WorldWideScience

Sample records for ghz superconducting electron

  1. Results of RIKEN superconducting electron cyclotron resonance ion source with 28 GHz.

    Science.gov (United States)

    Higurashi, Y; Ohnishi, J; Nakagawa, T; Haba, H; Tamura, M; Aihara, T; Fujimaki, M; Komiyama, M; Uchiyama, A; Kamigaito, O

    2012-02-01

    We measured the beam intensity of highly charged heavy ions and x-ray heat load for RIKEN superconducting electron cyclotron resonance ion source with 28 GHz microwaves under the various conditions. The beam intensity of Xe(20+) became maximum at B(min) ∼ 0.65 T, which was ∼65% of the magnetic field strength of electron cyclotron resonance (B(ECR)) for 28 GHz microwaves. We observed that the heat load of x-ray increased with decreasing gas pressure and field gradient at resonance zone. It seems that the beam intensity of highly charged heavy ions with 28 GHz is higher than that with 18 GHz at same RF power.

  2. Development of an 18 GHz superconducting electron cyclotron resonance ion source at RCNP.

    Science.gov (United States)

    Yorita, Tetsuhiko; Hatanaka, Kichiji; Fukuda, Mitsuhiro; Kibayashi, Mitsuru; Morinobu, Shunpei; Okamura, Hiroyuki; Tamii, Atsushi

    2008-02-01

    An 18 GHz superconducting electron cyclotron resonance ion source has recently been developed and installed in order to extend the variety and the intensity of ions at the RCNP coupled cyclotron facility. Production of several ions such as O, N, Ar, Kr, etc., is now under development and some of them have already been used for user experiments. For example, highly charged heavy ion beams like (86)Kr(21+,23+) and intense (16)O(5+,6+) and (15)N(6+) ion beams have been provided for experiments. The metal ion from volatile compounds method for boron ions has been developed as well.

  3. Superconducting ECR ion source: From 24-28 GHz SECRAL to 45 GHz fourth generation ECR

    Science.gov (United States)

    Zhao, H. W.; Sun, L. T.; Guo, J. W.; Zhang, W. H.; Lu, W.; Wu, W.; Wu, B. M.; Sabbi, G.; Juchno, M.; Hafalia, A.; Ravaioli, E.; Xie, D. Z.

    2018-05-01

    The development of superconducting ECR source with higher magnetic fields and higher microwave frequency is the most straight forward path to achieve higher beam intensity and higher charge state performance. SECRAL, a superconducting third generation ECR ion source, is designed for 24-28 GHz microwave frequency operation with an innovative magnet configuration of sextupole coils located outside the three solenoids. SECRAL at 24 GHz has already produced a number of record beam intensities, such as 40Ar12+ 1.4 emA, 129Xe26+ 1.1 emA, 129Xe30+ 0.36 emA, and 209Bi31+ 0.68 emA. SECRAL-II, an upgraded version of SECRAL, was built successfully in less than 3 years and has recently been commissioned at full power of a 28 GHz gyrotron and three-frequency heating (28 + 45 + 18 GHz). New record beam intensities for highly charged ion production have been achieved, such as 620 eμA 40Ar16+, 15 eμA 40Ar18+, 146 eμA 86Kr28+, 0.5 eμA 86Kr33+, 53 eμA 129Xe38+, and 17 eμA 129Xe42+. Recent beam test results at SECRAL and SECRAL II have demonstrated that the production of more intense highly charged heavy ion beams needs higher microwave power and higher frequency, as the scaling law predicted. A 45 GHz superconducting ECR ion source FECR (a first fourth generation ECR ion source) is being built at IMP. FECR will be the world's first Nb3Sn superconducting-magnet-based ECR ion source with 6.5 T axial mirror field, 3.5 T sextupole field on the plasma chamber inner wall, and 20 kW at a 45 GHz microwave coupling system. This paper will focus on SECRAL performance studies at 24-28 GHz and technical design of 45 GHz FECR, which demonstrates a technical path for highly charged ion beam production from 24 to 28 GHz SECRAL to 45 GHz FECR.

  4. European roadmap on superconductive electronics - status and perspectives

    International Nuclear Information System (INIS)

    Anders, S.; Blamire, M.G.; Buchholz, F.-Im.; Crete, D.-G.; Cristiano, R.; Febvre, P.; Fritzsch, L.; Herr, A.; Il'ichev, E.; Kohlmann, J.; Kunert, J.; Meyer, H.-G.; Niemeyer, J.; Ortlepp, T.; Rogalla, H.; Schurig, T.

    2010-01-01

    Executive Summary: For four decades semiconductor electronics has followed Moore's law: with each generation of integration the circuit features became smaller, more complex and faster. This development is now reaching a wall so that smaller is no longer any faster. The clock rate has saturated at about 3-5 GHz and the parallel processor approach will soon reach its limit. The prime reason for the limitation the semiconductor electronics experiences is not the switching speed of the individual transistor, but its power dissipation and thus heat. Digital superconductive electronics is a circuit- and device-technology that is inherently faster at much less power dissipation than semiconductor electronics. It makes use of superconductors and Josephson junctions as circuit elements, which can provide extremely fast digital devices in a frequency range - dependent on the material - of hundreds of GHz: for example a flip-flop has been demonstrated that operated at 750 GHz. This digital technique is scalable and follows similar design rules as semiconductor devices. Its very low power dissipation of only 0.1 μW per gate at 100 GHz opens the possibility of three-dimensional integration. Circuits like microprocessors and analogue-to-digital converters for commercial and military applications have been demonstrated. In contrast to semiconductor circuits, the operation of superconducting circuits is based on naturally standardized digital pulses the area of which is exactly the flux quantum Φ 0 . The flux quantum is also the natural quantization unit for digital-to-analogue and analogue-to-digital converters. The latter application is so precise, that it is being used as voltage standard and that the physical unit 'Volt' is defined by means of this standard. Apart from its outstanding features for digital electronics, superconductive electronics provides also the most sensitive sensor for magnetic fields: the Superconducting Quantum Interference Device (SQUID). Amongst many

  5. Development of superconducting magnets for RAON 28 GHz ECR ion source.

    Science.gov (United States)

    Heo, Jeongil; Choi, Sukjin; Kim, Yonghwan; Hong, In-Seok

    2016-02-01

    RAON, a 28 GHz electron cyclotron resonance ion source (ECR IS), was designed and tested as a Rare Isotope Science Project. It is expected that RAON would provide not only rare-isotope beams but also stable heavy ions ranging from protons to uranium. In order to obtain the steady heavy-ion beam required for ECR IS, we must use a 28 GHz microwave source as well as a high magnetic field. A superconducting magnet using a NbTi wire was designed and manufactured for producing the ECR IS and a test was conducted. In this paper, the design and fabrication of the superconducting magnet for the ECR IS are presented. Experimental results show that the quench current increases whenever quenching occurs, but it has not yet reached the designed current. The experiment is expected to reveal the ideal conditions required to reach the designed current.

  6. Emittance study of a 28 GHz electron cyclotron resonance ion source for the Rare Isotope Science Project superconducting linear accelerator.

    Science.gov (United States)

    Park, Bum-Sik; Hong, In-Seok; Jang, Ji-Ho; Jin, Hyunchang; Choi, Sukjin; Kim, Yonghwan

    2016-02-01

    A 28 GHz electron cyclotron resonance (ECR) ion source is being developed for use as an injector for the superconducting linear accelerator of the Rare Isotope Science Project. Beam extraction from the ECR ion source has been simulated using the KOBRA3-INP software. The simulation software can calculate charged particle trajectories in three dimensional complex magnetic field structures, which in this case are formed by the arrangement of five superconducting magnets. In this study, the beam emittance is simulated to understand the effects of plasma potential, mass-to-charge ratio, and spatial distribution. The results of these simulations and their comparison to experimental results are presented in this paper.

  7. European roadmap on superconductive electronics - status and perspectives

    Science.gov (United States)

    Anders, S.; Blamire, M. G.; Buchholz, F.-Im.; Crété, D.-G.; Cristiano, R.; Febvre, P.; Fritzsch, L.; Herr, A.; Il'ichev, E.; Kohlmann, J.; Kunert, J.; Meyer, H.-G.; Niemeyer, J.; Ortlepp, T.; Rogalla, H.; Schurig, T.; Siegel, M.; Stolz, R.; Tarte, E.; ter Brake, H. J. M.; Toepfer, H.; Villegier, J.-C.; Zagoskin, A. M.; Zorin, A. B.

    2010-12-01

    Executive SummaryFor four decades semiconductor electronics has followed Moore’s law: with each generation of integration the circuit features became smaller, more complex and faster. This development is now reaching a wall so that smaller is no longer any faster. The clock rate has saturated at about 3-5 GHz and the parallel processor approach will soon reach its limit. The prime reason for the limitation the semiconductor electronics experiences is not the switching speed of the individual transistor, but its power dissipation and thus heat. Digital superconductive electronics is a circuit- and device-technology that is inherently faster at much less power dissipation than semiconductor electronics. It makes use of superconductors and Josephson junctions as circuit elements, which can provide extremely fast digital devices in a frequency range - dependent on the material - of hundreds of GHz: for example a flip-flop has been demonstrated that operated at 750 GHz. This digital technique is scalable and follows similar design rules as semiconductor devices. Its very low power dissipation of only 0.1 μW per gate at 100 GHz opens the possibility of three-dimensional integration. Circuits like microprocessors and analogue-to-digital converters for commercial and military applications have been demonstrated. In contrast to semiconductor circuits, the operation of superconducting circuits is based on naturally standardized digital pulses the area of which is exactly the flux quantum Φ0. The flux quantum is also the natural quantization unit for digital-to-analogue and analogue-to-digital converters. The latter application is so precise, that it is being used as voltage standard and that the physical unit ‘Volt’ is defined by means of this standard. Apart from its outstanding features for digital electronics, superconductive electronics provides also the most sensitive sensor for magnetic fields: the Superconducting Quantum Interference Device (SQUID). Amongst

  8. Superconducting microwave electronics at Lewis Research Center

    Science.gov (United States)

    Warner, Joseph D.; Bhasin, Kul B.; Leonard, Regis F.

    Over the last three years, NASA Lewis Research Center has investigated the application of newly discovered high temperature superconductors to microwave electronics. Using thin films of YBa2Cu3O7-delta and Tl2Ca2Ba2Cu3Ox deposited on a variety of substrates, including strontium titanate, lanthanum gallate, lanthanum aluminate and magnesium oxide, a number of microwave circuits have been fabricated and evaluated. These include a cavity resonator at 60 GHz, microstrip resonators at 35 GHz, a superconducting antenna array at 35 GHz, a dielectric resonator at 9 GHz, and a microstrip filter at 5 GHz. Performance of some of these circuits as well as suggestions for other applications are reported.

  9. Superconducting Microwave Electronics at Lewis Research Center

    Science.gov (United States)

    Warner, Joseph D.; Bhasin, Kul B.; Leonard, Regis F.

    1991-01-01

    Over the last three years, NASA Lewis Research Center has investigated the application of newly discovered high temperature superconductors to microwave electronics. Using thin films of YBa2Cu3O7-delta and Tl2Ca2Ba2Cu3Ox deposited on a variety of substrates, including strontium titanate, lanthanum gallate, lanthanum aluminate and magnesium oxide, a number of microwave circuits have been fabricated and evaluated. These include a cavity resonator at 60 GHz, microstrip resonators at 35 GHz, a superconducting antenna array at 35 GHz, a dielectric resonator at 9 GHz, and a microstrip filter at 5 GHz. Performance of some of these circuits as well as suggestions for other applications are reported.

  10. Manufacturing of a superconducting magnet system for 28 GHz electron cyclotron resonance ion source at KBSI.

    Science.gov (United States)

    Lee, B S; Choi, S; Yoon, J H; Park, J Y; Won, M S

    2012-02-01

    A magnet system for a 28 GHz electron cyclotron resonance ion source is being developed by the Korea Basic Science Institute. The configuration of the magnet system consists of 3 solenoid coils for a mirror magnetic field and 6 racetrack coils for a hexapole magnetic field. They can generate axial magnetic fields of 3.6 T at the beam injection part and 2.2 T at the extraction part. A radial magnetic field of 2.1 T is achievable at the plasma chamber wall. A step type winding process was employed in fabricating the hexapole coil. The winding technique was confirmed through repeated cooling tests. Superconducting magnets and a cryostat system are currently being manufactured.

  11. A new structure of superconducting magnetic system for 50 GHz operations (invited).

    Science.gov (United States)

    Xie, D Z

    2012-02-01

    High field and high frequency have been leading the development of electron cyclotron resonance ion sources (ECRISs) in the past decade as demonstrated by the achieved great performance. The present superconducting magnet structures built with NbTi wires have reached an axial field of 3.5-4.0 T and a radial field of 2.0 T for operating frequency up to 28 GHz. Further increase of the magnetic field strength will require higher current superconductor, i.e., Nb(3)Sn wires. This paper will present the features of a new superconducting magnet structure and review of the existing structures. Using NbTi wires, the new magnet structure could be able to produce maximum fields of 7.0 T on axis and radial field of 3.7 T at a hexagonal plasma chamber wall for ECRIS operations up to 50 GHz. If this new magnet can be built with Nb(3)Sn wires, much higher fields can be expected.

  12. Broadband electron spin resonance from 500 MHz to 40 GHz using superconducting coplanar waveguides

    Science.gov (United States)

    Clauss, Conrad; Bothner, Daniel; Koelle, Dieter; Kleiner, Reinhold; Bogani, Lapo; Scheffler, Marc; Dressel, Martin

    2013-04-01

    We present non-conventional electron spin resonance (ESR) experiments based on microfabricated superconducting Nb thin film waveguides. A very broad frequency range, from 0.5 to 40 GHz, becomes accessible at low temperatures down to 1.6 K and in magnetic fields up to 1.4 T. This allows for an accurate inspection of the ESR absorption position in the frequency domain, in contrast to the more common observation as a function of magnetic field. We demonstrate the applicability of frequency-swept ESR on Cr3+ atoms in ruby as well as on organic radicals of the nitronyl-nitroxide family. Measurements between 1.6 and 30 K reveal a small frequency shift of the ESR and a resonance broadening below the critical temperature of Nb, which we both attribute to a modification of the magnetic field configuration due to the appearance of shielding supercurrents in the waveguide.

  13. Broadband electron spin resonance experiments using superconducting coplanar waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Clauss, Conrad; Bogani, Lapo; Scheffler, Marc; Dressel, Martin [1. Physikalisches Institut, Universitaet Stuttgart (Germany); Bothner, Daniel; Koelle, Dieter; Kleiner, Reinhold [Physikalisches Institut - Experimentalphysik II and Center for Collective Quantum Phenomena in LISA+, Universitaet Tuebingen (Germany)

    2012-07-01

    In recent years superconducting coplanar devices operating at microwave/GHz frequencies are employed in more and more experimental studies. Here, we present electron spin resonance (ESR) experiments using a superconducting coplanar waveguide to provide the RF field to drive the spin flips. In contrast to conventional ESR studies this allows broadband frequency as well as magnetic field swept observation of the spin resonance. We show experimental data of the spin resonance of the organic radical NitPhoMe (2-(4'-methoxyphenyl)-4,4,5,5-tetra-methylimidazoline-1-oxyl-3-oxide) for frequencies in the range of 1 GHz to 40 GHz and corresponding magnetic fields up to 1.4 T (for g=2). In addition we show the temperature dependence of the ESR signals for temperatures up to 30 K, which is well above the critical temperature of the niobium superconductor.

  14. New development of advanced superconducting electron cyclotron resonance ion source SECRAL (invited)

    International Nuclear Information System (INIS)

    Zhao, H. W.; Sun, L. T.; Zhang, X. Z.; Guo, X. H.; Zhao, H. Y.; Feng, Y. C.; Li, J. Y.; Ma, H. Y.; Ma, B. H.; Wang, H.; Li, X. X.; Xie, D. Z.; Lu, W.; Cao, Y.; Shang, Y.

    2010-01-01

    Superconducting electron cyclotron resonance ion source with advance design in Lanzhou (SECRAL) is an 18-28 GHz fully superconducting electron cyclotron resonance (ECR) ion source dedicated for highly charged heavy ion beam production. SECRAL, with an innovative superconducting magnet structure of solenoid-inside-sextupole and at lower frequency and lower rf power operation, may open a new way for developing compact and reliable high performance superconducting ECR ion source. One of the recent highlights achieved at SECRAL is that some new record beam currents for very high charge states were produced by 18 GHz or 18+14.5 GHz double frequency heating, such as 1 e μA of 129 Xe 43+ , 22 e μA of 209 Bi 41+ , and 1.5 e μA of 209 Bi 50+ . To further enhance the performance of SECRAL, a 24 GHz/7 kW gyrotron microwave generator was installed and SECRAL was tested at 24 GHz. Some promising and exciting results at 24 GHz with new record highly charged ion beam intensities were produced, such as 455 e μA of 129 Xe 27+ and 152 e μA of 129 Xe 30+ , although the commissioning time was limited within 3-4 weeks and rf power only 3-4 kW. Bremsstrahlung measurements at 24 GHz show that x-ray is much stronger with higher rf frequency, higher rf power. and higher minimum mirror magnetic field (minimum B). Preliminary emittance measurements indicate that SECRAL emittance at 24 GHz is slightly higher that at 18 GHz. SECRAL has been put into routine operation at 18 GHz for heavy ion research facility in Lanzhou (HIRFL) accelerator complex since May 2007. The total operation beam time from SECRAL for HIRFL accelerator has been more than 2000 h, and 129 Xe 27+ , 78 Kr 19+ , 209 Bi 31+ , and 58 Ni 19+ beams were delivered. All of these new developments, the latest results, and long-term operation for the accelerator have again demonstrated that SECRAL is one of the best in the performance of ECR ion source for highly charged heavy ion beam production. Finally the future development

  15. GHz digital rf control at the superconducting Darmstadt electron linear accelerator: First results from the baseband approach and extensions for other frequencies

    Directory of Open Access Journals (Sweden)

    A. Araz

    2010-08-01

    Full Text Available The low level rf system for the superconducting Darmstadt electron linear accelerator (S-DALINAC developed 20 years ago and operating since converts the 3 GHz signals from the cavities down to the baseband and not to an intermediate frequency. While designing the new, digital rf control system this concept was kept: the rf module does the I/Q and amplitude modulation/demodulation while the low frequency board, housing an field programmable gate array analyzes and processes the signals. Recently, the flexibility of this concept was realized: By replacing the modulator/demodulators on the rf module, cavities operating at frequencies other than the one of the S-DALINAC can be controlled with only minor modifications: A 6 GHz version, needed for a harmonic bunching system at the S-DALINAC and a 324 MHz solution to be used on a room temperature cavity at GSI, are currently under design. This paper reviews the concept of the digital low level rf control loops in detail and reports on the results gained during first operation with a superconducting cavity.

  16. Commissioning of the superconducting ECR ion source VENUS at 18 GHz

    International Nuclear Information System (INIS)

    Leitner, Daniela; Abbott, Steven R.; Dwinell, Roger D.; Leitner, Matthaeus; Taylor, Clyde E.; Lyneis, Claude M.

    2004-01-01

    During the last year, the VENUS ECR ion source was commissioned at 18 GHz and preparations for 28 GHz operation are now underway. During the commissioning phase with 18 GHz, tests with various gases and metals have been performed with up to 2000 W RF power. The ion source performance is very promising [1,2]. VENUS (Versatile ECR ion source for Nuclear Science) is a next generation superconducting ECR ion source, designed to produce high current, high charge state ions for the 88-Inch Cyclotron at the Lawrence Berkeley National Laboratory. VENUS also serves as the prototype ion source for the RIA (Rare Isotope Accelerator) front end. The goal of the VENUS ECR ion source project as the RIA R and D injector is the production of 240e(micro)A of U 30+ , a high current medium charge state beam. On the other hand, as an injector ion source for the 88-Inch Cyclotron the design objective is the production of 5e(micro)A of U 48+ , a low current, very high charge state beam. To meet these ambitious goals, VENUS has been designed for optimum operation at 28 GHz. This frequency choice has several design consequences. To achieve the required magnetic confinement, superconducting magnets have to be used. The size of the superconducting magnet structure implies a relatively large plasma volume. Consequently, high power microwave coupling becomes necessary to achieve sufficient plasma heating power densities. The 28 GHz power supply has been delivered in April 2004

  17. 1.3 GHz superconducting RF cavity program at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Ginsburg, C.M.; Arkan, T.; Barbanotti, S.; Carter, H.; Champion, M.; Cooley, L.; Cooper, C.; Foley, M.; Ge, M.; Grimm, C.; Harms, E.; /Fermilab

    2011-03-01

    At Fermilab, 9-cell 1.3 GHz superconducting RF (SRF) cavities are prepared, qualified, and assembled into cryomodules (CMs) for Project X, an International Linear Collider (ILC), or other future projects. The 1.3 GHz SRF cavity program includes targeted R&D on 1-cell 1.3 GHz cavities for cavity performance improvement. Production cavity qualification includes cavity inspection, surface processing, clean assembly, and one or more cryogenic low-power CW qualification tests which typically include performance diagnostics. Qualified cavities are welded into helium vessels and are cryogenically tested with pulsed high-power. Well performing cavities are assembled into cryomodules for pulsed high-power testing in a cryomodule test facility, and possible installation into a beamline. The overall goals of the 1.3 GHz SRF cavity program, supporting facilities, and accomplishments are described.

  18. Development of superconducting acceleration cavity technology for free electron lasers

    International Nuclear Information System (INIS)

    Lee, Jong Min; Lee, Byung Cheol; Kim, Sun Kook; Jeong, Young Uk; Cho, Sung Oh

    2000-10-01

    As a result of the cooperative research between the KAERI and Peking University, the key technologies of superconducting acceleration cavity and photoelectron gun have been developed for the application to high power free electron lasers. A 1.5-GHz, 1-cell superconducting RF cavity has been designed and fabricated by using pure Nb sheets. The unloaded Q values of the fabricated superconducting cavity has been measured to be 2x10 9 at 2.5K, and 8x10 9 at 1.8K. The maximum acceleration gradient achieved was 12 MeV/m at 2.5K, and 20MV/m at 1.8 K. A cryostat for the 1-cell superconducting cavity has been designed. As a source of electron beam, a DC photocathode electron gun has been designed and fabricated, which is composed of a photocathode evaporation chamber and a 100-keV acceleration chamber. The efficiency of the Cs2Te photocathode is 3% nominally at room temperature, 10% at 290 deg C. The superconducting photoelectron gun system developed has been estimated to be a good source of high-brightness electron beam for high-power free electron lasers

  19. Development of superconducting acceleration cavity technology for free electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Min; Lee, Byung Cheol; Kim, Sun Kook; Jeong, Young Uk; Cho, Sung Oh

    2000-10-01

    As a result of the cooperative research between the KAERI and Peking University, the key technologies of superconducting acceleration cavity and photoelectron gun have been developed for the application to high power free electron lasers. A 1.5-GHz, 1-cell superconducting RF cavity has been designed and fabricated by using pure Nb sheets. The unloaded Q values of the fabricated superconducting cavity has been measured to be 2x10{sup 9} at 2.5K, and 8x10{sup 9} at 1.8K. The maximum acceleration gradient achieved was 12 MeV/m at 2.5K, and 20MV/m at 1.8 K. A cryostat for the 1-cell superconducting cavity has been designed. As a source of electron beam, a DC photocathode electron gun has been designed and fabricated, which is composed of a photocathode evaporation chamber and a 100-keV acceleration chamber. The efficiency of the Cs2Te photocathode is 3% nominally at room temperature, 10% at 290 deg C. The superconducting photoelectron gun system developed has been estimated to be a good source of high-brightness electron beam for high-power free electron lasers.

  20. Performance and operation of advanced superconducting electron cyclotron resonance ion source SECRAL at 24 GHz

    International Nuclear Information System (INIS)

    Zhao, H. W.; Zhang, X. Z.; Feng, Y. C.; Guo, J. W.; Li, J. Y.; Guo, X. H.; Sha, S.; Sun, L. T.; Xie, D. Z.; Lu, W.; Cao, Y.

    2012-01-01

    SECRAL (superconducting ECR ion source with advanced design in Lanzhou) ion source has been in routine operation for Heavy Ion Research Facility in Lanzhou (HIRFL) accelerator complex since May 2007. To further enhance the SECRAL performance in order to satisfy the increasing demand for intensive highly charged ion beams, 3-5 kW high power 24 GHz single frequency and 24 GHz +18 GHz double frequency with an aluminum plasma chamber were tested, and some exciting results were produced with quite a few new record highly charged ion beam intensities, such as 129 Xe 35+ of 64 eμA, 129 Xe 42+ of 3 eμA, 209 Bi 41+ of 50 eμA, 209 Bi 50+ of 4.3 eμA and 209 Bi 54+ of 0.2 eμA. In most cases SECRAL is operated at 18 GHz to deliver highly charged heavy ion beams for the HIRFL accelerator, only for those very high charge states and very heavy ion beams such as 209 Bi 36+ and 209 Bi 41+ , SECRAL has been operated at 24 GHz. The total operation beam time provided by SECRAL up to July 2011 has exceeded 7720 hours. In this paper, the latest performance, development, and operation status of SECRAL ion source are presented. The latest results and reliable long-term operation for the HIRFL accelerator have demonstrated that SECRAL performance for production of highly charged heavy ion beams remains improving at higher RF power with optimized tuning.

  1. Validation of the superconducting 3.9 GHz cavity package for the European X-ray Free Electron Laser

    Science.gov (United States)

    Maiano, C. G.; Branlard, J.; Hüning, M.; Jensch, K.; Kostin, D.; Matheisen, A.; Möller, W.-D.; Sulimov, A.; Vogel, E.; Bosotti, A.; Chen, J. F.; Moretti, M.; Paparella, R.; Pierini, P.; Sertore, D.

    2017-04-01

    A full test of the cavity package concept under realistic operating condition was a necessary step before the assembly of the European XFEL (EXFEL) 3.9 GHz superconducting system and its installation in the accelerator. One cavity, equipped with magnetic shielding, power coupler and frequency tuner has been tested in a specially designed single cavity cryostat in one of the test benches of the DESY Accelerator Module Test Facility (AMTF). The cavity was operated at high pulsed power up to an accelerating field of 24 MV /m , above the quench accelerating field of 21 MV /m achieved during the continuous wave (CW) vertical qualification test and with a large margin with respect to the EXFEL maximum operating specification of 15 MV /m for the 3.9 GHz system. All subsystems under test—coupler, tuner, waveguide tuners, low level radio-frequency (LLRF) system—were qualified to their design performances.

  2. Status of higher order mode beam position monitors in 3.9 GHz superconducting accelerating cavities at FLASH

    CERN Document Server

    Zhang, P; Jones, R M; Flisgen, T; Van Rienen, U; Shinton, I R R

    2013-01-01

    Higher order mode (HOM) beam position monitors (BPM) are being developed for the 3.9 GHz third harmonic superconducting accelerating cavities at FLASH. The transverse beam position in a cavity can be determined utilizing beam-excited HOMs based on dipole components. The existing couplers used for HOM suppression provide necessary signals. The diagnostics principle is similar to a cavity BPM, but requires no additional vacuum instruments on the linac. The challenges of HOM-BPM for 3.9 GHz cavities lie in the dense HOM spectrum arising from the coupling of the majority HOMs amongst the four cavities in the cryo-module ACC39. HOMs with particularly promising diagnostics features were evaluated using a spectrum analyzer and custom-built test electronics with various data analysis techniques, data reduction was focused on. After careful theoretical and experimental assessment of the HOM spectrum, multi-cavity modes in the region of 5 GHz were chosen to provide a global position over the complete module with superi...

  3. Superconductivity and electron microscopy

    International Nuclear Information System (INIS)

    Hawkes, P.W.; Valdre, U.

    1977-01-01

    In this review article, two aspects of the role of superconductivity in electron microscopy are examined: (i) the development of superconducting devices (mainly lenses) and their incorporation in electron microscopes; (ii) the development of electron microscope techniques for studying fundamental and technological problems associated with superconductivity. The first part opens with a brief account of the relevant properties of conventional lenses, after which the various types of superconducting lenses are described and their properties compared. The relative merits and inconveniences of superconducting and conventional lenses are examined, particular attention being paid to the spherical and chromatic aberration coefficients at accelerating voltages above a megavolt. This part closes with a survey of the various microscope designs that have been built or proposed, incorporating superconducting components. In the second part, some methods that have been or might be used in the study of superconductivity in the electron microscope are described. A brief account of the types of application for which they are suitable is given. (author)

  4. Fabrication and vertical test experience of the European X-ray Free Electron Laser 3.9 GHz superconducting cavities

    Science.gov (United States)

    Pierini, P.; Bertucci, M.; Bosotti, A.; Chen, J. F.; Maiano, C. G.; Michelato, P.; Monaco, L.; Moretti, M.; Pagani, C.; Paparella, R.; Sertore, D.; Vogel, E.

    2017-04-01

    We report the experience of the production, processing and qualification testing of the superconducting radio frequency cavities at 3.9 GHz for the third harmonic system at the European XFEL (EXFEL) injector. The rf structure concept, originally developed for the FLASH FEL facility, was adapted to the new interfaces provided by the EXFEL design and the cavities were procured from a qualified vendor, delivered ready for the testing at the INFN infrastructure. A total of 23 cavities, three prototypes and two batches of 10, have been realized and tested up to specifications.

  5. Validation of the superconducting 3.9 GHz cavity package for the European X-ray Free Electron Laser

    Directory of Open Access Journals (Sweden)

    C. G. Maiano

    2017-04-01

    Full Text Available A full test of the cavity package concept under realistic operating condition was a necessary step before the assembly of the European XFEL (EXFEL 3.9 GHz superconducting system and its installation in the accelerator. One cavity, equipped with magnetic shielding, power coupler and frequency tuner has been tested in a specially designed single cavity cryostat in one of the test benches of the DESY Accelerator Module Test Facility (AMTF. The cavity was operated at high pulsed power up to an accelerating field of 24  MV/m, above the quench accelerating field of 21  MV/m achieved during the continuous wave (CW vertical qualification test and with a large margin with respect to the EXFEL maximum operating specification of 15  MV/m for the 3.9 GHz system. All subsystems under test—coupler, tuner, waveguide tuners, low level radio-frequency (LLRF system—were qualified to their design performances.

  6. Production of highly charged heavy ions by 18 GHz superconducting electron cyclotron resonance at Research Center for Nuclear Physics.

    Science.gov (United States)

    Yorita, Tetsuhiko; Hatanaka, Kichiji; Fukuda, Mitsuhiro; Kibayashi, Mitsuru; Morinobu, Shunpei; Okamura, Hiroyuki; Tamii, Atsushi

    2010-02-01

    An 18 GHz superconducting electron cyclotron resonance ion source has been installed as a subject of the azimuthally varying field cyclotron upgrade project (K. Hatanaka et al., in Proceedings of the 17th International Conference on Cyclotrons and Their Applications, Tokyo, Japan, 18-22 October 2004, pp. 115-117), in order to increase beam currents and to extend the variety of ions. The production development of several ions has been performed since 2006 and some of them have already been used for user experiments [T. Yorita et al., Rev. Sci. Instrum. 79, 02A311 (2008)]. Further optimizations for each component such as the material of plasma electrode, material, and shape of bias probe and mirror field have been continued and more intense ion beams have been obtained for O, N, and Ar. For the purpose of obtaining highly charged Xe with several microamperes, the optimization of position and shape of plasma electrode and bias disk has also been done and highly charged Xe(32+) beam has been obtained successfully.

  7. Microphonics detuning compensation in 3.9 GHZ superconducting RF cavities

    International Nuclear Information System (INIS)

    Ruben Carcagno

    2003-01-01

    Mechanical vibrations can detune superconducting radio frequency (SCRF) cavities unless a tuning mechanism counteracting the vibrations is present. Due to their narrow operating bandwidth and demanding mechanical structure, the 13-cell 3.9GHz SCRF cavities for the Charged Kaons at Main Injector (CKM) experiment at Fermilab are especially susceptible to this microphonic phenomena. We present early results correlating RF frequency detuning with cavity vibration measurements for CKM cavities; initial detuning compensation results with piezoelectric actuators are also presented

  8. Microphonics detuning compensation in 3.9 GHZ superconducting RF cavities

    Energy Technology Data Exchange (ETDEWEB)

    Ruben Carcagno et al.

    2003-10-20

    Mechanical vibrations can detune superconducting radio frequency (SCRF) cavities unless a tuning mechanism counteracting the vibrations is present. Due to their narrow operating bandwidth and demanding mechanical structure, the 13-cell 3.9GHz SCRF cavities for the Charged Kaons at Main Injector (CKM) experiment at Fermilab are especially susceptible to this microphonic phenomena. We present early results correlating RF frequency detuning with cavity vibration measurements for CKM cavities; initial detuning compensation results with piezoelectric actuators are also presented.

  9. Superconducting quantum electronics

    International Nuclear Information System (INIS)

    Kose, V.

    1989-01-01

    This book reviews recent accomplishments, presents new results and discusses possible future developments of superconducting quantum electronics and high T c superconductivity. The three main parts of the book deal with fundamentals, sensitive detectors, and precision metrology. New results reported include: correct equivalent circuits modelling superconducting electronic devices; exact solution of the Mattis-Bardeen equations describing various experiments for thin films; complete theoretical description and experimental results for a new broad band spectrum analyzer; a new Josephson junction potentiometer allowing tracing of unknown voltage ratios back to well-known frequency ratios; and fast superconducting SQUID shift registers enabling the production of calculable noise power spectra in the microwave region

  10. Stability and Resolution Studies of HOMBPMs for the 1.3 GHz Superconducting Accelerating Cavities at FLASH

    CERN Document Server

    Shi, Liangliang; Jones, Roger

    2015-01-01

    HOMBPMs (HOM based Beam Position Monitors) are installed at the FLASH facility at DESY, Hamburg. These are aimed at aligning the beam and monitoring the beam position. Over time, the accuracy of beam position prediction is degraded. This is due to instability issues in the 1.3 GHz and 3.9 GHz superconducting cavities and associated electronics. In this paper, we demonstrate for the first time a measurement technique which is stable and can be relied upon over a period of three months with unprecedented resolution (below 4 μm horizontally and 2 μm vertically). We attribute this improvement in stability to a focused campaign on various signal processing and analysis techniques. These techniques include SVD (Singular Value Decomposition), ANN (Artificial Neural Network) and PLS (Partial Least Square). We found the best resolution and computational power using the latter method, PLS. These techniques are directly applicable to the HOMBPM system at the European XFEL that is currently under construction. However,...

  11. Nb3Sn superconducting magnets for electron cyclotron resonance ion sources.

    Science.gov (United States)

    Ferracin, P; Caspi, S; Felice, H; Leitner, D; Lyneis, C M; Prestemon, S; Sabbi, G L; Todd, D S

    2010-02-01

    Electron cyclotron resonance (ECR) ion sources are an essential component of heavy-ion accelerators. Over the past few decades advances in magnet technology and an improved understanding of the ECR ion source plasma physics have led to remarkable performance improvements of ECR ion sources. Currently third generation high field superconducting ECR ion sources operating at frequencies around 28 GHz are the state of the art ion injectors and several devices are either under commissioning or under design around the world. At the same time, the demand for increased intensities of highly charged heavy ions continues to grow, which makes the development of even higher performance ECR ion sources a necessity. To extend ECR ion sources to frequencies well above 28 GHz, new magnet technology will be needed in order to operate at higher field and force levels. The superconducting magnet program at LBNL has been developing high field superconducting magnets for particle accelerators based on Nb(3)Sn superconducting technology for several years. At the moment, Nb(3)Sn is the only practical conductor capable of operating at the 15 T field level in the relevant configurations. Recent design studies have been focused on the possibility of using Nb(3)Sn in the next generation of ECR ion sources. In the past, LBNL has worked on the VENUS ECR, a 28 GHz source with solenoids and a sextupole made with NbTi operating at fields of 6-7 T. VENUS has now been operating since 2004. We present in this paper the design of a Nb(3)Sn ECR ion source optimized to operate at an rf frequency of 56 GHz with conductor peak fields of 13-15 T. Because of the brittleness and strain sensitivity of Nb(3)Sn, particular care is required in the design of the magnet support structure, which must be capable of providing support to the coils without overstressing the conductor. In this paper, we present the main features of the support structure, featuring an external aluminum shell pretensioned with water

  12. Superconducting magnets for the RAON electron cyclotron resonance ion source.

    Science.gov (United States)

    Choi, S; Kim, Y; Hong, I S; Jeon, D

    2014-02-01

    The RAON linear accelerator of Rare Isotope Science Project has been developed since 2011, and the superconducting magnet for ECRIS was designed. The RAON ECR ion source was considered as a 3rd generation source. The fully superconducting magnet has been designed for operating using 28 GHz radio frequency. The RAON ECRIS operates in a minimum B field configuration which means that a magnetic sextupole field for radial confinement is superimposed with a magnetic mirror field for axial confinement. The highest field strength reaches 3.5 T on axis and 2 T at the plasma chamber wall for operating frequency up to 28 GHz. In this paper, the design results are presented of optimized superconducting magnet consisting of four solenoids and sextupole. The prototype magnet for ECRIS was fabricated and tested to verify the feasibility of the design. On the basis of test results, a fully superconducting magnet will be fabricated and tested.

  13. Design and fabrication of a superconducting magnet for an 18 GHz electron cyclotron resonance ion∕photon source NFRI-ECRIPS.

    Science.gov (United States)

    You, H-J; Jang, S-W; Jung, Y-H; Lho, T-H; Lee, S-J

    2012-02-01

    A superconducting magnet was designed and fabricated for an 18 GHz ECR ion∕photon source, which will be installed at National Fusion Research Institute (NFRI) in South Korea. The magnetic system consists of a set of four superconducting coils for axial mirror field and 36 pieces of permanent magnets for hexapolar field. The superconducting coils with a cryocooler (1.5 W @ 4.2 K) allow one to reach peak mirror fields of 2.2 T in the injection and those of 1.5 T in the extraction regions on the source axis, and the resultant hexapolar field gives 1.35 T on the plasma chamber wall. The unbalanced magnetic force between the coils and surrounding yoke has been minimized to 16 ton by a coil arrangement and their electrical connection, and then was successfully suspended by 12 strong thermal insulating supports made of large numbers of carbon fibers. In order to block radiative thermal losses, multilayer thermal insulations are covered on the coil windings as well as 40-K aluminum thermal shield. Also new schemes of quench detection and safety system (coil divisions, quench detection coils, and heaters) were employed. For impregnation of the windings a special epoxy has been selected and treated to have a higher breaking strength and a higher thermal conductivity, which enables the superconductors to be uniformly and rapidly cooled down or heated during a quench.

  14. Study of the surface resistance of superconducting niobium films at 1.5 GHz

    CERN Document Server

    Benvenuti, Cristoforo; Campisi, I E; Darriulat, Pierre; Peck, M A; Russo, R; Valente, A M

    1999-01-01

    A systematic study of superconducting properties of niobium films sputtered on the inner wall of radiofrequency cavities is presented. The measured quantities include in particular the response to 1.5 GHz microwaves, the critical temperature, the penetration depth and the magnetic penetration field. In addition to films grown in different gas discharges (Xe, Kr, Ar and Ar/Ne mixtures) and to films grown on substrates prepared under different conditions, the study also includes bulk niobium cavities. The surface resistance is analysed in terms of its dependence on temperature, on RF field and, when relevant, on the density of trapped fluxons. A simple parameterisation is found to give a good fit to the data. Once allowance for the presence of impurities and defects is made by means of a single parameter, the electron mean free path, good agreement with BCS theory is observed. The fluxon-induced losses are studied in detail and their dependence on RF field, on temperature and on the density of trapped fluxons i...

  15. Superconducting magnet performance for 28 GHz electron cyclotron resonance ion source developed at the Korea Basic Science Institute.

    Science.gov (United States)

    Park, Jin Yong; Choi, Seyong; Lee, Byoung-Seob; Yoon, Jang-Hee; Ok, Jung-Woo; Kim, Byoung Chul; Shin, Chang Seouk; Ahn, Jung Keun; Won, Mi-Sook

    2014-02-01

    A superconducting magnet for use in an electron cyclotron resonance ion source was developed at the Korea Basic Science Institute. The superconducting magnet is comprised of three solenoids and a hexapole magnet. According to the design value, the solenoid magnets can generate a mirror field, resulting in axial magnetic fields of 3.6 T at the injection area and 2.2 T at the extraction region. A radial field strength of 2.1 T can also be achieved by hexapole magnet on the plasma chamber wall. NbTi superconducting wire was used in the winding process following appropriate techniques for magnet structure. The final assembly of the each magnet involved it being vertically inserted into the cryostat to cool down the temperature using liquid helium. The performance of each solenoid and hexapole magnet was separately verified experimentally. The construction of the superconducting coil, the entire magnet assembly for performance testing and experimental results are reported herein.

  16. Design and investigations of the superconducting magnet system for the multipurpose superconducting electron cyclotron resonance ion source.

    Science.gov (United States)

    Tinschert, K; Lang, R; Mäder, J; Rossbach, J; Spädtke, P; Komorowski, P; Meyer-Reumers, M; Krischel, D; Fischer, B; Ciavola, G; Gammino, S; Celona, L

    2012-02-01

    The production of intense beams of heavy ions with electron cyclotron resonance ion sources (ECRIS) is an important request at many accelerators. According to the ECR condition and considering semi-empirical scaling laws, it is essential to increase the microwave frequency together with the magnetic flux density of the ECRIS magnet system. A useful frequency of 28 GHz, therefore, requires magnetic flux densities above 2.2 T implying the use of superconducting magnets. A cooperation of European institutions initiated a project to build a multipurpose superconducting ECRIS (MS-ECRIS) in order to achieve an increase of the performances in the order of a factor of ten. After a first design of the superconducting magnet system for the MS-ECRIS, the respective cold testing of the built magnet system reveals a lack of mechanical performance due to the strong interaction of the magnetic field of the three solenoids with the sextupole field and the magnetization of the magnetic iron collar. Comprehensive structural analysis, magnetic field calculations, and calculations of the force pattern confirm thereafter these strong interactions, especially of the iron collar with the solenoidal fields. The investigations on the structural analysis as well as suggestions for a possible mechanical design solution are given.

  17. Role of superconducting electronics in advancing science and technology (invited) (abstract)

    Science.gov (United States)

    Faris, S. M.

    1988-08-01

    The promises of the ultrahigh-performance properties of superconductivity and Josephson junction technologies have been known for quite some time. This presentation describes the first superconducting electronics and measurement system and its important role as a major tool to advance microwave and millimeter wave technologies. This breakthrough tool is a sampling oscilloscope with 5-ps rise time, 50-μV sensitivity, and a time domain reflectometer with 8-ps rise time. In order to achieve these performance goals, several technological hurdles had to be overcome including perfecting a manufacturing process for building Josephson junction IC chips, developing an innovative cooling technique, developing interfaces and interconnections with bandwidths in excess of 70 GHz, and developing the room-temperature hardware and software necessary to make the instruments convenient, easy to use, easy to learn, in addition to making available functions and features users have come to expect from sophisticated digital test instrumentation. These technological developments are stepping stones leading to the realization of more sophisticated and complex electronic systems satisfying the needs of scientists, technologists, and engineers. The unprecedented speed and sensitivity make it possible to attack new frontiers.

  18. Laboratory report on RF superconductivity at Peking University

    International Nuclear Information System (INIS)

    Kui, Zhao; Baocheng, Zhang; Lifang, Wang; Jin, Yu; Rongli, Geng; Genfa, Wu; Tong, Wang; Jinhu, Song; Chia-erh, Chen

    1996-01-01

    The activities on RF superconductivity at Peking University in the past two years are reported. Two 1.5 GHz Nb cavities were successfully fabricated using Chinese Nb sheets in 1994. One of the cavities has been measured, and the results are given. A laser driven DC electron gun has been designed and constructed which is the pre-testing device of photo-electron gun using superconducting cavity. A series of experiments on the cathode and cavity will be performed in the near future. Two superconducting accelerating devices are being considered for two projects in China. (R.P.)

  19. Intense highly charged ion beam production and operation with a superconducting electron cyclotron resonance ion source

    Science.gov (United States)

    Zhao, H. W.; Sun, L. T.; Guo, J. W.; Lu, W.; Xie, D. Z.; Hitz, D.; Zhang, X. Z.; Yang, Y.

    2017-09-01

    The superconducting electron cyclotron resonance ion source with advanced design in Lanzhou (SECRAL) is a superconducting-magnet-based electron cyclotron resonance ion source (ECRIS) for the production of intense highly charged heavy ion beams. It is one of the best performing ECRISs worldwide and the first superconducting ECRIS built with an innovative magnet to generate a high strength minimum-B field for operation with heating microwaves up to 24-28 GHz. Since its commissioning in 2005, SECRAL has so far produced a good number of continuous wave intensity records of highly charged ion beams, in which recently the beam intensities of 40Ar+ and 129Xe26+ have, for the first time, exceeded 1 emA produced by an ion source. Routine operations commenced in 2007 with the Heavy Ion accelerator Research Facility in Lanzhou (HIRFL), China. Up to June 2017, SECRAL has been providing more than 28,000 hours of highly charged heavy ion beams to the accelerator demonstrating its great capability and reliability. The great achievement of SECRAL is accumulation of numerous technical advancements, such as an innovative magnetic system and an efficient double-frequency (24 +18 GHz ) heating with improved plasma stability. This article reviews the development of SECRAL and production of intense highly charged ion beams by SECRAL focusing on its unique magnet design, source commissioning, performance studies and enhancements, beam quality and long-term operation. SECRAL development and its performance studies representatively reflect the achievements and status of the present ECR ion source, as well as the ECRIS impacts on HIRFL.

  20. First results from the new RIKEN superconducting electron cyclotron resonance ion source (invited).

    Science.gov (United States)

    Nakagawa, T; Higurashi, Y; Ohnishi, J; Aihara, T; Tamura, M; Uchiyama, A; Okuno, H; Kusaka, K; Kidera, M; Ikezawa, E; Fujimaki, M; Sato, Y; Watanabe, Y; Komiyama, M; Kase, M; Goto, A; Kamigaito, O; Yano, Y

    2010-02-01

    The next generation heavy ion accelerator facility, such as the RIKEN radio isotope (RI) beam factory, requires an intense beam of high charged heavy ions. In the past decade, performance of the electron cyclotron resonance (ECR) ion sources has been dramatically improved with increasing the magnetic field and rf frequency to enhance the density and confinement time of plasma. Furthermore, the effects of the key parameters (magnetic field configuration, gas pressure, etc.) on the ECR plasma have been revealed. Such basic studies give us how to optimize the ion source structure. Based on these studies and modern superconducting (SC) technology, we successfully constructed the new 28 GHz SC-ECRIS, which has a flexible magnetic field configuration to enlarge the ECR zone and to optimize the field gradient at ECR point. Using it, we investigated the effect of ECR zone size, magnetic field configuration, and biased disk on the beam intensity of the highly charged heavy ions with 18 GHz microwaves. In this article, we present the structure of the ion source and first experimental results with 18 GHz microwave in detail.

  1. Feasibility study for an industrial superconducting table-top electron accelerator; Machbarkeitstudie fuer einen industriellen supraleitenden Table Top Elektronenbeschleuniger

    Energy Technology Data Exchange (ETDEWEB)

    Buettig, H.; Enghardt, W.; Gabriel, F.; Janssen, D.; Michel, P.; Pobell, F.; Prade, H.; Schneider, C.; Kudryavtsev, A.; Haberstroh, C.; Sandner, W.; Will, I.

    2004-07-01

    A concept of a table-top accelerator, consisting of a superconducting resonator and subsequent 6 standard TESLA cells working with a frequency of 1.3 GHz, is presented. Then electron gun is based on a photocathode. Especially described are the photocathode part, the laser system, the cryostat module, the RF system, the beam extraction, and the cryogenic facility. Finally the efficiency and the costs are considered, (HSI)

  2. Analogue demonstration of a high temperature superconducting sigma-delta modulator with 27 GHz sampling

    Energy Technology Data Exchange (ETDEWEB)

    Forrester, M.G.; Hunt, B.D.; Miller, D.L.; Talvacchio, J.; Young, R.M. [Northrop Grumman Science and Technology Center, Pittsburgh, PA 15235-5098 (United States)

    1999-11-01

    We have successfully fabricated and tested a high temperature superconducting (HTS) sigma-delta modulator for analogue-to-digital conversion. This is the first demonstration of a GHz sampling A-to-D in HTS. The 15-junction single-flux-quantum (SFQ) circuit, fabricated using an epitaxial multilayer HTS process with YBCO/Co-YBCO/YBCO edge junctions, was internally clocked at 27 GHz and used to convert a 5.01 MHz signal. The modulator demonstrated a spur-free dynamic range of more than 75 dB. Two-tone measurements with 5.01 MHz and 5.51 MHz signals demonstrated third-order intermodulation products to be lower than -59 dBc. Demonstration of a functional HTS modulator represents a significant milestone in the development of high dynamic range ADCs suitable for such applications as surveillance radar. (author)

  3. Intense highly charged ion beam production and operation with a superconducting electron cyclotron resonance ion source

    Directory of Open Access Journals (Sweden)

    H. W. Zhao

    2017-09-01

    Full Text Available The superconducting electron cyclotron resonance ion source with advanced design in Lanzhou (SECRAL is a superconducting-magnet-based electron cyclotron resonance ion source (ECRIS for the production of intense highly charged heavy ion beams. It is one of the best performing ECRISs worldwide and the first superconducting ECRIS built with an innovative magnet to generate a high strength minimum-B field for operation with heating microwaves up to 24–28 GHz. Since its commissioning in 2005, SECRAL has so far produced a good number of continuous wave intensity records of highly charged ion beams, in which recently the beam intensities of ^{40}Ar^{12+} and ^{129}Xe^{26+} have, for the first time, exceeded 1 emA produced by an ion source. Routine operations commenced in 2007 with the Heavy Ion accelerator Research Facility in Lanzhou (HIRFL, China. Up to June 2017, SECRAL has been providing more than 28,000 hours of highly charged heavy ion beams to the accelerator demonstrating its great capability and reliability. The great achievement of SECRAL is accumulation of numerous technical advancements, such as an innovative magnetic system and an efficient double-frequency (24+18  GHz heating with improved plasma stability. This article reviews the development of SECRAL and production of intense highly charged ion beams by SECRAL focusing on its unique magnet design, source commissioning, performance studies and enhancements, beam quality and long-term operation. SECRAL development and its performance studies representatively reflect the achievements and status of the present ECR ion source, as well as the ECRIS impacts on HIRFL.

  4. Investigation of the temperature and frequency dependence of the surface resistance of superconducting Nb-resonators between 12 and 18 GHz

    International Nuclear Information System (INIS)

    Meyer, W.

    1978-08-01

    Up to now, all measurements on superconducting niobium cavities are restricted to the frequency range below 12 GHz. This paper reports on the investigation of the temperature and frequency dependence of the surface resistance of superconducting niobium between 12 and 18 GHz. Beside the study of TM modes which are important for accelerators, TE modes have been measured also to be able to separate between different loss mechanisms. The dimensions D = L = 40 mm are choosen so that the cavity is operated in higher order modes. Thereby the fabrication, especially of the coupling, and the handling of the cavity is simplified. We use a fixed magnetic hole coupling. Because the cavity was fabricated in a flanged and in a welded model, the influence of a joint could also be studied. After subtracting the residual resistance Rsub(res) the measured values obtained by the newly installed RF set-up fit in temperature and frequency dependence the superconducting surface resistance Rsub(s1) in the framework of the BCS-theory. The gap parameter Δ/kTsub(c) determined from the temperature dependence lies between 1.94 and 1.98. The frequency dependence of Rsub(s1) shows with Rsub(s1) approximately f 1 . 62 the for Nb expected shape. The highest Q 0 in the flanged cavity was 1.7 x 10 9 (f 0 = 13.260 GHz) and in the welded one 1.8 X 10 9 (f 0 = 13.310 GHz), measured in each case in a TE mode at T = 1.3 K. The residual resistance increases with f 2 and stronger and is especially high in the flanged cavity in modes with currents across the joint. (orig.) 891 WBU [de

  5. A novel fast-scanning microwave heterodyne radiometer system for electron cyclotron emission measurements in the HT-7 superconducting tokamak

    International Nuclear Information System (INIS)

    Zhang, S.Y.; Wan, Y.X.; Xie, J.K.; Luo, J.R.; Li, J.G.; Kuang, G.L.; Gao, X.; Zhang, X.D.; Wan, B.N.; Wang, K.J.; Mao, J.S.; Gong, X.Z.; Qin, P.J.

    2000-01-01

    Two sets of fast-scanning microwave heterodyne radiometer receiver systems employing backward-wave oscillators in the 78-118 GHz and 118-178 GHz ranges were developed for electron cyclotron emission measurements (ECE) on the HT-7 superconducting tokamak. The double-sideband radiometer in the 78-118 GHz range measures 16 ECE frequency points with a scanning period of 0.65 ms. The novel design of the 2 mm fast-scanning heterodyne radiometer in the 118-178 GHz range enables the unique system to measure 48 ECE frequency points in 0.65 ms periodically. The plasma profile consistency in reproducible ohmic plasmas was used to relatively calibrate each channel by changing the toroidal magnetic field shot-by-shot. The absolute temperature value was obtained by a comparison with the results from the soft x-ray pulse height analysis measurements and Thomson scattering system. A preliminary temperature profile measurement result in pellet injection plasma is presented. (author)

  6. Intense beam production of highly charged heavy ions by the superconducting electron cyclotron resonance ion source SECRAL.

    Science.gov (United States)

    Zhao, H W; Sun, L T; Zhang, X Z; Guo, X H; Cao, Y; Lu, W; Zhang, Z M; Yuan, P; Song, M T; Zhao, H Y; Jin, T; Shang, Y; Zhan, W L; Wei, B W; Xie, D Z

    2008-02-01

    There has been increasing demand to provide higher beam intensity and high enough beam energy for heavy ion accelerator and some other applications, which has driven electron cyclotron resonance (ECR) ion source to produce higher charge state ions with higher beam intensity. One of development trends for highly charged ECR ion source is to build new generation ECR sources by utilization of superconducting magnet technology. SECRAL (superconducting ECR ion source with advanced design in Lanzhou) was successfully built to produce intense beams of highly charged ion for Heavy Ion Research Facility in Lanzhou (HIRFL). The ion source has been optimized to be operated at 28 GHz for its maximum performance. The superconducting magnet confinement configuration of the ion source consists of three axial solenoid coils and six sextupole coils with a cold iron structure as field booster and clamping. An innovative design of SECRAL is that the three axial solenoid coils are located inside of the sextupole bore in order to reduce the interaction forces between the sextupole coils and the solenoid coils. For 28 GHz operation, the magnet assembly can produce peak mirror fields on axis of 3.6 T at injection, 2.2 T at extraction, and a radial sextupole field of 2.0 T at plasma chamber wall. During the commissioning phase at 18 GHz with a stainless steel chamber, tests with various gases and some metals have been conducted with microwave power less than 3.5 kW by two 18 GHz rf generators. It demonstrates the performance is very promising. Some record ion beam intensities have been produced, for instance, 810 e microA of O(7+), 505 e microA of Xe(20+), 306 e microA of Xe(27+), and so on. The effect of the magnetic field configuration on the ion source performance has been studied experimentally. SECRAL has been put into operation to provide highly charged ion beams for HIRFL facility since May 2007.

  7. Note: Radio frequency surface impedance characterization system for superconducting samples at 7.5 GHz.

    Science.gov (United States)

    Xiao, B P; Reece, C E; Phillips, H L; Geng, R L; Wang, H; Marhauser, F; Kelley, M J

    2011-05-01

    A radio frequency (RF) surface impedance characterization (SIC) system that uses a novel sapphire-loaded niobium cavity operating at 7.5 GHz has been developed as a tool to measure the RF surface impedance of flat superconducting material samples. The SIC system can presently make direct calorimetric RF surface impedance measurements on the central 0.8 cm(2) area of 5 cm diameter disk samples from 2 to 20 K exposed to RF magnetic fields up to 14 mT. To illustrate system utility, we present first measurement results for a bulk niobium sample.

  8. Measuring the microwave response of superconducting Nb:STO and Ti at mK temperatures using superconducting resonators

    Energy Technology Data Exchange (ETDEWEB)

    Thiemann, Markus; Beutel, Manfred; Dressel, Martin; Scheffler, Marc [1. Physikalisches Institut, Universitaet Stuttgart (Germany); Fillis-Tsirakis, Evangelos; Boschker, Hans; Mannhart, Jochen [Max Planck Institute for Solid State Research, Stuttgart (Germany)

    2016-07-01

    Niobium doped SrTiO{sub 3} is a superconductor, with the lowest charge carrier density among all superconductors. It shows a dome in the transition temperature as a function of doping concentration with a maximum T{sub c} ∼ 0.3 K. The superconducting dome may originate from the different bands being occupied depending on the doping level. The low energy scales of the system, as indicated by the low T{sub c} are within the GHz-regime. Therefore microwave measurements are a powerful technique to reveal the electronic properties of these superconductors. We preformed microwave measurements on Nb:STO of different doping levels in a dilution refrigerator, using superconducting stripline resonators. Measurements were done in a temperature and frequency range from 40-400 mK and 1-20 GHz, covering the normal and superconducting states. For comparison we also measured the temperature dependence of the surface impedance of superconducting titanium (T{sub c} ∼ 0.5 K), which can be well described by the Mattis-Bardeen equations with a ratio (2Δ)/(k{sub B}T{sub c}) = 3.56. Therefore titanium is an ideal reference sample representing a conventional BCS-superconductor.

  9. The design of 28 GHz ECR Ion Source for the Compact Linear Accelerator in Korea

    International Nuclear Information System (INIS)

    MiSook, Won; ByoungSeob, Lee; JinYong, Park; DongJun Park; JongPil, Kim; JongSeong, Bae; JungKeum, Ahn; SonJong, Wang; Nakagawa, T.

    2012-01-01

    The construction of a compact linear accelerator is in progress by Korea Basic Science Institute. The main capability of this facility is the production of multiply ionized metal clusters and the generation more intense beams of highly charged ions for material, medical and nuclear physical research. To produce the intense beam of highly charged ions, we will construct an Electron Cyclotron Resonance Ion Source (ECRIS) using 28 GHz microwaves. For this ECRIS, the design of a superconducting magnet, microwave inlet, beam extraction and plasma chamber was completed. Also we are constructing a superconducting magnet system. In this poster, we will report the current status of development of our 28 GHz ECRIS. (authors)

  10. Phase-locking of a terahertz solid-state source using a superconducting hot-electron bolometer mixer

    International Nuclear Information System (INIS)

    Miao, W; Zhang, W; Zhou, K M; Li, S L; Zhang, K; Duan, W Y; Yao, Q J; Shi, S C

    2013-01-01

    We report on a scheme whereby the local-oscillator (LO) of a THz heterodyne receiver can be phase-locked by the mixer of the heterodyne receiver. This scheme is demonstrated for the phase-locking of an 847.6 GHz Gunn oscillator and multiplier chain combined source with a superconducting hot-electron bolometer (HEB) mixer. We show that with this technique the phase-locked beat signal can reach a signal-to-noise ratio higher than 70 dB in a resolution bandwidth (RBW) of 1 Hz. This phase-locking scheme should find good use in THz heterodyne spectrometers. (paper)

  11. Heavy electron superconductivity: From 1K to 90K to ?

    International Nuclear Information System (INIS)

    Pethick, C.J.; Pines, D.

    1987-01-01

    This paper reviews the experimental results and physical arguments which led us to conclude that in heavy electron systems the physical mechanism responsible for superconductivity is an attractive interaction between the heavy electrons which results from the virtual exchange of antiferromagnetic f-electron moment fluctuations. In these systems, then, the superconductivity is of purely electronic origin; the phonon-induced interaction between electrons which leads to superconductivity in ordinary metals plays little or no role

  12. Modern aspects of Josephson dynamics and superconductivity electronics

    CERN Document Server

    Askerzade, Iman; Cantürk, Mehmet

    2017-01-01

    In this book new experimental investigations of properties of Josephson junctions and systems are explored with the help of recent developments in superconductivity. The theory of the Josephson effect is presented taking into account the influence of multiband and anisotropy effects in new superconducting compounds. Anharmonicity effects in current-phase relation on Josephson junctions dynamics are discussed. Recent studies in analogue and digital superconductivity electronics are presented. Topics of special interest include resistive single flux quantum logic in digital electronics. Application of Josephson junctions in quantum computing as superconducting quantum bits are analyzed. Particular attention is given to understanding chaotic behaviour of Josephson junctions and systems. The book is written for graduate students and researchers in the field of applied superconductivity.

  13. A superconducting electron spectrometer

    International Nuclear Information System (INIS)

    Guttormsen, M.; Huebel, H.; Grumbkow, A. von

    1983-03-01

    The set-up and tests of an electron spectrometer for in-beam conversion electron measurements are described. A superconducting solenoid is used to transport the electrons from the target to cooled Si(Li) detectors. The solenoid is designed to produce either a homogeneous axially symmetric field of up to 2 Tesla or a variety of field profiles by powering the inner and outer set of coils of the solenoid separately. The electron trajectories resulting for various field profiles are discussed. In-beam electron spectra taken in coincidence with electrons, gammas and alpha-particles are shown. (Auth.)

  14. Studies of extraction and transport system for highly charged ion beam of 18 GHz superconducting electron cyclotron resonance ion source at Research Center for Nuclear Physics.

    Science.gov (United States)

    Yorita, T; Hatanaka, K; Fukuda, M; Ueda, H; Yasuda, Y; Morinobu, S; Tamii, A; Kamakura, K

    2014-02-01

    An 18 GHz superconducting electron cyclotron resonance ion source is installed to increase beam currents and to extend the variety of ions especially for highly charged heavy ions which can be accelerated by cyclotrons of Research Center for Nuclear Physics (RCNP), Osaka University. The beam production developments of several ions from B to Xe have been already done [T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 79, 02A311 (2008) and T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 81, 02A332 (2010)] and the further studies for those beam extraction and its transport have been done in order to increase the beam current more. The plasma electrode, extraction electrode, and einzel lens are modified. Especially extraction electrode can be applied minus voltage for the beam extraction and it works well to improve the extracted beam current. The extraction voltage dependences of transmission and emittance also have been studied for beam current improvement which is injected into azimuthally varying field cyclotron at RCNP.

  15. Anomalous electron doping independent two-dimensional superconductivity

    Science.gov (United States)

    Zhou, Wei; Xing, Xiangzhuo; Zhao, Haijun; Feng, Jiajia; Pan, Yongqiang; Zhou, Nan; Zhang, Yufeng; Qian, Bin; Shi, Zhixiang

    2017-07-01

    Transition metal (Co and Ni) co-doping effects are investigated on an underdoped Ca0.94La0.06Fe2As2 compound. It is discovered that electron doping from substituting Fe with transition metal (TM = Co, Ni) can trigger high-{T}{{c}} superconductivity around 35 K, which emerges abruptly before the total suppression of the innate spin-density-wave/anti-ferromagnetism (SDW/AFM) state. Remarkably, the critical temperature for the high-{T}{{c}} superconductivity remains constant against a wide range of TM doping levels. And the net electron doping density dependence of the superconducting {T}{{c}} based on the rigid band model can be nicely scaled into a single curve for Co and Ni substitutions, in stark contrast to the case of Ba(Fe1-x TM x )2As2. This carrier density independent superconductivity and the unusual scaling behavior are presumably resulted from the interface superconductivity based on the similarity with the interface superconductivity in a La2-x Sr x CuO4-La2CuO4 bilayer. Evidence of the two-dimensional character of the superfluid by angle-resolved magneto-resistance measurements can further strengthen the interface nature of the high-{T}{{c}} superconductivity.

  16. The integration of cryogenic cooling systems with superconducting electronic systems

    International Nuclear Information System (INIS)

    Green, Michael A.

