WorldWideScience

Sample records for ghz rf power

  1. A 12 GHz RF Power Source for the CLIC Study

    Energy Technology Data Exchange (ETDEWEB)

    Schirm, Karl; /CERN; Curt, Stephane; /CERN; Dobert, Steffen; /CERN; McMonagle, Gerard; /CERN; Rossat, Ghislain; /CERN; Syratchev, Igor; /CERN; Timeo, Luca; /CERN; Haase, Andrew /SLAC; Jensen, Aaron; /SLAC; Jongewaard, Erik; /SLAC; Nantista, Christopher; /SLAC; Sprehn, Daryl; /SLAC; Vlieks, Arnold; /SLAC; Hamdi, Abdallah; /Saclay; Peauger, Franck; /Saclay; Kuzikov, Sergey; /Nizhnii Novgorod, IAP; Vikharev, Alexandr; /Nizhnii Novgorod, IAP

    2012-07-03

    The CLIC RF frequency has been changed in 2008 from the initial 30 GHz to the European X-band 11.9942 GHz permitting beam independent power production using klystrons for CLIC accelerating structure testing. A design and fabrication contract for five klystrons at that frequency has been signed by different parties with SLAC. France (IRFU, CEA Saclay) is contributing a solid state modulator purchased in industry and specific 12 GHz RF network components to the CLIC study. RF pulses over 120 MW peak at 230 ns length will be obtained by using a novel SLED-I type pulse compression scheme designed and fabricated by IAP, Nizhny Novgorod, Russia. The X-band power test stand is being installed in the CLIC Test Facility CTF3 for independent structure and component testing in a bunker, but allowing, in a later stage, for powering RF components in the CTF3 beam lines. The design of the facility, results from commissioning of the RF power source and the expected performance of the Test Facility are reported.

  2. A 12 GHZ RF Power source for the CLIC study

    CERN Document Server

    Peauger, F; Curt, S; Doebert, S; McMonagle, G; Rossat, G; Schirm, KM; Syratchev, I; Timeo, L; Kuzikhov, S; Vikharev, AA; Haase, A; Sprehn, D; Jensen, A; Jongewaard, EN; Nantista, CD; Vlieks, A

    2010-01-01

    The CLIC RF frequency has been changed in 2008 from the initial 30 GHz to the European X-band 11.9942 GHz permitting beam independent power production using klystrons for CLIC accelerating structure testing. A design and fabrication contract for five klystrons at that frequency has been signed by different parties with SLAC. France (IRFU, CEA Saclay) is contributing a solid state modulator purchased in industry and specific 12 GHz RF network components to the CLIC study. RF pulses over 120 MW peak at 230 ns length will be obtained by using a novel SLED-I type pulse compression scheme designed and fabricated by IAP, Nizhny Novgorod, Russia. The X-band power test stand is being installed in the CLIC Test Facility CTF3 for independent structure and component testing in a bunker, but allowing, in a later stage, for powering RF components in the CTF3 beam lines. The design of the facility, results from commissioning of the RF power source and the expected performance of the Test Facility are reported.

  3. High power tests of dressed supconducting 1.3 GHz RF cavities

    Energy Technology Data Exchange (ETDEWEB)

    Hocker, A.; Harms, E.R.; Lunin, A.; Sukhanov, A.; /Fermilab

    2011-03-01

    A single-cavity test cryostat is used to conduct pulsed high power RF tests of superconducting 1.3 GHz RF cavities at 2 K. The cavities under test are welded inside individual helium vessels and are outfitted ('dressed') with a fundamental power coupler, higher-order mode couplers, magnetic shielding, a blade tuner, and piezoelectric tuners. The cavity performance is evaluated in terms of accelerating gradient, unloaded quality factor, and field emission, and the functionality of the auxiliary components is verified. Test results from the first set of dressed cavities are presented here.

  4. High power testing of a 17 GHz photocathode RF gun

    International Nuclear Information System (INIS)

    Chen, S.C.; Danly, B.G.; Gonichon, J.

    1995-01-01

    The physics and technological issues involved in high gradient particle acceleration at high microwave (RF) frequencies are under study at MIT. The 17 GHz photocathode RF gun has a 1 1/2 cell (π mode) room temperature cooper cavity. High power tests have been conducted at 5-10 MW levels with 100 ns pulses. A maximum surface electric field of 250 MV/m was achieved. This corresponds to an average on-axis gradient of 150 MeV/m. The gradient was also verified by a preliminary electron beam energy measurement. Even high gradients are expected in our next cavity design

  5. 1.3 GHz superconducting RF cavity program at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Ginsburg, C.M.; Arkan, T.; Barbanotti, S.; Carter, H.; Champion, M.; Cooley, L.; Cooper, C.; Foley, M.; Ge, M.; Grimm, C.; Harms, E.; /Fermilab

    2011-03-01

    At Fermilab, 9-cell 1.3 GHz superconducting RF (SRF) cavities are prepared, qualified, and assembled into cryomodules (CMs) for Project X, an International Linear Collider (ILC), or other future projects. The 1.3 GHz SRF cavity program includes targeted R&D on 1-cell 1.3 GHz cavities for cavity performance improvement. Production cavity qualification includes cavity inspection, surface processing, clean assembly, and one or more cryogenic low-power CW qualification tests which typically include performance diagnostics. Qualified cavities are welded into helium vessels and are cryogenically tested with pulsed high-power. Well performing cavities are assembled into cryomodules for pulsed high-power testing in a cryomodule test facility, and possible installation into a beamline. The overall goals of the 1.3 GHz SRF cavity program, supporting facilities, and accomplishments are described.

  6. Microscopic investigation of RF surfaces of 3 GHz niobium accelerator cavities following RF processing

    International Nuclear Information System (INIS)

    Graber, J.; Barnes, P.; Flynn, T.; Kirchgessner, J.; Knobloch, J.; Moffat, D.; Muller, H.; Padamsee, H.; Sears, J.

    1993-01-01

    RF processing of Superconducting accelerating cavities is achieved through a change in the electron field emission (FE) characteristics of the RF surface. The authors have examined the RF surfaces of several single-cell 3 GHz cavities, following RF processing, in a Scanning Electron Microscope (SEM). The RF processing sessions included both High Peak Power (P ≤ 50 kW) pulsed processing, and low power (≤ 20 W) continuous wave processing. The experimental apparatus also included a thermometer array on the cavity outer wall, allowing temperature maps to characterize the emission before and after RF processing gains. Multiple sites have been located in cavities which showed improvements in cavity behavior due to RF processing. Several SEM-located sites can be correlated with changes in thermometer signals, indicating a direct relationship between the surface site and emission reduction due to RF processing. Information gained from the SEM investigations and thermometry are used to enhance the theoretical model of RF processing

  7. An RF-to-DC energy harvester for co-integration in a low-power 2.4 GHz transceiver frontend

    NARCIS (Netherlands)

    Masuch, J.; Delgado-Restituto, M.; Milosevic, D.; Baltus, P.G.M.

    2012-01-01

    A 2.4 GHz energy harvester for co-integration into a low-power transceiver (TRx) operating at the same frequency is presented. An RF switch decouples the harvester from the TRx and keeps the performance degradation of the TRx low, i.e. 0.2 dB reduced output power in Tx-mode and 0.4 dB reduced

  8. RF-MEMS for future mobile applications: experimental verification of a reconfigurable 8-bit power attenuator up to 110 GHz

    International Nuclear Information System (INIS)

    Iannacci, J; Tschoban, C

    2017-01-01

    RF-MEMS technology is proposed as a key enabling solution for realising the high-performance and highly reconfigurable passive components that future communication standards will demand. In this work, we present, test and discuss a novel design concept for an 8-bit reconfigurable power attenuator, manufactured using the RF-MEMS technology available at the CMM-FBK, in Italy. The device features electrostatically controlled MEMS ohmic switches in order to select/deselect the resistive loads (both in series and shunt configuration) that attenuate the RF signal, and comprises eight cascaded stages (i.e. 8-bit), thus implementing 256 different network configurations. The fabricated samples are measured (S-parameters) from 10 MHz to 110 GHz in a wide range of different configurations, and modelled/simulated with Ansys HFSS. The device exhibits attenuation levels (S21) in the range from  −10 dB to  −60 dB, up to 110 GHz. In particular, S21 shows flatness from 15 dB down to 3–5 dB and from 10 MHz to 50 GHz, as well as fewer linear traces up to 110 GHz. A comprehensive discussion is developed regarding the voltage standing wave ratio, which is employed as a quality indicator for the attenuation levels. The margins of improvement at design level which are needed to overcome the limitations of the presented RF-MEMS device are also discussed. (paper)

  9. RF power sources for 5--15 TeV linear colliders

    International Nuclear Information System (INIS)

    Wilson, P.B.

    1996-09-01

    After outlining the design of the NLC rf system at 1 TeV, the possibility of a leap in linear collider energy into the 5--15 TeV energy range is considered. To keep the active accelerator length and ac wall-plug power within reasonable bounds, higher accelerating gradients at higher rf frequencies will be necessary. Scaling relations are developed for basic rf system parameters as a function of frequency, and some specific parameter examples are given for colliders at 34 Ghz and 91 Ghz. Concepts for rf pulse compression system design and for high power microwave sources at 34 Ghz (for example sheet-beam and multiple-beam klystrons) are briefly discussed

  10. Design of a 300 GHz Broadband TWT Coupler and RF-Structure

    CERN Document Server

    Krawczyk, F L

    2004-01-01

    Recent LANL activities in millimeter wave structures focus on 94 and 300 GHz structures. They aim at power generation from low power (100–2000 W) with a round electron beam (120 kV, 0.1–1.0 A) to high power (2–100 kW) with a sheet beam structure (120 kV, 20 A). Applications cover basic research, radar and secure communications and remote sensing of biological and chemical agents. In this presentation the design and cold-test measurements of a 300 GHz RF-structure with a broadband (>6% bandwidth) power coupler are presented. The design choice of two input/output waveguides, a special coupling region and the structure parameters themselves are presented. As a benchmark also a scaled up version at 10 GHz was designed and measured. These results will also be presented.

  11. Development and simulation of RF components for high power millimeter wave gyrotrons

    Energy Technology Data Exchange (ETDEWEB)

    Pereyaslavets, M.; Sato, M.; Shimozuma, T.; Takita, Y.; Idei, H.; Kubo, S.; Ohkubo, K.; Hayashi, K.

    1996-11-01

    To test gyrotron RF components, efficient low-power generators for rotating high-order modes of high purity are necessary. Designs of generators for the TE{sub 15,3} mode at 84 GHz and for the TE{sub 31,8} mode at 168 GHz are presented and some preliminary test results are discussed. In addition, Toshiba gyrotron cavities at 168 GHz were analyzed for leakage of RF power in the beam tunnel. To decrease RF power leakage, the declination angle of the cut-off cavity cross section has to be decreased. A TE{sub 15,3} waveguide nonlinear uptaper is analyzed at 84 GHz as well as 168 GHz uptapers. Since the calculated conversion losses are slightly higher than designed value, an optimization of those uptapers may be required. (author)

  12. Integrated 60GHz RF beamforming in CMOS

    CERN Document Server

    Yu, Yikun; van Roermund, Arthur H M

    2011-01-01

    ""Integrated 60GHz RF Beamforming in CMOS"" describes new concepts and design techniques that can be used for 60GHz phased array systems. First, general trends and challenges in low-cost high data-rate 60GHz wireless system are studied, and the phased array technique is introduced to improve the system performance. Second, the system requirements of phase shifters are analyzed, and different phased array architectures are compared. Third, the design and implementation of 60GHz passive and active phase shifters in a CMOS technology are presented. Fourth, the integration of 60GHz phase shifters

  13. RF power source for the compact linear collider test facility (CTF3)

    CERN Document Server

    McMonagle, G; Brown, Peter; Carron, G; Hanni, R; Mourier, J; Rossat, G; Syratchev, I V; Tanner, L; Thorndahl, L

    2004-01-01

    The CERN CTF3 facility will test and demonstrate many vital components of CLIC (Compact Linear Collider). This paper describes the pulsed RF power source at 2998.55 MHz for the drive-beam accelerator (DBA), which produces a beam with an energy of 150 MeV and a current of 3.5 Amps. Where possible, existing equipment from the LEP preinjector, especially the modulators and klystrons, is being used and upgraded to achieve this goal. A high power RF pulse compression system is used at the output of each klystron, which requires sophisticated RF phase programming on the low level side to achieve the required RF pulse. In addition to the 3 GHz system two pulsed RF sources operating at 1.5 GHz are being built. The first is a wide-band, low power, travelling wave tube (TWT) for the subharmonic buncher (SHB) system that produces a train of "phase coded" subpulses as part of the injector scheme. The second is a high power narrow band system to produce 20 MW RF power to the 1.5 GHz RF deflectors in the delay loop situate...

  14. Design of a 300 GHZ broadband coupler and RF-structure

    International Nuclear Information System (INIS)

    Krawczyk, F.L.; Carlsten, B.E.; Earley, L.M.; Sigler, F.E.; Potter, J.M.; Schulze, M.E.

    2004-01-01

    Recent LANL activities in millimeter wave structures focus on 95 and 300 GHz structures. They aim at power generation from low power (100W-2kW) with a round electron beam (120kV, 0.1-1.0 A) to high power (2-100 kW) with a sheet beam structure (120 kV, 20 A). Applications cover basic research, radar and secure communications and remote sensing of biological and chemical agents. In this presentation the design of a 300 GHz RF-structure with a broadband (> 6% bandwidth) power coupler is presented. The choice of two input/output waveguides, a special coupling region and the structure parameters are presented. As a benchmark also a scaled up version at 10 GHz was designed and measured. These results will also be presented. We are investigating planar micro-fabricated traveling-wave tube amplifiers as sources for the generation of millimeter waves from 95 to 300 GHz. While for low energy applications narrow structures with pencil beams are proposed, for high energy operation flat, thin sheet beams are required. For the latter vane-loaded rectangular waveguides that operate in a slow-wave mode matched to the velocity of the electron beam are especially well suited. The 300 GHz effort initially is limited to narrow structures for pencil beams. The main emphasis for this work are the study of fabrication issues and the understanding of features that allow a broadband operation (5-10% bandwidth).

  15. LCLS-II high power RF system overview and progress

    Energy Technology Data Exchange (ETDEWEB)

    Yeremian, Anahid Dian

    2015-10-07

    A second X-ray free electron laser facility, LCLS-II, will be constructed at SLAC. LCLS-II is based on a 1.3 GHz, 4 GeV, continuous-wave (CW) superconducting linear accelerator, to be installed in the first kilometer of the SLAC tunnel. Multiple types of high power RF (HPRF) sources will be used to power different systems on LCLS-II. The main 1.3 GHz linac will be powered by 280 1.3 GHz, 3.8 kW solid state amplifier (SSA) sources. The normal conducting buncher in the injector will use four more SSAs identical to the linac SSAs but run at 2 kW. Two 185.7 MHz, 60 kW sources will power the photocathode dual-feed RF gun. A third harmonic linac section, included for linearizing the bunch energy spread before the first bunch compressor, will require sixteen 3.9 GHz sources at about 1 kW CW. A description and an update on all the HPRF sources of LCLS-II and their implementation is the subject of this paper.

  16. A compact high-gradient 25 MeV 17 GHz RF linac for free-electron laser research

    International Nuclear Information System (INIS)

    Danly, B.G.; Chen, S.C.; Kreischer, K.E.

    1995-01-01

    A new compact high-gradient (60 MeV/m) high-frequency (17.136 GHz) RF linac is presently under construction by Haimson Research Corp. (HRC) for installation at the MIT Plasma Fusion Center in the High-Gradient Accelerator and High Power Microwave Laboratory. This accelerator will utilize an existing traveling-wave relativistic klystron (TWRK) which is now operation at MIT with 25 MW power, 67 dB gain, and 52% efficiency at 17.136 GHz

  17. An RF energy harvester with supply manangement for co-integration into a 2.4 GHz transceiver

    NARCIS (Netherlands)

    Masuch, J.; Delgado-Restituto, M.; Milosevic, D.; Baltus, P.G.M.

    2012-01-01

    This paper presents an RF energy harvester embedded in a low-power transceiver (TRX) front-end. Both the harvester and the TRX use the same antenna and operate at the same frequency of 2.4 GHz using a new topology with a start-up rectifier and exploiting the nonlinear impedance of the RF-DC

  18. 30 GHz High Power Production for CLIC

    CERN Document Server

    Syratchev, I V

    2006-01-01

    The CLIC Power Extraction and Transfer Structure (PETS) is a passive microwave device in which bunches of the drive beam interact with the impedance of the periodically loaded waveguide and excite preferentially the synchronous TM01 mode at 30 GHz. The RF power produced (several hundred MW) is collected at the downstream end of the structure by means of the Power Extractor and conveyed to the main linac structure. The PETS geometry is a result of multiple compromises between beam stability along a single decelerator sector (600 m) and the active length of the structure to match the main linac RF power needs and layout. Surface electric and magnetic fields, power extraction method, HOM damping, ON/OFF capability and fabrication technology were all evaluated to provide a reliable design.

  19. Co-integration of an RF engergy harverster into a 2.4 GHz transceiver

    NARCIS (Netherlands)

    Masuch, J.; Delgado-Restituto, M.; Milosevic, D.; Baltus, P.G.M.

    2013-01-01

    This paper presents an RF energy harvester embedded in a low-power transceiver (TRX) front-end. Both the harvester and the TRX use the same antenna and operate at the same frequency of 2.4 GHz. To decouple the harvester from the TRX, different concepts are proposed regarding the transmitter (TX) and

  20. RF power generation for future linear colliders

    International Nuclear Information System (INIS)

    Fowkes, W.R.; Allen, M.A.; Callin, R.S.; Caryotakis, G.; Eppley, K.R.; Fant, K.S.; Farkas, Z.D.; Feinstein, J.; Ko, K.; Koontz, R.F.; Kroll, N.; Lavine, T.L.; Lee, T.G.; Miller, R.H.; Pearson, C.; Spalek, G.; Vlieks, A.E.; Wilson, P.B.

    1990-06-01

    The next linear collider will require 200 MW of rf power per meter of linac structure at relatively high frequency to produce an accelerating gradient of about 100 MV/m. The higher frequencies result in a higher breakdown threshold in the accelerating structure hence permit higher accelerating gradients per meter of linac. The lower frequencies have the advantage that high peak power rf sources can be realized. 11.42 GHz appears to be a good compromise and the effort at the Stanford Linear Accelerator Center (SLAC) is being concentrated on rf sources operating at this frequency. The filling time of the accelerating structure for each rf feed is expected to be about 80 ns. Under serious consideration at SLAC is a conventional klystron followed by a multistage rf pulse compression system, and the Crossed-Field Amplifier. These are discussed in this paper

  1. Design of a 5 GHz window in a lower hybrid r.f. system

    International Nuclear Information System (INIS)

    Maebara, S.; Ikeda, Y.; Seki, M.; Imai, T.

    1995-01-01

    A new pill-box window at a frequency of 5GHz, which has an oversized length in both the axial and the radial direction, has been designed to reduce the r.f. power density and the electric field strength at the ceramics. The dimension of the new pill-box is optimized from the numerical calculation and a voltage standing-wave ratio of less than 1.02 is obtained. The r.f. power density and the maximum electric field strength are reduced to about 40% and 66% of the standard pill-box window respectively. It is evaluated that the power capability of the new oversized pill-box window by cooling edge of ceramics is more than 500kW with continuous-wave operation. ((orig.))

  2. High power tests of an electroforming cavity operating at 11.424 GHz

    Science.gov (United States)

    Dolgashev, V. A.; Gatti, G.; Higashi, Y.; Leonardi, O.; Lewandowski, J. R.; Marcelli, A.; Rosenzweig, J.; Spataro, B.; Tantawi, S. G.; Yeremian, D. A.

    2016-03-01

    The achievement of ultra high accelerating gradients is mandatory in order to fabricate compact accelerators at 11.424 GHz for scientific and industrial applications. An extensive experimental and theoretical program to determine a reliable ultra high gradient operation of the future linear accelerators is under way in many laboratories. In particular, systematic studies on the 11.424 GHz frequency accelerator structures, R&D on new materials and the associated microwave technology are in progress to achieve accelerating gradients well above 120 MeV/m. Among the many, the electroforming procedure is a promising approach to manufacture high performance RF devices in order to avoid the high temperature brazing and to produce precise RF structures. We report here the characterization of a hard high gradient RF accelerating structure at 11.424 GHz fabricated using the electroforming technique. Low-level RF measurements and high power RF tests carried out at the SLAC National Accelerator Laboratory on this prototype are presented and discussed. In addition, we present also a possible layout where the water-cooling of irises based on the electroforming process has been considered for the first time.

  3. X-band RF power sources for accelerator applications

    International Nuclear Information System (INIS)

    Kirshner, Mark F.; Kowalczyk, Richard D.; Wilsen, Craig B.; True, Richard B.; Simpson, Ian T.; Wray, John T.

    2011-01-01

    The majority of medical and industrial linear accelerators (LINACs) in use today operate at S-band. To reduce size and weight, these systems are gradually migrating toward X-band. The new LINACs will require suitable RF components to power them. In anticipation of this market, L-3 Communications Electron Devices Division (EDD) has recently developed a suite of RF sources operating at 9.3 GHz to complement our existing S-band product line. (author)

  4. 5.2-GHz RF Power Harvester in 0.18-/spl mu/m CMOS for Implantable Intraocular Pressure Monitoring

    KAUST Repository

    Ouda, Mahmoud H.

    2013-04-17

    A first fully integrated 5.2-GHz CMOS-based RF power harvester with an on-chip antenna is presented in this paper. The design is optimized for sensors implanted inside the eye to wirelessly monitor the intraocular pressure of glaucoma patients. It includes a five-stage RF rectifier with an on-chip antenna, a dc voltage limiter, two voltage sensors, a low dropout voltage regulator, and MOSCAP based on-chip storage. The chip has been designed and fabricated in a standard 0.18-μm CMOS technology. To emulate the eye environment in measurements, a custom test setup is developed that comprises Plexiglass cavities filled with saline solution. Measurements in this setup show that the proposed chip can be charged to 1 V wirelessly from a 5-W transmitter 3 cm away from the harvester chip. The energy that is stored on the 5-nF on-chip MOSCAP when charged to 1 V is 2.5 nJ, which is sufficient to drive an arbitrary 100-μW load for 9 μs at regulated 0.8 V. Simulated efficiency of the rectifier is 42% at -7 dBm of input power.

  5. Injection-locking of terahertz quantum cascade lasers up to 35GHz using RF amplitude modulation.

    Science.gov (United States)

    Gellie, Pierre; Barbieri, Stefano; Lampin, Jean-François; Filloux, Pascal; Manquest, Christophe; Sirtori, Carlo; Sagnes, Isabelle; Khanna, Suraj P; Linfield, Edmund H; Davies, A Giles; Beere, Harvey; Ritchie, David

    2010-09-27

    We demonstrate that the cavity resonance frequency - the round-trip frequency - of Terahertz quantum cascade lasers can be injection-locked by direct modulation of the bias current using an RF source. Metal-metal and single-plasmon waveguide devices with roundtrip frequencies up to 35GHz have been studied, and show locking ranges above 200MHz. Inside this locking range the laser round-trip frequency is phase-locked, with a phase noise determined by the RF-synthesizer. We find a square-root dependence of the locking range with RF-power in agreement with classical injection-locking theory. These results are discussed in the context of mode-locking operation.

  6. Glycol-Substitute for High Power RF Water Loads

    CERN Document Server

    Ebert, Michael

    2005-01-01

    In water loads for high power rf applications, power is dissipated directly into the coolant. Loads for frequencies below approx. 1GHz are ordinarily using an ethylene glycol-water mixture as coolant. The rf systems at DESY utilize about 100 glycol water loads with powers ranging up to 600kW. Due to the increased ecological awareness, the use of glycol is now considered to be problematic. In EU it is forbidden to discharge glycol into the waste water system. In case of cooling system leakages one has to make sure that no glycol is lost. Since it is nearly impossible to avoid any glycol loss in large rf systems, a glycol-substitute was searched for and found. The found sodium-molybdate based substitute is actually a additive for corrosion protection in water systems. Sodium-molybdate is ecologically harmless; for instance, it is also used as fertilizer in agriculture. A homoeopathic dose of 0.4% mixed into deionised water gives better rf absorption characteristics than a 30% glycol mixture. The rf coolant feat...

  7. A 5.2GHz, 0.5mW RF powered wireless sensor with dual on-chip antennas for implantable intraocular pressure monitoring

    KAUST Repository

    Arsalan, Muhammad; Ouda, Mahmoud H.; Marnat, Loic; Ahmad, Talha Jamal; Shamim, Atif; Salama, Khaled N.

    2013-01-01

    For the first time a single chip implantable wireless sensor system for Intraocular Pressure Monitoring (IOPM) is presented. This system-on-chip (SoC) is battery-free and harvests energy from incoming RF signals. The chip is self-contained and does not require external components or bond wires to function. This 1.4mm3 SoC has separate 2.4GHz-transmit and 5.2GHz-receive antennas, an energy harvesting module, a temperature sensor, a 7-bit TIQ Flash ADC, a 4-bit RFID, a power management and control unit, and a VCO transmitter. The chip is fabricated in a standard 6-metal 0.18μm CMOS process and is designed to work with a post-processed MEMS pressure sensor. It consumes 513μW of peak power and when implanted inside the eye, it is designed to communicate with an external reader using on-off keying (OOK). © 2013 IEEE.

  8. A 5.2GHz, 0.5mW RF powered wireless sensor with dual on-chip antennas for implantable intraocular pressure monitoring

    KAUST Repository

    Arsalan, Muhammad

    2013-06-01

    For the first time a single chip implantable wireless sensor system for Intraocular Pressure Monitoring (IOPM) is presented. This system-on-chip (SoC) is battery-free and harvests energy from incoming RF signals. The chip is self-contained and does not require external components or bond wires to function. This 1.4mm3 SoC has separate 2.4GHz-transmit and 5.2GHz-receive antennas, an energy harvesting module, a temperature sensor, a 7-bit TIQ Flash ADC, a 4-bit RFID, a power management and control unit, and a VCO transmitter. The chip is fabricated in a standard 6-metal 0.18μm CMOS process and is designed to work with a post-processed MEMS pressure sensor. It consumes 513μW of peak power and when implanted inside the eye, it is designed to communicate with an external reader using on-off keying (OOK). © 2013 IEEE.

  9. Design and modeling of a 17 GHz photocathode RF gun

    International Nuclear Information System (INIS)

    Lin, C.L.; Chen, S.C.; Wurtele, J.S.; Temkin, R.; Danly, B.

    1991-01-01

    The performance of a high-frequency (17 GHz), high accelerating gradient (250 MV/m) photocathode RF gun is studied with the particle-in-cell code MAGIC. For the parameter regime of interest, i.e. bunch charge smaller than 1 nC and bunch length shorter than 2 ps, space-charge forces and finite bunch length effects are less significant in determining the beam quality than nonlinear RF forces are. The cavity geometry, RF phase for photoemission, cathode size, and current density are being optimized to obtain high quality beams. Preliminary results are presented

  10. The FELIX RF system

    International Nuclear Information System (INIS)

    Manintveld, P.; Delmee, P.F.M.; Geer, C.A.J. van der; Meddens, B.J.H.; Meer, A.F.G. van der; Amersfoort, P.W. van

    1992-01-01

    The performance of the RF system for the Free Electron Laser for Infrared eXperiments (FELIX) is discussed. The RF system provides the input power for a triode gun (1 GHz, 100 W), a prebuncher (1 GHz, 10 kW), a buncher (3 GHz, 20 MW), and two linacs (3 GHz, 8 MW each). The pulse length in the system is 20 μs. The required electron beam stability imposes the following demands on the RF system: a phase stability better than 0.3 deg for the 1 GHz signals and better than 1 deg for the 3 GHz signals; the amplitude stability has to be better than 1% for the 1 GHz and better than 0.2% for the 3 GHz signals. (author) 3 refs.; 6 figs

  11. HIGH POWER TESTS OF A MULTIMODE X-BAND RF DISTRIBUTION SYSTEMS

    International Nuclear Information System (INIS)

    Tantawi, S

    2004-01-01

    We present a multimode X-band rf pulse compression system suitable for the Next Linear Collider (NLC). The NLC main linacs operate at 11.424 GHz. A single NLC rf unit is required which produce 400 ns pulses with 600 MW of peak power. Each rf unit should power approximately 5 meters of accelerator structures. These rf units consist of two 75 MW klystrons and a dual-moded resonant delay line pulse compression system [1] that produce a flat output pulse. The pulse compression system components are all over moded and most components are design to operate with two modes at the same time. This approach allows increasing the power handling capabilities of the system while maintain a compact inexpensive system. We detail the design of this system and present experimental cold test results. The high power testing of the system is verified using four 50-MW solenoid focused klystrons. These Klystrons should be able to push the system beyond NLC requirements

  12. Dual-functional on-chip AlGaAs/GaAs Schottky diode for RF power detection and low-power rectenna applications.

    Science.gov (United States)

    Hashim, Abdul Manaf; Mustafa, Farahiyah; Rahman, Shaharin Fadzli Abd; Rahman, Abdul Rahim Abdul

    2011-01-01

    A Schottky diode has been designed and fabricated on an n-AlGaAs/GaAs high-electron-mobility-transistor (HEMT) structure. Current-voltage (I-V) measurements show good device rectification, with a Schottky barrier height of 0.4349 eV for Ni/Au metallization. The differences between the Schottky barrier height and the theoretical value (1.443 eV) are due to the fabrication process and smaller contact area. The RF signals up to 1 GHz are rectified well by the fabricated Schottky diode and a stable DC output voltage is obtained. The increment ratio of output voltage vs input power is 0.2 V/dBm for all tested frequencies, which is considered good enough for RF power detection. Power conversion efficiency up to 50% is obtained at frequency of 1 GHz and input power of 20 dBm with series connection between diode and load, which also shows the device's good potential as a rectenna device with further improvement. The fabricated n-AlGaAs/GaAs Schottky diode thus provides a conduit for breakthrough designs for RF power detectors, as well as ultra-low power on-chip rectenna device technology to be integrated in nanosystems.

  13. Studies in RF power communication, SAR, and temperature elevation in wireless implantable neural interfaces.

    Directory of Open Access Journals (Sweden)

    Yujuan Zhao

    Full Text Available Implantable neural interfaces are designed to provide a high spatial and temporal precision control signal implementing high degree of freedom real-time prosthetic systems. The development of a Radio Frequency (RF wireless neural interface has the potential to expand the number of applications as well as extend the robustness and longevity compared to wired neural interfaces. However, it is well known that RF signal is absorbed by the body and can result in tissue heating. In this work, numerical studies with analytical validations are performed to provide an assessment of power, heating and specific absorption rate (SAR associated with the wireless RF transmitting within the human head. The receiving antenna on the neural interface is designed with different geometries and modeled at a range of implanted depths within the brain in order to estimate the maximum receiving power without violating SAR and tissue temperature elevation safety regulations. Based on the size of the designed antenna, sets of frequencies between 1 GHz to 4 GHz have been investigated. As expected the simulations demonstrate that longer receiving antennas (dipole and lower working frequencies result in greater power availability prior to violating SAR regulations. For a 15 mm dipole antenna operating at 1.24 GHz on the surface of the brain, 730 uW of power could be harvested at the Federal Communications Commission (FCC SAR violation limit. At approximately 5 cm inside the head, this same antenna would receive 190 uW of power prior to violating SAR regulations. Finally, the 3-D bio-heat simulation results show that for all evaluated antennas and frequency combinations we reach FCC SAR limits well before 1 °C. It is clear that powering neural interfaces via RF is possible, but ultra-low power circuit designs combined with advanced simulation will be required to develop a functional antenna that meets all system requirements.

  14. RF measurements of a traveling-wave muffin-tin accelerating structure at 90 GHz

    International Nuclear Information System (INIS)

    Chou, P.J.; Bowden, G.B.; Copeland, M.R.; Menegat, A.; Pritzkau, D.P.; Siemann, R.H.

    1997-05-01

    A measuring system at the table-top scale was developed for RF measurements of a muffin-tin accelerating structure operating at 32 times the SLAC frequency (2.856 GHz). Both perturbation and non-perturbation methods are employed to characterize the RF properties of a muffin-tin structure. Conventional bead pull measurements are extended to millimeter wavelengths. Design of the measuring system and preliminary results of RF measurements are presented

  15. KEY COMPARISON: Final report on CCEM key comparison CCEM.RF-K10.CL (GT-RF/99-2) 'Power in 50 Ω coaxial lines, frequency: 50 MHz to 26 GHz' measurement techniques and results

    Science.gov (United States)

    Janik, Dieter; Inoue, T.; Michaud, A.

    2006-01-01

    This report summarizes the results and the measuring methods of an international key comparison between twelve national metrology institutes (NMIs) and is concerning the calibration factor of RF power sensors in the coaxial 3.5 mm line for frequencies up to 26 GHz. Two RF power travelling standards fitted with male PC 3.5 mm connectors were measured at seven frequencies. The following NMIs participated: NMIJ (Japan), NRC (Canada), NIST (USA), METAS (Switzerland), CSIR-NML (South Africa), NMIA (Australia), NPL (UK), SiQ (Slovenia), IEN (Italy), VNIIFTRI (Russian Federation), SPRING (Singapore) and PTB (Germany), as the pilot laboratory. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCEM, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA).

  16. Performance of RF power and phase control on JT-60 LHRF heating system

    International Nuclear Information System (INIS)

    Fujii, T.; Ikeda, Y.; Imai, T.; Honda, M.; Kiyono, K.; Maebara, S.; Saigusa, M.; Sakamoto, K.; Sawahata, M.; Seki, M.

    1987-01-01

    The performance of RF power and phase control on the JT-60 LHRFD heating system are presented. The JT-60 LHRF heating system has three units of huge RF source with a total output of 24 MW, each unit consisting of eight amplifier chains. A high power klystron generating 1 MW for 10 s at 2 GHz is used in each chain. Automatic gain control is employed to regulate the output power not only against gain fluctuations in the chain but also against the unstable plasma load without any output circulator for the klystron

  17. Operational Performance and Improvements to the RF Power Sources for the Compact Linear Collider Test Facility (CTF3) at CERN

    CERN Document Server

    McMonagle, Gerard

    2006-01-01

    The CERN CTF3 facility is being used to test and demonstrate key technical issues for the CLIC (Compact Linear Collider) study. Pulsed RF power sources are essential elements in this test facility. Klystrons at S-band (29998.55 GHz), in conjunction with pulse compression systems, are used to power the Drive Beam Accelerator (DBA) to achieve an electron beam energy of 150 MeV. The L-Band RF system, includes broadband Travelling Wave Tubes (TWTs) for beam bunching with 'phase coded' sub pulses in the injector and a narrow band high power L-Band klystron powering the transverse 1.5GHz RF deflector in the Delay Loop immediately after the DBA. This paper describes these different systems and discusses their operational performance.

  18. Operational performance and improvements to the rf power sources for the Compact Linear Collider Test Facility (CTF3) at CERN

    CERN Document Server

    McMonagle, Gerard

    2006-01-01

    The CERN CTF3 facility is being used to test and demonstrate key technical issues for the CLIC (Compact Linear Collider) study. Pulsed RF power sources are essential elements in this test facility. Klystrons at S-band (29998.55 GHz), in conjunction with pulse compression systems, are used to power the Drive Beam Accelerator (DBA) to achieve an electron beam energy of 150 MeV. The L-Band RF system, includes broadband Travelling Wave Tubes (TWTs) for beam bunching with 'phase coded' sub pulses in the injector and a narrow band high power L-Band klystron powering the transverse 1.5 GHz RF deflector in the Delay Loop immediately after the DBA. This paper describes these different systems and discusses their operational performance.

  19. 8 GHz, high power, microwave system for heating of thermonuclear plasmas

    International Nuclear Information System (INIS)

    Di Giovenale, S.; Fortunato, T.; Mirizzi, F.; Roccon, M.; Sassi, M.; Tuccillo, A.A.; Maffia, G.; Baldi, L.

    1993-01-01

    The Frascati Tokamak Upgrade (FTU) is a machine included in the European Thermonuclear Fusion Program aimed at investigating high density plasmas in the presence of powerful additional RF heating systems. The Lower Hybrid Resonant Heating (LHRH) system, based on 9 independent modules, works at 8 GHz, and will generate, at full performances, a total amount of 9 MW, in the pulsed regime (pulse length = 1 s, duty cycle = 1/600). The microwave power source is a gyrotron oscillator, developed by Thomson Tubes Electroniques (France) for this specific application, and capable of producing up to 1 MW. An overmoded, low loss, circular waveguide transmits the RF power toward the plasma; an array of 12x4 rectangular waveguides (the 'grill') launches this power into the plasma. The paper describes the LHRH system for FTU and analyses both its main performances and experimental results

  20. Dual-Functional On-Chip AlGaAs/GaAs Schottky Diode for RF Power Detection and Low-Power Rectenna Applications

    Directory of Open Access Journals (Sweden)

    Abdul Manaf Hashim

    2011-08-01

    Full Text Available A Schottky diode has been designed and fabricated on an n-AlGaAs/GaAs high-electron-mobility-transistor (HEMT structure. Current-voltage (I-V measurements show good device rectification, with a Schottky barrier height of 0.4349 eV for Ni/Au metallization. The differences between the Schottky barrier height and the theoretical value (1.443 eV are due to the fabrication process and smaller contact area. The RF signals up to 1 GHz are rectified well by the fabricated Schottky diode and a stable DC output voltage is obtained. The increment ratio of output voltage vs input power is 0.2 V/dBm for all tested frequencies, which is considered good enough for RF power detection. Power conversion efficiency up to 50% is obtained at frequency of 1 GHz and input power of 20 dBm with series connection between diode and load, which also shows the device’s good potential as a rectenna device with further improvement. The fabricated n-AlGaAs/GaAs Schottky diode thus provides a conduit for breakthrough designs for RF power detectors, as well as ultra-low power on-chip rectenna device technology to be integrated in nanosystems.

  1. CARM and harmonic gyro-amplifier experiments at 17 GHz

    International Nuclear Information System (INIS)

    Menninger, W.L.; Danly, B.G.; Alberti, S.; Chen, C.; Rullier, J.L.; Temkin, R.J.

    1993-01-01

    Cyclotron resonance maser amplifiers are possible sources for applications such as electron cyclotron resonance heating of fusion plasmas and driving high-gradient rf linear accelerators. For accelerator drivers, amplifiers or phase locked-oscillators are required. A 17 GHz cyclotron autoresonance maser (CARM) amplifier experiment and a 17 GHz third harmonic gyro-amplifier experiment are presently underway at the MIT Plasma Fusion Center. Using the SRL/MIT SNOMAD II introduction accelerator to provide a 380 kV, 180 A, 30 ns flat top electron beam, the gyro-amplifier experiment has produced 5 MW of rf power with over 50 dB of gain at 17 GHz. The gyro-amplifier operates in the TE 31 mode using a third harmonic interaction. Because of its high power output, the gyro-amplifier will be used as the rf source for a photocathode rf electron gun experiment also taking place at MIT. Preliminary gyro-amplifier results are presented, including measurement of rf power, gain versus interaction length, and the far-field pattern. A CARM experiment designed to operate in the TE 11 mode is also discussed

  2. Design and High Power Measurements of a 3 GHz Rotary Joint for Medical Applications

    CERN Document Server

    Degiovanni, Alberto; Garlasche, Marco; Giner-Navarro, Jorge; Magagnin, Paolo; Mcmonagle, Gerard; Syratchev, Igor; Wuensch, Walter

    2016-01-01

    The TUrning LInac for Protontherapy (TULIP) project requires the transport of RF power from modulator/klystron systems at rest on the floor to the linac structures mounted on a rotating gantry, via a waveguide system that can operate over a range of angles of rotation. A waveguide rotary joint capable of transporting RF power at 3 GHz and up to 20 MW has been designed and built in collaboration between TERA Foundation, CERN Beams and CERN Engineering Departments. A high-power test of the prototype has been performed at the CLIC Test Facility (CTF3), at CERN. The design and the results of the tests are reported in this article.

  3. High linearity 5.2-GHz power amplifier MMIC using CPW structure technology with a linearizer circuit

    International Nuclear Information System (INIS)

    Wu Chiasong; Lin Tah-Yeong; Wu Hsien-Ming

    2010-01-01

    A built-in linearizer was applied to improve the linearity in a 5.2-GHz power amplifier microwave monolithic integrated circuit (MMIC), which was undertaken with 0.15-μm AlGaAs/InGaAs D-mode PHEMT technology. The power amplifier (PA) was studied taking into account the linearizer circuit and the coplanar waveguide (CPW) structures. Based on these technologies, the power amplifier, which has a chip size of 1.44 x 1.10 mm 2 , obtained an output power of 13.3 dBm and a power gain of 14 dB in the saturation region. An input third-order intercept point (HP 3 ) of -3 dBm, an output third-order intercept point (OIP 3 ) of 21.1 dBm and a power added efficiency (PAE) of 22% were attained, respectively. Finally, the overall power characterization exhibited high gain and high linearity, which illustrates that the power amplifier has a compact circuit size and exhibits favorable RF characteristics. This power circuit demonstrated high RF characterization and could be used for microwave power circuit applications at 5.2 GHz. (semiconductor integrated circuits)

  4. RF Breakdown Studies Using a 1.3 GHZ Test Cell

    International Nuclear Information System (INIS)

    Sah, R.; Johnson, R.P.; Neubauer, M.; Conde, M.; Gai, W.; Moretti, A.; Popovic, M.; Yonehara, K.; Byrd, J.; Li, D.; BastaniNejad, M.

    2009-01-01

    Many present and future particle accelerators are limited by the maximum electric gradient and peak surface fields that can be realized in RF cavities. Despite considerable effort, a comprehensive theory of RF breakdown has not been achieved and mitigation techniques to improve practical maximum accelerating gradients have had only limited success. Recent studies have shown that high gradients can be achieved quickly in 805 MHz RF cavities pressurized with dense hydrogen gas without the need for long conditioning times, because the dense gas can dramatically reduce dark currents and multipacting. In this project we use this high pressure technique to suppress effects of residual vacuum and geometry found in evacuated cavities to isolate and study the role of the metallic surfaces in RF cavity breakdown as a function of magnetic field, frequency, and surface preparation. A 1.3-GHz RF test cell with replaceable electrodes (e.g. Mo, Cu, Be, W, and Nb) and pressure barrier capable of operating both at high pressure and in vacuum has been designed and built, and preliminary testing has been completed. A series of detailed experiments is planned at the Argonne Wakefield Accelerator. At the same time, computer simulations of the RF Breakdown process will be carried out to help develop a consistent physics model of RF Breakdown. In order to study the effect of the radiofrequency on RF Breakdown, a second test cell will be designed, fabricated, and tested at a lower frequency, most likely 402.5 MHz.

  5. Improving RF Transmit Power and Received Signal Strength in 2.4 GHz ZigBee Based Active RFID System with Embedded Method

    Science.gov (United States)

    Po'ad, F. A.; Ismail, W.; Jusoh, J. F.

    2017-08-01

    This paper describes the experiments and analysis conducted on 2.4 GHz embedded active Radio Frequency Identification (RFID) - Wireless Sensor Network (WSN) based system that has been developed for the purposes of location tracking and monitoring in indoor and outdoor environments. Several experiments are conducted to test the effectiveness and performance of the developed system and two of them is by measuring the Radio Frequency (RF) transmitting power and Received Signal Strength (RSS) to prove that the embedded active RFID tag is capable to generate higher transmit power during data transmission and able to provide better RSS reading compared to standalone RFID tag. Experiments are carried out on two RFID tags which are active RFID tag embedded with GPS and GSM (ER2G); and standalone RFID tag communicating with the same active RFID reader. The developed ER2G contributes 12.26 % transmit power and 6.47 % RSS reading higher than standalone RFID tag. The results conclude that the ER2G gives better performance compared to standalone RFID tag and can be used as guidelines for future design improvements.

  6. RF Behavior of Cylindrical Cavity Based 240 GHz, 1 MW Gyrotron for Future Tokamak System

    Science.gov (United States)

    Kumar, Nitin; Singh, Udaybir; Bera, Anirban; Sinha, A. K.

    2017-11-01

    In this paper, we present the RF behavior of conventional cylindrical interaction cavity for 240 GHz, 1 MW gyrotron for futuristic plasma fusion reactors. Very high-order TE mode is searched for this gyrotron to minimize the Ohmic wall loading at the interaction cavity. The mode selection process is carried out rigorously to analyze the mode competition and design feasibility. The cold cavity analysis and beam-wave interaction computation are carried out to finalize the cavity design. The detail parametric analyses for interaction cavity are performed in terms of mode stability, interaction efficiency and frequency. In addition, the design of triode type magnetron injection gun is also discussed. The electron beam parameters such as velocity ratio and velocity spread are optimized as per the requirement at interaction cavity. The design studies presented here confirm the realization of CW, 1 MW power at 240 GHz frequency at TE46,17 mode.

  7. Rf power sources

    International Nuclear Information System (INIS)

    Allen, M.A.

    1988-01-01

    In this paper, the author reports on RF power sources for accelerator applications. The approach will be with particular customers in mind. These customers are high energy physicists who use accelerators as experimental tools in the study of the nucleus of the atom, and synchrotron light sources derived from electron or positron storage rings. The author pays close attention to electron- positron linear accelerators since the RF sources have always defined what is possible to achieve with these accelerators. Circular machines, cyclotrons, synchrotrons, etc. have usually not been limited by the RF power available and the machine builders have usually had their RF power source requirements met off the shelf. The main challenge for the RF scientist has been then in the areas of controls. An interesting example of this is in the Conceptual Design Report of the Superconducting Super Collider (SSC) where the RF system is described in six pages of text in a 700-page report. Also, the cost of that RF system is about one-third of a percent of the project's total cost. The RF system is well within the state of the art and no new power sources need to be developed. All the intellectual effort of the system designer would be devoted to the feedback systems necessary to stabilize beams during storage and acceleration, with the main engineering challenges (and costs) being in the superconducting magnet lattice

  8. 110GHz ECH on DIII-D

    International Nuclear Information System (INIS)

    Cary, W.P.; Allen, J.C.; Callis, R.W.; Doane, J.L.; Harris, T.E.; Moetler, C.P.; Neren, A.; Prater, P.; Rensen, D.

    1992-01-01

    This paper reports on a new high power electron cyclotron heating (ECH) system which has been introduced on DIII-D. This system is designed to operate at 110 GHz with a total output power of 2 MW. The system consists of four Varian VGT-8011 gyrotrons (output power of 500 kW), and their associated support equipment. All components have been designed for up to a 10 second pulse duration. The 110 GHz system is intended to further progress in rf current drive experiments on DIII-D when used in conjunction with the existing 60 GHz ECH (1. 6 MW) , and the 30-60 MHz ICH (2MW) systems. H-mode physics, plasma stabilization experiments and transport studies are also to be conducted at 110 GHz

  9. Microphonics detuning compensation in 3.9 GHZ superconducting RF cavities

    International Nuclear Information System (INIS)

    Ruben Carcagno

    2003-01-01

    Mechanical vibrations can detune superconducting radio frequency (SCRF) cavities unless a tuning mechanism counteracting the vibrations is present. Due to their narrow operating bandwidth and demanding mechanical structure, the 13-cell 3.9GHz SCRF cavities for the Charged Kaons at Main Injector (CKM) experiment at Fermilab are especially susceptible to this microphonic phenomena. We present early results correlating RF frequency detuning with cavity vibration measurements for CKM cavities; initial detuning compensation results with piezoelectric actuators are also presented

  10. Microphonics detuning compensation in 3.9 GHZ superconducting RF cavities

    Energy Technology Data Exchange (ETDEWEB)

    Ruben Carcagno et al.

    2003-10-20

    Mechanical vibrations can detune superconducting radio frequency (SCRF) cavities unless a tuning mechanism counteracting the vibrations is present. Due to their narrow operating bandwidth and demanding mechanical structure, the 13-cell 3.9GHz SCRF cavities for the Charged Kaons at Main Injector (CKM) experiment at Fermilab are especially susceptible to this microphonic phenomena. We present early results correlating RF frequency detuning with cavity vibration measurements for CKM cavities; initial detuning compensation results with piezoelectric actuators are also presented.

  11. The design of a 3 GHz thermionic RF-gun and energy filter for MAX-lab

    CERN Document Server

    Anderberg, B; Demirkan, M; Eriksson, M; Malmgren, L; Werin, S

    2002-01-01

    A new pre-injector has been designed for the MAX-laboratory. It consists of an RF-gun and a magnetic energy filter. The newly designed RF-gun geometry will be operated at 3 GHz in the thermionic mode using a BaO cathode. The pre-injector will provide a 2.3 MeV electron beam in 3 ps micro pulses to a new injector system currently under construction.

  12. Using MEMS Capacitive Switches in Tunable RF Amplifiers

    Directory of Open Access Journals (Sweden)

    Danson John

    2006-01-01

    Full Text Available A MEMS capacitive switch suitable for use in tunable RF amplifiers is described. A MEMS switch is designed, fabricated, and characterized with physical and RF measurements for inclusion in simulations. Using the MEMS switch models, a dual-band low-noise amplifier (LNA operating at GHz and GHz, and a tunable power amplifier (PA at GHz are simulated in m CMOS. MEMS switches allow the LNA to operate with 11 dB of isolation between the two bands while maintaining dB of gain and sub- dB noise figure. MEMS switches are used to implement a variable matching network that allows the PA to realize up to 37% PAE improvement at low input powers.

  13. Observations of electron heating during 28 GHz microwave power application in proto-MPEX

    Science.gov (United States)

    Biewer, T. M.; Bigelow, T. S.; Caneses, J. F.; Diem, S. J.; Green, D. L.; Kafle, N.; Rapp, J.; Proto-MPEX Team

    2018-02-01

    The Prototype Material Plasma Exposure Experiment at the Oak Ridge National Laboratory utilizes a variety of power systems to generate and deliver a high heat flux plasma onto the surface of material targets. In the experiments described here, a deuterium plasma is produced via a ˜100 kW, 13.56 MHz RF helicon source, to which ˜20 kW of 28 GHz microwave power is applied. The electron density and temperature profiles are measured using a Thomson scattering (TS) diagnostic, and indicate that the electron density is centrally peaked. In the core of the plasma column, the electron density is higher than the cut-off density (˜0.9 × 1019 m-3) for the launched mixture of X- and O-mode electron cyclotron heating waves to propagate. TS measurements indicate electron temperature increases from ˜5 eV to ˜20 eV during 28 GHz power application when the neutral deuterium pressure is reduced below 0.13 Pa (˜1 mTorr.).

  14. Using MEMS Capacitive Switches in Tunable RF Amplifiers

    OpenAIRE

    Danson John; Plett Calvin; Tait Niall

    2006-01-01

    A MEMS capacitive switch suitable for use in tunable RF amplifiers is described. A MEMS switch is designed, fabricated, and characterized with physical and RF measurements for inclusion in simulations. Using the MEMS switch models, a dual-band low-noise amplifier (LNA) operating at GHz and GHz, and a tunable power amplifier (PA) at GHz are simulated in m CMOS. MEMS switches allow the LNA to operate with 11 dB of isolation between the two bands while maintaining dB of gain and sub- dB no...

  15. Diamond Based DDR IMPATTs: Prospects and Potentiality as Millimeter-Wave Source at 94 GHz Atmospheric Window

    Directory of Open Access Journals (Sweden)

    A. Acharyya

    2013-06-01

    Full Text Available Large-signal simulation is carried out in this paper to investigate the prospects and potentiality of Double-Drift Region (DDR Impact Avalanche Transit Time (IMPATT device based on semiconducting type-IIb diamond as millimeter-wave source operating at 94 GHz atmospheric window frequency. Large-signal simulation method developed by the authors and presented in this paper is based on non-sinusoidal voltage excitation. The simulation is carried out to obtain the large-signal characteristics such as RF power output, DC to RF conversion efficiency etc. of DDR diamond IMPATT device designed to operate at 94 GHz. The results show that the device is capable of delivering a peak RF power output of 7.01 W with 10.18% DC to RF conversion efficiency for a bias current density of 6.0×10^8 A m^-2 and voltage modulation of 60% at 94 GHz; whereas for the same voltage modulation 94 GHz DDR Si IMPATT can deliver only 693.82 mW RF power with 8.74 efficiency for the bias current density of 3.4×10^8 A m^-2.

  16. An Optimized 2.4GHz RF Power Amplifier Performance for WLAN System

    International Nuclear Information System (INIS)

    Ali, Mohammed H; Chakrabarty, C K; Hock, Goh C; Abdalla, Ahmed N

    2013-01-01

    Recently, the design of RF power amplifiers (PAs) for modern wireless systems are faced with a difficult tradeoff for example, cellphone; battery lifetime is largely determined by the power efficiency of the PA and high spectral efficiency which have ability to transmit data at the highest possible rate for a given channel bandwidth. This paper presents the design a multi stage class AB power Amplifier with high power added efficiency (PAE) and acceptable linearity for the WLAN applications. The open-circuited third harmonic control circuit enhances the efficiency of the PA without deteriorating the linearity of class-AB mode of the PA. The voltage and current waveforms are simulated to evaluate the appropriate operation for the modes. The effectiveness of the proposed controller has been verified by comparing proposed method with another methods using simulation study under a variety of conditions. The proposed circuit operation for a WLAN signals delivers a power-added efficiency (PAE) of 37.6% is measured at 31.6-dBm output power while dissipating 34.61 mA from a 1.8V supply. Finally, the proposed PA is show a good and acceptable result for the WLAN system.

  17. An Optimized 2.4GHz RF Power Amplifier Performance for WLAN System

    Science.gov (United States)

    Ali, Mohammed H.; Chakrabarty, C. K.; Abdalla, Ahmed N.; Hock, Goh C.

    2013-06-01

    Recently, the design of RF power amplifiers (PAs) for modern wireless systems are faced with a difficult tradeoff for example, cellphone; battery lifetime is largely determined by the power efficiency of the PA and high spectral efficiency which have ability to transmit data at the highest possible rate for a given channel bandwidth. This paper presents the design a multi stage class AB power Amplifier with high power added efficiency (PAE) and acceptable linearity for the WLAN applications. The open-circuited third harmonic control circuit enhances the efficiency of the PA without deteriorating the linearity of class-AB mode of the PA. The voltage and current waveforms are simulated to evaluate the appropriate operation for the modes. The effectiveness of the proposed controller has been verified by comparing proposed method with another methods using simulation study under a variety of conditions. The proposed circuit operation for a WLAN signals delivers a power-added efficiency (PAE) of 37.6% is measured at 31.6-dBm output power while dissipating 34.61 mA from a 1.8V supply. Finally, the proposed PA is show a good and acceptable result for the WLAN system.

  18. 45-GHz and 60-GHz 90 nm CMOS power amplifiers with a fully symmetrical 8-way transformer power combiner

    Institute of Scientific and Technical Information of China (English)

    Zhengdong JIANG; Kaizhe GUO; Peng HUANG; Yiming FAN; Chenxi ZHAO; Yongling BAN; Jun LIU; Kai KANG

    2017-01-01

    In this paper,45 GHz and 60 GHz power amplifiers (PAs) with high output power have been successfully designed by using 90 nm CMOS process.The 45 GHz (60 GHz) PA consists of two (four) differential stages.The sizes of transistors have been designed in an appropriate way so as to trade-off gain,efficiency and stability.Due to limited supply voltage and low breakdown voltage of CMOS MOSFET compared with the traditional Ⅲ-Ⅴ technologies,the technique of power combining has been applied to achieve a high output power.In particular,a novel 8-way distributed active transformer power combiner has been proposed for realizing such mm-wave PA.The proposed transformer combiner with a fully symmetrical layout can improve its input impedance balance at mm-wave frequency regime significantly.Taking its advantages of this novel transformer based power combiner,our realized 45 GHz (60 GHz) mm-wave PA has achieved the gain of 20.3 dB (16.8 dB),the maximum PAE of 14.5% (13.4%) and the saturated output power of 21 dBm (21 dBm) with the 1.2 V supply voltage.

