WorldWideScience

Sample records for giant hypervelocity collision

  1. Recent Results From Skyrme-TDHF: Giant Resonances and Collisions

    International Nuclear Information System (INIS)

    Stevenson, Paul D.

    2007-01-01

    Using fully three-dimensional Time-Dependent Hartree-Fock with Skyrme forces allows one to explore small and large amplitude collective motion in nuclei using only an effective interaction fitted to ground state and nuclear matter properties as input. In this talk, results are presented for TDHF calculations of giant resonances and nuclear collisions. We examine deformation splitting of the giant dipole resonance on ground and excited intrinsic superdeformed states, showing the interplay between Landau splitting and deformation splitting, including effects of triaxiality[1]. In the case of giant monopole resonances, isospin-mixing is examined, showing that the isovector and isoscalar parts of strength functions are strongly coupled [2]. The role of absorption in the TDHF approach to linear and nonlinear regimes is examined[3]. Calculations of nuclear collisions are also explored, showing that the effects of fully relaxed symmetry produce new modes of energy loss not found in previous calculations [4]. (Author)

  2. Plasma and collision processes of hypervelocity meteorite impact in the prehistory of life

    Science.gov (United States)

    Managadze, G.

    2010-07-01

    A new concept is proposed, according to which the plasma and collision processes accompanying hypervelocity impacts of meteorites can contribute to the arising of the conditions on early Earth, which are necessary for the appearance of primary forms of living matter. It was shown that the processes necessary for the emergence of living matter could have started in a plasma torch of meteorite impact and have continued in an impact crater in the case of the arising of the simplest life form. It is generally accepted that planets are the optimal place for the origin and evolution of life. In the process of forming the planetary systems the meteorites, space bodies feeding planet growth, appear around stars. In the process of Earth's formation, meteorite sizes ranged from hundreds and thousands of kilometres. These space bodies consisted mostly of the planetesimals and comet nucleus. During acceleration in Earth's gravitational field they reached hypervelocity and, hitting the surface of planet, generated powerful blowouts of hot plasma in the form of a torch. They also created giant-size craters and dense dust clouds. These bodies were composed of all elements needed for the synthesis of organic compounds, with the content of carbon being up to 5%-15%. A new idea of possible synthesis of the complex organic compounds in the hypervelocity impact-generated plasma torch was proposed and experimentally confirmed. A previously unknown and experimentally corroborated feature of the impact-generated plasma torch allowed a new concept of the prehistory of life to be developed. According to this concept the intensive synthesis of complex organic compounds arose during meteoritic bombardment in the first 0.5 billion years at the stage of the planet's formation. This most powerful and destructive action in Earth's history could have played a key role and prepared conditions for the origin of life. In the interstellar gas-dust clouds, the synthesis of simple organic matter could

  3. Giant molecular cloud collisions as triggers of star formation. VI. Collision-induced turbulence

    Science.gov (United States)

    Wu, Benjamin; Tan, Jonathan C.; Nakamura, Fumitaka; Christie, Duncan; Li, Qi

    2018-05-01

    We investigate collisions between giant molecular clouds (GMCs) as potential generators of their internal turbulence. Using magnetohydrodynamic (MHD) simulations of self-gravitating, magnetized, turbulent GMCs, we compare kinematic and dynamic properties of dense gas structures formed when such clouds collide compared to those that form in non-colliding clouds as self-gravity overwhelms decaying turbulence. We explore the nature of turbulence in these structures via distribution functions of density, velocity dispersions, virial parameters, and momentum injection. We find that the dense clumps formed from GMC collisions have higher effective Mach number, greater overall velocity dispersions, sustain near-virial equilibrium states for longer times, and are the conduit for the injection of turbulent momentum into high density gas at high rates.

  4. Role of giant resonance excitation in heavy ion collisions

    International Nuclear Information System (INIS)

    Catara, F.; Chomaz, Ph.

    1987-01-01

    In this paper we discuss several aspects of heavy ion collisions involving collective vibrational modes. In our approach the relative motion is treated in a semiclassical approximation, while the intrinsic degrees of freedom are described microscopically within the RPA. The differences with respect to macroscopic models are analyzed in the appendix. First we present some results on the inelastic scattering cross section and we show that the structures observed experimentally can be explained in terms of multiple excitation of the Giant Quadrupole Resonance. After we calculate an adiabatic polarization potential describing the coupling to the collective vibrational modes and show that it produces a strong enhancement of the subbarrier fusion cross section. This enhancement is found to be enough to reproduce the experimental data for symmetric systems, while for asymmetric reactions the coupling to other degrees of freedom, like transfer, is needed. Finally we report some preliminary results on a dynamical calculation of the real and imaginary parts of the polarization potential. We show that at high incident energies (E/A > 20MeV) the role of the Giant Quadrupole Resonance becomes dominant

  5. Hypervelocity impact technology and applications: 2007.

    Energy Technology Data Exchange (ETDEWEB)

    Reinhart, William Dodd; Chhabildas, Lalit C. (Air Force Research Laboratory, AFRL/RWMW, Eglin AFB, FL)

    2008-07-01

    The Hypervelocity Impact Society is devoted to the advancement of the science and technology of hypervelocity impact and related technical areas required to facilitate and understand hypervelocity impact phenomena. Topics of interest include experimental methods, theoretical techniques, analytical studies, phenomenological studies, dynamic material response as related to material properties (e.g., equation of state), penetration mechanics, and dynamic failure of materials, planetary physics and other related phenomena. The objectives of the Society are to foster the development and exchange of technical information in the discipline of hypervelocity impact phenomena, promote technical excellence, encourage peer review publications, and hold technical symposia on a regular basis. It was sometime in 1985, partly in response to the Strategic Defense Initiative (SDI), that a small group of visionaries decided that a conference or symposium on hypervelocity science would be useful and began the necessary planning. A major objective of the first Symposium was to bring the scientists and researchers up to date by reviewing the essential developments of hypervelocity science and technology between 1955 and 1985. This Symposia--HVIS 2007 is the tenth Symposium since that beginning. The papers presented at all the HVIS are peer reviewed and published as a special volume of the archival journal International Journal of Impact Engineering. HVIS 2007 followed the same high standards and its proceedings will add to this body of work.

  6. Impact-parameter dependence of giant resonance excitations in relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Gruenschloss, A.; Boretzky, K.; Aumann, T.

    1999-09-01

    Angular distributions of Xe fragments produced in peripheral collisions of a 136 Xe beam (700 MeV/nucleon) with 208 Pb and nat Sn targets were measured. Equivalent sharp-cutoff minimum impact parameters were derived on the basis of a semi-classical description for the electromagnetic excitation of one- and two-phonon giant resonances. The results are compared with current standard parametrizations of minimum impact parameters and with the soft-spheres model using realistic mass density distributions for projectile and targets. (orig.)

  7. Exploratory investigations of hypervelocity intact capture spectroscopy

    Science.gov (United States)

    Tsou, P.; Griffiths, D. J.

    1993-01-01

    The ability to capture hypervelocity projectiles intact opens a new technique available for hypervelocity research. A determination of the reactions taking place between the projectile and the capture medium during the process of intact capture is extremely important to an understanding of the intact capture phenomenon, to improving the capture technique, and to developing a theory describing the phenomenon. The intact capture of hypervelocity projectiles by underdense media generates spectra, characteristic of the material species of projectile and capture medium involved. Initial exploratory results into real-time characterization of hypervelocity intact capture techniques by spectroscopy include ultra-violet and visible spectra obtained by use of reflecting gratings, transmitting gratings, and prisms, and recorded by photographic and electronic means. Spectrometry proved to be a valuable real-time diagnostic tool for hypervelocity intact capture events, offering understanding of the interactions of the projectile and the capture medium during the initial period and providing information not obtainable by other characterizations. Preliminary results and analyses of spectra produced by the intact capture of hypervelocity aluminum spheres in polyethylene (PE), polystyrene (PS), and polyurethane (PU) foams are presented. Included are tentative emission species identifications, as well as gray body temperatures produced in the intact capture process.

  8. Excitation of giant resonances in heavy ion collisions

    International Nuclear Information System (INIS)

    Kuehn, W.

    1991-01-01

    Introduction: What are Giant Resonances? General Features of Giant Resonances, Macroscopic Description and Classification, Basic Excitation Mechanisms, Decay Modes, Giant Resonances Built on Excited States, Relativistic Coulomb Excitation of Giant Resonances, Experimental Situation. (orig.)

  9. Formation of giant molecular clouds in global spiral structures: the role of orbital dynamics and cloud-cloud collisions

    International Nuclear Information System (INIS)

    Roberts, W.W. Jr.; Stewart, G.R.

    1987-01-01

    The different roles played by orbital dynamics and dissipative cloud-cloud collisions in the formation of giant molecular clouds (GMCs) in a global spiral structure are investigated. The interstellar medium (ISM) is simulated by a system of particles, representing clouds, which orbit in a spiral-perturbed, galactic gravitational field. The overall magnitude and width of the global cloud density distribution in spiral arms is very similar in the collisional and collisionless simulations. The results suggest that the assumed number density and size distribution of clouds and the details of individual cloud-cloud collisions have relatively little effect on these features. Dissipative cloud-cloud collisions play an important steadying role for the cloud system's global spiral structure. Dissipative cloud-cloud collisions also damp the relative velocity dispersion of clouds in massive associations and thereby aid in the effective assembling of GMC-like complexes

  10. Penetration of Action Potentials During Collision in the Median and Lateral Giant Axons of Invertebrates

    Directory of Open Access Journals (Sweden)

    Alfredo Gonzalez-Perez

    2014-09-01

    Full Text Available The collisions of two simultaneously generated impulses in the giant axons of both earthworms and lobsters propagating in orthodromic and antidromic direction are investigated. The experiments have been performed on the extracted ventral cords of Lumbricus terrestris and the abdominal ventral cord of a lobster, Homarus americanus, by using external stimulation and recording. The collision of two nerve impulses of orthodromic and antidromic propagation did not result in the annihilation of the two signals, contrary to the common notion that is based on the existence of a refractory period in the well-known Hodgkin-Huxley theory. However, the results are in agreement with the electromechanical soliton theory for nerve-pulse propagation, as suggested by Heimburg and Jackson [On Soliton Propagation in Biomembranes and Nerves, Proc. Natl. Acad. Sci. U.S.A. 102, 9790 (2005.].

  11. Total and differential cross sections for pion production via coherent isobar and giant resonance formation in heavy-ion collisions

    International Nuclear Information System (INIS)

    Deutchman, P.A.; Norbury, J.W.; Townsend, L.W.

    1985-01-01

    A quantal many-body formalism is presented that investigates pion production through the coherent formation of a nucleonic isobar in the projectile and its subsequent decay to various pion charge states along with concomitant excitation of the target to a coherent spin-isospin giant resonance via a peripheral collision of relativistic heavy ions. Total cross sections as a function of the incident energy per nucleon and Lorentz-invariant differential cross sections as a function of pion energy and angle are calculated. It is shown that the pion angular distributions, in coincidence with the target giant resonance excitations, might provide a well-defined signature for these coherent processes

  12. Simulating plasma production from hypervelocity impacts

    Energy Technology Data Exchange (ETDEWEB)

    Fletcher, Alex, E-mail: alexcf@stanford.edu; Close, Sigrid [Stanford University, Aeronautics and Astronautics, 496 Lomita Mall, Stanford, California 94305 (United States); Mathias, Donovan [NASA Ames Research Center, Bldg. 258, Moffett Field, California 94035 (United States)

    2015-09-15

    Hypervelocity particles, such as meteoroids and space debris, routinely impact spacecraft and are energetic enough to vaporize and ionize themselves and as well as a portion of the target material. The resulting plasma rapidly expands into the surrounding vacuum. While plasma measurements from hypervelocity impacts have been made using ground-based technologies such as light gas guns and Van de Graaff dust accelerators, some of the basic plasma properties vary significantly between experiments. There have been both ground-based and in-situ measurements of radio frequency (RF) emission from hypervelocity impacts, but the physical mechanism responsible and the possible connection to the impact-produced plasma are not well understood. Under certain conditions, the impact-produced plasma can have deleterious effects on spacecraft electronics by providing a new current path, triggering an electrostatic discharge, causing electromagnetic interference, or generating an electromagnetic pulse. Multi-physics simulations of plasma production from hypervelocity impacts are presented. These simulations incorporate elasticity and plasticity of the solid target, phase change and plasma formation, and non-ideal plasma physics due to the high density and low temperature of the plasma. A smoothed particle hydrodynamics method is used to perform a continuum dynamics simulation with these additional physics. By examining a series of hypervelocity impacts, basic properties of the impact produced plasma plume (density, temperature, expansion speed, charge state) are determined for impactor speeds between 10 and 72 km/s. For a large range of higher impact speeds (30–72 km/s), we find the temperature is unvarying at 2.5 eV. We also find that the plasma plume is weakly ionized for impact speeds less than 14 km/s and fully ionized for impact speeds greater than 20 km/s, independent of impactor mass. This is the same velocity threshold for the detection of RF emission in recent

  13. On Landau Vlasov simulations of giant resonances

    International Nuclear Information System (INIS)

    Pi, M.; Schuck, P.; Suraud, E.; Gregoire, C.; Remaud, B.; Sebille, F.

    1987-05-01

    We present VUU calculations of giant resonances obtained in energetic heavy ion collisions. Also is considered the case of the giant dipole in 40 Ca and the possibility of studying the effects of rotation on such collective modes

  14. Hypervelocity Expansion Facility for Fundamental High-Enthalpy Research

    Science.gov (United States)

    2017-02-27

    ii Final Technical Report of Contract ONR N00014-15-1-2260 Entitled: HYPERVELOCITY EXPANSION FACILITY FOR FUNDAMENTAL HIGH-ENTHALPY...previous DoD investments in high-energy pulsed laser diagnostics for instantaneous planar velocimetry and thermometry to perform scientific studies of...capability for fundamental and applied studies of hypervelocity high enthalpy flows. In this document, we report on the progress over the 18-month

  15. Hypervelocity Launching and Frozen Fuels as a Major Contribution to Spaceflight

    Science.gov (United States)

    Cocks, F. H.; Harman, C. M.; Klenk, P. A.; Simmons, W. N.

    Acting as a virtual first stage, a hypervelocity launch together with the use of frozen hydrogen/frozen oxygen propellant, offers a Single-Stage-To-Orbit (SSTO) system that promises an enormous increase in SSTO mass-ratio. Ram acceleration provides hypervelocity (2 km/sec) to the orbital vehicle with a gas gun supplying the initial velocity required for ram operation. The vehicle itself acts as the center body of a ramjet inside a launch tube, filled with gaseous fuel and oxidizer, acting as an engine cowling. The high acceleration needed to achieve hypervelocity precludes a crew, and it would require greatly increased liquid fuel tank structural mass if a liquid propellant is used for post-launch vehicle propulsion. Solid propellants do not require as much fuel- chamber strengthening to withstand a hypervelocity launch as do liquid propellants, but traditional solid fuels have lower exhaust velocities than liquid hydrogen/liquid oxygen. The shock-stability of frozen hydrogen/frozen oxygen propellant has been experimentally demonstrated. A hypervelocity launch system using frozen hydrogen/frozen oxygen propellant would be a revolutionary new development in spaceflight.

  16. Giant dipole modes in heavy-ion reactions

    International Nuclear Information System (INIS)

    Suraud, E.; Schuck, P.

    1988-07-01

    A detailed study of the excitation of giant dipole modes (GDR) in intermediate energy heavy-ion collisions is presented in the framework of a full (non linearized) Landau-Vlasov equation. After having recalled the basic inputs of this dynamical formalism, within insisting upon the limitations of the Uehling-Uhlenbeck collision integral and upon the introduction of a realistic (isospin dependant) effective interaction, we present our tools for analysing the GDR in the simple case of isolated nuclei. We then pass on to simulations of collisions and discuss in some detail isospin modes in the model 12 Be + 12 C reaction. Results obtained for the energy of the excited dipole mode are in agreement with what is expected for excited, rotating, giant dipole oscillations in deformed nuclei

  17. Hypervelocity impact cratering calculations

    Science.gov (United States)

    Maxwell, D. E.; Moises, H.

    1971-01-01

    A summary is presented of prediction calculations on the mechanisms involved in hypervelocity impact cratering and response of earth media. Considered are: (1) a one-gram lithium-magnesium alloys impacting basalt normally at 6.4 km/sec, and (2) a large terrestrial impact corresponding to that of Sierra Madera.

  18. Theoretical Research Progress in High-Velocity/Hypervelocity Impact on Semi-Infinite Targets

    Directory of Open Access Journals (Sweden)

    Yunhou Sun

    2015-01-01

    Full Text Available With the hypervelocity kinetic weapon and hypersonic cruise missiles research projects being carried out, the damage mechanism for high-velocity/hypervelocity projectile impact on semi-infinite targets has become the research keystone in impact dynamics. Theoretical research progress in high-velocity/hypervelocity impact on semi-infinite targets was reviewed in this paper. The evaluation methods for critical velocity of high-velocity and hypervelocity impact were summarized. The crater shape, crater scaling laws and empirical formulae, and simplified analysis models of crater parameters for spherical projectiles impact on semi-infinite targets were reviewed, so were the long rod penetration state differentiation, penetration depth calculation models for the semifluid, and deformed long rod projectiles. Finally, some research proposals were given for further study.

  19. Survey of the hypervelocity impact technology and applications.

    Energy Technology Data Exchange (ETDEWEB)

    Chhabildas, Lalit Chandra; Orphal, Dennis L.

    2006-05-01

    HVIS 2005 was a clear success. The Symposium brought together nearly two hundred active researchers and students from thirteen countries around the world. The 84 papers presented at HVIS 2005 constitute an ''update'' on current research and the state-of-the-art of hypervelocity science. Combined with the over 7000 pages of technical papers from the eight previous Symposia, beginning in 1986, all published in the International Journal of Impact Engineering, the papers from HVIS 2005 add to the growing body of knowledge and the progressing state-of-the-art of hypervelocity science. It is encouraging to report that even with the limited funding resources compared to two decades ago, creativity and ingenuity in hypervelocity science are alive and well. There is considerable overlap in different disciplines that allows researchers to leverage. Experimentally, higher velocities are now available in the laboratory and are ideally suited for space applications that can be tied to both civilian (NASA) and DoD military applications. Computationally, there is considerable advancement both in computer and modeling technologies. Higher computing speeds and techniques such as parallel processing allow system level type applications to be addressed directly today, much in contrast to the situation only a few years ago. Needless to say, both experimentally and computationally, the ultimate utility will depend on the curiosity and the probing questions that will be incumbent upon the individual researcher. It is quite satisfying that over two dozen students attended the symposium. Hopefully this is indicative of a good pool of future researchers that will be needed both in the government and civilian industries. It is also gratifying to note that novel thrust areas exploring different and new material phenomenology relevant to hypervelocity impact, but a number of other applications as well, are being pursued. In conclusion, considerable progress is still being

  20. Inertial fusion with hypervelocity impact

    International Nuclear Information System (INIS)

    Olariu, S.

    1998-01-01

    The physics of the compression and ignition processes in inertial fusion is to a certain extent independent of the nature of the incident energy pulse. The present strategy in the field of inertial fusion is to study several alternatives of deposition of the incident energy, and, at the same time, of conducting studies with the aid of available incident laser pulses. In a future reactor based on inertial fusion, the laser beams may be replaced by ion beams, which have a better energy efficiency. The main projects in the field of inertial fusion are the National Ignition Facility (NIF) in USA, Laser Megajoule (LMJ) in France, Gekko XII in Japan and Iskra V in Russia. NIF will be constructed at Lawrence Livermore National Laboratory, in California. LMJ will be constructed near Bordeaux. In the conventional approach to inertial confinement fusion, both the high-density fuel mass and the hot central spot are supposed to be produced by the deposition of the driver energy in the outer layers of the fuel capsule. Alternatively, the driver energy could be used only to produce the radial compression of the fuel capsule to high densities but relatively low temperatures, while the ignition of fusion reactions in the compressed capsule should be effected by a synchronized hypervelocity impact. Using this arrangement, it was supposed that a 54 μm projectile is incident with a velocity of 3 x 10 6 m s -1 upon a large-yield deuterium-tritium target at rest. The collision of the incident projectile and of the large-yield target takes place inside a high-Z cavity. A laser or heavy-ion pulse is converted at the walls of the cavity into X-rays, which compresses the incident projectile and the large-yield target in high-density states. The laser pulse and the movement of the incident projectile are synchronized such that the collision should take place when the densities are the largest. The collision converts the kinetic energy of the incident projectile into thermal energy, the

  1. A Boltzmann equation approach to the damping of giant resonances in nuclei

    International Nuclear Information System (INIS)

    Schuck, P.; Winter, J.

    1983-01-01

    The Vlasov equation plus collision term (Boltzmann equation) represents an appropriate frame for the treatment of giant resonances (zero sound modes) in nuclei. With no adjustable parameters we obtain correct positions and widths for the giant quadrupole resonances. (author)

  2. Characterizing Hypervelocity Impact Plasma Through Experiments and Simulations

    Science.gov (United States)

    Close, Sigrid; Lee, Nicolas; Fletcher, Alex; Nuttall, Andrew; Hew, Monica; Tarantino, Paul

    2017-10-01

    Hypervelocity micro particles, including meteoroids and space debris with masses produce a strong electromagnetic pulse (EMP) with a broad frequency spectrum. Subsequent plasma oscillations resulting from instabilities can also emit significant power and may be responsible for many reported satellite anomalies. We present theory and recent results from ground-based impact tests aimed at characterizing hypervelocity impact plasma. We also show results from particle-in-cell (PIC) and computational fluid dynamics (CFD) simulations that allow us to extend to regimes not currently possible with ground-based technology. We show that significant impact-produced radio frequency (RF) emissions occurred in frequencies ranging from VHF through L-band and that these emissions were highly correlated with fast (>20 km/s) impacts that produced a fully ionized plasma.

  3. Satellite Collision Modeling with Physics-Based Hydrocodes: Debris Generation Predictions of the Iridium-Cosmos Collision Event and Other Impact Events

    International Nuclear Information System (INIS)

    Springer, H.K.; Miller, W.O.; Levatin, J.L.; Pertica, A.J.; Olivier, S.S.

    2010-01-01

    Satellite collision debris poses risks to existing space assets and future space missions. Predictive models of debris generated from these hypervelocity collisions are critical for developing accurate space situational awareness tools and effective mitigation strategies. Hypervelocity collisions involve complex phenomenon that spans several time- and length-scales. We have developed a satellite collision debris modeling approach consisting of a Lagrangian hydrocode enriched with smooth particle hydrodynamics (SPH), advanced material failure models, detailed satellite mesh models, and massively parallel computers. These computational studies enable us to investigate the influence of satellite center-of-mass (CM) overlap and orientation, relative velocity, and material composition on the size, velocity, and material type distributions of collision debris. We have applied our debris modeling capability to the recent Iridium 33-Cosmos 2251 collision event. While the relative velocity was well understood in this event, the degree of satellite CM overlap and orientation was ill-defined. In our simulations, we varied the collision CM overlap and orientation of the satellites from nearly maximum overlap to partial overlap on the outermost extents of the satellites (i.e, solar panels and gravity boom). As expected, we found that with increased satellite overlap, the overall debris cloud mass and momentum (transfer) increases, the average debris size decreases, and the debris velocity increases. The largest predicted debris can also provide insight into which satellite components were further removed from the impact location. A significant fraction of the momentum transfer is imparted to the smallest debris (< 1-5mm, dependent on mesh resolution), especially in large CM overlap simulations. While the inclusion of the smallest debris is critical to enforcing mass and momentum conservation in hydrocode simulations, there seems to be relatively little interest in their

  4. EFFECTS OF DYNAMICAL EVOLUTION OF GIANT PLANETS ON SURVIVAL OF TERRESTRIAL PLANETS

    International Nuclear Information System (INIS)

    Matsumura, Soko; Ida, Shigeru; Nagasawa, Makiko

    2013-01-01

    The orbital distributions of currently observed extrasolar giant planets allow marginally stable orbits for hypothetical, terrestrial planets. In this paper, we propose that many of these systems may not have additional planets on these ''stable'' orbits, since past dynamical instability among giant planets could have removed them. We numerically investigate the effects of early evolution of multiple giant planets on the orbital stability of the inner, sub-Neptune-like planets which are modeled as test particles, and determine their dynamically unstable region. Previous studies have shown that the majority of such test particles are ejected out of the system as a result of close encounters with giant planets. Here, we show that secular perturbations from giant planets can remove test particles at least down to 10 times smaller than their minimum pericenter distance. Our results indicate that, unless the dynamical instability among giant planets is either absent or quiet like planet-planet collisions, most test particles down to ∼0.1 AU within the orbits of giant planets at a few AU may be gone. In fact, out of ∼30% of survived test particles, about three quarters belong to the planet-planet collision cases. We find a good agreement between our numerical results and the secular theory, and present a semi-analytical formula which estimates the dynamically unstable region of the test particles just from the evolution of giant planets. Finally, our numerical results agree well with the observations, and also predict the existence of hot rocky planets in eccentric giant planet systems.

  5. Elastoplasticity: A link between giant vibrations and overdamped motion

    International Nuclear Information System (INIS)

    Noerenberg, W.

    1984-08-01

    Elastoplasticity of finite Fermi systems results from a non-markovian coupling between collective and intrinsic degrees of freedom and subsequent equilibration essentially due to two-body collisions. Within a transport-theoretical approach referred to as dissipative diabatic dynamics (DDD), elastoplasticity forms the link between giant vibrations and overdamped motion of nuclei. Observable effects resulting from this non-markovian behaviour in nucleus-nucleus collisions are discussed. (orig.)

  6. Multiple ionization of C{sub 60} in collisions with 2.33MeV/u O-ions and giant plasmon excitation

    Energy Technology Data Exchange (ETDEWEB)

    Kelkar, A.H. [Tata Institute of Fundamental Research, Colaba, Mumbai 400 005 (India)]. E-mail: lokesh@tifr.res.in; Kadhane, U. [Tata Institute of Fundamental Research, Colaba, Mumbai 400 005 (India); Misra, D. [Tata Institute of Fundamental Research, Colaba, Mumbai 400 005 (India); Kumar, Ajay [Tata Institute of Fundamental Research, Colaba, Mumbai 400 005 (India); Tribedi, L.C. [Tata Institute of Fundamental Research, Colaba, Mumbai 400 005 (India)

    2007-03-15

    Single and multiple ionization of C{sub 60} in collisions with fast (v=9.7a.u.) O{sup q+} ions have been studied. Relative cross sections for production of C{sub 60}{sup 1+} to C{sub 60}{sup 4+} have been measured. The intensity ratios of double-to-single ionization agree very well with a model based on giant dipole plasmon resonance (GDPR). Almost linear increasing trend of the yields of single and double ionizations with projectile charge state is well reproduced by the single and double plasmon excitation mechanisms. The observed charge state independence of triple and quadruple ionization is in sharp contrast to the GDPR model.

  7. Development and application of streakline visualization in hypervelocity flows

    Energy Technology Data Exchange (ETDEWEB)

    Lemieux, P.; Hornung, H.G. [Graduate Aeronautical Laboratories, California Institute of Technology, Pasadena, CA 91125 (United States)

    2002-07-01

    A method for visualizing streaklines in hypervelocity flows has been developed. The method uses the high temperatures produced in hypervelocity flows to ablate small amounts of sodium deposited onto a wire stretched across the flow and to broaden the lines in the sodium spectrum. By using a dye laser, tuned to a wavelength close to one of the sodium D-lines, as the light source in shadowgraph or Schlieren visualization, streaklines seeded with sodium become visible through absorption and/or enhanced refractivity. The technique has been used to investigate the stability of the shear layer produced by the curved bow shock on a cylindrically blunted wedge. The results suggest that the shear layer is unstable, exhibiting structures with a wavelength that is comparable to half the nose radius of the body. (orig.)

  8. Flash characteristics of plasma induced by hypervelocity impact

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Kai [State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081 (China); Beijing Automotive Technology Center, Beijing 100021 (China); Long, Renrong, E-mail: longrenrong@bit.edu.cn, E-mail: qmzhang@bit.edu.cn; Zhang, Qingming, E-mail: longrenrong@bit.edu.cn, E-mail: qmzhang@bit.edu.cn; Xue, Yijiang; Ju, Yuanyuan [State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081 (China)

    2016-08-15

    Using a two-stage light gas gun, a series of hypervelocity impact experiments was conducted in which 6.4-mm-diameter spherical 2024-aluminum projectiles impact 23-mm-thick targets made of the same material at velocities of 5.0, 5.6, and 6.3 km/s. Both an optical pyrometer composed of six photomultiplier tubes and a spectrograph were used to measure the flash of the plasma during hypervelocity impact. Experimental results show that, at a projectile velocity of 6.3 km/s, the strong flash lasted about 10 μs and reached a temperature of 4300 K. Based on the known emission lines of AL I, spectral methods can provide the plasma electron temperature. An electron-temperature comparison between experiment and theoretical calculation indicates that single ionization and secondary ionization are the two main ionizing modes at velocities 5.0–6.3 km/s.

  9. Ultrahigh-speed X-ray imaging of hypervelocity projectiles

    Science.gov (United States)

    Miller, Stuart; Singh, Bipin; Cool, Steven; Entine, Gerald; Campbell, Larry; Bishel, Ron; Rushing, Rick; Nagarkar, Vivek V.

    2011-08-01

    High-speed X-ray imaging is an extremely important modality for healthcare, industrial, military and research applications such as medical computed tomography, non-destructive testing, imaging in-flight projectiles, characterizing exploding ordnance, and analyzing ballistic impacts. We report on the development of a modular, ultrahigh-speed, high-resolution digital X-ray imaging system with large active imaging area and microsecond time resolution, capable of acquiring at a rate of up to 150,000 frames per second. The system is based on a high-resolution, high-efficiency, and fast-decay scintillator screen optically coupled to an ultra-fast image-intensified CCD camera designed for ballistic impact studies and hypervelocity projectile imaging. A specially designed multi-anode, high-fluence X-ray source with 50 ns pulse duration provides a sequence of blur-free images of hypervelocity projectiles traveling at speeds exceeding 8 km/s (18,000 miles/h). This paper will discuss the design, performance, and high frame rate imaging capability of the system.

  10. Recent Representative IAT Studies in Hypervelocity Penetration Mechanics With Bibliographies

    National Research Council Canada - National Science Library

    Reinecke, W

    2002-01-01

    .... The IAT's investigations are experimental, analytical, and numerical and are concerned primarily with slender rods impacting armor steel and ceramic targets at hypervelocity that is, above about two km...

  11. Electromagnetic excitation of 136Xe in relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Schmidt, R.D.

    1991-11-01

    In the framework of the experimental program at the accelerator facilities SIS/ESR at the Society for Heavy Ion Research in Darmstadt a detector system for relativistic neutrons was developed, constructed, and applied in first experiments. An essential research aim is the study of collective states after electromagnetic excitation in relativistic heavy ion collisions. In peripheral collisions high-energy virtual photons are exchanged. This leads to the excitation of giant resonances, especially of the giant dipole and quadrupole resonance. An essential decay channel of giant resonances in heavy nuclei is the emission of neutrons, followed by the emission of γ radiation below the particle threshold. These decay channels were studied with the detector system developed by the LAND collaboration. A first experiment on the electromagnetic excitation was performed with a 136 Xe beam at an energy of 700 MeV/u and Pb respectively C targets. (orig./HSI) [de

  12. Characterization of Orbital Debris via Hyper-Velocity Ground-Based Tests

    Science.gov (United States)

    Cowardin, Heather

    2016-01-01

    The purpose of the DebriSat project is to replicate a hyper-velocity fragmentation event using modern-day spacecraft materials and construction techniques to better improve the existing DoDand NASA breakup models.

  13. Hypervelocity impacts into graphite

    Science.gov (United States)

    Latunde-Dada, S.; Cheesman, C.; Day, D.; Harrison, W.; Price, S.

    2011-03-01

    Studies have been conducted into the characterisation of the behaviour of commercial graphite (brittle) when subjected to hypervelocity impacts by a range of projectiles. The experiments were conducted with a two-stage gas gun capable of launching projectiles of differing density and strength to speeds of about 6kms-1 at right angles into target plates. The damage caused is quantified by measurements of the crater depth and diameters. From the experimental data collected, scaling laws were derived which correlate the crater dimensions to the velocity and the density of the projectile. It was found that for moderate projectile densities the crater dimensions obey the '2/3 power law' which applies to ductile materials.

  14. Hypervelocity impacts into graphite

    International Nuclear Information System (INIS)

    Latunde-Dada, S; Cheesman, C; Day, D; Harrison, W; Price, S

    2011-01-01

    Studies have been conducted into the characterisation of the behaviour of commercial graphite (brittle) when subjected to hypervelocity impacts by a range of projectiles. The experiments were conducted with a two-stage gas gun capable of launching projectiles of differing density and strength to speeds of about 6kms -1 at right angles into target plates. The damage caused is quantified by measurements of the crater depth and diameters. From the experimental data collected, scaling laws were derived which correlate the crater dimensions to the velocity and the density of the projectile. It was found that for moderate projectile densities the crater dimensions obey the '2/3 power law' which applies to ductile materials.

  15. Igneous rocks formed by hypervelocity impact

    Science.gov (United States)

    Osinski, Gordon R.; Grieve, Richard A. F.; Bleacher, Jacob E.; Neish, Catherine D.; Pilles, Eric A.; Tornabene, Livio L.

    2018-03-01

    Igneous rocks are the primary building blocks of planetary crusts. Most igneous rocks originate via decompression melting and/or wet melting of protolith lithologies within planetary interiors and their classification and compositional, petrographic, and textural characteristics, are well-studied. As our exploration of the Solar System continues, so too does the inventory of intrusive and extrusive igneous rocks, settings, and processes. The results of planetary exploration have also clearly demonstrated that impact cratering is a ubiquitous geological process that has affected, and will continue to affect, all planetary objects with a solid surface, whether that be rock or ice. It is now recognized that the production of igneous rocks is a fundamental outcome of hypervelocity impact. The goal of this review is to provide an up-to-date synthesis of our knowledge and understanding of igneous rocks formed by hypervelocity impact. Following a brief overview of the basics of the impact process, we describe how and why melts are generated during impact events and how impact melting differs from endogenic igneous processes. While the process may differ, we show that the products of hypervelocity impact can share close similarities with volcanic and shallow intrusive igneous rocks of endogenic origin. Such impact melt rocks, as they are termed, can display lobate margins and cooling cracks, columnar joints and at the hand specimen and microscopic scale, such rocks can display mineral textures that are typical of volcanic rocks, such as quench crystallites, ophitic, porphyritic, as well as features such as vesicles, flow textures, and so on. Historically, these similarities led to the misidentification of some igneous rocks now known to be impact melt rocks as being of endogenic origin. This raises the question as to how to distinguish between an impact versus an endogenic origin for igneous-like rocks on other planetary bodies where fieldwork and sample analysis may not

  16. Relativistic Coulomb excitation of giant resonances in the hydrodynamic model

    International Nuclear Information System (INIS)

    Vasconcellos Gomes, Ana Cristina de.

    1990-05-01

    We investigate the Coulomb excitation of giant dipole resonances in relativistic heavy ion collisions using a macroscopic hydrodynamical model for the harmonic vibrations of the nuclear fluid. The motion is treated as a combination of the Goldhaber-Teller displacement mode and the Steinwedel-Jensen acoustic mode, and the restoring forces are calculated using the droplet model. This model is used as input to study the characteristics of multiple excitation of giant dipole resonances in nuclei. Possible signatures for the existence of such states are also discussed quantitatively. (author). 52 refs., 14 figs., 3 tabs

  17. Collisional width of giant resonances and interplay with Landau damping

    International Nuclear Information System (INIS)

    Bonasera, A.; Burgio, G.F.; Di Toro, M.; Wolter, H.H.

    1989-01-01

    We present a semiclassical method to calculate the widths of giant resonances. We solve a mean-field kinetic equation (Vlasov equation) with collision terms treated within the relaxation time approximation to construct a damped strength distribution for collective motions. The relaxation time is evaluated from the time evolution of distortions in the nucleon momentum distribution using a test-particle approach. The importance of an energy dependent nucleon-nucleon cross section is stressed. Results are shown for isoscalar giant quadrupole and octupole motions. A quite important interplay between self-consistent (Landau) and collisional damping is revealed

  18. Hyper-velocity impacts on the molten silica of the LMJ facility: experimental results and related simulations

    International Nuclear Information System (INIS)

    Bertron, I.; Chevalier, J.M.; Malaise, F.; Barrio, A.; Courchinoux, R.

    2003-01-01

    This work presents a damaging study of the molten silica splinter-guards of the experiment chamber of the Megajoule laser facility. Damaging is due to the impact of hyper-velocity particulates coming from the interaction between X-rays and the diagnostic supports. Experiments have been carried out with the light-gas dual-stage launcher MICA in parallel with numerical simulations using a silica fragmentation and fissuring model embedded in the HESIONE code. First tests concern hyper-velocity impacts of steel balls of 550 μm diameter on silica samples. Samples are expertized to measure the craters and damaging characteristics generated by the impact. Experimental results are compared to numerical simulations in order to check the capability of the model to reproduce the effect of hyper-velocity impacts on molten silica. The final goal is to evaluate the lifetime of splinter-guards. (J.S.)

  19. Theory of and effects from elastoplasticity in nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Noerenberg, W.; Technische Hochschule Darmstadt

    1985-02-01

    Elastoplasticity of finite Fermi systems results from a coherent coupling between collective and intrinsic degrees of freedom and subsequent equilibration essentially due to two-body collisions. Within a non-markovian transport-theoretical approach referred to as dissipative diabatic dynamics (DDD), elastoplastical forms the link between giant vibrations and overdamped motion of nuclear. Obersvable effects resulting from this non-markovian behaviour in nucleus-nucleus collisions are discussed. (orig.)

  20. STAR FORMATION IN DISK GALAXIES. I. FORMATION AND EVOLUTION OF GIANT MOLECULAR CLOUDS VIA GRAVITATIONAL INSTABILITY AND CLOUD COLLISIONS

    International Nuclear Information System (INIS)

    Tasker, Elizabeth J.; Tan, Jonathan C.

    2009-01-01

    We investigate the formation and evolution of giant molecular clouds (GMCs) in a Milky-Way-like disk galaxy with a flat rotation curve. We perform a series of three-dimensional adaptive mesh refinement numerical simulations that follow both the global evolution on scales of ∼20 kpc and resolve down to scales ∼ H ≥ 100 cm -3 and track the evolution of individual clouds as they orbit through the galaxy from their birth to their eventual destruction via merger or via destructive collision with another cloud. After ∼140 Myr a large fraction of the gas in the disk has fragmented into clouds with masses ∼10 6 M sun and a mass spectrum similar to that of Galactic GMCs. The disk settles into a quasi-steady-state in which gravitational scattering of clouds keeps the disk near the threshold of global gravitational instability. The cloud collision time is found to be a small fraction, ∼1/5, of the orbital time, and this is an efficient mechanism to inject turbulence into the clouds. This helps to keep clouds only moderately gravitationally bound, with virial parameters of order unity. Many other observed GMC properties, such as mass surface density, angular momentum, velocity dispersion, and vertical distribution, can be accounted for in this simple model with no stellar feedback.

  1. In-Flight Imaging Systems for Hypervelocity and Re-Entry Vehicles, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — It is proposed to create a rugged, reliable, compact, standardized imaging system for hypervelocity and re-entry vehicles using sapphire windows, small imagers, and...

  2. Hypervelocity Dust Injection for Plasma Diagnostic Applications

    Science.gov (United States)

    Ticos, Catalin

    2005-10-01

    Hypervelocity micron-size dust grain injection was proposed for high-temperature magnetized plasma diagnosis. Multiple dust grains are launched simultaneously into high temperature plasmas at several km/s or more. The hypervelocity dust grains are ablated by the electron and ion fluxes. Fast imaging of the resulting luminous plumes attached to each grain is expected to yield local magnetic field vectors. Combination of multiple local magnetic field vectors reproduces 2D or even 3D maps of the internal magnetic field topology. Key features of HDI are: (1) a high spatial resolution, due to a relatively small transverse size of the elongated tail, and (2) a small perturbation level, as the dust grains introduce negligible number of particles compared to the plasma particle inventory. The latter advantage, however, could be seriously compromised if the gas load from the accelerator has an unobstructed access to the diagnosed plasma. Construction of a HDI diagnostic for National Spherical Torus Experiment (NSTX), which includes a coaxial plasma gun for dust grain acceleration, is underway. Hydrogen and deuterium gas discharges inside accelerator are created by a ˜ 1 mF capacitor bank pre-charged up to 10 kV. The diagnostic apparatus also comprises a dust dispenser for pre-loading the accelerator with dust grains, and an imaging system that has a high spatial and temporal resolution.

  3. Hypervelocity Impact Test Fragment Modeling: Modifications to the Fragment Rotation Analysis and Lightcurve Code

    Science.gov (United States)

    Gouge, Michael F.

    2011-01-01

    Hypervelocity impact tests on test satellites are performed by members of the orbital debris scientific community in order to understand and typify the on-orbit collision breakup process. By analysis of these test satellite fragments, the fragment size and mass distributions are derived and incorporated into various orbital debris models. These same fragments are currently being put to new use using emerging technologies. Digital models of these fragments are created using a laser scanner. A group of computer programs referred to as the Fragment Rotation Analysis and Lightcurve code uses these digital representations in a multitude of ways that describe, measure, and model on-orbit fragments and fragment behavior. The Dynamic Rotation subroutine generates all of the possible reflected intensities from a scanned fragment as if it were observed to rotate dynamically while in orbit about the Earth. This calls an additional subroutine that graphically displays the intensities and the resulting frequency of those intensities as a range of solar phase angles in a Probability Density Function plot. This document reports the additions and modifications to the subset of the Fragment Rotation Analysis and Lightcurve concerned with the Dynamic Rotation and Probability Density Function plotting subroutines.

  4. Hypervelocity impact on Zr51Ti5Ni10Cu25Al9 bulk metallic glass

    International Nuclear Information System (INIS)

    Zheng, W.; Huang, Y.J.; Pang, B.J.; Shen, J.

    2011-01-01

    Highlights: → Hypervelocity impact experiments were performed on a bulk metallic glass. → Morphology of the bullet hole presents three different regions. → The post-impact samples keep glassy structure. → Mechanical properties of the post-impact samples were studied by nanoindentation. → Mechanical properties of the post-impact samples were discussed by free-volume model. - Abstract: In this study, the hypervelocity impact experiments were performed on Zr 51 Ti 5 Ni 10 Cu 25 Al 9 bulk metallic glass using a two-stage light gas gun. The morphologies of the bullet holes exhibit three different regions: melting area, vein-pattern area, and radiating core feature area, suggesting that various regions experience different stress states during the hypervelocity impact. For the post-impact samples, the nano-hardness increases and plastic deformability decreases both with the increase in the distance from the bullet hole and with the decrease in the impact velocity, which is discussed by means of spherical stress wave theory and free-volume model.

  5. Optimum structure of Whipple shield against hypervelocity impact

    International Nuclear Information System (INIS)

    Lee, M

    2014-01-01

    Hypervelocity impact of a spherical aluminum projectile onto two spaced aluminum plates (Whipple shield) was simulated to estimate an optimum structure. The Smooth Particle Hydrodynamics (SPH) code which has a unique migration scheme from a rectangular coordinate to an axisymmetic coordinate was used. The ratio of the front plate thickness to sphere diameter varied from 0.06 to 0.48. The impact velocities considered here were 6.7 km/s. This is the procedure we explored. To guarantee the early stage simulation, the shapes of debris clouds were first compared with the previous experimental pictures, indicating a good agreement. Next, the debris cloud expansion angle was predicted and it shows a maximum value of 23 degree for thickness ratio of front bumper to sphere diameter of 0.23. A critical sphere diameter causing failure of rear wall was also examined while keeping the total thickness of two plates constant. There exists an optimum thickness ratio of front bumper to rear wall, which is identified as a function of the size combination of the impacting body, front and rear plates. The debris cloud expansion-correlated-optimum thickness ratio study provides a good insight on the hypervelocity impact onto spaced target system.

  6. Optimum structure of Whipple shield against hypervelocity impact

    Science.gov (United States)

    Lee, M.

    2014-05-01

    Hypervelocity impact of a spherical aluminum projectile onto two spaced aluminum plates (Whipple shield) was simulated to estimate an optimum structure. The Smooth Particle Hydrodynamics (SPH) code which has a unique migration scheme from a rectangular coordinate to an axisymmetic coordinate was used. The ratio of the front plate thickness to sphere diameter varied from 0.06 to 0.48. The impact velocities considered here were 6.7 km/s. This is the procedure we explored. To guarantee the early stage simulation, the shapes of debris clouds were first compared with the previous experimental pictures, indicating a good agreement. Next, the debris cloud expansion angle was predicted and it shows a maximum value of 23 degree for thickness ratio of front bumper to sphere diameter of 0.23. A critical sphere diameter causing failure of rear wall was also examined while keeping the total thickness of two plates constant. There exists an optimum thickness ratio of front bumper to rear wall, which is identified as a function of the size combination of the impacting body, front and rear plates. The debris cloud expansion-correlated-optimum thickness ratio study provides a good insight on the hypervelocity impact onto spaced target system.

  7. Development of a Thermo-chemical Non-equilibrium Solver for Hypervelocity Flows

    Science.gov (United States)

    Balasubramanian, R.; Anandhanarayanan, K.

    2015-04-01

    In the present study, a three dimensional flowsolver is indigenously developed to numerically simulate hypervelocity thermal and chemical non equilibrium reactive air flow past flight vehicles. The two-temperature, five species, seventeen reactions, thermo-chemical non equilibrium, non-ionizing, air-chemistry model of Park is implemented in a compressible viscous code CERANS and solved in the finite volume framework. The energy relaxation is addressed by a conservation equation for the vibrational energy of the gas mixture resulting in the evaluation of its vibrational temperature. The AUSM-PW+ numerical flux function has been used for modeling the convective fluxes and a central differencing approximation is used for modeling the diffusive fluxes. The flowsolver had been validated for specifically chosen test cases with inherent flow complexities of non-ionizing hypervelocity thermochemical nonequilibrium flows and results obtained are in good agreement with results available in open literature.

  8. Decay of the vacuum in heavy ion collisions

    International Nuclear Information System (INIS)

    Mueller, B.

    1984-10-01

    The neutral electron-positron vacuum state becomes unstable in very strong electric fields of nuclei with Z>173 and decays into a charged vacuum by spontaneous positron emission. Such giant nuclear systems can be formed in collisions of very heavy ions (U+U, U+Cm, etc.) for a period of 10 -20 s or more. Recent experimental results revealing line structures in the positron spectra observed in these collisions are discussed and their implications for quantum electrodynamics and nuclear physics are pointed out. (orig.)

  9. Distributed energy store powered railguns for hypervelocity launch

    Science.gov (United States)

    Maas, Brian L.; Bauer, David P.; Marshall, Richard A.

    1993-01-01

    Highly distributed power supplies are proposed as a basis for current difficulties with hypervelocity railgun power-supply compactness. This distributed power supply configuration reduces rail-to-rail voltage behind the main armature, thereby reducing the tendency for secondary armature current formation; secondary current elimination is essential for achieving the efficiencies associated with muzzle velocity above 6 km/sec. Attention is given to analytical and experimental results for two distributed energy storage schemes.

  10. Neutron star/red giant encounters in globular clusters

    International Nuclear Information System (INIS)

    Bailyn, C.D.

    1988-01-01

    The author presents a simple expression for the amount by which xsub(crit) is diminished as a star evolves xsub(crit) Rsub(crit)/R*, where Rsub(crit) is the maximum distance of closest approach between two stars for which the tidal energy is sufficient to bind the system, and R* is the radius of the star on which tides are being raised. Also it is concluded that tidal capture of giants by neutron stars resulting in binary systems is unlikely in globular clusters. However, collisions between neutron stars and red giants, or an alternative process involving tidal capture of a main-sequence star into an initially detached binary system, may result either in rapidly rotating neutron stars or in white dwarf/neutron star binaries. (author)

  11. Hypervelocity launch capabilities to over 10 km/s

    International Nuclear Information System (INIS)

    Chhabildas, L.C.

    1991-01-01

    Very high pressure and acceleration is necessary to launch flier plates to hypervelocities. In addition, the high pressure loading must be uniform, structured, and shockless, i.e., time-dependent to prevent the flier plate from either fracturing or melting. In this paper, a novel technique is described which allows the use of megabar level loading pressures, and 10 9 g acceleration to launch intact flier plates to velocities of 12.2 km/s. 32 refs., 2 figs

  12. Emission spectroscopy of hypervelocity impacts on aluminum, organic and high-explosive targets

    NARCIS (Netherlands)

    Verreault, J.; Day, J.P.R.; Halswijk, W.H.C.; Loiseau, J.; Huneault, J.; Higgins, A.J.; Devir, A.D.

    2015-01-01

    Laboratory experiments of hypervelocity impacts on aluminum, nylon and high-explosive targets are presented. Spectral measurements of the impact flash are recorded, together with radiometric measurements to derive the temperature of the flash. Such experiments aim at demonstrating that the impact

  13. Nonlinear CARS measurement of nitrogen vibrational and rotational temperatures behind hypervelocity strong shock wave

    Science.gov (United States)

    Osada, Takashi; Endo, Youichi; Kanazawa, Chikara; Ota, Masanori; Maeno, Kazuo

    2009-02-01

    The hypervelocity strong shock waves are generated, when the space vehicles reenter the atmosphere from space. Behind the shock wave radiative and non-equilibrium flow is generated in front of the surface of the space vehicle. Many studies have been reported to investigate the phenomena for the aerospace exploit and reentry. The research information and data on the high temperature flows have been available to the rational heatproof design of the space vehicles. Recent development of measurement techniques with laser systems and photo-electronics now enables us to investigate the hypervelocity phenomena with greatly advanced accuracy. In this research strong shock waves are generated in low-density gas to simulate the reentry range gas flow with a free-piston double-diaphragm shock tube, and CARS (Coherent Anti-stokes Raman Spectroscopy) measurement method is applied to the hypervelocity flows behind the shock waves, where spectral signals of high space/time resolution are acquired. The CARS system consists of YAG and dye lasers, a spectroscope, and a CCD camera system. We obtain the CARS signal spectrum data by this special time-resolving experiment, and the vibrational and rotational temperatures of N2 are determined by fitting between the experimental spectroscopic profile data and theoretically estimated spectroscopic data.

  14. Nonlinear CARS measurement of nitrogen vibrational and rotational temperatures behind hypervelocity strong shock wave

    Energy Technology Data Exchange (ETDEWEB)

    Osada, Takashi; Endo, Youichi [Graduate Student, Chiba University 1-33 Yayoi, Inage, Chiba, 263-8522 (Japan); Kanazawa, Chikara [Undergraduate, Chiba University 1-33 Yayoi, Inage, Chiba, 63-8522 (Japan); Ota, Masanori; Maeno, Kazuo, E-mail: maeno@faculty.chiba-u.j [Graduate School of Engineering, Chiba University 1-33 Yayoi, Inage, Chiba, 263-8522 (Japan)

    2009-02-01

    The hypervelocity strong shock waves are generated, when the space vehicles reenter the atmosphere from space. Behind the shock wave radiative and non-equilibrium flow is generated in front of the surface of the space vehicle. Many studies have been reported to investigate the phenomena for the aerospace exploit and reentry. The research information and data on the high temperature flows have been available to the rational heatproof design of the space vehicles. Recent development of measurement techniques with laser systems and photo-electronics now enables us to investigate the hypervelocity phenomena with greatly advanced accuracy. In this research strong shock waves are generated in low-density gas to simulate the reentry range gas flow with a free-piston double-diaphragm shock tube, and CARS (Coherent Anti-stokes Raman Spectroscopy) measurement method is applied to the hypervelocity flows behind the shock waves, where spectral signals of high space/time resolution are acquired. The CARS system consists of YAG and dye lasers, a spectroscope, and a CCD camera system. We obtain the CARS signal spectrum data by this special time-resolving experiment, and the vibrational and rotational temperatures of N{sub 2} are determined by fitting between the experimental spectroscopic profile data and theoretically estimated spectroscopic data.

  15. Nonlinear CARS measurement of nitrogen vibrational and rotational temperatures behind hypervelocity strong shock wave

    International Nuclear Information System (INIS)

    Osada, Takashi; Endo, Youichi; Kanazawa, Chikara; Ota, Masanori; Maeno, Kazuo

    2009-01-01

    The hypervelocity strong shock waves are generated, when the space vehicles reenter the atmosphere from space. Behind the shock wave radiative and non-equilibrium flow is generated in front of the surface of the space vehicle. Many studies have been reported to investigate the phenomena for the aerospace exploit and reentry. The research information and data on the high temperature flows have been available to the rational heatproof design of the space vehicles. Recent development of measurement techniques with laser systems and photo-electronics now enables us to investigate the hypervelocity phenomena with greatly advanced accuracy. In this research strong shock waves are generated in low-density gas to simulate the reentry range gas flow with a free-piston double-diaphragm shock tube, and CARS (Coherent Anti-stokes Raman Spectroscopy) measurement method is applied to the hypervelocity flows behind the shock waves, where spectral signals of high space/time resolution are acquired. The CARS system consists of YAG and dye lasers, a spectroscope, and a CCD camera system. We obtain the CARS signal spectrum data by this special time-resolving experiment, and the vibrational and rotational temperatures of N 2 are determined by fitting between the experimental spectroscopic profile data and theoretically estimated spectroscopic data.

  16. Hypervelocity dust impact craters on photovoltaic devices imaged by ion beam induced charge

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Changyi [School of Physics, University of Melbourne, Parkville, VIC 3010 (Australia); Wu, Yiyong; Lv, Gang [National Key Laboratory of Materials Behavior and Evaluation Technology in Space Environments, Harbin Institute of Technology, Harbin (China); Rubanov, Sergey [Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010 (Australia); Jamieson, David N., E-mail: d.jamieson@unimelb.edu.au [School of Physics, University of Melbourne, Parkville, VIC 3010 (Australia)

    2015-04-01

    Hypervelocity dust has a speed of greater than 5 km/s and is a significant problem for equipment deployed in space such as satellites because of impacts that damage vulnerable components. Photovoltaic (PV) arrays are especially vulnerable because of their large surface area and the performance can be degraded owing to the disruption of the structure of the junction in the cells making up the array. Satellite PV arrays returned to Earth after service in orbit reveal a large number of craters larger than 5 μm in diameter arising from hypervelocity dust impacts. Extensive prior work has been done on the analysis of the morphology of craters in PV cells to understand the origin of the micrometeoroid that caused the crater and to study the corresponding mechanical damage to the structure of the cell. Generally, about half the craters arise from natural micrometeoroids, about one third from artificial Al-rich debris, probably from solid rocket exhausts, and the remainder from miscellaneous sources both known and unknown. However to date there has not been a microscopic study of the degradation of the electrical characteristics of PV cells exposed to hypervelocity dust impacts. Here we present an ion beam induced charge (IBIC) pilot study by a 2 MeV He microbeam of craters induced on a Hamamatsu PIN diode exposed to artificial hypervelocity Al dust from a dust accelerator. Numerous 5–30 μm diameter craters were identified and the charge collection efficiency of the crater and surrounds mapped with IBIC with bias voltages between 0 and 20 V. At highest bias, it was found the efficiency of the crater had been degraded by about 20% compared to the surrounding material. The speed distribution achieved in the Al dust accelerator was peaked at about 4 km/s compared to 11–68 km/s for dust encountered in low Earth orbit. We are able to extrapolate the charge collection efficiency degradation rate of unbiased cells in space based on our current measurements and the

  17. Hypervelocity dust impact craters on photovoltaic devices imaged by ion beam induced charge

    International Nuclear Information System (INIS)

    Yang, Changyi; Wu, Yiyong; Lv, Gang; Rubanov, Sergey; Jamieson, David N.

    2015-01-01

    Hypervelocity dust has a speed of greater than 5 km/s and is a significant problem for equipment deployed in space such as satellites because of impacts that damage vulnerable components. Photovoltaic (PV) arrays are especially vulnerable because of their large surface area and the performance can be degraded owing to the disruption of the structure of the junction in the cells making up the array. Satellite PV arrays returned to Earth after service in orbit reveal a large number of craters larger than 5 μm in diameter arising from hypervelocity dust impacts. Extensive prior work has been done on the analysis of the morphology of craters in PV cells to understand the origin of the micrometeoroid that caused the crater and to study the corresponding mechanical damage to the structure of the cell. Generally, about half the craters arise from natural micrometeoroids, about one third from artificial Al-rich debris, probably from solid rocket exhausts, and the remainder from miscellaneous sources both known and unknown. However to date there has not been a microscopic study of the degradation of the electrical characteristics of PV cells exposed to hypervelocity dust impacts. Here we present an ion beam induced charge (IBIC) pilot study by a 2 MeV He microbeam of craters induced on a Hamamatsu PIN diode exposed to artificial hypervelocity Al dust from a dust accelerator. Numerous 5–30 μm diameter craters were identified and the charge collection efficiency of the crater and surrounds mapped with IBIC with bias voltages between 0 and 20 V. At highest bias, it was found the efficiency of the crater had been degraded by about 20% compared to the surrounding material. The speed distribution achieved in the Al dust accelerator was peaked at about 4 km/s compared to 11–68 km/s for dust encountered in low Earth orbit. We are able to extrapolate the charge collection efficiency degradation rate of unbiased cells in space based on our current measurements and the

  18. Plasma jet acceleration of dust particles to hypervelocities

    International Nuclear Information System (INIS)

    Ticos, C. M.; Wang, Zhehui; Wurden, G. A.; Kline, J. L.; Montgomery, D. S.

    2008-01-01

    A convenient method to accelerate simultaneously hundreds of micron-size dust particles to a few km/s over a distance of about 1 m is based on plasma drag. Plasma jets which can deliver sufficient momentum to the dust particles need to have speeds of at least several tens of km/s, densities of the order of 10 22 m -3 or higher, and low temperature ∼1 eV, in order to prevent dust destruction. An experimental demonstration of dust particles acceleration to hypervelocities by plasma produced in a coaxial gun is presented here. The plasma flow speed is deduced from photodiode signals while the plasma density is measured by streaked spectroscopy. As a result of the interaction with the plasma jet, the dust grains are also heated to high temperatures and emit visible light. A hypervelocity dust shower is imaged in situ with a high speed video camera at some distance from the coaxial gun, where light emission from the plasma flow is less intense. The bright traces of the flying microparticles are used to infer their speed and acceleration by employing the time-of-flight technique. A simple model for plasma drag which accounts for ion collection on the grain surface gives predictions for dust accelerations which are in good agreement with the experimental observations.

  19. Discrete Particle Method for Simulating Hypervelocity Impact Phenomena

    Directory of Open Access Journals (Sweden)

    Erkai Watson

    2017-04-01

    Full Text Available In this paper, we introduce a computational model for the simulation of hypervelocity impact (HVI phenomena which is based on the Discrete Element Method (DEM. Our paper constitutes the first application of DEM to the modeling and simulating of impact events for velocities beyond 5 kms-1. We present here the results of a systematic numerical study on HVI of solids. For modeling the solids, we use discrete spherical particles that interact with each other via potentials. In our numerical investigations we are particularly interested in the dynamics of material fragmentation upon impact. We model a typical HVI experiment configuration where a sphere strikes a thin plate and investigate the properties of the resulting debris cloud. We provide a quantitative computational analysis of the resulting debris cloud caused by impact and a comprehensive parameter study by varying key parameters of our model. We compare our findings from the simulations with recent HVI experiments performed at our institute. Our findings are that the DEM method leads to very stable, energy–conserving simulations of HVI scenarios that map the experimental setup where a sphere strikes a thin plate at hypervelocity speed. Our chosen interaction model works particularly well in the velocity range where the local stresses caused by impact shock waves markedly exceed the ultimate material strength.

  20. The collision of a hypervelocity massive projectile with free-standing graphene: Investigation of secondary ion emission and projectile fragmentation

    Science.gov (United States)

    Geng, Sheng; Verkhoturov, Stanislav V.; Eller, Michael J.; Della-Negra, Serge; Schweikert, Emile A.

    2017-02-01

    We present here the study of the individual hypervelocity massive projectiles (440-540 keV, 33-36 km/s Au4004+ cluster) impact on 1-layer free-standing graphene. The secondary ions were detected and recorded separately from each individual impact in the transmission direction using a time-of-flight mass spectrometer. We observed C1-10± ions emitted from graphene, the projectiles which penetrated the graphene, and the Au1-3± fragment ions in mass spectra. During the projectile-graphene interaction, the projectile loses ˜15% of its initial kinetic energy (˜0.18 keV/atom, 72 keV/projectile). The Au projectiles are neutralized when approaching the graphene and then partially ionized again via electron tunneling from the hot rims of the holes on graphene, obtaining positive and negative charges. The projectile reaches an internal energy of ˜450-500 eV (˜4400-4900 K) after the impact and then undergoes a ˜90-100 step fragmentation with the ejection of Au1 atoms in the experimental time range of ˜0.1 μs.

  1. Hypervelocity Impact Testing of Nickel Hydrogen Battery Cells

    Science.gov (United States)

    Frate, David T.; Nahra, Henry K.

    1996-01-01

    Nickel-Hydrogen (Ni/H2) battery cells have been used on several satellites and are planned for use on the International Space Station. In January 1992, the NASA Lewis Research Center (LeRC) conducted hypervelocity impact testing on Ni/H2 cells to characterize their failure modes. The cell's outer construction was a 24 mil-thick Inconel 718 pressure vessel. A sheet of 1.27 cm thick honeycomb was placed in front of the battery cells during testing to simulate the on-orbit box enclosure. Testing was conducted at the NASA White Sands Test Facility (WSTF). The hypervelocity gun used was a 7.6 mm (0.30 caliber) two-stage light gas gun. Test were performed at speeds of 3, 6, and 7 km/sec using aluminum 2017 spherical particles of either 4.8 or 6.4 mm diameter as the projectile. The battery cells were electrically charged to about 75 percent of capacity, then back-filled with hydrogen gas to 900 psi simulating the full charge condition. High speed film at 10,000 frames/sec was taken of the impacts. Impacts in the dome area (top) and the electrode area (middle) of the battery cells were investigated. Five tests on battery cells were performed. The results revealed that in all of the test conditions investigated, the battery cells simply vented their hydrogen gas and some electrolyte, but did not burst or generate any large debris fragments.

  2. Pion production in relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Norbury, J.W.

    1983-01-01

    A Lorentz-invariant differential cross section for pion production in peripheral, relativistic, heavy ion collisions is calculated for the collisions of an 16 O projectile onto a 12 C target. The pions are produced via excitations of a Δ(3,3) resonant state in the projectile with simultaneous excitation of an M1 giant resonance in the target. A second order amplitude describing resonance formation and decay is derived within the context of second order, time-dependent perturbation theory and a corresponding transition rate is evaluated. This is then applied to the problem of pion production and a differential cross section is calculated using a simple product-of-states model. The whole theory is then re-formulated within a second quantized particle-hole model which describes the basic process of M1 giant resonance formation as well as the formation and decay of the intermediate Δ(3,3) resonance. Subsequently, a new Lorentz-invariant differential cross section is calculated from the particle-hole amplitude. The theoretical cross section is compared with some experimental data and the agreement is found to be satisfactory given the nature of the data and the assumptions of the theory

  3. Star formation induced by cloud-cloud collisions and galactic giant molecular cloud evolution

    Science.gov (United States)

    Kobayashi, Masato I. N.; Kobayashi, Hiroshi; Inutsuka, Shu-ichiro; Fukui, Yasuo

    2018-05-01

    Recent millimeter/submillimeter observations towards nearby galaxies have started to map the whole disk and to identify giant molecular clouds (GMCs) even in the regions between galactic spiral structures. Observed variations of GMC mass functions in different galactic environments indicates that massive GMCs preferentially reside along galactic spiral structures whereas inter-arm regions have many small GMCs. Based on the phase transition dynamics from magnetized warm neutral medium to molecular clouds, Kobayashi et al. (2017, ApJ, 836, 175) proposes a semi-analytical evolutionary description for GMC mass functions including a cloud-cloud collision (CCC) process. Their results show that CCC is less dominant in shaping the mass function of GMCs than the accretion of dense H I gas driven by the propagation of supersonic shock waves. However, their formulation does not take into account the possible enhancement of star formation by CCC. Millimeter/submillimeter observations within the Milky Way indicate the importance of CCC in the formation of star clusters and massive stars. In this article, we reformulate the time-evolution equation largely modified from Kobayashi et al. (2017, ApJ, 836, 175) so that we additionally compute star formation subsequently taking place in CCC clouds. Our results suggest that, although CCC events between smaller clouds are more frequent than the ones between massive GMCs, CCC-driven star formation is mostly driven by massive GMCs ≳ 10^{5.5} M_{⊙} (where M⊙ is the solar mass). The resultant cumulative CCC-driven star formation may amount to a few 10 percent of the total star formation in the Milky Way and nearby galaxies.