    2003-01-01

    The need for cryogenic cooling has been critical issue that has kept superconducting electronic devices from reaching the market place. Even though the performance of the superconducting circuit is superior to silicon electronics, the requirement for cryogenic cooling has put the superconducting devices at a disadvantage. This report will talk about the various methods for refrigerating superconducting devices. Cryocooler types will be compared for vibration, efficiency, and cost. Some solutions to specific problems of integrating cryocoolers to superconducting devices are presented.

  17. Superconducting analogue electronics for research and industry

    International Nuclear Information System (INIS)

    Winkler, D

    2003-01-01

    This paper gives a brief review of superconducting electronics in research and industry. Examples will show how science benefits from the development and how superconducting devices have found their way into industry and to some commercial products. Impact in terms of enabling new research in other fields (e.g. radio astronomy, medicine), in industry (certification, safety, metrology, etc) and in terms of market will be addressed. From the examples, two fields will be emphasized: superconducting detectors for astronomy and the superconducting quantum interference devices (SQUIDs) employed for different applications

  18. One-Step Generation of Multi-Qubit GHZ and W States in Superconducting Transmon Qubit System

    International Nuclear Information System (INIS)

    Gao Guilong; Huang Shousheng; Wang Mingfeng; Jiang Nianquan; Cai Genchang

    2012-01-01

    We propose a one-step method to prepare multi-qubit GHZ and W states with transmon qubits capacitively coupled to a superconducting transmission line resonator (TLR). Compared with the scheme firstly introduced by Wang et al. [Phys. Rev. B 81 (2010) 104524], our schemes have longer dephasing time and much shorter operation time because the transmon qubits we used are not only more robust to the decoherence and the unavoidable parameter variations, but also have much stronger coupling constant with TLR. Based on the favourable properties of transmons and TLR, our method is more feasible in experiment. (general)

  19. Electronic structure and superconductivity of FeSe-related superconductors.

    Science.gov (United States)

    Liu, Xu; Zhao, Lin; He, Shaolong; He, Junfeng; Liu, Defa; Mou, Daixiang; Shen, Bing; Hu, Yong; Huang, Jianwei; Zhou, X J

    2015-05-13

    FeSe superconductors and their related systems have attracted much attention in the study of iron-based superconductors owing to their simple crystal structure and peculiar electronic and physical properties. The bulk FeSe superconductor has a superconducting transition temperature (Tc) of ~8 K and it can be dramatically enhanced to 37 K at high pressure. On the other hand, its cousin system, FeTe, possesses a unique antiferromagnetic ground state but is non-superconducting. Substitution of Se with Te in the FeSe superconductor results in an enhancement of Tc up to 14.5 K and superconductivity can persist over a large composition range in the Fe(Se,Te) system. Intercalation of the FeSe superconductor leads to the discovery of the AxFe2-ySe2 (A = K, Cs and Tl) system that exhibits a Tc higher than 30 K and a unique electronic structure of the superconducting phase. A recent report of possible high temperature superconductivity in single-layer FeSe/SrTiO3 films with a Tc above 65 K has generated much excitement in the community. This pioneering work opens a door for interface superconductivity to explore for high Tc superconductors. The distinct electronic structure and superconducting gap, layer-dependent behavior and insulator-superconductor transition of the FeSe/SrTiO3 films provide critical information in understanding the superconductivity mechanism of iron-based superconductors. In this paper, we present a brief review of the investigation of the electronic structure and superconductivity of the FeSe superconductor and related systems, with a particular focus on the FeSe films.

  20. A venture capital view of superconductivity electronics

    International Nuclear Information System (INIS)

    Kressel, H.

    1987-01-01

    Many venture capital backed start-up companies have followed major technological innovations in recent years. However, the field of electronics based on the use of superconducting devices (i.e. the Josephson Junction) has been a noteworthy exception. Until 1983, the bulk of the American development effort on superconductivity electronics was conducted by IBM where the focus was to demonstrate the feasibility of a superconducting computer prototype. Other activities using Josephson Junctions involved the development and production of magnetic sensing instruments and modest quantities of magnetometers which were marketed by several very small companies primarily for laboratory use. In addition, other applications in radiation sensing and biomagnetism and research leading to practical systems were ongoing in several organizations

  1. Microscopic Superconductivity and Room Temperature Electronics of High-Tc Cuprates

    International Nuclear Information System (INIS)

    Liu Fusui; Chen Wanfang

    2008-01-01

    This paper points out that the Landau criterion for macroscopic superfluidity of He II is only a criterion for microscopic superfluidity of 4 He, extends the Landau criterion to microscopic superconductivity in fermions (electron and hole) system and system with Cooper pairs without long-range phase coherence. This paper gives another three non-superconductive systems that are of microscopic superconductivity. This paper demonstrates that one application of microscopic superconductivity is to establish room temperature electronics of the high-T c cuprates

  2. Electron-beam buncher to operate over the frequency range 1-4 GHz

    International Nuclear Information System (INIS)

    Goldberg, D.A.; Arthur, A.A.; Flood, W.S.; Voelker, F.

    1983-03-01

    We present a description of an electron buncher to be installed in the terminal of a Van de Graaff, which is to produce a modulated beam over the frequency range 1-4 GHz. The modulator geometry has been optimized so that the modulation amplitude should be nearly constant over the frequency ranges 1-2 GHz and 2-4 GHz. Preliminary results indicate the device works as predicted

  3. MEASUREMENT OF THE TRANSVERSE BEAM DYNAMICS IN A TESLA-TYPE SUPERCONDUCTING CAVITY

    Energy Technology Data Exchange (ETDEWEB)

    Halavanau, A. [NICADD, DeKalb; Eddy, N. [Fermilab; Edstrom, D. [Fermilab; Lunin, A. [Fermilab; Piot, P. [NICADD, DeKalb; Ruan, J. [Fermilab; Solyak, N. [Fermilab

    2016-09-26

    Superconducting linacs are capable of producing intense, ultra-stable, high-quality electron beams that have widespread applications in Science and Industry. Many project are based on the 1.3-GHz TESLA-type superconducting cavity. In this paper we provide an update on a recent experiment aimed at measuring the transfer matrix of a TESLA cavity at the Fermilab Accelerator Science and Technology (FAST) facility. The results are discussed and compared with analytical and numerical simulations.

  4. Development of novel low-voltage free-electron lasers in the 5-500GHz region

    International Nuclear Information System (INIS)

    Zhong, Xiehe

    2002-01-01

    The electromagnetic spectrum from 5GHz to 500GHz is important for many industrial, commercial, and scientific applications. In particular for the 100 - 500GHz region, free electron lasers (FELs) are usually the only viable radiation sources with sizeable output power and as such are an attractive enabling technology for many applications. One major issue for widespread application of free electron lasers is to reduce their cost and size. This is particularly challenging because of the expensive electron accelerator system they employ. To make it significantly more attractive economically for many important applications, the electron energy has to be reduced to below 300keV. In this thesis two novel electron-energy-reduction techniques are investigated for FEL systems operated in the spectrum from 5GHz to 500GHz with the development of a suite of suitable FEL codes. In the microwave to millimetre-wave region, a novel energy reduction technique based on second harmonic waveguide FELs is studied. It is shown that the required electron voltage is approximately half of what is normally required for comparable conventional waveguide FELs. Effect of electron energy spread is studied for second harmonic waveguide FELs both in microwave and millimetre-wave regions. It is shown that strong wiggler field enhances electron hunching thereby increasing the small-signal gain as well as the insusceptibility to electron voltage spread. Saturation behaviour of second harmonic waveguide FELs is also studied because it is important for evaluation of output power. For FEL generation above 300GHz, it is found that second harmonic waveguide FELs need to increase electron energy above 300keV. To this end, a second energy reduction technique is considered based on a novel quasiperiodic wiggler. It is established that by changing the initial phase angle between the two component wigglers, strong radiation can be generated near 1THz with electron energy below 300keV. (author)

  5. DARMSTADT: Superconducting electron accelerator in operation

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    In December, the S-DALINAC superconducting radiofrequency electron accelerator at the Nuclear Physics Institute of Darmstadt's Technische Hochschule was completed. This pioneer continuous-wave (c.w.) machine passed a major milestone several years ago when it accelerated its first low energy electron beam

  6. Superconductivity in strongly correlated electron systems: successes and open questions

    International Nuclear Information System (INIS)

    Shastry, B. Sriram

    2000-01-01

    Correlated electronic systems and superconductivity is a field which has unique track record of producing exciting new phases of matter. The article gives an overview of trends in solving the problems of superconductivity and correlated electronic systems

  7. Superconducting cuprate heterostructures for hot electron bolometers

    Science.gov (United States)

    Wen, B.; Yakobov, R.; Vitkalov, S. A.; Sergeev, A.

    2013-11-01

    Transport properties of the resistive state of quasi-two dimensional superconducting heterostructures containing ultrathin La2-xSrxCuO4 layers synthesized using molecular beam epitaxy are studied. The electron transport exhibits strong deviation from Ohm's law, δV ˜γI3, with a coefficient γ(T) that correlates with the temperature variation of the resistivity dρ /dT. Close to the normal state, analysis of the nonlinear behavior in terms of electron heating yields an electron-phonon thermal conductance per unit area ge -ph≈1 W/K cm2 at T = 20 K, one-two orders of magnitude smaller than in typical superconductors. This makes superconducting LaSrCuO heterostructures to be attractive candidate for the next generation of hot electron bolometers with greatly improved sensitivity.

  8. Superconducting cuprate heterostructures for hot electron bolometers

    International Nuclear Information System (INIS)

    Wen, B.; Yakobov, R.; Vitkalov, S. A.; Sergeev, A.

    2013-01-01

    Transport properties of the resistive state of quasi-two dimensional superconducting heterostructures containing ultrathin La 2−x Sr x CuO 4 layers synthesized using molecular beam epitaxy are studied. The electron transport exhibits strong deviation from Ohm's law, δV∼γI 3 , with a coefficient γ(T) that correlates with the temperature variation of the resistivity dρ/dT. Close to the normal state, analysis of the nonlinear behavior in terms of electron heating yields an electron-phonon thermal conductance per unit area g e−ph ≈1 W/K cm 2 at T = 20 K, one-two orders of magnitude smaller than in typical superconductors. This makes superconducting LaSrCuO heterostructures to be attractive candidate for the next generation of hot electron bolometers with greatly improved sensitivity

  9. Magnetic fluctuations and heavy electron superconductivity

    International Nuclear Information System (INIS)

    Norman, M.R.

    1988-01-01

    A magnetic fluctuation self-energy based on neutron scattering data is used to calculate mass renormalizations, and superconducting critical temperatures and order parameters, for various heavy electron metals

  10. Observation of total electron content and irregularities in electron density using GHz band radiowaves emitted from satellite

    International Nuclear Information System (INIS)

    Ogawa, Tadahiko; Fujita, Masaharu; Awaka, Jun.

    1978-01-01

    The experiments to investigate the influence of troposphere on millimeter and sub-millimeter wave propagation were carried out, using the engineering test satellite -- 2 (ETS-2) which became the Japanese first stationary satellite and carries the transmitter emitting beacon waves of 1.7, 11.5 and 34.5 GHz coherent each other. By these experiments, it was found that the waves of 1.7 and 11.5 GHz were affected by the ionosphere. The measurement of total electron content using GHz band waves was the first trial in the world, and is capable of grasping its change with higher accuracy than conventional methods. Scintillation of 1.7 GHz is mainly the phenomenon during night, and it was revealed that it has a peak at 22.30 local time and occurred through the radiowave scattering owing to the irregularities of the ionosphere. It is also suggested that some plasma instability is generated in the place where electron density gradient in the ionosphere is large, and the irregularities of fine scale are produced, assuming from GHz band scintillations at the time of magnetic storm. The relations among wave number spectrum, scintillation frequency spectrum and S4 index (statistical quantity to give estimate for scintillation amplitude) can be derived by the weak scattering theory (Simple scattering theory). As seen above, the diagnosis of plasma disturbances in the ionosphere is feasible by the simultaneous observations of total electron content and scintillation. (Wakatsuki, Y.)

  11. Superfluid phase stiffness in electron doped superconducting Gd-123

    Science.gov (United States)

    Das, P.; Ghosh, Ajay Kumar

    2018-05-01

    Current-voltage characteristics of Ce substituted Gd-123 superconductor exhibits nonlinearity below a certain temperature below the critical temperature. An exponent is extracted using the nonlinearity of current-voltage relation. Superfluid phase stiffness has been studied as a function of temperature following the Ambegaokar-Halperin-Nelson-Siggia (AHNS) theory. Phase stiffness of the superfluid below the superconducting transition is found to be sensitive to the change in the carrier concentration in superconducting system. There may be a crucial electron density which affects superfluid stiffness strongly. Electron doping is found to be effective even if the coupling of the superconducting planes is changed.

  12. Free electron lasers on superconducting linac

    International Nuclear Information System (INIS)

    Lapierrre, Y.

    1986-01-01

    Analysing the results of several Free Electron Laser experiments, we show that the best accelerator should be a superconducting linear accelerator: it can provide a c.w. high quality beam (energy spread and emittance). The technology of RF superconductivity provide the opportunity to build such an accelerator. In this paper, we present the foreseen results one can expect from a FEL based on such a machine: - Average power > 1 Kw, - Total efficiency > 2.5%, - Tunability between 0.6 and 5 μm [fr

  13. Terahertz hot electron bolometer waveguide mixers for GREAT

    OpenAIRE

    Pütz, P.; Honingh, C. E.; Jacobs, K.; Justen, M.; Schultz, M.; Stutzki, J.

    2012-01-01

    Supplementing the publications based on the first-light observations with the German Receiver for Astronomy at Terahertz frequencies (GREAT) on SOFIA, we present background information on the underlying heterodyne detector technology. We describe the superconducting hot electron bolometer (HEB) detectors that are used as frequency mixers in the L1 (1400 GHz), L2 (1900 GHz), and M (2500 GHz) channels of GREAT. Measured performance of the detectors is presented and background information on the...

  14. Antiferroic electronic structure in the nonmagnetic superconducting state of the iron-based superconductors.

    Science.gov (United States)

    Shimojima, Takahiro; Malaeb, Walid; Nakamura, Asuka; Kondo, Takeshi; Kihou, Kunihiro; Lee, Chul-Ho; Iyo, Akira; Eisaki, Hiroshi; Ishida, Shigeyuki; Nakajima, Masamichi; Uchida, Shin-Ichi; Ohgushi, Kenya; Ishizaka, Kyoko; Shin, Shik

    2017-08-01

    A major problem in the field of high-transition temperature ( T c ) superconductivity is the identification of the electronic instabilities near superconductivity. It is known that the iron-based superconductors exhibit antiferromagnetic order, which competes with the superconductivity. However, in the nonmagnetic state, there are many aspects of the electronic instabilities that remain unclarified, as represented by the orbital instability and several in-plane anisotropic physical properties. We report a new aspect of the electronic state of the optimally doped iron-based superconductors by using high-energy resolution angle-resolved photoemission spectroscopy. We find spectral evidence for the folded electronic structure suggestive of an antiferroic electronic instability, coexisting with the superconductivity in the nonmagnetic state of Ba 1- x K x Fe 2 As 2 . We further establish a phase diagram showing that the antiferroic electronic structure persists in a large portion of the nonmagnetic phase covering the superconducting dome. These results motivate consideration of a key unknown electronic instability, which is necessary for the achievement of high- T c superconductivity in the iron-based superconductors.

  15. A study of beam position diagnostics with beam-excited dipole higher order modes using a downconverter test electronics in third harmonic 3.9 GHz superconducting accelerating cavities at FLASH

    International Nuclear Information System (INIS)

    Zhang, P.; Baboi, N.; Lorbeer, B.; Wamsat, T.; Eddy, N.; Fellenz, B.; Wendt, M.; Jones, R.M.

    2012-08-01

    Beam-excited higher order modes (HOM) in accelerating cavities contain transverse beam position information. Previous studies have narrowed down three modal options for beam position diagnostics in the third harmonic 3.9 GHz cavities at FLASH. Localized modes in the beam pipes at approximately 4.1 GHz and in the fifth cavity dipole band at approximately 9 GHz were found, that can provide a local measurement of the beam position. In contrast, propagating modes in the first and second dipole bands between 4.2 and 5.5 GHz can reach a better resolution. All the options were assessed with a specially designed test electronics built by Fermilab. The aim is to de ne a mode or spectral region suitable for the HOM electronics. Two data analysis techniques are used and compared in extracting beam position information from the dipole HOMs: direct linear regression and singular value decomposition. Current experiments suggest a resolution of 50 m accuracy in predicting local beam position using modes in the fifth dipole band, and a global resolution of 20 m over the complete module. Based on these results we decided to build a HOM electronics for the second dipole band and the fifth dipole band, so that we will have both high resolution measurements for the whole module, and localized measurements for individual cavity. The prototype electronics is being built by Fermilab and planned to be tested in FLASH by the end of 2012.

  16. A study of beam position diagnostics with beam-excited dipole higher order modes using a downconverter test electronics in third harmonic 3.9 GHz superconducting accelerating cavities at FLASH

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, P. [Manchester Univ. (United Kingdom); Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Baboi, N.; Lorbeer, B.; Wamsat, T. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Eddy, N.; Fellenz, B.; Wendt, M. [Fermi National Accelerator Lab., Batavia, IL (United States); Jones, R.M. [Manchester Univ. (United Kingdom); The Cockcroft Institute, Daresbury (United Kingdom)

    2012-08-15

    Beam-excited higher order modes (HOM) in accelerating cavities contain transverse beam position information. Previous studies have narrowed down three modal options for beam position diagnostics in the third harmonic 3.9 GHz cavities at FLASH. Localized modes in the beam pipes at approximately 4.1 GHz and in the fifth cavity dipole band at approximately 9 GHz were found, that can provide a local measurement of the beam position. In contrast, propagating modes in the first and second dipole bands between 4.2 and 5.5 GHz can reach a better resolution. All the options were assessed with a specially designed test electronics built by Fermilab. The aim is to de ne a mode or spectral region suitable for the HOM electronics. Two data analysis techniques are used and compared in extracting beam position information from the dipole HOMs: direct linear regression and singular value decomposition. Current experiments suggest a resolution of 50 m accuracy in predicting local beam position using modes in the fifth dipole band, and a global resolution of 20 m over the complete module. Based on these results we decided to build a HOM electronics for the second dipole band and the fifth dipole band, so that we will have both high resolution measurements for the whole module, and localized measurements for individual cavity. The prototype electronics is being built by Fermilab and planned to be tested in FLASH by the end of 2012.

  17. RF Design and Operating Performance of the BNL/AES 1.3 GHz Single Cell Superconducting RF Photocathode Electron Gun

    International Nuclear Information System (INIS)

    Cole, Michael; Kneisel, Peter; Ben-Zvi, Ilan; Burrill, Andrew; Hahn, H.; Rao, Triveni; Zhao, Y.

    2005-01-01

    Over the past several years Advanced Energy Systems and BNL have been collaborating on the development and testing of a fully superconducting photocathode electron gun. Over the past year we have begun to realize significant results which have been published elsewhere (1). This paper will review the RF design of the gun under test and present results of its performance under various operating conditions. Results for cavity quality factor will be presented for various operating temperatures and cavity field gradients. We will also discuss future plans for testing using this gun.

  18. Analysis of line integrated electron density using plasma position data on Korea Superconducting Tokamak Advanced Research

    International Nuclear Information System (INIS)

    Nam, Y. U.; Chung, J.

    2010-01-01

    A 280 GHz single-channel horizontal millimeter-wave interferometer system has been installed for plasma electron density measurements on the Korea Superconducting Tokamak Advanced Research (KSTAR) device. This system has a triangular beam path that does not pass through the plasma axis due to geometrical constraints in the superconducting tokamak. The term line density on KSTAR has a different meaning from the line density of other tokamaks. To estimate the peak density and the mean density from the measured line density, information on the position of the plasma is needed. The information has been calculated from tangentially viewed visible images using the toroidal symmetry of the plasma. Interface definition language routines have been developed for this purpose. The calculated plasma position data correspond well to calculation results from magnetic analysis. With the position data and an estimated plasma profile, the peak density and the mean density have been obtained from the line density. From these results, changes of plasma density themselves can be separated from effects of the plasma movements, so they can give valuable information on the plasma status.

  19. 600 GHz resonant mode in a parallel array of Josephson tunnel junctions connected by superconducting microstrip lines

    DEFF Research Database (Denmark)

    Kaplunenko, V. K.; Larsen, Britt Hvolbæk; Mygind, Jesper

    1994-01-01

    on experimental and numerical investigations of a resonant step observed at a voltage corresponding to 600 GHz in the dc current-voltage characteristic of a parallel array of 20 identical small NbAl2O3Nb Josephson junctions interconnected by short sections of superconducting microstrip line. The junctions...... are mutually phase locked due to collective interaction with the line sections excited close to the half wavelength resonance. The phase locking range can be adjusted by means of an external dc magnetic field and the step size varies periodically with the magnetic field. The largest step corresponds...

  20. NATO Advanced Study Institute on Superconducting Electronics

    CERN Document Server

    Nisenhoff, Martin; Superconducting Electronics

    1989-01-01

    The genesis of the NATO Advanced Study Institute (ASI) upon which this volume is based, occurred during the summer of 1986 when we came to the realization that there had been significant progress during the early 1980's in the field of superconducting electronics and in applications of this technology. Despite this progress, there was a perception among many engineers and scientists that, with the possible exception of a limited number of esoteric fundamental studies and applications (e.g., the Josephson voltage standard or the SQUID magnetometer), there was no significant future for electronic systems incorporating superconducting elements. One of the major reasons for this perception was the aversion to handling liquid helium or including a closed-cycle helium liquefier. In addition, many critics felt that IBM's cancellation of its superconducting computer project in 1983 was "proof" that superconductors could not possibly compete with semiconductors in high-speed signal processing. From our persp...

  1. Superconducting ECR ion source system

    International Nuclear Information System (INIS)

    Sharma, S.C.; Gore, J.A.; Gupta, A.K.; Saxena, A.

    2017-01-01

    In order to cover the entire mass range of the elements across the periodic table, an ECR based heavy ion accelerator programme, consisting of a superconducting ECR (Electron Cyclotron Resonance) source and a room temperature RFQ (Radio Frequency Quadrupole) followed by low and high beta superconducting resonator cavities has been proposed. The 18 GHz superconducting ECR ion source system has already been commissioned and being operated periodically at FOTIA beam hall. This source is capable of delivering ion beams right from proton to uranium with high currents and high charge states over a wide mass range (1/7 ≤ q/m ≤ 1/2) across the periodic table, including U"3"4"+ (q/m∼1/7) with 100 pna yield. The normalized transverse beam emittance from ECR source is expected to be <1.0 pi mm mrad. ECR ion sources are quite robust, making them suitable for operating for weeks continuously without any interruption

  2. Performance of 3.9 GHz SRF cavities at Fermilab's ILCTA_MDB nhorizontal test stand

    Energy Technology Data Exchange (ETDEWEB)

    Harms, Elvin; Hocker, Andy; /Fermilab

    2008-08-01

    Fermilab is building a cryomodule containing four 3.9 GHz superconducting radio frequency (SRF) cavities for the Free electron LASer in Hamburg (FLASH) facility at the Deutsches Elektronen-SYnchrotron (DESY) laboratory. Before assembling the cavities into the cryomodule, each individual cavity is tested at Fermilab's Horizontal Test Stand (HTS). The HTS provides the capability to test fully-dressed SRF cavities at 1.8 K with high-power pulsed RF in order to verify that the cavities achieve performance requirements under these conditions. The performance at the HTS of the 3.9 GHz cavities built for FLASH is presented here.

  3. Characteristics of a superconducting magnet using a persistent current for a 110 GHz gyrotron

    International Nuclear Information System (INIS)

    Maebara, Sunao; Kasugai, Atsushi; Sakamoto, Keishi; Tsuneoka, Masaki; Imai, Tsuyoshi

    1996-03-01

    A superconducting magnet (SCM) using a persistent current for a 110 GHz gyrotron was developed to reduce liquid-helium loss, the boiled-off rate of 0.13 liter/hour was attained in a persistent current operation. It shows that the continuous operation for 50 days is capable without additional liquid-helium supply. Moreover, the 3040 liter in a year is used for a gyrotron test during five months and for the maintenance during seven months and liquid-helium savings of 65% was successfully demonstrated. The SCM is capable to excite the maximum magnetic field of 5.0 T in the persistent current mode. A mirror ratio between resonant cavity and magnetron injection gun (MIG) is 20 for operating the main coils in the persistent mode, since cavity coils and gun coils are connected in series. Auxiliary coils are equipped independently to control the mirror ratio, the mirror ratio of 13.6 - 37.0 at the 110 GHz is available. A two-stage refrigerator using helium gas was also installed and made liquid-nitrogen for cooling thermal shield of 80 K free. By developing this new type SCM, the number of routine works was drastically decreased in one time per 22-50 days, while routine works of a few times per week was needed up to now. (author)

  4. Development and performance of a 129-GHz dynamic nuclear polarizer in an ultra-wide bore superconducting magnet.

    Science.gov (United States)

    Lumata, Lloyd L; Martin, Richard; Jindal, Ashish K; Kovacs, Zoltan; Conradi, Mark S; Merritt, Matthew E

    2015-04-01

    We sought to build a dynamic nuclear polarization system for operation at 4.6 T (129 GHz) and evaluate its efficiency in terms of (13)C polarization levels using free radicals that span a range of ESR linewidths. A liquid helium cryostat was placed in a 4.6 T superconducting magnet with a 150-mm warm bore diameter. A 129-GHz microwave source was used to irradiate (13)C enriched samples. Temperatures close to 1 K were achieved using a vacuum pump with a 453-m(3)/h roots blower. A hyperpolarized (13)C nuclear magnetic resonance (NMR) signal was detected using a saddle coil and a Varian VNMRS console operating at 49.208 MHz. Samples doped with free radicals BDPA (1,3-bisdiphenylene-2-phenylallyl), trityl OX063 (tris{8-carboxyl-2,2,6,6-benzo(1,2-d:4,5-d)-bis(1,3)dithiole-4-yl}methyl sodium salt), galvinoxyl ((2,6-di-tert-butyl-α-(3,5-di-tert-butyl-4-oxo-2,5-cyclohexadien-1-ylidene)-p-tolyloxy), 2,2-diphenylpicrylhydrazyl (DPPH) and 4-oxo-TEMPO (4-Oxo-2,2,6,6-tetramethyl-1-piperidinyloxy) were assayed. Microwave dynamic nuclear polarization (DNP) spectra and solid-state (13)C polarization levels for these samples were determined. (13)C polarization levels close to 50 % were achieved for [1-(13)C]pyruvic acid at 1.15 K using the narrow electron spin resonance (ESR) linewidth free radicals trityl OX063 and BDPA, while 10-20 % (13)C polarizations were achieved using galvinoxyl, DPPH and 4-oxo-TEMPO. At this field strength free radicals with smaller ESR linewidths are still superior for DNP of (13)C as opposed to those with linewidths that exceed that of the (1)H Larmor frequency.

  5. Research on heightening quality of free electron laser using superconducting linear accelerator

    International Nuclear Information System (INIS)

    Minehara, Eisuke

    1996-01-01

    In this paper, the superconducting high frequency linear accelerator technology using low temperature superconductor is introduced, and its application to the heightening of quality of free electron laser is discussed. The high frequency application of superconductivity is a relatively new technology, and the first superconducting high frequency linear accelerator was made at the middle of 1960s. The invention of free electron laser and the development so far are described. In free electron laser, the variation of wavelength, high efficiency and high power output are possible as compared with conventional type lasers. The price and the size are two demerits of free electron laser that remain to the last. In Japan Atomic Energy Research Institute, the adjustment experiment is carried out for the prototype free electron laser. About this prototype, injection system, superconducting accelerator, helium refrigerator, whole solid element high frequency power source, control system, electron beam transport system, undulator system and optical resonator are described. The application of high mean power output free electron laser and its future are discussed. (K.I.)

  6. Electron-phonon superconductivity in YIn3

    Science.gov (United States)

    Billington, D.; Llewellyn-Jones, T. M.; Maroso, G.; Dugdale, S. B.

    2013-08-01

    First-principles calculations of the electron-phonon coupling were performed on the cubic intermetallic compound YIn3. The electron-phonon coupling constant was found to be λep = 0.42. Using the Allen-Dynes formula with a Coulomb pseudopotential of μ* = 0.10, a Tc of approximately 0.77 K is obtained which is reasonably consistent with the experimentally observed temperature (between 0.8 and 1.1 K). The results indicate that conventional electron-phonon coupling is capable of producing the superconductivity in this compound.

  7. Superconductivity and antiferromagnetism in heavy-electron systems

    International Nuclear Information System (INIS)

    Konno, R.; Ueda, K.

    1989-01-01

    Superconductivity and antiferromagnetism in heavy-electron systems are investigated from a general point of view. First we classify superconducting states in a simple cubic lattice, a body-centered tetragonal lattice, and a hexagonal close-packed lattice, having URu 2 Si 2 and UPt 3 in mind. For that purpose we take an approach to treat the effective couplings in real space. The approach is convenient to discuss the relation between the nature of fluctuations in the system and the superconducting states. When we assume that the antiferromagnetic fluctuations reported by neutron experiments are dominant, the most promising are some of the anisotropic singlet states and there remains the possibility for some triplet states too. Then we discuss the coupling between the two order parameters based on a Ginzburg-Landau theory. We derive a general expression of the coupling term. It is pointed out that the coupling constant can be large in heavy-electron systems. The general trend of the coexistence of the superconductivity and antiferromagnetism is discussed, and it is shown that the anisotropic states are generally more favorable to the coexistence than the conventional isotropic singlet. Experimental data of URu 2 Si 2 and UPt 3 are analyzed by the Ginzburg-Landau theory. According to the analysis URu 2 Si 2 has a small coupling constant and a large condensation energy of the antiferromagnetism. On the other hand, UPt 3 has a large coupling constant and a small condensation energy. It means that the specific-heat anomaly at T N should be small in UPt 3 and its superconductivity is easily destroyed when a large moment is formed

  8. Superconducting Hot-Electron Submillimeter-Wave Detector

    Science.gov (United States)

    Karasik, Boris; McGrath, William; Leduc, Henry

    2009-01-01

    A superconducting hot-electron bolometer has been built and tested as a prototype of high-sensitivity, rapid-response detectors of submillimeter-wavelength radiation. There are diverse potential applications for such detectors, a few examples being submillimeter spectroscopy for scientific research; detection of leaking gases; detection of explosive, chemical, and biological weapons; and medical imaging. This detector is a superconducting-transition- edge device. Like other such devices, it includes a superconducting bridge that has a low heat capacity and is maintained at a critical temperature (T(sub c)) at the lower end of its superconducting-transition temperature range. Incident photons cause transient increases in electron temperature through the superconducting-transition range, thereby yielding measurable increases in electrical resistance. In this case, T(sub c) = 6 K, which is approximately the upper limit of the operating-temperature range of silicon-based bolometers heretofore used routinely in many laboratories. However, whereas the response speed of a typical silicon- based laboratory bolometer is characterized by a frequency of the order of a kilohertz, the response speed of the present device is much higher characterized by a frequency of the order of 100 MHz. For this or any bolometer, a useful figure of merit that one seeks to minimize is (NEP)(tau exp 1/2), where NEP denotes the noise-equivalent power (NEP) and the response time. This figure of merit depends primarily on the heat capacity and, for a given heat capacity, is approximately invariant. As a consequence of this approximate invariance, in designing a device having a given heat capacity to be more sensitive (to have lower NEP), one must accept longer response time (slower response) or, conversely, in designing it to respond faster, one must accept lower sensitivity. Hence, further, in order to increase both the speed of response and the sensitivity, one must make the device very small in

  9. Correlated electron motion, flux states and superconductivity

    International Nuclear Information System (INIS)

    Lederer, P.; Poilblanc, D.; Rice, T.K.

    1989-01-01

    This paper discusses how, when the on-site correlation is strong, electrons can move by usual hopping only on to empty sites but they can exchange position with their neighbors by a correlated motion. The phase in the former process is fixed and it favors Bloch states. When the concentration of empty sites is small then the latter process dominates and one is free to introduce a phase provided it is chosen to be the same for ↑ and ↓-spin electrons. Since for a partly filled band of non-interacting electrons the introduction of a uniform commensurate flux lowers the energy, the correlated motion can lead to a physical mechanism to generate flux states. These states have a collective gauge variable which is the same for ↑ and ↓-spins and superconducting properties are obtained by expanding around the optimum gauge determined by the usual kinetic energy term. If this latter term has singularities at special fillings then these may affect the superconducting properties

  10. A high efficiency superconducting nanowire single electron detector

    NARCIS (Netherlands)

    Rosticher, M.; Ladan, F.R.; Maneval, J.P.; Dorenbos, S.N.; Zijlstra, T.; Klapwijk, T.M.; Zwiller, V.; Lupa?cu, A.; Nogues, G.

    2010-01-01

    We report the detection of single electrons using a Nb0.7Ti0.3N superconducting wire deposited on an oxidized silicon substrate. While it is known that this device is sensitive to single photons, we show that it also detects single electrons with kilo-electron-volt energy emitted from the cathode of

  11. Development of end group for 1.3 GHZ nine cell SCRF cavity

    International Nuclear Information System (INIS)

    Yedle, Ajay; Bagre, Manish; Maurya, Tilak; Yadav, Anand; Puntambekar, Avinash; Mahawar, Ashish; Mohania, Praveen; Shrivastava, Purushottam; Joshi, Satish Chandra

    2013-01-01

    Raja Ramanna Centre for Advanced Technology (RRCAT) is developing 1.3 GHz superconducting radio frequency (SCRF) cavities as part of SCRF technology development. The 1.3 GHz nine cell SCRF cavities comprise of multiple cells and end groups at each end. These end groups are important parts of a multi-cell cavity. They serve as interface for putting RF power to cavity, pick up the signal for various RF control and have higher order modes (HOM) coupler. The multiple parts with intricate shape, complex weld geometry and stringent RF requirements pose various challenges in their manufacturing. This paper presents the efforts on development of end groups comprising of manufacturing of various parts, their fabrication by electron beam welding process and pre-qualification including mechanical measurement, vacuum leak testing RF measurement. (author)

  12. Signal processing: opportunities for superconductive circuits

    International Nuclear Information System (INIS)

    Ralston, R.W.

    1985-01-01

    Prime motivators in the evolution of increasingly sophisticated communication and detection systems are the needs for handling ever wider signal bandwidths and higher data processing speeds. These same needs drive the development of electronic device technology. Until recently the superconductive community has been tightly focused on digital devices for high speed computers. The purpose of this paper is to describe opportunities and challenges which exist for both analog and digital devices in a less familiar area, that of wideband signal processing. The function and purpose of analog signal-processing components, including matched filters, correlators and Fourier transformers, will be described and examples of superconductive implementations given. A canonic signal-processing system is then configured using these components in combination with analog/digital converters and digital output circuits to highlight the important issues of dynamic range, accuracy and equivalent computation rate. Superconductive circuits hold promise for processing signals of 10-GHz bandwidth. Signal processing systems, however, can be properly designed and implemented only through a synergistic combination of the talents of device physicists, circuit designers, algorithm architects and system engineers. An immediate challenge to the applied superconductivity community is to begin sharing ideas with these other researchers

  13. Magnetic Parameters Of A NB3SN Superconducting Magnet For A 56 HGz ECR Ion Source

    International Nuclear Information System (INIS)

    Ferracin, P.; Caspi, S.; Felice, H.; Leitner, D.; Lyneis, C.M.; Prestemon, S.; Sabbi, G.L.; Todd, D.S.

    2009-01-01

    Third generation Electron Cyclotron Resonance (ECR) ion sources operate at microwave frequencies between 20 and 30 GHz and employ NbTi superconducting magnets with a conductor peak field of 6-7 T. A significant gain in performance can be achieved by replacing NbTi with Nb 3 Sn, allowing solenoids and sextupole coils to reach a field of 15 T in the windings. In this paper we describe the design of a Nb 3 Sn superconducting magnet for a fourth generation ECR source operating at a microwave frequency of 56 GHz. The magnet design features a configuration with an internal sextupole magnet surrounded by three solenoids. A finite element magnetic model has been used to investigate conductor peak fields and the operational margins. Results of the numerical analysis are presented and discussed.

  14. MAGNETIC PARAMETERS OF A NB3SN SUPERCONDUCTING MAGNET FOR A 56 HGz ECR ION SOURCE

    Energy Technology Data Exchange (ETDEWEB)

    Ferracin, P.; Caspi, S.; Felice, H.; Leitner, D.; Lyneis, C. M.; Prestemon, S.; Sabbi, G. L.; Todd, D. S.

    2009-05-04

    Third generation Electron Cyclotron Resonance (ECR) ion sources operate at microwave frequencies between 20 and 30 GHz and employ NbTi superconducting magnets with a conductor peak field of 6-7 T. A significant gain in performance can be achieved by replacing NbTi with Nb{sub 3}Sn, allowing solenoids and sextupole coils to reach a field of 15 T in the windings. In this paper we describe the design of a Nb{sub 3}Sn superconducting magnet for a fourth generation ECR source operating at a microwave frequency of 56 GHz. The magnet design features a configuration with an internal sextupole magnet surrounded by three solenoids. A finite element magnetic model has been used to investigate conductor peak fields and the operational margins. Results of the numerical analysis are presented and discussed.

  15. Plasma ignition and tuning in different cells of a 1.3 GHz nine-cell superconducting radio frequency cavity: Proof of principle

    Science.gov (United States)

    Tyagi, P. V.; Moss, Andrew; Goudket, Philippe; Pattalwar, Shrikant; Herbert, Joe; Valizadeh, Reza; McIntosh, Peter

    2018-06-01

    Field emission is one of the critical issues in the superconducting radio frequency (SRF) cavities and can degrade their accelerating gradient during operation. The contamination present at top surface of the SRF cavity is one of the foremost reasons for field emission. Plasma based surface processing can be a viable option to eliminate such surface contaminants and enhance performance of the SRF cavity especially for in-situ applications. These days, 1.3 GHz nine-cell SRF cavity has become baseline standard for many particle accelerators, it is of interest to develop plasma cleaning technique for such SRF cavities. In the development of the plasma processing technique for SRF cavities, the most challenging task is to ignite and tune the plasma in different cells of the SRF cavity. At Daresbury laboratory, UK, we have successfully achieved plasma ignition in different cells of a 1.3 GHz nine-cell SRF cavity. The plasma ignition in different cells of the cavity was accomplished at room temperature towards room temperature plasma cleaning of the SRF cavity surface. Here, we report the successful demonstration of the plasma ignition in different cells of a 1.3 GHz nine-cell SRF cavity.

  16. Electronic, phonon and superconducting properties of LaPtBi half-Heusler compound

    Science.gov (United States)

    Shrivastava, Deepika; Sanyal, Sankar P.

    2018-05-01

    In the framework of density functional theory based on plane wave pseudopotential method and linear response technique, we have studied the electronic, phonon and superconducting properties of LaPtBi half-Heusler compound. The electronic band structure and density of states show that it is gapless semiconductor which is consistent with previous results. The positive phonon frequencies confirm the stability of this compound in cubic MgAgAs phase. Superconductivity is studied in terms of Eliashberg spectral function (α2F(ω)), electron-phonon coupling constants (λ). The value of electron-phonon coupling parameter is found to be 0.41 and the superconducting transition temperature is calculated to be 0.76 K, in excellent agreement with the experimentally reported values.

  17. Physics design of a 28 GHz electron heating system for the National Spherical Torus experiment upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, G.; Bertelli, N.; Ellis, R. A.; Gerhardt, S. P.; Hosea, J. C.; Poli, F. [Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States); Harvey, R. W. [CompX, Del Mar, California 92014 (United States); Raman, R. [University of Washington, Seattle, Washington 98195 (United States); Smirnov, A. P. [M.V. Lomonosov Moscow State University, Moscow (Russian Federation)

    2014-02-12

    A megawatt-level, 28 GHz electron heating system is being designed to support non-inductive (NI) plasma current (I{sub p}) start-up and local heating and current drive (CD) in H-mode discharges in the National Spherical Torus Experiment Upgrade (NSTX-U). The development of fully NI I{sub p} start-up and ramp-up is an important goal of the NSTXU research program. 28 GHz electron cyclotron (EC) heating is predicted to rapidly increase the central electron temperature (T{sub e}(0)) of low density NI plasmas generated by Coaxial Helicity Injection (CHI). The increased T{sub e}(0) will significantly reduce the I{sub p} decay rate of CHI plasmas, allowing the coupling of fast wave heating and neutral beam injection. Also 28 GHz electron Bernstein wave (EBW) heating and CD can be used during the I{sub p} flat top in NSTX-U discharges when the plasma is overdense. Ray tracing and Fokker-Planck numerical simulation codes have been used to model EC and EBW heating and CD in NSTX-U. This paper presents a pre-conceptual design for the 28 GHz heating system and some of the results from the numerical simulations.

  18. Observations of electron heating during 28 GHz microwave power application in proto-MPEX

    Science.gov (United States)

    Biewer, T. M.; Bigelow, T. S.; Caneses, J. F.; Diem, S. J.; Green, D. L.; Kafle, N.; Rapp, J.; Proto-MPEX Team

    2018-02-01

    The Prototype Material Plasma Exposure Experiment at the Oak Ridge National Laboratory utilizes a variety of power systems to generate and deliver a high heat flux plasma onto the surface of material targets. In the experiments described here, a deuterium plasma is produced via a ˜100 kW, 13.56 MHz RF helicon source, to which ˜20 kW of 28 GHz microwave power is applied. The electron density and temperature profiles are measured using a Thomson scattering (TS) diagnostic, and indicate that the electron density is centrally peaked. In the core of the plasma column, the electron density is higher than the cut-off density (˜0.9 × 1019 m-3) for the launched mixture of X- and O-mode electron cyclotron heating waves to propagate. TS measurements indicate electron temperature increases from ˜5 eV to ˜20 eV during 28 GHz power application when the neutral deuterium pressure is reduced below 0.13 Pa (˜1 mTorr.).

  19. QUANTUM ELECTRONIC DEVICES: Superconducting Nb3Sn point contact in the submillimeter range of electromagnetic radiation

    Science.gov (United States)

    Belenov, É. M.; Danileĭko, M. V.; Derkach, V. E.; Romanenko, V. I.; Uskov, A. V.

    1988-05-01

    An investigation was made of the influence of submillimeter radiation emitted by an HCN laser operating at a frequency νl = 891 GHz on a superconducting point contact made of Nb3Sn. Three steps of the electric current were recorded. The experimental results indicated that such a contact could be used for frequency multiplication up to 3 THz.

  20. Apparent increase in the thickness of superconducting particles at low temperatures measured by electron holography

    International Nuclear Information System (INIS)

    Hirsch, J.E.

    2013-01-01

    We predict that superconducting particles will show an apparent increase in thickness at low temperatures when measured by electron holography. This will result not from a real thickness increase, rather from an increase in the mean inner potential sensed by the electron wave traveling through the particle, originating in expansion of the electronic wavefunction of the superconducting electrons and resulting negative charge expulsion from the interior to the surface of the superconductor, giving rise to an increase in the phase shift of the electron wavefront going through the sample relative to the wavefront going through vacuum. The temperature dependence of the observed phase shifts will yield valuable new information on the physics of the superconducting state of metals. - Highlights: • A new property of superconducting particles is predicted. • Electron holography will show an apparent increase in thickness at low temperatures. • This will result from a predicted increase in the mean inner potential. • This will originate in expulsion of electrons from the interior to the surface. • This is not predicted by the conventional BCS theory of superconductivity

  1. Superconductivity and the magnetic electron bond

    International Nuclear Information System (INIS)

    Szurek, P.

    1989-01-01

    The concept of the magnetic electron bond as the fundamental characteristic of superconductivity was first introduced during a presentation at the 1988 Winter Annual Meeting of the American Society of Mechanical Engineers. Postulates describing the role of the electron and the magnetic bond were suggested to explain in a consistent manner known observations. What may becoming clear is that a boundary set of conditions may exist above and below the transition temperature at which a material superconducts. Prior to recent history, scientists have concentrated on postulating, experimenting, and learning about the set of conditions that exist above the transition temperature, which has set the standard for todays quantum theory. Above the transition temperature they have learned about the interrelationships that exist between the electron, a small magnetic and negatively charged body, and the nucleus, a large positively charged body. By grouping common general characteristics due to the interaction between the outer shell electrons and the nucleus of different elements, three bond types have been established, covalent, ionic, and metallic. They may now be in the process of determining those conditions that lie below the transition temperature, a realm where charge effects may no longer dominate magnetic effects. This may involve updating the quantum theory to reflect those conditions that exist above and below the transition temperature. The following discussion reviews, updates, and attempts to answer some preliminary questions regarding postulates that may define some of the conditions that lie below the transition temperature. As an introduction, figure 1 depicts what may occur to loosely held outer shell electrons below the transition temperature due to increased inner electron shielding. 7 refs., 9 figs

  2. A statistical model for field emission in superconducting cavities

    International Nuclear Information System (INIS)

    Padamsee, H.; Green, K.; Jost, W.; Wright, B.

    1993-01-01

    A statistical model is used to account for several features of performance of an ensemble of superconducting cavities. The input parameters are: the number of emitters/area, a distribution function for emitter β values, a distribution function for emissive areas, and a processing threshold. The power deposited by emitters is calculated from the field emission current and electron impact energy. The model can successfully account for the fraction of tests that reach the maximum field Epk in an ensemble of cavities, for eg, 1-cells at sign 3 GHz or 5-cells at sign 1.5 GHz. The model is used to predict the level of power needed to successfully process cavities of various surface areas with high pulsed power processing (HPP)

  3. The preliminary tests of the superconducting electron cyclotron resonance ion source DECRIS-SC2.

    Science.gov (United States)

    Efremov, A; Bekhterev, V; Bogomolov, S; Drobin, V; Loginov, V; Lebedev, A; Yazvitsky, N; Yakovlev, B

    2012-02-01

    A new compact version of the "liquid He-free" superconducting ECR ion source, to be used as an injector of highly charged heavy ions for the MC-400 cyclotron, is designed and built at the Flerov Laboratory of Nuclear Reactions in collaboration with the Laboratory of High Energy Physics of JINR. The axial magnetic field of the source is created by the superconducting magnet and the NdFeB hexapole is used for the radial plasma confinement. The microwave frequency of 14 GHz is used for ECR plasma heating. During the first tests, the source shows a good enough performance for the production of medium charge state ions. In this paper, we will present the design parameters and the preliminary results with gaseous ions.

  4. Superconductivity on the border of itinerant-electron ferromagnetism in UGe2

    NARCIS (Netherlands)

    Saxena, SS; Ahilan, K; Grosche, FM; Haselwimmer, RKW; Steiner, MJ; Pugh, E; Walker, IR; Julian, [No Value; Monthoux, P; Lonzarich, GG; Huxley, A; Sheikin, [No Value; Braithwaite, D; Flouquet, J

    2000-01-01

    The absence of simple examples of superconductivity adjoining itinerant-electron ferromagnetism in the phase diagram has for many years cast doubt on the validity of conventional models of magnetically mediated superconductivity. On closer examination, however, very few systems have been studied in

  5. Performance of the 2 × 4-cell superconducting linac module for the THz-FEL facility

    Science.gov (United States)

    Kui, Zhou; Chenglong, Lao; Dai, Wu; Xing, Luo; Jianxin, Wang; Dexin, Xiao; Lijun, Shan; Tianhui, He; Xuming, Shen; Sifen, Lin; Linde, Yang; Hanbin, Wang; Xingfan, Yang; Ming, Li; Xiangyang, Lu

    2018-07-01

    A high average power THz radiation facility has been developed by the China Academy of Engineering Physics. It is the first CW THz user facility based on superconducting accelerator technology in China. The superconducting linac module, which contains two 4-cell 1.3 GHz TESLA-like superconducting radio frequency cavities, is a major component of this facility. The expected electron energy gain is 6-8 MeV with a field gradient of 8-10 MV/m. The design and fabrication of the linac module is complete. This paper discusses its assembly and results from cyromodule tests and beam commissioning. At 2 K, the cryomodule works smoothly and stably. Both cavities have achieved effective field gradients of 10 MV/m. In beam loading experiments, 8 MeV, 5 mA electron beams with an energy spread less than 0.2% have been produced, which satisfies our requirements.

  6. Design of a high speed, high resolution thermometry system for 1.5 GHz superconducting radio frequency cavities

    Science.gov (United States)

    Knobloch, Jens; Muller, Henry; Padamsee, Hasan

    1994-11-01

    Presented in this paper are the description and the test results of a new stationary thermometry system used to map the temperature of the outer surface of 1.5 GHz superconducting single-cell cavities during operation at 1.6 K. The system comprises 764 removable carbon thermometers whose signals are multiplexed and scanned by a Macintosh computer. A complete temperature map can be obtained in as little as 0.1 s at a temperature resolution of about 0.2 mK. Alternatively, it has been demonstrated that if the acquisition time is increased to several seconds, then a temperature resolution on the order of 30 μK is possible. To our knowledge, these are the fastest acquisition times so far achieved with L-band cavities at these resolutions.

  7. Test results from the LLNL 250 GHz CARM experiment

    International Nuclear Information System (INIS)

    Kulke, B.; Caplan, M.; Bubp, D.; Houck, T.; Rogers, D.; Trimble, D.; VanMaren, R.; Westenskow, G.; McDermott, D.B.; Luhmann, N.C. Jr.; Danly, B.

    1991-05-01

    We have completed the initial phase of a 250 GHz CARM experiment, driven by the 2 MeV, 1 kA, 30 ns induction linac at the LLNL ARC facility. A non-Brillouin, solid, electron beam is generated from a flux-threaded, thermionic cathode. As the beam traverses a 10 kG plateau produced by a superconducting magnet, ten percent of the beam energy is converted into rotational energy in a bifilar helix wiggler that produces a spiraling, 50 G, transverse magnetic field. The beam is then compressed to a 5 mm diameter as it drifts into a 30 kG plateau. For the present experiment, the CARM interaction region consisted of a single Bragg section resonator, followed by a smooth-bore amplifier section. Using high-pass filters, we have observed broadband output signals estimated to be at the several megawatt level in the range 140 to over 230 GHz. This is consistent with operation as a superradiant amplifier. Simultaneously, we also observed K a band power levels near 3 MW

  8. Test results from the LLNL 250 GHz CARM experiment

    International Nuclear Information System (INIS)

    Kulke, B.; Caplan, M.; Bubp, D.; Houck, T.; Rogers, D.; Trimble, D.; VanMaren, R.; Westenskow, G.; McDermott, D.B.; Luhmann, N.C. Jr.; Danly, B.

    1991-01-01

    The authors have completed the initial phase of a 250 GHz CARM experiment, driven by the 2 MeV, 1 kA, 30 ns induction linac at the LLNL ARC facility. A non-Brillouin, solid, electron beam is generated from a flux-threaded, thermionic cathode. As the beam traverses a 10 kG plateau produced by a superconducting magnet, ten percent of the beam energy is converted into rotational energy in a bifilar helix wiggler that produces a spiraling, 50 G, transverse magnetic field. The beam is then compressed to a 5 mm diameter as it drifts into a 30 kG plateau. For the present experiment, the CARM interaction region consisted of a single Bragg section resonator, followed by a smooth-bore amplifier section. Using high-pass filters, they have observed broadband output signals estimated to be at the several megawatt level in the range 140 to over 230 GHz. This is consistent with operation as a superradiant amplifier. Simultaneously, they also observed K a band power levels near 3 MW

  9. Transport and emittance study for 18 GHz superconducting-ECR ion source at RCNP.

    Science.gov (United States)

    Yorita, T; Hatanaka, K; Fukuda, M; Ueda, H; Kibayashi, M; Morinobu, S; Tamii, A

    2012-02-01

    As the upgrade program of the azimuthally varying field (AVF) cyclotron is at the cyclotron facility of the RCNP, Osaka University for the improvement of the quality, stability, and intensity of accelerated beams, an 18 GHz superconducting (SC) ECR ion source has been installed to increase beam currents and to extend the variety of ions, especially for highly charged heavy ions which can be accelerated by RCNP AVF cyclotron. The production development of several ions such as B, O, N, Ne, Ar, Ni, Kr, and Xe has been performed by Yorita et al. [Rev. Sci. Instrum. 79, 02A311(2008); 81, 02A332 (2010)]. Further studies for the beam transport have been done in order to improve the beam current more for injection of cyclotron. The effect of field leakage of AVF main coil is not negligible and additional steering magnet has been installed and then beam transmission has been improved. The emittance monitor has also been developed for the purpose of investigating correlation between emittance of beam from ECR ion sources and injection efficiency. The monitor consists with BPM82 with rotating wire for fast measurement for efficient study.

  10. ATLAS 10 GHz electron cyclotron resonance ion source upgrade project

    CERN Document Server

    Moehs, D P; Pardo, R C; Xie, D

    2000-01-01

    A major upgrade of the first ATLAS 10 GHz electron cyclotron resonance (ECR) ion source, which began operations in 1987, is in the planning and procurement phase. The new design will convert the old two-stage source into a single-stage source with an electron donor disk and high gradient magnetic field that preserves radial access for solid material feeds and pumping of the plasma chamber. The new magnetic-field profile allows for the possibility of a second ECR zone at a frequency of 14 GHz. An open hexapole configuration, using a high-energy-product Nd-Fe-B magnet material, having an inner diameter of 8.8 cm and pole gaps of 2.4 cm, has been adopted. Models indicate that the field strengths at the chamber wall, 4 cm in radius, will be 9.3 kG along the magnet poles and 5.6 kG along the pole gaps. The individual magnet bars will be housed in austenitic stainless steel, allowing the magnet housing within the aluminum plasma chamber to be used as a water channel for direct cooling of the magnets. Eight solenoid...

  11. Simulation Study of Electronic Damping of Microphonic Vibrations in Superconducting Cavities

    International Nuclear Information System (INIS)

    Alicia Hofler; Jean Delayen

    2005-01-01

    Electronic damping of microphonic vibrations in superconducting rf cavities involves an active modulation of the cavity field amplitude in order to induce ponderomotive forces that counteract the effect of ambient vibrations on the cavity frequency. In lightly beam loaded cavities, a reduction of the microphonics-induced frequency excursions leads directly to a reduction of the rf power required for phase and amplitude stabilization. Jefferson Lab is investigating such an electronic damping scheme that could be applied to the JLab 12 GeV upgrade, the RIA driver, and possibly to energy-recovering superconducting linacs. This paper discusses a model and presents simulation results for electronic damping of microphonic vibrations

  12. Full-gap superconductivity with strong electron correlations in the β-pyrochlore KOs2O6

    International Nuclear Information System (INIS)

    Kasahara, Y.; Shimono, Y.; Kato, T.; Hashimoto, K.; Shibauchi, T.; Matsuda, Y.; Yonezawa, S.; Muraoka, Y.; Yamaura, J.; Nagao, Y.; Hiroi, Z.

    2008-01-01

    To elucidate the superconducting gap structure and the influence of rattling motion on quasiparticle dynamics in the superconducting state of KOs 2 O 6 , the thermal conductivity and microwave surface impedance were measured at low temperatures. The magnetic field dependence of thermal conductivity and temperature dependence of penetration depth demonstrate full-gap superconductivity in KOs 2 O 6 . The quasiparticle scattering time is strongly enhanced in the superconducting state, indicating a strong electron inelastic scattering in the normal state. These results highlight that KOs 2 O 6 is unique among superconductors with strong electron correlations

  13. A high-average power tapered FEL amplifier at submillimeter frequencies using sheet electron beams and short-period wigglers

    International Nuclear Information System (INIS)

    Bidwell, S.W.; Radack, D.J.; Antonsen, T.M. Jr.; Booske, J.H.; Carmel, Y.; Destler, W.W.; Granatstein, V.L.; Levush, B.; Latham, P.E.; Zhang, Z.X.

    1990-01-01

    A high-average-power FEL amplifier operating at submillimeter frequencies is under development at the University of Maryland. Program goals are to produce a CW, ∼1 MW, FEL amplifier source at frequencies between 280 GHz and 560 GHz. To this end, a high-gain, high-efficiency, tapered FEL amplifier using a sheet electron beam and a short-period (superconducting) wiggler has been chosen. Development of this amplifier is progressing in three stages: (1) beam propagation through a long length (∼1 m) of short period (λ ω = 1 cm) wiggler, (2) demonstration of a proof-of-principle amplifier experiment at 98 GHz, and (3) designs of a superconducting tapered FEL amplifier meeting the ultimate design goal specifications. 17 refs., 1 fig., 1 tab

  14. Measures of maximum magnetic field in 3 GHz radio frequency superconducting cavities; Mesures du gradient accelerateur maximum dans des cavites supraconductrices en regime impulsionnel a 3 GHz

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Catherine [Paris-11 Univ., 91 Orsay (France)

    2000-01-19

    Theoretical models have shown that the maximum magnetic field in radio frequency superconducting cavities is the superheating field H{sub sh}. For niobium, H{sub sh} is 25 - 30% higher than the thermodynamical H{sub c} field: H{sub sh} within (240 - 274) mT. However, the maximum magnetic field observed so far is in the range H{sub c,max} = 152 mT for the best 1.3 GHz Nb cavities. This field is lower than the critical field H{sub c1} above which the superconductor breaks up into divided normal and superconducting zones (H{sub c1}{<=}H{sub c}). Thermal instabilities are responsible for this low value. In order to reach H{sub sh} before thermal breakdown, high power short pulses are used. The cavity needs then to be strongly over-coupled. The dedicated test bed has been built from the collaboration between Istituto Nazionale di Fisica Nucleare (INFN) - Sezione di Genoa, and the Service d'Etudes et Realisation d'Accelerateurs (SERA) of Laboratoire de l'Accelerateur Lineaire (LAL). The maximum magnetic field, H{sub rf,max}, measurements on INFN cavities give lower results than the theoretical speculations and are in agreement with previous results. The superheating magnetic fields is linked to the magnetic penetration depth. This superconducting characteristic length can be used to determine the quality of niobium through the ratio between the resistivity measured at 300 K and 4.2 K in the normal conducting state (RRR). Results have been compared to previous ones and agree pretty well. They show that the RRR measured on cavities is superficial and lower than the RRR measured on samples which concerns the volume. (author)

  15. Velocity diagnostics of electron beams within a 140 GHz gyrotron

    International Nuclear Information System (INIS)

    Polevoy, J.T.

    1989-06-01

    Experimental measurements of the average axial velocity v parallel of the electron beam within the M.I.T. 140 GHz MW gyrotron have been performed. The method involves the simultaneous measurement of the radial electrostatic potential of the electron beam V p and the beam current I b . V p is measured through the use of a capacitive probe installed near or within the gyrotron cavity, while I b is measured with a previously installed Rogowski coil. Three capacitive probes have been designed and built, and two have operated within the gyrotron. The probe results are repeatable and consistent with theory. The measurements of v parallel and calculations of the corresponding transverse to longitudinal beam velocity ratio α = v perpendicular /v parallel at the cavity have been made at various gyrotron operation parameters. These measurements will provide insight into the causes of discrepancies between theoretical rf interaction efficiencies and experimental efficiencies obtained in experiments with the M.I.T. 140 GHz MW gyrotron. The expected values of v parallel and α are determined through the use of a computer code entitled EGUN. EGUN is used to model the cathode and anode regions of the gyrotron and it computes the trajectories and velocities of the electrons within the gyrotron. There is good correlation between the expected and measured values of α at low α, with the expected values from EGUN often falling within the standard errors of the measured values. 10 refs., 29 figs., 2 tabs

  16. Apparent increase in the thickness of superconducting particles at low temperatures measured by electron holography.

    Science.gov (United States)

    Hirsch, J E

    2013-10-01

    We predict that superconducting particles will show an apparent increase in thickness at low temperatures when measured by electron holography. This will result not from a real thickness increase, rather from an increase in the mean inner potential sensed by the electron wave traveling through the particle, originating in expansion of the electronic wavefunction of the superconducting electrons and resulting negative charge expulsion from the interior to the surface of the superconductor, giving rise to an increase in the phase shift of the electron wavefront going through the sample relative to the wavefront going through vacuum. The temperature dependence of the observed phase shifts will yield valuable new information on the physics of the superconducting state of metals. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Design and simulation of a ~390 GHz seventh harmonic gyrotron using a large orbit electron beam

    Science.gov (United States)

    Li, Fengping; He, Wenlong; Cross, Adrian W.; Donaldson, Craig R.; Zhang, Liang; Phelps, Alan D. R.; Ronald, Kevin

    2010-04-01

    A ~390 GHz harmonic gyrotron based on a cusp electron gun has been designed and numerically modelled. The gyrotron operates at the seventh harmonic of the electron cyclotron frequency with the beam interacting with a TE71 waveguide mode. Theoretical as well as numerical simulation results using the 3D particle-in-cell code MAGIC are presented. The cusp gun generated an axis-encircling, annular shaped electron beam of energy 40 keV, current 1.5 A with a velocity ratio α of 3. Smooth cylindrical waveguides have been studied as the interaction cavities and their cavity Q optimized for 390 GHz operation. In the simulations ~600 W of output power at the design frequency has been demonstrated.

  18. First demonstration and performance of an injection locked continuous wave magnetron to phase control a superconducting cavity

    Directory of Open Access Journals (Sweden)

    A. C. Dexter

    2011-03-01

    Full Text Available The applications of magnetrons to high power proton and cw electron linacs are discussed. An experiment is described where a 2.45 GHz magnetron has been used to drive a single cell superconducting cavity. With the magnetron injection locked, a modest phase control accuracy of 0.95° rms has been demonstrated. Factors limiting performance have been identified.

  19. Parametric resonance in superconducting micron-scale waveguides

    International Nuclear Information System (INIS)

    Fomin, N.V.; Shalaev, O.L.; Shantsev, D.V.

    1997-01-01

    A parametric resonance due to temperature oscillations in superconducting micron-scale waveguides is considered. Oscillations of superconductor temperature are assumed to be induced by the irradiation of the waveguide with a laser beam. The laser power and parameters of the waveguide providing a possibility of parametric excitation have been calculated. It is shown that for a waveguide made of a YBa 2 Cu 3 O 7 microstrip with resonant frequency of 10 GHz a laser with a power of about 70 W/cm 2 is needed to excite oscillations. The effect can be used for the creation of high-sensitivity tuneable filters and optoelectric transformers on superconducting microstrips in the GHz range. copyright 1997 American Institute of Physics

  20. Superconductivity

    International Nuclear Information System (INIS)

    Palmieri, V.

    1990-01-01

    This paper reports on superconductivity the absence of electrical resistance has always fascinated the mind of researchers with a promise of applications unachievable by conventional technologies. Since its discovery superconductivity has been posing many questions and challenges to solid state physics, quantum mechanics, chemistry and material science. Simulations arrived to superconductivity from particle physics, astrophysic, electronics, electrical engineering and so on. In seventy-five years the original promises of superconductivity were going to become reality: a microscopical theory gave to superconductivity the cloth of the science and the level of technological advances was getting higher and higher. High field superconducting magnets became commercially available, superconducting electronic devices were invented, high field accelerating gradients were obtained in superconductive cavities and superconducting particle detectors were under study. Other improvements came in a quiet progression when a tornado brought a revolution in the field: new materials had been discovered and superconductivity, from being a phenomenon relegated to the liquid Helium temperatures, became achievable over the liquid Nitrogen temperature. All the physics and the technological implications under superconductivity have to be considered ab initio

  1. Engineering, design and prototype tests of a 3.9 GHz transverse-mode superconducting cavity for a radiofrequency-separated kaon beam

    International Nuclear Information System (INIS)

    Mark S. Champion et al.

    2001-01-01

    A research and development program is underway to construct superconducting cavities to be used for radiofrequency separation of a Kaon beam at Fermilab. The design calls for installation of twelve 13-cell cavities operating in the 3.9 GHz transverse mode with a deflection gradient of 5 MV/m. They present the mechanical, cryogenic and vacuum design of the cavity, cryomodule, rf power coupler, cold tuner and supporting hardware. The electromagnetic design of the cavity is presented in a companion paper by Wanzenberg and McAshan. The warm tuning system (for field flatness) and the vertical test system is presented along with test results of bench measurements and cold tests on single-cell and five-cell prototypes

  2. Effect of superconducting electrons on the energy splitting of tunneling systems

    International Nuclear Information System (INIS)

    Yu, C.C.; Granato, A.V.

