whether the mutual inclination of these companions is large enough for the Kozai-Lidov process to operate. This paper shows that in systems orbiting cool stars with convective outer layers, the orbits of most wide planetary companions to hot Jupiters must be well aligned with the orbits of the hot Jupiters and the spins of the host stars. For a variety of possible distributions for the inclination of the companion, the width of the distribution must be less than ˜20° to recreate the observations with good fidelity. As a result, the companion orbits are likely well aligned with those of the hot Jupiters, and the Kozai-Lidov mechanism does not enforce migration in these systems.

  12. New Insights on Planet Formation in WASP-47 from a Simultaneous Analysis of Radial Velocities and Transit Timing Variations

    Science.gov (United States)

    Weiss, Lauren M.; Deck, Katherine M.; Sinukoff, Evan; Petigura, Erik A.; Agol, Eric; Lee, Eve J.; Becker, Juliette C.; Howard, Andrew W.; Isaacson, Howard; Crossfield, Ian J. M.; Fulton, Benjamin J.; Hirsch, Lea; Benneke, Björn

    2017-06-01

    Measuring precise planet masses, densities, and orbital dynamics in individual planetary systems is an important pathway toward understanding planet formation. The WASP-47 system has an unusual architecture that motivates a complex formation theory. The system includes a hot Jupiter (“b”) neighbored by interior (“e”) and exterior (“d”) sub-Neptunes, and a long-period eccentric giant planet (“c”). We simultaneously modeled transit times from the Kepler K2 mission and 118 radial velocities to determine the precise masses, densities, and Keplerian orbital elements of the WASP-47 planets. Combining RVs and TTVs provides a better estimate of the mass of planet d (13.6+/- 2.0 {M}\\oplus ) than that obtained with only RVs (12.75+/- 2.70 {M}\\oplus ) or TTVs (16.1+/- 3.8 {M}\\oplus ). Planets e and d have high densities for their size, consistent with a history of photoevaporation and/or formation in a volatile-poor environment. Through our RV and TTV analysis, we find that the planetary orbits have eccentricities similar to the solar system planets. The WASP-47 system has three similarities to our own solar system: (1) the planetary orbits are nearly circular and coplanar, (2) the planets are not trapped in mean motion resonances, and (3) the planets have diverse compositions. None of the current single-process exoplanet formation theories adequately reproduce these three characteristics of the WASP-47 system (or our solar system). We propose that WASP-47, like the solar system, formed in two stages: first, the giant planets formed in a gas-rich disk and migrated to their present locations, and second, the high-density sub-Neptunes formed in situ in a gas-poor environment.

  13. Planetary populations in the mass-period diagram: A statistical treatment of exoplanet formation and the role of planet traps

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Yasuhiro [Currently EACOA Fellow at Institute of Astronomy and Astrophysics, Academia Sinica (ASIAA), Taipei 10641, Taiwan. (China); Pudritz, Ralph E., E-mail: yasu@asiaa.sinica.edu.tw, E-mail: pudritz@physics.mcmaster.ca [Also at Origins Institute, McMaster University, Hamilton, ON L8S 4M1, Canada. (Canada)

    2013-11-20

    The rapid growth of observed exoplanets has revealed the existence of several distinct planetary populations in the mass-period diagram. Two of the most surprising are (1) the concentration of gas giants around 1 AU and (2) the accumulation of a large number of low-mass planets with tight orbits, also known as super-Earths and hot Neptunes. We have recently shown that protoplanetary disks have multiple planet traps that are characterized by orbital radii in the disks and halt rapid type I planetary migration. By coupling planet traps with the standard core accretion scenario, we showed that one can account for the positions of planets in the mass-period diagram. In this paper, we demonstrate quantitatively that most gas giants formed at planet traps tend to end up around 1 AU, with most of these being contributed by dead zones and ice lines. We also show that a large fraction of super-Earths and hot Neptunes are formed as 'failed' cores of gas giants—this population being constituted by comparable contributions from dead zone and heat transition traps. Our results are based on the evolution of forming planets in an ensemble of disks where we vary only the lifetimes of disks and their mass accretion rates onto the host star. We show that a statistical treatment of the evolution of a large population of planetary cores caught in planet traps accounts for the existence of three distinct exoplanetary populations—the hot Jupiters, the more massive planets around r = 1 AU, and the short-period super-Earths and hot Neptunes. There are very few populations that feed into the large orbital radii characteristic of the imaged Jovian planet, which agrees with recent surveys. Finally, we find that low-mass planets in tight orbits become the dominant planetary population for low-mass stars (M {sub *} ≤ 0.7 M {sub ☉}).

  14. Planetary populations in the mass-period diagram: A statistical treatment of exoplanet formation and the role of planet traps

    International Nuclear Information System (INIS)

    Hasegawa, Yasuhiro; Pudritz, Ralph E.

    2013-01-01

    The rapid growth of observed exoplanets has revealed the existence of several distinct planetary populations in the mass-period diagram. Two of the most surprising are (1) the concentration of gas giants around 1 AU and (2) the accumulation of a large number of low-mass planets with tight orbits, also known as super-Earths and hot Neptunes. We have recently shown that protoplanetary disks have multiple planet traps that are characterized by orbital radii in the disks and halt rapid type I planetary migration. By coupling planet traps with the standard core accretion scenario, we showed that one can account for the positions of planets in the mass-period diagram. In this paper, we demonstrate quantitatively that most gas giants formed at planet traps tend to end up around 1 AU, with most of these being contributed by dead zones and ice lines. We also show that a large fraction of super-Earths and hot Neptunes are formed as 'failed' cores of gas giants—this population being constituted by comparable contributions from dead zone and heat transition traps. Our results are based on the evolution of forming planets in an ensemble of disks where we vary only the lifetimes of disks and their mass accretion rates onto the host star. We show that a statistical treatment of the evolution of a large population of planetary cores caught in planet traps accounts for the existence of three distinct exoplanetary populations—the hot Jupiters, the more massive planets around r = 1 AU, and the short-period super-Earths and hot Neptunes. There are very few populations that feed into the large orbital radii characteristic of the imaged Jovian planet, which agrees with recent surveys. Finally, we find that low-mass planets in tight orbits become the dominant planetary population for low-mass stars (M * ≤ 0.7 M ☉ ).

  15. A FIRST COMPARISON OF KEPLER PLANET CANDIDATES IN SINGLE AND MULTIPLE SYSTEMS

    International Nuclear Information System (INIS)

    Latham, David W.; Quinn, Samuel N.; Carter, Joshua A.; Holman, Matthew J.; Rowe, Jason F.; Borucki, William J.; Bryson, Stephen T.; Howell, Steve B.; Batalha, Natalie M.; Brown, Timothy M.; Buchhave, Lars A.; Caldwell, Douglas A.; Christiansen, Jessie L.; Ciardi, David R.; Cochran, William D.; Dunham, Edward W.; Fabrycky, Daniel C.; Ford, Eric B.; Gautier, Thomas N. III; Gilliland, Ronald L.

    2011-01-01

    In this Letter, we present an overview of the rich population of systems with multiple candidate transiting planets found in the first four months of Kepler data. The census of multiples includes 115 targets that show two candidate planets, 45 with three, eight with four, and one each with five and six, for a total of 170 systems with 408 candidates. When compared to the 827 systems with only one candidate, the multiples account for 17% of the total number of systems, and one-third of all the planet candidates. We compare the characteristics of candidates found in multiples with those found in singles. False positives due to eclipsing binaries are much less common for the multiples, as expected. Singles and multiples are both dominated by planets smaller than Neptune; 69 +2 -3 % for singles and 86 +2 -5 % for multiples. This result, that systems with multiple transiting planets are less likely to include a transiting giant planet, suggests that close-in giant planets tend to disrupt the orbital inclinations of small planets in flat systems, or maybe even prevent the formation of such systems in the first place.

  16. FUNDAMENTAL PROPERTIES OF KEPLER PLANET-CANDIDATE HOST STARS USING ASTEROSEISMOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Huber, Daniel; Lissauer, Jack J.; Rowe, Jason F. [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Chaplin, William J. [School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT (United Kingdom); Christensen-Dalsgaard, Jorgen; Kjeldsen, Hans; Handberg, Rasmus; Karoff, Christoffer; Lund, Mikkel N.; Lundkvist, Mia [Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Gilliland, Ronald L. [Center for Exoplanets and Habitable Worlds, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 (United States); Buchhave, Lars A. [Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen (Denmark); Fischer, Debra A.; Basu, Sarbani [Department of Astronomy, Yale University, New Haven, CT 06511 (United States); Sanchis-Ojeda, Roberto [Department of Physics, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139 (United States); Hekker, Saskia [Astronomical Institute ' ' Anton Pannekoek' ' , University of Amsterdam, Science Park 904, 1098 XH Amsterdam (Netherlands); Howard, Andrew W. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Isaacson, Howard; Marcy, Geoffrey W. [Department of Astronomy, University of California, Berkeley, CA 94720 (United States); Latham, David W., E-mail: daniel.huber@nasa.gov [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); and others

    2013-04-20

    We have used asteroseismology to determine fundamental properties for 66 Kepler planet-candidate host stars, with typical uncertainties of 3% and 7% in radius and mass, respectively. The results include new asteroseismic solutions for four host stars with confirmed planets (Kepler-4, Kepler-14, Kepler-23 and Kepler-25) and increase the total number of Kepler host stars with asteroseismic solutions to 77. A comparison with stellar properties in the planet-candidate catalog by Batalha et al. shows that radii for subgiants and giants obtained from spectroscopic follow-up are systematically too low by up to a factor of 1.5, while the properties for unevolved stars are in good agreement. We furthermore apply asteroseismology to confirm that a large majority of cool main-sequence hosts are indeed dwarfs and not misclassified giants. Using the revised stellar properties, we recalculate the radii for 107 planet candidates in our sample, and comment on candidates for which the radii change from a previously giant-planet/brown-dwarf/stellar regime to a sub-Jupiter size or vice versa. A comparison of stellar densities from asteroseismology with densities derived from transit models in Batalha et al. assuming circular orbits shows significant disagreement for more than half of the sample due to systematics in the modeled impact parameters or due to planet candidates that may be in eccentric orbits. Finally, we investigate tentative correlations between host-star masses and planet-candidate radii, orbital periods, and multiplicity, but caution that these results may be influenced by the small sample size and detection biases.