  4. Hybrid Guidance Control for a Hypervelocity Small Size Asteroid Interceptor Vehicle

    Science.gov (United States)

    Zebenay, Melak M.; Lyzhoft, Joshua R.; Barbee, Brent W.

    2017-01-01

    Near-Earth Objects (NEOs) are comets and/or asteroids that have orbits in proximity with Earth's own orbit. NEOs have collided with the Earth in the past, which can be seen at such places as Chicxulub crater, Barringer crater, and Manson crater, and will continue in the future with potentially significant and devastating results. Fortunately such NEO collisions with Earth are infrequent, but can happen at any time. Therefore it is necessary to develop and validate techniques as well as technologies necessary to prevent them. One approach to mitigate future NEO impacts is the concept of high-speed interceptor. This concept is to alter the NEO's trajectory via momentum exchange by using kinetic impactors as well as nuclear penetration devices. The interceptor has to hit a target NEO at relative velocity which imparts a sufficient change in NEO velocity. NASA's Deep Impact mission has demonstrated this scenario by intercepting Comet Temple 1, 5 km in diameter, with an impact relative speed of approximately 10 km/s. This paper focuses on the development of hybrid guidance navigation and control (GNC) algorithms for precision hypervelocity intercept of small sized NEOs. The spacecraft's hypervelocity and the NEO's small size are critical challenges for a successful mission as the NEO will not fill the field of view until a few seconds before intercept. The investigation needs to consider the error sources modeled in the navigation simulation such as spacecraft initial state uncertainties in position and velocity. Furthermore, the paper presents three selected spacecraft guidance algorithms for asteroid intercept and rendezvous missions. The selected algorithms are classical Proportional Navigation (PN) based guidance that use a first order difference to compute the derivatives, Three Plane Proportional Navigation (TPPN), and the Kinematic Impulse (KI). A manipulated Bennu orbit that has been changed to impact Earth will be used as a demonstrative example to compare the

  5. Ejection of iron-bearing giant-impact fragments and the dynamical and geochemical influence of the fragment re-accretion

    Science.gov (United States)

    Genda, Hidenori; Iizuka, Tsuyoshi; Sasaki, Takanori; Ueno, Yuichiro; Ikoma, Masahiro

    2017-07-01

    The Earth was born in violence. Many giant collisions of protoplanets are thought to have occurred during the terrestrial planet formation. Here we investigated the giant impact stage by using a hybrid code that consistently deals with the orbital evolution of protoplanets around the Sun and the details of processes during giant impacts between two protoplanets. A significant amount of materials (up to several tens of percent of the total mass of the protoplanets) is ejected by giant impacts. We call these ejected fragments the giant-impact fragments (GIFs). In some of the erosive hit-and-run and high-velocity collisions, metallic iron is also ejected, which comes from the colliding protoplanets' cores. From ten numerical simulations for the giant impact stage, we found that the mass fraction of metallic iron in GIFs ranges from ∼1 wt% to ∼25 wt%. We also discussed the effects of the GIFs on the dynamical and geochemical characteristics of formed terrestrial planets. We found that the GIFs have the potential to solve the following dynamical and geochemical conflicts: (1) The Earth, currently in a near circular orbit, is likely to have had a highly eccentric orbit during the giant impact stage. The GIFs are large enough in total mass to lower the eccentricity of the Earth to its current value via their dynamical friction. (2) The concentrations of highly siderophile elements (HSEs) in the Earth's mantle are greater than what was predicted experimentally. Re-accretion of the iron-bearing GIFs onto the Earth can contribute to the excess of HSEs. In addition, Iron-bearing GIFs provide significant reducing agent that could transform primitive CO2-H2O atmosphere and ocean into more reducing H2-bearing atmosphere. Thus, GIFs are important for the origin of Earth's life and its early evolution.

  6. High energy structures in heavy ion collisions: a multiphonon description

    International Nuclear Information System (INIS)

    Chomaz, P.; Blumenfeld, Y.; Frascaria, N.

    1984-01-01

    Energy spectra of fragments from the 36 Ar + 208 Pb reaction at 11 MeV/n exhibit structures at high excitation energies. These structures are interpreted in terms of target multi-phonon excitations built from giant resonances. The importance of such processes for the kinetic energy dissipation in heavy ion collisions is emphasized

  7. Axial focusing of energy from a hypervelocity impact on earth

    International Nuclear Information System (INIS)

    Boslough, M.B.; Chael, E.P.; Trucano, T.G.; Crawford, D.A.

    1994-01-01

    We have performed computational simulations to determine how energy from a large hypervelocity impact on the Earth's surface would couple to its interior. Because of the first-order axial symmetry of both the impact energy source and the stress-wave velocity structure of the Earth, a disproportionate amount of energy is dissipated along the axis defined by the impact point and its antipode (point opposite the impact). For a symmetric and homogeneous Earth model, all the impact energy that is radiated as seismic waves into the Earth at a given takeoff angle (ray parameter), independent of azimuthal direction, is refocused (minus attenuation) on the axis of symmetry, regardless of the number of reflections and refractions it has experienced. Material on or near the axis of symmetry experiences more strain cycles with much greater amplitude than elsewhere, and therefore experiences more irreversible heating. The focusing is most intense in the upper mantle, within the asthenosphere, where seismic energy is most effectively converted to heat. For a sufficiently energetic impact, this mechanism might generate enough local heating to create an isostatic instability leading to uplift, possibly resulting in rifting, volcanism, or other rearrangement of the interior dynamics of the planet. These simulations demonstrate how hypervelocity impact energy can be transported to the Earth's interior, supporting the possibility of a causal link between large impacts on Earth and major internally-driven geophysical processes

  8. Giant dipole resonances in hot nuclear matter in the model of self-relaxing mean field

    International Nuclear Information System (INIS)

    Okolowicz, J.; Ploszajczak, M.; Drozdz, S.; Caurier, E.

    1989-01-01

    The extended time-dependent Hartree-Fock approach is applied for the description of the isovector giant dipole resonance in 40 Ca at finite temperatures. The thermalization process is described using the relaxation-time ansatz for the collision integral. Strong inhibition of the giant-dipole-resonance γ-decay is found due to the fast vaporization of the nuclear surface for thermal excitation energies above E * /A ≅ 4.5 MeV. This pre-equilibrium emission of particles in the vapor phase is associated with the radial expansion of nucleus and with the vanishing particle binding energies mainly for protons. (orig.)

  9. Domain walls collision in Fe-rich and Co-rich glass covered microwires

    Directory of Open Access Journals (Sweden)

    Gonzalez J.

    2013-01-01

    Full Text Available We report the results of the investigation of domain walls propagation in Fe-rich and Co-rich microwires performed using Sixtus-Tonks and magneto-optical Kerr effect techniques. It was found that under certain experimental conditions we are able to create the regime of the motion of two domain walls moving to opposite directions which terminates by the collision of the domain walls. Also the domain walls collision was visualized using magneto-optical Kerr effect microscope when the surface giant Barkhausen jump induced by circular magnetic field has been observed.

  10. Axial focusing of energy from a hypervelocity impact on earth

    Energy Technology Data Exchange (ETDEWEB)

    Boslough, M.B.; Chael, E.P.; Trucano, T.G.; Crawford, D.A.

    1994-12-01

    We have performed computational simulations to determine how energy from a large hypervelocity impact on the Earth`s surface would couple to its interior. Because of the first-order axial symmetry of both the impact energy source and the stress-wave velocity structure of the Earth, a disproportionate amount of energy is dissipated along the axis defined by the impact point and its antipode (point opposite the impact). For a symmetric and homogeneous Earth model, all the impact energy that is radiated as seismic waves into the Earth at a given takeoff angle (ray parameter), independent of azimuthal direction, is refocused (minus attenuation) on the axis of symmetry, regardless of the number of reflections and refractions it has experienced. Material on or near the axis of symmetry experiences more strain cycles with much greater amplitude than elsewhere, and therefore experiences more irreversible heating. The focusing is most intense in the upper mantle, within the asthenosphere, where seismic energy is most effectively converted to heat. For a sufficiently energetic impact, this mechanism might generate enough local heating to create an isostatic instability leading to uplift, possibly resulting in rifting, volcanism, or other rearrangement of the interior dynamics of the planet. These simulations demonstrate how hypervelocity impact energy can be transported to the Earth`s interior, supporting the possibility of a causal link between large impacts on Earth and major internally-driven geophysical processes.

  11. Experimental demonstration of plasma-drag acceleration of a dust cloud to hypervelocities.

    Science.gov (United States)

    Ticoş, C M; Wang, Zhehui; Wurden, G A; Kline, J L; Montgomery, D S; Dorf, L A; Shukla, P K

    2008-04-18

    Simultaneous acceleration of hundreds of dust particles to hypervelocities by collimated plasma flows ejected from a coaxial gun is demonstrated. Graphite and diamond grains with radii between 5 and 30 microm, and flying at speeds up to 3.7 km/s, have been recorded with a high-speed camera. The observations agree well with a model for plasma-drag acceleration of microparticles much larger than the plasma screening length.

  12. Giant Impacts on Earth-Like Worlds

    Science.gov (United States)

    Kohler, Susanna

    2016-05-01

    Earth has experienced a large number of impacts, from the cratering events that may have caused mass extinctions to the enormous impact believed to have formed the Moon. A new study examines whether our planets impact history is typical for Earth-like worlds.N-Body ChallengesTimeline placing the authors simulations in context of the history of our solar system (click for a closer look). [Quintana et al. 2016]The final stages of terrestrial planet formation are thought to be dominated by giant impacts of bodies in the protoplanetary disk. During this stage, protoplanets smash into one another and accrete, greatly influencing the growth, composition, and habitability of the final planets.There are two major challenges when simulating this N-body planet formation. The first is fragmentation: since computational time scales as N^2, simulating lots of bodies that split into many more bodies is very computationally intensive. For this reason, fragmentation is usually ignored; simulations instead assume perfect accretion during collisions.Total number of bodies remaining within the authors simulations over time, with fragmentation included (grey) and ignored (red). Both simulations result in the same final number of bodies, but the ones that include fragmentation take more time to reach that final number. [Quintana et al. 2016]The second challengeis that many-body systems are chaotic, which means its necessary to do a large number of simulations to make statistical statements about outcomes.Adding FragmentationA team of scientists led by Elisa Quintana (NASA NPP Senior Fellow at the Ames Research Center) has recently pushed at these challenges by modeling inner-planet formation using a code that does include fragmentation. The team ran 140 simulations with and 140 without the effects of fragmentation using similar initial conditions to understand how including fragmentation affects the outcome.Quintana and collaborators then used the fragmentation-inclusive simulations to

  13. Electromagnetic excitation of the two-phonon giant dipole resonance

    International Nuclear Information System (INIS)

    Emling, H.

    1994-03-01

    It is the aim of this article to summarize our present knowledge on the double isovector giant dipole resonance (DGDR) and our understanding of the electromagnetic excitation mechanism in heavy ion collisions in the relativistic energy regime. In the following chapter, a brief resume on the history of giant resonances is given and, based on their understanding, conclusions on the expected properties of multi-phonon resonances are drawn. In chapter 2, the essential features of electromagnetic heavy ion interactions at (near) relativistic velocities will be illuminated and the theoretical framework is presented, which describes such processes. New experimental methods were required for an appropriate study of Coulomb dissociation processes, which are discussed in chapter 3 together with the experimental results. Chapter 4 is dedicated to summarize the results from electromagnetic excitation studies, to compare with those from alternative methods and, in particular, to contrast experimental findings with theoretical predictions and to address open problems. (orig.)

  14. Mass spectrometry of hyper-velocity impacts of organic micrograins.

    Science.gov (United States)

    Srama, Ralf; Woiwode, Wolfgang; Postberg, Frank; Armes, Steven P; Fujii, Syuji; Dupin, Damien; Ormond-Prout, Jonathan; Sternovsky, Zoltan; Kempf, Sascha; Moragas-Klostermeyer, Georg; Mocker, Anna; Grün, Eberhard

    2009-12-01

    The study of hyper-velocity impacts of micrometeoroids is important for the calibration of dust sensors in space applications. For this purpose, submicron-sized synthetic dust grains comprising either polystyrene or poly[bis(4-vinylthiophenyl)sulfide] were coated with an ultrathin overlayer of an electrically conductive organic polymer (either polypyrrole or polyaniline) and were accelerated to speeds between 3 and 35 km s(-1) using the Heidelberg Dust Accelerator facility. Time-of-flight mass spectrometry was applied to analyse the resulting ionic impact plasma using a newly developed Large Area Mass Analyser (LAMA). Depending on the projectile type and the impact speed, both aliphatic and aromatic molecular ions and cluster species were identified in the mass spectra with masses up to 400 u. Clusters resulting from the target material (silver) and mixed clusters of target and projectile species were also observed. Impact velocities of between 10 and 35 km s(-1) are suitable for a principal identification of organic materials in micrometeoroids, whereas impact speeds below approximately 10 km s(-1) allow for an even more detailed analysis. Molecular ions and fragments reflect components of the parent molecule, providing determination of even complex organic molecules embedded in a dust grain. In contrast to previous measurements with the Cosmic Dust Analyser instrument, the employed LAMA instrument has a seven times higher mass resolution--approximately 200--which allowed for a detailed analysis of the complex mass spectra. These fundamental studies are expected to enhance our understanding of cometary, interplanetary and interstellar dust grains, which travel at similar hyper-velocities and are known to contain both aliphatic and aromatic organic compounds. Copyright 2009 John Wiley & Sons, Ltd.

  15. Design and testing of miniaturized plasma sensor for measuring hypervelocity impact plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Goel, A., E-mail: ashish09@stanford.edu; Tarantino, P. M.; Lauben, D. S.; Close, S. [Department of Aeronautics and Astronautics, Stanford University, Stanford, California 94305 (United States)

    2015-04-15

    An increasingly notable component of the space environment pertains to the impact of meteoroids and orbital debris on spacecraft and the resulting mechanical and electrical damages. Traveling at speeds of tens of km/s, when these particles, collectively referred to as hypervelocity particles, impact a satellite, they vaporize, ionize, and produce a radially expanding plasma that can generate electrically harmful radio frequency emission or serve as a trigger for electrostatic discharge. In order to measure the flux, composition, energy distribution, and temperature of ions and electrons in this plasma, a miniaturized plasma sensor has been developed for carrying out in-situ measurements in space. The sensor comprises an array of electrostatic analyzer wells split into 16 different channels, catering to different species and energy ranges in the plasma. We present results from numerical simulation based optimization of sensor geometry. A novel approach of fabricating the sensor using printed circuit boards is implemented. We also describe the test setup used for calibrating the sensor and show results demonstrating the energy band pass characteristics of the sensor. In addition to the hypervelocity impact plasmas, the plasma sensor developed can also be used to carry out measurements of ionospheric plasma, diagnostics of plasma propulsion systems, and in other space physics experiments.

  16. A SELF-CONSISTENT MODEL OF THE CIRCUMSTELLAR DEBRIS CREATED BY A GIANT HYPERVELOCITY IMPACT IN THE HD 172555 SYSTEM

    International Nuclear Information System (INIS)

    Johnson, B. C.; Melosh, H. J.; Lisse, C. M.; Chen, C. H.; Wyatt, M. C.; Thebault, P.; Henning, W. G.; Gaidos, E.; Elkins-Tanton, L. T.; Bridges, J. C.; Morlok, A.

    2012-01-01

    Spectral modeling of the large infrared excess in the Spitzer IRS spectra of HD 172555 suggests that there is more than 10 19 kg of submicron dust in the system. Using physical arguments and constraints from observations, we rule out the possibility of the infrared excess being created by a magma ocean planet or a circumplanetary disk or torus. We show that the infrared excess is consistent with a circumstellar debris disk or torus, located at ∼6 AU, that was created by a planetary scale hypervelocity impact. We find that radiation pressure should remove submicron dust from the debris disk in less than one year. However, the system's mid-infrared photometric flux, dominated by submicron grains, has been stable within 4% over the last 27 years, from the Infrared Astronomical Satellite (1983) to WISE (2010). Our new spectral modeling work and calculations of the radiation pressure on fine dust in HD 172555 provide a self-consistent explanation for this apparent contradiction. We also explore the unconfirmed claim that ∼10 47 molecules of SiO vapor are needed to explain an emission feature at ∼8 μm in the Spitzer IRS spectrum of HD 172555. We find that unless there are ∼10 48 atoms or 0.05 M ⊕ of atomic Si and O vapor in the system, SiO vapor should be destroyed by photo-dissociation in less than 0.2 years. We argue that a second plausible explanation for the ∼8 μm feature can be emission from solid SiO, which naturally occurs in submicron silicate ''smokes'' created by quickly condensing vaporized silicate.

  17. Asteroid deflection using a kinetic impactor: Insights from hypervelocity impact experiments

    Science.gov (United States)

    Hoerth, Tobias; Schäfer, Frank

    2016-04-01

    Within the framework of the planned AIDA mission [1], an impactor spacecraft (DART) hits the second component of the asteroid Didymos at hypervelocity. The impact crater will be observed from the AIM spacecraft and an observation of the ejecta plume is possible [1]. This allows conclusions to be drawn about the physical properties of the target material, and the momentum transfer will be studied [1]. In preparation for this mission, hypervelocity impact experiments can provide valuable information about the outcome of an impact event as a function of impactor and target material properties and, thus, support the interpretation of the data from the DART impact. In addition, these impact experiments provide an important means to validate numerical impact simulations required to simulate large-scale impacts that cannot be studied in laboratory experiments. Impact experiments have shown that crater morphology and size, crater growth and ejecta dynamics strongly depend on the physical properties of the target material [2]. For example, porous materials like sandstone lead to a shallower and slower ejection than low-porous materials like quartzite, and the cratering efficiency is reduced in porous targets leading to a smaller amount of ejected mass [3]. These phenomena result in a reduced momentum multiplication factor (often called "beta-value"), i.e. the ratio of the change in target momentum after the impact and the momentum of the projectile is smaller for porous materials. Hypervelocity impact experiments into target materials with different porosities and densities such as quartzite (2.9 %, 2.6 g/cm3), sandstone (25.3 %, 2 g/cm3), limestone (31 %, 1.8 g/cm3), and highly porous aerated concrete (87.5 %, 0.4 g/cm3) were conducted. Projectile velocities were varied between about 3 km/s and almost 7 km/s. A ballistic pendulum was used to measure the momentum transfer. The material strength required for scaling laws was determined for all target materials. The highest

  18. Geochemical Constraints on the Size of the Moon-Forming Giant Impact

    Science.gov (United States)

    Piet, Hélène; Badro, James; Gillet, Philippe

    2017-12-01

    Recent models involving the Moon-forming giant impact hypothesis have managed to reproduce the striking isotopic similarity between the two bodies, albeit using two extreme models: one involves a high-energy small impactor that makes the Moon out of Earth's proto-mantle; the other supposes a gigantic collision between two half-Earths creating the Earth-Moon system from both bodies. Here we modeled the geochemical influence of the giant impact on Earth's mantle and found that impactors larger than 15% of Earth mass result in mantles always violating the present-day concentrations of four refractory moderately siderophile trace elements (Ni, Co, Cr, and V). In the aftermath of the impact, our models cannot further discriminate between a fully and a partially molten bulk silicate Earth. Then, the preservation of primordial geochemical reservoirs predating the Moon remains the sole argument against a fully molten mantle after the Moon-forming impact.

  19. A SELF-CONSISTENT MODEL OF THE CIRCUMSTELLAR DEBRIS CREATED BY A GIANT HYPERVELOCITY IMPACT IN THE HD 172555 SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, B. C.; Melosh, H. J. [Department of Physics, Purdue University, 525 Northwestern Avenue, West Lafayette, IN 47907 (United States); Lisse, C. M. [JHU-APL, 11100 Johns Hopkins Road, Laurel, MD 20723 (United States); Chen, C. H. [STScI, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Wyatt, M. C. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Thebault, P. [LESIA, Observatoire de Paris, F-92195 Meudon Principal Cedex (France); Henning, W. G. [NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States); Gaidos, E. [Department of Geology and Geophysics, University of Hawaii at Manoa, Honolulu, HI 96822 (United States); Elkins-Tanton, L. T. [Department of Terrestrial Magnetism, Carnegie Institution for Science, Washington, DC 20015 (United States); Bridges, J. C. [Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH (United Kingdom); Morlok, A., E-mail: johns477@purdue.edu [Department of Physical Sciences, Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom)

    2012-12-10

    Spectral modeling of the large infrared excess in the Spitzer IRS spectra of HD 172555 suggests that there is more than 10{sup 19} kg of submicron dust in the system. Using physical arguments and constraints from observations, we rule out the possibility of the infrared excess being created by a magma ocean planet or a circumplanetary disk or torus. We show that the infrared excess is consistent with a circumstellar debris disk or torus, located at {approx}6 AU, that was created by a planetary scale hypervelocity impact. We find that radiation pressure should remove submicron dust from the debris disk in less than one year. However, the system's mid-infrared photometric flux, dominated by submicron grains, has been stable within 4% over the last 27 years, from the Infrared Astronomical Satellite (1983) to WISE (2010). Our new spectral modeling work and calculations of the radiation pressure on fine dust in HD 172555 provide a self-consistent explanation for this apparent contradiction. We also explore the unconfirmed claim that {approx}10{sup 47} molecules of SiO vapor are needed to explain an emission feature at {approx}8 {mu}m in the Spitzer IRS spectrum of HD 172555. We find that unless there are {approx}10{sup 48} atoms or 0.05 M{sub Circled-Plus} of atomic Si and O vapor in the system, SiO vapor should be destroyed by photo-dissociation in less than 0.2 years. We argue that a second plausible explanation for the {approx}8 {mu}m feature can be emission from solid SiO, which naturally occurs in submicron silicate ''smokes'' created by quickly condensing vaporized silicate.

  20. COLLISIONS BETWEEN GRAVITY-DOMINATED BODIES. II. THE DIVERSITY OF IMPACT OUTCOMES DURING THE END STAGE OF PLANET FORMATION

    International Nuclear Information System (INIS)

    Stewart, Sarah T.; Leinhardt, Zoë M.

    2012-01-01

    Numerical simulations of the stochastic end stage of planet formation typically begin with a population of embryos and planetesimals that grow into planets by merging. We analyzed the impact parameters of collisions leading to the growth of terrestrial planets from recent N-body simulations that assumed perfect merging and calculated more realistic outcomes using a new analytic collision physics model. We find that collision outcomes are diverse and span all possible regimes: hit-and-run, merging, partial accretion, partial erosion, and catastrophic disruption. The primary outcomes of giant impacts between planetary embryos are approximately evenly split between partial accretion, graze-and-merge, and hit-and-run events. To explore the cumulative effects of more realistic collision outcomes, we modeled the growth of individual planets with a Monte Carlo technique using the distribution of impact parameters from N-body simulations. We find that fewer planets reached masses >0.7 M Earth using the collision physics model compared to simulations that assumed every collision results in perfect merging. For final planets with masses >0.7 M Earth , 60% are enriched in their core-to-mantle mass fraction by >10% compared to the initial embryo composition. Fragmentation during planet formation produces significant debris (∼15% of the final mass) and occurs primarily by erosion of the smaller body in partial accretion and hit-and-run events. In partial accretion events, the target body grows by preferentially accreting the iron core of the projectile and the escaping fragments are derived primarily from the silicate mantles of both bodies. Thus, the bulk composition of a planet can evolve via stochastic giant impacts.

  1. Scenarios of giant planet formation and evolution and their impact on the formation of habitable terrestrial planets.

    Science.gov (United States)

    Morbidelli, Alessandro

    2014-04-28

    In our Solar System, there is a clear divide between the terrestrial and giant planets. These two categories of planets formed and evolved separately, almost in isolation from each other. This was possible because Jupiter avoided migrating into the inner Solar System, most probably due to the presence of Saturn, and never acquired a large-eccentricity orbit, even during the phase of orbital instability that the giant planets most likely experienced. Thus, the Earth formed on a time scale of several tens of millions of years, by collision of Moon- to Mars-mass planetary embryos, in a gas-free and volatile-depleted environment. We do not expect, however, that this clear cleavage between the giant and terrestrial planets is generic. In many extrasolar planetary systems discovered to date, the giant planets migrated into the vicinity of the parent star and/or acquired eccentric orbits. In this way, the evolution and destiny of the giant and terrestrial planets become intimately linked. This paper discusses several evolutionary patterns for the giant planets, with an emphasis on the consequences for the formation and survival of habitable terrestrial planets. The conclusion is that we should not expect Earth-like planets to be typical in terms of physical and orbital properties and accretion history. Most habitable worlds are probably different, exotic worlds.

  2. Integrity assessment of the spacecraft subjected to the hypervelocity impact by ceramic and metal projectiles simulating space debris and micrometeoroids

    International Nuclear Information System (INIS)

    Katayama, Masahide; Takeba, Atsushi; Nitta, Kumi; Kawakita, Shirou; Matsumoto, Haruhisa; Kitazawa, Yukihito

    2010-01-01

    In order to establish the guidelines for the protection of unmanned spacecrafts from the space debris and micrometeoroid impacts, the experimental and numerical investigations have been conducted at Japan Aerospace Exploration Agency. This paper presents mainly its numerical methodology, especially from the viewpoint of highly non-linear and dynamic material model: i.e. the equation of state, constitutive model and fracture or failure model, including a brittle material model for ceramics and an equation of state for the shock-induced vaporization accompanied by hypervelocity impact. The experimental results of hypervelocity impact by two-stage light-gas gun and plasma drag gun are compared with corresponding numerical simulation results by using a hydrocode, and both results are demonstrated to be overall in good agreement with each other.

  3. Integrity assessment of the spacecraft subjected to the hypervelocity impact by ceramic and metal projectiles simulating space debris and micrometeoroids

    Energy Technology Data Exchange (ETDEWEB)

    Katayama, Masahide, E-mail: masahide.katayama@ctc-g.co.jp [Science and Engineering Systems Division, ITOCHU Techno-Solutions, 3-2-5, Kasumigaseki, Chiyoda-ku, Tokyo 100-6080 (Japan); Materials and Structures Laboratory, Tokyo Institute of Technology, 4259, Nagatsuta, Midori-ku, Yokohama-shi, Kanagawa 226-8503 (Japan); Takeba, Atsushi [Science and Engineering Systems Division, ITOCHU Techno-Solutions, 3-2-5, Kasumigaseki, Chiyoda-ku, Tokyo 100-6080 (Japan); Nitta, Kumi; Kawakita, Shirou; Matsumoto, Haruhisa [Aerospace Research and Development Directorate, Japan Aerospace Exploration Agency, 2-1-1, Sengen, Tsukuba-city, Ibaraki 305-8505 (Japan); Kitazawa, Yukihito [Aerospace Research and Development Directorate, Japan Aerospace Exploration Agency, 2-1-1, Sengen, Tsukuba-city, Ibaraki 305-8505 (Japan); Aero-Engine and Space Operations, IHI Corporation, 3-1-1, Toyosu, Koto-ku, Tokyo 135-8710 (Japan)

    2010-10-15

    In order to establish the guidelines for the protection of unmanned spacecrafts from the space debris and micrometeoroid impacts, the experimental and numerical investigations have been conducted at Japan Aerospace Exploration Agency. This paper presents mainly its numerical methodology, especially from the viewpoint of highly non-linear and dynamic material model: i.e. the equation of state, constitutive model and fracture or failure model, including a brittle material model for ceramics and an equation of state for the shock-induced vaporization accompanied by hypervelocity impact. The experimental results of hypervelocity impact by two-stage light-gas gun and plasma drag gun are compared with corresponding numerical simulation results by using a hydrocode, and both results are demonstrated to be overall in good agreement with each other.

  4. Testing of a Plasmadynamic Hypervelocity Dust Accelerator

    Science.gov (United States)

    Ticos, Catalin M.; Wang, Zhehui; Dorf, Leonid A.; Wurden, G. A.

    2006-10-01

    A plasmadynamic accelerator for microparticles (or dust grains) has been designed, built and tested at Los Alamos National laboratory. The dust grains are expected to be accelerated to hypervelocities on the order of 1-30 km/s, depending on their size. The key components of the plasmadynamic accelerator are a coaxial plasma gun operated at 10 kV, a dust dispenser activated by a piezoelectric transducer, and power and remote-control systems. The coaxial plasma gun produces a high density (10^18 cm-3) and low temperature (˜ 1 eV) plasma in deuterium ejected by J x B forces, which provides drag on the dust particles in its path. Carbon dust particles will be used, with diameters from 1 to 50 μm. The plasma parameters produced in the coaxial gun are presented and their implication to dust acceleration is discussed. High speed dust will be injected in the National Spherical Torus Experiment to measure the pitch angle of magnetic field lines.

  5. The intact capture of hypervelocity dust particles using underdense foams

    Science.gov (United States)

    Maag, Carl R.; Borg, J.; Tanner, William G.; Stevenson, T. J.; Bibring, J.-P.

    1994-01-01

    The impact of a hypervelocity projectile (greater than 3 km/s) is a process that subjects both the impactor and the impacted material to a large transient pressure distribution. The resultant stresses cause a large degree of fragmentation, melting, vaporization, and ionization (for normal densities). The pressure regime magnitude, however, is directly related to the density relationship between the projectile and target materials. As a consequence, a high-density impactor on a low-density target will experience the lowest level of damage. Historically, there have been three different approaches toward achieving the lowest possible target density. The first employs a projectile impinging on a foil or film of moderate density, but whose thickness is much less than the particle diameter. This results in the particle experiencing a pressure transient with both a short duration and a greatly reduced destructive effect. A succession of these films, spaced to allow nondestructive energy dissipation between impacts, will reduce the impactor's kinetic energy without allowing its internal energy to rise to the point where destruction of the projectile mass will occur. An added advantage to this method is that it yields the possibility of regions within the captured particle where a minimum of thermal modification has taken place. Polymer foams have been employed as the primary method of capturing particles with minimum degradation. The manufacture of extremely low bulk density materials is usually achieved by the introduction of voids into the material base. It must be noted, however, that a foam structure only has a true bulk density of the mixture at sizes much larger than the cell size, since for impact processes this is of paramount importance. The scale at which the bulk density must still be close to that of the mixture is approximately equal to the impactor. When this density criterion is met, shock pressures during impact are minimized, which in turn maximizes the

  6. Ionization and positron emission in giant quasiatoms

    International Nuclear Information System (INIS)

    Soff, G.; Reinhardt, J.; Reus, T. de; Wietschorke, K.H.; Schaefer, A.; Mueller, B.; Greiner, W.; Mueller, U.; Schlueter, P.

    1985-07-01

    Electron excitation processes in superheavy quasiatoms are treated within a relativistic framework. Theoretical results on K-hole production rates as well as delta-electron and positron spectra are compared with experimental data. It is demonstrated that the study of heavy ion collisions with nuclear time delay promises a signature for the spontaneous positron formation in overcritical systems. Corresponding experimental results are confronted with our theoretical hypothesis. Recent speculations on the origin of the observed peak structures in positron spectra are critically reviewed. Atomic excitations are also employed to obtain information on the course of a nuclear reaction. Using a semiclassical picture we calculate the emission of delta-electrons and positrons in deep-inelastic nuclear reactions. Furthermore some consequences of conversion processes in giant systems are investigated. (orig.)

  7. The giant impact produced a precipitated Moon

    Science.gov (United States)

    Cameron, A. G. W.

    1993-03-01

    The author's current simulations of Giant Impacts on the protoearth show the development of large hot rock vapor atmospheres. The Balbus-Hawley mechanism will pump mass and angular momentum outwards in the equatorial plane; upon cooling and expansion the rock vapor will condense refractory material beyond the Roche distance, where it is available for lunar formation. During the last seven years, the author together with several colleagues has carried out a series of numerical investigations of the Giant Impact theory for the origin of the Moon. These involved three-dimensional simulations of the impact and its aftermath using Smooth Particle Hydrodynamics (SPH), in which the matter in the system is divided into discrete particles whose motions and internal energies are determined as a result of the imposed initial conditions. Densities and pressures are determined from the combined overlaps of the particles, which have a bell-shaped density distribution characterized by a smoothing length. In the original series of runs all particle masses and smoothing lengths had the same values; the matter in the colliding bodies consisted of initial iron cores and rock (dunite) mantles. Each of 41 runs used 3,008 particles, took several weeks of continuous computation, and gave fairly good representations of the ultimate state of the post-collision body or bodies but at best crude and qualitative information about individual particles in orbit. During the last two years an improved SPH program was used in which the masses and smoothing lengths of the particles are variable, and the intent of the current series of computations is to investigate the behavior of the matter exterior to the main parts of the body or bodies subsequent to the collisions. These runs are taking times comparable to a year of continuous computation in each case; they use 10,000 particles with 5,000 particles in the target and 5,000 in the impactor, and the particles thus have variable masses and smoothing

  8. Determine ISS Soyuz Orbital Module Ballistic Limits for Steel Projectiles Hypervelocity Impact Testing

    Science.gov (United States)

    Lyons, Frankel

    2013-01-01

    A new orbital debris environment model (ORDEM 3.0) defines the density distribution of the debris environment in terms of the fraction of debris that are low-density (plastic), medium-density (aluminum) or high-density (steel) particles. This hypervelocity impact (HVI) program focused on assessing ballistic limits (BLs) for steel projectiles impacting the enhanced Soyuz Orbital Module (OM) micrometeoroid and orbital debris (MMOD) shield configuration. The ballistic limit was defined as the projectile size on the threshold of failure of the OM pressure shell as a function of impact speeds and angle. The enhanced OM shield configuration was first introduced with Soyuz 30S (launched in May 2012) to improve the MMOD protection of Soyuz vehicles docked to the International Space Station (ISS). This test program provides HVI data on U.S. materials similar in composition and density to the Russian materials for the enhanced Soyuz OM shield configuration of the vehicle. Data from this test program was used to update ballistic limit equations used in Soyuz OM penetration risk assessments. The objective of this hypervelocity impact test program was to determine the ballistic limit particle size for 440C stainless steel spherical projectiles on the Soyuz OM shielding at several impact conditions (velocity and angle combinations). This test report was prepared by NASA-JSC/ HVIT, upon completion of tests.

  9. HYPERFUSE: a hypervelocity inertial confinement system for fusion energy production and fission waste transmutation

    International Nuclear Information System (INIS)

    Makowitz, H.; Powell, J.R.; Wiswall, R.

    1980-01-01

    Parametric system studies of an inertial confinement fusion (ICF) reactor system to transmute fission products from an LWR economy have been carried out. The ICF reactors would produce net power in addition to transmuting fission products. The particular ICF concept examined is an impact fusion approach termed HYPERFUSE, in which hypervelocity pellets, traveling on the order of 100 to 300 km/sec, collide with each other or a target block in a reactor chamber and initiate a thermonuclear reaction. The DT fusion fuel is contained in a shell of the material to be transmuted, e.g., 137 Cs, 90 Sr, 129 I, 99 Tc, etc. The 14-MeV fusion neutrons released during the pellet burn cause transmutation reactions (e.g., (n,2n), (n,α), (n,γ), etc.) that convert the long-lived fission products (FP's) either to stable products or to species that decay with a short half-life to a stable product. The transmutation parametric studies conclude that the design of the hypervelocity projectiles should emphasize the achievement of high densities in the transmutation regions (greater than the DT fusion fuel density), as well as the DT ignition and burn criterion (rho R=1.0 to 3.0) requirements

  10. Giant grains

    International Nuclear Information System (INIS)

    Leitch-Devlin, M.A.; Millar, T.J.; Williams, D.A.

    1976-01-01

    Infrared observations of the Orion nebula have been interpreted by Rowan-Robinson (1975) to imply the existence of 'giant' grains, radius approximately 10 -2 cm, throughout a volume about a parsec in diameter. Although Rowan-Robinson's model of the nebula has been criticized and the presence of such grains in Orion is disputed, the proposition is accepted, that they exist, and in this paper situations in which giant grains could arise are examined. It is found that, while a giant-grain component to the interstellar grain density may exist, it is difficult to understand how giant grains arise to the extent apparently required by the Orion nebula model. (Auth.)

  11. Hard photons a probe of the heavy ion collision dynamics

    International Nuclear Information System (INIS)

    Schutz, Y.

    1994-01-01

    Heavy-ion collisions have proven to be a unique tool to study the nucleus in extreme states, with values of energy, spin and isospin far away from those encountered in the nucleus in its ground state. Heavy-ion collisions provide also the only mean to form and study in the laboratory nuclear matter under conditions of density and temperature which could otherwise only be found in stellar objects like neutron stars and super-novae. the goal of such studies is to establish the equation of state of nuclear matter and the method consist in searching the collective behaviour in which heavy-ion collisions differ from a superposition of many nucleon-nucleon collisions. Among the various probes of collective effects, like flow, multifragmentation, or subthreshold particles, we have selected hard photons because they provide, together with dileptons, the only unperturbed probe of a phase of the collision well localized in space and time. The origin of hard photons, defined as the photons building up the spectrum beyond the energy of the giant dipole resonance (E γ > 30∼MeV), is attributed predominantly to the bremsstrahlung radiation emitted incoherently in individual neutron-proton collisions. Their energy reflects the combination of the beam momentum and the momenta induced by the Fermi motion of the nucleons within the collision zone. Therefore, at intermediate energies, hard photons probe the dynamical phase space distribution of participant nucleons and they convey information on the densities reached in heavy-ion collisions, the size and life time of the dense photon source and the compressibility of nuclear matter. The techniques we have developed include intensity interferometry and exclusive measurements scanning with high resolution the whole range of impact parameters. The interpretation of our data is guided by dynamical phase space calculations of the BUU type

  12. Allometry indicates giant eyes of giant squid are not exceptional.

    Science.gov (United States)

    Schmitz, Lars; Motani, Ryosuke; Oufiero, Christopher E; Martin, Christopher H; McGee, Matthew D; Gamarra, Ashlee R; Lee, Johanna J; Wainwright, Peter C

    2013-02-18

    The eyes of giant and colossal squid are among the largest eyes in the history of life. It was recently proposed that sperm whale predation is the main driver of eye size evolution in giant squid, on the basis of an optical model that suggested optimal performance in detecting large luminous visual targets such as whales in the deep sea. However, it is poorly understood how the eye size of giant and colossal squid compares to that of other aquatic organisms when scaling effects are considered. We performed a large-scale comparative study that included 87 squid species and 237 species of acanthomorph fish. While squid have larger eyes than most acanthomorphs, a comparison of relative eye size among squid suggests that giant and colossal squid do not have unusually large eyes. After revising constants used in a previous model we found that large eyes perform equally well in detecting point targets and large luminous targets in the deep sea. The eyes of giant and colossal squid do not appear exceptionally large when allometric effects are considered. It is probable that the giant eyes of giant squid result from a phylogenetically conserved developmental pattern manifested in very large animals. Whatever the cause of large eyes, they appear to have several advantages for vision in the reduced light of the deep mesopelagic zone.

  13. Analysis of simulated hypervelocity impacts on a titanium fuel tank from the Salyut 7 space station

    Science.gov (United States)

    Jantou, V.; McPhail, D. S.; Chater, R. J.; Kearsley, A.

    2006-07-01

    The aim of this project was to gain a better understanding of the microstructural effects of hypervelocity impacts (HVI) in titanium alloys. We investigated a titanium fuel tank recovered from the Russian Salyut 7 space station, which was launched on April 19, 1982 before being destroyed during an un-controlled re-entry in 1991, reportedly scattering debris over parts of South America. Several sections were cut out from the tank in order to undergo HVI simulations using a two-stage light gas gun. In addition, a Ti-6Al-4V alloy was studied for further comparison. The crater morphologies produced were successfully characterised using microscope-based white light interferometry (Zygo ® Corp, USA), while projectile remnants were identified via secondary ion mass spectrometry (SIMS). Microstructural alterations were investigated using focused ion beam (FIB) milling and depth profiling, as well as transmission electron microscopy (TEM). There was evidence of a very high density of dislocations in the vicinity of the crater. The extent of the deformation was localised in a region of about one to two radii of the impact craters. No notable differences were observed between the titanium alloys used during the hypervelocity impact tests.

  14. Ejection and Lofting of Dust from Hypervelocity Impacts on the Moon

    Science.gov (United States)

    Hermalyn, B.; Schultz, P. H.

    2011-12-01

    Hypervelocity impact events mobilize and redistribute fine-grained regolith dust across the surfaces of planetary bodies. The ejecta mass-velocity distribution controls the location and emplacement of these materials. The current flux of material falling on the moon is dominated by small bolides and should cause frequent impacts that eject dust at high speeds. For example, approximately 25 LCROSS-sized (~20-30m diameter) craters are statistically expected to be formed naturally on the moon during any given earth year. When scaled to lunar conditions, the high-speed component of ejecta from hypervelocity impacts can be lofted for significant periods of time (as evidenced by the LCROSS mission results, c.f., Schultz, et al., 2010, Colaprete, et al., 2010). Even at laboratory scales, ejecta can approach orbital velocities; the higher impact speeds and larger projectiles bombarding the lunar surface may permit a significant portion of material to be launched closer to escape velocity. When these ejecta return to the surface (or encounter local topography), they impact at hundreds of meters per second or faster, thereby "scouring" the surface with low mass oblique impacts. While these high-speed ejecta represent only a small fraction of the total ejected mass, the lofting and subsequent ballistic return of this dust has the highest mobilization potential and will be directly applicable to the upcoming LADEE mission. A suite of hypervelocity impact experiments into granular materials was performed at the NASA Ames Vertical Gun Range (AVGR). This study incorporates both canonical sand targets and air-fall pumice dust to simulate the mechanical properties of lunar regolith. The implementation of a Particle Tracking Velocimetry (PTV) technique permits non-intrusive measurement of the ejecta velocity distribution within the ejecta curtain by following the path of individual ejecta particles. The PTV system developed at the AVGR uses a series of high-speed cameras (ranging

  15. Hypervelocity star candidates in Gaia DR1/TGAS

    Science.gov (United States)

    Marchetti, T.; Rossi, E. M.; Kordopatis, G.; Brown, A. G. A.; Rimoldi, A.; Starkenburg, E.; Youakim, K.; Ashley, R.

    2018-04-01

    Hypervelocity stars (HVSs) are characterized by a total velocity in excess of the Galactic escape speed, and with trajectories consistent with coming from the Galactic Centre. We apply a novel data mining routine, an artificial neural network, to discover HVSs in the TGAS subset of the first data release of the Gaia satellite, using only the astrometry of the stars. We find 80 stars with a predicted probability >90% of being HVSs, and we retrieved radial velocities for 47 of those. We discover 14 objects with a total velocity in the Galactic rest frame >400 km s-1, and 5 of these have a probability >50% of being unbound from the Milky Way. Tracing back orbits in different Galactic potentials, we discover 1 HVS candidate, 5 bound HVS candidates, and 5 runaway star candidates with remarkably high velocities, between 400 and 780 km s-1. We wait for future Gaia releases to confirm the goodness of our sample and to increase the number of HVS candidates.

  16. Theoretical model for plasma expansion generated by hypervelocity impact

    International Nuclear Information System (INIS)

    Ju, Yuanyuan; Zhang, Qingming; Zhang, Dongjiang; Long, Renrong; Chen, Li; Huang, Fenglei; Gong, Zizheng

    2014-01-01

    The hypervelocity impact experiments of spherical LY12 aluminum projectile diameter of 6.4 mm on LY12 aluminum target thickness of 23 mm have been conducted using a two-stage light gas gun. The impact velocity of the projectile is 5.2, 5.7, and 6.3 km/s, respectively. The experimental results show that the plasma phase transition appears under the current experiment conditions, and the plasma expansion consists of accumulation, equilibrium, and attenuation. The plasma characteristic parameters decrease as the plasma expands outward and are proportional with the third power of the impact velocity, i.e., (T e , n e ) ∝ v p 3 . Based on the experimental results, a theoretical model on the plasma expansion is developed and the theoretical results are consistent with the experimental data

  17. Theoretical model for plasma expansion generated by hypervelocity impact

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Yuanyuan; Zhang, Qingming, E-mail: qmzhang@bit.edu.cn; Zhang, Dongjiang; Long, Renrong; Chen, Li; Huang, Fenglei [State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081 (China); Gong, Zizheng [National Key Laboratory of Science and Technology on Reliability and Environment Engineering, Beijing Institute of Spacecraft Environment Engineering, Beijing 100094 (China)

    2014-09-15

    The hypervelocity impact experiments of spherical LY12 aluminum projectile diameter of 6.4 mm on LY12 aluminum target thickness of 23 mm have been conducted using a two-stage light gas gun. The impact velocity of the projectile is 5.2, 5.7, and 6.3 km/s, respectively. The experimental results show that the plasma phase transition appears under the current experiment conditions, and the plasma expansion consists of accumulation, equilibrium, and attenuation. The plasma characteristic parameters decrease as the plasma expands outward and are proportional with the third power of the impact velocity, i.e., (T{sub e}, n{sub e}) ∝ v{sub p}{sup 3}. Based on the experimental results, a theoretical model on the plasma expansion is developed and the theoretical results are consistent with the experimental data.

  18. GMC COLLISIONS AS TRIGGERS OF STAR FORMATION. I. PARAMETER SPACE EXPLORATION WITH 2D SIMULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Benjamin [Department of Physics, University of Florida, Gainesville, FL 32611 (United States); Loo, Sven Van [School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT (United Kingdom); Tan, Jonathan C. [Departments of Astronomy and Physics, University of Florida, Gainesville, FL 32611 (United States); Bruderer, Simon, E-mail: benwu@phys.ufl.edu [Max Planck Institute for Extraterrestrial Physics, Giessenbachstrasse 1, D-85748 Garching (Germany)

    2015-09-20

    We utilize magnetohydrodynamic (MHD) simulations to develop a numerical model for giant molecular cloud (GMC)–GMC collisions between nearly magnetically critical clouds. The goal is to determine if, and under what circumstances, cloud collisions can cause pre-existing magnetically subcritical clumps to become supercritical and undergo gravitational collapse. We first develop and implement new photodissociation region based heating and cooling functions that span the atomic to molecular transition, creating a multiphase ISM and allowing modeling of non-equilibrium temperature structures. Then in 2D and with ideal MHD, we explore a wide parameter space of magnetic field strength, magnetic field geometry, collision velocity, and impact parameter and compare isolated versus colliding clouds. We find factors of ∼2–3 increase in mean clump density from typical collisions, with strong dependence on collision velocity and magnetic field strength, but ultimately limited by flux-freezing in 2D geometries. For geometries enabling flow along magnetic field lines, greater degrees of collapse are seen. We discuss observational diagnostics of cloud collisions, focussing on {sup 13}CO(J = 2–1), {sup 13}CO(J = 3–2), and {sup 12}CO(J = 8–7) integrated intensity maps and spectra, which we synthesize from our simulation outputs. We find that the ratio of J = 8–7 to lower-J emission is a powerful diagnostic probe of GMC collisions.

  19. GMC Collisions as Triggers of Star Formation. II. 3D Turbulent, Magnetized Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Benjamin; Tan, Jonathan C. [Department of Physics, University of Florida, Gainesville, FL 32611 (United States); Nakamura, Fumitaka [National Astronomical Observatory, Mitaka, Tokyo 181-8588 (Japan); Loo, Sven Van [School of Physics and Astronomy, University of Leeds (United Kingdom); Christie, Duncan [Department of Astronomy, University of Florida, Gainesville, FL 32611 (United States); Collins, David [Department of Physics, Florida State University, Tallahassee, FL 32306-4350 (United States)

    2017-02-01

    We investigate giant molecular cloud collisions and their ability to induce gravitational instability and thus star formation. This mechanism may be a major driver of star formation activity in galactic disks. We carry out a series of 3D, magnetohydrodynamics (MHD), adaptive mesh refinement simulations to study how cloud collisions trigger formation of dense filaments and clumps. Heating and cooling functions are implemented based on photo-dissociation region models that span the atomic-to-molecular transition and can return detailed diagnostic information. The clouds are initialized with supersonic turbulence and a range of magnetic field strengths and orientations. Collisions at various velocities and impact parameters are investigated. Comparing and contrasting colliding and non-colliding cases, we characterize morphologies of dense gas, magnetic field structure, cloud kinematic signatures, and cloud dynamics. We present key observational diagnostics of cloud collisions, especially: relative orientations between magnetic fields and density structures, like filaments; {sup 13}CO( J = 2-1), {sup 13}CO( J = 3-2), and {sup 12}CO( J = 8-7) integrated intensity maps and spectra; and cloud virial parameters. We compare these results to observed Galactic clouds.

  20. HYPERFUSE: a hypervelocity inertial confinement system for fusion energy production and fission waste transmutation

    International Nuclear Information System (INIS)

    Makowitz, H.; Powell, J.R.; Wiswall, R.

    1980-01-01

    Parametric system studies of an inertial confinement fusion (ICF) reactor system to transmute fission products from a LWR economy have been carried out. The ICF reactors would produce net power in addition to transmuting fission products. The particular ICF concept examined is an impact fusion approach termed HYPERFUSE, in which hypervelocity pellets, traveling on the order of 100 to 300 km/sec, collide with each other or a target block in a reactor chamber and initiate a thermonuclear reaction. The DT fusion fuel is contained in a shell of the material to be transmuted, e.g., 137 Cs, 90 Sr, 129 I, 99 Tc, etc. The 14-MeV fusion neutrons released during the pellet burn cause transmutation reactions (e.g., (n,2n), (n,α), (n,γ), etc.) that convert the long-lived fission products (FP's) either to stable products or to species that decay with a short half-life to a stable product. The transmutation parametric studies conclude that the design of the hypervelocity projectiles should emphasize the achievement of high densities in the transmutation regions (greater than the DT fusion fuel density), as well as the DT ignition and burn criterion (rho R = 1.0 to 3.0) requirements. These studies also indicate that masses on the order of 1.0 g at densities of rho greater than or equal to 500.0 g/cm 3 are required for a practical fusion-based fission product transmutation system

  1. THE REDSHIFT DISTRIBUTION OF GIANT ARCS IN THE SLOAN GIANT ARCS SURVEY

    International Nuclear Information System (INIS)

    Bayliss, Matthew B.; Gladders, Michael D.; Koester, Benjamin P.; Oguri, Masamune; Hennawi, Joseph F.; Sharon, Keren; Dahle, Haakon

    2011-01-01

    We measure the redshift distribution of a sample of 28 giant arcs discovered as a part of the Sloan Giant Arcs Survey. Gemini/GMOS-North spectroscopy provides precise redshifts for 24 arcs, and 'redshift desert' constrains for the remaining 4 arcs. This is a direct measurement of the redshift distribution of a uniformly selected sample of bright giant arcs, which is an observable that can be used to inform efforts to predict giant arc statistics. Our primary giant arc sample has a median redshift z = 1.821 and nearly two-thirds of the arcs, 64%, are sources at z ∼> 1.4, indicating that the population of background sources that are strongly lensed into bright giant arcs resides primarily at high redshift. We also analyze the distribution of redshifts for 19 secondary strongly lensed background sources that are not visually apparent in Sloan Digital Sky Survey imaging, but were identified in deeper follow-up imaging of the lensing cluster fields. Our redshift sample for the secondary sources is not spectroscopically complete, but combining it with our primary giant arc sample suggests that a large fraction of all background galaxies that are strongly lensed by foreground clusters reside at z ∼> 1.4. Kolmogorov-Smirnov tests indicate that our well-selected, spectroscopically complete primary giant arc redshift sample can be reproduced with a model distribution that is constructed from a combination of results from studies of strong-lensing clusters in numerical simulations and observational constraints on the galaxy luminosity function.

  2. Giant CP stars

    International Nuclear Information System (INIS)

    Loden, L.O.; Sundman, A.

    1989-01-01

    This study is part of an investigation of the possibility of using chemically peculiar (CP) stars to map local galactic structure. Correct luminosities of these stars are therefore crucial. CP stars are generally regarded as main-sequence or near-main-sequence objects. However, some CP stars have been classified as giants. A selection of stars, classified in literature as CP giants, are compared to normal stars in the same effective temperature interval and to ordinary 'non giant' CP stars. There is no clear confirmation of a higher luminosity for 'CP giants', than for CP stars in general. In addition, CP characteristics seem to be individual properties not repeated in a component star or other cluster members. (author). 50 refs., 5 tabs., 3 figs

  3. Rapid formation of gas giants, ice giants and super-Earths

    Energy Technology Data Exchange (ETDEWEB)

    Boss, A P [DTM, Carnegie Institution of Washington, 5241 Broad Branch Road, NW, Washington, DC 20015 (United States)], E-mail: boss@dtm.ciw.edu

    2008-08-15

    Giant planets might have been formed by either of the two basic mechanisms, top-down (disk instability) or bottom-up (core accretion). The latter mechanism is the most generally accepted mechanism and it begins with the collisional accumulation of solid cores that may then accrete sufficient gas to become gas giants. The former mechanism is more heretical and begins with the gravitational instability of the protoplanetary disk gas, leading to the formation of self-gravitating protoplanets, within which the dust settles to form a solid core. The disk instability mechanism has been thought of primarily as a mechanism for the formation of gas giants, but if it occurs in a disk that is being photoevaporated by the ultraviolet radiation from nearby massive stars, then the outer gaseous protoplanets can be photoevaporated as well and stripped of their gaseous envelopes. The result would then be ice giants (cold super-Earths), such as the objects discovered recently by microlensing orbiting two presumed M dwarf stars. M dwarfs that form in regions of future high-mass star formation would be expected to produce cold super-Earths orbiting at distances of several astronomical units (AU) and beyond, while M dwarfs that form in regions of low-mass star formation would be expected to have gas giants at those distances. Given that most stars are born in the former rather than in the latter regions, M dwarfs should have significantly more super-Earths than gas giants on orbits of several AU or more.

  4. Rapid formation of gas giants, ice giants and super-Earths

    International Nuclear Information System (INIS)

    Boss, A P

    2008-01-01

    Giant planets might have been formed by either of the two basic mechanisms, top-down (disk instability) or bottom-up (core accretion). The latter mechanism is the most generally accepted mechanism and it begins with the collisional accumulation of solid cores that may then accrete sufficient gas to become gas giants. The former mechanism is more heretical and begins with the gravitational instability of the protoplanetary disk gas, leading to the formation of self-gravitating protoplanets, within which the dust settles to form a solid core. The disk instability mechanism has been thought of primarily as a mechanism for the formation of gas giants, but if it occurs in a disk that is being photoevaporated by the ultraviolet radiation from nearby massive stars, then the outer gaseous protoplanets can be photoevaporated as well and stripped of their gaseous envelopes. The result would then be ice giants (cold super-Earths), such as the objects discovered recently by microlensing orbiting two presumed M dwarf stars. M dwarfs that form in regions of future high-mass star formation would be expected to produce cold super-Earths orbiting at distances of several astronomical units (AU) and beyond, while M dwarfs that form in regions of low-mass star formation would be expected to have gas giants at those distances. Given that most stars are born in the former rather than in the latter regions, M dwarfs should have significantly more super-Earths than gas giants on orbits of several AU or more

  5. Giant Cell Arteritis

    Science.gov (United States)

    Giant cell arteritis is a disorder that causes inflammation of your arteries, usually in the scalp, neck, and arms. ... arteries, which keeps blood from flowing well. Giant cell arteritis often occurs with another disorder called polymyalgia ...

  6. Burst Pressure Failure of Titanium Tanks Damaged by Secondary Plumes from Hypervelocity Impacts on Aluminum Shields

    Science.gov (United States)

    Nahra, Henry; Ghosn, Louis; Christiansen, Eric; Davis, B. Alan; Keddy, Chris; Rodriquez, Karen; Miller, Joshua; Bohl, William

    2011-01-01

    Metallic pressure tanks used in space missions are inherently vulnerable to hypervelocity impacts from micrometeoroids and orbital debris; thereby knowledge of impact damage and its effect on the tank integrity is crucial to a spacecraft risk assessment. This paper describes tests that have been performed to assess the effects of hypervelocity impact (HVI) damage on Titanium alloy (Ti-6Al-4V) pressure vessels burst pressure and characteristics. The tests consisted of a pair of HVI impact tests on water-filled Ti-6Al-4V tanks (water being used as a surrogate to the actual propellant) and subsequent burst tests as well as a burst test on an undamaged control tank. The tanks were placed behind Aluminum (Al) shields and then each was impacted with a 7 km/s projectile. The resulting impact debris plumes partially penetrated the Ti-6Al-4V tank surfaces resulting in a distribution of craters. During the burst tests, the tank that failed at a lower burst pressure did appear to have the failure initiating at a crater site with observed spall cracks. A fracture mechanics analysis showed that the tanks failure at the impact location may have been due to a spall crack that formed upon impact of a fragmentation on the Titanium surface. This result was corroborated with a finite element analysis from calculated Von-Mises and hoop stresses.

  7. Vulnerability analysis of a pressurized aluminum composite vessel against hypervelocity impacts

    Directory of Open Access Journals (Sweden)

    Hereil Pierre-Louis

    2015-01-01

    Full Text Available Vulnerability of high pressure vessels subjected to high velocity impact of space debris is analyzed with the response of pressurized vessels to hypervelocity impact of aluminum sphere. Investigated tanks are CFRP (carbon fiber reinforced plastics overwrapped Al vessels. Explored internal pressure of nitrogen ranges from 1 bar to 300 bar and impact velocity are around 4400 m/s. Data obtained from Xrays radiographies and particle velocity measurements show the evolution of debris cloud and shock wave propagation in pressurized nitrogen. Observation of recovered vessels leads to the damage pattern and to its evolution as a function of the internal pressure. It is shown that the rupture mode is not a bursting mode but rather a catastrophic damage of the external carbon composite part of the vessel.

  8. Multichannel fiber laser Doppler vibrometer studies of low momentum and hypervelocity impacts

    Science.gov (United States)

    Posada-Roman, Julio E.; Jackson, David A.; Cole, Mike J.; Garcia-Souto, Jose A.

    2017-12-01

    A multichannel optical fiber laser Doppler vibrometer was demonstrated with the capability of making simultaneous non-contact measurements of impacts at 3 different locations. Two sets of measurements were performed, firstly using small ball bearings (1 mm-5.5 mm) falling under gravity and secondly using small projectiles (1 mm) fired from an extremely high velocity light gas gun (LGG) with speeds in the range 1 km/s-8 km/s. Determination of impact damage is important for industries such as aerospace, military and rail, where the effect of an impact on the structure can result in a major structural damage. To our knowledge the research reported here demonstrates the first trials of a multichannel fiber laser Doppler vibrometer being used to detect hypervelocity impacts.

  9. MMT hypervelocity star survey. III. The complete survey

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Warren R.; Geller, Margaret J.; Kenyon, Scott J., E-mail: wbrown@cfa.harvard.edu, E-mail: mgeller@cfa.harvard.edu, E-mail: skenyon@cfa.harvard.edu [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States)

    2014-05-20

    We describe our completed spectroscopic survey for unbound hypervelocity stars (HVSs) ejected from the Milky Way. Three new discoveries bring the total number of unbound late B-type stars to 21. We place new constraints on the nature of the stars and on their distances using moderate resolution MMT spectroscopy. Half of the stars are fast rotators; they are certain 2.5-4 M {sub ☉} main sequence stars at 50-120 kpc distances. Correcting for stellar lifetime, our survey implies that unbound 2.5-4 M {sub ☉} stars are ejected from the Milky Way at a rate of 1.5 × 10{sup –6} yr{sup –1}. These unbound HVSs are likely ejected continuously over the past 200 Myr and do not share a common flight time. The anisotropic spatial distribution of HVSs on the sky remains puzzling. Southern hemisphere surveys like SkyMapper will soon allow us to map the all-sky distribution of HVSs. Future proper motion measurements with Hubble Space Telescope and Gaia will provide strong constraints on origin. Existing observations are all consistent with HVS ejections from encounters with the massive black hole in the Galactic center.

  10. MMT hypervelocity star survey. III. The complete survey

    International Nuclear Information System (INIS)

    Brown, Warren R.; Geller, Margaret J.; Kenyon, Scott J.

    2014-01-01

    We describe our completed spectroscopic survey for unbound hypervelocity stars (HVSs) ejected from the Milky Way. Three new discoveries bring the total number of unbound late B-type stars to 21. We place new constraints on the nature of the stars and on their distances using moderate resolution MMT spectroscopy. Half of the stars are fast rotators; they are certain 2.5-4 M ☉ main sequence stars at 50-120 kpc distances. Correcting for stellar lifetime, our survey implies that unbound 2.5-4 M ☉ stars are ejected from the Milky Way at a rate of 1.5 × 10 –6 yr –1 . These unbound HVSs are likely ejected continuously over the past 200 Myr and do not share a common flight time. The anisotropic spatial distribution of HVSs on the sky remains puzzling. Southern hemisphere surveys like SkyMapper will soon allow us to map the all-sky distribution of HVSs. Future proper motion measurements with Hubble Space Telescope and Gaia will provide strong constraints on origin. Existing observations are all consistent with HVS ejections from encounters with the massive black hole in the Galactic center.

  11. GMC Collisions as Triggers of Star Formation. III. Density and Magnetically Regulated Star Formation

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Benjamin [National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan); Tan, Jonathan C. [Department of Physics, University of Florida, Gainesville, FL 32611 (United States); Christie, Duncan [Department of Astronomy, University of Florida, Gainesville, FL 32611 (United States); Nakamura, Fumitaka [National Astronomical Observatory, Mitaka, Tokyo 181-8588 (Japan); Van Loo, Sven [School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT (United Kingdom); Collins, David, E-mail: ben.wu@nao.ac.jp [Department of Physics, Florida State University, Tallahassee, FL 32306-4350 (United States)

    2017-06-01

    We study giant molecular cloud (GMC) collisions and their ability to trigger star cluster formation. We further develop our three-dimensional magnetized, turbulent, colliding GMC simulations by implementing star formation subgrid models. Two such models are explored: (1) “Density-Regulated,” i.e., fixed efficiency per free-fall time above a set density threshold and (2) “Magnetically Regulated,” i.e., fixed efficiency per free-fall time in regions that are magnetically supercritical. Variations of parameters associated with these models are also explored. In the non-colliding simulations, the overall level of star formation is sensitive to model parameter choices that relate to effective density thresholds. In the GMC collision simulations, the final star formation rates and efficiencies are relatively independent of these parameters. Between the non-colliding and colliding cases, we compare the morphologies of the resulting star clusters, properties of star-forming gas, time evolution of the star formation rate (SFR), spatial clustering of the stars, and resulting kinematics of the stars in comparison to the natal gas. We find that typical collisions, by creating larger amounts of dense gas, trigger earlier and enhanced star formation, resulting in 10 times higher SFRs and efficiencies. The star clusters formed from GMC collisions show greater spatial substructure and more disturbed kinematics.

  12. Comment on "Penetration of Action Potentials During Collision in the Median and Lateral Giant Axons of Invertebrates"

    Science.gov (United States)

    Berg, Rune W.; Stauning, Marius Tving; Sørensen, Jakob Balslev; Jahnsen, Henrik

    2017-04-01

    The action potential (AP) is an electrical impulse elicited by depolarization of the neuronal membrane from the resting membrane potential (around -70 mV ). It propagates along the axon, allowing for rapid and distant communication. Recently, it was claimed that two APs traveling in opposite direction will pass unhindered through each other (penetrate) upon collision [Gonzalez-Perez et al.Phys. Rev. X 4, 031047 (2014), 10.1103/PhysRevX.4.031047]. We tested this claim under carefully controlled conditions and found that we cannot reproduce penetration. Instead, APs consistently annihilated upon collision. This is consistent with a vast body of literature.

  13. Shock Tunnel Studies of the Hypersonic Flowfield around the Hypervelocity Ballistic Models with Aerospikes

    Science.gov (United States)

    Balakalyani, G.; Saravanan, S.; Jagadeesh, G.