    1985-01-01

    We consider the effect of superconducting electrons on the magnitude of the energy splitting of a tunneling system. A specific example is a hydrogen atom tunneling in niobium. We find that in this case the splitting is roughly 20% smaller in the normal state than in the superconducting state. This difference in the splitting should be observable in neutron scattering and ultrasonic measurements

  3. Electronic Systems for the Protection of Superconducting Elements in the LHC

    CERN Document Server

    Denz, R

    2006-01-01

    The Large Hadron Collider LHC, currently under construction at CERN, will incorporate an unprecedented number of superconducting magnets, busbars and current leads. As most of these elements depend on active protection in case of a transition from the superconducting to the resistive state, the so-called quench, a protection system based on modern, state of the art electronics has been developed.

  4. Digital superconductive electronics: where does it fit?

    International Nuclear Information System (INIS)

    Bedard, F.D.

    1997-01-01

    Superconductivity has been pursuing the world of digital electronics ever since 1956. During all this time its supporters have emphasized the 'obvious' advantages of 'low power' and 'unmatched device speed'. However, still no digital electronics product is in a system; silicon-based digital devices overwhelm all others in the applications world. This is true today, in spite of even faster superconductive devices and circuits as well as greatly reduced power. The major issues that must be faced and resolved in order to insert this immature technology into the market place are the following: (i) What is the problem for which we are the enabling solution? (ii) Is it important enough to warrant the 'inconvenience' of cryogenics? (iii) Can we make the cryogenics 'transparent' to the user? (iv) Can we interface to the ubiquitous room-temperature electronics? (v) At what size (chip count, MCM count) are we attractive? In spite of the customer reluctance, there are some very important niches which this technology can fit provided that we take lessons from those which support the silicon 'master'. Magnetics (data storage), GaAs (optical communications) and optics (communications, storage) are all examples. These questions of system applications, examples of small- or large-scale uses and the problems to be solved will be discussed together with competing technology alternatives. (author)

  5. Pantechnik new superconducting ion source: PantechniK Indian Superconducting Ion Source

    International Nuclear Information System (INIS)

    Gaubert, G.; Bieth, C.; Bougy, W.; Brionne, N.; Donzel, X.; Leroy, R.; Sineau, A.; Vallerand, C.; Villari, A. C. C.; Thuillier, T.

    2012-01-01

    The new ECR ion source PantechniK Indian Superconducting Ion Source (PKISIS) was recently commissioned at Pantechnik. Three superconducting coils generate the axial magnetic field configuration, while the radial magnetic field is done with the multi-layer permanent magnets. Special care was devoted to the design of the hexapolar structure, allowing a maximum magnetic field of 1.32 T at the wall of the 82 mm diameter plasma chamber. The three superconducting coils using low temperature superconducting wires are cooled by a single double stage cryo-cooler (4.2 K). Cryogen-free technology is used, providing reliability and easy maintenance at low cost. The maximum installed RF power (18.0 GHz) is of 2 kW. Metallic beams can be produced with an oven (T max = 1400 deg. C) installed with an angle of 5 deg. with respect to the source axis or a sputtering system, mounted on the axis of the source. The beam extraction system is constituted of three electrodes in accel-decel configuration. The new source of Pantechnik is conceived for reaching optimum performances at 18 GHz RF frequencies. PKISIS magnetic fields are 2.1 T axial B inj and 1.32 T radial field in the wall, variable B min with an independent coil and a large and opened extraction region. Moreover, PKISIS integrates modern design concepts, like RF direct injection (2 kW availability), dc-bias moving disk, out-of-axis oven and axial sputtering facility for metal beams. Finally, PKISIS is also conceived in order to operate in a high-voltage platform with minor power consumption.

  6. Electronic Systems for the Protection of Superconducting Elements in the LHC

    OpenAIRE

    Denz, R; Rodríguez-Mateos, F

    2004-01-01

    This paper gives an overview about the electronic systems used in the protection system for the LHC superconducting elements. The final design of a variety of electronic devices, where the production has recently been launched, is presented and discussed.

  7. Niobium superconducting cavity

    CERN Multimedia

    CERN PhotoLab

    1980-01-01

    This 5-cell superconducting cavity, made from bulk-Nb, stems from the period of general studies, not all directed towards direct use at LEP. This one is dimensioned for 1.5 GHz, the frequency used at CEBAF and also studied at Saclay (LEP RF was 352.2 MHz). See also 7908227, 8007354, 8209255, 8210054, 8312339.

  8. Observation of 45 GHz current waveforms using HTS sampler

    International Nuclear Information System (INIS)

    Maruyama, M.; Suzuki, H.; Hato, T.; Wakana, H.; Nakayama, K.; Ishimaru, Y.; Horibe, O.; Adachi, S.; Kamitani, A.; Suzuki, K.; Oshikubo, Y.; Tarutani, Y.; Tanabe, K.

    2005-01-01

    We succeeded in observing high-frequency current waveforms up to 45 GHz using a high-temperature superconducting (HTS) sampler. In this experiment, we used a sampler circuit with a superconducting pickup coil, which magnetically detects current signals flowing through a micro-strip line on a printed board placed outside the cryochamber. This type of measurement enables non-contact current-waveform observation that seems useful for analyses of EMI, defects in LSI, etc. Computer simulation reveals that one of our latest versions of HTS sampler circuits having Josephson transmission lines with optimized biases as buffers has a potential of sampling high-frequency signals with a bandwidth above 100 GHz. To realize the circuit parameters required in the simulations, we developed an HTS circuit fabrication process employing a lower ground plane structure with SrSnO 3 insulating layers. We consider that improvement of the circuit fabrication process and optimization of the pickup coil lead to much higher signal frequency observable by the sampler

  9. Velocity diagnostics of electron beams within a 140 GHz gyrotron

    Science.gov (United States)

    Polevoy, Jeffrey Todd

    1989-06-01

    Experimental measurements of the average axial velocity v(sub parallel) of the electron beam within the M.I.T. 140 GHz MW gyrotron have been performed. The method involves the simultaneous measurement of the radial electrostatic potential of the electron beam V(sub p) and the beam current I(sub b). The V(sub p) is measured through the use of a capacitive probe installed near or within the gyrotron cavity, while I(sub b) is measured with a previously installed Rogowski coil. Three capacitive probes have been designed and built, and two have operated within the gyrotron. The probe results are repeatable and consistent with theory. The measurements of v(sub parallel) and calculations of the corresponding transverse to longitudinal beam velocity ratio (alpha) = v(sub perpendicular)/v(sub parallel) at the cavity have been made at various gyrotron operation parameters. These measurements will provide insight into the causes of discrepancies between theoretical RF interaction efficiencies and experimental efficiencies obtained in experiments with the M.I.T. 140 GHz MW gyrotron. The expected values of v(sub parallel) and (alpha) are determined through the use of a computer code (EGUN) which is used to model the cathode and anode regions of the gyrotron. It also computes the trajectories and velocities of the electrons within the gyrotron. There is good correlation between the expected and measured values of (alpha) at low (alpha), with the expected values from EGUN often falling within the standard errors of the measured values.

  10. Prospect for a 60 GHz multicharged ECR ion source

    Science.gov (United States)

    Thuillier, T.; Bondoux, D.; Angot, J.; Baylac, M.; Froidefond, E.; Jacob, J.; Lamy, T.; Leduc, A.; Sole, P.; Debray, F.; Trophime, C.; Skalyga, V.; Izotov, I.

    2018-05-01

    The conceptual design of a fourth generation hybrid electron cyclotron resonance (ECR) ion source operated at 60 GHz is proposed. The axial magnetic mirror is generated with a set of three Nb3Sn coils, while the hexapole is made with room temperature (RT) copper coils. The motivations for such a hybrid development are to study further the ECR plasma physics and the intense multicharged ion beams' production and transport at a time when a superconducting (SC) hexapole appears unrealistic at 60 GHz. The RT hexapole coil designed is an evolution of the polyhelix technology developed at the French High Magnetic Field Facility. The axial magnetic field is generated by means of 3 Nb3Sn SC coils operated with a maximum current density of 350 A/mm2 and a maximum coil load line factor of 81%. The ECR plasma chamber resulting from the design features an inner radius of 94 mm and a length of 500 mm. The radial magnetic intensity is 4.1 T at the wall. Characteristic axial mirror peaks are 8 and 4.5 T, with 1.45 T minimum in between.

  11. Superconductivity in engineered two-dimensional electron gases

    Science.gov (United States)

    Chubukov, Andrey V.; Kivelson, Steven A.

    2017-11-01

    We consider Kohn-Luttinger mechanism for superconductivity in a two-dimensional electron gas confined to a narrow well between two grounded metallic planes with two occupied subbands with Fermi momenta kF L>kF S . On the basis of a perturbative analysis, we conclude that non-s -wave superconductivity emerges even when the bands are parabolic. We analyze the conditions that maximize Tc as a function of the distance to the metallic planes, the ratio kF L/kF S , and rs, which measures the strength of Coulomb correlations. The largest attraction is in p -wave and d -wave channels, of which p wave is typically the strongest. For rs=O (1 ) we estimate that the dimensionless coupling λ ≈10-1 , but it likely continues increasing for larger rs (where we lose theoretical control).

  12. Electronic Systems for the Protection of Superconducting Devices in the LHC

    CERN Document Server

    Denz, R; Mess, K H

    2008-01-01

    The Large Hadron Collider LHC [1] incorporates an unprecedented amount of superconducting components: magnets, bus-bars, and current leads. Most of them require active protection in case of a transition from the superconducting to the resistive state, the so-called quench. The electronic systems ensuring the reliable quench detection and further protection of these devices have been developed and produced over the last years and are currently being put into operation

  13. Performance in the vertical test of the 832 nine-cell 1.3 GHz cavities for the European X-ray Free Electron Laser

    Science.gov (United States)

    Reschke, D.; Gubarev, V.; Schaffran, J.; Steder, L.; Walker, N.; Wenskat, M.; Monaco, L.

    2017-04-01

    The successful production and associated vertical testing of over 800 superconducting 1.3 GHz accelerating cavities for the European X-ray Free Electron Laser (XFEL) represents the culmination of over 20 years of superconducting radio-frequency R&D. The cavity production took place at two industrial vendors under the shared responsibility of INFN Milano-LASA and DESY. Average vertical testing rates at DESY exceeded 10 cavities per week, peaking at up to 15 cavities per week. The cavities sent for cryomodule assembly at Commissariat à l'énergie atomique (CEA) Saclay achieved an average maximum gradient of approximately 33 MV /m , reducing to ˜30 MV /m when the operational specifications on quality factor (Q) and field emission were included (the so-called usable gradient). Only 16% of the cavities required an additional surface retreatment to recover their low performance (usable gradient less than 20 MV /m ). These cavities were predominantly limited by excessive field emission for which a simple high pressure water rinse (HPR) was sufficient. Approximately 16% of the cavities also received an additional HPR, e.g. due to vacuum problems before or during the tests or other reasons, but these were not directly related to gradient performance. The in-depth statistical analyses presented in this report have revealed several features of the series produced cavities.

  14. Performance and operation of advanced superconducting electron cyclotron resonance ion source SECRAL at 24 GHza)

    Science.gov (United States)

    Zhao, H. W.; Lu, W.; Zhang, X. Z.; Feng, Y. C.; Guo, J. W.; Cao, Y.; Li, J. Y.; Guo, X. H.; Sha, S.; Sun, L. T.; Xie, D. Z.

    2012-02-01

    SECRAL (superconducting ECR ion source with advanced design in Lanzhou) ion source has been in routine operation for Heavy Ion Research Facility in Lanzhou (HIRFL) accelerator complex since May 2007. To further enhance the SECRAL performance in order to satisfy the increasing demand for intensive highly charged ion beams, 3-5 kW high power 24 GHz single frequency and 24 GHz +18 GHz double frequency with an aluminum plasma chamber were tested, and some exciting results were produced with quite a few new record highly charged ion beam intensities, such as 129Xe35+ of 64 eμA, 129Xe42+ of 3 eμA, 209Bi41+ of 50 eμA, 209Bi50+ of 4.3 eμA and 209Bi54+ of 0.2 eμA. In most cases SECRAL is operated at 18 GHz to deliver highly charged heavy ion beams for the HIRFL accelerator, only for those very high charge states and very heavy ion beams such as 209Bi36+ and 209Bi41+, SECRAL has been operated at 24 GHz. The total operation beam time provided by SECRAL up to July 2011 has exceeded 7720 hours. In this paper, the latest performance, development, and operation status of SECRAL ion source are presented. The latest results and reliable long-term operation for the HIRFL accelerator have demonstrated that SECRAL performance for production of highly charged heavy ion beams remains improving at higher RF power with optimized tuning.

  15. Microwave superconductivity for particle accelerators - How the high TC superconductors measure up

    International Nuclear Information System (INIS)

    Padamsee, H.; Green, K.; Gruschus, J.

    1988-01-01

    Application of superconducting niobium cavities to accelerators for high energy physics, nuclear physics and free electron laser is growing rapidly. Cornell has a long standing effort in the development of superconducting RF accelerator technology. Nb cavities developed here from the basis for constructing the world's highest energy electron accelerator for nuclear physics. These cavities have set a standard against which the behavior of the new superconductors must be compared. From available results on dc critical fields, and the energy gap, it appears that the new materials could make a significant impact on the capabilities of future accelerators. Crucial to this assessment, however, are direct microwave loss measurements, together with measurements of the energy gap and RF frequency dependence as well as the behavior at high RF fields. Latest results on these properties for bulk sintered ceramics, thin films and single crystals at RF frequencies of 1.5 and 6 Ghz are presented

  16. Non-uniform absorption of terahertz radiation on superconducting hot electron bolometer microbridges

    International Nuclear Information System (INIS)

    Miao, W.; Zhang, W.; Zhong, J. Q.; Shi, S. C.; Delorme, Y.; Lefevre, R.; Feret, A.; Vacelet, T.

    2014-01-01

    We interpret the experimental observation of a frequency-dependence of superconducting hot electron bolometer (HEB) mixers by taking into account the non-uniform absorption of the terahertz radiation on the superconducting HEB microbridge. The radiation absorption is assumed to be proportional to the local surface resistance of the HEB microbridge, which is computed using the Mattis-Bardeen theory. With this assumption the dc and mixing characteristics of a superconducting niobium-nitride (NbN) HEB device have been modeled at frequencies below and above the equilibrium gap frequency of the NbN film

  17. ECR plasma cleaning for superconducting cavities

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, Suehiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2000-02-01

    A superconducting linac has been operating well as a heavy ion energy booster of the tandem accelerator at JAERI since 1994. Forty superconducting quarter wave resonators are used in the linac. They have high performances in average. Some of them are, however, suffering from 'Q-disease' that has been caused by hydrogen absorption into niobium during electro-polishing and the precipitation of niobium-hydrides on the surface at the vicinity of about 120K during precooling. A method of electron cyclotron resonance (ECR) plasma cleaning was applied to spare resonator in order to investigate if it is useful as a curing method of Q-disease. ECR plasma was excited in the resonator by 2.45 GHz microwave in a magnetic field of about 87.5 mT. In the first preliminary experiments, hydrogen, helium, water and oxigen gases were investigated. Every case was done at a pressure of about 3x10{sup -3} Pa. The results show that apparent recovery from Q-disease was found with helium and oxigen gases. (author)

  18. High-frequency properties of superconducting Y-Ba-Cu-oxide thin films

    International Nuclear Information System (INIS)

    Ramakrishnan, E.S.; Su, M.; Howng, W.

    1992-01-01

    rf and microwave properties of superconducting YBa 2 Cu 3 O 7-x thin films were measured and analyzed using a coplanar resonator structure. The films were developed by sequential electron-beam evaporation of the metals followed by postanneal processing. dc properties of the films were obtained from resistance-temperature and current-voltage measurements to evaluate the transition temperature and current densities. High-frequency properties were measured from 70 to 10 K and in the frequency range 1--3 GHz to determine the film characteristics as compared to pure copper films on the same substrates

  19. SQUID based cryogenic current comparator for measurements of the dark current of superconducting cavities

    Energy Technology Data Exchange (ETDEWEB)

    Vodel, W.; Nietzsche, S.; Neubert, R.; Nawrodt, R. [Friedrich Schiller Univ. Jena (Germany); Peters, A. [GSI Darmstadt (Germany); Knaack, K.; Wendt, M.; Wittenburg, K. [DESY Hamburg (Germany)

    2005-07-01

    The linear accelerator technology, based on super-conducting L-band (1.3 GHz) is currently under study at DESY (Hamburg, Germany). The two 10 km long main Linacs will be equipped with a total of nearly 20.000 cavities. The dark current due to the emission of electrons in these high gradient field super-conducting cavities is an unwanted particle source. A newly high performance SQUID based measurement system for detecting dark currents is proposed. It makes use of the Cryogenic Current Comparator principle and senses dark currents in the pA range with a measurement bandwidth of up to 70 kHz. The use of a cryogenic current comparator as dark current sensor has some important advantages: -) the measurement of the absolute value of the dark current, -) the non-dependence on the electron trajectories, -) the accurate absolute calibration with an additional wire loop, and -) extremely high resolution.

  20. Superconducting terahertz mixer using a transition-edge microbolometer

    Science.gov (United States)

    Prober, D. E.

    1993-01-01

    We present a new device concept for a mixer element for THz frequencies. This uses a superconducting transition-edge microbridge biased at the center of its superconducting transition near 4.2 K. It is fed from an antenna or waveguide structure. Power from a local oscillator and an RF signal produce a temperature and resulting resistance variation at the difference frequency. The new aspect is the use of a very short bridge in which rapid (less than 0.1 ns) outdiffusion of hot electrons occurs. This gives large intermediate frequency (IF) response. The mixer offers about 4 GHz IF bandwidth, about 80 ohm RF resistive impedance, good match to the IF amplifier, and requires only 1-20 nW of local oscillator power. The upper RF frequency is determined by antenna or waveguide properties. Predicted mixer conversion efficiency is 1/8, and predicted double-sideband receiver noise temperatures are 260 and 90 K for transition widths of 0.1 and 0.5 Tc, respectively.

  1. Ultrafast electron diffraction with megahertz MeV electron pulses from a superconducting radio-frequency photoinjector

    Energy Technology Data Exchange (ETDEWEB)

    Feng, L. W.; Lin, L.; Huang, S. L.; Quan, S. W.; Hao, J. K.; Zhu, F.; Wang, F.; Liu, K. X., E-mail: kxliu@pku.edu.cn [Institute of Heavy Ion Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871 (China); Jiang, T.; Zhu, P. F.; Fu, F.; Wang, R.; Zhao, L.; Xiang, D., E-mail: dxiang@sjtu.edu.cn [Key Laboratory for Laser Plasmas (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2015-11-30

    We report ultrafast relativistic electron diffraction operating at the megahertz repetition rate where the electron beam is produced in a superconducting radio-frequency (rf) photoinjector. We show that the beam quality is sufficiently high to provide clear diffraction patterns from gold and aluminium samples. With the number of electrons, several orders of magnitude higher than that from a normal conducting photocathode rf gun, such high repetition rate ultrafast MeV electron diffraction may open up many new opportunities in ultrafast science.

  2. Design and simulation of a {approx}390 GHz seventh harmonic gyrotron using a large orbit electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Li Fengping; He Wenlong; Cross, Adrian W; Donaldson, Craig R; Zhang Liang; Phelps, Alan D R; Ronald, Kevin, E-mail: Fengping.li@strath.ac.u [SUPA, Department of Physics, University of Strathclyde, Glasgow, G4 0NG (United Kingdom)

    2010-04-21

    A {approx}390 GHz harmonic gyrotron based on a cusp electron gun has been designed and numerically modelled. The gyrotron operates at the seventh harmonic of the electron cyclotron frequency with the beam interacting with a TE{sub 71} waveguide mode. Theoretical as well as numerical simulation results using the 3D particle-in-cell code MAGIC are presented. The cusp gun generated an axis-encircling, annular shaped electron beam of energy 40 keV, current 1.5 A with a velocity ratio {alpha} of 3. Smooth cylindrical waveguides have been studied as the interaction cavities and their cavity Q optimized for 390 GHz operation. In the simulations {approx}600 W of output power at the design frequency has been demonstrated.

  3. 280 GHz Gyro-BWO design study: Final report

    International Nuclear Information System (INIS)

    1988-07-01

    This report summarizes the results of a design study of a 280 GHz Gyro-BWO tunable source. The purpose of this study is to identify and propose viable design alternatives for any significant technological risk associated with building an operational BWO system. The tunable Gyro-BWO system will have three major components: a Gyro-BWO microwave tube, a superconducting magnet, and a power supply/modulator. The design tasks for this study in order of decreasing importance are: design and specification of the superconducting magnet; preliminary design and layout of a Gyro-BWO microwave tube; and specification for the power supply/modulator. 2 refs., 4 figs

  4. Performance in the vertical test of the 832 nine-cell 1.3 GHz cavities for the European X-ray Free Electron Laser

    Directory of Open Access Journals (Sweden)

    D. Reschke

    2017-04-01

    Full Text Available The successful production and associated vertical testing of over 800 superconducting 1.3 GHz accelerating cavities for the European X-ray Free Electron Laser (XFEL represents the culmination of over 20 years of superconducting radio-frequency R&D. The cavity production took place at two industrial vendors under the shared responsibility of INFN Milano–LASA and DESY. Average vertical testing rates at DESY exceeded 10 cavities per week, peaking at up to 15 cavities per week. The cavities sent for cryomodule assembly at Commissariat à l’énergie atomique (CEA Saclay achieved an average maximum gradient of approximately 33  MV/m, reducing to ∼30  MV/m when the operational specifications on quality factor (Q and field emission were included (the so-called usable gradient. Only 16% of the cavities required an additional surface retreatment to recover their low performance (usable gradient less than 20  MV/m. These cavities were predominantly limited by excessive field emission for which a simple high pressure water rinse (HPR was sufficient. Approximately 16% of the cavities also received an additional HPR, e.g. due to vacuum problems before or during the tests or other reasons, but these were not directly related to gradient performance. The in-depth statistical analyses presented in this report have revealed several features of the series produced cavities.

  5. Superconducting cavities developments efforts at RRCAT

    International Nuclear Information System (INIS)

    Puntambekar, A.; Bagre, M.; Dwivedi, J.; Shrivastava, P.; Mundra, G.; Joshi, S.C.; Potukuchi, P.N.

    2011-01-01

    Superconducting RE cavities are the work-horse for many existing and proposed linear accelerators. Raja Ramanna Centre for Advanced Technology (RRCAT) has initiated a comprehensive R and D program for development of Superconducting RF cavities suitable for high energy accelerator application like SNS and ADS. For the initial phase of technology demonstration several prototype 1.3 GHz single cell-cavities have been developed. The work began with development of prototype single cell cavities in aluminum and copper. This helped in development of cavity manufacturing process, proving various tooling and learning on various mechanical and RF qualification processes. The parts manufacturing was done at RRCAT and Electron beam welding was carried out at Indian industry. These cavities further served during commissioning trials for various cavity processing infrastructure being developed at RRCAT and are also a potential candidate for Niobium thin film deposition R and D. Based on the above experience, few single cell cavities were developed in fine grain niobium. The critical technology of forming and machining of niobium and the intermediate RF qualification were developed at RRCAT. The EB welding of bulk niobium cavities was carried out in collaboration with IUAC, New Delhi at their facility. As a next logical step efforts are now on for development of multicell cavities. The prototype dumbbells and end group made of aluminium, comprising of RF and HOM couplers ports have also been developed, with their LB welding done at Indian industry. In this paper we shall present the development efforts towards manufacturing of 1.3 GHz single cell cavities and their initial processing and qualification. (author)

  6. RECENT DEVELOPMENTS ON THE 110 GHz ELECTRON CYCLOTRON INSTATLLATION ON THE DIII-D TOKAMAK

    International Nuclear Information System (INIS)

    PONCE, D.; CALLIS, R.W.; CARY, W.P.; FERRON, J.R.; GREEN, M.; GRUNLOH, H.J.; GORELOV, Y.; LOHR, J.; ELLIS, R.A.

    2002-01-01

    OAK A271 RECENT DEVELOPMENTS ON THE 110 GHZ ELECTRON CYCLOTRON INSTALLATION ON THE DIII-D TOKAMAK. Significant improvements are being implement4ed to the capability of the 110 GHz electron cyclotron system on the DIII-D tokamak. Chief among these is the addition of the fifth and sixth 1 MW class gyrotrons, increasing the power available for auxiliary heating and current drive by nearly 60%. These tubes use artificially grown diamond rf output windows to obtain high power with long pulse capability. The beams from these tubes are nearly Gaussian, facilitating coupling to the waveguide. A new fully articulating dual launcher capable of high speed spatial scanning has been designed and tested. The launcher has two axis independent steering for each waveguide. the mirrors can be rotated at up to 100 o /s. A new feedback system linking the DIII-D Plasma Control System (PCS) with the gyrotron beam voltage waveform generators permits real-time feedback control of some plasma properties such as electron temperature. The PCS can use a variety of plasma monitors to generate its control signal, including electron cyclotron emission and Mirnov probes. Electron cyclotron heating and electron cyclotron current drive (ECH and ECCD) were used during this year's DIII-D experimental campaign to control electron temperature, density, and q profiles, induce an ELM-free H-mode, and suppress the m=2/n=1 neoclassical tearing mode. The new capabilities have expanded the role of EC systems in tokamak plasma control

  7. Pierce-Wiggler electron beam system for 250 GHz GYRO-BWO: Final report

    International Nuclear Information System (INIS)

    Pirkle, D.R.; Alford, C.W.; Anderson, M.H.; Garcia, R.F.; Legarra, J.R.; Nordquist, A.L.

    1989-01-01

    This final report summarizes the design and performance of the VUW-8028 Pierce-Wiggler electron beam systems, which can be used to power high frequency gyro-BWO's. The operator's manual for this gyro-BWO beamstick is included as appendix A. Researchers at Lawrence Livermore National Laboratory (LLNL) are developing a gyro-BWO with a center frequency of 250 GHz, 6% bandwidth, and 10 kV peak output power. The gyro-BWO will be used to drive a free electron laser amplifier at LLNL. The electron beam requirements of the gyro-BWO application are: Small beam size, .100 inch at 2500 gauss axial magnetic field; a large fraction of the electron energy in rotational velocity; ability to vary the electrons' axial velocity easily, for electronic tuning; and low velocity spread i.e. little variation in the axial velocities of the electrons in the interaction region. 1 ref., 13 figs

  8. Superconductive properties, interaction mechanisms, materials preparation and electronic transport in high-Tc superconductors

    International Nuclear Information System (INIS)

    Saemann-Ischenko, G.

    1993-01-01

    The final report is composed of eight chapters dealing with the following aspects: I. Mixed state, critical currents, anisotropy, intrinsic and extrinsic pinning. II. Microwave properties and far-infrared reflectivity of epitactic HTSC films. III. Hall effect at the states of normal conductivity and superconductivity, magnetoresistance, superconducting fluctuation phenomena. IV. Effects of the nuclear and the electronic energy loss. V. Scanning electron microscopy. VI. p- and n-doped high-Tc superconductors: Charge symmetry and magnetism. VII. Preparation methods. VIII. Electrochemical examinations of HTSC films and HTSC monocrystals at low temperatures. (orig./MM) [de

  9. Developmental activities of the 18 GHz high temperature superconducting ECR ion source, PKDELIS, for the high current injector at IUAC

    International Nuclear Information System (INIS)

    Rodrigues, G.; Lakshmy, P.S.; Mathur, Y.; Ahuja, R.; Dutt, R.N.; Rao, U.K.; Mandal, A.; Kanjilal, D.; Roy, A.

    2011-01-01

    Various developmental activities of the 18 GHz High Temperature Superconducting ECR Ion Source, PKDELIS have been carried out as a part of the High Current Injector programme. Emittance measurements using a simple technique has given important inputs for the design of downstream accelerators like RFQ, DTL and low beta cavities. The techniques allows for emittance matching by varying the emittance parameters to match with the acceptance of the accelerators. X-ray Beamstrahlung measurements from ECR plasma has shown that it is a diagnostic tool to optimize the production of highly charged ions. The ion optics through the low energy beam transport section has been benchmarked with various codes and given a handle to optimize the transmission. New techniques to improve the extraction efficiency of highly charged ions has been developed. (author)

  10. Electron temperature profiles in axial field 2.45 GHz ECR ion source with a ceramic chamber

    Science.gov (United States)

    Abe, K.; Tamura, R.; Kasuya, T.; Wada, M.

    2017-08-01

    An array of electrostatic probes was arranged on the plasma electrode of a 2.45 GHz microwave driven axial magnetic filter field type negative hydrogen (H-) ion source to clarify the spatial plasma distribution near the electrode. The measured spatial distribution of electron temperature indicated the lower temperature near the extraction hole of the plasma electrode corresponding to the effectiveness of the axial magnetic filter field geometry. When the ratio of electron saturation current to the ion saturation current was plotted as a function of position, the obtained distribution showed a higher ratio near the hydrogen gas inlet through which ground state hydrogen molecules are injected into the source. Though the efficiency in producing H- ions is smaller for a 2.45 GHz source than a source operated at 14 GHz, it gives more volume to measure spatial distributions of various plasma parameters to understand fundamental processes that are influential on H- production in this type of ion sources.

  11. Superconductivity

    International Nuclear Information System (INIS)

    Onnes, H.K.

    1988-01-01

    The author traces the development of superconductivity from 1911 to 1986. Some of the areas he explores are the Meissner Effect, theoretical developments, experimental developments, engineering achievements, research in superconducting magnets, and research in superconducting electronics. The article also mentions applications shown to be technically feasible, but not yet commercialized. High-temperature superconductivity may provide enough leverage to bring these applications to the marketplace

  12. A 3D printed superconducting aluminium microwave cavity

    Energy Technology Data Exchange (ETDEWEB)

    Creedon, Daniel L. [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); Goryachev, Maxim; Kostylev, Nikita; Tobar, Michael E., E-mail: michael.tobar@uwa.edu.au [ARC Centre of Excellence for Engineered Quantum Systems, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009 (Australia); Sercombe, Timothy B. [School of Mechanical and Chemical Engineering, University of Western Australia, 35 Stirling Highway, Crawley 6009 (Australia)

    2016-07-18

    3D printing of plastics, ceramics, and metals has existed for several decades and has revolutionized many areas of manufacturing and science. Printing of metals, in particular, has found a number of applications in fields as diverse as customized medical implants, jet engine bearings, and rapid prototyping in the automotive industry. Although many techniques are used for 3D printing metals, they commonly rely on computer controlled melting or sintering of a metal alloy powder using a laser or electron beam. The mechanical properties of parts produced in such a way have been well studied, but little attention has been paid to their electrical properties. Here we show that a microwave cavity (resonant frequencies 9.9 and 11.2 GHz) 3D printed using an Al-12Si alloy exhibits superconductivity when cooled below the critical temperature of aluminium (1.2 K), with a performance comparable with the common 6061 alloy of aluminium. Superconducting cavities find application in numerous areas of physics, from particle accelerators to cavity quantum electrodynamics experiments. The result is achieved even with a very large concentration of non-superconducting silicon in the alloy of 12.18%, compared with Al-6061, which has between 0.4% and 0.8%. Our results may pave the way for the possibility of 3D printing superconducting cavity configurations that are otherwise impossible to machine.

  13. A 3D printed superconducting aluminium microwave cavity

    International Nuclear Information System (INIS)

    Creedon, Daniel L.; Goryachev, Maxim; Kostylev, Nikita; Tobar, Michael E.; Sercombe, Timothy B.

    2016-01-01

    3D printing of plastics, ceramics, and metals has existed for several decades and has revolutionized many areas of manufacturing and science. Printing of metals, in particular, has found a number of applications in fields as diverse as customized medical implants, jet engine bearings, and rapid prototyping in the automotive industry. Although many techniques are used for 3D printing metals, they commonly rely on computer controlled melting or sintering of a metal alloy powder using a laser or electron beam. The mechanical properties of parts produced in such a way have been well studied, but little attention has been paid to their electrical properties. Here we show that a microwave cavity (resonant frequencies 9.9 and 11.2 GHz) 3D printed using an Al-12Si alloy exhibits superconductivity when cooled below the critical temperature of aluminium (1.2 K), with a performance comparable with the common 6061 alloy of aluminium. Superconducting cavities find application in numerous areas of physics, from particle accelerators to cavity quantum electrodynamics experiments. The result is achieved even with a very large concentration of non-superconducting silicon in the alloy of 12.18%, compared with Al-6061, which has between 0.4% and 0.8%. Our results may pave the way for the possibility of 3D printing superconducting cavity configurations that are otherwise impossible to machine.

  14. A 3D printed superconducting aluminium microwave cavity

    Science.gov (United States)

    Creedon, Daniel L.; Goryachev, Maxim; Kostylev, Nikita; Sercombe, Timothy B.; Tobar, Michael E.

    2016-07-01

    3D printing of plastics, ceramics, and metals has existed for several decades and has revolutionized many areas of manufacturing and science. Printing of metals, in particular, has found a number of applications in fields as diverse as customized medical implants, jet engine bearings, and rapid prototyping in the automotive industry. Although many techniques are used for 3D printing metals, they commonly rely on computer controlled melting or sintering of a metal alloy powder using a laser or electron beam. The mechanical properties of parts produced in such a way have been well studied, but little attention has been paid to their electrical properties. Here we show that a microwave cavity (resonant frequencies 9.9 and 11.2 GHz) 3D printed using an Al-12Si alloy exhibits superconductivity when cooled below the critical temperature of aluminium (1.2 K), with a performance comparable with the common 6061 alloy of aluminium. Superconducting cavities find application in numerous areas of physics, from particle accelerators to cavity quantum electrodynamics experiments. The result is achieved even with a very large concentration of non-superconducting silicon in the alloy of 12.18%, compared with Al-6061, which has between 0.4% and 0.8%. Our results may pave the way for the possibility of 3D printing superconducting cavity configurations that are otherwise impossible to machine.

  15. Advances in superconducting materials and electronics technologies

    International Nuclear Information System (INIS)

    Palmer, D.N.

    1990-01-01

    Technological barriers blocking the early implementation of ceramic oxide high critical temperature [Tc] and LHe Nb based superconductors are slowly being dismantled. Spearheading these advances are mechanical engineers with diverse specialties and creative interests. As the technology expands, most engineers have recognized the importance of inter-disciplinary cooperation. Cooperation between mechanical engineers and material and system engineers is of particular importance. Recently, several problems previously though to be insurmountable, has been successfully resolved. These accomplishment were aided by interaction with other scientists and practitioners, working in the superconductor research and industrial communities, struggling with similar systems and materials problems. Papers published here and presented at the 1990 ASME Winter Annual Meeting held in Dallas, Texas 25-30 November 1990 can be used as a bellwether to gauge the progress in the development of both ceramic oxide and low temperature Nb superconducting device and system technologies. Topics are focused into two areas: mechanical behavior of high temperature superconductors and thermal and mechanical problems in superconducting electronics

  16. Quantitative analysis of Josephson-quasiparticle current in superconducting single-electron transistors

    International Nuclear Information System (INIS)

    Nakamura, Y.; Chen, C.D.; Tsai, J.S.

    1996-01-01

    We have investigated Josephson-quasiparticle (JQP) current in superconducting single-electron transistors in which charging energy E C was larger than superconducting gap energy Δ and junction resistances were much larger than R Q ≡h/4e 2 . We found that not only the shapes of the JQP peaks but also their absolute height were reproduced quantitatively with a theory by Averin and Aleshkin using a Josephson energy of Ambegaokar-Baratoff close-quote s value. copyright 1996 The American Physical Society

  17. Electronic and magnetic interactions in high temperature superconducting and high coercivity materials. Final performance report

    International Nuclear Information System (INIS)

    Cooper, B.R.

    1997-01-01

    The issue addressed in the research was how to understand what controls the competition between two types of phase transition (ordering) which may be present in a hybridizing correlated-electron system containing two transition-shell atomic species; and how the variation of behavior observed can be used to understand the mechanisms giving the observed ordered state. This is significant for understanding mechanisms of high-temperature superconductivity and other states of highly correlated electron systems. Thus the research pertains to magnetic effects as related to interactions giving high temperature superconductivity; where the working hypothesis is that the essential feature governing the magnetic and superconducting behavior of copper-oxide-type systems is a cooperative valence fluctuation mechanism involving the copper ions, as mediated through hybridization effects dominated by the oxygen p electrons. (Substitution of praseodymium at the rare earth sites in the 1·2·3 material provides an interesting illustration of this mechanism since experimentally such substitution strongly suppresses and destroys the superconductivity; and, at 100% Pr, gives Pr f-electron magnetic ordering at a temperature above 16K). The research was theoretical and computational and involved use of techniques aimed at correlated-electron systems that can be described within the confines of model hamiltonians such as the Anderson lattice hamiltonian. Specific techniques used included slave boson methodology used to treat modification of electronic structure and the Mori projection operator (memory function) method used to treat magnetic response (dynamic susceptibility)

  18. The Superconducting TESLA Cavities

    CERN Document Server

    Aune, B.; Bloess, D.; Bonin, B.; Bosotti, A.; Champion, M.; Crawford, C.; Deppe, G.; Dwersteg, B.; Edwards, D.A.; Edwards, H.T.; Ferrario, M.; Fouaidy, M.; Gall, P-D.; Gamp, A.; Gössel, A.; Graber, J.; Hubert, D.; Hüning, M.; Juillard, M.; Junquera, T.; Kaiser, H.; Kreps, G.; Kuchnir, M.; Lange, R.; Leenen, M.; Liepe, M.; Lilje, L.; Matheisen, A.; Möller, W-D.; Mosnier, A.; Padamsee, H.; Pagani, C.; Pekeler, M.; Peters, H-B.; Peters, O.; Proch, D.; Rehlich, K.; Reschke, D.; Safa, H.; Schilcher, T.; Schmüser, P.; Sekutowicz, J.; Simrock, S.; Singer, W.; Tigner, M.; Trines, D.; Twarowski, K.; Weichert, G.; Weisend, J.; Wojtkiewicz, J.; Wolff, S.; Zapfe, K.

    2000-01-01

    The conceptional design of the proposed linear electron-positron colliderTESLA is based on 9-cell 1.3 GHz superconducting niobium cavities with anaccelerating gradient of Eacc >= 25 MV/m at a quality factor Q0 > 5E+9. Thedesign goal for the cavities of the TESLA Test Facility (TTF) linac was set tothe more moderate value of Eacc >= 15 MV/m. In a first series of 27industrially produced TTF cavities the average gradient at Q0 = 5E+9 wasmeasured to be 20.1 +- 6.2 MV/m, excluding a few cavities suffering fromserious fabrication or material defects. In the second production of 24 TTFcavities additional quality control measures were introduced, in particular aneddy-current scan to eliminate niobium sheets with foreign material inclusionsand stringent prescriptions for carrying out the electron-beam welds. Theaverage gradient of these cavities at Q0 = 5E+9 amounts to 25.0 +- 3.2 MV/mwith the exception of one cavity suffering from a weld defect. Hence only amoderate improvement in production and preparation technique...

  19. 154 GHz collective Thomson scattering in LHD

    Science.gov (United States)

    Tanaka, K.; Nishiura, M.; Kubo, S.; Shimozuma, T.; Saito, T.; Moseev, D.; Abramovic, I.

    2018-01-01

    Collective Thomson scattering (CTS) was developed by using a 154 GHz gyrotron, and the first data has been obtained. Already, 77 GHz CTS has worked successfully. However, in order to access higher density region, 154 GHz option enhances the usability that reduces the refraction effect, which deteriorates in the local measurements. The system in the down converted frequency was almost identical to the system for 77 GHz. Probing beam, a notch filter, a mixer, and a local oscillator in the receiver system for 77 GHz option were replaced to those for the 154 GHz option. 154 GHz gyrotron was originally prepared for the second harmonic electron cyclotron heating (ECRH) at 2.75 T. However, scattering signal was masked by the second harmonic electron cyclotron emission (ECE) at 2.75 T. Therefore, 154 GHz CTS was operated at 1.375 T with fourth harmonic ECE, and an acceptable signal to noise ratio was obtained. There is a signature of fast ion components with neutral beam (NB) injection. In addition, the CTS spectrum became broader in hydrogen discharge than in deuterium discharge, as the theoretical CTS spectrum expects. This observation indicates a possibility to identify ion species ratio by the 154 GHz CTS diagnostic.

  20. A study of beam position diagnostics using beam-excited dipole modes in third harmonic superconducting accelerating cavities at a free-electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Pei [School of Physics and Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom); Deutsches Elektronen-Synchrotron (DESY), 22607 Hamburg (Germany); Baboi, Nicoleta [Deutsches Elektronen-Synchrotron (DESY), 22607 Hamburg (Germany); Jones, Roger M.; Shinton, Ian R. R. [School of Physics and Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom); Cockcroft Institute, Cheshire WA4 4AD (United Kingdom); Flisgen, Thomas; Glock, Hans-Walter [Institut fuer Allgemeine Elektrotechnik, Universitaet Rostock, 18051 Rostock (Germany)

    2012-08-15

    We investigate the feasibility of beam position diagnostics using higher order mode (HOM) signals excited by an electron beam in the third harmonic 3.9 GHz superconducting accelerating cavities at FLASH. After careful theoretical and experimental assessment of the HOM spectrum, three modal choices have been narrowed down to fulfill different diagnostics requirements. These are localized dipole beam-pipe modes, trapped cavity modes from the fifth dipole band, and propagating modes from the first two dipole bands. These modes are treated with various data analysis techniques: modal identification, direct linear regression (DLR), and singular value decomposition (SVD). Promising options for beam diagnostics are found from all three modal choices. This constitutes the first prediction, subsequently confirmed by experiments, of trapped HOMs in third harmonic cavities, and also the first direct comparison of DLR and SVD in the analysis of HOM-based beam diagnostics.

  1. A study of beam position diagnostics using beam-excited dipole modes in third harmonic superconducting accelerating cavities at a free-electron laser

    CERN Document Server

    Zhang, P; Jones, R M; Shinton, I R R; Flisgen, T; Glock, H W

    2012-01-01

    We investigate the feasibility of beam position diagnostics using Higher Order Mode (HOM) signals excited by an electron beam in the third harmonic 3.9 GHz superconducting accelerating cavities at FLASH. After careful theoretical and experimental assessment of the HOM spectrum, three modal choices have been narrowed down to fulfill different diagnostics requirements. These are localized dipole beam-pipe modes, trapped cavity modes from the fifth dipole band and propagating modes from the first two dipole bands. These modes are treated with various data analysis techniques: modal identification, direct linear regression (DLR) and singular value decomposition (SVD). Promising options for beam diagnostics are found from all three modal choices. This constitutes the first prediction, subsequently confirmed by experiments, of trapped HOMs in third harmonic cavities, and also the first direct comparison of DLR and SVD in the analysis of HOM-based beam diagnostics.

  2. Engineering Design and Fabrication of an Ampere-Class Superconducting Photocathode Electron Gun

    International Nuclear Information System (INIS)

    Ben-Zvi, I.

    2008-01-01

    Over the past three years, Advanced Energy Systems and Brookhaven National Laboratory (BNL) have been collaborating on the design of an Ampere- class superconducting photocathode electron gun. BNL performed the physics design of the overall system and RF cavity under prior programs. Advanced Energy Systems (AES) is currently responsible for the engineering design and fabrication of the electron gun under contract to BNL. We will report on the engineering design and fabrication status of the superconducting photocathode electron gun. The overall configuration of the cryomodule will be reviewed. The layout of the hermitic string, space frame, shielding package, and cold mass will be discussed. The engineering design of the gun cavity and removable cathode will be presented in detail and areas of technical risk will be highlighted. Finally, the fabrication sequence and fabrication status of the gun cavity will be discussed

  3. Applied superconductivity

    CERN Document Server

    Newhouse, Vernon L

    1975-01-01

    Applied Superconductivity, Volume II, is part of a two-volume series on applied superconductivity. The first volume dealt with electronic applications and radiation detection, and contains a chapter on liquid helium refrigeration. The present volume discusses magnets, electromechanical applications, accelerators, and microwave and rf devices. The book opens with a chapter on high-field superconducting magnets, covering applications and magnet design. Subsequent chapters discuss superconductive machinery such as superconductive bearings and motors; rf superconducting devices; and future prospec

  4. Electronics and instrumentation for the SST-1 superconducting magnet system

    International Nuclear Information System (INIS)

    Khristi, Yohan; Pradhan, Subrata; Varmora, Pankaj; Banaudha, Moni; Praghi, Bhadresh R.; Prasad, Upendra

    2015-01-01

    Steady State Superconducting Tokamak-1 (SST-1) at Institute for Plasma Research (IPR), India is now in operation phase. The SST-1 magnet system consists of sixteen superconducting (SC), D-shaped Toroidal Field (TF) coils and nine superconducting Poloidal Field (PF) coils together with a pair of resistive PF coils, inside the vacuum vessel of SST-1. The magnets were cooled down to 4.5 K using either supercritical or two-phase helium, after which they were charged up to 10 kA of transport current. Precise quench detection system, cryogenic temperature, magnetic field, strain, displacement, flow and pressure measurements in the Superconducting (SC) magnet were mandatory. The Quench detection electronics required to protect the SC magnets from the magnet Quench therefore system must be reliable and prompt to detect the quench from the harsh tokamak environment and high magnetic field interference. A ∼200 channels of the quench detection system for the TF magnet are working satisfactorily with its design criteria. Over ∼150 channels Temperature measurement system was implemented for the several locations in the magnet and hydraulic circuits with required accuracy of 0.1K at bellow 30K cryogenic temperature. Whereas the field, strain and displacement measurements were carried out at few predefined locations on the magnet. More than 55 channels of Flow and pressure measurements are carried out to know the cooling condition and the mass flow of the liquid helium (LHe) coolant for the SC Magnet system. This report identifies the different in-house modular signal conditioning electronics and instrumentation systems, calibration at different levels and the outcomes for the SST-1 TF magnet system. (author)

  5. Advancement of highly charged ion beam production by superconducting ECR ion source SECRAL (invited)

    International Nuclear Information System (INIS)

    Sun, L.; Lu, W.; Zhang, W. H.; Feng, Y. C.; Qian, C.; Ma, H. Y.; Zhang, X. Z.; Zhao, H. W.; Guo, J. W.; Yang, Y.; Fang, X.

    2016-01-01

    At Institute of Modern Physics (IMP), Chinese Academy of Sciences (CAS), the superconducting Electron Cyclotron Resonance (ECR) ion source SECRAL (Superconducting ECR ion source with Advanced design in Lanzhou) has been put into operation for about 10 years now. It has been the main working horse to deliver intense highly charged heavy ion beams for the accelerators. Since its first plasma at 18 GHz, R&D work towards more intense highly charged ion beam production as well as the beam quality investigation has never been stopped. When SECRAL was upgraded to its typical operation frequency 24 GHz, it had already showed its promising capacity of very intense highly charged ion beam production. And it has also provided the strong experimental support for the so called scaling laws of microwave frequency effect. However, compared to the microwave power heating efficiency at 18 GHz, 24 GHz microwave heating does not show the ω 2 scale at the same power level, which indicates that microwave power coupling at gyrotron frequency needs better understanding. In this paper, after a review of the operation status of SECRAL with regard to the beam availability and stability, the recent study of the extracted ion beam transverse coupling issues will be discussed, and the test results of the both TE 01 and HE 11 modes will be presented. A general comparison of the performance working with the two injection modes will be given, and a preliminary analysis will be introduced. The latest results of the production of very intense highly charged ion beams, such as 1.42 emA Ar 12+ , 0.92 emA Xe 27+ , and so on, will be presented

  6. Superconducting magnet for a Ku-band maser.

    Science.gov (United States)

    Berwin, R.; Wiebe, E.; Dachel, P.

    1972-01-01

    A superconducting magnet to provide a uniform magnetic field of up to 8000 G in a 1.14-cm gap for the 15.3-GHz (Ku-band) traveling wave maser is described. The magnet operates in a persistent mode in the vacuum environment of a closed-cycle helium refrigerator (4.5 K). The features of a superconducting switch, which has both leads connected to 4.5 K heat stations and thereby does not receive heat generated by the magnet charging leads, are described.

  7. Electron Source based on Superconducting RF

    Science.gov (United States)

    Xin, Tianmu

    High-bunch-charge photoemission electron-sources operating in a Continuous Wave (CW) mode can provide high peak current as well as the high average current which are required for many advanced applications of accelerators facilities, for example, electron coolers for hadron beams, electron-ion colliders, and Free-Electron Lasers (FELs). Superconducting Radio Frequency (SRF) has many advantages over other electron-injector technologies, especially when it is working in CW mode as it offers higher repetition rate. An 112 MHz SRF electron photo-injector (gun) was developed at Brookhaven National Laboratory (BNL) to produce high-brightness and high-bunch-charge bunches for electron cooling experiments. The gun utilizes a Quarter-Wave Resonator (QWR) geometry for a compact structure and improved electron beam dynamics. The detailed RF design of the cavity, fundamental coupler and cathode stalk are presented in this work. A GPU accelerated code was written to improve the speed of simulation of multipacting, an important hurdle the SRF structure has to overcome in various locations. The injector utilizes high Quantum Efficiency (QE) multi-alkali photocathodes (K2CsSb) for generating electrons. The cathode fabrication system and procedure are also included in the thesis. Beam dynamic simulation of the injector was done with the code ASTRA. To find the optimized parameters of the cavities and beam optics, the author wrote a genetic algorithm Python script to search for the best solution in this high-dimensional parameter space. The gun was successfully commissioned and produced world record bunch charge and average current in an SRF photo-injector.

  8. Superconducting Electronic Film Structures

    Science.gov (United States)

    1991-02-14

    Segmuller, A., Cooper, E.I., Chisholm, M.F., Gupta, A. Shinde, S., and Laibowitz, R.B. Lanthanum gallate substrates for epitaxial high-T superconducting thin...M. F. Chisholm, A. Gupta, S. Shinde, and R. B. Laibowitz, " Lanthanum Gallate Substrates for Epitaxial High-T c Superconducting Thin Films," Appl...G. Forrester and J. Talvacchio, " Lanthanum Copper Oxide Buffer Layers for Growth of High-T c Superconductor Films," Disclosure No. RDS 90-065, filed

  9. Infrared hot-electron NbN superconducting photodetectors for imaging applications

    International Nuclear Information System (INIS)

    Il'in, K.S.; Gol'tsman, G.N.; Verevkin, A.A.; Sobolewski, Roman

    1999-01-01

    We report an effective quantum efficiency of 340, responsivity >200 A W -1 (>10 4 V W -1 ) and response time of 27±5 ps at temperatures close to the superconducting transition for NbN superconducting hot-electron photodetectors (HEPs) in the near-infrared and optical ranges. Our studies were performed on a few nm thick NbN films deposited on sapphire substrates and patterned into μm-size multibridge detector structures, incorporated into a coplanar transmission line. The time-resolved photoresponse was studied by means of subpicosecond electro-optic sampling with 100 fs wide laser pulses. The quantum efficiency and responsivity studies of our photodetectors were conducted using an amplitude-modulated infrared beam, fibre-optically coupled to the device. The observed picosecond response time and the very high efficiency and sensitivity of the NbN HEPs make them an excellent choice for infrared imaging photodetectors and input optical-to-electrical transducers for superconducting digital circuits. (author)

  10. Methods of Phase and Power Control in Magnetron Transmitters for Superconducting Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Kazadevich, G. [MUONS Inc., Batavia; Johnson, R. [MUONS Inc., Batavia; Neubauer, M. [MUONS Inc., Batavia; Lebedev, V. [Fermilab; Schappert, W. [Fermilab; Yakovlev, V. [Fermilab

    2017-05-01

    Various methods of phase and power control in magnetron RF sources of superconducting accelerators intended for ADS-class projects were recently developed and studied with conventional 2.45 GHz, 1 kW, CW magnetrons operating in pulsed and CW regimes. Magnetron transmitters excited by a resonant (injection-locking) phasemodulated signal can provide phase and power control with the rates required for precise stabilization of phase and amplitude of the accelerating field in Superconducting RF (SRF) cavities of the intensity-frontier accelerators. An innovative technique that can significantly increase the magnetron transmitter efficiency at the widerange power control required for superconducting accelerators was developed and verified with the 2.45 GHz magnetrons operating in CW and pulsed regimes. High efficiency magnetron transmitters of this type can significantly reduce the capital and operation costs of the ADSclass accelerator projects.

  11. Low emittance electron beam formation with a 17 GHz RF gun

    Directory of Open Access Journals (Sweden)

    W. J. Brown

    2001-08-01

    Full Text Available We report on electron beam quality measurement results from the Massachusetts Institute of Technology 17 GHz RF gun experiment. The 1.5 cell RF gun uses a solenoid for emittance compensation. It has produced bunch charges up to 0.1 nC with beam energies up to 1 MeV. The normalized rms emittance of the beam after 35 cm of transport from the gun has been measured by a slit technique to be 3π mm mrad for a 50 pC bunch. This agrees well with PARMELA simulations at these beam energies. At the exit of the electron gun, we estimate the emittance to be about 1π mm mrad, which corresponds to a beam brightness of about 80 A/(π mm mrad^{2}. Improved beam quality should be possible with a higher energy output electron beam from the gun.

  12. PREFACE: ISEC 2005: The 10th International Superconductive Electronics Conference

    Science.gov (United States)

    Rogalla, Horst

    2006-05-01

    The 10th International Superconductive Electronics Conference took place in Noordwijkerhout in the Netherlands, 5-9 September 2005, not far from the birthplace of superconductivity in Leiden nearly 100 years ago. There have been many reasons to celebrate the 10th ISEC: not only was it the 20th anniversary, but also the achievements since the first conference in Tokyo in 1987 are tremendous. We have seen whole new groups of superconductive materials come into play, such as oxide superconductors with maximum Tc in excess of 100 K, carbon nanotubes, as well as the realization of new digital concepts from saturation logic to the ultra-fast RSFQ-logic. We have learned that superconductors not only show s-wave symmetries in the spatial arrangement of the order parameter, but also that d-wave dependence in oxide superconductors is now well accepted and can even be successfully applied to digital circuits. We are now used to operating SQUIDs in liquid nitrogen; fT sensitivity of SQUID magnetometers is not surprising anymore and can even be reached with oxide-superconductor based SQUIDs. Even frequency discriminating wide-band single photon detection with superconductive devices, and Josephson voltage standards with tens of thousands of junctions, nowadays belong to the daily life of advanced laboratories. ISEC has played a very important role in this development. The first conferences were held in 1987 and 1989 in Tokyo, and subsequently took place in Glasgow (UK), Boulder (USA), Nagoya (Japan), Berlin (Germany), Berkeley (USA), Osaka (Japan), Sydney (Australia), and in 2005 for the first time in the Netherlands. These conferences have provided platforms for the presentation of the research and development results of this community and for the vivid discussion of achievements and strategies for the further development of superconductive electronics. The 10th conference has played a very important role in this context. The results in laboratories show great potential and

  13. The Quantum Socket: Wiring for Superconducting Qubits - Part 2

    Science.gov (United States)

    Bejanin, J. H.; McConkey, T. G.; Rinehart, J. R.; Bateman, J. D.; Earnest, C. T.; McRae, C. H.; Rohanizadegan, Y.; Shiri, D.; Mariantoni, M.; Penava, B.; Breul, P.; Royak, S.; Zapatka, M.; Fowler, A. G.

    Quantum computing research has reached a level of maturity where quantum error correction (QEC) codes can be executed on linear arrays of superconducting quantum bits (qubits). A truly scalable quantum computing architecture, however, based on practical QEC algorithms, requires nearest neighbor interaction between qubits on a two-dimensional array. Such an arrangement is not possible with techniques that rely on wire bonding. To address this issue, we have developed the quantum socket, a device based on three-dimensional wires that enables the control of superconducting qubits on a two-dimensional grid. In this talk, we present experimental results characterizing this type of wiring. We will show that the quantum socket performs exceptionally well for the transmission and reflection of microwave signals up to 10 GHz, while minimizing crosstalk between adjacent wires. Under realistic conditions, we measured an S21 of -5 dB at 6 GHz and an average crosstalk of -60 dB. We also describe time domain reflectometry results and arbitrary pulse transmission tests, showing that the quantum socket can be used to control superconducting qubits.

  14. Electronically driven short-range lattice instability: Possible role in superconductive pairing

    International Nuclear Information System (INIS)

    Szasz, A.

    1991-01-01

    A superconducting pairing mechanism is suggested, mediating by collective and coherent cluster fluctuations in the materials. The model, based on a geometrical frustration, proposes a dynamic effect driven by a special short-range electronic instability. Experimental support for this model is discussed

  15. Electronic structure and superconductivity of multi-layered organic charge transfer salts

    Energy Technology Data Exchange (ETDEWEB)

    Jeschke, Harald O.; Altmeyer, Michaela; Guterding, Daniel; Valenti, Roser [Institut fuer Theoretische Physik, Goethe-Universitaet Frankfurt, 60438 Frankfurt (Germany)

    2015-07-01

    We examine the electronic properties of polymorphs of (BEDT-TTF){sub 2}Ag(CF{sub 3}){sub 4}(TCE) (1,1,2-trichloroethane) within density functional theory (DFT). While a phase with low superconducting transition temperature T{sub c}=2.6 K exhibits a κ packing motif, two high T{sub c} phases are layered structures consisting of α{sup '} and κ packed layers. We determine the electronic structures and discuss the influence of the insulating α{sup '} layer on the conducting κ layer. In the κ-α{sub 1}{sup '} dual-layered compound, we find that the stripes of high and low charge in the α{sup '} layer correspond to a stripe pattern of hopping parameters in the κ layer. Based on the different underlying Hamiltonians, we study the superconducting properties and try to explain the differences in T{sub c}.

  16. Hybrid quantum circuit with a superconducting qubit coupled to an electron spin ensemble

    Energy Technology Data Exchange (ETDEWEB)

    Kubo, Yuimaru; Grezes, Cecile; Vion, Denis; Esteve, Daniel; Bertet, Patrice [Quantronics Group, SPEC (CNRS URA 2464), CEA-Saclay, 91191 Gif-sur-Yvette (France); Diniz, Igor; Auffeves, Alexia [Institut Neel, CNRS, BP 166, 38042 Grenoble (France); Isoya, Jun-ichi [Research Center for Knowledge Communities, University of Tsukuba, 305-8550 Tsukuba (Japan); Jacques, Vincent; Dreau, Anais; Roch, Jean-Francois [LPQM (CNRS, UMR 8537), Ecole Normale Superieure de Cachan, 94235 Cachan (France)

    2013-07-01

    We report the experimental realization of a hybrid quantum circuit combining a superconducting qubit and an ensemble of electronic spins. The qubit, of the transmon type, is coherently coupled to the spin ensemble consisting of nitrogen-vacancy (NV) centers in a diamond crystal via a frequency-tunable superconducting resonator acting as a quantum bus. Using this circuit, we prepare arbitrary superpositions of the qubit states that we store into collective excitations of the spin ensemble and retrieve back into the qubit. We also report a new method for detecting the magnetic resonance of electronic spins at low temperature with a qubit using the hybrid quantum circuit, as well as our recent progress on spin echo experiments.

  17. Development of superconducting cryo-electron microscope and its applications

    International Nuclear Information System (INIS)

    Iwatsuki, Masashi

    1988-01-01

    Recently, a superconducting cryo-electron microscope in which specimens are cooled to the liquid helium temperature (4.2 K) has been developed. The main components and functional features of this new microscope are reported together with application data on polyethylene, poly (4-methyl-1-pentene), valonia cellulose, rock salt, ice crystallites and ceramic superconductor. The resistance to electron radiation damage, of beam-sensitive specimens including polymers has been increased more than ten times. Thus, the microscope has made it possible to take high resolution images and to analyze the crystal-structure of micro-areas. (orig.) [de

  18. Quantum limited quasiparticle mixers at 100 GHz

    International Nuclear Information System (INIS)

    Mears, C.A; Hu, Qing; Richards, P.L.; Worsham, A.H.; Prober, D.E.; Raeisaenen, A.V.

    1990-09-01

    We have made accurate measurements of the noise and gain of superconducting-insulating-superconducting (SIS) mixers employing small area (1μm 2 ) Ta/Ta 2 O 5 /Pb 0.9 Bi 0.1 tunnel junctions. We have measured an added mixer noise of 0.61 +/- 0.31 quanta at 95.0 GHz, which is within 25 percent of the quantum limit of 0.5 quanta. We have carried out a detailed comparison between theoretical predictions of the quantum theory of mixing and experimentally measured noise and gain. We used the shapes of I-V curves pumped at the upper and lower sideband frequencies to deduce values of the embedding admittances at these frequencies. Using these admittances, the mixer noise and gain predicted by quantum theory are in excellent agreement with experiment. 21 refs., 9 figs

  19. Phase separation and d-wave superconductivity induced by extended electron-exciton interaction

    Energy Technology Data Exchange (ETDEWEB)

    Cheng Ming [Department of Physics and Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, Texas 77204 (United States)], E-mail: cheng896@hotmail.com; Su Wupei [Department of Physics and Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, Texas 77204 (United States)

    2008-12-15

    Using an auxiliary-field quantum Monte Carlo (AFQMC) method, we have studied a two-dimensional tight-binding model in which the conduction electrons can polarize an adjacent layer of molecules through electron-electron repulsion. Calculated average conduction electron density as a function of chemical potential exhibits a clear break characteristic of phase separation. Compared to the noninteracting system, the d-wave pair-field correlation function shows significant enhancement. The simultaneous presence of phase separation and d-wave superconductivity suggests that an effective extended pairing force is induced by the electron-exciton coupling.

  20. Phase separation and d-wave superconductivity induced by extended electron-exciton interaction

    International Nuclear Information System (INIS)

    Cheng Ming; Su Wupei

    2008-01-01

    Using an auxiliary-field quantum Monte Carlo (AFQMC) method, we have studied a two-dimensional tight-binding model in which the conduction electrons can polarize an adjacent layer of molecules through electron-electron repulsion. Calculated average conduction electron density as a function of chemical potential exhibits a clear break characteristic of phase separation. Compared to the noninteracting system, the d-wave pair-field correlation function shows significant enhancement. The simultaneous presence of phase separation and d-wave superconductivity suggests that an effective extended pairing force is induced by the electron-exciton coupling

  1. Superconductivity - applications

    International Nuclear Information System (INIS)

    The paper deals with the following subjects: 1) Electronics and high-frequency technology, 2) Superconductors for energy technology, 3) Superconducting magnets and their applications, 4) Electric machinery, 5) Superconducting cables. (WBU) [de

  2. Fraunhofer regime of operation for superconducting quantum interference filters

    DEFF Research Database (Denmark)

    Shadrin, A.V.; Constantinian, K.Y.; Ovsyannikov, G.A.

    2008-01-01

    Series arrays of superconducting quantum interference devices (SQUIDs) with incommensurate loop areas, so-called superconducting quantum interference filters (SQIFs), are investigated in the kilohertz and the gigahertz frequency range. In SQIFs made of high-T-c bicrystal junctions the flux...... range of more than 60 dB in the kilohertz range. In the 1-2 GHz range the estimated power gain is 20 dB and the magnetic flux noise level is as low as 10(-4)Phi(0)....

  3. Fluxon induced surface resistance and field emission in niobium films at 1.5 GHz

    CERN Document Server

    Benvenuti, Cristoforo; Darriulat, Pierre; Peck, M A; Valente, A M; Van't Hof, C A

    2001-01-01

    The surface resistance of superconducting niobium films induced by the presence of trapped magnetic flux, presumably in the form of a pinned fluxon lattice, is shown to be modified by the presence of a field emitting impurity or defect. The modification takes the form of an additional surface resistance proportional to the density of the fluxon lattice and increasing linearly with the amplitude of the microwave above a threshold significantly lower than the field emission threshold. Such an effect, a precursor of electron emission, is observed for the first time in a study using radiofrequency cavities operating at their fundamental 1.5 GHz frequency. The measured properties of the additional surface resistance severely constrain possible explanations of the observed effect. (23 refs).