  17. Accretion of Planetesimals and the Formation of Rocky Planets

    Science.gov (United States)

    Chambers, John E.; O'Brien, David P.; Davis, Andrew M.

    2010-02-01

    Here we describe the formation of rocky planets and asteroids in the context of the planetesimal hypothesis. Small dust grains in protoplanetary disks readily stick together forming mm-to-cm-sized aggregates, many of which experience brief heating episodes causing melting. Growth to km-sized planetesimals might proceed via continued pairwise sticking, turbulent concentration, or gravitational instability of a thin particle layer. Gravitational interactions between planetesimals lead to rapid runaway and oligarchic growth forming lunar-to-Mars-sized protoplanets in 10^5 to 10^6 years. Giant impacts between protoplanets form Earth-mass planets in 10^7 to 10^8 years, and occasionally lead to the formation of large satellites. Protoplanets may migrate far from their formation locations due to tidal interactions with the surrounding disk. Radioactive decay and impact heating cause melting and differentiation of planetesimals and protoplanets, forming iron-rich cores and silicate mantles, and leading to some loss of volatiles. Dynamical perturbations from giant planets eject most planetesimals and protoplanets from regions near orbital resonances, leading to asteroid-belt formation. Some of this scattered material will collide with growing terrestrial planets, altering their composition as a result. Numerical simulations and radioisotope dating indicate that the terrestrial planets of the Solar System were essentially fully formed in 100-200 million years.

  18. THERMAL TIDES IN FLUID EXTRASOLAR PLANETS

    International Nuclear Information System (INIS)

    Arras, Phil; Socrates, Aristotle

    2010-01-01

    Asynchronous rotation and orbital eccentricity lead to time-dependent irradiation of the close-in gas giant exoplanets-the hot Jupiters. This time-dependent surface heating gives rise to fluid motions which propagate throughout the planet. We investigate the ability of this 'thermal tide' to produce a quadrupole moment which can couple to the stellar gravitational tidal force. While previous investigations discussed planets with solid surfaces, here we focus on entirely fluid planets in order to understand gas giants with small cores. The Coriolis force, thermal diffusion, and self-gravity of the perturbations are ignored for simplicity. First, we examine the response to thermal forcing through analytic solutions of the fluid equations which treat the forcing frequency as a small parameter. In the 'equilibrium tide' limit of zero frequency, fluid motion is present but does not induce a quadrupole moment. In the next approximation, finite frequency corrections to the equilibrium tide do lead to a nonzero quadrupole moment, the sign of which torques the planet away from synchronous spin. We then numerically solve the boundary value problem for the thermally forced, linear response of a planet with neutrally stratified interior and a stably stratified envelope. The numerical results find quadrupole moments in agreement with the analytic non-resonant result at a sufficiently long forcing period. Surprisingly, in the range of forcing periods of 1-30 days, the induced quadrupole moments can be far larger than the analytic result due to response of internal gravity waves which propagate in the radiative envelope. We discuss the relevance of our results for the spin, eccentricity, and thermal evolution of hot Jupiters.

  19. The TROY project: Searching for co-orbital bodies to known planets. I. Project goals and first results from archival radial velocity

    Science.gov (United States)

    Lillo-Box, J.; Barrado, D.; Figueira, P.; Leleu, A.; Santos, N. C.; Correia, A. C. M.; Robutel, P.; Faria, J. P.

    2018-01-01

    Context. The detection of Earth-like planets, exocomets or Kuiper belts show that the different components found in the solar system should also be present in other planetary systems. Trojans are one of these components and can be considered fossils of the first stages in the life of planetary systems. Their detection in extrasolar systems would open a new scientific window to investigate formation and migration processes. Aims: In this context, the main goal of the TROY project is to detect exotrojans for the first time and to measure their occurrence rate (η-Trojan). In this first paper, we describe the goals and methodology of the project. Additionally, we used archival radial velocity data of 46 planetary systems to place upper limits on the mass of possible trojans and investigate the presence of co-orbital planets down to several tens of Earth masses. Methods: We used archival radial velocity data of 46 close-in (P 1σ evidence for a mass imbalance between L4 and L5. Two of these systems provide >2σ detection, but no significant detection is found among our sample. We also report upper limits to the masses at L4/L5 in all studied systems and discuss the results in the context of previous findings. Radial velocity data are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/609/A96

  20. SPITZER OBSERVATIONS OF GJ 3470 b: A VERY LOW-DENSITY NEPTUNE-SIZE PLANET ORBITING A METAL-RICH M DWARF

    Energy Technology Data Exchange (ETDEWEB)

    Demory, Brice-Olivier; Seager, Sara [Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139 (United States); Torres, Guillermo [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Neves, Vasco; Santos, Nuno [Centro de Astrofisica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Rogers, Leslie [Department of Astrophysics, California Institute of Technology, MC 249-17, Pasadena, CA 91125 (United States); Gillon, Michaeel [Institut d' Astrophysique et de Geophysique, Universite de Liege, Allee du 6 Aout, 17, Bat. B5C, Liege 1 (Belgium); Horch, Elliott [Department of Physics, 501 Crescent Street, Southern Connecticut State University, New Haven, CT 06515 (United States); Sullivan, Peter [Department of Physics and Kavli Institute for Astrophysics and Space Research, MIT, 77 Massachusetts Avenue, Cambridge, MA 02138 (United States); Bonfils, Xavier; Delfosse, Xavier; Forveille, Thierry [UJF-Grenoble 1/CNRS-INSU, Institut de Planetologie et d' Astrophysique de Grenoble (IPAG) UMR 5274, Grenoble, F-38041 (France); Lovis, Christophe; Mayor, Michel; Udry, Stephane [Observatoire de Geneve, Universite de Geneve, 51 ch. des Maillettes, CH-1290 Versoix (Switzerland); Smalley, Barry, E-mail: demory@mit.edu [Astrophysics Group, Keele University, Staffordshire, ST55BG (United Kingdom)

    2013-05-10

    We present Spitzer/IRAC 4.5 {mu}m transit photometry of GJ 3470 b, a Neptune-size planet orbiting an M1.5 dwarf star with a 3.3 day period recently discovered in the course of the HARPS M-dwarf survey. We refine the stellar parameters by employing purely empirical mass-luminosity and surface brightness relations constrained by our updated value for the mean stellar density, and additional information from new near-infrared spectroscopic observations. We derive a stellar mass of M{sub *}= 0.539{sup +0.047}{sub -0.043} M{sub sun} and a radius of R{sub *}= 0.568{sup +0.037}{sub -0.031} R{sub sun}. We determine the host star of GJ 3470 b to be metal-rich, with a metallicity of [Fe/H] = +0.20 {+-} 0.10 and an effective temperature of T{sub eff} = 3600 {+-} 100 K. The revised stellar parameters yield a planetary radius R{sub p}= 4.83{sub -0.21}{sup +0.22} R{sub Circled-Plus} that is 13% larger than the value previously reported in the literature. We find a planetary mass M{sub p}= 13.9{sup +1.5}{sub -1.4} M{sub Circled-Plus} that translates to a very low planetary density, {rho}{sub p}= 0.72{sup +0.13}{sub -0.12} g cm{sup -3}, which is 33% smaller than the original value. With a mean density half of that of GJ 436 b, GJ 3470 b is an example of a very low-density low-mass planet, similar to Kepler-11 d, Kepler-11 e, and Kepler-18 c, but orbiting a much brighter nearby star that is more conducive to follow-up studies.

  1. SPITZER OBSERVATIONS OF GJ 3470 b: A VERY LOW-DENSITY NEPTUNE-SIZE PLANET ORBITING A METAL-RICH M DWARF

    International Nuclear Information System (INIS)

    Demory, Brice-Olivier; Seager, Sara; Torres, Guillermo; Neves, Vasco; Santos, Nuno; Rogers, Leslie; Gillon, Michaël; Horch, Elliott; Sullivan, Peter; Bonfils, Xavier; Delfosse, Xavier; Forveille, Thierry; Lovis, Christophe; Mayor, Michel; Udry, Stephane; Smalley, Barry

    2013-01-01

    We present Spitzer/IRAC 4.5 μm transit photometry of GJ 3470 b, a Neptune-size planet orbiting an M1.5 dwarf star with a 3.3 day period recently discovered in the course of the HARPS M-dwarf survey. We refine the stellar parameters by employing purely empirical mass-luminosity and surface brightness relations constrained by our updated value for the mean stellar density, and additional information from new near-infrared spectroscopic observations. We derive a stellar mass of M * = 0.539 +0.047 -0.043 M sun and a radius of R * = 0.568 +0.037 -0.031 R sun . We determine the host star of GJ 3470 b to be metal-rich, with a metallicity of [Fe/H] = +0.20 ± 0.10 and an effective temperature of T eff = 3600 ± 100 K. The revised stellar parameters yield a planetary radius R p = 4.83 -0.21 +0.22 R ⊕ that is 13% larger than the value previously reported in the literature. We find a planetary mass M p = 13.9 +1.5 -1.4 M ⊕ that translates to a very low planetary density, ρ p = 0.72 +0.13 -0.12 g cm –3 , which is 33% smaller than the original value. With a mean density half of that of GJ 436 b, GJ 3470 b is an example of a very low-density low-mass planet, similar to Kepler-11 d, Kepler-11 e, and Kepler-18 c, but orbiting a much brighter nearby star that is more conducive to follow-up studies.

  2. A Population of Very-Hot Super-Earths in Multiple-Planet Systems Should be Uncovered by Kepler

    OpenAIRE

    Schlaufman, Kevin C.; Lin, D. N. C.; Ida, S.

    2010-01-01

    We simulate a Kepler-like observation of a theoretical exoplanet population and we show that the observed orbital period distribution of the Kepler giant planet candidates is best matched by an average stellar specific dissipation function Q_* in the interval 10^6 ~< Q_* ~< 10^7. In that situation, the few super-Earths that are driven to orbital periods P < 1 day by dynamical interactions in multiple-planet systems will survive tidal disruption for a significant fraction of the main-sequence ...

  3. Radio images of the planets

    International Nuclear Information System (INIS)

    De Pater, I.

    1990-01-01

    Observations at radio wavelengths make possible detailed studies of planetary atmospheres, magnetospheres, and surface layers. The paper addresses the question of what can be learned from interferometric radio images of planets. Results from single-element radio observations are also discussed. Observations of both the terrestrial and the giant planets are considered. 106 refs

  4. Water Delivery and Giant Impacts in the 'Grand Tack' Scenario

    Science.gov (United States)

    O'Brien, David P.; Walsh, Kevin J.; Morbidelli, Alessandro; Raymond, Sean N.; Mandell, Avi M.