    Reduced drag and aerodynamic heating are the two basic design requirements for any hypersonic vehicle [1]. The flowfield around an axisymmetric blunt body is characterized by a bow shockwave standing ahead of its nose. The pressure and temperature behind this shock wave are very high. This increased pressure and temperature are responsible for the high levels of drag and aerodynamic heating over the body. In the past, there have been many investigations on the use of aerospikes as a drag reduction tool. These studies on spiked bodies aim at reducing both the drag and aerodynamic heating by modifying the hypersonic flowfield ahead of the nose of the body [2]. However, most of them used very simple configurations to experimentally study the drag reduction using spikes at hypersonic speeds [3] and therefore very little experimental data is available for a realistic geometric configuration. In the present study, the standard AGARD Hypervelocity Ballistic model 1 is used as the test model. The addition of the spike to the blunt body significantly alters the flowfield ahead of the nose, leading to the formation of a low pressure conical recirculation region, thus causing a reduction in drag and wall heat flux [4]. In the present investigation, aerodynamic drag force is measured over the Hypervelocity Ballistic model-1, with and without spike, at a flow enthalpy of 1.7 MJ/kg. The experiments are carried out at a Mach number of 8 and at zero angle of attack. An internally mountable accelerometer based 3-component force balance system is used to measure the aerodynamic forces on the model. Also computational studies are carried out to complement the experiments.

  14. Constraints on the pre-impact orbits of Solar system giant impactors

    Science.gov (United States)

    Jackson, Alan P.; Gabriel, Travis S. J.; Asphaug, Erik I.

    2018-03-01

    We provide a fast method for computing constraints on impactor pre-impact orbits, applying this to the late giant impacts in the Solar system. These constraints can be used to make quick, broad comparisons of different collision scenarios, identifying some immediately as low-probability events, and narrowing the parameter space in which to target follow-up studies with expensive N-body simulations. We benchmark our parameter space predictions, finding good agreement with existing N-body studies for the Moon. We suggest that high-velocity impact scenarios in the inner Solar system, including all currently proposed single impact scenarios for the formation of Mercury, should be disfavoured. This leaves a multiple hit-and-run scenario as the most probable currently proposed for the formation of Mercury.

  15. Hypervelocity stars from young stellar clusters in the Galactic Centre

    Science.gov (United States)

    Fragione, G.; Capuzzo-Dolcetta, R.; Kroupa, P.

    2017-05-01

    The enormous velocities of the so-called hypervelocity stars (HVSs) derive, likely, from close interactions with massive black holes, binary stars encounters or supernova explosions. In this paper, we investigate the origin of HVSs as consequence of the close interaction between the Milky Way central massive black hole and a passing-by young stellar cluster. We found that both single and binary HVSs may be generated in a burst-like event, as the cluster passes near the orbital pericentre. High-velocity stars will move close to the initial cluster orbital plane and in the direction of the cluster orbital motion at the pericentre. The binary fraction of these HVS jets depends on the primordial binary fraction in the young cluster. The level of initial mass segregation determines the value of the average mass of the ejected stars. Some binary stars will merge, continuing their travel across and out of the Galaxy as blue stragglers.

  16. Collision Risk and Damage after Collision

    DEFF Research Database (Denmark)

    Pedersen, Preben Terndrup; Hansen, Peter Friis; Nielsen, Lars Peter

    1996-01-01

    The paper presents a new and complete procedure for calculation of ship-ship collision rates on specific routes and the hull damage caused by such collisions.The procedure is applied to analysis of collision risks for Ro-Ro pasenger vessels. Given a collision the spatial probability distribution ...

  17. Determination of parameters for hypervelocity dust grains encountered in near-Earth space

    Science.gov (United States)

    Tanner, William G.; Maag, Carl R.; Alexander, W. Merle; Sappenfield, Patricia

    1993-01-01

    Primarily interest was in the determination of the population of micrometeoroids and space debris and interpretation of the hole size in a thin film or in a micropore foam returned from space with theoretical calculations describing the event. In order to augment the significance of the theoretical calculations of the impact event, an experiment designed to analyze the charge production due to hypervelocity impacts on thin films also produced data which described the penetration properties of micron and sub-micron sized projectiles. The thin film penetration sites in the 500 A and 1000 A aluminum films were counted and a size distribution function was derived. In the case of the very smallest dust grains, there were no independent measurements of velocities like that which existed for the larger dust grains (d(sub p) is less than or equal to 1 micron). The primary task then became to assess the relationship between the penetration hole and the particle diameter of the projectile which made the hole. The most promising means to assess the measure of the diameters of impacting grains came in the form of comparing cratering mechanics to penetration mechanics. Future experimentation will produce measurements of the cratering as opposed to the penetrating event. Particles encountered by surfaces while being flown in space will degrade that surface in a systematic manner even when the impact is with small hypervelocity particles, d(sub p) is less than or equal to 10 microns. Though not to a degree which would precipitate a catastrophic failure of a system, the degradation of the materials comprising the interconnected system will occur. It is the degradation of the optical system and the subsequent embrittlement of other materials that can lead to degradation if not to failure. It is to this end that research was conducted to compare the primary consequences for experiments which will be flown to those which have been returned.

  18. Inelastic collisions of heavy ions and their reaction mechanisms; Collisions inelastiques d'ions lourds et mecanismes de reaction

    Energy Technology Data Exchange (ETDEWEB)

    Scarpaci, J.A

    2004-06-01

    This work is dedicated to the study of inelastic collisions of heavy ions. Most experiments took place in Ganil facility. The 2 first chapters introduce the notion of inelastic scattering of heavy ions. The third chapter deals with target excitation, giant monopolar or dipolar or quadrupolar resonances ant the multi-phonon concept and presents relevant experimental results from the Ca{sup 40} + Ca{sup 40} nuclear reaction at 50 MeV/A. The fourth chapter is dedicated to nuclear processes involved in inelastic collisions: pick-up break-up mechanisms, the angular distribution of emitted protons and the towing mode. These notions are applied to the reaction Zr{sup 90}(Ar{sup 40}, Ar{sup 40}'). The fifth chapter presents the solving of the time dependent Schroedinger equation (TDSE) applied to the wave function of a particle plunged in a variable potential. TDSE solving is applied to the break-up of Be{sup 11}. These calculations have been validated by comparing them with experimental results from the nuclear reaction Ti{sup 48}(Be{sup 11}, Be{sup 10} + n + {gamma}) that is described in the chapter 6. The last chapter presents the advantages of inelastic scattering considered as a tool to study exotic nuclei.

  19. Simple light gas guns for hypervelocity studies

    International Nuclear Information System (INIS)

    Combs, S.K.; Haselton, H.H.; Milora, S.L.

    1990-01-01

    Two-stage light guns are used extensively in hypervelocity research. The applications of this technology include impact studies and special materials development. Oak Ridge National Laboratory (ORNL) has developed two-stage guns that accelerate small projectiles (4-mm nominal diameter) to velocities of up to ∼5 km/s. These guns are relatively small and simple (thus, easy to operate), allowing a significant number of test shots to be carried out and data accumulated in a short time. Materials that have been used for projectiles include plastics, frozen isotopes of hydrogen, and lithium hydride. One gun has been used to demonstrate repetitive operation at a rate of 0.7 Hz; and, with a few design improvements, it appears capable of performing at firing frequencies of 1--2 Hz. A schematic of ORNL two-stage device is shown below. Unlike most such devices, no rupture disks are used. Instead, a fast valve (high-flow type) initiates the acceleration process in the first stage. Projectiles can be loaded into the gun breech via the slide mechanism; this action has been automated which allows repetitive firing. Alternatively, the device is equipped with ''pipe gun'' apparatus in which gas can be frozen in situ in the gun barrel to form the projectile. This equipment operates with high reliability and is well suited for small-scale testing at high velocity. 17 refs., 6 figs., 2 tabs

  20. Effect of compressibility on the hypervelocity penetration

    Science.gov (United States)

    Song, W. J.; Chen, X. W.; Chen, P.

    2018-02-01

    We further consider the effect of rod strength by employing the compressible penetration model to study the effect of compressibility on hypervelocity penetration. Meanwhile, we define different instances of penetration efficiency in various modified models and compare these penetration efficiencies to identify the effects of different factors in the compressible model. To systematically discuss the effect of compressibility in different metallic rod-target combinations, we construct three cases, i.e., the penetrations by the more compressible rod into the less compressible target, rod into the analogously compressible target, and the less compressible rod into the more compressible target. The effects of volumetric strain, internal energy, and strength on the penetration efficiency are analyzed simultaneously. It indicates that the compressibility of the rod and target increases the pressure at the rod/target interface. The more compressible rod/target has larger volumetric strain and higher internal energy. Both the larger volumetric strain and higher strength enhance the penetration or anti-penetration ability. On the other hand, the higher internal energy weakens the penetration or anti-penetration ability. The two trends conflict, but the volumetric strain dominates in the variation of the penetration efficiency, which would not approach the hydrodynamic limit if the rod and target are not analogously compressible. However, if the compressibility of the rod and target is analogous, it has little effect on the penetration efficiency.

  1. Hyvax: A hypervelocity railgun experiment

    International Nuclear Information System (INIS)

    Parker, J.V.; Cummings, C.E.; Parsons, W.M.; Peterson, D.R.

    1983-01-01

    The experiment is designed to utilize an existing 1.89 MJ, 20 kV capacitor bark which is configured as 7 independent modules which each store 270 kJ. Projectile size is a compromise between low mass and the desire to maintain a bore diameter which is characteristic of future hypervelocity railguns. The predicted performance for this design, assuming a net driving force of 80 percent theoretical, is 23.9 km/sec with an overall efficiency of 18.4 percent. The average driving current is about 480 kA; rising from 380 kA in the first stage to 560 kA in the last stage. The projectile will be injected at 0.5 km/sec using a helium driven injector. The planned diagnostics for the railgun include voltage and current at each stage, muzzle voltage, and magnetic loop position probes at 20 locations along the barrel. Altogether 38 channels of data will be recorded on a CAMAC-based transient digitizer system. Data will be read out by a dedicated microprocessor and processed to obtain position velocity, acceleration and driving force as a function of time. In addition, a number of diagnostics will be mounted on the experimental chamber including; an x-ray shadowgraph system to look for projectile damage and to determine if the projectile is tumbling, foil switches for an independent velocity measurement, and a plasma density probe to evaluate the efficacy of various muzzle flash suppression schemes. At the present time the railgun barrel is being assembled and installed in the capacitor bank facility. We anticipate testing the first two stages in June and the full railgun in July. An experimental program of 30 shots is planned for the period July-September

  2. Discovery of Two New Hypervelocity Stars from the LAMOST Spectroscopic Surveys

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Y.; Liu, X.-W.; Chen, B.-Q. [South-Western Institute for Astronomy Research, Yunnan University, Kunming 650500 (China); Zhang, H.-W.; Wang, C.; Tian, Z.-J. [Department of Astronomy, Peking University, Beijing 100871 (China); Xiang, M.-S.; Li, Y.-B. [Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Yuan, H.-B. [Department of Astronomy, Beijing Normal University, Beijing 100875 (China); Wang, B., E-mail: yanghuang@pku.edu.cn, E-mail: x.liu@pku.edu.cn, E-mail: zhanghw@pku.edu.cn [Key Laboratory for the Structure and Evolution of Celestial Objects, Yunnan Observatories, CAS, Kunming 650216 (China)

    2017-09-20

    We report the discovery of two new unbound hypervelocity stars (HVSs) from the LAMOST spectroscopic surveys. They are, respectively, a B2V-type star of ∼7 M {sub ⊙} with a Galactic rest-frame radial velocity of 502 km s{sup −1} at a Galactocentric radius of ∼21 kpc and a B7V-type star of ∼4 M {sub ⊙} with a Galactic rest-frame radial velocity of 408 km s{sup −1} at a Galactocentric radius of ∼30 kpc. The origins of the two HVSs are not clear given their currently poorly measured proper motions. However, the future data releases of Gaia should provide proper motion measurements accurate enough to solve this problem. The ongoing LAMOST spectroscopic surveys are expected to yield more HVSs to form a statistical sample, providing vital constraints on understanding the nature of HVSs and their ejection mechanisms.

  3. Towards a smoothed particle hydrodynamics algorithm for shocks through layered materials

    NARCIS (Netherlands)

    Zisis, I.A.; Linden, van der B.J.; Giannopapa, C.G.

    2013-01-01

    Hypervelocity impacts (HVIs) are collisions at velocities greater than the target object’s speed of sound. Such impacts produce pressure waves that generate sharp and sudden changes in the density of the materials. These are propagated as shock waves. Previous computational research has given

  4. Giant pulses of pulsar radio emission

    OpenAIRE

    Kuzmin, A. D.

    2007-01-01

    Review report of giant pulses of pulsar radio emission, based on our detections of four new pulsars with giant pulses, and the comparative analysis of the previously known pulsars with giant pulses, including the Crab pulsar and millisecond pulsar PSR B1937+21.

  5. BINARY DISRUPTION BY MASSIVE BLACK HOLES: HYPERVELOCITY STARS, S STARS, AND TIDAL DISRUPTION EVENTS

    Energy Technology Data Exchange (ETDEWEB)

    Bromley, Benjamin C. [Department of Physics and Astronomy, University of Utah, 115 S 1400 E, Rm 201, Salt Lake City, UT 84112 (United States); Kenyon, Scott J.; Geller, Margaret J.; Brown, Warren R., E-mail: bromley@physics.utah.edu, E-mail: skenyon@cfa.harvard.edu, E-mail: mgeller@cfa.harvard.edu, E-mail: wbrown@cfa.harvard.edu [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States)

    2012-04-20

    We examine whether disrupted binary stars can fuel black hole growth. In this mechanism, tidal disruption produces a single hypervelocity star (HVS) ejected at high velocity and a former companion star bound to the black hole. After a cluster of bound stars forms, orbital diffusion allows the black hole to accrete stars by tidal disruption at a rate comparable to the capture rate. In the Milky Way, HVSs and the S star cluster imply similar rates of 10{sup -5} to 10{sup -3} yr{sup -1} for binary disruption. These rates are consistent with estimates for the tidal disruption rate in nearby galaxies and imply significant black hole growth from disrupted binaries on 10 Gyr timescales.

  6. Reply to "Comment on `Penetration of Action Potentials During Collision in the Median and Lateral Giant Axons of Invertebrates"'

    Science.gov (United States)

    Wang, Tian; Gonzalez-Perez, Alfredo; Budvytyte, Rima; Jackson, Andrew D.; Heimburg, Thomas

    2017-04-01

    Berg et al. did not reproduce our results but worked on different preparations and, in one central experiment, used a significantly different electrode configuration. To clarify the situation, we have repeated their experiment on the walking leg of a lobster using an apparatus that can produce both electrode configurations. With the configuration used by Berg et al., the signal of the nerve pulse disappears when forced to pass through the region strongly perturbed by the second stimulus. In our original collision setup, pulses do not travel through perturbed regions, and pulses pass through each other without annihilation as previously reported. These results demonstrate that we handle the preparations correctly. Furthermore, they call for a reinterpretation of the so-called collision block experiment performed by Berg et al. Most likely, their results merely indicate inhibition of the nerve pulse by a strong stimulus and not annihilation upon collision as claimed.

  7. Giant Oil Fields - The Highway to Oil: Giant Oil Fields and their Importance for Future Oil Production

    International Nuclear Information System (INIS)

    Robelius, Fredrik

    2007-01-01

    Since the 1950s, oil has been the dominant source of energy in the world. The cheap supply of oil has been the engine for economic growth in the western world. Since future oil demand is expected to increase, the question to what extent future production will be available is important. The belief in a soon peak production of oil is fueled by increasing oil prices. However, the reliability of the oil price as a single parameter can be questioned, as earlier times of high prices have occurred without having anything to do with a lack of oil. Instead, giant oil fields, the largest oil fields in the world, can be used as a parameter. A giant oil field contains at least 500 million barrels of recoverable oil. Only 507, or 1 % of the total number of fields, are giants. Their contribution is striking: over 60 % of the 2005 production and about 65 % of the global ultimate recoverable reserve (URR). However, giant fields are something of the past since a majority of the largest giant fields are over 50 years old and the discovery trend of less giant fields with smaller volumes is clear. A large number of the largest giant fields are found in the countries surrounding the Persian Gulf. The domination of giant fields in global oil production confirms a concept where they govern future production. A model, based on past annual production and URR, has been developed to forecast future production from giant fields. The results, in combination with forecasts on new field developments, heavy oil and oil sand, are used to predict future oil production. In all scenarios, peak oil occurs at about the same time as the giant fields peak. The worst-case scenario sees a peak in 2008 and the best-case scenario, following a 1.4 % demand growth, peaks in 2018

  8. Thermal protection for hypervelocity flight in earth's atmosphere by use of radiation backscattering ablating materials

    Science.gov (United States)

    Howe, John T.; Yang, Lily

    1991-01-01

    A heat-shield-material response code predicting the transient performance of a material subject to the combined convective and radiative heating associated with the hypervelocity flight is developed. The code is dynamically interactive to the heating from a transient flow field, including the effects of material ablation on flow field behavior. It accomodates finite time variable material thickness, internal material phase change, wavelength-dependent radiative properties, and temperature-dependent thermal, physical, and radiative properties. The equations of radiative transfer are solved with the material and are coupled to the transfer energy equation containing the radiative flux divergence in addition to the usual energy terms.

  9. MMT HYPERVELOCITY STAR SURVEY. II. FIVE NEW UNBOUND STARS

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Warren R.; Geller, Margaret J.; Kenyon, Scott J., E-mail: wbrown@cfa.harvard.edu, E-mail: mgeller@cfa.harvard.edu, E-mail: skenyon@cfa.harvard.edu [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States)

    2012-05-20

    We present the discovery of five new unbound hypervelocity stars (HVSs) in the outer Milky Way halo. Using a conservative estimate of Galactic escape velocity, our targeted spectroscopic survey has now identified 16 unbound HVSs as well as a comparable number of HVSs ejected on bound trajectories. A Galactic center origin for the HVSs is supported by their unbound velocities, the observed number of unbound stars, their stellar nature, their ejection time distribution, and their Galactic latitude and longitude distribution. Other proposed origins for the unbound HVSs, such as runaway ejections from the disk or dwarf galaxy tidal debris, cannot be reconciled with the observations. An intriguing result is the spatial anisotropy of HVSs on the sky, which possibly reflects an anisotropic potential in the central 10-100 pc region of the Galaxy. Further progress requires measurement of the spatial distribution of HVSs over the southern sky. Our survey also identifies seven B supergiants associated with known star-forming galaxies; the absence of B supergiants elsewhere in the survey implies there are no new star-forming galaxies in our survey footprint to a depth of 1-2 Mpc.

  10. High speed photography of the plasma flow and the projectiles in the T.U.M. hypervelocity accelerator

    International Nuclear Information System (INIS)

    Igenbergs, E.; Kuczera, H.; Schroeder, B.

    1979-01-01

    The hypervelocity accelerator at the Technische Universitaet Muenchen, FRG, accelerates small projectiles (0.1 to 1.0 mm diameter) to velocities around 20 km/s. The photographic equipment consists of two Cordin single-frame image converter cameras and one TRW image converter camera with streak units and multiple-frame units. They are used for plasma flow diagnostics and the measurement of the position and the velocity of the projectiles. The single-frame cameras are triggered with a Laser light bar and the photographic measurement of the projectile velocity will be compared with Doppler-Radar. (author)

  11. Fragmentation of Millimeter-Size Hypervelocity Projectiles on Combined Mesh-Plate Bumpers

    Directory of Open Access Journals (Sweden)

    Aleksandr Cherniaev

    2017-01-01

    Full Text Available This numerical study evaluates the concept of a combined mesh-plate bumper as a shielding system protecting unmanned spacecraft from small (1 mm orbital debris impacts. Two-component bumpers consisting of an external layer of woven mesh (aluminum or steel directly applied to a surface of the aluminum plate are considered. Results of numerical modeling with a projectile velocity of 7 km/s indicate that, in comparison to the steel mesh-combined bumper, the combination of aluminum mesh and aluminum plate provides better fragmentation of small hypervelocity projectiles. At the same time, none of the combined mesh/plate bumpers provide a significant increase of ballistic properties as compared to an aluminum plate bumper. This indicates that the positive results reported in the literature for bumpers with metallic meshes and large projectiles are not scalable down to millimeter-sized particles. Based on this investigation’s results, a possible modification of the combined mesh/plate bumper is proposed for the future study.

  12. Formation and spatial distribution of hypervelocity stars in AGN outflows

    Science.gov (United States)

    Wang, Xiawei; Loeb, Abraham

    2018-05-01

    We study star formation within outflows driven by active galactic nuclei (AGN) as a new source of hypervelocity stars (HVSs). Recent observations revealed active star formation inside a galactic outflow at a rate of ∼ 15M⊙yr-1 . We verify that the shells swept up by an AGN outflow are capable of cooling and fragmentation into cold clumps embedded in a hot tenuous gas via thermal instabilities. We show that cold clumps of ∼ 103 M⊙ are formed within ∼ 105 yrs. As a result, stars are produced along outflow's path, endowed with the outflow speed at their formation site. These HVSs travel through the galactic halo and eventually escape into the intergalactic medium. The expected instantaneous rate of star formation inside the outflow is ∼ 4 - 5 orders of magnitude greater than the average rate associated with previously proposed mechanisms for producing HVSs, such as the Hills mechanism and three-body interaction between a star and a black hole binary. We predict the spatial distribution of HVSs formed in AGN outflows for future observational probe.

  13. Floret-like multinucleated giant cells in neurofibroma

    Directory of Open Access Journals (Sweden)

    Golka Dariusz

    2007-12-01

    Full Text Available Abstract This short report discusses a case of neurofibroma containing floret-like multinucleated giant cells. This being the second such case in the literature. Floret-like multinucleated giant cells have been reported in gynaecomastia and neurofibroma in neurofibromatosis type 1. These cells have been reported in uncommon soft tissue tumours including pleomorphic lipoma, giant cell collagenoma, giant cell fibroblastoma and giant cell angiofibroma. We recommend these cells to be interpreted carefully keeping in mind the rare malignant change in neurofibromas. Immunohistochemistry would help in defining the nature of such cells.

  14. Genesis of giant promontories during two-stage continental breakup and implications for post-Rodinia circum-Arctic margins (Invited)

    Science.gov (United States)

    Bradley, D. C.

    2013-12-01

    Giant promontories are a seldom-noted feature of the present-day population of passive margins. A number of them formed during the breakup of Pangea: the South Tasman Rise and Naturaliste Plateau off Australia, the Grand Banks and Florida off North America, the Falkland Plateau off South America, and the Horn of Africa. Giant promontories protrude hundreds of kms seaward from a corner of the continent and are not to be confused with the low-amplitude irregularies that occur at intervals along most passive margins. Giant promontories that might have formed during the breakup of the earlier supercontinents, Rodinia and Nuna, have not been recognized. Properties of the modern examples suggest some identifying criteria. They are cored by continental crust that was created or last reworked during the previous collisional cycle. Judging from the examples listed, the early histories of the two flanks of a promontory will differ because separate continents or microcontinents drift away in different directions at different times. For example, the eastern flank of the >500-km-long South Tasman Rise formed when the Lord Howe Rise separated from Australia at ca. 85 Ma, whereas the western flank formed when Antarctica moved past at ca. 65-33 Ma. (Age spans of various passive margins quoted herein are from Bradley, 2008, Earth Sci. Rev. 91:1-26.) During ocean closure (typically, arc-passive margin collision), a promontory may be exposed to earlier and more intense tectonism than elsewhere along the margin. Unique events are also possible. For example, the tip of Florida experienced a glancing collision with Cuba during the Paleogene, an event that was not felt elsewhere along the Gulf or Atlantic margins of the southeastern U.S. Giant promontories are unlikely to have deep lithospheric keels and may be prone to being dislodged and rotated during collision. Thus, what starts as a promontory may end up as a microcontinent in an orogen. The case for giant promontories in the circum

  15. Nanodielectrics with giant permittivity

    Indian Academy of Sciences (India)

    Following the prediction, during the last couple of years we have investigated the effect of giant permittivity in one-dimensional systems of conventional metals and conjugated polymer chains. In this article, we have tried to summarize the works on giant permittivity and finally the fabrication of nanocapacitor using metal ...

  16. From red giants to planetary nebulae

    International Nuclear Information System (INIS)

    Kwok, S.

    1982-01-01

    The transition from red giants to planetary nebulae is studied by comparing the spectral characteristics of red giant envelopes and planetary nebulae. Observational and theoretical evidence both suggest that remnants of red giant envelopes may still be present in planetary nebula systems and should have significant effects on their formation. The dynamical effects of the interaction of stellar winds from central stars of planetary nebulae with the remnant red giant envelopes are evaluated and the mechanism found to be capable of producing the observed masses and momenta of planetary nebulae. The observed mass-radii relation of planetary nebulae may also be best explained by the interacting winds model. The possibility that red giant mass loss, and therefore the production of planetary nebulae, is different between Population I and II systems is also discussed

  17. Giant multipole resonances: an experimental review

    International Nuclear Information System (INIS)

    Bertrand, F.E.

    1979-01-01

    During the past several years experimental evidence has been published for the existance of nondipole giant resonances. These giant multipole resonances, the so-called new giant resonances were first observed through inelastic hadron and electron scattering and such measurements have continued to provide most of the information in this field. A summary is provided of the experimental evidence for these new resonances. The discussion deals only with results from inelastic scattering and only with the electric multipoles. Emphasis is placed on the recent observations of the giant monopole resonance. Results from recent heavy-ion and pion inelastic scattering are discussed. 38 references

  18. Giant dipole resonance in hot nuclei

    International Nuclear Information System (INIS)

    Mau, N.V.

    1993-01-01

    Giant resonances built on an excited state of the nucleus at a finite temperature T are studied. The following questions are investigated: how long such collective effects occur in a nucleus when T increases. How the properties of the giant resonances vary when the temperature increases. How the study of giant resonances in hot nuclei can give information on the structure of the nucleus in a highly excited state. The special case of the giant dipole resonance is studied. Some of the experimental results are reviewed and in their theoretical interpretation is discussed. (K.A.). 56 refs., 20 figs., 4 tabs

  19. Electromagnetic processes in relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Bertulani, C.A.; Universidade Federal do Rio de Janeiro; Baur, G.

    1987-10-01

    A study of the processes generated by the electromagnetic interaction in relativistic nuclear, and atomic collisions is presented. There is nowadays a vivid interest in this field due to the construction of relativistic heavy ion accelerators. Certainly, the most important purpose of these relativistic heavy ion machines is the study of nuclear matter under extreme conditions. In central nucleus-nucleus collisions one hopes to observe new forms of nuclear matter, like the quark-gluon plasma. On the other hand, very strong electromagnetic fields for a very short time are present in distant collisions with no nuclear contact. Such fields can also lead to interesting effects, which are discussed here. There has been many interesting theoretical and experimental developments on this subject, and new areas of research were opened. Of special interest is, e.g., the case of nuclear fragmentation. This is accomplished through the excitation of giant resonances or by direct breakt-up of the nuclei by means of their electromagnetic interaction. It is shown that this process can be used to study nuclear structure properties which are not accessible by means of the traditional electromagnetic excitation at nonrelativistic energies. The creation of particles is also of interest due the large cross sections, specially in the case of electron-positron pair creation. Although to explain the many processes originated in this way one can develop very elaborate and complicated calculations, the results can be understood in very simple terms because of our almost complete comprehension of the electromagntic interaction. For those processes where the electromagntic interaction plays the dominant role this is clearly a very useful tool for the investigation of the structures created by the strong interaction in the nuclei or hadrons. (orig.)

  20. Electrified BPS giants: BPS configurations on giant gravitons with static electric field

    International Nuclear Information System (INIS)

    Ali-Akbari, Mohammad; Sheikh-Jabbari, Mohammad Mahdi

    2007-01-01

    We consider D3-brane action in the maximally supersymmetric type IIB plane-wave background. Upon fixing the light-cone gauge, we obtain the light-cone Hamiltonian which is manifestly supersymmetric. The 1/2 BPS solutions of this theory (solutions which preserve 16 supercharges) are either of the form of spherical three branes, the giant gravitons, or zero size point like branes. We then construct specific classes of 1/4 BPS solutions of this theory in which static electric field on the brane is turned on. These solutions are deformations about either of the two 1/2 BPS solutions. In particular, we study in some detail 1/4 BPS configurations with electric dipole on the three sphere giant, i.e. BIons on the giant gravitons, which we hence call BIGGons. We also study BPS configurations corresponding to turning on a background uniform constant electric field. As a result of this background electric field the three sphere giant is deformed to squashed sphere, while the zero size point like branes turn into circular or straight fundamental strings in the plane-wave background, with their tension equal to the background electric field

  1. Giant cells around bone biomaterials: Osteoclasts or multi-nucleated giant cells?

    Science.gov (United States)

    Miron, Richard J; Zohdi, Hamoon; Fujioka-Kobayashi, Masako; Bosshardt, Dieter D

    2016-12-01

    Recently accumulating evidence has put into question the role of large multinucleated giant cells (MNGCs) around bone biomaterials. While cells derived from the monocyte/macrophage lineage are one of the first cell types in contact with implanted biomaterials, it was originally thought that specifically in bone tissues, all giant cells were bone-resorbing osteoclasts whereas foreign body giant cells (FBGCs) were found associated with a connective tissue foreign body reaction resulting in fibrous encapsulation and/or material rejection. Despite the great majority of bone grafting materials routinely found with large osteoclasts, a special subclass of bone biomaterials has more recently been found surrounded by large giant cells virtually incapable of resorbing bone grafts even years after their implantation. While original hypotheses believed that a 'foreign body reaction' may be taking place, histological data retrieved from human samples years after their implantation have put these original hypotheses into question by demonstrating better and more stable long-term bone volume around certain bone grafts. Exactly how or why this 'special' subclass of giant cells is capable of maintaining long-term bone volume, or methods to scientifically distinguish them from osteoclasts remains extremely poorly studied. The aim of this review article was to gather the current available literature on giant cell markers and differences in expression patterns between osteoclasts and MNGCs utilizing 19 specific markers including an array of CD-cell surface markers. Furthermore, the concept of now distinguishing between pro-inflammatory M1-MNGCs (previously referred to as FBGCs) as well as wound-healing M2-MNGCs is introduced and discussed. This review article presents 19 specific cell-surface markers to distinguish between osteoclasts and MNGCs including an array of CD-cell surface markers. Furthermore, the concept of now distinguishing between pro-inflammatory M1-MNGCs (often

  2. Peripheral collisions of heavy ions induced by 40Ar at intermediate energies: giant resonance high energy structures and projectile fragmentation

    International Nuclear Information System (INIS)

    Blumenfeld, Y.

    1987-09-01

    The results obtained in similar studies at low incident energies are first of all reviewed. The time of flight spectrometer built for the experiments is then described. A study of the properties of the projectile-like fragments shows numerous deviations from the relativistic energy fragmentation model. Evidence for a strong surface transfer reaction component is given and the persistence of mean field effects at intermediate energies is stressed. A calculation of the contribution of the transfer evaporation mechanism to the inelastic spectra shows that this mechanism is responible for the major part of the background measured at high excitation energy and can in some cases induce narrow structures in the spectra. The inelastic spectra shows a strong excitation of the giant quadrupole resonance. In the region between 20 and 80 MeV excitation energy narrow structures are present for all the studied systems. Statistical and Fourier analysises allow to quantify the probabilities of existence, the widths and the excitation energies of these structures. A transfer evaporation hypothesis cannot consistently reproduce all the observed structures. The excitation energies of the structures can be well described by phenomenological laws where the energies are proportional to the -1/3 power of the target mass. Complete calculations of the excitation probabilities of giant resonances and multiphonon states are performed within a model where the nuclear excitation are calculated microscopically in the Random Phase Approximation. It is shown that a possible interpretation of the structures is the excitation of multiphonon states built with 2 + giant resonances [fr

  3. Giant Planets: Good Neighbors for Habitable Worlds?

    Science.gov (United States)

    Georgakarakos, Nikolaos; Eggl, Siegfried; Dobbs-Dixon, Ian

    2018-04-01

    The presence of giant planets influences potentially habitable worlds in numerous ways. Massive celestial neighbors can facilitate the formation of planetary cores and modify the influx of asteroids and comets toward Earth analogs later on. Furthermore, giant planets can indirectly change the climate of terrestrial worlds by gravitationally altering their orbits. Investigating 147 well-characterized exoplanetary systems known to date that host a main-sequence star and a giant planet, we show that the presence of “giant neighbors” can reduce a terrestrial planet’s chances to remain habitable, even if both planets have stable orbits. In a small fraction of systems, however, giant planets slightly increase the extent of habitable zones provided that the terrestrial world has a high climate inertia. In providing constraints on where giant planets cease to affect the habitable zone size in a detrimental fashion, we identify prime targets in the search for habitable worlds.

  4. The electromagnetic properties of plasma produced by hypervelocity impact

    Science.gov (United States)

    Zhang, Qingming; Gong, Liangfei; Ma, Yuefen; Long, Renrong; Gong, Zizheng

    2018-02-01

    The change of electron density in moving plasma in this paper is empirically determined according to multiple ground-based experimental results and the assumption of the Maxwell distribution. Moreover, the equation of the magnetic field intensity, dominated by the current due to the collective electron movement during the expansion, is presented on the basis of the Biot-Savart law, and its relationship with time and space is subsequently depicted. In addition, hypervelocity impact experiments on a 2AL12 target have been carried out using a two-stage light gas gun to accelerate a 2AL12 projectile of 6.4 mm to 6.2 km/s. Spiral coils are designed to measure the intensity of the electromagnetic field induced by this impact. The experimental results show that the magnetic field strength is an alternate pulse maintaining nearly 1 ms and its maximum is close to 15 μT, which is strong enough to interfere with the communication circuit and chip in spacecrafts. Lastly, numerical simulation of the magnetic field intensity using this experimental parameter reveals that the intensity in our estimation from our theory tends to be well consistent with the experimental data in the first peak of the pulse signal.

  5. Should the Endangered Status of the Giant Panda Really Be Reduced? The Case of Giant Panda Conservation in Sichuan, China.

    Science.gov (United States)

    Ma, Ben; Lei, Shuo; Qing, Qin; Wen, Yali

    2018-05-03

    The International Union for Conservation of Nature (IUCN) reduced the threat status of the giant panda from “endangered” to “vulnerable” in September 2016. In this study, we analyzed current practices for giant panda conservation at regional and local environmental scales, based on recent reports of giant panda protection efforts in Sichuan Province, China, combined with the survey results from 927 households within and adjacent to the giant panda reserves in this area. The results showed that household attitudes were very positive regarding giant panda protection efforts. Over the last 10 years, farmers’ dependence on the natural resources provided by giant panda reserves significantly decreased. However, socio-economic development increased resource consumption, and led to climate change, habitat fragmentation, environmental pollution, and other issues that placed increased pressure on giant panda populations. This difference between local and regional scales must be considered when evaluating the IUCN status of giant pandas. While the status of this species has improved in the short-term due to positive local attitudes, large-scale socio-economic development pressure could have long-term negative impacts. Consequently, the IUCN assessment leading to the classification of giant panda as “vulnerable” instead of “endangered”, should not affect its conservation intensity and effort, as such actions could negatively impact population recovery efforts, leading to the extinction of this charismatic species.

  6. Should the Endangered Status of the Giant Panda Really Be Reduced? The Case of Giant Panda Conservation in Sichuan, China

    Directory of Open Access Journals (Sweden)

    Ben Ma

    2018-05-01

    Full Text Available The International Union for Conservation of Nature (IUCN reduced the threat status of the giant panda from “endangered” to “vulnerable” in September 2016. In this study, we analyzed current practices for giant panda conservation at regional and local environmental scales, based on recent reports of giant panda protection efforts in Sichuan Province, China, combined with the survey results from 927 households within and adjacent to the giant panda reserves in this area. The results showed that household attitudes were very positive regarding giant panda protection efforts. Over the last 10 years, farmers’ dependence on the natural resources provided by giant panda reserves significantly decreased. However, socio-economic development increased resource consumption, and led to climate change, habitat fragmentation, environmental pollution, and other issues that placed increased pressure on giant panda populations. This difference between local and regional scales must be considered when evaluating the IUCN status of giant pandas. While the status of this species has improved in the short-term due to positive local attitudes, large-scale socio-economic development pressure could have long-term negative impacts. Consequently, the IUCN assessment leading to the classification of giant panda as “vulnerable” instead of “endangered”, should not affect its conservation intensity and effort, as such actions could negatively impact population recovery efforts, leading to the extinction of this charismatic species.

  7. Giant plasmon excitation in single and double ionization of C60 by fast highly charged Si and O ions

    International Nuclear Information System (INIS)

    Kelkar, A H; Kadhane, U; Misra, D; Tribedi, L C

    2007-01-01

    Se have investigated single and double ionization of C 60 molecule in collisions with 2.33 MeV/u Si q+ (q=6-14) and 3.125 MeV/u O q+ (q=5-8) projectiles. The projectile charge state dependence of the single and double ionization yields of C 60 are then compared to those for an ion-atom collision system using Ne gas as a target. A large difference between the gas and the cluster target behaviour was partially explained in terms of a model based on collective excitation namely the giant dipole plasmon resonance (GDPR). The qualitative agreement between the data and GDPR model prediction for single and double ionization signifies the importance of single and double plasmon excitations in the ionization process. A large deviation of the GDPR model for triple and quadruple ionization from the experimental data imply the importance of the other low impact parameter processes such as evaporation, fragmentation and a possible solid-like dynamical screening

  8. A search for lithium-rich giant stars

    International Nuclear Information System (INIS)

    Brown, J.A.; Sneden, C.; Lambert, D.L.; Dutchover, E. Jr.

    1989-01-01

    Lithium abundances or upper limits have been determined for 644 bright G-K giant stars selected from the DDO photometric catalog. Two of these giants possess surface lithium abundances approaching the cosmic value of the interstellar medium and young main-sequence stars, and eight more giants have Li contents far in excess of standard predictions. At least some of these Li-rich giants are shown to be evolved to the stage of having convectively mixed envelopes, either from the direct evidence of low surface carbon isotope ratios, or from the indirect evidence of their H-R diagram positions. Suggestions are given for the unique conditions that might have allowed these stars to produce or accrete new lithium for their surface layers, or simply to preserve from destruction their initial lithium contents. The lithium abundance of the remaining stars demonstrates that giants only very rarely meet the expectations of standard first dredge-up theories; the average extra Li destruction required is about 1.5 dex. The evolutionary states of these giants and their average masses are discussed briefly, and the Li distribution of the giants is compared to predictions of Galactic chemical evolution. 110 refs

  9. Macroscopic description of isoscalar giant multipole resonances

    International Nuclear Information System (INIS)

    Nix, J.R.; Sierk, A.J.

    1980-01-01

    On the basis of a simple macroscopic model, we calculate the isoscalar giant-resonance energy as a function of mass number and multipole degree. The restoring force is determined from the distortion of the Fermi surface, and the inertia is determined for the incompressible, irrotational flow of nucleons with unit effective mass. With no adjustable parameters, the resulting closed expression reproduces correctly the available experimental data, namely the magnitude and dependence upon mass number of the giant quadrupole energy and the magnitude of the giant octupole energy for 208 Pb. We also calculate the isoscalar giant-resonance width as a function of mass number and multipole degree for various macroscopic damping mechanisms, including two-body viscosity, one-body dissipation, and modified one-body dissipation. None of these damping mechanisms reproduces correctly all features of the available experimental data, namely the magnitude and dependence upon mass number of the giant quadrupole width and the magnitude of the giant octupole width for 208 Pb

  10. Tests of the Giant Impact Hypothesis

    Science.gov (United States)

    Jones, J. H.

    1998-01-01

    The giant impact hypothesis has gained popularity as a means of explaining a volatile-depleted Moon that still has a chemical affinity to the Earth. As Taylor's Axiom decrees, the best models of lunar origin are testable, but this is difficult with the giant impact model. The energy associated with the impact would be sufficient to totally melt and partially vaporize the Earth. And this means that there should he no geological vestige of Barber times. Accordingly, it is important to devise tests that may be used to evaluate the giant impact hypothesis. Three such tests are discussed here. None of these is supportive of the giant impact model, but neither do they disprove it.

  11. DebriSat: The New Hypervelocity Impact Test for Satellite Breakup Fragment Characterization

    Science.gov (United States)

    Cowardin, Heather

    2015-01-01

    To replicate a hyper-velocity fragmentation event using modern-day spacecraft materials and construction techniques to better improve the existing DoD and NASA breakup models: DebriSat is intended to be representative of modern LEO satellites. Major design decisions were reviewed and approved by Aerospace subject matter experts from different disciplines. DebriSat includes 7 major subsystems. Attitude determination and control system (ADCS), command and data handling (C&DH), electrical power system (EPS), payload, propulsion, telemetry tracking and command (TT&C), and thermal management. To reduce cost, most components are emulated based on existing design of flight hardware and fabricated with the same materials. center dotA key laboratory-based test, Satellite Orbital debris Characterization Impact Test (SOCIT), supporting the development of the DoD and NASA satellite breakup models was conducted at AEDC in 1992. Breakup models based on SOCIT have supported many applications and matched on-orbit events reasonably well over the years.

  12. Hadron excitation of giant resonances

    International Nuclear Information System (INIS)

    Morsch, H.-P.

    1985-01-01

    A review is given on giant resonance studies in heavy nuclei using scattering of different hadronic probes. Concerning isoscalar giant resonances compression modes are discussed with the possibility to obtain more detailed structure information. From detailed studies of α scattering the distribution of isoscalar strengths of multipolarity up to L=6 was obtained. Some recent aspects of heavy ion excitation of collective modes are mentioned. The possibility to study isovector giant resonances in hadron charge exchange reactions is discussed. Finally, a comparison is made between α and 200 MeV proton scattering from which isoscalar and spin-isospin continuum response are extracted. (orig.)

  13. Wake of a blunt planetary probe model under hypervelocity conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kastell, D.; Hannemann, D.; Eitelberg, G. [DLR Deutsches Zentrum fuer Luft- und Raumfahrt e.V., Goettingen (Germany). Inst. fuer Stroemungsmechanik

    1998-12-31

    The flow in the wake of a planetary probe under hypervelocity re-entry conditions has two idiosyncrasies not present in the conventional (cold) hypersonic flows: the strong dissociation reaction occurring behind the bow shock wave, and the freezing of the chemical reactions of the flow by the rapid expansion at the shoulder of the probe. The aim of the present study was to both understand the relative importance of the two phenomena upon the total heat and pressure loads on a planetary probe and its possible payload as well as to provide experimental validation data for those developing numerical codes for planetary probe design and analysis. For the experimental study an instrumented blunted 140 cone was tested in the High Enthalpy Shock Tunnel in Goettingen (HEG). The numerical calculations were performed with a Thin-Layer Navier-Stokes code which is capable of simulating chemical and thermal nonequilibrium flows. For the forebody loads the prediction methods were very reliable and capable of accounting for the kinetic effects caused by the high specific enthalpy of the flow. On the other side considerable discrepancies between experimental and numerical results for the wake of the model have been observed. (orig.)

  14. Wake of a blunt planetary probe model under hypervelocity conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kastell, D.; Hannemann, D.; Eitelberg, G. (DLR Deutsches Zentrum fuer Luft- und Raumfahrt e.V., Goettingen (Germany). Inst. fuer Stroemungsmechanik)

    1998-01-01

    The flow in the wake of a planetary probe under hypervelocity re-entry conditions has two idiosyncrasies not present in the conventional (cold) hypersonic flows: the strong dissociation reaction occurring behind the bow shock wave, and the freezing of the chemical reactions of the flow by the rapid expansion at the shoulder of the probe. The aim of the present study was to both understand the relative importance of the two phenomena upon the total heat and pressure loads on a planetary probe and its possible payload as well as to provide experimental validation data for those developing numerical codes for planetary probe design and analysis. For the experimental study an instrumented blunted 140 cone was tested in the High Enthalpy Shock Tunnel in Goettingen (HEG). The numerical calculations were performed with a Thin-Layer Navier-Stokes code which is capable of simulating chemical and thermal nonequilibrium flows. For the forebody loads the prediction methods were very reliable and capable of accounting for the kinetic effects caused by the high specific enthalpy of the flow. On the other side considerable discrepancies between experimental and numerical results for the wake of the model have been observed. (orig.)

  15. Using collisions and resonances to tilting Uranus

    Science.gov (United States)

    Rogoszinski, Zeeve; Hamilton, Douglas

    2018-01-01

    Uranus’ large obliquity (98°) is widely thought to have occurred from a polar strike with an Earth sized object. Morbidelli et al. (2012) argue that two or more collisions are required in order to explain the prograde motion of Uranus’ satellites. These impactors could have been less massive by about a factor of ten, but multiple polar strikes are still improbable as even larger mass impactors would be needed for more equatorial collisions. Here we explore an alternative non-collisional model inspired by the explanation to Saturn’s significant tilt (27°). Ward and Hamilton (2004) & Hamilton and Ward (2004) argue that a secular resonance currently between Saturn’s spin axis and Neptune’s orbital pole is responsible for Saturn’s large obliquity. Unfortunately, Uranus’ axial precession frequency today is too long to match any of the current planets’ fundamental frequencies. Boué and Laskar (2010) explain that Uranus may have harbored an improbably large moon in the past which could have sped up the planet’s axial precession frequency enough to resonate with the regression of its own orbital pole. We explore another scenario which requires only the interactions between the giant planets.Thommes et al. (1999, 2002, 2003) argue that at least the cores of Uranus and Neptune were formed in between Jupiter and Saturn, as the density of the protoplanetary disk was greater there. If Neptune was scattered outward before Uranus, then a secular spin-orbit resonance between the two planets is possible. However, driving Uranus’ obliquity to near 90° with a resonance capture requires a timescale on the order of 100 Myr. If Neptune migrated out quicker or its orbital inclination was initially larger, then we find that the resulting resonance kick can tilt Uranus more than 40° in a reasonable timespan. This could replace one of the impactors required in the collisional scenario described by Morbidelli et al. (2012), but in most situations the effect of such a

  16. YOUNG SOLAR SYSTEM's FIFTH GIANT PLANET?

    International Nuclear Information System (INIS)

    Nesvorný, David

    2011-01-01

    Studies of solar system formation suggest that the solar system's giant planets formed and migrated in the protoplanetary disk to reach the resonant orbits with all planets inside ∼15 AU from the Sun. After the gas disk's dispersal, Uranus and Neptune were likely scattered by the gas giants, and approached their current orbits while dispersing the transplanetary disk of planetesimals, whose remains survived to this time in the region known as the Kuiper Belt. Here we performed N-body integrations of the scattering phase between giant planets in an attempt to determine which initial states are plausible. We found that the dynamical simulations starting with a resonant system of four giant planets have a low success rate in matching the present orbits of giant planets and various other constraints (e.g., survival of the terrestrial planets). The dynamical evolution is typically too violent, if Jupiter and Saturn start in the 3:2 resonance, and leads to final systems with fewer than four planets. Several initial states stand out in that they show a relatively large likelihood of success in matching the constraints. Some of the statistically best results were obtained when assuming that the solar system initially had five giant planets and one ice giant, with the mass comparable to that of Uranus and Neptune, and which was ejected to interstellar space by Jupiter. This possibility appears to be conceivable in view of the recent discovery of a large number of free-floating planets in interstellar space, which indicates that planet ejection should be common.

  17. Young Solar System's Fifth Giant Planet?

    Science.gov (United States)

    Nesvorný, David

    2011-12-01

    Studies of solar system formation suggest that the solar system's giant planets formed and migrated in the protoplanetary disk to reach the resonant orbits with all planets inside ~15 AU from the Sun. After the gas disk's dispersal, Uranus and Neptune were likely scattered by the gas giants, and approached their current orbits while dispersing the transplanetary disk of planetesimals, whose remains survived to this time in the region known as the Kuiper Belt. Here we performed N-body integrations of the scattering phase between giant planets in an attempt to determine which initial states are plausible. We found that the dynamical simulations starting with a resonant system of four giant planets have a low success rate in matching the present orbits of giant planets and various other constraints (e.g., survival of the terrestrial planets). The dynamical evolution is typically too violent, if Jupiter and Saturn start in the 3:2 resonance, and leads to final systems with fewer than four planets. Several initial states stand out in that they show a relatively large likelihood of success in matching the constraints. Some of the statistically best results were obtained when assuming that the solar system initially had five giant planets and one ice giant, with the mass comparable to that of Uranus and Neptune, and which was ejected to interstellar space by Jupiter. This possibility appears to be conceivable in view of the recent discovery of a large number of free-floating planets in interstellar space, which indicates that planet ejection should be common.

  18. Formation of Close-in Super-Earths by Giant Impacts: Effects of Initial Eccentricities and Inclinations of Protoplanets

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Yuji [Planetary Exploration Research Center, Chiba Institute of Technology, Narashino, Chiba, 275-0016 (Japan); Kokubo, Eiichiro, E-mail: ymatsumoto@cfca.nao.ac.jp [Center for Computational Astrophysics, National Astronomical Observatory of Japan, Osawa, Mitaka, Tokyo, 181-8588 (Japan)

    2017-07-01

    Recent observations have revealed the eccentricity and inclination distributions of close-in super-Earths. These distributions have the potential to constrain their formation processes. In the in situ formation scenario, the eccentricities and inclinations of planets are determined by gravitational scattering and collisions between protoplanets on the giant impact stage. We investigate the effect of the initial eccentricities and inclinations of protoplanets on the formation of close-in super-Earths. We perform N -body simulations of protoplanets in gas-free disks, changing the initial eccentricities and inclinations systematically. We find that while the eccentricities of protoplanets are well relaxed through their evolution, the inclinations are not. When the initial inclinations are small, they are not generally pumped up since scattering is less effective and collisions occur immediately after orbital crossing. On the other hand, when the initial inclinations are large, they tend to be kept large since collisional damping is less effective. Not only the resultant inclinations of planets, but also their number, eccentricities, angular momentum deficit, and orbital separations are affected by the initial inclinations of protoplanets.

  19. Inner-shell excitation in heavy ion collisions up to intermediate incident energies

    International Nuclear Information System (INIS)

    Reus, T. de.

    1987-04-01

    Electronic excitations in collisions of very heavy ions with a total nuclear charge Z greater than 1/α ≅ 137 at bombarding energies reaching from 3.6 MeV/n up to 100 MeV/n are the subject of this thesis. The dynamical behaviour of the electron-positron-field is described within a semiclassical model, which is reviewed and extended to include electronic interactions via a mean field. A detailed comparison with experimental data of K-vacancy formation, δ-electron and positron emission shows an improved agreement compared with former calculations. Structures in spectra of positrons emitted in sub- and supercritical collision are discussed in two respects: Firstly as a signal of the vacuum decay in supercritical electromagnetic fields which evolve in the vicinity of long living giant nuclear molecules. Secondly as an atomic effect, which might be related to an instaneous formation of molecular 1sσ- and 2p 1/2 σ- levels. However, beyond this speculation the emission spectra of electrons and positrons in deep inelastic reactions have proven to be a powerful tool for measuring nuclear reaction or delay times in the order of 10 -21 s. This property was transfered to the domain of intermediate energy collisions. In first order perturbation theory we derived a scaling law, exhibiting how nuclear stopping times could be extracted from the emission spectra of high energetic δ-electrons. Quantitative calculations within a coupled channel code have been carried out for the system Pb+Pb, yielding cross sections of up to 20 nb for the emission of electrons with a kinetic energy of 50 MeV in 60 MeV/n-collisions. (orig./HSI)

  20. Giant multipole resonances: perspectives after ten years

    International Nuclear Information System (INIS)

    Bertrand, F.E.

    1980-01-01

    Nearly ten years ago evidence was published for the first of the so-called giant multipole resonances, the giant quadrupole resonance. During the ensuing years research in this field has spread to many nuclear physics laboratories throughout the world. The present status of electric giant multipole resonances is reviewed. 24 figures, 1 table

  1. Solitary ulcerated congenital giant juvenile xanthogranuloma

    Directory of Open Access Journals (Sweden)

    Su Yuen Ng

    2015-01-01

    Full Text Available A 3-month-old female patient with a giant ulcerated nodule over the back since birth was diagnosed as congenital giant juvenile xanthogranuloma (JXG based on clinical and histopathological examination. Congenital giant JXG with ulceration at birth is a rare presentation of JXG and commonly misdiagnosed. This case emphasizes the importance of being aware of the myriad presentations of JXG in order to make a correct diagnosis and avoid unnecessary investigations or treatment.

  2. Giant resonances in heavy-ion reactions

    International Nuclear Information System (INIS)

    Hussein, M.S.

    1982-11-01

    The several roles of multipole giant resonances in heavy-ion reactions are discussed. In particular, the modifications in the effective ion-ion potencial due to the virtual excitation of giant resonances at low energies, are considered and estimated for several systems. Real excitation of giant resonances in heavy-ion reactions at intermediate energies are then discussed and their importance in the approach phase of deeply inelastic processes in emphasized. Several demonstrative examples are given. (Author) [pt

  3. Giant plasmon excitation in single and double ionization of C{sub 60} by fast highly charged Si and O ions

    Energy Technology Data Exchange (ETDEWEB)

    Kelkar, A H; Kadhane, U; Misra, D; Tribedi, L C [Tata Institute of Fundamental Research, Colaba, Mumbai-5 (India)

    2007-09-15

    Se have investigated single and double ionization of C{sub 60} molecule in collisions with 2.33 MeV/u Si{sup q+} (q=6-14) and 3.125 MeV/u O{sup q+} (q=5-8) projectiles. The projectile charge state dependence of the single and double ionization yields of C{sub 60} are then compared to those for an ion-atom collision system using Ne gas as a target. A large difference between the gas and the cluster target behaviour was partially explained in terms of a model based on collective excitation namely the giant dipole plasmon resonance (GDPR). The qualitative agreement between the data and GDPR model prediction for single and double ionization signifies the importance of single and double plasmon excitations in the ionization process. A large deviation of the GDPR model for triple and quadruple ionization from the experimental data imply the importance of the other low impact parameter processes such as evaporation, fragmentation and a possible solid-like dynamical screening.

  4. Swiss roll operation for giant fibroadenoma.

    Science.gov (United States)

    Soomro, Saleem A; Memon, Sohail A; Mohammad, Noor; Maher, Mumtaz

    2009-01-01

    Fibroadenoma 5 cm or more is called giant fibroadenoma. Giant fibroadenoma can distort the shape of breast and causes asymmetry, so it should be excised. There are several techniques for excision of giant fibroadenoma. In our technique we remove them through cosmetically acceptable circumareolar incision to maintain the shape and symmetry of breast. The objectives were to assess the cosmetic results of Swiss roll operation for giant fibroadenoma. The study was conducted for six years from January, 2002 to December, 2007. Seventy patients of giant fibroadenoma were included in this study. They were diagnosed on history and clinical examination supported by ultrasound and postoperative histopathological examination. Data were collected from outpatient department and operation theatre. Swiss roll operation was performed under general anaesthesia. Mean tumor size was 6.38 cm. Three cm and 4 cm incisions were used for tumour 6 cm in size respectively. Skin closed with Vicryl 3/0 subcuticular stitches. Sixteen out of 70 patients had no scar while others hadminimal scar. All patients had normal shape and symmetry of breast. On histopathology fibroadenoma was confirmed. Giant fibroadenoma should be removed through cosmetically acceptable cicumareolar incision especially in unmarried young females who have small breast. Swiss-roll operation is superior in maintaining the shape and symmetry of breast. No major complication was found in our series except seroma formation in 10 patients.

  5. Giant serpentine intracranial aneurysm: a case report

    International Nuclear Information System (INIS)

    Park, Jae Seong; Lee, Myeong Sub; Kim, Myung Soon; Kim, Dong Jin; Park, Joong Wha; Whang, Kum

    2001-01-01

    The authors present a case of giant serpentine aneurysm (a partially thrombosed aneurysm containing tortuous vascular channels with a separate entrance and outflow pathway). Giant serpentine aneurysms form a subgroup of giant intracranial aneurysms, distinct from saccular and fusiform varieties, and in this case, too, the clinical presentation and radiographic features of CT, MR imaging and angiography were distinct

  6. Stellar oscillations in planet-hosting giant stars

    Energy Technology Data Exchange (ETDEWEB)

    Hatzes, Artie P; Zechmeister, Mathias [Thueringer Landessternwarte, Sternwarte 5, D-07778 (Germany)], E-mail: artie@tls-tautenburg.de

    2008-10-15

    Recently a number of giant extrasolar planets have been discovered around giant stars. These discoveries are important because many of these giant stars have intermediate masses in the range 1.2-3 Msun. Early-type main sequence stars of this mass range have been avoided by radial velocity planet search surveys due the difficulty of getting the requisite radial velocity precision needed for planet discoveries. Thus, giant stars can tell us about planet formation for stars more massive than the sun. However, the determination of stellar masses for giant stars is difficult due to the fact that evolutionary tracks for stars covering a wide range of masses converge to the same region of the H-R diagram. We report here on stellar oscillations in three planet-hosting giant stars: HD 13189, {beta} Gem, and {iota} Dra. Precise stellar radial velocity measurements for these stars show variations whose periods and amplitudes are consistent with solar-like p-mode oscillations. The implied stellar masses for these objects based on the characteristics of the stellar oscillations are consistent with the predictions of stellar isochrones. An investigation of stellar oscillations in planet hosting giant stars offers us the possibility of getting an independent determination of the stellar mass for these objects which is of crucial importance for extrasolar planet studies.

  7. Giant nuclear resonances

    International Nuclear Information System (INIS)

    Snover, K.A.

    1989-01-01

    Giant nuclear resonances are elementary mods of oscillation of the whole nucleus, closely related to the normal modes of oscillation of coupled mechanical systems. They occur systematically in most if not all nuclei, with oscillation energies typically in the range 10-30 MeV. One of the best - known examples is the giant electric dipole (El) resonance, in which all the protons and all the neutrons oscillate with opposite phase, producing a large time - varying electric dipole moment which acts as an effective antenna for radiating gamma ray. This paper discusses this mode as well as quadrupole and monopole modes

  8. Measuring Precise Radii of Giants Orbiting Giants to Distinguish Between Planet Evolution Models

    Science.gov (United States)

    Grunblatt, Samuel; Huber, Daniel; Lopez, Eric; Gaidos, Eric; Livingston, John

    2017-10-01

    Despite more than twenty years since the initial discovery of highly irradiated gas giant planets, the mechanism for planet inflation remains unknown. However, proposed planet inflation mechanisms can now be separated into two general classes: those which allow for post-main sequence planet inflation by direct irradiation from the host star, and those which only allow for slowed cooling of the planet over its lifetime. The recent discovery of two inflated warm Jupiters orbiting red giant stars with the NASA K2 Mission allows distinction between these two classes, but uncertainty in the planet radius blurs this distinction. Observing transits of these planets with the Spitzer Space Telescope would reduce stellar variability and thus planet radius uncertainties by approximately 50% relative to K2, allowing distinction between the two planet inflation model classes at a 3-sigma level. We propose to observe one transit of both known warm Jupiters orbiting red giant stars, K2-97b and EPIC228754001.01, to distinguish between planet model inflation classes and measure the planetary heating efficiency to 3-sigma precision. These systems are benchmarks for the upcoming NASA TESS Mission, which is predicted to discover an order of magnitude more red giant planet systems after launching next year.

  9. Creating an isotopically similar Earth-Moon system with correct angular momentum from a giant impact

    Science.gov (United States)

    Wyatt, Bryant M.; Petz, Jonathan M.; Sumpter, William J.; Turner, Ty R.; Smith, Edward L.; Fain, Baylor G.; Hutyra, Taylor J.; Cook, Scott A.; Gresham, John H.; Hibbs, Michael F.; Goderya, Shaukat N.

    2018-04-01

    The giant impact hypothesis is the dominant theory explaining the formation of our Moon. However, the inability to produce an isotopically similar Earth-Moon system with correct angular momentum has cast a shadow on its validity. Computer-generated impacts have been successful in producing virtual systems that possess many of the observed physical properties. However, addressing the isotopic similarities between the Earth and Moon coupled with correct angular momentum has proven to be challenging. Equilibration and evection resonance have been proposed as means of reconciling the models. In the summer of 2013, the Royal Society called a meeting solely to discuss the formation of the Moon. In this meeting, evection resonance and equilibration were both questioned as viable means of removing the deficiencies from giant impact models. The main concerns were that models were multi-staged and too complex. We present here initial impact conditions that produce an isotopically similar Earth-Moon system with correct angular momentum. This is done in a single-staged simulation. The initial parameters are straightforward and the results evolve solely from the impact. This was accomplished by colliding two roughly half-Earth-sized impactors, rotating in approximately the same plane in a high-energy, off-centered impact, where both impactors spin into the collision.

  10. VLA Discovers Giant Rings Around Galaxy Cluster

    Science.gov (United States)

    2006-11-01

    Astronomers using the National Science Foundation's Very Large Array (VLA) radio telescope have discovered giant, ring-like structures around a cluster of galaxies. The discovery provides tantalizing new information about how such galaxy clusters are assembled, about magnetic fields in the vast spaces between galaxy clusters, and possibly about the origin of cosmic rays. Radio-Optical Image of Cluster Galaxy Cluster Abell 3376 (Radio/Optical) CREDIT: Joydeep Bagchi, IUCAA, NRAO/AUI/NSF Above, a combined radio/optical image shows the galaxy cluster Abell 3376 in visible light (blue) and radio (red) images. The giant radio arcs surrounding the cluster were discovered using the Very Large Array. The visible-light image is from the Digitized Sky survey. Below, an X-ray image of Abell 3376 made using the European Space Agency's XMM-Newton telescope shows a spectacular, bullet-shaped region of X-rays coming from gas heated to 60 million degrees Kelvin. The bullet shape results from the supersonic collision of a smaller smaller galaxy subcluster with the main body of the larger cluster. Click on images for larger version. X-Ray Image of Cluster Galaxy Cluster Abell 3376 (X-Ray) CREDIT: Joydeep Bagchi, IUCAA, ESA "These giant, radio-emitting rings probably are the result of shock waves caused by violent collisions of smaller groups of galaxies within the cluster," said Joydeep Bagchi, of the Inter-University Centre for Astronomy and Astrophysics in Pune, India, who led an international research team. The scientists reported their findings in the November 3 edition of the journal Science. The newly-discovered ring segments, some 6 million light-years across, surround a galaxy cluster called Abell 3376, more than 600 million light-years from Earth. They were revealed because fast-moving electrons emitted radio waves as they spiraled around magnetic field lines in intergalactic space. "Even from this large distance, the feeble radio waves were easily picked up by the VLA

  11. Determination of giant resonance strengths

    International Nuclear Information System (INIS)

    Serr, F.E.

    1983-01-01

    Using theoretical strength functions to describe the different giant resonances expected at excitation energies of the order of (60-85)/Asup(1/3) MeV, we calculate the double differential cross sections d 2 sigma/dΩ dE associated with the reactions 208 Pb(α, α') and 90 Zr(α, α') (Esub(α) = 152 MeV). The angular distributions for the giant quadrupole and giant monopole resonances obtained from fits to these spectra, making simple, commonly used assumptions for the peak shapes and background, are compared to the original angular distributions. The differences between them are an indication of some of the uncertainties affecting the giant resonance strengths extracted from hadron inelastic scattering data. Fits to limited angular regions lead to errors of up to 50% in the value of the energy-weighted sum rule, depending on the angles examined. While it seems possible to extract the correct EWSR for the GMR by carrying out the analyses at 0 0 , no single privileged angle seems to exist in the case of the GQR. (orig.)

  12. CMB lensing and giant rings

    Energy Technology Data Exchange (ETDEWEB)

    Rathaus, Ben; Itzhaki, Nissan, E-mail: nitzhaki@post.tau.ac.il, E-mail: ben.rathaus@gmail.com [Raymond and Beverly Sackler Faculty of Exact Sciences, School of Physics and Astronomy, Tel-Aviv University, Ramat-Aviv, 69978 (Israel)

    2012-05-01

    We study the CMB lensing signature of a pre-inationary particle (PIP), assuming it is responsible for the giant rings anomaly that was found recently in the WMAP data. Simulating Planck-like data we find that generically the CMB lensing signal to noise ratio associated with such a PIP is quite small and it would be difficult to cross correlate the temperature giant rings with the CMB lensing signal. However, if the pre-inationary particle is also responsible for the bulk flow measured from the local large scale structure, which happens to point roughly at the same direction as the giant rings, then the CMB lensing signal to noise ratio is fairly significant.