  19. An ultra-low-power RF transceiver for WBANs in medical applications

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Qi; Wu Nanjian [State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China); Kuang Xiaofei, E-mail: nanjian@semi.ac.cn [College of Electronic Information, Hangzhou Dianzi University, Hangzhou 310018 (China)

    2011-06-15

    A 2.4 GHz ultra-low-power RF transceiver with a 900 MHz auxiliary wake-up link for wireless body area networks (WBANs) in medical applications is presented. The RF transceiver with an asymmetric architecture is proposed to achieve high energy efficiency according to the asymmetric communication in WBANs. The transceiver consists of a main receiver (RX) with an ultra-low-power free-running ring oscillator and a high speed main transmitter (TX) with fast lock-in PLL. A passive wake-up receiver (WuRx) for wake-up function with a high power conversion efficiency (PCE) CMOS rectifier is designed to offer the sensor node the capability of work-on-demand with zero standby power. The chip is implemented in a 0.18 {mu}m CMOS process. Its core area is 1.6 mm{sup 2}. The main RX achieves a sensitivity of -55 dBm at a 100 kbps OOK data rate while consuming just 210 {mu}A current from the 1 V power supply. The main TX achieves +3 dBm output power with a 4 Mbps/500 kbps/200 kbps data rate for OOK/4 FSK/2 FSK modulation and dissipates 3.25 mA/6.5 mA/6.5 mA current from a 1.8 V power supply. The minimum detectable RF input energy for the wake-up RX is -15 dBm and the PCE is more than 25%. (semiconductor integrated circuits)

  20. An ultra-low-power RF transceiver for WBANs in medical applications

    International Nuclear Information System (INIS)

    Zhang Qi; Wu Nanjian; Kuang Xiaofei

    2011-01-01

    A 2.4 GHz ultra-low-power RF transceiver with a 900 MHz auxiliary wake-up link for wireless body area networks (WBANs) in medical applications is presented. The RF transceiver with an asymmetric architecture is proposed to achieve high energy efficiency according to the asymmetric communication in WBANs. The transceiver consists of a main receiver (RX) with an ultra-low-power free-running ring oscillator and a high speed main transmitter (TX) with fast lock-in PLL. A passive wake-up receiver (WuRx) for wake-up function with a high power conversion efficiency (PCE) CMOS rectifier is designed to offer the sensor node the capability of work-on-demand with zero standby power. The chip is implemented in a 0.18 μm CMOS process. Its core area is 1.6 mm 2 . The main RX achieves a sensitivity of -55 dBm at a 100 kbps OOK data rate while consuming just 210 μA current from the 1 V power supply. The main TX achieves +3 dBm output power with a 4 Mbps/500 kbps/200 kbps data rate for OOK/4 FSK/2 FSK modulation and dissipates 3.25 mA/6.5 mA/6.5 mA current from a 1.8 V power supply. The minimum detectable RF input energy for the wake-up RX is -15 dBm and the PCE is more than 25%. (semiconductor integrated circuits)

  1. A low power 3-5 GHz CMOS UWB receiver front-end

    International Nuclear Information System (INIS)

    Li Weinan; Huang Yumei; Hong Zhiliang

    2009-01-01

    A novel low power RF receiver front-end for 3-5 GHz UWB is presented. Designed in the 0.13 μm CMOS process, the direct conversion receiver features a wideband balun-coupled noise cancelling transconductance input stage, followed by quadrature passive mixers and transimpedance loading amplifiers. Measurement results show that the receiver achieves an input return loss below -8.5 dB across the 3.1-4.7 GHz frequency range, maximum voltage conversion gain of 27 dB, minimum noise figure of 4 dB, IIP3 of -11.5 dBm, and IIP2 of 33 dBm. Working under 1.2 V supply voltage, the receiver consumes total current of 18 mA including 10 mA by on-chip quadrature LO signal generation and buffer circuits. The chip area with pads is 1.1 x 1.5 mm 2 .

  2. A 500μW 5Mbps ULP super-regenerative RF front-end

    NARCIS (Netherlands)

    Vidojkovic, M.; Rampu, S.; Imamura, K.; Harpe, P.; Dolmans, G.; Groot, H. de

    2010-01-01

    This paper presents an ultra low power super-regenerative RF front-end for wireless body area network (WBAN) applications. The RF front-end operates in the 2.36-2.4 GHz medical BAN and 2.4-2.485 GHz ISM bands, and consumes 500 μW. It supports OOK modulation at high data rates ranging from 1-5 Mbps.

  3. Operational Performance and Improvements to the RF Power Sources for the Compact Linear Collider Test Facility (CTF3) at CERN

    OpenAIRE

    McMonagle, Gerard

    2006-01-01

    The CERN CTF3 facility is being used to test and demonstrate key technical issues for the CLIC (Compact Linear Collider) study. Pulsed RF power sources are essential elements in this test facility. Klystrons at S-band (29998.55 GHz), in conjunction with pulse compression systems, are used to power the Drive Beam Accelerator (DBA) to achieve an electron beam energy of 150 MeV. The L-Band RF system, includes broadband Travelling Wave Tubes (TWTs) for beam bunching with 'phase coded' sub pulses ...

  4. n+ GaAs/AuGeNi-Au Thermocouple-Type RF MEMS Power Sensors Based on Dual Thermal Flow Paths in GaAs MMIC

    Directory of Open Access Journals (Sweden)

    Zhiqiang Zhang

    2017-06-01

    Full Text Available To achieve radio frequency (RF power detection, gain control, and circuit protection, this paper presents n+ GaAs/AuGeNi-Au thermocouple-type RF microelectromechanical system (MEMS power sensors based on dual thermal flow paths. The sensors utilize a conversion principle of RF power-heat-voltage, where a thermovoltage is obtained as the RF power changes. To improve the heat transfer efficiency and the sensitivity, structures of two heat conduction paths are designed: one in which a thermal slug of Au is placed between two load resistors and hot junctions of the thermocouples, and one in which a back cavity is fabricated by the MEMS technology to form a substrate membrane underneath the resistors and the hot junctions. The improved sensors were fabricated by a GaAs monolithic microwave integrated circuit (MMIC process. Experiments show that these sensors have reflection losses of less than −17 dB up to 12 GHz. At 1, 5, and 10 GHz, measured sensitivities are about 63.45, 53.97, and 44.14 µV/mW for the sensor with the thermal slug, and about 111.03, 94.79, and 79.04 µV/mW for the sensor with the thermal slug and the back cavity, respectively.

  5. Low emittance electron beam formation with a 17 GHz RF gun

    Directory of Open Access Journals (Sweden)

    W. J. Brown

    2001-08-01

    Full Text Available We report on electron beam quality measurement results from the Massachusetts Institute of Technology 17 GHz RF gun experiment. The 1.5 cell RF gun uses a solenoid for emittance compensation. It has produced bunch charges up to 0.1 nC with beam energies up to 1 MeV. The normalized rms emittance of the beam after 35 cm of transport from the gun has been measured by a slit technique to be 3π mm mrad for a 50 pC bunch. This agrees well with PARMELA simulations at these beam energies. At the exit of the electron gun, we estimate the emittance to be about 1π mm mrad, which corresponds to a beam brightness of about 80 A/(π mm mrad^{2}. Improved beam quality should be possible with a higher energy output electron beam from the gun.

  6. Status and outlook for high power processing of 1.3 GHz TESLA multicell cavities

    International Nuclear Information System (INIS)

    Kirchgessner, J.; Barnes, P.; Graber, J.; Metzger, D.; Mofat, D.; Muller, H.; Padamsee, H.; Sears, J.; Tigner, M.; Matheisen, A.

    1993-01-01

    In order to increase the usable accelerating gradient in Superconducting TESLA cavities, the field emission threshold barrier must be raised. As has been previously demonstrated on S-band cavities, a way to accomplish this is with the use of high peak power RF processing. A transmitter with a peak power of 2 Mwatt and 300 μsec pulse length has been assembled and has been used to process TESLA cavities. Several five cell TESLA cavities at 1.3 GHz have been manufactured for this purpose. This transmitter and the cavities will be described and the results of the tests will be presented

  7. RF-Trapped Chip Scale Helium Ion Pump (RFT-CHIP)

    Science.gov (United States)

    2016-04-06

    utilizes two operation states: an ion extraction state and an RF electron trapping state. A high power RF switch S1 (RF- LAMBDA RFSP2TRDC06G, DC-6 GHz...integrated in time. The electric potential is obtained by solution of Poisson’s equation using an incomplete LU BiConjugate Gradient sparse matrix

  8. Single-Chip Fully Integrated Direct-Modulation CMOS RF Transmitters for Short-Range Wireless Applications

    Directory of Open Access Journals (Sweden)

    M. Jamal Deen

    2013-08-01

    Full Text Available Ultra-low power radio frequency (RF transceivers used in short-range application such as wireless sensor networks (WSNs require efficient, reliable and fully integrated transmitter architectures with minimal building blocks. This paper presents the design, implementation and performance evaluation of single-chip, fully integrated 2.4 GHz and 433 MHz RF transmitters using direct-modulation power voltage-controlled oscillators (PVCOs in addition to a 2.0 GHz phase-locked loop (PLL based transmitter. All three RF transmitters have been fabricated in a standard mixed-signal CMOS 0.18 µm technology. Measurement results of the 2.4 GHz transmitter show an improvement in drain efficiency from 27% to 36%. The 2.4 GHz and 433 MHz transmitters deliver an output power of 8 dBm with a phase noise of −122 dBc/Hz at 1 MHz offset, while drawing 15.4 mA of current and an output power of 6.5 dBm with a phase noise of −120 dBc/Hz at 1 MHz offset, while drawing 20.8 mA of current from 1.5 V power supplies, respectively. The PLL transmitter delivers an output power of 9 mW with a locking range of 128 MHz and consumes 26 mA from 1.8 V power supply. The experimental results demonstrate that the RF transmitters can be efficiently used in low power WSN applications.

  9. RF Pulsed Heating

    Energy Technology Data Exchange (ETDEWEB)

    Pritzkau, David P.

    2002-01-03

    RF pulsed heating is a process by which a metal is heated from magnetic fields on its surface due to high-power pulsed RF. When the thermal stresses induced are larger than the elastic limit, microcracks and surface roughening will occur due to cyclic fatigue. Pulsed heating limits the maximum magnetic field on the surface and through it the maximum achievable accelerating gradient in a normal conducting accelerator structure. An experiment using circularly cylindrical cavities operating in the TE{sub 011} mode at a resonant frequency of 11.424 GHz is designed to study pulsed heating on OFE copper, a material commonly used in normal conducting accelerator structures. The high-power pulsed RF is supplied by an X-band klystron capable of outputting 50 MW, 1.5 {micro}s pulses. The test pieces of the cavity are designed to be removable to allow testing of different materials with different surface preparations. A diagnostic tool is developed to measure the temperature rise in the cavity utilizing the dynamic Q change of the resonant mode due to heating. The diagnostic consists of simultaneously exciting a TE{sub 012} mode to steady-state in the cavity at 18 GHz and measuring the change in reflected power as the cavity is heated from high-power pulsed RF. Two experimental runs were completed. One run was executed at a calculated temperature rise of 120 K for 56 x 10{sup 6} pulses. The second run was executed at a calculated temperature rise of 82 K for 86 x 10{sup 6} pulses. Scanning electron microscope pictures show extensive damage occurring in the region of maximum temperature rise on the surface of the test pieces.

  10. n⁺ GaAs/AuGeNi-Au Thermocouple-Type RF MEMS Power Sensors Based on Dual Thermal Flow Paths in GaAs MMIC.

    Science.gov (United States)

    Zhang, Zhiqiang; Liao, Xiaoping

    2017-06-17

    To achieve radio frequency (RF) power detection, gain control, and circuit protection, this paper presents n⁺ GaAs/AuGeNi-Au thermocouple-type RF microelectromechanical system (MEMS) power sensors based on dual thermal flow paths. The sensors utilize a conversion principle of RF power-heat-voltage, where a thermovoltage is obtained as the RF power changes. To improve the heat transfer efficiency and the sensitivity, structures of two heat conduction paths are designed: one in which a thermal slug of Au is placed between two load resistors and hot junctions of the thermocouples, and one in which a back cavity is fabricated by the MEMS technology to form a substrate membrane underneath the resistors and the hot junctions. The improved sensors were fabricated by a GaAs monolithic microwave integrated circuit (MMIC) process. Experiments show that these sensors have reflection losses of less than -17 dB up to 12 GHz. At 1, 5, and 10 GHz, measured sensitivities are about 63.45, 53.97, and 44.14 µ V/mW for the sensor with the thermal slug, and about 111.03, 94.79, and 79.04 µ V/mW for the sensor with the thermal slug and the back cavity, respectively.

  11. High power test of RF window and coaxial line in vacuum

    International Nuclear Information System (INIS)

    Sun, D.; Champion, M.; Gormley, M.; Kerns, Q.; Koepke, K.; Moretti, A.

    1993-01-01

    Primary rf input couplers for the superconducting accelerating cavities of the TESLA electron linear accelerator test to be performed at DESY, Hamburg, Germany are under development at both DESY and Fermilab. The input couplers consist of a WR650 waveguide to coaxial line transition with an integral ceramic window, a coaxial connection to the superconducting accelerating cavity with a second ceramic window located at the liquid nitrogen heat intercept location, and bellows on both sides of the cold window to allow for cavity motion during cooldown, coupling adjustments and easier assembly. To permit in situ high peak power processing of the TESLA superconducting accelerating cavities, the input couplers are designed to transmit nominally 1 ms long, 2 MW peak, 1.3 GHz rf pulses from the WR650 waveguide at room temperature to the cavities at 1.8 K. The coaxial part of the Fermilab TESLA input coupler design has been tested up to 1.7 MW using the prototype 805 MHz rf source located at the A0 service building of the Tevatron. The rf source, the testing system and the test results are described

  12. RF link for Implanted Medical Devices (IMDs) and Sub-GHz Inductive Power Transmission

    OpenAIRE

    Diet , Antoine; Koulouridis , Satvros; Le Bihan , Yann; Luu , Quang-Trung; Meyer , Olivier; Pichon , Lionel; Biancheri-Astier , Marc

    2017-01-01

    International audience; Ce travail s'inscrit dan sune etude exploratoire sur les possibilités de télé-alimentation RF des implants médicaux et/ou de communication entre eux. En effet, la durée de fonctionnement de certains implants avec batterie rend leur utilisation critique car il ne faut pas privilégier une intervention chirurgicale lourde s'il est possible d'agir de manière non-invasive. La transmission d'énergie sans fil ou WPT (Wireless Power Transfer) est au cœur de nombreuses autres t...

  13. Characteristic performance of radio-frequency(RF) plasma heating using inverter RF power supplies

    International Nuclear Information System (INIS)

    Imai, Takahiro; Uesugi, Yoshihiko; Takamura, Shuichi; Sawada, Hiroyuki; Hattori, Norifumi

    2000-01-01

    High heat flux plasma are produced by high powe (∼14 kW) ICRF heating using inverter power supplies in the linear divertor simulator NAGDIS-II. The power flow of radiated rf power is investigated by a calorimetric method. Conventional power calculation using antenna voltage and current gives that about 70% of the rf power is radiated into the plasma. But increase of the heat load at the target and anode is about 10% of the rf power. Through this experiment, we find that about half of the rf power is lost at the antenna surface through the formation of rf induced sheath. And about 30% of the power is lost into the vacuum vessel through the charge exchange and elastic collision of ions with neutrals. (author)

  14. Hybrid silicon mode-locked laser with improved RF power by impedance matching

    Science.gov (United States)

    Tossoun, Bassem; Derickson, Dennis; Srinivasan, Sudharsanan; Bowers, John

    2015-02-01

    We design and discuss an impedance matching solution for a hybrid silicon mode-locked laser diode (MLLD) to improve peak optical power coming from the device. In order to develop an impedance matching solution, a thorough measurement and analysis of the MLLD as a function of bias on each of the laser segments was carried out. A passive component impedance matching network was designed at the operating frequency of 20 GHz to optimize RF power delivery to the laser. The hybrid silicon laser was packaged together in a module including the impedance matching circuit. The impedance matching design resulted in a 6 dB (electrical) improvement in the detected modulation spectrum power, as well as approximately a 10 dB phase noise improvement, from the MLLD. Also, looking ahead to possible future work, we discuss a Step Recovery Diode (SRD) driven impulse generator, which wave-shapes the RF drive to achieve efficient injection. This novel technique addresses the time varying impedance of the absorber as the optical pulse passes through it, to provide optimum optical pulse shaping.

  15. 2.45 GHz Class E Power Amplifier for a Transmitter Combining LINC and EER

    Directory of Open Access Journals (Sweden)

    M. Dirix

    2009-01-01

    Full Text Available A 10 W class-E RF power amplifier (PA is designed and fabricated using a Cree GaN HEMT. The proposed PA uses an innovative input circuit to optimize band with. At 2.45 GHz the PA achieves a PAE of 60 % at an outputpower of 40 dBm. The resulting amplifier is simulated and constructed using a transmissionline topology. Two of these amplifiers are fabricated on a single board for outphasing application. Their suitability for outphasing application and supply modulation is investigated. 

  16. Experiments on the rf surface resistance of the perovskite superconductors at 3 GHz

    International Nuclear Information System (INIS)

    Hein, M.; Klein, N.; Mueller, G.; Piel, H.; Roeth, R.W.

    1988-01-01

    Since the discovery of the perovskite superconductors many experiments to explore their physical properties have been performed and various potential applications have been considered. The high critical temperature of more than 90 K obtained with Y 1 Ba 2 Cu 3 O/sub 7-δ/ (Y may be substituted by other rare earth elements) makes these superconductors interesting for applications in microwave technology. This has focused the authors interest on the investigation of their rf properties. Due to the sensitivity of the rf surface resistance to surface impurities and remaining non superconducting phases rf measurements are a good means to provide useful information about the quality of sample preparation and about physical properties of the superconductor itself. This contribution reports on the experimental determination of the rf surface resistance of Y 1 Ba 2 Cu 3 O/sub 7-δ/ and Eu 1 Ba 2 Cu 3 O/sub 7-δ/ in the normal and superconducting state at 3 GHz. In the first chapter the preparation of the ceramic samples and initial dc experiments are described. The main part of the paper describes the rf measurements which are performed in a superconducting niobium host cavity. The obtained results for both the surface resistance and the high field performance are discussed with respect to the preparation of the samples and regarding possible applications. 7 references, 7 figures, 2 tables

  17. RF Performance of a 600-720 GHz Sideband Separating Mixer with All-Copper Micromachined Waveguide Mixer Block

    NARCIS (Netherlands)

    Mena, F. P.; Kooi, J.; Baryshev, A. M.; Lodewijk, C. F. J.; Klapwijk, T. M.; Wild, W.; Desmaris, V.; Meledin, D.; Pavolotsky, A.; Belitsky, V.; Wild, Wolfgang

    2008-01-01

    Here we report on the RF performance of a 2SB mixer (600-720 GHz) fabricated in a new method that combines traditional micromachining with waveguide components fabricated by photolithography and electroplating. The latter allows reaching, in a reproducible way, the stringent accuracies necessary for

  18. Review of pulsed rf power generation

    International Nuclear Information System (INIS)

    Lavine, T.L.

    1992-04-01

    I am going to talk about pulsed high-power rf generation for normal-conducting electron and positron linacs suitable for applications to high-energy physics in the Next Linear Collider, or NLC. The talk will cover some basic rf system design issues, klystrons and other microwave power sources, rf pulse-compression devices, and test facilities for system-integration studies

  19. New developments in RF power sources

    International Nuclear Information System (INIS)

    Miller, R.H.

    1994-06-01

    The most challenging rf source requirements for high-energy accelerators presently being studied or designed come from the various electron-positron linear collider studies. All of these studies except TESLA (the superconducting entry in the field) have specified rf sources with much higher peak powers than any existing tubes at comparable high frequencies. While circular machines do not, in general, require high peak power, the very high luminosity electron-positron rings presently being designed as B factories require prodigious total average rf power. In this age of energy conservation, this puts a high priority on high efficiency for the rf sources. Both modulating anodes and depressed collectors are being investigated in the quest for high efficiency at varying output powers

  20. Multi-MW K-Band Harmonic Multiplier: RF Source For High-Gradient Accelerator R & D

    Science.gov (United States)

    Solyak, N. A.; Yakovlev, V. P.; Kazakov, S. Yu.; Hirshfield, J. L.

    2009-01-01

    A preliminary design is presented for a two-cavity harmonic multiplier, intended as a high-power RF source for use in experiments aimed at developing high-gradient structures for a future collider. The harmonic multiplier is to produce power at selected frequencies in K-band (18-26.5 GHz) using as an RF driver an XK-5 S-band klystron (2.856 GHz). The device is to be built with a TE111 rotating mode input cavity and interchangeable output cavities running in the TEn11 rotating mode, with n = 7,8,9 at 19.992, 22.848, and 25.704 GHz. An example for a 7th harmonic multiplier is described, using a 250 kV, 20 A injected laminar electron beam; with 10 MW of S-band drive power, 4.7 MW of 20-GHz output power is predicted. Details are described of the magnetic circuit, cavities, and output coupler.

  1. Generation of strong electromagnetic power at 35 GHz from the interaction of a resonant cavity with a relativistic electron beam generated by a free electron laser

    International Nuclear Information System (INIS)

    Lefevre, Thibaut

    2000-01-01

    The next generation of electron-positron linear colliders must reach the TeV energy range. For this, one requires an adequate RF power source to feed the accelerating cavities of the collider. One way to generate this source is to use the Two Beam Accelerator concept in which the RF power is produced in resonant cavities driven by an intense bunched beam. In this thesis, I present the experimental results obtained at the CEA/CESTA using an electron beam generated by an induction linac. First, some studies were performed with the LELIA induction linac (2.2 MeV, 1 kA, 80 ns) using a Free Electron Laser (FEL) as a buncher at 35 GHz. A second part relates the experiment made with the PIVAIR induction linac (7 MeV, 1 kA, 80 ns) in order to measure the RF power extracted from a resonant cavity at 35 GHz, which is driven by the bunches produced in the FEL. One can also find a simple theoretical modeling of the beam-cavity interaction, and the numerical results dealing with the design of the cavity we tested. (author) [fr

  2. Development of end group for 1.3 GHZ nine cell SCRF cavity

    International Nuclear Information System (INIS)

    Yedle, Ajay; Bagre, Manish; Maurya, Tilak; Yadav, Anand; Puntambekar, Avinash; Mahawar, Ashish; Mohania, Praveen; Shrivastava, Purushottam; Joshi, Satish Chandra

    2013-01-01

    Raja Ramanna Centre for Advanced Technology (RRCAT) is developing 1.3 GHz superconducting radio frequency (SCRF) cavities as part of SCRF technology development. The 1.3 GHz nine cell SCRF cavities comprise of multiple cells and end groups at each end. These end groups are important parts of a multi-cell cavity. They serve as interface for putting RF power to cavity, pick up the signal for various RF control and have higher order modes (HOM) coupler. The multiple parts with intricate shape, complex weld geometry and stringent RF requirements pose various challenges in their manufacturing. This paper presents the efforts on development of end groups comprising of manufacturing of various parts, their fabrication by electron beam welding process and pre-qualification including mechanical measurement, vacuum leak testing RF measurement. (author)

  3. Lasertron, a pulsed RF-source using laser triggered photocathode

    International Nuclear Information System (INIS)

    Yoshioka, Masakazu.

    1988-12-01

    A new pulsed RF-source, 'Lasertron', are being developed as a possible RF-power source for future electron-positron linear colliders. In a series of systematic study, a prototype lasertron has been fabricated and tested. A peak power of 80 kW is attained at 2.856 GHz RF-frequency in 1-μs time duration. This paper describes the experimental results of the lasertron including the developments of the photocathode and the laser system. Test results are compared with the analysis of beam dynamics in the lasertron. (author)

  4. Improved power simulation of AlGaN/GaN HEMT at class-AB operation via an RF drain—source current correction method

    International Nuclear Information System (INIS)

    Pongthavornkamol Tiwat; Pang Lei; Yuan Ting-Ting; Liu Xin-Yu

    2014-01-01

    A new modified Angelov current—voltage characteristic model equation is proposed to improve the drain—source current (I ds ) simulation of an AlGaN/GaN-based (gallium nitride) high electron mobility transistor (AlGaN/GaN-based HEMT) at high power operation. Since an accurate radio frequency (RF) current simulation is critical for a correct power simulation of the device, in this paper we propose a method of AlGaN/GaN high electron mobility transistor (HEMT) nonlinear large-signal model extraction with a supplemental modeling of RF drain—source current as a function of RF input power. The improved results of simulated output power, gain, and power added efficiency (PAE) at class-AB quiescent bias of V gs = −3.5 V, V ds = 30 V with a frequency of 9.6 GHz are presented. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  5. Low power rf system for the ALS Linac

    International Nuclear Information System (INIS)

    Lo, C.C.; Taylor, B.; Lancaster, H.

    1991-05-01

    The Linear Accelerator (Linac) in the Advanced Light Source (ALS) is designed to provide either single or multiple bunchers of 50 MeV electrons for the booster synchrotron. Three cavities are used in the Linac for electron bunching. The two subharmonic bunching cavities operate at 124.914 MHz and 499.654 MHz respectively. The S Band buncher operates at 2.997924 GHz. The low level RF system includes a master signal source, RF burst generators, signal phase control, timing trigger generators and a water temperature control system. The design and performance of the system will be described. 7 refs., 3 figs

  6. The drive beam pulse compression system for the CLIC RF power source

    CERN Document Server

    Corsini, R

    1999-01-01

    The Compact LInear Collider (CLIC) is a high energy (0.5 to 5 TeV) e ± linear collider that uses a high- current electron beam (the drive beam) for 30 GHz RF power production by the Two-Beam Acceleration (TBA) method. Recently, a new cost­effective and efficient generation scheme for the drive beam has been developed. A fully­loaded normal­conducting linac operating at lower frequency (937 MHz) generates and accelerates the drive beam bunches, and a compression system composed of a delay­line and two combiner rings produces the proper drive beam time structure for RF power generation in the drive beam decelerator. In this paper, a preliminary design of the whole compression system is presented. In particular, the fundamental issue of preserving the bunch quality along the complex is studied and its impact on the beam parameters and on the various system components is assessed. A first design of the rings and delay­line lattice, including path length tuning chicanes, injection and extraction regions is a...

  7. Development of two series ingnitron based crowbar protection system for 42 GHz and 82.6 GHz gyroton in SST-1

    International Nuclear Information System (INIS)

    Dhorajiya, Pragnesh; Dalakoti, Shefali; Patel, Harshida; Ingle, Krunal; Patel, Jatin; Sathyanarayana, K.; Rajanbabu; Shukla, B.K.

    2013-01-01

    Gyrotrons are used to generate the high power at microwave frequency that is used to heat the plasma inside a Tokamak. A conventional high voltage power supply is used for the testing of 82.6 GHz, 200 kW/CW and 42 GHz, 500 kW/500ms gyrotrons at our institute. Its maximum operating cathode parameters are -55 kV DC, 20 A. Like any other High RF power tubes gyrotrons need to be protected against arc faults within the tube. If the energy dumped in such arc fault is more than the critical crater energy of the tube, irreparable damage can occur inside the RF tube or microwave tube and rendering it useless. The specified maximum fault energy for the 42 GHz and 82.6 GHz gyrotrons is 10 joules. When conventional HVDC power supplies feed high power RF tubes or microwave tubes, a reliable crowbar protection is required which is tested separately to limit the energy to the tube in case of any type of fault to assure the tube safety. Two series ignitron (NL-37248) based crowbar system developed in-house is used to limit the arc fault energy under the acceptance level by diverting the fault current from the load or Gyrotron. Fault current diversion and interruption are initiated by the sensing element and protection system. The required protection cards are designed and developed in-house and required performance is achieved. With this crowbar system the high voltage switch-off to the gyrotron is achieved within 5 μsec after occurrence of critical faults. The crowbar is tested for voltage hold-off up to 80 kV DC. This paper presents the critical requirement of the time delay for the fault sensing and crowbar trigger generation and necessary protections that are incorporated with the ignitron switch crowbar like over voltage, pulsed over current and continuous over current. The crowbar system developed in-house, tested at rated value. The results obtained during the stand-alone tests and commissioning tests are also mentioned. Using this crowbar system the high voltage power

  8. A fifth harmonic rf bunch monitor for the ANL-APS electron linac

    International Nuclear Information System (INIS)

    Nassiri, A.; Grelick, A.

    1993-01-01

    The function of a fifth harmonic (14.28 GHz) bunch monitor is to provide a signal which is proportional to the electron beam bunch size. The monitoring of the rf power signal at 14.28 GHz enables the operator to optimize the rf bunching of the beam at the end of the first accelerating section where the full bunching has been formed and remains mainly constant in size throughout the rest of the electron linac. A modified version of the SLAC original bunch monitor has been fabricated and its rf properties measured. This paper describes the design and the initial measurement results

  9. A fifth harmonic RF bunch monitor for the ANL-APS electron linac

    International Nuclear Information System (INIS)

    Nassiri, A.; Grelick, A.

    1993-01-01

    The function of a fifth harmonic (14.28 GHz) bunch monitor is to provide a signal which is proportional to the electron beam bunch size. The monitoring of the rf power signal at 14.28 GHz enables the operator to optimize the rf bunching of the beam at the end of the first accelerating section where the full bunching has been formed and remains mainly constant in size throughout the rest of the electron linac. A modified version of the SLAC original bunch monitor has been fabricated and its rf properties measured. This paper describes the design and the initial measurements results

  10. Ultracompact Implantable Design With Integrated Wireless Power Transfer and RF Transmission Capabilities.

    Science.gov (United States)

    Sun, Guilin; Muneer, Badar; Li, Ying; Zhu, Qi

    2018-04-01

    This paper presents an ultracompact design of biomedical implantable devices with integrated wireless power transfer (WPT) and RF transmission capabilities for implantable medical applications. By reusing the spiral coil in an implantable device, both RF transmission and WPT are realized without the performance degradation of both functions in ultracompact size. The complete theory of WPT based on magnetic resonant coupling is discussed and the design methodology of an integrated structure is presented in detail, which can guide the design effectively. A system with an external power transmitter and implantable structure is fabricated to validate the proposed approach. The experimental results show that the implantable structure can receive power wirelessly at 39.86 MHz with power transfer efficiency of 47.2% and can also simultaneously radiate at 2.45 GHz with an impedance bandwidth of 10.8% and a gain of -15.71 dBi in the desired direction. Furthermore, sensitivity analyses are carried out with the help of experiment and simulation. The results reveal that the system has strong tolerance to the nonideal conditions. Additionally, the specific absorption rate distribution is evaluated in the light of strict IEEE standards. The results reveal that the implantable structure can receive up to 115 mW power from an external transmitter and radiate 6.4 dB·m of power safely.

  11. High RF Power Production for CLIC

    CERN Document Server

    Syratchev, I; Adli, E; Taborelli, M

    2007-01-01

    The CLIC Power Extraction and Transfer Structure (PETS) is a passive microwave device in which bunches of the drive beam interact with the impedance of the periodically loaded waveguide and excite preferentially the synchronous mode. The RF power produced (several hundred MW) is collected at the downstream end of the structure by means of the Power Extractor and delivered to the main linac structure. The PETS geometry is a result of multiple compromises between beam stability and main linac RF power needs. Another requirement is to provide local RF power termination in case of accelerating structure failure (ON/OFF capability). Surface electric and magnetic fields, power extraction method, HOM damping, ON/OFF capability and fabrication technology were all evaluated to provide a reliable design

  12. Rf power sources

    International Nuclear Information System (INIS)

    Allen, M.A.

    1988-05-01

    This paper covers RF power sources for accelerator applications. The approach has been with particular customers in mind. These customers are high energy physicists who use accelerators as experimental tools in the study of the nucleus of the atom, and synchrotron light sources derived from electron or positron storage rings. This paper is confined to electron-positron linear accelerators since the RF sources have always defined what is possible to achieve with these accelerators. 11 refs., 13 figs

  13. InP MMIC Chip Set for Power Sources Covering 80-170 GHz

    Science.gov (United States)

    Ngo, Catherine

    2001-01-01

    We will present a Monolithic Millimeter-wave Integrated Circuit (MMIC) chip set which provides high output-power sources for driving diode frequency multipliers into the terahertz range. The chip set was fabricated at HRL Laboratories using a 0.1-micrometer gate-length InAlAs/InGaAs/InP high electron mobility transistor (HEMT) process, and features transistors with an f(sub max) above 600 GHz. The HRL InP HEMT process has already demonstrated amplifiers in the 60-200 GHz range. In this paper, these high frequency HEMTs form the basis for power sources up to 170 GHz. A number of state-of-the-art InP HEMT MMICs will be presented. These include voltage-controlled and fixed-tuned oscillators, power amplifiers, and an active doubler. We will first discuss an 80 GHz voltage-controlled oscillator with 5 GHz of tunability and at least 17 mW of output power, as well as a 120 GHz oscillator providing 7 mW of output power. In addition, we will present results of a power amplifier which covers the full WRIO waveguide band (75-110 GHz), and provides 40-50 mW of output power. Furthermore, we will present an active doubler at 164 GHz providing 8% bandwidth, 3 mW of output power, and an unprecedented 2 dB of conversion loss for an InP HEMT MMIC at this frequency. Finally, we will demonstrate a power amplifier to cover 140-170 GHz with 15-25 mW of output power and 8 dB gain. These components can form a power source in the 155-165 GHz range by cascading the 80 GHz oscillator, W-band power amplifier, 164 GHz active doubler and final 140-170 GHz power amplifier for a stable, compact local oscillator subsystem, which could be used for atmospheric science or astrophysics radiometers.

  14. A Novel Oscillating Rectenna for Wireless Microwave Power Transmission

    Science.gov (United States)

    McSpadden, J. O.; Dickinson, R. M.; Fan, L.; Chang, K.

    1998-01-01

    A new concept for solid state wireless microwave power transmission is presented. A 2.45 GHz rectenna element that was designed for over 85% RF to dc power conversion efficiency has been used to oscillate at 3.3 GHz with an approximate 1% dc to RF conversion efficiency.

  15. A 2.4-GHz ISM RF and UWB hybrid RFID real-time locating system for industrial enterprise Internet of Things

    Science.gov (United States)

    Zhai, Chuanying; Zou, Zhuo; Zhou, Qin; Mao, Jia; Chen, Qiang; Tenhunen, Hannu; Zheng, Lirong; Xu, Lida

    2017-07-01

    This paper presents a 2.4-GHz radio frequency (RF) and ultra-wide bandwidth (UWB) hybrid real-time locating system (RTLS) for industrial enterprise Internet of Things (IoT). It employs asymmetric wireless link, that is, UWB radio is utilised for accurate positioning up to 10 cm in critical sites, whereas 2.4-GHz RF is used for tag control and coarse positioning in non-critical sites. The specified communication protocol and the adaptive tag synchronisation rate ensure reliable and deterministic access with a scalable system capacity and avoid unpredictable latency and additional energy consumption of retransmissions due to collisions. The tag, consisting of a commercial 2.4-GHz transceiver and a customised application-specific integrated circuit (ASIC) UWB transmitter (Tx), is able to achieve up to 3 years' battery life at 1600 tags per position update second with 1000 mAh battery in one cluster. The time difference of arrival (TDoA)-based positioning experiment at UWB radio is performed on the designed software-defined radio (SDR) platform.

  16. Design and development of RF system for vertical test stand for characterization of superconducting RF cavities

    International Nuclear Information System (INIS)

    Mohania, Praveen; Rajput, Vikas; Baxy, Deodatta; Agrawal, Ankur; Mahawar, Ashish; Adarsh, Kunver; Singh, Pratap; Shrivastava, Purushottam

    2011-01-01

    RRCAT is developing a Vertical Test Stand (VTS) to test and qualify 1.3 GHz/650 MHz, SCRF Cavities in collaboration with Fermi National Accelerator Laboratory (FNAL) under Indian Institutions' Fermilab Collaboration. The technical details for VTS is being provided by FNAL, USA. The RF System of VTS needs to provide stable RF power to SCRF cavity with control of amplitude, relative phase and frequency. The incident, reflected, transmitted power and field decay time constant of the cavity are measured to evaluate cavity performance parameters (E, Qo). RF Power is supplied via 500 W Solid State amplifier, 1270-1310 MHz being developed by PHPMS, RRCAT. VTS system is controlled by PXI Platform and National Instruments LabVIEW software. Low Level RF (LLRF) system is used to track the cavity frequency using Phase Locked Loop (PLL). The system is comprised of several integrated functional modules which would be assembled, optimized, and tested separately. Required components and instruments have been identified and procurement for the same is underway. Inhouse development for the Solid State RF amplifier and instrument interfacing is in progress. This paper describes the progress on the development of the RF system for VTS. (author)

  17. 60 GHz gyrotron development program. Final report, April 1979-June 1984

    International Nuclear Information System (INIS)

    Shively, J.F.; Bier, R.E.; Caplan, M.

    1986-01-01

    The original objective of this program was to develop a microwave amplifier or oscillator capable of producing 200 kW CW power output at 110 GHz. The use of cyclotron resonance interaction was pursued, and the design phases of this effort are discussed. Later, however, the program's objective was changed to develop a family of oscillators capable of producing 200 kw of peak output power at 60 GHz. Gyrotron behavior studies were performed at 28 GHz to obtain generic design information as quickly as possible. The first experimental device at 60 GHz produced over 200 kw of peak power at a pulse duration of 20 μs. Heating problems and mode interference were encountered. The second experimental tube incorporated an optimized gun location but also suffered from mode interference. The third experimental tube included modifications that reduced mode interference. It demonstrated 200 kw of peak output at 100 ms pulse duration. The fourth experimental tube, which used an older rf circuit design but in a CW configuration, produced 71.5 kW CW. The fifth experimental tube incorporated a thinner double-disc output window which improved window bandwidth and reduced window loss. This tube also incorporated modifications to the drift tunnel and cavity coupling, which had proven successful in the third experimental pulse tube tests. It produced 123 kW of CW output power at 60 GHz rf load coolant boiling and tube window failure terminated the tests. A new waterload was designed and constructed, and alternative window designs were explored

  18. GHz digital rf control at the superconducting Darmstadt electron linear accelerator: First results from the baseband approach and extensions for other frequencies

    Directory of Open Access Journals (Sweden)

    A. Araz

    2010-08-01

    Full Text Available The low level rf system for the superconducting Darmstadt electron linear accelerator (S-DALINAC developed 20 years ago and operating since converts the 3 GHz signals from the cavities down to the baseband and not to an intermediate frequency. While designing the new, digital rf control system this concept was kept: the rf module does the I/Q and amplitude modulation/demodulation while the low frequency board, housing an field programmable gate array analyzes and processes the signals. Recently, the flexibility of this concept was realized: By replacing the modulator/demodulators on the rf module, cavities operating at frequencies other than the one of the S-DALINAC can be controlled with only minor modifications: A 6 GHz version, needed for a harmonic bunching system at the S-DALINAC and a 324 MHz solution to be used on a room temperature cavity at GSI, are currently under design. This paper reviews the concept of the digital low level rf control loops in detail and reports on the results gained during first operation with a superconducting cavity.

  19. A 30 GHz 5-TeV Linear Collider

    International Nuclear Information System (INIS)

    Wilson, Perry B

    2003-01-01

    We present parameters for a linear collider with a 3 to 5 TeV center-of-mass energy that utilizes conventional rf technology operating at a frequency around 30 GHz. We discuss the scaling laws and assumed limitations that lead to the parameters described and we compare the merits and liabilities of different technological options including rf power source, accelerator structure, and final focus system design. Finally, we outline the components of the collider while specifying the required alignment and construction tolerances

  20. RF characterization and testing of ridge waveguide transitions for RF power couplers

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Rajesh; Jose, Mentes; Singh, G.N. [Ion Accelerator Development Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Kumar, Girish [Department of Electrical Engineering, IIT Bombay, Mumbai 400076,India (India); Bhagwat, P.V. [Ion Accelerator Development Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2016-12-01

    RF characterization of rectangular to ridge waveguide transitions for RF power couplers has been carried out by connecting them back to back. Rectangular waveguide to N type adapters are first calibrated by TRL method and then used for RF measurements. Detailed information is obtained about their RF behavior by measurements and full wave simulations. It is shown that the two transitions can be characterized and tuned for required return loss at design frequency of 352.2 MHz. This opens the possibility of testing and conditioning two transitions together on a test bench. Finally, a RF coupler based on these transitions is coupled to an accelerator cavity. The power coupler is successfully tested up to 200 kW, 352.2 MHz with 0.2% duty cycle.

  1. 47 CFR 101.1425 - RF safety.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false RF safety. 101.1425 Section 101.1425 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE... safety. MVDDS stations in the 12.2-12.7 GHz frequency band do not operate with output powers that equal...

  2. High-powered, solid-state rf systems

    International Nuclear Information System (INIS)

    Reid, D.W.

    1987-01-01

    Over the past two years, the requirement to supply megawatts of rf power for space-based applications at uhf and L-band frequencies has caused dramatic increases in silicon solid-state power capabilities in the frequency range from 10 to 3000 MHz. Radar and communications requirements have caused similar increases in gallium arsenide solid-state power capabilities in the frequency ranges from 3000 to 10,000 MHz. This paper reviews the present state of the art for solid-state rf amplifiers for frequencies from 10 to 10,000 MHz. Information regarding power levels, size, weight, and cost will be given. Technical specifications regarding phase and amplitude stability, efficiency, and system architecture will be discussed. Solid-stage rf amplifier susceptibility to radiation damage will also be examined

  3. High power RF oscillator with Marx generators

    International Nuclear Information System (INIS)

    Murase, Hiroshi; Hayashi, Izumi

    1980-01-01

    A method to maintain RF oscillation by using many Marx generators was proposed and studied experimentally. Many charging circuits were connected to an oscillator circuit, and successive pulsed charging was made. This successive charging amplified and maintained the RF oscillation. The use of vacuum gaps and high power silicon diodes improved the characteristics of RF current cut-off of the circuit. The efficiency of the pulsed charging from Marx generators to a condenser was theoretically investigated. The theoretical result showed the maximum efficiency of 0.98. The practical efficiency obtained by using a proposed circuit with a high power oscillator was in the range 0.50 to 0.56. The obtained effective output power of the RF pulses was 11 MW. The maximum holding time of the RF pulses was about 21 microsecond. (Kato, T.)

  4. High RF power test of a CFC antenna module for lower hybrid current drive

    International Nuclear Information System (INIS)

    Maebara, S.; Seki, M.; Ikeda, Y.; Kiyono, K.; Suganuma, K.; Imai, T.; Goniche, M.; Bibet, Ph.; Brossaud, J.; Cano, V.; Kazarian-Vibert, F.; Froissard, P.; Rey, G.

    1998-01-01

    A mock-up of a 3.7 GHz Lower Hybrid Current Drive (LHCD) antenna module was fabricated from Carbon Fibre Composite (CFC) for the development of heat resistive low Z front facing the plasma. This 2 divided waveguide module is made from CFC plates and rods which are Cu-plated to reduce the RF losses. The withstand-voltage, the RF properties and the outgassing rates for long pulses and high RF power were tested at the Lower Hybrid test bed facility of Cadarache. A reference module made from Dispersion Strengthened Copper (DSC) was also fabricated. After the short pulse conditioning, long pulses with a power density ranging between 50 and 150 MW/m 2 were performed with no breakdowns on the CFC module. It was also checked that the highest power density, up to 150 MW/m 2 , could be transmitted when the waveguides are filled with H2 at a pressure of 5 x 10 -2 Pa. During a long pulse, the power reflection coefficient remains low in the 0.8-1.3 % range and no significant change in the reflection coefficient is measured after the thermal cycling provided by the long pulse operation. From thermocouple measurements, RF losses of the copper coated CFC and the DSC modules were compared. No significant differences were measured. From pressure measurements, it was found that the outgassing rate of Cu-plated CFC is about 6-7 times larger than of DSC at 300 deg.C. It is concluded that a CFC module is an attractive candidate for the hardening of the tip of the LHCD antenna. (author)

  5. High power rf component testing for the NLC

    International Nuclear Information System (INIS)

    Vlieks, A.E.; Fowkes, W.R.; Loewen, R.J.; Tantawi, S.G.

    1998-09-01

    In the Next Linear Collider (NLC), the high power rf components must be capable of handling peak rf power levels in excess of 600 MW. In the current view of the NLC, even the rectangular waveguide components must transmit at least 300 MW rf power. At this power level, peak rf fields can greatly exceed 100 MV/m. The authors present recent results of high power tests performed at the Accelerator Structure Test Area (ASTA) at SLAC. These tests are designed to investigate the rf breakdown limits of several new components potentially useful for the NLC. In particular, the authors tested a new TE 01 --TE 10 circular to rectangular wrap-around mode converter, a modified (internal fin) Magic Tee hybrid, and an upgraded flower petal mode converter

  6. Development and advances in conventional high power RF systems

    International Nuclear Information System (INIS)

    Wilson, P.B.

    1995-06-01

    The development of rf systems capable of producing high peak power (hundreds of megawatts) at relatively short pulse lengths (0.1--5 microseconds) is currently being driven mainly by the requirements of future high energy linear colliders, although there may be applications to industrial, medical and research linacs as well. The production of high peak power rf typically involves four basic elements: a power supply to convert ac from the ''wall plug'' to dc; a modulator, or some sort of switching element, to produce pulsed dc power; an rf source to convert the pulsed dc to pulsed rf power; and possibly an rf pulse compression system to further enhance the peak rf power. Each element in this rf chain from wall plug to accelerating structure must perform with high efficiency in a linear collider application, such that the overall system efficiency is 30% or more. Basic design concepts are discussed for klystrons, modulators and rf pulse compression systems, and their present design status is summarized for applications to proposed linear colliders

  7. Embedded control system for high power RF amplifiers

    International Nuclear Information System (INIS)

    Sharma, Deepak Kumar; Gupta, Alok Kumar; Jain, Akhilesh; Hannurkar, P.R.

    2011-01-01

    RF power devices are usually very sensitive to overheat and reflected RF power; hence a protective interlock system is required to be embedded with high power solid state RF amplifiers. The solid state RF amplifiers have salient features of graceful degradation and very low mean time to repair (MTTR). In order to exploit these features in favour of lowest system downtime, a real-time control system is embedded with high power RF amplifiers. The control system is developed with the features of monitoring, measurement and network publishing of various parameters, historical data logging, alarm generation, displaying data to the operator and tripping the system in case of any interlock failure. This paper discusses the design philosophy, features, functions and implementation details of the embedded control system. (author)

  8. Series-Tuned High Efficiency RF-Power Amplifiers

    DEFF Research Database (Denmark)

    Vidkjær, Jens

    2008-01-01

    An approach to high efficiency RF-power amplifier design is presented. It addresses simultaneously efficiency optimization and peak voltage limitations when transistors are pushed towards their power limits.......An approach to high efficiency RF-power amplifier design is presented. It addresses simultaneously efficiency optimization and peak voltage limitations when transistors are pushed towards their power limits....

  9. A 62GHz inductor-peaked rectifier with 7% efficiency

    NARCIS (Netherlands)

    Gao, H.; Matters - Kammerer, M.; Milosevic, D.; Roermund, van A.H.M.; Baltus, P.G.M.

    2013-01-01

    This paper presents the first 62 GHz fully onchip RF-DC rectifier in 65nm CMOS technology. The rectifier is the bottleneck in realizing on-chip wireless power receivers. In this paper, efficiency problems of the mm-wave rectifier are discussed and the inductor-peaked rectifier structure is proposed

  10. High power RF systems for the BNL ERL project

    Energy Technology Data Exchange (ETDEWEB)

    Zaltsman, A.; Lambiase, R.

    2011-03-28

    The Energy Recovery Linac (ERL) project, now under construction at Brookhaven National Laboratory, requires two high power RF systems. The first RF system is for the 703.75 MHz superconducting electron gun. The RF power from this system is used to drive nearly half an Ampere of beam current to 2 MeV. There is no provision to recover any of this energy so the minimum amplifier power is 1 MW. It consists of 1 MW CW klystron, transmitter and power supplies, 1 MW circulator, 1 MW dummy load and a two-way power splitter. The second RF system is for the 703.75 MHz superconducting cavity. The system accelerates the beam to 54.7 MeV and recovers this energy. It will provide up to 50 kW of CW RF power to the cavity. It consists of 50 kW transmitter, circulator, and dummy load. This paper describes the two high power RF systems and presents the test data for both.

  11. Development of Low-Noise Small-Area 24 GHz CMOS Radar Sensor

    Directory of Open Access Journals (Sweden)

    Min Yoon

    2016-01-01

    Full Text Available We present a low-noise small-area 24 GHz CMOS radar sensor for automotive collision avoidance. This sensor is based on direct-conversion pulsed-radar architecture. The proposed circuit is implemented using TSMC 0.13 μm RF (radio frequency CMOS (fT/fmax=120/140 GHz technology, and it is powered by a 1.5 V supply. This circuit uses transmission lines to reduce total chip size instead of real bulky inductors for input and output impedance matching. The layout techniques for RF are used to reduce parasitic capacitance at the band of 24 GHz. The proposed sensor has low cost and low power dissipation since it is realized using CMOS process. The proposed sensor showed the lowest noise figure of 2.9 dB and the highest conversion gain of 40.2 dB as compared to recently reported research results. It also showed small chip size of 0.56 mm2, low power dissipation of 39.5 mW, and wide operating temperature range of −40 to +125°C.

  12. Low reflectance high power RF load

    Science.gov (United States)

    Ives, R. Lawrence; Mizuhara, Yosuke M.

    2016-02-02

    A load for traveling microwave energy has an absorptive volume defined by cylindrical body enclosed by a first end cap and a second end cap. The first end cap has an aperture for the passage of an input waveguide with a rotating part that is coupled to a reflective mirror. The inner surfaces of the absorptive volume consist of a resistive material or are coated with a coating which absorbs a fraction of incident RF energy, and the remainder of the RF energy reflects. The angle of the reflector and end caps is selected such that reflected RF energy dissipates an increasing percentage of the remaining RF energy at each reflection, and the reflected RF energy which returns to the rotating mirror is directed to the back surface of the rotating reflector, and is not coupled to the input waveguide. Additionally, the reflector may have a surface which generates a more uniform power distribution function axially and laterally, to increase the power handling capability of the RF load. The input waveguide may be corrugated for HE11 mode input energy.

  13. KEY COMPARISON: CCEM.RF-K9: International comparison of thermal noise standards between 12.4 GHz and 18 GHz (GT-RF/99-1)

    Science.gov (United States)

    Allal, Djamel; Achkar, Joseph

    2006-01-01

    An international comparison of thermal noise-power measurements has been carried out among five national metrology institutes between 12.4 GHz and 18 GHz. Four transfer standards were measured. The following national institutes participated: BNM-LCIE (France), NPL (United Kingdom), PTB (Germany), NIST (United States of America) and VNIIFTRI (Russia). The Bureau National de Métrologie-Laboratoire Central des Industries Electriques (France) acted as the pilot laboratory for the comparison. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCEM, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA).

  14. Towards a 1 MW, 170 GHz gyrotron design for fusion application

    Science.gov (United States)

    Kumar, Anil; Kumar, Nitin; Singh, Udaybir; Bhattacharya, Ranajoy; Yadav, Vivek; Sinha, A. K.

    2013-03-01

    The electrical design of different components of 1 MW, 170 GHz gyrotron such as, magnetron injection gun, cylindrical interaction cavity and collector and RF window is presented in this article. Recently, a new project related to the development of 170 GHz, 1 MW gyrotron has been started for the Indian Tokamak. TE34,10 mode is selected as the operating mode after studied the problem of mode competition. The triode type geometry is selected for the design of magnetron injection gun (MIG) to achieve the required beam parameters. The maximum transverse velocity spread of 3.28% at the velocity ratio of 1.34 is obtained in simulations for a 40 A, 80 kV electron beam. The RF output power of more than 1 MW with 36.5% interaction efficiency without depressed collector is predicted by simulation in single-mode operation at 170 GHz frequency. The simulated single-stage depressed collector of the gyrotron predicted the overall device efficiencies >55%. Due to the very good thermal conductivity and very weak dependency of the dielectric parameters on temperature, PACVD diamond is selected for window design for the transmission of RF power. The in-house developed code MIGSYN and GCOMS are used for initial geometry design of MIG and mode selection respectively. Commercially available simulation tools MAGIC and ANSYS are used for beam-wave interaction and mechanical analysis respectively.

  15. Design of an L-band normally conducting RF gun cavity for high peak and average RF power

    Energy Technology Data Exchange (ETDEWEB)

    Paramonov, V., E-mail: paramono@inr.ru [Institute for Nuclear Research of Russian Academy of Sciences, 60-th October Anniversary prospect 7a, 117312 Moscow (Russian Federation); Philipp, S. [Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, D-15738 Zeuthen (Germany); Rybakov, I.; Skassyrskaya, A. [Institute for Nuclear Research of Russian Academy of Sciences, 60-th October Anniversary prospect 7a, 117312 Moscow (Russian Federation); Stephan, F. [Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, D-15738 Zeuthen (Germany)

    2017-05-11

    To provide high quality electron bunches for linear accelerators used in free electron lasers and particle colliders, RF gun cavities operate with extreme electric fields, resulting in a high pulsed RF power. The main L-band superconducting linacs of such facilities also require a long RF pulse length, resulting in a high average dissipated RF power in the gun cavity. The newly developed cavity based on the proven advantages of the existing DESY RF gun cavities, underwent significant changes. The shape of the cells is optimized to reduce the maximal surface electric field and RF loss power. Furthermore, the cavity is equipped with an RF probe to measure the field amplitude and phase. The elaborated cooling circuit design results in a lower temperature rise on the cavity RF surface and permits higher dissipated RF power. The paper presents the main solutions and results of the cavity design.

  16. Development of multi-channel high power rectangular RF window for LHCD system employing high temperature vacuum brazing technique

    International Nuclear Information System (INIS)

    Sharma, P K; Ambulkar, K K; Parmar, P R; Virani, C G; Thakur, A L; Joshi, L M; Nangru, S C

    2010-01-01

    A 3.7 GHz., 120 kW (pulsed), lower hybrid current drive (LHCD) system is employed to drive non-inductive plasma current in ADITYA tokamak. The rf power is coupled to the plasma through grill antenna and is placed in vacuum environment. A vacuum break between the pressurized transmission line and the grill antenna is achieved with the help of a multi (eight) channel rectangular RF vacuum window. The phasing between adjacent channels of 8-channel window (arranged in two rows) is important for launching lower hybrid waves and each channel should have independent vacuum window so that phase information is retained. The geometrical parameter of the grill antenna, like periodicity (9mm), channel dimensions (cross sectional dimension of 76mm x 7mm), etc. is to be maintained. These design constraint demanded a development of a multi channel rectangular RF vacuum window. To handle rf losses and thermal effects, high temperature vacuum brazing techniques is desired. Based on the above requirements we have successfully developed a multi channel rectangular rf vacuum window employing high temperature vacuum brazing technique. During the development process we could optimize the chemical processing parameters, brazing process parameters, jigs and fixtures for high temperature brazing and leak testing, etc. Finally the window is tested for low power rf performance using VNA. In this paper we would present the development of the said window in detail along with its mechanical, vacuum and rf performances.

  17. Development of multi-channel high power rectangular RF window for LHCD system employing high temperature vacuum brazing technique

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, P K; Ambulkar, K K; Parmar, P R; Virani, C G; Thakur, A L [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India); Joshi, L M; Nangru, S C, E-mail: pramod@ipr.res.i [Central Electronics Engineering Research Institute, Pilani, Rajasthan 333 031 (India)

    2010-02-01

    A 3.7 GHz., 120 kW (pulsed), lower hybrid current drive (LHCD) system is employed to drive non-inductive plasma current in ADITYA tokamak. The rf power is coupled to the plasma through grill antenna and is placed in vacuum environment. A vacuum break between the pressurized transmission line and the grill antenna is achieved with the help of a multi (eight) channel rectangular RF vacuum window. The phasing between adjacent channels of 8-channel window (arranged in two rows) is important for launching lower hybrid waves and each channel should have independent vacuum window so that phase information is retained. The geometrical parameter of the grill antenna, like periodicity (9mm), channel dimensions (cross sectional dimension of 76mm x 7mm), etc. is to be maintained. These design constraint demanded a development of a multi channel rectangular RF vacuum window. To handle rf losses and thermal effects, high temperature vacuum brazing techniques is desired. Based on the above requirements we have successfully developed a multi channel rectangular rf vacuum window employing high temperature vacuum brazing technique. During the development process we could optimize the chemical processing parameters, brazing process parameters, jigs and fixtures for high temperature brazing and leak testing, etc. Finally the window is tested for low power rf performance using VNA. In this paper we would present the development of the said window in detail along with its mechanical, vacuum and rf performances.

  18. 34 GHz, 45 MW pulsed magnicon

    International Nuclear Information System (INIS)

    Nezhevenko, Oleg A.; LaPointe, Michael A.; Yakovlev, Vyacheslav P.; Hirshfield, Jay L.; Serdobintsev, Gennady V.; Kuznetsov, Gennady I.; Persov, Boris Z.; Fix, Alexander

    2002-01-01

    A high efficiency, high power magnicon at 34.272 GHz has been designed and built as a microwave source to develop RF technology for a future multi-TeV electron-positron linear collider. The tube is designed to provide a peak output power of ∼45 MW in a 1 microsecond pulse, with a gain of 55 dB, using a 500 kV, 220 A, 1 mm-diameter electron beam. The status of the tube itself as well as the near-term experimental program is presented

  19. An adjustable RF tuning element for microwave, millimeter wave, and submillimeter wave integrated circuits

    Science.gov (United States)

    Lubecke, Victor M.; Mcgrath, William R.; Rutledge, David B.