  4. Coexistence of magnetism and superconductivity in the hole doped FeAs-based superconducting compound

    International Nuclear Information System (INIS)

    Lu, T.P.; Wu, C.C.; Chou, W.H.; Lan, M.D.

    2010-01-01

    The magnetic and superconducting properties of the Sm-doped FeAs-based superconducting compound were investigated under wide ranges of temperature and magnetic field. After the systematical magnetic ion substitution, the superconducting transition temperature decreases with increasing magnetic moment. The hysteresis loop of the La 0.87-x Sm x Sr 0.13 FeAsO sample shows a superconducting hysteresis and a paramagnetic background signal. The paramagnetic signal is mainly attributed to the Sm moments. The experiment demonstrates that the coexistence of magnetism and superconductivity in the hole doped FeAs-based superconducting compounds is possible. Unlike the electron doped FeAs-based superconducting compounds SmFeAsOF, the hole doped superconductivity is degraded by the substitution of La by Sm. The hole-doped and electron-doped sides are not symmetric.

  5. Laser activated superconducting switch

    International Nuclear Information System (INIS)

    Wolf, A.A.

    1976-01-01

    A superconducting switch or bistable device is described consisting of a superconductor in a cryogen maintaining a temperature just below the transition temperature, having a window of the proper optical frequency band for passing a laser beam which may impinge on the superconductor when desired. The frequency of the laser is equal to or greater than the optical absorption frequency of the superconducting material and is consistent with the ratio of the gap energy of the switch material to Planck's constant, to cause depairing of electrons, and thereby normalize the superconductor. Some embodiments comprise first and second superconducting metals. Other embodiments feature the two superconducting metals separated by a thin film insulator through which the superconducting electrons tunnel during superconductivity

  6. Superconductivity in MgB{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Muranaka, Takahiro; Akimitsu, Jun [Aoyama Gakuin Univ., Kanagawa (Japan). Dept. of Physics and Mathematics

    2011-07-01

    We review superconductivity in MgB{sub 2} in terms of crystal and electronic structure, electron-phonon coupling, two-gap superconductivity and application. Finally, we introduce the development of new superconducting materials in related compounds. (orig.)

  7. Changing electronic density in sites of crystalline lattice under superconducting of phase transition

    International Nuclear Information System (INIS)

    Turaev, N.Yu.; Turaev, E.Yu.; Khuzhakulov, E.S.; Seregin, P.P.

    2006-01-01

    Results of electron density change calculations for sites of the one-dimensional Kronig-Penny lattice at the superconducting phase transition have been presented. The transition from normal state to super conducting one is accompanied by the rise of the electron density at the unit cell centre. It is agreement with Moessbauer spectroscopy data. (author)

  8. Coulomb Blockade and Multiple Andreev Reflection in a Superconducting Single-Electron Transistor

    Science.gov (United States)

    Lorenz, Thomas; Sprenger, Susanne; Scheer, Elke

    2018-06-01

    In superconducting quantum point contacts, multiple Andreev reflection (MAR), which describes the coherent transport of m quasiparticles each carrying an electron charge with m≥3, sets in at voltage thresholds eV = 2Δ /m. In single-electron transistors, Coulomb blockade, however, suppresses the current at low voltage. The required voltage for charge transport increases with the square of the effective charge eV∝ ( me) ^2. Thus, studying the charge transport in all-superconducting single-electron transistors (SSETs) sets these two phenomena into competition. In this article, we present the fabrication as well as a measurement scheme and transport data for a SSET with one junction in which the transmission and thereby the MAR contributions can be continuously tuned. All regimes from weak to strong coupling are addressed. We extend the Orthodox theory by incorporating MAR processes to describe the observed data qualitatively. We detect a new transport process the nature of which is unclear at present. Furthermore, we observe a renormalization of the charging energy when approaching the strong coupling regime.

  9. Statistical methods for transverse beam position diagnostics with higher order modes in third harmonic 3.9 GHz superconducting accelerating cavities at FLASH

    CERN Document Server

    Zhang, P; Jones, R M

    2014-01-01

    Beam-excited higher order modes (HOM) can be used to provide beam diagnostics. Here we focus on 3.9 GHz superconducting accelerating cavities. In particular we study dipole mode excitation and its application to beam position determinations. In order to extract beam position information, linear regression can be used. Due to a large number of sampling points in the waveforms, statistical methods are used to effectively reduce the dimension of the system, such as singular value decomposition (SVD) and k-means clustering. These are compared with the direct linear regression (DLR) on the entire waveforms. A cross-validation technique is used to study the sample independent precisions of the position predictions given by these three methods. A RMS prediction error in the beam position of approximately 50 micron can be achieved by DLR and SVD, while k-means clustering suggests 70 micron.

  10. Operational upgrades to the DIII-D 60 GHz electron cyclotron resonant heating system

    International Nuclear Information System (INIS)

    Harris, T.E.; Cary, W.P.

    1993-10-01

    One of the primary components of the DIII-D radio frequency (rf) program over the past seven years has been the 60 GHz electron cyclotron resonant heating (ECRH) system. The system now consists of eight units capable of operating and controlling eight Varian VGE-8006 60 GHz, 200 kW gyrotrons along with their associated waveguide components. This paper will discuss the operational upgrades and the overall system performance. Many modifications were instituted to enhance the system operation and performance. Modifications discussed in this paper include an improved gyrotron tube-fault response network, a computer controlled pulse-timing and sequencing system, and an improved high-voltage power supply control interface. The discussion on overall system performance will include operating techniques used to improve system operations and reliability. The techniques discussed apply to system start-up procedures, operating the system in a conditioning mode, and operating the system during DIII-D plasma operations

  11. Electronic structure and superconductivity of fcc Cr

    International Nuclear Information System (INIS)

    Xu, J.; Freeman, A.J.; Jarlborg, T.; Brodsky, M.B.

    1984-01-01

    Results of self-consistent electronic structure calculations are reported for metastable fcc Cr metal. Unlike the case of bcc Cr which has E/sub F/ at a minimum in the density of states (DOS), the DOS at E/sub F/ in fcc Cr is at a peak making this one of the higher-DOS metals with the fcc structure (e.g., comparable with that of Ni and Pt). A calculated Stoner factor of 0.82 indicates that ferromagnetic ordering is not expected. Calculations of the electron-phonon coupling parameter lambda and superconducting transition temperature T/sub c/ were made using the rigid-ion approximation and strong-coupling theory with various estimates of the (unknown) phonon contribution. We conclude that T/sub c/'sroughly-equal2.5 K are reasonable, although they are substantially smaller than the T/sub c/roughly-equal10 K derived from measurements on Au-Cr-Au sandwiches

  12. A scanning Auger electron spectrometer for internal surface analysis of Large Electron Positron 2 superconducting radio-frequency cavities

    Science.gov (United States)

    Benvenuti, C.; Cosso, R.; Genest, J.; Hauer, M.; Lacarrère, D.; Rijllart, A.; Saban, R.

    1996-08-01

    A computer-controlled surface analysis instrument, incorporating static Auger electron spectroscopy, scanning Auger mapping, and secondary electron imaging, has been designed and built at CERN to study and characterize the inner surface of superconducting radio-frequency cavities to be installed in the Large Electron Positron collider. A detailed description of the instrument, including the analytical head, the control system, and the vacuum system is presented. Some recent results obtained from the cavities provide examples of the instrument's capabilities.

  13. Control of the Superconducting Magnets current Power Supplies of the TJ-II Gyrotrons

    International Nuclear Information System (INIS)

    Ros, A.; Fernandez, A.; Tolkachev, A.; Catalan, G.

    2006-01-01

    The TJ-II ECRH heating system consists of two gyrotrons, which can deliver a maximum power of 300 kW at a frequency of 53.2 GHz. Another 28 GHz gyrotron is going to be used in the Bernstein waves heating system. In order to get the required frequency, the gyrotrons need and homogeneous magnetic field of several tesla, which is generated by a superconducting coil field by a current source. This document describes the current source control as well as the high precision ammeters control. These ammeters measure the current in the superconducting coils. The user interface and the programming of the control system are described. The communication between devices is also explained. (author) 9 Refs

  14. Superconducting bandpass delta-sigma modulator

    International Nuclear Information System (INIS)

    Bulzacchelli, J.F.; Lee, H.-S.; Misewich, J.A.; Ketchen, M.B.

    1999-01-01

    Bandpass delta-sigma modulators digitize narrowband signals with high dynamic range and linearity. The required sampling rate is only a few times higher than the centre frequency of the input. This paper presents a superconducting bandpass delta-sigma modulator for direct analogue-to-digital conversion of RF signals in the GHz range. The input signal is capacitively coupled to one end of a microstrip transmission line, and a single flux quantum balanced comparator quantizes the current flowing out of the other end. Quantization noise is suppressed at the quarter-wave resonance of the transmission line (about 2 GHz in our design). Circuit performance at a 20 GHz sampling rate has been studied with several long JSIM simulations. Full-scale (FS) input sensitivity is 20 mV (rms), and in-band noise is -53 dBFS and -57 dBFS over bandwidths of 39 MHz and 19.5 MHz, respectively. In-band intermodulation distortion is better than -69 dBFS. (author)

  15. Free electron laser with small period wiggler and sheet electron beam: A study of the feasibility of operation at 300 GHz with 1 MW CW output power

    International Nuclear Information System (INIS)

    Booske, J.H.; Granatstein, V.L.; Antonsen, T.M. Jr.

    1988-01-01

    The use of a small period wiggler (/ell//sub ω/ 2 ). Based on these encouraging results, a proof-of-principle experiment is being assembled, and is aimed at demonstrating FEL operating at 120 GHz with 300 kW output power in 1 μs pulses: electron energy would be 410 keV. Preliminary design of a 300 GHz 1 MW FEL with an untapered wiggler is also presented. 10 refs., 5 figs., 3 tabs

  16. Microscopic investigation of RF surfaces of 3 GHz niobium accelerator cavities following RF processing

    International Nuclear Information System (INIS)

    Graber, J.; Barnes, P.; Flynn, T.; Kirchgessner, J.; Knobloch, J.; Moffat, D.; Muller, H.; Padamsee, H.; Sears, J.

    1993-01-01

    RF processing of Superconducting accelerating cavities is achieved through a change in the electron field emission (FE) characteristics of the RF surface. The authors have examined the RF surfaces of several single-cell 3 GHz cavities, following RF processing, in a Scanning Electron Microscope (SEM). The RF processing sessions included both High Peak Power (P ≤ 50 kW) pulsed processing, and low power (≤ 20 W) continuous wave processing. The experimental apparatus also included a thermometer array on the cavity outer wall, allowing temperature maps to characterize the emission before and after RF processing gains. Multiple sites have been located in cavities which showed improvements in cavity behavior due to RF processing. Several SEM-located sites can be correlated with changes in thermometer signals, indicating a direct relationship between the surface site and emission reduction due to RF processing. Information gained from the SEM investigations and thermometry are used to enhance the theoretical model of RF processing

  17. Examination of a microwave sensing system using superconducting devices

    International Nuclear Information System (INIS)

    Sekiya, N.; Mukaida, M.; Saito, A.; Hirano, S.; Oshima, S.

    2005-01-01

    We have designed and fabricated a microwave sensing system integrated with superconducting devices which can detect motion for crime prevention and security purposes. The system consists of a transmitting antenna, a receiving antenna, a power divider as a directional coupler, and a mixer. The antennas and the directional coupler were fabricated using 50-nm thick YBa 2 Cu 3 O 7-δ (YBCO) thin films. A superconducting antenna with a resonant frequency of 10.525 GHz and a superconducting directional coupler were designed and fabricated for the system. A Schottky barrier diode was used as a mixer. These devices were integrated and their operation as a sensor was examined. Comparisons of the output voltage of the IF signal amplifier showed that the superconducting integrated sensor system was superior to the normal conductor sensor

  18. 2 MW 110 GHz ECH heating system for DIII-D

    International Nuclear Information System (INIS)

    Moeller, C.; Prater, R.; Callis, R.; Remsen, D.; Doane, J.; Cary, W.; Phelps, R.; Tupper, M.

    1990-09-01

    A 2 MW 110 GHz ECH system using Varian 0.5 MW gyrotrons is under construction for use on the DIII-D tokamak by late 1991. Most of the components are being design and fabricated at General Atomics, including the gyrotron tanks, superconducting magnets, and transmission line. These components are intended for operation with 10 second pulses and, in the future, with 1 MW gyrotrons. 6 refs., 5 figs

  19. Study of the geometrical resonances of superconducting tunnel junctions

    DEFF Research Database (Denmark)

    Sørensen, O. Hoffmann; Finnegan, T.F.; Pedersen, Niels Falsig

    1973-01-01

    The resonant cavity structure of superconducting Sn-Sn-oxide-Sn tunnel junctions has been investigated via photon-assisted quasiparticle tunneling. We find that the temperature-dependent losses at 35 GHz are determined by the surface resistance of the Sn films for reduced temperatures between 0...

  20. Electronic structure and superconductivity of europium

    International Nuclear Information System (INIS)

    Nixon, Lane W.; Papaconstantopoulos, D.A.

    2010-01-01

    We have calculated the electronic structure of Eu for the bcc, hcp, and fcc crystal structures for volumes near equilibrium up to a calculated 90 GPa pressure using the augmented-plane-wave method in the local-density approximation. The frozen-core approximation was used with a semi-empirical shift of the f-states energies in the radial Schroedinger equation to move the occupied 4f valence states below the Γ 1 energy and into the core. This shift of the highly localized f-states yields the correct europium phase ordering with lattice parameters and bulk moduli in good agreement with experimental data. The calculated superconductivity properties under pressure for the bcc and hcp structures are also found to agree with and follow a T c trend similar to recent measurement by Debessai et al.

  1. Superconductivity in transition metals.

    Science.gov (United States)

    Slocombe, Daniel R; Kuznetsov, Vladimir L; Grochala, Wojciech; Williams, Robert J P; Edwards, Peter P

    2015-03-13

    A qualitative account of the occurrence and magnitude of superconductivity in the transition metals is presented, with a primary emphasis on elements of the first row. Correlations of the important parameters of the Bardeen-Cooper-Schrieffer theory of superconductivity are highlighted with respect to the number of d-shell electrons per atom of the transition elements. The relation between the systematics of superconductivity in the transition metals and the periodic table high-lights the importance of short-range or chemical bonding on the remarkable natural phenomenon of superconductivity in the chemical elements. A relationship between superconductivity and lattice instability appears naturally as a balance and competition between localized covalent bonding and so-called broken covalency, which favours d-electron delocalization and superconductivity. In this manner, the systematics of superconductivity and various other physical properties of the transition elements are related and unified. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  2. Superconductivity in doped Dirac semimetals

    Science.gov (United States)

    Hashimoto, Tatsuki; Kobayashi, Shingo; Tanaka, Yukio; Sato, Masatoshi

    2016-07-01

    We theoretically study intrinsic superconductivity in doped Dirac semimetals. Dirac semimetals host bulk Dirac points, which are formed by doubly degenerate bands, so the Hamiltonian is described by a 4 ×4 matrix and six types of k -independent pair potentials are allowed by the Fermi-Dirac statistics. We show that the unique spin-orbit coupling leads to characteristic superconducting gap structures and d vectors on the Fermi surface and the electron-electron interaction between intra and interorbitals gives a novel phase diagram of superconductivity. It is found that when the interorbital attraction is dominant, an unconventional superconducting state with point nodes appears. To verify the experimental signature of possible superconducting states, we calculate the temperature dependence of bulk physical properties such as electronic specific heat and spin susceptibility and surface state. In the unconventional superconducting phase, either dispersive or flat Andreev bound states appear between point nodes, which leads to double peaks or a single peak in the surface density of states, respectively. As a result, possible superconducting states can be distinguished by combining bulk and surface measurements.

  3. Fast superconducting magnetic field switch

    Science.gov (United States)

    Goren, Yehuda; Mahale, Narayan K.

    1996-01-01

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles.

  4. Fast superconducting magnetic field switch

    International Nuclear Information System (INIS)

    Goren, Y.; Mahale, N.K.

    1996-01-01

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles. 6 figs

  5. Results on the interaction of an intense bunched electron beam with resonant cavities at 35 GHz

    CERN Document Server

    Gardelle, J; Rullier, J L; Vermare, C; Wuensch, Walter; Lidia, S M; Westenskow, G A; Donohue, J T; Meurdesoif, Y; Lekston, J M; MacKay, W W

    1999-01-01

    The Two-Beam Accelerator (TBA) concept is currently being investigated both at Lawrence Berkeley National Laboratory (LBNL) and at CERN. As part of this program, a 7 MeV, 1-kA electron beam produced by the PIVAIR accelerator at CESTA has been used to power a free electron laser (FEL) amplifier at 35 GHz. At the FEL exit, the bunched electron beam is transported and focused into a resonant cavity built by the CLIC group at CERN. The power and frequency of the microwave output generated when the bunched beam traverses two different cavities are measured. (7 refs).

  6. 110GHz ECH on DIII-D

    International Nuclear Information System (INIS)

    Cary, W.P.; Allen, J.C.; Callis, R.W.; Doane, J.L.; Harris, T.E.; Moetler, C.P.; Neren, A.; Prater, P.; Rensen, D.

    1992-01-01

    This paper reports on a new high power electron cyclotron heating (ECH) system which has been introduced on DIII-D. This system is designed to operate at 110 GHz with a total output power of 2 MW. The system consists of four Varian VGT-8011 gyrotrons (output power of 500 kW), and their associated support equipment. All components have been designed for up to a 10 second pulse duration. The 110 GHz system is intended to further progress in rf current drive experiments on DIII-D when used in conjunction with the existing 60 GHz ECH (1. 6 MW) , and the 30-60 MHz ICH (2MW) systems. H-mode physics, plasma stabilization experiments and transport studies are also to be conducted at 110 GHz

  7. Optimization of cathodic arc deposition and pulsed plasma melting techniques for growing smooth superconducting Pb photoemissive films for SRF injectors

    Science.gov (United States)

    Nietubyć, Robert; Lorkiewicz, Jerzy; Sekutowicz, Jacek; Smedley, John; Kosińska, Anna

    2018-05-01

    Superconducting photoinjectors have a potential to be the optimal solution for moderate and high current cw operating free electron lasers. For this application, a superconducting lead (Pb) cathode has been proposed to simplify the cathode integration into a 1.3 GHz, TESLA-type, 1.6-cell long purely superconducting gun cavity. In the proposed design, a lead film several micrometres thick is deposited onto a niobium plug attached to the cavity back wall. Traditional lead deposition techniques usually produce very non-uniform emission surfaces and often result in a poor adhesion of the layer. A pulsed plasma melting procedure reducing the non-uniformity of the lead photocathodes is presented. In order to determine the parameters optimal for this procedure, heat transfer from plasma to the film was first modelled to evaluate melting front penetration range and liquid state duration. The obtained results were verified by surface inspection of witness samples. The optimal procedure was used to prepare a photocathode plug, which was then tested in an electron gun. The quantum efficiency and the value of cavity quality factor have been found to satisfy the requirements for an injector of the European-XFEL facility.

  8. Broadband sample holder for microwave spectroscopy of superconducting qubits

    International Nuclear Information System (INIS)

    Averkin, A. S.; Karpov, A.; Glushkov, E.; Abramov, N.; Shulga, K.; Huebner, U.; Il'ichev, E.; Ustinov, A. V.

    2014-01-01

    We present a practical design and implementation of a broadband sample holder suitable for microwave experiments with superconducting integrated circuits at millikelvin temperatures. Proposed design can be easily integrated in standard dilution cryostats, has flat pass band response in a frequency range from 0 to 32 GHz, allowing the RF testing of the samples with substrate size up to 4 × 4 mm 2 . The parasitic higher modes interference in the holder structure is analyzed and prevented via design considerations. The developed setup can be used for characterization of superconducting parametric amplifiers, bolometers, and qubits. We tested the designed sample holder by characterizing of a superconducting flux qubit at 20 mK temperature

  9. Statistical methods for transverse beam position diagnostics with higher order modes in third harmonic 3.9 GHz superconducting accelerating cavities at FLASH

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Pei, E-mail: pei.zhang@desy.de [School of Physics and Astronomy, The University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, D-22607 Hamburg (Germany); Cockcroft Institute of Science and Technology, Daresbury WA4 4AD (United Kingdom); Baboi, Nicoleta [Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, D-22607 Hamburg (Germany); Jones, Roger M. [School of Physics and Astronomy, The University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Cockcroft Institute of Science and Technology, Daresbury WA4 4AD (United Kingdom)

    2014-01-11

    Beam-excited higher order modes (HOMs) can be used to provide beam diagnostics. Here we focus on 3.9 GHz superconducting accelerating cavities. In particular we study dipole mode excitation and its application to beam position determinations. In order to extract beam position information, linear regression can be used. Due to a large number of sampling points in the waveforms, statistical methods are used to effectively reduce the dimension of the system, such as singular value decomposition (SVD) and k-means clustering. These are compared with the direct linear regression (DLR) on the entire waveforms. A cross-validation technique is used to study the sample independent precisions of the position predictions given by these three methods. A RMS prediction error in the beam position of approximately 50 μm can be achieved by DLR and SVD, while k-means clustering suggests 70 μm.

  10. 60-GHz Millimeter-Wave Radio: Principle, Technology, and New Results

    Directory of Open Access Journals (Sweden)

    Nan Guo

    2006-12-01

    Full Text Available The worldwide opening of a massive amount of unlicensed spectra around 60 GHz has triggered great interest in developing affordable 60-GHz radios. This interest has been catalyzed by recent advance of 60-GHz front-end technologies. This paper briefly reports recent work in the 60-GHz radio. Aspects addressed in this paper include global regulatory and standardization, justification of using the 60-GHz bands, 60-GHz consumer electronics applications, radio system concept, 60-GHz propagation and antennas, and key issues in system design. Some new simulation results are also given. Potentials and problems are explained in detail.

  11. The design of a five-cell high-current superconducting cavity

    International Nuclear Information System (INIS)

    Li Yongming; Zhu Feng; Quan Shengwen; Liu Kexin; Nassiri, Ali

    2012-01-01

    Energy recovery linacs are promising for achieving high average current with superior beam quality. The key component for accelerating such high-current beams is the superconducting radio-frequency cavity. The design of a 1.3 GHz five-cell high-current superconducting cavity has been carried out under cooperation between Peking University and the Argonne National Laboratory. The radio-frequency properties, damping of the higher order modes, multipacting and mechanical features of this cavity have been discussed and the final design is presented. (authors)

  12. Conceptual design of industrial free electron laser using superconducting accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Saldin, E.L.; Schneidmiller, E.A.; Ulyanov, Yu.N. [Automatic Systems Corporation, Samara (Russian Federation)] [and others

    1995-12-31

    Paper presents conceptual design of free electron laser (FEL) complex for industrial applications. The FEL complex consists of three. FEL oscillators with the optical output spanning the infrared (IR) and ultraviolet (UV) wave-lengths ({lambda} = 0.3...20 {mu}m) and with the average output power 10 - 20 kW. The driving beam for the FELs is produced by a superconducting accelerator. The electron beam is transported to the FELs via three beam lines (125 MeV and 2 x 250 MeV). Peculiar feature of the proposed complex is a high efficiency of the. FEL oscillators, up to 20 %. This becomes possible due to the use of quasi-continuous electron beam and the use of the time-dependent undulator tapering.

  13. Digital base-band rf control system for the superconducting Darmstadt electron linear accelerator

    Directory of Open Access Journals (Sweden)

    M. Konrad

    2012-05-01

    Full Text Available The accelerating field in superconducting cavities has to be stabilized in amplitude and phase by a radio-frequency (rf control system. Because of their high loaded quality factor superconducting cavities are very susceptible for microphonics. To meet the increased requirements with respect to accuracy, availability, and diagnostics, the previous analog rf control system of the superconducting Darmstadt electron linear accelerator S-DALINAC has been replaced by a digital rf control system. The new hardware consists of two components: An rf module that converts the signal from the cavity down to the base-band and a field-programmable gate array board including a soft CPU that carries out the signal processing steps of the control algorithm. Different algorithms are used for normal-conducting and superconducting cavities. To improve the availability of the control system, techniques for automatic firmware and software deployment have been implemented. Extensive diagnostic features provide the operator with additional information. The architecture of the rf control system as well as the functionality of its components will be presented along with measurements that characterize the performance of the system, yielding, e.g., an amplitude stabilization down to (ΔA/A_{rms}=7×10^{-5} and a phase stabilization of (Δϕ_{rms}=0.8° for superconducting cavities.

  14. Beam position diagnostics with higher order modes in third harmonic superconducting accelerating cavities

    International Nuclear Information System (INIS)

    Zhang, Pei

    2013-02-01

    various dipole modes on the oset of the excitation beam were subsequently studied using a spectrum analyzer. Various data analysis methods were used: modal identication, direct linear regression, singular value decomposition and k-means clustering. These studies lead to three modal options promising for beam position diagnostics, upon which a set of test electronics has been built. The experiments with these electronics suggest a resolution of 50 micron accuracy in predicting local beam position in the cavity and a global resolution of 20 micron over the complete module. This constitutes the first demonstration of HOM-based beam diagnostics in a third harmonic 3.9 GHz superconducting cavity module. These studies have finalized the design of the online HOM-BPM for 3.9 GHz cavities at FLASH.

  15. Beam position diagnostics with higher order modes in third harmonic superconducting accelerating cavities

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Pei

    2013-02-15

    various dipole modes on the oset of the excitation beam were subsequently studied using a spectrum analyzer. Various data analysis methods were used: modal identication, direct linear regression, singular value decomposition and k-means clustering. These studies lead to three modal options promising for beam position diagnostics, upon which a set of test electronics has been built. The experiments with these electronics suggest a resolution of 50 micron accuracy in predicting local beam position in the cavity and a global resolution of 20 micron over the complete module. This constitutes the first demonstration of HOM-based beam diagnostics in a third harmonic 3.9 GHz superconducting cavity module. These studies have finalized the design of the online HOM-BPM for 3.9 GHz cavities at FLASH.

  16. Quantum theory of the electron behaviour in solid states and its application to the theory of superconductivity

    International Nuclear Information System (INIS)

    Rangelov, J.

    1993-01-01

    A physical model of an electron describing the classical Lorentz's electron (LE), nonrelativistic quantum Schroedinger's electron (SE) and relativistic quantum Dirac's electron (DE) has been discovered in order to describe the processes in metals, alloys and chemical compounds. As a result of the new point of view proposed the physical meaning of the basic electron parameters as the classical radius of LE, its self energy and rest mass, proper mechanical moment (MCHM) and frequency of de Broglie's pilot wave and causes for stability of Schroedinger's package of waves and SE's extraordinary behaviour has been discovered. A new physical interpretation of collectivized valence electrons behaviour in solid state has been established. On this basis the real processes ensuring energetically the superconductivity state has been described. All auxiliary processes increasing all superconductivity parameters have been calculated. It is pointed out that the basic parameters of electron-phonon system, electron-phonon interaction and the polarization ability of the crystal lattice structure have to be calculated also. (orig.)

  17. Superconducting technology

    International Nuclear Information System (INIS)

    2010-01-01

    Superconductivity has a long history of about 100 years. Over the past 50 years, progress in superconducting materials has been mainly in metallic superconductors, such as Nb, Nb-Ti and Nb 3 Sn, resulting in the creation of various application fields based on the superconducting technologies. High-T c superconductors, the first of which was discovered in 1986, have been changing the future vision of superconducting technology through the development of new application fields such as power cables. On basis of these trends, future prospects of superconductor technology up to 2040 are discussed. In this article from the viewpoints of material development and the applications of superconducting wires and electronic devices. (author)

  18. Analysis of Mig-type electron guns for a 35GHz gyrotron

    International Nuclear Information System (INIS)

    Barroso, J.J.; Galvao, G.P.

    1988-05-01

    A 35GHz gyrotron is currently under construction at the Associated Plasma Laboratory of the Institute for Space Research to be used in plasma heating and noninductive current drive experiments. A critical component of the device is the electrooptical system, which must generate a beam with low velocity spread and high transverse energy. One way to decrease the velocity spread is to use laminar beams. For laminar flow, where the trajectories do not cross, the axial component of the space-charge forces changes sign each half cycle models of magnetron injection guns that produce laminar beams are analyzed and procedures for controlling the pitch angle parameter, which defines the transverse-to-axial electron velocity ratio are investigated. (author)

  19. Design, Development & Functional Validation of Magnets system in support of 42 GHz Gyrotron in India

    Directory of Open Access Journals (Sweden)

    Pradhan S.

    2017-01-01

    Full Text Available A multi institutional initiative is underway towards the development of 42 GHz, 200 kW gyrotron system in India under the frame work of Department of Science and Technology, Government of India. Indigenous realization comprising of design, fabrication, prototypes and functional validations of an appropriate Magnet System is one of the primary technological objective of these initiatives. The 42 GHz gyrotron magnet system comprises of a warm gun magnet, a NbTi/Cu based high homogenous superconducting cavity magnet and three warm collector magnets. The superconducting cavity magnet has been housed inside a low loss cryostat. The magnet system has been designed in accordance with gyrotron physics and engineering considerations respecting highly homogenous spatial field profile as well as maintaining steep gradient as per the compression and velocity ratios between the emission and resonator regions. The designed magnet system further ensures the co-linearity of the magnetic axis with that of the beam axis with custom winding techniques apart from a smooth collection of beam with the collector magnet profiles. The designed magnets have been wound after several R & D validations. The superconducting magnet has been housed inside a low loss designed cryostat with in-built radial and axial alignment flexibilities to certain extent. The cryostat further houses liquid helium port, liquid nitrogen ports, current communication ports, ports for monitoring helium level and other instrumentations apart from over-pressure safety intensive burst disks etc. The entire magnet system comprising of warm and superconducting magnets has been installed and integrated in the Gyrotron test set-up. The magnet system has been aligned in both warm and when the superconducting cavity magnet is cold. The integrated geometric axes have been experimentally ensured as well as the field profiles have been measured with the magnets being charged. Under experimental conditions

  20. Detuning related coupler kick variation of a superconducting nine-cell 1.3 GHz cavity

    Science.gov (United States)

    Hellert, Thorsten; Dohlus, Martin

    2018-04-01

    Superconducting TESLA-type cavities are widely used to accelerate electrons in long bunch trains, such as in high repetition rate free electron lasers. The TESLA cavity is equipped with two higher order mode couplers and a fundamental power coupler (FPC), which break the axial symmetry of the cavity. The passing electrons therefore experience axially asymmetrical coupler kicks, which depend on the transverse beam position at the couplers and the rf phase. The resulting emittance dilution has been studied in detail in the literature. However, the kick induced by the FPC depends explicitly on the ratio of the forward to the backward traveling waves at the coupler, which has received little attention. The intention of this paper is to present the concept of discrete coupler kicks with a novel approach of separating the field disturbances related to the standing wave and a reflection dependent part. Particular attention is directed to the role of the penetration depth of the FPC antenna, which determines the loaded quality factor of the cavity. The developed beam transport model is compared to dedicated experiments at FLASH and European XFEL. Both the observed transverse coupling and detuning related coupler kick variations are in good agreement with the model. Finally, the expected trajectory variations due to coupler kick variations at European XFEL are investigated and results of numerical studies are presented.

  1. Localized 5f electrons in superconducting PuCoIn5: consequences for superconductivity in PuCoGa5

    International Nuclear Information System (INIS)

    Bauer, E D; Altarawneh, M M; Tobash, P H; Gofryk, K; Ayala-Valenzuela, O E; Mitchell, J N; McDonald, R D; Mielke, C H; Ronning, F; Scott, B L; Thompson, J D; Griveau, J-C; Colineau, E; Eloirdi, R; Caciuffo, R; Janka, O; Kauzlarich, S M

    2012-01-01

    The physical properties of the first In analog of the PuMGa 5 (M = Co, Rh) family of superconductors, PuCoIn 5 , are reported. With its unit cell volume being 28% larger than that of PuCoGa 5 , the characteristic spin-fluctuation energy scale of PuCoIn 5 is three to four times smaller than that of PuCoGa 5 , which suggests that the Pu 5f electrons are in a more localized state relative to PuCoGa 5 . This raises the possibility that the high superconducting transition temperature T c = 18.5 K of PuCoGa 5 stems from the proximity to a valence instability, while the superconductivity at T c = 2.5 K of PuCoIn 5 is mediated by antiferromagnetic spin fluctuations associated with a quantum critical point. (fast track communication)

  2. Superconductivity in graphite intercalation compounds

    International Nuclear Information System (INIS)

    Smith, Robert P.; Weller, Thomas E.; Howard, Christopher A.; Dean, Mark P.M.; Rahnejat, Kaveh C.; Saxena, Siddharth S.; Ellerby, Mark

    2015-01-01

    Highlights: • Historical background of graphite intercalates. • Superconductivity in graphite intercalates and its place in the field of superconductivity. • Recent developments. • Relevant modeling of superconductivity in graphite intercalates. • Interpretations that pertain and questions that remain. - Abstract: The field of superconductivity in the class of materials known as graphite intercalation compounds has a history dating back to the 1960s (Dresselhaus and Dresselhaus, 1981; Enoki et al., 2003). This paper recontextualizes the field in light of the discovery of superconductivity in CaC 6 and YbC 6 in 2005. In what follows, we outline the crystal structure and electronic structure of these and related compounds. We go on to experiments addressing the superconducting energy gap, lattice dynamics, pressure dependence, and how these relate to theoretical studies. The bulk of the evidence strongly supports a BCS superconducting state. However, important questions remain regarding which electronic states and phonon modes are most important for superconductivity, and whether current theoretical techniques can fully describe the dependence of the superconducting transition temperature on pressure and chemical composition

  3. Superconductivity in graphite intercalation compounds

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Robert P. [Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Weller, Thomas E.; Howard, Christopher A. [Department of Physics & Astronomy, University College of London, Gower Street, London WCIE 6BT (United Kingdom); Dean, Mark P.M. [Department of Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, NY 11973 (United States); Rahnejat, Kaveh C. [Department of Physics & Astronomy, University College of London, Gower Street, London WCIE 6BT (United Kingdom); Saxena, Siddharth S. [Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Ellerby, Mark, E-mail: mark.ellerby@ucl.ac.uk [Department of Physics & Astronomy, University College of London, Gower Street, London WCIE 6BT (United Kingdom)

    2015-07-15

    Highlights: • Historical background of graphite intercalates. • Superconductivity in graphite intercalates and its place in the field of superconductivity. • Recent developments. • Relevant modeling of superconductivity in graphite intercalates. • Interpretations that pertain and questions that remain. - Abstract: The field of superconductivity in the class of materials known as graphite intercalation compounds has a history dating back to the 1960s (Dresselhaus and Dresselhaus, 1981; Enoki et al., 2003). This paper recontextualizes the field in light of the discovery of superconductivity in CaC{sub 6} and YbC{sub 6} in 2005. In what follows, we outline the crystal structure and electronic structure of these and related compounds. We go on to experiments addressing the superconducting energy gap, lattice dynamics, pressure dependence, and how these relate to theoretical studies. The bulk of the evidence strongly supports a BCS superconducting state. However, important questions remain regarding which electronic states and phonon modes are most important for superconductivity, and whether current theoretical techniques can fully describe the dependence of the superconducting transition temperature on pressure and chemical composition.

  4. Current high-temperature superconducting coils and applications in Japan

    International Nuclear Information System (INIS)

    Matsushita, T.

    2000-01-01

    In Japan, four projects for the application of Bi-based superconducting magnets to practical apparatus are currently underway. These projects involve the development of an insert magnet for a 1 GHz nuclear magnetic resonance spectrometer, a magnet for a silicon single-crystal pulling apparatus, a magnet for a magnetic separation system, and a 1 T pulse magnet for a superconducting magnet energy storage system. For example, the magnet for the silicon single-crystal pulling apparatus is of the class with stored energy of 1 MJ to be operated at around 20 K. This review focuses on the present status of the development of these magnets, followed by a discussion of the problems of the present superconducting tapes that need to be overcome for future applications. (author)

  5. Electronic properties of γ-U and superconductivity of U–Mo alloys

    International Nuclear Information System (INIS)

    Tkach, I.; Kim-Ngan, N.-T.H.; Warren, A.; Scott, T.; Gonçalves, A.P.; Havela, L.

    2014-01-01

    Highlights: • The bcc phase of uranium was stabilized to low temperature in U–Mo alloys. • Ultrafast cooling was utilized. • Negative coefficient dρ/dT indicates very strong disorder. • The alloys are superconducting with T c ≈ 2.1 K. • They exhibit high critical field exceeding 5 T. - Abstract: Fundamental electronic properties of γ-Uranium were determined using Mo doping combined with ultrafast (splat) cooling, which allowed stabilization of the bcc structure to low temperatures. The Sommerfeld coefficient γ e is enhanced to 16 mJ/mol K 2 from 11 mJ/mol K 2 for α-U. Magnetic susceptibility remains weak and T-independent, ≈5 × 10 −8 m 3 /mol. The Mo-doped γ-U exhibits a conventional BCS superconductivity with T c ≈ 2.1 K and critical field exceeding 5 T for 15 at.% Mo. This type of superconductivity is qualitatively different from the one found for pure U splat, which has T c higher than 1 K but the weak specific heat anomaly proves that it is not real bulk effect

  6. 100 years of superconductivity

    CERN Document Server

    Rogalla, Horst

    2011-01-01

    Even a hundred years after its discovery, superconductivity continues to bring us new surprises, from superconducting magnets used in MRI to quantum detectors in electronics. 100 Years of Superconductivity presents a comprehensive collection of topics on nearly all the subdisciplines of superconductivity. Tracing the historical developments in superconductivity, the book includes contributions from many pioneers who are responsible for important steps forward in the field.The text first discusses interesting stories of the discovery and gradual progress of theory and experimentation. Emphasizi

  7. Free electron laser and superconductivity

    CERN Document Server

    Iwata, A

    2003-01-01

    The lasing of the first free-electron laser (FEL) in the world was successfully carried out in 1977, so the history of FELs as a light source is not so long. But FELs are now utilized for research in many scientific and engineering fields owing to such characteristics as tunability of the wavelength, and short pulse and high peak power, which is difficult utilizing a common light source. Research for industrial applications has also been carried out in some fields, such as life sciences, semiconductors, nano-scale measurement, and others. The task for the industrial use of FEL is the realization of high energy efficiency and high optical power. As a means of promoting realization, the combining of an FEL and superconducting linac is now under development in order to overcome the thermal limitations of normal-conducting linacs. Further, since tuning the wavelength is carried out by changing the magnetic density of the undulator, which is now induced by moving part of the stack of permanent magnets, there is un...

  8. Structural stability, electronic, mechanical and superconducting properties of CrC and MoC

    Energy Technology Data Exchange (ETDEWEB)

    Kavitha, M.; Sudha Priyanga, G. [Department of Physics, N.M.S.S.V.N College, Madurai 625019, Tamilnadu (India); Rajeswarapalanichamy, R., E-mail: rrpalanichamy@gmail.com [Department of Physics, N.M.S.S.V.N College, Madurai 625019, Tamilnadu (India); Iyakutti, K. [Department of Physics and Nanotechnology, SRM University, Chennai 603203, Tamilnadu (India)

    2016-02-01

    The structural, electronic, mechanical and superconducting properties of chromium carbide (CrC) and molybdenum carbide (MoC) are investigated using first principles calculations based on density functional theory (DFT). The computed ground state properties like equilibrium lattice constants and cell volume are in good agreement with available theoretical and experimental data. A pressure induced structural phase transition from tungsten carbide phase (WC) to zinc blende phase (ZB) and then zinc blende phase (ZB) to nickel arsenide phase (NiAs) are observed in both chromium and molybdenum carbides. Electronic structure reveals that these carbides are metallic at ambient condition. All the calculated elastic constants obey the Born–Huang stability criteria, suggesting that they are mechanically stable at normal and high pressure. The super conducting transition temperatures for CrC and MoC in WC phase are found to be 31.12 K and 17.14 K respectively at normal pressure. - Highlights: • Electronic and mechanical properties of CrC and MoC are investigated. • Pressure induced structural phase transition is predicted at high pressure. • Electronic structure reveals that these materials exhibit metallic behaviour. • Debye temperature values are computed for CrC and MoC. • Superconducting transition temperature values are computed.

  9. Superconductivity

    CERN Document Server

    Ketterson, John B

    2008-01-01

    Conceived as the definitive reference in a classic and important field of modern physics, this extensive and comprehensive handbook systematically reviews the basic physics, theory and recent advances in the field of superconductivity. Leading researchers, including Nobel laureates, describe the state-of-the-art in conventional and unconventional superconductors at a particularly opportune time, as new experimental techniques and field-theoretical methods have emerged. In addition to full-coverage of novel materials and underlying mechanisms, the handbook reflects continued intense research into electron-phone based superconductivity. Considerable attention is devoted to high-Tc superconductivity, novel superconductivity, including triplet pairing in the ruthenates, novel superconductors, such as heavy-Fermion metals and organic materials, and also granular superconductors. What’s more, several contributions address superconductors with impurities and nanostructured superconductors. Important new results on...

  10. A program of high power microwave source research and development from 8 GHz to 600 GHz

    International Nuclear Information System (INIS)

    Granatstein, V.L.; Antonsen, T.M. Jr.; Bidwell, S.; Booske, J.; Carmel, Y.; Destler, W.W.; Kehs, R.A.; Latham, P.E.; Levush, B.; Lou, W.R.; Mayergoyz, I.D.; Minami, K.; Radack, D.J.

    1990-01-01

    We review research results both on a plasma filled, backward wave oscillator (BWO), and on a free electron laser (FEL) driven by a sheet electron beam. Recently, it was demonstrated that a plasma filled BWO driven by an intense relativistic electron beam can generate hundreds of megawatts of microwave radiation at an unusually high efficiency of 40% compared with a typical efficiency of ∼10% in a BWO without a background plasma. Furthermore, the enhanced efficiency can be maintained even for large electron beam currents approaching the vacuum space charge limiting current, and we anticipate this might hold even for larger current values. Theoretical studies and numerical simulations indicate that the enhanced efficiency as well as a lower value for the start oscillation current in the linear regime may be due to the finite length of the BWO circuit coupled with modification of the dispersion relation due to the background plasma. In the case of our FEL studies, we present designs for a 1 MW, CW, tapered FEL amplifier operating at frequencies of 280 GHz and 560 GHz. A short wiggler period (ell w ∼ 1 cm) is combined with a sheet beam of electrons having energy ∼1 MeV. Depressed collector techniques would allow the main power supply rating to be reduced to ∼200 kV. Efficient sheet beam transport (>99%) has been demonstrated through 10 wiggler periods, and transport through 60 wiggler periods is currently under study. Finally, plans for a proof-of-principle tapered FEL amplifier experiment at 94 GHz are presented. 8 refs., 7 figs

  11. Superconducting transition temperature and the formation of closed electron shells in the atoms of superconducting compounds

    International Nuclear Information System (INIS)

    Chapnik, I.M.

    1985-01-01

    The relationship between the regularities in the tansition temperature (T/sub c/) values in analogous compounds (having the same structure and stoichiometry) and the formation of the closed electron shells outside inert gas shells in the atoms of the variable component of the 158 intermetallic superconducting compounds has been discussed. The T/sub c/ data for compounds of the elements from the first long period of the Periodic Table (K to Se) are compared with the T/sub c/ data for the analogous compounds of the elements from the second long period (Rb to Te)

  12. Electron scattering rate in epitaxial YBa2Cu3O7 superconducting films

    Science.gov (United States)

    Flik, M. I.; Zhang, Z. M.; Goodson, K. E.; Siegal, M. P.; Phillips, Julia M.

    1992-09-01

    This work determines the electron scattering rate in the a-b plane of epitaxial YBa2Cu3O7 films using two techniques. Infrared spectroscopy yields the scattering rate at temperatures of 10, 78, and 300 K by fitting reflectance data using thin-film optics and a model for the free-carrier conductivity. The scattering rate is also obtained using kinetic theory and an extrapolation of normal-state electrical resistivity data to superconducting temperatures based on the Bloch theory for the phonon-limited electrical resistivity of metals. The scattering rates determined using both techniques are in agreement and show that the electron mean free path in the a-b plane of YBa2Cu3O7 superconducting films is three to four times the coherence length. Hence YBa2Cu3O7 is pure but not in the extreme pure limit. An average defect interaction range of 4 nm is obtained using the defect density resulting from flux-pinning considerations.

  13. Superconducting TESLA cavities

    Directory of Open Access Journals (Sweden)

    B. Aune

    2000-09-01

    Full Text Available The conceptional design of the proposed linear electron-positron collider TESLA is based on 9-cell 1.3 GHz superconducting niobium cavities with an accelerating gradient of E_{acc}≥25 MV/m at a quality factor Q_{0}≥5×10^{9}. The design goal for the cavities of the TESLA Test Facility (TTF linac was set to the more moderate value of E_{acc}≥15 MV/m. In a first series of 27 industrially produced TTF cavities the average gradient at Q_{0}=5×10^{9} was measured to be 20.1±6.2 MV/m, excluding a few cavities suffering from serious fabrication or material defects. In the second production of 24 TTF cavities, additional quality control measures were introduced, in particular, an eddy-current scan to eliminate niobium sheets with foreign material inclusions and stringent prescriptions for carrying out the electron-beam welds. The average gradient of these cavities at Q_{0}=5×10^{9} amounts to 25.0±3.2 MV/m with the exception of one cavity suffering from a weld defect. Hence only a moderate improvement in production and preparation techniques will be needed to meet the ambitious TESLA goal with an adequate safety margin. In this paper we present a detailed description of the design, fabrication, and preparation of the TESLA Test Facility cavities and their associated components and report on cavity performance in test cryostats and with electron beam in the TTF linac. The ongoing research and development towards higher gradients is briefly addressed.

  14. Antidiabetic Theory of Superconducting State Transition: Phonons and Strong Electron Correlations the Old Physics and New Aspects

    International Nuclear Information System (INIS)

    Banacky, P.

    2010-01-01

    Complex electronic ground state of molecular and solid state system is analyzed on the ab initio level beyond the adiabatic Born-Oppenheimer approximation (BOA). The attention is focused on the band structure fluctuation (BSF) at Fermi level, which is induced by electron-phonon coupling in superconductors, and which is absent in the non-superconducting analogues. The BSF in superconductors results in breakdown of the adiabatic BOA. At these circumstances, chemical potential is substantially reduced and system is stabilized (effect of nuclear dynamics) in the anti adiabatic state at broken symmetry with a gap(s) in one-particle spectrum. Distorted nuclear structure has fluxional character and geometric degeneracy of the anti adiabatic ground state enables formation of mobile bipolarons in real space. It has been shown that an effective attractive e-e interaction (Cooper-pair formation) is in fact correction to electron correlation energy at transition from adiabatic into anti adiabatic ground electronic state. In this respect, Cooper-pair formation is not the primary reason for transition into superconducting state, but it is a consequence of anti adiabatic state formation. It has been shown that thermodynamic properties of system in anti adiabatic state correspond to thermodynamics of superconducting state. Illustrative application of the theory for different types of superconductors is presented.

  15. Coherence properties in superconducting flux qubits

    Energy Technology Data Exchange (ETDEWEB)

    Spilla, Samuele

    2015-02-16

    The research work discussed in this thesis deals with the study of superconducting Josephson qubits. Superconducting qubits are solid-state artificial atoms which are based on lithographically defined Josephson tunnel junctions properties. When sufficiently cooled, these superconducting devices exhibit quantized states of charge, flux or junction phase depending on their design parameters. This allows to observe coherent evolutions of their states. The results presented can be divided into two parts. In a first part we investigate operations of superconducting qubits based on the quantum coherence in superconducting quantum interference devices (SQUID). We explain experimental data which has been observed in a SQUID subjected to fast, large-amplitude modifications of its effective potential shape. The motivations for this work come from the fact that in the past few years there have been attempts to interpret the supposed quantum behavior of physical systems, such as Josephson devices, within a classical framework. Moreover, we analyze the possibility of generating GHZ states, namely maximally entangled states, in a quantum system made out of three Josephson qubits. In particular, we investigate the possible limitations of the GHZ state generation due to coupling to bosonic baths. In the second part of the thesis we address a particular cause of decoherence of flux qubits which has been disregarded until now: thermal gradients, which can arise due to accidental non equilibrium quasiparticle distributions. The reason for these detrimental effects is that heat currents flowing through Josephson tunnel junctions in response to a temperature gradient are periodic functions of the phase difference between the electrodes. The phase dependence of the heat current comes from Andreev reflection, namely an interplay between the quasiparticles which carry heat and the superconducting condensate which is sensitive to the superconducting phase difference. Generally speaking

  16. Electronics and Algorithms for HOM Based Beam Diagnostics

    Science.gov (United States)

    Frisch, Josef; Baboi, Nicoleta; Eddy, Nathan; Nagaitsev, Sergei; Hensler, Olaf; McCormick, Douglas; May, Justin; Molloy, Stephen; Napoly, Olivier; Paparella, Rita; Petrosyan, Lyudvig; Ross, Marc; Simon, Claire; Smith, Tonee

    2006-11-01

    The signals from the Higher Order Mode (HOM) ports on superconducting cavities can be used as beam position monitors and to do survey structure alignment. A HOM-based diagnostic system has been installed to instrument both couplers on each of the 40 cryogenic accelerating structures in the DESY TTF2 Linac. The electronics uses a single stage down conversion from the 1.7 GHz HOM spectral line to a 20MHz IF which has been digitized. The electronics is based on low cost surface mount components suitable for large scale production. The analysis of the HOM data is based on Singular Value Decomposition. The response of the OM modes is calibrated using conventional BPMs.

  17. WORKSHOP: Radiofrequency superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1984-10-15

    The Second Workshop on Radiofrequency Superconductivity was held at CERN from 23-27 July, four years after the first, organized at Karlsruhe. 35 invited talks were presented to the about 80 participants from Australia, Brazil, Europe, Japan and the United States. For the first time, ten Laboratories operating or planning superconducting accelerators for heavy ions participated and shared their experience with the community proposing the use of superconducting accelerating sections for electron accelerators.

  18. WORKSHOP: Radiofrequency superconductivity

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    The Second Workshop on Radiofrequency Superconductivity was held at CERN from 23-27 July, four years after the first, organized at Karlsruhe. 35 invited talks were presented to the about 80 participants from Australia, Brazil, Europe, Japan and the United States. For the first time, ten Laboratories operating or planning superconducting accelerators for heavy ions participated and shared their experience with the community proposing the use of superconducting accelerating sections for electron accelerators

  19. Superconducting radio frequency cavities: design, development and results

    International Nuclear Information System (INIS)

    Prakash, P.N.; Mistri, K.K.; Sonti, S.S.K.; Sacharias, J.; Raiand, A.; Kanjilal, D.

    2013-01-01

    In recent years, the development of superconducting niobium cavities has evoked a lot of interest among the accelerator physics community of India. Many laboratories are planning to develop superconducting niobium cavities for new accelerators and applications. Inter-University Accelerator Centre (IUAC) has been engaged in the indigenous development of niobium resonators for over a decade. During this period, several quarter wave resonators have been successfully built, tested and installed in the superconducting linac at IUAC. A new niobium low beta resonator for the High Current Injector (HCI) project has been designed, prototyped and tested. In addition to the in-house projects, IUAC is nearing completion of two niobium single spoke resonators (SSR1) for Fermi Lab, USA. Under the Indian Institutions and Fermi Lab Collaboration (IIFC), Raja Ramanna Centre for Advanced Technology, Indore and Inter-University Accelerator Centre have jointly developed TESLA-type 1.3 GHz single cell cavities which have achieved very high accelerating gradients. Buoyed by the success of this work, a 5-cell 1.3 GHz cavity with simple end tubes has been successfully built. This cavity is presently at Fermi Lab for 2 K tests. Recently, a 650 MHz, β=0.9 single cell cavity has also been successfully completed and is ready for cold tests. There are plans to develop a 650 MHz, β=0.6 single cell cavity in collaboration with VECC, Kolkata. This paper presents the status of the niobium cavities developed at Inter-University Accelerator Centre. (author)

  20. Development of 14.5 GHz electron cyclotron resonance ion source at KAERI

    International Nuclear Information System (INIS)

    Byung-Hoon, Oh; Sang-Ryul, In; Kwang-Won, Lee; Chang Seog, Seo; Jung-Tae, Jin; Dae-Sik, Chang; Seong Ho, Jeong; Chul-Kew Hwang

    2012-01-01

    A 14.5 GHz ECRIS has been designed and fabricated at KAERI (Korea Atomic Energy Research Institute) to produce multi-charged ion beam (especially for C 6+ ion beam) for medical application. The magnet system has copper conductor solenoid coils and a permanent magnet hexapole. A welded tube with aluminium and stainless steel is used for an ECR plasma chamber to improve the production of secondary electron. A klystron supplies microwave energy to the plasma. A movable beam extractor with 8 mm aperture covers different species and different charge numbers of the beam. Fabrication and initial experimental results on ECR plasma are discussed in this paper. The paper is followed by the slides of the presentation. (authors)

  1. 14 GHz longitudinally detected electron spin resonance using microHall sensors

    Science.gov (United States)

    Bouterfas, M.; Mouaziz, S.; Popovic, R. S.

    2017-09-01

    In this work we developed a home-made LOngitudinally Detected Electron Spin Resonance (LODESR) spectrometer based on a microsize Hall sensor. A coplanar waveguide (CPW)-resonator is used to induce microwave-excitation on the sample at 14 GHz. We used InSb cross-shaped Hall devices with active areas of (10 μm × 10 μm) and (5 μm × 5 μm) . Signal intensities of the longitudinal magnetization component of DPPH and YIG samples of volumes about (10 μm) 3 and (5 μm) 3 , are measured under amplitude and frequency modulated microwave magnetic field generated by the CPW-resonator. At room temperature, 109spins /G √Hz sensitivity is achieved for 0.2mT linewidth, a result which is still better than most of inductive detected LODESR sensitivities.

  2. The stability of a terahertz receiver based on a superconducting integrated receiver

    International Nuclear Information System (INIS)

    Ozhegov, R V; Gorshkov, K N; Gol'tsman, G N; Kinev, N V; Koshelets, V P

    2011-01-01

    We present the results of stability testing of a terahertz radiometer based on a superconducting receiver with a SIS tunnel junction as the mixer and a flux-flow oscillator as the local oscillator. In the continuum mode, the receiver with a noise temperature of 95 K at 510 GHz measured over the intermediate frequency (IF) passband of 4-8 GHz offered a noise equivalent temperature difference of 10 ± 1 mK at an integration time of 1 s. We offer a method to significantly increase the integration time without the use of complex measurement equipment. The receiver observed a strong signal over a final detection bandwidth of 4 GHz and offered an Allan time of 5 s.

  3. The stability of a terahertz receiver based on a superconducting integrated receiver

    Energy Technology Data Exchange (ETDEWEB)

    Ozhegov, R V; Gorshkov, K N; Gol' tsman, G N [Department of Physics, Moscow State Pedagogical University, Moscow 119992 (Russian Federation); Kinev, N V; Koshelets, V P, E-mail: Ozhegov@rplab.ru [Institute of Radio Engineering and Electronics, 125009 Moscow (Russian Federation)

    2011-03-15

    We present the results of stability testing of a terahertz radiometer based on a superconducting receiver with a SIS tunnel junction as the mixer and a flux-flow oscillator as the local oscillator. In the continuum mode, the receiver with a noise temperature of 95 K at 510 GHz measured over the intermediate frequency (IF) passband of 4-8 GHz offered a noise equivalent temperature difference of 10 {+-} 1 mK at an integration time of 1 s. We offer a method to significantly increase the integration time without the use of complex measurement equipment. The receiver observed a strong signal over a final detection bandwidth of 4 GHz and offered an Allan time of 5 s.

  4. Fast thermometry for superconducting rf cavity testing

    International Nuclear Information System (INIS)

    Orris, Darryl; Bellantoni, Leo; Carcagno, Ruben H.; Edwards, Helen; Harms, Elvin Robert; Khabiboulline, Timergali N.; Kotelnikov, Sergey; Makulski, Andrzej; Nehring, Roger; Pischalnikov, Yuriy; Fermilab

    2007-01-01

    Fast readout of strategically placed low heat capacity thermometry can provide valuable information of Superconducting RF (SRF) cavity performance. Such a system has proven very effective for the development and testing of new cavity designs. Recently, several resistance temperature detectors (RTDs) were installed in key regions of interest on a new 9 cell 3.9 GHz SRF cavity with integrated HOM design at FNAL. A data acquisition system was developed to read out these sensors with enough time and temperature resolution to measure temperature changes on the cavity due to heat generated from multipacting or quenching within power pulses. The design and performance of the fast thermometry system will be discussed along with results from tests of the 9 cell 3.9GHz SRF cavity

  5. Fast thermometry for superconducting rf cavity testing

    Energy Technology Data Exchange (ETDEWEB)

    Orris, Darryl; Bellantoni, Leo; Carcagno, Ruben H.; Edwards, Helen; Harms, Elvin Robert; Khabiboulline, Timergali N.; Kotelnikov, Sergey; Makulski, Andrzej; Nehring, Roger; Pischalnikov, Yuriy; /Fermilab

    2007-06-01

    Fast readout of strategically placed low heat capacity thermometry can provide valuable information of Superconducting RF (SRF) cavity performance. Such a system has proven very effective for the development and testing of new cavity designs. Recently, several resistance temperature detectors (RTDs) were installed in key regions of interest on a new 9 cell 3.9 GHz SRF cavity with integrated HOM design at FNAL. A data acquisition system was developed to read out these sensors with enough time and temperature resolution to measure temperature changes on the cavity due to heat generated from multipacting or quenching within power pulses. The design and performance of the fast thermometry system will be discussed along with results from tests of the 9 cell 3.9GHz SRF cavity.

  6. PK-ISIS: a new superconducting ECR ion source at Pantechnik

    International Nuclear Information System (INIS)

    Villari, A.C.; Bieth, C.; Bougy, W.; Brionne, N.; Donzel, X.; Gaubert, G.; Leroy, R.; Sineau, A.; Tasset, O.; Vallerand, C.; Thuillier, T.

    2012-01-01

    The new ECR ion source PK-ISIS was recently commissioned at Pantechnik. Three superconducting coils generate the axial magnetic field configuration while the radial magnetic field is done with multi-layer permanent magnets. Special care was devoted in the design of the hexapolar structure, allowing a maximum magnetic field of 1.32 T at the wall of the 82 mm diameter plasma chamber. The three superconducting coils using Low Temperature Superconducting wires are cooled by a single double stage cryo-cooler (4.2 K). Cryogen-free technology is used, providing reliability, easy maintenance at low cost. The maximum installed RF power (18.0 GHz) is of 2 kW. Metallic beams can be produced with an oven (T max = 1400 C) installed with an angle of 5 degrees with respect to the source axis or a sputtering system, mounted in the axis of the source. The beam extraction system is constituted of three electrodes in accel-decel configuration. The new source of Pantechnik is conceived for reaching optimum performances at 18 GHz RF frequencies. PK-ISIS delivers 5 to 10 times more beam intensity than the original PK-DELIS and/or shifting the charge state distribution to higher values. PK-ISIS is built with Low Temperature Superconducting wire technology (LTS), but keeps the He-free concept, extremely important for a reliable and easy operation. The radial field circuit is permanent magnet made. Finally, PK-ISIS is also conceived for using in a High-Voltage platform with minor power consumption. The paper is followed by the slides of the presentation. (A.C.)

  7. Generation of strong electromagnetic power at 35 GHz from the interaction of a resonant cavity with a relativistic electron beam generated by a free electron laser

    International Nuclear Information System (INIS)

    Lefevre, Thibaut

    2000-01-01

    The next generation of electron-positron linear colliders must reach the TeV energy range. For this, one requires an adequate RF power source to feed the accelerating cavities of the collider. One way to generate this source is to use the Two Beam Accelerator concept in which the RF power is produced in resonant cavities driven by an intense bunched beam. In this thesis, I present the experimental results obtained at the CEA/CESTA using an electron beam generated by an induction linac. First, some studies were performed with the LELIA induction linac (2.2 MeV, 1 kA, 80 ns) using a Free Electron Laser (FEL) as a buncher at 35 GHz. A second part relates the experiment made with the PIVAIR induction linac (7 MeV, 1 kA, 80 ns) in order to measure the RF power extracted from a resonant cavity at 35 GHz, which is driven by the bunches produced in the FEL. One can also find a simple theoretical modeling of the beam-cavity interaction, and the numerical results dealing with the design of the cavity we tested. (author) [fr

  8. Superconducting active impedance converter

    International Nuclear Information System (INIS)

    Ginley, D.S.; Hietala, V.M.; Martens, J.S.

    1993-01-01

    A transimpedance amplifier for use with high temperature superconducting, other superconducting, and conventional semiconductors allows for appropriate signal amplification and impedance matching to processing electronics. The amplifier incorporates the superconducting flux flow transistor into a differential amplifier configuration which allows for operation over a wide temperature range, and is characterized by high gain, relatively low noise, and response times less than 200 picoseconds over at least a 10-80 K. temperature range. The invention is particularly useful when a signal derived from either far-IR focal plane detectors or from Josephson junctions is to be processed by higher signal/higher impedance electronics, such as conventional semiconductor technology. 12 figures

  9. High-T{sub c} superconductivity in monolayer FeSe on SrTiO{sub 3} via interface-induced small-q electron-phonon coupling

    Energy Technology Data Exchange (ETDEWEB)

    Aperis, Alexandros; Oppeneer, Peter M. [Uppsala University (Sweden)

    2016-07-01

    A monolayer of FeSe deposited on SrTiO{sub 3} becomes superconducting at temperatures that exceed T{sub c}=100 K, as compared to a bulk T{sub c} of 8 K. Recent ARPES measurements have provided strong evidence that an interfaced-induced electron-phonon interaction between FeSe electrons and SrTiO{sub 3} phonons plays a decisive role in this phenomenon. However, the mechanism that drives this tantalizing high-T{sub c} boost is still unclear. Here, we examine the recent experimental findings using fully anisotropic, full bandwidth multiband Eliashberg calculations focusing on the superconducting state of FeSe/STO. We use a realistic ten band tight-binding band structure for the electrons of monolayer FeSe and study how the suggested interface-induced small-q electron-phonon interaction mediates superconductivity. Our calculations produce a high-T{sub c} s-wave superconducting state with the experimentally resolved momentum dependence. Further, we calculate the normal metal/insulator/superconductor tunneling spectrum and identify fingerprints of the interface-induced phonon mechanism.

  10. Superconducting joint of Bi-2223/Ag superconducting tapes by diffusion bonding

    International Nuclear Information System (INIS)

    Guo Wei; Zou Guisheng; Wu Aiping; Wang Yanjun; Bai Hailin; Ren Jialie

    2009-01-01

    61-Filaments Bi-2223/Ag superconducting tapes have been joined by diffusion bonding. The critical currents (I C s) of the joints are obtained by using standard four probe method under no magnetic field in the liquid nitrogen. The microstructures of the joints are evaluated by the electron microscope in electron backscatter diffraction mode and the phase compositions of the superconducting cores of the joint and the original tape are determined by X-ray diffraction (XRD). The results show diffusion bonding is effective bonding technique for HTS tapes, and the bonding time is reduced greatly from hundreds of hours to a few hours, and the bonding pressure also changes from 140-4000 MPa to 3 MPa. Furthermore, the diffusion bonding joints sustain superconducting properties, and the critical current ratios (CCR O ) of the joints are in the range of 35%-80%. Microstructures of the typical joint display a good bonding and some defects existed in traditional method are avoided. XRD results show that the phase compositions of the superconducting cores have no obvious changes before and after diffusion bonding, which offers physical and material bases for high superconducting property of the joints.

  11. Changes of superconducting interaction in interfaces

    International Nuclear Information System (INIS)

    Halbritter, J.