  13. Mitigation of Autoignition Due to Premixing in a Hypervelocity Flow Using Active Wall Cooling

    Science.gov (United States)

    Axdahl, Erik; Kumar, Ajay; Wilhite, Alan

    2013-01-01

    Preinjection of fuel on the forebody of an airbreathing vehicle is a proposed method to gain access to hypervelocity flight Mach numbers. However, this creates the possibility of autoignition either near the wall or in the core of the flow, thereby consuming fuel prematurely as well as increasing the amount of pressure drag on the vehicle. The computational fluid dynamics code VULCAN was used to conduct three dimensional simulations of the reacting flow in the vicinity of hydrogen injectors on a flat plate at conditions relevant to a Mach 12 notional flight vehicle forebody to determine the location where autoignition occurs. Active wall cooling strategies were formulated and simulated in response to regions of autoignition. It was found that tangential film cooling using hydrogen or helium were both able to nearly or completely eliminate wall autoignition in the flow domain of interest.

  14. Short-duration Lensing Events: Wide-orbit Planets? Free-floating Dwarfs? Or Hypervelocity Stellar Remnants?

    Science.gov (United States)

    Di Stefano, Rosanne; Patel, B.; Kallivayalil, N.; Primini, F. A.

    2009-01-01

    Ongoing microlensing observations by OGLE and MOA regularly detect and conduct high-cadence sampling of lensing events with Einstein diameter crossing times shorter than a few days. We show that many short-duration events are likely to have been caused by planet-mass or brown-dwarf lenses. Many of these low-mass lenses are located within a kpc. Information about some individual systems can be derived through a combination of lensing, radial velocity, and transit studies. The present discovery rate is high enough that the study of short-duration events could soon become the primary channel for planet detection via microlensing. We develop a protocol for observing and modeling these events, and apply it to archived data. A small number of short events may be caused by hypervelocity (v 10^3 km/s) masses located within a kpc.

  15. Role of nature reserves in giant panda protection.

    Science.gov (United States)

    Kang, Dongwei; Li, Junqing

    2018-02-01

    Giant panda (Ailuropoda melanoleuca) is a flagship species in nature conservation of the world; to protect this species, 67 nature reserves have been established in China. To evaluate the protection effect of giant panda nature reserves, we analyzed the variation of giant panda number and habitat area of 23 giant panda nature reserves of Sichuan province based on the national survey data released by State Forestry Administration and Sichuan Forestry Department. Results showed that from the third national survey to the fourth, giant panda number and habitat area of 23 giant panda nature reserves of Sichuan province failed to realize the significant increase. Furthermore, we found that the total population growth rate of 23 nature reserves in the last 12 years was lower than those of the province total of Sichuan and the national total of China, and the total habitat area of the 23 nature reserves was decreasing in the last 12 years, but the province total and national total were all increasing. We propose that giant panda protection should pay more attention to how to improve the protective effects of nature reserves.

  16. Modeling Impacts of Climate Change on Giant Panda Habitat

    Directory of Open Access Journals (Sweden)

    Melissa Songer

    2012-01-01

    Full Text Available Giant pandas (Ailuropoda melanoleuca are one of the most widely recognized endangered species globally. Habitat loss and fragmentation are the main threats, and climate change could significantly impact giant panda survival. We integrated giant panda habitat information with general climate models (GCMs to predict future geographic distribution and fragmentation of giant panda habitat. Results support a major general prediction of climate change—a shift of habitats towards higher elevation and higher latitudes. Our models predict climate change could reduce giant panda habitat by nearly 60% over 70 years. New areas may become suitable outside the current geographic range but much of these areas is far from the current giant panda range and only 15% fall within the current protected area system. Long-term survival of giant pandas will require the creation of new protected areas that are likely to support suitable habitat even if the climate changes.

  17. Two-phonon giant resonances in 136Xe, 208Pb, and 238U

    International Nuclear Information System (INIS)

    Boretzky, K.; Gruenschloss, A.; Ilievski, S.; Adrich, P.; Aumann, T.; Bertulani, C.A.; Cub, J.; Dostal, W.; Eberlein, B.; Elze, T.W.; Emling, H.; Fallot, M.; Holeczek, J.; Holzmann, R.; Kozhuharov, C.; Kratz, J.V.; Kulessa, R.; Leifels, Y.; Leistenschneider, A.; Lubkiewicz, E.; Mordechai, S.; Ohtsuki, T.; Reiter, P.; Simon, H.; Stelzer, K.; Stroth, J.; Suemmerer, K.; Surowiec, A.; Wajda, E.; Walus, W.

    2003-07-01

    The excitation of the double-phonon giant dipole resonance was observed in heavy projectile nuclei impinging on targets of high nuclear charge with energies of 500-700 MeV/nucleon. New experimental data are presented for 136 Xe and 238 U together with further analysis of earlier data on 208 Pb. Differential cross sections dσ/dE * and dσ/dθ for electromagnetic excitations were deduced. Depending on the isotope, cross sections appear to be enhanced in comparison to those expected from a purely harmonic nuclear dipole response. The cumulative effect of excitations of two-phonon states composed of one dipole and one quadrupole phonon, of predicted anharmoniticies in the double-phonon dipole response, and of damping of the dipole resonance during the collision may account for the discrepancy. In addition, decay properties of two-phonon resonances were studied and compared to that of a statistical decay. (orig.)

  18. Giant lobelias exemplify convergent evolution

    Directory of Open Access Journals (Sweden)

    Givnish Thomas J

    2010-01-01

    Full Text Available Abstract Giant lobeliads on tropical mountains in East Africa and Hawaii have highly unusual, giant-rosette growth forms that appear to be convergent on each other and on those of several independently evolved groups of Asteraceae and other families. A recent phylogenetic analysis by Antonelli, based on sequencing the widest selection of lobeliads to date, raises doubts about this paradigmatic example of convergent evolution. Here I address the kinds of evidence needed to test for convergent evolution and argue that the analysis by Antonelli fails on four points. Antonelli's analysis makes several important contributions to our understanding of lobeliad evolution and geographic spread, but his claim regarding convergence appears to be invalid. Giant lobeliads in Hawaii and Africa represent paradigmatic examples of convergent evolution.

  19. Surgical treatment for giant incisional hernia

    DEFF Research Database (Denmark)

    Eriksson, A; Rosenberg, J; Bisgaard, T

    2014-01-01

    INTRODUCTION: Repair for giant incisional hernias is a challenge due to unacceptable high morbidity and recurrence rates. Several surgical techniques are available, but all are poorly documented. This systematic review was undertaken to evaluate the existing literature on repair for giant...... % with a wide range between studies of 4-100 %. The mortality ranged from 0 to 5 % (median 0 %) and recurrence rate ranged from 0 to 53 % (median 5 %). Study follow-up ranged from 15 to 97 months (median 36 months). Mesh repair should always be used for patients undergoing repair for a giant hernia......, and the sublay position may have advantages over onlay positioning. To avoid tension, it may be advisable to use a mesh in combination with a component separation technique. Inlay positioning of the mesh and repair without a mesh should be avoided. CONCLUSIONS: Evidence to optimise repair for giant hernias...

  20. Accelerator experiments with soft protons and hyper-velocity dust particles: application to ongoing projects of future X-ray missions

    DEFF Research Database (Denmark)

    Perinati, E.; Diebold, S.; Kendziorra, E.

    2012-01-01

    and hyper-velocity dust particles off X-ray mirror shells. These activities have been identified as a goal in the context of a number of ongoing space projects in order to assess the risk posed by environmental radiation and dust and qualify the adopted instrumentation with respect to possible damage...... or performance degradation. In this paper we focus on tests for the Silicon Drift Detectors (SDDs) used aboard the LOFT space mission. We use the Van de Graaff accelerators at the University of T\\"ubingen and at the Max Planck Institute for Nuclear Physics (MPIK) in Heidelberg, for soft proton and hyper...

  1. Static electromagnetic properties of giant resonances

    International Nuclear Information System (INIS)

    Koo, W.K.

    1986-03-01

    Static electric monopole and quadrupole matrix elements, which are related to the mean square radius and quadrupole moment respectively, are derived for giant resonances of arbitrary multipolarity. The results furnish information on the size and shape of the nucleus in the excited giant states. (author)

  2. Consideration of some fundamental erosion processes encountered in hypervelocity electromagnetic propulsion

    International Nuclear Information System (INIS)

    Buckingham, A.C.; Hawke, R.S.

    1982-01-01

    Experimental and theoretical research has been conducted jointly at the Livermore and Los Alamos National laboratories on dc electromagnetic railgun Lorentz accelerators. Pellets weighing a few grams to tens of grams have been launched at velocities up to better than 11 km/s. The research is addressed to attaining repeated launches of samples at hypervelocity in target impact experiments. In these experiments, shock-induced pressures in the tens of megabars range are obtained for high pressure equation-of-state research. Primary energy sources of the order of several hundred kJ to a MJ and induction currents of the order of 1 or more MA are necessary for these launches. Erosion and deformation of the conductor rails and the accelerated sample material are continuing problems. The heating, stress, and erosion resulting from simultaneous imposition of rail induction current, dense plasma (armature) interaction, current distribution, magnetic field stresses and projectile/rail contact friction are examined. It is found that while frictional heating and consequent sliding contact erosion are minor contributors to the overall erosion process, the same cannot be said for plasma impingement, penetration, and almost simultaneous induction current (Joule) heating

  3. Hypervelocity Impact Performance of Open Cell Foam Core Sandwich Panel Structures

    Science.gov (United States)

    Ryan, S.; Ordonez, E.; Christiansen, E. L.; Lear, D. M.

    2010-01-01

    Open cell metallic foam core sandwich panel structures are of interest for application in spacecraft micrometeoroid and orbital debris shields due to their novel form and advantageous structural and thermal performance. Repeated shocking as a result of secondary impacts upon individual foam ligaments during the penetration process acts to raise the thermal state of impacting projectiles ; resulting in fragmentation, melting, and vaporization at lower velocities than with traditional shielding configurations (e.g. Whipple shield). In order to characterize the protective capability of these structures, an extensive experimental campaign was performed by the Johnson Space Center Hypervelocity Impact Technology Facility, the results of which are reported in this paper. Although not capable of competing against the protection levels achievable with leading heavy shields in use on modern high-risk vehicles (i.e. International Space Station modules), metallic foam core sandwich panels are shown to provide a substantial improvement over comparable structural panels and traditional low weight shielding alternatives such as honeycomb sandwich panels and metallic Whipple shields. A ballistic limit equation, generalized in terms of panel geometry, is derived and presented in a form suitable for application in risk assessment codes.

  4. Failure mechanism of monolayer graphene under hypervelocity impact of spherical projectile

    Science.gov (United States)

    Xia, Kang; Zhan, Haifei; Hu, De'An; Gu, Yuantong

    2016-09-01

    The excellent mechanical properties of graphene have enabled it as appealing candidate in the field of impact protection or protective shield. By considering a monolayer graphene membrane, in this work, we assessed its deformation mechanisms under hypervelocity impact (from 2 to 6 km/s), based on a serial of in silico studies. It is found that the cracks are formed preferentially in the zigzag directions which are consistent with that observed from tensile deformation. Specifically, the boundary condition is found to exert an obvious influence on the stress distribution and transmission during the impact process, which eventually influences the penetration energy and crack growth. For similar sample size, the circular shape graphene possesses the best impact resistance, followed by hexagonal graphene membrane. Moreover, it is found the failure shape of graphene membrane has a strong relationship with the initial kinetic energy of the projectile. The higher kinetic energy, the more number the cracks. This study provides a fundamental understanding of the deformation mechanisms of monolayer graphene under impact, which is crucial in order to facilitate their emerging future applications for impact protection, such as protective shield from orbital debris for spacecraft.

  5. LITHIUM-RICH GIANTS IN GLOBULAR CLUSTERS

    Energy Technology Data Exchange (ETDEWEB)

    Kirby, Evan N.; Cohen, Judith G. [California Institute of Technology, 1200 E. California Boulevard, MC 249-17, Pasadena, CA 91125 (United States); Guhathakurta, Puragra [UCO/Lick Observatory and Department of Astronomy and Astrophysics, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States); Zhang, Andrew J. [The Harker School, 500 Saratoga Avenue, San Jose, CA 95129 (United States); Hong, Jerry [Palo Alto High School, 50 Embarcadero Road, Palo Alto, CA, 94301 (United States); Guo, Michelle [Stanford University, 450 Serra Mall, Stanford, CA 94305 (United States); Guo, Rachel [Irvington High School, 41800 Blacow Road, Fremont, CA 94538 (United States); Cunha, Katia [Observatório Nacional, São Cristóvão Rio de Janeiro (Brazil)

    2016-03-10

    Although red giants deplete lithium on their surfaces, some giants are Li-rich. Intermediate-mass asymptotic giant branch (AGB) stars can generate Li through the Cameron–Fowler conveyor, but the existence of Li-rich, low-mass red giant branch (RGB) stars is puzzling. Globular clusters are the best sites to examine this phenomenon because it is straightforward to determine membership in the cluster and to identify the evolutionary state of each star. In 72 hours of Keck/DEIMOS exposures in 25 clusters, we found four Li-rich RGB and two Li-rich AGB stars. There were 1696 RGB and 125 AGB stars with measurements or upper limits consistent with normal abundances of Li. Hence, the frequency of Li-richness in globular clusters is (0.2 ± 0.1)% for the RGB, (1.6 ± 1.1)% for the AGB, and (0.3 ± 0.1)% for all giants. Because the Li-rich RGB stars are on the lower RGB, Li self-generation mechanisms proposed to occur at the luminosity function bump or He core flash cannot explain these four lower RGB stars. We propose the following origin for Li enrichment: (1) All luminous giants experience a brief phase of Li enrichment at the He core flash. (2) All post-RGB stars with binary companions on the lower RGB will engage in mass transfer. This scenario predicts that 0.1% of lower RGB stars will appear Li-rich due to mass transfer from a recently Li-enhanced companion. This frequency is at the lower end of our confidence interval.

  6. Collision group and renormalization of the Boltzmann collision integral

    Science.gov (United States)

    Saveliev, V. L.; Nanbu, K.

    2002-05-01

    On the basis of a recently discovered collision group [V. L. Saveliev, in Rarefied Gas Dynamics: 22nd International Symposium, edited by T. J. Bartel and M. Gallis, AIP Conf. Proc. No. 585 (AIP, Melville, NY, 2001), p. 101], the Boltzmann collision integral is exactly rewritten in two parts. The first part describes the scattering of particles with small angles. In this part the infinity due to the infinite cross sections is extracted from the Boltzmann collision integral. Moreover, the Boltzmann collision integral is represented as a divergence of the flow in velocity space. Owing to this, the role of collisions in the kinetic equation can be interpreted in terms of the nonlocal friction force that depends on the distribution function.

  7. Giant Urinary Bladder and Bilateral Giant Hydronephrosis due to Bladder Neck Obstruction: One Case Report and Literature Review

    Directory of Open Access Journals (Sweden)

    Mohammed Fadl Tazi

    2012-01-01

    Full Text Available Bilateral hydronephrosis secondary to urinary obstruction leads to a buildup of back pressure in the urinary tract and may lead to impairment of renal function. Cases of giant hydronephrosis are rare and usually contain no more than 1-2 litres of fluid in the collecting system. Here, we report a rarely seen case with giant urinary bladder and bilateral giant hydronephrosis due to bladder neck obstruction which contains 4000 mL fluid in the collecting system of the kidney mimicking an ascites in an adult male.

  8. Giant cell arteritis of fallopian tube.

    Science.gov (United States)

    Azzena, A; Altavilla, G; Salmaso, R; Vasoin, F; Pellizzari, P; Doria, A

    1994-01-01

    One case of giant cells arteritis involving tubaric arteries in a postmenopausal woman is described. The patient was 59 years old and presented with asthenia, anemia, fever, weight loss, an abdominal palpable mass and elevated erythrocyte sedimentation rate. Exploratory laparotomy revealed a large ovarian cyst of 14 cm in diameter. Extensive giant cell arteritis, Horton's type, of the small-sizes arteries was found unexpectedly in the fallopian tube of the patient who had had a prior ovariectomy. Giant cell arteritis of the female genital tract is a rare finding in elderly women and may occur as an isolated finding or as part of generalised arteritis.

  9. Staged Closure of Giant Omphalocele using Synthetic Mesh

    OpenAIRE

    Parida, Lalit; Pal, Kamalesh; Al Buainain, Hussah; Elshafei, Hossam

    2014-01-01

    Giant omphalocele is difficult to manage and is associated with a poor outcome. A male newborn presented to our hospital with a giant omphalocele. We performed a staged closure of giant omphalocele using synthetic mesh to construct a silo and then mesh abdominoplasty in the neonatal period that led to a successful outcome within a reasonable period of hospital stay.

  10. Giant microelectronics

    International Nuclear Information System (INIS)

    Della Sala, D.; Privato, C.; Di Lazzaro, P.; Fortunato, G.

    1999-01-01

    Giant microelectronics, on which the technology of flat liquid-crystal screens is based, is an example of fruitful interaction among independently-developed technologies, in this case thin film micro devices and laser applications. It typifies the interdisciplinary approach needed to produce innovations in microelectronics [it

  11. Electron-molecule collisions

    International Nuclear Information System (INIS)

    Shimamura, I.; Takayanagi, K.

    1984-01-01

    The study of collision processes plays an important research role in modern physics. Many significant discoveries have been made by means of collision experiments. Based on theoretical, experimental, and computational studies, this volume presents an overview detailing the basic processes of electron-molecule collisions. The editors have collected papers-written by a group of international experts-that consider a diverse range of phenomena occurring in electronmolecule collisions. The volume discusses first the basic formulation for scattering problems and then gives an outline of the physics of electron-molecule collisions. The main topics covered are rotational transitions, vibrational transitions, dissociation of molecules in slow collisions, the electron-molecule collision as a spectroscopic tool for studying molecular electronic structures, and experimental and computational techniques for determining the cross sections. These well-referenced chapters are self-contained and can be read independently or consecutively. Authoritative and up-to-date, Electron-Molecule Collisions is a useful addition to the libraries of students and researchers in the fields of atomic, molecular, and chemical physics, and physical chemistry

  12. First Principles Based Reactive Atomistic Simulations to Understand the Effects of Molecular Hypervelocity Impact on Cassini's Ion and Neutral Mass Spectrometer

    Science.gov (United States)

    Jaramillo-Botero, A.; Cheng, M-J; Cvicek, V.; Beegle, Luther W.; Hodyss, R.; Goddard, W. A., III

    2011-01-01

    We report here on the predicted impact of species such as ice-water, CO2, CH4, and NH3, on oxidized titanium, as well as HC species on diamond surfaces. These simulations provide the dynamics of product distributions during and after a hypervelocity impact event, ionization fractions, and dissociation probabilities for the various species of interest as a function of impact velocity (energy). We are using these results to determine the relevance of the fragmentation process to Cassini INMS results, and to quantify its effects on the observed spectra.

  13. Giant prolactinomas in women

    DEFF Research Database (Denmark)

    Delgrange, Etienne; Raverot, Gerald; Bex, Marie

    2014-01-01

    OBJECTIVE: To characterise distinctive clinical features of giant prolactinomas in women. DESIGN: A multicentre, retrospective case series and literature review. METHODS: We collected data from 15 female patients with a pituitary tumour larger than 4 cm and prolactin levels above 1000 μg/l and id......OBJECTIVE: To characterise distinctive clinical features of giant prolactinomas in women. DESIGN: A multicentre, retrospective case series and literature review. METHODS: We collected data from 15 female patients with a pituitary tumour larger than 4 cm and prolactin levels above 1000 μg....../l and identified 19 similar cases from the literature; a gender-based comparison of the frequency and age distribution was obtained from a literature review. RESULTS: The initial PubMed search using the term 'giant prolactinomas' identified 125 patients (13 women) responding to the inclusion criteria. The female......:male ratio was 1:9. Another six female patients were found by extending the literature search, while our own series added 15 patients. The median age at diagnosis was 44 years in women compared with 35 years in men (Pwomen (n=34), we...

  14. Observing giant panda habitat and forage abundance from space

    NARCIS (Netherlands)

    Wang, T.

    2009-01-01

    Giant pandas are obligate bamboo grazers. The bamboos favoured by giant
    pandas are typical forest understorey plants. Therefore, the availability and
    abundance of understorey bamboo is a key factor in determining the quantity
    and quality of giant panda food resources. However,

  15. Metastatic giant basal cell carcinoma: a case report.

    Science.gov (United States)

    Bellahammou, Khadija; Lakhdissi, Asmaa; Akkar, Othman; Rais, Fadoua; Naoual, Benhmidou; Elghissassi, Ibrahim; M'rabti, Hind; Errihani, Hassan

    2016-01-01

    Basal cell carcinoma is the most common skin cancer, characterised by a slow growing behavior, metastasis are extremely rare, and it occurs in less than 0, 1% of all cases. Giant basal cell carcinoma is a rare form of basal cell carcinoma, more aggressive and defined as a tumor measuring more than 5 cm at its largest diameter. Only 1% of all basal cell carcinoma develops to a giant basal cell carcinoma, resulting of patient's negligence. Giant basal cell carcinoma is associated with higher potential of metastasis and even death, compared to ordinary basal cell carcinoma. We report a case of giant basal cell carcinoma metastaticin lung occurring in a 79 years old male patient, with a fatal evolution after one course of systemic chemotherapy. Giant basal cell carcinoma is a very rare entity, early detection of these tumors could prevent metastasis occurrence and improve the prognosis of this malignancy.

  16. Three-dimensional CT examination of the mastication system in the giant anteater.

    Science.gov (United States)

    Endo, Hideki; Niizawa, Nobuharu; Komiya, Teruyuki; Kawada, Shinichiro; Kimura, Junpei; Itou, Takuya; Koie, Hiroshi; Sakai, Takeo

    2007-10-01

    The gross anatomy of the mastication system of the giant anteater (Myrmecophaga tridactyla) was examined by means of three-dimensional image analysis. The anteater rotates the mandibles medially and laterally to control its tongue when it is elongated and to house it when it is relaxed. Three-dimensional CT image analysis demonstrated that the shape and size of the oral cavity changes drastically when the mandibles are rotated. The oral cavity expands bilaterally when the dorsal part of the mandibles bend medially. Macroscopic observations and muscle-weight data supported the observation that the superficial temporal and medial pterygoid muscles act as the main medial and lateral rotators of the mandible, respectively. The low height of the mandibular ramus and the incomplete zygomatic arch in this species represent adaptations for the rotational movement of the mandibles, since they both contribute to the medially oriented transmission of force from the temporal muscles and to preventing collision between the mandibles and the cranium during the rotational movement.

  17. Giant Chancroid

    Directory of Open Access Journals (Sweden)

    Bhushan Kumar

    1980-01-01

    Full Text Available A case of giant chancroid following rupture of inguinal bubo and having systemic symptoms is described. Response with sulfa and streptomycin combination was excellent and the lesion healed completely in 3 weeks. Early diagnosis and treatment of chancroid will prevent this debilitating complication.

  18. Giant cystic craniopharyngiomas

    International Nuclear Information System (INIS)

    Young, S.C.; Zimmerman, R.A.; Nowell, M.A.; Bilaniuk, L.T.; Hackney, D.B.; Grossman, R.I.; Goldberg, H.I.

    1987-01-01

    Three cases of giant cystic craniopharyngiomas with large areas of extension beyond the suprasellar area are presented. The magnetic resonance (MR) appearance in one case is described. These giant tumors had large, multilobulated cysts that comprised the bulk of the tumors. In one case, there was an unusual extension of the large tumor cyst into the lateral ventricle. In two cases, the tumors extended to the level of the foramen magnum. On CT, the cyst contents of these two tumors were hyperdense and became hypodense postoperatively. All three tumors harbored calcifications in the form of clumps in the suprasellar region and rim calcifications around the cysts. None of the tumors exhibited contrast enhancement. A literature review of the radiographic features of craniopharyngiomas is discussed. (orig.)

  19. Globally intertwined evolutionary history of giant barrel sponges

    Science.gov (United States)

    Swierts, Thomas; Peijnenburg, Katja T. C. A.; de Leeuw, Christiaan A.; Breeuwer, Johannes A. J.; Cleary, Daniel F. R.; de Voogd, Nicole J.

    2017-09-01

    Three species of giant barrel sponge are currently recognized in two distinct geographic regions, the tropical Atlantic and the Indo-Pacific. In this study, we used molecular techniques to study populations of giant barrel sponges across the globe and assessed whether the genetic structure of these populations agreed with current taxonomic consensus or, in contrast, whether there was evidence of cryptic species. Using molecular data, we assessed whether giant barrel sponges in each oceanic realm represented separate monophyletic lineages. Giant barrel sponges from 17 coral reef systems across the globe were sequenced for mitochondrial (partial CO1 and ATP6 genes) and nuclear (ATPsβ intron) DNA markers. In total, we obtained 395 combined sequences of the mitochondrial CO1 and ATP6 markers, which resulted in 17 different haplotypes. We compared a phylogenetic tree constructed from 285 alleles of the nuclear intron ATPsβ to the 17 mitochondrial haplotypes. Congruent patterns between mitochondrial and nuclear gene trees of giant barrel sponges provided evidence for the existence of multiple reproductively isolated species, particularly where they occurred in sympatry. The species complexes in the tropical Atlantic and the Indo-Pacific, however, do not form separate monophyletic lineages. This rules out the scenario that one species of giant barrel sponge developed into separate species complexes following geographic separation and instead suggests that multiple species of giant barrel sponges already existed prior to the physical separation of the Indo-Pacific and tropical Atlantic.

  20. Nucleus-Nucleus Collision as Superposition of Nucleon-Nucleus Collisions

    International Nuclear Information System (INIS)

    Orlova, G.I.; Adamovich, M.I.; Aggarwal, M.M.; Alexandrov, Y.A.; Andreeva, N.P.; Badyal, S.K.; Basova, E.S.; Bhalla, K.B.; Bhasin, A.; Bhatia, V.S.; Bradnova, V.; Bubnov, V.I.; Cai, X.; Chasnikov, I.Y.; Chen, G.M.; Chernova, L.P.; Chernyavsky, M.M.; Dhamija, S.; Chenawi, K.El; Felea, D.; Feng, S.Q.; Gaitinov, A.S.; Ganssauge, E.R.; Garpman, S.; Gerassimov, S.G.; Gheata, A.; Gheata, M.; Grote, J.; Gulamov, K.G.; Gupta, S.K.; Gupta, V.K.; Henjes, U.; Jakobsson, B.; Kanygina, E.K.; Karabova, M.; Kharlamov, S.P.; Kovalenko, A.D.; Krasnov, S.A.; Kumar, V.; Larionova, V.G.; Li, Y.X.; Liu, L.S.; Lokanathan, S.; Lord, J.J.; Lukicheva, N.S.; Lu, Y.; Luo, S.B.; Mangotra, L.K.; Manhas, I.; Mittra, I.S.; Musaeva, A.K.; Nasyrov, S.Z.; Navotny, V.S.; Nystrand, J.; Otterlund, I.; Peresadko, N.G.; Qian, W.Y.; Qin, Y.M.; Raniwala, R.; Rao, N.K.; Roeper, M.; Rusakova, V.V.; Saidkhanov, N.; Salmanova, N.A.; Seitimbetov, A.M.; Sethi, R.; Singh, B.; Skelding, D.; Soderstrem, K.; Stenlund, E.; Svechnikova, L.N.; Svensson, T.; Tawfik, A.M.; Tothova, M.; Tretyakova, M.I.; Trofimova, T.P.; Tuleeva, U.I.; Vashisht, Vani; Vokal, S.; Vrlakova, J.; Wang, H.Q.; Wang, X.R.; Weng, Z.Q.; Wilkes, R.J.; Yang, C.B.; Yin, Z.B.; Yu, L.Z.; Zhang, D.H.; Zheng, P.Y.; Zhokhova, S.I.; Zhou, D.C.

    1999-01-01

    Angular distributions of charged particles produced in 16 O and 32 S collisions with nuclear track emulsion were studied at momenta 4.5 and 200 A GeV/c. Comparison with the angular distributions of charged particles produced in proton-nucleus collisions at the same momentum allows to draw the conclusion, that the angular distributions in nucleus-nucleus collisions can be seen as superposition of the angular distributions in nucleon-nucleus collisions taken at the same impact parameter b NA , that is mean impact parameter between the participating projectile nucleons and the center of the target nucleus

  1. Nucleus-Nucleus Collision as Superposition of Nucleon-Nucleus Collisions

    Energy Technology Data Exchange (ETDEWEB)

    Orlova, G I; Adamovich, M I; Aggarwal, M M; Alexandrov, Y A; Andreeva, N P; Badyal, S K; Basova, E S; Bhalla, K B; Bhasin, A; Bhatia, V S; Bradnova, V; Bubnov, V I; Cai, X; Chasnikov, I Y; Chen, G M; Chernova, L P; Chernyavsky, M M; Dhamija, S; Chenawi, K El; Felea, D; Feng, S Q; Gaitinov, A S; Ganssauge, E R; Garpman, S; Gerassimov, S G; Gheata, A; Gheata, M; Grote, J; Gulamov, K G; Gupta, S K; Gupta, V K; Henjes, U; Jakobsson, B; Kanygina, E K; Karabova, M; Kharlamov, S P; Kovalenko, A D; Krasnov, S A; Kumar, V; Larionova, V G; Li, Y X; Liu, L S; Lokanathan, S; Lord, J J; Lukicheva, N S; Lu, Y; Luo, S B; Mangotra, L K; Manhas, I; Mittra, I S; Musaeva, A K; Nasyrov, S Z; Navotny, V S; Nystrand, J; Otterlund, I; Peresadko, N G; Qian, W Y; Qin, Y M; Raniwala, R; Rao, N K; Roeper, M; Rusakova, V V; Saidkhanov, N; Salmanova, N A; Seitimbetov, A M; Sethi, R; Singh, B; Skelding, D; Soderstrem, K; Stenlund, E; Svechnikova, L N; Svensson, T; Tawfik, A M; Tothova, M; Tretyakova, M I; Trofimova, T P; Tuleeva, U I; Vashisht, Vani; Vokal, S; Vrlakova, J; Wang, H Q; Wang, X R; Weng, Z Q; Wilkes, R J; Yang, C B; Yin, Z B; Yu, L Z; Zhang, D H; Zheng, P Y; Zhokhova, S I; Zhou, D C

    1999-03-01

    Angular distributions of charged particles produced in {sup 16}O and {sup 32}S collisions with nuclear track emulsion were studied at momenta 4.5 and 200 A GeV/c. Comparison with the angular distributions of charged particles produced in proton-nucleus collisions at the same momentum allows to draw the conclusion, that the angular distributions in nucleus-nucleus collisions can be seen as superposition of the angular distributions in nucleon-nucleus collisions taken at the same impact parameter b{sub NA}, that is mean impact parameter between the participating projectile nucleons and the center of the target nucleus.

  2. Nucleus-nucleus collision as superposition of nucleon-nucleus collisions

    International Nuclear Information System (INIS)

    Orlova, G.I.; Adamovich, M.I.; Aggarwal, M.M.

    1999-01-01

    Angular distributions of charged particles produced in 16 O and 32 S collisions with nuclear track emulsion were studied at momenta 4.5 and 200 A GeV/c. Comparison with the angular distributions of charged particles produced in proton-nucleus collisions at the same momentum allows to draw the conclusion, that the angular distributions in nucleus-nucleus collisions can be seen as superposition of the angular distributions in nucleon-nucleus collisions taken at the same impact parameter b NA , that is mean impact parameter between the participating projectile nucleons and the center of the target nucleus. (orig.)

  3. Multipole giant resonances in highly excited nuclei

    International Nuclear Information System (INIS)

    Xia Keding; Cai Yanhuang

    1989-01-01

    The isoscalar giant surface resonance and giant dipole resonance in highly excited nuclei are discussed. Excitation energies of the giant modes in 208 Pb are calculated in a simplified model, using the concept of energy wieghted sum rule (EWSR), and the extended Thomas-Fermi approximation at the finite temperature is employed to describe the finite temperature is employed to describe the finite temperature equilibrium state. It is shown that EWSR and the energy of the resonance depend only weakly on temperature in the system. This weak dependence is analysed

  4. Effect of impact angles on ejecta and crater shape of aluminum alloy 6061-T6 targets in hypervelocity impacts

    Directory of Open Access Journals (Sweden)

    Hayashi K.

    2012-08-01

    Full Text Available The effect of the impact angle of projectiles on the crater shape and ejecta in thick aluminum alloy targets was investigated in hypervelocity impacts. When polycarbonate projectiles and aluminum alloy 6061-T6 target were used, the impact angle of the projectiles clearly affected the crater shape, as expected. The impact angle also affected the ejecta mass, ejecta size and scatter angle. However, the effect at 15∘ and 22.5∘ was not great. When the impact angles were 30∘ and 45∘, the effect was clearly confirmed. The impact angle clearly affected the axial ratio of ejecta fragments, c/a.

  5. Evidence for deformation effect on the giant monopole resonance

    International Nuclear Information System (INIS)

    Buenerd, M.; Lebrun, D.; Martin, P.; de Saintignon, P.; Perrin, C.

    1980-01-01

    The giant monopole resonance in the region of deformed nuclei has been investigated by inelastic scattering of 108.5 MeV 3 He at very small scattering angles. Evidence is reported for coupling between the giant monopole and giant quadrupole vibrations, based both on energy shift and transition strength

  6. Fatal canine distemper virus infection of giant pandas in China.

    Science.gov (United States)

    Feng, Na; Yu, Yicong; Wang, Tiecheng; Wilker, Peter; Wang, Jianzhong; Li, Yuanguo; Sun, Zhe; Gao, Yuwei; Xia, Xianzhu

    2016-06-16

    We report an outbreak of canine distemper virus (CDV) infection among endangered giant pandas (Ailuropoda melanoleuca). Five of six CDV infected giant pandas died. The surviving giant panda was previously vaccinated against CDV. Genomic sequencing of CDV isolated from one of the infected pandas (giant panda/SX/2014) suggests it belongs to the Asia-1 cluster. The hemagglutinin protein of the isolated virus and virus sequenced from lung samples originating from deceased giant pandas all possessed the substitutions V26M, T213A, K281R, S300N, P340Q, and Y549H. The presence of the Y549H substitution is notable as it is found at the signaling lymphocytic activation molecule (SLAM) receptor-binding site and has been implicated in the emergence of highly pathogenic CDV and host switching. These findings demonstrate that giant pandas are susceptible to CDV and suggest that surveillance and vaccination among all captive giant pandas are warranted to support conservation efforts for this endangered species.

  7. THE GALACTIC POTENTIAL AND THE ASYMMETRIC DISTRIBUTION OF HYPERVELOCITY STARS

    International Nuclear Information System (INIS)

    Perets, Hagai B.; Alexander, Tal; Wu Xufen; Zhao Hongsheng; Famaey, Benoit; Gentile, Gianfranco

    2009-01-01

    In recent years several hypervelocity stars (HVSs) have been observed in the halo of our Galaxy. Such HVSs have possibly been ejected from the Galactic center and then propagated in the Galactic potential up to their current position. The recent survey for candidate HVSs show an asymmetry in the kinematics of candidate HVSs (position and velocity vectors), where more outgoing stars than ingoing stars (i.e., positive Galactocentric velocities versus negative ones) are observed. We show that such kinematic asymmetry, which is likely due to the finite lifetime of the stars and Galactic potential structure, could be used in a novel method to probe and constrain the Galactic potential, identify the stellar type of the stars in the survey and estimate the number of HVSs. Kinematics-independent identification of the stellar types of the stars in such surveys (e.g., spectroscopic identification) could further improve these results. We find that the observed asymmetry between ingoing and outgoing stars favors specific Galactic potential models. It also implies a lower limit of ∼54 ± 8 main-sequence HVSs in the survey sample (∼>648 ± 96 in the Galaxy), assuming that all of the MS stars in the survey originate from the GC. The other stars in the survey are likely to be hot blue horizontal branch stars born in the halo rather than stars ejected from the GC.

  8. The Concept of Collision-Free Motion Planning Using a Dynamic Collision Map

    Directory of Open Access Journals (Sweden)

    Keum-Bae Cho

    2014-09-01

    Full Text Available In this paper, we address a new method for the collision-free motion planning of a mobile robot in dynamic environments. The motion planner is based on the concept of a conventional collision map (CCM, represented on the L(travel length-T(time plane. We extend the CCM with dynamic information about obstacles, such as linear acceleration and angular velocity, providing useful information for estimating variation in the collision map. We first analyse the effect of the dynamic motion of an obstacle in the collision region. We then define the measure of collision dispersion (MOCD. The dynamic collision map (DCM is generated by drawing the MOCD on the CCM. To evaluate a collision-free motion planner using the DCM, we extend the DCM with MOCD, then draw the unreachable region and deadlocked regions. Finally, we construct a collision-free motion planner using the information from the extended DCM.

  9. Giants among larges: how gigantism impacts giant virus entry into amoebae.

    Science.gov (United States)

    Rodrigues, Rodrigo Araújo Lima; Abrahão, Jônatas Santos; Drumond, Betânia Paiva; Kroon, Erna Geessien

    2016-06-01

    The proposed order Megavirales comprises the nucleocytoplasmic large DNA viruses (NCLDV), infecting a wide range of hosts. Over time, they co-evolved with different host cells, developing various strategies to penetrate them. Mimiviruses and other giant viruses enter cells through phagocytosis, while Marseillevirus and other large viruses explore endocytosis and macropinocytosis. These differing strategies might reflect the evolution of those viruses. Various scenarios have been proposed for the origin and evolution of these viruses, presenting one of the most enigmatic issues to surround these microorganisms. In this context, we believe that giant viruses evolved independently by massive gene/size gain, exploring the phagocytic pathway of entry into amoebas. In response to gigantism, hosts developed mechanisms to evade these parasites. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Literature review of giant gartersnake (Thamnophis gigas) biology and conservation

    Science.gov (United States)

    Halstead, Brian J.; Wylie, Glenn D.; Casazza, Michael L.

    2015-08-03

    This report reviews the available literature on giant gartersnakes (Thamnophis gigas) to compile existing information on this species and identify knowledge gaps that, if addressed, would help to inform conservation efforts for giant gartersnakes.  Giant gartersnakes comprise a species of semi-aquatic snake precinctive to wetlands in the Central Valley of California.  The diversion of surface water and conversion of wetlands to agricultural and other land uses resulted in the loss of more than 90 percent of natural giant gartersnake habitats.  Because of this habitat loss, giant gartersnakes are now listed by the United States and California Endangered Species Acts as Threatened.  Most extant populations occur in the rice-growing regions of the Sacramento Valley, which comprises the northern portion of the giant gartersnake’s former range.  The huge demand for water in California for agriculture, industry, recreation, and other human consumption, combined with periodic severe drought, places remaining giant gartersnake habitats at increased risk of degradation and loss.  This literature review summarizes the available information on giant gartersnake distribution, habitat relations, behavior, demography, and other aspects of its biology relevant to conservation.  This information is then compiled into a graphical conceptual model that indicates the importance of different aspects of giant gartersnake biology for maintaining positive population growth, and identifies those areas for which important information relevant for conservation is lacking.  Directing research efforts toward these aspects of giant gartersnake ecology will likely result in improvements to conserving this unique species while meeting the high demands for water in California.

  11. Collisional damping of giant monopole and quadrupole resonances

    International Nuclear Information System (INIS)

    Yildirim, S.; Gokalp, A.; Yilmaz, O.; Ayik, S.

    2001-01-01

    Collisional damping widths of giant monopole and quadrupole excitations for 120 Sn and 208 Pb at zero and finite temperatures are calculated within Thomas-Fermi approximation by employing the microscopic in-medium cross-sections of Li and Machleidt and the phenomenological Skyrme and Gogny forces, and are compared with each other. The results for the collisional widths of giant monopole and quadrupole vibrations at zero temperature as a function of the mass number show that the collisional damping of giant monopole vibrations accounts for about 30 - 40% of the observed widths at zero temperature, while for giant quadrupole vibrations it accounts for only 20 - 30% of the observed widths at zero temperature. (orig.)

  12. Giant cell phlebitis: a potentially lethal clinical entity.

    Science.gov (United States)

    Kunieda, Takeshige; Murayama, Masanori; Ikeda, Tsuneko; Yamakita, Noriyoshi

    2012-08-01

    An 83-year-old woman presented to us with a 4-week history of general malaise, subjective fever and lower abdominal pain. Despite the intravenous infusion of antibiotics, her blood results and physical condition worsened, resulting in her sudden death. Autopsy study revealed that the medium-sized veins of the mesentery were infiltrated by eosinophil granulocytes, lymphocytes, macrophages and multinucleated giant cells; however, the arteries were not involved. Microscopically, venous giant cell infiltration was observed in the gastrointestinal tract, bladder, retroperitoneal tissues and myocardium. The final diagnosis was giant cell phlebitis, a rare disease of unknown aetiology. This case demonstrates for the first time that giant cell phlebitis involving extra-abdominal organs, including hearts, can cause serious morbidity.

  13. Role of orbital dynamics and cloud-cloud collisions in the formation of giant molecular clouds in global spiral structures

    International Nuclear Information System (INIS)

    Roberts, W.W. Jr.; Stewart, G.R.

    1987-01-01

    The role of orbit crowding and cloud-cloud collisions in the formation of GMCs and their organization in global spiral structure is investigated. Both N-body simulations of the cloud system and a detailed analysis of individual particle orbits are used to develop a conceptual understanding of how individual clouds participate in the collective density response. Detailed comparisons are made between a representative cloud-particle simulation in which the cloud particles collide inelastically with one another and give birth to and subsequently interact with young star associations and stripped down simulations in which the cloud particles are allowed to follow ballistic orbits in the absence of cloud-cloud collisions or any star formation processes. Orbit crowding is then related to the behavior of individual particle trajectories in the galactic potential field. The conceptual picture of how GMCs are formed in the clumpy ISMs of spiral galaxies is formulated, and the results are compared in detail with those published by other authors. 68 references

  14. Plasma production and hadronization in ultrarelativistic nuclear collisions

    International Nuclear Information System (INIS)

    Kataja, M.

    1990-01-01

    We study the color confinement and hadronization in the thermodynamic limit of the flux tube model, which was recently developed to describe the energy deposition, particle production and the early expansion of plasma in the central region of ultrarelativistic heavy ion collisions. In this purpose, we introduce a concept of an intermediate 'mixed state', which is formed when the original giant flux tube is fragmented into many smaller tubes which contain the plasma and the Abelian color-electric field and which coexist with a dilute hadron gas. This mixed state is an extension of the mixed phase used in the pure hydrodynamic description utilizing the bag equation of state. We study the thermodynamics of this mixed state making use of the bag model and the classical models of color confinement. It appears that in the thermodynamic limit, the mixed state can be considered as a dielectric medium in which the color dielectric constant takes the values between 0 and 1. We also study how the 'equations of electrohydrodynamics', which were formulated in earlier works to describe the evolution of the giant flux tube and plasma, are to be modified due to the dielectric nature of the new transient mixed state. A numeric simulation of a one-dimensional scaling expansion demonstrates the dynamic transition of the system from plasma to hadron phase and the characteristic reheating effect due to this hadronization transition. It is also shown that in the limit of low temperature or large bag constant, this formalism is reduced to the hydrodynamics of hadron gas produced by the fragmentation of multiple strings. (orig.)

  15. Multispin giant magnons

    International Nuclear Information System (INIS)

    Bobev, N. P.; Rashkov, R. C.

    2006-01-01

    We investigate giant magnons from classical rotating strings in two different backgrounds. First we generalize the solution of Hofman and Maldacena and investigate new magnon excitations of a spin chain which are dual to a string on RxS 5 with two nonvanishing angular momenta. Allowing string dynamics along the third angle in the five sphere, we find a dispersion relation that reproduces the Hofman and Maldacena one and the one found by Dorey for the two spin case. In the second part of the paper we generalize the two 'spin' giant magnon to the case of β-deformed AdS 5 xS 5 background. We find agreement between the dispersion relation of the rotating string and the proposed dispersion relation of the magnon bound state on the spin chain

  16. Hadron-nucleus collisions

    International Nuclear Information System (INIS)

    Strugalski, Z.

    1981-01-01

    Qualitative picture of high energy hadron-nucleus collision process, emerging from the analysis of experimental data, is presented. Appropriate description procedure giving a possibility of reproducing various characteristics of this process in terms of the data on elementary hadron-nucleon interaction is proposed. Formula reproducing hadron-nucleus collision cross sections is derived. Inelastic collision cross sections for pion-nucleus and proton-nucleus reactions at wide energy interval are calculated for Pb, Ag, and Al targets. A-dependence of cross sections for pion-nucleus and proton-nucleus collisions at nearly 50 GeV/c momentum were calculated and compared with existing experimental data. Energy dependence of cross sections for hadron-nucleus collisions is determined simply by energy dependence of corresponding cross sections for hadron-nucleon collisions; A-dependence is determined simply by nuclear sizes and nucleon density distributions in nuclei

  17. Fast-ignition heavy-ion fusion target by jet impact

    International Nuclear Information System (INIS)

    Velarde, P.; Ogando, F.; Eliezer, S.; Martinez-Val, J.M.

    2005-01-01

    A new target design for HIF, based on the fast-ignition principles, is proposed. Unlike the previous designs proposed so far, in this case just one energy source is needed to drive the whole process to ignition. The ultra-fast deposition of energy onto the compressed core is produced in this case by hypervelocity jets generated during the process. The collision of jets converts their kinetic energy into thermal energy of the nuclear fuel, which is expected to produce ignition under proper design. The process is studied in this paper, describing its most relevant features like jet production and later collision

  18. Environmental Catastrophes in the Earth's History Due to Solar Systems Encounters with Giant Molecular Clouds

    Science.gov (United States)

    Pavlov, Alexander A.

    2011-01-01

    In its motion through the Milky Way galaxy, the solar system encounters an average density (>=330 H atoms/cubic cm) giant molecular cloud (GMC) approximately every 108 years, a dense (approx 2 x 103 H atoms/cubic cm) GMC every approx 109 years and will inevitably encounter them in the future. However, there have been no studies linking such events with severe (snowball) glaciations in Earth history. Here we show that dramatic climate change can be caused by interstellar dust accumulating in Earth's atmosphere during the solar system's immersion into a dense (approx ,2 x 103 H atoms/cubic cm) GMC. The stratospheric dust layer from such interstellar particles could provide enough radiative forcing to trigger the runaway ice-albedo feedback that results in global snowball glaciations. We also demonstrate that more frequent collisions with less dense GMCs could cause moderate ice ages.

  19. Restricted Collision List method for faster Direct Simulation Monte-Carlo (DSMC) collisions

    Energy Technology Data Exchange (ETDEWEB)

    Macrossan, Michael N., E-mail: m.macrossan@uq.edu.au

    2016-08-15

    The ‘Restricted Collision List’ (RCL) method for speeding up the calculation of DSMC Variable Soft Sphere collisions, with Borgnakke–Larsen (BL) energy exchange, is presented. The method cuts down considerably on the number of random collision parameters which must be calculated (deflection and azimuthal angles, and the BL energy exchange factors). A relatively short list of these parameters is generated and the parameters required in any cell are selected from this list. The list is regenerated at intervals approximately equal to the smallest mean collision time in the flow, and the chance of any particle re-using the same collision parameters in two successive collisions is negligible. The results using this method are indistinguishable from those obtained with standard DSMC. The CPU time saving depends on how much of a DSMC calculation is devoted to collisions and how much is devoted to other tasks, such as moving particles and calculating particle interactions with flow boundaries. For 1-dimensional calculations of flow in a tube, the new method saves 20% of the CPU time per collision for VSS scattering with no energy exchange. With RCL applied to rotational energy exchange, the CPU saving can be greater; for small values of the rotational collision number, for which most collisions involve some rotational energy exchange, the CPU may be reduced by 50% or more.

  20. Giant Congenital Melanocytic Naevi: review of literature

    Directory of Open Access Journals (Sweden)

    A. Marchesi

    2012-04-01

    Full Text Available giant congenital pigmented naevi is a great reconstructive challenge for the pediatric and plastic surgeons. due to the increased risk of malignant transformation in such lesions, many procedures have been used to remove giant congenital naevi like dermoabrasion, laser treatment or surgical excision combined with reconstruction through skin expansion or skin grafting; among these, only a complete excision can offer an efficacious treatment. in our centre we use the “tissue expansion” technique in order to achieve a sufficient quantity of normal skin to perform a both staged and radical excision of these giant lesions.

  1. Fatal canine distemper virus infection of giant pandas in China

    Science.gov (United States)

    Feng, Na; Yu, Yicong; Wang, Tiecheng; Wilker, Peter; Wang, Jianzhong; Li, Yuanguo; Sun, Zhe; Gao, Yuwei; Xia, Xianzhu

    2016-01-01

    We report an outbreak of canine distemper virus (CDV) infection among endangered giant pandas (Ailuropoda melanoleuca). Five of six CDV infected giant pandas died. The surviving giant panda was previously vaccinated against CDV. Genomic sequencing of CDV isolated from one of the infected pandas (giant panda/SX/2014) suggests it belongs to the Asia-1 cluster. The hemagglutinin protein of the isolated virus and virus sequenced from lung samples originating from deceased giant pandas all possessed the substitutions V26M, T213A, K281R, S300N, P340Q, and Y549H. The presence of the Y549H substitution is notable as it is found at the signaling lymphocytic activation molecule (SLAM) receptor-binding site and has been implicated in the emergence of highly pathogenic CDV and host switching. These findings demonstrate that giant pandas are susceptible to CDV and suggest that surveillance and vaccination among all captive giant pandas are warranted to support conservation efforts for this endangered species. PMID:27310722

  2. Giant urinary bladder calculus: Case report | Otieno | East African ...

    African Journals Online (AJOL)

    A vertical calculus weighing more than 100 g is categorised as a giant urinary bladder stone. Giant urinary bladder stones are very rare and very few cases have been reported in English literature and only one case from Africa. This is a case report of a patient with a giant urinary bladder calculus presenting as a rectal ...

  3. Giant cell angiofibroma or localized periorbital lymphedema?

    Science.gov (United States)

    Lynch, Michael C; Chung, Catherine G; Specht, Charles S; Wilkinson, Michael; Clarke, Loren E

    2013-12-01

    Giant cell angiofibroma represents a rare soft tissue neoplasm with a predilection for the orbit. We recently encountered a mass removed from the lower eyelid of a 56-year-old female that histopathologically resembled giant cell angiofibroma. The process consisted of haphazardly arranged CD34-positive spindled and multinucleated cells within an edematous, densely vascular stroma. However, the patient had recently undergone laryngectomy and radiotherapy for a laryngeal squamous cell carcinoma. A similar mass had arisen on the contralateral eyelid, and both had developed several months post-therapy. Lymphedema of the orbit can present as tumor-like nodules and in some cases may share histopathologic features purported to be characteristic of giant cell angiofibroma. A relationship between giant cell angiofibroma and lymphedema has not been established, but our case suggests there may be one. The potential overlap of these two conditions should be recognized, as should other entities that may enter the differential diagnosis. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. [Giant paraovarian cyst in childhood - Case report].

    Science.gov (United States)

    Torres, Janina P; Íñiguez, Rodrigo D

    2015-01-01

    Paraovarian cysts are very uncommon in children To present a case of giant paraovarian cyst case in a child and its management using a modified laparoscopic-assisted technique A 13-year-old patient with a 15 day-history of intermittent abdominal pain, located in the left hemiabdomen and associated with progressive increase in abdominal volume. Diagnostic imaging was inconclusive, describing a giant cystic formation that filled up the abdomen, but without specifying its origin. Laboratory tests and tumor markers were within normal range. Video-assisted transumbilical cystectomy, a modified laparoscopic procedure with diagnostic and therapeutic intent, was performed with a successful outcome. The histological study reported giant paraovarian cyst. Cytology results were negative for tumor cells. The patient remained asymptomatic during the postoperative follow-up. The video-assisted transumbilical cystectomy is a safe procedure and an excellent diagnostic and therapeutic alternative for the treatment of giant paraovarian cysts. Copyright © 2015. Publicado por Elsevier España, S.L.U.

  5. [Tissular expansion in giant congenital nevi treatment].

    Science.gov (United States)

    Nguyen Van Nuoi, V; Francois-Fiquet, C; Diner, P; Sergent, B; Zazurca, F; Franchi, G; Buis, J; Vazquez, M-P; Picard, A; Kadlub, N

    2014-08-01

    Surgical management of giant melanotic naevi remains a surgical challenge. Tissue expansion provides tissue of the same quality for the repair of defects. The aim of this study is to review tissular expansion for giant melanotic naevi. We conducted a retrospective study from 2000 to 2012. All children patients who underwent a tissular expansion for giant congenital naevi had been included. Epidemiological data, surgical procedure, complication rate and results had been analysed. Thirty-tree patients had been included; they underwent 61 procedures with 79 tissular-expansion prosthesis. Previous surgery, mostly simple excision had been performed before tissular expansion. Complete naevus excision had been performed in 63.3% of the cases. Complications occurred in 45% of the cases, however in 50% of them were minor. Iterative surgery increased the complication rate. Tissular expansion is a valuable option for giant congenital naevus. However, complication rate remained high, especially when iterative surgery is needed. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  6. AGB [asymptotic giant branch]: Star evolution

    International Nuclear Information System (INIS)

    Becker, S.A.

    1987-01-01

    Asymptotic giant branch stars are red supergiant stars of low-to-intermediate mass. This class of stars is of particular interest because many of these stars can have nuclear processed material brought up repeatedly from the deep interior to the surface where it can be observed. A review of recent theoretical and observational work on stars undergoing the asymptotic giant branch phase is presented. 41 refs

  7. Nutritional evaluation of the giant grassropper (Zonocerus ...

    African Journals Online (AJOL)

    The biological value of giant grasshopper protein (Zonocerus variegatus) was evaluated by comparing the weight gained, food efficiency ratio (FER), protein efficiency ratio (PER) of rats fed standard laboratory chow with that of rats fed giant grasshopper, Soyabean(Glycine max) and crayfish. The effect of high fibre content ...

  8. Ion-ion collisions

    International Nuclear Information System (INIS)

    Salzborn, Erhard; Melchert, Frank

    2000-01-01

    Collisions between ions belong to the elementary processes occurring in all types of plasmas. In this article we give a short overview about collisions involving one-electron systems. For collisions involving multiply-charged ions we limit the discussion to one specific quasi-one-electron system. (author)

  9. RE-INFLATED WARM JUPITERS AROUND RED GIANTS

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Eric D. [Institute for Astronomy, Royal Observatory Edinburgh, University of Edinburgh, Blackford Hill, Edinburgh (United Kingdom); Fortney, Jonathan J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

    2016-02-10

    Since the discovery of the first transiting hot Jupiters, models have sought to explain the anomalously large radii of highly irradiated gas giants. We now know that the size of hot Jupiter radius anomalies scales strongly with a planet's level of irradiation and numerous models like tidal heating, ohmic dissipation, and thermal tides have since been developed to help explain these inflated radii. In general, however, these models can be grouped into two broad categories: models that directly inflate planetary radii by depositing a fraction of the incident irradiation into the interior and models that simply slow a planet's radiative cooling, allowing it to retain more heat from formation and thereby delay contraction. Here we present a new test to distinguish between these two classes of models. Gas giants orbiting at moderate orbital periods around post-main-sequence stars will experience enormous increases to their irradiation as their host stars move up the sub-giant and red-giant branches. If hot Jupiter inflation works by depositing irradiation into the planet's deep interiors then planetary radii should increase in response to the increased irradiation. This means that otherwise non-inflated gas giants at moderate orbital periods of >10 days can re-inflate as their host stars evolve. Here we explore the circumstances that can lead to the creation of these “re-inflated” gas giants and examine how the existence or absence of such planets can be used to place unique constraints on the physics of the hot Jupiter inflation mechanism. Finally, we explore the prospects for detecting this potentially important undiscovered population of planets.

  10. Giant duodenal ulcers

    Institute of Scientific and Technical Information of China (English)

    Eric Benjamin Newton; Mark R Versland; Thomas E Sepe

    2008-01-01

    Giant duodenal ulcers (GDUs) are a subset of duodenal ulcers that have historically resulted in greater morbidity than usual duodenal ulcers. Until recently,few cases had been successfully treated with medical therapy. However, the widespread use of endoscopy,the introduction of H-2 receptor blockers and proton pump inhibitors, and the improvement in surgical techniques all have revolutionized the diagnosis,treatment and outcome of this condition. Nevertheless,GDUs are still associated with high rates of morbidity,mortality and complications. Thus, surgical evaluation of a patient with a GDU should remain an integral part of patient care. These giant variants, while usually benign, can frequently harbor malignancy. A careful review of the literature highlights the important differences when comparing GDUs to classical peptic ulcers and why they must be thought of differently than their more common counterpart.

  11. Multifocal tenosynovial giant cell tumors in a child with Noonan syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Meyers, Arthur B. [Children' s Hospital of Wisconsin, Department of Radiology, Milwaukee, WI (United States); Nemours Children' s Health System/Nemours Children' s Hospital, Department of Radiology, Orlando, FL (United States); Awomolo, Agboola O. [Children' s Hospital of Wisconsin, Department of Radiology, Milwaukee, WI (United States); Szabo, Sara [Medical College of Wisconsin and Children' s Hospital of Wisconsin, Department of Pathology, Milwaukee, WI (United States); Cincinnati Children' s Hospital Medical Center, Division of Pathology and Laboratory Medicine, Cincinnati, OH (United States)

    2017-03-15

    Noonan syndrome is a genetic disorder with variable expression of distinctive facial features, webbed neck, chest deformity, short stature, cryptorchidism and congenital heart disease. The association of Noonan syndrome and giant cell granulomas of the mandible is widely reported. However, Noonan syndrome may also be associated with single or multifocal tenosynovial giant cell tumors, also referred to as pigmented villonodular synovitis. We report a child with Noonan syndrome, giant cell granulomas of the mandible and synovial and tenosynovial giant cell tumors involving multiple joints and tendon sheaths who was initially misdiagnosed with juvenile idiopathic arthritis. It is important for radiologists to be aware of the association of Noonan syndrome and multifocal giant cell lesions, which can range from the more commonly described giant cell granulomas of the mandible to isolated or multifocal intra- or extra-articular tenosynovial giant cell tumors or a combination of all of these lesions. (orig.)

  12. Multifocal tenosynovial giant cell tumors in a child with Noonan syndrome.

    Science.gov (United States)

    Meyers, Arthur B; Awomolo, Agboola O; Szabo, Sara

    2017-03-01

    Noonan syndrome is a genetic disorder with variable expression of distinctive facial features, webbed neck, chest deformity, short stature, cryptorchidism and congenital heart disease. The association of Noonan syndrome and giant cell granulomas of the mandible is widely reported. However, Noonan syndrome may also be associated with single or multifocal tenosynovial giant cell tumors, also referred to as pigmented villonodular synovitis. We report a child with Noonan syndrome, giant cell granulomas of the mandible and synovial and tenosynovial giant cell tumors involving multiple joints and tendon sheaths who was initially misdiagnosed with juvenile idiopathic arthritis. It is important for radiologists to be aware of the association of Noonan syndrome and multifocal giant cell lesions, which can range from the more commonly described giant cell granulomas of the mandible to isolated or multifocal intra- or extra-articular tenosynovial giant cell tumors or a combination of all of these lesions.

  13. Multifocal tenosynovial giant cell tumors in a child with Noonan syndrome

    International Nuclear Information System (INIS)

    Meyers, Arthur B.; Awomolo, Agboola O.; Szabo, Sara

    2017-01-01

    Noonan syndrome is a genetic disorder with variable expression of distinctive facial features, webbed neck, chest deformity, short stature, cryptorchidism and congenital heart disease. The association of Noonan syndrome and giant cell granulomas of the mandible is widely reported. However, Noonan syndrome may also be associated with single or multifocal tenosynovial giant cell tumors, also referred to as pigmented villonodular synovitis. We report a child with Noonan syndrome, giant cell granulomas of the mandible and synovial and tenosynovial giant cell tumors involving multiple joints and tendon sheaths who was initially misdiagnosed with juvenile idiopathic arthritis. It is important for radiologists to be aware of the association of Noonan syndrome and multifocal giant cell lesions, which can range from the more commonly described giant cell granulomas of the mandible to isolated or multifocal intra- or extra-articular tenosynovial giant cell tumors or a combination of all of these lesions. (orig.)

  14. Giant Panda habitat selection in the Foping Nature Reserve, China

    NARCIS (Netherlands)

    Liu, X.; Toxopeus, A.G.; Skidmore, A.K.; Shao, X.; Dang, D.; Wang, T.; Prins, H.H.T.

    2005-01-01

    Little is known about habitat selection of the giant panda (Ailuropoda melanoleuca), especially about the relationship between giant panda presence and bamboo and tree structures. We presented data on giant panda habitat use and selection in Foping Nature Reserve (NR), China. We used 1,066

  15. Elemental analyses of hypervelocity microparticle impact sites on Interplanetary Dust Experiment sensor surfaces

    Science.gov (United States)

    Simon, Charles G.; Hunter, J. L.; Griffis, D. P.; Misra, V.; Ricks, D. A.; Wortman, Jim J.; Brownlee, D. E.

    1993-01-01

    The Interplanetary Dust Experiment (IDE) had over 450 electrically active ultra-high purity metal-oxide-silicon impact detectors located on the six primary sides of the Long Duration Exposure Facility (LDEF). Hypervelocity microparticles (approximately 0.2 to approximately 100 micron diameter) that struck the active sensors with enough energy to break down the 0.4 or 1.0 micron thick SIO2 insulator layer separating the silicon base (the negative electrode), and the 1000 A thick surface layer of aluminum (the positive electrode) caused electrical discharges that were recorded for the first year of orbit. The high purity Al-SiO2-Si substrates allowed detection of trace (ppm) amounts of hypervelocity impactor residues. After sputtering through a layer of surface contamination, secondary ion mass spectrometry (SIMS) was used to create two-dimensional elemental ion intensity maps of microparticle impact sites on the IDE sensors. The element intensities in the central craters of the impacts were corrected for relative ion yields and instrumental conditions and then normalized to silicon. The results were used to classify the particles' origins as 'manmade,' 'natural,' or 'indeterminate.' The last classification resulted from the presence of too little impactor residue, analytical interference from high background contamination, the lack of information on silicon and aluminum residues, or a combination of these circumstances. Several analytical 'blank' discharges were induced on flight sensors by pressing down on the sensor surface with a pure silicon shard. Analyses of these blank discharges showed that the discharge energy blasts away the layer of surface contamination. Only Si and Al were detected inside the discharge zones, including the central craters of these features. Thus far a total of 79 randomly selected microparticle impact sites from the six primary sides of the LDEF have been analyzed: 36 from tray C-9 (Leading (ram), or East, side), 18 from tray C-3

  16. Gamma graphic findings in giant hepatic hemangioma

    International Nuclear Information System (INIS)

    Cano, R.; Morales, R.; Mendoza, P.; Ramirez, E.; Aguilar, C.

    1994-01-01

    The aim of the present work is to describe gamma graphic findings in patients with giant hepatic hemangiomas, when evaluated with 99m Tc red blood cell (RBC) imaging. Three patients with clinical suspicion of giant hepatic hemangiomas, who had had, ultrasound and computed tomography were studied with RBC using in vivo labelling with pyrophosphate. All cases had dynamic and static views. All cases showed hypoperfusion in dynamics views and over perfusion in delayed studies. Surgery confirmed diagnosis in two cases. 99m Tc RBC is a good method for diagnosis of giant hepatic hemangioma, which generally needs surgical treatment. (Authors). 24 refs., 2 figs

  17. Totally thrombosed giant anterior communicating artery aneurysm

    Directory of Open Access Journals (Sweden)

    V R Roopesh Kumar

    2015-01-01

    Full Text Available Giant anterior communicating artery aneurysmsarerare. Apatient presented with visual dysfunction, gait ataxia and urinary incontinence. MRI showed a giant suprasellar mass.At surgery, the lesion was identified as being an aneurysm arising from the anterior communicating artery.The difficulty in preoperative diagnosis and relevant literature are reviewed.

  18. New properties of giant resonances in highly excited nuclei

    International Nuclear Information System (INIS)

    Morsch, H.P.

    1991-01-01

    Studies on the giant dipole resonance in very hot nuclei investigated in heavy ion-induced particle-γ coincidence experiments are reviewed. A signature is found in the γ-decay of excited nuceli which shows direct decay of the giant dipole resonance. This provides a new dimension in giant resonance studies and the possibility to study the dependence of giant resonance energy, width and sum rule strength on excitation energy and rotation of the system. Further, the fact that the giant resonance splits in deformed nuclei provides a unique way to get information on the shape of hot nuclei. First results are obtained on the following questions: (i)What is the nuclear shape at high temperature (T≥2 MeV)? (ii)Is there a phase transition in the nuclear shape at T∼1.7 MeV? (iii)Does motional narrowing exist in hot nuclei? (author). 19 refs., 11 figs

  19. Statistical decay of giant resonances

    International Nuclear Information System (INIS)

    Dias, H.; Teruya, N.; Wolynec, E.