    1991-01-01

    Planar RF circuits are used in a wide range of applications from 1 GHz to 300 GHz, including radar, communications, commercial RF test instruments, and remote sensing radiometers. These circuits, however, provide only fixed tuning elements. This lack of adjustability puts severe demands on circuit design procedures and materials parameters. We have developed a novel tuning element which can be incorporated into the design of a planar circuit in order to allow active, post-fabrication tuning by varying the electrical length of a coplanar strip transmission line. It consists of a series of thin plates which can slide in unison along the transmission line, and the size and spacing of the plates are designed to provide a large reflection of RF power over a useful frequency bandwidth. Tests of this structure at 1 GHz to 3 Ghz showed that it produced a reflection coefficient greater than 0.90 over a 20 percent bandwidth. A 2 GHz circuit incorporating this tuning element was also tested to demonstrate practical tuning ranges. This structure can be fabricated for frequencies as high as 1000 GHz using existing micromachining techniques. Many commercial applications can benefit from this micromechanical RF tuning element, as it will aid in extending microwave integrated circuit technology into the high millimeter wave and submillimeter wave bands by easing constraints on circuit technology.

  20. High Power RF Test Facility at the SNS

    CERN Document Server

    Kang, Yoon W; Campisi, Isidoro E; Champion, Mark; Crofford, Mark; Davis, Kirk; Drury, Michael A; Fuja, Ray E; Gurd, Pamela; Kasemir, Kay-Uwe; McCarthy, Michael P; Powers, Tom; Shajedul Hasan, S M; Stirbet, Mircea; Stout, Daniel; Tang, Johnny Y; Vassioutchenko, Alexandre V; Wezensky, Mark

    2005-01-01

    RF Test Facility has been completed in the SNS project at ORNL to support test and conditioning operation of RF subsystems and components. The system consists of two transmitters for two klystrons powered by a common high voltage pulsed converter modulator that can provide power to two independent RF systems. The waveguides are configured with WR2100 and WR1150 sizes for presently used frequencies: 402.5 MHz and 805 MHz. Both 402.5 MHz and 805 MHz systems have circulator protected klystrons that can be powered by the modulator capable of delivering 11 MW peak and 1 MW average power. The facility has been equipped with computer control for various RF processing and complete dual frequency operation. More than forty 805 MHz fundamental power couplers for the SNS superconducting linac (SCL) cavitites have been RF conditioned in this facility. The facility provides more than 1000 ft2 floor area for various test setups. The facility also has a shielded cave area that can support high power tests of normal conducti...

  1. Eighth CW and High Average Power RF Workshop

    CERN Document Server

    2014-01-01

    We are pleased to announce the next Continuous Wave and High Average RF Power Workshop, CWRF2014, to take place at Hotel NH Trieste, Trieste, Italy from 13 to 16 May, 2014. This is the eighth in the CWRF workshop series and will be hosted by Elettra - Sincrotrone Trieste S.C.p.A. (www.elettra.eu). CWRF2014 will provide an opportunity for designers and users of CW and high average power RF systems to meet and interact in a convivial environment to share experiences and ideas on applications which utilize high-power klystrons, gridded tubes, combined solid-state architectures, high-voltage power supplies, high-voltage modulators, high-power combiners, circulators, cavities, power couplers and tuners. New ideas for high-power RF system upgrades and novel ways of RF power generation and distribution will also be discussed. CWRF2014 sessions will start on Tuesday morning and will conclude on Friday lunchtime. A visit to Elettra and FERMI will be organized during the workshop. ORGANIZING COMMITTEE (OC): Al...

  2. An Automatic Control System for Conditioning 30 GHz Accelerating Structures

    CERN Document Server

    Dubrovskiy, A

    2008-01-01

    A software application programme has been developed to allow fast and automatic high-gradient conditioning of accelerating structures at 30 GHz in CTF3. The specificity of the application is the ability to control the high-power electron beam which produces the 30 GHz RF power used to condition the accelerating structures. The programme permits operation round the clock with minimum manpower requirements. In this paper the fast control system, machine control system, logging system, graphical user control interface and logging data visualization are described. An outline of the conditioning control system itself and of the feedback controlling peak power and pulse length is given. The software allows different types of conditioning strategies to be programmed

  3. An Implantable Cardiovascular Pressure Monitoring System with On-Chip Antenna and RF Energy Harvesting

    Directory of Open Access Journals (Sweden)

    Yu-Chun Liu

    2015-08-01

    Full Text Available An implantable wireless system with on-chip antenna for cardiovascular pressure monitor is studied. The implantable device is operated in a batteryless manner, powered by an external radio frequency (RF power source. The received RF power level can be sensed and wirelessly transmitted along with blood pressure signal for feedback control of the external RF power. The integrated electronic system, consisting of a capacitance-to-voltage converter, an adaptive RF powering system, an RF transmitter and digital control circuitry, is simulated using a TSMC 0.18 μm CMOS technology. The implanted RF transmitter circuit is combined with a low power voltage-controlled oscillator resonating at 5.8 GHz and a power amplifier. For the design, the simulation model is setup using ADS and HFSS software. The dimension of the antenna is 1 × 0.6 × 4.8 mm3 with a 1 × 0.6 mm2 on-chip circuit which is small enough to place in human carotid artery.

  4. High power RF transmission line component development

    International Nuclear Information System (INIS)

    Hong, B. G.; Hwang, C. K.; Bae, Y. D.; Yoon, J. S.; Wang, S. J.; Gu, S. H.; Yang, J. R.; Hahm, Y. S.; Oh, G. S.; Lee, J. R.; Lee, W. I.; Park, S. H.; Kang, M. S.; Oh, S. H.; Lee, W.I.

    1999-12-01

    We developed the liquid stub and phase shifter which are the key high RF power transmission line components. They show reliable operation characteristics and increased insulation capability, and reduced the size by using liquid (silicon oil, dielectric constant ε=2.72) instead of gas for insulating dielectric material. They do not have finger stock for the electric contact so the local temperature rise due to irregular contact and RF breakdown due to scratch in conductor are prevented. They can be utilized in broadcasting, radar facility which require high RF power transmission. Moreover, they are key components in RF heating system for fusion reactor. (author)

  5. High power RF transmission line component development

    Energy Technology Data Exchange (ETDEWEB)

    Hong, B. G.; Hwang, C. K.; Bae, Y. D.; Yoon, J. S.; Wang, S. J.; Gu, S. H.; Yang, J. R.; Hahm, Y. S.; Oh, G. S.; Lee, J. R.; Lee, W. I.; Park, S. H.; Kang, M. S.; Oh, S. H.; Lee, W.I

    1999-12-01

    We developed the liquid stub and phase shifter which are the key high RF power transmission line components. They show reliable operation characteristics and increased insulation capability, and reduced the size by using liquid (silicon oil, dielectric constant {epsilon}=2.72) instead of gas for insulating dielectric material. They do not have finger stock for the electric contact so the local temperature rise due to irregular contact and RF breakdown due to scratch in conductor are prevented. They can be utilized in broadcasting, radar facility which require high RF power transmission. Moreover, they are key components in RF heating system for fusion reactor. (author)

  6. Analysis of a prototype of a novel 1.5 MW, 170 GHz coaxial cavity gyrotron

    International Nuclear Information System (INIS)

    Rzesnicki, T.

    2007-06-01

    A 170 GHz, 2 MW coaxial cavity gyrotron is under development at the Institut fuer Hochleistungsimpuls- und Mikrowellentechnik (IHM) at Forschungszentrum Karlsruhe (FZK) which will be used as a high power microwave source for heating, current drive and stability control of plasmas in the International Thermonuclear Experimental Reactor (ITER). At frequencies above about 100 GHz the output power of conventional gyrotrons with cylindrical hollow waveguide cavities is limited to 1 MW in CW operation mainly due to the high Ohmic losses and the space charge voltage depression of the electron beam. The coaxial geometry enables a reduction of the mode competition in the gyrotron resonator and decreases also the influence of the beam voltage depression. As result a very high order operating mode (for example TE34,19 at 170 GHz) can be chosen which ultimately allows to increase the output power of the gyrotron in CW operation to a value as high as 2 MW. A first prototype of the 170 GHz, 2 MW coaxial cavity gyrotron has been designed, built and experimentally tested in short pulse operation at FZK. The main goal of this work was to investigate experimentally the design of the critical gyrotron components such as electron gun, resonator and a quasi-optical RF system. Those components are same as used in the first industrial coaxial prototype gyrotron for ITER. During the experiments a strong instability was observed inside the gyrotron tube due to the excitation of parasitic low frequency oscillations. The mechanism of the oscillations has been studied and possibilities for their suppression of these oscillations are proposed and experimentally verified. The RF output system is one of the most critical components. It is responsible for the coupling of the gyrotron power out of the gyrotron by converting the microwave power generated in the TE 34,19 -mode into a fundamental free space TEM 0,0 ''Gaussian'' mode. The performance of the RF output system has been tested in low

  7. Design of inductively detuned RF extraction cavities for the Relativistic Klystron Two Beam Accelerator

    International Nuclear Information System (INIS)

    Henestroza, E.; Yu, S.S.; Li, H.

    1995-04-01

    An inductively detuned traveling wave cavity for the Relativistic Klystron Two Beam Accelerator expected to extract high RF power at 11. 424 GHz for the 1 TeV Center of Mass Next Linear Collider has been designed. Longitudinal beam dynamics studies led to the following requirements on cavity design: (a) Extraction of 360 MW of RF power with RF component of the current being 1.15 kAmps at 11.424 GHz, (b) Inductively detuned traveling wave cavity with wave phase velocity equal to 4/3 the speed of light, (c) Output cavity with appropriate Q ext and eigenfrequency for proper matching. Furthermore, transverse beam dynamics require low shunt impedances to avoid the beam break-up instability. We describe the design effort to meet these criteria based on frequency-domain and time-domain computations using 2D- and 3D- electromagnetic codes

  8. Photonic-Based RF Transceiver for UWB Multi-Carrier Wireless Systems

    Directory of Open Access Journals (Sweden)

    Filippo Scotti

    2014-05-01

    Full Text Available In this paper an all-optical system exploitable as the core structure for a photonic-based RF transceiver is presented. The proposed scheme is able to simultaneously perform either up- or down-conversion of multiple frequency Ultra-Wide Band (UWB RF signals, employing a single Mode-Locking Laser (MLL. The system has been experimentally demonstrated and tested by up- and down-converting orthogonal frequency division multiplexing (OFDM signals over a bandwidth of about 4 GHz. The scheme’s performance has been validated by measuring the error vector magnitude (EVM of the OFDM signals over the whole considered RF spectrum (from 5 GHz to 26.5 GHz, both in up-conversion and in down-conversion. The measurements show negligible power penalties, lower than 0.5 dB. Since the proposed scheme can act either as an up- or down-converter, and it is composed by easily integratable devices, two identical structures can be combined on a single integrated platform, sharing a single MLL, to build a compact and efficient UWB transceiver.

  9. Measurements of the temporal and spatial phase variations of a 33 GHz pulsed free electron laser amplifier and application to high gradient RF acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Volfbeyn, P.; Bekefi, G. [Massachusetts Institute of Technology, Cambridge, MA (United States)

    1995-12-31

    We report the results of temporal and spatial measurements of phase of a pulsed free electron laser amplifier (FEL) operating in combined wiggler and axial guide magnetic fields. The 33 GHz FEL is driven by a mildly relativistic electron beam (750 kV, 90-300 A, 30 ns) and generates 61 MW of radiation with a high power magnetron as the input source. The phase is measured by an interferometric technique from which frequency shifting is determined. The results are simulated with a computer code. Experimental studies on a CERN-CLIC 32.98 GHz 26-cell high gradient accelerating section (HGA) were carried out for input powers from 0.1 MW to 35 MW. The FEL served as the r.f. power source for the HGA. The maximum power in the transmitted pulse was measured to be 15 MW for an input pulse of 35 MW. The theoretically calculated shunt impedance of 116 M{Omega}/m predicts a field gradient of 65 MeV/m inside the HGA. For power levels >3MW the pulse transmitted through the HGA was observed to be shorter than the input pulse and pulse shortening became more serious with increasing power input. At the highest power levels the output pulse length (about 5 nsec) was about one quarter of the input pulse length. Various tests suggest that these undesirable effects occur in the input coupler to the HGA. Light and X-ray production inside the HGA have been observed.

  10. An 8–18 GHz broadband high power amplifier

    International Nuclear Information System (INIS)

    Wang Lifa; Yang Ruixia; Li Yanlei; Wu Jingfeng

    2011-01-01

    An 8–18 GHz broadband high power amplifier (HPA) with a hybrid integrated circuit (HIC) is designed and fabricated. This HPA is achieved with the use of a 4-fingered micro-strip Lange coupler in a GaAs MMIC process. In order to decrease electromagnetic interference, a multilayer AlN material with good heat dissipation is adopted as the carrier of the power amplifier. When the input power is 25 dBm, the saturated power of the continuous wave (CW) outputted by the power amplifier is more than 39 dBm within the frequency range of 8–13 GHz, while it is more than 38.6 dBm within other frequency ranges. We obtain the peak power output, 39.4 dBm, at the frequency of 11.9 GHz. In the whole frequency band, the power-added efficiency is more than 18%. When the input power is 18 dBm, the small signal gain is 15.7 ± 0.7 dB. The dimensions of the HPA are 25 × 15 × 1.5 mm 3 . (semiconductor integrated circuits)

  11. Development of C-band High-Power Mix-Mode RF Window

    CERN Document Server

    Michizono, S; Matsumoto, T; Nakao, K; Takenaka, T

    2004-01-01

    High power c-band (5712 MHz) rf system (40 MW, 2 μs, 50 Hz) is under consideration for the electron-linac upgrade aimed for the super KEKB project. An rf window, which isolates the vacuum and pass the rf power, is one of the most important components for the rf system. The window consists of a ceramic disk and a pill-box housing. The mix-mode rf window is designed so as to decrease the electric field on the periphery of the ceramic disk. A resonant ring is assembled in order to examine the high-power transmission test. The window was tested up to the transmission power of 160 MW. The rf losses are also measured during the rf operation.

  12. Results of RIKEN superconducting electron cyclotron resonance ion source with 28 GHz.

    Science.gov (United States)

    Higurashi, Y; Ohnishi, J; Nakagawa, T; Haba, H; Tamura, M; Aihara, T; Fujimaki, M; Komiyama, M; Uchiyama, A; Kamigaito, O

    2012-02-01

    We measured the beam intensity of highly charged heavy ions and x-ray heat load for RIKEN superconducting electron cyclotron resonance ion source with 28 GHz microwaves under the various conditions. The beam intensity of Xe(20+) became maximum at B(min) ∼ 0.65 T, which was ∼65% of the magnetic field strength of electron cyclotron resonance (B(ECR)) for 28 GHz microwaves. We observed that the heat load of x-ray increased with decreasing gas pressure and field gradient at resonance zone. It seems that the beam intensity of highly charged heavy ions with 28 GHz is higher than that with 18 GHz at same RF power.

  13. Power excitation by the use of a rf wiggler

    International Nuclear Information System (INIS)

    Ruggiero, A.G.

    1992-01-01

    It is well-known that there are difficulties to obtain rf power sources of significant amount for frequencies larger than 3 GHz. Yet, rf sources in the centimeter/millimeter wavelength range would be very useful to drive, for example, high-gradient accelerating linacs for electron-positron linear colliders. We would like to propose an alternative method to produce such radiation. It makes use of a short electron bunch traveling along the axis of a waveguide which is at the same time excited by a TM propagating electromagnetic wave. It is well known that radiation can be obtained by wiggling the motion of the electrons in a direction perpendicular to the main one. The wiggling action can be included by electromagnetic fields in a fashion similar to the one caused by wiggler magnets. We found that an interesting mode of operation is to drive the waveguide with an excitation frequency very close to the cut off. For such excitation, the corresponding e.m. wave travels with a very large phase velocity which in turn has the effect to increase the wiggling action on the electron bunch. Our method, to be effective, relies also on the coherence of the radiation; that is the bunch length is taken to be considerably shorter than the radiated wavelength. In this case, the total power radiated should be proportional to the square of the total number of electrons in the bunch. The paper concludes with possible modes of operation, a list of performance parameters and a proposed experimental set-up

  14. Operation of a 1.3 GHz, 10 MW Multiple Beam Klystron

    CERN Document Server

    Bohlen, H P; Cattelino, M; Cox, L; Cusick, M; Forrest, S; Friedlander, F; Staprans, A; Wright, E; Zitelli, L

    2004-01-01

    Results will be reported for a 1.3 GHz, 10 MW multiple beam klystron that is being developed for the TESLA linear accelerator facility. The design parameters for the device are 10 MW peak RF output power with 150 kW average power, 1.5 ms pulse length, 65% efficiency, 50 dB gain, and 2.0 A/cm2

  15. The TESLA RF System

    International Nuclear Information System (INIS)

    Choroba, S.

    2003-01-01

    The TESLA project proposed by the TESLA collaboration in 2001 is a 500 to 800GeV e+/e- linear collider with integrated free electron laser facility. The accelerator is based on superconducting cavity technology. Approximately 20000 superconducting cavities operated at 1.3GHz with a gradient of 23.4MV/m or 35MV/m will be required to achieve the energy of 500GeV or 800GeV respectively. For 500GeV ∼600 RF stations each generating 10MW of RF power at 1.3GHz at a pulse duration of 1.37ms and a repetition rate of 5 or 10Hz are required. The original TESLA design was modified in 2002 and now includes a dedicated 20GeV electron accelerator in a separate tunnel for free electron laser application. The TESLA XFEL will provide XFEL radiation of unprecedented peak brilliance and full transverse coherence in the wavelength range of 0.1 to 6.4nm at a pulse duration of 100fs. The technology of both accelerators, the TESLA linear collider and the XFEL, will be identical, however the number of superconducting cavities and RF stations for the XFEL will be reduced to 936 and 26 respectively. This paper describes the layout of the entire RF system of the TESLA linear collider and the TESLA XFEL and gives an overview of its various subsystems and components

  16. 30 nm T-gate enhancement-mode InAlN/AlN/GaN HEMT on SiC substrates for future high power RF applications

    Science.gov (United States)

    Murugapandiyan, P.; Ravimaran, S.; William, J.

    2017-08-01

    The DC and RF performance of 30 nm gate length enhancement mode (E-mode) InAlN/AlN/GaN high electron mobility transistor (HEMT) on SiC substrate with heavily doped source and drain region have been investigated using the Synopsys TCAD tool. The proposed device has the features of a recessed T-gate structure, InGaN back barrier and Al2O3 passivated device surface. The proposed HEMT exhibits a maximum drain current density of 2.1 A/mm, transconductance {g}{{m}} of 1050 mS/mm, current gain cut-off frequency {f}{{t}} of 350 GHz and power gain cut-off frequency {f}\\max of 340 GHz. At room temperature the measured carrier mobility (μ), sheet charge carrier density ({n}{{s}}) and breakdown voltage are 1580 cm2/(V \\cdot s), 1.9× {10}13 {{cm}}-2, and 10.7 V respectively. The superlatives of the proposed HEMTs are bewitching competitor or future sub-millimeter wave high power RF VLSI circuit applications.

  17. RF Power Generation in LHC

    CERN Document Server

    Brunner, O C; Valuch, D

    2003-01-01

    The counter-rotating proton beams in the Large Hadron Collider (LHC) will be captured and then accelerated to their final energies of 2 x 7 TeV by two identical 400 MHz RF systems. The RF power source required for each beam comprises eight 300 kW klystrons. The output power of each klystron is fed via a circulator and a waveguide line to the input coupler of a single-cell super-conducting (SC) cavity. Four klystrons are powered by a 100 kV, 40A AC/DC power converter, previously used for the operation of the LEP klystrons. A five-gap thyratron crowbar protects the four klystrons in each of these units. The technical specification and measured performance of the various high-power elements are discussed. These include the 400MHz/300kW klystrons with emphasis on their group delay and the three-port circulators, which have to cope with peak reflected power levels up to twice the simultaneously applied incident power of 300 kW. In addition, a novel ferrite loaded waveguide absorber, used as termination for port No...

  18. High Power RF Transmitters for ICRF Applications on EAST

    International Nuclear Information System (INIS)

    Mao Yuzhou; Yuan Shuai; Zhao Yanping; Zhang Xinjun; Chen Gen; Cheng Yan; Wang Lei; Ju Songqing; Deng Xu; Qin Chengming; Yang Lei; Kumazawa, R.

    2013-01-01

    An Ion Cyclotron Range of Frequency (ICRF) system with a radio frequency (RF) power of 4 × 1.5 MW was developed for the Experimental Advanced Superconducting Tokamak (EAST). High RF power transmitters were designed as a part of the research and development (R and D) for an ICRF system with long pulse operation at megawatt levels in a frequency range of 25 MHz to 70 MHz. Studies presented in this paper cover the following parts of the high power transmitter: the three staged high power amplifier, which is composed of a 5 kW wideband solid state amplifier, a 100 kW tetrode drive stage amplifier and a 1.5 MW tetrode final stage amplifier, and the DC high voltage power supply (HVPS). Based on engineering design and static examinations, the RF transmitters were tested using a matched dummy load where an RF output power of 1.5 MW was achieved. The transmitters provide 6 MW RF power in primary phase and will reach a level up to 12 MW after a later upgrade. The transmitters performed successfully in stable operations in EAST and HT-7 devices. Up to 1.8 MW of RF power was injected into plasmas in EAST ICRF heating experiments during the 2010 autumn campaign and plasma performance was greatly improved.

  19. Binary rf pulse compression experiment at SLAC

    International Nuclear Information System (INIS)

    Lavine, T.L.; Spalek, G.; Farkas, Z.D.; Menegat, A.; Miller, R.H.; Nantista, C.; Wilson, P.B.

    1990-06-01

    Using rf pulse compression it will be possible to boost the 50- to 100-MW output expected from high-power microwave tubes operating in the 10- to 20-GHz frequency range, to the 300- to 1000-MW level required by the next generation of high-gradient linacs for linear for linear colliders. A high-power X-band three-stage binary rf pulse compressor has been implemented and operated at the Stanford Linear Accelerator Center (SLAC). In each of three successive stages, the rf pulse-length is compressed by half, and the peak power is approximately doubled. The experimental results presented here have been obtained at low-power (1-kW) and high-power (15-MW) input levels in initial testing with a TWT and a klystron. Rf pulses initially 770 nsec long have been compressed to 60 nsec. Peak power gains of 1.8 per stage, and 5.5 for three stages, have been measured. This corresponds to a peak power compression efficiency of about 90% per stage, or about 70% for three stages, consistent with the individual component losses. The principle of operation of a binary pulse compressor (BPC) is described in detail elsewhere. We recently have implemented and operated at SLAC a high-power (high-vacuum) three-stage X-band BPC. First results from the high-power three-stage BPC experiment are reported here

  20. Can we estimate the cellular phone RF peak output power with a simple experiment?

    Science.gov (United States)

    Fioreze, Maycon; dos Santos Junior, Sauli; Goncalves Hönnicke, Marcelo

    2016-07-01

    Cellular phones are becoming increasingly useful tools for students. Since cell phones operate in the microwave bandwidth, they can be used to motivate students to demonstrate and better understand the properties of electromagnetic waves. However, since these waves operate at higher frequencies (L-band, from 800 MHz to 2 GHz) it is not simple to detect them. Usually, expensive real-time high frequency oscilloscopes are required. Indirect measurements are also possible through heat-based and diode-detector-based radio-frequency (RF) power sensors. Another didactic and intuitive way is to explore a simple and inexpensive detection system, based on the interference effect caused in the electronic circuit of TV and PC soundspeakers, and to try to investigate different properties of the cell phones’ RF electromagnetic waves, such as its power and modulated frequency. This manuscript proposes a trial to quantify these measurements, based on a simple Friis equation model and the time constant of the circuit used in the detection system, in order to show it didactically to the students and even allow them also to explore such a simple detection system at home.

  1. Can we estimate the cellular phone RF peak output power with a simple experiment?

    International Nuclear Information System (INIS)

    Fioreze, Maycon; Hönnicke, Marcelo Goncalves; Dos Santos Junior, Sauli

    2016-01-01

    Cellular phones are becoming increasingly useful tools for students. Since cell phones operate in the microwave bandwidth, they can be used to motivate students to demonstrate and better understand the properties of electromagnetic waves. However, since these waves operate at higher frequencies (L-band, from 800 MHz to 2 GHz) it is not simple to detect them. Usually, expensive real-time high frequency oscilloscopes are required. Indirect measurements are also possible through heat-based and diode-detector-based radio-frequency (RF) power sensors. Another didactic and intuitive way is to explore a simple and inexpensive detection system, based on the interference effect caused in the electronic circuit of TV and PC soundspeakers, and to try to investigate different properties of the cell phones’ RF electromagnetic waves, such as its power and modulated frequency. This manuscript proposes a trial to quantify these measurements, based on a simple Friis equation model and the time constant of the circuit used in the detection system, in order to show it didactically to the students and even allow them also to explore such a simple detection system at home. (paper)

  2. Advances in high-power rf amplifiers

    International Nuclear Information System (INIS)

    Tallerico, P.J.

    1979-01-01

    Several powerful accelerators and storage rings are being considered that will require tens or even hundreds of megawatts of continuous rf power. The economics of such large machines can be dictated by the cost and efficiency of the rf amplifiers. The overall design and performance of such narrow-band amplifiers, operating in the 50- to 1500-MHz region, are being theoretically studied as a function of frequency to determine the optimum rf amplifier output power, gain, efficiency, and dc power requirements. The state of the art for three types of amplifiers (gridded tubes, klystrons, and gyrocons) is considered and the development work necessary to improve each is discussed. The gyrocon is a new device, hence its various embodiments are discussed in detail. The Soviet designs are reviewed and the gyrocon's strengths and weaknesses are compared to other types of microwave amplifiers. The primary advantages of the gyrocon are the very large amount of power available from a single device and the excellent efficiency and stable operation. The klystron however, has much greater gain and is simpler mechanically. At very low frequencies, the small size of the gridded tube makes it the optimum choice for all but the most powerful systems

  3. Design Concepts for RF-DC Conversion in Particle Accelerator Systems

    CERN Document Server

    Caspers, F; Grudiev, A; Sapotta, H

    2010-01-01

    In many particle accelerators considerable amounts of RF power reaching the megawatt level are converted into heat in dummy loads. After an overview of RF power in the range 200 MHz to 1 GHz dissipated at CERN we discuss several developments that have come up in the past using vacuum tube technology for RF-DC conversion. Amongst those the developments of the cyclotron wave converter CWC appears most suitable. With the availability of powerful Schottky diodes the solid state converter aspect has to be addressed as well. One of the biggest problems of Schottky diode based structures is the junction capacity. GaAs and GaN Schottky diodes show a significant reduction of this junction capacity as compared to silicon. Small rectenna type converter units which have been already developed for microwave powered helicopters can be used in waveguides or with coaxial power dividers.

  4. Liquid Metal Droplet and Micro Corrugated Diaphragm RF-MEMS for reconfigurable RF filters

    Science.gov (United States)

    Irshad, Wasim

    Widely Tunable RF Filters that are small, cost-effective and offer ultra low power consumption are extremely desirable. Indeed, such filters would allow drastic simplification of RF front-ends in countless applications from cell phones to satellites in space by replacing switched-array of static acoustic filters and YIG filters respectively. Switched array of acoustic filters are de facto means of channel selection in mobile applications such as cell phones. SAW and BAW filters satisfy most criteria needed by mobile applications such as low cost, size and power consumption. However, the trade-off is a significant loss of 3-4 dB in modern cell phone RF front-end. This leads to need for power-hungry amplifiers and short battery life. It is a necessary trade-off since there are no better alternatives. These devices are in mm scale and consume mW. YIG filters dominate applications where size or power is not a constraint but demand excellent RF performance like low loss and high tuning ratio. These devices are measured in inches and require several watts to operate. Clearly, a tunable RF filter technology that would combine the cost, size and power consumption benefits of acoustic filters with excellent RF performance of YIG filters would be extremely desirable and imminently useful. The objective of this dissertation is to develop such a technology based upon RF-MEMS Evanescent-mode cavity filter. Two highly novel RF-MEMS devices have been developed over the course of this PhD to address the unique MEMS needs of this technology. The first part of the dissertation is dedicated to introducing the fundamental concepts of tunable cavity resonators and filters. This includes the physics behind it, key performance metrics and what they depend on and requirements of the MEMS tuners. Initial gap control and MEMS attachment method are identified as potential hurdles towards achieving very high RF performance. Simple and elegant solutions to both these issues are discussed in

  5. Rf-to-dc power converters for wireless powering

    KAUST Repository

    Ouda, Mahmoud Hamdy

    2016-12-01

    Various examples are provided related to radio frequency (RF) to direct current (DC) power conversion. In one example, a RF-to-DC converter includes a fully cross-coupled rectification circuit including a pair of forward rectifying transistors and a feedback circuit configured to provide feedback bias signals to gates of the pair of forward rectifying transistors via feedback branch elements. In another example, a method includes receiving a radio frequency (RF) signal; rectifying the RF signal via a fully cross-coupled rectification circuit including a pair of forward rectifying transistors; and providing a DC output voltage from an output connection of the fully cross-coupled rectification circuit, where gating of the pair of forward rectifying transistors is controlled by feedback bias signals provided to gates of the pair of forward rectifying transistors via feedback branch elements.

  6. Experimental measurements on a 100 GHz frequency tunable quasioptical gyrotron

    International Nuclear Information System (INIS)

    Alberti, S.; Tran, M.Q.; Hogge, J.P.; Tran, T.M.; Bondeson, A.; Muggli, P.; Perrenoud, A.; Joedicke, B.; Mathews, H.G.

    1990-01-01

    Experiments on a 100 GHz quasioptical (QO) gyrotron operating at the fundamental (ω=Ω ce ) are described. Powers larger than 90 kW at an efficiency of about 12% were achieved. Depending on the electron beam parameters, the frequency spectrum of the output can be either single moded or multimoded. One of the main advantages of the QO gyrotron over the conventional gyrotron is its continuous frequency tunability. Various techniques to tune the output frequency have been tested, such as changing the mirror separation, the beam voltage, or the main magnetic field. Within the limitations of the present setup, 5% tunability was achieved. The QO gyrotron designed for operation at the fundamental frequency exhibits simultaneous emission at 100 GHz (fundamental) and 200 GHz (second harmonic). For a beam current of 4 A, 20% of the total rf power is emitted at the second harmonic

  7. A calibrated, broadband antenna for plasma RF emission measurements below 1 GHz

    International Nuclear Information System (INIS)

    Spence, P.D.; Rosenberg, D.; Roth, J.R.

    1984-01-01

    A constant impedance, constant aperture antenna can make possible broadband plasma RF emission measurements which yield relative and absolute power levels. However, good technique must be followed for the immersion of such an RF probe into plasma radiation. The authors have used a complementary conical spiral antenna to observe plasma RF emission over the frequency range 100 ≤ν≤ 1200 MHz. The RF emission was emitted by a modified Penning discharge. The RF emission from the discharge typically exhibits harmonic structure over a broad frequency range, necessitating a broadband antenna with a flat frequency response curve to allow detailed spectral analysis. The antenna consists of two metal strips of approximately uniform width wound helically on a cone made of Lexan plastic. Since the antenna is a balanced network, a balun is employed to make the transition to a 50-ohm coaxial line. The antenna feed method is critical in maintaining a uniform impedance network. Neglecting stray transmission line effects, the probe circuit for the frequency range 100 ≤ν≤ 500 MHz is 50 ohms due to the spectrum analyzer, paralleled by 291 ohms due to balun magnetization; the combination is fed by a 144 ohm probe aperture

  8. RF Power Transfer, Energy Harvesting, and Power Management Strategies

    Science.gov (United States)

    Abouzied, Mohamed Ali Mohamed

    Energy harvesting is the way to capture green energy. This can be thought of as a recycling process where energy is converted from one form (here, non-electrical) to another (here, electrical). This is done on the large energy scale as well as low energy scale. The former can enable sustainable operation of facilities, while the latter can have a significant impact on the problems of energy constrained portable applications. Different energy sources can be complementary to one another and combining multiple-source is of great importance. In particular, RF energy harvesting is a natural choice for the portable applications. There are many advantages, such as cordless operation and light-weight. Moreover, the needed infra-structure can possibly be incorporated with wearable and portable devices. RF energy harvesting is an enabling key player for Internet of Things technology. The RF energy harvesting systems consist of external antennas, LC matching networks, RF rectifiers for ac to dc conversion, and sometimes power management. Moreover, combining different energy harvesting sources is essential for robustness and sustainability. Wireless power transfer has recently been applied for battery charging of portable devices. This charging process impacts the daily experience of every human who uses electronic applications. Instead of having many types of cumbersome cords and many different standards while the users are responsible to connect periodically to ac outlets, the new approach is to have the transmitters ready in the near region and can transfer power wirelessly to the devices whenever needed. Wireless power transfer consists of a dc to ac conversion transmitter, coupled inductors between transmitter and receiver, and an ac to dc conversion receiver. Alternative far field operation is still tested for health issues. So, the focus in this study is on near field. The goals of this study are to investigate the possibilities of RF energy harvesting from various

  9. Toward High-Power Klystrons With RF Power Conversion Efficiency on the Order of 90%

    CERN Document Server

    Baikov, Andrey Yu; Syratchev, Igor

    2015-01-01

    The increase in efficiency of RF power generation for future large accelerators is considered a high priority issue. The vast majority of the existing commercial high-power RF klystrons operates in the electronic efficiency range between 40% and 55%. Only a few klystrons available on the market are capable of operating with 65% efficiency or above. In this paper, a new method to achieve 90% RF power conversion efficiency in a klystron amplifier is presented. The essential part of this method is a new bunching technique - bunching with bunch core oscillations. Computer simulations confirm that the RF production efficiency above 90% can be reached with this new bunching method. The results of a preliminary study of an L-band, 20-MW peak RF power multibeam klystron for Compact Linear Collider with the efficiency above 85% are presented.

  10. The RF power system for the SNS linac

    International Nuclear Information System (INIS)

    Tallerico, P.J.; Reass, W.A.

    1998-01-01

    The initial goal of the SNS project is to produce a 1 MW average beam of protons with short pulse lengths onto a neutron-producing target. The objective of the SNS RF system is to generate 117 MW peak of pulsed 805 MHz microwave power with an accelerated beam pulse length of 1.04 ms at a 60 Hz repetition rate. The power system must be upgradeable in peak power to deliver 2 MW average power to the neutron target. The RF system also requires about 3 MW peak of RF power at 402.5 MHz, but that system is not discussed here. The design challenge is to produce an RF system at minimum cost, that is very reliable and economical to operate. The combination of long pulses and high repetition rates make conventional solutions, such as the pulse transformer and transmission line method, very expensive. The klystron, with a modulating anode, and 1.5 MW of peak output power is the baseline RF amplifier, an 56 are required in the baseline design. The authors discuss four power system configurations that are the candidates for the design. The baseline design is a floating-deck modulating anode system. A second power system being investigated is the fast-pulsed power supply, that can be turned on and off with a rise time of under 0.1 ms. This could eliminate the need for a modulator, and drastically reduce the energy storage requirements. A third idea is to use a pulse transformer with a series IGBT switch and a bouncer circuit on the primary side, as was done for the TESLA modulator. A fourth method is to use a series IGBT switch at high voltage, and not use a pulse transformer. The authors discuss the advantages and problems of these four types of power systems, but they emphasize the first two

  11. Development of 24GHz Rectenna for Receiving and Rectifying Modulated Waves

    International Nuclear Information System (INIS)

    Shinohara, Naoki; Hatano, Ken

    2014-01-01

    In this paper, we show experimental results of RF-DC conversion with modulated 24GHz waves. We have already developed class-F MMIC rectenna with resonators for higher harmonics at no modulated 24GHz microwave for RF energy transfer. Dimensions of the MMIC rectifying circuit is 1 mm × 3 mm on GaAs. Maximum RF-DC conversion efficiency is measured 47.9% for a 210 mW microwave input of 24 GHz with a 120 Ω load. The class-F rectenna is based on a single shunt full-wave rectifier. For future application of a simultaneous energy and information transfer system or an energy harvesting from broadcasting waves, input microwave will be modulated. In this paper, we show an experimental result of RF-DC conversion of the class-F rectenna with 24GHz waves modulated by 16QAM as 1st modulation and OFDM as 2nd modulation

  12. Development of 24GHz Rectenna for Receiving and Rectifying Modulated Waves

    Science.gov (United States)

    Shinohara, Naoki; Hatano, Ken

    2014-11-01

    In this paper, we show experimental results of RF-DC conversion with modulated 24GHz waves. We have already developed class-F MMIC rectenna with resonators for higher harmonics at no modulated 24GHz microwave for RF energy transfer. Dimensions of the MMIC rectifying circuit is 1 mm × 3 mm on GaAs. Maximum RF-DC conversion efficiency is measured 47.9% for a 210 mW microwave input of 24 GHz with a 120 Ω load. The class-F rectenna is based on a single shunt full-wave rectifier. For future application of a simultaneous energy and information transfer system or an energy harvesting from broadcasting waves, input microwave will be modulated. In this paper, we show an experimental result of RF-DC conversion of the class-F rectenna with 24GHz waves modulated by 16QAM as 1st modulation and OFDM as 2nd modulation.

  13. High power RF systems for LEHIPA of ADS

    International Nuclear Information System (INIS)

    Pande, Manjiri; Shrotriya, Sandip; Sharma, Sonal; Rao, B.V.R.; Mishra, J.K.; Patel, Niranjan; Gupta, S.K.

    2011-01-01

    Worldwide accelerator driven sub-critical system (ADS) has generated a huge interest for various reasons. In India, as a part of accelerator driven sub-critical system (ADS) program, a normal conducting, low energy high intensity proton accelerator (LEHIPA) of energy 20 MeV and beam current of 30 mA is being developed in Bhabha Atomic Research Centre (BARC). LEHIPA comprises of Electron Cyclotron Resonance (ECR) ion source (50 KeV), Radio Frequency Quadrupole (RFQ) accelerator (3 MeV) and Drift tube Linac (DTL) 1 and 2 (10 MeV and 20 MeV respectively). As per the accelerator physics design, RFQ requires nearly 530 kW RF power while each of DTL need 900 kW. Each accelerating cavity will be driven by a one- megawatt (CW) klystron based high power RF (HPRF) system at 352.21 MHz. Three such RF systems will be developed. The RF system has been designed around five cavity klystron tube TH2089F (Thales make) capable of delivering 1 MW continuous wave power at 352.21 MHz. The klystron has a gain of 40 dB and efficiency around 62 %. Each of the RF system comprises of a low power solid state driver (∼ 100 W), klystron tube, harmonic filter, directional coupler, Y-junction circulator (AFT make), RF load and WR2300 wave guide based RF transmission line each of 1 MW capacity. It also includes other subsystems like bias supplies (high voltage (HV) and low voltage (LV)), HV interface system, interlock and protection circuits, dedicated low conductivity water-cooling, pulsing circuitry/mechanisms etc. WR 2300 based RF transmission line transmits and feeds the RE power from klystron source to respective accelerating cavity. This transmission line starts from second port of the circulator and consists of straight sections, full height to half height transition, magic Tee, termination load at the centre of magic tee, half height sections, directional couplers and RE windows. For X-ray shielding, klystron will be housed in a lead (3 mm) based shielded cage. This system set up has a

  14. A 90 GHz photoinjector

    International Nuclear Information System (INIS)

    Palmer, D.T.; Hogan, M.J.; Ferrario, M.; Serafini, L.

    1999-01-01

    Photocathode rf guns depend on mode locked laser systems to produce an electron beam at a given phase of the rf. In general, the laser pulse is less than σ 2 = 10'' of rf phase in length and the required stability is on the order of Δφ = 1 At 90 GHz (W-band), these requirements correspond to σ 2 = 333 fsec and Δφ = 33 fsec. Laser system with pulse lengths in the fsec regime are commercially available, the timing stability is a major concern. It is proposed a multi-cell W-band photoinjector that does not require a mode locked laser system. Thereby eliminating the stability requirements at W-band. The laser pulse is allowed to be many rf periods long. In principle, the photoinjector can now be considered as a thermionic rf gun. Instead of using an alpha magnet to compress the electron bunch, which would have a detrimental effect on the transverse hase space quality due to longitudinal phase space mixing, it is here proposed to use long pulse laser system and a pair of undulators to produce a low emittance, high current, ultra-short electron bunch for beam dynamics experiments in the 90 GHz regime

  15. Q-Band (37-41 GHz) Satellite Beacon Architecture for RF Propagation Experiments

    Science.gov (United States)

    Simmons, Rainee N.; Wintucky, Edwin G.

    2012-01-01

    In this paper, the design of a beacon transmitter that will be flown as a hosted payload on a geostationary satellite to enable propagation experiments at Q-band (37-41 GHz) frequencies is presented. The beacon uses a phased locked loop stabilized dielectric resonator oscillator and a solid-state power amplifier to achieve the desired output power. The satellite beacon antenna is configured as an offset-fed cut-paraboloidal reflector.

  16. High power tests of X-band RF windows at KEK

    Energy Technology Data Exchange (ETDEWEB)

    Otake, Yuji [Earthquake Research Inst., Tokyo Univ., Tokyo (Japan); Tokumoto, Shuichi; Kazakov, Sergei Yu.; Odagiri, Junichi; Mizuno, Hajime

    1997-04-01

    Various RF windows comprising a short pill-box, a long pill-box, a TW (traveling wave)-mode and three TE11-mode horn types have been developed for an X-band high-power pulse klystron with two output windows for JLC (Japan Linear Collider). The output RF power of the klystron is designed to be 130 MW with the 800 ns pulse duration. Since this X-band klystron has two output windows, the maximum RF power of the window must be over 85 MW. The design principle for the windows is to reduce the RF-power density and/or the electric-field strength at the ceramic part compared with that of an ordinary pill-box-type window. Their reduction is effective to increase the handling RF power of the window. To confirm that the difference among the electric-field strengths depends on their RF structures, High-power tests of the above-mentioned windows were successfully carried out using a traveling-wave resonator (TWR) for the horns and the TW-mode type and, installing them directly to klystron output waveguides for the short and long pill-box type. Based upon the operation experience of S-band windows, two kinds of ceramic materials were used for these tests. The TE11-mode 1/2{lambda}g-1 window was tested up to the RF peak-power of 84 MW with the 700 ns pulse duration in the TWR. (J.P.N)

  17. Peel-and-Stick Sensors Powered by Directed RF Energy

    Energy Technology Data Exchange (ETDEWEB)

    Lalau-Keraly, Christopher; Daniel, George; Lee, Joseph; Schwartz, David

    2017-08-30

    PARC, a Xerox Company, is developing a low-cost system of peel-and-stick wireless sensors that will enable widespread building environment sensor deployment with the potential to deliver up to 30% energy savings. The system is embodied by a set of RF hubs that provide power to automatically located sensor nodes, and relay data wirelessly to the building management system (BMS). The sensor nodes are flexible electronic labels powered by rectified RF energy transmitted by an RF hub and can contain multiple printed and conventional sensors. The system design overcomes limitations in wireless sensors related to power delivery, lifetime, and cost by eliminating batteries and photovoltaic devices. Sensor localization is performed automatically by the inclusion of a programmable multidirectional antenna array in the RF hub. Comparison of signal strengths while the RF beam is swept allows for sensor localization, reducing installation effort and enabling automatic recommissioning of sensors that have been relocated, overcoming a significant challenge in building operations. PARC has already demonstrated wireless power and temperature data transmission up to a distance of 20m with less than one minute between measurements, using power levels well within the FCC regulation limits in the 902-928 MHz ISM band. The sensor’s RF energy harvesting antenna achieves high performance with dimensions below 5cm x 9cm

  18. Indoor Wireless RF Energy Transfer for Powering Wireless Sensors

    Directory of Open Access Journals (Sweden)

    H. Visser

    2012-12-01

    Full Text Available For powering wireless sensors in buildings, rechargeable batteries may be used. These batteries will be recharged remotely by dedicated RF sources. Far-field RF energy transport is known to suffer from path loss and therefore the RF power available on the rectifying antenna or rectenna will be very low. As a consequence, the RF-to-DC conversion efficiency of the rectenna will also be very low. By optimizing not only the subsystems of a rectenna but also taking the propagation channel into account and using the channel information for adapting the transmit antenna radiation pattern, the RF energy transport efficiency will be improved. The rectenna optimization, channel modeling and design of a transmit antenna are discussed.

  19. Experimental study of a 1 MW, 170 GHz gyrotron oscillator

    Science.gov (United States)

    Kimura, Takuji

    A detailed experimental study is presented of a 1 MW, 170 GHz gyrotron oscillator whose design is consistent with the ECH requirements of the International Thermonuclear Experimental Reactor (ITER) for bulk heating and current drive. This work is the first to demonstrate that megawatt power level at 170 GHz can be achieved in a gyrotron with high efficiency for plasma heating applications. Maximum output power of 1.5 MW is obtained at 170.1 GHz in 85 kV, 50A operation for an efficiency of 35%. Although the experiment at MIT is conducted with short pulses (3 μs), the gyrotron is designed to be suitable for development by industry for continuous wave operation. The peak ohmic loss on the cavity wall for 1 MW of output power is calculated to be 2.3 kW/cm2, which can be handled using present cooling technology. Mode competition problems in a highly over-moded cavity are studied to maximize the efficiency. Various aspects of electron gun design are examined to obtain high quality electron beams with very low velocity spread. A triode magnetron injection gun is designed using the EGUN simulation code. A total perpendicular velocity spread of less than 8% is realized by designing a low- sensitivity, non-adiabatic gun. The RF power is generated in a short tapered cavity with an iris step. The operating mode is the TE28,8,1 mode. A mode converter is designed to convert the RF output to a Gaussian beam. Power and efficiency are measured in the design TE28,8,1 mode at 170.1 GHz as well as the TE27,8,1 mode at 166.6 GHz and TE29,8,1 mode at 173.5 GHz. Efficiencies between 34%-36% are consistently obtained over a wide range of operating parameters. These efficiencies agree with the highest values predicted by the multimode simulations. The startup scenario is investigated and observed to agree with the linear theory. The measured beam velocity ratio is consistent with EGUN simulation. Interception of reflected beam by the mod-anode is measured as a function of velocity ratio

  20. Low power RF beam control electronics for the LEB

    International Nuclear Information System (INIS)

    Mestha, L.K.; Mangino, J.; Brouk, V.; Uher, T.; Webber, R.C.

    1993-05-01

    Beam Control Electronics for the Low Energy Booster (LEB) should provide a fine reference phase and frequency for the High Power RF System. Corrections applied on the frequency of the rf signal will reduce dipole synchrotron oscillations due to power supply regulation errors, errors in frequency source or errors in the cavity voltage. It will allow programmed beam radial position control throughout the LEB acceleration cycle. Furthermore the rf signal provides necessary connections during, adiabatic capture of the beam as injected into the LEB by the Linac and will guarantee LEB rf phase synchronism with the Medium Energy Booster (MEB) rf at a programmed time in the LEB cycle between a unique LEB bucket and a unique MEB bucket. We show in this paper a design and possible interfaces with other subsystems of the LEB such as the beam instrumentation, High Power RF Stations, global accelerator controls and the precision timing system. The outline of various components of the beam control system is also presented followed by some test results

  1. Rf power systems for the national synchrotron light source

    International Nuclear Information System (INIS)

    Dickinson, T.; Rheaume, R.H.

    1981-01-01

    The booster synchrotron and the two storage rings at the NSLS are provided with rf power systems of 3 kW, 50 kW, and 500 kW nominal output power, all at 53 MHz. This power is supplied by grounded grid tetrode amplifiers designed for television broadcast service. These amplifiers and associated power supplies, control and interlock systems, rf controls, and computer interface are described

  2. 10 GHz multicharged-heavy-ion source CAPRICE for all metallic and gaseous elements

    International Nuclear Information System (INIS)

    Bourg, F.; Geller, R.; Jacquot, B.

    1987-01-01

    A new compact multiply charged E.C.R. ion source completely enclosed by an iron return yoke is described. A new coaxial 10 GHz microwave accessibility is operating. This allows a very compact two stages source in an entirely removable vacuum chamber and a very easy increasing possibility of the axial magnetic field value. Then two different working modes are possible. A classical mode (ω ce =ω rf , 100% cw, rf power 300 W, coils supply 20 kW) gives same performance than all the other reliable larger 10 GHz sources. A second mode (100% cw, rf power 600 W, coils supply 33 kW) operates with an additional resonant surface ω ce =2ω rf and increases by a factor 3 or 4 all currents on high charge states. Total extraction current is multiplied by a factor of 4 just as it would do by using a classical 20 GHz source by increase in density. This new resonant surface is unfortunately stopped in its radial part by the wall of the vacuum chamber due to a too low 10 GHz sextupole (0,4 T). Presently a better sextupole (0,8 T) is being built in order to work with both whole resonant surfaces inside the plasma chamber and perhaps so to improve charge states distribution by rising the plasma life time. On the other hand both the removable vacuum chamber and the coaxial rf feeder are well fitted to produce all metallic ions in long run and high intensity by working without any insulator inside the plasma chamber and by a good cleaning possibility. One shows cw spectra of 10 metallic elements from Al to Au and one can observe an exponential decrease for Ca, Ag and Au. This remark indicates a possible easy way to yield high charge states of all metals. One can expect to regulate all the lightest elements like Al, Si, Fe, Ni, Mo, Ta and W for 100 h. For example a good (within 1%) regulation of a 15 μA 56 Fe 7+ for 10 h is partly shown. (orig.)

  3. Outage Performance of Hybrid FSO/RF System with Low-Complexity Power Adaptation

    KAUST Repository

    Rakia, Tamer

    2016-02-26

    Hybrid free-space optical (FSO) / radio-frequency (RF) systems have emerged as a promising solution for high data- rate wireless communication systems. We consider truncated channel inversion based power adaptation strategy for coherent and non- coherent hybrid FSO/RF systems, employing an adaptive combining scheme. Specifically, we activate the RF link along with the FSO link when FSO link quality is unacceptable, and adaptively set RF transmission power to ensure constant combined signal-to-noise ratio at receiver terminal. Analytical expressions for the outage probability of the hybrid system with and without power adaptation are derived. Numerical examples show that, the hybrid FSO/RF systems with power adaptation achieve considerable outage performance improvement over conventional hybrid FSO/RF systems without power adaptation. © 2015 IEEE.

  4. Development of new S-band RF window for stable high-power operation in linear accelerator RF system

    Science.gov (United States)

    Joo, Youngdo; Lee, Byung-Joon; Kim, Seung-Hwan; Kong, Hyung-Sup; Hwang, Woonha; Roh, Sungjoo; Ryu, Jiwan

    2017-09-01

    For stable high-power operation, a new RF window is developed in the S-band linear accelerator (Linac) RF systems of the Pohang Light Source-II (PLS-II) and the Pohang Accelerator Laboratory X-ray Free-Electron Laser (PAL-XFEL). The new RF window is designed to mitigate the strength of the electric field at the ceramic disk and also at the waveguide-cavity coupling structure of the conventional RF window. By replacing the pill-box type cavity in the conventional RF window with an overmoded cavity, the electric field component perpendicular to the ceramic disk that caused most of the multipacting breakdowns in the ceramic disk was reduced by an order of magnitude. The reduced electric field at the ceramic disk eliminated the Ti-N coating process on the ceramic surface in the fabrication procedure of the new RF window, preventing the incomplete coating from spoiling the RF transmission and lowering the fabrication cost. The overmoded cavity was coupled with input and output waveguides through dual side-wall coupling irises to reduce the electric field strength at the waveguide-cavity coupling structure and the possibility of mode competitions in the overmoded cavity. A prototype of the new RF window was fabricated and fully tested with the Klystron peak input power, pulse duration and pulse repetition rate of 75 MW, 4.5 μs and 10 Hz, respectively, at the high-power test stand. The first mass-produced new RF window installed in the PLS-II Linac is running in normal operation mode. No fault is reported to date. Plans are being made to install the new RF window to all S-band accelerator RF modules of the PLS-II and PAL-XFEL Linacs. This new RF window may be applied to the output windows of S-band power sources like Klystron as wells as the waveguide windows of accelerator facilities which operate in S-band.

  5. Research and Development for an Alternative RF Source Using Magnetrons in CEBAF

    Science.gov (United States)

    Jacobs, Andrew

    2016-09-01

    At Jefferson Lab, klystrons are currently used as a radiofrequency (RF) power source for the 1497 MHz Continuous Electron Beam Accelerator Facility (CEBAF) Continuous Wave (CW) system. A drop-in replacement for the klystrons in the form of a system of magnetrons is being developed. The klystron DC-RF efficiency at CEBAF is 35-51% while the estimated magnetron efficiency is 80-90%. Thus, the introduction of magnetrons to CEBAF will have enormous benefits in terms of electrical power saving. The primary focus of this project was to characterize a magnetron's frequency pushing and pulling curves at 2.45 GHz with stub tuner and anode current adjustments so that a Low Level RF controller for a new 1.497 GHz magnetron can be built. A Virtual Instrument was created in LabVIEW, and data was taken. The resulting data allowed for the creation of many constant lines of frequency and output power. Additionally, the results provided a characterization of magnetron oven temperature drift over the operation time and the relationship between anode current and frequency. Using these results, the control model of different variables and their feedback or feedforward that affect the frequency pushing and pulling of the magnetron is better developed. Department of Energy, Science Undergraduate Laboratory Internships, and Jefferson Lab.

  6. Thermal and dynamic range characterization of a photonics-based RF amplifier

    Science.gov (United States)

    Noque, D. F.; Borges, R. M.; Muniz, A. L. M.; Bogoni, A.; Cerqueira S., Arismar, Jr.

    2018-05-01

    This work reports a thermal and dynamic range characterization of an ultra-wideband photonics-based RF amplifier for microwave and mm-waves future 5G optical-wireless networks. The proposed technology applies the four-wave mixing nonlinear effect to provide RF amplification in analog and digital radio-over-fiber systems. The experimental analysis from 300 kHz to 50 GHz takes into account different figures of merit, such as RF gain, spurious-free dynamic range and RF output power stability as a function of temperature. The thermal characterization from -10 to +70 °C demonstrates a 27 dB flat photonics-assisted RF gain over the entire frequency range under real operational conditions of a base station for illustrating the feasibility of the photonics-assisted RF amplifier for 5G networks.

  7. A reflexing electron microwave amplifier for rf particle accelerator applications

    International Nuclear Information System (INIS)

    Fazio, M.V.; Hoeberling, R.F.

    1988-01-01

    The evolution of rf-accelerator technology toward high-power, high-current, low-emittance beams produces an ever-increasing demand for efficient, very high power microwave power sources. The present klystron technology has performed very well but is not expected to produce reliable gigawatt peak-power units in the 1- to 10-GHz regime. Further major advancements must involve other types of sources. The reflexing-electron class of sources can produce microwave powers at the gigawatt level and has demonstrated operation from 800-MHz to 40-GHz. The pulse length appears to be limited by diode closure, and reflexing-electron devices have been operated in a repetitively pulsed mode. A design is presented for a reflexing electron microwave amplifier that is frequency and phase locked. In this design, the generated microwave power can be efficiently coupled to one or several accelerator loads. Frequency and phase-locking capability may permit parallel-source operation for higher power. The low-frequency (500-MHz to 10-GHz) operation at very high power required by present and proposed microwave particle accelerators makes an amplifier, based on reflexing electron phenomena, a candidate for the development of new accelerator power sources. (author)

  8. Thermal-Mechanical Study of 3.9 GHz CW Coupler and Cavity for LCLS-II Project

    Energy Technology Data Exchange (ETDEWEB)

    Gonin, Ivan [Fermilab; Harms, Elvin [Fermilab; Khabiboulline, Timergali [Fermilab; Solyak, Nikolay [Fermilab; Yakovlev, Vyacheslav [Fermilab

    2017-05-01

    Third harmonic system was originally developed by Fermilab for FLASH facility at DESY and then was adopted and modified by INFN for the XFEL project [1-3]. In contrast to XFEL project, all cryomodules in LCLS-II project will operate in CW regime with higher RF average power for 1.3 GHz and 3.9 GHz cavities and couplers. Design of the cavity and fundamental power coupler has been modified to satisfy LCLS-II requirements. In this paper we discuss the results of COMSOL thermal and mechanical analysis of the 3.9 GHz coupler and cavity to verify proposed modifica-tion of the design. For the dressed cavity we present simulations of Lorentz force detuning, helium pressure sensitivity df/dP and major mechanical resonances.