    1976-01-01

    The leakage of conduction electrons from metals into dielectric or semiconducting coatings yields changes in electron phonon coupling and hybridization with localized states in the coating. The changed electron-phonon coupling explains the observed strengthened superconducting interaction with some monolayer thick coating. The hybridization with localized states, i.e. resonance scattering, yields pair weakening and hence a monotonic depression of superconductivity with coating thickness in agreement with experiments. The latter effect explains quantitatively the Tsub(c) and Δ depression (Δ/kTsub(c) approximately equal to const) and a decrease in the Maki-Thompson-fluctuation term observed with thin superconducting films. (author)

  12. ASC 84: applied superconductivity conference. Final program and abstracts

    International Nuclear Information System (INIS)

    1984-01-01

    Abstracts are given of presentations covering: superconducting device fabrication; applications of rf superconductivity; conductor stability and losses; detectors and signal processing; fusion magnets; A15 and Nb-Ti conductors; stability, losses, and various conductors; SQUID applications; new applications of superconductivity; advanced conductor materials; high energy physics applications of superconductivity; electronic materials and characterization; general superconducting electronics; ac machinery and new applications; digital devices; fusion and other large scale applications; in-situ and powder process conductors; ac applications; synthesis, properties, and characterization of conductors; superconducting microelectronics

  13. ASC 84: applied superconductivity conference. Final program and abstracts

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    Abstracts are given of presentations covering: superconducting device fabrication; applications of rf superconductivity; conductor stability and losses; detectors and signal processing; fusion magnets; A15 and Nb-Ti conductors; stability, losses, and various conductors; SQUID applications; new applications of superconductivity; advanced conductor materials; high energy physics applications of superconductivity; electronic materials and characterization; general superconducting electronics; ac machinery and new applications; digital devices; fusion and other large scale applications; in-situ and powder process conductors; ac applications; synthesis, properties, and characterization of conductors; superconducting microelectronics. (LEW)

  14. Measurement of Microwave Parameters of a Superconducting Niobium Cavity

    Science.gov (United States)

    Azaryan, N. S.; Baturitskii, M. A.; Budagov, Yu. A.; Demin, D. L.; Dem‧yanov, S. E.; Karpovich, V. A.; Kniga, V. V.; Krivosheev, R. M.; Lyubetskii, N. V.; Maksimov, S. I.; Pobol‧, I. L.; Rodionova, V. N.; Shirkov, G. D.; Shumeiko, N. M.; Yurevich, S. V.

    2017-01-01

    This paper describes a method for direct measurement of the amplitude-frequency characteristics and the Q factor of empty superconducting niobium radio frequency Tesla-type cavities. An automated measuring complex that permits recording the superconductivity effect and measuring high Q values has been developed. Measurements have been made of the Q factors of the investigated objects (the first domestic 1.3-GHz niobium cavities) at a level no lower than 0.1·109 (with a maximum value of 1.2·1010) and a level of relative losses lower than 130 dB (with a minimum factor of 139.7 dB) at liquid nitrogen temperature.

  15. Di- and tri-carboxylic-acid-based etches for processing high temperature superconducting thin films and related materials

    International Nuclear Information System (INIS)

    Ginley, D.S.; Barr, L.; Ashby, C.I.H.; Plut, T.A.; Urea, D.; Siegal, M.P.; Martens, J.S.; Johansson, M.E.

    1994-01-01

    The development of passive and active electronics from high-temperature superconducting thin films depends on the development of process technology capable of producing appropriate feature sizes without degrading the key superconducting properties. We present a new class of chelating etches based on di- and tri-carboxylic acids that are compatible with positive photoresists and can produce sub-micron feature sizes while typically producing increases the microwave surface resistance at 94 GHz by less than 10%. This simple etching process works well for both the Y--Ba--Cu--O and Tl--Ba--Ca--Cu--O systems. In addition, we demonstrate that the use of chelating etches with an activator such as HF allows the etching of related oxides such as LaAlO 3 , which is a key substrate material, and Pb(Zr 0.53 Ti 0.47 )O 3 (PZT) which is a key ferroelectric material for HTS and other applications such as nonvolatile memories

  16. Feedhorn-Coupled Transition-Edge Superconducting Bolometer Arrays for Cosmic Microwave Background Polarimetry

    Science.gov (United States)

    Hubmayr, J.; Austermann, J.; Beall, J.; Becker, D.; Cho, H.-M.; Datta, R.; Duff, S. M.; Grace, E.; Halverson, N.; Henderson, S. W.; hide

    2015-01-01

    NIST produces large-format, dual-polarization-sensitive detector arrays for a broad range of frequencies (30-1400 GHz). Such arrays enable a host of astrophysical measurements. Detectors optimized for cosmic microwave background observations are monolithic, polarization-sensitive arrays based on feedhorn and planar Nb antenna-coupled transition-edge superconducting (TES) bolometers. Recent designs achieve multiband, polarimetric sensing within each spatial pixel. In this proceeding, we describe our multichroic, feedhorn-coupled design; demonstrate performance at 70-380 GHz; and comment on current developments for implementation of these detector arrays in the advanced Atacama Cosmology Telescope receiver

  17. Ab initio molecular-orbital study on electron correlation effects in CuO6 clusters relating to high-Tc superconductivity

    International Nuclear Information System (INIS)

    Yamamoto, S.; Yamaguchi, K.; Nasu, K.

    1990-01-01

    Ab initio molecular-orbital calculations for CuO 6 clusters have been performed to elucidate the electronic structures of undoped and doped copper oxides, which are of current interest in relation to high-T c superconductivity. The electron correlation effects for these species are thoroughly investigated by the full-valence configuration-interaction method and the complete-active-space self-consistent-field method. The electron correlation effect is relatively simple for the A g state (σ hole), whereas pair excitations and spin-flip excitations give sizable contributions to the configuration-interaction wave function for the B state (in-plane π hole). Implications of these results are discussed in relation to the mechanisms of the high-T c superconductivity

  18. Itinerant-electron antiferromagnetism and superconductivity in bcc Cr-Re alloys

    International Nuclear Information System (INIS)

    Nishihara, Y.; Yamaguchi, Y.; Kohara, T.; Tokumoto, M.

    1985-01-01

    The magnetic and superconducting properties of bcc Cr-Re alloys with up to 40 at. % Re were studied via measurements of the magnetic susceptibility, electrical resistivity, and nuclear magnetic resonance of the Re nuclei. Antiferromagnetic order coexists with superconductivity above 18 at. % Re. The results were analyzed with the coexistence model of spin-density waves and superconductivity. In the Re-concentration range greater than 18 at. %, about 10% of the Fermi surface satisfies the nesting condition and the rest of it contributes to form the superconducting gap. This model also explains the increase in the superconducting transition temperature and the decrease in the magnetic susceptibility by annealing as a competing effect between spin-density waves and superconductivity

  19. Superconductivity in Layered Organic Metals

    Directory of Open Access Journals (Sweden)

    Jochen Wosnitza

    2012-04-01

    Full Text Available In this short review, I will give an overview on the current understanding of the superconductivity in quasi-two-dimensional organic metals. Thereby, I will focus on charge-transfer salts based on bis(ethylenedithiotetrathiafulvalene (BEDT-TTF or ET for short. In these materials, strong electronic correlations are clearly evident, resulting in unique phase diagrams. The layered crystallographic structure leads to highly anisotropic electronic as well as superconducting properties. The corresponding very high orbital critical field for in-plane magnetic-field alignment allows for the occurrence of the Fulde–Ferrell– Larkin–Ovchinnikov state as evidenced by thermodynamic measurements. The experimental picture on the nature of the superconducting state is still controversial with evidence both for unconventional as well as for BCS-like superconductivity.

  20. Continuous wave superconducting radio frequency electron linac for nuclear physics research

    International Nuclear Information System (INIS)

    Reece, Charles E.

    2016-01-01

    CEBAF, the Continuous Electron Beam Accelerator Facility, has been actively serving the nuclear physics research community as a unique forefront international resource since 1995. This cw electron linear accelerator (linac) at the U.S. Department of Energy’s Thomas Jefferson National Accelerator Facility (Jefferson Lab) has continued to evolve as a precision tool for discerning the structure and dynamics within nuclei. Superconducting rf (SRF) technology has been the essential foundation for CEBAF, first as a 4 GeV machine, then 6 GeV, and currently capable of 12 GeV. Lastly, we review the development, implementation, and performance of SRF systems for CEBAF from its early beginnings to the commissioning of the 12 GeV era.

  1. A 90 GHz photoinjector

    International Nuclear Information System (INIS)

    Palmer, D.T.; Hogan, M.J.; Ferrario, M.; Serafini, L.

    1999-01-01

    Photocathode rf guns depend on mode locked laser systems to produce an electron beam at a given phase of the rf. In general, the laser pulse is less than σ 2 = 10'' of rf phase in length and the required stability is on the order of Δφ = 1 At 90 GHz (W-band), these requirements correspond to σ 2 = 333 fsec and Δφ = 33 fsec. Laser system with pulse lengths in the fsec regime are commercially available, the timing stability is a major concern. It is proposed a multi-cell W-band photoinjector that does not require a mode locked laser system. Thereby eliminating the stability requirements at W-band. The laser pulse is allowed to be many rf periods long. In principle, the photoinjector can now be considered as a thermionic rf gun. Instead of using an alpha magnet to compress the electron bunch, which would have a detrimental effect on the transverse hase space quality due to longitudinal phase space mixing, it is here proposed to use long pulse laser system and a pair of undulators to produce a low emittance, high current, ultra-short electron bunch for beam dynamics experiments in the 90 GHz regime

  2. A study of 60 GHz intersatellite link applications

    Science.gov (United States)

    Anzic, G.; Connolly, D. J.; Haugland, E. J.; Kosmahl, H. G.; Chitwood, J. S.

    Applications of intersatellite links operating at 60 GHz are reviewed. Likely scenarios, ranging from transmission of moderate and high data rates over long distances to low data rates over short distances are examined. A limited parametric tradeoff is performed with system variables such as radiofrequency power, receiver noise temperature, link distance, data rate, and antenna size. Present status is discussed and projections are given for both electron tube and solid state transmitter technologies. Monolithic transmit and receive module technology, already under development at 20 to 30 GHz, is reviewed and its extension to 60 GHz, and possible applicability is discussed.

  3. A study of 60 GHz intersatellite link applications

    Science.gov (United States)

    Anzic, G.; Connolly, D. J.; Haugland, E. J.; Kosmahl, H. G.; Chitwood, J. S.

    1983-01-01

    Applications of intersatellite links operating at 60 GHz are reviewed. Likely scenarios, ranging from transmission of moderate and high data rates over long distances to low data rates over short distances are examined. A limited parametric tradeoff is performed with system variables such as radiofrequency power, receiver noise temperature, link distance, data rate, and antenna size. Present status is discussed and projections are given for both electron tube and solid state transmitter technologies. Monolithic transmit and receive module technology, already under development at 20 to 30 GHz, is reviewed and its extension to 60 GHz, and possible applicability is discussed.

  4. Remote-Steering Antennas for 140 GHz Electron Cyclotron Heating of the Stellarator W7-X

    Directory of Open Access Journals (Sweden)

    Lechte C.

    2017-01-01

    Full Text Available For electron cyclotron resonance heating of the stellarator W7-X at IPP Greifswald, a 140 GHz/10 MW cw millimeter wave system has been built. Two out of 12 launchers will employ a remote-steering design. This paper describes the overall design of the two launchers, and design issues like input coupling structures, manufacturing of corrugated waveguides, optimization of the steering range, integration of vacuum windows, mitrebends and vacuum valves into the launchers, as well as low power tests of the finished waveguides.

  5. Collective modes and dielectric and superconducting properties of electronic systems in confined geometries

    International Nuclear Information System (INIS)

    Ulloa, S.E.

    1984-01-01

    The dielectric response function of electronic systems in restricted geometries is studied as well as some of the consequences, using the self-consistent field method. These consequences include: 1) existence of multiple branches of longitudinal slender acoustic plasma oscillations (SAP) in thin wires; 2) a new superconductivity mechanism in thin wires via the exchange of SAPs by the electrons forming the Cooper pairs, and 3) reduction of the static screening offered by the valence electrons in a thin semiconductor film with respect to the bulk case. The SAP modes are collective modes shown to exist only in thin wires and neither in a bulk system nor in a thin film. They have linear dispersion relations with phase velocities smaller than the Fermi velocity of the system and are not Landau-damped. Numerical examples of these SAP modes in metallic and semiconductor wires are presented, showing that they sould be more easily observable in semiconductor structures. The SAP-induced mechanism of superconductivity is shown to possibly give higher critical temperature T/sub c/ than the phonon mechanism in thin wires. The author presents a semi-rigorous calculation of T/sub c/ and shows that by increasing the frequency of the SAP modes and having a small effective electron mass one would be able to increase T/sub c/. He also shows that the dielectric function of a thin semiconductor slab is wavenumber dependent even at long wavelengths and is not a constant as in the bulk case

  6. Reentrant behavior in the superconducting phase-dependent resistance of a disordered two-dimensional electron gas

    NARCIS (Netherlands)

    den Hartog, S.G.; Wees, B.J.van; Klapwijk, T.M; Nazarov, Y.V.; Borghs, G.

    1997-01-01

    We have investigated the bias-voltage dependence of the phase-dependent differential resistance of a disordered T-shaped two-dimensional electron gas coupled to two superconducting terminals. The resistance oscillations first increase upon lowering the energy. For bias voltages below the Thouless

  7. Superconducting Submm Integrated Receiver for TELIS

    Energy Technology Data Exchange (ETDEWEB)

    Koshelets, V P [Institute of Radio Engineering and Electronics (IREE) (Russian Federation); Ermakov, A B [Institute of Radio Engineering and Electronics (IREE) (Russian Federation); Filippenko, L V [Institute of Radio Engineering and Electronics (IREE) (Russian Federation); Koryukin, O V [Institute of Radio Engineering and Electronics (IREE) (Russian Federation); Khudchenko, A V [Institute of Radio Engineering and Electronics (IREE) (Russian Federation); Sobolev, A S [Institute of Radio Engineering and Electronics (IREE) (Russian Federation); Torgashin, M Yu [Institute of Radio Engineering and Electronics (IREE) (Russian Federation); Yagoubov, P A [SRON National Institute for Space Research (Netherlands); Hoogeveen, R W M [SRON National Institute for Space Research (Netherlands); Vreeling, W J [SRON National Institute for Space Research (Netherlands); Wild, W [SRON National Institute for Space Research (Netherlands); Pylypenko, O M [State Research Center of Superconducting Electronics ' Iceberg' (Ukraine)

    2006-06-01

    In this report we present design and first experimental results for development of the submm superconducting integrated receiver spectrometer for Terahertz Limb Sounder (TELIS). TELIS is a collaborative European project to build up a three-channel heterodyne balloon-based spectrometer for measuring a variety of atmospheric constituents of the stratosphere. The 550 - 650 GHz channel of TELIS is based on a phase-locked Superconducting Integrated Receiver (SIR). SIR is an on-chip combination of a low-noise Superconductor-Insulator-Superconductor (SIS) mixer with quasioptical antenna, a superconducting Flux Flow Oscillator (FFO) acting as Local Oscillator (LO), and SIS harmonic mixer (HM) for FFO phase locking. A number of new solutions were implemented in the new generation of SIR chips. To achieve the wide-band performance of the spectrometer, a side-feed twin-SIS mixer and balanced SIS mixer with 0.8 {mu}m{sup 2} junctions integrated with a double-dipole (or double-slot) antenna is used. An improved design of the FFO for TELIS has been developed and optimized providing a free-running linewidth between 10 and 2 MHz in the frequency range 500 - 700 GHz. It is important to ensure that tuning of a phase-locked (PL) SIR can be performed remotely by telecommand. For this purpose a number of approaches for the PL SIR automatic computer control have been developed. All receiver components (including input optical elements and Martin-Puplett polarization rotating interferometer for single side band operation) will be mounted on a single 4.2 K plate inside a 40 x 180 x 80 mm{sup 3} box. First measurements give an uncorrected double side band (DSB) noise temperature below 250 K measured with the phase-locked FFO; more detailed results are presented at the conference.

  8. Superconducting Submm Integrated Receiver for TELIS

    International Nuclear Information System (INIS)

    Koshelets, V P; Ermakov, A B; Filippenko, L V; Koryukin, O V; Khudchenko, A V; Sobolev, A S; Torgashin, M Yu; Yagoubov, P A; Hoogeveen, R W M; Vreeling, W J; Wild, W; Pylypenko, O M

    2006-01-01

    In this report we present design and first experimental results for development of the submm superconducting integrated receiver spectrometer for Terahertz Limb Sounder (TELIS). TELIS is a collaborative European project to build up a three-channel heterodyne balloon-based spectrometer for measuring a variety of atmospheric constituents of the stratosphere. The 550 - 650 GHz channel of TELIS is based on a phase-locked Superconducting Integrated Receiver (SIR). SIR is an on-chip combination of a low-noise Superconductor-Insulator-Superconductor (SIS) mixer with quasioptical antenna, a superconducting Flux Flow Oscillator (FFO) acting as Local Oscillator (LO), and SIS harmonic mixer (HM) for FFO phase locking. A number of new solutions were implemented in the new generation of SIR chips. To achieve the wide-band performance of the spectrometer, a side-feed twin-SIS mixer and balanced SIS mixer with 0.8 μm 2 junctions integrated with a double-dipole (or double-slot) antenna is used. An improved design of the FFO for TELIS has been developed and optimized providing a free-running linewidth between 10 and 2 MHz in the frequency range 500 - 700 GHz. It is important to ensure that tuning of a phase-locked (PL) SIR can be performed remotely by telecommand. For this purpose a number of approaches for the PL SIR automatic computer control have been developed. All receiver components (including input optical elements and Martin-Puplett polarization rotating interferometer for single side band operation) will be mounted on a single 4.2 K plate inside a 40 x 180 x 80 mm 3 box. First measurements give an uncorrected double side band (DSB) noise temperature below 250 K measured with the phase-locked FFO; more detailed results are presented at the conference

  9. Electronic properties of rocksalt copper monoxide: a proxy structure for high temperature superconductivity

    International Nuclear Information System (INIS)

    Grant, Paul M

    2008-01-01

    Cubic rocksalt copper monoxide, in contrast to its lighter transition metal neighbours, does not exist in nature nor has it yet been successfully synthesized. Nonetheless, its numerical study as a structurally much simpler proxy for the layered cuprate perovskites may prove useful in probing the source of high temperature superconductivity in the latter family of compounds. Here we report such a study employing density functional theory (DFT) abetted by the local density approximation including cation on-site Hubbard interactions (LDA+U). Rather surprisingly, we find that unlike oxides of the light transition metals, cubic CuO remains metallic for all physically reasonable values of U and does not result in a Mott- Hubbard induced charge transfer insulator as might be expected, and, in fact, displays a Fermi surface with clearly nesting tendencies. Preliminary calculations of the net dimensionless electron-phonon coupling constant, λ, yield values in the range 0.6 - 0.7 similar to those found for the superconducting fullerenes and magnesium diboride. On the other hand, we do find as we gradually introduce a tetragonal distortion away from pure cubic symmetry that a charge- transfer insulator emerges for values of U ∼ 5 eV and c/a ∼ 1.3 in agreement with recent experimental data on forced-epitaxial growth of 2-4 ML thick films of tetragonal rocksalt CuO. We preliminarily conclude from these computational studies that high temperature superconductivity in the copper oxide compounds is at least initially mediated by Jahn-Teller driven electron-phonon coupling as originally suggested by Bednorz and Mueller.

  10. High-Tc superconductivity in the d-p electron system

    International Nuclear Information System (INIS)

    Ivanov, V.A.; Zaitsev, R.A.

    1991-01-01

    The relaxation time with spin flip τ s and the parameters ξ, δ, χ of superconducting phase have been calculated on the basis of the kinematical mechanism of superconductivity in strongly correlated oxide models. An inter-relation between the superconducting gap Δ o and the specific heat jump Δ c allowing the experimental verification was obtained and the Ginsburg-Landau equation derived. (author). 8 refs., 2 figs

  11. Superconducting state mechanisms and properties

    CERN Document Server

    Kresin, Vladimir Z; Wolf, Stuart A

    2014-01-01

    'Superconducting State' provides a very detailed theoretical treatment of the key mechanisms of superconductivity, including the current state of the art (phonons, magnons, and plasmons). A very complete description is given of the electron-phonon mechanism responsible for superconductivity in the majority of superconducting systems, and the history of its development, as well as a detailed description of the key experimental techniques used to study the superconducting state and determine the mechanisms. In addition, there are chapters describing the discovery and properties of the key superconducting compounds that are of the most interest for science, and applications including a special chapter on the cuprate superconductors. It provides detailed treatments of some very novel aspects of superconductivity, including multiple bands (gaps), the "pseudogap" state, novel isotope effects beyond BCS, and induced superconductivity.

  12. CARM and harmonic gyro-amplifier experiments at 17 GHz

    International Nuclear Information System (INIS)

    Menninger, W.L.; Danly, B.G.; Alberti, S.; Chen, C.; Rullier, J.L.; Temkin, R.J.

    1993-01-01

    Cyclotron resonance maser amplifiers are possible sources for applications such as electron cyclotron resonance heating of fusion plasmas and driving high-gradient rf linear accelerators. For accelerator drivers, amplifiers or phase locked-oscillators are required. A 17 GHz cyclotron autoresonance maser (CARM) amplifier experiment and a 17 GHz third harmonic gyro-amplifier experiment are presently underway at the MIT Plasma Fusion Center. Using the SRL/MIT SNOMAD II introduction accelerator to provide a 380 kV, 180 A, 30 ns flat top electron beam, the gyro-amplifier experiment has produced 5 MW of rf power with over 50 dB of gain at 17 GHz. The gyro-amplifier operates in the TE 31 mode using a third harmonic interaction. Because of its high power output, the gyro-amplifier will be used as the rf source for a photocathode rf electron gun experiment also taking place at MIT. Preliminary gyro-amplifier results are presented, including measurement of rf power, gain versus interaction length, and the far-field pattern. A CARM experiment designed to operate in the TE 11 mode is also discussed

  13. Superconducting gap anomaly in heavy fermion systems

    International Nuclear Information System (INIS)

    Rout, G.C.; Ojha, M.S.; Behera, S.N.

    2008-01-01

    The heavy fermion system (HFS) is described by the periodic Anderson model (PAM), treating the Coulomb correlation between the f-electrons in the mean-field Hartree-Fock approximation. Superconductivity is introduced by a BCS-type pairing term among the conduction electrons. Within this approximation the equation for the superconducting gap is derived, which depends on the effective position of the energy level of the f-electrons relative to the Fermi level. The latter in turn depends on the occupation probability n f of the f-electrons. The gap equation is solved self-consistently with the equation for n f ; and their temperature dependences are studied for different positions of the bare f-electron energy level, with respect to the Fermi level. The dependence of the superconducting gap on the hybridization leads to a re-entrant behaviour with increasing strength. The induced pairing between the f-electrons and the pairing of mixed conduction and f-electrons due to hybridization are also determined. The temperature dependence of the hybridization parameter, which characterizes the number of electrons with mixed character and represents the number of heavy electrons is studied. This number is shown to be small. The quasi-particle density of states (DOS) shows the existence of a pseudo-gap due to superconductivity and the signature of a hybridization gap at the Fermi level. For the choice of the model parameters, the DOS shows that the HFS is a metal and undergoes a transition to the gap-less superconducting state. (author)

  14. Electronic structures and superconductivity in LuTE2Si2 phases (TE = d-electron transition metal)

    Science.gov (United States)

    Samsel-Czekała, M.; Chajewski, G.; Wiśniewski, P.; Romanova, T.; Hackemer, A.; Gorzelniak, R.; Pikul, A. P.; Kaczorowski, D.

    2018-05-01

    In the course of our search for unconventional superconductors amidst the 1:2:2 phases, we have re-investigated the LuTE2Si2 compounds with TE = Fe, Co, Ni, Ru, Pd and Pt. In this paper, we present the results of our fully relativistic ab initio calculations of the band structures, performed using the full-potential local-orbital code. The theoretical data are supplemented by the results of low-temperature electrical transport and specific heat measurements performed down to 0.35 K. All the materials studied but LuPt2Si2 crystallize with the body-centered tetragonal ThCr2Si2-type structure (space group I4/mmm). Their Fermi surfaces exhibit a three-dimensional multi-band character. In turn, the Pt-bearing compound adopts the primitive tetragonal CaBe2Ge2-type structure (space group P4/nmm), and its Fermi surface consists of predominantly quasi-two-dimensional sheets. Bulk superconductivity was found only in LuPd2Si2 and LuPt2Si2 (independent of the structure type and dimensionality of the Fermi surface). The key superconducting characteristics indicate a fully-gapped BCS type character. Though the electronic structure of LuFe2Si2 closely resembles that of the unconventional superconductor YFe2Ge2, this Lu-based silicide exhibits neither superconductivity nor spin fluctuations at least down to 0.35 K.

  15. Unconventional superconductivity in honeycomb lattice

    Directory of Open Access Journals (Sweden)

    P Sahebsara

    2013-03-01

    Full Text Available   ‎ The possibility of symmetrical s-wave superconductivity in the honeycomb lattice is studied within a strongly correlated regime, using the Hubbard model. The superconducting order parameter is defined by introducing the Green function, which is obtained by calculating the density of the electrons ‎ . In this study showed that the superconducting order parameter appears in doping interval between 0 and 0.5, and x=0.25 is the optimum doping for the s-wave superconductivity in honeycomb lattice.

  16. Coupling an Ensemble of Electrons on Superfluid Helium to a Superconducting Circuit

    Directory of Open Access Journals (Sweden)

    Ge Yang

    2016-03-01

    Full Text Available The quantized lateral motional states and the spin states of electrons trapped on the surface of superfluid helium have been proposed as basic building blocks of a scalable quantum computer. Circuit quantum electrodynamics allows strong dipole coupling between electrons and a high-Q superconducting microwave resonator, enabling such sensitive detection and manipulation of electron degrees of freedom. Here, we present the first realization of a hybrid circuit in which a large number of electrons are trapped on the surface of superfluid helium inside a coplanar waveguide resonator. The high finesse of the resonator allows us to observe large dispersive shifts that are many times the linewidth and make fast and sensitive measurements on the collective vibrational modes of the electron ensemble, as well as the superfluid helium film underneath. Furthermore, a large ensemble coupling is observed in the dispersive regime during experiment, and it shows excellent agreement with our numeric model. The coupling strength of the ensemble to the cavity is found to be ≈1  MHz per electron, indicating the feasibility of achieving single electron strong coupling.

  17. Structural, electronic, superconducting and mechanical properties of ReC and TcC

    Energy Technology Data Exchange (ETDEWEB)

    Kavitha, M.; Priyanga, G. Sudha; Rajeswarapalanichamy, R., E-mail: rajeswarapalanichamy@gmail.com; Santhosh, M. [Department of Physics, N.M.S.S.V.N College, Madurai, Tamilnadu-625019 (India)

    2015-06-24

    The structural, electronic, superconducting and mechanical properties of ReC and TcC are investigated using density functional theory calculations. The lattice constants, bulk modulus, and the density of states are obtained. The calculated lattice parameters are in good agreement with the available results. The density of states reveals that ReC and TcC exhibit metallic behavior at ambient condition. A pressure-induced structural phase transition is observed in both materials.

  18. Strongly correlated electron systems and neutron scattering. Magnetism, superconductivity, structural phase transition

    Energy Technology Data Exchange (ETDEWEB)

    Katano, Susumu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    Neutron scattering experiments in our group on strongly correlated electron systems are reviewed Metal-insulator transitions caused by structural phase transitions in (La{sub 1-x}Sr{sub x}) MnO{sub 3}, a novel magnetic transition in the CeP compound, correlations between antiferromagnetism and superconductivity in UPd{sub 2}Al{sub 3} and so forth are discussed. Here, in this note, the phase transition of Mn-oxides was mainly described. (author)

  19. Continuous wave superconducting radio frequency electron linac for nuclear physics research

    Directory of Open Access Journals (Sweden)

    Charles E. Reece

    2016-12-01

    Full Text Available CEBAF, the Continuous Electron Beam Accelerator Facility, has been actively serving the nuclear physics research community as a unique forefront international resource since 1995. This cw electron linear accelerator (linac at the U.S. Department of Energy’s Thomas Jefferson National Accelerator Facility (Jefferson Lab has continued to evolve as a precision tool for discerning the structure and dynamics within nuclei. Superconducting rf (SRF technology has been the essential foundation for CEBAF, first as a 4 GeV machine, then 6 GeV, and currently capable of 12 GeV. We review the development, implementation, and performance of SRF systems for CEBAF from its early beginnings to the commissioning of the 12 GeV era.

  20. The role of local repulsion in superconductivity in the Hubbard–Holstein model

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chungwei, E-mail: clin@merl.com; Wang, Bingnan; Teo, Koon Hoo

    2017-01-15

    Highlights: • There exists an optimal Boson energy for superconductivity in Hubbard–Holstein model. • The electron-Boson coupling is essential for superconductivity, but the same coupling can lead to polaron insulator, which is against superconductivity. • The local Coulomb repulsion can sometimes enhance superconductivity. - Abstract: We examine the superconducting solution in the Hubbard–Holstein model using Dynamical Mean Field Theory. The Holstein term introduces the site-independent Boson fields coupling to local electron density, and has two competing influences on superconductivity: The Boson field mediates the effective electron-electron attraction, which is essential for the S-wave electron pairing; the same coupling to the Boson fields also induces the polaron effect, which makes the system less metallic and thus suppresses superconductivity. The Hubbard term introduces an energy penalty U when two electrons occupy the same site, which is expected to suppress superconductivity. By solving the Hubbard–Holstein model using Dynamical Mean Field theory, we find that the Hubbard U can be beneficial to superconductivity under some circumstances. In particular, we demonstrate that when the Boson energy Ω is small, a weak local repulsion actually stabilizes the S-wave superconducting state. This behavior can be understood as an interplay between superconductivity, the polaron effect, and the on-site repulsion: As the polaron effect is strong and suppresses superconductivity in the small Ω regime, the weak on-site repulsion reduces the polaron effect and effectively enhances superconductivity. Our calculation elucidates the role of local repulsion in the conventional S-wave superconductors.

  1. Imaging Magnetic Vortices Dynamics Using Lorentz Electron Microscopy with GHz Excitations

    Science.gov (United States)

    Zhu, Yimei

    2015-03-01

    Magnetic vortices in thin films are naturally formed spiral spin configurations with a core polarization pointing out of the film plane. They typically represent ground states with high structural and thermal stability as well as four different chirality-polarity combinations, offering great promise in the development of spin-based devices. For applications to spin oscillators, non-volatile memory and logic devices, the fundamental understanding and precise control of vortex excitations and dynamic switching behavior are essential. The compact dimensionality and fast spin dynamics set grand challenges for direct imaging technologies. Recently, we have developed a unique method to directly visualize the dynamic magnetic vortex motion using advanced Lorentz electron microscopy combined with GHz electronic excitations. It enables us to map the orbit of a magnetic vortex core in a permalloy square with modality. Our approach is complementary to X-ray magnetic circular dichroism and is of general interest to the magnetism community as it paves a way to study fundamental spin phenomena with unprecedented resolution and accuracy. Collaborations with S.D. Pollard, J.F. Pulecio, D.A. Arena and K.S. Buchanan are acknowledged. Work supported by DOE-BES, Material Sciences and Engineering Division, under Contract No. DE-AC02-98CH10886.

  2. Multi-cell superconducting structures for high energy e+ e- colliders and free electron laser linacs

    CERN Document Server

    Sekutowicz, J

    2008-01-01

    This volume, which is the first in the EuCARD Editorial Series on “Accelerator Science and Technology”, is closely combined with the most advanced particle accelerators – based on Superconducting Radio Frequency (SRF) technology. In general, SRF research includes following areas: high gradient cavities, cavity prototyping, thin film technologies, large grain and mono-crystalline niobium and niobium alloys, quenching effects in superconducting cavities, SRF injectors, photo-cathodes, beam dynamics, quality of electron beams, cryogenics, high power RF sources, low level RF controls, tuners, RF power coupling to cavities, RF test infrastructures, etc. The monograph focuses on TESLA structures used in FLASH machine and planned for XFEL and ILC experiments.

  3. Imaging the electron-boson coupling in superconducting FeSe films using a scanning tunneling microscope.

    Science.gov (United States)

    Song, Can-Li; Wang, Yi-Lin; Jiang, Ye-Ping; Li, Zhi; Wang, Lili; He, Ke; Chen, Xi; Hoffman, Jennifer E; Ma, Xu-Cun; Xue, Qi-Kun

    2014-02-07

    Scanning tunneling spectroscopy has been used to reveal signatures of a bosonic mode in the local quasiparticle density of states of superconducting FeSe films. The mode appears below Tc as a "dip-hump" feature at energy Ω∼4.7kBTc beyond the superconducting gap Δ. Spectra on strained regions of the FeSe films reveal simultaneous decreases in Δ and Ω. This contrasts with all previous reports on other high-Tc superconductors, where Δ locally anticorrelates with Ω. A local strong coupling model is found to reconcile the discrepancy well, and to provide a unified picture of the electron-boson coupling in unconventional superconductors.

  4. Applied superconductivity. Handbook on devices and applications. Vol. 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    Seidel, Paul (ed.) [Jena Univ. (Germany). Inst. fuer Festkoerperphysik, AG Tieftemperaturphysik

    2015-07-01

    The both volumes contain the following 12 chapters: 1. Fundamentals; 2. Superconducting Materials; 3. Technology, Preparation, and Characterization (bulk materials, thin films, multilayers, wires, tapes; cooling); 4, Superconducting Magnets; 5. Power Applications (superconducting cables, superconducting current leads, fault current limiters, transformers, SMES and flywheels; rotating machines; SmartGrids); 6. Superconductive Passive Devices (superconducting microwave components; cavities for accelerators; superconducting pickup coils; magnetic shields); 7. Applications in Quantum Metrology (superconducting hot electron bolometers; transition edge sensors; SIS Mixers; superconducting photon detectors; applications at Terahertz frequency; detector readout); 8. Superconducting Radiation and Particle Detectors; 9. Superconducting Quantum Interference (SQUIDs); 10. Superconductor Digital Electronics; 11. Other Applications (Josephson arrays as radiation sources. Tunable microwave devices) and 12. Summary and Outlook (of the superconducting devices).

  5. Applied superconductivity. Handbook on devices and applications. Vol. 1 and 2

    International Nuclear Information System (INIS)

    Seidel, Paul

    2015-01-01

    The both volumes contain the following 12 chapters: 1. Fundamentals; 2. Superconducting Materials; 3. Technology, Preparation, and Characterization (bulk materials, thin films, multilayers, wires, tapes; cooling); 4, Superconducting Magnets; 5. Power Applications (superconducting cables, superconducting current leads, fault current limiters, transformers, SMES and flywheels; rotating machines; SmartGrids); 6. Superconductive Passive Devices (superconducting microwave components; cavities for accelerators; superconducting pickup coils; magnetic shields); 7. Applications in Quantum Metrology (superconducting hot electron bolometers; transition edge sensors; SIS Mixers; superconducting photon detectors; applications at Terahertz frequency; detector readout); 8. Superconducting Radiation and Particle Detectors; 9. Superconducting Quantum Interference (SQUIDs); 10. Superconductor Digital Electronics; 11. Other Applications (Josephson arrays as radiation sources. Tunable microwave devices) and 12. Summary and Outlook (of the superconducting devices).

  6. Recent developments on the 110 GHz electron cyclotron installation on the DIII-D tokamak

    International Nuclear Information System (INIS)

    Ponce, D.; Callis, R.W.; Cary, W.P.; Ferron, J.R.; Green, M.; Grunloh, H.J.; Gorelov, Y.; Lohr, J.; Ellis, R.A.

    2003-01-01

    Significant improvements are being implemented to the capability of the 110 GHz electron cyclotron system on the DIII-D tokamak. Chief among these is the addition of the fifth and sixth 1 MW class gyrotrons, increasing the power available for auxiliary heating and current drive by nearly 60%. These tubes use artificially grown diamond r.f. output windows to obtain high power with long pulse capability. The beams from these tubes are nearly Gaussian, facilitating coupling to the waveguide. A new fully articulating dual launcher capable of high speed spatial scanning has been designed and tested. The launcher has two axis independent steering for each waveguide. The mirrors can be rotated at up to 100 deg./s. A new feedback system linking the DIII-D Plasma Control System (PCS) with the gyrotron beam voltage waveform generators permits real-time feedback control of some plasma properties such as electron temperature. The PCS can use a variety of plasma monitors to generate its control signal, including electron cyclotron emission and Mirnov probes. Electron cyclotron heating and electron cyclotron current drive were used during this year's DIII-D experimental campaign to control electron temperature, density, and q profiles, induce an ELM-free H-mode, and suppress the m=2/n=1 neoclassical tearing mode. The new capabilities have expanded the role of EC systems in tokamak plasma control

  7. Technical challenges of superconductivity and cryogenics in pursuing TESLA-TTF

    International Nuclear Information System (INIS)

    Shu, Quan-Sheng

    1996-01-01

    TESLA (TeV Energy Superconducting Linear Accelerator) Collaboration is an international R ampersand D effort towards the development of an e + e - linear collider with 500 GeV center of mass by means of 20 km active superconducting accelerating structures at a frequency of 1.3 GHz. The ultimate challenges faced by the TESLA project are (1) to raise operational accelerating gradients to 25 MV/m from current world level of 5-10 MV/m, and (2) to reduce construction costs (cryomodules, klystrons, etc.) down to $2,000/MV from now about $40,000/MV. The TESLA Collaboration is building a prototype TESLA test facility (TTF) of a 500 MeV superconducting linear accelerator to establish the technical basis. TTF is presently under construction and will be commissioned at DESY in 1997, through the joint efforts of 24 laboratories from 8 countries. Significant progress has been made in reaching the high accelerating gradient of 25 MV/m in superconducting cavities, developing cryomodules and constructing TTF infrastructure, etc. This paper will briefly discuss the challenges being faced and review the progress achieved in the technical area of superconductivity and cryogenics by the TESLA Collaboration

  8. Compact electron storage ring JESCOS with normalconducting or superconducting magnets for X-ray lithography

    International Nuclear Information System (INIS)

    Anton, F.; Klein, U.; Krischel, D.; Anderberg, B.

    1992-01-01

    The layouts of a normal conducting electron storage ring and a storage ring with superconducting bending magnets are presented. The storage rings have a critical wavelength of 1 nm and are designed as compact sources for X-ray lithography. Each ring fits into a shielded room with a diameter of 14 m. (author) 3 refs.; 5 figs.; 1 tab

  9. Tailoring Superconductivity with Quantum Dislocations.

    Science.gov (United States)

    Li, Mingda; Song, Qichen; Liu, Te-Huan; Meroueh, Laureen; Mahan, Gerald D; Dresselhaus, Mildred S; Chen, Gang

    2017-08-09

    Despite the established knowledge that crystal dislocations can affect a material's superconducting properties, the exact mechanism of the electron-dislocation interaction in a dislocated superconductor has long been missing. Being a type of defect, dislocations are expected to decrease a material's superconducting transition temperature (T c ) by breaking the coherence. Yet experimentally, even in isotropic type I superconductors, dislocations can either decrease, increase, or have little influence on T c . These experimental findings have yet to be understood. Although the anisotropic pairing in dirty superconductors has explained impurity-induced T c reduction, no quantitative agreement has been reached in the case a dislocation given its complexity. In this study, by generalizing the one-dimensional quantized dislocation field to three dimensions, we reveal that there are indeed two distinct types of electron-dislocation interactions. Besides the usual electron-dislocation potential scattering, there is another interaction driving an effective attraction between electrons that is caused by dislons, which are quantized modes of a dislocation. The role of dislocations to superconductivity is thus clarified as the competition between the classical and quantum effects, showing excellent agreement with existing experimental data. In particular, the existence of both classical and quantum effects provides a plausible explanation for the illusive origin of dislocation-induced superconductivity in semiconducting PbS/PbTe superlattice nanostructures. A quantitative criterion has been derived, in which a dislocated superconductor with low elastic moduli and small electron effective mass and in a confined environment is inclined to enhance T c . This provides a new pathway for engineering a material's superconducting properties by using dislocations as an additional degree of freedom.

  10. High power tests of dressed supconducting 1.3 GHz RF cavities

    Energy Technology Data Exchange (ETDEWEB)

    Hocker, A.; Harms, E.R.; Lunin, A.; Sukhanov, A.; /Fermilab

    2011-03-01

    A single-cavity test cryostat is used to conduct pulsed high power RF tests of superconducting 1.3 GHz RF cavities at 2 K. The cavities under test are welded inside individual helium vessels and are outfitted ('dressed') with a fundamental power coupler, higher-order mode couplers, magnetic shielding, a blade tuner, and piezoelectric tuners. The cavity performance is evaluated in terms of accelerating gradient, unloaded quality factor, and field emission, and the functionality of the auxiliary components is verified. Test results from the first set of dressed cavities are presented here.

  11. A wideband superconducting filter at Ku-band based on interdigital coupling

    Science.gov (United States)

    Jiang, Ying; Wei, Bin; Cao, Bisong; Li, Qirong; Guo, Xubo; Jiang, Linan; Song, Xiaoke; Wang, Xiang

    2018-04-01

    In this paper, an interdigital-type resonator with strong electric coupling is proposed for the wideband high-frequency (>10 GHz) filter design. The proposed microstrip resonator consists of an H-shaped main line part with its both ends installed with interdigital finger parts. Strong electric coupling is achieved between adjacent resonators. A six-pole high-temperature superconducting filter at Ku-band using this resonator is designed and fabricated. The filter has a center frequency of 15.11 GHz with a fractional bandwidth of 30%. The insertion loss of the passband is less than 0.3 dB, and the return loss is greater than 14 dB without any tuning.

  12. Electronic properties of high-Tc superconductors. The normal and the superconducting state of high-Tc materials. Proceedings

    International Nuclear Information System (INIS)

    Kuzmany, H.; Mehring, M.; Fink, J.

    1993-01-01

    The International Winter School on Electronic Properties of High-Temperature Superconductors, held between March 7-14, 1992, in Kirchberg, (Tyrol) Austria, was the sixth in a series of meetings to be held at this venue. Four of the earlier meetings were dedicated to issues in the field of conducting polymers, while the winter school held in 1990 was devoted to the new discipline of high-Tc superconductivity. This year's meeting constituted a forum not only for the large number of scientists engaged in high-Tc research, but also for those involved in the new and exciting field of fullerenes. Many of the issues raised during the earlier winter schools on conducting polymers, and the last one on high-Tc superconductivity, have taken on a new significance in the light of the discovery of superconducting C 60 materials. The Kirchberg meetings are organized in the style of a school where experienced scientists from universities, research laboratories and industry have the opportunity to discuss their most recent results, and where students and young scientists can learn about the present status of research and applications from some of the most eminent workers in their field. In common with the previous winter school on high-Tc superconductors, the present one focused on the electronic properties of the cuprate superconductors. In addition, consideration was given to related compounds which are relevant to the understanding of the electronic structure of the cuprates in the normal state, to other oxide superconductors and to fulleride superconductors. Contributions dealing with their preparation, transport and thermal properties, high-energy spectroscopies, nuclear magnetic resonance, inelastic neutron scattering, and optical spectroscopy are presented in this volume. The theory of the normal and superconducting states also occupies a central position. (orig.)

  13. Frontiers in Superconducting Materials

    CERN Document Server

    Narlikar, Anant V

    2005-01-01

    Frontiers in Superconducting Materials gives a state-of-the-art report of the most important topics of the current research in superconductive materials and related phenomena. It comprises 30 chapters written by renowned international experts in the field. It is of central interest to researchers and specialists in Physics and Materials Science, both in academic and industrial research, as well as advanced students. It also addresses electronic and electrical engineers. Even non-specialists interested in superconductivity might find some useful answers.

  14. Superconductivity in the actinides

    International Nuclear Information System (INIS)

    Smith, J.L.; Lawson, A.C.

    1985-01-01

    The trends in the occurrence of superconductivity in actinide materials are discussed. Most of them seem to show simple transition metal behavior. However, the superconductivity of americium proves that the f electrons are localized in that element and that ''actinides'' is the correct name for this row of elements. Recently the superconductivity of UBe 13 and UPt 3 has been shown to be extremely unusual, and these compounds fall in the new class of compounds now known as heavy fermion materials

  15. Phonon spectroscopy with superconducting tunnel junctions

    International Nuclear Information System (INIS)

    Grimshaw, J.M.

    1984-02-01

    Superconducting tunnel junctions can be used as generators and detectors of monochromatic phonons of frequency larger than 80 GHz, as was first devised by Eisenmenger and Dayem (1967) and Kinder (1972a, 1973). In this report, we intend to give a general outline of this type of spectroscopy and to present the results obtained so far. The basic physics underlying phonon generation and detection are described in chapter I, a wider approach being given in the references therein. In chapter II, the different types of junctions are considered with respect to their use. Chapter III deals with the evaporation technique for the superconducting junctions. The last part of this report is devoted to the results that we have obtained on γ-irradiated LiF, pure Si and Phosphorous implanted Si. In these chapters, the limitations of the spectrometer are brought out and suggestions for further work are given [fr

  16. Production and study of high-beta plasma confined by a superconducting dipole magnet

    International Nuclear Information System (INIS)

    Garnier, D.T.; Hansen, A.; Mauel, M.E.; Ortiz, E.; Boxer, A.C.; Ellsworth, J.; Karim, I.; Kesner, J.; Mahar, S.; Roach, A.

    2006-01-01

    The Levitated Dipole Experiment (LDX) [J. Kesner et al., in Fusion Energy 1998, 1165 (1999)] is a new research facility that is exploring the confinement and stability of plasma created within the dipole field produced by a strong superconducting magnet. Unlike other configurations in which stability depends on curvature and magnetic shear, magnetohydrodynamic stability of a dipole derives from plasma compressibility. Theoretically, the dipole magnetic geometry can stabilize a centrally peaked plasma pressure that exceeds the local magnetic pressure (β>1), and the absence of magnetic shear allows particle and energy confinement to decouple. In initial experiments, long-pulse, quasi-steady-state microwave discharges lasting more than 10 s have been produced that are consistent with equilibria having peak beta values of 20%. Detailed measurements have been made of discharge evolution, plasma dynamics and instability, and the roles of gas fueling, microwave power deposition profiles, and plasma boundary shape. In these initial experiments, the high-field superconducting floating coil was supported by three thin supports. The plasma is created by multifrequency electron cyclotron resonance heating at 2.45 and 6.4 GHz, and a population of energetic electrons, with mean energies above 50 keV, dominates the plasma pressure. Creation of high-pressure, high-beta plasma is possible only when intense hot electron interchange instabilities are stabilized by sufficiently high background plasma density. A dramatic transition from a low-density, low-beta regime to a more quiescent, high-beta regime is observed when the plasma fueling rate and confinement time become sufficiently large

  17. Test Results of the 3.9 GHz Cavity at Fermilab

    CERN Document Server

    Solyak, N

    2004-01-01

    Fermilab is developing two types of 3.9 GHz superconducting cavities to improve performances of A0 and TTF photoinjectors. In frame of this project we have built and tested two nine-cell copper models and one 3-cell niobium accelertating cavity and series of deflecting cavities. Properties of the high order modes were carefully studied in a chain of two copper cavities at room temperature. High gradient performance were tested at helium temperature. Achieved gradients and surface resistances are exceed goal parameters. In paper we discuss results of cold tests of the 3-cell accelerating and deflecting cavities.

  18. Arbitrary waveform modulated pulse EPR at 200 GHz

    Science.gov (United States)

    Kaminker, Ilia; Barnes, Ryan; Han, Songi

    2017-06-01

    We report here on the implementation of arbitrary waveform generation (AWG) capabilities at ∼200 GHz into an Electron Paramagnetic Resonance (EPR) and Dynamic Nuclear Polarization (DNP) instrument platform operating at 7 T. This is achieved with the integration of a 1 GHz, 2 channel, digital to analog converter (DAC) board that enables the generation of coherent arbitrary waveforms at Ku-band frequencies with 1 ns resolution into an existing architecture of a solid state amplifier multiplier chain (AMC). This allows for the generation of arbitrary phase- and amplitude-modulated waveforms at 200 GHz with >150 mW power. We find that the non-linearity of the AMC poses significant difficulties in generating amplitude-modulated pulses at 200 GHz. We demonstrate that in the power-limited regime of ω1 10 MHz) spin manipulation in incoherent (inversion), as well as coherent (echo formation) experiments. Highlights include the improvement by one order of magnitude in inversion bandwidth compared to that of conventional rectangular pulses, as well as a factor of two in improvement in the refocused echo intensity at 200 GHz.

  19. Electron gun simulation for 95 GHz gyrotron

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Udaybir; Kumar, Nitin; Sinha, A.K., E-mail: uday.ceeri@gmail.com, E-mail: aksinha@ceeri.ernet.in [Gyrotron Laboratory, Microwave Tube Area, Central Electronics Engineering Research Institute, Pilani (India); Purohit, L.P. [Department of Physics, Gurukul Kangri Vishwavidyalaya, Haridwar (India)

    2011-07-01

    A triode type Magnetron Injection Gun (MIG) for a 2 MW, 95 GHz Gyrotron has been designed by using commercially available code EGUN and another in-house developed code MIGANS. The operating mode of the gyrotron is TE{sub 24.8} and it is operated in the fundamental harmonic. The operating voltages of the modulating anode and the accelerating anode are 61 kV and 85 kV respectively. The parametric dependences of modulating anode voltage and cathode magnetic field on the beam quality have also been studied. (author)

  20. Electron gun simulation for 95 GHz gyrotron

    International Nuclear Information System (INIS)

    Singh, Udaybir; Kumar, Nitin; Sinha, A.K.; Purohit, L.P.

    2011-01-01

    A triode type Magnetron Injection Gun (MIG) for a 2 MW, 95 GHz Gyrotron has been designed by using commercially available code EGUN and another in-house developed code MIGANS. The operating mode of the gyrotron is TE 24.8 and it is operated in the fundamental harmonic. The operating voltages of the modulating anode and the accelerating anode are 61 kV and 85 kV respectively. The parametric dependences of modulating anode voltage and cathode magnetic field on the beam quality have also been studied. (author)

  1. The Quantum Socket: Wiring for Superconducting Qubits - Part 1

    Science.gov (United States)

    McConkey, T. G.; Bejanin, J. H.; Rinehart, J. R.; Bateman, J. D.; Earnest, C. T.; McRae, C. H.; Rohanizadegan, Y.; Shiri, D.; Mariantoni, M.; Penava, B.; Breul, P.; Royak, S.; Zapatka, M.; Fowler, A. G.

    Quantum systems with ten superconducting quantum bits (qubits) have been realized, making it possible to show basic quantum error correction (QEC) algorithms. However, a truly scalable architecture has not been developed yet. QEC requires a two-dimensional array of qubits, restricting any interconnection to external classical systems to the third axis. In this talk, we introduce an interconnect solution for solid-state qubits: The quantum socket. The quantum socket employs three-dimensional wires and makes it possible to connect classical electronics with quantum circuits more densely and accurately than methods based on wire bonding. The three-dimensional wires are based on spring-loaded pins engineered to insure compatibility with quantum computing applications. Extensive design work and machining was required, with focus on material quality to prevent magnetic impurities. Microwave simulations were undertaken to optimize the design, focusing on the interface between the micro-connector and an on-chip coplanar waveguide pad. Simulations revealed good performance from DC to 10 GHz and were later confirmed against experimental measurements.

  2. First-principles calculation of the superconducting gap function due to electron-electron interaction for YBa2Cu3O/sub 7-//sub x/

    International Nuclear Information System (INIS)

    Chui, S.T.; Kasowski, R.V.; Hsu, W.Y.

    1989-01-01

    We argue that because of the anisotropic nature of YBa 2 Cu 3 O/sub 7-//sub x/, one-dimensional-type charge- and spin-density fluctuations produce an effective attraction that overcomes the electron-electron Coulomb repulsion, but only at large distances. This effective attraction is further enhanced by band-structure effects such that a substantial superconducting transition temperature can be obtained. Without making any assumption of the symmetry of the gap function, we solve the Bardeen-Cooper-Schrieffer (BCS) superconducting gap equation for the six bands closest to the Fermi level. A highly anisotropic gap function with a maximum of about 0.11 eV is found. From the linearized gap equation, a transition temperature of about 0.035 eV is obtained. This is about one-quarter the maximum of the gap function, consistent with the experimental ratio of the transition temperature to the gap determined from tunneling, infrared, and nuclear quadrupole resonance measurements. The important participants to the superconducting pair come from electrons close to planar copper [Cu(2)] and chain oxygen [O(1) and O(4)] sites, consistent with recent quadrupole resonance measurements. Our calculation produces a coherence length of the order of 30 A in the xy direction, the same order of magnitude as the experimental result and considerably smaller than the conventional magnitude of ordinary BCS materials. Similar calculations for YBa 2 Cu 3 O/sub 6.5/ where periodic O vacancies are introduced along the one-dimensional Cu-O chains shows that the transition temperature is reduced by half

  3. Low temperature x-ray analysis and electron microscopy of a new family of superconducting materials

    International Nuclear Information System (INIS)

    Ossipyan, Yu.A.; Borodin, V.A.; Goncharov, V.A.; Kondakov, S.F.; Khasanov, S.S.; Chernyshova, L.M.; Shekhtman, V.S.; Shmyt'ko, I.M.; Stchegolev, N.F.

    1987-01-01

    Recent findings in the field of high temperature superconductivity require that structural aspects of the behavior of this class of materials be investigated in detail in a wide temperature interval. A series of superconducting ceramics on the base of lanthanum and yttrium oxides (La/sub 2-x/Sr/sub x/CuO 4 ; x = 0, 2 and YBaCuO) have been obtained in the solid state Physics Institute of the Academy of Sciences of the USSR. This paper presents the results of the analysis of powder and sintered materials, using X-ray diffractometers (DRON), scanning electron microscope and special devices, enabling the investigations to be carried out within 4.2 K - 573 K

  4. Design and simulation of 3½-cell superconducting gun cavity and beam dynamics studies of the SASE-FEL System at the Institute of Accelerator Technologies at Ankara University

    International Nuclear Information System (INIS)

    Yildiz, H. Duran; Cakir, R.; Porsuk, D.

    2015-01-01

    Design and simulation of a superconducting gun cavity with 3½ cells have been studied in order to give the first push to the electron beam for the linear accelerating system at The Institute of Accelerator Technologies at Ankara University. Electrons are accelerated through the gun cavity with the help of the Radiofrequency power suppliers from cryogenic systems. Accelerating gradient should be as high as possible to accelerate electron beam inside the cavity. In this study, electron beam reaches to 9.17 MeV energy at the end of the gun cavity with the accelerating gradient; E c =19.21 MV/m. 1.3 GHz gun cavity consists of three TESLA-like shaped cells while the special designed gun-cell includes a cathode plug. Optimized important beam parameters inside the gun cavity, average beam current 3 mA, transverse emittance 2.5 mm mrad, repetition rate 30 MHz and other parameters are obtained for the SASE-FEL System. The Superfish/Poisson program is used to design each cell of the superconducting cavity. Superconducting gun cavity and Radiofrequency properties are studied by utilizing 2D Superfish/Poisson, 3D Computer Simulation Technology Microwave Studio, and 3D Computer Simulation Technology Particle Studio. Superfish/Poisson is also used to optimize the geometry of the cavity cells to get the highest accelerating gradient. The behavior of the particles along the beamline is included in this study. ASTRA Code is used to track the particles

  5. Design and simulation of 3½-cell superconducting gun cavity and beam dynamics studies of the SASE-FEL System at the Institute of Accelerator Technologies at Ankara University

    Energy Technology Data Exchange (ETDEWEB)

    Yildiz, H. Duran, E-mail: hdyildiz@ankara.edu.tr [Institute of Accelerator Technologies, Ankara University, Ankara (Turkey); Cakir, R. [Nanotechnology Engineering Department, Recep Tayyip Erdogan University, Rize (Turkey); Porsuk, D. [Physics Department, Dumlupinar University, Kutahya (Turkey)

    2015-06-11

    Design and simulation of a superconducting gun cavity with 3½ cells have been studied in order to give the first push to the electron beam for the linear accelerating system at The Institute of Accelerator Technologies at Ankara University. Electrons are accelerated through the gun cavity with the help of the Radiofrequency power suppliers from cryogenic systems. Accelerating gradient should be as high as possible to accelerate electron beam inside the cavity. In this study, electron beam reaches to 9.17 MeV energy at the end of the gun cavity with the accelerating gradient; E{sub c}=19.21 MV/m. 1.3 GHz gun cavity consists of three TESLA-like shaped cells while the special designed gun-cell includes a cathode plug. Optimized important beam parameters inside the gun cavity, average beam current 3 mA, transverse emittance 2.5 mm mrad, repetition rate 30 MHz and other parameters are obtained for the SASE-FEL System. The Superfish/Poisson program is used to design each cell of the superconducting cavity. Superconducting gun cavity and Radiofrequency properties are studied by utilizing 2D Superfish/Poisson, 3D Computer Simulation Technology Microwave Studio, and 3D Computer Simulation Technology Particle Studio. Superfish/Poisson is also used to optimize the geometry of the cavity cells to get the highest accelerating gradient. The behavior of the particles along the beamline is included in this study. ASTRA Code is used to track the particles.

  6. Fully connected network of superconducting qubits in a cavity

    International Nuclear Information System (INIS)

    Tsomokos, Dimitris I; Ashhab, Sahel; Nori, Franco

    2008-01-01

    A fully connected qubit network is considered, where every qubit interacts with every other one. When the interactions between the qubits are homogeneous, the system is a special case of the finite Lipkin-Meshkov-Glick (LMG) model. We propose a natural implementation of this model using superconducting qubits in state-of-the-art circuit QED. The ground state, the low-lying energy spectrum and the dynamical evolution are investigated. We find that, under realistic conditions, highly entangled states of Greenberger-Horne-Zeilinger (GHZ) and W types can be generated. We also comment on the influence of disorder on the system and discuss the possibility of simulating complex quantum systems, such as Sherrington-Kirkpatrick (SK) spin glasses, with superconducting qubit networks.

  7. MICROSTRUCTURE OF SUPERCONDUCTING MGB(2).

    Energy Technology Data Exchange (ETDEWEB)

    ZHU,Y.; LI,Q.; WU,L.; VOLKOV,V.; GU,G.; MOODENBAUGH,A.R.

    2001-07-12

    Recently, Akimitsu and co-workers [1] discovered superconductivity at 39 K in the intermetallic compound MgB{sub 2}. This discovery provides a new perspective on the mechanism for superconductivity. More specifically, it opens up possibilities for investigation of structure/properties in a new class of materials. With the exceptions of the cuprate and C{sub 60} families of compounds, MgB{sub 2} possesses the highest superconducting transition temperature T{sub c}. Its superconductivity appears to follow the BCS theory, apparently being mediated by electron-phonon coupling. The coherence length of MgB{sub 2} is reported to be longer than that of the cuprates [2]. In contrast to the cuprates, grain boundaries are strongly coupled and current density is determined by flux pinning [2,3]. Presently, samples of MgB{sub 2} commonly display inhomogeneity and porosity on the nanoscale, and are untextured. In spite of these obstacles, magnetization and transport measurements show that polycrystalline samples may carry large current densities circulating across many grains [3,4]. Very high values of critical current densities and critical fields have been recently observed in thin films [5,6]. These attributes suggest possible large scale and electronic applications. The underlying microstructure can be intriguing, both in terms of basic science and in applied areas. Subsequent to the discovery, many papers were published [1-13], most dealing with synthesis, physical properties, and theory. There have yet been few studies of microstructure and structural defects [11, 14]. A thorough understanding of practical superconducting properties can only be developed after an understanding of microstructure is gained. In this work we review transmission electron microscopy (TEM) studies of sintered MgB{sub 2} pellets [14]. Structural defects, including second phase particles, dislocations, stacking faults, and grain boundaries, are analyzed using electron diffraction, electron

  8. The role of local repulsion in superconductivity in the Hubbard-Holstein model

    Science.gov (United States)

    Lin, Chungwei; Wang, Bingnan; Teo, Koon Hoo

    2017-01-01

    We examine the superconducting solution in the Hubbard-Holstein model using Dynamical Mean Field Theory. The Holstein term introduces the site-independent Boson fields coupling to local electron density, and has two competing influences on superconductivity: The Boson field mediates the effective electron-electron attraction, which is essential for the S-wave electron pairing; the same coupling to the Boson fields also induces the polaron effect, which makes the system less metallic and thus suppresses superconductivity. The Hubbard term introduces an energy penalty U when two electrons occupy the same site, which is expected to suppress superconductivity. By solving the Hubbard-Holstein model using Dynamical Mean Field theory, we find that the Hubbard U can be beneficial to superconductivity under some circumstances. In particular, we demonstrate that when the Boson energy Ω is small, a weak local repulsion actually stabilizesthe S-wave superconducting state. This behavior can be understood as an interplay between superconductivity, the polaron effect, and the on-site repulsion: As the polaron effect is strong and suppresses superconductivity in the small Ω regime, the weak on-site repulsion reduces the polaron effect and effectively enhances superconductivity. Our calculation elucidates the role of local repulsion in the conventional S-wave superconductors.

  9. Effect of the annealing temperature for the hydrogen Q-degradation on superconducting cavities

    International Nuclear Information System (INIS)

    Ota, Tomoko; Sukenobu, Satoru; Tanabe, Yoshio; Onishi, Yoshimichi; Noguchi, Shuichi; Ono, Masaaki; Saito, Kenji; Shishido, Toshio; Yamazaki, Yoshishige

    1997-01-01

    Hydrogen Q-degradation was studied in niobium superconducting cavities prepared by barrel polishing, and electropolishing without annealing, though a fast cooling down of cavities. Cavity performance with various annealing temperature were tested using a 1.3GHz single-cell cavity to compare the effects of annealing temperature for hydrogen Q-degradation. (author)

  10. Resonant excitation of high order modes in the 3.9 GHz cavity of the Linac Coherent Light Source

    Science.gov (United States)

    Lunin, A.; Khabiboulline, T.; Solyak, N.; Sukhanov, A.; Yakovlev, V.

    2018-02-01

    Construction of the Linac Coherent Light Source II (LCLS-II) is underway for the world's first hard x-ray free-electron laser. A central part of the LCLS-II project is a 4 GeV superconducting radio frequency electron linac that will operate in the continuous wave (cw) mode. The linac is segmented into four sections named as L 0 , L 1 , L 2 , and L 3 . Two 3.9 GHz cryomodules, each housing of eight third-harmonic cavities similar to the cavities developed for the European X-ray Free Electron Laser (XFEL), will be used in section L 1 of the linac for linearizing the longitudinal beam profile. In this paper, we present a study of trapped high order modes (HOMs) excited by a cw electron beam in the third-harmonic cavities of the LCLS-II linac. A detailed comparison of the original XFEL design and the LCLS-II design with a modified end group is performed in order to estimate the effect of a reduced beam pipe aperture on the efficiency of HOM damping. Furthermore, we apply a statistical analysis of the eigenmode spectrum for the estimation of the probability of resonant HOM losses and influence of HOMs on beam dynamics.

  11. First plasma of the A-PHOENIX electron cyclotron resonance ion source

    International Nuclear Information System (INIS)

    Thuillier, T.; Lamy, T.; Latrasse, L.; Angot, J.

    2008-01-01

    A-PHOENIX is a new compact hybrid electron cyclotron resonance ion source using a large permanent magnet hexapole (1.92 T at the magnet surface) and high temperature superconducting Solenoids (3 T) to make min-vertical bar B vertical bar structure suitable for 28 GHz cw operation. The final assembly of the source was achieved at the end of June 2007. The first plasma of A-PHOENIX at 18 GHz was done on the 16th of August, 2007. The technological specificities of A-PHOENIX are presented. The large hexapole built is presented and experimental magnetic measurements show that it is nominal with respect to simulation. A fake plasma chamber prototype including thin iron inserts showed that the predicted radial magnetic confinement can be fulfilled up to 2.15 T at the plasma chamber wall. Scheduled planning of experiments until the end of 2008 is presented

  12. Introduction to superconductivity

    CERN Document Server

    Darriulat, Pierre

    1998-01-01

    The lecture series will address physicists, such as particle and nuclear physicists, familiar with non-relativistic quantum mechanics but not with solid state physics. The aim of this introduction to low temperature superconductivity is to give sufficient bases to the student for him/her to be able to access the scientific literature on this field. The five lectures will cover the following topics : 1. Normal metals, free electron gas, chambers equation. 2. Cooper pairs, the BCS ground state, quasi particle excitations. 3. DC superconductivity, Meissner state, dirty superconductors.4. Self consistent approach, Ginsburg Landau equations, Abrikosov fluxon lattice. 5. Josephson effects, high temperature superconductivity.