    1986-01-01

    Statistical calculations to predict the neutron spectrum resulting from the decay of Giant Resonances are discussed. The dependence of the resutls on the optical potential parametrization and on the level density of the residual nucleus is assessed. A Hauser-Feshbach calculation is performed for the decay of the monople giant resonance in 208 Pb using the experimental levels of 207 Pb from a recent compilation. The calculated statistical decay is in excelent agreement with recent experimental data, showing that the decay of this resonance is dominantly statistical, as predicted by continuum RPA calculations. (Author) [pt

  20. Statistical decay of giant resonances

    International Nuclear Information System (INIS)

    Dias, H.; Teruya, N.; Wolynec, E.

    1986-02-01

    Statistical calculations to predict the neutron spectrum resulting from the decay of Giant Resonances are discussed. The dependence of the results on the optical potential parametrization and on the level density of the residual nucleus is assessed. A Hauser-Feshbach calculation is performed for the decay of the monopole giant resonance in 208 Pb using the experimental levels of 207 Pb from a recent compilation. The calculated statistical decay is in excellent agreement with recent experimental data, showing that decay of this resonance is dominantly statistical, as predicted by continuum RPA calculations. (Author) [pt

  1. Asteroseismology of 16,000 Kepler Red Giants

    DEFF Research Database (Denmark)

    Yu, Jie; Huber, Daniel; Bedding, Timothy R.

    2018-01-01

    (sigma(M) = 7.8%), radius (sigma(R) = 2.9%), and thus surface gravity (sigma(log g) = 0.01 dex). Thanks to the large red giant sample, we confirm that red-giant-branch (RGB) and helium-core-burning (HeB) stars collectively differ in the distribution of oscillation amplitude, granulation power, and width...

  2. Giant hydronephrosis mimicking progressive malignancy

    Science.gov (United States)

    Schrader, Andres Jan; Anderer, Georgia; von Knobloch, Rolf; Heidenreich, Axel; Hofmann, Rainer

    2003-01-01

    Background Cases of giant hydronephroses are rare and usually contain no more than 1–2 litres of fluid in the collecting system. We report a remarkable case of giant hydronephrosis mimicking a progressive malignant abdominal tumour. Case presentation A 78-year-old cachectic woman presented with an enormous abdominal tumour, which, according to the patient, had slowly increased in diameter. Medical history was unremarkable except for a hysterectomy >30 years before. A CT scan revealed a giant cystic tumour filling almost the entire abdominal cavity. It was analysed by two independent radiologists who suspected a tumour originating from the right kidney and additionally a cystic ovarian neoplasm. Subsequently, a diagnostic and therapeutic laparotomy was performed: the tumour presented as a cystic, 35 × 30 × 25 cm expansive structure adhesive to adjacent organs without definite signs of invasive growth. The right renal hilar vessels could finally be identified at its basis. After extirpation another tumourous structure emerged in the pelvis originating from the genital organs and was also resected. The histopathological examination revealed a >15 kg hydronephrotic right kidney, lacking hardly any residual renal cortex parenchyma. The second specimen was identified as an ovary with regressive changes and a large partially calcified cyst. There was no evidence of malignant growth. Conclusion Although both clinical symptoms and the enormous size of the tumour indicated malignant growth, it turned out to be a giant hydronephrosis. Presumably, a chronic obstruction of the distal ureter had caused this extraordinary hydronephrosis. As demonstrated in our case, an accurate diagnosis of giant hydronephrosis remains challenging due to the atrophy of the renal parenchyma associated with chronic obstruction. Therefore, any abdominal cystic mass even in the absence of other evident pathologies should include the differential diagnosis of a possible hydronephrosis. Diagnostic

  3. Modeling and simulation of flow field in giant magnetostrictive pump

    Science.gov (United States)

    Zhao, Yapeng; Ren, Shiyong; Lu, Quanguo

    2017-09-01

    Recent years, there has been significant research in the design and analysis of giant magnetostrictive pump. In this paper, the flow field model of giant magnetostrictive pump was established and the relationship between pressure loss and working frequency of piston was studied by numerical simulation method. Then, the influence of different pump chamber height on pressure loss in giant magnetostrictive pump was studied by means of flow field simulation. Finally, the fluid pressure and velocity vector distribution in giant magnetostrictive pump chamber were simulated.

  4. Revealing the microstructure of the giant component in random graph ensembles

    Science.gov (United States)

    Tishby, Ido; Biham, Ofer; Katzav, Eytan; Kühn, Reimer

    2018-04-01

    The microstructure of the giant component of the Erdős-Rényi network and other configuration model networks is analyzed using generating function methods. While configuration model networks are uncorrelated, the giant component exhibits a degree distribution which is different from the overall degree distribution of the network and includes degree-degree correlations of all orders. We present exact analytical results for the degree distributions as well as higher-order degree-degree correlations on the giant components of configuration model networks. We show that the degree-degree correlations are essential for the integrity of the giant component, in the sense that the degree distribution alone cannot guarantee that it will consist of a single connected component. To demonstrate the importance and broad applicability of these results, we apply them to the study of the distribution of shortest path lengths on the giant component, percolation on the giant component, and spectra of sparse matrices defined on the giant component. We show that by using the degree distribution on the giant component one obtains high quality results for these properties, which can be further improved by taking the degree-degree correlations into account. This suggests that many existing methods, currently used for the analysis of the whole network, can be adapted in a straightforward fashion to yield results conditioned on the giant component.

  5. Surgical management of giant posterior communicating artery aneurysms.

    Science.gov (United States)

    Velat, Gregory J; Zabramski, Joseph M; Nakaji, Peter; Spetzler, Robert F

    2012-09-01

    Giant posterior communicating artery (PCoA) aneurysms (> 25 mm) are rare lesions associated with a poor prognosis and high rates of morbidity and mortality. To review the clinical results of giant PCoA aneurysms surgically treated at our institution, focusing on operative nuances. All cases of giant PCoA aneurysms treated surgically at our institution were identified from a prospectively maintained patient database. Patient demographic factors, medical comorbidities, rupture status, neurological presentation, clinical outcomes, and surgical records were critically reviewed. From 1989 to 2010, 11 patients (10 women) underwent surgical clipping of giant PCoA aneurysms. Presenting signs and symptoms included cranial nerve palsies, diminished mental status, headache, visual changes, and seizures. Five aneurysms were ruptured on admission. All aneurysms were clipped primarily except 1, which was treated by parent artery sacrifice and extracranial-to-intracranial bypass after intraoperative aneurysm rupture. Perioperative morbidity and mortality rates were 36% (4 of 11) and 18.3% (2 of 11), respectively. Excellent or good clinical outcomes, defined as modified Rankin Scale scores ≤ 2, were achieved in 86% (5 of 6) of patients available for long-term clinical follow-up (mean, 12.5 ± 13.6 months). Giant PCoA aneurysms are rare vascular lesions that may present with a variety of neurological signs and symptoms. These lesions can be successfully managed surgically with satisfactory morbidity and mortality rates. To the best of our knowledge, this is the largest surgical series of giant PCoA aneurysms published to date.

  6. Think big--giant genes in bacteria.

    Science.gov (United States)

    Reva, Oleg; Tümmler, Burkhard

    2008-03-01

    Long genes should be rare in archaea and eubacteria because of the demanding costs of time and resources for protein production. The search in 580 sequenced prokaryotic genomes, however, revealed 0.2% of all genes to be longer than 5 kb (absolute number: 3732 genes). Eighty giant bacterial genes of more than 20 kb in length were identified in 47 taxa that belong to the phyla Thermotogae (1), Chlorobi (3), Planctomycetes (1), Cyanobacteria (2), Firmicutes (7), Actinobacteria (9), Proteobacteria (23) or Euryarchaeota (1) (number of taxa in brackets). Giant genes are strain-specific, differ in their tetranucleotide usage from the bulk genome and occur preferentially in non-pathogenic environmental bacteria. The two longest bacterial genes known to date were detected in the green sulfur bacterium Chlorobium chlorochromatii CaD3 encoding proteins of 36 806 and 20 647 amino acids, being surpassed in length only by the human titin coding sequence. More than 90% of bacterial giant genes either encode a surface protein or a polyketide/non-ribosomal peptide synthetase. Most surface proteins are acidic, threonine-rich, lack cystein and harbour multiple amino acid repeats. Giant proteins increase bacterial fitness by the production of either weapons towards or shields against animate competitors or hostile environments.

  7. Giant viruses of amoebas: an update

    Directory of Open Access Journals (Sweden)

    Sarah eAherfi

    2016-03-01

    Full Text Available During the 12 past years, five new or putative virus families encompassing several members, namely Mimiviridae, Marseilleviridae, pandoraviruses, faustoviruses, and virophages were described. In addition, Pithovirus sibericum and Mollivirus sibericum represent type strains of putative new giant virus families. All these viruses were isolated using amoebal coculture methods. These giant viruses were linked by phylogenomic analyses to other large DNA viruses. They were then proposed to be classified in a new viral order, the Megavirales, on the basis of their common origin, as shown by a set of ancestral genes encoding key viral functions, a common virion architecture, and shared major biological features including replication inside cytoplasmic factories. Megavirales is increasingly demonstrated to stand in the tree of life aside Bacteria, Archaea and Eukarya, and the megavirus ancestor is suspected to be as ancient as cellular ancestors. In addition, giant amoebal viruses are visible under a light microscope and display many phenotypic and genomic features not found in other viruses, while they share other characteristics with parasitic microbes. Moreoever, these organisms appear to be common inhabitants of our biosphere, and mimiviruses and marseilleviruses were isolated from human samples and associated to diseases. In the present review, we describe the main features and recent findings on these giant amoebal viruses and virophages.

  8. Spatial Memory in Captive Giant Anteaters (Myrmecophaga tridactyla

    Directory of Open Access Journals (Sweden)

    Stephanie M. Allard

    2014-08-01

    Full Text Available The type of learning exhibited during foraging has been studied in a large number of species. Species that feed on food sources that temporally vary in quality could be well suited for exhibiting evidence of spatial learning. The foraging strategies of captive giant anteaters were examined using an experimental foraging task. Two giant anteaters were exposed to a modified radial arm maze in order to determine whether or not they would demonstrate evidence of spatial learning. Both subjects demonstrated significant improvement in performance by visiting baited feeders more consistently across learning trials. A disruption in performance occurred when the task was reversed, indicating that giant anteaters may use spatial learning to locate food sources. Obtaining a more sound understanding of the cognitive abilities of giant anteaters may help to enhance their welfare in captive settings.

  9. Hepatic Giant Cell Arteritis and Polymyalgia Rheumatica

    Directory of Open Access Journals (Sweden)

    Donald R Duerksen

    1994-01-01

    Full Text Available Polymyalgia rheumatica (PMR is a clinical syndrome of the elderly characterized by malaise, proximal muscle aching and stiffness, low grade fever, elevated erythrocyte sedimentation rare and the frequent association with temporal giant cell arteritis. The authors describe a case of PMR associated with hepatic giant cell arteritis. This lesion has been described in two other clinical reports. The distribution of the arteritis may be patchy; in this report, diagnosis was made with a wedge biopsy performed after an initial nonspecific percutaneous liver biopsy. The authors review the spectrum of liver involvement in PMR and giant cell arteritis. Hepatic abnormalities respond to systemic corticosteroids, and patients with hepatic arteritis have a good prognosis.

  10. Giant Interfrontal Encephalocele in an Infant: A Rare Entity.

    Science.gov (United States)

    Faheem, Mohd; Singh, Sunil Kumar; Ojha, Bal Krishna; Chandra, Anil; Srivastava, Chhitij; Jaiswal, Manish; Zeeshan, Qazi

    2016-01-01

    Interfrontal encephalocele is one of the rare varieties of anterior encephalocele, and a giant interfrontal encephalocele is extremely rare. The authors could find only one case report of giant interfrontal encephalocele in the literature. Anterior encephaloceles are more prevalent in South-East Asia and some northern parts of India. Giant encephalocele poses a great challenge to neurosurgeons and neuroanesthetists during surgery, as these infants usually have a low birth weight and a large sac, thus making the infant prone to hypothermia and blood loss among other risks. We encountered a patient with a giant interfrontal encephalocele aged 1 month. The rarity of this case prompted us to this report. © 2016 S. Karger AG, Basel.

  11. Probability of satellite collision

    Science.gov (United States)

    Mccarter, J. W.

    1972-01-01

    A method is presented for computing the probability of a collision between a particular artificial earth satellite and any one of the total population of earth satellites. The collision hazard incurred by the proposed modular Space Station is assessed using the technique presented. The results of a parametric study to determine what type of satellite orbits produce the greatest contribution to the total collision probability are presented. Collision probability for the Space Station is given as a function of Space Station altitude and inclination. Collision probability was also parameterized over miss distance and mission duration.

  12. Spectral Flattening at Low Frequencies in Crab Giant Pulses

    Science.gov (United States)

    Meyers, B. W.; Tremblay, S. E.; Bhat, N. D. R.; Shannon, R. M.; Kirsten, F.; Sokolowski, M.; Tingay, S. J.; Oronsaye, S. I.; Ord, S. M.

    2017-12-01

    We report on simultaneous wideband observations of Crab giant pulses with the Parkes radio telescope and the Murchison Widefield Array (MWA). The observations were conducted simultaneously at 732 and 3100 MHz with Parkes and at 120.96, 165.76, and 210.56 MHz with the MWA. Flux density calibration of the MWA data was accomplished using a novel technique based on tied-array beam simulations. We detected between 90 and 648 giant pulses in the 120.96-210.56 MHz MWA subbands above a 5.5σ threshold, while in the Parkes subbands we detected 6344 and 231 giant pulses above a threshold of 6σ at 732 and 3100 MHz, respectively. We show, for the first time over a wide frequency range, that the average spectrum of Crab giant pulses exhibits a significant flattening at low frequencies. The spectral index, α, for giant pulses evolves from a steep, narrow distribution with a mean α =-2.6 and width {σ }α =0.5 between 732 and 3100 MHz to a wide, flat distribution of spectral indices with a mean α =-0.7 and width {σ }α =1.4 between 120.96 and 165.76 MHz. We also comment on the plausibility of giant pulse models for fast radio bursts based on this spectral information.

  13. Semimicroscopic description of the giant quadrupole resonances in deformed nuclei

    International Nuclear Information System (INIS)

    Kurchev, G.; Malov, L.A.; Nesterenko, V.O.; Soloviev, V.G.

    1976-01-01

    The calculation results of the giant quadrupole isoscalar and isovector resonances performed within the random phase approximation are represented. The strength functions for E2-transitions are calculated for doubly even deformed nuclei in the regions 150 (<=) A < 190 and 228 (<=) A < 248 in the energy interval (0-40) MeV. The following integral characteristics of giant quadrupole resonances are obtained: the position, widths, the contribution to the energy weighted sum rule and the contribution to the total cross section of photoabsorption. The calculations have shown that giant quadrupole resonances are common for all the considered nuclei. The calculated characteristics of the isoscalar giant quadrupole resonance agree with the available experimental data. The calculations also show that the semimicroscopic theory can be successfully applied for the description of giant multipole resonances

  14. Management of giant paraesophageal hernia.

    Science.gov (United States)

    Awais, O; Luketich, J D

    2009-04-01

    Management of giant paraesophageal hernia remains one of the most difficult challenges faced by surgeons treating complex benign esophageal disorders. These large hernias are acquired disorders; therefore, they invariably present in elderly patients. The dilemma that surgeons faced in the open surgical era was the risk of open surgery in this elderly, sick patient population versus the life threatening catastrophic complications, nearly 30% in some series, observed with medical management. During the 1990s, it was clearly recognized that laparoscopic surgery led to decreased morbidity with a quicker recovery. This has lead to a 6-fold increase in the surgical management of giant paraesophageal hernias over the last decade compared to a period of five decades of open surgery; however, this has not necessarily translated into better outcomes. One of the major issues with giant paraesophageal hernias is recognizing short esophagus and performing a lengthening procedure, if needed. Open series which report liberal use of Collis gastroplasty leading to a tension-free intraabdominal fundoplication have shown the best anatomic and clinical outcomes. As we duplicate the open experience laparoscopically, the principle of identifying a shortened esophagus and constructing a neo-esophagus must be honored for the success of the operation. The benefits of laparoscopy are obvious but should not come at the cost of a lesser operation. This review will illustrate that laparoscopic repair of giant paraesophageal hernia at experienced centers can be performed safely with similar outcomes to open series when the fundamental principles of the operation are maintained.

  15. The minimum area requirements (MAR) for giant panda: an empirical study.

    Science.gov (United States)

    Qing, Jing; Yang, Zhisong; He, Ke; Zhang, Zejun; Gu, Xiaodong; Yang, Xuyu; Zhang, Wen; Yang, Biao; Qi, Dunwu; Dai, Qiang

    2016-12-08

    Habitat fragmentation can reduce population viability, especially for area-sensitive species. The Minimum Area Requirements (MAR) of a population is the area required for the population's long-term persistence. In this study, the response of occupancy probability of giant pandas against habitat patch size was studied in five of the six mountain ranges inhabited by giant panda, which cover over 78% of the global distribution of giant panda habitat. The probability of giant panda occurrence was positively associated with habitat patch area, and the observed increase in occupancy probability with patch size was higher than that due to passive sampling alone. These results suggest that the giant panda is an area-sensitive species. The MAR for giant panda was estimated to be 114.7 km 2 based on analysis of its occupancy probability. Giant panda habitats appear more fragmented in the three southern mountain ranges, while they are large and more continuous in the other two. Establishing corridors among habitat patches can mitigate habitat fragmentation, but expanding habitat patch sizes is necessary in mountain ranges where fragmentation is most intensive.

  16. Interseismic Deformation due to Oblique India-Sunda Collision: Implications for the Arakan Sleeping Giant

    Science.gov (United States)

    Mallick, R.; Lindsey, E. O.; Feng, L.; Hubbard, J.; Hill, E.

    2017-12-01

    The northern extent of the collision of the Indian and Sunda plates occurs along the Arakan megathrust. This collision is oblique, and at least two large strike-slip faults, the Sagaing Fault and the Churachandpur-Mao Fault (CMF) accommodate part of this obliquity. The megathrust is conspicuous in its lack of notable interplate earthquakes in the instrumental catalogue; it has even been called aseismic by some authors and suggested not to accumulate any elastic strain. Nevertheless, geological evidence from the great 1762 Arakan earthquake suggests that the megathrust is capable of producing M 8 and possibly tsunamigenic events that can adversely affect the lives of many millions of people living in the region. We present for the first time a new dataset of GPS rates from the MIBB (Myanmar-India-Bangladesh-Bhutan) cGPS network (2011-present), which consists of region-wide east-west and north-south profiles. We use a Bayesian framework to explore the fault geometry (locking depth and fault dip) and relative plate motion that can reproduce the pattern of east-west convergence in both previously published and our own GPS data. We explore the individual contributions of the megathrust, CMF, Sagaing Fault, and block rotation to dextral shearing across the Indo-Burman ranges and further east. Our results suggest that the total convergence rate across the foldbelt is 14-18 mm/yr, while the total dextral shearing rate is 40 mm/yr. Rotation of the crustal sliver between the two major plates may explain some of this dextral motion, while reducing the strike-slip rates on the intervening faults. We show that given the current network geometry we are most sensitive to the location of maximum strain, i.e., the depth and distance from the trench below which the megathrust slides freely. Our results show that the megathrust is stably sliding below a depth of 30 km, but the seismogenic potential of the shallow megathrust and splay faults that possibly sole into the same system

  17. Giant first-forbidden resonances

    International Nuclear Information System (INIS)

    Krmpotic, F.; Nakayama, K.; Sao Paulo Univ.; Pio Galeao, A.; Sao Paulo Univ.

    1983-01-01

    Recent experimental data on first-forbidden charge-exchange resonances are discussed in the framework of a schematic model. We also evaluate the screening of the weak coupling constants induced by both the giant resonances and the δ-isobar. It is shown that the last effect does not depend on the multipolarity of the one-particle moment. Due to the same reason, the fraction of the reaction strength pushed up into the δ-resonance region is always the same regardless of the quantum numbers carried by the excitation. Simple expressions are derived for the dependence of the excitation energies of the first-forbidden giant resonances on the mass number and isospin of the target. The model reproduces consistently both the Gamow-Teller and the first-forbidden resonances. (orig.)

  18. Giant resonances: reaction theory approach

    International Nuclear Information System (INIS)

    Toledo Piza, A.F.R. de; Foglia, G.A.

    1989-09-01

    The study of giant resonances through the use of reaction theory approach is presented and discussed. Measurements of cross-sections to the many available decay channels following excitation of giant multipole resonances (GMR) led one to view these phenomena as complicated dynamical syndromes so that theoretical requirements for their study must be extended beyond the traditional bounds of nuclear structure models. The spectra of decay products following GMR excitation in heavy nuclei are well described by statistical model (Hauser-Feshback, HF) predictions indicated that spreading of the collective modes plays a major role in shaping exclusive cross-sections. (A.C.A.S.) [pt

  19. Migration of accreting giant planets

    Science.gov (United States)

    Robert, C.; Crida, A.; Lega, E.; Méheut, H.

    2017-09-01

    Giant planets forming in protoplanetary disks migrate relative to their host star. By repelling the gas in their vicinity, they form gaps in the disk's structure. If they are effectively locked in their gap, it follows that their migration rate is governed by the accretion of the disk itself onto the star, in a so-called type II fashion. Recent results showed however that a locking mechanism was still lacking, and was required to understand how giant planets may survive their disk. We propose that planetary accretion may play this part, and help reach this slow migration regime.

  20. Predicted space motions for hypervelocity and runaway stars: proper motions and radial velocities for the Gaia Era

    Energy Technology Data Exchange (ETDEWEB)

    Kenyon, Scott J.; Brown, Warren R.; Geller, Margaret J. [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Bromley, Benjamin C., E-mail: skenyon@cfa.harvard.edu, E-mail: wbrown@cfa.harvard.edu, E-mail: mgeller@cfa.harvard.edu, E-mail: bromley@physics.utah.edu [Department of Physics, University of Utah, 115 S 1400 E, Rm 201, Salt Lake City, UT 84112 (United States)

    2014-10-01

    We predict the distinctive three-dimensional space motions of hypervelocity stars (HVSs) and runaway stars moving in a realistic Galactic potential. For nearby stars with distances less than 10 kpc, unbound stars are rare; proper motions alone rarely isolate bound HVSs and runaways from indigenous halo stars. At large distances of 20-100 kpc, unbound HVSs are much more common than runaways; radial velocities easily distinguish both from indigenous halo stars. Comparisons of the predictions with existing observations are encouraging. Although the models fail to match observations of solar-type HVS candidates from SEGUE, they agree well with data for B-type HVS and runaways from other surveys. Complete samples of g ≲ 20 stars with Gaia should provide clear tests of formation models for HVSs and runaways and will enable accurate probes of the shape of the Galactic potential.

  1. What is the role of giant cells in AL-amyloidosis?

    DEFF Research Database (Denmark)

    Olsen, K E; Sletten, K; Sandgren, O

    1999-01-01

    of some cases of systemic AL-amyloidosis. Based on these findings and electron microscopic studies, it is discussed whether the giant cells actively participate in amyloid fibril formation by uptake and modification of the precursor protein or the giant cells are part of a foreign body reaction. Included....... In this work it is shown that that there is a difference between localized and systemic amyloidosis in respect to accompanying giant cells which constantly are found associated with amyloid deposits in localized AL-amyloidosis. In addition, giant cells were found together with amyloid deposits in lymph nodes...

  2. Juvenile giant fibroadenoma

    Directory of Open Access Journals (Sweden)

    Vipul Yagnik

    2011-07-01

    Full Text Available Fibroadenomas are benign solid tumor associated with aberration of normal lobular development. Juvenile giant fibroadenoma is usually single and >5 cm in size /or >500 gms in weight. Important differential diagnoses are: phyllodes tumor and juvenile gigantomastia. Simple excision is the treatment of choice.

  3. Spin isovector giant resonances in (n,p) reactions

    International Nuclear Information System (INIS)

    Spicer, B.M.

    1997-01-01

    The present status of the study of spin-flip isovector giant resonances, using the (n,p) charge exchange reaction, is reviewed. After a brief history of the discovery of these giant resonances, a critical appraisal of the interpretation of the data in terms of giant resonances is given, along with some of the theoretical advances that impact on the interpretation of these data. A sampling of the results obtained for typical targets is given, followed by the interpretation of these results. A brief statement is made concerning the way forward in experimental technique for nuclear structure research using charge exchange reactions

  4. Giant Planets Can Act as Stabilizing Agents on Debris Disks

    Energy Technology Data Exchange (ETDEWEB)

    Muñoz-Gutiérrez, M. A.; Pichardo, B.; Peimbert, A., E-mail: mmunoz.astro@gmail.com [Instituto de Astronomía, Universidad Nacional Autónoma de México, Apdo. postal 70-264 Ciudad Universitaria, México (Mexico)

    2017-07-01

    We have explored the evolution of a cold debris disk under the gravitational influence of dwarf-planet-sized objects (DPs), both in the presence and absence of an interior giant planet. Through detailed long-term numerical simulations, we demonstrate that when the giant planet is not present, DPs can stir the eccentricities and inclinations of disk particles, in linear proportion to the total mass of the DPs; on the other hand, when the giant planet is included in the simulations, the stirring is approximately proportional to the mass squared. This creates two regimes: below a disk mass threshold (defined by the total mass of DPs), the giant planet acts as a stabilizing agent of the orbits of cometary nuclei, diminishing the effect of the scatterers; above the threshold, the giant contributes to the dispersion of the particles.

  5. TRAP-Positive Multinucleated Giant Cells Are Foreign Body Giant Cells Rather Than Osteoclasts: Results From a Split-Mouth Study in Humans.

    Science.gov (United States)

    Lorenz, Jonas; Kubesch, Alica; Korzinskas, Tadas; Barbeck, Mike; Landes, Constantin; Sader, Robert A; Kirkpatrick, Charles J; Ghanaati, Shahram

    2015-12-01

    This study compared the material-specific tissue response to the synthetic, hydroxyapatite-based bone substitute material NanoBone (NB) with that of the xenogeneic, bovine-based bone substitute material Bio-Oss (BO). The sinus cavities of 14 human patients were augmented with NB and BO in a split-mouth design. Six months after augmentation, bone biopsies were extracted for histological and histomorphometric investigation prior to dental implant insertion. The following were evaluated: the cellular inflammatory pattern, the induction of multinucleated giant cells, vascularization, the relative amounts of newly formed bone, connective tissue, and the remaining bone substitute material. NB granules were well integrated in the peri-implant tissue and were surrounded by newly formed bone tissue. Multinucleated giant cells were visible on the surfaces of the remaining granules. BO granules were integrated into the newly formed bone tissue, which originated from active osteoblasts on their surface. Histomorphometric analysis showed a significantly higher number of multinucleated giant cells and blood vessels in the NB group compared to the BO group. No statistical differences were observed in regard to connective tissue, remaining bone substitute, and newly formed bone. The results of this study highlight the different cellular reactions to synthetic and xenogeneic bone substitute materials. The significantly higher number of multinucleated giant cells within the NB implantation bed seems to have no effect on its biodegradation. Accordingly, the multinucleated giant cells observed within the NB implantation bed have characteristics more similar to those of foreign body giant cells than to those of osteoclasts.

  6. Provirophages and transpovirons as the diverse mobilome of giant viruses.

    Science.gov (United States)

    Desnues, Christelle; La Scola, Bernard; Yutin, Natalya; Fournous, Ghislain; Robert, Catherine; Azza, Saïd; Jardot, Priscilla; Monteil, Sonia; Campocasso, Angélique; Koonin, Eugene V; Raoult, Didier

    2012-10-30

    A distinct class of infectious agents, the virophages that infect giant viruses of the Mimiviridae family, has been recently described. Here we report the simultaneous discovery of a giant virus of Acanthamoeba polyphaga (Lentille virus) that contains an integrated genome of a virophage (Sputnik 2), and a member of a previously unknown class of mobile genetic elements, the transpovirons. The transpovirons are linear DNA elements of ~7 kb that encompass six to eight protein-coding genes, two of which are homologous to virophage genes. Fluorescence in situ hybridization showed that the free form of the transpoviron replicates within the giant virus factory and accumulates in high copy numbers inside giant virus particles, Sputnik 2 particles, and amoeba cytoplasm. Analysis of deep-sequencing data showed that the virophage and the transpoviron can integrate in nearly any place in the chromosome of the giant virus host and that, although less frequently, the transpoviron can also be linked to the virophage chromosome. In addition, integrated fragments of transpoviron DNA were detected in several giant virus and Sputnik genomes. Analysis of 19 Mimivirus strains revealed three distinct transpovirons associated with three subgroups of Mimiviruses. The virophage, the transpoviron, and the previously identified self-splicing introns and inteins constitute the complex, interconnected mobilome of the giant viruses and are likely to substantially contribute to interviral gene transfer.

  7. Infection and Proliferation of Giant Viruses in Amoeba Cells.

    Science.gov (United States)

    Takemura, Masaharu

    2016-01-01

    Acanthamoeba polyphaga mimivirus, the first discovered giant virus with genome size and particle size much larger than previously discovered viruses, possesses several genes for translation and CRISPER Cas system-like defense mechanism against virophages, which co-infect amoeba cells with the giant virus and which inhibit giant virus proliferation. Mimiviruses infect amoeba cells by phagocytosis and release their DNA into amoeba cytoplasm through their stargate structure. After infection, giant virion factories (VFs) form in amoeba cytoplasm, followed by DNA replication and particle formation at peripheral regions of VF. Marseilleviruses, the smallest giant viruses, infect amoeba cells by phagocytosis or endocytosis, form larger VF than Mimivirus's VF in amoeba cytoplasm, and replicate their particles. Pandoraviruses found in 2013 have the largest genome size and particle size among all viruses ever found. Pandoraviruses infect amoeba cells by phagocytosis and release their DNA into amoeba cytoplasm through their mouth-like apical pores. The proliferation of Pandoraviruses occurs along with nucleus disruption. New virions form at the periphery of the region formerly occupied by the amoeba cell nucleus.

  8. Diffuse-type giant cell tumor of the subcutaneous thigh

    International Nuclear Information System (INIS)

    Sanghvi, D.A.; Purandare, N.C.; Jambhekar, N.A.; Agarwal, A.; Agarwal, M.G.

    2007-01-01

    Diffuse-type giant cell tumor is an extra-articular form of pigmented villonodular synovitis. The localized form of this lesion (tenosynovial giant cell tumor) is frequent, representing the most common subset arising from the synovium of a joint, bursa or tendon sheath, with 85% of cases occurring in the fingers. The less frequent diffuse-type giant cell tumors are commonly located in the periarticular soft tissues, but on rare occasions these lesions can be purely intramuscular or subcutaneous We report the case of a 26-year-old female with diffuse-type giant cell tumor of the subcutaneous thigh, remote from a joint, bursa or tendon sheath. A review of the literature did not reveal any similar description of a diffuse-type giant cell tumor completely within the subcutaneous thigh, remote from a joint, bursa or tendon sheath. These lesions were initially regarded as inflammatory or reactive processes, but since the identification of clonal abnormalities in these patients, and in view of their capacity for autonomous growth, they are now widely considered to represent benign neoplasms. (orig.)

  9. Heat-transfer distributions on biconics at incidence in hypersonic-hypervelocity He, N2, air, and CO2 flows

    Science.gov (United States)

    Miller, C. G.; Micol, J. R.; Gnoffo, P. A.; Wilder, S.E.

    1983-01-01

    Laminar heat-transfer rates were measured on spherically blunted, 13 degrees/F degrees on-axis and bent biconics (fore cone bent 7 degrees upward relative to aft cone) at hypersonic-hypervelocity flow conditions in the Langley Expansion Tube. Freestream velocities from 4.5 to 6.9 km/sec and Mach numbers from 6 to 9 were generated using helium, nitrogen, air, and carbon dioxide test gases, resulting in normal shock density ratios from 4 to 19. Angle of attack, referenced to the axis of the aft cone, was varied from zero to 20 degrees in 4 degree increments. The effect of nose bend, angle of attack, and real-gas phenomena on heating distributions are presented along with comparisons of measurement to prediction from a code which solves the three-dimensional 'parabolized Navier-Stokes' equations.

  10. The formation of giant planets and its effects on protoplanetary disks: the case of Jupiter and the Jovian Early Bombardment

    Science.gov (United States)

    Turrini, D.; ISSI Team "Vesta, the key to the origins of the Solar System"; EChO "Planetary Formation" Working Group

    The formation of giant planets is accompanied by a short but intense primordial bombardment \\citep{safronov69,weidenschilling75,weidenschilling01,turrini11}: the prototype for this class of events is the Jovian Early Bombardment (JEB) caused by the formation of Jupiter in the Solar System \\citep{turrini11,turrini12}. The JEB affected the collisional evolution of the minor bodies in the inner Solar System by inflicting mass loss to planetesimals \\citep{turrini12,turrini14a,turrini14b} due to cratering erosion and, at the same time, delivering water and volatile materials to the asteroid belt \\citep{turrini14b}. The JEB also resulted in a significant number of collisions between Jupiter and planetesimals formed over a wide orbital range, delivering volatile and refractory materials to the giant planet and its circumplanetary disk \\citep{turrini14c}. In this talk I'll discuss how the study of the effects of the JEB on Vesta can be used to constrain the early evolution of the Solar System \\citep{turrini14a,turrini14b} and how these constraints can, in turn, provide insight on the composition of Jupiter and of its satellites. Finally, I'll discuss the implications of the JEB model for extrasolar planets \\citep{turrini14c}.

  11. in Chinese giant salamander ( Andrias davidianus , Blanchard, 1871)

    African Journals Online (AJOL)

    A disease in farmed Chinese giant salamander (Andrias davidianus) was a common event, being an economically important threat for Chinese farms. Based on the clinical signs, epizootiology and pathogens belonging to the genus, Ranavirus was suspected as the possible etiology. Although in a cultured Chinese giant ...

  12. Giant aneurysm in a left coronary artery fistula

    DEFF Research Database (Denmark)

    Frestad, Daria; Helqvist, Steffen; Helvind, Morten

    2013-01-01

    Congenital coronary artery fistula complicated with giant coronary artery aneurysm is a very rare condition. In this case report, we present a 65-year-old woman, referred to us with a continuous heart murmur, occasional atypical chest pain and few episodes of fainting. A giant aneurysm...

  13. Collision Mechanics

    DEFF Research Database (Denmark)

    Pedersen, Preben Terndrup; Servis, D.P.; Zhang, Shengming

    1999-01-01

    The first section of the present report describes the procedures that are being programmed at DTU for evaluation of the external collision dynamics. Then follows a detailed description of a comprehensive finite element analysis of one collision scenario for MS Dextra carried out at NTUA. The last...

  14. Probing giant magnetoresistance with THz spectroscopy

    DEFF Research Database (Denmark)

    Jin, Zuanming; Tkach, Alexander; Casper, Frederick

    2014-01-01

    We observe a giant magnetoresistance effect in CoFe/Cu-based multistack using THz time-domain spectroscopy. The magnetic field-dependent dc conductivity, electron scattering time, as well as spin-asymmetry parameter of the structure are successfully determined. © 2014 OSA.......We observe a giant magnetoresistance effect in CoFe/Cu-based multistack using THz time-domain spectroscopy. The magnetic field-dependent dc conductivity, electron scattering time, as well as spin-asymmetry parameter of the structure are successfully determined. © 2014 OSA....

  15. Giant Condyloma Acuminatum: A Surgical Riddle

    Directory of Open Access Journals (Sweden)

    Shukla

    2016-08-01

    Full Text Available Giant condyloma acuminatum (GCA commonly known as Buschke-Lowenstein tumor (BLT is a rare sexually transmitted disease, which is always preceded by condyloma accuminata and linked to human papillomavirus (HPV. Most commonly affected sites are male and female genitalia, anal and perianal regions. Giant condyloma acuminatum is well-known as slow growing but locally destructive with a high rate of recurrence and increased frequency of malignant transformation. Surgical management is considered to be the best among all the options.

  16. Cluster-collision frequency. II. Estimation of the collision rate

    International Nuclear Information System (INIS)

    Amadon, A.S.; Marlow, W.H.

    1991-01-01

    Gas-phase cluster-collision rates, including effects of cluster morphology and long-range intermolecular forces, are calculated. Identical pairs of icosahedral or dodecahedral carbon tetrachloride clusters of 13, 33, and 55 molecules in two different relative orientations were discussed in the preceding paper [Phys. Rev. A 43, 5483 (1991)]: long-range interaction energies were derived based upon (i) exact calculations of the iterated, or many-body, induced-dipole interaction energies for the clusters in two fixed relative orientations; and (ii) bulk, or continuum descriptions (Lifshitz--van der Waals theory), of spheres of corresponding masses and diameters. In this paper, collision rates are calculated according to an exact description of the rates for small spheres interacting via realistic potentials. Utilizing the interaction energies of the preceding paper, several estimates of the collision rates are given by treating the discrete clusters in fixed relative orientations, by computing rotationally averaged potentials for the discrete clusters, and by approximating the clusters as continuum spheres. For the discrete, highly symmetric clusters treated here, the rates using the rotationally averaged potentials closely approximate the fixed-orientation rates and the values of the intercluster potentials for cluster surface separations under 2 A have negligible effect on the overall collision rates. While the 13-molecule cluster-collision rate differs by 50% from the rate calculated as if the cluster were bulk matter, the two larger cluster-collision rates differ by less than 15% from the macroscopic rates, thereby indicating the transition of microscopic to macroscopic behavior

  17. Overtones of isoscalar giant resonances studied in direct particle decay measurements

    NARCIS (Netherlands)

    Hunyadi, M; van den Berg, AM; Csatlos, M; Csige, L; Davids, B; Garg, U; Gulyas, J; Harakeh, MN; de Huu, MA; Krasznahorkay, A; Sohler, D; Wortche, HJ

    The isoscalar giant dipole resonance (ISGDR), which is the lowest-energy overtone mode of the isoscalar giant resonances, has been studied in some medium-heavy and heavy nuclei in coincidence measurements. The observation of the direct nucleon decay channels significantly helped to enhance giant

  18. Asteroseismic Diagram for Subgiants and Red Giants

    Energy Technology Data Exchange (ETDEWEB)

    Gai, Ning; Tang, Yanke [College of Physics and Electronic information, Dezhou University, Dezhou 253023 (China); Yu, Peng [College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331 (China); Dou, Xianghua, E-mail: ning_gai@163.com, E-mail: tyk450@163.com [Shandong Provincial Key Laboratory of Biophysics, Dezhou University, Dezhou 253023 (China)

    2017-02-10

    Asteroseismology is a powerful tool for constraining stellar parameters. NASA’s Kepler mission is providing individual eigenfrequencies for a huge number of stars, including thousands of red giants. Besides the frequencies of acoustic modes, an important breakthrough of the Kepler mission is the detection of nonradial gravity-dominated mixed-mode oscillations in red giants. Unlike pure acoustic modes, mixed modes probe deeply into the interior of stars, allowing the stellar core properties and evolution of stars to be derived. In this work, using the gravity-mode period spacing and the large frequency separation, we construct the ΔΠ{sub 1}–Δ ν asteroseismic diagram from models of subgiants and red giants with various masses and metallicities. The relationship ΔΠ{sub 1}–Δ ν is able to constrain the ages and masses of the subgiants. Meanwhile, for red giants with masses above 1.5 M {sub ⊙}, the ΔΠ{sub 1}–Δ ν asteroseismic diagram can also work well to constrain the stellar age and mass. Additionally, we calculate the relative “isochrones” τ , which indicate similar evolution states especially for similar mass stars, on the ΔΠ{sub 1}–Δ ν diagram.

  19. [Treatment of giant acoustic neuromas].

    Science.gov (United States)

    Samprón, Nicolás; Altuna, Xabier; Armendáriz, Mikel; Urculo, Enrique

    2014-01-01

    To analyze the treatment modality and outcome of a series of patients with giant acoustic neuromas, a particular type of tumour characterised by their size (extracanalicular diameter of 4cm or more) and high morbidity and mortality. This was a retrospective unicentre study of patients with acoustic neuromas treated in a period of 12 years. In our institutional series of 108 acoustic neuromas operated on during that period, we found 13 (12%) cases of giant acoustic neuromas. We reviewed the available data of these cases, including presentation and several clinical, anatomical, and microsurgical aspects. All patients were operated on by the same neurosurgeon and senior author (EU) using the suboccipital retrosigmoid approach and complete microsurgical removal was achieved in 10 cases. In one case, near total removal was deliberately performed, in another case a CSF shunt was placed as the sole treatment measure, and in the remaining case no direct treatment was given. One patient died in the immediate postoperative period. One year after surgery, 4 patients showed facial nerve function of iii or more in the House-Brackman scale. The 4 most important prognostic characteristics of giant acoustic neuromas are size, adhesion to surrounding structures, consistency and vascularity. Only the first of these is evident in neuroimaging. Giant acoustic neuromas are characterised by high morbidity at presentation as well as after treatment. Nevertheless, the objective of complete microsurgical removal with preservation of cranial nerve function is attainable in some cases through the suboccipital retrosigmoid approach. Copyright © 2014 Sociedad Española de Neurocirugía. Published by Elsevier España. All rights reserved.

  20. Isoscalar giant resonances

    Energy Technology Data Exchange (ETDEWEB)

    Youngblood, D. H. [Texas A and M Univ., College Station (USA). Cyclotron Inst.; Ikegami, H.; Muraoka, M. [eds.

    1980-01-01

    The current status of the knowledges of giant quadrupole resonance (GQR), low energy octupole resonance (LEOR), and giant monopole resonance (GMR), is described. In the lowest order of multipole resonance, both isoscalar and isovector modes can occur. The characteristics of the GQR in light nuclei are apparent in the experimental result for Mg-24. All of the isoscalar E2 strength are known in Mg-24. The Goldhaber-Teller model is preferred over the Steinwedel-Jensen model for the giant dipole resonance (GDR) transition density. A few interesting and puzzling features have been seen in Pb-208. There is some conflict between inelastic alpha and electron scatterings. About LEOR, the RPA calculation of Liu and Brown was compared to the data for 3/sup -/ strength in Ca-40, Zr-90 and Pb-208. The calculation was employed the residual interaction of the Skyrme type. The agreement in Zr-90 was excellent. The effect of quadrupole deformation on the LEOR in Sm isotopes was large. The inelastic alpha scattering data on Al-27, Ca-40, Ti-48, Ni-58, Zn-64 and 66, Zr-90, Sn-116, 118, 120 and 124, Sm-144, 148 and 154, and Pb-208 were utilized in order to identify the GMR, and the GMR parameters were obtained. The GMR exhausting a large fraction of the sum rule was apparent in the nuclei with mass larger than 90. The splitting of the GDR and the broadening of the GQR in permanently deformed nuclei were established. The splitting of GMR was seen in Sm-154. The studies with heavy ions are also described.

  1. Mass loss of stars on the asymptotic giant branch. Mechanisms, models and measurements

    Science.gov (United States)

    Höfner, Susanne; Olofsson, Hans

    2018-01-01

    As low- and intermediate-mass stars reach the asymptotic giant branch (AGB), they have developed into intriguing and complex objects that are major players in the cosmic gas/dust cycle. At this stage, their appearance and evolution are strongly affected by a range of dynamical processes. Large-scale convective flows bring newly-formed chemical elements to the stellar surface and, together with pulsations, they trigger shock waves in the extended stellar atmosphere. There, massive outflows of gas and dust have their origin, which enrich the interstellar medium and, eventually, lead to a transformation of the cool luminous giants into white dwarfs. Dust grains forming in the upper atmospheric layers play a critical role in the wind acceleration process, by scattering and absorbing stellar photons and transferring their outward-directed momentum to the surrounding gas through collisions. Recent progress in high-angular-resolution instrumentation, from the visual to the radio regime, is leading to valuable new insights into the complex dynamical atmospheres of AGB stars and their wind-forming regions. Observations are revealing asymmetries and inhomogeneities in the photospheric and dust-forming layers which vary on time-scales of months, as well as more long-lived large-scale structures in the circumstellar envelopes. High-angular-resolution observations indicate at what distances from the stars dust condensation occurs, and they give information on the chemical composition and sizes of dust grains in the close vicinity of cool giants. These are essential constraints for building realistic models of wind acceleration and developing a predictive theory of mass loss for AGB stars, which is a crucial ingredient of stellar and galactic chemical evolution models. At present, it is still not fully possible to model all these phenomena from first principles, and to predict the mass-loss rate based on fundamental stellar parameters only. However, much progress has been made

  2. Resting site use of giant pandas in Wanglang Nature Reserve.

    Science.gov (United States)

    Kang, Dongwei; Wang, Xiaorong; Li, Junqing

    2017-10-23

    Little is known about the resting sites used by the giant panda (Ailuropoda melanoleuca), which restricts our understanding of their resting habits and limits conservation efforts. To enhance our understanding of resting site requirements and factors affecting the resting time of giant pandas, we investigated the characteristics of resting sites in the Wanglang Nature Reserve, Sichuan Province, China. The results indicated that the resting sites of giant pandas were characterised by a mean slope of 21°, mean nearest tree size of 53.75 cm, mean nearest shrub size of 2.82 cm, and mean nearest bamboo number of 56. We found that the resting sites were closer to bamboo than to trees and shrubs, suggesting that the resting site use of giant pandas is closely related to the presence of bamboo. Considering that giant pandas typically rest near a large-sized tree, protection of large trees in the forests is of considerable importance for the conservation of this species. Furthermore, slope was found to be an important factor affecting the resting time of giant pandas, as they tended to rest for a relatively longer time in sites with a smaller degree of slope.

  3. Giant pediatric cervicofacial lymphatic malformations.

    Science.gov (United States)

    Benazzou, Salma; Boulaadas, Malik; Essakalli, Leila

    2013-07-01

    Lymphatic malformations (LMs) are benign lesions. Most of them are found in head and neck regions as asymptomatic mass, but giant lymphangiomas may affect breathing or swallowing and constitute a major therapeutic challenge. A retrospective analysis of giant head and neck LMs with impairment of respiration or swallow for the past 11 years was performed in the Department of Maxillofacial Surgery and ENT of the Avicenne Medical University Center. Seven patients with large and extensive LMs of the head and neck were identified. There were 3 males and 4 females with a mean age of 6 years. The predominant reason for referral was airway compromise necessitating tracheostomy (57%) and dysphagia (43%). Three patients had macrocystic lesions; others were considered mixed or microcystic. All the patients underwent surgical excision as a primary treatment modality. Complete surgical resection was realized in 4 patients, and subtotal resection in 3 patients. Of 7 patients, 4 patients had complications including nerve damage and recurrence of the disease. The majority of the patients underwent only a single surgical procedure. Cervicofacial LMs in children should be managed in multidisciplinary setting. Surgery remains the first treatment for managing giant, life-threatening lesions.

  4. Percolation with multiple giant clusters

    International Nuclear Information System (INIS)

    Ben-Naim, E; Krapivsky, P L

    2005-01-01

    We study mean-field percolation with freezing. Specifically, we consider cluster formation via two competing processes: irreversible aggregation and freezing. We find that when the freezing rate exceeds a certain threshold, the percolation transition is suppressed. Below this threshold, the system undergoes a series of percolation transitions with multiple giant clusters ('gels') formed. Giant clusters are not self-averaging as their total number and their sizes fluctuate from realization to realization. The size distribution F k , of frozen clusters of size k, has a universal tail, F k ∼ k -3 . We propose freezing as a practical mechanism for controlling the gel size. (letter to the editor)

  5. [Giant intradiploic infratentorial epidermoid cyst].

    Science.gov (United States)

    Alberione, F; Caire, F; Fischer-Lokou, D; Gueye, M; Moreau, J J

    2007-10-01

    Epidermoid cysts are benign, uncommon lesions (1% of all intracranial tumors). Their localization is intradiploic in 25% of cases, and exceptionally subtentorial. We report here a rare case of giant intradiploic infratentorial epidermoid cyst. A 74-year old patient presented with recent diplopia and sindrome cerebellar. CT scan and MR imaging revealed a giant osteolytic extradural lesion of the posterior fossa (5.2 cm x 3.8 cm) with a small area of peripheral enhancement after contrast injection. Retrosigmoid suboccipital craniectomy allowed a satisfactory removal of the tumor, followed by an acrylic cranioplasty. The outcome was good. Neuropathological examination confirmed an epidermoid cyst. We review the literature and discuss our case.

  6. Giant Low Surface Brightness Galaxies

    Science.gov (United States)

    Mishra, Alka; Kantharia, Nimisha G.; Das, Mousumi

    2018-04-01

    In this paper, we present radio observations of the giant low surface brightness (LSB) galaxies made using the Giant Metrewave Radio Telescope (GMRT). LSB galaxies are generally large, dark matter dominated spirals that have low star formation efficiencies and large HI gas disks. Their properties suggest that they are less evolved compared to high surface brightness galaxies. We present GMRT emission maps of LSB galaxies with an optically-identified active nucleus. Using our radio data and archival near-infrared (2MASS) and near-ultraviolet (GALEX) data, we studied morphology and star formation efficiencies in these galaxies. All the galaxies show radio continuum emission mostly associated with the centre of the galaxy.

  7. Lipase polystyrene giant amphiphiles.

    Science.gov (United States)

    Velonia, Kelly; Rowan, Alan E; Nolte, Roeland J M

    2002-04-24

    A new type of giant amphiphilic molecule has been synthesized by covalently connecting a lipase enzyme headgroup to a maleimide-functionalized polystyrene tail (40 repeat units). The resulting biohybrid forms catalytic micellar rods in water.

  8. A case report of giant cell reparative granuloma

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chang Sik; Lee, Yoo Dong [College of Dentistry, Seoul National University, Seoul (Korea, Republic of)

    1974-11-15

    The authors observed in the routine roentgenographic examination, a rare case of Giant cell Reparative Granuloma found in the mandible of woman 23 years of age who had visited Infirmary of Dental College, Seoul National University be cause of the traffic accident. In the serial roentgenograms, authors had obtained the results as follows; 1. Giant cell Reparative Granuloma occurred below the 20 years of age, and occurred in the mandible of female. 2. In roentgenograms, it figures the radiolucent lesion with multilocular appearance. 3. The growing process of Giant Cell Reparative Granuloma is not by the neoplastic reaction but by the local reparative reaction.

  9. Oxygen abundances in halo giants. I - Giants in the very metal-poor globular clusters M92 and M15 and the metal-poor halo field

    Science.gov (United States)

    Sneden, Christopher; Kraft, Robert P.; Prosser, Charles F.; Langer, G. E.

    1991-12-01

    Oxygen, iron, vanadium, and scandium abundances are derived for very metal-poor giants in the globular clusters M92 and M15, and giants of comparable metallicity in the local halo field. The forbidden O I line dublet (6300, 6363) and nearby metallic lines in spectra are analyzed using line analysis and spectral synthesis codes. The Fe/H abundance for M92 is estimated at -2.25 +/-0.02 based on nine giants with a range of 500 K in effective temperature. No evidence for star-to-star variations in the Fe/H abundance was found. O-rich and O-poor stars appear intermixed in the H-R diagram. O - N nuclear synthesis and mixing to the surface are proposed as the best explanation for the low-oxygen giants. The nitrogen abundances obtained earlier for nine of the ten halo field giants in this sample are incompatible with the very large nitrogen abundances expected of the O/Fe abundance of about + 1.2 in halo field subdwarfs, as found by Abia and Rebolo (1989), and not more than 0.6 in halo giants, as found in this and other studies.

  10. Construction and analysis of a giant gartersnake (Thamnophis gigas) population projection model

    Science.gov (United States)

    Rose, Jonathan P.; Ersan, Julia S. M.; Wylie, Glenn D.; Casazza, Michael L.; Halstead, Brian J.

    2018-03-19

    The giant gartersnake (Thamnophis gigas) is a state and federally threatened species precinctive to California. The range of the giant gartersnake has contracted in the last century because its wetland habitat has been drained for agriculture and development. As a result of this habitat alteration, giant gartersnakes now largely persist in and near rice agriculture in the Sacramento Valley, because the system of canals that conveys water for rice growing approximates historical wetland habitat. Many aspects of the demography of giant gartersnakes are unknown, including how individuals grow throughout their life, how size influences reproduction, and how survival varies over time and among populations. We studied giant gartersnakes throughout the Sacramento Valley of California from 1995 to 2016 using capture-mark-recapture to study the growth, reproduction, and survival of this threatened species. We then use these data to construct an Integral Projection Model, and analyze this demographic model to understand which vital rates contribute most to the growth rate of giant gartersnake populations. We find that giant gartersnakes exhibit indeterminate growth; growth slows as individuals’ age. Fecundity, probability of reproduction, and survival all increase with size, although survival may decline for the largest female giant gartersnakes. The population growth rate of giant gartersnakes is most influenced by the survival and growth of large adult females, and the size at which 1 year old recruits enter the population. Our results indicate that management actions benefitting these influential demographic parameters will have the greatest positive effect on giant gartersnake population growth rates, and therefore population persistence. This study informs the conservation and management of giant gartersnakes and their habitat, and illustrates the effectiveness of hierarchical Bayesian models for the study of rare and elusive species.

  11. Giant scrotal elephantiasis.

    Science.gov (United States)

    Kuepper, Daniel

    2005-02-01

    How much can a man carry? Penoscrotal elephantiasis is a debilitating syndrome. This is a case report of a patient with giant genital elephantiasis secondary to long-standing lymphogranuloma venereum infection in Ethiopia. Complete surgical resection of the pathologic tissue and penile reconstruction was undertaken with good cosmetic and functional results.

  12. Mismatch between the eye and the optic lobe in the giant squid.

    Science.gov (United States)

    Liu, Yung-Chieh; Liu, Tsung-Han; Yu, Chun-Chieh; Su, Chia-Hao; Chiao, Chuan-Chin

    2017-07-01

    Giant squids ( Architeuthis ) are a legendary species among the cephalopods. They live in the deep sea and are well known for their enormous body and giant eyes. It has been suggested that their giant eyes are not adapted for the detection of either mates or prey at distance, but rather are best suited for monitoring very large predators, such as sperm whales, at distances exceeding 120 m and at a depth below 600 m (Nilsson et al. 2012 Curr. Biol. 22 , 683-688. (doi:10.1016/j.cub.2012.02.031)). However, it is not clear how the brain of giant squids processes visual information. In this study, the optic lobe of a giant squid ( Architeuthis dux , male, mantle length 89 cm), which was caught by local fishermen off the northeastern coast of Taiwan, was scanned using high-resolution magnetic resonance imaging in order to examine its internal structure. It was evident that the volume ratio of the optic lobe to the eye in the giant squid is much smaller than that in the oval squid ( Sepioteuthis lessoniana ) and the cuttlefish ( Sepia pharaonis ). Furthermore, the cell density in the cortex of the optic lobe is significantly higher in the giant squid than in oval squids and cuttlefish, with the relative thickness of the cortex being much larger in Architeuthis optic lobe than in cuttlefish. This indicates that the relative size of the medulla of the optic lobe in the giant squid is disproportionally smaller compared with these two cephalopod species. This morphological study of the giant squid brain, though limited only to the optic lobe, provides the first evidence to support that the optic lobe cortex, the visual information processing area in cephalopods, is well developed in the giant squid. In comparison, the optic lobe medulla, the visuomotor integration centre in cephalopods, is much less developed in the giant squid than other species. This finding suggests that, despite the giant eye and a full-fledged cortex within the optic lobe, the brain of giant

  13. The importance of high injection velocity to reduce plasma armature growth and drag in hypervelocity railguns

    International Nuclear Information System (INIS)

    Hawke, R.S.; Dixon, W.R.; Kang, S.W.; McCallen, R.C.; Susoeff, A.R.; Asay, J.R.; Shaninpoor, M.

    1987-01-01

    Plasmas are required to serve as armature in hypervelocity railguns. Typically, the plasmas are at temperatures of about 20-30,000 K and result in a high heat flux on the barrel wall. Slow moving plasmas radiate heat and melt the launcher wall causing it to ablate and resulting in a growth of the armature mass and length. As the velocity increases, the more massive and longer armature will result in greater viscous drag and ultimately limit the maximum achievable velocity. Several possible means of reducing the armature growth are possible. This paper discusses two of them, use of heat resistant barrel materials, and reduction of wall heating by reduction of exposure time through use of a high initial velocity. A summary of experimentally based, material ablation resistance calculations is presented. Second, the benefit of high injection velocity is evaluated. Finally, a joint SNLA and LLNL railgun research project based on the above considerations are described

  14. Excitation and photon decay of giant resonances excited by intermediate energy heavy ions

    International Nuclear Information System (INIS)

    Bertrand, F.E.; Beene, J.R.

    1987-01-01

    Inelastic scattering of medium energy heavy ions provides very large cross sections and peak-to-continuum ratios for excitation of giant resonances. For energies above about 50 MeV/nucleon, giant resonances are excited primarily through Coulomb excitation, which is indifferent to isospin, thus providing a good probe for the study of isovector giant resonances. The extremely large cross sections available from heavy ion excitation permit the study of rare decay modes of the giant resonances. In particular, recent measurements have been made of the photon decay of giant resonances following excitation by 22 and 84 MeV/nucleon 17 O projectiles. The singles results at 84 MeV/nucleon yield peak cross sections for the isoscalar giant quadrupole resonance and the isovector giant dipole resonance of approximately 0.8 and 3 barns/sr, respectively. Data on the ground state decay of the isoscalar giant quadrupole and isovector giant dipole resonances are presented and compared with calculations. Decays to low-lying excited states are also discussed. Preliminary results from an experiment to isolate the 208 Pb isovector quadrupole resonance using its gamma decay are presented. 22 refs., 19 figs., 1 tab

  15. X-ray Arcs Tell The Tale Of Giant Eruption

    Science.gov (United States)

    2002-08-01

    Long ago, a giant eruption occurred in a nearby galaxy and plunged it into turmoil. Now NASA's Chandra X-ray Observatory has revealed the remains of that explosion in the form of two enormous arcs of hot gas. This discovery can help astronomers better understand the cause and effect of violent outbursts from the vicinity of supermassive black holes in the centers of many so-called "active" galaxies. Scientists from the Harvard-Smithsonian Center for Astrophysics (CfA) report that two arc-like structures of multimillion-degree gas in the galaxy Centaurus A appear to be part of a ring 25,000 light years in diameter. The size and location of the ring suggest that it could have been produced in a titanic explosion that occurred about ten million years ago. A composite image of the galaxy made with radio (red and green), optical (yellow-orange), and X-ray data (blue) presents a stunning tableau of a tumultuous galaxy. A broad band of dust and cold gas is bisected at an angle by opposing jets of high-energy particles blasting away from the supermassive black hole in the nucleus. Lying in a plane perpendicular to the jets are the two large arcs of X-ray emitting hot gas. "Putting all the images together was the key to understanding what Chandra showed," said Margarita Karovska, lead author on a paper in the September 20, 2002, issue of The Astrophysical Journal. "Suddenly it all clicked in, as with a giant puzzle, and the images fit together to make a complete picture of the galaxy geometry that was not at all apparent before." The team proposes that the orientation of the arcs of hot gas perpendicular to the jet and the symmetry of the projected ring with respect to the center of the galaxy could be evidence that the ring is the result of a giant eruption in the nucleus of the galaxy 10 million years ago. This explosion may have produced a galaxy-sized shock wave that has been moving outward at speeds of a million miles per hour. The age of 10 million years for the

  16. Giant calculus: review and report of a case.

    Science.gov (United States)

    Woodmansey, Karl; Severine, Anthony; Lembariti, Bakari S

    2013-01-01

    Dental calculus is a common oral finding. The term giant calculus is used to describe unusually large deposits of dental calculus. Several extreme cases have been reported in the dental literature. The specific etiology of these cases remains uncertain. This paper reviews previously reported cases, and presents another extreme example of giant calculus.

  17. Three cases giant panda attack on human at Beijing Zoo

    OpenAIRE

    Zhang, Peixun; Wang, Tianbing; Xiong, Jian; Xue, Feng; Xu, Hailin; Chen, Jianhai; Zhang, Dianying; Fu, Zhongguo; Jiang, Baoguo

    2014-01-01

    Panda is regarded as Chinese national treasure. Most people always thought they were cute and just ate bamboo and had never imagined a panda could be vicious. Giant panda attacks on human are rare. There, we present three cases of giant panda attacks on humans at the Panda House at Beijing Zoo from September 2006 to June 2009 to warn people of the giant panda’s potentially dangerous behavior.

  18. Three cases giant panda attack on human at Beijing Zoo.

    Science.gov (United States)

    Zhang, Peixun; Wang, Tianbing; Xiong, Jian; Xue, Feng; Xu, Hailin; Chen, Jianhai; Zhang, Dianying; Fu, Zhongguo; Jiang, Baoguo

    2014-01-01

    Panda is regarded as Chinese national treasure. Most people always thought they were cute and just ate bamboo and had never imagined a panda could be vicious. Giant panda attacks on human are rare. There, we present three cases of giant panda attacks on humans at the Panda House at Beijing Zoo from September 2006 to June 2009 to warn people of the giant panda's potentially dangerous behavior.

  19. Carbon isotope ratios in field Population II giant stars

    International Nuclear Information System (INIS)

    Sneden, C.; Pilachowski, C.A.; Vandenberg, D.A.; Kitt Peak National Observatory, Tucson, AZ; Victoria Univ., Canada)

    1986-01-01

    Carbon isotope ratios have been derived from high-resolution spectra of the CH G-band in 15 very metal-poor Population II giant stars and two similar dwarf stars. Many of the giants possess very low C-12/C-13 ratios, some approaching the CN cycle equilibrium value. The metal-poor dwarfs do not have detectable CH-13 features; thus the low carbon isotope ratios in the giants probably are due to their internal evolutions. These results strongly support the idea that at least part of the anomalously low C/N values in Population II giants arises from very efficient mixing of their envelopes into the CN cycle burning layers. Detailed calculations of the expected CNO surface abundances in Population II giants in different evolutionary states have been performed. These computations demonstrate that the observed carbon isotope ratios cannot be produced during the first dredge-up mixing phases in low-mass, low metal abundance stars. Numerical experiments show that theoretical and observational results can be brought into agreement with artificially induced extra mixing. An agent to provoke this additional mixing has not been identified with certainty yet, although internal stellar rotation is a promising candidate. 63 references

  20. Giant proximity effect and critical opalescence in EuS

    Science.gov (United States)

    Charlton, Timothy; Ramos, Silvia; Quintanilla, Jorge; Suter, Andreas; Moodera, Jagadeesh

    2015-03-01

    The proximity effect is a type of wetting phenomenon where an ordered state, usually magnetism or superconductivity, ``leaks'' from one material into an adjacent one over some finite distance. For superconductors, the characteristic range is of the order of the coherence length, usually hundreds of nm. Nevertheless much longer, ``giant'' proximity effects have been observed in cuprate perovskite junctions. Such giant proximity effects can be understood by taking into account the divergence of the pairing susceptibility in the non-superconducting material when it is itself close to a superconducting instability: a superconducting version of critical opalescence. Since critical opalescence occurs in all second order phase transitions, giant proximity effects are expected to be general, therefor there must be a giant ferromagnetic proximity effect. Compared to its superconducting counterpart, the giant ferromagnetic proximity effect has the advantage that the order parameter (magnetization) can be observed directly. We have fabricated Co/EuS thin films and measured the magnetization profiles as a function of temperature using the complementary techniques of low energy muon relaxation and polarized neutron reflectivity. Details of the proximity effect near TCEuS will be presented.