  9. The Development of the Electrically Controlled High Power RF Switch and Its Application to Active RF Pulse Compression Systems

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Jiquan [Stanford Univ., CA (United States)

    2008-12-01

    In the past decades, there has been increasing interest in pulsed high power RF sources for building high-gradient high-energy particle accelerators. Passive RF pulse compression systems have been used in many applications to match the available RF sources to the loads requiring higher RF power but a shorter pulse. Theoretically, an active RF pulse compression system has the advantage of higher efficiency and compactness over the passive system. However, the key component for such a system an element capable of switching hundreds of megawatts of RF power in a short time compared to the compressed pulse width is still an open problem. In this dissertation, we present a switch module composed of an active window based on the bulk effects in semiconductor, a circular waveguide three-port network and a movable short plane, with the capability to adjust the S-parameters before and after switching. The RF properties of the switch module were analyzed. We give the scaling laws of the multiple-element switch systems, which allow the expansion of the system to a higher power level. We present a novel overmoded design for the circular waveguide three-port network and the associated circular-to-rectangular mode-converter. We also detail the design and synthesis process of this novel mode-converter. We demonstrate an electrically controlled ultra-fast high power X-band RF active window built with PIN diodes on high resistivity silicon. The window is capable of handling multi-megawatt RF power and can switch in 2-300ns with a 1000A current driver. A low power active pulse compression experiment was carried out with the switch module and a 375ns resonant delay line, obtaining 8 times compression gain with a compression ratio of 20.

  10. A describing function approach to bipolar RF-power amplifier simulation

    DEFF Research Database (Denmark)

    Vidkjær, Jens

    1981-01-01

    A method for fast and accurate computations of the primary performance parameters such as gain, efficiency, output power, and bandwidth in class-C biased RF-power amplifier stages is presented. The method is based on a describing function characterization of the RF-power transistor where the term...

  11. Development of a novel rf waveguide vacuum valve

    CERN Document Server

    Grudiev, A

    2006-01-01

    The development of a novel rf waveguide vacuum valve is presented. The rf design is based on the use of TE0n modes of circular waveguides. In the device, the TE01 mode at the input is converted into a mixture of several TE0n modes which provide low-loss rf power transmission across the vacuum valve gap, these modes are then converted back into the TE01 mode at the output. There are a number of advantages associated with the absence of surface fields in the region of the valve: • Possibility to use commercially available vacuum valves equipped with two specially designed mode converter sections. • No necessity for an rf contact between these two sections. • Increased potential for high power rf transmission. This technology can be used for all frequencies for which vacuum waveguides are used. In rectangular waveguides, mode converters from the operating mode into the TE01 mode and back again are necessary. Experimental results for the 30 GHz valves developed for the CLIC Test Facility 3 (CTF3) a...

  12. Low Cost SU8 Based Above IC Process for High Q RF Power Inductors Integration

    International Nuclear Information System (INIS)

    Ghannam, A.; Bourrier, D.; Viallon, Ch.; Parra, Th.

    2011-01-01

    This paper presents a new process for integration of high-Q RF power inductors above low resistivity silicon substrates. The process uses the SU8 resin as a dielectric layer. The aim of using the SU8 is to form thick dielectric layer that can enhance the performance of the inductors. The flexibility of the process enables the possibility to realize complex shaped planar inductors with various dielectric and metal thicknesses to meet the requirements of the application. Q values of 55 at 5 GHz has been demonstrated for an inductance value of 0.8 nH using a 60 μm thick SU8 layer and 30 μm thick copper ribbons. (author)

  13. Future mobile satellite communication concepts at 20/30 GHz

    Science.gov (United States)

    Barton, S. K.; Norbury, J. R.

    1990-01-01

    The outline of a design of a system using ultra small earth stations (picoterminals) for data traffic at 20/30 GHz is discussed. The picoterminals would be battery powered, have an RF transmitter power of 0.5 W, use a 10 cm square patch antenna, and have a receiver G/T of about -8 dB/K. Spread spectrum modulation would be required (due to interference consideration) to allow a telex type data link (less than 200 bit/s data rate) from the picoterminal to the hub station of the network and about 40 kbit/s on the outbound patch. An Olympus type transponder at 20/30 GHz could maintain several thousand simultaneous picoterminal circuits. The possibility of demonstrating a picoterminal network with voice traffic using Olympus is discussed together with fully mobile systems based on this concept.

  14. HTS microstrip disk resonator with an upper dielectric layer for 4GHz

    International Nuclear Information System (INIS)

    Yamanaka, Kazunori; Kai, Manabu; Akasegawa, Akihiko; Nakanishi, Teru

    2006-01-01

    We propose HTS microstrip disk resonator with an upper dielectric layer as a candidate resonator structure of HTS compact power filter for 4GHz band. The electromagnetic simulations on the upper dielectric layer examined the current distributions of the HTS resonators that had TM 11 mode resonance of about 4 GHz. By the simulations, it is evaluated that of the maximum current density near the end portion of the disk-shape pattern of the resonator with the thick upper-layered structure decreases by roughly 30-50 percent, as compared with that of the resonator without it. Then, we designed and fabricated the resonator samples with and without the upper dielectrics. The RF power measurement results indicated that the upper dielectric layer leads to an increase in handling power

  15. RF power consumption emulation optimized with interval valued homotopies

    DEFF Research Database (Denmark)

    Musiige, Deogratius; Anton, François; Yatskevich, Vital

    2011-01-01

    This paper presents a methodology towards the emulation of the electrical power consumption of the RF device during the cellular phone/handset transmission mode using the LTE technology. The emulation methodology takes the physical environmental variables and the logical interface between...... the baseband and the RF system as inputs to compute the emulated power dissipation of the RF device. The emulated power, in between the measured points corresponding to the discrete values of the logical interface parameters is computed as a polynomial interpolation using polynomial basis functions....... The evaluation of polynomial and spline curve fitting models showed a respective divergence (test error) of 8% and 0.02% from the physically measured power consumption. The precisions of the instruments used for the physical measurements have been modeled as intervals. We have been able to model the power...

  16. CMOS 60-GHz and E-band power amplifiers and transmitters

    CERN Document Server

    Zhao, Dixian

    2015-01-01

    This book focuses on the development of design techniques and methodologies for 60-GHz and E-band power amplifiers and transmitters at device, circuit and layout levels. The authors show the recent development of millimeter-wave design techniques, especially of power amplifiers and transmitters, and presents novel design concepts, such as “power transistor layout” and “4-way parallel-series power combiner”, that can enhance the output power and efficiency of power amplifiers in a compact silicon area. Five state-of-the-art 60-GHz and E-band designs with measured results are demonstrated to prove the effectiveness of the design concepts and hands-on methodologies presented. This book serves as a valuable reference for circuit designers to develop millimeter-wave building blocks for future 5G applications.

  17. Gigawatt peak power generation in a relativistic klystron amplifier driven by 1 kW seed-power

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Y. [Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang 621900 (China); Science and Technology on High Power Microwave Laboratory, Mianyang 621900 (China); Xie, H. Q. [College of Science, Southwestern University of Science and Technology, Mianyang 621010 (China); Li, Z. H.; Zhang, Y. J.; Ma, Q. S. [Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang 621900 (China)

    2013-11-15

    An S-band high gain relativistic klystron amplifier driven by kW-level RF power is proposed and studied experimentally. In the device, the RF lossy material is introduced to suppress higher mode excitation. An output power of 1.95 GW with a gain of 62.8 dB is obtained in the simulation. Under conditions of an input RF power of 1.38 kW, a microwave pulse with power of 1.9 GW, frequency of 2.86 GHz, and duration of 105 ns is generated in the experiment, and the corresponding gain is 61.4 dB.

  18. Gigawatt peak power generation in a relativistic klystron amplifier driven by 1 kW seed-power

    Science.gov (United States)

    Wu, Y.; Xie, H. Q.; Li, Z. H.; Zhang, Y. J.; Ma, Q. S.

    2013-11-01

    An S-band high gain relativistic klystron amplifier driven by kW-level RF power is proposed and studied experimentally. In the device, the RF lossy material is introduced to suppress higher mode excitation. An output power of 1.95 GW with a gain of 62.8 dB is obtained in the simulation. Under conditions of an input RF power of 1.38 kW, a microwave pulse with power of 1.9 GW, frequency of 2.86 GHz, and duration of 105 ns is generated in the experiment, and the corresponding gain is 61.4 dB.

  19. RF Breakdown in Normal Conducting Single-cell Structures

    CERN Document Server

    Dolgashev, Valery A; Higo, Toshiyasu; Nantista, Christopher D; Tantawi, Sami G

    2005-01-01

    Operating accelerating gradient in normal conducting accelerating structures is often limited by rf breakdown. The limit depends on multiple parameters, including input rf power, rf circuit, cavity shape and material. Experimental and theoretical study of the effects of these parameters on the breakdown limit in full scale structures is difficult and costly. We use 11.4 GHz single-cell traveling wave and standing wave accelerating structures for experiments and modeling of rf breakdown behavior. These test structures are designed so that the electromagnetic fields in one cell mimic the fields in prototype multicell structures for the X-band linear collider. Fields elsewhere in the test structures are significantly lower than that of the single cell. The setup uses matched mode converters that launch the circular TM01 mode into short test structures. The test structures are connected to the mode launchers with vacuum rf flanges. This setup allows economic testing of different cell geometries, cell materials an...

  20. Q-Band (37 to 41 GHz) Satellite Beacon Architecture for RF Propagation Experiments

    Science.gov (United States)

    Simons, Rainee N.; Wintucky, Edwin G.

    2014-01-01

    In this paper, the design of a beacon transmitter that will be flown as a hosted payload on a geostationary satellite to enable propagation experiments at Q-band (37 to 41 GHz) frequencies is presented. The beacon uses a phased locked loop stabilized dielectric resonator oscillator and a solid-state power amplifier to achieve the desired output power. The satellite beacon antenna is configured as an offset-fed cutparaboloidal reflector.

  1. RF power harvesting: a review on designing methodologies and applications

    Science.gov (United States)

    Tran, Le-Giang; Cha, Hyouk-Kyu; Park, Woo-Tae

    2017-12-01

    Wireless power transmission was conceptualized nearly a century ago. Certain achievements made to date have made power harvesting a reality, capable of providing alternative sources of energy. This review provides a summ ary of radio frequency (RF) power harvesting technologies in order to serve as a guide for the design of RF energy harvesting units. Since energy harvesting circuits are designed to operate with relatively small voltages and currents, they rely on state-of-the-art electrical technology for obtaining high efficiency. Thus, comprehensive analysis and discussions of various designs and their tradeoffs are included. Finally, recent applications of RF power harvesting are outlined.

  2. RF Power Requirements for PEFP SRF Cavity Test

    International Nuclear Information System (INIS)

    Kim, Han Sung; Seol, Kyung Tae; Kwon, Hyeok Jung; Cho, Yong Sub

    2011-01-01

    For the future extension of the PEFP (Proton Engineering Frontier Project) Proton linac, preliminary study on the SRF (superconducting radio-frequency) cavity is going on including a five-cell prototype cavity development to confirm the design and fabrication procedures and to check the RF and mechanical properties of a low-beta elliptical cavity. The main parameters of the cavity are like followings. - Frequency: 700 MHz - Operating mode: TM010 pi mode - Cavity type: Elliptical - Geometrical beta: 0.42 - Number of cells: 5 - Accelerating gradient: 8 MV/m - Epeak/Eacc: 3.71 - Bpeak/Eacc: 7.47 mT/(MV/m) - R/Q: 102.3 ohm - Epeak: 29.68 MV/m (1.21 Kilp.) - Geometrical factor: 121.68 ohm - Cavity wall thickness: 4.3 mm - Stiffening structure: Double ring - Effective length: 0.45 m For the test of the cavity at low temperature of 4.2 K, many subsystems are required such as a cryogenic system, RF system, vacuum system and radiation shielding. RF power required to generate accelerating field inside cavity depends on the RF coupling parameters of the power coupler and quality factor of the SRF cavity and the quality factor itself is affected by several factors such as operating temperature, external magnetic field level and surface condition. Therefore, these factors should be considered to estimate the required RF power for the SRF cavity test

  3. Ka-Band Rf Transmission Line Components for a High-Gradient Linear Accelerator. Final report

    International Nuclear Information System (INIS)

    Hirshfield, Jay L.

    2005-01-01

    High-power, high-vacuum prototypes of a variety of components for use at 34 GHz were developed. These include waveguide tapers, right-angle miter bends, windows, mode converters, power combiners, mode launchers, phase shifters, dual directional couplers, and loads. High-power, high-vacuum prototypes of all the components were built and tested up to 45 MW, using the Omega-P 34-GHz magnicon. Peak power limits for the components were determined using a quasi-optical rf pulse compressor, developed under a companion project. The components and the magnicon were configured into a user's facility for research and development by others on high-gradient accelerator structures for a future high-energy electron-positron collider.

  4. Megawatt Power Level 120 GHz Gyrotrons for ITER Start-Up

    Energy Technology Data Exchange (ETDEWEB)

    Choi, E M; Marchewka, C; Mastovsky, I; Shapiro, M A; Sirigiri, J R; Temkin, R J [MIT - Plasma Science and Fusion Center, NW16-186, 167 Albany Street, Cambridge, MA 02139 (United States)

    2005-01-01

    We report operation of a 110 GHz gyrotron with 1.67 MW of output power measured in short pulses (3{mu}s) at an efficiency of 42% in the TE{sub 22,6} mode. We also present a preliminary design of a 1 MW, 120 GHz gyrotron for ITER start-up with an efficiency greater than 50%.

  5. Megawatt Power Level 120 GHz Gyrotrons for ITER Start-Up

    International Nuclear Information System (INIS)

    Choi, E M; Marchewka, C; Mastovsky, I; Shapiro, M A; Sirigiri, J R; Temkin, R J

    2005-01-01

    We report operation of a 110 GHz gyrotron with 1.67 MW of output power measured in short pulses (3μs) at an efficiency of 42% in the TE 22,6 mode. We also present a preliminary design of a 1 MW, 120 GHz gyrotron for ITER start-up with an efficiency greater than 50%

  6. Introduction to RF power amplifier design and simulation

    CERN Document Server

    Eroglu, Abdullah

    2015-01-01

    Introduction to RF Power Amplifier Design and Simulation fills a gap in the existing literature by providing step-by-step guidance for the design of radio frequency (RF) power amplifiers, from analytical formulation to simulation, implementation, and measurement. Featuring numerous illustrations and examples of real-world engineering applications, this book:Gives an overview of intermodulation and elaborates on the difference between linear and nonlinear amplifiersDescribes the high-frequency model and transient characteristics of metal-oxide-semiconductor field-effect transistorsDetails activ

  7. Low Actuating Voltage Spring-Free RF MEMS SPDT Switch

    Directory of Open Access Journals (Sweden)

    Deepak Bansal

    2016-01-01

    Full Text Available RF MEMS devices are known to be superior to their solid state counterparts in terms of power consumption and electromagnetic response. Major limitations of MEMS devices are their low switching speed, high actuation voltage, larger size, and reliability. In the present paper, a see-saw single pole double throw (SPDT RF MEMS switch based on anchor-free mechanism is proposed which eliminates the above-mentioned disadvantages. The proposed switch has a switching time of 394 nsec with actuation voltage of 5 V. Size of the SPDT switch is reduced by utilizing a single series capacitive switch compared to conventional switches with capacitive and series combinations. Reliability of the switch is improved by adding floating metal and reducing stiction between the actuating bridge and transmission line. Insertion loss and isolation are better than −0.6 dB and −20 dB, respectively, for 1 GHz to 20 GHz applications.

  8. Low Level RF Including a Sophisticated Phase Control System for CTF3

    CERN Document Server

    Mourier, J; Nonglaton, J M; Syratchev, I V; Tanner, L

    2004-01-01

    CTF3 (CLIC Test Facility 3), currently under construction at CERN, is a test facility designed to demonstrate the key feasibility issues of the CLIC (Compact LInear Collider) two-beam scheme. When completed, this facility will consist of a 150 MeV linac followed by two rings for bunch-interleaving, and a test stand where 30 GHz power will be generated. In this paper, the work that has been carried out on the linac's low power RF system is described. This includes, in particular, a sophisticated phase control system for the RF pulse compressor to produce a flat-top rectangular pulse over 1.4 µs.

  9. High-power RF controls for the NBS-Los Alamos racetrack microtron

    International Nuclear Information System (INIS)

    Young, L.M.; Biddl, R.S.

    1985-01-01

    The high-power rf system for the National Bureau of Standards (NBS)-Los Alamos racetrack microtron (RTM) uses waveguide power splitters and waveguide phase shifters to distribute rf power from a single 500-kw cw klystron to four side-coupled accelerating structures. The amplitude and phase of each structure is controlled by a feedback system that uses the waveguide variable power splitters, waveguide phase shifters, and klystron drive as the active control elements. The feedback controls on the capture section use low-level rf amplitude and phase controls on the rf drive to the klystron. These controls are very fast with an open loop gain bandwidth of approximately 40 kHz. The feedback loop is identical to the feedback loop used in the chopper/buncher system described in another paper at this conference

  10. EXCESS RF POWER REQUIRED FOR RF CONTROL OF THE SPALLATION NEUTRON SOURCE (SNS) LINAC, A PULSED HIGH-INTENSITY SUPERCONDUCTING PROTON ACCELERATOR

    International Nuclear Information System (INIS)

    Lynch, M.; Kwon, S.

    2001-01-01

    A high-intensity proton linac, such as that being planned for the SNS, requires accurate RF control of cavity fields for the entire pulse in order to avoid beam spill. The current design requirement for the SNS is RF field stability within ±0.5% and ±0.5 o [1]. This RF control capability is achieved by the control electronics using the excess RF power to correct disturbances. To minimize the initial capital costs, the RF system is designed with 'just enough' RF power. All the usual disturbances exist, such as beam noise, klystron/HVPS noise, coupler imperfections, transport losses, turn-on and turn-off transients, etc. As a superconducting linac, there are added disturbances of large magnitude, including Lorentz detuning and microphonics. The effects of these disturbances and the power required to correct them are estimated, and the result shows that the highest power systems in the SNS have just enough margin, with little or no excess margin

  11. Summary of the 3rd workshop on high power RF-systems for accelerators

    International Nuclear Information System (INIS)

    Sigg, P.K.

    2005-01-01

    The aim of this workshop was to bring together experts from the field of CW and high average power RF systems. The focus was on operational and reliability issues of high-power amplifiers using klystrons and tubes, large power supplies; as well as cavity design and low-level RF and feedback control systems. All these devices are used in synchrotron radiation facilities, high power linacs and collider rings, and cyclotrons. Furthermore, new technologies and their applications were introduced, amongst other: high power solid state amplifiers, IOT amplifiers, and high voltage power supplies employing solid state controllers/crowbars. Numerical methods for complete rf-field modeling of complex RF structures like cyclotrons were presented, as well as integrated RF-cavity designs (electro-magnetic fields and mechanical structure), using numerical methods. (author)

  12. Commissioning of the superconducting ECR ion source VENUS at 18 GHz

    International Nuclear Information System (INIS)

    Leitner, Daniela; Abbott, Steven R.; Dwinell, Roger D.; Leitner, Matthaeus; Taylor, Clyde E.; Lyneis, Claude M.

    2004-01-01

    During the last year, the VENUS ECR ion source was commissioned at 18 GHz and preparations for 28 GHz operation are now underway. During the commissioning phase with 18 GHz, tests with various gases and metals have been performed with up to 2000 W RF power. The ion source performance is very promising [1,2]. VENUS (Versatile ECR ion source for Nuclear Science) is a next generation superconducting ECR ion source, designed to produce high current, high charge state ions for the 88-Inch Cyclotron at the Lawrence Berkeley National Laboratory. VENUS also serves as the prototype ion source for the RIA (Rare Isotope Accelerator) front end. The goal of the VENUS ECR ion source project as the RIA R and D injector is the production of 240e(micro)A of U 30+ , a high current medium charge state beam. On the other hand, as an injector ion source for the 88-Inch Cyclotron the design objective is the production of 5e(micro)A of U 48+ , a low current, very high charge state beam. To meet these ambitious goals, VENUS has been designed for optimum operation at 28 GHz. This frequency choice has several design consequences. To achieve the required magnetic confinement, superconducting magnets have to be used. The size of the superconducting magnet structure implies a relatively large plasma volume. Consequently, high power microwave coupling becomes necessary to achieve sufficient plasma heating power densities. The 28 GHz power supply has been delivered in April 2004

  13. High power RF window deposition apparatus, method, and device

    Science.gov (United States)

    Ives, Lawrence R.; Lucovsky, Gerald; Zeller, Daniel

    2017-07-04

    A process for forming a coating for an RF window which has improved secondary electron emission and reduced multipactor for high power RF waveguides is formed from a substrate with low loss tangent and desirable mechanical characteristics. The substrate has an RPAO deposition layer applied which oxygenates the surface of the substrate to remove carbon impurities, thereafter has an RPAN deposition layer applied to nitrogen activate the surface of the substrate, after which a TiN deposition layer is applied using Titanium tert-butoxide. The TiN deposition layer is capped with a final RPAN deposition layer of nitridation to reduce the bound oxygen in the TiN deposition layer. The resulting RF window has greatly improved titanium layer adhesion, reduced multipactor, and is able to withstand greater RF power levels than provided by the prior art.

  14. A low power 20 GHz comparator in 90 nm COMS technology

    Science.gov (United States)

    Kai, Tang; Qiao, Meng; Zhigong, Wang; Ting, Guo

    2014-05-01

    A low power 20 GHz CMOS dynamic latched regeneration comparator for ultra-high-speed, low-power analog-to-digital converters (ADCs) is proposed. The time constant in both the tracking and regeneration phases of the latch are analyzed based on the small signal model. A dynamic source-common logic (SCL) topology is adopted in the master-slave latch to increase the tracking and regeneration speeds. Implemented in 90 nm CMOS technology, this comparator only occupies a die area of 65 × 150 μm2 with a power dissipation of 14 mW from a 1.2 V power supply. The measurement results show that the comparator can work up to 20 GHz. Operating with an input frequency of 1 GHz, the circuit can oversample up to 20 Giga-sampling-per-second (GSps) with 5 bits resolution; while operating at Nyquist, the comparator can sample up to 20 GSps with 4 bits resolution. The comparator has been successfully used in a 20 GSps flash ADC and the circuit can be also used in other high speed applications.

  15. Feasibility Study for High Power RF – Energy Recovery in Particle Accelerators

    CERN Document Server

    Betz, Michael

    2010-01-01

    When dealing with particle accelerators, especially in systems with travelling wave structures and low beam loading, a substantial amount of RF power is dissipated in 50Ω termination loads. For the Super Proton Synchrotron (SPS) at Cern this is 69 % of the incident RF power or about 1 MW. Different ideas, making use of that otherwise dissipated power, are presented and their feasibility is reviewed. The most feasible one, utilizing an array of semiconductor based RF/DC modules, is used to create a design concept for energy recovery in the SPS. The modules are required to operate at high power, high efficiency and with low harmonic radiation. Besides the actual RF rectifier, they contain additional components to ensure a graceful degradation of the overall system. Different rectifier architectures and semiconductor devices are compared and the most suitable ones are chosen. Two prototype devices were built and operated with up to 400 W of pulsed RF power. Broadband measurements – capturing all harmonics up ...

  16. High power RF test of an 805 MHz RF cavity for a muon cooling channel

    International Nuclear Information System (INIS)

    Li, Derun; Corlett, J.; MacGill, R.; Rimmer, R.; Wallig, J.; Zisman, M.; Moretti, A.; Qian, Z.; Wu, V.; Summers, D.; Norem, J.

    2002-01-01

    We present recent high power RF test results on an 805 MHz cavity for a muon cooling experiment at Lab G in Fermilab. In order to achieve high accelerating gradient for large transverse emittance muon beams, the cavity design has adopted a pillbox like shape with 16 cm diameter beam iris covered by thin Be windows, which are demountable to allow for RF tests of different windows. The cavity body is made from copper with stiff stainless steel rings brazed to the cavity body for window attachments. View ports and RF probes are available for visual inspections of the surface of windows and cavity and measurement of the field gradient. Maximum of three thermo-couples can be attached to the windows for monitoring the temperature gradient on the windows caused by RF heating. The cavity was measured to have Q 0 of about 15,000 with copper windows and coupling constant of 1.3 before final assembling. A 12 MW peak power klystron is available at Lab G in Fermilab for the high power test. The cavity and coupler designs were performed using the MAFIA code in the frequency and the time domain. Numerical simulation results and cold test measurements on the cavity and coupler will be presented for comparisons

  17. Test result of 5 GHz, 500 kW CW prototype klystron for KSTAR LHCD system

    Energy Technology Data Exchange (ETDEWEB)

    Do, H., E-mail: heejindo@nfri.re.kr [Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Park, S. [Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Jeong, J.H.; Bae, Y.S.; Yang, H.L. [National Fusion Research Institute, Daejeon 350-333 (Korea, Republic of); Delpech, L.; Magne, R.; Hoang, G.T. [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Park, H.; Cho, M.H.; Namkung, W. [Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of)

    2011-10-15

    A 5 GHz LHCD system is being designed for current drive and profile modification necessary for AT mode and steady-state operation of the KSTAR tokamak. A prototype 500 kW CW klystron operating at 5 GHz was developed for the steady-state RF source. In this klystron, a multi-cell cavity is introduced to reduce cavity voltage and ohmic power loss. The klystron is designed with a triode system for optimization of gain, efficiency and beam control. The high voltage for the cathode is turned by using a thyristor switching system at the low voltage transformer unit. For anode voltage control, a mod-anode voltage divider system is used which utilize the parallel-circuit of the FET switch and Zener diodes. The RF output power of the klystron was 300 kW for 800 s and 450 kW for 20 s. The maximal temperature at collector top surface was 83 deg. C and power loss at the tube body did not exceed 10 kW, the interlock level for the protection of the klystron. Detailed results of the klystron system test and commissioning are presented.

  18. A Low Power 2.4 GHz CMOS Mixer Using Forward Body Bias Technique for Wireless Sensor Network

    Science.gov (United States)

    Yin, C. J.; Murad, S. A. Z.; Harun, A.; Ramli, M. M.; Zulkifli, T. Z. A.; Karim, J.

    2018-03-01

    Wireless sensor network (WSN) is a highly-demanded application since the evolution of wireless generation which is often used in recent communication technology. A radio frequency (RF) transceiver in WSN should have a low power consumption to support long operating times of mobile devices. A down-conversion mixer is responsible for frequency translation in a receiver. By operating a down-conversion mixer at a low supply voltage, the power consumed by WSN receiver can be greatly reduced. This paper presents a development of low power CMOS mixer using forward body bias technique for wireless sensor network. The proposed mixer is implemented using CMOS 0.13 μm Silterra technology. The forward body bias technique is adopted to obtain low power consumption. The simulation results indicate that a low power consumption of 0.91 mW is achieved at 1.6 V supply voltage. Moreover, the conversion gain (CG) of 21.83 dB, the noise figure (NF) of 16.51 dB and the input-referred third-order intercept point (IIP3) of 8.0 dB at 2.4 GHz are obtained. The proposed mixer is suitable for wireless sensor network.

  19. Modeling high-power RF accelerator cavities with SPICE

    International Nuclear Information System (INIS)

    Humphries, S. Jr.

    1992-01-01

    The dynamical interactions between RF accelerator cavities and high-power beams can be treated on personal computers using a lumped circuit element model and the SPICE circuit analysis code. Applications include studies of wake potentials, two-beam accelerators, microwave sources, and transverse mode damping. This report describes the construction of analogs for TM mn0 modes and the creation of SPICE input for cylindrical cavities. The models were used to study continuous generation of kA electron beam pulses from a vacuum cavity driven by a high-power RF source

  20. A low-power RF system with accurate synchronization for a S-band RF-gun using a laser-triggered photocathode

    International Nuclear Information System (INIS)

    Otake, Y.; Naito, T.; Shintake, T.; Takata, K.; Takeuchi, Y.; Urakawa, J.; Yoshioka, M.; Akiyama, H.

    1992-01-01

    An S-band RF-gun using a laser-triggered photocathode and its low-power RF system have been constructed. The main elements of the low-power RF system comprise a 600-W amplifier, an amplitude modulator, a phase detector, a phase shifter and a frequency-divider module. Synchronization between the RF fields for acceleration and the mode-locked laser pulses for beam triggering are among the important points concerning the RF-gun. The frequency divider module which down-converts from 2856 MHz(RF) to 89.25 MHz(laser), and the electrical phase-shifter were specially developed for stable phase control. The phase jitter of the frequency divider should be less than 10 ps to satisfy our present requirements. The first experiments to trigger and accelerate beams with the above-mentioned system were carried out in January, 1992. (Author) 6 figs., 5 refs

  1. Fast thermometry for superconducting rf cavity testing

    International Nuclear Information System (INIS)

    Orris, Darryl; Bellantoni, Leo; Carcagno, Ruben H.; Edwards, Helen; Harms, Elvin Robert; Khabiboulline, Timergali N.; Kotelnikov, Sergey; Makulski, Andrzej; Nehring, Roger; Pischalnikov, Yuriy; Fermilab

    2007-01-01

    Fast readout of strategically placed low heat capacity thermometry can provide valuable information of Superconducting RF (SRF) cavity performance. Such a system has proven very effective for the development and testing of new cavity designs. Recently, several resistance temperature detectors (RTDs) were installed in key regions of interest on a new 9 cell 3.9 GHz SRF cavity with integrated HOM design at FNAL. A data acquisition system was developed to read out these sensors with enough time and temperature resolution to measure temperature changes on the cavity due to heat generated from multipacting or quenching within power pulses. The design and performance of the fast thermometry system will be discussed along with results from tests of the 9 cell 3.9GHz SRF cavity

  2. Fast thermometry for superconducting rf cavity testing

    Energy Technology Data Exchange (ETDEWEB)

    Orris, Darryl; Bellantoni, Leo; Carcagno, Ruben H.; Edwards, Helen; Harms, Elvin Robert; Khabiboulline, Timergali N.; Kotelnikov, Sergey; Makulski, Andrzej; Nehring, Roger; Pischalnikov, Yuriy; /Fermilab

    2007-06-01

    Fast readout of strategically placed low heat capacity thermometry can provide valuable information of Superconducting RF (SRF) cavity performance. Such a system has proven very effective for the development and testing of new cavity designs. Recently, several resistance temperature detectors (RTDs) were installed in key regions of interest on a new 9 cell 3.9 GHz SRF cavity with integrated HOM design at FNAL. A data acquisition system was developed to read out these sensors with enough time and temperature resolution to measure temperature changes on the cavity due to heat generated from multipacting or quenching within power pulses. The design and performance of the fast thermometry system will be discussed along with results from tests of the 9 cell 3.9GHz SRF cavity.

  3. High-gradient electron accelerator powered by a relativisitic klystron

    International Nuclear Information System (INIS)

    Allen, M.A.; Boyd, J.K.; Callin, R.S.; Deruyter, H.; Eppley, K.R.; Fant, K.S.; Fowkes, W.R.; Haimson, J.; Hoag, H.A.; Hopkins, D.B.; Houck, T.; Koontz, R.F.; Lavine, T.L.; Loew, G.A.; Mecklenburg, B.; Miller, R.H.; Ruth, R.D.; Ryne, R.D.; Sessler, A.M.; Vlieks, A.E.; Wang, J.W.; Westenskow, G.A.; Yu, S.S.

    1989-01-01

    We have used relativistic klystron technology to extract 290 MW of peak power at 11.4 GHz from an induction linac beam, and to power a short 11.4-GHz high-gradient accelerator. We have measured rf phase stability, field emission, and the momentum spectrum of an accelerated electron beam. An average accelerating gradient of 84 MV/m has been achieved with 80 MW of relativistic klystron power

  4. RF Breakdown in Normal Conducting Single-Cell Structures

    International Nuclear Information System (INIS)

    Dolgashev, V.A.; Nantista, C.D.; Tantawi, S.G.; Higashi, Y.; Higo, T.

    2006-01-01

    Operating accelerating gradient in normal conducting accelerating structures is often limited by rf breakdown. The limit depends on multiple parameters, including input rf power, rf circuit, cavity shape and material. Experimental and theoretical study of the effects of these parameters on the breakdown limit in full scale structures is difficult and costly. We use 11.4 GHz single-cell traveling wave and standing wave accelerating structures for experiments and modeling of rf breakdown behavior. These test structures are designed so that the electromagnetic fields in one cell mimic the fields in prototype multicell structures for the X-band linear collider. Fields elsewhere in the test structures are significantly lower than that of the single cell. The setup uses matched mode converters that launch the circular TM 01 mode into short test structures. The test structures are connected to the mode launchers with vacuum rf flanges. This setup allows economic testing of different cell geometries, cell materials and preparation techniques with short turn-around time. Simple 2D geometry of the test structures simplifies modeling of the breakdown currents and their thermal effects

  5. Optimized Envelope Tracking Power Supply for Tetra2 Base Station RF Power Amplifier

    DEFF Research Database (Denmark)

    Høyerby, Mikkel Christian Wendelboe; Andersen, Michael Andreas E.

    2008-01-01

    An ultra-fast tracking power supply (UFTPS) for envelope tracking in a 50kHz 64-QAM Tetra2 base station power amplification system is demonstrated. A simple method for optimizing the step response of the PID+PD sliding-mode control system is presented and demonstrated, along with a PLL-based scheme...... application. Also demonstrated is the effect of non-zero UFTPS output impedance on envelope tracking performance. At 13W average (156W peak) RF output, a reduction of DC input power consumption from 93W (14% efficiency) to 54W (24% efficiency) is obtained by moving from a fixed RF power amplifier supply...

  6. Development of a large proton accelerator for innovative researches; development of high power RF source

    Energy Technology Data Exchange (ETDEWEB)

    Chung, K. H.; Lee, K. O.; Shin, H. M.; Chung, I. Y. [KAPRA, Seoul (Korea); Kim, D. I. [Inha University, Incheon (Korea); Noh, S. J. [Dankook University, Seoul (Korea); Ko, S. K. [Ulsan University, Ulsan (Korea); Lee, H. J. [Cheju National University, Cheju (Korea); Choi, W. H. [Korea Advanced Institute of Science and Technology, Taejeon (Korea)

    2002-05-01

    This study was performed with objective to design and develop the KOMAC proton accelerator RF system. For the development of the high power RF source for CCDTL(coupled cavity drift tube linac), the medium power RF system using the UHF klystron for broadcasting was integrated and with this RF system we obtained the basic design data, operation experience and code-validity test data. Based on the medium power RF system experimental data, the high power RF system for CCDTL was designed and its performed was analyzed. 16 refs., 64 figs., 27 tabs. (Author)

  7. Spatial Power Combining Amplifier for Ground and Flight Applications

    Science.gov (United States)

    Velazco, J. E.; Taylor, M.

    2016-11-01

    Vacuum-tube amplifiers such as klystrons and traveling-wave tubes are the workhorses of high-power microwave radiation generation. At JPL, vacuum tubes are extensively used in ground and flight missions for radar and communications. Vacuum tubes use electron beams as the source of energy to achieve microwave power amplification. Such electron beams operate at high kinetic energies and thus require high voltages to function. In addition, vacuum tubes use compact cavity and waveguide structures that hold very intense radio frequency (RF) fields inside. As the operational frequency is increased, the dimensions of these RF structures become increasingly smaller. As power levels and operational frequencies are increased, the highly intense RF fields inside of the tubes' structures tend to arc and create RF breakdown. In the case of very high-power klystrons, electron interception - also known as body current - can produce thermal runaway of the cavities that could lead to the destruction of the tube. The high voltages needed to power vacuum tubes tend to require complicated and cumbersome power supplies. Consequently, although vacuum tubes provide unmatched high-power microwaves, they tend to arc, suffer from thermal issues, and require failure-prone high-voltage power supplies. In this article, we present a new concept for generating high-power microwaves that we refer to as the Spatial Power Combining Amplifier (SPCA). The SPCA is very compact, requires simpler, lower-voltage power supplies, and uses a unique power-combining scheme wherein power from solid-state amplifiers is coherently combined. It is a two-port amplifier and can be used inline as any conventional two-port amplifier. It can deliver its output power to a coaxial line, a waveguide, a feed, or to any microwave load. A key feature of this new scheme is the use of higher-order-mode microwave structures to spatially divide and combine power. Such higher-order-mode structures have considerably larger cross

  8. Experimental studies of 2.45 GHz ECR ion sources for the production of high intensity currents

    International Nuclear Information System (INIS)

    Coly, A.

    2010-12-01

    This thesis is the result of a collaboration between the Pantechnik company and the LPSC (Laboratory of subatomic physics and cosmology of Grenoble). It consisted in the development of a new test bench dedicated to the characterization of a 2.45 GHz ECR ion sources with the aim of the production of high currents beams for industrial purposes. Two ECR ions sources with different magnetic structures have been tested around the same RF injection system. A new 2.45 GHz ECRIS, named SPEED, featuring a dipolar magnetic field at the extraction has been designed and tested. A study of the beam extraction in the dipolar magnetic field is proposed. First tests have shown a total ionic current density of about 10 mA/cm 2 with a 900 W RF power. Tests with hydrogen plasma have shown a maximum of current on the H 2 + species. Recommendations are given to modify the magnetic structure to improve the H + production yield. The MONO1000 ion source has been tested at high RF power with a wave guide type injection system. Intense total ionic current densities have been measured up to about 95 mA/cm 2 with a diode extraction system. First results using an improved 5 electrode extraction system are presented. (author)

  9. Analysis of Passive RF-DC Power Rectification and Harvesting Wireless RF Energy for Micro-watt Sensors

    Directory of Open Access Journals (Sweden)

    Antwi Nimo

    2015-04-01

    Full Text Available In this paper, analytical modeling of passive rectifying circuits and the harvesting of electromagnetic (EM power from intentionally generated as well as from ubiquitous sources are presented. The presented model is based on the linearization of rectifying circuits. The model provides an accurate method of determining the output characteristics of rectifying circuits. The model was verified with Advance Design System (ADS Harmonic balance (HB simulations and measurements. The results from the presented model were in agreement with simulations and measurements. Consequently design considerations and trade-off of radio frequency (RF harvesters are discussed. To verify the exploitation of ambient RF power sources for operation of sensors, a dual-band antenna with a size of ~λ/4 at 900MHz and a passive dual-band rectifier that is able to power a commercial Thermo-Hygrometer requiring ~1.3V and 0.5MΩ from a global system for mobile communications (GSM base station is demonstrated. The RF power delivered by the receiving dual-band antenna at a distance of about 110 m from the GSM base station ranges from -27 dBm to -50 dBm from the various GSM frequency bands. Additionally, wireless range measurements of the RF harvesters in the industrial, scientific and medical (ISM band 868MHz is presented at indoor conditions.

  10. Influences of the RF power ratio on the optical and electrical properties of GZO thin films by DC coupled RF magnetron sputtering at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Shou [State Key Laboratory of Advanced Technology for Float Glass, Bengbu 233018 (China); Bengbu Design & Research Institute for Glass Industry, Bengbu 233018 (China); Yao, Tingting, E-mail: yaott0815@163.com [State Key Laboratory of Advanced Technology for Float Glass, Bengbu 233018 (China); Bengbu Design & Research Institute for Glass Industry, Bengbu 233018 (China); Yang, Yong; Zhang, Kuanxiang; Jiang, Jiwen; Jin, Kewu; Li, Gang; Cao, Xin; Xu, Genbao; Wang, Yun [State Key Laboratory of Advanced Technology for Float Glass, Bengbu 233018 (China); Bengbu Design & Research Institute for Glass Industry, Bengbu 233018 (China)

    2016-12-15

    Ga-doped zinc oxide (GZO) thin films were deposited by closed field unbalanced DC coupled RF magnetron sputtering system at room temperature. The RF sputtering power ratio was adjusted from 0% to 100%. The crystal structure, surface morphology, transmittance and electrical resistivity of GZO films mainly influenced by RF sputtering power ratio were investigated by X-ray diffractometer, scanning electronic microscope, ultraviolet-visible spectrophotometer and Hall effect measurement. The research results indicate that the increasing RF power ratio can effectively reduce the discharge voltage of system and increase the ionizing rate of particles. Meanwhile, the higher RF power ratio can increase the carrier mobility in GZO thin film and improve the optical and electrical properties of GZO thin film significantly. Within the optimal discharge voltage window, the film deposits at 80% RF power ratio exhibits the lowest resistivity of 2.6×10{sup −4} Ω cm. We obtain the GZO film with the best average optical transmittance is approximately 84% in the visible wavelength. With the increasing RF power ratio, the densification of GZO film is enhanced. The densification of GZO film is decrease when the RF power ratio is 100%.

  11. Design and manufacture of the RF power supply and RF transmission line for SANAEM project Prometheus

    Science.gov (United States)

    Turemen, G.; Ogur, S.; Ahiska, F.; Yasatekin, B.; Cicek, E.; Ozbey, A.; Kilic, I.; Unel, G.; Alacakir, A.

    2017-08-01

    A 1-5 MeV proton beamline is being built by the Turkish Atomic Energy Authority in collaboration with a number of graduate students from different universities. The primary goal of the project, is to acquire the design ability and manufacturing capability of all the components locally. SPP will be an accelerator and beam diagnostics test facility and it will also serve the detector development community with its low beam current. This paper discusses the design and construction of the RF power supply and the RF transmission line components such as its waveguide converters and its circulator. Additionally low and high power RF test results are presented to compare the performances of the locally produced components to the commercially available ones.

  12. RF power dependent formation of amorphous MoO3-x nanorods by RF magnetron sputtering

    International Nuclear Information System (INIS)

    Navas, I.; Vinodkumar, R.; Detty, A.P.; Mahadevan Pillai, V.P.

    2009-01-01

    Full text: The fabrication of nanorods has received increasing attention for their unique physical and chemical properties and a wide range of potential applications such as photonics and nanoelectronics Molybdenum oxide nanorods with high activity can be used in a wide variety of applications such as cathodes in rechargeable batteries, field emission devices, solid lubricants, superconductors thermoelectric materials, and electrochromic devices. In this paper, amorphous MoO 3-x nanorods can find excellent applications in electrochromic and gas sensing have been successfully prepared by varying the R F power in R F Magnetron Sputtering system without heating the substrate; other parameters which are optimised in our earlier studies. We have found that the optimum RF power for nanorod formation is 200W. At a moderate RF power (200W), sputtering redeposition takes places constructively which leads to formation of fine nanorods. Large RF power creates high energetic ion bombardment on the grains surfaces which can lead to re-nucleation, so the grains become smaller and columnar growth is interrupted. Beyond the RF power 200W, the etching effect of the plasma became more severe and damaged the surface of the nanorods. All the molybdenum oxide films prepared are amorphous; the XRD patterns exhibit no characteristic peak corresponds to MoO 3 . The amorphous nature is preferred for good electrochromic colouration The spectroscopic properties of the nanorods have been investigated systematically using atomic force microscopy, x-ray diffraction, micro-Raman, UV-visible and photoluminescence (PL) spectroscopy. The films exhibit two emission bands; a near band edge UV emission and a defect related deep level visible emission

  13. Experimental Study of RF Energy Transfer System in Indoor Environment

    International Nuclear Information System (INIS)

    Adami, S-E; Proynov, P P; Stark, B H; Hilton, G S; Craddock, I J

    2014-01-01

    This paper presents a multi-transmitter, 2.43 GHz Radio-Frequency (RF) wireless power transfer (WPT) system for powering on-body devices. It is shown that under typical indoor conditions, the received power range spans several orders of magnitude from microwatts to milliwatts. A body-worn dual-polarised rectenna (rectifying antenna) is presented, designed for situations where the dominant polarization is unpredictable, as is the case for the on-body sensors. Power management circuitry is demonstrated that optimally loads the rectenna even under highly intermittent conditions, and boosts the voltage to charge an on-board storage capacitor

  14. Experimental Study of RF Energy Transfer System in Indoor Environment

    Science.gov (United States)

    Adami, S.-E.; Proynov, P. P.; Stark, B. H.; Hilton, G. S.; Craddock, I. J.

    2014-11-01

    This paper presents a multi-transmitter, 2.43 GHz Radio-Frequency (RF) wireless power transfer (WPT) system for powering on-body devices. It is shown that under typical indoor conditions, the received power range spans several orders of magnitude from microwatts to milliwatts. A body-worn dual-polarised rectenna (rectifying antenna) is presented, designed for situations where the dominant polarization is unpredictable, as is the case for the on-body sensors. Power management circuitry is demonstrated that optimally loads the rectenna even under highly intermittent conditions, and boosts the voltage to charge an on-board storage capacitor.

  15. High-power rf controls for the NBS-Los Alamos racetrack microtron

    International Nuclear Information System (INIS)

    Young, L.M.; Biddle, R.S.

    1985-01-01

    The high-power rf system for the National Bureau of Standards (NBS)-Los Alamos racetrack microtron (RTM) uses waveguide power splitters and waveguide phase shifters to distribute rf power from a single 500-kW cw klystron to four side-coupled accelerating structures. The amplitude and phase of each structure is controlled by a feedback system that uses the waveguide variable power splitters, waveguide phase shifters, and klystron drive as the active control elements. A block diagram of this system is shown, as is a subset of the complete system on which the measurements reported in this paper were performed. The feedback controls on the capture section use low-level rf amplitude and phase controls on the rf drive to the klystron. These controls are very fast with an open loop gain bandwidth of approximately 40 kHz. The feedback loop is identical to the feedback loop used in the chopper/buncher system described in another paper at this conference. 4 refs., 8 figs

  16. Compact rf polarizer and its application to pulse compression systems

    Directory of Open Access Journals (Sweden)

    Matthew Franzi

    2016-06-01

    Full Text Available We present a novel method of reducing the footprint and increasing the efficiency of the modern multi-MW rf pulse compressor. This system utilizes a high power rf polarizer to couple two circular waveguide modes in quadrature to a single resonant cavity in order to replicate the response of a traditional two cavity configuration using a 4-port hybrid. The 11.424 GHz, high-Q, spherical cavity has a 5.875 cm radius and is fed by the circularly polarized signal to simultaneously excite the degenerate TE_{114} modes. The overcoupled spherical cavity has a Q_{0} of 9.4×10^{4} and coupling factor (β of 7.69 thus providing a loaded quality factor Q_{L} of 1.06×10^{4} with a fill time of 150 ns. Cold tests of the polarizer demonstrated good agreement with the numerical design, showing transmission of -0.05  dB and reflection back to the input rectangular WR 90 waveguide less than -40  dB over a 100 MHz bandwidth. This novel rf pulse compressor was tested at SLAC using XL-4 Klystron that provided rf power up to 32 MW and generated peak output power of 205 MW and an average of 135 MW over the discharged signal. A general network analysis of the polarizer is discussed as well as the design and high power test of the rf pulse compressor.

  17. Novel rf power sensor based on capacitive MEMS technology

    NARCIS (Netherlands)

    Fernandez, L.J.; Visser, Eelke; Sesé, J.; Jansen, Henricus V.; Wiegerink, Remco J.; Flokstra, Jakob

    2003-01-01

    We present the theory, design, fabrication of and first measurements on a novel power for radio frequency (rf) signals, based on capacitive measurements. The novelty of this sensor is thtat it measures the force that is created between the rf signal and a grounded membrande suspended above the line

  18. A photocathode rf gun design for a mm-wave linac-based FEL

    Energy Technology Data Exchange (ETDEWEB)

    Nassiri, A.; Berenc, T,; Foster, J.; Waldschmidt, G.; Zhou, J.

    1995-07-01

    In recent years, advances in the rf gun technology have made it possible to produce small beam emittances suitable for short period microundulators which take advantage of the low emittance beam to reduce the wavelength of FELs. At the Advanced Photon Source, we are studying the design of a compact 50-MeV superconducting mm-wave linac-based FEL for the production of short wavelengths ({approximately}300 nm) to carry out FEL demonstration experiments. The electron source considered for the linac is a 30- GHz, 3 1/2-cell {pi}-mode photocathode rf gun. For cold model rf measurements a 15-GHz prototype structure was fabricated. Here we report on the design, numerical modelling and the initial cold-model rf measurement results on the 15-GHz prototype structure.

  19. A photocathode rf gun design for a mm-wave linac-based FEL

    International Nuclear Information System (INIS)

    Nassiri, A.; Berenc, T.; Foster, J.; Waldschmidt, G.; Zhou, J.

    1995-01-01

    In recent years, advances in the rf gun technology have made it possible to produce small beam emittances suitable for short period microundulators which take advantage of the low emittance beam to reduce the wavelength of FELs. At the Advanced Photon Source, we are studying the design of a compact 50-MeV superconducting mm-wave linac-based FEL for the production of short wavelengths (∼300 nm) to carry out FEL demonstration experiments. The electron source considered for the linac is a 30- GHz, 3 1/2-cell π-mode photocathode rf gun. For cold model rf measurements a 15-GHz prototype structure was fabricated. Here we report on the design, numerical modelling and the initial cold-model rf measurement results on the 15-GHz prototype structure

  20. Recent operating experience with Varian 70 GHz and 140 GHz gyrotrons

    International Nuclear Information System (INIS)

    Felch, K.; Bier, R.; Fox, L.; Huey, H.; Ives, L.; Jory, H.; Lopez, N.; Shively, J.; Spang, S.

    1985-01-01

    The design features and initial test results of Varian 70 GHz and 140 GHz CW gyrotrons are presented. The first experimental 140 GHz tube has achieved an output power of 102 kW at 24% efficiency under pulsed conditions in the desired TE 031 0 cavity mode. Further tests aimed at achieving the design goal of 100 kW CW are currently underway. The 70 GHz tube has achieved an output power of 200 kW under pulsed conditions and possesses a wide dynamic range for output power variations. 6 refs., 8 figs

  1. Efficient Low-Voltage Operation of a CW Gyrotron Oscillator at 233 GHz.

    Science.gov (United States)

    Hornstein, Melissa K; Bajaj, Vikram S; Griffin, Robert G; Temkin, Richard J

    2007-02-01

    The gyrotron oscillator is a source of high average power millimeter-wave through terahertz radiation. In this paper, we report low beam power and high-efficiency operation of a tunable gyrotron oscillator at 233 GHz. The low-voltage operating mode provides a path to further miniaturization of the gyrotron through reduction in the size of the electron gun, power supply, collector, and cooling system, which will benefit industrial and scientific applications requiring portability. Detailed studies of low-voltage operation in the TE(2) (,) (3) (,) (1) mode reveal that the mode can be excited with less than 7 W of beam power at 3.5 kV. During CW operation with 3.5-kV beam voltage and 50-mA beam current, the gyrotron generates 12 W of RF power at 233.2 GHz. The EGUN electron optics code describes the low-voltage operation of the electron gun. Using gun-operating parameters derived from EGUN simulations, we show that a linear theory adequately predicts the low experimental starting currents.

  2. MgB2 for Application to RF Cavities for Accelerators

    International Nuclear Information System (INIS)

    Tajima, T.; Canabal, A.; Zhao, Y.; Romanenko, A.; Moeckly, B.H.; Nantista, C.D.; Tantawi, S.; Phillips, L.; Iwashita, Y.; Campisi, I.E.

    2007-01-01

    Magnesium diboride (MgB 2 ) has a transition temperature (T c ) of ∼40 K, i.e., about 4 times as high as that of niobium (Nb).We have been evaluating MgB 2 as a candidate material for radio-frequency (RF) cavities for future particle accelerators. Studies in the last 3 years have shown that it could have about one order of magnitude less RF surface resistance (Rs) than Nb at 4 K. A power dependence test using a 6 GHz TE011 mode cavity has shown little power dependence up to ∼12 mT (120 Oe), limited by available power, compared to other high-Tc materials such as YBCO. A recent study showed, however, that the power dependence of Rs is dependent on the coating method. A film made with on-axis pulsed laser deposition (PLD) has showed rapid increase in Rs compared to the film deposited by reactive evaporation method. This paper shows these results as well as future plans

  3. Effect of RF power and substrate temperature on physical properties of Zr0.8Sn0.2TiO4 films by RF magnetron sputtering

    International Nuclear Information System (INIS)

    Hsu Cheng-Shing; Huang Cheng-Liang

    2001-01-01

    Physical properties of rf-sputtered crystalline (Zr 0.8 Sn 0.2 )TiO 4 (ZST) thin films deposited on n-type Si(100) substrates at different rf powers and substrate temperatures have been investigated. The structural and morphological characteristics analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM) were found to be sensitive to deposition conditions, such as rf power from 300 W to 400 W and substrate temperature (400degC, 450degC). Highly oriented ZST (111) and (002) perpendicular to the substrate surface were identified at a rf power of 400 W and a substrate temperature of 450degC. The selected-area diffraction pattern showed that the deposited films exhibited a polycrystalline microstructure. The grain size as well as the deposition rate of the film increased with the increase in both the rf power and the substrate temperature. The leakage current decreased with increasing rf power and substrate temperature. As rf power = 400 W and substrate temperature = 450degC, a leakage current of 7.2x10 -11 A was obtained at 1 V. (author)

  4. 47 CFR 101.1525 - RF safety.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false RF safety. 101.1525 Section 101.1525 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Service and Technical Rules for the 70/80/90 GHz Bands § 101.1525 RF safety. Licensees in the 70...

  5. RF start-up and sustainment experiments on the TST-2-K spherical tokamak

    International Nuclear Information System (INIS)

    Ejiri, A.; Takase, Y.; Kasahara, H.; Yamada, T.; Hanada, K.; Sato, K. N.; Zushi, H.; Nakamura, K.; Sakamoto, M.; Idei, H.; Hasegawa, M.; Iyomasa, A.; Imamura, N.; Esaki, K.; Kitaguchi, M.; Sasaki, K.; Hoshika, H.; Mitarai, O.; Nishino, N.

    2006-01-01

    Plasma start-up and sustainment without an inductive field have been studied in the TST-2-K spherical tokamak using high power RF sources (8.2 GHz/up to 170 kW). Steady state discharges with a plasma current of 4 kA were achieved. The line integrated density was about 3 x 10 17 m -2 and the electron temperature was 160 eV. A truncated equilibrium was introduced to reproduce magnetic measurements. It was found that a positive Pfirsch-Schlueter current in the open field line region at the outboard boundary makes a significant contribution to the current. Insensitivity of the current to variations in the vertical field and RF power variation was also found

  6. High-Power Plasma Switch for 11.4 GHz Microwave Pulse Compressor

    International Nuclear Information System (INIS)

    Hirshfield, Jay L.

    2010-01-01

    Results obtained in several experiments on active RF pulse compression at X-band using a magnicon as the high-power RF source are presented. In these experiments, microwave energy was stored in high-Q TE01 and TE02 modes of two parallel-fed resonators, and then discharged using switches activated with rapidly fired plasma discharge tubes. Designs and high-power tests of several versions of the compressor are described. In these experiments, coherent pulse superposition was demonstrated at a 5-9 MW level of incident power. The compressed pulses observed had powers of 50-70 MW and durations of 40-70 ns. Peak power gains were measured to be in the range of 7:1-11:1 with efficiency in the range of 50-63%.

  7. Design of the 3.7 GHz, 500 kW CW circulator for the LHCD system of the SST-1 tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Dixit, Harish V., E-mail: hvdixit48@yahoo.com [Veermata Jijabai Technological Institute, Mumbai, Maharashtra 400019 (India); Jadhav, Aviraj R. [Veermata Jijabai Technological Institute, Mumbai, Maharashtra 400019 (India); Jain, Yogesh M. [Institute for Plasma Research, Gandhinagar, Gujarat 382428 (India); Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094 (India); Cheeran, Alice N. [Veermata Jijabai Technological Institute, Mumbai, Maharashtra 400019 (India); Gupta, Vikas [Vidyavardhini' s College of Engineering and Technology, Vasai, Maharashtra 401202 (India); Sharma, P.K. [Institute for Plasma Research, Gandhinagar, Gujarat 382428 (India); Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094 (India)

    2017-06-15

    Highlights: • Design of a 500 kW CW circulator for LHCD system at 3.7 GHz. • Mechanism for thermal management of ferrite tile. • Scheme for uniform magnetisation of the ferrite tiles. • Design of high CW power CW quadrature and 180 ° hybrid coupler. - Abstract: Circulators are used in high power microwave systems to protect the vacuum source against reflection. The Lower Hybrid Current Drive (LHCD) system of SST-1 tokamak commissioned at IPR, Gandhinagar in India comprises of four high power circulators to protect klystrons (supplying 500 kW CW each at 3.7 GHz) which power the system. This paper presents the design of a Differential Phase Shift Circulator (DPSC) capable of handling 500 kW CW power at 3.7 GHz so that four circulators can be used to protect the four available klystrons. As the DPSC is composed by three main components, viz., magic tee, ferrite phase shifter and 3 dB hybrid coupler, the designing of each of the proposed components is described. The design of these components is carried out factoring various multiphysics aspects of RF, heating due to high CW power and magnetic field requirement of the ferrite phase shifter. The primary objective of this paper is to present the complete RF, magnetic and thermal design of a high CW power circulator. All the simulations have been carried out in COMSOL Multiphysics. The designed circulator exhibits an insertion loss of 0.13 dB with a worst case VSWR of 1.08:1. The total length of the circulator is 3 m.