    2014-01-01

    A new model for terrestrial planet formation has explored accretion in a truncated protoplanetary disk, and found that such a configuration is able to reproduce the distribution of mass among the planets in the Solar System, especially the Earth/Mars mass ratio, which earlier simulations have generally not been able to match. Walsh et al. tested a possible mechanism to truncate the disk-a two-stage, inward-then-outward migration of Jupiter and Saturn, as found in numerous hydrodynamical simulations of giant planet formation. In addition to truncating the disk and producing a more realistic Earth/Mars mass ratio, the migration of the giant planets also populates the asteroid belt with two distinct populations of bodies-the inner belt is filled by bodies originating inside of 3 AU, and the outer belt is filled with bodies originating from between and beyond the giant planets (which are hereafter referred to as 'primitive' bodies). One implication of the truncation mechanism proposed in Walsh et al. is the scattering of primitive planetesimals onto planet-crossing orbits during the formation of the planets. We find here that the planets will accrete on order 1-2% of their total mass from these bodies. For an assumed value of 10% for the water mass fraction of the primitive planetesimals, this model delivers a total amount of water comparable to that estimated to be on the Earth today. The radial distribution of the planetary masses and the dynamical excitation of their orbits are a good match to the observed system. However, we find that a truncated disk leads to formation timescales more rapid than suggested by radiometric chronometers. In particular, the last giant impact is typically earlier than 20 Myr, and a substantial amount of mass is accreted after that event. This is at odds with the dating of the Moon-forming impact and the estimated amount of mass accreted by Earth following that event. However, 5 of the 27 planets larger than half an Earth mass formed in

  5. The planet Mercury (1971)

    Science.gov (United States)

    1972-01-01

    The physical properties of the planet Mercury, its surface, and atmosphere are presented for space vehicle design criteria. The mass, dimensions, mean density, and orbital and rotational motions are described. The gravity field, magnetic field, electromagnetic radiation, and charged particles in the planet's orbit are discussed. Atmospheric pressure, temperature, and composition data are given along with the surface composition, soil mechanical properties, and topography, and the surface electromagnetic and temperature properties.

  6. Kepler Mission: a Discovery-Class Mission Designed to Determine the Frequency of Earth-Size and Larger Planets Around Solar-Like Stars

    Science.gov (United States)

    Borucki, William; Koch, David; Lissauer, Jack; Basri, Gibor; Caldwell, John; Cochran, William; Dunham, Edward W.; Gilliland, Ronald; Caldwell, Douglas; Kondo, Yoji; hide

    2002-01-01

    The first step in discovering the extent of life in our galaxy is to determine the number of terrestrial planets in the habitable zone (HZ). The Kepler Mission is designed around a 0.95 in aperture Schmidt-type telescope with an array of 42 CCDs designed to continuously monitor the brightness of 100,000 solar-like stars to detect the transits of Earth-size and larger planets. The photometer is scheduled to be launched into heliocentric orbit in 2007. Measurements of the depth and repetition time of transits provide the size of the planet relative to the star and its orbital period. When combined with ground-based spectroscopy of these stars to fix the stellar parameters, the true planet radius and orbit scale, hence the position relative to the HZ are determined. These spectra are also used to discover the relationships between the characteristics of planets and the stars they orbit. In particular, the association of planet size and occurrence frequency with stellar mass and metallicity will be investigated. At the end of the four year mission, hundreds of terrestrial planets should be discovered in and near the HZ of their stars if such planets are common. Extending the mission to six years doubles the expected number of Earth-size planets in the HZ. A null result would imply that terrestrial planets in the HZ occur in less than 1% of the stars and that life might be quite rare. Based on the results of the current Doppler-velocity discoveries, detection of a thousand giant planets is expected. Information on their albedos and densities of those giants showing transits will be obtained.

  7. The Gemini Planet Imager Exoplanet Survey

    Science.gov (United States)

    Macintosh, Bruce

    accurate and calibrated recovery of exoplanet spectra. We will produce a complete archive of all reduced GPI data products (supplementing the existing Gemini archive of raw data) for use by our collaboration, and release that archive to the public on an 18-month cycle. Most importantly, we will execute the GPI observations, initially through classical telescope visits, transitioning to remote and queue modes as our techniques are refined. As the first direct-imaging planet search with statistical depth comparable to Doppler planet detection and the first to probe into the snow line, the GPI Exoplanet Survey will provide strong constraints on paradigms for planet formation, completing the picture of the giant planet distribution throughout other solar systems, and also illuminating its evolution with stellar age and mass. We will deliver a catalog of detected exoplanets— the principal legacy of this campaign—released for follow-up by the astronomical community within 18 months of observation, as well as searchable archive of fully reduced images and detection limits for all stars surveyed. For each detected planet, we will produce estimated effective temperatures, luminosities, and semi-major axes: for a subset, high-SNR fiducial spectra, orbital eccentricities, and dynamical characterization through polarimetric imaging of attendant debris disks. GPI will complete final acceptance testing this month (May 2013) and is now ready to ship to Chile for first light in September 2013. The GPI survey will provide the best-yet view of the nature of wide-orbit planetary companions, informing our knowledge of solar system formation to guide future NASA planet hunting missions, while simultaneously offering a real- world program using the techniques - from integral field spectroscopy to advanced coronagraphy - that will someday be used to directly image Earthlike planets from space.

  8. Planet Formation

    Science.gov (United States)

    Podolak, Morris

    2018-04-01

    the planetary embryo can attract gas from the surrounding disk and grow to be a gas giant. If the disk dissipates before the process is complete, the result will be an object like Uranus or Neptune, which has a small, but significant, complement of hydrogen and helium. The main question is whether the protoplanetary core can grow large enough before the disk dissipates. A second scenario is the disk instability (DI) scenario. This scenario posits that the disk itself is unstable and tends to develop regions of higher than normal density. Such regions collapse under their own gravity to form Jupiter-mass protoplanets. In the DI scenario a Jupiter-mass clump of gas can form—in several hundred years which will eventually contract into a gas giant planet. The difficulty here is to bring the disk to a condition where such instabilities will form. Now that we have discovered nearly 3000 planetary systems, there will be numerous examples against which to test these scenarios.

  9. ALMOST ALL OF KEPLER'S MULTIPLE-PLANET CANDIDATES ARE PLANETS

    International Nuclear Information System (INIS)

    Lissauer, Jack J.; Rowe, Jason F.; Bryson, Stephen T.; Howell, Steve B.; Jenkins, Jon M.; Kinemuchi, Karen; Koch, David G.; Marcy, Geoffrey W.; Adams, Elisabeth; Fressin, Francois; Geary, John; Holman, Matthew J.; Ragozzine, Darin; Buchhave, Lars A.; Ciardi, David R.; Cochran, William D.; Fabrycky, Daniel C.; Ford, Eric B.; Morehead, Robert C.; Gilliland, Ronald L.

    2012-01-01

    We present a statistical analysis that demonstrates that the overwhelming majority of Kepler candidate multiple transiting systems (multis) indeed represent true, physically associated transiting planets. Binary stars provide the primary source of false positives among Kepler planet candidates, implying that false positives should be nearly randomly distributed among Kepler targets. In contrast, true transiting planets would appear clustered around a smaller number of Kepler targets if detectable planets tend to come in systems and/or if the orbital planes of planets encircling the same star are correlated. There are more than one hundred times as many Kepler planet candidates in multi-candidate systems as would be predicted from a random distribution of candidates, implying that the vast majority are true planets. Most of these multis are multiple-planet systems orbiting the Kepler target star, but there are likely cases where (1) the planetary system orbits a fainter star, and the planets are thus significantly larger than has been estimated, or (2) the planets orbit different stars within a binary/multiple star system. We use the low overall false-positive rate among Kepler multis, together with analysis of Kepler spacecraft and ground-based data, to validate the closely packed Kepler-33 planetary system, which orbits a star that has evolved somewhat off of the main sequence. Kepler-33 hosts five transiting planets, with periods ranging from 5.67 to 41 days.

  10. SUBSTELLAR-MASS COMPANIONS TO THE K-GIANTS HD 240237, BD +48 738, AND HD 96127

    International Nuclear Information System (INIS)

    Gettel, S.; Wolszczan, A.; Niedzielski, A.; Nowak, G.; Adamów, M.; Zieliński, P.; Maciejewski, G.

    2012-01-01

    We present the discovery of substellar-mass companions to three giant stars by the ongoing Penn State-Toruń Planet Search conducted with the 9.2 m Hobby-Eberly Telescope. The most massive of the three stars, K2-giant HD 240237, has a 5.3 M J minimum mass companion orbiting the star at a 746 day period. The K0-giant BD +48 738 is orbited by a ≥0.91 M J planet which has a period of 393 days and shows a nonlinear, long-term radial velocity (RV) trend that indicates a presence of another, more distant companion, which may have a substellar mass or be a low-mass star. The K2-giant HD 96127 has a ≥4.0 M J mass companion in a 647 day orbit around the star. The two K2-giants exhibit a significant RV noise that complicates the detection of low-amplitude, periodic variations in the data. If the noise component of the observed RV variations is due to solar-type oscillations, we show, using all the published data for the substellar companions to giants, that its amplitude is anti-correlated with stellar metallicity.

  11. The Gemini Planet Imager Exoplanet Survey

    Science.gov (United States)

    Nielsen, Eric L.; Macintosh, Bruce; Graham, James R.; Barman, Travis S.; Doyon, Rene; Fabrycky, Daniel; Fitzgerald, Michael P.; Kalas, Paul; Konopacky, Quinn M.; Marchis, Franck; Marley, Mark S.; Marois, Christian; Patience, Jenny; Perrin, Marshall D.; Oppenheimer, Rebecca; Song, Inseok; GPIES Team

    2017-01-01

    The Gemini Planet Imager Exoplanet Survey (GPIES) is one of the largest most sensitive direct imaging searches for exoplanets conducted to date, and having observed more than 300 stars the survey is halfway complete. We present highlights from the first half of the survey, including the discovery and characterization of the young exoplanet 51 Eri b and the brown dwarf HR 2562 B, new imaging of multiple disks, and resolving the young stellar binary V343 Nor for the first time. GPI has also provided new spectra and orbits of previous known planets and brown dwarfs and polarization measurements of a wide range of disks. Finally, we discuss the constraints placed by the first half of the GPIES campaign on the population of giant planets at orbital separations beyond that of Jupiter. Supported by NSF grants AST-0909188 and AST-1313718, AST-1411868, AST 141378, NNX11AF74G, and DGE-1232825, and by NASA grants NNX15AD95G/NEXSS and NNX11AD21G.