  1. Epidemiology, genetic, natural history and clinical presentation of giant cerebral aneurysms.

    Science.gov (United States)

    Lonjon, M; Pennes, F; Sedat, J; Bataille, B

    2015-12-01

    Giant cerebral aneurysms represent 5% of intracranial aneurysms, and become symptomatic between 40 and 70 years with a female predominance. In the paediatric population, the giant aneurysm rate is higher than in the adult population. Classified as saccular, fusiform and serpentine, the natural history of giant cerebral aneurysms is characterized by thrombosis, growth and rupture. The pathogenesis of these giant aneurysms is influenced by a number of risk factors, including genetic variables. Genome-wide association studies have identified some chromosomes highlighting candidate genes. Although these giant aneurysms can occur at the same locations as their smaller counterparts, a predilection for the cavernous location has been observed. Giant aneurysms present with symptoms caused by a mass effect depending on their location or by rupture; ischemic manifestations rarely reveal the aneurysm. If the initial clinical descriptions have been back up by imagery, the clinical context with a pertinent analysis of the risk factors remain the cornerstone for the management decisions of these lesions. Five year cumulative rupture rates for patients with giant aneurysm were 40% for those located on the anterior part of circle of Willis and 50% for those on the posterior part. The poor outcome of untreated patients justifies the therapeutic risks. Copyright © 2015. Published by Elsevier Masson SAS.

  2. Giant Cell Angiofibroma in Unusual Localization: A Case Report

    Directory of Open Access Journals (Sweden)

    Emel Ebru Pala

    2012-01-01

    Full Text Available Giant cell angiofibroma (GCA was initially described as a potentially recurrent tumor in the orbit of adults. However, it is now recognized that it can also present in other locations. The morphological hallmark is a richly vascularized patternless spindle cell proliferation containing pseudovascular spaces and floret like multinucleate giant cells. Our case was a 32-years-old female complaining of painless solitary nodule arising on the occipital region of the scalp, which was diagnosed as giant cell angiofibroma. We report the case because of its extremely rare localization.

  3. Giant Epidermoid Cyst of the Thigh

    Directory of Open Access Journals (Sweden)

    NH Mohamed Haflah

    2011-11-01

    Full Text Available Epidermoid cyst is a common benign cutaneous swelling frequently encountered in surgical practice. It usually presents as a painless lump frequently occurring in hairbearing areas of the body particularly the scalp, scrotum, neck, shoulder and back. Giant epidermoid cysts commonly occur in hairy areas such as the scalp. We present here the case of a rare occurrence of a giant epidermoid cyst in the less hairy area of the right upper thigh mimicking a soft tissue sarcoma. Steps are highlighted for the management of this unusual cyst.

  4. Giant HII regions as distance indicators

    International Nuclear Information System (INIS)

    Melnick, Jorge; Terlevich, Robert; Moles, Mariano

    1987-01-01

    The correlations between the integrated Hβ luminosities, the velocity widths of the nebular lines and the metallicities of giant HII regions and HII galaxies are demonstrated to provide powerful distance indicators. They are calibrated on a homogeneous sample of giant HII regions with well determined distances and applied to distant HII galaxies to obtain a value of H 0 =95+-10 for the Hubble parameter, consistent with the value obtained by the Tully-Fisher technique. The effect of Malmquist bias and other systematic effects on the HII region method are discussed in detail. (Author)

  5. Restricted access Giant kelp, Macrocystis pyrifera, increases faunal diversity through physical engineering

    Science.gov (United States)

    Miller, Robert J.; Lafferty, Kevin D.; Lamy, Thomas; Kui, Li; Rassweiler, Andrew; Reed, Daniel C.

    2018-01-01

    Foundation species define the ecosystems they live in, but ecologists have often characterized dominant plants as foundational without supporting evidence. Giant kelp has long been considered a marine foundation species due to its complex structure and high productivity; however, there is little quantitative evidence to evaluate this. Here, we apply structural equation modelling to a 15-year time series of reef community data to evaluate how giant kelp affects the reef community. Although species richness was positively associated with giant kelp biomass, most direct paths did not involve giant kelp. Instead, the foundational qualities of giant kelp were driven mostly by indirect effects attributed to its dominant physical structure and associated engineering influence on the ecosystem, rather than by its use as food by invertebrates and fishes. Giant kelp structure has indirect effects because it shades out understorey algae that compete with sessile invertebrates. When released from competition, sessile species in turn increase the diversity of mobile predators. Sea urchin grazing effects could have been misinterpreted as kelp effects, because sea urchins can overgraze giant kelp, understorey algae and sessile invertebrates alike. Our results confirm the high diversity and biomass associated with kelp forests, but highlight how species interactions and habitat attributes can be misconstrued as direct consequences of a foundation species like giant kelp.

  6. Seasonal changes of progesterone and testosterone contents in hair of giant pandas

    International Nuclear Information System (INIS)

    Guo Dazhi; Liu Xianyi; Chen Faju

    1994-01-01

    Seasonal changes of progesterone content (PSC) in hair of three female giant pandas and testosterone content (TSC) in hair of two male giant pandas were tested by radioimmunoassay. During March to early June, PSC in two non-pregnant giant pandas (x-bar+-SD = 13.40 +- 10.06 and 10.60 +- 8.88 ng/g hair respectively) were higher than those in non-breeding season (3.07 +-1.07 and 3.20 +- 1.15 ng/g, P<0.01). PSC in a 18-year-old female giant panda remained at low levels (2.72 +- 1.49 ng/g) during March to December. In a twin-bear giant panda, PSC (6.77 +- 3.66 ng/g) appeared higher than that in non-pregnant giant pandas in non-breeding season. Around February to the end of May, TSC in two male giant pandas (1.89 +- 1.71 and 1.82 +- 1.04 ng/g respectively) were also higher than that in non-breeding season (0.98 +- 0.57 and 0.75 +- 0.39 ng/g, P<0.01). the findings from the study implied that giant panda's hair is possible to be used as a specimen to carry out steroids research in the endangered species

  7. Laser-assisted atom-atom collisions

    International Nuclear Information System (INIS)

    Roussel, F.

    1984-01-01

    The basic layer-assisted atom-atom collision processes are reviewed in order to get a simpler picture of the main physical facts. The processes can be separated into two groups: optical collisions where only one atom is changing state during the collision, the other acting as a spectator atom, and radiative collisions where the states of the two atoms are changing during the collision. All the processes can be interpreted in terms of photoexcitation of the quasimolecule formed during the collisional process. (author)

  8. HYPERFUSE: a novel inertial confinement system utilizing hypervelocity projectiles for fusion energy production and fission waste transmutation

    International Nuclear Information System (INIS)

    Makowitz, H.; Powell, J.R.; Wiswall, R.

    1980-01-01

    Parametric system studies of an inertial confinement fusion (ICF) reactor system to transmute fission products from an LWR economy have been carried out. The ICF reactors would produce net power in addition to transmuting fission products. The particular ICF concept examined is an impact fusion approach termed HYPERFUSE, in which hypervelocity pellets, traveling on the order of 100 to 300 km/sec, collide with each other or a target block in a reactor chamber and initiate a thermonuclear reaction. The DT fusion fuel is contained in a shell of the material to be transmuted, e.g., 137 Cs or 90 Sr. The 14-MeV fusion neutrons released during the pellet burn cause transmutation reactions (e.g., (n, 2n), (n, α), etc.) that convert the long lived fission products (FP's) either to stable products or to species that decay with a short half-life to a stable product

  9. Leiomyosarcoma of the skin with osteoclast-like giant cells: a case report

    Directory of Open Access Journals (Sweden)

    Sarma Deba P

    2007-12-01

    Full Text Available Abstract Introduction Osteoclast-like giant cells have been noted in various malignant tumors, such as, carcinomas of pancreas and liver and leiomyosarcomas of non-cutaneous locations, such as, uterus and rectum. We were unable to find any reported case of a leiomyosarcoma of the skin where osteoclast-like giant cells were present in the tumor. Case presentation We report a case of a 59-year-old woman with a cutaneous leiomyosarcoma associated with osteoclast-like giant cells arising from the subcutaneous artery of the leg. The nature of the giant cells is discussed in light of the findings from the immunostaining as well as survey of the literature. Conclusion A rare case of cutaneous leiomyosarcoma with osteoclast-like giant cells is reported. The giant cells in the tumor appear to be reactive histiocytic cells.

  10. On the Terminal Rotation Rates of Giant Planets

    Science.gov (United States)

    Batygin, Konstantin

    2018-04-01

    Within the general framework of the core-nucleated accretion theory of giant planet formation, the conglomeration of massive gaseous envelopes is facilitated by a transient period of rapid accumulation of nebular material. While the concurrent build-up of angular momentum is expected to leave newly formed planets spinning at near-breakup velocities, Jupiter and Saturn, as well as super-Jovian long-period extrasolar planets, are observed to rotate well below criticality. In this work, we demonstrate that the large luminosity of a young giant planet simultaneously leads to the generation of a strong planetary magnetic field, as well as thermal ionization of the circumplanetary disk. The ensuing magnetic coupling between the planetary interior and the quasi-Keplerian motion of the disk results in efficient braking of planetary rotation, with hydrodynamic circulation of gas within the Hill sphere playing the key role of expelling spin angular momentum to the circumstellar nebula. Our results place early-stage giant planet and stellar rotation within the same evolutionary framework, and motivate further exploration of magnetohydrodynamic phenomena in the context of the final stages of giant planet formation.

  11. Hard probes in heavy ion collisions at the LHC: PDFs, shadowing and $pA$ collisions

    CERN Document Server

    Accardi, Alberto; Botje, M.; Brodsky, S.J.; Cole, B.; Eskola, K.J.; Fai, George I.; Frankfurt, L.; Fries, R.J.; Geist, Walter M.; Guzey, V.; Honkanen, H.; Kolhinen, V.J.; Kovchegov, Yu.V.; McDermott, M.; Morsch, A.; Qiu, Jian-wei; Salgado, C.A.; Strikman, M.; Takai, H.; Tapprogge, S.; Vogt, R.; Zhang, X.f.

    2003-01-01

    This manuscript is the outcome of the subgroup ``PDFs, shadowing and $pA$ collisions'' from the CERN workshop ``Hard Probes in Heavy Ion Collisions at the LHC''. In addition to the experimental parameters for $pA$ collisions at the LHC, the issues discussed are factorization in nuclear collisions, nuclear parton distributions (nPDFs), hard probes as the benchmark tests of factorization in $pA$ collisions at the LHC, and semi-hard probes as observables with potentially large nuclear effects. Also, novel QCD phenomena in $pA$ collisions at the LHC are considered. The importance of the $pA$ program at the LHC is emphasized.

  12. Red giants: then and now

    Science.gov (United States)

    Faulkner, John

    Fred Hoyle's work on the structure and evolution of red giants, particularly his pathbreaking contribution with Martin Schwarzschild (Hoyle and Schwarzschild 1955), is both lauded and critically assessed. In his later lectures and work with students in the early 1960s, Hoyle presented more physical ways of understanding some of the approximations used, and results obtained, in that seminal paper. Although later ideas by other investigators will be touched upon, Hoyle's viewpoint - that low-mass red giants are essentially white dwarfs with a serious mass-storage problem - is still extremely fruitful. Over the years, I have further developed his method of attack. Relatively recently, I have been able to deepen and broaden the approach, finally extending the theory to provide a unifying treatment of the structure of low-mass stars from the main sequence though both the red-giant and horizontal-branch phases of evolution. Many aspects of these stars that had remained puzzling, even mysterious, for decades have now fallen into place, and some questions have been answered that were not even posed before. With low-mass red giants as the simplest example, this recent work emphasizes that stars, in general, may have at least two distinct but very important centres: (I) a geometrical centre, and (II) a separate nuclear centre, residing in a shell outside a zero-luminosity dense core for example. This two-centre perspective leads to an explicit, analytical, asymptotic theory of low-mass red-giant structure. It enables one to appreciate that the problem of understanding why such stars become red giants is one of anticipating a remarkable yet natural structural bifurcation that occurs in them. This bifurcation occurs because of a combination of known and understandable facts just summarized namely that, following central hydrogen exhaustion, a thin nuclear-burning shell does develop outside a more-or-less dense core. In the resulting theory, both ρsh/ρolinec and

  13. Giant monopole resonance in transitional and deformed nuclei

    International Nuclear Information System (INIS)

    Garg, U.; Bogucki, P.; Bronson, J.D.; Lui, Y.; Youngblood, D.H.

    1984-01-01

    Small-angle inelastic α-scattering measurements have been made at E/sub α/ = 129 MeV on /sup 144,148/Sm and /sup 142,146,150/Nd to investigate the giant monopole resonance in transitional and deformed nuclei. The experimental data reveal a mixing of L = 0 and L = 2 modes in 148 Sm resulting in almost identical angular distributions for the two components of the giant resonance peaks in the angular range 2 0 --6 0 . A ''splitting'' of the giant monopole resonance is observed in 150 Nd; the extent of this splitting is smaller than that reported for 154 Sm. Comparison is made with the predictions of various theoretical models

  14. Imaging of giant pituitary adenomas

    Energy Technology Data Exchange (ETDEWEB)

    Majos, C.; Coll, S.; Aguilera, C.; Pons, L.C. [Bellvitge Univ., Barcelona (Spain). Inst. de Diagnostice per la Imatge; Acebes, J.J. [Department of Neurosurgery, Ciutat Sanitaria i Universitaria de Bellvitge, L`Hospitalet de Llobregat, Barcelona (Spain)

    1998-10-01

    We present five proven giant pituitary adenomas studied by CT and MRI, and review the clinical and imaging findings. Our aim was to examine the radiologic appearances and to search for criteria useful in distinguishing these tumors from other sellar and suprasellar tumours, mainly craniopharyngioma. The main differences from small adenomas were high prevalence of macrocysts, a more invasive behaviour and a clinical picture dominated by mass effect rather than endocrine disturbance. Factors supporting the diagnosis of pituitary adenoma in a giant intra- and suprasellar mass include: infrasellar extension, absence of calcification and presence of low-signal cysts on T1-weighted images. (orig.) (orig.) With 4 figs., 2 tabs., 9 refs.

  15. Two-dimensional computer simulation of hypervelocity impact cratering: some preliminary results for Meteor Crater, Arizona

    Energy Technology Data Exchange (ETDEWEB)

    Bryan, J.B.; Burton, D.E.; Cunningham, M.E.; Lettis, L.A. Jr.

    1978-06-01

    A computational approach used for subsurface explosion cratering was extended to hypervelocity impact cratering. Meteor (Barringer) Crater, Arizona, was selected for the first computer simulation because it is one of the most thoroughly studied craters. It is also an excellent example of a simple, bowl-shaped crater and is one of the youngest terrestrial impact craters. Initial conditions for this calculation included a meteorite impact velocity of 15 km/s, meteorite mass of 1.67 x 10/sup 8/ kg, with a corresponding kinetic energy of 1.88 x 10/sup 16/ J (4.5 megatons). A two-dimensional Eulerian finite difference code called SOIL was used for this simulation of a cylindrical iron projectile impacting at normal incidence into a limestone target. For this initial calculation, a Tillotson equation-of-state description for iron and limestone was used with no shear strength. Results obtained for this preliminary calculation of the formation of Meteor Crater are in good agreement with field measurements. A color movie based on this calculation was produced using computer-generated graphics. 19 figures, 5 tables, 63 references.

  16. Two-dimensional computer simulation of hypervelocity impact cratering: some preliminary results for Meteor Crater, Arizona

    International Nuclear Information System (INIS)

    Bryan, J.B.; Burton, D.E.; Cunningham, M.E.; Lettis, L.A. Jr.

    1978-06-01

    A computational approach used for subsurface explosion cratering was extended to hypervelocity impact cratering. Meteor (Barringer) Crater, Arizona, was selected for the first computer simulation because it is one of the most thoroughly studied craters. It is also an excellent example of a simple, bowl-shaped crater and is one of the youngest terrestrial impact craters. Initial conditions for this calculation included a meteorite impact velocity of 15 km/s, meteorite mass of 1.67 x 10 8 kg, with a corresponding kinetic energy of 1.88 x 10 16 J (4.5 megatons). A two-dimensional Eulerian finite difference code called SOIL was used for this simulation of a cylindrical iron projectile impacting at normal incidence into a limestone target. For this initial calculation, a Tillotson equation-of-state description for iron and limestone was used with no shear strength. Results obtained for this preliminary calculation of the formation of Meteor Crater are in good agreement with field measurements. A color movie based on this calculation was produced using computer-generated graphics. 19 figures, 5 tables, 63 references

  17. Probing the Deep End of the Milky Way with New Oscillating Kepler Giants

    Science.gov (United States)

    Mathur, Savita; García, Rafael A.; Huber, Daniel; Regulo, Clara; Stello, Dennis; Beck, Paul G.; Houmani, Kenza; Salabert, David

    2017-10-01

    The Kepler mission has been a success in both exoplanet search and stellar physics studies. Red giants have actually been quite a highlight in the Kepler scene. The Kepler long and almost continuous four-year observations allowed us to detect oscillations in more than 15,000 red giants targeted by the mission. However by looking at the power spectra of 45,000 stars classified as dwarfs according to the Q1-16 Kepler star properties catalog, we detected red-giant like oscillations in 850 stars. Even though this is a small addition to the known red-giant sample, these misclassified stars represent a goldmine for galactic archeology studies. Indeed they happen to be fainter (down to Kp 16) and more distant (d>10kPc) than the known red giants, opening the possibility to probe unknown regions of our Galaxy. The faintness of these red giants with detected oscillations is very promising for detecting acoustic modes in red giants observed with K2 and TESS. In this talk, I will present this new sample of red giants with their revised stellar parameters derived from asteroseismology. Then I will discuss about the distribution of their masses, distances, and evolutionary states compared to the previously known sample of red giants.

  18. Metaphyseal giant cell tumor

    International Nuclear Information System (INIS)

    Pereira, L.F.; Hemais, P.M.P.G.; Aymore, I.L.; Carmo, M.C.R. do; Cunha, M.E.P.R. da; Resende, C.M.C.

    1986-01-01

    Three cases of metaphyseal giant cell tumor are presented. A review of the literature is done, demostrating the lesion is rare and that there are few articles about it. Age incidence and characteristics of the tumor are discussed. (Author) [pt

  19. Giant Pulse Phenomena in a High Gain Erbium Doped Fiber Amplifier

    Science.gov (United States)

    Li, Stephen X.; Merritt, Scott; Krainak, Michael A.; Yu, Anthony

    2018-01-01

    High gain Erbium Doped Fiber Amplifiers (EDFAs) are vulnerable to optical damage when unseeded, e.g. due to nonlinear effects that produce random, spontaneous Q-switched (SQS) pulses with high peak power, i.e. giant pulses. Giant pulses can damage either the components within a high gain EDFA or external components and systems coupled to the EDFA. We explore the conditions under which a reflective, polarization-maintaining (PM), core-pumped high gain EDFA generates giant pulses, provide details on the evolution of normal pulses into giant pulses, and provide results on the transient effects of giant pulses on an amplifier's fused-fiber couplers, an effect which we call Fiber Overload Induced Leakage (FOIL). While FOIL's effect on fused-fiber couplers is temporary, its damage to forward pump lasers in a high gain EDFA can be permanent.

  20. Giant resonances in atoms and in fluorine cage molecules

    International Nuclear Information System (INIS)

    Mansfield, M.W.D.

    1987-01-01

    Giant resonances in the photoabsorption spectra of atoms occur in the extreme ultraviolet region of the electromagnetic spectrum. In order to observe absorption spectra in this region it is necessary to generate columns of atomic vapor which will often by very hot and chemically aggressive, and to contain them without solid windows between two regions of high vacuum, the spectrometer and the light source, usually an electron synchrotron. The technical problems are often formidable so that although it had long been recognized that giant resonances in solid lanthanides were essentially atomic phenomena (Fomichev et al. 1967, Dehmer et al. 1971) earlier investigations of giant resonances in atoms were limited to the more manageable elements which precede the transition rows, the inert gases, alkali and alkaline earth elements. In this paper the authors discusses the spectra of transition row atoms in order of decreasing localization (Smith and Kmetko 1983) viz. 4d → f, 5d → f, 3p → d, 4p → d and 5p → d. He tends to avoid discussion of the giant resonances themselves because their profiles and interpretation will be discussed comprehensively by other contributors. Instead he concentrates on the detailed analyses which have been attempted of the discrete structure which usually accompanies giant resonances in atoms. Interpretation of this structure can provide accurate determinations of thresholds for inner shell excitation in atoms and can also be used to anticipate structure which may overlie the giant resonances and distort their profiles. 75 references, 21 figures

  1. Giant vesical calculus

    African Journals Online (AJOL)

    Giant vesical calculus. A case report. H. H. LAUBSCHER. Summary. An exceptional case of bladder stone is presented. The case is unusual as regards the size of the stone and the fact that the patient did··not seek medical assistance much earlier, as this was readily avail- able. Furthermore, recovery after removal of the.

  2. Einstein Observatory magnitude-limited X-ray survey of late-type giant and supergiant stars

    Science.gov (United States)

    Maggio, A.; Vaiana, G. S.; Haisch, B. M.; Stern, R. A.; Bookbinder, J.

    1990-01-01

    Results are presented of an extensive X-ray survey of 380 giant and supergiant stars of spectral types from F to M, carried out with the Einstein Observatory. It was found that the observed F giants or subgiants (slightly evolved stars with a mass M less than about 2 solar masses) are X-ray emitters at the same level of main-sequence stars of similar spectral type. The G giants show a range of emissions more than 3 orders of magnitude wide; some single G giants exist with X-ray luminosities comparable to RS CVn systems, while some nearby large G giants have upper limits on the X-ray emission below typical solar values. The K giants have an observed X-ray emission level significantly lower than F and F giants. None of the 29 M giants were detected, except for one spectroscopic binary.

  3. A meteorite crater on Earth formed on September 15, 2007: The Carancas hypervelocity impact

    Science.gov (United States)

    Tancredi, G.; Ishitsuka, J.; Schultz, P. H.; Harris, R. S.; Brown, P.; Revelle, D. O.; Antier, K.; Le Pichon, A.; Rosales, D.; Vidal, E.; Varela, M. E.; Sánchez, L.; Benavente, S.; Bojorquez, J.; Cabezas, D.; Dalmau, A.

    2009-01-01

    On September 15, 2007, a bright fireball was observed and a big explosion was heard by many inhabitants near the southern shore of Lake Titicaca. In the community of Carancas (Peru), a 13.5 m crater and several fragments of a stony meteorite were found close to the site of the impact. The Carancas event is the first impact crater whose formation was directly observed by several witnesses as well as the first unambiguous seismic recording of a crater-forming meteorite impact on Earth. We present several lines of evidence that suggest that the Carancas crater was a hypervelocity impact. An event like this should have not occurred according to the accepted picture of stony meteoroids ablating in the Earth’s atmosphere, therefore it challenges our present models of entry dynamics. We discuss alternatives to explain this particular event. This emphasizes the weakness in the pervasive use of “average” parameters (such as tensile strength, fragmentation behavior and ablation behavior) in current modeling efforts. This underscores the need to examine a full range of possible values for these parameters when drawing general conclusions from models about impact processes.

  4. [Giant idiopathic hydronephrosis: toward a two-step therapeutic approach].

    Science.gov (United States)

    Boudhaye, Taher Ismail; Sidimalek, Mohamed; Jdoud, Cheikhani

    2017-01-01

    Giant hydronephrosis is rare. It is usually caused by ureteropelvic junction syndrome. We here report the unusual case of a patient hospitalized with giant hydronephrosis associated with impaired general condition. Diagnosis was based on CT scan. The patient underwent deferred nephrectomy after percutaneous drainage.

  5. Surgical sterilization of the African giant pouched rats | Werema ...

    African Journals Online (AJOL)

    ... to all principles of surgery. This study has demonstrated the three surgical procedures for African Giant pouched rats as being useful to veterinarians in public/private practice and/or in biomedical research facilities. Keywords: Surgical sterilization, ovariectomy, ovariohysterectomy, orchidectomy, African giant pouched rats ...

  6. Collision Repair Campaign

    Science.gov (United States)

    The Collision Repair Campaign targets meaningful risk reduction in the Collision Repair source category to reduce air toxic emissions in their communities. The Campaign also helps shops to work towards early compliance with the Auto Body Rule.

  7. Finite size effects for giant magnons on physical strings

    International Nuclear Information System (INIS)

    Minahan, J.A.; Ohlsson Sax, O.

    2008-01-01

    Using finite gap methods, we find the leading order finite size corrections for an arbitrary number of giant magnons on physical strings, where the sum of the momenta is a multiple of 2π. Our results are valid for the Hofman-Maldacena fundamental giant magnons as well as their dyonic generalizations. The energy corrections turn out to be surprisingly simple, especially if all the magnons are fundamental, and at leading order are independent of the magnon flavors. We also show how to use the Bethe ansatz to find finite size corrections for dyonic giant magnons with large R-charges

  8. Establishment and cryopreservation of a giant panda skeletal muscle-derived cell line.

    Science.gov (United States)

    Yu, Fang-Jian; Zeng, Chang-Jun; Zhang, Yan; Wang, Cheng-Dong; Xiong, Tie-Yi; Fang, Sheng-Guo; Zhang, He-Min

    2015-06-01

    The giant panda Ailuropoda melanoleuca is an endangered species and is a symbol for wildlife conservation. Although efforts have been made to protect this rare and endangered species through breeding and conservative biology, the long-term preservation of giant panda genome resources (gametes, tissues, organs, genomic libraries, etc.) is still a practical option. In this study, the giant panda skeletal muscle-derived cell line was successfully established via primary explants culture and cryopreservation techniques. The population doubling time of giant panda skeletal cells was approximately 33.8 h, and this population maintained a high cell viability before and after cryopreservation (95.6% and 90.7%, respectively). The two skeletal muscle-specific genes SMYD1 and MYF6 were expressed and detected by RT-PCR in the giant panda skeletal muscle-derived cell line. Karyotyping analysis revealed that the frequencies of giant panda skeletal muscle cells showing a chromosome number of 2n=42 ranged from 90.6∼94.2%. Thus, the giant panda skeletal muscle-derived cell line provides a vital resource and material platform for further studies and is likely to be useful for the protection of this rare and endangered species.

  9. Effects of certain burning treatments on veld condition in Giant's ...

    African Journals Online (AJOL)

    Effects of certain burning treatments on veld condition in Giant's Castle Game Reserve. ... Keywords: above-ground standing crop; basal cover; burning; composition change; giant's castle game reserve; natal ... AJOL African Journals Online.

  10. Giant Congenital Melanocytic Nevus

    DEFF Research Database (Denmark)

    Rasmussen, Bo Sonnich; Henriksen, Trine Foged; Kølle, Stig-Frederik Trojahn

    2015-01-01

    Giant congenital melanocytic nevi (GCMN) occur in 1:20,000 livebirths and are associated with increased risk of malignant transformation. The treatment of GCMN from 1981 to 2010 in a tertiary referral center was reviewed evaluating the modalities used, cosmetic results, associated complications...

  11. Nuclear isovector giant resonances excited by pion single charge exchange

    International Nuclear Information System (INIS)

    King, B.H.

    1993-07-01

    This thesis is an experimental study of isovector giant resonances in light nuclei excited by pion single charge exchange reactions. Giant dipole resonances in light nuclei are known to be highly structured. For the mass 9 and 13 giant dipole resonances, isospin considerations were found to be very important to understanding this structure. by comparing the excitation functions from cross section measurements of the (π + , π 0 ) and (π, π 0 ) inclusive reactions, the authors determined the dominant isospin structure of the analog IVGR's. The comparison was made after decomposing the cross section into resonant and non-resonant components. This decomposition is made in the framework of strong absorption and quasi-free scattering. Measurements in the region of the isovector giant dipole resonances (IVGDR) were made to cover the inclusive angular distributions out to the second minimum. Study of the giant resonance decay process provides further understanding of the resonances. This study was carried out by observing the (π + , π 0 p) coincident reactions involving the resonances of 9 B and 13 N excited from 9 Be and 13 C nuclei. These measurements determined the spectra of the decay protons. This method also permitted a decomposition of the giant resonances into their isospin components. The multipolarities of the resonances were revealed by the decay proton angular correlations which, for dipoles, are of the form 1 + A 2 P 2 (cos θ)

  12. Giant hepatic regenerative nodules in Alagille syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Rapp, Jordan B. [Lewis Katz School of Medicine at Temple University, Department of Radiology, Temple University Hospital, Philadelphia, PA (United States); Bellah, Richard D.; Anupindi, Sudha A. [The Children' s Hospital of Philadelphia, Department of Radiology, Philadelphia, PA (United States); University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA (United States); Maya, Carolina [The Children' s Hospital of Philadelphia, Department of Radiology, Philadelphia, PA (United States); Pawel, Bruce R. [University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA (United States); The Children' s Hospital of Philadelphia, Department of Pathology and Laboratory Medicine, Philadelphia, PA (United States)

    2017-02-15

    Children with Alagille syndrome undergo surveillance radiologic examinations as they are at risk for developing cirrhosis and hepatocellular carcinoma. There is limited literature on the imaging of liver masses in Alagille syndrome. We report the ultrasound (US) and magnetic resonance imaging (MRI) appearances of incidental benign giant hepatic regenerative nodules in this population. To describe the imaging findings of giant regenerative nodules in patients with Alagille syndrome. A retrospective search of the hospital database was performed to find all cases of hepatic masses in patients with Alagille syndrome during a 10-year period. Imaging, clinical charts, laboratory data and available pathology were reviewed and analyzed and summarized for each patient. Twenty of 45 patients with confirmed Alagille syndrome had imaging studies. Of those, we identified six with giant focal liver masses. All six patients had large central hepatic masses that were remarkably similar on US and MRI, in addition to having features of cirrhosis. In each case, the mass was located in hepatic segment VIII and imaging showed the mass splaying the main portal venous branches at the hepatic hilum, as well as smaller portal and hepatic venous branches coursing through them. On MRI, signal intensity of the mass was isointense to liver on T1-weighted sequences in four of six patients, but hyperintense on T1 in two of six patients. In all six cases, the mass was hypointense on T2- weighted sequences. The mass post-contrast was isointense to adjacent liver in all phases in five the cases. Five out of six patients had pathological correlation demonstrating preserved ductal architecture confirming the final diagnosis of a regenerative nodule. Giant hepatic regenerative nodules with characteristic US and MR features can occur in patients with Alagille syndrome with underlying cirrhosis. Recognizing these lesions as benign giant hepatic regenerative nodules should, thereby, mitigate any need for

  13. Giant hepatic regenerative nodules in Alagille syndrome

    International Nuclear Information System (INIS)

    Rapp, Jordan B.; Bellah, Richard D.; Anupindi, Sudha A.; Maya, Carolina; Pawel, Bruce R.

    2017-01-01

    Children with Alagille syndrome undergo surveillance radiologic examinations as they are at risk for developing cirrhosis and hepatocellular carcinoma. There is limited literature on the imaging of liver masses in Alagille syndrome. We report the ultrasound (US) and magnetic resonance imaging (MRI) appearances of incidental benign giant hepatic regenerative nodules in this population. To describe the imaging findings of giant regenerative nodules in patients with Alagille syndrome. A retrospective search of the hospital database was performed to find all cases of hepatic masses in patients with Alagille syndrome during a 10-year period. Imaging, clinical charts, laboratory data and available pathology were reviewed and analyzed and summarized for each patient. Twenty of 45 patients with confirmed Alagille syndrome had imaging studies. Of those, we identified six with giant focal liver masses. All six patients had large central hepatic masses that were remarkably similar on US and MRI, in addition to having features of cirrhosis. In each case, the mass was located in hepatic segment VIII and imaging showed the mass splaying the main portal venous branches at the hepatic hilum, as well as smaller portal and hepatic venous branches coursing through them. On MRI, signal intensity of the mass was isointense to liver on T1-weighted sequences in four of six patients, but hyperintense on T1 in two of six patients. In all six cases, the mass was hypointense on T2- weighted sequences. The mass post-contrast was isointense to adjacent liver in all phases in five the cases. Five out of six patients had pathological correlation demonstrating preserved ductal architecture confirming the final diagnosis of a regenerative nodule. Giant hepatic regenerative nodules with characteristic US and MR features can occur in patients with Alagille syndrome with underlying cirrhosis. Recognizing these lesions as benign giant hepatic regenerative nodules should, thereby, mitigate any need for

  14. Giant cell reparative granuloma of the occipital bone

    International Nuclear Information System (INIS)

    Santos-Briz, A.; Ricoy, J.R.; Martinez-Tello, F.J.; Lobato, R.D.; Ramos, A.; Millan, J.M.

    2003-01-01

    Giant cell reparative granuloma (GCRG) is a non-neoplastic fibrous lesion with unevenly distributed multinucleated giant cells, areas of osseous metaplasia and hemorrhage. The small bones of the hands and feet are the most common sites, followed by the vertebral bodies and craniofacial bones. In the craniofacial bones GCRG has been reported in the temporal bone, in the frontal bone and paranasal sinus. However, to the best of our knowledge no case has been reported in the occipital bone. We report on the imaging findings and pathological features of a GCRG of the occipital bone and discuss the differential diagnosis of this entity in this particular location, especially with giant cell tumor because of the therapeutic and prognostic implications. (orig.)

  15. Neglected Giant Scalp Basal Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Anne Kristine Larsen, MD

    2014-03-01

    Full Text Available Summary: Rarely, basal cell carcinoma grows to a giant size, invading the underlying deep tissue and complicating the treatment and reconstruction modalities. A giant basal cell carcinoma on the scalp is in some cases treated with a combination of surgery and radiation therapy, resulting in local control, a satisfactory long-term cosmetic and functional result. We present a case with a neglected basal cell scalp carcinoma, treated with wide excision and postoperative radiotherapy, reconstructed with a free latissimus dorsi flap. The cosmetic result is acceptable and there is no sign of recurrence 1 year postoperatively.

  16. Basins in ARC-continental collisions

    Science.gov (United States)

    Draut, Amy E.; Clift, Peter D.; Busby, Cathy; Azor, Antonio

    2012-01-01

    Arc-continent collisions occur commonly in the plate-tectonic cycle and result in rapidly formed and rapidly collapsing orogens, often spanning just 5-15 My. Growth of continental masses through arc-continent collision is widely thought to be a major process governing the structural and geochemical evolution of the continental crust over geologic time. Collisions of intra-oceanic arcs with passive continental margins (a situation in which the arc, on the upper plate, faces the continent) involve a substantially different geometry than collisions of intra-oceanic arcs with active continental margins (a situation requiring more than one convergence zone and in which the arc, on the lower plate, backs into the continent), with variable preservation potential for basins in each case. Substantial differences also occur between trench and forearc evolution in tectonically erosive versus tectonically accreting margins, both before and after collision. We examine the evolution of trenches, trench-slope basins, forearc basins, intra-arc basins, and backarc basins during arc-continent collision. The preservation potential of trench-slope basins is low; in collision they are rapidly uplifted and eroded, and at erosive margins they are progressively destroyed by subduction erosion. Post-collisional preservation of trench sediment and trench-slope basins is biased toward margins that were tectonically accreting for a substantial length of time before collision. Forearc basins in erosive margins are usually floored by strong lithosphere and may survive collision with a passive margin, sometimes continuing sedimentation throughout collision and orogeny. The low flexural rigidity of intra-arc basins makes them deep and, if preserved, potentially long records of arc and collisional tectonism. Backarc basins, in contrast, are typically subducted and their sediment either lost or preserved only as fragments in melange sequences. A substantial proportion of the sediment derived from

  17. An atypical growth of a giant fibroadenoma after trauma.

    Science.gov (United States)

    Izadpanah, Ali; Karunanayake, Mihiran; Izadpanah, Arash; Sinno, Hani; Gilardino, Mirko

    2012-10-01

    Fibroadenomas are the most common benign breast lesion in female adolescents. However, it is important to recognize that a small percentage have been shown to progress to giant fibroadenomas. Giant fibroadenomas can spontaneously infarct leading to significant morbidity and are also difficult to distinguish from the more aggressive phyllodes tumors. We describe the first case, to the best of our knowledge, of a 12-year-old girl who presented with a giant fibroadenoma complicated by a central infarct and an intra-lesional hemorrhage from a trauma to the breast. The complicated giant fibroadenoma with an intra-lesional hemorrhage has characteristics of both benign and malignant lesions, and is difficult to distinguish by history and physical alone. Ultrasonography is a valuable tool yet the core needle biopsy remains the gold standard to confirm the diagnosis. Copyright © 2012 North American Society for Pediatric and Adolescent Gynecology. Published by Elsevier Inc. All rights reserved.

  18. Emergency endovascular coiling of a ruptured giant splenic artery aneurysm

    DEFF Research Database (Denmark)

    Wernheden, Erika; Brenøe, Anne Sofie; Shahidi, Saeid

    2017-01-01

    Splenic artery aneurysms (SAAs) are the third most common abdominal aneurysm. Endovascular treatment of SAAs is preferred, and coiling is the most commonly used technique. Ruptured giant (>5 cm) SAAs are usually treated with open surgery including splenectomy. We present a rare case of a ruptured...... 15-cm giant SAA in an 84-year-old woman treated successfully with emergency endovascular coiling. To our knowledge, this is one of the few reports of emergency endovascular treatment for ruptured giant SAA....

  19. Giant arachnoid granulation in a patient with benign intracranial hypertension

    Energy Technology Data Exchange (ETDEWEB)

    Kiroglu, Yilmaz; Yaqci, Baki; Cirak, Bayram; Karabulut, Nevzat [Pamukkale University, Department of Radiology, School of Medicine, Denizli (Turkey)

    2008-10-15

    We report magnetic resonance (MR), computed tomography (CT) and angiographic imaging of an unusual giant arachnoid granulation in the superior sagittal sinus in a man with headache and vertigo. Intrasinus pressure measurements revealed a significant pressure gradient across the lesion. MR imaging is useful to identify giant arachnoid granulation and dural sinus thrombosis, whereas dural sinus pressure measurement in certain cases of giant arachnoid granulations can be used to evaluate the lesion as the cause of the patient's symptoms. (orig.)

  20. Giant arachnoid granulation in a patient with benign intracranial hypertension

    International Nuclear Information System (INIS)

    Kiroglu, Yilmaz; Yaqci, Baki; Cirak, Bayram; Karabulut, Nevzat

    2008-01-01

    We report magnetic resonance (MR), computed tomography (CT) and angiographic imaging of an unusual giant arachnoid granulation in the superior sagittal sinus in a man with headache and vertigo. Intrasinus pressure measurements revealed a significant pressure gradient across the lesion. MR imaging is useful to identify giant arachnoid granulation and dural sinus thrombosis, whereas dural sinus pressure measurement in certain cases of giant arachnoid granulations can be used to evaluate the lesion as the cause of the patient's symptoms. (orig.)

  1. Functional annotation from the genome sequence of the giant panda

    OpenAIRE

    Huo, Tong; Zhang, Yinjie; Lin, Jianping

    2012-01-01

    The giant panda is one of the most critically endangered species due to the fragmentation and loss of its habitat. Studying the functions of proteins in this animal, especially specific trait-related proteins, is therefore necessary to protect the species. In this work, the functions of these proteins were investigated using the genome sequence of the giant panda. Data on 21,001 proteins and their functions were stored in the Giant Panda Protein Database, in which the proteins were divided in...

  2. Surface Compositions of Red Giant Stars in Globular Clusters

    Science.gov (United States)

    Cheng, Eric; Lau, Marie; Smith, Graeme; Chen, Brian

    2018-01-01

    Globular clusters (GCs) are excellent “laboratories” to study the formation and evolution of our galaxy. In order to understand, more specifically, the chemical compositions and stellar evolution of the stars in GCs, we ask whether or not deep internal mixing occurs in red giants or if in fact the compositions come from the primordial interstellar medium or previous generations of stars. It has been discovered that as a star evolves up the red giant branch, the surface carbon abundance decreases, which is evidence of deep internal mixing. We questioned whether these processes also affect O or Na abundance as a star evolves. We collected measurement data of red giants from GCs out of academic journals and sorted the data into catalogs. Then, we plotted the catalogs into figures, comparing surface O and Na each with stellar luminosity. Statistical tests were ran to quantify the amount of correlation between the variables. Out of 27 GCs, we concluded that eight show a positive correlation between Na and luminosity, and two show a negative correlation between O and luminosity. Properties of GCs were compared to determine if chemical distribution in stars depends on GCs as the self-enrichment scenario suggests. We created histograms of sodium distribution to test for bimodality to examine if there are separate trends in each GC. In six GCs, two different sequences of red giants appear for Na versus luminosity, suggesting evidence that the depth of mixing may differ among each red giant in a GC. This study has provided new evidence that the changing chemical abundances on the surfaces of red giants can be due to stellar evolutionary effects and deep internal mixing, which may not necessarily depend on the GC and may differ in depth among each red giant. Through this study, we learn more about stellar evolution which will eventually help us understand the origins of our universe. Most of this work was carried out by high school students working under the auspices of

  3. On the Radii of Close-in Giant Planets.

    Science.gov (United States)

    Burrows; Guillot; Hubbard; Marley; Saumon; Lunine; Sudarsky

    2000-05-01

    The recent discovery that the close-in extrasolar giant planet HD 209458b transits its star has provided a first-of-its-kind measurement of the planet's radius and mass. In addition, there is a provocative detection of the light reflected off of the giant planet tau Bootis b. Including the effects of stellar irradiation, we estimate the general behavior of radius/age trajectories for such planets and interpret the large measured radii of HD 209458b and tau Boo b in that context. We find that HD 209458b must be a hydrogen-rich gas giant. Furthermore, the large radius of a close-in gas giant is not due to the thermal expansion of its atmosphere but to the high residual entropy that remains throughout its bulk by dint of its early proximity to a luminous primary. The large stellar flux does not inflate the planet but retards its otherwise inexorable contraction from a more extended configuration at birth. This implies either that such a planet was formed near its current orbital distance or that it migrated in from larger distances (>/=0.5 AU), no later than a few times 107 yr of birth.

  4. ARE GIANT TORNADOES THE LEGS OF SOLAR PROMINENCES?

    Energy Technology Data Exchange (ETDEWEB)

    Wedemeyer, Sven; Scullion, Eamon; Rouppe van der Voort, Luc; Bosnjak, Antonija [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, NO-0315 Oslo (Norway); Antolin, Patrick, E-mail: sven.wedemeyer@astro.uio.no [Centre for Mathematical Plasma Astrophysics, Department of Mathematics, KU Leuven, Celestijnenlaan 200B, bus 2400, B-3001 Leuven (Belgium)

    2013-09-10

    Observations in the 171 A channel of the Atmospheric Imaging Assembly of the space-borne Solar Dynamics Observatory show tornado-like features in the atmosphere of the Sun. These giant tornadoes appear as dark, elongated, and apparently rotating structures in front of a brighter background. This phenomenon is thought to be produced by rotating magnetic field structures that extend throughout the atmosphere. We characterize giant tornadoes through a statistical analysis of properties such as spatial distribution, lifetimes, and sizes. A total number of 201 giant tornadoes are detected in a period of 25 days, suggesting that, on average, about 30 events are present across the whole Sun at a time close to solar maximum. Most tornadoes appear in groups and seem to form the legs of prominences, thus serving as plasma sources/sinks. Additional H{alpha} observations with the Swedish 1 m Solar Telescope imply that giant tornadoes rotate as a structure, although they clearly exhibit a thread-like structure. We observe tornado groups that grow prior to the eruption of the connected prominence. The rotation of the tornadoes may progressively twist the magnetic structure of the prominence until it becomes unstable and erupts. Finally, we investigate the potential relation of giant tornadoes to other phenomena, which may also be produced by rotating magnetic field structures. A comparison to cyclones, magnetic tornadoes, and spicules implies that such events are more abundant and short-lived the smaller they are. This comparison might help to construct a power law for the effective atmospheric heating contribution as a function of spatial scale.

  5. ARE GIANT TORNADOES THE LEGS OF SOLAR PROMINENCES?

    International Nuclear Information System (INIS)

    Wedemeyer, Sven; Scullion, Eamon; Rouppe van der Voort, Luc; Bosnjak, Antonija; Antolin, Patrick

    2013-01-01

    Observations in the 171 Å channel of the Atmospheric Imaging Assembly of the space-borne Solar Dynamics Observatory show tornado-like features in the atmosphere of the Sun. These giant tornadoes appear as dark, elongated, and apparently rotating structures in front of a brighter background. This phenomenon is thought to be produced by rotating magnetic field structures that extend throughout the atmosphere. We characterize giant tornadoes through a statistical analysis of properties such as spatial distribution, lifetimes, and sizes. A total number of 201 giant tornadoes are detected in a period of 25 days, suggesting that, on average, about 30 events are present across the whole Sun at a time close to solar maximum. Most tornadoes appear in groups and seem to form the legs of prominences, thus serving as plasma sources/sinks. Additional Hα observations with the Swedish 1 m Solar Telescope imply that giant tornadoes rotate as a structure, although they clearly exhibit a thread-like structure. We observe tornado groups that grow prior to the eruption of the connected prominence. The rotation of the tornadoes may progressively twist the magnetic structure of the prominence until it becomes unstable and erupts. Finally, we investigate the potential relation of giant tornadoes to other phenomena, which may also be produced by rotating magnetic field structures. A comparison to cyclones, magnetic tornadoes, and spicules implies that such events are more abundant and short-lived the smaller they are. This comparison might help to construct a power law for the effective atmospheric heating contribution as a function of spatial scale

  6. Giant resonances in free atoms and in clusters

    International Nuclear Information System (INIS)

    Brechignac, C.; Connerade, J.P.

    1994-01-01

    A review of recent developments in the study of giant resonances in free atoms and in clusters is presented, with particular emphasis on the transition from free atoms to atoms in the condensed phase. Giant resonances in alkali and related metallic clusters due to the excitation of closed shells of delocalized electrons are also reviewed and the relation between different types of collective oscillations is discussed. (author)

  7. Giant left atrium encountered during right-sided thoracentesis

    Directory of Open Access Journals (Sweden)

    Rashmi Advani

    Full Text Available Giant left atrium is an uncommon pathology to encounter during bedside chest ultrasound, but is an important structure to be aware of when considering thoracentesis. This cardiac structure could easily be mistaken for loculated pleural fluid. This case also supports growing evidence that expert users can safely perform thoracentesis without completely reversing therapeutic anticoagulation. Keywords: Giant left atrium, Thoracentesis, Rheumatic heart disease, Ultrasound

  8. Emergency endovascular coiling of a ruptured giant splenic artery aneurysm

    Directory of Open Access Journals (Sweden)

    Erika Wernheden, MD

    2017-12-01

    Full Text Available Splenic artery aneurysms (SAAs are the third most common abdominal aneurysm. Endovascular treatment of SAAs is preferred, and coiling is the most commonly used technique. Ruptured giant (>5 cm SAAs are usually treated with open surgery including splenectomy. We present a rare case of a ruptured 15-cm giant SAA in an 84-year-old woman treated successfully with emergency endovascular coiling. To our knowledge, this is one of the few reports of emergency endovascular treatment for ruptured giant SAA.

  9. Excitation of giant resonances through inelastic scattering

    International Nuclear Information System (INIS)

    Kailas, S.

    1981-01-01

    In the last few years, exciting developments have taken place in the study of giant resonances (GR). In addition to the already well known gjant dipole resonance (GDR), the presence of at least two more new GRs viz. giant quadrupole resonance (GQR) and giant monopole resonance (GMR) has been experimentally established. The systematics covering these GRs is found to be consistent with the theoretical expectation. Though the existence of higher multipoles has been predjcted by theory, so far only some of these have been found to be excited experimentally. Various probe particles - electrons, protons (polarized and unpolarized), light and heavy ions and pions - at different bombarding energies have been used to excite the GR region, primarily through the inelastic scattering process. Detailed experiments, looking at the decay modes of GR region, have also been performed. These studies have contributed significantly to a better understanding of the phenomenon of nuclear collective excitation. In this report, the current status of 'GR' research is reviewed. (author)

  10. Gradients in giant branch morphology in the core of 47 Tucanae

    Science.gov (United States)

    Bailyn, Charles D.

    1994-01-01

    I describe an algorithm which uses the high spatial resolution of the Hubble Space Telescope to complement the high spatial-to-noise, approximately symmetric point response function, relatively large spatial coverage, and standard filters available from ground based images of crowded fields. Applying this technique to the central regions of the globular cluster 47 Tucanae, I find that the morphology of the giant branch in the core is significantly different from that in more distant regions (r approximately equals 5 to 10 core radii) of the cluster. In particular, there appear to be fewer bright giants in the core, along with an enhanced `asymptotic giant branch' (AGB) sequence. Depletion of giants has been observed in the cores of other dense clusters, and may be due to `stripping' of large stars by stellar encounters and/or mass transfer in binary systems. Central concentrations of true asymptotic giant branch stars are not expected to result from dynamical processes; possibly some of these stars may be evolved blue stragglers.

  11. Unusual giant prostatic urethral calculus | Bello | Journal of Surgical ...

    African Journals Online (AJOL)

    Giant vesico-prostatic urethral calculus is uncommon. Urethral stones rarely form primarily in the urethra, and they are usually associated with urethral strictures, posterior urethral valve or diverticula. We report a case of a 32-year-old man with giant vesico-prostatic (collar-stud) urethral stone presenting with sepsis and ...

  12. Effect of multiple plasmon excitation on single, double and multiple ionizations of C{sub 60} in collisions with fast highly charged Si ions

    Energy Technology Data Exchange (ETDEWEB)

    Kelkar, A H; Kadhane, U; Misra, D; Kumar, A; Tribedi, L C [Tata Institute of Fundamental Research, Colaba, Mumbai -5 (India)

    2007-06-28

    We have investigated the single and multiple ionizations of the C{sub 60} molecule in collisions with fast Si{sup q+} projectiles for various projectile charge states (q) between q = 6 and 14. The q-dependence of the ionization cross sections and their ratios is compared with the giant dipole plasmon resonance (GDPR) model. The excellent qualitative agreement with the model in case of single and double ionizations and also a reasonable agreement with the triple (and to some extent with quadruple) ionization (without evaporation) yields signify dominant contributions of the single-, double- and triple-plasmon excitations on the single- and multiple-ionization process.

  13. Fatal Toxoplasma gondii infection in the giant panda

    Directory of Open Access Journals (Sweden)

    2015-01-01

    Full Text Available Toxoplasma gondii can infect nearly all warm-blooded animals. We report an acute fatal T. gondii infection in the endangered giant panda (Ailuropoda melanoleuca in a zoo in China, characterized by acute gastroenteritis and respiratory symptoms. T. gondii infection was confirmed by immunological and molecular methods. Multilocus nested PCR-RFLP revealed clonal type I at the SAG1 and c29-2 loci, clonal type II at the SAG2, BTUB, GRA6, c22-8, and L358 loci, and clonal type III at the alternative SAG2 and SAG3 loci, thus, a potential new genotype of T. gondii in the giant panda. Other possible pathogens were not detected. To our knowledge, this is the first report of clinical toxoplasmosis in a giant panda.

  14. Waking the Sleeping Giant

    NARCIS (Netherlands)

    Ollenburger, Mary H.; Descheemaeker, Katrien; Crane, Todd A.; Sanogo, Ousmane M.; Giller, Ken E.

    2016-01-01

    The World Bank argued that West Africa's Guinea Savannah zone forms part of “Africa's Sleeping Giant,” where increases in agricultural production could be an engine of economic growth, through expansion of cultivated land in sparsely populated areas. The district of Bougouni, in southern Mali,

  15. Giant peritoneal loose bodies

    African Journals Online (AJOL)

    2015-03-27

    Mar 27, 2015 ... not be familiar with the entity, can potentially be confused with malignant or parasitic lesions. Familiarity with their characteristic computed tomographic ... preventing unnecessary surgical intervention in an asymptomatic patient.3,4 It is important to differentiate giant peritoneal loose bodies from lesions such ...

  16. On impact mechanics in ship collisions

    DEFF Research Database (Denmark)

    Pedersen, Preben Terndrup; Zhang, Shengming

    1998-01-01

    The purpose of this paper is to present analytical, closed-form expressions for the energy released for crushing and the impact impulse during ship collisions. Ship–ship collisions, ship collisions with rigid walls and ship collisions with flexible offshore structures are considered. The derived ...

  17. On Impact Mechanics in Ship Collisions

    DEFF Research Database (Denmark)

    Pedersen, Preben Terndrup; Zhang, Shengming

    1998-01-01

    The purpose of this paper is to present analytical, closed-form expressions for the energy released for crushing and the impact impulse during ship collisions. Ship-ship collisions, ship collisions with rigid walls and ship collisions with flexible offshore structures are considered. The derived ...

  18. Peripheral giant cell granuloma: A review of 123 cases

    Directory of Open Access Journals (Sweden)

    Niloofar Shadman

    2009-01-01

    Full Text Available Background: Peripheral giant cell granuloma is one of the reactive hyperplastic lesions of the oral cavity, which originates from the periosteum or periodontal membrane following local irritation or chronic trauma. The purpose of this study was to present the clinical characteristics of peripheral gi-ant cell granuloma in a group of Iranian population. Methods: A series of 123 consecutive confirmed cases of peripheral giant cell granuloma after biopsy were evaluated. Age, sex, anatomic location, consistency, etiologic factor, pain and bleeding history, color, surface texture, and pedicle situation were recorded and were analyzed by chi-square test and values were considered to be significant if P < 0.05. Results: Age ranged from 6 to 75 years (mean 33 years. Women affected more than men (M/F 1:1.1. Peripheral giant cell granuloma was seen in the mandible more than in the maxilla and in the anterior region more than in the posterior region. In most cases, lesions were pink, pedunculated and had non-ulcerated surface. In less than half of the cases, there was no history of bleeding and also pain was rarely reported. Calculus was the most common etiologic factor. Conclusion: The results confirmed that the clinical features of peripheral giant cell granuloma in a group of Iranian population are almost similar to those reported by other investigators.

  19. Intracavitary drainage procedure for giant bullae in compromised patients.

    Science.gov (United States)

    Verma, R K; Nishiki, M; Mukai, M; Fujii, T; Kuranishi, F; Yoshioka, S; Ohtani, M; Dohi, K

    1991-09-01

    Two cases of giant bullae were treated by intracavitary suction and drainage procedure under local anesthesia because of the poor pulmonary function. After staged bullectomy, the patients returned to normal life. The first case was admitted to our intensive care unit (ICU). Tube drainage was performed in the giant bulla of the left lung immediately after admission. One month after recovery from right heart failure and mediastinal shift to the right side, bullectomy was performed using linear stapler. The patient was discharged 20 days later. The second case was admitted with severe dyspnea and bilateral giant bullae were noticed. We performed tube drainage for larger bulla of the left lung under local anesthesia. Two months later, bullectomy was performed on the right side, because the bulla on the left side became smaller and the general condition of the patient improved. The patient was discharged three months later on foot and has since been asymptomatic. Giant bulla is a well-established clinical entity which includes abnormal dilatation of various parts of the tracheo-bronchial tree and other discrete sacs originating from the interstitial portion of the lung. Giant bullae are frequently associated with marked dyspnea and emphysematous symptoms. However, these symptoms depend upon various factors: size, location, valvular mechanism, condition of the contiguous lung parenchyma and the changes that may take place in the intrathoracic pressure.

  20. Hyper fuse: a novel inertial confinement system utilizing hypervelocity projectiles for fusion energy production and fission waste transmutation

    International Nuclear Information System (INIS)

    Makowitz, H.; Powell, J.R.; Wiswall, R.

    1979-01-01

    Parametric system studies of an inertial confinement fusion (ICF) reactor system to transmute fission products from an LWR economy have been carried out. The ICF reactors would produce net power in addition to transmuting fission products. The particular ICF concept examined is an impact fusion approach termed HYPERFUSE, in which hypervelocity pellets, traveling on the order of 100 to 300 km/sec, collide with a target in a reactor chamber and initiate a thermonuclear reaction. The DT fusion fuel is contained in a shell of the material to be transmuted, e.g., 137 Cs or 90 Sr. The 14 MeV fusion neutrons released during the pellet burn cause transmutation reactions [e.g., (n, 2n), (n, α), etc.] that convert the long lived fission products (FP's) either to stable products or to species that decay with a short half-life to a stable product

  1. Gravitational waves from cosmic bubble collisions

    International Nuclear Information System (INIS)

    Kim, Dong-Hoon; Lee, Bum-Hoon; Lee, Wonwoo; Yang, Jongmann; Yeom, Dong-han

    2015-01-01

    Cosmic bubbles are nucleated through the quantum tunneling process. After nucleation they would expand and undergo collisions with each other. In this paper, we focus in particular on collisions of two equal-sized bubbles and compute gravitational waves emitted from the collisions. First, we study the mechanism of the collisions by means of a real scalar field and its quartic potential. Then, using this model, we compute gravitational waves from the collisions in a straightforward manner. In the quadrupole approximation, time-domain gravitational waveforms are directly obtained by integrating the energy-momentum tensors over the volume of the wave sources, where the energy-momentum tensors are expressed in terms of the scalar field, the local geometry and the potential. We present gravitational waveforms emitted during (i) the initial-to-intermediate stage of strong collisions and (ii) the final stage of weak collisions: the former is obtained numerically, in full General Relativity and the latter analytically, in the flat spacetime approximation. We gain qualitative insights into the time-domain gravitational waveforms from bubble collisions: during (i), the waveforms show the non-linearity of the collisions, characterized by a modulating frequency and cusp-like bumps, whereas during (ii), the waveforms exhibit the linearity of the collisions, featured by smooth monochromatic oscillations. (orig.)

  2. Impacts of temperature on giant panda habitat in the north Minshan Mountains.

    Science.gov (United States)

    Liu, Gang; Guan, Tianpei; Dai, Qiang; Li, Huixin; Gong, Minghao

    2016-02-01

    Understanding the impacts of meteorological factors on giant pandas is necessary for future conservation measures in response to global climate change. We integrated temperature data with three main habitat parameters (elevation, vegetation type, and bamboo species) to evaluate the influence of climate change on giant panda habitat in the northern Minshan Mountains using a habitat assessment model. Our study shows that temperature (relative importance = 25.1%) was the second most important variable influencing giant panda habitat excepting the elevation. There was a significant negative correlation between temperature and panda presence (ρ = -0.133, P pandas within the study area was 18-21°C, followed by 15-17°C and 22-24°C. The overall suitability of giant panda habitats will increase by 2.7%, however, it showed a opposite variation patterns between the eastern and northwestern region of the study area. Suitable and subsuitable habitats in the northwestern region of the study area, which is characterized by higher elevation and latitude, will increase by 18007.8 hm(2) (9.8% habitat suitability), while the eastern region will suffer a decrease of 9543.5 hm(2) (7.1% habitat suitability). Our results suggest that increasing areas of suitable giant panda habitat will support future giant panda expansion, and food shortage and insufficient living space will not arise as problems in the northwest Minshan Mountains, which means that giant pandas can adapt to climate change, and therefore may be resilient to climate change. Thus, for the safety and survival of giant pandas in the Baishuijiang Reserve, we propose strengthening the giant panda monitoring program in the west and improving the integrity of habitats to promote population dispersal with adjacent populations in the east.

  3. Unilateral giant cell lesion of the jaw in Noonan syndrome.

    Science.gov (United States)

    Eyselbergs, M; Vanhoenacker, F; Hintjens, J; Dom, M; Devriendt, K; Van Dijck, H

    2014-01-01

    Noonan syndrome (NS) is an etiologically heterogeneous disorder caused by mutations in the RAS-MAPK signaling pathway. Noonan-Like/Multiple Giant Cell Lesion (NL/MGCL) syndrome is initially described as the occurrence of multiple gnathic giant cell lesions in patients with phenotypic features of NS. Nowadays, NS/MGCL syndrome is considered a variant of the NS spectrum rather than a distinct entity. We report the case of a 14-year-old female patient carrying a SOS1 mutation with a unilateral giant cell lesion of the right mandible. Cross-sectional imaging such as CT and MRI are not specific for the diagnosis of oral giant cell lesions. Nonetheless, intralesional scattered foci of low SI on T2-WI, corresponding to hemosiderin deposits due to hemorrhage, can help the radiologist in narrowing down the differential diagnosis of gnathic lesions in patients with NS.

  4. Mimivirus: leading the way in the discovery of giant viruses of amoebae.

    Science.gov (United States)

    Colson, Philippe; La Scola, Bernard; Levasseur, Anthony; Caetano-Anollés, Gustavo; Raoult, Didier

    2017-04-01

    The accidental discovery of the giant virus of amoeba - Acanthamoeba polyphaga mimivirus (APMV; more commonly known as mimivirus) - in 2003 changed the field of virology. Viruses were previously defined by their submicroscopic size, which probably prevented the search for giant viruses, which are visible by light microscopy. Extended studies of giant viruses of amoebae revealed that they have genetic, proteomic and structural complexities that were not thought to exist among viruses and that are comparable to those of bacteria, archaea and small eukaryotes. The giant virus particles contain mRNA and more than 100 proteins, they have gene repertoires that are broader than those of other viruses and, notably, some encode translation components. The infection cycles of giant viruses of amoebae involve virus entry by amoebal phagocytosis and replication in viral factories. In addition, mimiviruses are infected by virophages, defend against them through the mimivirus virophage resistance element (MIMIVIRE) system and have a unique mobilome. Overall, giant viruses of amoebae, including mimiviruses, marseilleviruses, pandoraviruses, pithoviruses, faustoviruses and molliviruses, challenge the definition and classification of viruses, and have increasingly been detected in humans.

  5. On the quantum Landau collision operator and electron collisions in dense plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Daligault, Jérôme, E-mail: daligaul@lanl.gov [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2016-03-15

    The quantum Landau collision operator, which extends the widely used Landau/Fokker-Planck collision operator to include quantum statistical effects, is discussed. The quantum extension can serve as a reference model for including electron collisions in non-equilibrium dense plasmas, in which the quantum nature of electrons cannot be neglected. In this paper, the properties of the Landau collision operator that have been useful in traditional plasma kinetic theory and plasma transport theory are extended to the quantum case. We outline basic properties in connection with the conservation laws, the H-theorem, and the global and local equilibrium distributions. We discuss the Fokker-Planck form of the operator in terms of three potentials that extend the usual two Rosenbluth potentials. We establish practical closed-form expressions for these potentials under local thermal equilibrium conditions in terms of Fermi-Dirac and Bose-Einstein integrals. We study the properties of linearized quantum Landau operator, and extend two popular approximations used in plasma physics to include collisions in kinetic simulations. We apply the quantum Landau operator to the classic test-particle problem to illustrate the physical effects embodied in the quantum extension. We present useful closed-form expressions for the electron-ion momentum and energy transfer rates. Throughout the paper, similarities and differences between the quantum and classical Landau collision operators are emphasized.

  6. On the quantum Landau collision operator and electron collisions in dense plasmas

    Science.gov (United States)

    Daligault, Jérôme

    2016-03-01

    The quantum Landau collision operator, which extends the widely used Landau/Fokker-Planck collision operator to include quantum statistical effects, is discussed. The quantum extension can serve as a reference model for including electron collisions in non-equilibrium dense plasmas, in which the quantum nature of electrons cannot be neglected. In this paper, the properties of the Landau collision operator that have been useful in traditional plasma kinetic theory and plasma transport theory are extended to the quantum case. We outline basic properties in connection with the conservation laws, the H-theorem, and the global and local equilibrium distributions. We discuss the Fokker-Planck form of the operator in terms of three potentials that extend the usual two Rosenbluth potentials. We establish practical closed-form expressions for these potentials under local thermal equilibrium conditions in terms of Fermi-Dirac and Bose-Einstein integrals. We study the properties of linearized quantum Landau operator, and extend two popular approximations used in plasma physics to include collisions in kinetic simulations. We apply the quantum Landau operator to the classic test-particle problem to illustrate the physical effects embodied in the quantum extension. We present useful closed-form expressions for the electron-ion momentum and energy transfer rates. Throughout the paper, similarities and differences between the quantum and classical Landau collision operators are emphasized.

  7. CASE REPORT: A GIANT URINARY BLADDER STONE IN A ...

    African Journals Online (AJOL)

    A vesical calculus weighing more than 100g is categorized as a giant urinary bladder stone. Male preponderance for urinary bladder calculi is well known. A rare case of a giant urinary bladder calculus weighing 1200g and occurring in a female patient is reported. The stone was removed by open vesicolithotomy.

  8. Malignant Giant Cell Tumour of Bone with Axillary Metastasis

    African Journals Online (AJOL)

    2002-06-06

    Jun 6, 2002 ... SUMMARY. Giant Cell Tumour of bone is a typically benign and solitary tumour. However, multiple lesions have been described and 5-10% of lesions may be malignant. We present a case of a malignant giant cell tumour of the distal radius with metastasis to the ipsilateral axilla (an uncommon location).