  8. Oak Ridge rf Test Facility

    International Nuclear Information System (INIS)

    Gardner, W.L.; Hoffman, D.J.; McCurdy, H.C.; McManamy, T.J.; Moeller, J.A.; Ryan, P.M.

    1985-01-01

    The rf Test Facility (RFTF) of Oak Ridge National Laboratory (ORNL) provides a national facility for the testing and evaluation of steady-state, high-power (approx.1.0-MW) ion cyclotron resonance heating (ICRH) systems and components. The facility consists of a vacuum vessel and two fully tested superconducting development magnets from the ELMO Bumpy Torus Proof-of-Principle (EBT-P) program. These are arranged as a simple mirror with a mirror ratio of 4.8. The axial centerline distance between magnet throat centers is 112 cm. The vacuum vessel cavity has a large port (74 by 163 cm) and a test volume adequate for testing prototypic launchers for Doublet III-D (DIII-D), Tore Supra, and the Tokamak Fusion Test Reactor (TFTR). Attached to the internal vessel walls are water-cooled panels for removing the injected rf power. The magnets are capable of generating a steady-state field of approx.3 T on axis in the magnet throats. Steady-state plasmas are generated in the facility by cyclotron resonance breakdown using a dedicated 200-kW, 28-GHz gyrotron. Available rf sources cover a frequency range of 2 to 200 MHz at 1.5 kW and 3 to 18 MHz at 200 kW, with several sources at intermediate parameters. Available in July 1986 will be a >1.0-MW, cw source spanning 40 to 80 MHz. 5 figs

  9. Coating power RF components with TiN

    International Nuclear Information System (INIS)

    Kuchnir, M.; Hahn, E.

    1995-03-01

    A facility for coating RF power components with thin films of Ti and/or TiN has been in operation for some time at Fermilab supporting the Accelerator Division RF development work and the TESLA program. It has been experimentally verified that such coatings improve the performance of these components as far as withstanding higher electric fields. This is attributed to a reduction in the secondary electron emission coefficient of the surfaces when coated with a thin film containing titanium. The purpose of this Technical Memorandum is to describe the facility and the procedure used

  10. Effect on antenna structure of high power rf during plasma operation

    International Nuclear Information System (INIS)

    Haste, G.R.; Thomas, C.E.; Fadnek, A.; Carter, M.D.; Beaumont, B.; Becoulet, A.; Kuus, H.; Saoutic, B.

    1993-01-01

    High-power, long-pulse operation on the Tore Supra tokamak results in considerable stress on the plasma-facing components. The ICH antennas must deliver high-power rf(up to 4 MW per antenna) in this environment. The antenna structure is therefore subjected to the power flux resulting from the interaction between rf and the edge plasma. The structure's response during operation is described, as is the condition of the antenna after prolonged use

  11. A capacitive rf power sensor based on mems technology

    NARCIS (Netherlands)

    Fernandez, L.J.

    2005-01-01

    Existing power sensors for RF signals are based on thermistors, diodes and thermocouples. These power sensors are used as terminating devices and therefore they dissipate the complete incoming signal. Furthermore, new telecommunication systems require low weight, volume and power consumption and a

  12. Integrated 60GHz RF Beamforming in CMOS

    NARCIS (Netherlands)

    Yu, Yikun; Baltus, P.G.M.; Roermund, van A.H.M.

    2011-01-01

    The 60GHz band is promising for applications such as high-speed short-range wireless personal area network (WPAN), real time video streaming at rates of several Gbps, automotive radar, and mm-Wave imaging, since it provides a large amount of bandwidth that can freely (i.e. without a license) be used

  13. Efficient Direct-Matching Rectenna Design for RF Power Transfer Applications

    Science.gov (United States)

    Keyrouz, Shady; Visser, Huib

    2013-12-01

    This paper presents the design, simulation, fabrication and measurements of a 50 ohm rectenna system. The paper investigates each part (in terms of input impedance) of the rectenna system starting from the antenna, followed by the matching network, to the rectifier. The system consists of an antenna, which captures the transmitted RF signal, connected to a rectifier which converts the AC captured signal into a DC power signal. For maximum power transfer, a matching network is designed between the rectifier and the antenna. At an input power level of -10 dBm, the system is able to achieve an RF/DC power conversion efficiency of 49.7%.

  14. Efficient Direct-Matching Rectenna Design for RF Power Transfer Applications

    International Nuclear Information System (INIS)

    Keyrouz, Shady; Visser, Huib

    2013-01-01

    This paper presents the design, simulation, fabrication and measurements of a 50 ohm rectenna system. The paper investigates each part (in terms of input impedance) of the rectenna system starting from the antenna, followed by the matching network, to the rectifier. The system consists of an antenna, which captures the transmitted RF signal, connected to a rectifier which converts the AC captured signal into a DC power signal. For maximum power transfer, a matching network is designed between the rectifier and the antenna. At an input power level of −10 dBm, the system is able to achieve an RF/DC power conversion efficiency of 49.7%

  15. Look at energy compression as an assist for high power rf production

    International Nuclear Information System (INIS)

    Birx, D.L.; Farkas, Z.D.; Wilson, P.B.

    1984-01-01

    The desire to construct electron linacs of higher and higher energies, coupled with the realities of available funding and real estate, has forced machine designers to reassess the limitations in both accelerator gradient (MeV/m) and energy. The gradients achieved in current radio-frequency (RF) linacs are sometimes set by electrical breakdown in the accelerating structure, but are in most cases determined by the RF power level available to drive the linac. In this paper we will not discuss RF power sources in general, but rather take a brief look at several energy compression schemes which might be of service in helping to make better use of the sources we employ. We will, however, diverge for a bit and discuss what the RF power requirements are. 12 references, 21 figures, 3 tables

  16. Performance of 3.9 GHz SRF cavities at Fermilab's ILCTA_MDB nhorizontal test stand

    Energy Technology Data Exchange (ETDEWEB)

    Harms, Elvin; Hocker, Andy; /Fermilab

    2008-08-01

    Fermilab is building a cryomodule containing four 3.9 GHz superconducting radio frequency (SRF) cavities for the Free electron LASer in Hamburg (FLASH) facility at the Deutsches Elektronen-SYnchrotron (DESY) laboratory. Before assembling the cavities into the cryomodule, each individual cavity is tested at Fermilab's Horizontal Test Stand (HTS). The HTS provides the capability to test fully-dressed SRF cavities at 1.8 K with high-power pulsed RF in order to verify that the cavities achieve performance requirements under these conditions. The performance at the HTS of the 3.9 GHz cavities built for FLASH is presented here.

  17. Reduction of field emission in superconducting cavities with high power pulsed RF

    International Nuclear Information System (INIS)

    Graber, J.; Crawford, C.; Kirchgessner, J.; Padamsee, H.; Rubin, D.; Schmueser, P.

    1994-01-01

    A systematic study is presented of the effects of pulsed high power RF processing (HPP) as a method of reducing field emission (FE) in superconducting radio frequency (SRF) cavities to reach higher accelerating gradients for future particle accelerators. The processing apparatus was built to provide up to 150 kW peak RF power to 3 GHz cavities, for pulse lengths from 200 μs to 1 ms. Single-cell and nine-cell cavities were tested extensively. The thermal conductivity of the niobium for these cavities was made as high as possible to ensure stability against thermal breakdown of superconductivity. HPP proves to be a highly successful method of reducing FE loading in nine-cell SRF cavities. Attainable continuous wave (CW) fields increase by as much as 80% from their pre-HPP limits. The CW accelerating field achieved with nine-cell cavities improved from 8-15 MV/m with HPP to 14-20 MV/m. The benefits are stable with subsequent exposure to dust-free air. More importantly, HPP also proves effective against new field emission subsequently introduced by cold and warm vacuum ''accidents'' which admitted ''dirty'' air into the cavities. Clear correlations are obtained linking FE reduction with the maximum surface electric field attained during processing. In single cells the maximums reached were E peak =72 MV/m and H peak =1660 Oe. Thermal breakdown, initiated by accompanying high surface magnetic fields is the dominant limitation on the attainable fields for pulsed processing, as well as for final CW and long pulse operation. To prove that the surface magnetic field rather than the surface electric fields is the limitation to HPP effectiveness, a special two-cell cavity with a reduced magnetic to electric field ratio is successfully tested. During HPP, pulsed fields reach E peak =113 MV/m (H peak =1600 Oe) and subsequent CW low power measurement reached E peak =100 MV/m, the highest CW field ever measured in a superconducting accelerator cavity. ((orig.))

  18. Development of an S-band high-power pillbox-type RF window

    International Nuclear Information System (INIS)

    Miura, A.; Matsumoto, H.

    1992-01-01

    We report on the development of RF windows used to handle a high transmission power up to 110 MW for the Japan Linear Collider. A detailed simulation on multipactoring has been carried out. The results were compared with cathode-luminescence on the surface of alumina RF windows experimentally observed with power transmission up to 200 MW. (Author) 10 refs., 9 figs

  19. Fabrication of Very High Efficiency 5.8 GHz Power Amplifiers using AlGaN HFETs on SiC Substrates for Wireless Power Transmission

    Science.gov (United States)

    Sullivan, Gerry

    2001-01-01

    For wireless power transmission using microwave energy, very efficient conversion of the DC power into microwave power is extremely important. Class E amplifiers have the attractive feature that they can, in theory, be 100% efficient at converting, DC power to RF power. Aluminum gallium nitride (AlGaN) semiconductor material has many advantageous properties, relative to silicon (Si), gallium arsenide (GaAs), and silicon carbide (SiC), such as a much larger bandgap, and the ability to form AlGaN/GaN heterojunctions. The large bandgap of AlGaN also allows for device operation at higher temperatures than could be tolerated by a smaller bandgap transistor. This could reduce the cooling requirements. While it is unlikely that the AlGaN transistors in a 5.8 GHz class E amplifier can operate efficiently at temperatures in excess of 300 or 400 C, AlGaN based amplifiers could operate at temperatures that are higher than a GaAs or Si based amplifier could tolerate. Under this program, AlGaN microwave power HFETs have been fabricated and characterized. Hybrid class E amplifiers were designed and modeled. Unfortunately, within the time frame of this program, good quality HFETs were not available from either the RSC laboratories or commercially, and so the class E amplifiers were not constructed.

  20. Design of a Novel W-Sinker RF LDMOS

    Directory of Open Access Journals (Sweden)

    Xiangming Xu

    2015-01-01

    Full Text Available A novel RF LDMOS device structure and corresponding manufacturing process are presented in this paper. Deep trench W-sinker (tungsten sinker is employed in this technology to replace the traditional heavily doped diffusion sinker which can shrink chip size of the LDMOS transistor by more than 30% and improve power density. Furthermore, the W-sinker structure reduces the parasitic resistance and inductance and improves thermal conductivity of the device as well. Combined with the adoption of the techniques, like grounded shield, step gate oxide, LDD optimization, and so forth, an advanced technology for RF LDMOS based on conventional 0.35 μm CMOS technology is well established. An F+A power amplifier product with frequency range of 1.8–2.1 GHz is developed for the application of 4G LTE base station and industry leading performance is achieved. The qualification results show that the device reliability and ruggedness can also meet requirement of the application.

  1. KEY COMPARISON: CCEM.RF-K18.CL (GT-RF/00-1): Noise in 50 Ω coaxial line at frequencies up to 1 GHz

    Science.gov (United States)

    Eiø, Christopher; Adamson, David; Randa, James; Allal, Djamel; Uzdin, Rinadij

    2006-01-01

    A measurement comparison of noise temperature has been carried out between four national metrology laboratories in coaxial line at 30 MHz, 60 MHz and 1 GHz. The identification of this intercomparison is CCEM.RF-K18.CL. Two noise sources have been measured. The following four national laboratories participated in this intercomparison: NPL (United Kingdom), NIST (United States of America), BNM-LNE (France) and VNIIFTRI (Russia). The National Physical Laboratory (UK) acted as the pilot laboratory for the comparison. It can be seen that there is generally good agreement between the laboratories. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCEM, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA).

  2. Demonstration of a Submillimeter-Wave HEMT Oscillator Module at 330 GHz

    Science.gov (United States)

    Radisic, Vesna; Deal, W. R.; Mei, X. B.; Yoshida, Wayne; Liu, P. H.; Uyeda, Jansen; Lai, Richard; Samoska, Lorene; Fung, King Man; Gaier, Todd; hide

    2010-01-01

    In this work, radial transitions have been successfully mated with a HEMT-based MMIC (high-electron-mobility-transistor-based monolithic microwave integrated circuit) oscillator circuit. The chip has been assembled into a WR2.2 waveguide module for the basic implementation with radial E-plane probe transitions to convert the waveguide mode to the MMIC coplanar waveguide mode. The E-plane transitions have been directly integrated onto the InP substrate to couple the submillimeter-wave energy directly to the waveguides, thus avoiding wire-bonds in the RF path. The oscillator demonstrates a measured 1.7 percent DC-RF efficiency at the module level. The oscillator chip uses 35-nm-gate-length HEMT devices, which enable the high frequency of oscillation, creating the first demonstration of a packaged waveguide oscillator that operates over 300 GHz and is based on InP HEMT technology. The oscillator chip is extremely compact, with dimensions of only 1.085 x 320 sq mm for a total die size of 0.35 sq mm. This fully integrated, waveguide oscillator module, with an output power of 0.27 mW at 330 GHz, can provide low-mass, low DC-power-consumption alternatives to existing local oscillator schemes, which require high DC power consumption and large mass. This oscillator module can be easily integrated with mixers, multipliers, and amplifiers for building high-frequency transmit and receive systems at submillimeter wave frequencies. Because it requires only a DC bias to enable submillimeter wave output power, it is a simple and reliable technique for generating power at these frequencies. Future work will be directed to further improving the applicability of HEMT transistors to submillimeter wave and terahertz applications. Commercial applications include submillimeter-wave imaging systems for hidden weapons detection, airport security, homeland security, and portable low-mass, low-power imaging systems

  3. Development of a 200 W CW high efficiency traveling wave tube at 12 GHz. [for use in communication technology satellites

    Science.gov (United States)

    Christensen, J. A.; Tammaru, I.

    1974-01-01

    The design, development, and test results are reported for an experimental PPM focused, traveling-wave tube that produces 235 watts of CW RF power over 85 MHz centered at 12.080 GHz. The tube uses a coupled cavity RF circuit with a velocity taper for greater than 30 percent basic efficiency. Overall efficiency of 51 percent is achieved by means of a nine stage depressed collector designed at NASA Lewis Research Center. This collector is cooled by direct radiation to deep space.

  4. The effect of phase difference between powered electrodes on RF plasmas

    International Nuclear Information System (INIS)

    Proschek, M; Yin, Y; Charles, C; Aanesland, A; McKenzie, D R; Bilek, M M; Boswell, R W

    2005-01-01

    This paper presents the results of measurements carried out on plasmas created in five different RF discharge systems. These systems all have two separately powered RF (13.56 MHz) electrodes, but differ in overall size and in the geometry of both vacuum chambers and RF electrodes or antennae. The two power supplies were synchronized with a phase-shift controller. We investigated the influence of the phase difference between the two RF electrodes on plasma parameters and compared the different system geometries. Single Langmuir probes were used to measure the plasma parameters in a region between the electrodes. Floating potential and ion density were affected by the phase difference and we found a strong influence of the system geometry on the observed phase difference dependence. Both ion density and floating potential curves show asymmetries around maxima and minima. These asymmetries can be explained by a phase dependence of the time evolution of the electrode-wall coupling within an RF-cycle resulting from the asymmetric system geometry

  5. An investigation of the DC and RF performance of InP DHBTs transferred to RF CMOS wafer substrate

    Science.gov (United States)

    Ren, Kun; Zheng, Jiachen; Lu, Haiyan; Liu, Jun; Wu, Lishu; Zhou, Wenyong; Cheng, Wei

    2018-05-01

    This paper investigated the DC and RF performance of the InP double heterojunction bipolar transistors (DHBTs) transferred to RF CMOS wafer substrate. The measurement results show that the maximum values of the DC current gain of a substrate transferred device had one emitter finger, of 0.8 μm in width and 5 μm in length, are changed unobviously, while the cut-off frequency and the maximum oscillation frequency are decreased from 220 to 171 GHz and from 204 to 154 GHz, respectively. In order to have a detailed insight on the degradation of the RF performance, small-signal models for the InP DHBT before and after substrate transferred are presented and comparably extracted. The extracted results show that the degradation of the RF performance of the device transferred to RF CMOS wafer substrate are mainly caused by the additional introduced substrate parasitics and the increase of the capacitive parasitics induced by the substrate transfer process itself. Project supported by the National Natural Science Foundation of China (No. 61331006) and the Natural Science Foundation of Zhejiang Province (No. Y14F010017).

  6. An RF energy harvesting power management circuit for appropriate duty-cycled operation

    Science.gov (United States)

    Shirane, Atsushi; Ito, Hiroyuki; Ishihara, Noboru; Masu, Kazuya

    2015-04-01

    In this study, we present an RF energy harvesting power management unit (PMU) for battery-less wireless sensor devices (WSDs). The proposed PMU realizes a duty-cycled operation that is divided into the energy charging time and discharging time. The proposed PMU detects two types of timing, thus, the appropriate timing for the activation can be recognized. The activation of WSDs at the proper timing leads to energy efficient operation and stable wireless communication. The proposed PMU includes a hysteresis comparator (H-CMP) and an RF signal detector (RF-SD) to detect the timings. The proposed RF-SD can operate without the degradation of charge efficiency by reusing the RF energy harvester (RF-EH) and H-CMP. The PMU fabricated in a 180 nm Si CMOS demonstrated the charge operation using the RF signal at 915 MHz and the two types of timing detection with less than 124 nW in the charge phase. Furthermore, in the active phase, the PMU generates a 0.5 V regulated power supply from the charged energy.

  7. A Long-Distance RF-Powered Sensor Node with Adaptive Power Management for IoT Applications.

    Science.gov (United States)

    Pizzotti, Matteo; Perilli, Luca; Del Prete, Massimo; Fabbri, Davide; Canegallo, Roberto; Dini, Michele; Masotti, Diego; Costanzo, Alessandra; Franchi Scarselli, Eleonora; Romani, Aldo

    2017-07-28

    We present a self-sustained battery-less multi-sensor platform with RF harvesting capability down to -17 dBm and implementing a standard DASH7 wireless communication interface. The node operates at distances up to 17 m from a 2 W UHF carrier. RF power transfer allows operation when common energy scavenging sources (e.g., sun, heat, etc.) are not available, while the DASH7 communication protocol makes it fully compatible with a standard IoT infrastructure. An optimized energy-harvesting module has been designed, including a rectifying antenna (rectenna) and an integrated nano-power DC/DC converter performing maximum-power-point-tracking (MPPT). A nonlinear/electromagnetic co-design procedure is adopted to design the rectenna, which is optimized to operate at ultra-low power levels. An ultra-low power microcontroller controls on-board sensors and wireless protocol, to adapt the power consumption to the available detected power by changing wake-up policies. As a result, adaptive behavior can be observed in the designed platform, to the extent that the transmission data rate is dynamically determined by RF power. Among the novel features of the system, we highlight the use of nano-power energy harvesting, the implementation of specific hardware/software wake-up policies, optimized algorithms for best sampling rate implementation, and adaptive behavior by the node based on the power received.

  8. A Long-Distance RF-Powered Sensor Node with Adaptive Power Management for IoT Applications

    Directory of Open Access Journals (Sweden)

    Matteo Pizzotti

    2017-07-01

    Full Text Available We present a self-sustained battery-less multi-sensor platform with RF harvesting capability down to −17 dBm and implementing a standard DASH7 wireless communication interface. The node operates at distances up to 17 m from a 2 W UHF carrier. RF power transfer allows operation when common energy scavenging sources (e.g., sun, heat, etc. are not available, while the DASH7 communication protocol makes it fully compatible with a standard IoT infrastructure. An optimized energy-harvesting module has been designed, including a rectifying antenna (rectenna and an integrated nano-power DC/DC converter performing maximum-power-point-tracking (MPPT. A nonlinear/electromagnetic co-design procedure is adopted to design the rectenna, which is optimized to operate at ultra-low power levels. An ultra-low power microcontroller controls on-board sensors and wireless protocol, to adapt the power consumption to the available detected power by changing wake-up policies. As a result, adaptive behavior can be observed in the designed platform, to the extent that the transmission data rate is dynamically determined by RF power. Among the novel features of the system, we highlight the use of nano-power energy harvesting, the implementation of specific hardware/software wake-up policies, optimized algorithms for best sampling rate implementation, and adaptive behavior by the node based on the power received.

  9. Cellular responses to 836 MHz and 1,765 GHz CDMA radiations

    International Nuclear Information System (INIS)

    Park, Woong Yang; Seo, Jeong Sun; Paik, Jung Ki; Lim, Kye Jae; Yoon, Hyun Bo

    2002-01-01

    The effect of radiofrequency (RF) radiation in the cellular phone communication range (836.5 MHz and 1.765 GHz code division multiple access, CDMA) on tumorigenesis and other health effect was measured using the in vitro cell culture system. To determine whether 836.5 MHz or 1.765 GHz CDMA radiations have any genotoxic effects to induce neoplastic transformation, C3H 10T1/2 cells were exposed to either of the above radiations at a specific absorption rate (SAR) of 35.6W/Kg (836.5 MHz) and 38.2 W/kg(1.765 GHz) or sham- exposed at the same time for 7 days. Cells were maintained in incubators and refed with fresh growth medium every 3 days. At this SAR, radiofrequency radiation did not induce neoplastic transformation in vitro. The extent of alteration in the kinetics of cell proliferation indicated no significant differences between RF-radiation- and sham-exposed cells with respect to MTS assay and 8-OHdG. Under this experimental conditions tested, there is no evidence for the induction of genotoxic indices in human and mouse cells exposed in vitro for 7 days to 836.5 MHz or 1.765 GHz RF radiation at SARs of up to 35.6 or 38.2 W/kg

  10. Effects Of Environmental And Operational Stresses On RF MEMS Switch Technologies For Space Applications

    Science.gov (United States)

    Jah, Muzar; Simon, Eric; Sharma, Ashok

    2003-01-01

    Micro Electro Mechanical Systems (MEMS) have been heralded for their ability to provide tremendous advantages in electronic systems through increased electrical performance, reduced power consumption, and higher levels of device integration with a reduction of board real estate. RF MEMS switch technology offers advantages such as low insertion loss (0.1- 0.5 dB), wide bandwidth (1 GHz-100 GHz), and compatibility with many different process technologies (quartz, high resistivity Si, GaAs) which can replace the use of traditional electronic switches, such as GaAs FETS and PIN Diodes, in microwave systems for low signal power (x technologies, the unknown reliability, due to the lack of information concerning failure modes and mechanisms inherent to MEMS devices, create an obstacle to insertion of MEMS technology into high reliability applications. All MEMS devices are sensitive to moisture and contaminants, issues easily resolved by hermetic or near-hermetic packaging. Two well-known failure modes of RF MEMS switches are charging in the dielectric layer of capacitive membrane switches and contact interface stiction of metal-metal switches. Determining the integrity of MEMS devices when subjected to the shock, vibration, temperature extremes, and radiation of the space environment is necessary to facilitate integration into space systems. This paper will explore the effects of different environmental stresses, operational life cycling, temperature, mechanical shock, and vibration on the first commercially available RF MEMS switches to identify relevant failure modes and mechanisms inherent to these device and packaging schemes for space applications. This paper will also describe RF MEMS Switch technology under development at NASA GSFC.

  11. Design of resonant converter based DC power supply for RF amplifier

    International Nuclear Information System (INIS)

    Mohan, Kartik; Suthar, Gajendra; Dalicha, Hrushikesh; Agarwal, Rohit; Trivedi, R.G.; Mukherjee, Aparajita

    2017-01-01

    ITER require 20 MW of RF power to a large variety of plasmas in the Ion Cyclotron frequency range for heating and driving plasma current. Nine RF sources of 2.5MW RF power level each collectively will accomplish the above requirement. Each RF source consists of SSPA, driver and end stage, above which driver and end stage amplifier are tube (Tetrode/Diacrode) based which requires auxiliary DC power source viz. filament, screen grid and control grid DC power supply. DC power supply has some stringent requirements like low stored energy, fast turn off, and low ripple value, etc. This paper will focus only on Zero Current Switching (ZCS) resonant converter based buck converter. This can serve the purpose of control grid and screen grid DC power supply for above requirement. IGBT switch will be used at 20 kHz so as to lower the filter requirement hence low stored energy and ripple in the output voltage. ZCS operation will also assist us in reducing EMI/EMC effect. Design of resonant tank circuit is important aspect of the converter as it forms the backbone of the complete system and basis of selection of other important parameters as well hence mathematical model analysis with the help of circuit equations for various modes have been shown as a part of selection criteria. Peak current through the switch, duty cycle, switching frequency will be the design parameters for selecting resonant tank circuit

  12. Performance of the Crowbar of the LHC High Power RF System

    CERN Document Server

    Ravidà, G; Valuch, D

    2012-01-01

    The counter-rotating proton beams in the Large Hadron Collider (LHC) are captured and accelerated to their final energies by two identical 400 MHz Radio Frequency (RF) systems. The RF power source required for each beam comprises eight 300 kW klystrons. The output power of each klystron is fed via a circulator and a waveguide line to the input coupler of a single-cell superconducting (SC) cavity. Each unit of four klystrons is powered by a -100kV/40A AC/DC power converter. A fast protection system (crowbar) protects the four klystrons in each of these units. Although the LHC RF system has shown has very good performance, operational experience has shown that the five-gap double-ended thyratrons used in the crowbar system suffer, from time to time, from auto-firing, which result in beam dumps. This paper presents the recent results obtained with an alternative solution based on solid state thyristors. Comparative measurements with the thyratron are shown.

  13. Amplifier Module for 260-GHz Band Using Quartz Waveguide Transitions

    Science.gov (United States)

    Padmanabhan, Sharmila; Fung, King Man; Kangaslahti, Pekka P.; Peralta, Alejandro; Soria, Mary M.; Pukala, David M.; Sin, Seth; Samoska, Lorene A.; Sarkozy, Stephen; Lai, Richard

    2012-01-01

    Packaging of MMIC LNA (monolithic microwave integrated circuit low-noise amplifier) chips at frequencies over 200 GHz has always been problematic due to the high loss in the transition between the MMIC chip and the waveguide medium in which the chip will typically be used. In addition, above 200 GHz, wire-bond inductance between the LNA and the waveguide can severely limit the RF matching and bandwidth of the final waveguide amplifier module. This work resulted in the development of a low-loss quartz waveguide transition that includes a capacitive transmission line between the MMIC and the waveguide probe element. This capacitive transmission line tunes out the wirebond inductance (where the wire-bond is required to bond between the MMIC and the probe element). This inductance can severely limit the RF matching and bandwidth of the final waveguide amplifier module. The amplifier module consists of a quartz E-plane waveguide probe transition, a short capacitive tuning element, a short wire-bond to the MMIC, and the MMIC LNA. The output structure is similar, with a short wire-bond at the output of the MMIC, a quartz E-plane waveguide probe transition, and the output waveguide. The quartz probe element is made of 3-mil quartz, which is the thinnest commercially available material. The waveguide band used is WR4, from 170 to 260 GHz. This new transition and block design is an improvement over prior art because it provides for better RF matching, and will likely yield lower loss and better noise figure. The development of high-performance, low-noise amplifiers in the 180-to- 700-GHz range has applications for future earth science and planetary instruments with low power and volume, and astrophysics array instruments for molecular spectroscopy. This frequency band, while suitable for homeland security and commercial applications (such as millimeter-wave imaging, hidden weapons detection, crowd scanning, airport security, and communications), also has applications to

  14. Radio frequency electromagnetic radiation (RF-EMR from GSM (0.9/1.8GHz mobile phones induces oxidative stress and reduces sperm motility in rats

    Directory of Open Access Journals (Sweden)

    Maneesh Mailankot

    2009-06-01

    Full Text Available INTRODUCTION: Mobile phones have become indispensable in the daily lives of men and women around the globe. As cell phone use has become more widespread, concerns have mounted regarding the potentially harmful effects of RF-EMR from these devices. OBJECTIVE: The present study was designed to evaluate the effects of RF-EMR from mobile phones on free radical metabolism and sperm quality. MATERIALS AND METHODS: Male albino Wistar rats (10-12 weeks old were exposed to RF-EMR from an active GSM (0.9/1.8 GHz mobile phone for 1 hour continuously per day for 28 days. Controls were exposed to a mobile phone without a battery for the same period. The phone was kept in a cage with a wooden bottom in order to address concerns that the effects of exposure to the phone could be due to heat emitted by the phone rather than to RF-EMR alone. Animals were sacrificed 24 hours after the last exposure and tissues of interest were harvested. RESULTS: One hour of exposure to the phone did not significantly change facial temperature in either group of rats. No significant difference was observed in total sperm count between controls and RF-EMR exposed groups. However, rats exposed to RF-EMR exhibited a significantly reduced percentage of motile sperm. Moreover, RF-EMR exposure resulted in a significant increase in lipid peroxidation and low GSH content in the testis and epididymis. CONCLUSION: Given the results of the present study, we speculate that RF-EMR from mobile phones negatively affects semen quality and may impair male fertility.

  15. New high power 200 MHz RF system for the LANSCE drift tube linac

    International Nuclear Information System (INIS)

    Lyles, J.; Friedrichs, C.; Lynch, M.

    1998-01-01

    The Los Alamos Neutron Science Center (LANSCE) linac provides an 800 MeV direct H + proton beam, and injects H - to the upgraded proton storage ring for charge accumulation for the Short Pulse Spallation Source. Accelerating these interlaced beams requires high average power from the 201.25 MHz drift tube linac (DTL) RF system. Three power amplifiers have operated at up to three Megawatts with 12% duty factor. The total number of electron power tubes in the RF amplifiers and their modulators has been reduced from fifty-two to twenty-four. The plant continues to utilize the original design of a tetrode driving a super power triode. Further increases in the linac duty factor are limited, in part, by the maximum dissipation ratings of the triodes. A description of the system modifications proposed to overcome these limitations includes new power amplifiers using low-level RF modulation for tank field control. The first high power Diacrode reg-sign is being delivered and a new amplifier cavity is being designed. With only eight power tubes, the new system will deliver both peak power and high duty factor, with lower mains power and cooling requirements. The remaining components needed for the new RF system will be discussed

  16. Power Adaptation Based on Truncated Channel Inversion for Hybrid FSO/RF Transmission With Adaptive Combining

    KAUST Repository

    Rakia, Tamer

    2015-07-23

    Hybrid free-space optical (FSO)/radio-frequency (RF) systems have emerged as a promising solution for high-data-rate wireless communications. In this paper, we consider power adaptation strategies based on truncated channel inversion for the hybrid FSO/RF system employing adaptive combining. Specifically, we adaptively set the RF link transmission power when FSO link quality is unacceptable to ensure constant combined signal-to-noise ratio (SNR) at the receiver. Two adaptation strategies are proposed. One strategy depends on the received RF SNR, whereas the other one depends on the combined SNR of both links. Analytical expressions for the outage probability of the hybrid system with and without power adaptation are obtained. Numerical examples show that the hybrid FSO/RF system with power adaptation achieves a considerable outage performance improvement over the conventional system.

  17. Power Adaptation Based on Truncated Channel Inversion for Hybrid FSO/RF Transmission With Adaptive Combining

    KAUST Repository

    Rakia, Tamer; Hong-Chuan Yang; Gebali, Fayez; Alouini, Mohamed-Slim

    2015-01-01

    Hybrid free-space optical (FSO)/radio-frequency (RF) systems have emerged as a promising solution for high-data-rate wireless communications. In this paper, we consider power adaptation strategies based on truncated channel inversion for the hybrid FSO/RF system employing adaptive combining. Specifically, we adaptively set the RF link transmission power when FSO link quality is unacceptable to ensure constant combined signal-to-noise ratio (SNR) at the receiver. Two adaptation strategies are proposed. One strategy depends on the received RF SNR, whereas the other one depends on the combined SNR of both links. Analytical expressions for the outage probability of the hybrid system with and without power adaptation are obtained. Numerical examples show that the hybrid FSO/RF system with power adaptation achieves a considerable outage performance improvement over the conventional system.

  18. Long reach and enhanced power budget DWDM radio-over-fibre link supported by Raman amplification and coherent detection

    DEFF Research Database (Denmark)

    Caballero Jambrina, Antonio; Guerrero Gonzalez, Neil; Fernandez, Amaya

    2009-01-01

    We report on a scalable and enhanced power budget radio-over-fibre system for hybrid-wireless access networks operating at 12.5 GHz DWDM spacing for 5 GHz RF carriers over a 60 km fibre link with Raman amplification....

  19. Traveling wave linear accelerator with RF power flow outside of accelerating cavities

    Science.gov (United States)

    Dolgashev, Valery A.

    2016-06-28

    A high power RF traveling wave accelerator structure includes a symmetric RF feed, an input matching cell coupled to the symmetric RF feed, a sequence of regular accelerating cavities coupled to the input matching cell at an input beam pipe end of the sequence, one or more waveguides parallel to and coupled to the sequence of regular accelerating cavities, an output matching cell coupled to the sequence of regular accelerating cavities at an output beam pipe end of the sequence, and output waveguide circuit or RF loads coupled to the output matching cell. Each of the regular accelerating cavities has a nose cone that cuts off field propagating into the beam pipe and therefore all power flows in a traveling wave along the structure in the waveguide.

  20. Design and development of embedded control system for high power RF test facility

    International Nuclear Information System (INIS)

    Nageswara Rao, J.; Badapanda, M.K.; Upadhyay, Rinki; Tripathi, Akhilesh; Hannurkar, P.R.

    2013-01-01

    Design and development of an embedded control system for the control, interlock and operation of 1MW, 352.2 MHz TH2089 klystron based RF test facility. The key components of the control system are NI compact Re configurable Input Output (cRIO) system and Windows based PC. The cRIO system's rugged hardware architecture includes a 1.06 GHz Dual-Core embedded controller with Real Time (RT) Operating System, a reconfigurable Field Programmable Gate Array (FPGA) chassis for custom I/O timing, control and processing; and I/O modules. Windows based Graphical User Interface (GUI) has been developed to guide the user through start-up procedure, to set the operating parameters and also to display the status information of all the signals. The application software for data logging and publishing of the acquired data namely set, read back and status signals of auxiliary power supplies and machine safety interlocks has been developed in LabVIEW RT module and is running on embedded controller. Machine safety interlock logic has been implemented in FPGA to meet the time criticality. (author)

  1. Investigation and reduction of excess low-frequency noise in rf superconducting quantum interference devices

    International Nuclear Information System (INIS)

    Mueck, M.; Heiden, C.; Clarke, J.

    1994-01-01

    A detailed study has been made of the low-frequency excess noise of rf superconducting quantum interference devices (SQUIDs), fabricated from thin niobium films and operated at 4.2 K, with rf bias frequencies of 0.15, 1.7, and 3 GHz. When the SQUIDs were operated in an open-loop configuration in the absence of low-frequency flux modulation, the demodulated rf voltage exhibited a substantial level 1/f noise, which was essentially independent of the rf bias frequency. As the rf bias frequency was increased, the crossover frequency at which the 1/f noise power was equal to the white noise power moved to higher frequencies, because of the reduction in white noise. On the other hand, when the SQUID was flux modulated at 50 kHz and operated in a flux locked loop, no 1/f noise was observed at frequencies above 0.5 Hz. A detailed description of how the combination of rf bias and flux modulation removes 1/f noise due to critical current fluctuations is given. Thus, the results demonstrate that the 1/f noise observed in these SQUIDs is generated by critical current fluctuations, rather than by the hopping of flux vortices in the niobium films

  2. Initial tests of an 11.4 GHz magnicon amplifier

    International Nuclear Information System (INIS)

    Gold, S.H.; Sullivan, C.A.; Manheimer, W.M.; Hafizi, B.

    1994-01-01

    The magnicon, a scanning beam microwave amplifier related to the gyrocon, is a possible replacement for klystron amplifiers in future high-gradient linear accelerators. The magnicon circuit consists of a multicavity deflection system followed by an output cavity. The purpose of the deflection system is to spin up the electron beam phase-coherently to high transverse momentum. In order to do this, the deflection cavities employ rotating TM 11 modes, producing a gyrating electron beam whose centroid rotates about the cavity axis in synchronism with the advance in phase of the rf modes. The output cavity employs a cyclotron resonant mechanism to extract principally the transverse beam momentum. It employs an rf mode that rotates synchronously with the deflection cavity modes, and with the entry point of the electron beam into the output cavity, making possible a highly efficient interaction. The NRL magnicon uses a 100--200 A, 500 keV beam produced by a cold-cathode diode on the NRL Long-Pulse Accelerator Facility. The first cavity is externally driven at 5.7 GHz, while the output cavity is designed to produce megawatts of power at 11.4 GHz in the TM 210 mode. In this paper, the authors present a progress report on the NRL magnicon experiment. They will discuss the procedure used to cold test and calibrate the magnicon circuit, and present initial results from experimental operations

  3. Results of the SLAC LCLS Gun High-Power RF Tests

    International Nuclear Information System (INIS)

    Dowell, D.H.; Jongewaard, E.; Limborg-Deprey, C.; Schmerge, J.F.; Li, Z.; Xiao, L.; Wang, J.; Lewandowski, J.; Vlieks, A.

    2007-01-01

    The beam quality and operational requirements for the Linac Coherent Light Source (LCLS) currently being constructed at SLAC are exceptional, requiring the design of a new RF photocathode gun for the electron source. Based on operational experience at SLAC's GTF and SDL and ATF at BNL as well as other laboratories, the 1.6cell s-band (2856MHz) gun was chosen to be the best electron source for the LCLS, however a significant redesign was necessary to achieve the challenging parameters. Detailed 3-D analysis and design was used to produce near-perfect rotationally symmetric rf fields to achieve the emittance requirement. In addition, the thermo-mechanical design allows the gun to operate at 120Hz and a 140MV/m cathode field, or to an average power dissipation of 4kW. Both average and pulsed heating issues are addressed in the LCLS gun design. The first LCLS gun is now fabricated and has been operated with high-power RF. The results of these high-power tests are presented and discussed

  4. Development of a high-power RF cavity for the PEP-II B factory

    International Nuclear Information System (INIS)

    Rimmer, R.A.; Allen, M.A.; Saba, J.; Schwarz, H.

    1995-03-01

    The authors describe the development and fabrication of the first high-power RF cavity for PEP-II. Design choices and fabrication technologies for the first cavity and subsequent production cavities are described. Conditioning and high-power testing of the first and subsequent cavities are discussed, as well as integration of the cavity into modular RF systems for both high-energy and low-energy rings. Plans for installation of the cavity raft assemblies in the RF sections of the PEP tunnel are also considered

  5. Design of 28 GHz, 200 kW Gyrotron for ECRH Applications

    Science.gov (United States)

    Yadav, Vivek; Singh, Udaybir; Kumar, Nitin; Kumar, Anil; Deorani, S. C.; Sinha, A. K.

    2013-01-01

    This paper presents the design of 28 GHz, 200 kW gyrotron for Indian TOKAMAK system. The paper reports the designs of interaction cavity, magnetron injection gun and RF window. EGUN code is used for the optimization of electron gun parameters. TE03 mode is selected as the operating mode by using the in-house developed code GCOMS. The simulation and optimization of the cavity parameters are carried out by using the Particle-in-cell, three dimensional (3-D)-electromagnetic simulation code MAGIC. The output power more than 250 kW is achieved.

  6. Phase Stable RF-over-fiber Transmission using Heterodyne Interferometry

    International Nuclear Information System (INIS)

    Wilcox, R.; Byrd, J.M.; Doolittle, L.; Huang, G.; Staples, J.W.

    2010-01-01

    New scientific applications require phase-stabilized RF distribution to multiple remote locations. These include phased-array radio telescopes and short pulse free electron lasers. RF modulated onto a CW optical carrier and transmitted via fiber is capable of low noise, but commercially available systems aren't long term stable enough for these applications. Typical requirements are for less than 50fs long term temporal stability between receivers, which is 0.05 degrees at 3GHz. Good results have been demonstrated for RF distribution schemes based on transmission of short pulses, but these require specialized free-space optics and high stability mechanical infrastructure. We report a method which uses only standard telecom optical and RF components, and achieves less than 20fs RMS error over 300m of standard single-mode fiber. We demonstrate stable transmission of 3GHz over 300m of fiber with less than 0.017 degree (17fs) RMS phase error. An interferometer measures optical phase delay, providing information to a feed-forward correction of RF phase.

  7. Design of a higher harmonic RF system for the Advanced Light Source

    CERN Document Server

    Byrd, J M; De Santis, S; Kosta, S; Lo, C C; Plate, D; Rimmer, R A; Franks, M

    2000-01-01

    We report on the design and fabrication of a third harmonic radiofrequency (RF) system for the Advanced Light Source (ALS) to be used for lengthening the bunch and increasing the Touschek-dominated beam lifetime. We plan to install five single-cell 1.5 GHz copper RF cavities in one-half of an ALS straight section with a predicted increase in the lifetime by a factor of 3. Each RF cell is designed to sustain a maximum voltage of 125 kV with a power dissipation of 5 kW. We present measurements made on an aluminum cavity model characterizing the RF properties of cavity such as the cavity R/Q and higher-order modes (HOMs). In particular, resonances in the cavity tuners were studied in order to avoid heating of the tuner bellows. Initial measurements of the copper cavities indicate a Q value of 21 000, resulting in a shunt impedance of 1.69 M OMEGA per cell

  8. Flattened optical frequency-locked multi-carrier generation by cascading one DML and one phase modulator driven by different RF frequency clocks

    International Nuclear Information System (INIS)

    Li, Xinying; Yu, Jianjun; Zhang, Junwen; Chi, Nan

    2013-01-01

    We propose a novel scheme for flattened optical frequency-locked multi-carrier generation based on one directly modulated laser (DML) and one phase modulator (PM) in cascade driven by different sinusoidal radio-frequency (RF) clocks. We experimentally demonstrate that when the clock frequencies for the cascaded DML and the PM are respectively 12.5 GHz and 25 GHz, over 24 optical subcarriers can be generated with 12.5-GHz frequency spacing and amplitude fluctuation less than 3 dB. Furthermore, the number of generated optical subcarriers can be further increased when we increase the driving power for the DML. (letter)

  9. Performance test of lower hybrid waveguide under long/high-RF power transmission

    International Nuclear Information System (INIS)

    Seki, Masami; Obara, Kenjiro; Maebara, Sunao

    1996-06-01

    Performance tests of a module for lower hybrid waveguides were carried out at the CEA Cadarache RF Test Facility. For the experiments the test module was fabricated by JAERI, the transmission line of the test bed was modified and the connection waveguides were manufactured by CEA. As the results, the thermal treatment by baking at a higher temperature was the most effective for reducing outgassing during injection of high RF power. The outgassing strongly depended on the temperature of the test module, but was independent to initial temperature. The RF injection reduced outgassing. The outgassing rate decreased to a low level of 10 -6 -10 -5 Pa m 3 /sec m 2 (10 -9 -10 -8 Torr 1/sec cm 2 ) at 400degC after 450degC-baking. The gas injection did not affect outgassing before and during RF injection. The baking under H 2 or D 2 gas atmosphere were not so effective for reducing outgassing rate. The outgassing rate did not depend on input RF power densities. The temperature in central part of the test module saturated to be ∼100degC by using of water cooling at a power level of 150 MW/m 2 RF injection, and a neutral gas pressure decreased gradually. In the water cooling case, the outgassing rate was very low less than 10 -7 Pa m 3 /sec m 2 (10 -10 Torr 1/sec cm 2 ). The steady state RF injection was demonstrated with water cooling. (author)

  10. Digitally Controlled Envelope Tracking Power Supply for an RF Power Amplifier

    DEFF Research Database (Denmark)

    Jakobsen, Lars Tønnes; Andersen, Michael Andreas E.

    2007-01-01

    due to clock frequency quantization. An envelope tracking power supply for an RF Power Amplifier (RFPA) can help improve system efficiency by reducing the power consumption of the RFPA. To show the advantage of the DiSOM over traditional counter based Digital PWM modulators two designs were compared...... in both simulation and by experiment. The results shows that the DiSOM could give an increase in open loop bandwidth by more than a factor of two and an reduce the closed loop output impedance of the power supply by a factor of 5 at the output filter resonance frequency....

  11. Modeling and design techniques for RF power amplifiers

    CERN Document Server

    Raghavan, Arvind; Laskar, Joy

    2008-01-01

    The book covers RF power amplifier design, from device and modeling considerations to advanced circuit design architectures and techniques. It focuses on recent developments and advanced topics in this area, including numerous practical designs to back the theoretical considerations. It presents the challenges in designing power amplifiers in silicon and helps the reader improve the efficiency of linear power amplifiers, and design more accurate compact device models, with faster extraction routines, to create cost effective and reliable circuits.

  12. Feasibility study of the EU home team on a 170 GHz 1 MW CW gyrotron for ECH on ITER

    International Nuclear Information System (INIS)

    Iatrou, C.T.; Kern, S.; Thumm, M.; Moebius, A.; Nickel, H.U.; Horajitra, P.; Wien, A.; Tran, T.M.; Bon Mardion, G.; Pain, M.; Tonon, G.

    1995-03-01

    The gyrotron system for ECH and burn control on ITER requires at least 50 MW of RF power at frequencies near 170 GHz operating in CW. To meet these requirements, high efficiency gyrotron tubes with ≥1 MW power output capability are necessary, as well as simple coupling to either a quasi-optical or waveguide transmission line. The paper reports the feasibility study on the design of an ITER-relevant gyrotron oscillator at 170 GHz, 1 MW CW employing a diode electron gun, an advanced internal quasi-optical converter, a cryogenically cooled single disk sapphire window, and a depressed potential collector. The operating mode selection and the cavity design is a compromise between many design constraints. (author) 18 figs., 6 tabs., 21 refs

  13. Microwave source development for 9 MeV RF electron LINAC for cargo scanning

    International Nuclear Information System (INIS)

    Yadav, V.; Chandan, Shiv; Tillu, A.R.; Bhattacharjee, D.; Chavan, R.B.; Dixit, K.P.; Mittal, K.C.; Gantayet, L.M.

    2011-01-01

    For cargo scanning, high energy X-rays are required. These X-rays can be generated from accelerated electrons. A 9 MeV Cargo scanning RF LINAC has been developed at ECIL, Hyderabad. The Microwave power source required for RF Linac is a klystron-based system generating 5.5 MW peak, 10 kW average, at 2.856 GHz. Various components required for microwave source were identified, procured, tested and integrated into the source. Microwave source was tested on water load, then it was connected to LINAC and RF conditioning and e-beam trials were successfully done. For operating the microwave source, a PC based remote handling system was also designed and developed for operating various power supplies and instruments of the microwave source, including the Klystron modulator, Signal generator and other devices. The accelerator operates in pulse mode, requiring synchronous operation of the Klystron modulator, RF driver amplifier and E-gun modulator. For this purpose, a synchronous trigger generator was designed and developed. This paper describes the development and testing of microwave source and its remote operating system. The results of beam trials are also discussed in this paper. (author)

  14. 1 GHz GaAs Buck Converter for High Power Amplifier Modulation Applications

    NARCIS (Netherlands)

    Busking, E.B.; Hek, A.P. de; Vliet, F.E. van

    2012-01-01

    A fully integrated 1 GHz buck converter output stage, including on-chip inductor and DC output filtering has been realized, in a standard high-voltage breakdown GaAs MMIC technology. This is a significant step forward in designing highspeed power control of supply-modulated HPAs (high power

  15. Evaluation of a new method of RF power coupling to acceleration cavity of charged particles accelerators

    Directory of Open Access Journals (Sweden)

    A M Poursaleh

    2017-08-01

    Full Text Available In this paper, the feasibility studty of a new method of RF power coupling to acceleration cavity of charged particles accelerator will be evaluated. In this method a slit is created around the accelerator cavity, and RF power amplifier modules is connected directly to the acceleration cavity. In fact, in this design, the cavity in addition to acting as an acceleration cavity, acts as a RF power combiner. The benefits of this method are avoiding the use of RF vacuum tubes, transmission lines, high power combiner and coupler. In this research, cylindrical and coaxial cavities were studied, and a small sample coaxial cavity is build by this method. The results of the resarch showed that compact, economical and safe RF accelerators can be achieved by the proposed method

  16. Outgassing studies of lower hybrid antenna module during CW high RF power injection

    International Nuclear Information System (INIS)

    Goniche, M.; Brossaud, J.; Berger-By, G.; Bibet, Ph.; Poli, S.; Rey, G.; Tonon, G.; Seki, M.; Obara, K.; Maebara, S.; Ikeda, Y.; Imai, T.; Nagashima, T.

    1994-01-01

    Outgassing, induced by very long RF waves injection (up to 6000s) at high power density, is studied with a module, able to be used for a lower hybrid frequency antenna. A large outgassing data base is provided by 75 shots cumulating 27 hours of RF injection. Outgassing rate is documented after different thermal pre-treatments, and in various conditions of cooling, RF power level. Relevant parameters are identified and values of outgassing rates are given in order to design pumping system for a large antenna. (author) 4 refs.; 7 figs.; 1 tab

  17. Phase and amplitude stability of a pulsed RF system on the example of the CLIC drive beam LINAC

    CERN Document Server

    AUTHOR|(CDS)2132320; Prof. BANTEL, Michael

    The CLIC drive beam accelerator consists of the Drive Beam Injector (DBI) and two Drive Beam Linacs (DBLs). The drive beam injector is composed of a thermionic electron source, 3 Sub Harmonic Bunchers (SHBs), a pre-buncher, and several acceleration structures. In the electron source the DC electron beam is produced from a thermionic cathode. The following buncher cavities group ("bunch") the electrons to be accelerated by RF later on. Each electron bunch has an energy of 140 keV, a length of 3 mm, and a charge qb = 8.4 nC. Afterwards the electrons are accelerated in the 1 GHz accelerating structures up to 50MeV. The pulsed Radio Frequency (RF) power for this acceleration is provided by 1 GHz, 20MW modulator-klystron units, one per acceleration structure. A klystron is an RF amplifier based on a linear-beam vacuum tube. The high voltage modulator supplies the acceleration voltage to this tube. A DC electron beam gets modulated with an input signal, the modulation enhances in a drift space, and finally the powe...

  18. Interplay of the influence of oxygen partial pressure and rf power on ...

    Indian Academy of Sciences (India)

    2017-07-25

    Jul 25, 2017 ... extra heating) and low pressure p = 0.5 mTorr, varying the rf power density between P = 0.57 and 2.83 W cm−2 at different relative oxygen ... thin films are used as window layers in solar cells [1–3]. Sput- tering (especially rf ... defect density [11,12]. In the literature there are works reporting the effect of rf.

  19. Class 1 bluetooth power amplifier with 24dBm output power and 48% PAE at 2.4GHz in 0.25um CMOS

    NARCIS (Netherlands)

    Vathulay, V.; Sowlati, T.; Leenaerts, D.M.W.

    2001-01-01

    In this paper, we report an RF power amplifier design in digital CMOS technology for the Class 1 power level specification (20 dBm) in the Bluetooth Communications standard. We have also investigated hot carrier effects under large signal RF operation of the power amplifier. The two stage circuit,

  20. Analog/RF performance of two tunnel FETs with symmetric structures

    Science.gov (United States)

    Chen, Shupeng; Liu, Hongxia; Wang, Shulong; Li, Wei; Wang, Qianqiong

    2017-11-01

    In this paper, the radio frequency and analog performance of two tunnel field-effect transistors with symmetric structures are analyzed. The symmetric U-shape gate tunnel field-effect transistor (SUTFET) and symmetric tunnel field-effect transistor (STFET) are investigated by Silvaco Atlas simulation. The basic electrical properties and the parameters related to frequency and analog characteristics are analyzed. Due to the lower off-state leakage current, the STFET has better power consumption performance. The SUTFET obtains larger operating current (242 μA/μm), transconductance (490 μS/μm), output conductance (494 μS/μm), gain bandwidth product (3.2 GHz) and cut-off frequency (27.7 GHz). The simulation result of these two devices can be used as a guideline for their analog/RF applications.

  1. Performance test of lower hybrid waveguide under long/high-RF power transmission

    Energy Technology Data Exchange (ETDEWEB)

    Seki, Masami; Obara, Kenjiro; Maebara, Sunao [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; and others

    1996-06-01

    Performance tests of a module for lower hybrid waveguides were carried out at the CEA Cadarache RF Test Facility. For the experiments the test module was fabricated by JAERI, the transmission line of the test bed was modified and the connection waveguides were manufactured by CEA. As the results, the thermal treatment by baking at a higher temperature was the most effective for reducing outgassing during injection of high RF power. The outgassing strongly depended on the temperature of the test module, but was independent to initial temperature. The RF injection reduced outgassing. The outgassing rate decreased to a low level of 10{sup -6}-10{sup -5} Pa m{sup 3}/sec m{sup 2} (10{sup -9}-10{sup -8} Torr 1/sec cm{sup 2}) at 400degC after 450degC-baking. The gas injection did not affect outgassing before and during RF injection. The baking under H{sub 2} or D{sub 2} gas atmosphere were not so effective for reducing outgassing rate. The outgassing rate did not depend on input RF power densities. The temperature in central part of the test module saturated to be {approx}100degC by using of water cooling at a power level of 150 MW/m{sup 2} RF injection, and a neutral gas pressure decreased gradually. In the water cooling case, the outgassing rate was very low less than 10{sup -7} Pa m{sup 3}/sec m{sup 2} (10{sup -10} Torr 1/sec cm{sup 2}). The steady state RF injection was demonstrated with water cooling. (author).

  2. RF transport

    International Nuclear Information System (INIS)

    Choroba, Stefan

    2013-01-01

    This paper deals with the techniques of transport of high-power radiofrequency (RF) power from a RF power source to the cavities of an accelerator. Since the theory of electromagnetic waves in waveguides and of waveguide components is very well explained in a number of excellent text books it will limit itself on special waveguide distributions and on a number of, although not complete list of, special problems which sometimes occur in RF power transportation systems. (author)

  3. Design considerations for RF power amplifiers demonstrated through a GSM/EDGE power amplifier module

    NARCIS (Netherlands)

    Baltus, P.G.M.; Bezooijen, van A.; Huijsing, J.H.; Steyaert, M.; Roermund, van A.H.M.

    2002-01-01

    This paper describes the design considerations for RF power amplifiers in general, including trends in systems, linearity and efficiency, the PA environment, implementation is sues and technology. As an example a triple-band (900/1800/1900MHz) dual mode (GSMIEdge) power amplifier module is described

  4. High-power, solid-state rf source for accelerator cavities

    International Nuclear Information System (INIS)

    Vaughan, D.R.; Mols, G.E.; Reid, D.W.; Potter, J.M.

    1985-01-01

    During the past few years the Defense and Electronics Center of Westinghouse Electric Corporation has developed a solid-state, 250-kW peak, rf amplifier for use with the SPS-40 radar system. This system has a pulse length of 60 μs and operates across the frequency band from 400 to 450 MHz. Because of the potential use of such a system as an rf source for accelerator applications, a collaborative experiment was initiated between Los Alamos National Laboratory and Westinghouse to simulate the resonant load conditions of an accelerator cavity. This paper describes the positive results of that experiment as well as the solid-state amplifier architecture. It also explores the future of high-power, solid-state amplifiers as rf sources for accelerator structures

  5. The rectenna design on contact lens for wireless powering of the active intraocular pressure monitoring system.

    Science.gov (United States)

    Cheng, H W; Jeng, B M; Chen, C Y; Huang, H Y; Chiou, J C; Luo, C H

    2013-01-01

    This paper proposed a wireless power harvesting system with micro-electro-mechanical-systems (MEMS) fabrication for noninvasive intraocular pressure (IOP) measurement on soft contact lens substructure. The power harvesting IC consists of a loop antenna, an impedance matching network and a rectifier. The proposed IC has been designed and fabricated by CMOS 0.18 um process that operates at the ISM band of 5.8 GHz. The antenna and the power harvesting IC would be bonded together by using flip chip bonding technologies without extra wire interference. The circuit utilized an impedance transformation circuit to boost the input RF signal that improves the circuit performance. The proposed design achieves an RF-to-DC conversion efficiency of 35% at 5.8 GHz.

  6. Experiments on a 14.5 GHz ECR source

    International Nuclear Information System (INIS)

    Hill, C.E.; Langbein, K.