  12. From Extrasolar Planets to Exo-Earths

    Science.gov (United States)

    Fischer, Debra

    2018-06-01

    The ancient Greeks debated whether the Earth was unique, or innumerable worlds existed around other Suns. Twenty five years ago, technology and human ingenuity enabled the discovery of the first extrasolar planet candidates. The architectures of these first systems, with gas giant planets in star-skirting orbits, were unexpected and again raised an echo of that ancient question: is the Earth typical or unique? We are interested in this seemingly anthropocentric question because with all of our searching and discoveries, Earth is the only place where life has been found. It is the question of whether life exists elsewhere that energizes the search for exoplanets. The trajectory of this field has been stunning. After a steady stream of detections with the radial velocity method, a burst of discovery was made possible with the NASA Kepler mission. While thousands of smaller planets have now been found, true Earth analogs have eluded robust detection. However, we are sharpening the knives of our technology and without a doubt we now stand at the threshold of detecting hundreds of Earth analogs. Using Gaia, TESS, WFIRST, JWST and new ground-based spectrographs, we will learn the names and addresses of the worlds that orbit nearby stars and we will be ready to probe their atmospheres. We will finally resolve the ancient question of whether life is unique or common.

  13. The Kepler Mission: A Search for Terrestrial Planets - Development Status

    Science.gov (United States)

    Koch, David; Borucki, W.; Mayer, D.; Caldwell, D.; Jenkens, J.; Dunham, E.; Geary, J.; Bachtell, E.; Deininger, W.; Philbrick, R.

    2003-01-01

    We have embarked on a mission to detect terrestrial planets. The space mission has been optimized to search for earth-size planets (0.5 to 10 earth masses) in the habitable zone (HZ) of solar-like stars. Given this design, the mission will necessarily be capable of not only detecting Earth analogs, but a wide range of planetary types and characteristics ranging from Mercury-size objects with orbital periods of days to gas-giants in decade long orbits that have undeniable signatures even with only one transit detected. The mission is designed to survey the full range of spectral-type dwarf stars. The approach is to detect the periodic signal of transiting planets. Three or more transits of a star exceeding a combined threshold of eight sigma with a statistically consistent period, brightness change and duration provide a rigorous method of detection. From the relative brightness change the planet size can be calculated. From the period the orbital size can be calculated and its location relative to the HZ determined. Presented here are: the mission goals, the top level system design requirements derived from these goals that drive the flight system design, a number of the trades that have lead to the mission concept, expected photometric performance dependence on stellar brightness and spectral type based on the system 'noise tree' analysis. Updated estimates are presented of the numbers of detectable planets versus size, orbit, stellar spectral type and distances based on a planet frequency hypothesis. The current project schedule and organization are given.

  14. Origin of the Earth and planets

    International Nuclear Information System (INIS)

    Safronov, V.S.; Ruskol, E.L.

    1982-01-01

    The present state of the Schmidt hypothesis on planets formation by combining cold solid particles and bodies in the protoplanet dust cloud is briefly outlined in a popular form. The most debatable problems of the planet cosmogony: formation of and processes in a protoplanet cloud, results of analytical evaluations and numerical simulation of origin of the Earth and planets-giants are discussed [ru

  15. Giant Negative Magnetoresistance Driven by Spin-Orbit Coupling at the LaAlO3/SrTiO3 Interface.

    Science.gov (United States)

    Diez, M; Monteiro, A M R V L; Mattoni, G; Cobanera, E; Hyart, T; Mulazimoglu, E; Bovenzi, N; Beenakker, C W J; Caviglia, A D

    2015-07-03

    The LaAlO3/SrTiO3 interface hosts a two-dimensional electron system that is unusually sensitive to the application of an in-plane magnetic field. Low-temperature experiments have revealed a giant negative magnetoresistance (dropping by 70%), attributed to a magnetic-field induced transition between interacting phases of conduction electrons with Kondo-screened magnetic impurities. Here we report on experiments over a broad temperature range, showing the persistence of the magnetoresistance up to the 20 K range--indicative of a single-particle mechanism. Motivated by a striking correspondence between the temperature and carrier density dependence of our magnetoresistance measurements we propose an alternative explanation. Working in the framework of semiclassical Boltzmann transport theory we demonstrate that the combination of spin-orbit coupling and scattering from finite-range impurities can explain the observed magnitude of the negative magnetoresistance, as well as the temperature and electron density dependence.

  16. The first planet detected in the WTS: an inflated hot Jupiter in a 3.35 d orbit around a late F star

    Science.gov (United States)

    Cappetta, M.; Saglia, R. P.; Birkby, J. L.; Koppenhoefer, J.; Pinfield, D. J.; Hodgkin, S. T.; Cruz, P.; Kovács, G.; Sipőcz, B.; Barrado, D.; Nefs, B.; Pavlenko, Y. V.; Fossati, L.; del Burgo, C.; Martín, E. L.; Snellen, I.; Barnes, J.; Bayo, A.; Campbell, D. A.; Catalan, S.; Gálvez-Ortiz, M. C.; Goulding, N.; Haswell, C.; Ivanyuk, O.; Jones, H. R.; Kuznetsov, M.; Lodieu, N.; Marocco, F.; Mislis, D.; Murgas, F.; Napiwotzki, R.; Palle, E.; Pollacco, D.; Sarro Baro, L.; Solano, E.; Steele, P.; Stoev, H.; Tata, R.; Zendejas, J.

    2012-12-01

    We report the discovery of WTS-1b, the first extrasolar planet found by the WFCAM Transit Survey, which began observations at the 3.8-m United Kingdom Infrared Telescope (UKIRT) in 2007 August. Light curves comprising almost 1200 epochs with a photometric precision of better than 1 per cent to J ˜ 16 were constructed for ˜60 000 stars and searched for periodic transit signals. For one of the most promising transiting candidates, high-resolution spectra taken at the Hobby-Eberly Telescope (HET) allowed us to estimate the spectroscopic parameters of the host star, a late-F main-sequence dwarf (V = 16.13) with possibly slightly subsolar metallicity, and to measure its radial velocity variations. The combined analysis of the light curves and spectroscopic data resulted in an orbital period of the substellar companion of 3.35 d, a planetary mass of 4.01 ± 0.35 MJ and a planetary radius of 1.49-0.18+0.16 RJ. WTS-1b has one of the largest radius anomalies among the known hot Jupiters in the mass range 3-5 MJ. The high irradiation from the host star ranks the planet in the pM class. Based on observations collected at the 3.8-m United Kingdom Infrared Telescope (Hawaii, USA), the Hobby-Eberly Telescope (Texas, USA), the 2.5-m Isaac Newton Telescope (La Palma, Spain), the William Herschel Telescope (La Palma, Spain), the German-Spanish Astronomical Centre (Calar Alto, Spain), the Kitt Peak National Observatory (Arizona, USA) and the Hertfordshire's Bayfordbury Observatory.

  17. Kepler Mission: A Wide-FOV Photometer Designed to Determine the Frequency of Earth-Size and Larger Planets Around Solar-like stars

    Science.gov (United States)

    Borucki, William; Koch, David; Lissauer, Jack; Basri, Gibor; Caldwell, John; Cochran, William; Dunham, Edward W.; Gilliland, Ronald; Jenkins, Jon M.; Caldwell, Douglas; hide

    2002-01-01

    The first step in discovering the extent of life in our galaxy is to determine the number of terrestrial planets in the habitable zone (HZ). The Kepler Mission is designed around a 0.95 m aperture Schmidt-type telescope with an array of 42 CCDs designed to continuously monitor the brightness of 100,000 solar-like stars to detect the transits of Earth-size and larger planets. The photometer is scheduled to be launched into heliocentric orbit in 2007. Measurements of the depth and repetition time of transits provide the size of the planet relative to the star and its orbital period. When combined with ground-based spectroscopy of these stars to fix the stellar parameters, the true planet radius and orbit scale, hence the position relative to the HZ are determined. These spectra are also used to discover the relationships between the characteristics of planets and the stars they orbit. In particular, the association of planet size and occurrence frequency with stellar mass and metallicity will be investigated. At the end of the four year mission, hundreds of terrestrial planets should be discovered in and near the HZ of their stars if such planets are common. A null result would imply that terrestrial planets in the HZ occur in less than 1% of the stars and that life might be quite rare. Based on the results of the current doppler-velocity discoveries, detection of a thousand giant planets is expected. Information on their albedos and densities of those giants showing transits will be obtained.

  18. Properties of an Earth-like planet orbiting a Sun-like star: Earth observed by the EPOXI mission.

    Science.gov (United States)

    Livengood, Timothy A; Deming, L Drake; A'hearn, Michael F; Charbonneau, David; Hewagama, Tilak; Lisse, Carey M; McFadden, Lucy A; Meadows, Victoria S; Robinson, Tyler D; Seager, Sara; Wellnitz, Dennis D

    2011-11-01

    NASA's EPOXI mission observed the disc-integrated Earth and Moon to test techniques for reconnoitering extrasolar terrestrial planets, using the Deep Impact flyby spacecraft to observe Earth at the beginning and end of Northern Hemisphere spring, 2008, from a range of ∼1/6 to 1/3 AU. These observations furnish high-precision and high-cadence empirical photometry and spectroscopy of Earth, suitable as "ground truth" for numerically simulating realistic observational scenarios for an Earth-like exoplanet with finite signal-to-noise ratio. Earth was observed at near-equatorial sub-spacecraft latitude on 18-19 March, 28-29 May, and 4-5 June (UT), in the range of 372-4540 nm wavelength with low visible resolving power (λ/Δλ=5-13) and moderate IR resolving power (λ/Δλ=215-730). Spectrophotometry in seven filters yields light curves at ∼372-948 nm filter-averaged wavelength, modulated by Earth's rotation with peak-to-peak amplitude of ≤20%. The spatially resolved Sun glint is a minor contributor to disc-integrated reflectance. Spectroscopy at 1100-4540 nm reveals gaseous water and carbon dioxide, with minor features of molecular oxygen, methane, and nitrous oxide. One-day changes in global cloud cover resulted in differences between the light curve beginning and end of ≤5%. The light curve of a lunar transit of Earth on 29 May is color-dependent due to the Moon's red spectrum partially occulting Earth's relatively blue spectrum. The "vegetation red edge" spectral contrast observed between two long-wavelength visible/near-IR bands is ambiguous, not clearly distinguishing between the verdant Earth diluted by cloud cover versus the desolate mineral regolith of the Moon. Spectrophotometry in at least one other comparison band at short wavelength is required to distinguish between Earth-like and Moon-like surfaces in reconnaissance observations. However, measurements at 850 nm alone, the high-reflectance side of the red edge, could be sufficient to

  19. The hunt for Planet X

    International Nuclear Information System (INIS)

    Croswell, Ken.