  9. Atypical visual loss in giant cell arteritis

    DEFF Research Database (Denmark)

    Thystrup, Jan Deichmann; Knudsen, G M; Mogensen, A M

    1994-01-01

    Three patients with atypical ocular involvement due to histologically verified giant cell arteritis are reported. Prior to diagnosis, the first patient had periods of amaurosis fugax. He presented with normal vision. In spite of high-dose systemic corticosteroid therapy, he became blind in the te......Three patients with atypical ocular involvement due to histologically verified giant cell arteritis are reported. Prior to diagnosis, the first patient had periods of amaurosis fugax. He presented with normal vision. In spite of high-dose systemic corticosteroid therapy, he became blind...

  10. The possibility of giant dielectric materials for multilayer ceramic capacitors.

    Science.gov (United States)

    Ishii, Tatsuya; Endo, Makoto; Masuda, Kenichiro; Ishida, Keisuke

    2013-02-11

    There have been numerous reports on discovery of giant dielectric permittivity materials called internal barrier layer capacitor in the recent years. We took particular note of one of such materials, i.e., BaTiO 3 with SiO 2 coating. It shows expressions of giant electric permittivity when processed by spark plasma sintering. So we evaluated various electrical characteristics of this material to find out whether it is applicable to multilayer ceramic capacitors. Our evaluation revealed that the isolated surface structure is the sole cause of expressions of giant dielectric permittivity.

  11. Photo association in metastable helium in the vicinity of the Bose-Einstein condensation and production of giant dimers; Photo-association de l'helium metastable au voisinage de la condensation de Bose-Einstein et formation de dimeres geants

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, J

    2003-11-15

    In the vicinity of Bose-Einstein condensation, the collisional properties of a dilute gas of metastable helium (He{sub 2}{sup 3}S) are governed by the rate of ionizing Penning collisions and the s-wave scattering length. In order to investigate these properties, we have carried out new photo-association experiments in which a pair of free atoms absorbs a photon to produce a molecule in an excited electronic state. In particular, we have observed 'giant dimers' for which the autoionizing process is inhibited. Accurate spectra have been acquired by the use of an original 'calorimetric' detection scheme. In addition, we have calculated long-range electronic potentials for the 2{sup 3} S + 2{sup 3} P system. Our asymptotic approach is described in detail, which reproduces the measured binding energies of the giant dimers with very good accuracy. (author)

  12. Electron-molecule collisions

    CERN Document Server

    Takayanagi, Kazuo

    1984-01-01

    Scattering phenomena play an important role in modern physics. Many significant discoveries have been made through collision experiments. Amongst diverse kinds of collision systems, this book sheds light on the collision of an electron with a molecule. The electron-molecule collision provides a basic scattering problem. It is scattering by a nonspherical, multicentered composite particle with its centers having degrees of freedom of motion. The molecule can even disintegrate, Le., dissociate or ionize into fragments, some or all of which may also be molecules. Although it is a difficult problem, the recent theoretical, experimental, and computational progress has been so significant as to warrant publication of a book that specializes in this field. The progress owes partly to technical develop­ ments in measurements and computations. No less important has been the great and continuing stimulus from such fields of application as astrophysics, the physics of the earth's upper atmosphere, laser physics, radiat...

  13. Infrared colours and inferred masses of metal-poor giant stars in the Keplerfield

    Science.gov (United States)

    Casey, A. R.; Kennedy, G. M.; Hartle, T. R.; Schlaufman, Kevin C.

    2018-05-01

    Intrinsically luminous giant stars in the Milky Way are the only potential volume-complete tracers of the distant disk, bulge, and halo. The chemical abundances of metal-poor giants also reflect the compositions of the earliest star-forming regions, providing the initial conditions for the chemical evolution of the Galaxy. However, the intrinsic rarity of metal-poor giants combined with the difficulty of efficiently identifying them with broad-band optical photometry has made it difficult to exploit them for studies of the Milky Way. One long-standing problem is that photometric selections for giant and/or metal-poor stars frequently include a large fraction of metal-rich dwarf contaminants. We re-derive a giant star photometric selection using existing public g-band and narrow-band DDO51photometry obtained in the Keplerfield. Our selection is simple and yields a contamination rate of main-sequence stars of ≲1% and a completeness of about 80 % for giant stars with Teff ≲ 5250 K - subject to the selection function of the spectroscopic surveys used to estimate these rates, and the magnitude range considered (11 ≲ g ≲ 15). While the DDO51filter is known to be sensitive to stellar surface gravity, we further show that the mid-infrared colours of DDO51-selected giants are strongly correlated with spectroscopic metallicity. This extends the infrared metal-poor selection developed by Schlaufman & Casey, demonstrating that the principal contaminants in their selection can be efficiently removed by the photometric separation of dwarfs and giants. This implies that any similarly efficient dwarf/giant discriminant (e.g., Gaiaparallaxes) can be used in conjunction with WISEcolours to select samples of giant stars with high completeness and low contamination. We employ our photometric selection to identify three metal-poor giant candidates in the Keplerfield with global asteroseismic parameters and find that masses inferred for these three stars using standard

  14. Strangeness in nuclear collisions

    International Nuclear Information System (INIS)

    Gazdzicki, M.; Roehrich, D.

    1996-01-01

    Data on the mean multiplicity of strange hadrons produced in minimum bias proton-proton and central nucleus-nucleus collisions at momenta between 2.8 and 400 GeV/c per nucleon have been compiled. The multiplicities for nucleon-nucleon interactions were constructed. The ratios of strange particle multiplicity to participant nucleon as well as to pion multiplicity are larger for central nucleus-nucleus collisions than for nucleon-nucleon interactions at all studied energies. The data at AGS energies suggest that the latter ratio saturates with increasing masses of the colliding nuclei. The strangeness to pion multiplicity ratio observed in nucleon-nucleon interactions increases with collision energy in the whole energy range studied. A qualitatively different behaviour is observed for central nucleus-nucleus collisions: the ratio rapidly increases when going from Dubna to AGS energies and changes little between AGS and SPS energies. This change in the behaviour can be related to the increase in the entropy production observed in central nucleus-nucleus collisions at the same energy range. The results are interpreted within a statistical approach. They are consistent with the hypothesis that the quark gluon plasma is created at SPS energies, the critical collision energy being between AGS and SPS energies. (orig.)

  15. Collision-produced atomic states

    International Nuclear Information System (INIS)

    Andersen, N.; Copenhagen Univ.

    1988-01-01

    The last 10-15 years have witnessed the development of a new, powerful class of experimental techniques for atomic collision studies, allowing partial or complete determination of the state of the atoms after a collision event, i.e. the full set of quantum-mechanical scattering amplitudes or - more generally - the density matrix describing the system. Evidently, such studies, involving determination of alignment and orientation parameters, provide much more severe tests of state-of-the-art scattering theories than do total or differential cross section measurements which depend on diagonal elements of the density matrix. The off-diagonal elements give us detailed information about the shape and dynamics of the atomic states. Therefore, close studies of collision-produced atomic states are currently leading to deeper insights into the fundamental physical mechanisms governing the dynamics of atomic collision events. The first part of the lectures deals with the language used to describe atomic states, while the second part presents a selection of recent results for model systems which display fundamental aspects of the collision physics in particularly instructive ways. I shall here restrict myself to atom-atom collisions. The discussion will be focused on states decaying by photon emission though most of the ideas can be easily modified to include electron emission as well. (orig./AH)

  16. Section of Atomic Collisions

    International Nuclear Information System (INIS)

    Berenyi, D.; Biri, S.; Gulyas, L.; Juhasz, Z.; Kover, A.; Orban, A.; Palinkas, J.; Papp, T.; Racz, R.; Ricz, S.

    2009-01-01

    The Section of Atomic Collisions is a research unit with extended activity in the field of atomic and molecular physics. Starting from the study of atomic processes at the beamlines of nuclear physics accelerators in the seventies, our research community became one of the centers of fundamental research in Atomki. We also have a strong connection to materials sciences especially along the line of electron and ion spectroscopy methods. Our present activity covers a wide range of topics from atomic collision mechanisms of fundamental interest, to the complex interactions of electrons, ions, photons and antiparticles with atoms, molecules, surfaces, and specific nanostructures. In the last few years, an increasing fraction of our present topics has become relevant for applications, e.g., molecular collision studies for the radiation therapy methods of tumors, or ion-nanostructure interactions for the future construction of small ion-focusing elements. Our section belongs to the Division of Atomic Physics. The other unit of the Division is the Section of Electron Spectroscopy and Materials Sciences. There are traditionally good connections and a strong collaboration between the groups of the two sections in many fields. From the very beginning of our research work in atomic collisions, external collaborations were of vital importance for us. We regularly organize international workshops in the field of fast ion-atom collisions and related small conferences in Debrecen from 1981. Recently, we organized the Conference on Radiation Damage in Biomolecular Systems (RADAM 2008, Debrecen), and coorganized the Conference on Elementary Processes in Atomic Systems (CEPAS 2008, Cluj). We have access to several large scale facilities in Europe within the framework of formal and informal collaborations. The next themes are in this article: Forward electron emission from energetic atomic collisions; Positron-atom collisions; Photon-atom interactions; Interference effects in electron

  17. Factors affecting genotyping success in giant panda fecal samples.

    Science.gov (United States)

    Zhu, Ying; Liu, Hong-Yi; Yang, Hai-Qiong; Li, Yu-Dong; Zhang, He-Min

    2017-01-01

    Fecal samples play an important role in giant panda conservation studies. Optimal preservation conditions and choice of microsatellites for giant panda fecal samples have not been established. In this study, we evaluated the effect of four factors (namely, storage type (ethanol (EtOH), EtOH -20 °C, 2-step storage medium, DMSO/EDTA/Tris/salt buffer (DETs) and frozen at -20 °C), storage time (one, three and six months), fragment length, and repeat motif of microsatellite loci) on the success rate of microsatellite amplification, allelic dropout (ADO) and false allele (FA) rates from giant panda fecal samples. Amplification success and ADO rates differed between the storage types. Freezing was inferior to the other four storage methods based on the lowest average amplification success and the highest ADO rates ( P panda fecal preservation in microsatellite studies, and EtOH and the 2-step storage medium should be chosen on priority for long-term storage. We recommend candidate microsatellite loci with longer repeat motif to ensure greater genotyping success for giant panda fecal studies.

  18. Magnetic fields in starspots on late-type giants

    International Nuclear Information System (INIS)

    Jahn, K.

    1985-01-01

    Computations of models of magnetic starspots on cool active giants show that the value of the magnetic intensity in spots is generally of the order of one kilogauss, although in larger spots the field can be as weak as a few hundred gauss. It is also argued, that spots on giants qualitatively differ from those on late-type dwarfs, since they cannot be too large. The largest individual spots can cover at most about one percent of a stellar hemisphere. This is in a very good agreement with earlier suggestions based on observations of spotted giants. The assumption that spots are the regions of the strongest magnetic field allows to discuss recent attempts of detection of the magnetic field on late-type giants. Polarimetric measurements most probably cannot be successful, due to a small field strength and a complex topology of the field. It is shown that even if a whole surface was covered by spots with relatively strong field, the resulting not longitudinal field would be as weak as a few gauss. Also methods independent of polarimetric measurements, based on the analysis of Zeeman broadening, generally are not sensitive enough to detect the magnetic field on giants, even in spots. λ And is discussed as an example. The comparison of models of spots computed for that stars with photometric observations suggests, that a dark region on λ And consists of hundreds of small spots (each of them smaller than about 0.1% of the hemisphere), in which the magnetic intensity cannot exceed about 900 gauss, and most probably is even smaller. 23 refs., 4 figs., 4 tabs. (author)

  19. Giant magnons under NS-NS and Melvin fields

    International Nuclear Information System (INIS)

    Huang, W.-H.

    2006-01-01

    The giant magnon is a rotating spiky string configuration which has the same dispersion relation between the energy and angular momentum as that of a spin magnon. In this paper we investigate the effects of the NS-NS and Melvin fields on the giant magnon. We first analyze the energy and angular momenta of the two-spin spiky D-string moving on the AdS 3 x S 1 with the NS-NS field. Due to the infinite boundary of the AdS spacetime the D-string solution will extend to infinity and it appears the divergences. After adding the counter terms we obtain the dispersion relation of the corresponding giant magnon. The result shows that there will appear a prefactor before the angular momentum, in addition to some corrections in the sine function. We also see that the spiky profile of a rotating D-string plays an important role in mapping it to a spin magnon. We next investigate the energy and angular momentum of the one-spin spiky fundamental string moving on the R x S 2 with the electric or magnetic Melvin field. The dispersion relation of the corresponding deformed giant magnon is also obtained. We discuss some properties of the correction terms and their relations to the spin chain with deformations

  20. Breast carcinoma with osteoclast-like giant cells

    DEFF Research Database (Denmark)

    Gjerdrum, L M; Lauridsen, M C; Sørensen, Flemming Brandt

    2001-01-01

    Primary carcinoma with osteoclast-like giant cells is a very rare tumour of the female breast. The clinical course, histological, immunohistochemical and ultrastructural features of 61 cases of invasive duct carcinoma with osteoclast-like multinucleated giant cells (OMGCs) are reviewed and a new...... in the literature have shown that 86% of patients with these tumours are still alive after 5 years. Histologically, these tumours are invasive ductal carcinomas with OMGCs next to the neoplastic glands and within their lumen. Signs of recent and past haemorrhage are ubiquitously present in the highly vascularized...

  1. Standard globular cluster giant branches in the (MI/V-IO) plane

    International Nuclear Information System (INIS)

    Da Costa, G.S.; Armandroff, T.E.

    1990-01-01

    CCD photometry in the V, I (Cousins) bandpasses is presented for a large number of giants in eight galactic globular clusters. The (V-I) O color of the giant branch accurately ranks clusters in metal abundance, and can accordingly be used to ascertain both metal abundances and abundance dispersions in old stellar populations. A relation is derived that yields the bolometric correction to the I magnitude for red giants as a function of (V-I) O color. With this relation, and the assumption of the LDZ distance scale, the bolometric magnitudes of the brightest red giants in the clusters were determined; good agreement is obtained with the predictions of stellar evolution theory for the luminosity of the He core flash. 63 refs

  2. Fatal Toxoplasma gondii infection in the giant panda.

    Science.gov (United States)

    Ma, Hongyu; Wang, Zedong; Wang, Chengdong; Li, Caiwu; Wei, Feng; Liu, Quan

    2015-01-01

    Toxoplasma gondii can infect nearly all warm-blooded animals. We report an acute fatal T. gondii infection in the endangered giant panda (Ailuropoda melanoleuca) in a zoo in China, characterized by acute gastroenteritis and respiratory symptoms. T. gondii infection was confirmed by immunological and molecular methods. Multilocus nested PCR-RFLP revealed clonal type I at the SAG1 and c29-2 loci, clonal type II at the SAG2, BTUB, GRA6, c22-8, and L358 loci, and clonal type III at the alternative SAG2 and SAG3 loci, thus, a potential new genotype of T. gondii in the giant panda. Other possible pathogens were not detected. To our knowledge, this is the first report of clinical toxoplasmosis in a giant panda. © H. Ma et al., published by EDP Sciences, 2015.

  3. Giant fibroadenoma presenting like fungating breast cancer in a ...

    African Journals Online (AJOL)

    Background: Giant fibroadenoma of the breast is a rare benign breast tumour which seldom grows to a giant size, it is even rarer for this benign tumour to grow rapidly, ulcerate spontaneously and present like a fungating breast tumour in a way mimicking breast cancer. Case presentation: This is a presentation of a 14 year ...

  4. from the Giant Panda

    African Journals Online (AJOL)

    STORAGESEVER

    2009-06-03

    Jun 3, 2009 ... 1College of Life Science, China West Normal University, 44# Yuying Road, 637002, Nanchong, China. 2Zhan Jiang educational ... in Escherichia coli and the RPS28 protein fusioned with the N-terminally GST -tagged protein gave rise ... long Conservation Center of the Giant Panda, Sichuan, China. The.

  5. Collision-induced destructive quantum interference

    International Nuclear Information System (INIS)

    Yang Xihua; Sun Zhenrong; Zhang Shi'an; Ding Liang'en; Wang Zugeng

    2005-01-01

    We conduct theoretical studies on the collision-induced destructive quantum interference of two-colour two-photon transitions in an open rhomb-type five-level system with a widely separated doublet by the density matrix approach. The effects of the collision-induced decay rates, the ratio of the transition dipole moments and the energy separation of the doublet on the interference are analysed. It is shown that a narrow dip appears in the excitation spectrum due to the collision-induced destructive interference, and that the narrow interference dip still exists even when the collision broadening is comparable to the energy separation of the doublet. The physical origin of the collision-induced destructive quantum interference is analysed in the dressed-atom picture

  6. Giant SEPs and SEP-recovery function in Unverricht-Lundborg disease.

    Science.gov (United States)

    Visani, E; Canafoglia, L; Rossi Sebastiano, D; Agazzi, P; Panzica, F; Scaioli, V; Ciano, C; Franceschetti, S

    2013-05-01

    To evaluate the relationship between sensory hyperexcitability as revealed by giant SEPs and the SEP recovery function (SEP-R) in a series of patient with progressive myoclonic epilepsy of Unverricht-Lundborg type, identified as epilepsy, progressive myoclonic 1A (EPM1A), MIM #254800. We evaluated SEPs by applying median nerve stimuli and SEP-R using paired stimuli at inter-stimulus intervals (ISIs) of between 20 and 600 ms in 25 patients and 20 controls. The SEPs were considered "giant" if the N20P25 and P25N33 amplitudes exceeded normal mean values by +3SD. During the paired-stimulus protocol, the SEPs elicited by the second stimulus (S2) were detectable at all ISIs but consistently suppressed in the 13 patients with giant SEPs reflecting a significantly delayed SEP-R. Maximal suppression roughly corresponded to the plateau of a broad middle latency (>100 ms) wave pertaining to the S1 response. The cortical processing dysfunction generating giant SEPs in EPM1A patients consistently combines with a long-lasting suppression of hyperexcitability that leads to a delayed giant SEP-R without obstructing the response to incoming stimuli. The delayed SEP-R is not due to true inhibition but the suppression of aberrant hyper-synchronisation sustaining giant SEPs. A broad middle latency SEP component adds a significantly suppressive effect. This suggests that cortico-subcortical circuitries contribute to both the gigantism and the delayed SEP-R. Copyright © 2012 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  7. The first skull of the earliest giant panda

    OpenAIRE

    Jin, Changzhu; Dong, Wei; Hunt, Jr., Robert M.; Liu, Jinyi; Jaeger, Marc; Zhu, Qizhi

    2007-01-01

    Fossils of the giant panda Ailuropoda (Order Carnivora, Family Ursidae) are largely isolated teeth, mandibles, and a few rare skulls, known from the late Pliocene to late Pleistocene in China and Southeast Asia. Much of this material represents a Pleistocene chronospecies, Ailuropoda baconi, an animal larger than the living giant panda, Ailuropoda melanoleuca. The earliest certain record of Ailuropoda is the late Pliocene chronospecies, Ailuropoda microta, smaller than either A. baconi or A. ...

  8. New results on multiple excitations of giant resonances

    International Nuclear Information System (INIS)

    Mordechai, S.; Texas Univ., Austin, TX; Moore, C.F.

    1993-01-01

    Exotic excitations like the double giant dipole were predicted for many years but not observed experimentally until recently. Several experiments have been carried out at Los Alamos National laboratory to search for these new collective modes of the nucleus. The results discover two previously unobserved types of double giant resonances. This work presents the recent pion double charge exchange data and the analysis that support the existence of two such exotic vibrational nuclear modes

  9. Giant cell granuloma of the maxilla - a case report and review of the literature

    International Nuclear Information System (INIS)

    Setubal, Roger; Menezes, Benedito; Carvalho, Marcos Brasilino de; Soares, Aldemir Humberto; Souza, Ricardo Pires de

    1997-01-01

    Giant cell granuloma is an uncommon lesion of the giant cell lesion's group, which includes brown tumor of hyperparathyroidism, true giant cell tumor, cherubism and aneurysmal bone cyst. their histologic features are very similar and make certain types indistinguishable from each other, remaining a considerable controversy on its classification. The authors report a case of giant cell maxillary granuloma and makes a review of the literature. (author)

  10. Ecology of litterfall production of giant bamboo Dendrocalamus asper in a watershed area

    Directory of Open Access Journals (Sweden)

    A.G. Toledo Bruno

    2017-12-01

    Full Text Available Giant bamboo Dendrocalamus asper is recommended in environmental and livelihood programs in the Philippines due to its various ecological, economic and social benefits. However, there are limited data on the ecology of giant bamboo litterfall production, which contributes to soil nutrient availability. Bamboo also contributed in carbon sequestration. The study was conducted within the Taganibong Watershed in Bukidnon, Philippines. Nine litterfall traps measuring 1mx1m were established within the giant bamboo stand in the study area. Results show that giant bamboo litterfall is dominated by leaves. Biological characteristics of bamboo litterfall do no not influence litterfall production but temperature, wind speed and humidity correlate with the amount of litterfall. Findings of the study further revealed that fresh giant bamboo tissue contains high carbon content and the soil in the bamboo stand has higher organic matter than the open clearing. These data indicate the role of giant bamboo in carbon sequestration and soil nutrient availability.

  11. DEEP MIXING IN EVOLVED STARS. II. INTERPRETING Li ABUNDANCES IN RED GIANT BRANCH AND ASYMPTOTIC GIANT BRANCH STARS

    International Nuclear Information System (INIS)

    Palmerini, S.; Busso, M.; Maiorca, E.; Cristallo, S.; Abia, C.; Uttenthaler, S.; Gialanella, L.

    2011-01-01

    We reanalyze the problem of Li abundances in red giants of nearly solar metallicity. After outlining the problems affecting our knowledge of the Li content in low-mass stars (M ≤ 3 M sun ), we discuss deep-mixing models for the red giant branch stages suitable to account for the observed trends and for the correlated variations of the carbon isotope ratio; we find that Li destruction in these phases is limited to masses below about 2.3 M sun . Subsequently, we concentrate on the final stages of evolution for both O-rich and C-rich asymptotic giant branch (AGB) stars. Here, the constraints on extra-mixing phenomena previously derived from heavier nuclei (from C to Al), coupled to recent updates in stellar structure models (including both the input physics and the set of reaction rates used), are suitable to account for the observations of Li abundances below A(Li) ≡ log ε(Li) ≅ 1.5 (and sometimes more). Also, their relations with other nucleosynthesis signatures of AGB phases (like the abundance of F, and the C/O and 12 C/ 13 C ratios) can be explained. This requires generally moderate efficiencies (M-dot -6 M sun yr -1 ) for non-convective mass transport. At such rates, slow extra mixing does not remarkably modify Li abundances in early AGB phases; on the other hand, faster mixing encounters a physical limit in destroying Li, set by the mixing velocity. Beyond this limit, Li starts to be produced; therefore, its destruction on the AGB is modest. Li is then significantly produced by the third dredge up. We also show that effective circulation episodes, while not destroying Li, would easily bring the 12 C/ 13 C ratios to equilibrium, contrary to the evidence in most AGB stars, and would burn F beyond the limits shown by C(N) giants. Hence, we do not confirm the common idea that efficient extra mixing drastically reduces the Li content of C stars with respect to K-M giants. This misleading appearance is induced by biases in the data, namely: (1) the difficulty

  12. A Collective Collision Operator for DSMC

    International Nuclear Information System (INIS)

    Gallis, Michail A.; Torczynski, John R.

    2000-01-01

    A new scheme to simulate elastic collisions in particle simulation codes is presented. The new scheme aims at simulating the collisions in the highly collisional regime, in which particle simulation techniques typically become computationally expensive.The new scheme is based on the concept of a grid-based collision field. According to this scheme, the particles perform a single collision with the background grid during a time step. The properties of the background field are calculated from the moments of the distribution function accumulated on the grid. The collision operator is based on the Langevin equation. Based on comparisons with other methods, it is found that the Langevin method overestimates the collision frequency for dilute gases

  13. The magnetic fields at the surface of active single G-K giants

    Science.gov (United States)

    Aurière, M.; Konstantinova-Antova, R.; Charbonnel, C.; Wade, G. A.; Tsvetkova, S.; Petit, P.; Dintrans, B.; Drake, N. A.; Decressin, T.; Lagarde, N.; Donati, J.-F.; Roudier, T.; Lignières, F.; Schröder, K.-P.; Landstreet, J. D.; Lèbre, A.; Weiss, W. W.; Zahn, J.-P.

    2015-02-01

    Aims: We investigate the magnetic field at the surface of 48 red giants selected as promising for detection of Stokes V Zeeman signatures in their spectral lines. In our sample, 24 stars are identified from the literature as presenting moderate to strong signs of magnetic activity. An additional 7 stars are identified as those in which thermohaline mixing appears not to have occured, which could be due to hosting a strong magnetic field. Finally, we observed 17 additional very bright stars which enable a sensitive search to be performed with the spectropolarimetric technique. Methods: We use the spectropolarimeters Narval and ESPaDOnS to detect circular polarization within the photospheric absorption lines of our targets. We treat the spectropolarimetric data using the least-squares deconvolution method to create high signal-to-noise ratio mean Stokes V profiles. We also measure the classical S-index activity indicator for the Ca ii H&K lines, and the stellar radial velocity. To infer the evolutionary status of our giants and to interpret our results, we use state-of-the-art stellar evolutionary models with predictions of convective turnover times. Results: We unambiguously detect magnetic fields via Zeeman signatures in 29 of the 48 red giants in our sample. Zeeman signatures are found in all but one of the 24 red giants exhibiting signs of activity, as well as 6 out of 17 bright giant stars. However no detections were obtained in the 7 thermohaline deviant giants. The majority of the magnetically detected giants are either in the first dredge up phase or at the beginning of core He burning, i.e. phases when the convective turnover time is at a maximum: this corresponds to a "magnetic strip" for red giants in the Hertzsprung-Russell diagram. A close study of the 16 giants with known rotational periods shows that the measured magnetic field strength is tightly correlated with the rotational properties, namely to the rotational period and to the Rossby number Ro

  14. Neuromorphic UAS Collision Avoidance

    Data.gov (United States)

    National Aeronautics and Space Administration — Collision avoidance for unmanned aerial systems (UAS) traveling at high relative speeds is a challenging task. It requires both the detection of a possible collision...

  15. Two-dimensional computer simulation of hypervelocity impact cratering: some preliminary results for Meteor Crater, Arizona

    International Nuclear Information System (INIS)

    Bryan, J.B.; Burton, D.E.; Cunningham, M.E.; Lettis, L.A. Jr.

    1978-04-01

    A computational approach used for subsurface explosion cratering has been extended to hypervelocity impact cratering. Meteor (Barringer) Crater, Arizona, was selected for our first computer simulation because it was the most thoroughly studied. It is also an excellent example of a simple, bowl-shaped crater and is one of the youngest terrestrial impact craters. Shoemaker estimates that the impact occurred about 20,000 to 30,000 years ago [Roddy (1977)]. Initial conditions for this calculation included a meteorite impact velocity of 15 km/s. meteorite mass of 1.57E + 08 kg, with a corresponding kinetic energy of 1.88E + 16 J (4.5 megatons). A two-dimensional Eulerian finite difference code called SOIL was used for this simulation of a cylindrical iron projectile impacting at normal incidence into a limestone target. For this initial calculation a Tillotson equation-of-state description for iron and limestone was used with no shear strength. A color movie based on this calculation was produced using computer-generated graphics. Results obtained for this preliminary calculation of the formation of Meteor Crater, Arizona, are in good agreement with Meteor Crater Measurements

  16. Use of flow-diverting devices in fusiform vertebrobasilar giant aneurysms

    DEFF Research Database (Denmark)

    Ertl, L; Holtmannspötter, M; Patzig, M

    2014-01-01

    BACKGROUND AND PURPOSE: Fusiform vertebrobasilar giant aneurysms are a rare (... and imaging follow-up. In this article, we present our experience with the treatment of fusiform vertebrobasilar giant aneurysms by flow diverting stents. We aim to stimulate a discussion of the best management paradigm for this challenging aneurysm subtype. MATERIALS AND METHODS: We retrospectively...... identified 6 patients with fusiform vertebrobasilar giant aneurysms who had been treated with flow-diverting stents between October 2009 and March 2012 in our center. The available data were re-evaluated. The modified Rankin Scale score was assessed before intervention, during the stay in hospital...

  17. The Lushan earthquake and the giant panda: impacts and conservation.

    Science.gov (United States)

    Zhang, Zejun; Yuan, Shibin; Qi, Dunwu; Zhang, Mingchun

    2014-06-01

    Earthquakes not only result in a great loss of human life and property, but also have profound effects on the Earth's biodiversity. The Lushan earthquake occurred on 20 Apr 2013, with a magnitude of 7.0 and an intensity of 9.0 degrees. A distance of 17.0 km from its epicenter to the nearest distribution site of giant pandas recorded in the Third National Survey was determined. Making use of research on the Wenchuan earthquake (with a magnitude of 8.0), which occurred approximately 5 years ago, we briefly analyze the impacts of the Lushan earthquake on giant pandas and their habitat. An earthquake may interrupt ongoing behaviors of giant pandas and may also cause injury or death. In addition, an earthquake can damage conservation facilities for pandas, and result in further habitat fragmentation and degradation. However, from a historical point of view, the impacts of human activities on giant pandas and their habitat may, in fact, far outweigh those of natural disasters such as earthquakes. Measures taken to promote habitat restoration and conservation network reconstruction in earthquake-affected areas should be based on requirements of giant pandas, not those of humans. © 2013 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and Wiley Publishing Asia Pty Ltd.

  18. Characterization of Oribtal Debris via Hyper-Velocity Ground-Based Tests

    Science.gov (United States)

    Cowardin, H.

    2015-01-01

    Existing DoD and NASA satellite breakup models are based on a key laboratory-based test, Satellite Orbital debris Characterization Impact Test (SOCIT), which has supported many applications and matched on-orbit events involving older satellite designs reasonably well over the years. In order to update and improve the break-up models and the NASA Size Estimation Model (SEM) for events involving more modern satellite designs, the NASA Orbital Debris Program Office has worked in collaboration with the University of Florida to replicate a hypervelocity impact using a satellite built with modern-day spacecraft materials and construction techniques. The spacecraft, called DebriSat, was intended to be a representative of modern LEO satellites and all major designs decisions were reviewed and approved by subject matter experts at Aerospace Corporation. DebriSat is composed of 7 major subsystems including attitude determination and control system (ADCS), command and data handling (C&DH), electrical power system (EPS), payload, propulsion, telemetry tracking and command (TT&C), and thermal management. To reduce cost, most components are emulated based on existing design of flight hardware and fabricated with the same materials. All fragments down to 2 mm is size will be characterized via material, size, shape, bulk density, and the associated data will be stored in a database for multiple users to access. Laboratory radar and optical measurements will be performed on a subset of fragments to provide a better understanding of the data products from orbital debris acquired from ground-based radars and telescopes. The resulting data analysis from DebriSat will be used to update break-up models and develop the first optical SEM in conjunction with updates into the current NASA SEM. The characterization of the fragmentation will be discussed in the subsequent presentation.

  19. Topics in atomic collision theory

    CERN Document Server

    Geltman, Sydney; Brueckner, Keith A

    1969-01-01

    Topics in Atomic Collision Theory originated in a course of graduate lectures given at the University of Colorado and at University College in London. It is recommended for students in physics and related fields who are interested in the application of quantum scattering theory to low-energy atomic collision phenomena. No attention is given to the electromagnetic, nuclear, or elementary particle domains. The book is organized into three parts: static field scattering, electron-atom collisions, and atom-atom collisions. These are in the order of increasing physical complexity and hence necessar

  20. DebriSat - A Planned Laboratory-Based Satellite Impact Experiment for Breakup Fragment Characterizations

    Science.gov (United States)

    Liou, Jer-Chyi; Clark, S.; Fitz-Coy, N.; Huynh, T.; Opiela, J.; Polk, M.; Roebuck, B.; Rushing, R.; Sorge, M.; Werremeyer, M.

    2013-01-01

    The goal of the DebriSat project is to characterize fragments generated by a hypervelocity collision involving a modern satellite in low Earth orbit (LEO). The DebriSat project will update and expand upon the information obtained in the 1992 Satellite Orbital Debris Characterization Impact Test (SOCIT), which characterized the breakup of a 1960 s US Navy Transit satellite. There are three phases to this project: the design and fabrication of DebriSat - an engineering model representing a modern, 60-cm/50-kg class LEO satellite; conduction of a laboratory-based hypervelocity impact to catastrophically break up the satellite; and characterization of the properties of breakup fragments down to 2 mm in size. The data obtained, including fragment size, area-to-mass ratio, density, shape, material composition, optical properties, and radar cross-section distributions, will be used to supplement the DoD s and NASA s satellite breakup models to better describe the breakup outcome of a modern satellite.

  1. Collective motion and giant resonances

    International Nuclear Information System (INIS)

    Wilhelmi, Z.; Kicinska-Habior, M.

    1984-01-01

    The report contains 15 papers devoted to problems of giant collective excitations of nuclei, heavy-ion induced reactions and their bearing on various aspects of nuclear structure. In some of them the numerical data are given. (A.S.)

  2. Giant abdominal cystic lymphangioma

    International Nuclear Information System (INIS)

    Vazquez, V.; Florencio, I.; Boluda, F.

    1996-01-01

    We present a case of giant abdominal cystic lymphangioma in a 10-year-old boy. Despite numerous consultations with physicians to identify the underlying problem, it had originally been attributed to ascites of unknown cause. We review the characteristics of this lesion and the diagnostic features that aid in differentiating it from ascites

  3. Further Insight on the Hypervelocity White Dwarf, LP 40–365 (GD 492): A Nearby Emissary from a Single-degenerate Type Ia Supernova

    Science.gov (United States)

    Raddi, R.; Hollands, M. A.; Koester, D.; Gänsicke, B. T.; Gentile Fusillo, N. P.; Hermes, J. J.; Townsley, D. M.

    2018-05-01

    The recently discovered hypervelocity white dwarf LP 40‑365 (aka GD 492) has been suggested as the outcome of the failed disruption of a white dwarf in a subluminous Type Ia supernova (SN Ia). We present new observations confirming GD 492 as a single star with unique spectral features. Our spectroscopic analysis suggests that a helium-dominated atmosphere, with ≃33% neon and 2% oxygen by mass, can reproduce most of the observed properties of this highly unusual star. Although our atmospheric model contrasts with the previous analysis in terms of dominant atmospheric species, we confirm that the atmosphere of GD 492 is strongly hydrogen deficient, {log}({{H}}/{He})Ia event over alternative scenarios.

  4. Operational durability of a giant ER valve for Braille display

    Science.gov (United States)

    Luning, Xu; Han, Li; Yufei, Li; Shen, Rong; Kunquan, Lu

    2017-05-01

    The compact configuration of giant ER (electrorheological) valves provides the possibility of realizing a full-page Braille display. The operational durability of ER valves is a key issue in fulfilling a Braille display. A giant ER valve was used to investigate the variations in pressure drops and critical pressure drops of the valves over a long period under some typical operational parameters. The results indicate that neither the pressure drops nor critical pressure drops of giant ER valves show apparent deterioration over a long period. Without ER fluid exchange, a blockage appears in the channel of the valve because the ER structures induced by an external electric field cannot be broken by the Brownian motion of hydraulic oil molecules when the external electric field is removed. Forcing ER fluid flow is an effective and necessary method to keep the channel of the valve unblocked. Thus the operational durability of the valve using giant ER fluids is able to meet the demands of Braille display.

  5. A new abdominal wall reconstruction strategy for giant omphalocele

    Directory of Open Access Journals (Sweden)

    Yoshiaki Takahashi

    2018-04-01

    Full Text Available The mortality rate of giant omphalocele has improved; however long-term follow-up has revealed umbilical defects and deformities after primary closure. We herein report the efficacy of a new abdominal wall reconstruction strategy combining a component separation technique with delayed natural and deep umbilicoplasty. Keywords: Giant omphalocele, Component separation technique, Delayed natural and deep umbilicoplasty, Abdominal wall defect

  6. PLANETS AROUND THE K-GIANTS BD+20 274 AND HD 219415

    International Nuclear Information System (INIS)

    Gettel, S.; Wolszczan, A.; Niedzielski, A.; Nowak, G.; Adamów, M.; Zieliński, P.; Maciejewski, G.

    2012-01-01

    We present the discovery of planet-mass companions to two giant stars by the ongoing Penn State-Toruń Planet Search conducted with the 9.2 m Hobby-Eberly Telescope. The less massive of these stars, K5-giant BD+20 274, has a 4.2 M J minimum mass planet orbiting the star at a 578 day period and a more distant, likely stellar-mass companion. The best currently available model of the planet orbiting the K0-giant HD 219415 points to a ∼> Jupiter-mass companion in a 5.7 year, eccentric orbit around the star, making it the longest period planet yet detected by our survey. This planet has an amplitude of ∼18 m s –1 , comparable to the median radial velocity 'jitter', typical of giant stars.

  7. Giant lipomas of the hand

    Directory of Open Access Journals (Sweden)

    Gokce Yildiran

    2015-04-01

    Conclusion: Giant lipomas of the hand are very rare and may cause compressions and other complications. Thus, they require a careful preoperative evaluation in order to make a proper differential diagnosis. [Hand Microsurg 2015; 4(1.000: 8-11

  8. Habitat assessment for giant pandas in the Qinling Mountain region of China

    Science.gov (United States)

    Feng, Tian-Tian; Van Manen, Frank T.; Zhao, Na-Xun; Li, Ming; Wei, Fu-Wen

    2009-01-01

    Because habitat loss and fragmentation threaten giant pandas (Ailuropoda melanoleuca), habitat protection and restoration are important conservation measures for this endangered species. However, distribution and value of potential habitat to giant pandas on a regional scale are not fully known. Therefore, we identified and ranked giant panda habitat in Foping Nature Reserve, Guanyinshan Nature Reserve, and adjacent areas in the Qinling Mountains of China. We used Mahalanobis distance and 11 digital habitat layers to develop a multivariate habitat signature associated with 247 surveyed giant panda locations, which we then applied to the study region. We identified approximately 128 km2 of giant panda habitat in Foping Nature Reserve (43.6% of the reserve) and 49 km2 in Guanyinshan Nature Reserve (33.6% of the reserve). We defined core habitat areas by incorporating a minimum patch-size criterion (5.5 km2) based on home-range size. Percentage of core habitat area was higher in Foping Nature Reserve (41.8% of the reserve) than Guanyinshan Nature Reserve (26.3% of the reserve). Within the larger analysis region, Foping Nature Reserve contained 32.7% of all core habitat areas we identified, indicating regional importance of the reserve. We observed a negative relationship between distribution of core areas and presence of roads and small villages. Protection of giant panda habitat at lower elevations and improvement of habitat linkages among core habitat areas are important in a regional approach to giant panda conservation.

  9. Radiations from atomic collision processes

    International Nuclear Information System (INIS)

    Bernyi, D.

    1994-01-01

    The physics of atomic collision phenomena in which only the Coulomb forces have a role is an actual field or the research of the present days. The impact energy range in these collisions is very broad,it extends from the eV or even lower region to the GeV region or higher,i.e. it spans the region of three branches of physics,namely that of the atomic,the nuclear and the particle physics.To describe and explain the collision processes themselves, different models (collision mechanisms) are used and they are surveyed in the presentation. Different electromagnetic radiations and particles are emitted from the collision processes.Their features are shown in details together with the most important methods in their detection and study.Examples are given based on the literature and on the investigations of the author and his coworkers. The applications of the radiation from atomic collisions in other scientific fields and in the solution of different practical problems are also surveyed shortly. 16 figs., 2 tabs., 76 refs. (author)

  10. Changes of foraging patch selection and utilization by a giant panda after bamboo flowering.

    Science.gov (United States)

    Li, Guochun; Song, Huadong; Altigani, Latifa A A; Zheng, Xueli; Bu, Shuhai

    2017-07-01

    The bamboo flowering leads to the habitat fragmentation and food quality decline of a giant panda. Few empirical research has been conducted about the giant panda's response to the bamboo flowering. Here, we investigated the characteristics of bamboo stands, giant panda's activity, and selection and utilization of bamboo stands by giant panda in Taibaishan National Nature Reserve, China, over a 3-year period (September 2013-May 2016) during the Fargesia qinlingensis flowering period. Our results indicated that the proportion of whole bamboo stands flowering has gradually expanded from 26.7% in 2013 and 33.9% in 2014 to 52.3% in 2015. Although the flowering bamboo has lower crude protein and higher crude fiber than a non-flowering bamboo, the giant panda still fed on flowering bamboo from the evidence of droppings. The giant panda left its feeding sites and moved to the high elevation along river when the proportion of flowering reached 69.2% at elevation of 2350-2450 m in the third year. With the decline of the quality of bamboo stand of Fargesia qinlingensis, the giant panda abandoned its feeding sites when the threshold value of bamboo flowering reached 56.9-69.2%. Flexibility in foraging strategy and spatial behavior can help the giant panda to better adapt to the environment.

  11. MOLECULAR CLONING, SEQUENCING, EXPRESSION AND BIOLOGICAL ACTIVITY OF GIANT PANDA (AILUROPODA MELANOLEUCA) INTERFERON-GAMMA.

    Science.gov (United States)

    Zhu, Hui; Wang, Wen-Xiu; Wang, Bao-Qin; Zhu, Xiao-Fu; Wu, Xu-Jin; Ma, Qing-Yi; Chen, De-Kun

    2012-06-29

    The giant panda (Ailuropoda melanoleuca) is an endangered species and indigenous to China. Interferon-gamma (IFN-γ) is the only member of type □ IFN and is vital for the regulation of host adapted immunity and inflammatory response. Little is known aboutthe FN-γ gene and its roles in giant panda.In this study, IFN-γ gene of Qinling giant panda was amplified from total blood RNA by RT-CPR, cloned, sequenced and analysed. The open reading frame (ORF) of Qinling giant panda IFN-γ encodes 152 amino acidsand is highly similar to Sichuan giant panda with an identity of 99.3% in cDNA sequence. The IFN-γ cDNA sequence was ligated to the pET32a vector and transformed into E. coli BL21 competent cells. Expression of recombinant IFN-γ protein of Qinling giant panda in E. coli was confirmed by SDS-PAGE and Western blot analysis. Biological activity assay indicated that the recombinant IFN-γ protein at the concentration of 4-10 µg/ml activated the giant panda peripheral blood lymphocytes,while at 12 µg/mlinhibited. the activation of the lymphocytes.These findings provide insights into the evolution of giant panda IFN-γ and information regarding amino acid residues essential for their biological activity.

  12. Giant cell tumor of soft tissue: a case report with emphasis on MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Moon Young; Jee, Won-Hee [The Catholic University of Korea, Department of Radiology, Seoul St. Mary' s Hospital, School of Medicine, Seocho-gu, Seoul (Korea, Republic of); Jung, Chan Kwon [The Catholic University of Korea, Department of Pathology, Seoul St. Mary' s Hospital, College of Medicine, Seocho-gu, Seoul (Korea, Republic of); Yoo, Ie Ryung [The Catholic University of Korea, Department of Nuclear Medicine, Seoul St. Mary' s Hospital, College of Medicine, Seocho-gu, Seoul (Korea, Republic of); Chung, Yang-Guk [The Catholic University of Korea, Department of Orthopedic Surgery, Seoul St. Mary' s Hospital, College of Medicine, Seocho-gu, Seoul (Korea, Republic of)

    2015-04-03

    Giant cell tumor of soft tissue is a rare neoplasm, histologically resembling giant cell tumor of bone. In this report, we describe a deep and solid giant cell tumor of soft tissue interpreted as a benign soft tissue tumor based on magnetic resonance (MR) findings with hypointense to intermediate signals on T2-weighted images and impeded diffusivity (water movement) on diffusion-weighted imaging (DWI), which could suggest a giant-cell-containing benign soft tissue tumor, despite the malignancy suggested by {sup 18}F-fluorodeoxyglucose positron emission tomography-computed tomography in a 35-year-old male. To our knowledge, this report introduces the first deep, solid giant cell tumor of soft tissue with MR features of a giant-cell-containing benign soft tissue tumor, despite the malignancy-mimicking findings on {sup 18}F-FDG PET-CT. (orig.)

  13. DebriSat - A Planned Laboratory-Based Satellite Impact Experiment for Breakup Fragment Characterization

    Science.gov (United States)

    Liou, J.-C.; Fitz-Coy, N.; Werremeyer, M.; Huynh, T.; Voelker, M.; Opiela, J.

    2012-01-01

    DebriSat is a planned laboratory ]based satellite hypervelocity impact experiment. The goal of the project is to characterize the orbital debris that would be generated by a hypervelocity collision involving a modern satellite in low Earth orbit (LEO). The DebriSat project will update and expand upon the information obtained in the 1992 Satellite Orbital Debris Characterization Impact Test (SOCIT), which characterized the breakup of a 1960 's US Navy Transit satellite. There are three phases to this project: the design and fabrication of an engineering model representing a modern, 50-cm/50-kg class LEO satellite known as DebriSat; conduction of a laboratory-based hypervelocity impact to catastrophically break up the satellite; and characterization of the properties of breakup fragments down to 2 mm in size. The data obtained, including fragment size, area ]to ]mass ratio, density, shape, material composition, optical properties, and radar cross ]section distributions, will be used to supplement the DoD fs and NASA fs satellite breakup models to better describe the breakup outcome of a modern satellite. Updated breakup models will improve mission planning, environmental models, and event response. The DebriSat project is sponsored by the Air Force fs Space and Missile Systems Center and the NASA Orbital Debris Program Office. The design and fabrication of DebriSat is led by University of Florida with subject matter experts f support from The Aerospace Corporation. The major milestones of the project include the complete fabrication of DebriSat by September 2013, the hypervelocity impact of DebriSat at the Air Force fs Arnold Engineering Development Complex in early 2014, and fragment characterization and data analyses in late 2014.

  14. The temperature dependence of giant resonances in high-excited nucleus

    International Nuclear Information System (INIS)

    Li Ming; Song Hongqiu

    1991-01-01

    The Hartree-Fock equation and the linear response theory in finite temperature are used to calculate the positions and transition strenghths of the giant resonances of high-excited nucleus Pb 208 . The result shows a downward shift and a broadening of the giant resonance energies as temperatrue increases

  15. Survival of extrasolar giant planet moons in planet-planet scattering

    Science.gov (United States)

    CIAN HONG, YU; Lunine, Jonathan; Nicholson, Phillip; Raymond, Sean

    2015-12-01

    Planet-planet scattering is the best candidate mechanism for explaining the eccentricity distribution of exoplanets. Here we study the survival and dynamics of exomoons under strong perturbations during giant planet scattering. During close encounters, planets and moons exchange orbital angular momentum and energy. The most common outcomes are the destruction of moons by ejection from the system, collision with the planets and the star, and scattering of moons onto perturbed but still planet-bound orbits. A small percentage of interesting moons can remain bound to ejected (free-floating) planets or be captured by a different planet. Moons' survival rate is correlated with planet observables such as mass, semi-major axis, eccentricity and inclination, as well as the close encounter distance and the number of close encounters. In addition, moons' survival rate and dynamical outcomes are predetermined by the moons' initial semi-major axes. The survival rate drops quickly as moons' distances increase, but simulations predict a good chance of survival for the Galilean moons. Moons with different dynamical outcomes occupy different regions of orbital parameter space, which may enable the study of moons' past evolution. Potential effects of planet obliquity evolution caused by close encounters on the satellites’ stability and dynamics will be reported, as well as detailed and systematic studies of individual close encounter events.

  16. Nuclear quantum many-body dynamics: from collective vibrations to heavy-ion collisions

    International Nuclear Information System (INIS)

    Simenel, Cedric

    2012-01-01

    This report gives a summary of my research on nuclear dynamics during the past ten years. The choice of this field has been motivated by the desire to understand the physics of complex systems obeying quantum mechanics. In particular, the interplay between collective motion and single-particle degrees of freedom is a source of complex and fascinating behaviours. For instance, giant resonances are characterised by a collective vibration of many nucleons, but their decay may occur by the emission of a single nucleon. Another example could be taken from the collision of nuclei where the transfer of few nucleons may have a strong impact on the formation of a compound system is non trivial. To describe these complex systems, one needs to solve the quantum many-body problem. The description of the dynamics of composite systems can be very challenging, especially when two such systems interact. An important goal of nuclear physics is to find a unified way to describe the dynamics of nuclear systems. Ultimately, the same theoretical model should be able to describe vibrations, rotations, fission, all the possible outcomes of heavy-ion collisions (elastic and inelastic scattering, particle transfer, fusion, and multifragmentation), and even the dynamics of neutron star crust. This desire for a global approach to nuclear dynamics has strongly influenced my research activities. In particular, all the numerical applications presented in this report have been obtained from few numerical codes solving equations derived from the same variational principle. Beside the quest for a unified model of nuclear dynamics, possible applications of heavy-ion collisions such as the formation of new nuclei is also a strong motivation for the experimental and theoretical studies of reaction mechanisms. This report is not a review article, but should be considered as a reading guide of the main papers my collaborators and myself have published. It also gives the opportunity to detail some

  17. GIANT API: an application programming interface for functional genomics.

    Science.gov (United States)

    Roberts, Andrew M; Wong, Aaron K; Fisk, Ian; Troyanskaya, Olga G

    2016-07-08

    GIANT API provides biomedical researchers programmatic access to tissue-specific and global networks in humans and model organisms, and associated tools, which includes functional re-prioritization of existing genome-wide association study (GWAS) data. Using tissue-specific interaction networks, researchers are able to predict relationships between genes specific to a tissue or cell lineage, identify the changing roles of genes across tissues and uncover disease-gene associations. Additionally, GIANT API enables computational tools like NetWAS, which leverages tissue-specific networks for re-prioritization of GWAS results. The web services covered by the API include 144 tissue-specific functional gene networks in human, global functional networks for human and six common model organisms and the NetWAS method. GIANT API conforms to the REST architecture, which makes it stateless, cacheable and highly scalable. It can be used by a diverse range of clients including web browsers, command terminals, programming languages and standalone apps for data analysis and visualization. The API is freely available for use at http://giant-api.princeton.edu. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  18. Large-scale CO J = 1-0 observations of the giant molecular cloud associated with the infrared ring N35 with the Nobeyama 45 m telescope

    Science.gov (United States)

    Torii, Kazufumi; Fujita, Shinji; Matsuo, Mitsuhiro; Nishimura, Atsushi; Kohno, Mikito; Kuriki, Mika; Tsuda, Yuya; Minamidani, Tetsuhiro; Umemoto, Tomofumi; Kuno, Nario; Hattori, Yusuke; Yoshiike, Satoshi; Ohama, Akio; Tachihara, Kengo; Shima, Kazuhiro; Habe, Asao; Fukui, Yasuo

    2018-05-01

    We report an observational study of the giant molecular cloud (GMC) associated with the Galactic infrared ring-like structure N35 and two nearby H II regions G024.392+00.072 (H II region A) and G024.510-00.060 (H II region B), using the new CO J = 1-0 data obtained as a part of the FOREST Unbiased Galactic Plane Imaging survey with the Nobeyama 45 m telescope (FUGIN) project at a spatial resolution of 21″. Our CO data reveals that the GMC, with a total molecular mass of 2.1 × 106 M⊙, has two velocity components of over ˜10-15 km s-1. The majority of molecular gas in the GMC is included in the lower-velocity component (LVC) at ˜110-114 km s-1, while the higher-velocity components (HVCs) at ˜118-126 km s-1 consist of three smaller molecular clouds which are located near the three H II regions. The LVC and HVCs show spatially complementary distributions along the line-of-sight, despite large velocity separations of ˜5-15 km s-1, and are connected in velocity by the CO emission with intermediate intensities. By comparing the observations with simulations, we discuss a scenario where collisions of the three HVCs with the LVC at velocities of ˜10-15 km s-1 can provide an interpretation of these two observational signatures. The intermediate-velocity features between the LVC and HVCs can be understood as broad bridge features, which indicate the turbulent motion of the gas at the collision interfaces, while the spatially complementary distributions represent the cavities created in the LVC by the HVCs through the collisions. Our model indicates that the three H II regions were formed after the onset of the collisions, and it is therefore suggested that the high-mass star formation in the GMC was triggered by the collisions.

  19. Giant Spermatocele Mimicking Hydrocele: A Case Report

    Directory of Open Access Journals (Sweden)

    Hsin-Chih Yeh

    2007-07-01

    Full Text Available Spermatoceles are usually asymptomatic and often found incidentally during physical examination. We report a case of giant spermatocele that mimicked a hydrocele. A 55-year-old man suffered from right scrotal enlargement for several years. As the heavy sensation and scrotal soreness worsened in recent months, he came to our outpatient clinic for help. Hydrocele was suspected due to transilluminating appearance of the scrotal content. Surgical exploration was arranged and a giant spermatocele was found. Total excision of the spermatocele was performed and the patient recovered well. The specimen was sent for pathology and spermatocele with spermatozoa was noted.

  20.  An Uncommon Presentation of Giant Cell Tumor

    Directory of Open Access Journals (Sweden)

    Gopal Malhotra

    2011-09-01

    Full Text Available  Giant Cell Tumors commonly occur at the ends of long bones. However in rare cases, they can occur in the bones of the hands and feet. Tumors in these locations occur in younger patients; in addition, these tumors are more commonly multifocal and are associated with a higher risk for local recurrence than tumors at the ends of long bones. Since lesions in the small bones may be multifocal, a patient with a giant cell tumor of the small bones should undergo a skeletal survey to exclude similar lesions elsewhere. Primary surgical treatment ranges from curettage or excision with or without bone grafting to amputation. The success of surgical treatment depends on the completeness with which the tumor was removed. We are presenting a case report of a 34 year old female, who presented with a swelling in the right hand, following trauma. X-ray of the hand showed an osteolytic expansile lesion at the base of the 1st metacarpal bone. The lesion was initially curetted and then treated by local resection with bone grafting. Histological examination revealed a typical benign giant cell tumor composed of closely packed stromal cells with a variable admixture of giant cells. Follow up at the end of one year did not reveal any recurrence of the tumor.

  1. Translational Entanglement and Teleportation of Matter Wavepackets by Collisions and Half-Collisions

    Science.gov (United States)

    Fisch, L.; Tal, A.; Kurizki, G.

    To date, the translationally-entangled state originally proposed by Einstein, Podolsky and Rosen (EPR) in 1935 has not been experimentally realized for massive particles. Opatrný and Kurizki [Phys. Rev. Lett. 86, 3180 (2000)] have suggested the creation of a position- and momentum-correlated, i.e., translationally-entangled, pair of particles approximating the EPR state by dissociation of cold diatomic molecules, and further manipulation of the EPR pair effecting matter-wave teleportation. Here we aim at setting the principles of and quantifying translational entanglement by collisions and half-collisions. In collisions, the resonance width s and the initial phase-space distributions are shown to determine the degree of post-collisional momentum entanglement. Half-collisions (dissociation) are shown to yield different types of approximate EPR states. We analyse a feasible realization of translational EPR entanglement and teleportation via cold-molecule Raman dissociation and subsequent collisions, resolving both practical and conceptual difficulties it has faced so far: How to avoid entanglement loss due to the wavepacket spreading of the dissociation fragments? How to measure both position and momentum correlations of the dissociation fragments with sufficient accuracy to verify their EPR correlations? How to reliably perform two-particle (Bell) position and momentum measurements on one of the fragments and the wavepacket to be teleported?

  2. Observed departures from LTE ionization equilibrium in late-type giants

    International Nuclear Information System (INIS)

    Ramsey, L.W.

    1977-01-01

    Photoelectric scans of the Ca I line at 6572 A and the forbidden Ca II transition at 7323 A are studied in the K giant α Tau, the M supergiant α Ori, and the M giants β And, α Cet, μ Gem, and β Peg. The relative strengths of these lines are shown to be indicative of the ratio of the relative number densities of the neutral and ionized species in the photosphere. The analysis indicates an overionization relative to LTE in qualitative agreement with the theoretical calculations of Auman and Woodrow for the K and M giants. The M supergiant α Ori exhibits a large over-ionization relative to LTE

  3. Giant linear plasmids in Streptomyces: a treasure trove of antibiotic biosynthetic clusters.

    Science.gov (United States)

    Kinashi, Haruyasu

    2011-01-01

    Many giant linear plasmids have been isolated from Streptomyces by using pulsed-field gel electrophoresis and some of them were found to carry an antibiotic biosynthetic cluster(s); SCP1 carries biosynthetic genes for methylenomycin, pSLA2-L for lankacidin and lankamycin, and pKSL for lasalocid and echinomycin. Accumulated data suggest that giant linear plasmids have played critical roles in genome evolution and horizontal transfer of secondary metabolism. In this review, I summarize typical examples of giant linear plasmids whose involvement in antibiotic production has been studied in some detail, emphasizing their finding processes and interaction with the host chromosomes. A hypothesis on horizontal transfer of secondary metabolism involving giant linear plasmids is proposed at the end.

  4. HEMATOLOGY, SERUM BIOCHEMISTRY, AND URINALYSIS VALUES IN THE ADULT GIANT PANDA ( AILUROPODA MELANOLEUCA).

    Science.gov (United States)

    Burrell, Caitlin; Zhang, Hemin; Li, Desheng; Wang, Chengdong; Li, Caiwu; Aitken-Palmer, Copper

    2017-12-01

    The giant panda ( Ailuropoda melanoleuca) is a high-profile threatened species with individuals in captivity worldwide. As a result of advances in captive animal management and veterinary medicine, the ex situ giant panda population is aging, and improved understanding of age-related changes is necessary. Urine and blood samples were collected in April and July 2015 and analyzed for complete blood count, serum biochemistry, and biochemical and microscopic urine analysis for all individuals sampled ( n = 7, 7-16 yr of age) from giant panda housed at the China Research and Conservation Centre for the Giant Panda in Bifengxia, Sichuan Province, China. Hematology and serum biochemistry values were similar to those previously reported for giant panda aged 2-20 yr and to Species360 (formerly International Species Information System) values. Urine was overall dilute (urine specific gravity range: 1.001-1.021), acellular, and acidic (pH range: 6-7). This is the first report of hematologic and serum biochemistry, with associated urinalysis values, in the giant panda aged 7-16 yr.

  5. Isotopic effect giant resonances

    International Nuclear Information System (INIS)

    Buenerd, M.; Lebrun, D.; Martin, P.; Perrin, G.; Saintignon, P. de; Chauvin, J.; Duhamel, G.

    1981-10-01

    The systematics of the excitation energy of the giant dipole, monopole, and quadrupole resonances are shown to exhibit an isotopic effect. For a given element, the excitation energy of the transition decreases faster with the increasing neutron number than the empirical laws fitting the overall data. This effect is discussed in terms of the available models

  6. NA49: lead-lead collision

    CERN Multimedia

    1996-01-01

    This is an image of an actual lead ion collision taken from tracking detectors on the NA49 experiment, part of the heavy ion project at CERN. These collisions produce a very complicated array of hadrons as the heavy ions break up. It is hoped that one of these collisions will eventually create a new state of matter known as quark-gluon plasma.

  7. Spectral discrimination of giant reed (Arundo donax L.): A seasonal study in riparian areas

    Science.gov (United States)

    Fernandes, Maria Rosário; Aguiar, Francisca C.; Silva, João M. N.; Ferreira, Maria Teresa; Pereira, José M. C.

    2013-06-01

    The giant reed (Arundo donax L.) is amongst the one hundred worst invasive alien species of the world, and it is responsible for biodiversity loss and failure of ecosystem functions in riparian habitats. In this work, field spectroradiometry was used to assess the spectral separability of the giant reed from the adjacent vegetation and from the common reed, a native similar species. The study was conducted at different phenological periods and also for the giant reed stands regenerated after mechanical cutting (giant reed_RAC). A hierarchical procedure using Kruskal-Wallis test followed by Classification and Regression Trees (CART) was used to select the minimum number of optimal bands that discriminate the giant reed from the adjacent vegetation. A new approach was used to identify sets of wavelengths - wavezones - that maximize the spectral separability beyond the minimum number of optimal bands. Jeffries Matusita and Bhattacharya distance were used to evaluate the spectral separability using the minimum optimal bands and in three simulated satellite images, namely Landsat, IKONOS and SPOT. Giant reed was spectrally separable from the adjacent vegetation, both at the vegetative and the senescent period, exception made to the common reed at the vegetative period. The red edge region was repeatedly selected, although the visible region was also important to separate the giant reed from the herbaceous vegetation and the mid infrared region to the discrimination from the woody vegetation. The highest separability was obtained for the giant reed_RAC stands, due to its highly homogeneous, dense and dark-green stands. Results are discussed by relating the phenological, morphological and structural features of the giant reed stands and the adjacent vegetation with their optical traits. Weaknesses and strengths of the giant reed spectral discrimination are highlighted and implications of imagery selection for mapping purposes are argued based on present results.

  8. From collisions to clusters

    DEFF Research Database (Denmark)

    Loukonen, Ville; Bork, Nicolai; Vehkamaki, Hanna

    2014-01-01

    -principles molecular dynamics collision simulations of (sulphuric acid)1(water)0, 1 + (dimethylamine) → (sulphuric acid)1(dimethylamine)1(water)0, 1 cluster formation processes. The simulations indicate that the sticking factor in the collisions is unity: the interaction between the molecules is strong enough...... control. As a consequence, the clusters show very dynamic ion pair structure, which differs from both the static structure optimisation calculations and the equilibrium first-principles molecular dynamics simulations. In some of the simulation runs, water mediates the proton transfer by acting as a proton...... to overcome the possible initial non-optimal collision orientations. No post-collisional cluster break up is observed. The reasons for the efficient clustering are (i) the proton transfer reaction which takes place in each of the collision simulations and (ii) the subsequent competition over the proton...

  9. Atypical presentations of retroperitoneal giant schwannomas

    Directory of Open Access Journals (Sweden)

    Sait Ozbir

    2011-06-01

    Full Text Available Schwannomas are usually benign rare tumors that originating from Schwann cells of peripheral nerve sheaths. Presentation is generally varied and changed in a non-specific range from abdominal mass, flank pain to incidental findings. Herein we report 2 cases of retroperitoneal giant schwannomas with different clinical presentations, of whom one presented with vague abdominal pain, palpable abdominal mass for 4 years, swelling and bilateral hydronephrosis that caused by giant abdominal mass; the other one presented with right flank pain, rectal hemorrhage and lower extremities edema. Two patients were treated by complete surgical excision of masses. The histological and immunohistochemical diagnosis was reported as benign schwannoma. Both of patients are doing well and had no recurrence in 9 years and 28 months follow-up, respectively.

  10. Spectroscopy of late type giant stars

    Science.gov (United States)

    Spaenhauer, A.; Thevenin, F.

    1984-06-01

    An attempt to calibrate broadband RGU colors of late type giant stars in terms of the physical parameters of the objects is reported. The parameters comprise the effective temperature, surface gravity and global metal abundance with respect to the sun. A selection of 21 giant star candidates in the Basel fields Plaut 1, Centaurus III and near HD 95540 were examined to obtain a two color plot. Attention is focused on the G-R color range 1.5-2.15 mag, i.e., spectral types K0-K5. A relationship between R and the metallicity is quantified and shown to have a correlation coefficient of 0.93. No correlation is found between metallicity and gravity or R and the effective temperature.

  11. Multicentric lymphoma in a giant anteater (Myrmecophaga tridactyla).

    Science.gov (United States)

    Sanches, Adrien W D; Werner, Pedro R; Margarido, Tereza C C; Pachaly, Jose R

    2013-03-01

    Neoplastic disease is not well documented in giant anteaters. This report describes a disseminated lymphoma in an adult male giant anteater (Myrmecophaga tridactyla) from the City Zoo of Curitiba, State of Paraná, Brazil. No clinical signs were noticed before its death, except for a slight inappetence. At postmortem examination, pale white to yellow, variably sized nodules infiltrated the heart, liver, and intestinal lymph nodes. Histologically, two distinct cell populations were present in the nodular lesions: one characterized by smaller cells, primarily lymphocytic in nature, and another characterized by larger rounded cells with loose chromatin and frequently indented nuclei resembling histiocytes. Giant binucleated cells were occasionally observed. Mitotic figures numbered 2-3 mitotic figures/x400 field. Both cellular populations presented with moderate pleomorphism, large nuclei, a high nucleus-to-cytoplasm ratio, distinct nucleoli, and coarse nuclear chromatin. The neoplasia was classified as a form of multicentric lymphohistiocytic lymphoma (Rappaport Classification) and as an intermediate grade lymphoma (National Cancer Institute Working Formulation).

  12. Detection of understory bamboo in giant panda habitats using an indirect remote sensing approach

    NARCIS (Netherlands)

    Bian, B.M.; Wang, T.; Liu, Y.F.; Fei, T.; Skidmore, A.K.