    1996-01-01

    The 14.5 GHz ECR4 source supplied to CERN in the framework of the Heavy Ion Facility collaboration provided Pb 27+ operational beams to a new custom built linac in 1994. This source, which operates in the pulsed 'afterglow' mode, quickly met its design specification of 80 eμA and now provides currents >100 eμA regularly. Early source tests showed the existence of extremely stable modes of operation. In the search for higher intensities a number of experiments have been performed on plasma gas composition, RF power matching, extraction, beam pulse compression and a biased dynode. The results of these tests will be presented along with further ideas to improve source performance. (author)

  7. Novel RF and microwave components employing ferroelectric and solid-state tunable capacitors for multi-functional wireless communication systems

    Science.gov (United States)

    Tombak, Ali

    The recent advancement in wireless communications demands an ever increasing improvement in the system performance and functionality with a reduced size and cost. This thesis demonstrates novel RF and microwave components based on ferroelectric and solid-state based tunable capacitor (varactor) technologies for the design of low-cost, small-size and multi-functional wireless communication systems. These include tunable lumped element VHF filters based on ferroelectric varactors, a beam-steering technique which, unlike conventional systems, does not require separate power divider and phase shifters, and a predistortion linearization technique that uses a varactor based tunable R-L-C resonator. Among various ferroelectric materials, Barium Strontium Titanate (BST) is actively being studied for the fabrication of high performance varactors at RF and microwave frequencies. BST based tunable capacitors are presented with typical tunabilities of 4.2:1 with the application of 5 to 10 V DC bias voltages and typical loss tangents in the range of 0.003--0.009 at VHF frequencies. Tunable lumped element lowpass and bandpass VHF filters based on BST varactors are also demonstrated with tunabilities of 40% and 57%, respectively. A new beam-steering technique is developed based on the extended resonance power dividing technique. Phased arrays based on this technique do not require separate power divider and phase shifters. Instead, the power division and phase shifting circuits are combined into a single circuit, which utilizes tunable capacitors. This results in a substantial reduction in the circuit complexity and cost. Phased arrays based on this technique can be employed in mobile multimedia services and automotive collision avoidance radars. A 2-GHz 4-antenna and a 10-GHz 8-antenna extended resonance phased arrays are demonstrated with scan ranges of 20 degrees and 18 degrees, respectively. A new predistortion linearization technique for the linearization of RF

  8. Methods of Phase and Power Control in Magnetron Transmitters for Superconducting Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Kazadevich, G. [MUONS Inc., Batavia; Johnson, R. [MUONS Inc., Batavia; Neubauer, M. [MUONS Inc., Batavia; Lebedev, V. [Fermilab; Schappert, W. [Fermilab; Yakovlev, V. [Fermilab

    2017-05-01

    Various methods of phase and power control in magnetron RF sources of superconducting accelerators intended for ADS-class projects were recently developed and studied with conventional 2.45 GHz, 1 kW, CW magnetrons operating in pulsed and CW regimes. Magnetron transmitters excited by a resonant (injection-locking) phasemodulated signal can provide phase and power control with the rates required for precise stabilization of phase and amplitude of the accelerating field in Superconducting RF (SRF) cavities of the intensity-frontier accelerators. An innovative technique that can significantly increase the magnetron transmitter efficiency at the widerange power control required for superconducting accelerators was developed and verified with the 2.45 GHz magnetrons operating in CW and pulsed regimes. High efficiency magnetron transmitters of this type can significantly reduce the capital and operation costs of the ADSclass accelerator projects.

  9. Rf power amplification by energy storage and switching

    International Nuclear Information System (INIS)

    Vernon, W.

    1989-01-01

    This paper reports that during the last decade there have been several suggestions for RF storage and switching schemes. The principle behind these schemes is simply that energy from a source which is on for a long time at moderate power can be stored in a resonant cavity and dumped (switched) in a short time to yield higher power. This is also the basis of SLED which is driving the SLC, but the major difference is in the switching and the proposed power gains. In the case of SLED there is no switch only a phase agile RF source, and the maximum power gain is about a factor of 3. Proposed storage and switching schemes are often based on large ratios of charge to discharge times, say 5 μsec/50 nsec = 100 which could be the power amplification ratio. An early demonstration of the switching of a superconducting cavity was reported. It was observed that a peak power gain of 9 at low power levels with a cold cavity and a room-temperature switch. The switch was a He gas filled tube positioned in the leg of a waveguide T so that a η/2 stub turned into a η/4 stub when the gas broke down and became a good conductor. All switches encountered to date are some variant of this technique; the stubs reflects back an out-of-phase signal which cancels the one from the cavity so that no power escapes while the low-loss dielectric tube is non-conducting

  10. High-power RF cavity R ampersand D for the PEP-II B Factory

    International Nuclear Information System (INIS)

    Rimmer, R.; Lambertson, G.; Hodgson, J.

    1994-06-01

    We describe the development of a high-power test model of the 476 MHz RF cavity for the PEP-II B Factory. This cavity is designed to demonstrate the feasibility of a high-power design with higher-order mode (HOM) damping waveguides and the fabrication technologies involved, and it can also be used to evaluate aperture or loop couplers and various RF windows. Changes to the RF design to reduce peak surface heating are discussed and results of finite-element analyses of temperature and stress are presented. Fabrication methods for the prototype and subsequent production cavities are discussed

  11. Effects of rf power on chemical composition and surface roughness of glow discharge polymer films

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ling; He, Xiaoshan; Chen, Guo; Wang, Tao; Tang, Yongjian; He, Zhibing, E-mail: hezhibing802@163.com

    2016-03-15

    Graphical abstract: - Highlights: • The growth mechanism of defects in GDP films was studied upon plasma diagnosis. • Increasing rf power enhanced the etching effects of smaller-mass species. • The “void” defect was caused by high energy hydrocarbons bombardment on the surface. • The surface roughness was only 12.76 nm, and no “void” defect was observed at 30 W. - Abstract: The glow discharge polymer (GDP) films for laser fusion targets were successfully fabricated by plasma enhanced chemical vapor deposition (PECVD) at different radio frequency (rf) powers. The films were deposited using trans-2-butene (T{sub 2}B) mixed with hydrogen as gas sources. The composition and state of plasma were diagnosed by quadrupole mass spectrometer (QMS) and Langmuir probe during the deposition process. The composition, surface morphology and roughness were investigated by Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and white-light interferometer (WLI), respectively. Based on these observation and analyses, the growth mechanism of defects in GDP films were studied. The results show that, at low rf power, there is a larger probability for secondary polymerization and formation of multi-carbon C-H species in the plasma. In this case, the surface of GDP film turns to be cauliflower-like. With the increase of rf power, the degree of ionization is high, the relative concentration of smaller-mass hydrocarbon species increases, while the relative concentration of larger-mass hydrocarbon species decreases. At higher rf power, the energy of smaller-mass species are high and the etching effects are strong correspondingly. The GDP film's surface roughness shows a trend of decrease firstly and then increase with the increasing rf power. At rf power of 30 W, the surface root-mean-square roughness (Rq) drops to the lowest value of 12.8 nm, and no “void” defect was observed.

  12. Study on the RF power necessary to ignite plasma for the ICP test facility at HUST

    Energy Technology Data Exchange (ETDEWEB)

    Yue, Haikun [School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan (China); State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan (China); Li, Dong; Wang, Chenre; Li, Xiaofei; Chen, Dezhi; Liu, Kaifeng; Zhou, Chi; Pan, Ruimin [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan (China)

    2015-10-15

    An Radio-Frequency (RF) Inductively Coupled Plasma (ICP) ion source test facility has been successfully developed at Huazhong University of Science and Technology (HUST). As part of a study on hydrogen plasma, the influence of three main operation parameters on the RF power necessary to ignite plasma was investigated. At 6 Pa, the RF power necessary to ignite plasma influenced little by the filament heating current from 5 A to 9 A. The RF power necessary to ignite plasma increased rapidly with the operation pressure decreasing from 8 Pa to 4 Pa. The RF power necessary to ignite plasma decreased with the number of coil turns from 6 to 10. During the experiments, plasma was produced with the electron density of the order of 10{sup 16}m{sup -3} and the electron temperature of around 4 eV. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Fundamental mode rf power dissipated in a waveguide attached to an accelerating cavity

    International Nuclear Information System (INIS)

    Kang, Y.W.

    1993-01-01

    An accelerating RF cavity usually requires accessory devices such as a tuner, a coupler, and a damper to perform properly. Since a device is attached to the wall of the cavity to have certain electrical coupling of the cavity field through the opening. RF power dissipation is involved. In a high power accelerating cavity, the RF power coupled and dissipated in the opening and in the device must be estimated to design a proper cooling system for the device. The single cell cavities of the APS storage ring will use the same accessories. These cavities are rotationally symmetric and the fields around the equator can be approximated with the fields of the cylindrical pillbox cavity. In the following, the coupled and dissipated fundamental mode RF power in a waveguide attached to a pillbox cavity is discussed. The waveguide configurations are (1) aperture-coupled cylindrical waveguide with matched load termination; (2) short-circuited cylindrical waveguide; and (3) E-probe or H-loop coupled coaxial waveguide. A short-circuited, one-wavelength coaxial structure is considered for the fundamental frequency rejection circuit of an H-loop damper

  14. 10 GHz frequency comb spectral broadening in AlGaAs-on-Insulator nano-waveguide with ultra-low pump power

    DEFF Research Database (Denmark)

    Hu, Hao; Pu, Minhao; Yvind, Kresten

    2017-01-01

    We experimentally demonstrated 10 GHz frequency comb spectral broadening with a 30-dB bandwidth of 238 nm in an 11-mm long AlGaAsOI nano-waveguide. The 10-GHz 230-fs pump pulse has an average power of only 12 mW.......We experimentally demonstrated 10 GHz frequency comb spectral broadening with a 30-dB bandwidth of 238 nm in an 11-mm long AlGaAsOI nano-waveguide. The 10-GHz 230-fs pump pulse has an average power of only 12 mW....

  15. Medium Power 352 MHZ solid state pulsed RF amplifiers for the CERN LINAC4 Project

    CERN Document Server

    Broere, J; Gómez Martínez, Y; Rossi, M

    2011-01-01

    Economic, modular and highly linear pulsed RF amplifiers have recently been developed to be used for the three buncher cavities in the CERN Linac4. The amplifiers are water-cooled and can provide up to 33 kW pulsed RF Power, 1.5 ms pulse length and 50 Hz repetition rate. Furthermore a 60 kW unit is under construction to provide the required RF Power for the debuncher cavity. The concept is based on 1.2 kW RF power modules using the latest 6th generation LDMOS technology. For integration into the CERN control environment the amplifiers have an internal industrial controller, which will provide easy control and extended diagnostic functions. This paper describes the construction, performance, including linearity, phase stability and EMC compliance tests

  16. RF-Frontend Design for Process-Variation-Tolerant Receivers

    CERN Document Server

    Sakian, Pooyan; van Roermund, Arthur

    2012-01-01

    This book discusses a number of challenges faced by designers of wireless receivers, given complications caused by the shrinking of electronic and mobile devices circuitry into ever-smaller sizes and the resulting complications on the manufacturability, production yield, and the end price of the products.  The authors describe the impact of process technology on the performance of the end product and equip RF designers with countermeasures to cope with such problems.  The mechanisms by which these problems arise are analyzed in detail and novel solutions are provided, including design guidelines for receivers with robustness to process variations and details of circuit blocks that obtain the required performance level. Describes RF receiver frontends and their building blocks from a system- and circuit-level perspective; Provides system-level analysis of a generic RF receiver frontend with robustness to process variations; Includes details of CMOS circuit design at 60GHz and reconfigurable circuits at 60GHz...

  17. Application of quasi-optical approach to construct RF power supply for TeV linear colliders

    International Nuclear Information System (INIS)

    Saldin, E.L.; Sarantsev, V.P.; Schneidmiller, E.A.; Ulyanov, Yu.N.; Yurkov, M.V.

    1995-01-01

    An idea to use a quasi-optical approach for constructing an RF power supply for TeV linear e + e - colliders is developed. The RF source of the proposed scheme is composed of a large number of low-power RF amplifiers commutated by quasi-optical elements. The RF power of this source is transmitted to the accelerating structure of the collider by means of quasi-optical waveguides and mirrors. Such an approach enables one not only to decrease the required peak RF power by several orders of magnitude with respect to the traditional approach based on standard klystron technique, but also to achieve the required level of reliability, as it is based on well-developed technology of serial microwave devices. To illustrate the proposed scheme, a conceptual project of 2x500 GeV X-band collider is considered. Accelerating structure of the collider is of the standard travelling wave type and the RF source is assumed to be composed of 0.7 MW klystrons. All equipment of such a collider is placed in a tunnel of 12x6 m 2 cross section. It is shown that such a collider may be constructed at the present level of accelerator technique. ((orig.))

  18. Linearization and efficiency enhancement techniques for silicon power amplifiers from RF to mmW

    CERN Document Server

    Kerhervé, Eric

    2015-01-01

    This book provides an overview of current efficiency enhancement and linearization techniques for silicon power amplifier designs. It examines the latest state of the art technologies and design techniques to address challenges for RF cellular mobile, base stations, and RF and mmW WLAN applications. Coverage includes material on current silicon (CMOS, SiGe) RF and mmW power amplifier designs, focusing on advantages and disadvantages compared with traditional GaAs implementations. With this book you will learn: The principles of linearization and efficiency improvement techniquesThe arch

  19. Overview on thermal and mechanical challenges of high power RF electronic packaging

    NARCIS (Netherlands)

    Yuan, C.A.; Kregting, R.; Driel, W. van; Gielen, A.W.J.; Xiao, A.; Zhang, G.Q.

    2011-01-01

    High Power RF electronics is one of the essential parts for wireless communication, including the personal communication, broadcasting, microwave radar, etc. Moreover, high efficient high power electronics has entered the ISM market, such as the power generator of microwave oven. Power electronics

  20. Design and operation of 140 GHz gyrotron oscillators for power levels up to 1 MW CW

    Energy Technology Data Exchange (ETDEWEB)

    Jory, H.; Bier, R.; Craig, L.J.; Felch, K.; Ives, L.; Lopez, N.; Spang, S.

    1986-12-01

    Varian has designed and tested 140 GHz gyrotron oscillators that have generated output powers of 100 kW CW and 200 kW for 1 ms pulses. Upcoming tubes will be designed to operate at power levels of 200 kW CW and ultimately up to 1 MW CW. The important design considerations which are addressed in the higher power tubes include the design of the electron gun, interaction circuit, and output window. These issues will be discussed and the results of the earlier 140 GHz gyrotron work at Varian will be summarized.

  1. Design and operation of 140 GHz gyrotron oscillators for power levels up to 1 MW CW

    International Nuclear Information System (INIS)

    Jory, H.; Bier, R.; Craig, L.J.; Felch, K.; Ives, L.; Lopez, N.; Spang, S.

    1986-12-01

    Varian has designed and tested 140 GHz gyrotron oscillators that have generated output powers of 100 kW CW and 200 kW for 1 ms pulses. Upcoming tubes will be designed to operate at power levels of 200 kW CW and ultimately up to 1 MW CW. The important design considerations which are addressed in the higher power tubes include the design of the electron gun, interaction circuit, and output window. These issues will be discussed and the results of the earlier 140 GHz gyrotron work at Varian will be summarized

  2. RF BREAKDOWN STUDIES USING PRESSURIZED CAVITIES

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Rolland

    2014-09-21

    1.3 GHz RF test cell capable of operating both at high pressure and in vacuum with replaceable electrodes was designed, built, and power tested in preparation for testing the frequency and geometry effects of RF breakdown at Argonne National Lab. At the time of this report this cavity is still waiting for the 1.3 GHz klystron to be available at the Wakefield Test Facility. (3) Under a contract with Los Alamos National Lab, an 805 MHz RF test cavity, known as the All-Seasons Cavity (ASC), was designed and built by Muons, Inc. to operate either at high pressure or under vacuum. The LANL project to use the (ASC) was cancelled and the testing of the cavity has been continued under the grant reported on here using the Fermilab Mucool Test Area (MTA). The ASC is a true pillbox cavity that has performed under vacuum in high external magnetic field better than any other and has demonstrated that the high required accelerating gradients for many muon cooling beam line designs are possible. (4) Under ongoing support from the Muon Acceleration Program, microscopic surface analysis and computer simulations have been used to develop models of RF breakdown that apply to both pressurized and vacuum cavities. The understanding of RF breakdown will lead to better designs of RF cavities for many applications. An increase in the operating accelerating gradient, improved reliability and shorter conditioning times can generate very significant cost savings in many accelerator projects.

  3. 75 GHz InP DHBT power amplifier based on two-stacked transistors

    DEFF Research Database (Denmark)

    Squartecchia, Michele; Midili, Virginio; Johansen, Tom Keinicke

    2017-01-01

    In this paper we present the design and measurements of a two-stage 75-GHz InP Double Heterojunction Bipolar Transistor (DHBT) power amplifier (PA). An optimized two-stacked transistor power cell has been designed, which represents the building block in the power stage as well as in the driver st......, the power amplifier exhibits a small signal gain of G = 12.6 dB, output power at 1-dB compression of Pout, 1dB = 18.6 dBm and a saturated output power of Psat > 21.4 dBm....

  4. Ambient RF energy scavenging: GSM and WLAN power density measurements

    NARCIS (Netherlands)

    Visser, H.J.; Reniers, A.C.F.; Theeuwes, J.A.C.

    2009-01-01

    To assess the feasibility of ambient RF energy scavenging, a survey of expected power density levels distant from GSM-900 and GSM-1800 base stations has been conducted and power density measurements have been performed in a WLAN environment. It appears that for distances ranging from 25 m to 100 m

  5. Development of high power klystron. 3. Development of klystron No.2

    International Nuclear Information System (INIS)

    Hirano, K.; Wang, Y.L.; Sato, I.

    2000-08-01

    A high power klystron has been developed as the RF source of the high power CW electron linac (10 MeV, 100 mA, 1.249135 GHz). CW power of 1.2 MW and efficiencies over 65% at a beam voltage 85 kV were the design goal. We developed a long pill-box type beryllia window (long pill-box window) withstood the RF power of 1.7 MW (CW) and replaced the standard pill-box window of the prototype klystron with long pill-box window. The high power RF test was carried out with the converted klystron. This klystron has achieved CW RF power of 885 kW and efficiency of 47% at beam voltage of 85 kV. This paper describes key points of the designs to achieve the RF power over 1.2 MW and results of the high power RF test of the second klystron, which has been optimized by simulation codes to improve better efficiency. The second klystron has achieved the maximum efficiency of 56.5% with CW output power of 782 kW at a beam voltage of 80 kV and a cathode current of 20.4 A in present. The third klystron will be manufactured to reflect results of this test. (author)

  6. Review of tearing mode stabilization by RF power in tokamaks

    International Nuclear Information System (INIS)

    Giruzzi, G.; Zabiego, M.; Zohm, H.

    1999-01-01

    Control of tearing modes by means of heating and current drive inside the magnetic islands is one of the most important applications of RF power in tokamak reactors. The theoretical basis of this concept is reviewed, focusing on aspects related to RF-plasma interaction. Applications to the stabilization of neoclassical tearing modes in ITER by Electron Cyclotron Current Drive are presented to illustrate the basic physical dependences. The most significant experimental results and prospects for future applications are also discussed

  7. High power RF performance test of an improved SiC load

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, W.H.; Kim, S.H.; Park, Y.J. [Pohang Accelerator Lab., Pohang Inst. of Sceince and Technology, Pohang (KR)] [and others

    1998-11-01

    Two prototypes of SiC loads sustaining a maximum peak power of 50 MW were fabricated by Nihon Koshuha Co. in Japan. The PAL conducted the high power RF performance tests of SiC loads to verify the operation characteristics for the application to the PLS Linac. The in-situ facility for the K 12 module was used for the test, which consists of a modulator and klystron system, waveguide network, vacuum and cooling system, and RF analyzing equipment. As the test results, no breakdown appeared up to 50 MW peak power of 1 {mu}s pulse width at a repetition rate of 50 Hz. However, as the peak power increased above 20 MW at 4 {mu}s with 10 Hz, the breakdown phenomena has been observed. Analysing the test results with the current operation power level of PLS Linac, it is confirmed that the SiC loads well satisfy the criteria of the PLS Linac operation. (author)

  8. Remote powering platform for implantable sensor systems at 2.45 GHz.

    Science.gov (United States)

    Kazanc, Onur; Yilmaz, Gurkan; Maloberti, Franco; Dehollain, Catherine

    2014-01-01

    Far-field remotely powered sensor systems enable long distance operation for low-power sensor systems. In this work, we demonstrate a remote powering platform with a miniaturized antenna and remote powering base station operating at 2.45 GHz. The rectenna, which is the energy receiving and conversion element of the sensor system, is designed and measured. The measurements for the tag are performed within 15 cm distance from the remote powering base station. The realized gain of the tag antenna is measured as -3.3 dB, which is 0.5 dB close to the simulations, where simulated realized gain is -2.8 dB.

  9. Rf system modeling for the high average power FEL at CEBAF

    International Nuclear Information System (INIS)

    Merminga, L.; Fugitt, J.; Neil, G.; Simrock, S.

    1995-01-01

    High beam loading and energy recovery compounded by use of superconducting cavities, which requires tight control of microphonic noise, place stringent constraints on the linac rf system design of the proposed high average power FEL at CEBAF. Longitudinal dynamics imposes off-crest operation, which in turn implies a large tuning angle to minimize power requirements. Amplitude and phase stability requirements are consistent with demonstrated performance at CEBAF. A numerical model of the CEBAF rf control system is presented and the response of the system is examined under large parameter variations, microphonic noise, and beam current fluctuations. Studies of the transient behavior lead to a plausible startup and recovery scenario

  10. The UK High Power RF Faraday Partnership Industrial, Academia, and Public Collaboration

    International Nuclear Information System (INIS)

    Phelps, A.D.R.; Carter, R.G.; Clunie, D.; Bowater, S.P.; Ellis, D.; Gamble, D.; Large, T.; Lucas, W.; Pettit, C.; Poole, M. W.; Smith, H.; Smith, P.W.; Wilcox, D.M.

    2003-01-01

    The High Power Radio Frequency (HPRF) Faraday Partnership is a UK technology forum for all users, designers, developers and researchers of RF and microwave devices and systems. High power RF and microwave engineering are key enabling technologies in a wide range of industrial sectors. Formed in October 2001 and funded initially by the UK Department of Trade and Industry and the UK Particle Physics and Astronomy Research Council, the purpose of the HPRF Faraday Partnership is the development of a vibrant research, development and manufacturing base capable of exploiting opportunities in high power radio-frequency engineering. The partnership includes the key UK industrial companies, research laboratories and university research groups. The number of partners is constantly growing and already numbers over thirty. The partnership provides the enabling technology for future high power RF systems and their power supplies through its research programme. It is training people for the sector through PhD studentships and employment as Research Associates. It is planned to develop a Masters Training program. Support and involvement in research for companies in the supply chain is provided through a Partnership Office, a web site and through a range of government funded research schemes. The HPRF Faraday Partnership is seeking to establish more long term international research and development collaborations

  11. Development of a thermionic magnicon amplifier at 11.4 GHz

    International Nuclear Information System (INIS)

    Gold, S.H.; Hafizi, B.; Fliflet, A.W.; Kinkead, A.K.; True, R.

    1997-01-01

    The magnicon is a scanning-beam microwave amplifier tube that is being developed as an rf source for the proposed TeV Next Linear Collider. In it, a solid electron beam is spun up to high transverse momentum in a series of deflection cavities containing synchronously rotating TM modes, and then spun down again in an output cavity whose mode is synchronous with that of the deflection cavities. A recent magnicon experiment at NRL, using a ∼ 650 kV, 225 A, 5.5-mm-diam. electron beam produced from a cold cathode driven by a single-shot Marx generator, demonstrated 14 MW (±3 dB) at 11.12 GHz with 105 efficiency in the synchronous magnicon mode, but was limited by plasma loading in the deflection cavities to a regime in which the last cavity of the deflection system (the penultimate cavity) was unstable. A new 11.4 GHz rep-rated thermionic magnicon experiment is being assembled, using an advanced ultra-high-convergence electron gun driven by a 10 Hz, 1.5 microsecond modulator top produce a 500 kV, 210 A, 2-mm diameter electron beam. The magnicon circuit has been optimized for minimum surface rf fields and maximum efficiency, and will be engineered for high temperature bakeout and high vacuum operation. This experiment should begin operation in the Summer of 1997. The predicted power is 60 MW at ∼ 60% efficiency

  12. Characterization and design of a low-power wireless power delivery system

    Science.gov (United States)

    Falkenstein, Erez Avigdor

    There is an increased demand for wireless sensors for data gathering and transmission where running wires to power a device or changing/charging batteries is difficult. Often the data is gathered at locations that are difficult to access, that need to be covert, and/or where the sensors cannot be easily maintained. Some examples are implanted sensors for medical diagnostics and therapy, structural monitoring sensors, sensors inside hazardous manufacturing or other hazardous environments, etc. For any low power sensor that operates at a low duty cycle, and in an environment with low levels of light or vibration, RF wireless powering offers the potential for maintenance-free operation. The thesis focuses on a design methodology for low-power non-directional far-field wireless powering. The power receiver consists of one or more antennae which receive plane waves transmitted by the powering source, and deliver the RF power to a rectifying element. The resulting DC power is optimally transferred to the electronic application via a power management circuit. The powering is independent of the electronic application which can include wireless transmission of sensor data. The design and implementation of an integrated rectifier-antenna at low incident power densities (from 25--200 muW/cm2) is presented. Nonlinear source-pull measurements and harmonic balance simulations are used for finding the optimal rectifying device RF and DC impedances for efficient rectification. Experimental results show that an antenna design with a specific complex impedance reaches the highest rectification efficiency. Several examples of the design methodology will be shown. In specific, characterization of a rectifying patch antenna at frequency of 2.45GHz will be detailed, with an optimal RF impedance of 137+j149O and an optimal DC load of 365O resulting in RF to DC conversion efficiency of 63% for the rectifier alone and 56% for the total rectifying antenna.

  13. Study of a power coupler for superconducting RF cavities used in high intensity proton accelerator

    International Nuclear Information System (INIS)

    Souli, M.

    2007-07-01

    The coaxial power coupler needed for superconducting RF cavities used in the high energy section of the EUROTRANS driver should transmit 150 kW (CW operation) RF power to the protons beam. The calculated RF and dielectric losses in the power coupler (inner and outer conductor, RF window) are relatively high. Consequently, it is necessary to design very carefully the cooling circuits in order to remove the generated heat and to ensure stable and reliable operating conditions for the coupler cavity system. After calculating all type of losses in the power coupler, we have designed and validated the inner conductor cooling circuit using numerical simulations results. We have also designed and optimized the outer conductor cooling circuit by establishing its hydraulic and thermal characteristics. Next, an experiment dedicated to study the thermal interaction between the power coupler and the cavity was successfully performed at CRYOHLAB test facility. The critical heat load Qc for which a strong degradation of the cavity RF performance was measured leading to Q c in the range 3 W-5 W. The measured heat load will be considered as an upper limit of the residual heat flux at the outer conductor cold extremity. A dedicated test facility was developed and successfully operated for measuring the performance of the outer conductor heat exchanger using supercritical helium as coolant. The test cell used reproduces the realistic thermal boundary conditions of the power coupler mounted on the cavity in the cryo-module. The first experimental results have confirmed the excellent performance of the tested heat exchanger. The maximum residual heat flux measured was 60 mW for a 127 W thermal load. As the RF losses in the coupler are proportional to the incident RF power, we can deduce that the outer conductor heat exchanger performance is continued up to 800 kW RF power. Heat exchanger thermal conductance has been identified using a 2D axisymmetric thermal model by comparing

  14. Low power microwave tests on RF gun prototype of the Iranian Light Source Facility

    Directory of Open Access Journals (Sweden)

    A Sadeghipanah

    2017-08-01

    Full Text Available In this paper, we introduce RF electron gun of Iranian Light Source Facility (ILSF pre-injection system. Design, fabrication and low-power microwave tests results of the prototype RF electron gun have been described in detail. This paper also explains the tuning procedure of the prototype RF electron gun to the desired resonant frequency. The outcomes of this project brighten the path to the fabrication of the RF electron gun by the local industries  

  15. Wide-Range Adaptive RF-to-DC Power Converter for UHF RFIDs

    KAUST Repository

    Ouda, Mahmoud H.

    2016-07-27

    A wide-range, differential, cross-coupled rectifier is proposed with an extended dynamic range of input RF power that enables wireless powering from varying distances. The proposed architecture mitigates the reverse-leakage problem in conven- tional, cross-coupled rectifiers without degrading sensitivity. A prototype is designed for UHF RFID applications, and is imple- mented using 0.18 μ m CMOS technology. On-chip measurements demonstrate a sensitivity of − 18 dBm for 1 V output over a 100 k Ω load and a peak RF-to-DC power conversion efficiency of 65%. A conventional, fully cross-coupled rectifier is fabricated along- side for comparison and the proposed rectifier shows more than 2 × increase in dynamic range and a 25% boosting in output voltage than the conventional rectifier

  16. RF generation in the DARHT Axis-II beam dump

    Energy Technology Data Exchange (ETDEWEB)

    Ekdahl, Carl A. Jr. [Los Alamos National Laboratory

    2012-05-03

    We have occasionally observed radio-frequency (RF) electromagnetic signals in the downstream transport (DST) of the second axis linear induction accelerator (LIA) at the dual-axis radiographic hydrodynamic testing (DARHT) facility. We have identified and eliminated some of the sources by eliminating the offending cavities. However, we still observe strong RF in the range 1 GHz t0 2 GHz occurring late in the {approx}2-{micro}s pulse that can be excited or prevented by varying the downstream tune. The narrow frequency width (<0.5%) and near exponential growth at the dominant frequency is indicative of a beam-cavity interaction, and electro-magnetic simulations of cavity structure show a spectrum rich in resonances in the observed frequency range. However, the source of beam produced RF in the cavity resonance frequency range has not been identified, and it has been the subject of much speculation, ranging from beam-plasma or beam-ion instabilities to unstable cavity coupling.

  17. Spallation Neutron Source High Power RF Installation and Commissioning Progress

    CERN Document Server

    McCarthy, Michael P; Bradley, Joseph T; Fuja, Ray E; Gurd, Pamela; Hardek, Thomas; Kang, Yoon W; Rees, Daniel; Roybal, William; Young, Karen A

    2005-01-01

    The Spallation Neutron Source (SNS) linac will provide a 1 GeV proton beam for injection into the accumulator ring. In the normal conducting (NC) section of this linac, the Radio Frequency Quadupole (RFQ) and six drift tube linac (DTL) tanks are powered by seven 2.5 MW, 402.5 MHz klystrons and the four coupled cavity linac (CCL) cavities are powered by four 5.0 MW, 805 MHz klystrons. Eighty-one 550 kW, 805 MHz klystrons each drive a single cavity in the superconducting (SC) section of the linac. The high power radio frequency (HPRF) equipment was specified and procured by LANL and tested before delivery to ensure a smooth transition from installation to commissioning. Installation of RF equipment to support klystron operation in the 350-meter long klystron gallery started in June 2002. The final klystron was set in place in September 2004. Presently, all RF stations have been installed and high power testing has been completed. This paper reviews the progression of the installation and testing of the HPRF Sys...

  18. KEY COMPARISON: Final report on bilateral comparison CCEM.RF-K9.1: Thermal noise standards at 12.4 GHz, 13.5 GHz, 15 GHz and 17.5 GHz

    Science.gov (United States)

    Allal, Djamel

    2009-01-01

    A bilateral comparison subsequent to key comparison CCEM.RF-K9 was decided between VNIIFTRI and PTB. It was registered into the BIPM KCDB under the identifier CCEM.RF-K9.1. The results of this comparison were gathered by the pilot laboratory of comparison CCEM.RF-K9, the LNE, and a very good agreement was found between the two participants. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCEM, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA).

  19. Numerical design and analysis of parasitic mode oscillations for 95 GHz gyrotron beam tunnel

    Science.gov (United States)

    Kumar, Nitin; Singh, Udaybir; Yadav, Vivek; Kumar, Anil; Sinha, A. K.

    2013-05-01

    The beam tunnel, equipped with the high lossy ceramics, is designed for 95 GHz gyrotron. The geometry of the beam tunnel is optimized considering the maximum RF absorption (ideally 100%) and the suppression of parasitic oscillations. The excitation of parasitic modes is a concerning problem for high frequency, high power gyrotrons. Considering the problem of parasitic mode excitation in beam tunnel, a detail analysis is performed for the suppression of these kinds of modes. Trajectory code EGUN and CST Microwave Studio are used for the simulations of electron beam trajectory and electromagnetic analysis, respectively.

  20. Steady state plasma operation in RF dominated regimes on EAST

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X. J.; Zhao, Y. P.; Gong, X. Z.; Hu, C. D.; Liu, F. K.; Hu, L. Q.; Wan, B. N., E-mail: bnwan@ipp.ac.cn; Li, J. G. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2015-12-10

    Significant progress has recently been made on EAST in the 2014 campaign, including the enhanced CW H&CD system over 20MW heating power (LHCD, ICRH and NBI), more than 70 diagnostics, ITER-like W-monoblock on upper divertor, two inner cryo-pumps and RMP coils, enabling EAST to investigate long pulse H mode operation with dominant electron heating and low torque to address the critical issues for ITER. H-mode plasmas were achieved by new H&CD system or 4.6GHz LHCD alone for the first time. Long pulse high performance H mode has been obtained by LHCD alone up to 28s at H{sub 98}∼1.2 or by combing of ICRH and LHCD, no or small ELM was found in RF plasmas, which is essential for steady state operation in the future Tokamak. Plasma operation in low collision regimes were implemented by new 4.6GHz LHCD with core Te∼4.5keV. The non-inductive scenarios with high performance at high bootstrap current fraction have been demonstrated in RF dominated regimes for long pulse operation. Near full non-inductive CD discharges have been achieved. In addition, effective heating and decoupling method under multi-transmitter for ICRF system were developed in this campaign, etc. EAST could be in operation with over 30MW CW heating and current drive power (LHCD ICRH NBI and ECRH), enhanced diagnostic capabilities and full actively-cooled metal wall from 2015. It will therefore allow to access new confinement regimes and to extend these regimes towards to steady state operation.

  1. Simulation of RF power and multi-cusp magnetic field requirement for H{sup −} ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Pathak, Manish [Ion Source Lab., Proton Linac & Superconducting Cavities Division, Raja Ramanna Centre for Advanced Technology, Indore, Madhya Pradesh 452013 (India); Senecha, V.K., E-mail: kumarvsen@gmail.com [Ion Source Lab., Proton Linac & Superconducting Cavities Division, Raja Ramanna Centre for Advanced Technology, Indore, Madhya Pradesh 452013 (India); Homi Bhabha National Institute, Raja Ramanna Centre for Advanced Technology, Indore, Madhya Pradesh 452013 (India); Kumar, Rajnish; Ghodke, Dharmraj V. [Ion Source Lab., Proton Linac & Superconducting Cavities Division, Raja Ramanna Centre for Advanced Technology, Indore, Madhya Pradesh 452013 (India)

    2016-12-01

    A computer simulation study for multi-cusp RF based H{sup −} ion source has been carried out using energy and particle balance equation for inductively coupled uniformly dense plasma considering sheath formation near the boundary wall of the plasma chamber for RF ion source used as high current injector for 1 Gev H{sup −} Linac project for SNS applications. The average reaction rates for different reactions responsible for H{sup −} ion production and destruction have been considered in the simulation model. The RF power requirement for the caesium free H{sup -} ion source for a maximum possible H{sup −} ion beam current has been derived by evaluating the required current and RF voltage fed to the coil antenna using transformer model for Inductively Coupled Plasma (ICP). Different parameters of RF based H{sup −} ion source like excited hydrogen molecular density, H{sup −} ion density, RF voltage and current of RF antenna have been calculated through simulations in the presence and absence of multicusp magnetic field to distinctly observe the effect of multicusp field. The RF power evaluated for different H{sup −} ion current values have been compared with the experimental reported results showing reasonably good agreement considering the fact that some RF power will be reflected from the plasma medium. The results obtained have helped in understanding the optimum field strength and field free regions suitable for volume emission based H{sup −} ion sources. The compact RF ion source exhibits nearly 6 times better efficiency compare to large diameter ion source.

  2. Performance and operation of advanced superconducting electron cyclotron resonance ion source SECRAL at 24 GHz

    International Nuclear Information System (INIS)

    Zhao, H. W.; Zhang, X. Z.; Feng, Y. C.; Guo, J. W.; Li, J. Y.; Guo, X. H.; Sha, S.; Sun, L. T.; Xie, D. Z.; Lu, W.; Cao, Y.

    2012-01-01

    SECRAL (superconducting ECR ion source with advanced design in Lanzhou) ion source has been in routine operation for Heavy Ion Research Facility in Lanzhou (HIRFL) accelerator complex since May 2007. To further enhance the SECRAL performance in order to satisfy the increasing demand for intensive highly charged ion beams, 3-5 kW high power 24 GHz single frequency and 24 GHz +18 GHz double frequency with an aluminum plasma chamber were tested, and some exciting results were produced with quite a few new record highly charged ion beam intensities, such as 129 Xe 35+ of 64 eμA, 129 Xe 42+ of 3 eμA, 209 Bi 41+ of 50 eμA, 209 Bi 50+ of 4.3 eμA and 209 Bi 54+ of 0.2 eμA. In most cases SECRAL is operated at 18 GHz to deliver highly charged heavy ion beams for the HIRFL accelerator, only for those very high charge states and very heavy ion beams such as 209 Bi 36+ and 209 Bi 41+ , SECRAL has been operated at 24 GHz. The total operation beam time provided by SECRAL up to July 2011 has exceeded 7720 hours. In this paper, the latest performance, development, and operation status of SECRAL ion source are presented. The latest results and reliable long-term operation for the HIRFL accelerator have demonstrated that SECRAL performance for production of highly charged heavy ion beams remains improving at higher RF power with optimized tuning.

  3. CORPORATE FEED WITH DUAL SEGMENT CIRCULAR POLARIZED ARRAY RECTENNA FOR LOW POWER RF ENERGY HARVESTING

    Directory of Open Access Journals (Sweden)

    CHIA CHAO KANG

    2016-06-01

    Full Text Available This paper focuses on the investigation of the level powers that can be scavenged from the ambient environment by using corporate feed with dual segment circular polarized antenna array . It will converts the received power to direct current (DC. Being a circular polarized antenna, it has higher inductance per unit area, a good Q-factor and compact capability. The design of corporate-series feed rectenna array is to achieve a high gain antenna and maximize the RF energy received by the rectenna system at ultra low power levels. The entire structure was investigated using a combination of harmonic balance nonlinear analysis and full wave electromagnetic field analysis. The results show that 5.0 dBi gain for circular polarized antenna array can be achieved at frequency 956 MHz. When the input power of 20 dBm fed into the transmitting antenna, the maximum distance for radio frequency (RF harvesting is 5.32m. The output DC voltage for various values of incident RF power is also presented. There are noticed reasonable agreements between the simulated and measured result and the works concludes that the investigation of RF energy harvesting system was successful.

  4. High-power rf pulse compression with SLED-II at SLAC

    International Nuclear Information System (INIS)

    Nantista, C.

    1993-04-01

    Increasing the peak rf power available from X-band microwave tubes by means of rf pulse compression is envisioned as a way of achieving the few-hundred-megawatt power levels needed to drive a next-generation linear collider with 50--100 MW klystrons. SLED-II is a method of pulse compression similar in principal to the SLED method currently in use on the SLC and the LEP injector linac. It utilizes low-los resonant delay lines in place of the storage cavities of the latter. This produces the added benefit of a flat-topped output pulse. At SLAC, we have designed and constructed a prototype SLED-II pulse-compression system which operates in the circular TE 01 mode. It includes a circular-guide 3-dB coupler and other novel components. Low-power and initial high-power tests have been made, yielding a peak power multiplication of 4.8 at an efficiency of 40%. The system will be used in providing power for structure tests in the ASTA (Accelerator Structures Test Area) bunker. An upgraded second prototype will have improved efficiency and will serve as a model for the pulse compression system of the NLCTA (Next Linear Collider Test Accelerator)

  5. Programmable optical processor chips: toward photonic RF filters with DSP-level flexibility and MHz-band selectivity

    Directory of Open Access Journals (Sweden)

    Xie Yiwei

    2017-12-01

    Full Text Available Integrated optical signal processors have been identified as a powerful engine for optical processing of microwave signals. They enable wideband and stable signal processing operations on miniaturized chips with ultimate control precision. As a promising application, such processors enables photonic implementations of reconfigurable radio frequency (RF filters with wide design flexibility, large bandwidth, and high-frequency selectivity. This is a key technology for photonic-assisted RF front ends that opens a path to overcoming the bandwidth limitation of current digital electronics. Here, the recent progress of integrated optical signal processors for implementing such RF filters is reviewed. We highlight the use of a low-loss, high-index-contrast stoichiometric silicon nitride waveguide which promises to serve as a practical material platform for realizing high-performance optical signal processors and points toward photonic RF filters with digital signal processing (DSP-level flexibility, hundreds-GHz bandwidth, MHz-band frequency selectivity, and full system integration on a chip scale.

  6. The influence of RF power on the electrical properties of sputtered amorphous In—Ga—Zn—O thin films and devices

    International Nuclear Information System (INIS)

    Shi Junfei; Dong Chengyuan; Wu Jie; Chen Yuting; Zhan Runze; Dai Wenjun

    2013-01-01

    The influence of radio frequency (RF) power on the properties of magnetron sputtered amorphous indium gallium zinc oxide (a-IGZO) thin films and the related thin-film transistor (TFT) devices is investigated comprehensively. A series of a-IGZO thin films prepared with magnetron sputtering at various RF powers are examined. The results prove that the deposition rate sensitively depends on RF power. In addition, the carrier concentration increases from 0.91 × 10 19 to 2.15 × 10 19 cm −3 with the RF power rising from 40 to 80 W, which may account for the corresponding decrease in the resistivity of the a-IGZO thin films. No evident impacts of RF power are observed on the surface roughness, crystalline nature and stoichiometry of the a-IGZO samples. On the other hand, optical transmittance is apparently influenced by RF power where the extracted optical band-gap value increases from 3.48 to 3.56 eV with RF power varying from 40 to 80 W, as is supposed to result from the carrier-induced band-filling effect. The rise in RF power can also affect the performance of a-IGZO TFTs, in particular by increasing the field-effect mobility clearly, which is assumed to be due to the alteration of the extended states in a-IGZO thin films. (semiconductor devices)

  7. Design of low power common-gate low noise amplifier for 2.4 GHz wireless sensor network applications

    International Nuclear Information System (INIS)

    Zhang Meng; Li Zhiqun

    2012-01-01

    This paper presents a differential low power low noise amplifier designed for the wireless sensor network (WSN) in a TSMC 0.18 μm RF CMOS process. A two-stage cross-coupling cascaded common-gate (CG) topology has been designed as the amplifier. The first stage is a capacitive cross-coupling topology. It can reduce the power and noise simultaneously. The second stage is a positive feedback cross-coupling topology, used to set up a negative resistance to enhance the equivalent Q factor of the inductor at the load to improve the gain of the LNA. A differential inductor has been designed as the load to achieve reasonable gain. This inductor has been simulated by the means of momentum electromagnetic simulation in ADS. A 'π' circuit model has been built as the inductor model by iteration in ADS. The inductor has been fabricated separately to verify the model. The LNA has been fabricated and measured. The LNA works well centered at 2.44 GHz. The measured gain S 21 is variable with high gain at 16.8 dB and low gain at 1 dB. The NF (noise figure) at high gain mode is 3.6 dB, the input referenced 1 dB compression point (IP1dB) is about −8 dBm and the IIP3 is 2 dBm at low gain mode. The LNA consumes about 1.2 mA current from 1.8 V power supply.

  8. RF Energy Harvesting for Ubiquitous, Zero Power Wireless Sensors

    Directory of Open Access Journals (Sweden)

    Warda Saeed

    2018-01-01

    Full Text Available This paper presents a review of wireless power transfer (WPT followed by a comparison between ambient energy sources and an overview of different components of rectennas that are used for RF energy harvesting. Being less costly and environment friendly, rectennas are used to provide potentially inexhaustible energy for powering up low power sensors and portable devices that are installed in inaccessible areas where frequent battery replacement is difficult, if not impossible. The current challenges in rectenna design and a detailed comparison of state-of-the-art rectennas are also presented.

  9. Practical test of the LINAC4 RF power system

    CERN Document Server

    Schwerg, N

    2011-01-01

    The high RF power for the Linac4 accelerating structures will be generated by thirteen 1.3 MW klystrons, previously used for the CERN LEP accelerator, and six new klystrons of 2.8 MW all operating at a frequency of 352.2 MHz. The power distribution scheme features a folded magic tee feeding the power from one 2.8 MW klystron to two LEP circulators. We present first results from the Linac4 test place, validating the approach and the used components as well as reporting on the klystron re-tuning activities.

  10. Effects of rf power on electron density and temperature, neutral temperature, and Te fluctuations in an inductively coupled plasma

    International Nuclear Information System (INIS)

    Camparo, James; Fathi, Gilda

    2009-01-01

    Atomic clocks that fly on global-navigation satellites such as global positioning system (GPS) and Galileo employ light from low-temperature, inductively coupled plasmas (ICPs) for atomic signal generation and detection (i.e., alkali/noble-gas rf-discharge lamps). In this application, the performance of the atomic clock and the capabilities of the navigation system depend sensitively on the stability of the ICP's optical emission. In order to better understand the mechanisms that might lead to instability in these rf-discharge lamps, and hence the satellite atomic clocks, we studied the optical emission from a Rb/Xe ICP as a function of the rf power driving the plasma. Surprisingly, we found that the electron density in the plasma was essentially independent of increases in rf power above its nominal value (i.e., 'rf-power gain') and that the electron temperature was only a slowly varying function of rf-power gain. The primary effect of rf power was to increase the temperature of the neutrals in the plasma, which was manifested by an increase in Rb vapor density. Interestingly, we also found evidence for electron temperature fluctuations (i.e., fluctuations in the plasma's high-energy electron content). The variance of these fluctuations scaled inversely with the plasma's mean electron temperature and was consistent with a simple model that assumed that the total electron density in the discharge was independent of rf power. Taken as a whole, our results indicate that the electrons in alkali/noble-gas ICPs are little affected by slight changes in rf power and that the primary effect of such changes is to heat the plasma's neutral species.

  11. Broadband direct RF digitization receivers

    CERN Document Server

    Jamin, Olivier

    2014-01-01

    This book discusses the trade-offs involved in designing direct RF digitization receivers for the radio frequency and digital signal processing domains.  A system-level framework is developed, quantifying the relevant impairments of the signal processing chain, through a comprehensive system-level analysis.  Special focus is given to noise analysis (thermal noise, quantization noise, saturation noise, signal-dependent noise), broadband non-linear distortion analysis, including the impact of the sampling strategy (low-pass, band-pass), analysis of time-interleaved ADC channel mismatches, sampling clock purity and digital channel selection. The system-level framework described is applied to the design of a cable multi-channel RF direct digitization receiver. An optimum RF signal conditioning, and some algorithms (automatic gain control loop, RF front-end amplitude equalization control loop) are used to relax the requirements of a 2.7GHz 11-bit ADC. A two-chip implementation is presented, using BiCMOS and 65nm...

  12. RF Wireless Power Transfer: Regreening Future Networks

    OpenAIRE

    Tran, Ha-Vu; Kaddoum, Georges

    2017-01-01

    Green radio communication is an emerging topic since the overall footprint of information and communication technology (ICT) services is predicted to triple between 2007 and 2020. Given this research line, energy harvesting (EH) and wireless power transfer (WPT) networks can be evaluated as promising approaches. In this paper, an overview of recent trends for future green networks on the platforms of EH and WPT is provided. By rethinking the application of radio frequency (RF)-WPT, a new conc...

  13. RF MEMS Fractal Capacitors With High Self-Resonant Frequencies

    KAUST Repository

    Elshurafa, Amro M.; Emira, Ahmed; Radwan, Ahmed Gomaa; Salama, Khaled N.

    2012-01-01

    This letter demonstrates RF microelectromechanical systems (MEMS) fractal capacitors possessing the highest reported self-resonant frequencies (SRFs) in PolyMUMPS to date. Explicitly, measurement results show SRFs beyond 20 GHz. Furthermore, quality

  14. Battery-Powered RF Pre-Ionization System for the Caltech Magnetohydrodynamically-Driven Jet Experiment: RF Discharge Properties and MHD-Driven Jet Dynamics

    Science.gov (United States)

    Chaplin, Vernon H.

    This thesis describes investigations of two classes of laboratory plasmas with rather different properties: partially ionized low pressure radiofrequency (RF) discharges, and fully ionized high density magnetohydrodynamically (MHD)-driven jets. An RF pre-ionization system was developed to enable neutral gas breakdown at lower pressures and create hotter, faster jets in the Caltech MHD-Driven Jet Experiment. The RF plasma source used a custom pulsed 3 kW 13.56 MHz RF power amplifier that was powered by AA batteries, allowing it to safely float at 4-6 kV with the cathode of the jet experiment. The argon RF discharge equilibrium and transport properties were analyzed, and novel jet dynamics were observed. Although the RF plasma source was conceived as a wave-heated helicon source, scaling measurements and numerical modeling showed that inductive coupling was the dominant energy input mechanism. A one-dimensional time-dependent fluid model was developed to quantitatively explain the expansion of the pre-ionized plasma into the jet experiment chamber. The plasma transitioned from an ionizing phase with depressed neutral emission to a recombining phase with enhanced emission during the course of the experiment, causing fast camera images to be a poor indicator of the density distribution. Under certain conditions, the total visible and infrared brightness and the downstream ion density both increased after the RF power was turned off. The time-dependent emission patterns were used for an indirect measurement of the neutral gas pressure. The low-mass jets formed with the aid of the pre-ionization system were extremely narrow and collimated near the electrodes, with peak density exceeding that of jets created without pre-ionization. The initial neutral gas distribution prior to plasma breakdown was found to be critical in determining the ultimate jet structure. The visible radius of the dense central jet column was several times narrower than the axial current channel

  15. Investigation of MIM Diodes for RF Applications

    KAUST Repository

    Khan, Adnan

    2015-05-01

    -crystalline structures and have orders of magnitude lower conductivities. Relatively lower resistances of the order of 1 k ohm with a sensitivity of 1.5 V-1 have been obtained through DC testing of these devices. Finally, RF characterization reveals that input impedances in the range of 300 Ω to 25 Ω can be achieved in the low GHz frequencies (from 1-10 GHz). From the rectification measurements at zero bias, a DC voltage of 4.7 mV has been obtained from an incoming RF signal of 0.4 W at 2.45 GHz, which indicates the suitability of these diodes for RF rectenna devices without providing any bias. It is believed that with further optimization, these devices can play an important role in RF energy harvesting without the need to bias them.

  16. Electron beam and rf characterization of a low-emittance X-band photoinjector

    Directory of Open Access Journals (Sweden)

    D. J. Gibson

    2001-09-01

    Full Text Available Detailed experimental studies of the first operation of an X-band (8.547 GHz rf photoinjector are reported. The rf characteristics of the device are first described, as well as the tuning technique used to ensure operation of the 11/2-cell rf gun in the balanced π-mode. The characterization of the photoelectron beam produced by the rf gun includes: measurements of the bunch charge as a function of the laser injection phase, yielding information about the quantum efficiency of the Cu photocathode ( 2×10^{-5} for a surface field of 100 MV/m; measurements of the beam energy (1.5–2 MeV and relative energy spread ( Δγ/γ_{0}=1.8±0.2% using a magnetic spectrometer; measurements of the beam 90% normalized emittance, which is found to be ɛ_{n}=1.65π mm mrad for a charge of 25 pC; and measurements of the bunch duration ( <2 ps. Coherent synchrotron radiation experiments at Ku-band and Ka-band confirm the extremely short duration of the photoelectron bunch and a peak power scaling quadratically with the bunch charge.

  17. Use of an untuned cavity for absolute power measurements of the harmonics above 100 GHz from an IMPATT oscillator

    Science.gov (United States)

    Llewellyn-Jones, D. T.; Knight, R. J.; Gebbie, H. A.

    1980-07-01

    A new technique of measuring absolute power exploiting an untuned cavity and Fourier spectroscopy has been used to examine the power spectrum of the harmonics and other overtones produced by a 95 GHz IMPATT oscillator. The conditions which favor the production of a rich harmonic spectrum are not those which maximize the fundamental power. Under some conditions of mismatch at the fundamental frequency it is possible to produce over 200 microW of harmonic power in the 100-200 GHz region comparable with the fundamental power from the oscillator.

  18. Simple Theory of Thermal Fatigue Caused by RF Pulse Heating

    CERN Document Server

    Kuzikov, S

    2004-01-01

    The projects of electron-positron linear colliders imply that accelerating structures and other RF components will undergo action of extremely high RF fields. Except for breakdown threat there is an effect of the damage due to multi-pulse mechanical stress caused by Ohmic heating of the skin layer. A new theory of the thermal fatigue is considered. The theory is based on consideration of the quasi-elastic interaction between neighbor grains of metal due to the expansion of the thermal skin-layer. The developed theory predicts a total number of the RF pulses needed for surface degradation in dependence on temperature rise, pulse duration, and average temperature. The unknown coefficients in the final formula were found, using experimental data obtained at 11.4 GHz for the copper. In order to study the thermal fatigue at higher frequencies and to compare experimental and theoretical results, the experimental investigation of degradation of the copper cavity exposed to 30 GHz radiation is carried out now, basing...

  19. High-Power Ka-Band Window and Resonant Ring

    International Nuclear Information System (INIS)

    Jay L. Hirshfield

    2006-01-01

    A stand-alone 200 MW rf test station is needed for carrying out development of accelerator structures and components for a future high-gradient multi-TeV collider, such as CLIC. A high-power rf window is needed to isolate the test station from a structure element under test. This project aimed to develop such a window for use at a frequency in the range 30-35 GHz, and to also develop a high-power resonant ring for testing the window. During Phase I, successful conceptual designs were completed for the window and the resonant ring, and cold tests of each were carried out that confirmed the designs

  20. Note: Radio frequency surface impedance characterization system for superconducting samples at 7.5 GHz.

    Science.gov (United States)

    Xiao, B P; Reece, C E; Phillips, H L; Geng, R L; Wang, H; Marhauser, F; Kelley, M J

    2011-05-01

    A radio frequency (RF) surface impedance characterization (SIC) system that uses a novel sapphire-loaded niobium cavity operating at 7.5 GHz has been developed as a tool to measure the RF surface impedance of flat superconducting material samples. The SIC system can presently make direct calorimetric RF surface impedance measurements on the central 0.8 cm(2) area of 5 cm diameter disk samples from 2 to 20 K exposed to RF magnetic fields up to 14 mT. To illustrate system utility, we present first measurement results for a bulk niobium sample.

  1. Very long pulse high-RF power test of a lower hybrid frequency antenna module

    International Nuclear Information System (INIS)

    Goniche, M.; Brossaud, J.; Barral, C.; Berger-By, G.; Bibet, Ph.; Poli, S.; Rey, G.; Tonon, G.; Seki, M.; Obara, K.

    1994-03-01

    Outgassing, induced by very long RF waves injection at high power density was studied in a module, able to be used for a lower hybrid frequency antenna. Good RF properties of the module are reported, however, resonance phenomena with strong absorption of RF power (15%) was observed at high temperature (T>400 deg C). A large outgassing data base is provided by the 75 shots cumulating 27 hours of RF injection. The comparison with previous experiments (Tore Supra and TdV prototype modules) confirm the effect of baking and results are consistent. Outgassing increases exponentially with -1/T, and a desorption model with an activation energy Ed ∼ 0.35 eV fits the data up to 400 deg C. In order to design vacuum pumping system for large lower hybrid frequency antenna, outgassing rates are given for different working temperatures. (author). 11 refs., 55 figs

  2. Very long pulse high-RF power test of a lower hybrid frequency antenna module

    Energy Technology Data Exchange (ETDEWEB)

    Goniche, M; Brossaud, J; Barral, C; Berger-By, G; Bibet, Ph; Poli, S; Rey, G; Tonon, G [Association Euratom-CEA, Centre d` Etudes Nucleaires de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Seki, M; Obara, K [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; and others

    1994-03-01

    Outgassing, induced by very long RF waves injection at high power density was studied in a module, able to be used for a lower hybrid frequency antenna. Good RF properties of the module are reported, however, resonance phenomena with strong absorption of RF power (15%) was observed at high temperature (T>400 deg C). A large outgassing data base is provided by the 75 shots cumulating 27 hours of RF injection. The comparison with previous experiments (Tore Supra and TdV prototype modules) confirm the effect of baking and results are consistent. Outgassing increases exponentially with -1/T, and a desorption model with an activation energy Ed {approx} 0.35 eV fits the data up to 400 deg C. In order to design vacuum pumping system for large lower hybrid frequency antenna, outgassing rates are given for different working temperatures. (author). 11 refs., 55 figs.