    1990-01-01

    This article examines the hypothesis that an, as yet unobserved, planet, beyond the orbit of Pluto is responsible for peculiarities in the orbits of Uranus and Neptune. A brief overview of the discovery and observation of the outer planets is offered. The evidence for and against the proposition is noted, and the work of two present day scientists, is mentioned both of whom agree with the idea, and are searching for optical proof of the planet's existence. U.K

  20. A planet orbiting an sdB star and an M dwarf in 2M 1938+4603

    Directory of Open Access Journals (Sweden)

    Blokesz Adam

    2015-01-01

    Full Text Available We present a preliminary analysis of the 2M 1938+4603 star. It is an eclipsing binary system consisting of a primary sdB component and a secondary M dwarf. The photometric data are dominated by mutual eclipses and a very strong reflection effect. The primary has a fairly rich pulsation spectrum which can be used to study its interior. On the other hand, the pulsations affect the binary trend and vice versa what makes the analysis very difficult. Therefore, we attempted at proper modeling of the light variation due to eclipses and reflection and their removal from the data so it does not affect the Fourier analysis of stellar pulsations. We focus on mid-times of over 16 000 primary and secondary minima, which were used to verify stability of the orbital period. The O-C diagram indicates possible parabolic and sinusoidal variations, commonly explained by period changes caused by evolution and a presence of a third body, respectively.

  1. Gap opening by gas accretion and influence on planet populations

    Science.gov (United States)

    Crida, A.; Bitsch, B.; Ndugu, N.; Morbidelli, A.

    2017-09-01

    Giant planets grow and migrate in protoplanetary disks. Because they accrete gas from their horseshoe region until the latter is depleted, we find that giant planets can open a gap before being lost into their central star by type I migration. A reduced type II migration is then enough and necessary to limit the total amount of migration that a giant planet suffers during its formation.

  2. TRANSIT MODEL OF PLANETS WITH MOON AND RING SYSTEMS

    International Nuclear Information System (INIS)

    Tusnski, Luis Ricardo M.; Valio, Adriana

    2011-01-01

    Since the discovery of the first exoplanets, those most adequate for life to begin and evolve have been sought. Due to observational bias, however, most of the discovered planets so far are gas giants, precluding their habitability. However, if these hot Jupiters are located in the habitable zones of their host stars, and if rocky moons orbit them, then these moons may be habitable. In this work, we present a model for planetary transit simulation considering the presence of moons and planetary rings around a planet. The moon's orbit is considered to be circular and coplanar with the planetary orbit. The other physical and orbital parameters of the star, planet, moon, and rings can be adjusted in each simulation. It is possible to simulate as many successive transits as desired. Since the presence of spots on the surface of the star may produce a signal similar to that of the presence of a moon, our model also allows for the inclusion of starspots. The result of the simulation is a light curve with a planetary transit. White noise may also be added to the light curves to produce curves similar to those obtained by the CoRoT and Kepler space telescopes. The goal is to determine the criteria for detectability of moons and/or ring systems using photometry. The results show that it is possible to detect moons with radii as little as 1.3 R ⊕ with CoRoT and 0.3 R ⊕ with Kepler.

  3. Chemical fingerprints of hot Jupiter planet formation

    Science.gov (United States)

    Maldonado, J.; Villaver, E.; Eiroa, C.

    2018-05-01

    Context. The current paradigm to explain the presence of Jupiter-like planets with small orbital periods (P involves their formation beyond the snow line following inward migration, has been challenged by recent works that explore the possibility of in situ formation. Aims: We aim to test whether stars harbouring hot Jupiters and stars with more distant gas-giant planets show any chemical peculiarity that could be related to different formation processes. Methods: Our methodology is based on the analysis of high-resolution échelle spectra. Stellar parameters and abundances of C, O, Na, Mg, Al, Si, S, Ca, Sc, Ti, V, Cr, Mn, Co, Ni, Cu, and Zn for a sample of 88 planet hosts are derived. The sample is divided into stars hosting hot (a 0.1 au) Jupiter-like planets. The metallicity and abundance trends of the two sub-samples are compared and set in the context of current models of planet formation and migration. Results: Our results show that stars with hot Jupiters have higher metallicities than stars with cool distant gas-giant planets in the metallicity range +0.00/+0.20 dex. The data also shows a tendency of stars with cool Jupiters to show larger abundances of α elements. No abundance differences between stars with cool and hot Jupiters are found when considering iron peak, volatile elements or the C/O, and Mg/Si ratios. The corresponding p-values from the statistical tests comparing the cumulative distributions of cool and hot planet hosts are 0.20, products from observations made with ESO Telescopes at the La Silla Paranal Observatory under programme ID 072.C-0033(A), 072.C-0488(E), 074.B-0455(A), 075.C-0202(A), 077.C-0192(A), 077.D-0525(A), 078.C-0378(A), 078.C-0378(B), 080.A-9021(A), 082.C-0312(A) 082.C-0446(A), 083.A-9003(A), 083.A-9011(A), 083.A-9011(B), 083.A-9013(A), 083.C-0794(A), 084.A-9003(A), 084.A-9004(B), 085.A-9027(A), 085.C-0743(A), 087.A-9008(A), 088.C-0892(A), 089.C-0440(A), 089.C-0444(A), 089.C-0732(A), 090.C-0345(A), 092.A-9002(A), 192.C-0852

  4. Third cranial nerve palsy (ptosis, diplopia accompanied by orbital swelling: case report of unusual clinical presentation of giant cell arteritis associated with polymyalgia rheumatica

    Directory of Open Access Journals (Sweden)

    Prassede Bravi

    2012-12-01

    Full Text Available IntroductionGiant cell arteritis (GCA is the most common systemic vasculitis in older individuals, characterized by granulomatosus inflammation of the wall of large and medium-sized arteries. The wide spectrum of arterial sites involved leads to ischemia of different organs resulting in a wide range of clinical signs and symptoms. Temporal artery is commonly involved (temporal arteritis. Unusual patterns of presentation, such as extraocular motility disorders and orbital swelling, may be early and transient manifestations of GCA and precede the permanent visual loss due to ischemic optic neuropathy.Case reportWe describe a patient with uncommon manifestations of GCA consisting of transient recurrent diplopia, ptosis, orbital swelling together with more typical clinical features of the disease such as musculoskeletal manifestations (polymyalgia rheumatica and facial pain: all signs and symptoms promptly resolved under corticosteroid therapy without relapse.Conclusions A high level of suspicion of GCA in individuals over the age of 50 years is needed to prevent the development of severe complications. Clinicians should be aware of uncommon manifestations of the disease such as head–neck swelling and ophthalmoplegia: management guidelines have stated that prompt administration of adequate dose of corticosteroids as soon as ocular manifestations of GCA are noted may almost totally prevent blindness.

  5. Role of orbital dynamics and cloud-cloud collisions in the formation of giant molecular clouds in global spiral structures

    International Nuclear Information System (INIS)

    Roberts, W.W. Jr.; Stewart, G.R.

    1987-01-01

    The role of orbit crowding and cloud-cloud collisions in the formation of GMCs and their organization in global spiral structure is investigated. Both N-body simulations of the cloud system and a detailed analysis of individual particle orbits are used to develop a conceptual understanding of how individual clouds participate in the collective density response. Detailed comparisons are made between a representative cloud-particle simulation in which the cloud particles collide inelastically with one another and give birth to and subsequently interact with young star associations and stripped down simulations in which the cloud particles are allowed to follow ballistic orbits in the absence of cloud-cloud collisions or any star formation processes. Orbit crowding is then related to the behavior of individual particle trajectories in the galactic potential field. The conceptual picture of how GMCs are formed in the clumpy ISMs of spiral galaxies is formulated, and the results are compared in detail with those published by other authors. 68 references

  6. Kepler planet-detection mission

    DEFF Research Database (Denmark)

    Borucki...[], William J.; Koch, David; Buchhave, Lars C. Astrup

    2010-01-01

    The Kepler mission was designed to determine the frequency of Earth-sized planets in and near the habitable zone of Sun-like stars. The habitable zone is the region where planetary temperatures are suitable for water to exist on a planet’s surface. During the first 6 weeks of observations, Kepler...... is one of the lowest-density planets (~0.17 gram per cubic centimeter) yet detected. Kepler-5b, -6b, and -8b confirm the existence of planets with densities lower than those predicted for gas giant planets....

  7. Kepler Mission: A Mission to Find Earth-size Planets in the Habitable Zone

    Science.gov (United States)

    Borucki, W. J.

    2003-01-01

    The Kepler Mission is a Discovery-class mission designed to continuously monitor the brightness of 100,000 solar-like stars to detect the transits of Earth-size and larger planets. It is a wide field of view photometer Schmidt-type telescope with an array of 42 CCDs. It has a 0.95 m aperture and 1.4 m primary and is designed to attain a photometric precision of 2 parts in 10(exp 5) for 12th magnitude solar-like stars for a 6 hr transit duration. It will continuously observe 100,000 main-sequence stars from 9th to 14th magnitude in the Cygnus constellation for a period of four years with a cadence of 4/hour. An additional 250 stars can be monitored at a cadence of l/minute to do astro-seismology of stars brighter than 11.5 mv. The photometer is scheduled to be launched into heliocentric orbit in 2007. When combined with ground-based spectrometric observations of these stars, the positions of the planets relative to the habitable zone can be found. The spectra of the stars are also used to determine the relationships between the characteristics of terrestrial planets and the characteristics of the stars they orbit. In particular, the association of planet size and occurrence frequency with stellar mass and metallicity will be investigated. Based on the results of the current Doppler-velocity discoveries, over a thousand giant planets will also be found. Information on the albedos and densities of those giants showing transits will be obtained. At the end of the four year mission, hundreds of Earth-size planets should be discovered in and near the HZ of their stars if such planets are common. A null result would imply that terrestrial planets in the HZ are very rare and that life might also be quite rare.