  13. Commissioning of the superconducting ECR ion source VENUS

    International Nuclear Information System (INIS)

    Leitner, Daniela; Abbott, Steve R.; Dwinell, Roger D.; Leitner, Matthaeus; Taylor, Clyde; Lyneis, Claude M.

    2003-01-01

    VENUS (Versatile ECR ion source for NUclear Science) is a next generation superconducting ECR ion source, designed to produce high current, high charge state ions for the 88-Inch Cyclotron at the Lawrence Berkeley National Laboratory. VENUS also serves as the prototype ion source for the RIA (Rare Isotope Accelerator) front end. The magnetic confinement configuration consists of three superconducting axial coils and six superconducting radial coils in a sextupole configuration. The nominal design fields of the axial magnets are 4T at injection and 3T at extraction; the nominal radial design field strength at the plasma chamber wall is 2T, making VENUS the world most powerful ECR plasma confinement structure. The magnetic field strength has been designed for optimum operation at 28 GHz. The four-year VENUS project has recently achieved two major milestones: The first plasma was ignited in June, the first mass-analyzed high charge state ion beam was extracted in September of 2002. The pa per describes the ongoing commissioning. Initial results including first emittance measurements are presented

  14. Inter-spin distance determination using L-band (1-2 GHz) non-adiabatic rapid sweep electron paramagnetic resonance (NARS EPR)

    Science.gov (United States)

    Kittell, Aaron W.; Hustedt, Eric J.; Hyde, James S.

    2014-01-01

    Site-directed spin-labeling electron paramagnetic resonance (SDSL EPR) provides insight into the local structure and motion of a spin probe strategically attached to a molecule. When a second spin is introduced to the system, macromolecular information can be obtained through measurement of inter-spin distances either by continuous wave (CW) or pulsed electron double resonance (ELDOR) techniques. If both methodologies are considered, inter-spin distances of 8 to 80 Å can be experimentally determined. However, there exists a region at the upper limit of the conventional X-band (9.5 GHz) CW technique and the lower limit of the four-pulse double electron-electron resonance (DEER) experiment where neither method is particularly reliable. The work presented here utilizes L-band (1.9 GHz) in combination with non-adiabatic rapid sweep (NARS) EPR to address this opportunity by increasing the upper limit of the CW technique. Because L-band linewidths are three to seven times narrower than those at X-band, dipolar broadenings that are small relative to the X-band inhomogeneous linewidth become observable, but the signal loss due to the frequency dependence of the Boltzmann factor, has made L-band especially challenging. NARS has been shown to increase sensitivity by a factor of five, and overcomes much of this loss, making L-band distance determination more feasible [1]. Two different systems are presented and distances of 18–30 Å have been experimentally determined at physiologically relevant temperatures. Measurements are in excellent agreement with a helical model and values determined by DEER. PMID:22750251

  15. Superconductivity and Competing Ordered Phase in RuPn (Pn = As, P)

    Science.gov (United States)

    Hirai, Daigorou; Takayama, Tomohiro; Hashizume, Daisuke; Yamamoto, Ayako; Takagi, Hidenori

    2011-03-01

    Unconventional superconductivity likely manifests itself when some competing electronic phases are suppressed down to zero temperature such as cuprates and iron-pnictide superconductors. Therefore, the correlated metallic state neighboring a competing electronic ordering can be a promising playground for unconventional superconductivity. Here we report superconductivity emerging adjacent to electronically ordered phases of RuPn (Pn = As, P). We found that RuAs(P) exhibits phase transitions at 240 (265) K, which is discerned as a drop of magnetic susceptibility or a resistivity upturn. Such anomalies can be suppressed by substituting Rh to the Ru site. Accompanied by the disappearance of the electronic order, superconductivity was found to emerge below 1.8 K and 3.8 K for RuAs and RuP, respectively. The superconductivity in Rh substituted RuPn, which neighbors a competing electronic order, might exhibit an exotic pairing state as seen in the unconventional superconductors known to date.

  16. A versatile and modular quasi optics-based 200 GHz dual dynamic nuclear polarization and electron paramagnetic resonance instrument

    Science.gov (United States)

    Siaw, Ting Ann; Leavesley, Alisa; Lund, Alicia; Kaminker, Ilia; Han, Songi

    2016-03-01

    Solid-state dynamic nuclear polarization (DNP) at higher magnetic fields (>3 T) and cryogenic temperatures (∼2-90 K) has gained enormous interest and seen major technological advances as an NMR signal enhancing technique. Still, the current state of the art DNP operation is not at a state at which sample and freezing conditions can be rationally chosen and the DNP performance predicted a priori, but relies on purely empirical approaches. An important step towards rational optimization of DNP conditions is to have access to DNP instrumental capabilities to diagnose DNP performance and elucidate DNP mechanisms. The desired diagnoses include the measurement of the "DNP power curve", i.e. the microwave (MW) power dependence of DNP enhancement, the "DNP spectrum", i.e. the MW frequency dependence of DNP enhancement, the electron paramagnetic resonance (EPR) spectrum, and the saturation and spectral diffusion properties of the EPR spectrum upon prolonged MW irradiation typical of continuous wave (CW) DNP, as well as various electron and nuclear spin relaxation parameters. Even basic measurements of these DNP parameters require versatile instrumentation at high magnetic fields not commercially available to date. In this article, we describe the detailed design of such a DNP instrument, powered by a solid-state MW source that is tunable between 193 and 201 GHz and outputs up to 140 mW of MW power. The quality and pathway of the transmitted and reflected MWs is controlled by a quasi-optics (QO) bridge and a corrugated waveguide, where the latter couples the MW from an open-space QO bridge to the sample located inside the superconducting magnet and vice versa. Crucially, the versatility of the solid-state MW source enables the automated acquisition of frequency swept DNP spectra, DNP power curves, the diagnosis of MW power and transmission, and frequency swept continuous wave (CW) and pulsed EPR experiments. The flexibility of the DNP instrument centered around the QO MW

  17. A versatile and modular quasi optics-based 200GHz dual dynamic nuclear polarization and electron paramagnetic resonance instrument.

    Science.gov (United States)

    Siaw, Ting Ann; Leavesley, Alisa; Lund, Alicia; Kaminker, Ilia; Han, Songi

    2016-03-01

    Solid-state dynamic nuclear polarization (DNP) at higher magnetic fields (>3T) and cryogenic temperatures (∼ 2-90K) has gained enormous interest and seen major technological advances as an NMR signal enhancing technique. Still, the current state of the art DNP operation is not at a state at which sample and freezing conditions can be rationally chosen and the DNP performance predicted a priori, but relies on purely empirical approaches. An important step towards rational optimization of DNP conditions is to have access to DNP instrumental capabilities to diagnose DNP performance and elucidate DNP mechanisms. The desired diagnoses include the measurement of the "DNP power curve", i.e. the microwave (MW) power dependence of DNP enhancement, the "DNP spectrum", i.e. the MW frequency dependence of DNP enhancement, the electron paramagnetic resonance (EPR) spectrum, and the saturation and spectral diffusion properties of the EPR spectrum upon prolonged MW irradiation typical of continuous wave (CW) DNP, as well as various electron and nuclear spin relaxation parameters. Even basic measurements of these DNP parameters require versatile instrumentation at high magnetic fields not commercially available to date. In this article, we describe the detailed design of such a DNP instrument, powered by a solid-state MW source that is tunable between 193 and 201 GHz and outputs up to 140 mW of MW power. The quality and pathway of the transmitted and reflected MWs is controlled by a quasi-optics (QO) bridge and a corrugated waveguide, where the latter couples the MW from an open-space QO bridge to the sample located inside the superconducting magnet and vice versa. Crucially, the versatility of the solid-state MW source enables the automated acquisition of frequency swept DNP spectra, DNP power curves, the diagnosis of MW power and transmission, and frequency swept continuous wave (CW) and pulsed EPR experiments. The flexibility of the DNP instrument centered around the QO MW

  18. 14 MV pelletron accelerator and superconducting ECR ion source

    International Nuclear Information System (INIS)

    Gupta, A.K.

    2015-01-01

    The BARC-TIFR 14UD Pelletron Accelerator at Mumbai has completed more than two and a half decade of successful operation. The accelerator is primarily used for basic research in the fields of nuclear, atomic and molecular, condensed matter physics and material science. The application areas include accelerator mass spectrometry, production of track-etch membranes, radioisotopes production, radiation damage studies and secondary neutron production for cross section measurement etc. Over the years, numerous developmental activities have been carried out in-house that have resulted in improving the overall performance and uptime of the accelerator and has also made possible to initiate variety of application oriented programmes. Since the SF 6 pressure vessels have been in operation for about 29 years, a comprehensive refurbishment and retrofitting work is carried out to comply with the safety recommendations. Recently, the beam trials were conducted with 18 GHz superconducting ECR (Electron Cyclotron Resonance) Ion Source system at Van-de-Graaff as per BARC Safety Council permission. Various ion beams with different charge states were extracted and mass analyzed and the beam quality was measured by recording their transverse emittance in situ. Experimental measurements pertaining to projectile X-rays Spectroscopy were carried out using variety of ion beams at variable energies. The superconducting Linac booster provides additional acceleration to the ions from Pelletron injector up to A ∼60 region with E∼5 MeV/A. In order to cover the entire mass range of the elements across the periodic table, an ECR based heavy ion accelerator was initiated under plan project. This heavy ion accelerator essentially comprises of a superconducting ECR ion source, room temperature RFQ (Radio Frequency Quadrupole) followed by superconducting Niobium resonators as accelerating elements. This talk will provide an overview of the developmental activities and the safety features

  19. On the relations among the pseudogap, electronic charge order and Fermi-arc superconductivity in Bi2Sr2CaCu2O8+δ

    International Nuclear Information System (INIS)

    Oda, M; Liu, Y H; Kurosawa, T; Takeyama, K; Ido, M; Momono, N

    2008-01-01

    On the basis of STM/STS, break-junction tunneling and electronic Raman scattering experiments on Bi 2 Sr 2 CaCu 2 O 8+δ reported so far, we suggest that the static, electronic charge order is associated with inhomogeneous electronic states on antinodal parts of the Fermi surface that are outside the Fermi-arc around the node and responsible for the pseudogap, and coexists with the homogeneous superconductivity caused by the pairing of coherent quasiparticles on the Fermi-arc, the so-called 'Fermi-arc superconductivity', in the real space, although the two electronic orders or the corresponding energy gaps compete with each other in the k-space

  20. Simulation of electronic structure Hamiltonians in a superconducting quantum computer architecture

    Energy Technology Data Exchange (ETDEWEB)

    Kaicher, Michael; Wilhelm, Frank K. [Theoretical Physics, Saarland University, 66123 Saarbruecken (Germany); Love, Peter J. [Department of Physics, Haverford College, Haverford, Pennsylvania 19041 (United States)

    2015-07-01

    Quantum chemistry has become one of the most promising applications within the field of quantum computation. Simulating the electronic structure Hamiltonian (ESH) in the Bravyi-Kitaev (BK)-Basis to compute the ground state energies of atoms/molecules reduces the number of qubit operations needed to simulate a single fermionic operation to O(log(n)) as compared to O(n) in the Jordan-Wigner-Transformation. In this work we will present the details of the BK-Transformation, show an example of implementation in a superconducting quantum computer architecture and compare it to the most recent quantum chemistry algorithms suggesting a constant overhead.

  1. Experimental transmission electron microscopy studies and phenomenological model of bismuth-based superconducting compounds

    International Nuclear Information System (INIS)

    Elboussiri, Khalid

    1991-01-01

    The main part of this thesis is devoted to an experimental study by transmission electron microscopy of the different phases of the superconducting bismuth cuprates Bi_2Sr_2Ca_n_-_1Cu_nO_2_n_+_4. In high resolution electron microscopy, the two types of incommensurate modulation realized in these compounds have been observed. A model of structure has been proposed from which the simulated images obtained are consistent with observations. The medium resolution images correlated with the electron diffraction data have revealed existence of a multi-soliton regime with latent lock in phases of commensurate periods between 4b and 10b. At last, a description of different phases of these compounds as a result of superstructures from a disordered perovskite type structure is proposed (author) [fr

  2. Superconducting hot-electron bolometer: from the discovery of hot-electron phenomena to practical applications

    International Nuclear Information System (INIS)

    Shurakov, A; Lobanov, Y; Goltsman, G

    2016-01-01

    The discovery of hot-electron phenomena in a thin superconducting film in the last century was followed by numerous experimental studies of its appearance in different materials aiming for a better understanding of the phenomena and consequent implementation of terahertz detection systems for practical applications. In contrast to the competitors such as superconductor-insulator-superconductor tunnel junctions and Schottky diodes, the hot electron bolometer (HEB) did not demonstrate any frequency limitation of the detection mechanism. The latter, in conjunction with a decent performance, rapidly made the HEB mixer the most attractive candidate for heterodyne observations at frequencies above 1 THz. The successful operation of practical instruments (the Heinrich Hertz Telescope, the Receiver Lab Telescope, APEX, SOFIA, Hershel) ensures the importance of the HEB technology despite the lack of rigorous theoretical routine for predicting the performance. In this review, we provide a summary of experimental and theoretical studies devoted to understanding the HEB physics, and an overview of various fabrication routes and materials. (topical review)

  3. Ultra-long pulse operation using lower hybrid waves on the superconducting high field tokamak TRIAM-1M

    International Nuclear Information System (INIS)

    Moriyama, S.; Nakamura, Y.; Nagao, A.; Jotaki, E.; Nakamura, K.; Hiraki, N.; Itoh, S.

    1990-01-01

    Ultra-long pulse operation (>3 min) was achieved on the superconducting high field tokamak TRIAM-1M. In this operation, the plasma current was maintained with a relatively peaked current distribution by the 2.45 GHz radiofrequency power (P RF ≤ 35 kW) alone. A stationary plasma with a driven current of up to 35 kA and a line averaged electron density of up to 3x10 12 cm -3 was produced by precise plasma position and gas feed control. The extremely long discharge showed the interesting characteristics that the high temperatures of about 1 keV for the electrons and about 0.5 keV for the ions were kept almost constant during steady state current drive and that there was no impurity accumulation which could have a fatally adverse effect on steady state tokamak operation. (author). 16 refs, 17 figs

  4. Design of the 1-Mw, 200-Ghz, Fom Fusion Fem

    NARCIS (Netherlands)

    Urbanus, W. H.; Best, R. W. B.; Bongers, W. A.; Vaningen, A. M.; Manintveld, P.; Sterk, A. B.; Verhoeven, A. G. A.; van der Wiel, M. J.; Caplan, M.; Bratman, V. L.; Denisov, G. G.; Varfolomeev, A. A.; Khlebnikov, A. S.

    1993-01-01

    The FOM Institute for Plasma Physics has obtained funding for the development of a 1 MW, long pulse, 140-250 GHz free-electron maser. The engineering design is presently being performed in an international collaboration. In this paper the main components of the free-electron maser, the electron beam

  5. Initial Beam Dynamics Simulations of a High-Average-Current Field-Emission Electron Source in a Superconducting RadioFrequency Gun

    Energy Technology Data Exchange (ETDEWEB)

    Mohsen, O. [Northern Illinois U.; Gonin, I. [Fermilab; Kephart, R. [Fermilab; Khabiboulline, T. [Fermilab; Piot, P. [Northern Illinois U.; Solyak, N. [Fermilab; Thangaraj, J. C. [Fermilab; Yakovlev, V. [Fermilab

    2018-01-05

    High-power electron beams are sought-after tools in support to a wide array of societal applications. This paper investigates the production of high-power electron beams by combining a high-current field-emission electron source to a superconducting radio-frequency (SRF) cavity. We especially carry out beam-dynamics simulations that demonstrate the viability of the scheme to form $\\sim$ 300 kW average-power electron beam using a 1+1/2-cell SRF gun.

  6. Superconductivity

    International Nuclear Information System (INIS)

    Buller, L.; Carrillo, F.; Dietert, R.; Kotziapashis, A.

    1989-01-01

    Superconductors are materials which combine the property of zero electric resistance with the capability to exclude any adjacent magnetic field. This leads to many large scale applications such as the much publicized levitating train, generation of magnetic fields in MHD electric generators, and special medical diagnostic equipment. On a smaller-scale, superconductive materials could replace existing resistive connectors and decrease signal delays by reducing the RLC time constants. Thus, a computer could operate at much higher speeds, and consequently at lower power levels which would reduce the need for heat removal and allow closer spacing of circuitry. Although technical advances and proposed applications are constantly being published, it should be recognized that superconductivity is a slowly developing technology. It has taken scientists almost eighty years to learn what they now know about this material and its function. The present paper provides an overview of the historical development of superconductivity and describes some of the potential applications for this new technology as it pertains to the electronics industry

  7. Superconducting rf activities at Cornell University

    International Nuclear Information System (INIS)

    Padamsee, H.; Hakimi, M.; Kirchgessner, J.

    1988-01-01

    Development of rf superconductivity for high energy accelerators has been a robust activity at the Cornell Laboratory of Nuclear Studies (LNS) for many years. In order to realize the potential of rf superconductivity, a two-pronged approach has been followed. On the one hand accelerator applications were selected where the existing state-of-the art of superconducting rf is competitive with alternate technologies, then LNS engaged in a program to design, construct and test suitable superconducting cavities, culminating in a full system test in an operating accelerator. On the second front the discovery and invention of ideas, techniques and materials required to make superconducting rf devices approach the ideal in performance has been aggressively pursued. Starting with the development of superconducting cavities for high energy electron synchrotrons, the technology was extended to high energy e + e - storage rings. The LE5 cavity design has now been adopted for use in the Continuous Electron Beam Accelerator Facility (CEBAF). When completed, this project will be one of the largest applications of SRF technology, using 440 LE5 modules[4]. In the last two years, the cavity design and the technology have been transferred to industry and CEBAF. Cornell has tested the early industrial prototypes and cavity pairs. LNS has developed, in collaboration with CEBAF, designs and procedures for cavity pair and cryomodule assembly and testing. Advanced research for future electron accelerators is badly needed if particle physicists hope to expand the energy frontier. Superconducting cavity technology continues to offer attractive opportunities for further advances in achievable voltage at reasonable cost for future accelerators. For Nb, the full potential implies an order of magnitude increase over current capabilities. 20 references, 11 figures

  8. Superconducting Detectors for Superlight Dark Matter.

    Science.gov (United States)

    Hochberg, Yonit; Zhao, Yue; Zurek, Kathryn M

    2016-01-08

    We propose and study a new class of superconducting detectors that are sensitive to O(meV) electron recoils from dark matter-electron scattering. Such devices could detect dark matter as light as the warm dark-matter limit, m(X)≳1  keV. We compute the rate of dark-matter scattering off of free electrons in a (superconducting) metal, including the relevant Pauli blocking factors. We demonstrate that classes of dark matter consistent with terrestrial and cosmological or astrophysical constraints could be detected by such detectors with a moderate size exposure.

  9. Free-electron laser multiplex driven by a superconducting linear accelerator.

    Science.gov (United States)

    Plath, Tim; Amstutz, Philipp; Bödewadt, Jörn; Brenner, Günter; Ekanayake, Nagitha; Faatz, Bart; Hacker, Kirsten; Honkavaara, Katja; Lazzarino, Leslie Lamberto; Lechner, Christoph; Maltezopoulos, Theophilos; Scholz, Matthias; Schreiber, Siegfried; Vogt, Mathias; Zemella, Johann; Laarmann, Tim

    2016-09-01

    Free-electron lasers (FELs) generate femtosecond XUV and X-ray pulses at peak powers in the gigawatt range. The FEL user facility FLASH at DESY (Hamburg, Germany) is driven by a superconducting linear accelerator with up to 8000 pulses per second. Since 2014, two parallel undulator beamlines, FLASH1 and FLASH2, have been in operation. In addition to the main undulator, the FLASH1 beamline is equipped with an undulator section, sFLASH, dedicated to research and development of fully coherent extreme ultraviolet photon pulses using external seed lasers. In this contribution, the first simultaneous lasing of the three FELs at 13.4 nm, 20 nm and 38.8 nm is presented.

  10. Invariants-based shortcuts for fast generating Greenberger–Horne–Zeilinger state among three superconducting qubits

    International Nuclear Information System (INIS)

    Xu Jing; Yu Lin; Wu Jin-Lei; Ji Xin

    2017-01-01

    As one of the most promising candidates for implementing quantum computers, superconducting qubits (SQs) are adopted for fast generating the Greenberger–Horne–Zeilinger (GHZ) state by using invariants-based shortcuts. Three SQs are separated and connected by two coplanar waveguide resonators (CPWRs) capacitively. The complicated system is skillfully simplified to a three-state system, and a GHZ state among three SQs is fast generated with a very high fidelity and simple driving pulses. Numerical simulations indicate the scheme is insensitive to parameter deviations. Besides, the robustness of the scheme against decoherence is discussed in detail. (paper)

  11. Prediction of superconductivity in Li-intercalated bilayer phosphorene

    International Nuclear Information System (INIS)

    Huang, G. Q.; Xing, Z. W.; Xing, D. Y.

    2015-01-01

    It is shown that bilayer phosphorene can be transformed from a direct-gap semiconductor to a BCS superconductor by intercalating Li atoms. For the Li-intercalated bilayer phosphorene, we find that the electron occupation of Li-derived band is small and superconductivity is intrinsic. With increasing the intercalation of Li atoms, both increased metallicity and strong electron-phonon coupling are favorable for the enhancement of superconductivity. The obtained electron-phonon coupling λ can be larger than 1 and the superconducting temperature T c can be increased up to 16.5 K, suggesting that phosphorene may be a good candidate for a nanoscale superconductor

  12. Prediction of superconductivity in Li-intercalated bilayer phosphorene

    Energy Technology Data Exchange (ETDEWEB)

    Huang, G. Q. [Department of Physics, Nanjing Normal University, Nanjing 210023 (China); National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 (China); Xing, Z. W., E-mail: zwxing@nju.edu.cn [National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Xing, D. Y. [National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 (China); Collaborative Innovation Center of Advanced Microstructures and Department of Physics, Nanjing University, Nanjing 210093 (China)

    2015-03-16

    It is shown that bilayer phosphorene can be transformed from a direct-gap semiconductor to a BCS superconductor by intercalating Li atoms. For the Li-intercalated bilayer phosphorene, we find that the electron occupation of Li-derived band is small and superconductivity is intrinsic. With increasing the intercalation of Li atoms, both increased metallicity and strong electron-phonon coupling are favorable for the enhancement of superconductivity. The obtained electron-phonon coupling λ can be larger than 1 and the superconducting temperature T{sub c} can be increased up to 16.5 K, suggesting that phosphorene may be a good candidate for a nanoscale superconductor.

  13. Superconducting magnets for HERA

    International Nuclear Information System (INIS)

    Wolff, S.

    1987-01-01

    The Hadron-Electron-Ring Accelerator (HERA) presently under construction at DESY, Hamburg, consists of an electron storage ring of 30 GeV and a proton storage ring of 820 GeV. Superconducting magnets are used for the proton ring. There are 416 superconducting bending magnets of 4.698 T central field and 8.824 m magnetic length, 224 superconducting quadrupoles of 91.2 T/m central gradient and many superconducting correction dipoles, quadrupoles and sextupoles. The main dipoles and quadrupoles consist of two-layer coils of 75 mm inner diameter clammed with aluminium (for the dipoles) or stainless steel laminations (for the quadrupoles). The collared coils are surrounded by a laminated cold iron yoke and supported inside a low loss cryostat. The protection system uses cold diodes to bypass the current around a quenching magnet. The magnets are cooled with one phase helium supplied by a 3 block central refrigeration system of 20 kW refrigeration power at 4.3 K. Two helium is returned through the magnets in good thermal contact with the one phase helium in the dipoles for temperature control. This paper describes the magnet system and gives the results obtained for prototype magnets

  14. A low loss superconducting filter with four states based on symmetrical interdigital-loaded structure

    International Nuclear Information System (INIS)

    Gao, Tianqi; Wei, Bin; Cao, Bisong; Wang, Dan; Guo, Xubo

    2016-01-01

    Highlights: • A novel symmetrical interdigital-loaded microstrip structure is presents. • A six-pole L-band HTS filter with four states has similar in-band responses. • The coupling coefficients between resonators keep unchanged during tuning. • The low loss HTS filter can be tuned from 1.382 GHz to 1.193 GHz. - Abstract: This paper presents a new symmetrical interdigital-loaded microstrip structure. The symmetrical structure can be applied to design a filter that can work at different frequencies. The filter has similar in-band response at each working frequency with low insertion loss. Based on the proposed structures, a low-loss six-pole high temperature superconducting (HTS) filter with four different working states is designed and fabricated. The center frequency of the filter can be tuned discretely from 1.382 GHz to 1.193 GHz. All four states have similar in-band characters, whereas the insertion losses are less than 0.3 dB. The measured results are consistent with the simulations.

  15. Resonant excitation of high order modes in the 3.9 GHz cavity of the Linac Coherent Light Source

    Directory of Open Access Journals (Sweden)

    A. Lunin

    2018-02-01

    Full Text Available Construction of the Linac Coherent Light Source II (LCLS-II is underway for the world’s first hard x-ray free-electron laser. A central part of the LCLS-II project is a 4 GeV superconducting radio frequency electron linac that will operate in the continuous wave (cw mode. The linac is segmented into four sections named as L0, L1, L2, and L3. Two 3.9 GHz cryomodules, each housing of eight third-harmonic cavities similar to the cavities developed for the European X-ray Free Electron Laser (XFEL, will be used in section L1 of the linac for linearizing the longitudinal beam profile. In this paper, we present a study of trapped high order modes (HOMs excited by a cw electron beam in the third-harmonic cavities of the LCLS-II linac. A detailed comparison of the original XFEL design and the LCLS-II design with a modified end group is performed in order to estimate the effect of a reduced beam pipe aperture on the efficiency of HOM damping. Furthermore, we apply a statistical analysis of the eigenmode spectrum for the estimation of the probability of resonant HOM losses and influence of HOMs on beam dynamics.

  16. Superconducting Ferromagnetic Nanodiamond.

    Science.gov (United States)

    Zhang, Gufei; Samuely, Tomas; Xu, Zheng; Jochum, Johanna K; Volodin, Alexander; Zhou, Shengqiang; May, Paul W; Onufriienko, Oleksandr; Kačmarčík, Jozef; Steele, Julian A; Li, Jun; Vanacken, Johan; Vacík, Jiri; Szabó, Pavol; Yuan, Haifeng; Roeffaers, Maarten B J; Cerbu, Dorin; Samuely, Peter; Hofkens, Johan; Moshchalkov, Victor V

    2017-06-27

    Superconductivity and ferromagnetism are two mutually antagonistic states in condensed matter. Research on the interplay between these two competing orderings sheds light not only on the cause of various quantum phenomena in strongly correlated systems but also on the general mechanism of superconductivity. Here we report on the observation of the electronic entanglement between superconducting and ferromagnetic states in hydrogenated boron-doped nanodiamond films, which have a superconducting transition temperature T c ∼ 3 K and a Curie temperature T Curie > 400 K. In spite of the high T Curie , our nanodiamond films demonstrate a decrease in the temperature dependence of magnetization below 100 K, in correspondence to an increase in the temperature dependence of resistivity. These anomalous magnetic and electrical transport properties reveal the presence of an intriguing precursor phase, in which spin fluctuations intervene as a result of the interplay between the two antagonistic states. Furthermore, the observations of high-temperature ferromagnetism, giant positive magnetoresistance, and anomalous Hall effect bring attention to the potential applications of our superconducting ferromagnetic nanodiamond films in magnetoelectronics, spintronics, and magnetic field sensing.

  17. RADIOFREQUENCY SUPERCONDUCTIVITY: Workshop

    International Nuclear Information System (INIS)

    Lengeler, Herbert

    1989-01-01

    Superconducting radiofrequency is already playing an important role in the beam acceleration system for the TRISTAN electron-positron collider at the Japanese KEK Laboratory and new such systems are being prepared for other major machines. Thus the fourth Workshop on Radiofrequency Superconductivity, organized by KEK under the chairmanship of local specialist Yuzo Kojima and held just before the International Conference on High Energy Accelerators, had much progress to review and even more to look forward to

  18. Materials and mechanisms of hole superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Hirsch, J.E., E-mail: jhirsch@ucsd.edu [Department of Physics, University of California, San Diego, La Jolla, CA 92093-0319 (United States)

    2012-01-15

    We study the applicability of the model of hole superconductivity to materials. Both conventional and unconventional materials are considered. Many different classes of materials are discussed. The theory is found suitable to describe all of them. No other theory of superconductivity can describe all these classes of materials. The theory of hole superconductivity proposes that there is a single mechanism of superconductivity that applies to all superconducting materials. This paper discusses several material families where superconductivity occurs and how they can be understood within this theory. Materials discussed include the elements, transition metal alloys, high T{sub c} cuprates both hole-doped and electron-doped, MgB{sub 2}, iron pnictides and iron chalcogenides, doped semiconductors, and elements under high pressure.

  19. Electron-tunneling observation of localized excited states in superconducting manganese-doped lead

    International Nuclear Information System (INIS)

    Tsang, J.; Ginsberg, D.M.

    1980-01-01

    We have made electron-tunneling measurements on a dilute, superconducting lead-manganese alloy. A well-defined structure was observed in the ac-conductance--voltage curves, indicating excited states within the BCS energy gap. These states were partially accounted for by Shiba theory when spin-dependent s-, p-, and d-wave scattering were included. The phase shifts used in doing that were the results of band calculations. The experimental data also show the existence of a broad background density of states in the energy gap, which cannot be accounted for by the theory

  20. Electrical Conduction and Superconductivity

    Indian Academy of Sciences (India)

    When an electric field is applied, this electron can be lifted to this higher energy ... By such a virtual process two electrons .... using superconducting coils has come to be a reality. ... nance imaging techniques used in medical diagnostics. Com ...

  1. Preionization and start-up in the ISX-B tokamak using electron cyclotron heating at 28 GHz

    International Nuclear Information System (INIS)

    Kulchar, A.G.; Eldridge, O.C.; England, A.C.

    1983-10-01

    A 28-GHz gyrotron was used to produce a plasma at the electron cyclotron resonance in the Impurity Study Experiment (ISX-B) tokamak. The influence of the toroidal magnetic field magnitude, error fields, gas pressure, microwave power, microwave pulse length, and microwave timing was studied for experiments with magnetic field and gas only. Also, experiments with preionization followed by capacitor discharges were carried out in which these quantities were varied, as were the capacitor bank voltages. Optimum conditions of preionization for some of the parameters were determined. A theoretical model that adequately reproduces the data is given. Calculations based on this model show the temporal evolution of the electron temperature and density, the neutral density, and the plasma current. The model adequately accounts for present and previous experimental results and can be used to make predictions for future experiments

  2. First-principles approach for superconducting slabs and heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Csire, Gabor [Wigner Research Centre for Physics, Budapest (Hungary)

    2016-07-01

    We present a fully ab-initio method to calculate the transition temperature for superconducting slabs and heterostructures. In the case of thin superconductor layers the electron-phonon interaction may change significantly. Therefore we calculate the layer dependent phonon spectrum to determine the layer dependence of the electron-phonon coupling for such systems. The phonon spectrum is than coupled to the Kohn-Sham-Bogoliubov-de Gennes equation via the McMillan-Hopfield parameter, and it is solved self-consistently. The theory is applied to niobium slabs and niobium-gold heterostructures. Based on these calculations we investigate both the dependence of the superconducting transition temperature on the thickness of superconducting slabs and the inverse proximity effect observed in thin superconducting heterostructures.

  3. Performance Analysis of OFDM 60GHz System and SC-FDE 60GHz System

    Directory of Open Access Journals (Sweden)

    Han Xueyan

    2016-01-01

    Full Text Available In this paper, the performance of 60GHz wireless communication system with SC and OFDM is studied, the models of OFDM 60GHz system and SC 60GHz frequency domain equalization (SC-FDE system are established, and the bit error rate (BER performance of OFDM 60GHz system and SC-FDE 60GHz system in 802.15.3c channels is compared. The simulation results show that SC-FDE 60GHz system has a slight advantage over OFDM system in line-of-sight (LOS channels, while OFDM 60GHz system has a slight advantage over SC-FDE system in non-line-of-sight (NLOS channels. For 60GHz system, OFDM 60GHz system has a slight advantage over SC-FDE system in overcoming multipath fading, but the performance of both is close whether in the LOS or NLOS case.

  4. Detection of On-Chip Generated Weak Microwave Radiation Using Superconducting Normal-Metal SET

    Directory of Open Access Journals (Sweden)

    Behdad Jalali-Jafari

    2016-01-01

    Full Text Available The present work addresses quantum interaction phenomena of microwave radiation with a single-electron tunneling system. For this study, an integrated circuit is implemented, combining on the same chip a Josephson junction (Al/AlO x /Al oscillator and a single-electron transistor (SET with the superconducting island (Al and normal-conducting leads (AuPd. The transistor is demonstrated to operate as a very sensitive photon detector, sensing down to a few tens of photons per second in the microwave frequency range around f ∼ 100 GHz. On the other hand, the Josephson oscillator, realized as a two-junction SQUID and coupled to the detector via a coplanar transmission line (Al, is shown to provide a tunable source of microwave radiation: controllable variations in power or in frequency were accompanied by significant changes in the detector output, when applying magnetic flux or adjusting the voltage across the SQUID, respectively. It was also shown that the effect of substrate-mediated phonons, generated by our microwave source, on the detector output was negligibly small.

  5. Design of a 300 GHZ broadband coupler and RF-structure

    International Nuclear Information System (INIS)

    Krawczyk, F.L.; Carlsten, B.E.; Earley, L.M.; Sigler, F.E.; Potter, J.M.; Schulze, M.E.

    2004-01-01

    Recent LANL activities in millimeter wave structures focus on 95 and 300 GHz structures. They aim at power generation from low power (100W-2kW) with a round electron beam (120kV, 0.1-1.0 A) to high power (2-100 kW) with a sheet beam structure (120 kV, 20 A). Applications cover basic research, radar and secure communications and remote sensing of biological and chemical agents. In this presentation the design of a 300 GHz RF-structure with a broadband (> 6% bandwidth) power coupler is presented. The choice of two input/output waveguides, a special coupling region and the structure parameters are presented. As a benchmark also a scaled up version at 10 GHz was designed and measured. These results will also be presented. We are investigating planar micro-fabricated traveling-wave tube amplifiers as sources for the generation of millimeter waves from 95 to 300 GHz. While for low energy applications narrow structures with pencil beams are proposed, for high energy operation flat, thin sheet beams are required. For the latter vane-loaded rectangular waveguides that operate in a slow-wave mode matched to the velocity of the electron beam are especially well suited. The 300 GHz effort initially is limited to narrow structures for pencil beams. The main emphasis for this work are the study of fabrication issues and the understanding of features that allow a broadband operation (5-10% bandwidth).

  6. Analysis of Nb3Sn surface layers for superconducting radio frequency cavity applications

    Science.gov (United States)

    Becker, Chaoyue; Posen, Sam; Groll, Nickolas; Cook, Russell; Schlepütz, Christian M.; Hall, Daniel Leslie; Liepe, Matthias; Pellin, Michael; Zasadzinski, John; Proslier, Thomas

    2015-02-01

    We present an analysis of Nb3Sn surface layers grown on a bulk Niobium (Nb) coupon prepared at the same time and by the same vapor diffusion process used to make Nb3Sn coatings on 1.3 GHz Nb cavities. Tunneling spectroscopy reveals a well-developed, homogeneous superconducting density of states at the surface with a gap value distribution centered around 2.7 ± 0.4 meV and superconducting critical temperatures (Tc) up to 16.3 K. Scanning transmission electron microscopy performed on cross sections of the sample's surface region shows an ˜2 μm thick Nb3Sn surface layer. The elemental composition map exhibits a Nb:Sn ratio of 3:1 and reveals the presence of buried sub-stoichiometric regions that have a ratio of 5:1. Synchrotron x-ray diffraction experiments indicate a polycrystalline Nb3Sn film and confirm the presence of Nb rich regions that occupy about a third of the coating volume. These low Tc regions could play an important role in the dissipation mechanisms occurring during RF tests of Nb3Sn-coated Nb cavities and open the way for further improving a very promising alternative to pure Nb cavities for particle accelerators.

  7. Analysis of Nb3Sn surface layers for superconducting radio frequency cavity applications

    International Nuclear Information System (INIS)

    Becker, Chaoyue; Posen, Sam; Hall, Daniel Leslie; Groll, Nickolas; Proslier, Thomas; Cook, Russell; Schlepütz, Christian M.; Liepe, Matthias; Pellin, Michael; Zasadzinski, John

    2015-01-01

    We present an analysis of Nb 3 Sn surface layers grown on a bulk Niobium (Nb) coupon prepared at the same time and by the same vapor diffusion process used to make Nb 3 Sn coatings on 1.3 GHz Nb cavities. Tunneling spectroscopy reveals a well-developed, homogeneous superconducting density of states at the surface with a gap value distribution centered around 2.7 ± 0.4 meV and superconducting critical temperatures (T c ) up to 16.3 K. Scanning transmission electron microscopy performed on cross sections of the sample's surface region shows an ∼2 μm thick Nb 3 Sn surface layer. The elemental composition map exhibits a Nb:Sn ratio of 3:1 and reveals the presence of buried sub-stoichiometric regions that have a ratio of 5:1. Synchrotron x-ray diffraction experiments indicate a polycrystalline Nb 3 Sn film and confirm the presence of Nb rich regions that occupy about a third of the coating volume. These low T c regions could play an important role in the dissipation mechanisms occurring during RF tests of Nb 3 Sn-coated Nb cavities and open the way for further improving a very promising alternative to pure Nb cavities for particle accelerators

  8. WORKSHOP: Radiofrequency superconductivity

    International Nuclear Information System (INIS)

    Tückmantel, Joachim

    1993-01-01

    Full text: With superconducting radiofrequency playing a major role in the push for new machines to break fresh physics frontiers, it has become a tradition for experts and newcomers in this field from all over the world to meet every second year to hear progress reports from laboratories and to discuss common problems and possible solutions. The sixth such workshop was held from 4-8 October under the chairmanship of Ron Sundelin at the Continuous Electron Beam Accelerator Facility (CEBAF) under construction in Newport News, Virginia. With 170 participants from 14 countries including Eastern Europe and China, it reflected the growing interest in the field - looking back to 1984, when CERN was the host laboratory, the second workshop had less than 100 participants. The CEBAF meeting began with laboratory status reports, covering both high beam energy ('high beta') applications with 'spherical' cavities (as with CERN's LEP200), all using niobium as superconductor and working between 352 MHz and 3 GHz, and lower energy (low beta') applications with geometrically more complicated shapes such as quarter or half wave, split ring or spoke resonators, some using electrodeposited lead as superconductor and working around 100 MHz. During these talks it became clear that more and more laboratories have focused on routine problems, such as reliable series production and testing, running cavities with ancillaries in the machines, or building complete prototypes for projects to be approved by critical funding authorities. This contrasts with the heady days just a few years ago when - at least in the high beta community - the main objective was to explore new ideas. State-of-the-art summaries showed how at 1.3 and 3 GHz 25-30 MV/m have been reached by several laboratories using different preparation methods. Newer developments for common problems included r.f. windows, couplers, controls, and especially field emission, public enemy number one for

  9. Performance of photocathode rf gun electron accelerators

    International Nuclear Information System (INIS)

    Ben-Zvi, I.

    1993-01-01

    In Photo-Injectors (PI) electron guns, electrons are emitted from a photocathode by a short laser pulse and then accelerated by intense rf fields in a resonant cavity. The best known advantage of this technique is the high peak current with a good emittance (high brightness). This is important for short wavelength Free-Electron Lasers and linear colliders. PIs are in operation in many electron accelerator facilities and a large number of new guns are under construction. Some applications have emerged, providing, for example, very high pulse charges. PIs have been operated over a wide range of frequencies, from 144 to 3000 MHz (a 17 GHz gun is being developed). An exciting new possibility is the development of superconducting PIs. A significant body of experimental and theoretical work exists by now, indicating the criticality of the accelerator elements that follow the gun for the preservation of the PI's performance as well as possible avenues of improvements in brightness. Considerable research is being done on the laser and photocathode material of the PI, and improvement is expected in this area

  10. Superconductivity application technologies. Superconducting quadrupole magnet and cooling system for KEK B factory

    International Nuclear Information System (INIS)

    Tsuchiya, Kiyosumi; Yamaguchi, Kiyoshi; Sakurabata, Hiroaki; Seido, Masahiro; Matsumoto, Kozo.

    1997-01-01

    At present in National Laboratory for High Energy Physics (KEK), the construction of B factory is in progress. By colliding 8 GeV electrons and 3.5 GeV positrons, this facility generates large amounts of B mesons and anti-B mesons, and performs the elementary particle experiment of high accuracy. It is the collision type accelerator of asymmetric two-ring type comprising 8 GeV and 3.5 GeV rings. In the field of high energy physics, superconductivity technology has been put to practical use. As the objects of superconductivity technology, there are dipole magnet for bending beam, quadrupole magnet for adjusting beam, large solenoid magnet used for detector and so on. Superconducting magnets which are indispensable for high energy, superconducting wire material suitable to accelerators, and the liquid helium cooling system for maintaining superconducting magnets at 4.4 K are reported. The technologies of metallic conductors and making their coils have advanced rapidly, and also cooling technology has advanced, accordingly, superconductivity technology has reached the stage of practical use perfectly. (K.I.)

  11. First lasing of the Dutch Fusion-FEM: 730 kW, 200 GHz

    Energy Technology Data Exchange (ETDEWEB)

    Urbanus, W.H. E-mail: urbanus@rijnh.nl; Bongers, W.A.; Geer, C.A.J. van der; Manintveld, P.; Plomp, J.; Pluygers, J.; Poelman, A.J.; Smeets, P.H.M.; Schueller, F.C.; Verhoeven, A.G.A.; Bratman, V.L.; Denisov, G.G.; Savilov, A.V.; Shmelyov, M.Yu.; Caplan, M.; Varfolomeev, A.A

    1999-06-01

    A high-power electrostatic free-electron maser is operated at various frequencies. An output power of 730 kW at 206 GHz is generated with a 7.2 A, 1.77 MeV electron beam, and 360 kW at 167 GHz is generated with a 7.0 A, 1.61 MeV electron beam. It is shown experimentally and by simulations that, depending on the electron beam energy, the FEM can operate in single-frequency regime. First experiments were done without electron beam energy recovery system, and the pulse length was limited to 12 {mu}s. Nevertheless, many aspects of generation of mm-wave power have been explored, such as the dependency on the electron beam energy and beam current and cavity settings such as the feedback coefficient. The achieved parameters and the FEM dynamics are in good accordance with simulations.

  12. Miniature scanning electron microscope for investigation of the interior surface of a superconducting Nb radiofrequency accelerating cavity

    International Nuclear Information System (INIS)

    Mathewson, A.G.; Grillot, A.

    1982-01-01

    A miniature scanning electron microscope with an electron beam diameter approx.1 μm has been constructed for high resolution examination at room temperature of the interior surface of a superconducting Nb radiofrequency accelerating cavity. Various objects and surface structures were observed, some of which could be correlated with lossy regions or ''hot spots'' detected previously on the outside surface during cavity operation at < or =4.2 K by a chain of carbon resistors. No internal surface features were observed which could conclusively be correlated with field emitting electron sources

  13. 200 and 270 GHz SIS receivers development for atmospheric observation

    International Nuclear Information System (INIS)

    Ochiai, S.; Masuko, H.

    1993-01-01

    Superconducting mixers have been developed for observations of atmospheric minor constituents such as ClO and ozone at Communications Research Laboratory. This paper describes the work at development of 200 and 270 GHz SIS mixers. Nb/AlOx/Nb junctions were fabricated at Nobeyama Radio Observatory. The base Nb layer 200 nm, the Al (AlOx) insulation layer, and the counter Nb electrode 150 nm are sputtered. The area outside of a junction defined by etching of the counter electrode is insulated by anodized Nb layer and sputtered SiO 2 . After sputtering thick SiO 2 layer on the whole wafer, a contact hole is made by etching. The thickness of the wiring Nb layer is 500 nm. The junctions are formed on the 250 μm thick fused quartz substrate. After the process of the junction fabrication, the quartz substrate is shaved from the back side until 150 μm thickness. Each junction for 270 GHz mixer has an area of about 1 μm 2 . The normal resistance of the six junctions series array is around 70 Ω. The mixer block has a reduced waveguide (1.2 x 0.1 mm for 200 GHz and 0.98 x 0. 1 mm for 270 GHz). The waveguide has two tuners in addition to a fixed backshort cavity. This configuration can allow to realize the lower embedding impedance, and less sensitive to the position of the tuners. The SIS mixers are cooled in a closed cycle He refrigerator. The LO is optically injected through a Fabry Perot interferometer. The 5--7 GHz IF is fed to a HEMT amplifier cooled at 15 K. The authors have started a preliminary measurement of the noise temperature of the SIS receivers, and comparing with calculated DSB receiver noise temperature assuming 3-port model. They continue to improve the performance of the SIS mixers now. They intend that the receivers shall be utilized for atmospheric monitor from next winter

  14. Crosstalk in a KID Array Caused by the Thickness Variation of Superconducting Metal

    Science.gov (United States)

    Adane, A.; Boucher, C.; Coiffard, G.; Leclercq, S.; Schuster, K. F.; Goupy, J.; Calvo, M.; Hoarau, C.; Monfardini, A.

    2016-07-01

    The work presented in this paper is focused on the improvement of the kinetic detectors used on NIKA2 instrument (New IRAM KID array 2). Based on the simulation and low temperature measurements, it aims at showing how the variations of the superconducting metal corrupt the frequency comb of the kinetic Inductance detectors (KID) in the frequency range (between 1 and 3 GHz), i.e., how the superconducting metal inhomogeneity induces the resonance-to-resonance cross-coupling which deteriorates the homogeneity of the resonance quality factor and the frequency resonance separation. Solutions are then proposed to fight against the effect of these metallic variations when designing the KID array.

  15. Superconductivity induced by interfacial coupling to magnons

    Science.gov (United States)

    Rohling, Niklas; Fjærbu, Eirik Løhaugen; Brataas, Arne

    2018-03-01

    We consider a thin normal metal sandwiched between two ferromagnetic insulators. At the interfaces, the exchange coupling causes electrons within the metal to interact with magnons in the insulators. This electron-magnon interaction induces electron-electron interactions, which in turn can result in p -wave superconductivity. We solve the gap equation numerically and estimate the critical temperature. In yttrium iron garnet (YIG)-Au-YIG trilayers, superconductivity sets in at temperatures somewhere in the interval between 1 and 10 K. EuO-Au-EuO trilayers require a lower temperature, in the range from 0.01 to 1 K.

  16. Entanglement swapping of a GHZ state via a GHZ-like state

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Chia-Wei; Hwang, Tzonelih, E-mail: hwangtl@ismail.csie.ncku.edu.t [National Cheng Kung University, Department of Computer Science and Information Engineering, No. 1 Ta-Hsueh Road, Tainan City 701, Taiwan (China)

    2011-10-15

    This study uses the Greenberger-Horne-Zeilinger (GHZ)-like state |G>= 1/2 (|001>+|010>+|100>+|111>) to establish an entanglement swapping protocol on a pure GHZ state. A quantum circuit is proposed to assist in teleporting the entanglement of the pure GHZ state. Furthermore, on the basis of the generation of the GHZ-like state, an improved protocol to reduce the number of transmitted photons required in the process of entanglement swapping is proposed.

  17. Applications of superconducting bolometers in security imaging

    International Nuclear Information System (INIS)

    Luukanen, A; Leivo, M M; Rautiainen, A; Grönholm, M; Toivanen, H; Grönberg, L; Helistö, P; Mäyrä, A; Aikio, M; Luukanen, A; Grossman, E N

    2012-01-01

    Millimeter-wave (MMW) imaging systems are currently undergoing deployment World-wide for airport security screening applications. Security screening through MMW imaging is facilitated by the relatively good transmission of these wavelengths through common clothing materials. Given the long wavelength of operation (frequencies between 20 GHz to ∼ 100 GHz, corresponding to wavelengths between 1.5 cm and 3 mm), existing systems are suited for close-range imaging only due to substantial diffraction effects associated with practical aperture diameters. The present and arising security challenges call for systems that are capable of imaging concealed threat items at stand-off ranges beyond 5 meters at near video frame rates, requiring substantial increase in operating frequency in order to achieve useful spatial resolution. The construction of such imaging systems operating at several hundred GHz has been hindered by the lack of submm-wave low-noise amplifiers. In this paper we summarize our efforts in developing a submm-wave video camera which utilizes cryogenic antenna-coupled microbolometers as detectors. Whilst superconducting detectors impose the use of a cryogenic system, we argue that the resulting back-end complexity increase is a favorable trade-off compared to complex and expensive room temperature submm-wave LNAs both in performance and system cost.

  18. Unconventional superconductivity in heavy-fermion compounds

    Energy Technology Data Exchange (ETDEWEB)

    White, B.D. [Department of Physics, University of California, San Diego, La Jolla, CA 92093 (United States); Center for Advanced Nanoscience, University of California, San Diego, La Jolla, CA 92093 (United States); Thompson, J.D. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Maple, M.B., E-mail: mbmaple@ucsd.edu [Department of Physics, University of California, San Diego, La Jolla, CA 92093 (United States); Center for Advanced Nanoscience, University of California, San Diego, La Jolla, CA 92093 (United States)

    2015-07-15

    Highlights: • Quasiparticles in heavy-fermion compounds are much heavier than free electrons. • Superconductivity involves pairing of these massive quasiparticles. • Quasiparticle pairing mediated by magnetic or quadrupolar fluctuations. • We review the properties of superconductivity in heavy-fermion compounds. - Abstract: Over the past 35 years, research on unconventional superconductivity in heavy-fermion systems has evolved from the surprising observations of unprecedented superconducting properties in compounds that convention dictated should not superconduct at all to performing explorations of rich phase spaces in which the delicate interplay between competing ground states appears to support emergent superconducting states. In this article, we review the current understanding of superconductivity in heavy-fermion compounds and identify a set of characteristics that is common to their unconventional superconducting states. These core properties are compared with those of other classes of unconventional superconductors such as the cuprates and iron-based superconductors. We conclude by speculating on the prospects for future research in this field and how new advances might contribute towards resolving the long-standing mystery of how unconventional superconductivity works.

  19. Generation of three-qubit Greenberger-Horne-Zeilinger states of superconducting qubits by using dressed states

    Science.gov (United States)

    Zhang, Xu; Chen, Ye-Hong; Shi, Zhi-Cheng; Shan, Wu-Jiang; Song, Jie; Xia, Yan

    2017-12-01

    Combining the advantages of the dressed states and superconducting quantum interference device (SQUID) qubits, we propose an efficient scheme to generate Greenberger-Horne-Zeilinger (GHZ) states for three SQUID qubits. Firstly, we elaborate how to generate GHZ states of three SQUID qubits by choosing a set of dressed states suitably. Then, we compare the scheme by using dressed states with that via the adiabatic passage. Lastly, the influence of various decoherence factors, such as cavity decay, spontaneous emission and dephasing, is analyzed numerically. All of the results show that the GHZ state can be obtained fast and with high fidelity and that the present scheme is robust against the cavity decay and spontaneous emission. In addition, our scheme is more stable against the dephasing than the adiabatic scheme.

  20. Last LEP superconducting module travels to surface

    CERN Multimedia

    Patrice Loïez

    2001-01-01

    The last superconducting module is raised from the Large Electron-Positron (LEP) collider tunnel, through the main shaft, to the surface. Superconducting modules were only used in the LEP-2 phase of the accelerator, from 1996 to 2000.

  1. Widely Tunable On-Chip Microwave Circulator for Superconducting Quantum Circuits

    Science.gov (United States)

    Chapman, Benjamin J.; Rosenthal, Eric I.; Kerckhoff, Joseph; Moores, Bradley A.; Vale, Leila R.; Mates, J. A. B.; Hilton, Gene C.; Lalumière, Kevin; Blais, Alexandre; Lehnert, K. W.

    2017-10-01

    We report on the design and performance of an on-chip microwave circulator with a widely (GHz) tunable operation frequency. Nonreciprocity is created with a combination of frequency conversion and delay, and requires neither permanent magnets nor microwave bias tones, allowing on-chip integration with other superconducting circuits without the need for high-bandwidth control lines. Isolation in the device exceeds 20 dB over a bandwidth of tens of MHz, and its insertion loss is small, reaching as low as 0.9 dB at select operation frequencies. Furthermore, the device is linear with respect to input power for signal powers up to hundreds of fW (≈103 circulating photons), and the direction of circulation can be dynamically reconfigured. We demonstrate its operation at a selection of frequencies between 4 and 6 GHz.

  2. On possibility of superconductivity in SnSb: A first principle study

    Energy Technology Data Exchange (ETDEWEB)

    Dabhi, Shweta D. [Department of Physics, M. K. Bhavnagar University, Bhavnagar 364001 (India); Shrivastava, Deepika [Department of Physics, Barkatullah University, Bhopal 462026 (India); Jha, Prafulla K., E-mail: prafullaj@yahoo.com [Department of Physics, Faculty of Science, The M. S. University of Baroda, Vadodara 390002 (India); Sanyal, Sankar P. [Department of Physics, Barkatullah University, Bhopal 462026 (India)

    2016-09-15

    Highlights: • Superconducting property of SnSb is predicted by ab-initio calculations. • Electronic properties of SnSb in RS phase shows metallic behaviour similar to SnAs. • Phonon dispersion confirms the dynamical stability of SnSb in RS phase. • Superconducting transition temperature is 3.1 K, slightly lower than that of SnAs. • Calculated thermodynamic properties are also reported. - Abstract: The electronic, phonon structure and superconducting properties of tin antimonide (SnSb) in rock-salt (RS) structure are calculated using first-principles density functional theory. The electronic band structure and density of states show metallic behavior. The phonon frequencies are positive throughout the Brillouin zone in rock-salt structure indicating its stability in that phase. Superconductivity of SnSb in RS phase is discussed in detail by calculating phonon linewidths, Eliashberg spectral function, electron-phonon coupling constant and superconducting transition temperature. SnSb is found to have a slightly lower T{sub C} (3.1 K), as compared to SnAs.

  3. 34 GHz, 45 MW pulsed magnicon

    International Nuclear Information System (INIS)

    Nezhevenko, Oleg A.; LaPointe, Michael A.; Yakovlev, Vyacheslav P.; Hirshfield, Jay L.; Serdobintsev, Gennady V.; Kuznetsov, Gennady I.; Persov, Boris Z.; Fix, Alexander

    2002-01-01

    A high efficiency, high power magnicon at 34.272 GHz has been designed and built as a microwave source to develop RF technology for a future multi-TeV electron-positron linear collider. The tube is designed to provide a peak output power of ∼45 MW in a 1 microsecond pulse, with a gain of 55 dB, using a 500 kV, 220 A, 1 mm-diameter electron beam. The status of the tube itself as well as the near-term experimental program is presented

  4. High field Q slope and the effect of low-temperature baking at 3 GHz

    Science.gov (United States)

    Ciovati, G.; Eremeev, G.; Hannon, F.

    2018-01-01

    A strong degradation of the unloaded quality factor with field, called high field Q slope, is commonly observed above Bp ≅100 mT in elliptical superconducting niobium cavities at 1.3 and 1.5 GHz. In the present experiments several 3 GHz niobium cavities were measured up to and above Bp ≅100 mT . The measurements show that a high field Q slope phenomenon limits the field reach at this frequency, that the high field Q slope onset field depends weakly on the frequency, and that the high field Q slope can be removed by the typical empirical solution of electropolishing followed by heating to 120°C for 48 hrs. In addition, one of the cavities reached a quench field of 174 mT and its field dependence of the quality factor was compared against global heating predicted by a thermal feedback model.

  5. Superconducting magnet package for the TESLA test facility

    International Nuclear Information System (INIS)

    Koski, A.; Bandelmann, R.; Wolff, S.

    1996-01-01

    The magnetic lattice of the TeV electron superconducting linear accelerator (TESLA) will consist of superconducting quadrupoles for beam focusing and superconducting correction dipoles for beam steering, incorporated in the cryostats containing the superconducting cavities. This report describes the design of these magnets, presenting details of the magnetic as well as the mechanical design. The measured characteristics of the TESLA Test Facility (TTF) quadrupoles and dipoles are compared to the results obtained from numerical computations

  6. Microwave surface resistance of YBa2Cu3O/sub 6.9/ superconducting films

    International Nuclear Information System (INIS)

    Martens, J.S.; Beyer, J.B.; Ginley, D.S.

    1988-01-01

    The microwave surface resistance of an YBa 2 Cu 3 O/sub 6.9/ superconducting thick film was measured over the range 7.0--16.7 GHz at 77 K. This was done by placing a sample in a TE 01 /sub n/ wavemeter cavity and observing the change in selectivity of the cavity. The material's surface resistance is of the same order of magnitude as that of silver at 77 K from 8 to 12 GHz and improves about another order at 4.2 K. The power-law behavior of surface resistance with frequency is probably close to quadratic. This is similar to the behavior of low critical temperature superconductors

  7. Studies of plasma breakdown and electron heating on a 14 GHz ECR ion source through measurement of plasma bremsstrahlung

    Energy Technology Data Exchange (ETDEWEB)

    Ropponen, T; Machicoane, G; Leitner, D [National Superconducting Cyclotron Laboratory, MSU, East Lansing, MI 48824 (United States); Tarvainen, O; Toivanen, V; Koivisto, H; Kalvas, T; Peura, P; Jones, P [University of Jyvaeskylae, Department of Physics, PO Box 35 (YFL), 40500 Jyvaeskylae (Finland); Izotov, I; Skalyga, V; Zorin, V [Institute of Applied Physics, RAS, 46 Ulyanov St., 603950 Nizhny Novgorod (Russian Federation); Noland, J, E-mail: tommi.ropponen@gmail.com, E-mail: olli.tarvainen@jyu.fi [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States)

    2011-10-15

    Temporal evolution of plasma bremsstrahlung emitted by a 14 GHz electron cyclotron resonance ion source (ECRIS) operated in pulsed mode is presented in the energy range 1.5-400 keV with 100 {mu}s resolution. Such a high temporal resolution together with this energy range has never been measured before with an ECRIS. Data are presented as a function of microwave power, neutral gas pressure, magnetic field configuration and seed electron density. The saturation time of the bremsstrahlung count rate is almost independent of the photon energy up to 100 keV and exhibits similar characteristics with the neutral gas balance. The average photon energy during the plasma breakdown is significantly higher than that during the steady state and depends strongly on the density of seed electrons. The results are consistent with a theoretical model describing the evolution of the electron energy distribution function during the preglow transient.

  8. Quasiparticle dynamics in aluminium superconducting microwave resonators

    NARCIS (Netherlands)

    De Visser, P.J.

    2014-01-01

    This thesis describes the intrinsic limits of superconducting microresonator detectors. In a superconductor at low temperature, most of the electrons are paired into so called Cooper pairs, which cause the well-known electrical conduction without resistance. Superconducting microwave resonators have

  9. Superconductivity at high pressures

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, N B; Ginzburg, N I

    1969-07-01

    Work published during the last 3 or 4 yrs concerning the effect of pressure on superconductivity is reviewed. Superconducting modifications of Si, Ge, Sb, Te, Se, P and Ce. Change of Fermi surface under pressure for nontransition metals. First experiments on the influence of pressure on the tunneling effect in superconductors provide new information on the nature of the change in phonon and electron energy spectra of metals under hydrostatic compression. 78 references.

  10. The Influence of Tuners and Temperature on the Higher Order Mode Spectrum for 1.3 GHz SCRF Cavities

    CERN Document Server

    Ainsworth, R; Zhang, P; Grecki, M; Baboi, N; Wamsat, T; Eddy, N

    2013-01-01

    Higher Order Modes (HOMs) are of concern for superconducting cavities as they can drive instabilities and so are usually damped and monitored. With special dedicated electronics, HOMs can provide information on the position on the beam. It has been proposed that piezo tuners used to keep the cavities operating at 1.3 GHz could alter the HOM spectrum altering the calibration constants used to read out the beam position affecting long term stability of the system. Also, of interest is how the cavity reacts to the slow tuner. Detuning and the retuning the cavity may alter the HOM spectrum. This is of particular interest for future machines not planning to use dedicated HOM damping as the tuning procedure may shift the frequency of HOMs onto dangerous resonances. The effect of temperature on the HOM spectrum is also investigated. An investigation of these effects has been performed at FLASH and the results are presented.

  11. Recent advances in the 5f-relevant electronic states and unconventional superconductivity of actinide compounds

    International Nuclear Information System (INIS)

    Haga, Yoshinori; Sakai, Hironori; Kambe, Shinsaku

    2007-01-01

    Recent advances in the understanding of the 5f-relevant electronic states and unconventional superconducting properties are reviewed in actinide compounds of UPd 2 Al 3 . UPt 3 , URu 2 Si 2 , UGe 2 , and PuRhGa 5 . These are based on the experimental results carried out on high-quality single crystal samples, including transuranium compounds, which were grown by using combined techniques. The paring state and the gap structure of these superconductors are discussed, especially for the corresponding Fermi surfaces which were clarified by the de Haas-van Alphen experiment and the energy band calculations. A detailed systematic study using the NQR/NMR spectroscopy reveals the d-wave superconductivity in PuRhGa 5 and the difference of magnetic excitations due to the difference of ground states in U-, Np-, and Pu-based AnTGa 5 (T: transition metal) compounds. (author)

  12. High-Tc superconducting microbolometer for terahertz applications

    Science.gov (United States)

    Ulysse, C.; Gaugue, A.; Adam, A.; Kreisler, A. J.; Villégier, J.-C.; Thomassin, J.-L.

    2002-05-01

    Superconducting hot electron bolometer mixers are now a competitive alternative to Schottky diode mixers in the terahertz frequency range because of their ultra wideband (from millimeter waves to visible light), high conversion gain, and low intrinsic noise level. High Tc superconductor materials can be used to make hot electron bolometers and present some advantage in term of operating temperature and cooling. In this paper, we present first a model for the study of superconducting hot electron bolometers responsivity in direct detection mode, in order to establish a firm basis for the design of future THz mixers. Secondly, an original process to realize YBaCuO hot electron bolometer mixers will be described. Submicron YBaCuO superconducting structures are expitaxially sputter deposited on MgO substrates and patterned by using electron beam lithography in combination with optical lithography. Metal masks achieved by electron beam lithography are insuring a good bridge definition and protection during ion etching. Finally, detection experiments are being performed with a laser at 850 nm wavelength, in homodyne mode in order to prove the feasibility and potential performances of these devices.

  13. Superconducting magnesium diboride coatings for radio frequency cavities fabricated by hybrid physical-chemical vapor deposition

    Science.gov (United States)

    Wolak, M. A.; Tan, T.; Krick, A.; Johnson, E.; Hambe, M.; Chen, Ke; Xi, X. X.

    2014-01-01

    We have investigated the coating of an inner surface of superconducting radio frequency cavities with a magnesium diboride thin film by hybrid physical-chemical vapor deposition (HPCVD). To simulate a 6 GHz rf cavity, a straight stainless steel tube of 1.5-inch inner diameter and a dummy stainless steel cavity were employed, on which small sapphire and metal substrates were mounted at different locations. The MgB2 films on these substrates showed uniformly good superconducting properties including Tc of 37-40 K, residual resistivity ratio of up to 14, and root-mean-square roughness Rq of 20-30 nm. This work demonstrates the feasibility of coating the interior of cylindrical and curved objects with MgB2 by the HPCVD technique, an important step towards superconducting rf cavities with MgB2 coating.