  3. Experimental results and recent developments on the EU 2 MW 170 GHz coaxial cavity gyrotron for ITER

    Directory of Open Access Journals (Sweden)

    Thumm M. K.

    2012-09-01

    Full Text Available The European Gyrotron Consortium (EGYC is responsible for developing one set of 170 GHz mm-wave sources, in support of Europe’s contribution to ITER. The original plan of targeting a 2 MW coaxial gyrotron is currently under discussion, in view of essential delays and damages. This paper reports on the latest results and plans with regard to the two 2 MW gyrotron prototypes, the industrial prototype at CRPP’s CW test stand and a modular pre-prototype at KIT. The industrial prototype was delivered to CRPP end of September 2011 and reached an output power of 2 MW at an efficiency of 45 % and with good RF beam pattern, in only four days of short pulse RF test. These results validated all design changes made in reaction to the results of the experiments in 2008. On the fifth experimental day, an internal absorber broke, terminating any further experiment with this tube. In parallel, design and experimental activities at KIT went on, in particular featuring reduced stray radiation down to 4% of the RF power. Next years’ plans for the 2 MW modular pre-prototype foresee a stepwise increase of pulse length.

  4. Design of a 2.4-GHz CMOS monolithic fractional-N frequency synthesizer

    Science.gov (United States)

    Shu, Keliu

    The wireless communication technology and market have been growing rapidly since a decade ago. The high demand market is a driving need for higher integration in the wireless transceivers. The trend is to achieve low-cost, small form factor and low power consumption. With the ever-reducing feature size, it is becoming feasible to integrate the RF front-end together with the baseband in the low-cost CMOS technology. The frequency synthesizer is a key building block in the RF front-end of the transceivers. It is used as a local oscillator for frequency translation and channel selection. The design of a 2.4-GHz low-power frequency synthesizer in 0.35mum CMOS is a challenging task mainly due to the high-speed prescaler. In this dissertation, a brief review of conventional PLL and frequency synthesizers is provided. Design techniques of a 2.4-GHz monolithic SigmaDelta fractional-N frequency synthesizer are investigated. Novel techniques are proposed to tackle the speed and integration bottlenecks of high-frequency PLL. A low-power and inherently glitch-free phase-switching prescaler and an on-chip loop filter with capacitance multiplier are developed. Compared with the existing and popular dual-path topology, the proposed loop filter reduces circuit complexity and its power consumption and noise are negligible. Furthermore, a third-order three-level digital SigmaDelta modulator topology is employed to reduce the phase noise generated by the modulator. Suitable PFD and charge-pump designs are employed to reduce their nonlinearity effects and thus minimize the folding of the SigmaDelta modulator-shaped phase noise. A prototype of the fractional-N synthesizer together with some standalone building blocks is designed and fabricated in TSMC 0.35mum CMOS through MOSIS. The prototype frequency synthesizer and standalone prescaler and loop filter are characterized. The feasibility and practicality of the proposed prescaler and loop filter are experimentally verified.

  5. Active high-power RF pulse compression using optically switched resonant delay lines

    International Nuclear Information System (INIS)

    Tantawi, S.G.; Ruth, R.D.; Vlieks, A.E.

    1996-11-01

    The authors present the design and a proof of principle experimental results of an optically controlled high power rf pulse compression system. The design should, in principle, handle few hundreds of Megawatts of power at X-band. The system is based on the switched resonant delay line theory. It employs resonant delay lines as a means of storing rf energy. The coupling to the lines is optimized for maximum energy storage during the charging phase. To discharge the lines, a high power microwave switch increases the coupling to the lines just before the start of the output pulse. The high power microwave switch, required for this system, is realized using optical excitation of an electron-hole plasma layer on the surface of a pure silicon wafer. The switch is designed to operate in the TE 01 mode in a circular waveguide to avoid the edge effects present at the interface between the silicon wafer and the supporting waveguide; thus, enhancing its power handling capability

  6. Low cost low power 24 GHz FMCW radar transceiver for indoor presence detection

    NARCIS (Netherlands)

    Suijker, E.M.; Bolt, R.J.; Wanum, M. van; Heijningen, M. van; Maas, A.P.M.; Vliet, F.E. van

    2014-01-01

    In this paper a first time right 24 GHz FMCW radar transceiver is presented. The MMIC has a low power consumption of 86 mW and an output power of -10 dBm. Due to the integrated IF amplifier, the conversion gain of the receiver is 51 dB and the base band signals are directly processed with an ADC.

  7. Rf-to-dc power converters for wireless powering

    KAUST Repository

    Ouda, Mahmoud Hamdy; Salama, Khaled N.

    2016-01-01

    feedback circuit configured to provide feedback bias signals to gates of the pair of forward rectifying transistors via feedback branch elements. In another example, a method includes receiving a radio frequency (RF) signal; rectifying the RF signal via a

  8. A program of high power microwave source research and development from 8 GHz to 600 GHz

    International Nuclear Information System (INIS)

    Granatstein, V.L.; Antonsen, T.M. Jr.; Bidwell, S.; Booske, J.; Carmel, Y.; Destler, W.W.; Kehs, R.A.; Latham, P.E.; Levush, B.; Lou, W.R.; Mayergoyz, I.D.; Minami, K.; Radack, D.J.

    1990-01-01

    We review research results both on a plasma filled, backward wave oscillator (BWO), and on a free electron laser (FEL) driven by a sheet electron beam. Recently, it was demonstrated that a plasma filled BWO driven by an intense relativistic electron beam can generate hundreds of megawatts of microwave radiation at an unusually high efficiency of 40% compared with a typical efficiency of ∼10% in a BWO without a background plasma. Furthermore, the enhanced efficiency can be maintained even for large electron beam currents approaching the vacuum space charge limiting current, and we anticipate this might hold even for larger current values. Theoretical studies and numerical simulations indicate that the enhanced efficiency as well as a lower value for the start oscillation current in the linear regime may be due to the finite length of the BWO circuit coupled with modification of the dispersion relation due to the background plasma. In the case of our FEL studies, we present designs for a 1 MW, CW, tapered FEL amplifier operating at frequencies of 280 GHz and 560 GHz. A short wiggler period (ell w ∼ 1 cm) is combined with a sheet beam of electrons having energy ∼1 MeV. Depressed collector techniques would allow the main power supply rating to be reduced to ∼200 kV. Efficient sheet beam transport (>99%) has been demonstrated through 10 wiggler periods, and transport through 60 wiggler periods is currently under study. Finally, plans for a proof-of-principle tapered FEL amplifier experiment at 94 GHz are presented. 8 refs., 7 figs

  9. LTE modem power consumption, SAR and RF signal strength emulation

    DEFF Research Database (Denmark)

    Musiige, Deogratius; Vincent, Laulagnet; Anton, François

    2012-01-01

    This paper presents a new methodology for emulating the LTE modem power consumption, emitted SAR and RF signal strength when transmitting an LTE signal. The inputs of the methodology are: modem logical/protocol commands, time advance, near-field specifier, and antenna characteristics. The power...... emulation model(s) are computed by a two layer 451 neural network based on physical power measurements. SAR is emulated by polynomial interpolation models based on FDTD simulations. The accuracies of the mathematical function approximations for the emulation models of power and SAR are 5.19% and 3...

  10. Design and RF test result of High Power Hybrid Combiner for Helicon Wave Current Drive in KSTAR Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Park, S. Y.; Kim, H. J.; Wi, H. H.; Wang, S. J.; Kwak, J. G. [NFRI, Daejeon (Korea, Republic of)

    2016-05-15

    200 kW RF power will be injected to plasmas through the traveling wave antenna after combining four klystrons output powers using three hybrid combiners. Each klystron produces 60 kW output at the frequency of 500 MHz. RF power combiners commonly used to divide or combine output powers for various rf and microwave applications. It is divided into several types according to the design type such as Wilkinson combiner, radial and quadrature hybrid combiner. We designed high power hybrid combiners using 6-1/8 inch coaxial line. The power combiner has many advantages such as high isolation, low insertion loss and high power handling capability. In this paper design and rf test results of high power combiners will be described. High power combiners using three coaxial hybrid couplers will be utilized for effectively combining of 500 MHz, 200 kW output powers generated by four klystrons. We have designed, fabricated, and tested a 6-1/8 inch coaxial hybrid combiners at 500 MHz for efficiently off-axis Helicon wave current drive in KSTAR. Simulation and test results of high power coaxial hybrid combiners are good agreement.

  11. Transparent conducting Al-doped ZnO thin films prepared by magnetron sputtering with dc and rf powers applied in combination

    International Nuclear Information System (INIS)

    Minami, Tadatsugu; Ohtani, Yuusuke; Miyata, Toshihiro; Kuboi, Takeshi

    2007-01-01

    A newly developed Al-doped ZnO (AZO) thin-film magnetron-sputtering deposition technique that decreases resistivity, improves resistivity distribution, and produces high-rate depositions has been demonstrated by dc magnetron-sputtering depositions that incorporate rf power (dc+rf-MS), either with or without the introduction of H 2 gas into the deposition chamber. The dc+rf-MS preparations were carried out in a pure Ar or an Ar+H 2 (0%-2%) gas atmosphere at a pressure of 0.4 Pa by adding a rf component (13.56 MHz) to a constant dc power of 80 W. The deposition rate in a dc+rf-MS deposition incorporating a rf power of 150 W was approximately 62 nm/min, an increase from the approximately 35 nm/min observed in dc magnetron sputtering with a dc power of 80 W. A resistivity as low as 3x10 -4 Ω cm and an improved resistivity distribution could be obtained in AZO thin films deposited on substrates at a low temperature of 150 deg. C by dc+rf-MS with the introduction of hydrogen gas with a content of 1.5%. This article describes the effects of adding a rf power component (i.e., dc+rf-MS deposition) as well as introducing H 2 gas into dc magnetron-sputtering preparations of transparent conducting AZO thin films

  12. Low-Power RF SOI-CMOS Technology for Distributed Sensor Networks

    Science.gov (United States)

    Dogan, Numan S.

    2003-01-01

    The objective of this work is to design and develop Low-Power RF SOI-CMOS Technology for Distributed Sensor Networks. We briefly report on the accomplishments in this work. We also list the impact of this work on graduate student research training/involvement.

  13. Effects of 1.84 GHz radio-frequency electromagnetic field on sperm ...

    African Journals Online (AJOL)

    sunny t

    Key words: 1.84 GHz, radio-frequency electromagnetic field (RF-EMF), epididymis, ... Author(s) agree that this article remains permanently open access under the terms of the ..... mouse testis after the long-term administration of nickel in feed.

  14. Operational upgrades to the DIII-D 60 GHz electron cyclotron resonant heating system

    International Nuclear Information System (INIS)

    Harris, T.E.; Cary, W.P.

    1993-10-01

    One of the primary components of the DIII-D radio frequency (rf) program over the past seven years has been the 60 GHz electron cyclotron resonant heating (ECRH) system. The system now consists of eight units capable of operating and controlling eight Varian VGE-8006 60 GHz, 200 kW gyrotrons along with their associated waveguide components. This paper will discuss the operational upgrades and the overall system performance. Many modifications were instituted to enhance the system operation and performance. Modifications discussed in this paper include an improved gyrotron tube-fault response network, a computer controlled pulse-timing and sequencing system, and an improved high-voltage power supply control interface. The discussion on overall system performance will include operating techniques used to improve system operations and reliability. The techniques discussed apply to system start-up procedures, operating the system in a conditioning mode, and operating the system during DIII-D plasma operations

  15. Commissioning of the First Klystron-Based X-Band Power Source at CERN

    CERN Document Server

    Kovermann, J; Curt, S; Doebert, S; Naon, M; McMonagle, G; Paju, E; Rey, S; Riddone, G; Schirm, K; Syratchev, I; Timeo, L; Wuensch, W; Hamdi, A; Peauger, FF; Eichner, J; Haase, A; Sprehn, D

    2012-01-01

    A new klystron based X-band rf power source operating at 11.994 GHz has been installed and started to be commissioned at CERN in collaboration with CEA Saclay and SLAC for CLIC accelerating structure tests. The system comprises a solid state high voltage modulator, an XL5 klystron developed by SLAC, a cavity based SLED type pulse compressor, the necessary low level rf system including rf diagnostics and interlocks and the surrounding vacuum, cooling and controls infrastructure. The system is designed to produce up to 50 MW rf pulses of 1500 ns pulse width and 50 Hz repetition rate. After pulse compression, up to 100 MW of rf power at 250 ns pulse width will be available in the structure test bunker. This paper describes in more detail this setup and the process of commissioning which is necessary to arrive at the design performance.

  16. A novel method for combating dispersion induced power fading in dispersion compensating fiber

    DEFF Research Database (Denmark)

    Lebedev, Alexander; Vegas Olmos, Juan José; Iglesias Olmedo, Miguel

    2013-01-01

    We experimentally investigate the performance of 60 GHz double sideband (DSB) radio over fiber (RoF) links that employ dispersion compensating fiber (DCF). Error free transmission of 3 Gbps signals over 1 m of wireless distance is reported. In order to overcome experimentally observed chromatic...... dispersion (CD) induced power fading of radio frequency (RF) signal, we propose a method for improvement of RF carrier-to-noise (C/N) ratio through introduction of a degree of RF frequency tunability. Overall results improve important aspects of directly modulated RoF systems and demonstrate the feasibility...

  17. A −3 dBm RF transmitter front-end for 802.11g application

    International Nuclear Information System (INIS)

    Zhao Jinxin; Yan Jun; Shi Yin

    2013-01-01

    A 2.4 GHz, direct-conversion RF transmitter front-end with an up converter and PA driver is fabricated in a 0.13 μm CMOS process for the reliable transmission of 54 Mb/s OFDM signals. The front-end output power is −3 dBm while the corresponding EVM is −27 dB which is necessary for the 802.11g standard of EVM at −25 dB. With the adopted gain control strategy the output power changes from −14.3 to −3.7 dBm with every step 0.8 dB (20%) which covers the gain variation due to working temperature and process. A power detector indicates the output power and delivers a voltage to the baseband to control the output power. (semiconductor integrated circuits)

  18. Gallium arsenide digital integrated circuits for controlling SLAC CW-RF systems

    International Nuclear Information System (INIS)

    Ronan, M.T.; Lee, K.L.; Corredoura, P.; Judkins, J.G.

    1989-01-01

    In order to fill the PEP and SPEAR storage rings with beams from the SLC linac and damping rings, precise control of the linac subharmonic buncher and the damping ring RF is required. Recently several companies have developed resettable GaAs master/slave D-type flip-flops which are capable of operating at frequencies of 3 GHz and higher. Using these digital devices as frequency dividers, one can phase shift the SLAC CW-RF systems to optimize the timing for filling the storage rings. The authors have evaluated the performance of integrated circuits from two vendors for our particular application. Using microstrip circuit techniques, they have built and operated in the accelerator several chassis to synchronize a reset signal from the storage rings to the SLAC 2.856 GHz RF and to phase shift divide-by-four and divide-by-sixteen frequency dividers to the nearest 350 psec bucket required for filling

  19. Gallium arsenide digital integrated circuits for controlling SLAC CW-RF systems

    International Nuclear Information System (INIS)

    Ronan, M.T.; Lee, K.L.; Corredoura, P.; Judkins, J.G.

    1988-10-01

    In order to fill the PEP and SPEAR storage rings with beams from the SLC linac and damping rings, precise control of the linac subharmonic buncher and the damping ring RF is required. Recently several companies have developed resettable GaAs master/slave D-type flip-flops which are capable of operating at frequencies of 3 GHz and higher. Using these digital devices as frequency dividers, one can phase shift the SLAC CW-RF systems to optimize the timing for filling the storage rings. We have evaluated the performance of integrated circuits from two vendors for our particular application. Using microstrip circuit techniques, we have built and operated in the accelerator several chassis to synchronize a reset signal from the storage rings to the SLAC 2.856 GHz RF and to phase shift divide-by-four and divide-by-sixteen frequency dividers to the nearest 350 psec bucket required for filling. 4 refs., 4 figs., 2 tabs

  20. Development and performance test of a new high power RF window in S-band PLS-II LINAC

    Science.gov (United States)

    Hwang, Woon-Ha; Joo, Young-Do; Kim, Seung-Hwan; Choi, Jae-Young; Noh, Sung-Ju; Ryu, Ji-Wan; Cho, Young-Ki

    2017-12-01

    A prototype of RF window was developed in collaboration with the Pohang Accelerator Laboratory (PAL) and domestic companies. High power performance tests of the single RF window were conducted at PAL to verify the operational characteristics for its application in the Pohang Light Source-II (PLS-II) linear accelerator (Linac). The tests were performed in the in-situ facility consisting of a modulator, klystron, waveguide network, vacuum system, cooling system, and RF analyzing equipment. The test results with Stanford linear accelerator energy doubler (SLED) have shown no breakdown up to 75 MW peak power with 4.5 μs RF pulse width at a repetition rate of 10 Hz. The test results with the current operation level of PLS-II Linac confirm that the RF window well satisfies the criteria for PLS-II Linac operation.

  1. Electron cyclotron heating/current-drive system using high power tubes for QUEST spherical tokamak

    Science.gov (United States)

    Onchi, Takumi; Idei, H.; Hasegawa, M.; Nagata, T.; Kuroda, K.; Hanada, K.; Kariya, T.; Kubo, S.; Tsujimura, T. I.; Kobayashi, S.; Quest Team

    2017-10-01

    Electron cyclotron heating (ECH) is the primary method to ramp up plasma current non-inductively in QUEST spherical tokamak. A 28 GHz gyrotron is employed for short pulses, where the radio frequency (RF) power is about 300 kW. Current ramp-up efficiency of 0.5 A/W has been obtained with focused beam of the second harmonic X-mode. A quasi-optical polarizer unit has been newly installed to avoid arcing events. For steady-state tokamak operation, 8.56 GHz klystron with power of 200 kW is used as the CW-RF source. The high voltage power supply (54 kV/13 A) for the klystron has been built recently, and initial bench test of the CW-ECH system is starting. The array of insulated-gate bipolar transistor works to quickly cut off the input power for protecting the klystron. This work is supported by JSPS KAKENHI (15H04231), NIFS Collaboration Research program (NIFS13KUTR085, NIFS17KUTR128), and through MEXT funding for young scientists associated with active promotion of national university reforms.

  2. Inductive current startup in large tokamaks with expanding minor radius and RF assist

    International Nuclear Information System (INIS)

    Borowski, S.K.

    1983-01-01

    Auxiliary RF heating of electrons before and during the current rise phase of a large tokamak, such as the Fusion Engineering Device, is examined as a means of reducing both the initiation loop voltage and resistive flux expenditure during startup. Prior to current initiation, 1 to 2 MW of electron cyclotron resonance heating power at approx.90 GHz is used to create a small volume of high conductivity plasma (T/sub e/ approx. = 100 eV, n/sub e/ approx. = 10 19 m -3 ) near the upper hybrid resonance (UHR) region. This plasma conditioning permits a small radius (a 0 approx.< 0.4 m) current channel to be established with a relatively low initial loop voltage (approx.< 25 V as opposed to approx.100 V without RF assist). During the subsequent plasma expansion and current ramp phase, additional RF power is introduced to reduce volt-second consumption due to plasma resistance. To study the preheating phase, a near classical particle and energy transport model is developed to estimate the electron heating efficiency in a currentless toroidal plasma. The model assumes that preferential electron heating at the UHR leads to the formation of an ambipolar sheath potential between the neutral plasma and the conducting vacuum vessel and limiter

  3. Integration of a versatile bridge concept in a 34 GHz pulsed/CW EPR spectrometer

    Science.gov (United States)

    Band, Alan; Donohue, Matthew P.; Epel, Boris; Madhu, Shraeya; Szalai, Veronika A.

    2018-03-01

    We present a 34 GHz continuous wave (CW)/pulsed electron paramagnetic resonance (EPR) spectrometer capable of pulse-shaping that is based on a versatile microwave bridge design. The bridge radio frequency (RF)-in/RF-out design (500 MHz to 1 GHz input/output passband, 500 MHz instantaneous input/output bandwidth) creates a flexible platform with which to compare a variety of excitation and detection methods utilizing commercially available equipment external to the bridge. We use three sources of RF input to implement typical functions associated with CW and pulse EPR spectroscopic measurements. The bridge output is processed via high speed digitizer and an in-phase/quadrature (I/Q) demodulator for pulsed work or sent to a wideband, high dynamic range log detector for CW. Combining this bridge with additional commercial hardware and new acquisition and control electronics, we have designed and constructed an adaptable EPR spectrometer that builds upon previous work in the literature and is functionally comparable to other available systems.

  4. Planar beam-forming antenna array for 60-GHz broadband communication

    NARCIS (Netherlands)

    Akkermans, J.A.G.

    2009-01-01

    The 60-GHz frequency band can be employed to realise the next-generation wireless high-speed communication that is capable of handling data rates of multiple gigabits per second. Advances in silicon technology allow the realisation of low-cost radio frequency (RF) front-end solutions. Still, to

  5. Effect of RF Interference on the Security-Reliability Trade-off Analysis of Multiuser Mixed RF/FSO Relay Networks with Power Allocation

    KAUST Repository

    Abd El-Malek, Ahmed

    2017-03-27

    In this paper, the impact of radio frequency (RF) cochannel interference (CCI) on the performance of multiuser mixed RF/free-space optical (FSO) relay network with opportunistic user scheduling under eavesdropping attack is studied. The considered system includes multiple users, one decode-and-forward relay, one destination, and an eavesdropper. In the analysis, the RF/FSO channels follow Nakagami-m/Gamma-Gamma fading models, respectively, with pointing errors on the FSO link. Exact closed-form expression for the system outage probability is derived. Then, an asymptotic expression for the outage probability is obtained at the high signal-to-interference-plus-noise ratio regime to get more insights on the system performance. Moreover, the obtained results are used to find the optimal transmission power in different turbulence conditions. The secrecy performance is studied in the presence of CCI at both the authorized relay and eavesdropper, where closed-form expressions are derived for the intercept probability. The physical layer security performance is enhanced using cooperative jamming models, where new closed-form expressions are derived for the intercept probability. Another power allocation optimization problem is formulated to find the optimal transmission and jamming powers. The derived analytical formulas are supported by numerical results to clarify the main contributions of this paper.

  6. Linear Distributed GaN MMIC Power Amplifier with Improved Power-added Efficiency

    Science.gov (United States)

    2017-03-01

    QPSK LTE waveform, the ACPR1improved by ~10 dBc at average output power of 23 dBm, without digital pre-distortion. Keywords: GaN, linear amplifiers...wideband amplifier, OIP3, LTE Introduction RF communications with spectral efficiency utilizes complex modulation schemes that require amplifier...wideband amplifiers remain. In this paper, we report on the measured CW performance of a multi-octave (100 MHz ‒ 8 GHz) GaN MMIC NDPA fabricated with

  7. Volterra series based predistortion for broadband RF power amplifiers with memory effects

    Institute of Scientific and Technical Information of China (English)

    Jin Zhe; Song Zhihuan; He Jiaming

    2008-01-01

    RF power amplifiers(PAs)are usually considered as memoryless devices in most existing predistortion techniques.However,in broadband communication systems,such as WCDMA,the PA memory effects are significant,and memoryless predistortion cannot linearize the PAs effectively.After analyzing the PA memory effects,a novel predistortion method based on the simplified Volterra series is proposed to linearize broadband RF PAs with memory effects.The indirect learning architecture is adopted to design the predistortion scheme and the recursive least squares algorithm with forgetting factor is applied to identify the parameters of the predistorter.Simulation results show that the proposed predistortion method can compensate the nonlinear distortion and memory effects of broadband RF PAs effectively.

  8. Technology development of solid state rf systems at 350 MHz and 325 MHz for RF accelerator

    International Nuclear Information System (INIS)

    Rama Rao, B.V.; Mishra, J.K.; Pande, Manjiri; Gupta, S.K.

    2011-01-01

    For decades vacuum tubes and klystrons have been used in high power application such as RF accelerators and broadcast transmitters. However, now, the solid-state technology can give power output in kilowatt regime. Higher RF power output can be achieved by combining several solid-state power amplifier modules using power combiners. This technology presents several advantages over traditional RF amplifiers, such as simpler start-up procedure, high modularity, high redundancy and flexibility, elimination of high voltage supplies and high power circulators, low operational cost, online maintenance without shut down of RF power station and no warm up time. In BARC, solid state amplifier technology development is being done both at 350 MHz and 325 MHz using RF transistors such as 1 kW LDMOS and 350 Watt VDMOS. Topology of input and output matching network in RF modules developed, consist of two L type matching sections with each section having a combination of series micro-strip line and parallel capacitor. The design is of equal Q for both the sections and of 25 ohm characteristics impedance of micro strip lines. Based on this, lengths of micro strips lines and values of shunt capacitors have been calculated. The calculated and simulated values of network elements have been compared. Similarly power combiners have been designed and developed based on Wilkinson techniques without internal resistors and using coaxial technology. This paper presents design and development of RF power amplifier modules, associated power combiner technologies and then integrated RF power amplifier. (author)

  9. Compact Probe for Power Detection from the Narrow Side of the Waveguide

    International Nuclear Information System (INIS)

    Kung, C.C.; Bernabei, S.; Gumbas, J.; Greenough, N.; Fredd, E.; Wilson, J.R.; Hosea, J.

    2004-01-01

    Phased array antennas with high directivity have a variety of applications. One of their applications is in RF heating for magnetically confined plasma fusion research. Among these RF heating schemes, waveguide arrays with careful phase control on each waveguide can act as a phased array antenna to deliver megawatts of power for heating fusion plasmas in the lower-hybrid range of frequencies (1 GHz-10 GHz). In order to achieve compactness, it is common to stack reduced height waveguide together to form the waveguide array. As long as the delivered power does not cause arcing in the waveguide, the waveguide height can be quite small. Due to this confined space in a stack of reduced height waveguides, power detection of the incident and reflected wave in the reduced height waveguide is extremely difficult. A new compact probe, which employs current loops, to monitor the incident and reflected wave from the narrow side of the reduced height waveguide has been developed. Its theory and performance will be reported in this paper

  10. Suppression of multipacting in high power RF couplers operating with superconducting cavities

    Energy Technology Data Exchange (ETDEWEB)

    Ostroumov, P.N., E-mail: ostroumov@frib.msu.edu [Facility for Rare Isotope Beams (FRIB), Michigan State University, East Lansing, MI 48824 (United States); Kazakov, S. [Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Morris, D.; Larter, T.; Plastun, A.S.; Popielarski, J.; Wei, J.; Xu, T. [Facility for Rare Isotope Beams (FRIB), Michigan State University, East Lansing, MI 48824 (United States)

    2017-06-01

    Capacitive input couplers based on a 50 Ω coaxial transmission line are frequently used to transmit RF power to superconducting (SC) resonators operating in CW mode. It is well known that coaxial transmission lines are prone to multipacting phenomenon in a wide range of RF power level and operating frequency. The Facility for Rare Isotope Beams (FRIB) being constructed at Michigan State University includes two types of quarter wave SC resonators (QWR) operating at 80.5 MHz and two types of half wave SC resonators (HWR) operating at 322 MHz. As was reported in ref. [1] a capacitive input coupler used with HWRs was experiencing strong multipacting that resulted in a long conditioning time prior the cavity testing at design levels of accelerating fields. We have developed an insert into 50 Ω coaxial transmission line that provides opportunity to bias the RF coupler antenna and protect the amplifier from the bias potential in the case of breakdown in DC isolation. Two of such devices have been built and are currently used for the off-line testing of 8 HWRs installed in the cryomodule.

  11. Design of RF energy harvesting platforms for power management unit with start-up circuits

    Science.gov (United States)

    Costanzo, Alessandra; Masotti, Diego

    2013-12-01

    In this contribution we discuss an unconventional rectifier design dedicated to RF energy harvesting from ultra-low sources, such as ambient RF sources which are typically of the order of few to few tens of μW. In such conditions unsuccessful results may occur if the rectenna is directly connected to its actual load since either the minimum power or the minimum activation voltage may not be simultaneously available. For this reason a double-branch rectifier topology is considered for the power management unit (PMU), instead of traditional single-branch one. The new PMU, interposed between the rectenna and application circuits, allows the system to operate with significantly lower input power with respect to the traditional solution, while preserving efficiency during steady-state power conversion.

  12. Design of RF energy harvesting platforms for power management unit with start-up circuits

    International Nuclear Information System (INIS)

    Costanzo, Alessandra; Masotti, Diego

    2013-01-01

    In this contribution we discuss an unconventional rectifier design dedicated to RF energy harvesting from ultra-low sources, such as ambient RF sources which are typically of the order of few to few tens of μW. In such conditions unsuccessful results may occur if the rectenna is directly connected to its actual load since either the minimum power or the minimum activation voltage may not be simultaneously available. For this reason a double-branch rectifier topology is considered for the power management unit (PMU), instead of traditional single-branch one. The new PMU, interposed between the rectenna and application circuits, allows the system to operate with significantly lower input power with respect to the traditional solution, while preserving efficiency during steady-state power conversion

  13. Scaling linear colliders to 5 TeV and above

    International Nuclear Information System (INIS)

    Wilson, P.B.

    1997-04-01

    Detailed designs exist at present for linear colliders in the 0.5-1.0 TeV center-of-mass energy range. For linear colliders driven by discrete rf sources (klystrons), the rf operating frequencies range from 1.3 GHz to 14 GHz, and the unloaded accelerating gradients from 21 MV/m to 100 MV/m. Except for the collider design at 1.3 GHz (TESLA) which uses superconducting accelerating structures, the accelerating gradients vary roughly linearly with the rf frequency. This correlation between gradient and frequency follows from the necessity to keep the ac open-quotes wall plugclose quotes power within reasonable bounds. For linear colliders at energies of 5 TeV and above, even higher accelerating gradients and rf operating frequencies will be required if both the total machine length and ac power are to be kept within reasonable limits. An rf system for a 5 TeV collider operating at 34 GHz is outlined, and it is shown that there are reasonable candidates for microwave tube sources which, together with rf pulse compression, are capable of supplying the required rf power. Some possibilities for a 15 TeV collider at 91 GHz are briefly discussed

  14. RF Testing Of Microwave Integrated Circuits

    Science.gov (United States)

    Romanofsky, R. R.; Ponchak, G. E.; Shalkhauser, K. A.; Bhasin, K. B.

    1988-01-01

    Fixtures and techniques are undergoing development. Four test fixtures and two advanced techniques developed in continuing efforts to improve RF characterization of MMIC's. Finline/waveguide test fixture developed to test submodules of 30-GHz monolithic receiver. Universal commercially-manufactured coaxial test fixture modified to enable characterization of various microwave solid-state devices in frequency range of 26.5 to 40 GHz. Probe/waveguide fixture is compact, simple, and designed for non destructive testing of large number of MMIC's. Nondestructive-testing fixture includes cosine-tapered ridge, to match impedance wavequide to microstrip. Advanced technique is microwave-wafer probing. Second advanced technique is electro-optical sampling.

  15. Bidirectional Radio-Over-Fiber System With Phase-Modulation Downlink and RF Oscillator-Free Uplink Using a Reflective SOA

    DEFF Research Database (Denmark)

    Yu, Xianbin; Gibbon, Timothy Braidwood; Tafur Monroy, Idelfonso

    2008-01-01

    We propose and demonstrate a bidirectional radio-over-fiber (RoF) system based on a reflective semiconductor optical amplifier (RSOA). In this system, phase-modulated 5.25-GHz radio frequency (RF) carrying 850 Mb/s is used for the downstream signal. Optical envelope detection of 10-GHz RF carryin......-effective. The experimental results indicate that after simultaneous transmission of downstream and upstream signals over 25-km fiber, the receiver sensitivities are -22 and -14.5 dBm, respectively....

  16. Design and development of power supplies for high power IOT based RF amplifier

    International Nuclear Information System (INIS)

    Kumar, Yashwant; Kumari, S.; Ghosh, M.K.; Bera, A.; Sadhukhan, A.; Pal, S.S.; Khare, V.K.; Tiwari, T.P.; Thakur, S.K.; Saha, S.

    2013-01-01

    Design, development, circuit topology, function of system components and key system specifications of different power supplies for biasing electrodes of Thales Inductive Output Tube (IOT) based high power RF amplifier are presented in this paper. A high voltage power supply (-30 kV, 3.2A dc) with fast (∼microsecond) crowbar protection circuit is designed, developed and commissioned at VECC for testing the complete setup. Other power supplies for biasing grid electrode (300V, 0.5A dc) and Ion Pump (3 kV, 0.1mA dc) of IOT are also designed, developed and tested with actual load. A HV Deck (60kV Isolation) is specially designed in house to place these power supplies which are floating at 30 kV. All these power supplies are powered by an Isolation Transformer (5 kVA, 60 kV isolation) designed and developed in VECC. (author)

  17. Solid-state high voltage modulator and its application to rf source high voltage power supplies

    International Nuclear Information System (INIS)

    Tooker, J.F.; Huynh, P.; Street, R.W.

    2009-01-01

    A solid-state high voltage modulator is described in which series-connected insulated-gate bipolar transistors (IGBTs) are switched at a fixed frequency by a pulse width modulation (PWM) regulator, that adjusts the pulse width to control the voltage out of an inductor-capacitor filter network. General Atomics proposed the HV power supply (HVPS) topology of multiple IGBT modulators connected to a common HVdc source for the large number of 1 MW klystrons in the linear accelerator of the Accelerator Production of Tritium project. The switching of 24 IGBTs to obtain 20 kVdc at 20 A for short pulses was successfully demonstrated. This effort was incorporated into the design of a -70 kV, 80 A, IGBT modulator, and in a short-pulse test 12 IGBTs regulated -5 kV at 50 A under PWM control. These two tests confirm the practicality of solid-state IGBT modulators to regulate high voltage at reasonable currents. Tokamaks such as ITER require large rf heating and current drive systems with multiple rf sources. A HVPS topology is presented that readily adapts to the three rf heating systems on ITER. To take advantage of the known economy of scale for power conversion equipment, a single HVdc source feeds multiple rf sources. The large power conversion equipment, which is located outside, converts the incoming utility line voltage directly to the HVdc needed for the class of rf sources connected to it, to further reduce cost. The HVdc feeds a set of IGBT modulators, one for each rf source, to independently control the voltage applied to each source, maximizing operational flexibility. Only the modulators are indoors, close to the rf sources, minimizing the use of costly near-tokamak floor space.

  18. Design of power supply system for the prototype RF-driven negative ion source for neutral beam injection application

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Caichao; Hu, Chundong [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Graduate school, University of Science and Technology of China, Hefei 230026 (China); Wei, Jianglong, E-mail: jlwei@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Xie, Yahong; Xu, Yongjian; Liang, Lizhen; Chen, Shiyong; Liu, Sheng; Liu, Zhimin; Xie, Yuanlai [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2017-04-15

    Highlights: • A supporting power supply system was designed in details for a RF-driven prototype negative ion source at ASIPP. • The RF power supply for plasma generation adopts an all-solid-state power supply structure. • The extraction grid power supply adopts the pulse step modulator (PSM) technology. - Abstract: In order to study the generation and extraction of negative ions for neutral beam injection application, a prototype RF-driven negative ion source and the corresponding test bed are under construction at Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP). The target of the negative ion source is extracting a negation ion beam of 350 A/m{sup 2} for 3600 s plasma duration and 100 s beam duration. According to the required parameters of test bed, the design of power supply system is put forward for earlier study. In this paper, the performance requirements and design schemes of RF power supply for plasma generation, impedance matching network, bias voltage power supply, and extraction voltage power supply for negative beam extraction are introduced in details. The schemes provide a reference for the construction of power supply system and lay a foundation for the next phase of experimental operation.

  19. Electron beam gun with kinematic coupling for high power RF vacuum devices

    Science.gov (United States)

    Borchard, Philipp

    2016-11-22

    An electron beam gun for a high power RF vacuum device has components joined by a fixed kinematic coupling to provide both precise alignment and high voltage electrical insulation of the components. The kinematic coupling has high strength ceramic elements directly bonded to one or more non-ductile rigid metal components using a high temperature active metal brazing alloy. The ceramic elements have a convex surface that mates with concave grooves in another one of the components. The kinematic coupling, for example, may join a cathode assembly and/or a beam shaping focus electrode to a gun stem, which is preferably composed of ceramic. The electron beam gun may be part of a high power RF vacuum device such as, for example, a gyrotron, klystron, or magnetron.

  20. 38.2-Gb/s Optical-Wireless Transmission in 75-110 GHz Based on Electrical OFDM with Optical Comb Expansion

    DEFF Research Database (Denmark)

    Deng, Lei; Pang, Xiaodan; Beltrán, Marta

    2012-01-01

    We demonstrate scalable optical comb- and heterodyning-based generation, optical and 1.3-m wireless transmission, and electrical heterodyne detection of multiband OFDM up to 38.2 Gb/s occupying 14.4-GHz RF bandwidth, for high-capacity optical-wireless links in 75-110 GHz....

  1. DC-pass filter design with notch filters superposition for CPW rectenna at low power level

    Science.gov (United States)

    Rivière, J.; Douyère, A.; Alicalapa, F.; Luk, J.-D. Lan Sun

    2016-03-01

    In this paper the challenging coplanar waveguide direct current (DC) pass filter is designed, analysed, fabricated and measured. As the ground plane and the conductive line are etched on the same plane, this technology allows the connection of series and shunt elements to the active devices without via holes through the substrate. Indeed, this study presents the first step in the optimization of a complete rectenna in coplanar waveguide (CPW) technology: key element of a radio frequency (RF) energy harvesting system. The measurement of the proposed filter shows good performance in the rejection of F0=2.45 GHz and F1=4.9 GHz. Additionally, a harmonic balance (HB) simulation of the complete rectenna is performed and shows a maximum RF-to-DC conversion efficiency of 37% with the studied DC-pass filter for an input power of 10 µW at 2.45 GHz.

  2. Powering Autonomous Sensors An Integral Approach with Focus on Solar and RF Energy Harvesting

    CERN Document Server

    Penella-López, María Teresa

    2011-01-01

    Autonomous sensors transmit data and power their electronics without using cables. They can be found in e.g. wireless sensor networks (WSNs) or remote acquisition systems. Although primary batteries provide a simple design for powering autonomous sensors, they present several limitations such as limited capacity and power density, and difficulty in predicting their condition and state of charge. An alternative is to extract energy from the ambient (energy harvesting). However, the reduced dimensions of most autonomous sensors lead to a low level of available power from the energy transducer. Thus, efficient methods and circuits to manage and gather the energy are a must. An integral approach for powering autonomous sensors by considering both primary batteries and energy harvesters is presented. Two rather different forms of energy harvesting are also dealt with: optical (or solar) and radiofrequency (RF). Optical energy provides high energy density, especially outdoors, whereas RF remote powering is possibly...

  3. Localization of rf breakdowns in a standing wave cavity

    Directory of Open Access Journals (Sweden)

    Faya Wang

    2009-04-01

    Full Text Available At SLAC, a five-cell, normal-conducting, L-band (1.3 GHz, standing-wave (SW cavity was built as a prototype positron capture accelerator for the ILC. The structure met the ILC gradient goal but required extensive rf processing. When rf breakdowns occurred, a large variation was observed in the decay rate of the stored energy in the cavity after the input power was shut off. It appeared that the breakdowns were isolating sections of the cavity, and that the trapped energy in those sections was then partitioned among its natural modes, producing a distinct beating pattern during the decay. To explore this phenomenon further, an equivalent circuit model of cavity was created that reproduces well its normal operating characteristics. The model was then used to compute the spectra of trapped energy for different numbers of isolated cells. The resulting modal patterns agree well with those of the breakdown data, and thus such a comparison appears to provide a means of identifying the irises on which the breakdowns occurred.

  4. A high-power rf linear accelerator for FELS [free-electron lasers

    International Nuclear Information System (INIS)

    Sheffield, R.L.; Watson, J.M.

    1987-01-01

    This paper describes the design of a high average current rf linear accelerator suitable for driving short-wavelength free-electron lasers (FEL). It is concluded that the design of a room-temperature rf linear acelerator that can meet the stringent requirements of a high-power short-wavelength FEL appears possible. The accelerator requires the use of an advanced photoelectric injector that is under development; the accelerator components, however, do not require appreciable development. At these large beam currents, low-frequency, large-bore room-temperature cavities can be highly efficient and give all specified performance with minimal risk. 20 refs

  5. Suppressing RF breakdown of powerful backward wave oscillator by field redistribution

    Directory of Open Access Journals (Sweden)

    W. Song

    2012-03-01

    Full Text Available An over mode method for suppressing the RF breakdown on metal surface of resonant reflector cavity in powerful backward wave oscillator is investigated. It is found that the electric field is redistributed and electron emission is restrained with an over longitudinal mode cavity. Compared with the general device, a frequency band of about 5 times wider and a power capacity of at least 1.7 times greater are obtained. The results were verified in an X-band high power microwave generation experiment with the output power near 4 gigawatt.

  6. Microwave phase shifter with controllable power response based on slow- and fast-light effects in semiconductor optical amplifiers.

    Science.gov (United States)

    Xue, Weiqi; Sales, Salvador; Capmany, José; Mørk, Jesper

    2009-04-01

    We suggest and experimentally demonstrate a method for increasing the tunable rf phase shift of semiconductor waveguides while at the same time enabling control of the rf power. This method is based on the use of slow- and fast-light effects in a cascade of semiconductor optical amplifiers combined with the use of spectral filtering to enhance the role of refractive index dynamics. A continuously tunable phase shift of approximately 240 degrees at a microwave frequency of 19 GHz is demonstrated in a cascade of two semiconductor optical amplifiers, while maintaining an rf power change of less than 1.6 dB. The technique is scalable to more amplifiers and should allow realization of an rf phase shift of 360 degrees.

  7. Low conversion loss 94 GHz and 188 GHz doublers in InP DHBT technology

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy; Johansen, Tom Keinicke; Squartecchia, Michele

    2017-01-01

    An Indium Phosphide (InP) Double Heterojunction Bipolar Transistor (DHBT) process has been utilized to design two doublers to cover the 94 GHz and 188 GHz bands. The 94 GHz doubler employs 4-finger DHBTs and provides conversion loss of 2 dB. A maximum output power of nearly 3 dBm is measured whil...... operate over a broad bandwidth. The total circuit area of each chip is 1.41 mm2....

  8. Desain Antena Hexagonal Patch Array Berbasis Sistem Transfer Daya Wireless pada Frekuensi 2,4 GHz

    Directory of Open Access Journals (Sweden)

    Herma Nugroho R. A. K.

    2016-06-01

    Full Text Available Pada penelitian ini telah didesain antena hexagonal patch array yang dapat digunakan sebagai perangkat catu daya wireless. Antena hexagonal patch array ini didesain untuk menangkap gelombang radio (RF pada frekuensi 2,4 GHz yang dapat diaplikasikan sebagai antena pada Wireless Local Area Network (WLAN. Desain antena dilakukan menggunakan software CST Microwave studio, kemudian dilakukan pabrikasi dan pengukuran secara riil. Parameter pengujian antena hexagonal patch array meliputi return loss, Voltage Standing Wave Ratio (VSWR, gain, bandwidth, dan daya. Metode yang digunakan adalah pemodelan transmission line dan corporate feed line untuk pengaturan perubahan jarak antar patch antena. Perubahan variabel juga diteliti pengaruhnya terhadap parameter antena khususnya daya terima antena yang kemudian ditransmisikan ke rangkaian power harvester. Nilai parameter antena hasil simulasi menunjukkan nilai return loss adalah -33,38 dB, VSWR sebesar 1,041, gain sebesar 8,81 dBi, bandwidth adalah 0,084 GHz, daya sebesar 0,499 W (-3 dBm. Sedangkan parameter hasil pengukuran dari antena yang telah dipabrikasi adalah nilai return loss sebesar -33,21 dB, VSWR sebesar 1,048, gain sebesar 5 dBi, bandwidth adalah 0,145 GHz, daya sebesar -33 dBm.

  9. Developments and directions in 200 MHz very high power RF at LAMPF

    International Nuclear Information System (INIS)

    Cliff, R.; Bush, E.D.; DeHaven, R.A.; Harris, H.W.; Parsons, M.

    1991-01-01

    The Los Alamos Meson Physics Facility (LAMPF), is a linear particle accelerator a half-mile long. It produces an 800 million electron- volt hydrogen-ion beam at an average current of more than one milliamp. The first RF section of the accelerator consists of four Alvarez drift-tube structures. Each of these structures is excited by an amplifier module at a frequency of 201.25 MHz. These amplifiers operate at a duty of 13 percent or more and at peak pulsed power levels of about 2.5 million watts. The second RF accelerator section consists of forty-four side-coupled-cavity structures. Each of these is excited by an amplifier module at a frequency of 805 MHz. These amplifiers operate at a duty of up to 12 percent and at peak pulsed power levels of about 1.2 million watts. The relatively high average beam current in the accelerator places a heavy demand upon components in the RF systems. The 201-MHz modules have always required a large share of maintenance efforts. In recent years, the four 201.25 MHz modules have been responsible for more than twice as much accelerator down-time as have the forty-four 805 MHz modules. This paper reviews recent, ongoing, and planned improvements in the 201-MHz systems. The Burle Industries 7835 super power triode is used in the final power amplifiers of each of the 201-MHz modules. This tube has been modified for operation at LAMPF by the addition of Penning ion vacuum''pumps.'' This has enabled more effective tube conditioning and restarting. A calorimetry system of high accuracy is in development to monitor tube plate-power dissipation

  10. 2.45 GHz Rectenna Designed for Wireless Sensors Operating at 500 C

    Science.gov (United States)

    Ponchak, George E.; Schwartz, Zachary D.; Jordan, Jennifer L.; Downey, Alan N.; Neudeck, Philip G.

    2004-01-01

    High temperature wireless sensors that operate at 500 C are required for aircraft engine monitoring and performance improvement These sensors would replace currently used hard-wired sensors and lead to a substantial reduction in mass. However, even if the sensor output data is transmitted wirelessly to a receiver in the cooler part of the engine, and the associated cables are eliminated, DC power cables are still required to operate the sensors and power the wireless circuits. To solve this problem, NASA is developing a rectenna, a circuit that receives RF power and converts it to DC power. The rectenna would be integrated with the wireless sensor, and the RF transmitter that powers the rectenna would be located in the cooler part of the engine. In this way, no cables to or from the sensors are required. Rectennas haw been demonstrated at ambient room temperature, but to date, no high temperature rectennas haw been reported. In this paper, we report the first rectenna designed for 2.45 GHz operation at 500 C. The circuit consists of a microstrip dipole antenna, a stripline impedance matching circuit, and a stripline low pass filter to prevent transmission of higher harmonics created by the rectifying diode fabricated on an Alumina substrate. The rectifying diode is the gate to source junction of a 6H Sic MESFET and the capacitor and load resistor are chip elements that are each bonded to the Alumina substrate. Each element and the hybrid, rectenna circuit haw been characterized through 500 C.

  11. Application of Metamaterials to RF Energy Harvesting and Infrared Photodetection

    Science.gov (United States)

    Fowler, Clayton M.

    Techniques for adapting metamaterials for the improvement of RF energy harvesting and infrared photodetection are demonstrated using experimental and computer simulation methods. Two methods for RF energy harvesting are experimentally demonstrated and supported by computer simulation. In the first method, a metamaterial perfect absorber (MPA) is made into a rectenna capable of harvesting RF energy and delivering power to a load by soldering Schottky diodes onto connected split ring resonator (SRR) structures composing the planar metasurface of the perfect absorber. The metamaterial rectenna is accompanied by a ground plane placed parallel to it, which forms a Fabry-Perot cavity between the metasurface and the ground plane. The Fabry-Perot cavity stores energy in the form of standing waves which is transferred to the SRR structures of the metasurface as AC currents that are rectified by the diodes to create DC power. This type of design enables highly efficient energy harvesting for low input power, creates a large antenna capture area, and uses elements with small electrical size, such that 100 uW of power (enough to operate simple devices) can be captured at ambient intensities 1 - 2 uW/cm2. Two designs using this method are presented, one that operates for linear polarizations at 0.9 GHz and a smaller polarization-independent design that operates around 1.5 GHz. In the second method, the energy stored in the standing waves of an MPA Fabry-Perot cavity is instead harvested by placing a separate energy harvesting antenna within the cavity. The cavity shapes and enhances the incident electric field, and then the separate energy harvesting antenna is designed to be inserted into the cavity so that its shape and/or radiation pattern matches the electric field lines within the cavity and maximally extracts the stored energy. This method allows for great customization of antenna design parameters, such as operating frequency, polarization dependence, and directionality

  12. Reliability impact of RF tube technology for the NPB

    International Nuclear Information System (INIS)

    Bueck, J.C.

    1989-01-01

    Two reliability options, redundancy and operating margin, are examined to determine their effect on power system configurations using RF tube technology (klystron and klystrode) powered Neutral Particle Beam weapons. Redundance is addressed by providing an additional identical RF tube to the tubes required to power an accelerator RF element (DTL section, RFQ, or CCL). RF elements do not share RF power with other RF elements. Operating margin provides increased reliability by sizing the RF tubes such that tube operating levels may be increased compensate for the loss of a tube. It is shown that power system mass is affected by the choice of reliability measures, that higher power tubes coupled with higher power RF elements may mitigate mass increases, and that redundancy appears preferable to operating margin as a method of improving RF system reliability

  13. Design development and testing of high voltage power supply with crowbar protection for IOT based RF amplifier system in VECC

    Science.gov (United States)

    Thakur, S. K.; Kumar, Y.

    2018-05-01

    This paper described the detailed design, development and testing of high voltage power supply (‑30 kV, 3.2 A) and different power supplies for biasing electrodes of Inductive Output Tube (IOT) based high power Radio Frequency (RF) amplifier. This IOT based RF amplifier is further used for pursuing research and development activity in superconducting RF cavity project at Variable Energy Cyclotron Centre (VECC) Kolkata. The state-of-the-art technology of IOT-based high power RF amplifier is designed, developed, and tested at VECC which is the first of its kind in India. A high voltage power supply rated at negative polarity of 30 kV dc/3.2 A is required for biasing cathode of IOT with crowbar protection circuit. This power supply along with crowbar protection system is designed, developed and tested at VECC for testing the complete setup. The technical difficulties and challenges occured during the design of cathode power supply, its crowbar protection techniques along with other supported power supplies i.e. grid and ion pump power supplies are discussed in this paper.

  14. Power-Combined GaN Amplifier with 2.28-W Output Power at 87 GHz

    Science.gov (United States)

    Fung, King Man; Ward, John; Chattopadhyay, Goutam; Lin, Robert H.; Samoska, Lorene A.; Kangaslahti, Pekka P.; Mehdi, Imran; Lambrigtsen, Bjorn H.; Goldsmith, Paul F.; Soria, Mary M.; hide

    2011-01-01

    Future remote sensing instruments will require focal plane spectrometer arrays with higher resolution at high frequencies. One of the major components of spectrometers are the local oscillator (LO) signal sources that are used to drive mixers to down-convert received radio-frequency (RF) signals to intermediate frequencies (IFs) for analysis. By advancing LO technology through increasing output power and efficiency, and reducing component size, these advances will improve performance and simplify architecture of spectrometer array systems. W-band power amplifiers (PAs) are an essential element of current frequency-multiplied submillimeter-wave LO signal sources. This work utilizes GaN monolithic millimeter-wave integrated circuit (MMIC) PAs developed from a new HRL Laboratories LLC 0.15- m gate length GaN semiconductor transistor. By additionally waveguide power combining PA MMIC modules, the researchers here target the highest output power performance and efficiency in the smallest volume achievable for W-band.

  15. Availability, reliability and logistic support studies of the RF power system design options for the IFMIF accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Bargallo, E., E-mail: enric.bargallo-font@upc.edu [Fusion Energy Engineering Laboratory (FEEL), Technical University of Catalonia (UPC) Barcelona-Tech, Barcelona (Spain); Giralt, A.; Martinez, G. [Fusion Energy Engineering Laboratory (FEEL), Technical University of Catalonia (UPC) Barcelona-Tech, Barcelona (Spain); Weber, M.; Regidor, D.; Arroyo, J.M. [Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Madrid (Spain); Abal, J.; Dies, J.; Tapia, C.; De Blas, A. [Fusion Energy Engineering Laboratory (FEEL), Technical University of Catalonia (UPC) Barcelona-Tech, Barcelona (Spain); Mendez, P.; Ibarra, A.; Molla, J. [Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Madrid (Spain)

    2013-10-15

    Highlights: ► Current RF system design based on tetrodes chains is evaluated. ► Alternative solid state power amplifiers RF system design is analyzed. ► Both designs are compared in terms of availability, logistics and cost. ► It is concluded that solid state option presents relevant improvements. -- Abstract: The current design of the radio frequency (RF) power system for the International Fusion Materials Irradiation Facility (IFMIF) is based upon tetrodes technology. Due to the improvement in the solid state amplifiers technology, the possibility of using this option for IFMIF RF system is becoming a very competitive alternative presenting from the beginning several advantages in terms of availability, reliability and logistics. The current design based on RF tetrodes chains leads no room for substantial improvements in terms of availability being the requirement for the RF system hard to achieve. The principal goals of this paper are to use RAMI (Reliability, Availability, Maintainability and Inspectionability) analysis in the solid state amplifier design, and to compare the availability, reliability and logistic performances for both alternatives.

  16. Availability, reliability and logistic support studies of the RF power system design options for the IFMIF accelerator

    International Nuclear Information System (INIS)

    Bargallo, E.; Giralt, A.; Martinez, G.; Weber, M.; Regidor, D.; Arroyo, J.M.; Abal, J.; Dies, J.; Tapia, C.; De Blas, A.; Mendez, P.; Ibarra, A.; Molla, J.

    2013-01-01

    Highlights: ► Current RF system design based on tetrodes chains is evaluated. ► Alternative solid state power amplifiers RF system design is analyzed. ► Both designs are compared in terms of availability, logistics and cost. ► It is concluded that solid state option presents relevant improvements. -- Abstract: The current design of the radio frequency (RF) power system for the International Fusion Materials Irradiation Facility (IFMIF) is based upon tetrodes technology. Due to the improvement in the solid state amplifiers technology, the possibility of using this option for IFMIF RF system is becoming a very competitive alternative presenting from the beginning several advantages in terms of availability, reliability and logistics. The current design based on RF tetrodes chains leads no room for substantial improvements in terms of availability being the requirement for the RF system hard to achieve. The principal goals of this paper are to use RAMI (Reliability, Availability, Maintainability and Inspectionability) analysis in the solid state amplifier design, and to compare the availability, reliability and logistic performances for both alternatives

  17. Construction and Testing of a 21 GHz Ceramic Based Power Extractor

    CERN Document Server

    Newsham, D; Carron, G; Döbert, Steffen; Gai, W; Konecny, R; Liu, W; Smirnov, A Yu; Thorndahl, L; Wilson, Ian H; Wuensch, Walter; Yu, D

    2003-01-01

    A ceramic based power extractor [1] operating at 21 GHz was built by DULY Research Inc. and tested at CTF2, the CERN Linear Collider (CLIC) Test Facility. The structure includes a ceramic extractor section, a 2-output-port, circular-to-rectangular waveguide coupler, and a 3-port rectangular waveguide combiner that provides for a single output waveguide. Results of cold tests and full beam tests are presented and compared with theoretical and numerical models.

  18. Effects of various deposition times and RF powers on CdTe thin film growth using magnetron sputtering

    Science.gov (United States)

    Ghorannevis, Z.; Akbarnejad, E.; Ghoranneviss, M.

    2016-09-01

    Cadmium telluride (CdTe) is a p-type II-VI compound semiconductor, which is an active component for producing photovoltaic solar cells in the form of thin films, due to its desirable physical properties. In this study, CdTe film was deposited using the radio frequency (RF) magnetron sputtering system onto a glass substrate. To improve the properties of the CdTe film, effects of two experimental parameters of deposition time and RF power were investigated on the physical properties of the CdTe films. X-ray Diffraction (XRD), atomic force microscopy (AFM) and spectrophotometer were used to study the structural, morphological and optical properties of the CdTe samples grown at different experimental conditions, respectively. Our results suggest that film properties strongly depend on the experimental parameters and by optimizing these parameters, it is possible to tune the desired structural, morphological and optical properties. From XRD data, it is found that increasing the deposition time and RF power leads to increasing the crystallinity as well as the crystal sizes of the grown film, and all the films represent zinc blende cubic structure. Roughness values given from AFM images suggest increasing the roughness of the CdTe films by increasing the RF power and deposition times. Finally, optical investigations reveal increasing the film band gaps by increasing the RF power and the deposition time.