  8. ARE TIDAL EFFECTS RESPONSIBLE FOR EXOPLANETARY SPIN–ORBIT ALIGNMENT?

    Energy Technology Data Exchange (ETDEWEB)

    Li, Gongjie [Harvard-Smithsonian Center for Astrophysics, The Institute for Theory and Computation, 60 Garden Street, Cambridge, MA 02138 (United States); Winn, Joshua N., E-mail: gli@cfa.harvard.edu [Department of Physics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States)

    2016-02-10

    The obliquities of planet-hosting stars are clues about the formation of planetary systems. Previous observations led to the hypothesis that for close-in giant planets, spin–orbit alignment is enforced by tidal interactions. Here, we examine two problems with this hypothesis. First, Mazeh and coworkers recently used a new technique—based on the amplitude of starspot-induced photometric variability—to conclude that spin–orbit alignment is common even for relatively long-period planets, which would not be expected if tides were responsible. We re-examine the data and find a statistically significant correlation between photometric variability and planetary orbital period that is qualitatively consistent with tidal interactions. However it is still difficult to explain quantitatively, as it would require tides to be effective for periods as long as tens of days. Second, Rogers and Lin argued against a particular theory for tidal re-alignment by showing that initially retrograde systems would fail to be re-aligned, in contradiction with the observed prevalence of prograde systems. We investigate a simple model that overcomes this problem by taking into account the dissipation of inertial waves and the equilibrium tide, as well as magnetic braking. We identify a region of parameter space where re-alignment can be achieved, but it only works for close-in giant planets, and requires some fine tuning. Thus, while we find both problems to be more nuanced than they first appeared, the tidal model still has serious shortcomings.

  9. Extrasolar Planets Observed with JWST and the ELTs

    Science.gov (United States)

    Deming, L. Drake

    2010-01-01

    The advent of cryogenic space-borne infrared observatories such as the Spitzer Space Telescope has lead to a revolution in the study of planets and planetary systems orbiting sun-like stars. Already Spitzer has characterized the emergent infrared spectra of close-in giant exoplanets using transit and eclipse techniques. The James Webb Space Telescope (JWST) will be able to extend these studies to superEarth exoplanets orbiting in the habitable zones of M-dwarf stars in the near solar neighborhood. The forthcoming ground-based Extremely Large Telescopes (ELTs) will playa key role in these studies, being especially valuable for spectroscopy at higher spectral resolving powers where large photon fluxes are needed. The culmination of this work within the next two decades will be the detection and spectral characterization of the major molecular constituents in the atmosphere of a habitable superEarth orbiting a nearby lower main sequence star.

  10. Occurrence and core-envelope structure of 1-4× Earth-size planets around Sun-like stars.

    Science.gov (United States)

    Marcy, Geoffrey W; Weiss, Lauren M; Petigura, Erik A; Isaacson, Howard; Howard, Andrew W; Buchhave, Lars A

    2014-09-02

    Small planets, 1-4× the size of Earth, are extremely common around Sun-like stars, and surprisingly so, as they are missing in our solar system. Recent detections have yielded enough information about this class of exoplanets to begin characterizing their occurrence rates, orbits, masses, densities, and internal structures. The Kepler mission finds the smallest planets to be most common, as 26% of Sun-like stars have small, 1-2 R⊕ planets with orbital periods under 100 d, and 11% have 1-2 R⊕ planets that receive 1-4× the incident stellar flux that warms our Earth. These Earth-size planets are sprinkled uniformly with orbital distance (logarithmically) out to 0.4 the Earth-Sun distance, and probably beyond. Mass measurements for 33 transiting planets of 1-4 R⊕ show that the smallest of them, R planets. Their densities increase with increasing radius, likely caused by gravitational compression. Including solar system planets yields a relation: ρ = 2:32 + 3:19 R=R ⊕ [g cm(-3)]. Larger planets, in the radius range 1.5-4.0 R⊕, have densities that decline with increasing radius, revealing increasing amounts of low-density material (H and He or ices) in an envelope surrounding a rocky core, befitting the appellation ''mini-Neptunes.'' The gas giant planets occur preferentially around stars that are rich in heavy elements, while rocky planets occur around stars having a range of heavy element abundances. Defining habitable zones remains difficult, without benefit of either detections of life elsewhere or an understanding of life's biochemical origins.

  11. Occurrence and core-envelope structure of 1–4× Earth-size planets around Sun-like stars

    Science.gov (United States)

    Marcy, Geoffrey W.; Weiss, Lauren M.; Petigura, Erik A.; Isaacson, Howard; Howard, Andrew W.; Buchhave, Lars A.

    2014-01-01

    Small planets, 1–4× the size of Earth, are extremely common around Sun-like stars, and surprisingly so, as they are missing in our solar system. Recent detections have yielded enough information about this class of exoplanets to begin characterizing their occurrence rates, orbits, masses, densities, and internal structures. The Kepler mission finds the smallest planets to be most common, as 26% of Sun-like stars have small, 1–2 R⊕ planets with orbital periods under 100 d, and 11% have 1–2 R⊕ planets that receive 1–4× the incident stellar flux that warms our Earth. These Earth-size planets are sprinkled uniformly with orbital distance (logarithmically) out to 0.4 the Earth–Sun distance, and probably beyond. Mass measurements for 33 transiting planets of 1–4 R⊕ show that the smallest of them, R planets. Their densities increase with increasing radius, likely caused by gravitational compression. Including solar system planets yields a relation: ρ=2.32+3.19R/R⊕ [g cm−3]. Larger planets, in the radius range 1.5–4.0 R⊕, have densities that decline with increasing radius, revealing increasing amounts of low-density material (H and He or ices) in an envelope surrounding a rocky core, befitting the appellation ‘‘mini-Neptunes.’’ The gas giant planets occur preferentially around stars that are rich in heavy elements, while rocky planets occur around stars having a range of heavy element abundances. Defining habitable zones remains difficult, without benefit of either detections of life elsewhere or an understanding of life’s biochemical origins. PMID:24912169

  12. Observed properties of extrasolar planets.

    Science.gov (United States)

    Howard, Andrew W

    2013-05-03

    Observational surveys for extrasolar planets probe the diverse outcomes of planet formation and evolution. These surveys measure the frequency of planets with different masses, sizes, orbital characteristics, and host star properties. Small planets between the sizes of Earth and Neptune substantially outnumber Jupiter-sized planets. The survey measurements support the core accretion model, in which planets form by the accumulation of solids and then gas in protoplanetary disks. The diversity of exoplanetary characteristics demonstrates that most of the gross features of the solar system are one outcome in a continuum of possibilities. The most common class of planetary system detectable today consists of one or more planets approximately one to three times Earth's size orbiting within a fraction of the Earth-Sun distance.

  13. Formation of Ice Giant Satellites During Thommes Model Mirgration

    Science.gov (United States)

    Fuse, Christopher; Spiegelberg, Josephine

    2018-01-01

    Inconsistencies between ice giant planet characteristics and classic planet formation theories have led to a re-evaluation of the formation of the outer Solar system. Thommes model migration delivers proto-Uranus and Neptune from orbits interior to Saturn to their current locations. The Thommes model has also been able to reproduce the large Galilean and Saturnian moons via interactions between the proto-ice giants and the gas giant moon disks.As part of a series of investigations examining the effects of Thommes model migration on the formation of moons, N-body simulations of the formation of the Uranian and Neptunian satellite systems were performed. Previous research has yielded conflicting results as to whether satellite systems are stable during planetary migration. Some studies, such as Beaugé (2002) concluded that the system was not stable over the proposed duration of migration. Conversely, Fuse and Neville (2011) and Yokoyama et al. (2011) found that moons were retained, though the nature of the resulting system was heavily influenced by interactions with planetesimals and other large objects. The results of the current study indicate that in situ simulations of the Uranus and Neptune systems can produce stable moons. Whether with current orbital parameters or located at pre-migration, inner Solar system semi-major axes, the simulations end with 5.8 ± 0.15 or 5.9 ± 0.7 regular satellites around Uranus and Neptune, respectively. Preliminary simulations of a proto-moon disk around a single planet migrating via the Thommes model have failed to retain moons. Furthermore, simulations of ejection of the current Uranian satellite system retained at most one moon. Thus, for the Thommes model to be valid, it is likely that moon formation did not begin until after migration ended. Future work will examine the formation of gas and ice giant moons through other migration theories, such as the Nice model (Tsiganis et al. 2006).

  14. Terrestrial planet formation.

    Science.gov (United States)

    Righter, K; O'Brien, D P

    2011-11-29

    Advances in our understanding of terrestrial planet formation have come from a multidisciplinary approach. Studies of the ages and compositions of primitive meteorites with compositions similar to the Sun have helped to constrain the nature of the building blocks of planets. This information helps to guide numerical models for the three stages of planet formation from dust to planetesimals (~10(6) y), followed by planetesimals to embryos (lunar to Mars-sized objects; few 10(6) y), and finally embryos to planets (10(7)-10(8) y). Defining the role of turbulence in the early nebula is a key to understanding the growth of solids larger than meter size. The initiation of runaway growth of embryos from planetesimals ultimately leads to the growth of large terrestrial planets via large impacts. Dynamical models can produce inner Solar System configurations that closely resemble our Solar System, especially when the orbital effects of large planets (Jupiter and Saturn) and damping mechanisms, such as gas drag, are included. Experimental studies of terrestrial planet interiors provide additional constraints on the conditions of differentiation and, therefore, origin. A more complete understanding of terrestrial planet formation might be possible via a combination of chemical and physical modeling, as well as obtaining samples and new geophysical data from other planets (Venus, Mars, or Mercury) and asteroids.

  15. Giant spin rotation under quasiparticle-photoelectron conversion: Joint effect of sublattice interference and spin-orbit coupling

    DEFF Research Database (Denmark)

    Kuemmeth, Ferdinand; Rashba, E I

    2009-01-01

    Spin- and angular-resolved photoemission spectroscopy is a basic experimental tool for unveiling spin polarization of electron eigenstates in crystals. We prove, by using spin-orbit coupled graphene as a model, that photoconversion of a quasiparticle inside a crystal into a photoelectron can...... be accompanied with a dramatic change in its spin polarization, up to a total spin flip. This phenomenon is typical of quasiparticles residing away from the Brillouin-zone center and described by higher rank spinors and results in exotic patterns in the angular distribution of photoelectrons....