    2007-01-01

    The bamboo is the exclusive food of the wild giant pandas. Detection of the bamboo forest in giant panda habitat will help scientists further understand the spatial distribution pattern of giant pandas and their habitats. Moreover, it provides crucial scientific evidence for estimating habitat

  13. Assessing vulnerability of giant pandas to climate change in the Qinling Mountains of China.

    Science.gov (United States)

    Li, Jia; Liu, Fang; Xue, Yadong; Zhang, Yu; Li, Diqiang

    2017-06-01

    Climate change might pose an additional threat to the already vulnerable giant panda ( Ailuropoda melanoleuca ). Effective conservation efforts require projections of vulnerability of the giant panda in facing climate change and proactive strategies to reduce emerging climate-related threats. We used the maximum entropy model to assess the vulnerability of giant panda to climate change in the Qinling Mountains of China. The results of modeling included the following findings: (1) the area of suitable habitat for giant pandas was projected to decrease by 281 km 2 from climate change by the 2050s; (2) the mean elevation of suitable habitat of giant panda was predicted to shift 30 m higher due to climate change over this period; (3) the network of nature reserves protect 61.73% of current suitable habitat for the species, and 59.23% of future suitable habitat; (4) current suitable habitat mainly located in Chenggu, Taibai, and Yangxian counties (with a total area of 987 km 2 ) was predicted to be vulnerable. Assessing the vulnerability of giant panda provided adaptive strategies for conservation programs and national park construction. We proposed adaptation strategies to ameliorate the predicted impacts of climate change on giant panda, including establishing and adjusting reserves, establishing habitat corridors, improving adaptive capacity to climate change, and strengthening monitoring of giant panda.

  14. Chemical Analysis of Asymptotic Giant Branch Stars in M62

    NARCIS (Netherlands)

    Lapenna, E.; Mucciarelli, A.; Ferraro, F. R.; Origlia, L.; Lanzoni, B.; Massari, D.; Dalessandro, E.

    2015-01-01

    We have collected UVES-FLAMES high-resolution spectra for a sample of 6 asymptotic giant branch (AGB) and 13 red giant branch (RGB) stars in the Galactic globular cluster (GC) M62 (NGC 6266). Here we present the detailed abundance analysis of iron, titanium, and light elements (O, Na, Mg, and Al).

  15. The epidemiology of bicyclist's collision accidents

    DEFF Research Database (Denmark)

    Larsen, L. B.

    1994-01-01

    of bicyclists and risk situations. The findings should make a basis for preventive programmes in order to decrease the number and severity of bicyclists collision accidents. Data from the emergency room in a 2 year period was combined with data from questionnaires. The study group consisted of 1021 bicyclists......The number of bicyclists injured in the road traffic in collision accidents and treated at the emergency room at Odense University Hospital has increased 66% from 1980 to 1989. The aim of this study was to examine the epidemiology of bicyclist's collision accidents and identify risk groups...... injured in collision accidents, and 1502 bicyclists injured in single accidents was used as a reference group. The young bicyclists 10-19 years of age had the highest incidence of injuries caused by collision accidents. The collision accidents had different characteristics according to counterpart. One...

  16. CARS measurement of vibrational and rotational temperature with high power laser and high speed visualization of total radiation behind hypervelocity shock waves of 5-7km/s

    Science.gov (United States)

    Sakurai, Kotaro; Bindu, Venigalla Hima; Niinomi, Shota; Ota, Masanori; Maeno, Kazuo

    2010-09-01

    Coherent Anti-Stokes Raman Spectroscopy (CARS) method is commonly used for measuring molecular structure or condition. In the aerospace technology, this method is applies to measure the temperature in thermic fluid with relatively long time duration of millisecond or sub millisecond. On the other hand, vibrational/rotational temperatures behind hypervelocity shock wave are important for heat-shield design in phase of reentry flight. The non-equilibrium flow with radiative heating from strongly shocked air ahead of the vehicles plays an important role on the heat flux to the wall surface structure as well as convective heating. In this paper CARS method is applied to measure the vibrational/rotational temperature of N2 behind hypervelocity shock wave. The strong shock wave in front of the reentering space vehicles can be experimentally realigned by free-piston, double-diaphragm shock tube with low density test gas. However CARS measurement is difficult for our experiment. Our measurement needs very short pulse which order of nanosecond and high power laser for CARS method. It is due to our measurement object is the momentary phenomena which velocity is 7km/s. In addition the observation section is low density test gas, and there is the strong background light behind the shock wave. So we employ the CARS method with high power, order of 1J/pulse, and very short pulse (10ns) laser. By using this laser the CARS signal can be acquired even in the strong radiation area. Also we simultaneously try to use the CCD camera to obtain total radiation with CARS method.

  17. Giant cell temporal arteritis associated with overlying basal cell carcinoma: co-incidence or connection?

    Directory of Open Access Journals (Sweden)

    Salem Alowami

    2012-06-01

    Full Text Available Giant cell arteritis is a granulomatous vasculitis of large and medium sized arteries manifesting as temporal arteritis and/or polymyalgia rheumatica. The histological assessment of temporal artery biopsies is frequently encountered in anatomical pathology and has important diagnostic consequences in patients clinically suspected of having giant cell arteritis. We present an intriguing case of giant cell arteritis associated with a Basal cell carcinoma and discuss the ongoing controversy pertaining to the association of giant cell arteritis/polymyalgia rheumatica with malignancy.

  18. PLANET ENGULFMENT BY ∼1.5-3 Msun RED GIANTS

    International Nuclear Information System (INIS)

    Kunitomo, M.; Ikoma, M.; Sato, B.; Ida, S.; Katsuta, Y.

    2011-01-01

    Recent radial-velocity surveys for GK clump giants have revealed that planets also exist around ∼1.5-3 M sun stars. However, no planets have been found inside 0.6 AU around clump giants, in contrast to solar-type main-sequence stars, many of which harbor short-period planets such as hot Jupiters. In this study, we examine the possibility that planets were engulfed by host stars evolving on the red-giant branch (RGB). We integrate the orbital evolution of planets in the RGB and helium-burning phases of host stars, including the effects of stellar tide and stellar mass loss. Then we derive the critical semimajor axis (or the survival limit) inside which planets are eventually engulfed by their host stars after tidal decay of their orbits. Specifically, we investigate the impact of stellar mass and other stellar parameters on the survival limit in more detail than previous studies. In addition, we make detailed comparisons with measured semimajor axes of planets detected so far, which no previous study has done. We find that the critical semimajor axis is quite sensitive to stellar mass in the range between 1.7 and 2.1 M sun , which suggests a need for careful comparison between theoretical and observational limits of the existence of planets. Our comparison demonstrates that all planets orbiting GK clump giants that have been detected are beyond the survival limit, which is consistent with the planet-engulfment hypothesis. However, on the high-mass side (>2.1M sun ), the detected planets are orbiting significantly far from the survival limit, which suggests that engulfment by host stars may not be the main reason for the observed lack of short-period giant planets. To confirm our conclusion, the detection of more planets around clump giants, especially with masses ∼> 2.5M sun , is required.

  19. Giant Calculus In The Mouth Of Partially Edentulous Woman, (Case ...

    African Journals Online (AJOL)

    Objective: This case report is to create awareness of the presence of giant calculus in the mouth, the possible causes and its prevention. Report: This describes the oral condition of a partially edentulous woman with a giant calculus in the mouth. It highlights the effect of such an enormous calculus in the oral cavity.

  20. AFSC/ABL: Female Giant Grenadier maturity

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Giant grenadiers Albatrossia pectoralis are caught as bycatch in deep-sea commercial fisheries in relatively large numbers. The population appears to be stable,...

  1. Red giants seismology

    Science.gov (United States)

    Mosser, B.; Samadi, R.; Belkacem, K.

    2013-11-01

    The space-borne missions CoRoT and Kepler are indiscreet. With their asteroseismic programs, they tell us what is hidden deep inside the stars. Waves excited just below the stellar surface travel throughout the stellar interior and unveil many secrets: how old is the star, how big, how massive, how fast (or slow) its core is dancing. This paper intends to paparazze the red giants according to the seismic pictures we have from their interiors.

  2. Giant Pulse Studies of Ordinary and Recycled Pulsars with NICER

    Science.gov (United States)

    Lewandowska, Natalia; Arzoumanian, Zaven; Gendreau, Keith C.; Enoto, Teruaki; Harding, Alice; Lommen, Andrea; Ray, Paul S.; Deneva, Julia; Kerr, Matthew; Ransom, Scott M.; NICER Team

    2018-01-01

    Radio Giant Pulses are one of the earliest discovered form of anomalous single pulse emission from pulsars. Known for their non-periodical occurrence, restriction to certain phase ranges, power-law intensity distributions, pulse widths ranging from microseconds to nanoseconds and very high brightness temperatures, they stand out as an individual form of pulsar radio emission.Discovered originally in the case of the Crab pulsar, several other pulsars have been observed to emit radio giant pulses, the most promising being the recycled pulsar PSR B1937+21 and also the Vela pulsar.Although radio giant pulses are apparently the result of a coherent emission mechanism, recent studies of the Crab pulsar led to the discovery of an additional incoherent component at optical wavelengths. No such component has been identified for recycled pulsars, or Vela yet.To provide constraints on possible emission regions in their magnetospheres and to search for differences between giant pulses from ordinary and recycled pulsars, we present the progress of the correlation study of PSR B1937+21 and the Vela pulsar carried out with NICER and several radio observatories.

  3. Combined surgical and medical treatment of giant prolactinoma: case report

    Directory of Open Access Journals (Sweden)

    Rădoi Mugurel

    2016-06-01

    Full Text Available The operative management of giant pituitary prolactinoma represents a significant challenge for neurosurgeons, due to the degree of local tumor infiltration into adjacent structures such as cavernous sinus. The degree of parasellar tumor extension can be classified according to the Knosp grading system’ while suprasellar extension is qualified in accordance with the modified Hardys classification system. This report describes the case of a male patient with a giant pituitary prolactinoma in which a partial tumor resection via a subfrontal approach was achieved. Typically, resection rates of less than 50% have been reported following surgery on giant pituitary adenomas. Prolactin levels were very high, consistent with invasive giant prolactinoma. Our patient was treated with Cabergoline which eventually normalized the prolactin level and significantly reduced the size of the residual tumor. This case serves to illustrate that in the presence of significant suprasellar and parasellar extension, multi-modal treatment strategies with surgery and dopamine agonist, is the gold standard in the management of locally aggressive pituitary prolactinomas.

  4. Giant sigmoid diverticulum with coexisting metastatic rectal carcinoma: a case report.

    LENUS (Irish Health Repository)

    Sasi, Walid

    2010-01-01

    Giant diverticulum of the colon is a rare but clinically significant condition, usually regarded as a complication of an already existing colonic diverticular disease. This is the first report of a giant diverticulum of the colon with a co-existing rectal carcinoma.

  5. Isoscalar giant resonances and Landau parameters with density-dependent effective interactions

    International Nuclear Information System (INIS)

    Kohno, Michio; Ando, Kazuhiko

    1979-01-01

    Discussion is given on the relations between the Landau parameters and the isoscalar giant (quadrupole- and monopole-) resonance energies by using general density-dependent interactions. In the limit of infinite nuclear matter, the isoscalar giant quadrupole energy is shown to depend not only on the effective mass but also on the Landau parameter F 2 . Collective energies of the isoscalar giant resonances are calculated for 16 O and 40 Ca with four different effective interactions, G-0, B1, SII and SV, by using the scaling- and constrained Hartree-Fock-methods. It is shown that the dependence of the collective energies on the effective interactions is essentially determined by the Landau parameters. The G-0 force is found to be most successful in reproducing the giant resonance energies. Validity of the RPA-moment theorems is examined for the case of local density-dependent interactions. (author)

  6. Migration of planetesimals during last stages of giant planet accumulation

    International Nuclear Information System (INIS)

    Ipatov, S.I.

    1989-01-01

    The migration and accumulation of bodies from the giant planet's feeding zones are investigated after the main part of mass of these planets had been formed. These investigations are based on the computer simulation results for the evolving spatial disks which initially consisted of a few almost formed planets and hundreds of identical bodies in Uranus and Neptune zone. It is shown that the total mass of bodies penetrated in the asteroid zone from the giant planet zones could be ten times as large as the Earth mass. The beyond-Neptune belt could form during accumulation of the giant planets. Evolution of the planet orbits under encounters of planets with planetesimals is investigated

  7. Isovector giant quadrupole resonance in 63Cu

    International Nuclear Information System (INIS)

    Wolynec, E.; Pastura, V.F.S.; Martins, M.N.

    1988-01-01

    The decay of the isovector E2 giant resonance in 63 Cu has been studied by measuring the (e,2n) cross section, in the incident electron energy range 22-45 MeV. The photodisintegration induced by bremsstrahlung was also measured. The electrodisintegration results have been analyzed using the distorted wave Born approximation E1 and E2 virtual photon spectra to obtain these multipole components in the corresponding (γ,2n) cross section. It is found that the isovector E2 giant resonance decays dominantly by two-neutron emission in 63 Cu. This decay channel exhausts 65 percent of the energy weighted E2 sum. (author0 [pt

  8. On the red giant titanium oxide bands

    Science.gov (United States)

    Hanni, L.; Sitska, J.

    1985-12-01

    The dependence of TiO absorption in cool oxygen-sequence giant stars on the Teff and log g of their atmospheres is investigated theoretically on the basis of spectra simulated using the computer program described by Hanni (1983) and the giant model atmospheres of Johnson et al. (1980). The temperature dependence of the intensity jumps at the head of the alpha(1.0) band is determined from simulated spectra, and the jumps are related to spectral types using the calibration of Ridgway et al. (1980). The results are presented in tables and graphs and shown to be in good agreement with the empirical Teff/intensity-jump correlation of Boyarchuk (1969).

  9. GIANT CELL-RICH LESIONS OF BONE AND JOINTS: A ONE YEAR PROSPECTIVE STUDY

    Directory of Open Access Journals (Sweden)

    Sri Nithisa H

    2016-07-01

    Full Text Available BACKGROUND Giant cell-rich lesions constitute a group of biologically and morphologically diverse bone and joint tumours. The common feature is presence of numerous multinucleated osteoclast-like giant cells. However, they differ from each other by in terms of clinical and radiographic features and in many cases by their distinct morphological features. METHODS All the bone and joint specimens with giant cell-rich lesions received in the period of one year were studied along with clinical and radiological data available. Gross and microscopic findings were noted. RESULTS In a period of one year, 10 cases of giant cell-rich lesions of bone and joints have been studied, which were and correlated with clinical and radiological findings. Five were lesions from bone and two were from joints, which are chondroblastoma, chondromyxoid fibroma, osteoclastoma, aneurysmal bone cyst, pigmented villonodular synovitis, giant cell lesion of tendon sheath, and tendinous xanthoma. CONCLUSION In the present study, variety of giant cell lesions of bone and joints are studied. Of which, the mean age in young patients being 20 years and in elderly patients being 50 years. The common site being lower end of femur.

  10. Deep Biosphere Secrets of the Mediterranean Salt Giant

    Science.gov (United States)

    Aloisi, Giovanni; Lugli, Stefano; McGenity, Terry; Kuroda, Junichiro; Takai, Ken; Treude, Tina; Camerlenghi, Angelo

    2015-04-01

    One component of the IODP multi-platform drilling proposal called DREAM (Deep-Sea Record of Mediterranean Messisnian Events), plans to investigate the deep biosphere associated to the Messinian Salinity Crisis (MSC) Salt Giant. We propose that the MSC Salt Giant, because of the variety of chemical environments it produces, has the potential to harbour an unprecedented diversity of microbial life with exceptional metabolic activity. Gypsum and anhydrite deposits provide a virtually unlimited source of sulphate at depths where oxidants are a rarity in other sedimentary environments. When reduced organic carbon comes into contact with these minerals there is the potential for a dynamic deep biosphere community of sulphate reducers to develop, with implications for sedimentary biogeochemical cycles and the souring of cruide oil. But the thickness of the Messinian evaporites and the range of chemical environments it harbours poses fundamental questions: will the interaction of several extreme conditions of temperature, salinity, pressure and chemical composition limit the ability of microbes to take advantage of such favourable thermodynamic conditions? And has such a diverse set of physical and chemical environments fostered microbal diversity, rather than phylogenetic specialization, as recent research into deep Mediterranean brine systems seems to indicate ? Over three kilometres in thickness, approaching the known temperature limits of life and with fluids precipitating carbonate, sulphate, halite and potash salts, microbes living within and around the MSC Salt Giant will be subject to the most exotic combinations of extremes, and have likely evolved yet unknown adaptations. Gypsum and Halite crystals contain fluid inclusions that are a micro-habitat in which microbes survive for tens of thousands, to possibly millions, of years, posing the fundamental question of cells devoting nearly all of their energy flow to somatic maintenance needs, rather than growth and

  11. Photon collisions as a glueball source

    International Nuclear Information System (INIS)

    Liu, H.C.

    1984-01-01

    Photon-photon and photon-nucleon collisions are suggested as a glueball source at small x in the collision center-of-mass frame. The glueball-production cross section is estimated through the two-gluon-fusion mechanism in perturbative quantum chromodynamics. The pointlike component of the photon structure function has a distinctive feature in that it consists almost purely of gluons at small x, which turns out to be very effective in producing glueballs. A much larger signal-to-noise ratio is expected in the glueball search in high-energy photon-photon and photon-nucleon collisions compared with hadron-hadron collisions. It is argued that the background due to soft collisions of the photons can be effectively reduced

  12. Giant cell arteritis: a multicenter observational study in Brazil

    Directory of Open Access Journals (Sweden)

    Alexandre Wagner Silva de Souza

    2013-01-01

    Full Text Available OBJECTIVE: To describe demographic features, disease manifestations and therapy in patients with giant cell arteritis from referral centers in Brazil. METHODS: A retrospective cohort study was performed on 45 giant cell arteritis patients from three university hospitals in Brazil. Diagnoses were based on the American College of Rheumatology classification criteria for giant cell arteritis or temporal artery biopsy findings. RESULTS: Most patients were Caucasian, and females were slightly more predominant. The frequencies of disease manifestations were as follows: temporal headache in 82.2%, neuro-ophthalmologic manifestations in 68.9%, jaw claudication in 48.9%, systemic symptoms in 44.4%, polymyalgia rheumatica in 35.6% and extra-cranial vessel involvement in 17.8% of cases. Aortic aneurysms were observed in 6.6% of patients. A comparison between patients with biopsy-proven giant cell arteritis and those without temporal artery biopsies did not yield significant differences in disease manifestations. All patients were treated with oral prednisone, and intravenous methylprednisolone was administered to nearly half of the patients. Methotrexate was the most commonly used immunosuppressive agent, and low-dose aspirin was prescribed to the majority of patients. Relapses occurred in 28.9% of patients, and aspirin had a protective effect against relapses. Females had higher prevalences of polymyalgia rheumatica, systemic manifestations and jaw claudication, while permanent visual loss was more prevalent in men. CONCLUSIONS: Most of the clinical features of Brazilian giant cell arteritis patients were similar to those found in other studies, except for the high prevalence of neuro-ophthalmic manifestations and permanent blindness in the Brazilian patients. Aspirin had a protective effect on relapses.

  13. Factors affecting genotyping success in giant panda fecal samples

    Directory of Open Access Journals (Sweden)

    Ying Zhu

    2017-05-01

    Full Text Available Fecal samples play an important role in giant panda conservation studies. Optimal preservation conditions and choice of microsatellites for giant panda fecal samples have not been established. In this study, we evaluated the effect of four factors (namely, storage type (ethanol (EtOH, EtOH −20 °C, 2-step storage medium, DMSO/EDTA/Tris/salt buffer (DETs and frozen at −20 °C, storage time (one, three and six months, fragment length, and repeat motif of microsatellite loci on the success rate of microsatellite amplification, allelic dropout (ADO and false allele (FA rates from giant panda fecal samples. Amplification success and ADO rates differed between the storage types. Freezing was inferior to the other four storage methods based on the lowest average amplification success and the highest ADO rates (P < 0.05. The highest microsatellite amplification success was obtained from either EtOH or the 2-step storage medium at three storage time points. Storage time had a negative effect on the average amplification of microsatellites and samples stored in EtOH and the 2-step storage medium were more stable than the other three storage types. We only detected the effect of repeat motif on ADO and FA rates. The lower ADO and FA rates were obtained from tri- and tetra-nucleotide loci. We suggest that freezing should not be used for giant panda fecal preservation in microsatellite studies, and EtOH and the 2-step storage medium should be chosen on priority for long-term storage. We recommend candidate microsatellite loci with longer repeat motif to ensure greater genotyping success for giant panda fecal studies.

  14. Electrodynamics on extrasolar giant planets

    Energy Technology Data Exchange (ETDEWEB)

    Koskinen, T. T.; Yelle, R. V. [Lunar and Planetary Laboratory, University of Arizona, 1629 East University Boulevard, Tucson, AZ 85721-0092 (United States); Lavvas, P. [Groupe de Spectroscopie Moléculaire et Atmosphérique UMR CNRS 7331, Université Reims Champagne-Ardenne, F-51687 Reims (France); Cho, J. Y-K., E-mail: tommi@lpl.arizona.edu [Astronomy Unit, School of Mathematical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS (United Kingdom)

    2014-11-20

    Strong ionization on close-in extrasolar giant planets (EGPs) suggests that their atmospheres may be affected by ion drag and resistive heating arising from wind-driven electrodynamics. Recent models of ion drag on these planets, however, are based on thermal ionization only and do not include the upper atmosphere above the 1 mbar level. These models are also based on simplified equations of resistive magnetohydrodynamics that are not always valid in extrasolar planet atmospheres. We show that photoionization dominates over thermal ionization over much of the dayside atmosphere above the 100 mbar level, creating an upper ionosphere dominated by ionization of H and He and a lower ionosphere dominated by ionization of metals such as Na, K, and Mg. The resulting dayside electron densities on close-in exoplanets are higher than those encountered in any planetary ionosphere of the solar system, and the conductivities are comparable to the chromosphere of the Sun. Based on these results and assumed magnetic fields, we constrain the conductivity regimes on close-in EGPs and use a generalized Ohm's law to study the basic effects of electrodynamics in their atmospheres. We find that ion drag is important above the 10 mbar level where it can also significantly alter the energy balance through resistive heating. Due to frequent collisions of the electrons and ions with the neutral atmosphere, however, ion drag is largely negligible in the lower atmosphere below the 10 mbar level for a reasonable range of planetary magnetic moments. We find that the atmospheric conductivity decreases by several orders of magnitude in the night side of tidally locked planets, leading to a potentially interesting large-scale dichotomy in electrodynamics between the day and night sides. A combined approach that relies on UV observations of the upper atmosphere, phase curve and Doppler measurements of global dynamics, and visual transit observations to probe the alkali metals can potentially

  15. Bubble collisions in general relativity

    International Nuclear Information System (INIS)

    Siklos, S.T.C.; Wu, Z.C.; University of Science and Technology of China, Hofei, Anhwei)

    1983-01-01

    The collision of two bubbles of true vacuum in a background of false vacuum is considered in the context of General Relativity. It is found that in the thin wall approximation, the problem, can be solved exactly. The region to the future of the collision is described by the pseudo-Schwarzschild de Sitter metric. The parameters in this metric are found by solving the junction conditions at each collision. (author)

  16. Primary Endoscopic Transnasal Transsphenoidal Surgery for Giant Pituitary Adenoma.

    Science.gov (United States)

    Kuo, Chao-Hung; Yen, Yu-Shu; Wu, Jau-Ching; Chang, Peng-Yuan; Chang, Hsuan-Kan; Tu, Tsung-Hsi; Huang, Wen-Cheng; Cheng, Henrich

    2016-07-01

    Giant pituitary adenoma (>4 cm) remains challenging because the optimal surgical approach is uncertain. Consecutive patients with giant pituitary adenoma who underwent endoscopic transnasal transsphenoidal surgery (ETTS) as the first and primary treatment were retrospectively reviewed. Inclusion criteria were tumor diameter ≥4 cm in at least 1 direction, and tumor volume ≥10 cm(3). Exclusion criteria were follow-ups surgery. Residual and recurrent tumors (n = 30) were managed with 1 of the following: Gamma Knife radiosurgery (GKRS), reoperation (redo ETTS), both GKRS and ETTS, medication, conventional radiotherapy, or none. At last follow-up, most of the patients had favorable outcomes, including 8 (21.1%) who were cured and 29 (76.3%) who had a stable residual condition without progression. Only 1 (2.6%) had late recurrence at 66 months after GKRS. The overall progression-free rate was 97.4%, with few complications. In this series of giant pituitary adenoma, primary (ie, the first) ETTS yielded complete resection and cure in 21.1%. Along with adjuvant therapies, including GKRS, most patients (97.4%) were stable and free of disease progression. Therefore, primary ETTS appeared to be an effective surgical approach for giant pituitary adenoma. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. A giant occipital encephalocele with spontaneous hemorrhage into the sac: A rare case report

    OpenAIRE

    Nath, H. D.; Mahapatra, A. K.; Borkar, S. A.

    2014-01-01

    In giant encephalocele, head size is smaller than the encelphalocele. Occipital encephalocele is the commonest of all encephalocele. In our case, there was rare association with giant encephalocele with old hemorrhage in the sac. This was a unique presentation. In world literature, there was rare association with giant encephalocele with hemorrhage.

  18. Michigan has a sleeping giant

    CERN Multimedia

    Brock, Raymond; Nichols, Sue

    2007-01-01

    "That giant is 750 miles of fiber optic cable that lassoes its three biggest research universities and Van Andel Institute to the future. Its mission: to uncover the nature of the Big Bang by connecton U.S. physicists to their huge experiment ATLAS in Geneva.." (4 pages)

  19. METAL-POOR LITHIUM-RICH GIANTS IN THE RADIAL VELOCITY EXPERIMENT SURVEY

    International Nuclear Information System (INIS)

    Ruchti, Gregory R.; Fulbright, Jon P.; Wyse, Rosemary F. G.; Gilmore, Gerard F.; Grebel, Eva K.; Bienaymé, Olivier; Siebert, Arnaud; Bland-Hawthorn, Joss; Freeman, Ken C.; Gibson, Brad K.; Munari, Ulisse; Navarro, Julio F.; Parker, Quentin A.; Watson, Fred G.; Reid, Warren; Seabroke, George M.; Siviero, Alessandro; Steinmetz, Matthias; Williams, Mary; Zwitter, Tomaz

    2011-01-01

    We report the discovery of eight lithium-rich field giants found in a high-resolution spectroscopic sample of over 700 metal-poor stars ([Fe/H] 7 Li), A(Li) = log (n(Li)/n(H)) + 12, between 2.30 and 3.63, well above the typical upper red giant branch (RGB) limit, A(Li) 7 Be (which burns to 7 Li) is transported to the stellar surface via the Cameron-Fowler mechanism. We discuss and discriminate among several models for the extra mixing that can cause Li production, given the detailed abundances of the Li-rich giants in our sample.

  20. Tenosynovial giant cell tumor of the posterior arch of C1

    International Nuclear Information System (INIS)

    Blankenbaker, Donna G.; Tuite, Michael J.; Koplin, Stephanie A.; Salamat, M.S.; Hafez, Reza

    2008-01-01

    Tenosynovial giant cell tumor, also called pigmented villonodular synovitis, is a disease typically of the joints and which uncommonly involves the spine. We present a case of a mass of the posterior C1 arch which eroded bone and did not arise from the facet joint. The imaging findings of spinal tenosynovial giant cell tumor will be reviewed as well as the imaging findings in this case, where tenosynovial giant cell tumor arose presumably within a small bursa. One's understanding of the imaging characteristics can lead to the correct diagnosis and avoid an unnecessary work-up. (orig.)

  1. CHARACTERIZATION OF WILD PIG VEHICLE COLLISIONS

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, J; Paul E. Johns, P

    2007-05-23

    Wild pig (Sus scrofa) collisions with vehicles are known to occur in the United States, but only minimal information describing these accidents has been reported. In an effort to better characterize these accidents, data were collected from 179 wild pig-vehicle collisions from a location in west central South Carolina. Data included accident parameters pertaining to the animals involved, time, location, and human impacts. The age structure of the animals involved was significantly older than that found in the population. Most collisions involved single animals; however, up to seven animals were involved in individual accidents. As the number of animals per collision increased, the age and body mass of the individuals involved decreased. The percentage of males was significantly higher in the single-animal accidents. Annual attrition due to vehicle collisions averaged 0.8 percent of the population. Wild pig-vehicle collisions occurred year-round and throughout the 24-hour daily time period. Most accidents were at night. The presence of lateral barriers was significantly more frequent at the collision locations. Human injuries were infrequent but potentially serious. The mean vehicle damage estimate was $1,173.

  2. High energy nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Bhalla, K.B.

    1980-01-01

    An attempt is made to explain nucleus-nucleus collisions based on nuclear emulsion experiments. Peripheral and central collisions are described in detail. Assuming the fireball model, the concepts of geometry, kinematics and thermodynamics in this model are discussed. Projectile and target fragmentations are studied. The advantages of using nuclear emulsions as detectors, are mentioned. Proton-nucleus collisions and nucleus-nucleus collisions are compared. Interactions, of projectiles such as Ca, B and C on targets such as Pb, Ag, Br etc. at very high energies (approximately 300 to 1700 Gev) are listed. A comparison of the near multiplicities in these interactions is given. A generalized explanation is given on the processes involved in these interactions. (A.K.)

  3. Dietary resources shape the adaptive changes of cyanide detoxification function in giant panda (Ailuropoda melanoleuca).

    Science.gov (United States)

    Huang, He; Yie, Shangmian; Liu, Yuliang; Wang, Chengdong; Cai, Zhigang; Zhang, Wenping; Lan, Jingchao; Huang, Xiangming; Luo, Li; Cai, Kailai; Hou, Rong; Zhang, Zhihe

    2016-10-05

    The functional adaptive changes in cyanide detoxification in giant panda appear to be response to dietary transition from typical carnivore to herbivorous bear. We tested the absorption of cyanide contained in bamboo/bamboo shoots with a feeding trial in 20 adult giant pandas. We determined total cyanide content in bamboo shoots and giant panda's feces, levels of urinary thiocyanate and tissue rhodanese activity using color reactions with a spectrophotometer. Rhodanese expression in liver and kidney at transcription and translation levels were measured using real-time RT-PCR and immunohistochemistry, respectively. We compared differences of rhodanese activity and gene expressions among giant panda, rabbit (herbivore) and cat (carnivore), and between newborn and adult giant pandas. Bamboo shoots contained 3.2 mg/kg of cyanide and giant pandas absorbed more than 65% of cyanide. However, approximately 80% of absorbed cyanide was metabolized to less toxic thiocyanate that was discharged in urine. Rhodanese expression and activity in liver and kidney of giant panda were significantly higher than in cat, but lower than in rabbit (all P pandas were higher than that in newborn cub. Phylogenetic analysis of both nucleotide and amino acid sequences of the rhodanese gene supported a closer relationship of giant panda with carnivores than with herbivores.

  4. From red giants to planetary nebulae: Asymmetries, dust, and polarization

    International Nuclear Information System (INIS)

    Johnson, J.J.

    1990-01-01

    In order to investigate the development of aspherical planetary nebulae, polarimetry was obtained for a group of planetary nebulae and for objects that will evolve into planetary nebulae, i.e., red giants, late asymptotic giant branch (AGB) objects, proto-planetary nebulae, and young planetary nebulae. To study the dust around the objects in our sample, we also used data from the Infrared Astronomy Satellite (IRAS) mission. The youngest objects in our survey, red giants, had the hottest dust temperatures while planetary nebulae had the coolest. Most of the objects were intrinsically polarized, including the red giants. This indicated that the circumstellar dust shells of these objects were aspherical. Both carbon- and oxygen-rich objects could be intrinsically polarized. The intrinsic polarizations of a sample of our objects were modeled using an ellipsoidal circumstellar dust shell. The findings of this study suggest that the asphericities that lead to an aspherical planetary nebula originate when a red giant begins to undergo mass loss. The polarization and thus the asphericity as the star evolves, with both reaching a maximum during the proto-planetary nebula stage. The circumstellar dust shell will dissipate after the proto-planetary nebulae stage since no new material is being added. The polarization of planetary nebulae will thus be low. In the most evolved planetary nebulae, the dust has either been destroyed or dissipated into the interstellar medium. In these objects no polarization was observed

  5. Giant Omental Lipoma in a Child

    International Nuclear Information System (INIS)

    Chaudhary, Vikas; Narula, Mahender Kaur; Anand, Rama; Gupta, Isha; Kaur, Gurmeen; Kalra, Kanika

    2011-01-01

    Omental lipomas are extremely rare tumors of childhood. We report a case of solitary giant lipoma of the omentum in a child, successfully managed by complete excision, without any recurrence on follow-up study

  6. Giant condyloma acuminatum of vulva

    Directory of Open Access Journals (Sweden)

    S. M. Ramiz Ahmed

    2017-09-01

    Full Text Available In this paper, A 23 year old married woman who was diagnosed as a case of giant condyloma acuminatum of vulva measuring about 15 x 8 x 3 cm, irregular surface with multiple projections, oval in shape, firm to hard in consistency, mildly tender, exophytic, cauliflower like growth involving the whole vulva (lower part of mons pubis, labia, vestibule, clitoris, around vaginal opening. Another multiple small lesions were present at perineal region but there was no inguinal lymphadenopathy. She underwent a combined electro cauterization and cryotherapy for small to moderate size multiple primary and recurrent warty lesions and wide surgical excision with fasciocutaneous advancement flaps procedure for a giant lesions in the vulva. Excisional biopsies were performed to detect potential malignancy but malignancy was not found histologically. The patient was advised to first follow-up 1 month after operation when multiple small warty lesions were developed and treated and the subsequent follow-ups for 3 months.

  7. Stable isotopes document the trophic structure of a deep-sea cephalopod assemblage including giant octopod and giant squid.

    Science.gov (United States)

    Cherel, Y; Ridoux, V; Spitz, J; Richard, P

    2009-06-23

    Although deep-sea cephalopods are key marine organims, their feeding ecology remains essentially unknown. Here, we report for the first time the trophic structure of an assemblage of these animals (19 species) by measuring the isotopic signature of wings of their lower beaks, which accumulated in stomachs of stranded sperm whales. Overall, the species encompassed a narrow range in delta(13)C values (1.7 per thousand), indicating that they lived in closely related and overlapping habitats. delta(13)C values can be interpreted in terms of distribution with the more (13)C-depleted species (e.g. Stigmatoteuthis arcturi, Vampyroteuthis infernalis) having a more pelagic habitat than the more (13)C-enriched, bathyal species (e.g. Todarodes sagittatus and the giant squid Architeuthis dux). The cephalopods sampled had delta(15)N values ranging 4.6 per thousand, which is consistent with the species spanning approximately 1.5 trophic levels. Neither the giant octopod (Haliphron atlanticus) nor the giant squid reached the highest trophic position. Species delta(15)N was independent of body size, with large squids having both the highest (Taningia danae) and lowest (Lepidoteuthis grimaldii) delta(15)N values. Their trophic position indicates that some species share the top of the food web, together with other megacarnivores such as the sperm whale.

  8. The Segue K giant survey. II. A catalog of distance determinations for the Segue K giants in the galactic halo

    International Nuclear Information System (INIS)

    Xue, Xiang-Xiang; Rix, Hans-Walter; Ma, Zhibo; Morrison, Heather L.; Harding, Paul; Beers, Timothy C.; Ivans, Inese I.; Jacobson, Heather R.; Johnson, Jennifer; Lee, Young Sun; Lucatello, Sara; Rockosi, Constance M.; Sobeck, Jennifer S.; Yanny, Brian; Zhao, Gang; Allende Prieto, Carlos

    2014-01-01

    We present an online catalog of distance determinations for 6036 K giants, most of which are members of the Milky Way's stellar halo. Their medium-resolution spectra from the Sloan Digital Sky Survey/Sloan Extension for Galactic Understanding and Exploration are used to derive metallicities and rough gravity estimates, along with radial velocities. Distance moduli are derived from a comparison of each star's apparent magnitude with the absolute magnitude of empirically calibrated color-luminosity fiducials, at the observed (g – r) 0 color and spectroscopic [Fe/H]. We employ a probabilistic approach that makes it straightforward to properly propagate the errors in metallicities, magnitudes, and colors into distance uncertainties. We also fold in prior information about the giant-branch luminosity function and the different metallicity distributions of the SEGUE K-giant targeting sub-categories. We show that the metallicity prior plays a small role in the distance estimates, but that neglecting the luminosity prior could lead to a systematic distance modulus bias of up to 0.25 mag, compared to the case of using the luminosity prior. We find a median distance precision of 16%, with distance estimates most precise for the least metal-poor stars near the tip of the red giant branch. The precision and accuracy of our distance estimates are validated with observations of globular and open clusters. The stars in our catalog are up to 125 kpc from the Galactic center, with 283 stars beyond 50 kpc, forming the largest available spectroscopic sample of distant tracers in the Galactic halo.

  9. UV Visibility of Moderate-Redshift Giant Elliptical Galaxies

    Directory of Open Access Journals (Sweden)

    Myung-Hyun Rhee

    1998-06-01

    Full Text Available We show quantitatively whether giant elliptical galaxies would be visible at far UV wavelengths if they were placed at moderate redshift of 0.4-0.5. On the basis of simple cosmological tests, we conclude that giant elliptical galaxies can be detectable upto the redshift of 0.4-0.5 in the proposed GALEX (Galaxy Evolution Explorer Deep Imaging Survey. We also show that obtaining UV color index such as m_1550 - V from upcoming GALEX and SDSS (Sloan Digital Sky Survey observations should be feasible.

  10. MRI findings of giant plasmacytoma of the calvarium

    International Nuclear Information System (INIS)

    Ishii, Norihiro; Suzuki, Yasuo; Ishii, Ryoji

    2007-01-01

    We report two cases of giant plasmacytoma of the calvarium with the dural tail sign. Though the dural tail sign has been reported as a highly specific finding of meningiomas, the recent literature has described its appearance with other tumors, such as schwannomas, lymphomas, and metastatic brain tumors. Therefore, we reviewed 10 cases of plasmacytomas with a dural tail sign including our two cases and discussed the origin of dural tail signs. It was concluded that giant plasmacytoma of the calvarium is one of the entities that produces a dural tail sign. (author)

  11. Delayed Diagnosis: Giant Basal Cell Carcinoma of Scalp

    Directory of Open Access Journals (Sweden)

    Didem Didar Balcı,

    2008-07-01

    Full Text Available Although basal cell carcinoma (BCC is the most common form of skin cancer, the scalp lesions of BCC have been rarely reported. Giant BCC is defined as a tumor larger than 5 cm in diameter and only 0.5-1 % of all BCCs achieve this size. We report a case of giant BCC on the scalp that was treated with topical coticosteroids and antifungal shampoo for five years. BCC should be considered in the differential diagnosis in erythematous plaque type lesions resistant to therapy with long duration localized on the scalp.

  12. Excitation and photon decay of giant multipole resonances

    International Nuclear Information System (INIS)

    Bertrand, F.E.; Beene, J.R.

    1990-01-01

    A brief review of the excitation of giant multipole resonances via Coulomb excitation is given which emphasizes the very large cross sections that can be realized through this reaction for both isoscalar and isovector resonances. Discussion and results where available, are provide for the measurement of the photon decay of one and two phonon giant resonances. It is pointed out throughout the presentation that the use of E1 photons as a ''tag'' provides a means to observe weakly excited resonances that cannot be observed in the singles spectra. 14 refs., 12 figs., 1 tab

  13. High energy hadron-hadron collisions

    International Nuclear Information System (INIS)

    Chou, T.T.

    1990-01-01

    Results of a study on high energy collision with the geometrical model are summarized in three parts: (i) the elastic hadron-hadron collision, (ii) the inelastic hadron-hadron collision, and (iii) the e + e - annihilation. The geometrical description of high-energy elastic scattering developed earlier is still in general agreement with experiments at the CERN-S bar ppS energies. A simple one-parameter expression for the blackness of bar pp system has been proposed recently which describes very well all existing data from ISR to S bar ppS energies. The geometrical description has also been extended to include processes of fragmentation and diffraction dissociation and other phenomena. In the past five years, a unified physical picture for multiparticle emission in hadron-hadron and e + e - collisions was developed. It focuses on the idea of the wide range of values for the total angular momentum in hadron-hadron collisions. An extension of this consideration yields a theory for the momentum distribution of the outgoing particles which agrees with bar pp and e + e - collision experiments. The results and conclusions of this theory have been extrapolated to higher energies and yielded many predictions which can be experimentally tested. 37 refs

  14. Fluid dynamics of giant resonances on high spin states

    International Nuclear Information System (INIS)

    Di Nardo, M.; Di Toro, M.; Giansiracusa, G.; Lombardo, U.; Russo, G.

    1983-01-01

    We describe giant resonances built on high spin states along the yrast line as scaling solutions of a linearized Vlasov equation in a rotating frame obtained from a TDHF theory in phase space. For oblate cranked solutions we get a shift and a splitting of the isoscalar giant resonances in terms of the angular velocity. Results are shown for 40 Ca and 168 Er. The relative CM strengths are also calculated. (orig.)

  15. Localized tenosynovial giant cell tumor in both knee joints

    International Nuclear Information System (INIS)

    Kim, Hyun Su; Kwon, Jong Won; Ahn, Jin Hwan; Chang, Moon Jong; Cho, Eun Yoon

    2010-01-01

    Tenosynovial giant cell tumor, previously called pigmented villonodular synovitis (PVNS), is a rare benign neoplastic process that may involve the synovium of the joint. The disorder is usually monoarticular and only a few cases have been reported on polyarticular involvement. Herein, we present a case of localized intra-articular tenosynovial giant cell tumor in a 29-year-old man involving both knee joints with a description of the MR imaging and histological findings. (orig.)

  16. The Role of Symbiotic Zooxanthellae on Giant Clam Nutrition

    OpenAIRE

    Ambariyanto

    1997-01-01

    Zooxanthellae, Symbiodinium sp, are single cell dinoflagellate algae known to live in association with many marine invertebrates such as hermatypic corals, sea anemones, jellyfish and giant clams (family Tridacnidae). In giant clams, these photosynthetic algae are located in a tubular system (known as Z tube system) which occurs within the clams. Apart from filter feeding, the nutrition of the clams is provided by zooxanthellae. These algae are capable of translocating part of their photosynt...

  17. Giant 4p-quadrupole resonances in the Rare Earths

    International Nuclear Information System (INIS)

    Matthew, J.A.D.; Netzer, F.P.; Clark, C.W.; Morar, J.F.

    1987-01-01

    X-ray absorption of Ce obtained by partial secondary yield, is compared with previously obtained electron-energy loss measurements in reflection mode. The absence of a strong feature below 4p 3/2 threshold in photon absorption provides confirmation that the peak in EELS is nondipole in character. Theoretical analysis supports interpretation in terms of a p-f giant quadrupole resonance, a result which broadens the analogy between giant resonances in atomic and nuclear physics

  18. A self-consistent semiclassical sum rule approach to the average properties of giant resonances

    International Nuclear Information System (INIS)

    Li Guoqiang; Xu Gongou

    1990-01-01

    The average energies of isovector giant resonances and the widths of isoscalar giant resonances are evaluated with the help of a self-consistent semiclassical Sum rule approach. The comparison of the present results with the experimental ones justifies the self-consistent semiclassical sum rule approach to the average properties of giant resonances

  19. A giant occipital encephalocele with spontaneous hemorrhage into the sac: A rare case report

    Science.gov (United States)

    Nath, H. D.; Mahapatra, A. K.; Borkar, S. A.

    2014-01-01

    In giant encephalocele, head size is smaller than the encelphalocele. Occipital encephalocele is the commonest of all encephalocele. In our case, there was rare association with giant encephalocele with old hemorrhage in the sac. This was a unique presentation. In world literature, there was rare association with giant encephalocele with hemorrhage. PMID:25685207

  20. Potential of Myrothecium species as bioherbicides for giant salvinia (Salvinia molesta)

    Science.gov (United States)

    Giant salvinia is an exotic, invasive floating weed that can be difficult to manage. We examined a previously described isolate of the Myrothecium verrucaria and three new isolates of Myrotheicum roridum for virulence against giant salvinia. These plant pathogens were grown on a standard medium, p...

  1. THE NATURE OF HYPERVELOCITY STARS AND THE TIME BETWEEN THEIR FORMATION AND EJECTION

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Warren R.; Geller, Margaret J.; Kenyon, Scott J. [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Cohen, Judith G., E-mail: wbrown@cfa.harvard.edu, E-mail: mgeller@cfa.harvard.edu, E-mail: skenyon@cfa.harvard.edu, E-mail: jlc@astro.caltech.edu [Palomar Observatory, Mail Stop 249-17, California Institute of Technology, Pasadena, CA 91125 (United States)

    2012-07-20

    We obtain Keck HIRES spectroscopy of HVS5, one of the fastest unbound stars in the Milky Way halo. We show that HVS5 is a 3.62 {+-} 0.11 M{sub Sun} main-sequence B star at a distance of 50 {+-} 5 kpc. The difference between its age and its flight time from the Galactic center is 105 {+-} 18 (stat) {+-}30 (sys) Myr; flight times from locations elsewhere in the Galactic disk are similar. This 10{sup 8} yr 'arrival time' between formation and ejection is difficult to reconcile with any ejection scenario involving massive stars that live for only 10{sup 7} yr. For comparison, we derive arrival times of 10{sup 7} yr for two unbound runaway B stars, consistent with their disk origin where ejection results from a supernova in a binary system or dynamical interactions between massive stars in a dense star cluster. For HVS5, ejection during the first 10{sup 7} yr of its lifetime is ruled out at the 3{sigma} level. Together with the 10{sup 8} yr arrival times inferred for three other well-studied hypervelocity stars (HVSs), these results are consistent with a Galactic center origin for the HVSs. If the HVSs were indeed ejected by the central black hole, then the Galactic center was forming stars {approx_equal}200 Myr ago, and the progenitors of the HVSs took {approx_equal}100 Myr to enter the black hole's loss cone.

  2. THE NATURE OF HYPERVELOCITY STARS AND THE TIME BETWEEN THEIR FORMATION AND EJECTION

    International Nuclear Information System (INIS)

    Brown, Warren R.; Geller, Margaret J.; Kenyon, Scott J.; Cohen, Judith G.

    2012-01-01

    We obtain Keck HIRES spectroscopy of HVS5, one of the fastest unbound stars in the Milky Way halo. We show that HVS5 is a 3.62 ± 0.11 M ☉ main-sequence B star at a distance of 50 ± 5 kpc. The difference between its age and its flight time from the Galactic center is 105 ± 18 (stat) ±30 (sys) Myr; flight times from locations elsewhere in the Galactic disk are similar. This 10 8 yr 'arrival time' between formation and ejection is difficult to reconcile with any ejection scenario involving massive stars that live for only 10 7 yr. For comparison, we derive arrival times of 10 7 yr for two unbound runaway B stars, consistent with their disk origin where ejection results from a supernova in a binary system or dynamical interactions between massive stars in a dense star cluster. For HVS5, ejection during the first 10 7 yr of its lifetime is ruled out at the 3σ level. Together with the 10 8 yr arrival times inferred for three other well-studied hypervelocity stars (HVSs), these results are consistent with a Galactic center origin for the HVSs. If the HVSs were indeed ejected by the central black hole, then the Galactic center was forming stars ≅200 Myr ago, and the progenitors of the HVSs took ≅100 Myr to enter the black hole's loss cone.

  3. Fragmentation of giant dipole resonance at finite temperature

    International Nuclear Information System (INIS)

    Vdovin, A.

    2005-01-01

    It is well known that the main part of a width of a collective giant resonance built on the ground state in heavy nuclei is due to coupling of one-phonon vibrational states with more complex ones like two phonon or two-particle - two-hole. So it seems natural that the same idea was also explored in studying of the formation and dependence on temperature of a width of giant resonances built on a compound nuclear state. The first microscopic calculations of a giant dipole resonance width at finite temperature have demonstrated its weak dependence on T whereas the experimental width Γ exp strongly increases up to T≤3 MeV. The observed thermal behaviour of Γ exp was attributed mainly to thermal fluctuations of a nuclear shape at finite T . However, further theoretical studies of the problem have shown a strengthening of the GDR spreading with T. We calculate a fragmentation of the giant dipole resonance in hot spherical nuclei within the approach based on the quasiparticle-phonon model extended to finite temperature in with the formalism of thermofield dynamics. The fragmentation of collective giant dipole vibrations at finite T is due to the coupling with 'two-thermal phonon' configurations. The energies and structures of thermal phonon states are calculated from the thermal RPA temperature dependence of the variance σ th of a theoretical E1 strength function and the experimental GDR width Γ exp in 120 Sn. The coupling of thermal phonons is determined by their fermionic structure. The variance σ th of the E1 strength function is found continuously increasing with temperature. The main reason of this behavior is the coupling of the dipole phonons with very low-lying particle-particle (hole-hole) thermal phonons. These phonons are noncollective ones and they appear only at T≠0. The calculated T dependence of σ th is quite similar to that of the experimental width Γ exp in 120 Sn and 208 Pb

  4. Spectroscopy of Six Red Giants in the Draco Dwarf Spheroidal Galaxy

    Science.gov (United States)

    Smith, Graeme H.; Siegel, Michael H.; Shetrone, Matthew D.; Winnick, Rebeccah

    2006-10-01

    Keck Observatory LRIS-B (Low Resolution Imaging Spectrometer) spectra are reported for six red giant stars in the Draco dwarf spheroidal galaxy and several comparison giants in the globular cluster M13. Indexes that quantify the strengths of the Ca II H and K lines, the λ3883 and λ4215 CN bands, and the λ4300 G band have been measured. These data confirm evidence of metallicity inhomogeneity within Draco obtained by previous authors. The four brightest giants in the sample have absolute magnitudes in the range -2.6intermediate-mass asymptotic giant branch stars to enrich the interstellar medium while star formation was still occurring. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  5. GIANT IMPACT: AN EFFICIENT MECHANISM FOR THE DEVOLATILIZATION OF SUPER-EARTHS

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shang-Fei [Department of Earth and Planetary Sciences, University of California, Santa Cruz, CA 95064 (United States); Hori, Yasunori; Lin, D. N. C. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Asphaug, Erik, E-mail: sliu26@ucsc.edu, E-mail: yahori@ucsc.edu, E-mail: lin@ucolick.org, E-mail: easphaug@asu.edu [School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287 (United States)

    2015-10-20

    Mini-Neptunes and volatile-poor super-Earths coexist on adjacent orbits in proximity to host stars such as Kepler-36 and Kepler-11. Several post-formation processes have been proposed for explaining the origin of the compositional diversity between neighboring planets: mass loss via stellar XUV irradiation, degassing of accreted material, and in situ accumulation of the disk gas. Close-in planets are also likely to experience giant impacts during the advanced stage of planet formation. This study examines the possibility of transforming volatile-rich super-Earths/mini-Neptunes into volatile-depleted super-Earths through giant impacts. We present the results of three-dimensional hydrodynamic simulations of giant impacts in the accretionary and disruptive regimes. Target planets are modeled with a three-layered structure composed of an iron core, silicate mantle, and hydrogen/helium envelope. In the disruptive case, the giant impact can remove most of the H/He atmosphere immediately and homogenize the refractory material in the planetary interior. In the accretionary case, the planet is able to retain more than half of the original gaseous envelope, while a compositional gradient suppresses efficient heat transfer as the planetary interior undergoes double-diffusive convection. After the giant impact, a hot and inflated planet cools and contracts slowly. The extended atmosphere enhances the mass loss via both a Parker wind induced by thermal pressure and hydrodynamic escape driven by the stellar XUV irradiation. As a result, the entire gaseous envelope is expected to be lost due to the combination of those processes in both cases. Based on our results, we propose that Kepler-36b may have been significantly devolatilized by giant impacts, while a substantial fraction of Kepler-36c’s atmosphere may remain intact. Furthermore, the stochastic nature of giant impacts may account for the observed large dispersion in the mass–radius relationship of close-in super

  6. Giant Cell Reparative Granuloma Mimicking Aneurysmal Bone Cyst in Proximal Phalanx of Toe

    Directory of Open Access Journals (Sweden)

    Huan CM

    2016-03-01

    Full Text Available Giant Cell Reparative Granuloma (GCRG of phalanx is uncommon. It is a benign osteolytic lesion but can be locally aggressive. GCRG has certain radiology and histological features that are similar to other giant cell lesions of the bone. We present a case report of a young patient with giant cell reparative granuloma of proximal phalanx of left third toe. The bone lesion was successfully treated surgically.

  7. Sparsely-Observed Pulsating Red Giants in the AAVSO Observing Program

    Science.gov (United States)

    Percy, J. R.

    2018-06-01

    This paper reports on time-series analysis of 156 pulsating red giants (21 SRa, 52 SRb, 33 SR, 50 Lb) in the AAVSO observing program for which there are no more than 150-250 observations in total. Some results were obtained for 68 of these stars: 17 SRa, 14 SRb, 20 SR, and 17 Lb. These results generally include only an average period and amplitude. Many, if not most of the stars are undoubtedly more complex; pulsating red giants are known to have wandering periods, variable amplitudes, and often multiple periods including "long secondary periods" of unknown origin. These results (or lack thereof) raise the question of how the AAVSO should best manage the observation of these and other sparsely-observed pulsating red giants.

  8. Behavioral response of giant gartersnakes (Thamnophis gigas) to the relative availability of aquatic habitat on the landscape

    Science.gov (United States)

    Reyes, Gabriel A.; Halstead, Brian J.; Rose, Jonathan P.; Ersan, Julia S. M.; Jordan, Anna C.; Essert, Allison M.; Fouts, Kristen J.; Fulton, Alexandria M.; Gustafson, K. Benjamin; Wack, Raymond F.; Wylie, Glenn D.; Casazza, Michael L.

    2017-11-16

    Most extant giant gartersnake (Thamnophis gigas) populations persist in an agro-ecosystem dominated by rice, which serves as a surrogate to the expansive marshes lost to flood control projects and development of the Great Central Valley of California. Knowledge of how giant gartersnakes use the rice agricultural landscape, including how they respond to fallowing, idling, or crop rotations, would greatly benefit conservation of giant gartersnakes by informing more snake-friendly land and water management practices. We studied adult giant gartersnakes at 11 sites in the rice-growing regions of the Sacramento Valley during an extended drought in California to evaluate their response to differences in water availability at the site and individual levels. Although our study indicated that giant gartersnakes make little use of rice fields themselves, and avoid cultivated rice relative to its availability on the landscape, rice is a crucial component of the modern landscape for giant gartersnakes. Giant gartersnakes are strongly associated with the canals that supply water to and drain water from rice fields; these canals provide much more stable habitat than rice fields because they maintain water longer and support marsh-like conditions for most of the giant gartersnake active season. Nonetheless, our results suggest that maintaining canals without neighboring rice fields would be detrimental to giant gartersnake populations, with decreases in giant gartersnake survival rates associated with less rice production in the surrounding landscape. Increased productivity of prey populations, dispersion of potential predators across a larger landscape, and a more secure water supply are just some of the mechanisms by which rice fields might benefit giant gartersnakes in adjacent canals. Results indicate that identifying how rice benefits giant gartersnakes in canals and the extent to which the rice agro-ecosystem could provide these benefits when rice is fallowed would inform

  9. Giant Otters in Peru

    OpenAIRE

    Schenk C.; Staib E.

    1992-01-01

    We are in the second year of fieldwork surveying for Giant Otters in the southeastern rainforest of Peru, in three areas with differing levels of legal protection. While there is some illegal hunting still happening outside the protected areas, the main threat to the otters is badly-conducted tourism. Well-organised tourism can be a promising argument for establishing protected areas like national parks.

  10. Photon-photon collisions

    International Nuclear Information System (INIS)

    Burke, D.L.

    1982-10-01

    Studies of photon-photon collisions are reviewed with particular emphasis on new results reported to this conference. These include results on light meson spectroscopy and deep inelastic e#betta# scattering. Considerable work has now been accumulated on resonance production by #betta##betta# collisions. Preliminary high statistics studies of the photon structure function F 2 /sup #betta#/(x,Q 2 ) are given and comments are made on the problems that remain to be solved

  11. Photon-photon collisions

    International Nuclear Information System (INIS)

    Haissinski, J.

    1986-06-01

    The discussions presented in this paper deal with the following points: distinctive features of gamma-gamma collisions; related processes; photon-photon elastic scattering in the continuum and γγ →gg; total cross section; γγ → V 1 V 2 (V=vector meson); radiative width measurements and light meson spectroscopy; exclusive channels at large /t/; jets and inclusive particle distribution in γγ collisions; and, the photon structure function F γ 2

  12. Acceleration of Cooling of Ice Giants by Condensation in Early Atmospheres

    International Nuclear Information System (INIS)

    Kurosaki, Kenji; Ikoma, Masahiro

    2017-01-01

    The present infrared brightness of a planet originates partly from the accretion energy that the planet gained during its formation and hence provides important constraints to the planet formation process. A planet cools down from a hot initial state to the present state by losing energy through radiative emission from its atmosphere. Thus, the atmospheric properties affect the planetary cooling rate. Previous theories of giant planet cooling assume that the atmospheric composition is unchanged throughout the evolution. Planet formation theories, however, suggest that the atmospheres especially of ice giants are rich in heavy elements in the early stages. These heavy elements include condensable species such as H 2 O, NH 3 , and CH 4 , which are expected to have a great impact on atmospheric temperature and thus on radiative emission through latent heat release. In this study we investigate the effect of such condensation on the planetary emission flux and quantify the impact on the cooling timescale. We then demonstrate that the latent heat of these species keeps the atmosphere hot and thus the emission flux high for billions of years, resulting in an acceleration of the cooling of ice giants. This sheds light on the long-standing problem that Uranus is much less bright than theoretically predicted and is different in brightness from Neptune in spite of the similarity in mass and radius. We also find that young ice giants with highly enriched atmospheres are much brighter in the mid-infrared than ice giants with non-enriched atmospheres. This provides important implications for future direct imaging of extrasolar ice giants.

  13. Acceleration of Cooling of Ice Giants by Condensation in Early Atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Kurosaki, Kenji; Ikoma, Masahiro, E-mail: kurosaki.k@nagoya-u.jp, E-mail: ikoma@eps.s.u-tokyo.ac.jp [Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2017-06-01

    The present infrared brightness of a planet originates partly from the accretion energy that the planet gained during its formation and hence provides important constraints to the planet formation process. A planet cools down from a hot initial state to the present state by losing energy through radiative emission from its atmosphere. Thus, the atmospheric properties affect the planetary cooling rate. Previous theories of giant planet cooling assume that the atmospheric composition is unchanged throughout the evolution. Planet formation theories, however, suggest that the atmospheres especially of ice giants are rich in heavy elements in the early stages. These heavy elements include condensable species such as H{sub 2}O, NH{sub 3}, and CH{sub 4}, which are expected to have a great impact on atmospheric temperature and thus on radiative emission through latent heat release. In this study we investigate the effect of such condensation on the planetary emission flux and quantify the impact on the cooling timescale. We then demonstrate that the latent heat of these species keeps the atmosphere hot and thus the emission flux high for billions of years, resulting in an acceleration of the cooling of ice giants. This sheds light on the long-standing problem that Uranus is much less bright than theoretically predicted and is different in brightness from Neptune in spite of the similarity in mass and radius. We also find that young ice giants with highly enriched atmospheres are much brighter in the mid-infrared than ice giants with non-enriched atmospheres. This provides important implications for future direct imaging of extrasolar ice giants.

  14. Electron capture in ion-molecule collisions at intermediate energy

    International Nuclear Information System (INIS)

    Kumura, M.

    1986-01-01

    Recent progress of theoretical charge transfer study in ion-molecule collisions at the intermediate energy is reviewed. Concept of close and distant collisions obtained from extensive ion-atom collision studies is identified so that it can be utilized to model two distinct collision processes. For a close collision, explicit representation of the whole collision complex is necessary to describe collision dynamics correctly, while a model potential approach for molecule is appropriate for a distant collision. It is shown that these two distinct models are indeed capable of reproducing experimental charge transfer cross sections. Some remarks for further theoretical study of ion-molecule collisions are also given. 21 refs., 8 figs

  15. Direct vs statistical decay of nuclear giant multipole resonances

    International Nuclear Information System (INIS)

    Dias, H.; Hussein, M.S.; Carlson, B.V.; Merchant, A.C.; Adhikari, S.K.

    1986-01-01

    A theoretical framework for the description of the decay of giant multipole resonances id developed. Besides the direct decay, both the pre-equilibrium and statistical (compound) decays are taken into account in a consistent way. It is shown that the statistical decay of the giant resonance is not necessarily described by the Hauser-Feshbach theory owing to the presence of a mixing parameter, which measures the degree of fragmentation. Applications are made to several cases. (Author) [pt

  16. Dynamically hot Super-Earths from outer giant planet scattering

    OpenAIRE

    Huang, Chelsea X.; Petrovich, Cristobal; Deibert, Emily

    2016-01-01

    The hundreds of multiple planetary systems discovered by the \\textit{Kepler} mission are typically observed to reside in close-in ($\\lesssim0.5$ AU), low-eccentricity, and low-inclination orbits. We run N-body experiments to study the effect that unstable outer ($\\gtrsim1$ AU) giant planets, whose end orbital configurations resemble those in the Radial Velocity population, have on these close-in multiple super-Earth systems. Our experiments show that the giant planets greatly reduce the multi...

  17. Capture of terrestrial-sized moons by gas giant planets.

    Science.gov (United States)

    Williams, Darren M

    2013-04-01

    Terrestrial moons with masses >0.1 M (symbol in text) possibly exist around extrasolar giant planets, and here we consider the energetics of how they might form. Binary-exchange capture can occur if a binary-terrestrial object (BTO) is tidally disrupted during a close encounter with a giant planet and one of the binary members is ejected while the other remains as a moon. Tidal disruption occurs readily in the deep gravity wells of giant planets; however, the large encounter velocities in the wells make binary exchange more difficult than for planets of lesser mass. In addition, successful capture favors massive binaries with large rotational velocities and small component mass ratios. Also, since the interaction tends to leave the captured moons on highly elliptical orbits, permanent capture is only possible around planets with sizable Hill spheres that are well separated from their host stars.

  18. A novel polyomavirus from the nasal cavity of a giant panda (Ailuropoda melanoleuca).

    Science.gov (United States)

    Qi, Dunwu; Shan, Tongling; Liu, Zhijian; Deng, Xutao; Zhang, Zhihe; Bi, Wenlei; Owens, Jacob Robert; Feng, Feifei; Zheng, Lisong; Huang, Feng; Delwart, Eric; Hou, Rong; Zhang, Wen

    2017-10-27

    Polyomaviruses infect a wide variety of mammalian and avian hosts with a broad spectrum of outcomes including asymptomatic infection, acute systemic disease, and tumor induction. Viral metagenomics and general PCR methods were used to detected viral nucleic acid in the samples from a diseased and healthy giant pandas. A novel polyomavirus, the giant panda polyomavirus 1 (GPPyV1) from the nasal cavity of a dead giant panda (Ailuropoda melanoleuca) was characterized. The GPPyV1 genome is 5144 bp in size and reveals five putative open-reading frames coding for the classic small and large T antigens in the early region, and the VP1, VP2 and VP3 capsid proteins in the late region. Phylogenetic analyses of the large T antigen of the GPPyV1 indicated GPPyV1 belonged to a putative new species within genus Deltapolyomavirus, clustering with four human polyomavirus species. The GPPyV1 VP1 and VP2 clustered with genus Alphapolyomavirus. Our epidemiologic study indicated that this novel polyomavirus was also detected in nasal swabs and fecal samples collected from captive healthy giant pandas. A novel polyomavirus was detected in giant pandas and its complete genome was characterized, which may cause latency infection in giant pandas.

  19. Giant planets. Holweck prize lecture 1982

    Energy Technology Data Exchange (ETDEWEB)

    Hide, R. (Meteorological Office, Bracknell (UK))

    1982-10-01

    The main characteristics of the giant planets, Jupiter and Saturn, are outlined. Studies which have been made of the circulation of their atmospheres, the structure of their interiors and the origin of their magnetic fields are discussed.

  20. Who's working on giant clam culture?

    OpenAIRE

    Vega, M.J.M.

    1990-01-01

    An examination is made of the literature on giant clam (Tridacna ) culture methods induced spawning, larvae, larval and post-larval rearing and socioeconomics. ASFA and the ICLARM library and professional staff collections were used for the search.