  14. Microwave spectroscopy and electronic transport properties of ferromagnetic Josephson junctions and superconducting spin-valves

    Energy Technology Data Exchange (ETDEWEB)

    Thalmann, Marcel; Rudolf, Marcel; Pietsch, Torsten [Zukunftskolleg and Department of Physics, University of Konstanz, Universitaetsstrasse 10, 78464 Konstanz (Germany)

    2016-07-01

    Hybrid superconducting nanostructures recently attracted tremendous interest, due to their great potential in dissipation-less spin-electronics with unprecedented switching rates. The practical realisation of such devices, however, requires a complete understanding of the transfer and dynamics of spin- and charge currents between superconducting (S) and ferromagnetic (F) circuit elements, as well as the coupling between spin- and charge degrees of freedom in these systems. We investigate novel transport phenomena in superconductor-ferromagnet hybrid nanostructures under non-equilibrium conditions. Microwave spectroscopy is used to elucidate fundamental questions related to the complex interplay of competing order parameters and the question of relaxation mechanisms of non-equilibrium distributions with respect to spin, charge and energy. Recent experiments on two complimentary device structures are discussed: (I) in diffusive S/F/S Josephson junctions with non-sinusoidal current-phase relationship and (II) local and non-local transport measurements and microwave spectroscopy in F/S/F lateral spin-valves.

  15. Recent advances in fullerene superconductivity

    CERN Document Server

    Margadonna, S

    2002-01-01

    Superconducting transition temperatures in bulk chemically intercalated fulleride salts reach 33 K at ambient pressure and in hole-doped C sub 6 sub 0 derivatives in field-effect-transistor (FET) configurations, they reach 117 K. These advances pose important challenges for our understanding of high-temperature superconductivity in these highly correlated organic metals. Here we review the structures and properties of intercalated fullerides, paying particular attention to the correlation between superconductivity and interfullerene separation, orientational order/disorder, valence state, orbital degeneracy, low-symmetry distortions, and metal-C sub 6 sub 0 interactions. The metal-insulator transition at large interfullerene separations is discussed in detail. An overview is also given of the exploding field of gate-induced superconductivity of fullerenes in FET electronic devices.

  16. Recent operating experience with Varian 70 GHz and 140 GHz gyrotrons

    International Nuclear Information System (INIS)

    Felch, K.; Bier, R.; Fox, L.; Huey, H.; Ives, L.; Jory, H.; Lopez, N.; Shively, J.; Spang, S.

    1985-01-01

    The design features and initial test results of Varian 70 GHz and 140 GHz CW gyrotrons are presented. The first experimental 140 GHz tube has achieved an output power of 102 kW at 24% efficiency under pulsed conditions in the desired TE 031 0 cavity mode. Further tests aimed at achieving the design goal of 100 kW CW are currently underway. The 70 GHz tube has achieved an output power of 200 kW under pulsed conditions and possesses a wide dynamic range for output power variations. 6 refs., 8 figs

  17. Reassessment of the electronic state, magnetism, and superconductivity in high-T{sub c} cuprates with the Nd{sub 2}CuO{sub 4} structure

    Energy Technology Data Exchange (ETDEWEB)

    Naito, Michio, E-mail: minaito@cc.tuat.ac.jp [Department of Applied Physics, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Koganei, Tokyo 184-8588 (Japan); Krockenberger, Yoshiharu; Ikeda, Ai; Yamamoto, Hideki [NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato-Wakamiya, Atsugi, Kanagawa 243-0198 (Japan)

    2016-04-15

    Highlights: • The 30-year history of “electron-doped” cuprates is reviewed, including basic physics and material issues. • Undoped cuprates with the Nd{sub 2}CuO{sub 4} (T’) structure are superconducting with T{sub c} over 30 K. • Electron doping by Ce in T’-RE{sub 2}CuO{sub 4} lowers T{sub c} and the highest T{sub c} is obtained at no doping. - Abstract: The electronic phase diagram of the cuprates remains enigmatic and is still a key ingredient to understand the mechanism of high-T{sub c} superconductivity. It has been believed for a long time that parent compounds of cuprates were universally antiferromagnetic Mott insulators (charge-transfer insulators) and that high-T{sub c} superconductivity would develop upon doping holes or electrons in a Mott–Hubbard insulator (“doped Mott-insulator scenario”). However, our recent discovery of superconductivity in the parent compounds of square-planar cuprates with the Nd{sub 2}CuO{sub 4} (T’) structure and the revised electronic phase diagram in T’ cuprates urged a serious reassessment to the above scenario. In this review, we present the main results derived from our synthesis and experiments on T’ cuprates in the undoped or heavily underdoped regime over 20 years, including material issues and basic physics. The key material issue is how to remove excess oxygen ions at the apical site without introducing oxygen vacancies in the CuO{sub 2} planes. In order to put this into practice, the basic knowledge of complex solid-state chemistry in T’ cuprates is required, which is also included in this review.

  18. Earlier and recent aspects of superconductivity

    International Nuclear Information System (INIS)

    Bednorz, J.G.; Muller, K.A.

    1990-01-01

    Contemporary knowledge of superconductivity is set against its historical background in this book. First, the highlights of superconductivity research in the twentieth century are reviewed. Further contributions then describe the basic phenomena resulting from the macroscopic quantum state of superconductivity (such as zero resistivity, the Meissner-Ochsenfeld effect, and flux quantization) and review possible mechanisms, including the classical BCS theory and the more recent alternative theories. The main categories of superconductors - elements, intermetallic phases, chalcogenides, oxides and organic compounds - are described. Common features and differences in their structure and electronic properties are pointed out. This overview of superconductivity is completed by a discussion of properties related to the coherence length

  19. ESR spectrometer with a loop-gap resonator for cw and time resolved studies in a superconducting magnet.

    Science.gov (United States)

    Simon, Ferenc; Murányi, Ferenc

    2005-04-01

    The design and performance of an electron spin resonance spectrometer operating at 3 and 9 GHz microwave frequencies combined with a 9-T superconducting magnet are described. The probehead contains a compact two-loop, one gap resonator, and is inside the variable temperature insert of the magnet enabling measurements in the 0-9T magnetic field and 1.5-400 K temperature range. The spectrometer allows studies on systems where resonance occurs at fields far above the g approximately 2 paramagnetic condition such as in antiferromagnets. The low quality factor of the resonator allows time resolved experiments such as, e.g., longitudinally detected ESR. We demonstrate the performance of the spectrometer on the NaNiO2 antiferromagnet, the MgB2 superconductor, and the RbC60 conducting alkaline fulleride polymer.

  20. Traveling wave tube oscillator/amplifier with superconducting rf circuit

    International Nuclear Information System (INIS)

    Jasper, L.J. Jr.

    1989-01-01

    This patent describes a device comprising: an electron gun for producing an electron beam; a collector for collecting the electron beam; a vacuum housing surrounding the electron beam and having an integral slow wave circuit, the circuit being made from superconducting ceramic material; means for maintaining the temperature of the superconducting ceramic below its critical temperature; means for extracting an output signal from the slow wave circuit; means for creating a magnetic field within the vacuum housing so that interaction between the electron beam and the slow wave circuit produces the output signal

  1. Scattering parameters of the 3.9 GHz accelerating module in a free-electron laser linac: A rigorous comparison between simulations and measurements

    CERN Document Server

    Flisgen, T; Zhang, P; Shinton, I R R; Baboi, N; Jones, R M; van Rienen, U

    2014-01-01

    This article presents a comparison between measured and simulated scattering parameters in a wide frequency interval for the third harmonic accelerating module ACC39 in the linear accelerator FLASH, located at DESY in Hamburg/Germany. ACC39 is a cryomodule housing four superconducting 3.9  GHz accelerating cavities. Due to the special shape of the cavities (in particular its end cells and the beam pipes) in ACC39, the electromagnetic field in the module is, in many frequency ranges, coupled from one cavity to the next. Therefore, the scattering parameters are determined by the entire string and not solely by the individual cavities. This makes the determination of the scattering properties demanding. As far as the authors can determine, this paper shows for the first time a direct comparison between state-of-the-art simulations and measurements of rf properties of long, complex, and asymmetric structures over a wide frequency band. Taking into account the complexity of the system and various geometrical unk...

  2. Tunability of resonance frequencies in a superconducting microwave resonator by using SrTiO sub 3 ferroelectric films

    CERN Document Server

    Sok, J; Lee, E H

    1998-01-01

    An applied dc voltage varies the dielectric constant of ferroelectric SrTiO sub 3 films. A tuning mechanism for superconducting microwave resonators was realized by using the variation in the dielectric constant of SrTiO sub 3 films. In order to estimate the values of the capacitance, C, and the loss tangent, tan delta, of SrTiO sub 3 ferroelectric capacitors, we used high-temperature superconducting microwave resonators which were composed of two ports, two poles, and dc bias circuits at the zero-field points. SrTiO sub 3 ferroelectric capacitors successfully controlled the resonant frequency of the resonator. Resonant frequencies of 3.98 GHz and 4.20 GHz were measured at bias voltages of 0 V and 50 V which correspond to capacitance values of 0.94 pF and 0.7pF, respectively. The values of the loss tangent, tan delta sub e sub f sub f , obtained in this measurements, were about 0.01.

  3. Lighting up superconducting stripes

    Science.gov (United States)

    Ergeçen, Emre; Gedik, Nuh

    2018-02-01

    Cuprate superconductors display a plethora of complex phases as a function of temperature and carrier concentration, the understanding of which could provide clues into the mechanism of superconductivity. For example, when about one-eighth of the conduction electrons are removed from the copper oxygen planes in cuprates such as La2‑xBaxCuO4 (LBCO), the doped holes (missing electrons) organize into one-dimensional stripes (1). The bulk superconducting transition temperature (Tc) is greatly reduced, and just above Tc, electrical transport perpendicular to the planes (along the c axis) becomes resistive, but parallel to the copper oxygen planes, resistivity remains zero for a range of temperatures (2). It was proposed a decade ago (3) that this anisotropic behavior is caused by pair density waves (PDWs); superconducting Cooper pairs exist along the stripes within the planes but cannot tunnel to the adjacent layers. On page 575 of this issue, Rajasekaran et al. (4) now report detection of this state in LBCO using nonlinear reflection of high-intensity terahertz (THz) light.

  4. Superconductivity Engineering and Its Application for Fusion 3.Superconducting Technology as a Gateway to Future Technology

    Science.gov (United States)

    Asano, Katsuhiko

    Hopes for achieving a new source of energy through nuclear fusion rest on the development of superconducting technology that is needed to make future equipments more energy efficient as well as increase their performance. Superconducting technology has made progress in a wide variety of fields, such as energy, life science, electronics, industrial use and environmental improvement. It enables the actualization of equipment that was unachievable with conventional technology, and will sustain future “IT-Based Quality Life Style”, “Sustainable Environmental” and “Advanced Healthcare” society. Besides coil technology with high magnetic field performance, superconducting electoronics or device technology, such as SQUID and SFQ-circuit, high temperature superconducting material and advanced cryogenics technology might be great significance in the history of nuclear fusion which requires so many wide, high and ultra technology. Superconducting technology seems to be the catalyst for a changing future society with nuclear fusion. As society changes, so will superconducting technology.

  5. Research on DC-RF superconducting photocathode injector for high average power FELs

    International Nuclear Information System (INIS)

    Zhao Kui; Hao Jiankui; Hu Yanle; Zhang Baocheng; Quan Shengwen; Chen Jiaer; Zhuang Jiejia

    2001-01-01

    To obtain high average current electron beams for a high average power Free Electron Laser (FEL), a DC-RF superconducting injector is designed. It consists of a DC extraction gap, a 1+((1)/(2)) superconducting cavity and a coaxial input system. The DC gap, which takes the form of a Pierce configuration, is connected to the 1+((1)/(2)) superconducting cavity. The photocathode is attached to the negative electrode of the DC gap. The anode forms the bottom of the ((1)/(2)) cavity. Simulations are made to model the beam dynamics of the electron beams extracted by the DC gap and accelerated by the superconducting cavity. High quality electron beams with emittance lower than 3 π-mm-mrad can be obtained. The optimization of experiments with the DC gap, as well as the design of experiments with the coaxial coupler have all been completed. An optimized 1+((1)/(2)) superconducting cavity is in the process of being studied and manufactured

  6. 2-GHz band man-made noise evaluation for cryogenic receiver front-end

    Energy Technology Data Exchange (ETDEWEB)

    Narahashi, S; Satoh, K; Suzuki, Y [Research Laboratories, NTT DoCoMo, Inc., 3-5 Hikari-no-oka, Yokosuka, Kanagawa 239-8536 (Japan); Mimura, T [Intellectual Property Department, NTT DoCoMo, Inc., 2-11-1 Nagatacho, Chiyoda, Tokyo 100-6150 (Japan); Nojima, T [Graduate School of Information Science and Technology, Hokkaido University, Nishi 9, Kita 14, Kita, Sapporo 060-0808 (Japan)], E-mail: narahashi@nttdocomo.co.jp

    2008-02-01

    This paper presents measured results of man-made noise in urban and suburban areas in the 2-GHz band with amplitude probability distribution (APD) in order to evaluate the impact of man-made noise on an experimental cryogenic receiver front-end (CRFE). The CRFE comprises a high-temperature superconducting filter, cryogenically-cooled low-noise amplifier, and highly reliable cryostat that is very compact. The CRFE is anticipated to be an effective way to achieve efficient frequency utilization and to improve the sensitivity of mobile base station receivers. It is important to measure the characteristics of the man-made noise in typical cellular base station antenna environments and confirm their impact on the CRFE reception with APD because if man-made noise has a stronger effect than thermal noise, the CRFE would fail to offer any improvement in sensitivity. The measured results suggest that the contribution of man-made noise in the 2-GHz band can be ignored as far as the wideband code division multiple access (W-CDMA) system is concerned.

  7. Gauge Model of High-Tc Superconductivity

    International Nuclear Information System (INIS)

    Ng, Sze Kui

    2012-01-01

    A simple gauge model of superconductivity is presented. The seagull vertex term of this gauge model gives an attractive potential between electrons for the forming of Cooper pairs of superconductivity. This gauge model gives a unified description of superconductivity and magnetism including antiferromagnetism, pseudogap phenomenon, stripes phenomenon, paramagnetic Meissner effect, Type I and Type II supeconductivity and high-T c superconductivity. The doping mechanism of superconductivity is found. It is shown that the critical temperature T c is related to the ionization energies of elements and can be computed by a formula of T c . For the high-T c superconductors such as La 2-x Sr x CuO 4 , Y Ba 2 Cu 3 O 7 , and MgB 2 , the computational results of T c agree with the experimental results.

  8. Pressure-induced electronic phase separation of magnetism and superconductivity in CrAs.

    Science.gov (United States)

    Khasanov, Rustem; Guguchia, Zurab; Eremin, Ilya; Luetkens, Hubertus; Amato, Alex; Biswas, Pabitra K; Rüegg, Christian; Susner, Michael A; Sefat, Athena S; Zhigadlo, Nikolai D; Morenzoni, Elvezio

    2015-09-08

    The recent discovery of pressure (p) induced superconductivity in the binary helimagnet CrAs has raised questions on how superconductivity emerges from the magnetic state and on the mechanism of the superconducting pairing. In the present work the suppression of magnetism and the occurrence of superconductivity in CrAs were studied by means of muon spin rotation. The magnetism remains bulk up to p ≃ 3.5 kbar while its volume fraction gradually decreases with increasing pressure until it vanishes at p ≃ 7 kbar. At 3.5 kbar superconductivity abruptly appears with its maximum Tc ≃ 1.2 K which decreases upon increasing the pressure. In the intermediate pressure region (3.5 magnetic volume fractions are spatially phase separated and compete for phase volume. Our results indicate that the less conductive magnetic phase provides additional carriers (doping) to the superconducting parts of the CrAs sample thus leading to an increase of the transition temperature (Tc) and of the superfluid density (ρs). A scaling of ρs with Tc(3.2) as well as the phase separation between magnetism and superconductivity point to a conventional mechanism of the Cooper-pairing in CrAs.

  9. ECH pre-ionization and assisted startup in the fully superconducting KSTAR tokamak using second harmonic

    International Nuclear Information System (INIS)

    Bae, Y.S.; Joung, M.; Kim, J.H.; Hahn, S.H.; Yoon, S.W.; Yang, H.L.; Kim, W.C.; Oh, Y.K.; England, A.C.; Bak, J.S.; Jeong, J.H.; Park, S.I.; Namkung, W.; Cho, M.H.; Jackson, G.L.

    2009-01-01

    This letter reports on the successful demonstration of the second harmonic electron cyclotron heating (ECH)-assisted startup in the first plasma experiments recently completed in the fully superconducting Korea Superconducting Tokamak Advanced Research (KSTAR) device whose major and minor radii are 1.8 m and 0.5 m, respectively. For the second harmonic ECH-assisted startup, an 84 GHz EC wave at 0.35 MW was launched before the onset of the toroidal electric field of the Ohmic system. And it was observed that this was sufficient to achieve breakdown in the ECH pre-ionization phase, allow burn-through and sustain the plasma during the current ramp with a low loop voltage of 2.0 V and a corresponding toroidal electric field of 0.24 V m -1 at the innermost vacuum vessel wall (R = 1.3 m). This is a lower value than 0.3 Vm -1 which is the maximum electric field in ITER. Due to the limited volt-seconds and the loop voltage of the Ohmic power system, the extended pulse duration of the ECH power up to 180 ms allowed the plasma current to rise up to more than 100 kA with a ramp-up rate of 0.8 MA s -1 . (letter)

  10. Crystalline phases and electronic structures in superconducting Bi endash Sr endash Ca endash Cu oxides

    International Nuclear Information System (INIS)

    Giardina, M.D.; Feduzi, R.; Inzaghi, D.; Manara, A.; Giori, C.; Sora, I.N.; Dallacasa, V.

    1997-01-01

    Two classes of samples, designated A and B, of layered Bi endash Sr endash Ca endash Cu oxides having the same nominal composition 4:3:3:4, but different thermal histories, were investigated by using field modulated microwave absorption (ESR), powder x-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS), and x-ray absorption near the edge structure (XANES). Previous electrical resistivity measurements showed that the B samples only presented two superconducting phases with midpoints of the transition temperatures at ∼80K and ∼105K. The microwave absorption technique indicated instead the presence of islands which became superconducting at the above-mentioned temperatures also in the A samples. The crystalline and electronic structures of the two types of samples are illustrated and discussed. A plausible theoretical interpretation of the experimental results, based on a quantum percolation model with Coulomb interaction, is also given. copyright 1997 Materials Research Society

  11. Accelerators and superconductivity: A marriage of convenience

    International Nuclear Information System (INIS)

    Wilson, M.

    1987-01-01

    This lecture deals with the relationship between accelerator technology in high-energy-physics laboratories and the development of superconductors. It concentrates on synchrotron magnets, showing how their special requirements have brought about significant advances in the technology, particularly the development of filamentary superconducting composites. Such developments have made large superconducting accelerators an actuality: the Tevatron in routine operation, the Hadron Electron Ring Accelerator (HERA) under construction, and the Superconducting Super Collider (SSC) and Large Hadron Collider (LHC) at the conceptual design stage. Other applications of superconductivity have also been facilitated - for example medical imaging and small accelerators for industrial and medical use. (orig.)

  12. Control of the Superconducting Magnets current Power Supplies of the TJ-II Gyrotrons; Control de las Fuentes de Corriente de las Bobinas Superconductoras de los Girotrones del TJ-II

    Energy Technology Data Exchange (ETDEWEB)

    Ros, A; Fernandez, A; Tolkachev, A; Catalan, G

    2006-07-01

    The TJ-II ECRH heating system consists of two gyrotrons, which can deliver a maximum power of 300 kW at a frequency of 53.2 GHz. Another 28 GHz gyrotron is going to be used in the Bernstein waves heating system. In order to get the required frequency, the gyrotrons need and homogeneous magnetic field of several tesla, which is generated by a superconducting coil field by a current source. This document describes the current source control as well as the high precision ammeters control. These ammeters measure the current in the superconducting coils. The user interface and the programming of the control system are described. The communication between devices is also explained. (author) 9 Refs.

  13. Behaviour of superconductivity energetic characteristics in electron-doped cuprates. A simple model

    International Nuclear Information System (INIS)

    Kristoffel, N.; Rubin, P.

    2008-01-01

    A simple model to describe the energetic phase diagram of electron-doped cuprate superconductor is developed. Interband pairing operates between the UHB and the defect states created by doping and supplied by both extincting HB-s. Two defect subbands correspond to the (π,0) and (π/2,π/2) momentum regions. Extended doping quenches the bare normal state gaps (pseudogaps). Maximal transition temperature corresponds to overlapping bands ensemble intersected by the chemical potential. Illustrative results for T c , pseudo- and superconducting gaps are calculated on the whole doping scale. Major characteristic features on the phase diagram are reproduced. Anticipated manifestation of gaps doping dynamics is discussed

  14. Cerenkov Radiator Driven by a Superconducting RF Electron Gun

    International Nuclear Information System (INIS)

    Poole, B.R.; Harris, J.R.

    2011-01-01

    The Naval Postgraduate School (NPS), Niowave, Inc., and Boeing have recently demonstrated operation of the first superconducting RF electron gun based on a quarter wave resonator structure. In preliminary tests, this gun has produced 10 ps long bunches with charge in excess of 78 pC, and with beam energy up to 396 keV. Initial testing occurred at Niowave's Lansing, MI facility, but the gun and diagnostic beam line are planned for installation in California in the near future. The design of the diagnostic beam line is conducive to the addition of a Cerenkov radiator without interfering with other beam line operations. Design and simulations of a Cerenkov radiator, consisting of a dielectric lined waveguide will be presented. The dispersion relation for the structure is determined and the beam interaction is studied using numerical simulations. The characteristics of the microwave radiation produced in both the short and long bunch regimes will be presented.

  15. Lead-doped electron-beam-deposited Bi-Sr-Ca-Cu-O superconducting thin films

    Energy Technology Data Exchange (ETDEWEB)

    Agnihotry, S.A.; Saini, K.K.; Kant, C.; Sharma, C.P.; Ekbote, S.N.; Asthana, P.; Nagpal, K.C.; Chandra, S. (National Physical Lab., New Delhi (India))

    1991-03-20

    Superconducting thin films of the lead-doped Bi-Sr-Ca-Cu-O system have been prepared on (100) single-crystal SrTiO{sub 3} substrates by an electron beam deposition technique using a single sintered pellet as the evaporation source. As-deposited films are amorphous and non-superconducting; post-deposition annealing at an optimized temperature in air has been found to result in crystalline and superconducting films. The superconducting characteristics of the films have been observed to be sensitive not only to the duration and temperature of post-deposition annealing but also to the lead content and the sintering parameters for the pellet to be used as the evaporation source. A pellet with nominal composition Bi{sub 3}Pb{sub 1}Sr{sub 3}Ca{sub 3}Cu{sub 4}O{sub y} that had been sintered for 200 h zero resistivity Tc{sup 0}=112 K. However, films deposited using such a pellet as the evaporation source had Tc{sup 0} {approx equal} 73-78 K, as had the films deposited from a pellet without any lead. We investigated systematically films deposited from pellets with more lead and sintered for different durations. It is evident from these investigations that pellets with nominal composition Bi{sub 3}Pb{sub 2}Sr{sub 3}Ca{sub 3}Cu{sub 4}O{sub y}, i.e. with an excess of lead, and sintered for about 75 h when used as the evaporation source yield films with Tc{sup 0} {approx equal} 100 K when annealed between 835 and 840deg C for an optimized long duration. The films are characterized by X-ray diffraction and energy-dispersive spectroscopy techniques and have been found to be highly c axis oriented. The effect of lead in promoting a high Tc{sup 0}=110 K phase seems to be similar to that in bulk ceramics. (orig.).

  16. Multi-gap superconductivity in MgB2: Magneto-Raman spectroscopy

    International Nuclear Information System (INIS)

    Blumberg, G.; Mialitsin, A.; Dennis, B.S.; Zhigadlo, N.D.; Karpinski, J.

    2007-01-01

    Electronic Raman scattering studies on MgB 2 single crystals as a function of excitation and polarization have revealed three distinct superconducting features: a clean gap below 37 cm -1 and two coherence peaks at 109 and 78 cm -1 which we identify as the superconducting gaps in π- and σ-bands and as the Leggett's collective mode arising from the fluctuation in the relative phase between two superconducting condensates residing on corresponding bands. The temperature and field dependencies of the superconducting features have been established. A phononic Raman scattering study of the E 2g boron stretching mode anharmonicity and of superconductivity induced self-energy effects is presented. We show that anharmonic two phonon decay is mainly responsible for the unusually large linewidth of the E 2g mode. We observe ∼2.5% hardening of the E 2g phonon frequency upon cooling into the superconducting state and estimate the electron-phonon coupling strength associated with this renormalization

  17. Unconventional superconductivity in iron pnictides: Magnon mediated pairing

    Science.gov (United States)

    kar, Raskesh; Paul, Bikash Chandra; Misra, Anirban

    2018-02-01

    We study the phenomenon of unconventional superconductivity in iron pnictides on the basis of localized-itinerant model. In this proposed model, superconductivity arises from the itinerant part of electrons, whereas antiferromagnetism arises from the localized part. The itinerant electrons move over the sea of localized electrons in antiferromagnetic alignment and interact with them resulting in excitation of magnons. We find that triplet pairing of itinerant electrons via magnons is possible in checkerboard antiferromagnetic spin configuration of the substances CaFe2As2 and BaFe2As2 in pure form for umklapp scattering with scattering wave vector Q =(1 , 1) , in the unit of π/a where a being one orthorhombic crystal parameter, which is the nesting vector between two Fermi surfaces. The interaction potential figured out in this way, increases with the decrease in nearest neighbour (NN) exchange couplings. Under ambient pressure, with stripe antiferromagnetic spin configuration, a very small value of coupling constant is obtained which does not give rise to superconductivity. The critical temperature of superconductivity of the substances CaFe2As2 and BaFe2As2 in higher pressure checkerboard antiferromagnetic spin configuration are found to be 12.12 K and 29.95 K respectively which are in agreement with the experimental results.

  18. InP MMIC Chip Set for Power Sources Covering 80-170 GHz

    Science.gov (United States)

    Ngo, Catherine

    2001-01-01

    We will present a Monolithic Millimeter-wave Integrated Circuit (MMIC) chip set which provides high output-power sources for driving diode frequency multipliers into the terahertz range. The chip set was fabricated at HRL Laboratories using a 0.1-micrometer gate-length InAlAs/InGaAs/InP high electron mobility transistor (HEMT) process, and features transistors with an f(sub max) above 600 GHz. The HRL InP HEMT process has already demonstrated amplifiers in the 60-200 GHz range. In this paper, these high frequency HEMTs form the basis for power sources up to 170 GHz. A number of state-of-the-art InP HEMT MMICs will be presented. These include voltage-controlled and fixed-tuned oscillators, power amplifiers, and an active doubler. We will first discuss an 80 GHz voltage-controlled oscillator with 5 GHz of tunability and at least 17 mW of output power, as well as a 120 GHz oscillator providing 7 mW of output power. In addition, we will present results of a power amplifier which covers the full WRIO waveguide band (75-110 GHz), and provides 40-50 mW of output power. Furthermore, we will present an active doubler at 164 GHz providing 8% bandwidth, 3 mW of output power, and an unprecedented 2 dB of conversion loss for an InP HEMT MMIC at this frequency. Finally, we will demonstrate a power amplifier to cover 140-170 GHz with 15-25 mW of output power and 8 dB gain. These components can form a power source in the 155-165 GHz range by cascading the 80 GHz oscillator, W-band power amplifier, 164 GHz active doubler and final 140-170 GHz power amplifier for a stable, compact local oscillator subsystem, which could be used for atmospheric science or astrophysics radiometers.

  19. High-performance CPW MMIC LNA using GaAs-based metamorphic HEMTs for 94-GHz applications

    International Nuclear Information System (INIS)

    Ryu, Keun-Kwan; Kim, Sung-Chan; An, Dan; Rhee, Jin-Koo

    2010-01-01

    In this paper, we report on a high-performance low-noise amplifier (LNA) using metamorphic high-electron-mobility transistor (MHEMT) technology for 94-GHz applications. The 100 nm x 60 μm MHEMT devices for the coplanar MMIC LNA exhibited DC characteristics with a drain current density of 655 mA/mm and an extrinsic transconductance of 720 mS/mm. The current gain cutoff frequency (f T ) and the maximum oscillation frequency (f max ) were 195 GHz and 305 GHz, respectively. Based on this MHEMT technology, coplanar 94-GHz MMIC LNAs were realized, achieving a small signal gain of more than 13 dB between 90 and 100 GHz and a small signal gain of 14.8 dB and a noise figure of 4.7 dB at 94 GHz.

  20. Superconducting snake with the field of 75 kGs for the VEPP-2M electron-positron storage ring

    International Nuclear Information System (INIS)

    Anashin, V.V.; Vasserman, I.B.; Vlasov, A.M.

    1985-01-01

    Superconducting ''snake'' with the field of 75 kG is established in the VEPP-2M electron-positron storage ring for increase of colliding beam luminosity up to 2x10 31 cmsup(-2)sdup(-1) in the energy range from 2x200 to 2x700 MeV. The ''snake'' comprises three central magnets with the field of 75 kG and two side ones with the field of 45 kG and it is placed in one of rectilinear experimental gaps. Description of design peculiarities of the ''snake'' and its parameters are given. Parameters of beams with switched on and switched off ''snake'' as well as parameters of coils and superconducting wire are presented

  1. Superconductivity, Antiferromagnetism, and Kinetic Correlation in Strongly Correlated Electron Systems

    Directory of Open Access Journals (Sweden)

    Takashi Yanagisawa

    2015-01-01

    Full Text Available We investigate the ground state of two-dimensional Hubbard model on the basis of the variational Monte Carlo method. We use wave functions that include kinetic correlation and doublon-holon correlation beyond the Gutzwiller ansatz. It is still not clear whether the Hubbard model accounts for high-temperature superconductivity. The antiferromagnetic correlation plays a key role in the study of pairing mechanism because the superconductive phase exists usually close to the antiferromagnetic phase. We investigate the stability of the antiferromagnetic state when holes are doped as a function of the Coulomb repulsion U. We show that the antiferromagnetic correlation is suppressed as U is increased exceeding the bandwidth. High-temperature superconductivity is possible in this region with enhanced antiferromagnetic spin fluctuation and pairing interaction.

  2. Superconducting fluctuations and characteristic time scales in amorphous WSi

    Science.gov (United States)

    Zhang, Xiaofu; Lita, Adriana E.; Sidorova, Mariia; Verma, Varun B.; Wang, Qiang; Nam, Sae Woo; Semenov, Alexei; Schilling, Andreas

    2018-05-01

    We study magnitudes and temperature dependencies of the electron-electron and electron-phonon interaction times which play the dominant role in the formation and relaxation of photon-induced hotspots in two-dimensional amorphous WSi films. The time constants are obtained through magnetoconductance measurements in a perpendicular magnetic field in the superconducting fluctuation regime and through time-resolved photoresponse to optical pulses. The excess magnetoconductivity is interpreted in terms of the weak-localization effect and superconducting fluctuations. Aslamazov-Larkin and Maki-Thompson superconducting fluctuations alone fail to reproduce the magnetic field dependence in the relatively high magnetic field range when the temperature is rather close to Tc because the suppression of the electronic density of states due to the formation of short-lifetime Cooper pairs needs to be considered. The time scale τi of inelastic scattering is ascribed to a combination of electron-electron (τe -e) and electron-phonon (τe -p h) interaction times, and a characteristic electron-fluctuation time (τe -f l) , which makes it possible to extract their magnitudes and temperature dependencies from the measured τi. The ratio of phonon-electron (τp h -e) and electron-phonon interaction times is obtained via measurements of the optical photoresponse of WSi microbridges. Relatively large τe -p h/τp h -e and τe -p h/τe -e ratios ensure that in WSi the photon energy is more efficiently confined in the electron subsystem than in other materials commonly used in the technology of superconducting nanowire single-photon detectors (SNSPDs). We discuss the impact of interaction times on the hotspot dynamics and compare relevant metrics of SNSPDs from different materials.

  3. SEE induced in SRAM operating in a superconducting electron linear accelerator environment

    Science.gov (United States)

    Makowski, D.; Mukherjee, Bhaskar; Grecki, M.; Simrock, Stefan

    2005-02-01

    Strong fields of bremsstrahlung photons and photoneutrons are produced during the operation of high-energy electron linacs. Therefore, a mixed gamma and neutron radiation field dominates the accelerators environment. The gamma radiation induced Total Ionizing Dose (TID) effect manifests the long-term deterioration of the electronic devices operating in accelerator environment. On the other hand, the neutron radiation is responsible for Single Event Effects (SEE) and may cause a temporal loss of functionality of electronic systems. This phenomenon is known as Single Event Upset (SEU). The neutron dose (KERMA) was used to scale the neutron induced SEU in the SRAM chips. Hence, in order to estimate the neutron KERMA conversion factor for Silicon (Si), dedicated calibration experiments using an Americium-Beryllium (241Am/Be) neutron standard source was carried out. Single Event Upset (SEU) influences the short-term operation of SRAM compared to the gamma induced TID effect. We are at present investigating the feasibility of an SRAM based real-time beam-loss monitor for high-energy accelerators utilizing the SEU caused by fast neutrons. This paper highlights the effects of gamma and neutron radiations on Static Random Access Memory (SRAM), placed at selected locations near the Superconducting Linear Accelerator driving the Vacuum UV Free Electron Laser (VUVFEL) of DESY.

  4. Enhancement of Ar sup 8 sup + ion beam intensity from RIKEN 18 GHz electron cyclotron resonance ion source by optimizing the magnetic field configuration

    CERN Document Server

    Higurashi, Y; Kidera, M; Kase, M; Yano, Y; Aihara, T

    2003-01-01

    We successfully produced a 1.55 emA Ar sup 8 sup + ion beam using the RIKEN 18 GHz electron cyclotron resonance ion source at a microwave power of 700 W. To produce such an intense beam, we optimized the minimum magnetic field of mirror magnetic field and plasma electrode position. (author)

  5. Overview on superconducting photoinjectors

    CERN Document Server

    Arnold, A

    2011-01-01

    The success of most of the proposed energy recovery linac (ERL) based electron accelerator projects for future storage ring replacements (SRR) and high power IR–free-electron lasers (FELs) largely depends on the development of an appropriate source. For example, to meet the FEL specifications [J.W. Lewellen, Proc. SPIE Int. Soc. Opt. Eng. 5534, 22 (2004)] electron beams with an unprecedented combination of high brightness, low emittance (0.1 µmrad), and high average current (hundreds of mA) are required. An elegant way to create a beam of such quality is to combine the high beam quality of a normal conducting rf photoinjector with the superconducting technology, i.e., to build a superconducting rf photoinjector (SRF gun). SRF gun R&D programs based on different approaches have been launched at a growing number of institutes and companies (AES, Beijing University, BESSY, BNL, DESY, FZD, TJNAF, Niowave, NPS, Wisconsin University). Substantial progress was achieved in recent years and the first long term ...

  6. Impurity band Mott insulators: a new route to high Tc superconductivity

    Directory of Open Access Journals (Sweden)

    Ganapathy Baskaran

    2008-01-01

    Full Text Available Last century witnessed the birth of semiconductor electronics and nanotechnology. The physics behind these revolutionary developments is certain quantum mechanical behaviour of 'impurity state electrons' in crystalline 'band insulators', such as Si, Ge, GaAs and GaN, arising from intentionally added (doped impurities. The present article proposes that certain collective quantum behaviour of these impurity state electrons, arising from Coulomb repulsions, could lead to superconductivity in a parent band insulator, in a way not suspected before. Impurity band resonating valence bond theory of superconductivity in boron doped diamond, recently proposed by us, suggests possibility of superconductivity emerging from impurity band Mott insulators. We use certain key ideas and insights from the field of high-temperature superconductivity in cuprates and organics. Our suggestion also offers new possibilities in the field of semiconductor electronics and nanotechnology. The current level of sophistication in solid state technology and combinatorial materials science is very well capable of realizing our proposal and discover new superconductors.

  7. Electronic structure of superconducting Bi2212 crystal by angle resolved ultra violet photoemission

    International Nuclear Information System (INIS)

    Saini, N.L.; Shrivastava, P.; Garg, K.B.

    1993-01-01

    The electronic structure of a high quality superconducting Bi 2 Sr 2 CaCu 2 Osub(8+δ) (Bi2212) single crystal is studied by angle resolved ultra violet photoemission (ARUPS) using He I (21.2 eV). Our results appear to show two bands crossing the Fermi level in ΓX direction of the Brillouin zone as reported by Takahashi et al. The bands at higher binding energy do not show any appreciable dispersion. The nature of the states near the Fermi level is discussed and the observed band structure is compared with the band structure calculations. (author)

  8. Superconducting plasmas

    International Nuclear Information System (INIS)

    Ohnuma, Toshiro; Ohno, J.

    1994-01-01

    Superconducting (SC) plasmas are proposed and investigated. The SC plasmas are not yet familiar and have not yet been studied. However, the existence and the importance of SC plasmas are stressed in this report. The existence of SC plasmas are found as follows. There is a fundamental property of Meissner effect in superconductors, which shows a repulsive effect of magnetic fields. Even in that case, in a microscopic view, there is a region of magnetic penetration. The penetration length λ is well-known as London's penetration depth, which is expressed as δ = (m s /μ 0 n s q s 2 ) 1/2 where m s , n s , q s and μ o show the mass, the density, the charge of SC electron and the permeability in free space, respectively. Because this expression is very simple, no one had tried it into more simple and meaningful form. Recently, one of the authors (T.O.) has found that the length can be expressed into more simple and understandable fundamental form as λ = c/ω ps where c = (ε 0 μ 0 ) -1/2 and ω ps = (n s q s 2 /m s ε 0 ) 1/2 are the light velocity and the superconducting plasma frequency. From this simple expression, the penetration depth of the magnetic field to SC is found as a SC plasma skin depth, that is, the fundamental property of SC can be expressed by the SC plasmas. This discovery indicates an importance of the studies of superconducting plasmas. From these points, several properties (propagating modes et al) of SC plasmas, which consist of SC electrons, normal electrons and lattice ions, are investigated in this report. Observations of SC plasma frequency is also reported with a use of Terahertz electromagnet-optical waves

  9. 125-GHz Microwave Signal Generation Employing an Integrated Pulse Shaper

    DEFF Research Database (Denmark)

    Liao, Shasha; Ding, Yunhong; Dong, Jianji

    2017-01-01

    We propose and experimentally demonstrate an on-chip pulse shaper for 125-GHz microwave waveform generation. The pulse shaper is implemented based on a silicon-on-insulator (SOI) platform that has a structure with eight-tap finite impulse response (FIR) and there is an amplitude modulator on each...... of the generated microwave waveforms is larger than 100 GHz, and it has wide bandwidth when changing the time delay of the adjacent taps and compactness, capability for integration with electronics and small power consumption are also its merits.......We propose and experimentally demonstrate an on-chip pulse shaper for 125-GHz microwave waveform generation. The pulse shaper is implemented based on a silicon-on-insulator (SOI) platform that has a structure with eight-tap finite impulse response (FIR) and there is an amplitude modulator on each...

  10. Fabrication of superconducting MgB2 nanostructures by an electron beam lithography-based technique

    Science.gov (United States)

    Portesi, C.; Borini, S.; Amato, G.; Monticone, E.

    2006-03-01

    In this work, we present the results obtained in fabrication and characterization of magnesium diboride nanowires realized by an electron beam lithography (EBL)-based method. For fabricating MgB2 thin films, an all in situ technique has been used, based on the coevaporation of B and Mg by means of an e-gun and a resistive heater, respectively. Since the high temperatures required for the fabrication of good quality MgB2 thin films do not allow the nanostructuring approach based on the lift-off technique, we structured the samples combining EBL, optical lithography, and Ar milling. In this way, reproducible nanowires 1 μm long have been obtained. To illustrate the impact of the MgB2 film processing on its superconducting properties, we measured the temperature dependence of the resistance on a nanowire and compared it to the original magnesium diboride film. The electrical properties of the films are not degraded as a consequence of the nanostructuring process, so that superconducting nanodevices may be obtained by this method.

  11. Experimental study of a SINIS detector response time at 350 GHz signal frequency

    Science.gov (United States)

    Lemzyakov, S.; Tarasov, M.; Mahashabde, S.; Yusupov, R.; Kuzmin, L.; Edelman, V.

    2018-03-01

    Response time constant of a SINIS bolometer integrated in an annular ring antenna was measured at a bath temperature of 100 mK. Samples comprising superconducting aluminium electrodes and normal-metal Al/Fe strip connected to electrodes via tunnel junctions were fabricated on oxidized Si substrate using shadow evaporation. The bolometer was illuminated by a fast black-body radiation source through a band-pass filter centered at 350 GHz with a passband of 7 GHz. Radiation source is a thin NiCr film on sapphire substrate. For rectangular 10÷100 μs current pulse the radiation front edge was rather sharp due to low thermal capacitance of NiCr film and low thermal conductivity of substrate at temperatures in the range 1-4 K. The rise time of the response was ~1-10 μs. This time presumably is limited by technical reasons: high dynamic resistance of series array of bolometers and capacitance of a long twisted pair wiring from SINIS bolometer to a room-temperature amplifier.

  12. Infrared Quenched Photoinduced Superconductivity

    Science.gov (United States)

    Federici, J. F.; Chew, D.; Guttierez-Solana, J.; Molina, G.; Savin, W.; Wilber, W.

    1996-03-01

    Persistant photoconductivity (PPC) and photoinduced superconductivity (PISC) in oxygen deficient YBa_2Cu_3O_6+x have received recent attention. It has been suggested that oxygen vacancy defects play an important role in the PISC/PPC mechanism.(J. F. Federici, D. Chew, B. Welker, W. Savin, J. Gutierrez-Solana, and T. Fink, Phys. Rev. B), December 1995 Supported by National Science Foundation In this model, defects trap photogenerated electrons so that electron-hole recombination can not occur thereby allowing photogenerated holes to contribute to the carrier density. Nominally, the photoinduced state is long-lived, persisting for days at low temperature. Experiment results will be presented demonstrating that the photoinduced superconductivity state can be quenched using infrared radiation. Implications for the validity of the PISC/PCC defect model will be discussed.

  13. Electronic structure and superconductivity of MgB2

    Indian Academy of Sciences (India)

    Unknown

    High Pressure Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India. Abstract. Results ... compared to the experimentally determined values of these quantities. ... that spectroscopies which probe the superconducting gap.

  14. Superconductivity in LiFeAs probed with quasiparticle interference

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Zhixiang; Nag, Pranab Kumar; Baumann, Danny; Kappenberger, Rhea [Leibniz Institute for Solid State and Materials Research Dresden, IFW Dresden (Germany); Wurmehl, Sabine [Leibniz Institute for Solid State and Materials Research Dresden, IFW Dresden (Germany); Institute for Solid State Physics, TU Dresden (Germany); Buechner, Bernd [Leibniz Institute for Solid State and Materials Research Dresden, IFW Dresden (Germany); Institute for Solid State Physics, TU Dresden (Germany); Center for Transport and Devices, TU Dresden (Germany); Hess, Christian [Leibniz Institute for Solid State and Materials Research Dresden, IFW Dresden (Germany); Center for Transport and Devices, TU Dresden (Germany)

    2016-07-01

    In spite of many theoretical and experimental efforts on studying the superconductivity of iron-based high temperature superconductors, the puzzle about LiFeAs's superconducting mechanism and pairing symmetry are still not clear. Here we want to present our low temperature scanning tunneling microscopy results on probing the superconductivity of LiFeAs. By taking conductance spectroscopic maps for both the superconducting state and normal state, we identify the scatterings due to the electron and hole bands close to the Fermi level. We observe a strong indication that the superconducting behavior in the hole bands are important for the formation of superconductivity in LiFeAs. Our results may also shine light on understanding the superconductivity in other iron pnictide superconductors.

  15. Effect of localized electron states on superconductivity of ultrathin beryllium films

    International Nuclear Information System (INIS)

    Tutov, V.I.; Semenenko, E.E.

    1988-01-01

    A wide spectrum of distortions is induced in ultrathin beryllium films of thickness less than 10 A, which are responsible for the system transition from the strong localization state completely suppressing superconductivity (in this case R □ of the layer reaches 97600 Ohm) to the weak localization stae coexisting with superconductivity at comparatively high T c (5 K). The resistance per square R □ of the films decreases more than by an order of magnitude. The superconductivity with T c =1.7 K occurs at rather strong localization, when R □ of the layer is 34000 Ohm

  16. High field Q slope and the effect of low-temperature baking at 3 GHz

    Directory of Open Access Journals (Sweden)

    G. Ciovati

    2018-01-01

    Full Text Available A strong degradation of the unloaded quality factor with field, called high field Q slope, is commonly observed above B_{p}≅100  mT in elliptical superconducting niobium cavities at 1.3 and 1.5 GHz. In the present experiments several 3 GHz niobium cavities were measured up to and above B_{p}≅100  mT. The measurements show that a high field Q slope phenomenon limits the field reach at this frequency, that the high field Q slope onset field depends weakly on the frequency, and that the high field Q slope can be removed by the typical empirical solution of electropolishing followed by heating to 120°C for 48 hrs. In addition, one of the cavities reached a quench field of 174 mT and its field dependence of the quality factor was compared against global heating predicted by a thermal feedback model.

  17. Induction shimming: A new shimming concept for superconductive undulators

    Directory of Open Access Journals (Sweden)

    D. Wollmann

    2008-10-01

    Full Text Available Undulators are the most advanced sources for the generation of synchrotron radiation. The photons generated by a single electron add up coherently along the electron trajectory. In order to do so, the oscillatory motion of the electron has to be in phase with the emitted photons along the whole undulator. Small magnetic errors can cause unwanted destructive interferences. In standard permanent magnet undulators, the magnetic errors are reduced by applying shimming techniques. Superconductive undulators have higher magnetic fields than permanent magnet undulators but shimming is more complex. In this paper it is shown that coupled superconductive loops installed along the surface of the superconductive undulator coil can significantly reduce the destructive effect of the field errors. This new idea might allow the building of undulators with a superior field quality.

  18. Status and outlook for high power processing of 1.3 GHz TESLA multicell cavities

    International Nuclear Information System (INIS)

    Kirchgessner, J.; Barnes, P.; Graber, J.; Metzger, D.; Mofat, D.; Muller, H.; Padamsee, H.; Sears, J.; Tigner, M.; Matheisen, A.

    1993-01-01

    In order to increase the usable accelerating gradient in Superconducting TESLA cavities, the field emission threshold barrier must be raised. As has been previously demonstrated on S-band cavities, a way to accomplish this is with the use of high peak power RF processing. A transmitter with a peak power of 2 Mwatt and 300 μsec pulse length has been assembled and has been used to process TESLA cavities. Several five cell TESLA cavities at 1.3 GHz have been manufactured for this purpose. This transmitter and the cavities will be described and the results of the tests will be presented

  19. Electron mean free path dependence of the critical currents and the pair-breaking limit in superconducting films

    International Nuclear Information System (INIS)

    Fedorov, N.; Rinderer, L.

    1977-01-01

    We have studied the current-induced breakdown of superconductivity in wide (100--980 μm) and thin (0.25--0.98 μm) films of tin. It is shown that the current at which the resistance of the sample begins to rise rapidly in the process of the destruction of superconductivity by a current can be fairly well associated with the theoretical value of the pair-breaking current in the Ginzburg-Landau phenomenological approach (I/sub c//sup G L/). This effect is observed over a rather wide temperature region (up to ΔTapprox.0.7 K), depending on the electron mean free path in the films. The values of the critical currents outside the above-mentioned region correlate qualitatively with those determined by inhomogeneities of the films as proposed by Larkin and Ovchinnikov

  20. Theory of high temperature superconductivity

    International Nuclear Information System (INIS)

    Srivastava, C.M.

    1989-01-01

    This paper develops a semi-empirical electronic band structure for a high T c superconductor like YBa 2 Cu 3 O 6 - δ . The author accounts for the electrical transport properties on the model based on the correlated electron transfer arising from the electron-phonon interaction. The momentum pairing leading to the superconducting phase amongst the mobile charge carriers is shown

  1. Integrated digital superconducting logic circuits for the quantum synthesizer. Report

    International Nuclear Information System (INIS)

    Buchholz, F.I.; Kohlmann, J.; Khabipov, M.; Brandt, C.M.; Hagedorn, D.; Balashov, D.; Maibaum, F.; Tolkacheva, E.; Niemeyer, J.

    2006-11-01

    This report presents the results, which were reached in the framework of the BMBF cooperative plan ''Quantum Synthesizer'' in the partial plan ''Integrated Digital Superconducting Logic Circuits''. As essential goal of the plan a novel instrument on the base of quantum-coherent superconducting circuits should be developed. which allows to generate praxis-relevant wave forms with quantum accuracy, the quantum synthesizer. The main topics of development of the reported partial plan lied at the one hand in the development of integrated, digital, superconducting circuit in rapid-single-flux (RSFQ) quantum logics for the pattern generator of the quantum synthesizer, at the other hand in the further development of the fabrication technology for the aiming of high circuit complexity. In order to fulfil these requirements at the PTB a new design system was implemented, based on the software of Cadence. Together with the required RSFQ extensions for the design of digital superconducting circuits was a platform generated, on which the reachable circuit complexity is exclusively limited by the technology parameters of the available fabrication technology: Physical simulations are with PSCAN up to a complexity of more than 1000 circuit elements possible; furthermore VHDL allows the verification of arbitrarily large circuit architectures. In accordance for this the production line at the PTB was brought to a level, which allows in Nb/Al-Al x O y /Nb SIS technology implementation the fabrication of highly integrable RSFQ circuit architectures. The developed and fabricated basic circuits of the pattern generator have proved correct functionality and reliability in the measuring operation. Thereby for the circular RSFQ shift registers a key role as local memories in the construction of the pattern generator is devolved upon. The registers were realized with the aimed bit lengths up to 128 bit and with reachable signal-processing speeds of above 10 GHz. At the interface RSFQ

  2. Superconductivity in compensated and uncompensated semiconductors

    Directory of Open Access Journals (Sweden)

    Youichi Yanase and Naoyuki Yorozu

    2008-01-01

    Full Text Available We investigate the localization and superconductivity in heavily doped semiconductors. The crossover from the superconductivity in the host band to that in the impurity band is described on the basis of the disordered three-dimensional attractive Hubbard model for binary alloys. The microscopic inhomogeneity and the thermal superconducting fluctuation are taken into account using the self-consistent 1-loop order theory. The superconductor-insulator transition accompanies the crossover from the host band to the impurity band. We point out an enhancement of the critical temperature Tc around the crossover. Further localization of electron wave functions leads to the localization of Cooper pairs and induces the pseudogap. We find that both the doping compensation by additional donors and the carrier increase by additional acceptors suppress the superconductivity. A theoretical interpretation is proposed for the superconductivity in the boron-doped diamond, SiC, and Si.

  3. Local switching of two-dimensional superconductivity using the ferroelectric field effect

    Science.gov (United States)

    Takahashi, K. S.; Gabay, M.; Jaccard, D.; Shibuya, K.; Ohnishi, T.; Lippmaa, M.; Triscone, J.-M.

    2006-05-01

    Correlated oxides display a variety of extraordinary physical properties including high-temperature superconductivity and colossal magnetoresistance. In these materials, strong electronic correlations often lead to competing ground states that are sensitive to many parameters-in particular the doping level-so that complex phase diagrams are observed. A flexible way to explore the role of doping is to tune the electron or hole concentration with electric fields, as is done in standard semiconductor field effect transistors. Here we demonstrate a model oxide system based on high-quality heterostructures in which the ferroelectric field effect approach can be studied. We use a single-crystal film of the perovskite superconductor Nb-doped SrTiO3 as the superconducting channel and ferroelectric Pb(Zr,Ti)O3 as the gate oxide. Atomic force microscopy is used to locally reverse the ferroelectric polarization, thus inducing large resistivity and carrier modulations, resulting in a clear shift in the superconducting critical temperature. Field-induced switching from the normal state to the (zero resistance) superconducting state was achieved at a well-defined temperature. This unique system could lead to a field of research in which devices are realized by locally defining in the same material superconducting and normal regions with `perfect' interfaces, the interface being purely electronic. Using this approach, one could potentially design one-dimensional superconducting wires, superconducting rings and junctions, superconducting quantum interference devices (SQUIDs) or arrays of pinning centres.

  4. Planar Superconducting Millimeter-Wave/Terahertz Channelizing Filter

    Science.gov (United States)

    Ehsan, Negar; U-yen, Kongpop; Brown, Ari; Hsieh, Wen-Ting; Wollack, Edward; Moseley, Samuel

    2013-01-01

    This innovation is a compact, superconducting, channelizing bandpass filter on a single-crystal (0.45 m thick) silicon substrate, which operates from 300 to 600 GHz. This device consists of four channels with center frequencies of 310, 380, 460, and 550 GHz, with approximately 50-GHz bandwidth per channel. The filter concept is inspired by the mammalian cochlea, which is a channelizing filter that covers three decades of bandwidth and 3,000 channels in a very small physical space. By using a simplified physical cochlear model, and its electrical analog of a channelizing filter covering multiple octaves bandwidth, a large number of output channels with high inter-channel isolation and high-order upper stopband response can be designed. A channelizing filter is a critical component used in spectrometer instruments that measure the intensity of light at various frequencies. This embodiment was designed for MicroSpec in order to increase the resolution of the instrument (with four channels, the resolution will be increased by a factor of four). MicroSpec is a revolutionary wafer-scale spectrometer that is intended for the SPICA (Space Infrared Telescope for Cosmology and Astrophysics) Mission. In addition to being a vital component of MicroSpec, the channelizing filter itself is a low-resolution spectrometer when integrated with only an antenna at its input, and a detector at each channel s output. During the design process for this filter, the available characteristic impedances, possible lumped element ranges, and fabrication tolerances were identified for design on a very thin silicon substrate. Iterations between full-wave and lumped-element circuit simulations were performed. Each channel s circuit was designed based on the availability of characteristic impedances and lumped element ranges. This design was based on a tabular type bandpass filter with no spurious harmonic response. Extensive electromagnetic modeling for each channel was performed. Four channels

  5. Analysis of a high-Tc hot-electron superconducting mixer for terahertz applications

    International Nuclear Information System (INIS)

    Karasik, B.S.; McGrath, W.R.; Gaidis, M.C.

    1997-01-01

    The prospects of a YBa 2 Cu 3 O 7-δ hot-electron bolometer mixer for a THz heterodyne receiver are discussed. The modeled device is a submicron bridge made from a 10-nm-thick film on a high thermal conductance substrate. The mixer performance expected for this device is analyzed in the framework of a two-temperature model which includes heating both of the electrons and the lattice. Also, the contribution of phonon diffusion from the film through the substrate and from the film to the normal metal contacts is evaluated. The intrinsic conversion efficiency and the noise temperature have been calculated as functions of the device size, local oscillator (LO) power, and ambient temperature. Assuming thermal fluctuations and Johnson noise to be the main sources of noise, a minimum single sideband mixer noise temperature of congruent 2000 K is predicted. For our modeled device the intrinsic conversion loss at an intermediate frequency of 2.5 GHz is less than 10 dB and the required LO power is ∼1 endash 10 μW. copyright 1997 American Institute of Physics

  6. The happy marriage between electron-phonon superconductivity and Mott physics in Cs3C60: A first-principle phase diagram

    Science.gov (United States)

    Capone, Massimo; Nomura, Yusuke; Sakai, Shiro; Giovannetti, Gianluca; Arita, Ryotaro

    The phase diagram of doped fullerides like Cs3C60 as a function of the spacing between fullerene molecules is characterized by a first-order transition between a Mott insulator and an s-wave superconductor with a dome-shaped behavior of the critical temperature. By means of an ab-initio modeling of the bandstructure, the electron-phonon interaction and the interaction parameter and a Dynamical Mean-Field Theory solution, we reproduce the phase diagram and demonstrate that phonon superconductivity benefits from strong correlations confirming earlier model predictions. The role of correlations is manifest also in infrared measurements carried out by L. Baldassarre. The superconducting phase shares many similarities with ''exotic'' superconductors with electronic pairing, suggesting that the anomalies in the ''normal'' state, rather than the pairing glue, can be the real common element unifying a wide family of strongly correlated superconductors including cuprates and iron superconductors

  7. Project in fiscal 1988 for research and development of basic technologies in next generation industries. Research and development of superconducting materials and superconducting elements (Achievement report on research and development of high-temperature superconducting elements); 1988 nendo koon chodendo soshi no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-03-01

    With an objective of engineering utilization of superconducting materials in the electronics field, research and development has been inaugurated on superconducting elements having new functions. This paper summarizes the achievements in fiscal 1988. In the research of a superconducting element technology, researches were inaugurated on the four themes of the electric field effect type and charge injection type elements in the proximity effect type tri-terminal element, and low energy electron type and high energy electron type elements in the superconduction base type tri-terminal element. In bonding superconductors with semiconductors, discussions were given on a method to form both conductors by controlling oxygen concentrations of oxides having the same composition, and a method to laminate the superconductors on the semiconductors under super-high vacuum atmosphere. In the research of a new functional element technology, researches were inaugurated on the two themes of a single electron tunneling type tri-terminal element and a local potential tunneling type tri-terminal element. In addition, works were performed on epitaxial growth of high-quality superconducting films as a common basic technology, and such an assignment has been made clear as the necessity of controlling the crystalline azimuth. (NEDO)

  8. Experimental results from a DC photocathode electron gun for an IR FEL

    International Nuclear Information System (INIS)

    Kehne, D.; Engwall, D.; Legg, R.; Shinn, M.

    1997-01-01

    A 350 keV DC photocathode gun capable of delivering the high-brightness CW electron beam necessary for Jefferson Lab's infrared free-electron laser is described. The gun is to be used with a superconducting radiofrequency linac operating at 1.497 GHz and is mode-locked to the 40th subharmonic of the fundamental using a Nd:YLF drive laser. The gun provides 20--25 ps bunches at up to 135 pC/bunch. Experimental measurements of transverse and longitudinal beam properties are presented. Transverse emittance is measured using a slit-wire scanner emittance meter, and energy spread is measured using the slit and a spectrometer magnet. Longitudinal emittance is measured using a combination of sampling aperture, kicker cavity, slit and spectrometer. Measurements for bunch charges of 135 pC are described and compared with simulations

  9. Analysis of Nb{sub 3}Sn surface layers for superconducting radio frequency cavity applications

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Chaoyue [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); High Energy Physics Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616 (United States); Posen, Sam; Hall, Daniel Leslie [Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York 14853 (United States); Groll, Nickolas; Proslier, Thomas, E-mail: prolier@anl.gov [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); High Energy Physics Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Cook, Russell [Nanoscience and Technology Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Schlepütz, Christian M. [X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Liepe, Matthias [Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York 14853 (United States); Department of Physics, Cornell University, Ithaca, New York 14853 (United States); Pellin, Michael [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Zasadzinski, John [Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616 (United States)

    2015-02-23

    We present an analysis of Nb{sub 3}Sn surface layers grown on a bulk Niobium (Nb) coupon prepared at the same time and by the same vapor diffusion process used to make Nb{sub 3}Sn coatings on 1.3 GHz Nb cavities. Tunneling spectroscopy reveals a well-developed, homogeneous superconducting density of states at the surface with a gap value distribution centered around 2.7 ± 0.4 meV and superconducting critical temperatures (T{sub c}) up to 16.3 K. Scanning transmission electron microscopy performed on cross sections of the sample's surface region shows an ∼2 μm thick Nb{sub 3}Sn surface layer. The elemental composition map exhibits a Nb:Sn ratio of 3:1 and reveals the presence of buried sub-stoichiometric regions that have a ratio of 5:1. Synchrotron x-ray diffraction experiments indicate a polycrystalline Nb{sub 3}Sn film and confirm the presence of Nb rich regions that occupy about a third of the coating volume. These low T{sub c} regions could play an important role in the dissipation mechanisms occurring during RF tests of Nb{sub 3}Sn-coated Nb cavities and open the way for further improving a very promising alternative to pure Nb cavities for particle accelerators.

  10. Characterization of superconducting thin films by infrared reflection

    International Nuclear Information System (INIS)

    Gervais, F.

    1988-01-01

    Infrared reflectivity spectroscopy is shown to be a powerful tool to characterize the new high-Tc oxide superconductors since it gives information about the superconducting gap, phonons, plasmon and possibly low-energy electronic excitations such as excitons, information relevant to understand the mechanism of superconductivity [fr

  11. Raman scattering and luminescence of high-Tc superconducting oxides

    International Nuclear Information System (INIS)

    Eremenko, V.V.; Gnezdilov, V.P.; Fomin, V.I.; Fugol', I.Ya.; Samovarov, V.N.

    1989-01-01

    Raman and luminescence spectra of high-T c superconducting oxides are summarized, mainly YBa 2 Cu 3 O 7-σ and partly La 2-x Ba x CuO 4-σ . In raman spectra we succeeded to distinguish electron scattering to define the energy gap Δ in the superconducting state. The luminescence spectra are due to the emission of oxygen and interaction with conduction electrons. 70 refs.; 13 figs

  12. Superconducting magnesium diboride coatings for radio frequency cavities fabricated by hybrid physical-chemical vapor deposition

    Directory of Open Access Journals (Sweden)

    M. A. Wolak

    2014-01-01

    Full Text Available We have investigated the coating of an inner surface of superconducting radio frequency cavities with a magnesium diboride thin film by hybrid physical-chemical vapor deposition (HPCVD. To simulate a 6 GHz rf cavity, a straight stainless steel tube of 1.5-inch inner diameter and a dummy stainless steel cavity were employed, on which small sapphire and metal substrates were mounted at different locations. The MgB_{2} films on these substrates showed uniformly good superconducting properties including T_{c} of 37–40 K, residual resistivity ratio of up to 14, and root-mean-square roughness R_{q} of 20–30 nm. This work demonstrates the feasibility of coating the interior of cylindrical and curved objects with MgB_{2} by the HPCVD technique, an important step towards superconducting rf cavities with MgB_{2} coating.

  13. Effect of superconductivity on the cubic to tetragonal structural transition due to a two-fold degenerate electronic band

    International Nuclear Information System (INIS)

    Ghatak, S.K.; Khanra, B.C.; Ray, D.K.

    1978-01-01

    The effect of the BCS superconductivity on the cubic to tetragonal structural transition arising from a two-fold degenerate electronic band is investigated within the mean field approximation. The phase diagram of the two transitions is given for a half filled esub(g)-band. Modification of the two transitions when they are close together is also discussed. (author)

  14. Experiments on the rf surface resistance of the perovskite superconductors at 3 GHz

    International Nuclear Information System (INIS)

    Hein, M.; Klein, N.; Mueller, G.; Piel, H.; Roeth, R.W.

    1988-01-01

    Since the discovery of the perovskite superconductors many experiments to explore their physical properties have been performed and various potential applications have been considered. The high critical temperature of more than 90 K obtained with Y 1 Ba 2 Cu 3 O/sub 7-δ/ (Y may be substituted by other rare earth elements) makes these superconductors interesting for applications in microwave technology. This has focused the authors interest on the investigation of their rf properties. Due to the sensitivity of the rf surface resistance to surface impurities and remaining non superconducting phases rf measurements are a good means to provide useful information about the quality of sample preparation and about physical properties of the superconductor itself. This contribution reports on the experimental determination of the rf surface resistance of Y 1 Ba 2 Cu 3 O/sub 7-δ/ and Eu 1 Ba 2 Cu 3 O/sub 7-δ/ in the normal and superconducting state at 3 GHz. In the first chapter the preparation of the ceramic samples and initial dc experiments are described. The main part of the paper describes the rf measurements which are performed in a superconducting niobium host cavity. The obtained results for both the surface resistance and the high field performance are discussed with respect to the preparation of the samples and regarding possible applications. 7 references, 7 figures, 2 tables

  15. Strong-coupling electron-phonon superconductivity in H{sub 3}S

    Energy Technology Data Exchange (ETDEWEB)

    Pickett, Warren E. [University of California, Davis, CA (United States); Quan, Yundi [Beijing Normal University, Beijing (China)

    2016-07-01

    The superconducting phase of hydrogen sulfide at T{sub c} = 200 K observed by Eremets' group at pressures around 200 GPa is simple bcc Im-3m H{sub 3}S. Remarkably, this record high temperature superconductor was predicted beforehand by Duan et al., so the theory would seem to be in place. Here we will discuss why this is not true. Several extremes are involved: extreme pressure, meaning reduction of volume;extremely high H phonon energy scale around 1400 K; unusually narrow peak in the density of states at the Fermi level; extremely high temperature for a superconductor. Analysis of the H3S electronic structure and two important van Hove singularities (vHs) reveal the effect of sulfur. The implications for the strong coupling Migdal-Eliashberg theory will be discussed. Followed by comments on ways of increasing T{sub c} in H{sub 3}S-like materials.