  16. Biomarker response to galactic cosmic ray-induced NOx and the methane greenhouse effect in the atmosphere of an Earth-like planet orbiting an M dwarf star.

    Science.gov (United States)

    Grenfell, John Lee; Griessmeier, Jean-Mathias; Patzer, Beate; Rauer, Heike; Segura, Antigona; Stadelmann, Anja; Stracke, Barbara; Titz, Ruth; Von Paris, Philip

    2007-02-01

    Planets orbiting in the habitable zone of M dwarf stars are subject to high levels of galactic cosmic rays (GCRs), which produce nitrogen oxides (NOx) in Earth-like atmospheres. We investigate to what extent these NO(Mx) species may modify biomarker compounds such as ozone (O3) and nitrous oxide (N2O), as well as related compounds such as water (H2O) (essential for life) and methane (CH4) (which has both abiotic and biotic sources). Our model results suggest that such signals are robust, changing in the M star world atmospheric column due to GCR NOx effects by up to 20% compared to an M star run without GCR effects, and can therefore survive at least the effects of GCRs. We have not, however, investigated stellar cosmic rays here. CH4 levels are about 10 times higher on M star worlds than on Earth because of a lowering in hydroxyl (OH) in response to changes in the ultraviolet. The higher levels of CH4 are less than reported in previous studies. This difference arose partly because we used different biogenic input. For example, we employed 23% lower CH4 fluxes compared to those studies. Unlike on Earth, relatively modest changes in these fluxes can lead to larger changes in the concentrations of biomarker and related species on the M star world. We calculate a CH4 greenhouse heating effect of up to 4K. O3 photochemistry in terms of the smog mechanism and the catalytic loss cycles on the M star world differs considerably compared with that of Earth.

  17. The Scattering Outcomes of Kepler Circumbinary Planets: Planet Mass Ratio

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Yan-Xiang; Ji, Jianghui, E-mail: yxgong@pmo.ac.cn, E-mail: jijh@pmo.ac.cn [CAS Key Laboratory of Planetary Sciences, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China)

    2017-11-01

    Recent studies reveal that the free eccentricities of Kepler-34b and Kepler-413b are much larger than their forced eccentricities, implying that scattering events may take place in their formation. The observed orbital configuration of Kepler-34b cannot be well reproduced in disk-driven migration models, whereas a two-planet scattering scenario can play a significant role of shaping the planetary configuration. These studies indicate that circumbinary planets discovered by Kepler may have experienced scattering process. In this work, we extensively investigate the scattering outcomes of circumbinary planets focusing on the effects of planet mass ratio . We find that the planetary mass ratio and the the initial relative locations of planets act as two important parameters that affect the eccentricity distribution of the surviving planets. As an application of our model, we discuss the observed orbital configurations of Kepler-34b and Kepler-413b. We first adopt the results from the disk-driven models as the initial conditions, then simulate the scattering process that occurs in the late evolution stage of circumbinary planets. We show that the present orbital configurations of Kepler-34b and Kepler-413b can be well reproduced when considering a two unequal-mass planet ejection model. Our work further suggests that some of the currently discovered circumbinary single-planet systems may be survivors of original multiple-planet systems. The disk-driven migration and scattering events occurring in the late stage both play an irreplaceable role in sculpting the final systems.

  18. MIGRATION OF EXTRASOLAR PLANETS: EFFECTS FROM X-WIND ACCRETION DISKS

    International Nuclear Information System (INIS)

    Adams, Fred C.; Cai, Mike J.; Lizano, Susana

    2009-01-01

    Magnetic fields are dragged in from the interstellar medium during the gravitational collapse that forms star/disk systems. Consideration of mean field magnetohydrodynamics in these disks shows that magnetic effects produce sub-Keplerian rotation curves and truncate the inner disk. This Letter explores the ramifications of these predicted disk properties for the migration of extrasolar planets. Sub-Keplerian flow in gaseous disks drives a new migration mechanism for embedded planets and modifies the gap-opening processes for larger planets. This sub-Keplerian migration mechanism dominates over Type I migration for sufficiently small planets (m P ∼ + ) and/or close orbits (r ∼< 1 AU). Although the inclusion of sub-Keplerian torques shortens the total migration time by only a moderate amount, the mass accreted by migrating planetary cores is significantly reduced. Truncation of the inner disk edge (for typical system parameters) naturally explains final planetary orbits with periods P ∼ 4 days. Planets with shorter periods, P ∼ 2 days, can be explained by migration during FU-Orionis outbursts, when the mass accretion rate is high and the disk edge moves inward. Finally, the midplane density is greatly increased at the inner truncation point of the disk (the X-point); this enhancement, in conjunction with continuing flow of gas and solids through the region, supports the in situ formation of giant planets.

  19. THE ORBITAL PHASES AND SECONDARY TRANSITS OF KEPLER-10b. A PHYSICAL INTERPRETATION BASED ON THE LAVA-OCEAN PLANET MODEL

    International Nuclear Information System (INIS)

    Rouan, D.; Deeg, H. J.; Demangeon, O.; Samuel, B.; Cavarroc, C.; Léger, A.; Fegley, B.

    2011-01-01

    The Kepler mission has made an important observation: the first detection of photons from a terrestrial planet by observing its phase curve (Kepler-10b). This opens a new field in exoplanet science: the possibility of obtaining information about the atmosphere and surface of rocky planets, objects of prime interest. In this Letter, we apply the Lava-ocean model to interpret the observed phase curve. The model, a planet without atmosphere and a surface partially made of molten rocks, has been proposed for planets of the class of CoRoT-7b, i.e., rocky planets very close to their star (at a few stellar radii). Kepler-10b is a typical member of this family. It predicts that the light from the planet has an important emission component in addition to the reflected one, even in the Kepler spectral band. Assuming an isotropical reflection of light by the planetary surface (Lambertian-like approximation), we find that a Bond albedo of ∼50% can account for the observed amplitude of the phase curve, as opposed to a first attempt where an unusually high value was found. We propose a physical process to explain this still large value of the albedo. The overall interpretation can be tested in the future with instruments such as the James Webb Space Telescope or the Exoplanet Characterization Observatory. Our model predicts a spectral dependence that is clearly distinguishable from that of purely reflected light and from that of a planet at a uniform temperature.

  20. Three regimes of extrasolar planet radius inferred from host star metallicities.

    Science.gov (United States)

    Buchhave, Lars A; Bizzarro, Martin; Latham, David W; Sasselov, Dimitar; Cochran, William D; Endl, Michael; Isaacson, Howard; Juncher, Diana; Marcy, Geoffrey W

    2014-05-29

    Approximately half of the extrasolar planets (exoplanets) with radii less than four Earth radii are in orbits with short periods. Despite their sheer abundance, the compositions of such planets are largely unknown. The available evidence suggests that they range in composition from small, high-density rocky planets to low-density planets consisting of rocky cores surrounded by thick hydrogen and helium gas envelopes. Here we report the metallicities (that is, the abundances of elements heavier than hydrogen and helium) of more than 400 stars hosting 600 exoplanet candidates, and find that the exoplanets can be categorized into three populations defined by statistically distinct (∼4.5σ) metallicity regions. We interpret these regions as reflecting the formation regimes of terrestrial-like planets (radii less than 1.7 Earth radii), gas dwarf planets with rocky cores and hydrogen-helium envelopes (radii between 1.7 and 3.9 Earth radii) and ice or gas giant planets (radii greater than 3.9 Earth radii). These transitions correspond well with those inferred from dynamical mass estimates, implying that host star metallicity, which is a proxy for the initial solids inventory of the protoplanetary disk, is a key ingredient regulating the structure of planetary systems.

  1. Dynamical Analysis of the Circumprimary Planet in the Eccentric Binary System HD 59686

    Science.gov (United States)

    Trifonov, Trifon; Lee, Man Hoi; Reffert, Sabine; Quirrenbach, Andreas

    2018-04-01

    We present a detailed orbital and stability analysis of the HD 59686 binary-star planet system. HD 59686 is a single-lined, moderately close (a B = 13.6 au) eccentric (e B = 0.73) binary, where the primary is an evolved K giant with mass M = 1.9 M ⊙ and the secondary is a star with a minimum mass of m B = 0.53 M ⊙. Additionally, on the basis of precise radial velocity (RV) data, a Jovian planet with a minimum mass of m p = 7 M Jup, orbiting the primary on a nearly circular S-type orbit with e p = 0.05 and a p = 1.09 au, has recently been announced. We investigate large sets of orbital fits consistent with HD 59686's RV data by applying bootstrap and systematic grid search techniques coupled with self-consistent dynamical fitting. We perform long-term dynamical integrations of these fits to constrain the permitted orbital configurations. We find that if the binary and the planet in this system have prograde and aligned coplanar orbits, there are narrow regions of stable orbital solutions locked in a secular apsidal alignment with the angle between the periapses, Δω, librating about 0°. We also test a large number of mutually inclined dynamical models in an attempt to constrain the three-dimensional orbital architecture. We find that for nearly coplanar and retrograde orbits with mutual inclination 145° ≲ Δi ≤ 180°, the system is fully stable for a large range of orbital solutions.

  2. ON THE MIGRATION OF JUPITER AND SATURN: CONSTRAINTS FROM LINEAR MODELS OF SECULAR RESONANT COUPLING WITH THE TERRESTRIAL PLANETS

    International Nuclear Information System (INIS)

    Agnor, Craig B.; Lin, D. N. C.

    2012-01-01

    We examine how the late divergent migration of Jupiter and Saturn may have perturbed the terrestrial planets. Using a modified secular model we have identified six secular resonances between the ν 5 frequency of Jupiter and Saturn and the four apsidal eigenfrequencies of the terrestrial planets (g 1-4 ). We derive analytic upper limits on the eccentricity and orbital migration timescale of Jupiter and Saturn when these resonances were encountered to avoid perturbing the eccentricities of the terrestrial planets to values larger than the observed ones. Because of the small amplitudes of the j = 2, 3 terrestrial eigenmodes the g 2 – ν 5 and g 3 – ν 5 resonances provide the strongest constraints on giant planet migration. If Jupiter and Saturn migrated with eccentricities comparable to their present-day values, smooth migration with exponential timescales characteristic of planetesimal-driven migration (τ ∼ 5-10 Myr) would have perturbed the eccentricities of the terrestrial planets to values greatly exceeding the observed ones. This excitation may be mitigated if the eccentricity of Jupiter was small during the migration epoch, migration was very rapid (e.g., τ ∼< 0.5 Myr perhaps via planet-planet scattering or instability-driven migration) or the observed small eccentricity amplitudes of the j = 2, 3 terrestrial modes result from low probability cancellation of several large amplitude contributions. Results of orbital integrations show that very short migration timescales (τ < 0.5 Myr), characteristic of instability-driven migration, may also perturb the terrestrial planets' eccentricities by amounts comparable to their observed values. We discuss the implications of these constraints for the relative timing of terrestrial planet formation, giant planet migration, and the origin of the so-called Late Heavy Bombardment of the Moon 3.9 ± 0.1 Ga ago. We suggest that the simplest way to satisfy these dynamical constraints may be for the bulk of any giant

  3. GIANT IMPACT: AN EFFICIENT MECHANISM FOR THE DEVOLATILIZATION OF SUPER-EARTHS

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shang-Fei [Department of Earth and Planetary Sciences, University of California, Santa Cruz, CA 95064 (United States); Hori, Yasunori; Lin, D. N. C. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Asphaug, Erik, E-mail: sliu26@ucsc.edu, E-mail: yahori@ucsc.edu, E-mail: lin@ucolick.org, E-mail: easphaug@asu.edu [School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287 (United States)

    2015-10-20

    Mini-Neptunes and volatile-poor super-Earths coexist on adjacent orbits in proximity to host stars such as Kepler-36 and Kepler-11. Several post-formation processes have been proposed for explaining the origin of the compositional diversity between neighboring planets: mass loss via stellar XUV irradiation, degassing of accreted material, and in situ accumulation of the disk gas. Close-in planets are also likely to experience giant impacts during the advanced stage of planet formation. This study examines the possibility of transforming volatile-rich super-Earths/mini-Neptunes into volatile-depleted super-Earths through giant impacts. We present the results of three-dimensional hydrodynamic simulations of giant impacts in the accretionary and disruptive regimes. Target planets are modeled with a three-layered structure composed of an iron core, silicate mantle, and hydrogen/helium envelope. In the disruptive case, the giant impact can remove most of the H/He atmosphere immediately and homogenize the refractory material in the planetary interior. In the accretionary case, the planet is able to retain more than half of the original gaseous envelope, while a compositional gradient suppresses efficient heat transfer as the planetary interior undergoes double-diffusive convection. After the giant impact, a hot and inflated planet cools and contracts slowly. The extended atmosphere enhances the mass loss via both a Parker wind induced by thermal pressure and hydrodynamic escape driven by the stellar XUV irradiation. As a result, the entire gaseous envelope is expected to be lost due to the combination of those processes in both cases. Based on our results, we propose that Kepler-36b may have been significantly devolatilized by giant impacts, while a substantial fraction of Kepler-36c’s atmosphere may remain intact. Furthermore, the stochastic nature of giant impacts may account for the observed large dispersion in the mass–radius relationship of close-in super

  4. Double-blind test program for astrometric planet detection with Gaia

    Science.gov (United States)

    Casertano, S.; Lattanzi, M. G.; Sozzetti, A.; Spagna, A.; Jancart, S.; Morbidelli, R.; Pannunzio, R.; Pourbaix, D.; Queloz, D.

    2008-05-01

    Aims: The scope of this paper is twofold. First, it describes the simulation scenarios and the results of a large-scale, double-blind test campaign carried out to estimate the potential of Gaia for detecting and measuring planetary systems. The identified capabilities are then put in context by highlighting the unique contribution that the Gaia exoplanet discoveries will be able to bring to the science of extrasolar planets in the next decade. Methods: We use detailed simulations of the Gaia observations of synthetic planetary systems and develop and utilize independent software codes in double-blind mode to analyze the data, including statistical tools for planet detection and different algorithms for single and multiple Keplerian orbit fitting that use no a priori knowledge of the true orbital parameters of the systems. Results: 1) Planets with astrometric signatures α≃ 3 times the assumed single-measurement error σ_ψ and period P≤ 5 yr can be detected reliably and consistently, with a very small number of false positives. 2) At twice the detection limit, uncertainties in orbital parameters and masses are typically 15-20%. 3) Over 70% of two-planet systems with well-separated periods in the range 0.2≤ P≤ 9 yr, astrometric signal-to-noise ratio 2≤α/σ_ψ≤ 50, and eccentricity e≤ 0.6 are correctly identified. 4) Favorable orbital configurations (both planets with P≤ 4 yr and α/σ_ψ≥ 10, redundancy over a factor of 2 in the number of observations) have orbital elements measured to better than 10% accuracy > 90% of the time, and the value of the mutual inclination angle i_rel determined with uncertainties ≤ 10°. 5) Finally, nominal uncertainties obtained from the fitting procedures are a good estimate of the actual errors in the orbit reconstruction. Extrapolating from the present-day statistical properties of the exoplanet sample, the results imply that a Gaia with σ_ψ = 8 μas, in its unbiased and complete magnitude-limited census of

  5. Formation of telluric planets and the origin of terrestrial water

    Directory of Open Access Journals (Sweden)

    Raymond Sean

    2014-02-01

    Full Text Available Simulations of planet formation have failed to reproduce Mars’ small mass (compared with Earth for 20 years. Here I will present a solution to the Mars problem that invokes large-scale migration of Jupiter and Saturn while they were still embedded in the gaseous protoplanetary disk. Jupiter first migrated inward, then “tacked” and migrated back outward when Saturn caught up to it and became trapped in resonance. If this tack occurred when Jupiter was at 1.5 AU then the inner disk of rocky planetesimals and embryos is truncated and the masses and orbits of all four terrestrial planet are quantitatively reproduced. As the giant planets migrate back outward they re-populate the asteroid belt from two different source populations, matching the structure of the current belt. C-type material is also scattered inward to the terrestrial planet-forming zone, delivering about the right amount of water to Earth on 10-50 Myr timescales.

  6. The Use of Planisphere to Locate Planets

    Science.gov (United States)

    Kwok, Ping-Wai

    2013-01-01

    Planisphere is a simple and useful tool in locating constellations of the night sky at a specific time, date and geographic location. However it does not show the planet positions because planets are not fixed on the celestial sphere. It is known that the planet orbital planes are nearly coplanar and close to the ecliptic plane. By making…

  7. The science case of the CHEOPS planet finder for VLT

    NARCIS (Netherlands)

    Gratton, R.; Feldt, M.; Schmid, H.M.; Brandner, W.; Hippler, S.; Neuhauser, R.; Quirrenbach, A.; Desidera, S.; Turatto, M.; Stam, D.M.; Hasinger, G.; Turner, M.J.L.

    2004-01-01

    The CHEOPS Planet Finder is one of the proposed second generation instruments for the VLT. Its purpose is to image and characterize giant extrasolar planets in different phases of their evolution: young, warm planets as well as old, cold ones. Imaging the last ones is the most challenging task

  8. LONG-LIVED CHAOTIC ORBITAL EVOLUTION OF EXOPLANETS IN MEAN MOTION RESONANCES WITH MUTUAL INCLINATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, Rory; Deitrick, Russell; Quinn, Thomas R. [Astronomy Department, University of Washington, Box 951580, Seattle, WA 98195 (United States); Greenberg, Richard [Lunar and Planetary Laboratory, University of Arizona, 1629 E. University Boulevard, Tucson, AZ 86716 (United States); Raymond, Sean N., E-mail: rory@astro.washington.edu [NASA Astrobiology Institute-Virtual Planetary Laboratory Lead Team (United States)

    2015-03-10

    We present N-body simulations of resonant planets with inclined orbits that show chaotically evolving eccentricities and inclinations that can persist for at least 10 Gyr. A wide range of behavior is possible, from fast, low amplitude variations to systems in which eccentricities reach 0.9999 and inclinations 179.°9. While the orbital elements evolve chaotically, at least one resonant argument always librates. We show that the HD 73526, HD 45364, and HD 60532 systems may be in chaotically evolving resonances. Chaotic evolution is apparent in the 2:1, 3:1, and 3:2 resonances, and for planetary masses from lunar- to Jupiter-mass. In some cases, orbital disruption occurs after several gigayears, implying the mechanism is not rigorously stable, just long-lived relative to the main sequence lifetimes of solar-type stars. Planet-planet scattering appears to yield planets in inclined resonances that evolve chaotically in about 0.5% of cases. These results suggest that (1) approximate methods for identifying unstable orbital architectures may have limited applicability, (2) the observed close-in exoplanets may be produced during epochs of high eccentricit induced by inclined resonances, (3) those exoplanets' orbital planes may be misaligned with the host star's spin axis, (4) systems with resonances may be systematically younger than those without, (5) the distribution of period ratios of adjacent planets detected via transit may be skewed due to inclined resonances, and (6) potentially habitable planets may have dramatically different climatic evolution than Earth. The Gaia spacecraft is capable of discovering giant planets in these types of orbits.

  9. LONG-LIVED CHAOTIC ORBITAL EVOLUTION OF EXOPLANETS IN MEAN MOTION RESONANCES WITH MUTUAL INCLINATIONS

    International Nuclear Information System (INIS)

    Barnes, Rory; Deitrick, Russell; Quinn, Thomas R.; Greenberg, Richard; Raymond, Sean N.

    2015-01-01

    We present N-body simulations of resonant planets with inclined orbits that show chaotically evolving eccentricities and inclinations that can persist for at least 10 Gyr. A wide range of behavior is possible, from fast, low amplitude variations to systems in which eccentricities reach 0.9999 and inclinations 179.°9. While the orbital elements evolve chaotically, at least one resonant argument always librates. We show that the HD 73526, HD 45364, and HD 60532 systems may be in chaotically evolving resonances. Chaotic evolution is apparent in the 2:1, 3:1, and 3:2 resonances, and for planetary masses from lunar- to Jupiter-mass. In some cases, orbital disruption occurs after several gigayears, implying the mechanism is not rigorously stable, just long-lived relative to the main sequence lifetimes of solar-type stars. Planet-planet scattering appears to yield planets in inclined resonances that evolve chaotically in about 0.5% of cases. These results suggest that (1) approximate methods for identifying unstable orbital architectures may have limited applicability, (2) the observed close-in exoplanets