  16. Theory of normal and superconducting properties of fullerene-based solids

    International Nuclear Information System (INIS)

    Cohen, M.L.

    1992-10-01

    Recent experiments on the normal-state and superconducting properties of fullerene-based solids are used to constrain the proposal theories of the electronic nature of these materials. In general, models of superconductivity based on electron pairing induced by phonons are consistent with electronic band theory. The latter experiments also yield estimates of the parameters characterizing these type H superconductors. It is argued that, at this point, a ''standard model'' of phonons interacting with itinerant electrons may be a good first approximation for explaining the properties of the metallic fullerenes

  17. Positron annihilation in superconductive metals

    Energy Technology Data Exchange (ETDEWEB)

    Dekhtjar, I.J.

    1969-03-10

    A correlation is shown between the parameters of superconductive metals and those of positron annihilation. Particular attention is paid to the density states obtained from the electron specific heat.

  18. Electron Cooling of RHIC

    CERN Document Server

    Ben-Zvi, Ilan; Barton, Donald; Beavis, Dana; Blaskiewicz, Michael; Bluem, Hans; Brennan, Joseph M; Bruhwiler, David L; Burger, Al; Burov, Alexey; Burrill, Andrew; Calaga, Rama; Cameron, Peter; Chang, Xiangyun; Cole, Michael; Connolly, Roger; Delayen, Jean R; Derbenev, Yaroslav S; Eidelman, Yury I; Favale, Anthony; Fedotov, Alexei V; Fischer, Wolfram; Funk, L W; Gassner, David M; Hahn, Harald; Harrison, Michael; Hershcovitch, Ady; Holmes, Douglas; Hseuh Hsiao Chaun; Johnson, Peter; Kayran, Dmitry; Kewisch, Jorg; Kneisel, Peter; Koop, Ivan; Lambiase, Robert; Litvinenko, Vladimir N; MacKay, William W; Mahler, George; Malitsky, Nikolay; McIntyre, Gary; Meng, Wuzheng; Merminga, Lia; Meshkov, Igor; Mirabella, Kerry; Montag, Christoph; Nagaitsev, Sergei; Nehring, Thomas; Nicoletti, Tony; Oerter, Brian; Parkhomchuk, Vasily; Parzen, George; Pate, David; Phillips, Larry; Preble, Joseph P; Rank, Jim; Rao, Triveni; Rathke, John; Roser, Thomas; Russo, Thomas; Scaduto, Joseph; Schultheiss, Tom; Sekutowicz, Jacek; Shatunov, Yuri; Sidorin, Anatoly O; Skrinsky, Aleksander Nikolayevich; Smirnov, Alexander V; Smith, Kevin T; Todd, Alan M M; Trbojevic, Dejan; Troubnikov, Grigory; Wang, Gang; Wei, Jie; Williams, Neville; Wu, Kuo-Chen; Yakimenko, Vitaly; Zaltsman, Alex; Zhao, Yongxiang; ain, Animesh K

    2005-01-01

    We report progress on the R&D program for electron-cooling of the Relativistic Heavy Ion Collider (RHIC). This electron cooler is designed to cool 100 GeV/nucleon at storage energy using 54 MeV electrons. The electron source will be a superconducting RF photocathode gun. The accelerator will be a superconducting energy recovery linac. The frequency of the accelerator is set at 703.75 MHz. The maximum electron bunch frequency is 9.38 MHz, with bunch charge of 20 nC. The R&D program has the following components: The photoinjector and its photocathode, the superconducting linac cavity, start-to-end beam dynamics with magnetized electrons, electron cooling calculations including benchmarking experiments and development of a large superconducting solenoid. The photoinjector and linac cavity are being incorporated into an energy recovery linac aimed at demonstrating ampere class current at about 20 MeV. A Zeroth Order Design Report is in an advanced draft state, and can be found on the web at http://www.ags...

  19. Superconducting Quantum Arrays for Wideband Antennas and Low Noise Amplifiers

    Science.gov (United States)

    Mukhanov, O.; Prokopemko, G.; Romanofsky, Robert R.

    2014-01-01

    Superconducting Quantum Iinetference Filters (SQIF) consist of a two-dimensional array of niobium Josephson Junctions formed into N loops of incommensurate area. This structure forms a magnetic field (B) to voltage transducer with an impulse like response at B0. In principle, the signal-to-noise ratio scales as the square root of N and the noise can be made arbitrarily small (i.e. The SQIF chips are expected to exhibit quantum limited noise performance). A gain of about 20 dB was recently demonstrated at 10 GHz.

  20. Superconductivity Series in Transition Metal Dichalcogenides by Ionic Gating

    NARCIS (Netherlands)

    Shi, Wu; Ye, Jianting; Zhang, Yijin; Suzuki, Ryuji; Yoshida, Masaro; Miyazaki, Jun; Inoue, Naoko; Saito, Yu; Iwasa, Yoshihiro

    2015-01-01

    Functionalities of two-dimensional (2D) crystals based on semiconducting transition metal dichalcogenides (TMDs) have now stemmed from simple field effect transistors (FETs) to a variety of electronic and opto-valleytronic devices, and even to superconductivity. Among them, superconductivity is the

  1. Endohedral gallide cluster superconductors and superconductivity in ReGa5.

    Science.gov (United States)

    Xie, Weiwei; Luo, Huixia; Phelan, Brendan F; Klimczuk, Tomasz; Cevallos, Francois Alexandre; Cava, Robert Joseph

    2015-12-22

    We present transition metal-embedded (T@Gan) endohedral Ga-clusters as a favorable structural motif for superconductivity and develop empirical, molecule-based, electron counting rules that govern the hierarchical architectures that the clusters assume in binary phases. Among the binary T@Gan endohedral cluster systems, Mo8Ga41, Mo6Ga31, Rh2Ga9, and Ir2Ga9 are all previously known superconductors. The well-known exotic superconductor PuCoGa5 and related phases are also members of this endohedral gallide cluster family. We show that electron-deficient compounds like Mo8Ga41 prefer architectures with vertex-sharing gallium clusters, whereas electron-rich compounds, like PdGa5, prefer edge-sharing cluster architectures. The superconducting transition temperatures are highest for the electron-poor, corner-sharing architectures. Based on this analysis, the previously unknown endohedral cluster compound ReGa5 is postulated to exist at an intermediate electron count and a mix of corner sharing and edge sharing cluster architectures. The empirical prediction is shown to be correct and leads to the discovery of superconductivity in ReGa5. The Fermi levels for endohedral gallide cluster compounds are located in deep pseudogaps in the electronic densities of states, an important factor in determining their chemical stability, while at the same time limiting their superconducting transition temperatures.

  2. Collective modes in superconducting rhombohedral graphite

    Energy Technology Data Exchange (ETDEWEB)

    Kauppila, Ville [O.V. Lounasmaa Laboratory, Aalto University (Finland); Hyart, Timo; Heikkilae, Tero [University of Jyvaeskylae (Finland)

    2015-07-01

    Recently it was realized that coupling particles with a Dirac dispersion (such as electrons in graphene) can lead to a topologically protected state with flat band dispersion. Such a state could support superconductivity with unusually high critical temperatures. Perhaps the most promising way to realize such coupling in real materials is in the surface of rhombohedrally stacked graphite. We consider collective excitations (i.e. the Higgs modes) in surface superconducting rhombohedral graphite. We find two amplitude and two phase modes corresponding to the two surfaces of the graphite where the superconductivity lives. We calculate the dispersion of these modes. We also derive the Ginzburg-Landau theory for this material. We show that in superconducting rhombohedral graphite, the collective modes, unlike in conventional BCS superconductors, give a large contribution to thermodynamic properties of the material.

  3. An approximate method for calculating electron-phonon matrix element of a disordered transition metal and relevant comments on superconductivity

    International Nuclear Information System (INIS)

    Zhang, L.

    1981-08-01

    A method based on the tight-binding approximation is developed to calculate the electron-phonon matrix element for the disordered transition metals. With the method as a basis the experimental Tsub(c) data of the amorphous transition metal superconductors are re-analysed. Some comments on the superconductivity of the disordered materials are given

  4. Low temperature laser scanning microscopy of a superconducting radio-frequency cavity

    OpenAIRE

    Ciovati, G.; Anlage, Steven M.; Baldwin, C.; Cheng, G.; Flood, R.; Jordan, K.; Kneisel, P.; Morrone, M.; Nemes, G.; Turlington, L.; Wang, H.; Wilson, K.; Zhang, S.

    2012-01-01

    An apparatus was developed to obtain, for the first time, 2D maps of the surface resistance of the inner surface of an operating superconducting radio-frequency niobium cavity by a low-temperature laser scanning microscopy technique. This allows identifying non-uniformities of the surface resistance with a spatial resolution of about one order of magnitude better than with earlier methods and surface resistance resolution of ~ 1 micro-Ohm at 3.3 GHz. A signal-to-noise ratio of about 10 dB was...

  5. An Electron Bunch Compression Scheme for a Superconducting Radio Frequency Linear Accelerator Driven Light Source

    Energy Technology Data Exchange (ETDEWEB)

    C. Tennant, S.V. Benson, D. Douglas, P. Evtushenko, R.A. Legg

    2011-09-01

    We describe an electron bunch compression scheme suitable for use in a light source driven by a superconducting radio frequency (SRF) linac. The key feature is the use of a recirculating linac to perform the initial bunch compression. Phasing of the second pass beam through the linac is chosen to de-chirp the electron bunch prior to acceleration to the final energy in an SRF linac ('afterburner'). The final bunch compression is then done at maximum energy. This scheme has the potential to circumvent some of the most technically challenging aspects of current longitudinal matches; namely transporting a fully compressed, high peak current electron bunch through an extended SRF environment, the need for a RF harmonic linearizer and the need for a laser heater. Additional benefits include a substantial savings in capital and operational costs by efficiently using the available SRF gradient.

  6. Contamination issues in superconducting cavity technology

    International Nuclear Information System (INIS)

    Kneisel, Peter

    1997-01-01

    The application of radio-frequency superconductivity technology in particle accelerator projects has become increasingly evident in recent years. Several large scale projects around the world are either completed or close to completion, such as CEBAF, HERA, TRISTAN and LEP. And superconducting cavity technology is seriously being considered for future applications in linear colliders (TESLA), high current proton accelerators (APT, spallation neutron sources), muon colliders and free electron lasers for industrial application. The reason for this multitude of activities are matured technology based on a better understanding of the phenomena encountered in superconducting cavities and the influence of improved material properties and contamination and quality control measures

  7. Superconducting linacs used with tandems

    International Nuclear Information System (INIS)

    Ben-Zvi, I.

    1984-01-01

    The main features of superconducting linacs used as post-accelerators of tandems are reviewed. Various aspects of resonators, cryogenics and electronics are discussed, and recent advances in the field are presented. (orig.)

  8. Correlation effects in superconducting quantum dot systems

    Science.gov (United States)

    Pokorný, Vladislav; Žonda, Martin

    2018-05-01

    We study the effect of electron correlations on a system consisting of a single-level quantum dot with local Coulomb interaction attached to two superconducting leads. We use the single-impurity Anderson model with BCS superconducting baths to study the interplay between the proximity induced electron pairing and the local Coulomb interaction. We show how to solve the model using the continuous-time hybridization-expansion quantum Monte Carlo method. The results obtained for experimentally relevant parameters are compared with results of self-consistent second order perturbation theory as well as with the numerical renormalization group method.

  9. The new proposal to the mechanism of superconductivity Part 1: principle

    International Nuclear Information System (INIS)

    Huang Shiming

    2001-01-01

    The concept of hulun electron and collective potential are proposed based on plenty of experimental facts. The superconductivity is due to the collective behavior of the hulun electron's ordered phases. At 0 K, all hulun electrons must be existed in ordered phases. All the solids containing hulun electrons will become superconductors as the temperature approaches to 0 K. The solids not containing hulun electrons will never become superconductors. For the solids containing only one hulun electron phase, phase change occurs only one time as the temperature rises up from 0 K, this is the first kind superconductors. The superconducting temperature TC is the temperature at which the phase change occurs. For solids containing two or more hulun electron phases, as temperature rises up from 0 K, the hulun electron phases's change will begin from the lowest stablized phase, then the higher. As long as there is just one hulun electron phase retaining in ordered state, the solids is still a superconductor. The superconducting transition temperature T C is the temperature at which the most stable hulun electron phase occurs phase change. This is the second kind superconductors

  10. Characteristics of 6.5 GHz ECR ion source for polarized H- ion source

    International Nuclear Information System (INIS)

    Ikegami, Kiyoshi; Mori, Yoshiharu; Takagi, Akira; Fukumoto, Sadayoshi.

    1983-04-01

    A 6.5 GHz ECR (electron cyclotron resonance) ion source has been developed for optically pumped polarized H - ion source at KEK. The properties of this ECR ion source such as beam intensities, proton ratios, plasma electron temperatures and beam emittances were measured. (author)

  11. Heat conduction in superconducting lead thallium alloys

    International Nuclear Information System (INIS)

    Ho, J.L.N.

    1975-01-01

    The heat conduction of six strong coupling superconducting Pb--Tl alloy specimens (1 to 20 percent wt Tl) was investigated with the emphasis on the effects of impurities upon the phonon thermal conductivity. All the specimens were annealed at 275 0 C for one week. Results show that the superconducting state phonon thermal conductivity of Pb--Tl is in reasonably good agreement with BRT theory. The strong coupling superconductivity of lead alloys can be handled by scaling the gap parameter using a constant factor. The results presented also show that the phonon thermal conductivity at low temperatures of well annealed lead-thallium alloys can be analyzed in terms of phonon scattering by the grain boundaries, point defects, conduction electrons, and other phonons. The phonon-dislocation scattering was found to be unimportant. The phonon relaxation rate due to point defects is in reasonably good agreement with the Klemens theory for the long range strain field scattering introduced by the thallium impurities. At low temperatures, the normal state phonon thermal conductivity showed an increase in the phonon-electron relaxation rate as the thallium concentration increases. The increase of the phonon-electron relaxation rate is attributed to the change of the Fermi surface caused by the presence of thallium impurity. The effect of the strong electron-phonon coupling character upon the phonon-electron relaxation rate has also been considered in terms of the electron-phonon enhancement factor found in the specific heat measurements

  12. Evidence for hyperconductivity and thermal superconductivity

    OpenAIRE

    Vdovenkov, V. A.

    2008-01-01

    Physical explanation of hyperconductivity and thermal superconductivity existence is done in given article on the basis of inherent atomic nuclei oscillations in atoms of materials which are connected with electrons and phonons and in accordance with the well known Bardeen-Cooper-Schrieffer superconductivity theory. It is shown that hyperconductivity is the self-supporting, independent physical phenomenon which is caused by oscillations of atomic nuclei in atoms of materials and the minimal t...

  13. Quasiparticle-induced decoherence of microscopic two-level-systems in superconducting qubits

    Energy Technology Data Exchange (ETDEWEB)

    Bilmes, Alexander; Lisenfeld, Juergen; Zanker, Sebastian; Weiss, Georg; Ustinov, Alexey V. [PHI, KIT, Karlsruhe (Germany); Marthaler, Michael; Schoen, Gerd [TFP, KIT, Karlsruhe (Germany)

    2016-07-01

    Parasitic Two-Level-Systems (TLS) are one of the main sources of decoherence in superconducting nano-scale devices such as SQUIDs, resonators and quantum bits (qubits), although the TLS' microscopic nature remains unclear. We use a superconducting phase qubit to detect TLS contained within the tunnel barrier of the qubit's Al/AlOx/Al Josephson junction. If the TLS transition frequency lies within the 6-10 GHz range, we can coherently drive it by resonant microwave pulses and access its quantum state by utilizing the strong coupling to the qubit. Our previous measurements of TLS coherence in dependence of the temperature indicate that quasiparticles (QPs), which diffuse from the superconducting Al electrodes into the oxide layer, may give rise to TLS energy loss and dephasing. Here, we probe the TLS-QP interaction using a reliable method of in-situ QP injection via an on-chip dc-SQUID that is pulse-biased beyond its switching current. The QP density is calibrated by measuring associated characteristic changes to the qubit's energy relaxation rate. We will present experimental data which show the QP-induced TLS decoherence in good agreement to theoretical predictions.

  14. Superconductivity, magnetic susceptibility, and electronic properties of amorphous (Mo/sub 1-x/Ru/sub x/)80P20 alloys obtained by liquid quenching

    International Nuclear Information System (INIS)

    Johnson, W.L.; Poon, S.J.; Duwez, P.

    1977-11-01

    Results of x-ray diffraction, transmission electron diffraction, and crystallization studies on amorphous (Mo/sub 1-x/Ru/sub x/) 80 P 20 alloys obtained by liquid quenching are presented and discussed. The alloys are all found to be superconducting with transition temperatures ranging from approximately 3 0 K to approximately 9 0 K. The variation of T/sub c/ with alloy composition is compared to that obtained by Collver and Hammond for vapor quenched transition metal films. Results of magnetic susceptibility measurements are used to estimate the variation of the electronic density of states at the Fermi level, N(0), from the Pauli paramagnetic contribution. The relationship between the variation of T/sub c/ and N(0) is discussed in terms of the microscope theory of superconductivity. Finally, results of measurements of the upper critical field H/sub c2/, and the normal state electronic transport properties are presented and compared with recent theoretical models for amorphous superconductors

  15. Improved Magnetron Stability and Reduced Noise in Efficient Transmitters for Superconducting Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Kazakevich, G. [MUONS Inc., Batavia; Johnson, R. [MUONS Inc., Batavia; Lebedev, V. [Fermilab; Yakovlev, V. [Fermilab

    2018-04-01

    State of the art high-current superconducting accelerators require efficient RF sources with a fast dynamic phase and power control. This allows for compensation of the phase and amplitude deviations of the accelerating voltage in the Superconducting RF (SRF) cavities caused by microphonics, etc. Efficient magnetron transmitters with fast phase and power control are attractive RF sources for this application. They are more cost effective than traditional RF sources such as klystrons, IOTs and solid-state amplifiers used with large scale accelerator projects. However, unlike traditional RF sources, controlled magnetrons operate as forced oscillators. Study of the impact of the controlling signal on magnetron stability, noise and efficiency is therefore important. This paper discusses experiments with 2.45 GHz, 1 kW tubes and verifies our analytical model which is based on the charge drift approximation.

  16. On the mechanism of high-temperature superconductivity in hydrogen sulfide at 200 GPa: Transition into superconducting anti-adiabatic state in coupling to H-vibrations

    Directory of Open Access Journals (Sweden)

    Pavol Baňacký

    Full Text Available It has been shown that the adiabatic electronic structure of the superconducting phase of sulfur hydride at 200 GPa is unstable toward the vibration motion of H-atoms. A theoretical study indicates that in coupling to H-vibrations, the system undergoes a transition from adiabatic into a stabilized anti-adiabatic multi-gap superconducting state at a temperature that can reach 203 K. Keywords: Superconductivity of sulfur hydride, Electron–phonon coupling in superconductors, Anti-adiabatic theory of superconductivity

  17. Experimental measurements on a 100 GHz frequency tunable quasioptical gyrotron

    International Nuclear Information System (INIS)

    Alberti, S.; Tran, M.Q.; Hogge, J.P.; Tran, T.M.; Bondeson, A.; Muggli, P.; Perrenoud, A.; Joedicke, B.; Mathews, H.G.

    1990-01-01

    Experiments on a 100 GHz quasioptical (QO) gyrotron operating at the fundamental (ω=Ω ce ) are described. Powers larger than 90 kW at an efficiency of about 12% were achieved. Depending on the electron beam parameters, the frequency spectrum of the output can be either single moded or multimoded. One of the main advantages of the QO gyrotron over the conventional gyrotron is its continuous frequency tunability. Various techniques to tune the output frequency have been tested, such as changing the mirror separation, the beam voltage, or the main magnetic field. Within the limitations of the present setup, 5% tunability was achieved. The QO gyrotron designed for operation at the fundamental frequency exhibits simultaneous emission at 100 GHz (fundamental) and 200 GHz (second harmonic). For a beam current of 4 A, 20% of the total rf power is emitted at the second harmonic

  18. Traveling-Wave Maser for 32 GHz

    Science.gov (United States)

    Shell, James; Clauss, Robert

    2009-01-01

    The figure depicts a traveling-wave ruby maser that has been designed (though not yet implemented in hardware) to serve as a low-noise amplifier for reception of weak radio signals in the frequency band of 31.8 to 32.3 GHz. The design offers significant improvements over previous designs of 32-GHz traveling-wave masers. In addition, relative to prior designs of 32-GHz amplifiers based on high-electron-mobility transistors, this design affords higher immunity to radio-frequency interference and lower equivalent input noise temperature. In addition to the basic frequency-band and low-noise requirements, the initial design problem included a requirement for capability of operation in a closed-cycle helium refrigerator at a temperature .4 K and a requirement that the design be mechanically simplified, relative to prior designs, in order to minimize the cost of fabrication and assembly. Previous attempts to build 32- GHz traveling-wave masers involved the use of metallic slow-wave structures comprising coupled transverse electromagnetic (TEM)-mode resonators that were subject to very tight tolerances and, hence, were expensive to fabricate and assemble. Impedance matching for coupling signals into and out of these earlier masers was very difficult. A key feature of the design is a slow-wave structure, the metallic portions of which would be mechanically relatively simple in that, unlike in prior slow-wave structures, there would be no internal metal steps, irises, or posts. The metallic portions of the slow-wave structure would consist only of two rectangular metal waveguide arms. The arms would contain sections filled with the active material (ruby) alternating with evanescent-wave sections. This structure would be transparent in both the signal-frequency band (the aforementioned range of 31.8 to 32.3 GHz) and the pump-frequency band (65.75 to 66.75 GHz), and would impose large slowing factors in both frequency bands. Resonant ferrite isolators would be placed in the

  19. Optimization of the superconducting phase of hydrogen sulfide

    Science.gov (United States)

    Degtyarenko, N. N.; Masur, E. A.

    2015-12-01

    The electron and phonon spectra, as well as the densities of electron and phonon states of the SH3 phase and the stable orthorhombic structure of hydrogen sulfide SH2, are calculated for the pressure interval 100-225 GPa. It is found that the I4/ mmm phase can be responsible for the superconducting properties of metallic hydrogen sulfide along with the SH3 phase. Sequential stages for obtaining and conservation of the SH2 phase are proposed. The properties of two (SH2 and SH3) superconducting phases of hydrogen sulfide are compared.

  20. Strong correlations and the search for high-Tc superconductivity in chromium pnictides and chalcogenides

    Science.gov (United States)

    Pizarro, J. M.; Calderón, M. J.; Liu, J.; Muñoz, M. C.; Bascones, E.

    2017-02-01

    Undoped iron superconductors accommodate n =6 electrons in five d orbitals. Experimental and theoretical evidence shows that the strength of correlations increases with hole doping, as the electronic filling approaches half filling with n =5 electrons. This evidence delineates a scenario in which the parent compound of iron superconductors is the half-filled system, in analogy to cuprate superconductors. In cuprates the superconductivity can be induced upon electron or hole doping. In this work we propose to search for high-Tc superconductivity and strong correlations in chromium pnictides and chalcogenides with n slave-spin and multiorbital random-phase-approximation calculations we analyze the strength of the correlations and the superconducting and magnetic instabilities in these systems with the main focus on LaCrAsO. We find that electron-doped LaCrAsO is a strongly correlated system with competing magnetic interactions, with (π ,π ) antiferromagnetism and nodal d -wave pairing being the most plausible magnetic and superconducting instabilities, respectively.

  1. Hot-electron bolometer terahertz mixers for the Herschel Space Observatory.

    Science.gov (United States)

    Cherednichenko, Sergey; Drakinskiy, Vladimir; Berg, Therese; Khosropanah, Pourya; Kollberg, Erik

    2008-03-01

    We report on low noise terahertz mixers (1.4-1.9 THz) developed for the heterodyne spectrometer onboard the Herschel Space Observatory. The mixers employ double slot antenna integrated superconducting hot-electron bolometers (HEBs) made of thin NbN films. The mixer performance was characterized in terms of detection sensitivity across the entire rf band by using a Fourier transform spectrometer (from 0.5 to 2.5 THz, with 30 GHz resolution) and also by measuring the mixer noise temperature at a limited number of discrete frequencies. The lowest mixer noise temperature recorded was 750 K [double sideband (DSB)] at 1.6 THz and 950 K DSB at 1.9 THz local oscillator (LO) frequencies. Averaged across the intermediate frequency band of 2.4-4.8 GHz, the mixer noise temperature was 1100 K DSB at 1.6 THz and 1450 K DSB at 1.9 THz LO frequencies. The HEB heterodyne receiver stability has been analyzed and compared to the HEB stability in the direct detection mode. The optimal local oscillator power was determined and found to be in a 200-500 nW range.

  2. Preparation of Greenberger-Horne-Zeilinger entangled states with multiple superconducting quantum-interference device qubits or atoms in cavity QED

    International Nuclear Information System (INIS)

    Yang Chuiping; Han Siyuan

    2004-01-01

    A scheme is proposed for generating Greenberger-Horne-Zeilinger (GHZ) entangled states of multiple superconducting quantum-interference device (SQUID) qubits by the use of a microwave cavity. The scheme operates essentially by creating a single photon through an auxiliary SQUID built in the cavity and performing a joint multiqubit phase shift with assistance of the cavity photon. It is shown that entanglement can be generated using this method, deterministic and independent of the number of SQUID qubits. In addition, we show that the present method can be applied to preparing many atoms in a GHZ entangled state, with tolerance to energy relaxation during the operation

  3. Superconductivity and fast proton transport in nanoconfined water

    Science.gov (United States)

    Johnson, K. H.

    2018-04-01

    A real-space molecular-orbital density-wave description of Cooper pairing in conjunction with the dynamic Jahn-Teller mechanism for high-Tc superconductivity predicts that electron-doped water confined to the nanoscale environment of a carbon nanotube or biological macromolecule should superconduct below and exhibit fast proton transport above the transition temperature, Tc ≅ 230 K (-43 °C).

  4. Heavy-ion injector based on an electron cyclotron ion source for the superconducting linear accelerator of the Rare Isotope Science Project.

    Science.gov (United States)

    Hong, In-Seok; Kim, Yong-Hwan; Choi, Bong-Hyuk; Choi, Suk-Jin; Park, Bum-Sik; Jin, Hyun-Chang; Kim, Hye-Jin; Heo, Jeong-Il; Kim, Deok-Min; Jang, Ji-Ho

    2016-02-01

    The injector for the main driver linear accelerator of the Rare Isotope Science Project in Korea, has been developed to allow heavy ions up to uranium to be delivered to the inflight fragmentation system. The critical components of the injector are the superconducting electron cyclotron resonance (ECR) ion sources, the radio frequency quadrupole (RFQ), and matching systems for low and medium energy beams. We have built superconducting magnets for the ECR ion source, and a prototype with one segment of the RFQ structure, with the aim of developing a design that can satisfy our specifications, demonstrate stable operation, and prove results to compare the design simulation.

  5. High temperature interface superconductivity

    International Nuclear Information System (INIS)

    Gozar, A.; Bozovic, I.

    2016-01-01

    Highlight: • This review article covers the topic of high temperature interface superconductivity. • New materials and techniques used for achieving interface superconductivity are discussed. • We emphasize the role played by the differences in structure and electronic properties at the interface with respect to the bulk of the constituents. - Abstract: High-T_c superconductivity at interfaces has a history of more than a couple of decades. In this review we focus our attention on copper-oxide based heterostructures and multi-layers. We first discuss the technique, atomic layer-by-layer molecular beam epitaxy (ALL-MBE) engineering, that enabled High-T_c Interface Superconductivity (HT-IS), and the challenges associated with the realization of high quality interfaces. Then we turn our attention to the experiments which shed light on the structure and properties of interfacial layers, allowing comparison to those of single-phase films and bulk crystals. Both ‘passive’ hetero-structures as well as surface-induced effects by external gating are discussed. We conclude by comparing HT-IS in cuprates and in other classes of materials, especially Fe-based superconductors, and by examining the grand challenges currently laying ahead for the field.

  6. Design of a 300 GHz Broadband TWT Coupler and RF-Structure

    CERN Document Server

    Krawczyk, F L

    2004-01-01

    Recent LANL activities in millimeter wave structures focus on 94 and 300 GHz structures. They aim at power generation from low power (100–2000 W) with a round electron beam (120 kV, 0.1–1.0 A) to high power (2–100 kW) with a sheet beam structure (120 kV, 20 A). Applications cover basic research, radar and secure communications and remote sensing of biological and chemical agents. In this presentation the design and cold-test measurements of a 300 GHz RF-structure with a broadband (>6% bandwidth) power coupler are presented. The design choice of two input/output waveguides, a special coupling region and the structure parameters themselves are presented. As a benchmark also a scaled up version at 10 GHz was designed and measured. These results will also be presented.

  7. A mode converter to generate a Gaussian-like mode for injection into the VENUS electron cyclotron resonance ion source

    Energy Technology Data Exchange (ETDEWEB)

    Lyneis, C., E-mail: CMLyneis@lbl.gov; Benitez, J.; Hodgkinson, A.; Strohmeier, M.; Todd, D. [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Plaum, B. [Institut für Grenzflächenverfahrenstechnik und Plasmatechnologie (IGVP), Stuttgart (Germany); Thuillier, T. [Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier Grenoble 1, CNRS/IN2P3, Institut Polytechnique de Grenoble, 53 rue des martyrs 38026 Grenoble cedex (France)

    2014-02-15

    A number of superconducting electron cyclotron resonance (ECR) ion sources use gyrotrons at either 24 or 28 GHz for ECR heating. In these systems, the microwave power is launched into the plasma using the TE{sub 01} circular waveguide mode. This is fundamentally different and may be less efficient than the typical rectangular, linearly polarized TE{sub 10} mode used for launching waves at lower frequencies. To improve the 28 GHz microwave coupling in VENUS, a TE{sub 01}-HE{sub 11} mode conversion system has been built to test launching HE{sub 11} microwave power into the plasma chamber. The HE{sub 11} mode is a quasi-Gaussian, linearly polarized mode, which should couple strongly to the plasma electrons. The mode conversion is done in two steps. First, a 0.66 m long “snake” converts the TE{sub 01} mode to the TE{sub 11} mode. Second, a corrugated circular waveguide excites the HE{sub 11} mode, which is launched directly into the plasma chamber. The design concept draws on the development of similar devices used in tokamaks and stellerators. The first tests of the new coupling system are described below.

  8. Antenne Design for 24 GHz and 60 GHz Emerging Microwave Applications

    NARCIS (Netherlands)

    Jansen, F.; Dolmans, W.M.C.

    2006-01-01

    In this project integrated antennas on a LAMP3 substrate for automotive radar systems at 24 GHz and wireless networks at 60 GHz have been designed. The most severe requirements on the antennas were the large bandwidth, which can not be met with conventional patch antennas. A tapered slot antenna and

  9. Frequency-domain cascading microwave superconducting quantum interference device multiplexers; beyond limitations originating from room-temperature electronics

    Science.gov (United States)

    Kohjiro, Satoshi; Hirayama, Fuminori

    2018-07-01

    A novel approach, frequency-domain cascading microwave multiplexers (MW-Mux), has been proposed and its basic operation has been demonstrated to increase the number of pixels multiplexed in a readout line U of MW-Mux for superconducting detector arrays. This method is an alternative to the challenging development of wideband, large power, and spurious-free room-temperature (300 K) electronics. The readout system for U pixels consists of four main parts: (1) multiplexer chips connected in series those contain U superconducting resonators in total. (2) A cryogenic high-electron-mobility transistor amplifier (HEMT). (3) A 300 K microwave frequency comb generator based on N(≡U/M) parallel units of digital-to-analog converters (DAC). (4) N parallel units of 300 K analog-to-digital converters (ADC). Here, M is the number of tones each DAC produces and each ADC handles. The output signal of U detectors multiplexed at the cryogenic stage is transmitted through a cable to the room temperature and divided into N processors where each handles M pixels. Due to the reduction factor of 1/N, U is not anymore dominated by the 300 K electronics but can be increased up to the potential value determined by either the bandwidth or the spurious-free power of the HEMT. Based on experimental results on the prototype system with N = 2 and M = 3, neither excess inter-pixel crosstalk nor excess noise has been observed in comparison with conventional MW-Mux. This indicates that the frequency-domain cascading MW-Mux provides the full (100%) usage of the HEMT band by assigning N 300 K bands on the frequency axis without inter-band gaps.

  10. New results of development on high efficiency high gradient superconducting rf cavities

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Rongli [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Li, Z. K. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Hao, Z. K. [Peking Univ., Beijing (China); Liu, K. X. [Peking Univ., Beijing (China); Zhao, H. Y. [OTIC, Ningxia (China); Adolphsen, C. [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-09-01

    We report on the latest results of development on high-efficiency high-gradient superconducting radio frequency (SRF) cavities. Several 1-cell cavities made of large-grain niobium (Nb) were built, processed and tested. Two of these cavities are of the Low Surface Field (LSF) shape. Series of tests were carried out following controlled thermal cycling. Experiments toward zero-field cooling were carried out. The best experimentally achieved results are Eacc = 41 MV/m at Q0 = 6.5×1010 at 1.4 K by a 1-cell 1.3 GHz large-grain Nb TTF shape cavity and Eacc = 49 MV/m at Q0 = 1.5×1010 at 1.8 K by a 1-cell 1.5 GHz large-grain Nb CEBAF upgrade low-loss shape cavity.

  11. 100 GHz, 1 MW, CW gyrotron study program. Final report

    International Nuclear Information System (INIS)

    Felch, K.; Bier, R.; Caplan, M.; Jory, H.

    1983-09-01

    The results of a study program to investigate the feasibility of various approaches in designing a 100 GHz, 1 MW CW gyrotron are presented. A summary is given of the possible configurations for a high average power, high frequency gyrotron, including an historical survey of experimental results which are relevant to the various approaches. A set of basic scaling considerations which enable qualitative comparisons between particular gyrotron interaction circuits is presented. These calculations are important in understanding the role of various electron beam and circuit parameters in achieving a viable gyrotron design. Following these scaling exercises, a series of design calculations is presented for a possible approach in achieving 100 GHz, 1 MW CW. These calculations include analyses of the electron gun and interaction circuit parts of the gyrotron, and a general analysis of other aspects of a high average power, high frequency gyrotron. Scalability of important aspects of the design to other frequencies is also discussed, as well as key technology issues

  12. Observation of superconducting fluxons by transmission electron microscopy: A Fourier space approach to calculate the electron optical phase shifts and images

    International Nuclear Information System (INIS)

    Beleggia, M.; Pozzi, G.

    2001-01-01

    An approach is presented for the calculation of the electron optical phase shift experienced by high-energy electrons in a transmission electron microscope, when they interact with the magnetic field associated with superconducting fluxons in a thin specimen tilted with respect to the beam. It is shown that by decomposing the vector potential in its Fourier components and by calculating the phase shift of each component separately, it is possible to obtain the Fourier transform of the electron optical phase shift, which can be inverted either analytically or numerically. It will be shown how this method can be used to recover the result, previously obtained by the real-space approach, relative to the case of a straight flux tube perpendicular to the specimen surfaces. Then the method is applied to the case of a London fluxon in a thin film, where the bending and the broadening of the magnetic-field lines due to the finite specimen thickness are now correctly taken into account and not treated approximately by means of a parabolic fit. Finally, it will be shown how simple models for the pancake structure of the fluxon can be analyzed within this framework and the main features of electron transmission images predicted

  13. Superconductivity

    CERN Document Server

    Thomas, D B

    1974-01-01

    A short general review is presented of the progress made in applied superconductivity as a result of work performed in connection with the high-energy physics program in Europe. The phenomenon of superconductivity and properties of superconductors of Types I and II are outlined. The main body of the paper deals with the development of niobium-titanium superconducting magnets and of radio-frequency superconducting cavities and accelerating structures. Examples of applications in and for high-energy physics experiments are given, including the large superconducting magnet for the Big European Bubble Chamber, prototype synchrotron magnets for the Super Proton Synchrotron, superconducting d.c. beam line magnets, and superconducting RF cavities for use in various laboratories. (0 refs).

  14. Melt formed superconducting joint between superconducting tapes

    International Nuclear Information System (INIS)

    Benz, M.G.; Knudsen, B.A.; Rumaner, L.E.; Zaabala, R.J.

    1992-01-01

    This patent describes a superconducting joint between contiguous superconducting tapes having an inner laminate comprised of a parent-metal layer selected from the group niobium, tantalum, technetium, and vanadium, a superconductive intermetallic compound layer on the parent-metal layer, a reactive-metal layer that is capable of combining with the parent-metal and forming the superconductive intermetallic compound, the joint comprising: a continuous precipitate of the superconductive intermetallic compound fused to the tapes forming a continuous superconducting path between the tapes

  15. Suppression of superconductivity in a single Pb layer on Ag/Si(111)

    Energy Technology Data Exchange (ETDEWEB)

    Leon-Vanegas, Augusto; Kirschner, Juergen [Max Plank Instituet fuer Mikrostukturphysik (Germany); Martin Luther Univeristaet, Halle-Wittenberg (Germany); Caminale, Michael; Stepniak, Agnieszka; Oka, Hirofumi; Sanna, Antonio; Linscheid, Andreas; Sander, Dirk [Max Plank Instituet fuer Mikrostukturphysik (Germany)

    2015-07-01

    Recently, superconductivity was reported in a single layer of Pb on Si(111) with a critical temperature of 1.83 K. It has been proposed that the interaction of Pb with the Si substrate provides the electron phonon coupling to support superconductivity in this system. We have used a {sup 3}He-cooled STM with a vector magnetic field to study the effect of insertion of a Ag interlayer on the superconducting properties of a single Pb layer on Si(111). In contrast to the experiments on Pb/Si(111), the differential conductance of Pb/Ag/Si(111) does not show a gap indicative of superconductivity even at the lowest experimental temperature of 0.38 K. We ascribe this to the suppression of superconductivity. This result is explained by means of ab-initio calculations, showing that the effect of a chemical hybridization between Pb and Ag/Si occurring at the Fermi level dramatically reduces the strength of the electron phonon coupling. This contrasts with the case of Pb/Si(111), where no overlap between Pb and Si electronic states at the Fermi level is found in the calculations.

  16. Results of a new ''OCTOPUS'' ECR ion source at 6.4 GHz

    International Nuclear Information System (INIS)

    Dupont, C.; Jongen, Y.; Arakawa, K.; Yokota, W.; Satoh, T.; Tachikawa, T.

    1990-01-01

    The first OCTOPUS electron cyclstron resonance (ECR) multicharged heavy ion source was built in 1985 at the Centre de Recherches du Cyclotron of the University of Louvain (Belgium). This first source used an ECR frequency of 14.3 GHz in the injector stage and 8.5 GHz in the main confinement stage. A new OCTOPUS source has now been built for a new cyclotron to be installed at the Japan Atomic Energy Research Institute (JAERI). The design of this new OCTOPUS source is identical to the first OCTOPUS source, but uses an ECR frequency of 6.4 GHz in the main confinement stage. The experimental results are described, and a comparison is made between the two sources. However, the available data does not allow any clear conclusion to be drawn on frequency scaling

  17. A superconducting phase-locked local oscillator for a submillimetre integrated receiver

    International Nuclear Information System (INIS)

    Koshelets, V P; Shitov, S V; Filippenko, L V; Dmitriev, P N; Ermakov, A B; Sobolev, A S; Torgashin, M Yu; Pankratov, A L; Kurin, V V; Yagoubov, P; Hoogeveen, R

    2004-01-01

    Comprehensive measurements of the flux flow oscillator (FFO) radiation linewidth are performed using an integrated harmonic SIS mixer; the FFO linewidth and spectral line profile are compared to a theory. An essential dependence of the FFO linewidth on frequency is found; a possible explanation is proposed. The results of the numerical solution of the perturbed sine-Gordon equation qualitatively confirm this assumption. To optimize the FFO design, the influence of the FFO parameters on the radiation linewidth is studied. A novel FFO design at a moderate current density has resulted in a free-running FFO linewidth of about 10 MHz in the flux flow regime up to 712 GHz, limited only by the gap frequency of Nb. This relatively narrow free-running linewidth (along with implementation of a wide-band phase locking loop system) allows continuous phase locking of the FFO in the wide frequency range of 500-710 GHz. These results are the basis for the development of a 550-650 GHz integrated receiver for the terahertz limb sounder (TELIS) intended for atmosphere study and scheduled to fly on a balloon in 2005. We report here also on the design of the second generation of the phase-locked superconducting integrated receiver chip for TELIS

  18. Superconductivity in single wall carbon nanotubes

    Directory of Open Access Journals (Sweden)

    H Yavari

    2009-08-01

    Full Text Available   By using Greens function method we first show that the effective interaction between two electrons mediated by plasmon exchange can become attractive which in turn can lead to superconductivity at a high critical temperature in a singl wall carbon nanotubes (SWCNT. The superconducting transition temperature Tc for the SWCNT (3,3 obtained by this mechanism agrees with the recent experimental result. We also show as the radius of SWCNT increases, plasmon frequency becomes lower and leads to lower Tc.

  19. Multiple quantum phase transitions and superconductivity in Ce-based heavy fermions.

    Science.gov (United States)

    Weng, Z F; Smidman, M; Jiao, L; Lu, Xin; Yuan, H Q

    2016-09-01

    Heavy fermions have served as prototype examples of strongly-correlated electron systems. The occurrence of unconventional superconductivity in close proximity to the electronic instabilities associated with various degrees of freedom points to an intricate relationship between superconductivity and other electronic states, which is unique but also shares some common features with high temperature superconductivity. The magnetic order in heavy fermion compounds can be continuously suppressed by tuning external parameters to a quantum critical point, and the role of quantum criticality in determining the properties of heavy fermion systems is an important unresolved issue. Here we review the recent progress of studies on Ce based heavy fermion superconductors, with an emphasis on the superconductivity emerging on the edge of magnetic and charge instabilities as well as the quantum phase transitions which occur by tuning different parameters, such as pressure, magnetic field and doping. We discuss systems where multiple quantum critical points occur and whether they can be classified in a unified manner, in particular in terms of the evolution of the Fermi surface topology.

  20. DRAGON: a new 18 GHz RT ECRIS with a large plasma chamber

    International Nuclear Information System (INIS)

    Lu, W.; Xie, D.Z.; Zhang, X.Z.; Zhao, H.W.; Ruan, L.; Song, F.C.; Xiong, B.; Yu, S.; Yuan, J.

    2012-01-01

    Building a strong radial magnetic field with a permanent sextupole magnet for an ECRIS is extremely challenging so that the conventional wisdom recommends a small but not optimal plasma chamber that is typically of ID less or equal to 80 mm. A new 18 GHz RT ECRIS, DRAGON, with a large bore permanent sextupole has been designed and is under construction at IMP (Institute of Modern Physics, Lanzhou, China). Its plasma chamber is of ID 126 mm, the same as that of the superconducting ion source SECRAL, with maximum radial field strength reaching 1.5 T at the plasma chamber wall. The overall magnetic strengths of DRAGON, with maximum axial fields of 2.7 T at the injection and 1.3 T at the extraction, are very similar to those of SECRAL operating at 18 GHz and hopefully its performance. The source solenoid magnets are cooled by medium evaporation at about 50 C. In addition, the source is thickly insulated for beam extraction at 50 kV and higher voltage up to 100 kV can be explored. This article will present the design details and discussions of this new ion source. It is followed by the associated poster. (authors)

  1. Direct observation of the growth of voids in multifilamentary superconducting materials via hot stage scanning electron microscopy

    International Nuclear Information System (INIS)

    Wang, J.L.F.; Holthuis, J.T.; Pickus, M.R.; Lindberg, R.W.

    1978-11-01

    The need for large high field magnetic devices has focused attention on multifilamentary superconductors based on A15 compounds such as Nb 3 Sn. The commercial bronze process for fabricating multifilamentary superconducting Nb 3 Sn wires was developed. A major problem is strain sensitivity when long reaction times are employed. An improved hot stage for the scanning electron microscope was constructed to study the formation of the A15 phase by solid state diffusion. The nucleation and growth of voids near the interface of the A15 phase (Nb 3 Sn) and matrix were observed, monitored, and recorded on video tape. Successive layers of material heated in the hot stage were subsequently removed and the new surfaces were re-examined, using SEM-EDX and optical microscopy, to confirm the fact that the observed porosity was indeed a bulk rather than a surface phenomenon. These voids are considered to be a primary cause for degrading the mechanical, thermal and superconducting properties

  2. A compact high-gradient 25 MeV 17 GHz RF linac for free-electron laser research

    International Nuclear Information System (INIS)

    Danly, B.G.; Chen, S.C.; Kreischer, K.E.

    1995-01-01

    A new compact high-gradient (60 MeV/m) high-frequency (17.136 GHz) RF linac is presently under construction by Haimson Research Corp. (HRC) for installation at the MIT Plasma Fusion Center in the High-Gradient Accelerator and High Power Microwave Laboratory. This accelerator will utilize an existing traveling-wave relativistic klystron (TWRK) which is now operation at MIT with 25 MW power, 67 dB gain, and 52% efficiency at 17.136 GHz

  3. Photocathodes inside superconducting cavities. Studies on the feasibility of a superconducting photoelectron source of high brightness. External report

    International Nuclear Information System (INIS)

    Michalke, A.

    1992-01-01

    We have done studies and experiments to explore the feasibility of a photoemission RF gun with a superconducting accelerator cavity. This concept promises to provide an electron beam of high brightness in continuous operation. It is thus of strong interest for a free-electron-laser or a linear collider based on a superconducting accelerator. In a first step we studied possible technical solutions for its components, especially the material of the photocathode and the geometrical shape of the cavity. Based on these considerations, we developed the complete design for a prototype electron source. The cathode material was chosen to be alkali antimonide. In spite of its sensitivity, it seems to be the best choice for a gun with high average current due to its high quantum efficiency. The cavity shape was at first a reentrant-type single cell of 500 MHz. It is now replaced by a more regular two-and-half cell shape, an independent half cell added for emittance correction. Its beam dynamics properties are investigated by numerical simulations; we estimated a beam brightness of about 5x10 11 A/(m.rad) 2 . But the mutual interactions between alkali antimonide photocathode and superconducting cavity must be investigated experimentally, because they are completely unkown. (orig.)

  4. Sensing with Superconducting Point Contacts

    Directory of Open Access Journals (Sweden)

    Argo Nurbawono

    2012-05-01

    Full Text Available Superconducting point contacts have been used for measuring magnetic polarizations, identifying magnetic impurities, electronic structures, and even the vibrational modes of small molecules. Due to intrinsically small energy scale in the subgap structures of the supercurrent determined by the size of the superconducting energy gap, superconductors provide ultrahigh sensitivities for high resolution spectroscopies. The so-called Andreev reflection process between normal metal and superconductor carries complex and rich information which can be utilized as powerful sensor when fully exploited. In this review, we would discuss recent experimental and theoretical developments in the supercurrent transport through superconducting point contacts and their relevance to sensing applications, and we would highlight their current issues and potentials. A true utilization of the method based on Andreev reflection analysis opens up possibilities for a new class of ultrasensitive sensors.

  5. Perpendicular electron cyclotron emission from hot electrons in TMX-U

    International Nuclear Information System (INIS)

    James, R.A.; Ellis, R.F.; Lasnier, C.J.; Casper, T.A.; Celata, C.M.

    1984-01-01

    Perpendicular electron cyclotron emission (PECE) from the electron cyclotron resonant heating of hot electrons in TMX-U is measured at 30 to 40 and 50 to 75 GHz. This emission is optically thin and is measured at the midplane, f/sub ce/ approx. = 14 GHz, in either end cell. In the west end cell, the emission can be measured at different axial positions thus yielding the temporal history of the hot electron axial profile. These profiles are in excellent agreement with the axial diamagnetic signals. In addition, the PECE signal level correlates well with the diamagnetic signal over a wide range of hot electron densities. Preliminary results from theoretical modeling and comparisons with other diagnostics are also presented

  6. Experimental study of a 1 MW, 170 GHz gyrotron oscillator

    Science.gov (United States)

    Kimura, Takuji

    A detailed experimental study is presented of a 1 MW, 170 GHz gyrotron oscillator whose design is consistent with the ECH requirements of the International Thermonuclear Experimental Reactor (ITER) for bulk heating and current drive. This work is the first to demonstrate that megawatt power level at 170 GHz can be achieved in a gyrotron with high efficiency for plasma heating applications. Maximum output power of 1.5 MW is obtained at 170.1 GHz in 85 kV, 50A operation for an efficiency of 35%. Although the experiment at MIT is conducted with short pulses (3 μs), the gyrotron is designed to be suitable for development by industry for continuous wave operation. The peak ohmic loss on the cavity wall for 1 MW of output power is calculated to be 2.3 kW/cm2, which can be handled using present cooling technology. Mode competition problems in a highly over-moded cavity are studied to maximize the efficiency. Various aspects of electron gun design are examined to obtain high quality electron beams with very low velocity spread. A triode magnetron injection gun is designed using the EGUN simulation code. A total perpendicular velocity spread of less than 8% is realized by designing a low- sensitivity, non-adiabatic gun. The RF power is generated in a short tapered cavity with an iris step. The operating mode is the TE28,8,1 mode. A mode converter is designed to convert the RF output to a Gaussian beam. Power and efficiency are measured in the design TE28,8,1 mode at 170.1 GHz as well as the TE27,8,1 mode at 166.6 GHz and TE29,8,1 mode at 173.5 GHz. Efficiencies between 34%-36% are consistently obtained over a wide range of operating parameters. These efficiencies agree with the highest values predicted by the multimode simulations. The startup scenario is investigated and observed to agree with the linear theory. The measured beam velocity ratio is consistent with EGUN simulation. Interception of reflected beam by the mod-anode is measured as a function of velocity ratio

  7. Reviews of large superconducting machines: Metallurgy, fabrication, and applications

    International Nuclear Information System (INIS)

    Bogner, G.

    1981-01-01

    This paper reviews large superconducting machines presently in place or in experiment. The ''Cello'' particle detector magnet for the positron-electron colliding beam facility PETRA at DESY in Hamburg is shown, and the Fermi Lab, and the Brookhaven ISABELLE also described. Electrodynamic levitation systems are specified, as researched and developed in Germany and Japan. Of superconducting coils for magnetic separation, a high gradient magnetic separator with superconducting magnet and steel wool, and a Jones type high gradient magnetic separator are schematicized. Turbogenerators with superconductor field winding are studied. Superconducting high power cables include the flexible coaxial cable core consisting of a perforated polyethylene tube and test cables at Siemens and at Brookhaven. Magnet systems for fusion reactors include tokamaks and tandem mirrors, and the toroidal coil experiment at Oak Ridge National Laboratory is described, among others. Superconducting magnets for MHD plants, and superconducting magnet energy storage (SME storage) are also discussed

  8. Reconfigurable antenna options for 2.45/5 GHz wireless body area networks in healthcare applications.

    Science.gov (United States)

    Abbas, Syed Muzahir; Ranga, Yogesh; Esselle, Karu P

    2015-01-01

    This paper presents electronically reconfigurable antenna options in healthcare applications. They are suitable for wireless body area network devices operating in the industrial, scientific, and medical (ISM) band at 2.45 GHz and IEEE 802.11 Wireless Local Area Network (WLAN) band at 5 GHz (5.15-5.35 GHz, 5.25-5.35 GHz). Two types of antennas are investigated: Antenna-I has a full ground plane and Antenna-II has a partial ground plane. The proposed antennas provide ISM operation in one mode while in another mode they support 5 GHz WLAN band. Their performance is assessed for body centric wireless communication using a simplified human body model. Antenna sensitivity to the gap between the antenna and the human body is investigated for both modes of each antenna. The proposed antennas exhibit a wide radiation pattern along the body surface to provide wide coverage and their small width (14 mm) makes them suitable for on-body communication in healthcare applications.

  9. Contactless Investigations of Yeast Cell Cultivation in the 7 GHz and 240 GHz Ranges

    International Nuclear Information System (INIS)

    Wessel, J; Schmalz, K; Meliani, C; Gastrock, G; Cahill, B P

    2013-01-01

    Using a microfluidic system based on PTFE tubes, experimental results of contactless and label-free characterization techniques of yeast cell cultivation are presented. The PTFE tube has an inner diameter of 0.5 mm resulting in a sample volume of 2 μ1 for 1 cm sample length. Two approaches (at frequencies around 7 GHz and 240 GHz) are presented and compared in terms of sensitivity and applicability. These frequency bands are particularly interesting to gain information on the permittivity of yeast cells in Glucose solution. Measurements from 240 GHz to 300 GHz were conducted with a continuous wave spectrometer from Toptica. At 7 GHz band, measurements have been performed using a rat-race based characterizing system realized on a printed circuit board. The conducted experiments demonstrate that by selecting the phase as characterization parameter, the presented contactless and label-free techniques are suitable for cell cultivation monitoring in a PTFE pipe based microfluidic system.

  10. Microwave induced plasma discharge in multi-cell superconducting radio-frequency cavity

    International Nuclear Information System (INIS)

    Ahmed, Shahid; Mammosser, John D.

    2015-01-01

    A R&D effort for in situ cleaning of 1.5 GHz Superconducting Radio Frequency (SRF) cavities at room temperature using the plasma processing technique has been initiated at Jefferson Lab. This is a step toward the cleaning of cryomodules installed in the Continuous Electron Beam Accelerator Facility (CEBAF). For this purpose, we have developed an understanding of plasma discharge in a 5-cell CEBAF-type SRF cavity having configurations similar to those in the main accelerator. The focus of this study involves the detailed investigations of developing a plasma discharge inside the cavity volume and avoids the breakdown condition in the vicinity of the ceramic RF window. A plasma discharge of the gas mixture Ar–O 2 (90%:10%) can be established inside the cavity volume by the excitation of a resonant 4π/5 TM 010 -mode driven by a klystron. The absence of any external magnetic field for generating the plasma is suitable for cleaning cavities installed in a complex cryomodule assembly. The procedures developed in these experimental investigations can be applied to any complex cavity structure. Details of these experimental measurements and the observations are discussed in the paper

  11. Microwave induced plasma discharge in multi-cell superconducting radio-frequency cavity

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Shahid, E-mail: shahid.ahmed@ieee.org [BML Munjal University, Gurgaon, Haryana 123413 (India); Mammosser, John D. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2015-07-15

    A R&D effort for in situ cleaning of 1.5 GHz Superconducting Radio Frequency (SRF) cavities at room temperature using the plasma processing technique has been initiated at Jefferson Lab. This is a step toward the cleaning of cryomodules installed in the Continuous Electron Beam Accelerator Facility (CEBAF). For this purpose, we have developed an understanding of plasma discharge in a 5-cell CEBAF-type SRF cavity having configurations similar to those in the main accelerator. The focus of this study involves the detailed investigations of developing a plasma discharge inside the cavity volume and avoids the breakdown condition in the vicinity of the ceramic RF window. A plasma discharge of the gas mixture Ar–O{sub 2} (90%:10%) can be established inside the cavity volume by the excitation of a resonant 4π/5 TM{sub 010}-mode driven by a klystron. The absence of any external magnetic field for generating the plasma is suitable for cleaning cavities installed in a complex cryomodule assembly. The procedures developed in these experimental investigations can be applied to any complex cavity structure. Details of these experimental measurements and the observations are discussed in the paper.

  12. Microwave induced plasma discharge in multi-cell superconducting radio-frequency cavity

    Science.gov (United States)

    Ahmed, Shahid; Mammosser, John D.

    2015-07-01

    A R&D effort for in situ cleaning of 1.5 GHz Superconducting Radio Frequency (SRF) cavities at room temperature using the plasma processing technique has been initiated at Jefferson Lab. This is a step toward the cleaning of cryomodules installed in the Continuous Electron Beam Accelerator Facility (CEBAF). For this purpose, we have developed an understanding of plasma discharge in a 5-cell CEBAF-type SRF cavity having configurations similar to those in the main accelerator. The focus of this study involves the detailed investigations of developing a plasma discharge inside the cavity volume and avoids the breakdown condition in the vicinity of the ceramic RF window. A plasma discharge of the gas mixture Ar-O2 (90%:10%) can be established inside the cavity volume by the excitation of a resonant 4π/5 TM010-mode driven by a klystron. The absence of any external magnetic field for generating the plasma is suitable for cleaning cavities installed in a complex cryomodule assembly. The procedures developed in these experimental investigations can be applied to any complex cavity structure. Details of these experimental measurements and the observations are discussed in the paper.

  13. Microwave induced plasma discharge in multi-cell superconducting radio-frequency cavity.

    Science.gov (United States)

    Ahmed, Shahid; Mammosser, John D

    2015-07-01

    A R&D effort for in situ cleaning of 1.5 GHz Superconducting Radio Frequency (SRF) cavities at room temperature using the plasma processing technique has been initiated at Jefferson Lab. This is a step toward the cleaning of cryomodules installed in the Continuous Electron Beam Accelerator Facility (CEBAF). For this purpose, we have developed an understanding of plasma discharge in a 5-cell CEBAF-type SRF cavity having configurations similar to those in the main accelerator. The focus of this study involves the detailed investigations of developing a plasma discharge inside the cavity volume and avoids the breakdown condition in the vicinity of the ceramic RF window. A plasma discharge of the gas mixture Ar-O2 (90%:10%) can be established inside the cavity volume by the excitation of a resonant 4π/5 TM010-mode driven by a klystron. The absence of any external magnetic field for generating the plasma is suitable for cleaning cavities installed in a complex cryomodule assembly. The procedures developed in these experimental investigations can be applied to any complex cavity structure. Details of these experimental measurements and the observations are discussed in the paper.

  14. 13th European Conference on Applied Superconductivity

    CERN Document Server

    2017-01-01

    EUCAS is a worldwide forum for scientists and engineers, and provides an ideal platform to share knowledge and the most recent advances in all areas of applied superconductivity: from large-scale applications to miniature electronics devices, with a traditional focus on advanced materials and conductors. The broad scope is at the same time a challenge and an opportunity to foster novel, inter-disciplinary approaches and promote cross-fertilization among the various fields of applied superconductivity.

  15. Superconducting linear accelerator system for NSC

    Indian Academy of Sciences (India)

    59, No. 5. — journal of. November 2002 physics pp. 849–858. Superconducting linear accelerator system for NSC ... cryogenics facility, RF electronics development, facilities for fabricating niobium resonators indige- ... Prototype resonator was.

  16. Terahertz detectors using hot-electrons in superconducting films

    Energy Technology Data Exchange (ETDEWEB)

    Semenov, A. [DLR, Inst. of Planetary Research, Berlin (Germany)

    2007-07-01

    Recently the terahertz gap has been recognized as a prospective spectral range for radioastronomy as well as for material and security studies. Implementation of terahertz technology in these fields requires further improvement of instruments and their major subcomponents. Physical phenomena associated with the local and homogeneous non-equilibrium electron sates in thin superconducting films offer numerous possibilities for the development of terahertz and infrared detectors. Depending on the nature of the resistive state and the operation regime, a variety of detector can be realized. They are e.g. direct bolometric or kinetic inductance detectors, heterodyne mixers or photon counters. Operation principles and physical limitations of these devices will be discussed. Two examples of the detector development made in cooperation between the German Aerospace Center, the University of Karlsruhe and PTB, Berlin will be presented. The energy resolving single-photon detector with an almost fundamentally limited energy resolution of 0.6 eV at 6.5 K for photons with wavelengths from 400 nm to 2500 nm and the heterodyne mixer quasioptically coupled to radiation in the frequency range from 0.8 THz to 5 THz and providing a noise temperature of less then ten times the quantum limit. The mixers will be implemented in the terahertz radar for security screening (TERASEC) and in the heterodyne receiver of the stratospheric observatory SOFIA. (orig.)

  17. Electride and superconductivity behaviors in Mn5Si3-type intermetallics

    Science.gov (United States)

    Zhang, Yaoqing; Wang, Bosen; Xiao, Zewen; Lu, Yangfan; Kamiya, Toshio; Uwatoko, Yoshiya; Kageyama, Hiroshi; Hosono, Hideo

    2017-08-01

    Electrides are unique in the sense that they contain localized anionic electrons in the interstitial regions. Yet they exist with a diversity of chemical compositions, especially under extreme conditions, implying generalized underlying principles for their existence. What is rarely observed is the combination of electride state and superconductivity within the same material, but such behavior would open up a new category of superconductors. Here, we report a hexagonal Nb5Ir3 phase of Mn5Si3-type structure that falls into this category and extends the electride concept into intermetallics. The confined electrons in the one-dimensional cavities are reflected by the characteristic channel bands in the electronic structure. Filling these free spaces with foreign oxygen atoms serves to engineer the band topology and increase the superconducting transition temperature to 10.5 K in Nb5Ir3O. Specific heat analysis indicates the appearance of low-lying phonons and two-gap s-wave superconductivity. Strong electron-phonon coupling is revealed to be the pairing glue with an anomalously large ratio between the superconducting gap Δ0 and Tc, 2Δ0/kBTc = 6.12. The general rule governing the formation of electrides concerns the structural stability against the cation filling/extraction in the channel site.

  18. Heavy fermions and superconductivity in doped cuprates

    International Nuclear Information System (INIS)

    Tornow, S.; Zevin, V.; Zwicknagl, G.

    1996-01-01

    We present a Fermi liquid description for the low-energy excitations in rare Earth cuprates Nd 2-x Ce x CuO 4 . The strongly renormalized heavy quasiparticles which appear in the doped samples originate from the coherent decoupling of rare earth spins and correlated conduction electrons. The correlations among the conduction electrons are simulated by assuming a spin density wave ground state. We discuss results for the thermodynamic properties in the insulating, normal metallic and superconducting phases which are in fair agreement with experimental data. In addition, the model predicts interesting behaviour for the superconducting state of samples with low transition temperature T c which may help to assess the validity of the underlying assumptions. (orig.)

  19. SUPERCONDUCTING SOLENOIDS FOR THE MUON COLLIDER

    Energy Technology Data Exchange (ETDEWEB)

    GREEN,M.A.; EYSSA,Y.; KENNY,S.; MILLER,J.R.; PRESTEMON,S.; WEGGEL,R.J.

    2000-06-12

    The muon collider is a new idea for lepton colliders. The ultimate energy of an electron ring is limited by synchrotron radiation. Muons, which have a rest mass that is 200 times that of an electron can be stored at much higher energies before synchrotron radiation limits ring performance. The problem with muons is their short life time (2.1 {micro}s at rest). In order to operate a muon storage ring large numbers of muon must be collected, cooled and accelerated before they decay to an electron and two neutrinos. As the authors see it now, high field superconducting solenoids are an integral part of a muon collider muon production and cooling systems. This report describes the design parameters for superconducting and hybrid solenoids that are used for pion production and collection, RF phase rotations of the pions as they decay into muons and the muon cooling (reduction of the muon emittance) before acceleration.

  20. Superconducting linear colliders

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    The advantages of superconducting radiofrequency (SRF) for particle accelerators have been demonstrated by successful operation of systems in the TRISTAN and LEP electron-positron collider rings respectively at the Japanese KEK Laboratory and at CERN. If performance continues to improve and costs can be lowered, this would open an attractive option for a high luminosity TeV (1000 GeV) linear collider