  19. Demonstration of an RF front-end based on GaN HEMT technology

    Science.gov (United States)

    Ture, Erdin; Musser, Markus; Hülsmann, Axel; Quay, Rüdiger; Ambacher, Oliver

    2017-05-01

    The effectiveness of the developed front-end on blocking the communication link of a commercial drone vehicle has been demonstrated in this work. A jamming approach has been taken in a broadband fashion by using GaN HEMT technology. Equipped with a modulated-signal generator, a broadband power amplifier, and an omni-directional antenna, the proposed system is capable of producing jamming signals in a very wide frequency range between 0.1 - 3 GHz. The maximum RF output power of the amplifier module has been software-limited to 27 dBm (500 mW), complying to the legal spectral regulations of the 2.4 GHz ISM band. In order to test the proof of concept, a real-world scenario has been prepared in which a commercially-available quadcopter UAV is flown in a controlled environment while the jammer system has been placed in a distance of about 10 m from the drone. It has been proven that the drone of interest can be neutralized as soon as it falls within the range of coverage (˜3 m) which endorses the promising potential of the broadband jamming approach.

  20. Design, development and operational experience of radio frequency (RF) power systems/technologies for LEHIPA and 400 keV RFQ

    International Nuclear Information System (INIS)

    Pande, Manjiri; Shrotriya, Sandip; Patel, Niranjan

    2015-01-01

    The important technology development for ion accelerators of 'accelerator driven sub critical reactor system (ADS) is being done under the program of Department of Atomic Energy (DAE). In BARC (BARC) of DAE, technology development of 400 keV radio frequency quadrupole (RFQ) accelerator is done and a 20 MeV - low energy high intensity proton accelerator (LEHIPA) is under development. A 400 KeV deuteron RFQ accelerator is already developed at BARC and its 60 kW radio frequency (RF) power system required for beam acceleration has been designed, developed and tested both in CW mode and in pulse mode for full power of 60 leW. It has been successfully integrated with RFQ via 6-1/8'', 50 ohm RF transmission line, to accelerate proton beam up to 200 KeV energy and deuteron beam to 400 KeV energy. LEHIPA requires about 3 MW of RF power for its operation. So, three 1 MW, 352 MHz RF systems based on klystron will be developed for RFQ and two DTLs. The klystron based RF system for 3 MeV RFQ is under commissioning. Its various subsystems like energy less and insulated gate bipolar transistor (IGBT) based high voltage and low voltage bias supplies, a critical and fast protection and control system - handling various types of field signals, fast acting hard wired instrumentation circuits for critical signals, 100 kV crowbar with its circuits, pulsing circuits and RF circuits have been successfully designed, developed and integrated with klystron. Latest technology development of solid state RF amplifiers at 325 MHz and 350 MHz for normal and super conducting accelerators has attained a certain power level. This paper will discuss all these high power RF systems in detail. (author)

  1. High power, 140 GHz gyrotron

    International Nuclear Information System (INIS)

    Kreischer, K.E.; Temkin, R.J.; Mulligan, W.J.; MacCabe, S.; Chaplya, R.

    1982-01-01

    The design and construction of a pulsed 100 kW, 140 GHz gyrotron is described. Initial gyrotron operation is expected in early 1982. Advances in gyrotron theory have also been carried out in support of this experimental research. The application of gyrotrons to plasma diagnostics is also under investigation. (author)

  2. Outage Performance of Hybrid FSO/RF System with Low-Complexity Power Adaptation

    KAUST Repository

    Rakia, Tamer; Yang, Hong-Chuan; Gebali, Fayez; Alouini, Mohamed-Slim

    2016-01-01

    Hybrid free-space optical (FSO) / radio-frequency (RF) systems have emerged as a promising solution for high data- rate wireless communication systems. We consider truncated channel inversion based power adaptation strategy for coherent and non

  3. Rf and microwave measurements at Los Alamos on oxide superconductors

    International Nuclear Information System (INIS)

    Migliori, A.; Reagor, D.W.; Peterson, D.E.; Willis, J.O.; Fisk, Z.; Smith, R.C.

    1988-01-01

    Los Alamos National Laboratory has made a substantial commitment to develop oxide superconductors for RF and microwave cavity applications. The program involves materials development, complete microstructure characterization, static thermal and electrical characterization, RF loss measurements and microwave complex-conductivity measurements. Of the high-frequency techniques, three are nearing completion and one has produced preliminary results. Those still under development include a 3 GHz Nb cavity capable of 4 K operation, a LN 2 -cooled 2.25 GHz copper cavity having a Q of 2 x 10 4 , capable of operation from 15 K to 300 K, and a picosecond-laser/photo-diode driven microstripline technique which will provide complex conductivity information from 20 GHz to 200 GHz and from 10 K to 300 K. Because all of the techniques employed sense the impedance of the samples, their sensitivity to intrinsic properties such as conductivity or surface resistance is dependent on sample geometry. However, for easily handled samples, the Nb cavity can detect losses at least four order of magnitude lower than copper, the copper cavity can detect losses two orders of magnitude lower than copper and the microstripline can detect losses comparable to copper. The technique which has produced results is a coaxial microwave bridge. In this work they report results of measurements on sintered samples using the bridge; future work will concentrate on films. 2 references, 1 figure

  4. Architecture for a 1-GHz Digital RADAR

    Science.gov (United States)

    Mallik, Udayan

    2011-01-01

    An architecture for a Direct RF-digitization Type Digital Mode RADAR was developed at GSFC in 2008. Two variations of a basic architecture were developed for use on RADAR imaging missions using aircraft and spacecraft. Both systems can operate with a pulse repetition rate up to 10 MHz with 8 received RF samples per pulse repetition interval, or at up to 19 kHz with 4K received RF samples per pulse repetition interval. The first design describes a computer architecture for a Continuous Mode RADAR transceiver with a real-time signal processing and display architecture. The architecture can operate at a high pulse repetition rate without interruption for an infinite amount of time. The second design describes a smaller and less costly burst mode RADAR that can transceive high pulse repetition rate RF signals without interruption for up to 37 seconds. The burst-mode RADAR was designed to operate on an off-line signal processing paradigm. The temporal distribution of RF samples acquired and reported to the RADAR processor remains uniform and free of distortion in both proposed architectures. The majority of the RADAR's electronics is implemented in digital CMOS (complementary metal oxide semiconductor), and analog circuits are restricted to signal amplification operations and analog to digital conversion. An implementation of the proposed systems will create a 1-GHz, Direct RF-digitization Type, L-Band Digital RADAR--the highest band achievable for Nyquist Rate, Direct RF-digitization Systems that do not implement an electronic IF downsample stage (after the receiver signal amplification stage), using commercially available off-the-shelf integrated circuits.

  5. A High-Gradient Test of a 30 GHz Molybdenum-Iris Structure

    CERN Document Server

    Wuensch, Walter; Braun, H; Carron, G; Corsini, R; Döbert, Steffen; Fandos, R; Grudiev, A; Jensen, E; Mete, Ö; Ramsvik, T; Rodríguez, José Alberto; Sladen, Jonathan P H; Syratchev, I V; Taborelli, M; Tecker, F A; Urschütz, Peter; Wilson, Ian H; CERN. Geneva

    2006-01-01

    The CLIC study is actively investigating a number of different materials in an effort to find ways to increase achievable accelerating gradient. So far a series of rf tests have been made with a set of identical-geometry structures: a W-iris 30 GHz structure, a Mo-iris 30 GHz structure (with pulses as long as 16 ns) and a scaled Mo-iris X-band structure. A second Mo-iris 30 GHz structure of the same geometry has now been tested in CTF3 with pulse lengths up to 350 ns. The structure was conditioned to a gradient of 140 MV/m with a 70 ns pulse length and a breakdown rate slope of 13 MV/m per decade has been measured

  6. 1 megawatt, 100 GHz gyrotron study. Final report, March 21-September 1, 1983

    International Nuclear Information System (INIS)

    Dionne, N.J.; Mallavarpu, R.; Palevsky, A.

    1983-01-01

    This report provides the results of a design study on a gyrotron device employing a new type of hollow gyrobeam formation system and having a capability for delivering megawatt CW power at 100 GHz to an ECRH-heated, magnetically-confined plasma. The conceptual basis for the beam formation system is the tilt-angle gun (TAG) in which a conically-shaped electron beam is formed in a magnetically-shielded region and is then injected into the stray-field region of the main magnetic focusing system. Because fluid coolants can be accessed through the central pole of the TAG-type gun, rf interaction can be contemplated with cavity configurations not practical with the conventional MIG-type gyrobeam formation systems

  7. A 3-5GHz UWB CMOS Receiver with Digital Control Technique

    DEFF Research Database (Denmark)

    Han, Bo; Liu, Mengmeng; Ge, Ning

    2010-01-01

    This article presents a CMOS receiver that works for 3-5GHz low band SC-UWB. The receiver contains PLL, Mixer, and VGA. Double down conversion is adopted in the receiver to overcome the orthogonal clock design difficulty; digital assisted RF control method is used to increase the stability...

  8. High-power RF window design for the PEP-II B Factory

    International Nuclear Information System (INIS)

    Neubauer, M.; Hodgson, J.; Ng, C.; Schwarz, H.; Skarpaas, K.; Kroll, N.; Rimmer, R.

    1994-06-01

    We describe the design of RF windows to transmit up to 500 kW CW to the PEP-II 476 MHz cavities. RF analysis of the windows using high-frequency simulation codes are described. These provide information about the power loss distribution in the ceramic and tim matching properties of the structure. Finite-element analyses of the resulting temperature distribution and thermal stresses are presented. Fabrication methods including a proposed scheme to compensate for thermal expansion s are discussed and hardware tests to validate this approach are described. The effects of surface coatings (intentional and otherwise) and the application of air cooling are considered

  9. Two-Way Multiuser Mixed RF/FSO Relaying: Performance Analysis and Power Allocation

    KAUST Repository

    Al-Eryani, Yasser F.

    2018-03-21

    In this paper, the performance of two-way multiuser mixed radio frequency/free space optical (RF/FSO) relay networks with opportunistic user scheduling and asymmetric channel fading is studied. RF links are used to conduct data transmission between users and relay node, while a FSO link is used to conduct data transmission on the last-mile communication link between the relay node and base station. The RF links are assumed to follow a Rayleigh fading model, while the FSO links are assumed to follow a unified Gamma-Gamma atmospheric turbulence fading model with pointing error. First, closed-form expressions for the exact outage probability, asymptotic (high signal-to-noise ratio) outage probability, average symbol error rate, and average ergodic channel capacity are derived assuming a heterodyne detection scheme. The asymptotic results are used to conduct a power optimization algorithm where expressions for optimal transmission power values for the transmitting nodes are provided. Additionally, performance comparisons between the considered two-way-relaying (TWR) network and the oneway- relaying (OWR) network are provided and discussed. Also, the impact of several system parameters, including number of users, pointing errors, atmospheric turbulence conditions, and outage probability threshold on the overall network performance are investigated. All the theoretical results are validated by Monte Carlo simulations. The results show that the TWR scheme almost doubles the network ergodic capacity compared to that of the OWR scheme with the same outage performance. Additionally, it is shown that under weak-to-moderate weather turbulence conditions and small pointing error, the outage probability is dominated by the RF downlink with a neglected effect for the user selection process at the RF uplink transmission. However, for severe pointing error, the outage probability is dominated by the FSO uplink/downlink transmission.

  10. A low power and low phase-noise 91 96 GHz VCO in 90 nm CMOS

    Science.gov (United States)

    Lin, Yo-Sheng; Lan, Kai-Siang; Chuang, Ming-Yuan; Lin, Yu-Ching

    2018-06-01

    This paper reports a 94 GHz CMOS voltage-controlled oscillator (VCO) using both the negative capacitance (NC) technique and series-peaking output power and phase noise (PN) enhancement technique. NC is achieved by adding two variable LC networks to the source nodes of the active circuit of the VCO. NMOSFET varicaps are adopted as the required capacitors of the LC networks. In comparison with the conventional one, the proposed active circuit substantially decreases the input capacitance (Cin) to zero or even a negative value. This leads to operation (or oscillation) frequency (OF) increase and tuning range (TR) enhancement of the VCO. The VCO dissipates 8.3 mW at 1 V supply. The measured TR of the VCO is 91 96 GHz, close to the simulated (92.1 96.7 GHz) and the calculated one (92.2 98.2 GHz). In addition, at 1 MHz offset from 95.16 GHz, the VCO attains an excellent PN of - 98.3 dBc/Hz. This leads to a figure-of-merit (FOM) of -188.5 dBc/Hz, a remarkable result for a V- or W-band CMOS VCO. The chip size of the VCO is 0.75 × 0.42 mm2, i.e. 0.315 mm2.

  11. Power Conversion Efficiency of AlGaAs/GaAs Schottky Diode for Low-Power On-Chip Rectenna Device Application

    International Nuclear Information System (INIS)

    Mustafa, Farahiyah; Hashim, Abdul Manaf; Rahman, Shaharin Fadzli Abd; Osman, Mohd Nizam

    2011-01-01

    A Schottky diode has been designed and fabricated on n-AlGaAs/GaAs high-electron-mobility-transistor (HEMT) structure. Current-voltage (I-V) measurements show good device rectification with a Schottky barrier height of 0.4349 eV for Ni/Au metallization. The differences of Schottky barrier height from theoretical value are due to the fabrication process and smaller contact area. The RF signals up to 1 GHz are well rectified by the fabricated Schottky diodes and stable DC output voltage is obtained. Power conversion efficiency up to 50% is obtained at 1 GHz with series connection between diode and load. The fabricated the n-AlGaAs/GaAs Schottky diode provide conduit for breakthrough designs for ultra-low power on-chip rectenna device technology to be integrated in nanosystems.

  12. High power rf amplifiers for accelerator applications: The large orbit gyrotron and the high current, space charge enhanced relativistic klystron

    International Nuclear Information System (INIS)

    Stringfield, R.M.; Fazio, M.V.; Rickel, D.G.; Kwan, T.J.T.; Peratt, A.L.; Kinross-Wright, J.; Van Haaften, F.W.; Hoeberling, R.F.; Faehl, R.; Carlsten, B.; Destler, W.W.; Warner, L.B.

    1991-01-01

    Los Alamos is investigating a number of high power microwave (HPM) sources for their potential to power advanced accelerators. Included in this investigation are the large orbit gyrotron amplifier and oscillator (LOG) and the relativistic klystron amplifier (RKA). LOG amplifier development is newly underway. Electron beam power levels of 3 GW, 70 ns duration, are planned, with anticipated conversion efficiencies into RF on the order of 20 percent. Ongoing investigations on this device include experimental improvement of the electron beam optics (to allow injection of a suitable fraction of the electron beam born in the gun into the amplifier structure), and computational studies of resonator design and RF extraction. Recent RKA studies have operated at electron beam powers into the device of 1.35 GW in microsecond duration pulses. The device has yielded modulated electron beam power approaching 300 MW using 3-5 kW of RF input drive. RF powers extracted into waveguide have been up to 70 MW, suggesting that more power is available from the device than has been converted to-date in the extractor

  13. RF characteristic of MESFET on H-terminated DC arc jet CVD diamond film

    International Nuclear Information System (INIS)

    Liu, J.L.; Li, C.M.; Zhu, R.H.; Guo, J.C.; Chen, L.X.; Wei, J.J.; Hei, L.F.; Wang, J.J.; Feng, Z.H.; Guo, H.; Lv, F.X.

    2013-01-01

    Diamond has been considered to be a potential material for high-frequency and high-power electronic devices due to the excellent electrical properties. In this paper, we reported the radio frequency (RF) characteristic of metal-semiconductor field effect transistor (MESFET) on polycrystalline diamond films prepared by direct current (DC) arc jet chemical vapor deposition (CVD). First, 4 in polycrystalline diamond films were deposited by DC arc jet CVD in gas recycling mode with the deposition rate of 14 μm/h. Then the polished diamond films were treated by microwave hydrogen plasma and the 0.2 μm-gate-length MESFET was fabricated by using Au mask photolithography and electron beam (EB) lithography. The surface conductivity of the H-terminated diamond film and DC and RF performances of the MESFET were characterized. The results demonstrate that, the carrier mobility of 24.6 cm 2 /V s and the carrier density of 1.096 × 10 13 cm −2 are obtained on the surface of H-terminated diamond film. The FET shows the maximum transition frequency (f T ) of 5 GHz and the maximum oscillation frequency (f max ) of 6 GHz at V GS = −0.5 V and V DS = −8 V, which indicates that H-terminated DC arc jet CVD polycrystalline diamond is suitable for the development of high frequency devices.

  14. Effect of a 2.45-GHz radiofrequency electromagnetic field on neutrophil chemotaxis and phagocytosis in differentiated human HL-60 cells.

    Science.gov (United States)

    Koyama, Shin; Narita, Eijiro; Suzuki, Yoshihisa; Taki, Masao; Shinohara, Naoki; Miyakoshi, Junji

    2015-01-01

    The potential public health risks of radiofrequency (RF) fields have been discussed at length, especially with the use of mobile phones spreading extensively throughout the world. In order to investigate the properties of RF fields, we examined the effect of 2.45-GHz RF fields at the specific absorption rate (SAR) of 2 and 10 W/kg for 4 and 24 h on neutrophil chemotaxis and phagocytosis in differentiated human HL-60 cells. Neutrophil chemotaxis was not affected by RF-field exposure, and subsequent phagocytosis was not affected either compared with that under sham exposure conditions. These studies demonstrated an initial immune response in the human body exposed to 2.45-GHz RF fields at the SAR of 2 W/kg, which is the maximum value recommended by the International Commission for Non-Ionizing Radiation Protection (ICNIRP) guidelines. The results of our experiments for RF-field exposure at an SAR under 10 W/kg showed very little or no effects on either chemotaxis or phagocytosis in neutrophil-like human HL-60 cells. © The Author 2014. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  15. RF MEMS Fractal Capacitors With High Self-Resonant Frequencies

    KAUST Repository

    Elshurafa, Amro M.

    2012-07-23

    This letter demonstrates RF microelectromechanical systems (MEMS) fractal capacitors possessing the highest reported self-resonant frequencies (SRFs) in PolyMUMPS to date. Explicitly, measurement results show SRFs beyond 20 GHz. Furthermore, quality factors higher than 4 throughout a band of 1-15 GHz and reaching as high as 28 were achieved. Additional benefits that are readily attainable from implementing fractal capacitors in MEMS are discussed, including suppressing residual stress warping, eliminating the need for etching holes, and reducing parasitics. The latter benefits were acquired without any fabrication intervention. © 2011 IEEE.

  16. NOVEL TECHNIQUE OF POWER CONTROL IN MAGNETRON TRANSMITTERS FOR INTENSE ACCELERATORS

    Energy Technology Data Exchange (ETDEWEB)

    Kazakevich, G. [MUONS Inc., Batavia; Johnson, R. [MUONS Inc., Batavia; Neubauer, M.; Lebedev, V. [Fermilab; Schappert, W. [Fermilab; Yakovlev, V. [Fermilab

    2016-10-21

    A novel concept of a high-power magnetron transmitter allowing dynamic phase and power control at the frequency of locking signal is proposed. The transmitter compensating parasitic phase and amplitude modulations inherent in Superconducting RF (SRF) cavities within closed feedback loops is intended for powering of the intensity-frontier superconducting accelerators. The con- cept uses magnetrons driven by a sufficient resonant (in- jection-locking) signal and fed by the voltage which can be below the threshold of self-excitation. This provides an extended range of power control in a single magnetron at highest efficiency minimizing the cost of RF power unit and the operation cost. Proof-of-principle of the proposed concept demonstrated in pulsed and CW regimes with 2.45 GHz, 1kW magnetrons is discussed here. A conceptual scheme of the high-power transmitter allowing the dynamic wide-band phase and y power controls is presented and discussed.

  17. Study of thermal effects in superconducting RF cavities

    International Nuclear Information System (INIS)

    Bousson, S.; Caruette, A.; Fouaidy, M.; Hammoudi, N.; Junquera, T.; Lesrel, J.; Yaniche, J.F.

    1999-01-01

    A high speed thermometric system equipped with 64 fixed surface thermometers is used to investigate thermal effects in several 3 GHz cavities. An evaluation of the time response of our thermometers is presented. A method based on RF signal analysis is proposed to evaluate the normal zone propagation rate during thermal breakdown. (authors)

  18. Commissioning of the 28 GHz ECRH power transmission line for the TJ-II stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Martínez-Fernández, J., E-mail: jose.martinez@ciemat.es [Laboratorio Nacional de Fusión (LNF), Centro de Investigaciones Tecnológicas, Medioambientales y Tecnológicas (CIEMAT), Av/Complutense 40, 28040 Madrid (Spain); Cappa, Á. [Laboratorio Nacional de Fusión (LNF), Centro de Investigaciones Tecnológicas, Medioambientales y Tecnológicas (CIEMAT), Av/Complutense 40, 28040 Madrid (Spain); Chirkov, A. [Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod (Russian Federation); Ros, A.; Tolkachev, A.; Catalán, G.; Soleto, A.; Redondo, M. [Laboratorio Nacional de Fusión (LNF), Centro de Investigaciones Tecnológicas, Medioambientales y Tecnológicas (CIEMAT), Av/Complutense 40, 28040 Madrid (Spain); Doane, J.L.; Anderson, J.P. [General Atomics, P.O. Box 85608, San Diego, CA 92186-5608 (United States)

    2015-10-15

    Highlights: • The 28 GHz power transmission line of the TJ-II stellarator is described. • Mismatch and alignment problems are covered, presenting infrared measurements. • Beam distortion in the matching optics unit led to unwanted modes in the waveguide. • After a redesign distortion was eliminated and coupling maximized. • Final measurements suggest finer alignment must be performed. - Abstract: The commissioning of the 28 GHz power transmission line of the TJ-II stellarator, designed for the excitation of electron Bernstein waves (EBW) through the O-X-B mode conversion process, is presented in this paper. Based upon a comprehensive set of thermal measurements, its purpose is to go into details about the several problems that arouse during the whole process, namely higher order modes excitation because of the wider beam size and alignment mismatches at the waveguide mouth. All these drawbacks may have prevented the correct O-X mode conversion, thus providing a reasonable explanation for the unsuccessful EBW heating experiments.

  19. First lower hybrid current drive experiments at 3.7 GHz in Tore Supra

    International Nuclear Information System (INIS)

    Tonon, G.; Goniche, M.; Moreau, D.

    1989-01-01

    The results of electromagnetic waves injection in the Tore Supra plasma, at a frequency of 3.7 GHz, are reported. The process is applied for current generation and plasma heating, through Landau damping on the electron population. The experimental set-up is described. The lower hybrid current drive experiments in Tore Supra are carried out under the following conditions: major and minor radii of the plasma are respectively 2.37 m and 0.77 m and the toroidal magnetic field is 1.8 Teslas. A multijunction-grill composed of 128 waveguides is applied. Up to 1.25 MW of rf power is injected in Tore Supra, after less than 30 plasma shots. The results lead to the conclusion that the coupling, not yet optimized, is good enough for safe klystron operation with no circulator. The measured value RIp P RF -1 (δV L /V L ) obtained on Tore Supra (Bt = 1.8 T) is closed to one observed on PETULA-B (Bt = 2.75 T) at the same frequency and density

  20. OFDM RF power-fading circumvention for long-reach WDM-PON.

    Science.gov (United States)

    Chow, C W; Yeh, C H; Sung, J Y

    2014-10-06

    We propose and demonstrate an orthogonal frequency division multiplexing (OFDM) radio-frequency (RF) power-fading circumvention scheme for long-reach wavelength-division-multiplexed passive-optical-network (LR-WDM-PON); hence the same capacity of 40 Gb/s can be provided to all the optical-networking-units (ONUs) in the LR-WDM-PON. Numerical analysis and proof-of-concept experiment are performed.

  1. Feasibility Study and Experimental Verification of Simplified Fiber-Supported 60-GHz Picocell Mobile Backhaul Links

    DEFF Research Database (Denmark)

    Lebedev, Alexander; Pang, Xiaodan; Vegas Olmos, Juan José

    2013-01-01

    We propose and experimentally demonstrate a fiber-wireless transmission system for optimized delivery of 60-GHz radio frequency (RF) signals through picocell mobile backhaul connections. We identify advantages of 60-GHz links for utilization in short-range mobile backhaul through feasibility...... the wireless transmission distance from 4 m to a few hundred meters has been taken into account in the setup design, and the techniques to extend the wireless distance are analyzed....... analysis and comparison with an alternative E-band (60–90 GHz) technology. The 60-GHz fiber-wireless-fiber setup is then introduced: two spans of up to 20 km of optical fiber are deployed and bridged by up to 4 m of wireless distance. The 60-GHz radio-over-fiber technology is utilized in the first span...

  2. A high frequency, high power CARM proposal for the DEMO ECRH system

    International Nuclear Information System (INIS)

    Mirizzi, Francesco; Spassovsky, Ivan; Ceccuzzi, Silvio; Dattoli, Giuseppe; Di Palma, Emanuele; Doria, Andrea; Gallerano, Gianpiero; Lampasi, Alessandro; Maffia, Giuseppe; Ravera, GianLuca; Sabia, Elio; Tuccillo, Angelo Antonio; Zito, Pietro

    2015-01-01

    Highlights: • ECRH system for DEMO. • Cyclotron Auto-Resonance Maser (CARM) devices. • Relativistic electron beams. • Bragg reflectors. • High voltage pulse modulators. - Abstract: ECRH&CD systems are extensively used on tokamak plasmas due to their capability of highly tailored power deposition, allowing very localised heating and non-inductive current drive, useful for MHD and profiles control. The high electron temperatures expected in DEMO will require ECRH systems with operating frequency in the 200–300 GHz range, equipped with a reasonable number of high power (P ≥ 1 MW) CW RF sources, for allowing central RF power deposition. In this frame the ENEA Fusion Department (Frascati) is coordinating a task force aimed at the study and realisation of a suitable high power, high frequency reliable source.

  3. A high frequency, high power CARM proposal for the DEMO ECRH system

    Energy Technology Data Exchange (ETDEWEB)

    Mirizzi, Francesco, E-mail: francesco.mirizzi@enea.it [Consorzio CREATE, Via Claudio 21, I-80125 Napoli (Italy); Spassovsky, Ivan [Unità Tecnica Applicazioni delle Radiazioni – ENEA, C.R. Frascati, via E. Fermi 45, I-00044 Frascati (Italy); Ceccuzzi, Silvio [Unità Tecnica Fusione – ENEA C. R. Frascati, via E. Fermi 45, 00044 Frascati, Roma (Italy); Dattoli, Giuseppe; Di Palma, Emanuele; Doria, Andrea; Gallerano, Gianpiero [Unità Tecnica Applicazioni delle Radiazioni – ENEA, C.R. Frascati, via E. Fermi 45, I-00044 Frascati (Italy); Lampasi, Alessandro; Maffia, Giuseppe; Ravera, GianLuca [Unità Tecnica Fusione – ENEA C. R. Frascati, via E. Fermi 45, 00044 Frascati, Roma (Italy); Sabia, Elio [Unità Tecnica Applicazioni delle Radiazioni – ENEA, C.R. Frascati, via E. Fermi 45, I-00044 Frascati (Italy); Tuccillo, Angelo Antonio; Zito, Pietro [Unità Tecnica Fusione – ENEA C. R. Frascati, via E. Fermi 45, 00044 Frascati, Roma (Italy)

    2015-10-15

    Highlights: • ECRH system for DEMO. • Cyclotron Auto-Resonance Maser (CARM) devices. • Relativistic electron beams. • Bragg reflectors. • High voltage pulse modulators. - Abstract: ECRH&CD systems are extensively used on tokamak plasmas due to their capability of highly tailored power deposition, allowing very localised heating and non-inductive current drive, useful for MHD and profiles control. The high electron temperatures expected in DEMO will require ECRH systems with operating frequency in the 200–300 GHz range, equipped with a reasonable number of high power (P ≥ 1 MW) CW RF sources, for allowing central RF power deposition. In this frame the ENEA Fusion Department (Frascati) is coordinating a task force aimed at the study and realisation of a suitable high power, high frequency reliable source.

  4. RF and microwave noise suppression in a transmission line using Fe-Si-Al/Ni-Zn magnetic composite films

    International Nuclear Information System (INIS)

    Lee, J. W.; Hong, Y. K.; Kim, K.; Joo, J.; Yoon, Y. W.; Kim, S. W.; Kim, Y. B.; Kim, K. Y.

    2006-01-01

    Radio-frequency (RF) and microwave noise suppression by using magnetic composite films on a microstrip line (MSL) was studied in the frequency range from 50 MHz to 13.5 GHz. The MSL was composed of a Cu transmission line, dielectric materials, and a Cu substrate. The Fe-Si-Al/Ni-Zn magnetic composite films were placed on the MSL, and the reflection and the transmission characteristics were investigated. We observed that RF and microwave noise suppression caused by the Fe-Si-Al/Ni-Zn magnetic composite films varied with the concentration ratio of the sendust (Fe-Si-Al) and the Ni-Zn ferrite. The frequency dependence of the power loss due to the composite films on the MSL was measured and the power loss increased at higher frequencies with increasing concentration of the sendust in the composites. The electromagnetic interference shielding efficiencies of the magnetic composite films in the far-field region are also discussed.

  5. A 60 GHz Frequency Generator Based on a 20 GHz Oscillator and an Implicit Multiplier

    NARCIS (Netherlands)

    Zong, Z.; Babaie, M.; Staszewski, R.B.

    2016-01-01

    This paper proposes a mm-wave frequency generation technique that improves its phase noise (PN) performance and power efficiency. The main idea is that a fundamental 20 GHz signal and its sufficiently strong third harmonic at 60 GHz are generated simultaneously in a single oscillator. The desired 60

  6. Charge-Domain Signal Processing of Direct RF SamplingMixer with Discrete-Time Filters in Bluetooth and GSM Receivers

    NARCIS (Netherlands)

    Ho, Y.C.; Staszewski, R.B.; Muhammad, K.; Hung, C.M.; Leipold, D.; Maggio, K.

    2006-01-01

    RF circuits for multi-GHz frequencies have recently migrated to low-cost digital deep-submicron CMOS processes. Unfortunately, this process environment, which is optimized only for digital logic and SRAM memory, is extremely unfriendly for conventional analog and RF designs. We present fundamental

  7. Performance of AlGaN/GaN Heterostructure Field-Effect Transistors for High-Frequency and High-Power Electronics

    Directory of Open Access Journals (Sweden)

    Peter Kordos

    2005-01-01

    Full Text Available Preparation and properties of GaN-based heterostructure field-effect transistors (HFETs for high-frequency and high-power applications are studied in this work. Performance of unpassivated and SiO2 passivated AlGaN/GaN HFETs, as well as passivated SiO2/AlGaN/GaN MOSHFETs (metal-oxide-semicondutor HFETs is compared. It is found that MOSHFETs exhibit better DC and RF properties than simple HFET counterparts. Deposited SiO2 yielded an increase of the sheet carrier density from 7.6x10^12 cm^-2 to 9.2x10^12 cm^-2 and subsequent increase of the static drain saturation current from 0.75 A/mm to 1.09 A/mm. Small-signal RF characterisation of MOSHFETs showed an extrinsic current gain cut-off frequency fT of 24 GHz and a maximum frequency of oscillation fmax of 40 GHz. These are fully comparable values with state-of-the-art AlGaN/GaN HFETs. Finnaůůy, microwave power measurements confirmed excellent performance of MOSHFETs:the output power measured at 7 GHz is about two-times larger than that of simple unpassived HFET. Thus, a great potential in application of GaN-based MOSHFETs is documented. 

  8. Development of high power CW and pulsed RF test facility based on 1 MW, 352.2 MHz klystron amplifier

    International Nuclear Information System (INIS)

    Badapanda, M.K.; Tripathi, Akhilesh; Upadhyay, Rinki; Rao, J.N.; Tiwari, Ashish; Jain, Akhilesh; Lad, M.R.; Hannurkar, P.R.

    2013-01-01

    A high power 1 MW, 352.2 MHz RF Test facility having CW and Pulse capability is being developed at Raja Ramanna Centre for Advanced Technology (RRCAT), Indore for performance evaluation of various RF components, accelerating structures and related subsystems. Thales make 1 MW, 352.2 MHz klystron amplifier (TH 2089) will be employed in this high power test facility, which is thoroughly tested for its performance parameters at rated operating conditions. Auxiliary power supplies like filament, electromagnet, ion pump and mod anode power supply as well as 200 W solid state driver amplifier necessary for this high power test facility have been developed. A high voltage floating platform is created for floating filament and mod anode power supplies. Interconnection of various power supplies and other subsystems of this test facility are being carried out. A high voltage 100 kV, 25 Amp DC crowbar less power supply and low conductivity water (LCW) plant required for this klystron amplifier are in advanced stage of development. NI make cRIO 9081 real time (RT) controller based control and interlock system has been developed to realize proper sequence of operation of various power supplies and to monitor the status of crucial parameters in this test facility. This RF test facility will provide confidence for development of RF System of future accelerators like SNS and ADSS. (author)

  9. Additive manufacturing of RF absorbers

    Science.gov (United States)

    Mills, Matthew S.

    The ability of additive manufacturing techniques to fabricate integrated electromagnetic absorbers tuned for specific radio frequency bands within structural composites allows for unique combinations of mechanical and electromagnetic properties. These composites and films can be used for RF shielding of sensitive electromagnetic components through in-plane and out-of-plane RF absorption. Structural composites are a common building block of many commercial platforms. These platforms may be placed in situations in which there is a need for embedded RF absorbing properties along with structural properties. Instead of adding radar absorbing treatments to the external surface of existing structures, which adds increased size, weight and cost; it could prove to be advantageous to integrate the microwave absorbing properties directly into the composite during the fabrication process. In this thesis, a method based on additive manufacturing techniques of composites structures with prescribed electromagnetic loss, within the frequency range 1 to 26GHz, is presented. This method utilizes screen printing and nScrypt micro dispensing to pattern a carbon based ink onto low loss substrates. The materials chosen for this study will be presented, and the fabrication technique that these materials went through to create RF absorbing structures will be described. The calibration methods used, the modeling of the RF structures, and the applications in which this technology can be utilized will also be presented.

  10. Low-power analog integrated circuits for wireless ECG acquisition systems.

    Science.gov (United States)

    Tsai, Tsung-Heng; Hong, Jia-Hua; Wang, Liang-Hung; Lee, Shuenn-Yuh

    2012-09-01

    This paper presents low-power analog ICs for wireless ECG acquisition systems. Considering the power-efficient communication in the body sensor network, the required low-power analog ICs are developed for a healthcare system through miniaturization and system integration. To acquire the ECG signal, a low-power analog front-end system, including an ECG signal acquisition board, an on-chip low-pass filter, and an on-chip successive-approximation analog-to-digital converter for portable ECG detection devices is presented. A quadrature CMOS voltage-controlled oscillator and a 2.4 GHz direct-conversion transmitter with a power amplifier and upconversion mixer are also developed to transmit the ECG signal through wireless communication. In the receiver, a 2.4 GHz fully integrated CMOS RF front end with a low-noise amplifier, differential power splitter, and quadrature mixer based on current-reused folded architecture is proposed. The circuits have been implemented to meet the specifications of the IEEE 802.15.4 2.4 GHz standard. The low-power ICs of the wireless ECG acquisition systems have been fabricated using a 0.18 μm Taiwan Semiconductor Manufacturing Company (TSMC) CMOS standard process. The measured results on the human body reveal that ECG signals can be acquired effectively by the proposed low-power analog front-end ICs.

  11. Medium and Short Wave RF Energy Harvester for Powering Wireless Sensor Networks.

    Science.gov (United States)

    Leon-Gil, Jesus A; Cortes-Loredo, Agustin; Fabian-Mijangos, Angel; Martinez-Flores, Javier J; Tovar-Padilla, Marco; Cardona-Castro, M Antonia; Morales-Sánchez, Alfredo; Alvarez-Quintana, Jaime

    2018-03-03

    Internet of Things (IoT) is an emerging platform in which every day physical objects provided with unique identifiers are connected to the Internet without requiring human interaction. The possibilities of such a connected world enables new forms of automation to make our lives easier and safer. Evidently, in order to keep billions of these communicating devices powered long-term, a self-sustainable operation is a key point for realization of such a complex network. In this sense, energy-harvesting technologies combined with low power consumption ICs eliminate the need for batteries, removing an obstacle to the success of the IoT. In this work, a Radio Frequency (RF) energy harvester tuned at AM broadcast has been developed for low consumption power devices. The AM signals from ambient are detected via a high-performance antenna-free LC circuit with an efficiency of 3.2%. To maximize energy scavenging, the RF-DC conversion stage is based on a full-wave Cockcroft-Walton voltage multiplier (CWVM) with efficiency up to 90%. System performance is evaluated by rating the maximum power delivered into the load via its output impedance, which is around 62 μW, although power level seems to be low, it is able to power up low consumption devices such as Leds, portable calculators and weather monitoring stations.

  12. Integration of a versatile bridge concept in a 34 GHz pulsed/CW EPR spectrometer.

    Science.gov (United States)

    Band, Alan; Donohue, Matthew P; Epel, Boris; Madhu, Shraeya; Szalai, Veronika A

    2018-03-01

    We present a 34 GHz continuous wave (CW)/pulsed electron paramagnetic resonance (EPR) spectrometer capable of pulse-shaping that is based on a versatile microwave bridge design. The bridge radio frequency (RF)-in/RF-out design (500 MHz to 1 GHz input/output passband, 500 MHz instantaneous input/output bandwidth) creates a flexible platform with which to compare a variety of excitation and detection methods utilizing commercially available equipment external to the bridge. We use three sources of RF input to implement typical functions associated with CW and pulse EPR spectroscopic measurements. The bridge output is processed via high speed digitizer and an in-phase/quadrature (I/Q) demodulator for pulsed work or sent to a wideband, high dynamic range log detector for CW. Combining this bridge with additional commercial hardware and new acquisition and control electronics, we have designed and constructed an adaptable EPR spectrometer that builds upon previous work in the literature and is functionally comparable to other available systems. Published by Elsevier Inc.

  13. Initial results for a 170 GHz high power ITER waveguide component test stand

    Science.gov (United States)

    Bigelow, Timothy; Barker, Alan; Dukes, Carl; Killough, Stephen; Kaufman, Michael; White, John; Bell, Gary; Hanson, Greg; Rasmussen, Dave

    2014-10-01

    A high power microwave test stand is being setup at ORNL to enable prototype testing of 170 GHz cw waveguide components being developed for the ITER ECH system. The ITER ECH system will utilize 63.5 mm diameter evacuated corrugated waveguide and will have 24 >150 m long runs. A 170 GHz 1 MW class gyrotron is being developed by Communications and Power Industries and is nearing completion. A HVDC power supply, water-cooling and control system has been partially tested in preparation for arrival of the gyrotron. The power supply and water-cooling system are being designed to operate for >3600 second pulses to simulate the operating conditions planned for the ITER ECH system. The gyrotron Gaussian beam output has a single mirror for focusing into a 63.5 mm corrugated waveguide in the vertical plane. The output beam and mirror are enclosed in an evacuated duct with absorber for stray radiation. Beam alignment with the waveguide is a critical task so a combination of mirror tilt adjustments and a bellows for offsets will be provided. Analysis of thermal patterns on thin witness plates will provide gyrotron mode purity and waveguide coupling efficiency data. Pre-prototype waveguide components and two dummy loads are available for initial operational testing of the gyrotron. ORNL is managed by UT-Battelle, LLC, for the U.S. Dept. of Energy under Contract DE-AC-05-00OR22725.

  14. Development of L-band pillbox RF window

    International Nuclear Information System (INIS)

    Takeuchi, Y.; Fukuda, S.; Hisamatsu, H.; Saito, Y.; Takahashi, A.

    1994-01-01

    A pillbox RF output window was developed for the L-band pulsed klystron for the Japanese Hadron Project (JHP) 1-GeV proton linac. The window was designed to withstand a peak RF power of 6 MW, where the pulse width is 600 μsec and the repetition rate is 50 Hz. A high power model was fabricated using an alumina ceramic which has a low loss tangent of 2.5x10 -5 . A high power test was successfully performed up to a 113 kW RF average power with a 4 MW peak power, a 565 μsec pulse width and a 50 Hz repetition rate. By extrapolating the data of this high power test, the temperature rise of the ceramic is estimated low enough at the full RF power of 6 MW. Thus this RF window is expected to satisfy the specifications of the L-band Klystron. (author)

  15. Analog/RF performance of four different Tunneling FETs with the recessed channels

    Science.gov (United States)

    Li, Wei; Liu, Hongxia; Wang, Shulong; Chen, Shupeng

    2016-12-01

    In this paper, the performance comparisons of analog and radio frequency (RF) in the four different tunneling field effect transistors (TFETs) with the recessed channels are performed. The L-shaped channel TFET (LTFET), U-shaped channel TFET (UTFET), U-shaped channel with L-shaped gate TFET (LGUTFET) and U-shaped channel with dual sources TFET (DUTFET) are investigated by using Silvaco-Atalas simulation tool. The transconductance (gm), output conductance (gds), gate capacitance (Cgg), cut-off frequency (fT) and gain bandwidth product (GBW) are the parameters by analyzed. Among all the considered devices, the DUTFET has the maximum gm and gds due to the improved on-state current by dual sources, and the LTFET has the minimum Cgg because of the minimum gate-to-drain capacitance (Cgd). Since analog/RF characteristics of a device are proportional to gm and inversely proportional to Cgg, the LTFET and DUTFET have better analog/RF performance compared to the UTFET and LGUTFET. The extracted largest fT is 3.02 GHz in the LTFET and the largest GBW is 1.02 GHz in the DUTFET. The simulation results in this paper can be used as a reference to choose the TFET among these four TFETs for analog/RF applications.

  16. Magnicon development to power TeV colliders. Final report, 16 May 1991--14 May 1994

    International Nuclear Information System (INIS)

    Gold, S.H.; Manheimer, W.M.; Fliflet, A.

    1997-01-01

    The goal of this program was the development of a high power frequency-doubling magnicon amplifier at 11.4 GHz. The magnicon is an advanced open-quotes scanning-beamclose quotes microwave amplifier tube for use in powering future high gradient linear accelerators, such as the proposed TeV linear collider known as the Next Linear Collider (NLC). The rf source for the NLC must provide a power of 500 MW to 1 GW per tube in a 200 nsec pulse at a frequency in the range of 10-20 GHz. The required power can either be generated directly in 200 nsec pulses, or generated at longer pulse lengths (e.g., 1-2 μsec) and then pulse-compressed. Because the average power required by the NLC is so large, source efficiency is a crucial consideration

  17. Microfluidic stretchable RF electronics.

    Science.gov (United States)

    Cheng, Shi; Wu, Zhigang

    2010-12-07

    Stretchable electronics is a revolutionary technology that will potentially create a world of radically different electronic devices and systems that open up an entirely new spectrum of possibilities. This article proposes a microfluidic based solution for stretchable radio frequency (RF) electronics, using hybrid integration of active circuits assembled on flex foils and liquid alloy passive structures embedded in elastic substrates, e.g. polydimethylsiloxane (PDMS). This concept was employed to implement a 900 MHz stretchable RF radiation sensor, consisting of a large area elastic antenna and a cluster of conventional rigid components for RF power detection. The integrated radiation sensor except the power supply was fully embedded in a thin elastomeric substrate. Good electrical performance of the standalone stretchable antenna as well as the RF power detection sub-module was verified by experiments. The sensor successfully detected the RF radiation over 5 m distance in the system demonstration. Experiments on two-dimensional (2D) stretching up to 15%, folding and twisting of the demonstrated sensor were also carried out. Despite the integrated device was severely deformed, no failure in RF radiation sensing was observed in the tests. This technique illuminates a promising route of realizing stretchable and foldable large area integrated RF electronics that are of great interest to a variety of applications like wearable computing, health monitoring, medical diagnostics, and curvilinear electronics.

  18. Superconducting ECR ion source: From 24-28 GHz SECRAL to 45 GHz fourth generation ECR

    Science.gov (United States)

    Zhao, H. W.; Sun, L. T.; Guo, J. W.; Zhang, W. H.; Lu, W.; Wu, W.; Wu, B. M.; Sabbi, G.; Juchno, M.; Hafalia, A.; Ravaioli, E.; Xie, D. Z.

    2018-05-01

    The development of superconducting ECR source with higher magnetic fields and higher microwave frequency is the most straight forward path to achieve higher beam intensity and higher charge state performance. SECRAL, a superconducting third generation ECR ion source, is designed for 24-28 GHz microwave frequency operation with an innovative magnet configuration of sextupole coils located outside the three solenoids. SECRAL at 24 GHz has already produced a number of record beam intensities, such as 40Ar12+ 1.4 emA, 129Xe26+ 1.1 emA, 129Xe30+ 0.36 emA, and 209Bi31+ 0.68 emA. SECRAL-II, an upgraded version of SECRAL, was built successfully in less than 3 years and has recently been commissioned at full power of a 28 GHz gyrotron and three-frequency heating (28 + 45 + 18 GHz). New record beam intensities for highly charged ion production have been achieved, such as 620 eμA 40Ar16+, 15 eμA 40Ar18+, 146 eμA 86Kr28+, 0.5 eμA 86Kr33+, 53 eμA 129Xe38+, and 17 eμA 129Xe42+. Recent beam test results at SECRAL and SECRAL II have demonstrated that the production of more intense highly charged heavy ion beams needs higher microwave power and higher frequency, as the scaling law predicted. A 45 GHz superconducting ECR ion source FECR (a first fourth generation ECR ion source) is being built at IMP. FECR will be the world's first Nb3Sn superconducting-magnet-based ECR ion source with 6.5 T axial mirror field, 3.5 T sextupole field on the plasma chamber inner wall, and 20 kW at a 45 GHz microwave coupling system. This paper will focus on SECRAL performance studies at 24-28 GHz and technical design of 45 GHz FECR, which demonstrates a technical path for highly charged ion beam production from 24 to 28 GHz SECRAL to 45 GHz FECR.

  19. High-Bandwidth, High-Efficiency Envelope Tracking Power Supply for 40W RF Power Amplifier Using Paralleled Bandpass Current Sources

    DEFF Research Database (Denmark)

    Høyerby, Mikkel Christian Wendelboe; Andersen, Michael Andreas E.

    2005-01-01

    This paper presents a high-performance power conversion scheme for power supply applications that require very high output voltage slew rates (dV/dt). The concept is to parallel 2 switching bandpass current sources, each optimized for its passband frequency space and the expected load current....... The principle is demonstrated with a power supply, designed for supplying a 40 W linear RF power amplifier for efficient amplification of a 16-QAM modulated data stream...

  20. RF MEMS

    Indian Academy of Sciences (India)

    At the bare die level the insertion loss, return loss and the isolation ... ing and packaging of a silicon on glass based RF MEMS switch fabricated using DRIE. ..... follows the power law based on the asperity deformation model given by Pattona & ... Surface mount style RF packages (SMX series 580465) from Startedge Corp.

  1. Engineering design and fabrication of X-Band components

    CERN Document Server

    Filippova, M; Solodko, A; Riddone, G; Syratchev, I

    2011-01-01

    The CLIC RF frequency has been changed in 2008 from the initial 30 GHz to the European X-band 11.994 GHz permitting beam independent power production using klystrons for the accelerating structure testing. X-band klystron test facilities at 11.424 GHz are operated at SLAC and at KEK [1], and they are used by the CLIC study in the framework of the X-band structure collaboration for testing accelerating structures scaled to that frequency [2]. CERN is currently building a klystron test-stand operating at 11.994 GHz. In addition X-FEL projects at PSI and Sincrotrone Trieste operate at 11.4 GHz. Therefore several RF components accommodating frequencies from 11.424 to 11.994 GHz are required. The engineering design of these RF components (high power and compact loads, bi-directional couplers, X-band splitters, hybrids, phase shifters, variable power attenuators) and the main fabrication processes are presented here.

  2. Design of test kits for the RF characterization of the PAM antenna of LHCD system for Aditya-upgrade Tokamak

    International Nuclear Information System (INIS)

    Jain, Yogesh M.; Sharma, P.K.; Parmar, P.R.; Ambulkar, K.K.

    2017-01-01

    The Lower Hybrid Current Drive (LHCD) system of the ADITYA-Upgrade tokamak will employ a Passive Active Multijunction (PAM) antenna to launch 250 kW of RF power at 3.7 GHz to drive plasma current non inductively in the tokamak. To evaluate the RF performance of the designed PAM antenna, it is characterized with the help of VNA measurements. The performance of the PAM antenna is mainly decided by the integrated performance of the entire antenna (with a differential phase shift of 270° and equal power distribution between each of the output waveguides) and the performance of mode converter, which transforms input TE 10 mode to TE 30 mode (with a mode purity of 98.5% at the output). This poster thus reports the design and analysis of these testing kits. Also, the test results of PAM antenna obtained by using these test kits would also be presented and discussed in this poster

  3. A low power 2.4 GHz transceiver for ZigBee applications

    International Nuclear Information System (INIS)

    Liu Weiyang; Chen Jingjing; Wang Haiyong; Wu Nanjian

    2013-01-01

    This paper presents a low power 2.4 GHz transceiver for ZigBee applications. This transceiver adopts low power system architecture with a low-IF receiver and a direct-conversion transmitter. The receiver consists of a new low noise amplifier (LNA) with a noise cancellation function, a new inverter-based variable gain complex filter (VGCF) for image rejection, a passive quadrature mixer, and a decibel linear programmable gain amplifier (PGA). The transmitter adopts a quadrature mixer and a class-B mode variable gain power amplifier (PA) to reduce power consumption. This transceiver is implemented in 0.18 μm CMOS technology. The receiver achieves −95 dBm of sensitivity, 28 dBc of image rejection, and −8 dBm of third-order input intercept point (IIP3). The transmitter can deliver a maximum of +3 dBm output power with PA efficiency of 30%. The whole chip area is less than 4.32 mm 2 . It only consumes 12.63 mW in receiving mode and 14.22 mW in transmitting mode, respectively. (semiconductor integrated circuits)

  4. Joint Load Balancing and Power Allocation for Hybrid VLC/RF Networks

    KAUST Repository

    Obeed, Mohanad

    2018-01-15

    In this paper, we propose and study a new joint load balancing (LB) and power allocation (PA) scheme for a hybrid visible light communication (VLC) and radio frequency (RF) system consisting of one RF\\\\access point (AP) and multiple VLC\\\\APs. An iterative algorithm is proposed to distribute the users on the APs and distribute the powers of these APs on their users. In PA subproblem, an optimization problem is formulated to allocate the power of each AP to the connected users for the total achievable data rates maximization. It is proved that the PA optimization problem is concave but not easy to tackle. Therefore, we provide a new algorithm to obtain the optimal dual variables after formulating them in terms of each other. Then, the users that are connected to the overloaded APs and receive less data rates start seeking for other APs that offer higher data rates. Users with lower data rates continue re-connecting from AP to other to balance the load only if this travel increases the summation of the achievable data rates and enhances the system fairness. The numerical results demonstrate that the proposed algorithms improve the system capacity and system fairness with fast convergence.

  5. Joint Load Balancing and Power Allocation for Hybrid VLC/RF Networks

    KAUST Repository

    Obeed, Mohanad; Salhab, Anas M.; Zummo, Salam A.; Alouini, Mohamed-Slim

    2018-01-01

    In this paper, we propose and study a new joint load balancing (LB) and power allocation (PA) scheme for a hybrid visible light communication (VLC) and radio frequency (RF) system consisting of one RF\\access point (AP) and multiple VLC\\APs. An iterative algorithm is proposed to distribute the users on the APs and distribute the powers of these APs on their users. In PA subproblem, an optimization problem is formulated to allocate the power of each AP to the connected users for the total achievable data rates maximization. It is proved that the PA optimization problem is concave but not easy to tackle. Therefore, we provide a new algorithm to obtain the optimal dual variables after formulating them in terms of each other. Then, the users that are connected to the overloaded APs and receive less data rates start seeking for other APs that offer higher data rates. Users with lower data rates continue re-connecting from AP to other to balance the load only if this travel increases the summation of the achievable data rates and enhances the system fairness. The numerical results demonstrate that the proposed algorithms improve the system capacity and system fairness with fast convergence.

  6. Superconductor Digital-RF Receiver Systems

    Science.gov (United States)

    Mukhanov, Oleg A.; Kirichenko, Dmitri; Vernik, Igor V.; Filippov, Timur V.; Kirichenko, Alexander; Webber, Robert; Dotsenko, Vladimir; Talalaevskii, Andrei; Tang, Jia Cao; Sahu, Anubhav; Shevchenko, Pavel; Miller, Robert; Kaplan, Steven B.; Sarwana, Saad; Gupta, Deepnarayan

    Digital superconductor electronics has been experiencing rapid maturation with the emergence of smaller-scale, lower-cost communications applications which became the major technology drivers. These applications are primarily in the area of wireless communications, radar, and surveillance as well as in imaging and sensor systems. In these areas, the fundamental advantages of superconductivity translate into system benefits through novel Digital-RF architectures with direct digitization of wide band, high frequency radio frequency (RF) signals. At the same time the availability of relatively small 4K cryocoolers has lowered the foremost market barrier for cryogenically-cooled digital electronic systems. Recently, we have achieved a major breakthrough in the development, demonstration, and successful delivery of the cryocooled superconductor digital-RF receivers directly digitizing signals in a broad range from kilohertz to gigahertz. These essentially hybrid-technology systems combine a variety of superconductor and semiconductor technologies packaged with two-stage commercial cryocoolers: cryogenic Nb mixed-signal and digital circuits based on Rapid Single Flux Quantum (RSFQ) technology, room-temperature amplifiers, FPGA processing and control circuitry. The demonstrated cryocooled digital-RF systems are the world's first and fastest directly digitizing receivers operating with live satellite signals in X-band and performing signal acquisition in HF to L-band at ˜30GHz clock frequencies.

  7. Rectifier Design Challenges for RF Wireless Power Transfer and Energy Harvesting Systems

    Directory of Open Access Journals (Sweden)

    A. Collado

    2017-06-01

    Full Text Available The design of wireless power transfer (WPT and energy harvesting (EH solutions poses different challenges towards achieving maximum RF-DC conversion efficiency in these systems. This paper covers several selected challenges when developing WPT and electromagnetic EH solutions, such as the design of multiband and broadband rectifiers, the minimization of the effect that load and input power variations may have on the system performance and finally the most optimum power combining mechanisms that can be used when dealing with multi-element rectifiers.

  8. Relativistic klystrons

    International Nuclear Information System (INIS)

    Allen, M.A.; Azuma, O.; Callin, R.S.

    1989-03-01

    Experimental work is underway by a SLAC-LLNL-LBL collaboration to investigate the feasibility of using relativistic klystrons as a power source for future high gradient accelerators. Two different relativistic klystron configurations have been built and tested to date: a high grain multicavity klystron at 11.4 GHz and a low gain two cavity subharmonic buncher driven at 5.7 GHz. In both configurations power is extracted at 11.4 GHz. In order to understand the basic physics issues involved in extracting RF from a high power beam, we have used both a single resonant cavity and a multi-cell traveling wave structure for energy extraction. We have learned how to overcome our previously reported problem of high power RF pulse shortening, and have achieved peak RF power levels of 170 MW with the RF pulse of the same duration as the beam current pulse. 6 refs., 3 figs., 3 tabs

  9. 10 GHz ECRIS for Warsaw Cyclotron

    CERN Document Server

    Sudlitz, K

    1999-01-01

    Cusp type, 10 GHz ECRIS has been built and tested earlier. For obtaining intensive beams, more relevant for cyclotron, cusp geometry has been replaced by hexapole. Discharge chamber (stainless steel, 50 mm diameter, 250 mm long) is an extension of a coaxial line, feeding RF (9,6 GHz, up to 200 W) to the plasma. The NdFeB hexapole (0,52 T on the surface) has been used. The axial magnetic field is created by water cooled coils. The axial injection line dedicated to K160 isochronous heavy ion cyclotron has been constructed. The line consists of Glaser lenses, double focusing magnet, solenoid and mirror type inflector. The system provides sufficient transmission of the beam from ECR ion source to the firsts orbits of the cyclotron for m/q ranging from 7 to 2. After successful initial tests which were done in July 1997 the ECRIS serves as an external source for Warsaw Cyclotron.

  10. Performance analysis of a low power low noise tunable band pass filter for multiband RF front end

    International Nuclear Information System (INIS)

    Manjula, J.; Malarvizhi, S.

    2014-01-01

    This paper presents a low power tunable active inductor and RF band pass filter suitable for multiband RF front end circuits. The active inductor circuit uses the PMOS cascode structure as the negative transconductor of a gyrator to reduce the noise voltage. Also, this structure provides possible negative resistance to reduce the inductor loss with wide inductive bandwidth and high resonance frequency. The RF band pass filter is realized using the proposed active inductor with suitable input and output buffer stages. The tuning of the center frequency for multiband operation is achieved through the controllable current source. The designed active inductor and RF band pass filter are simulated in 180 nm and 45 nm CMOS process using the Synopsys HSPICE simulation tool and their performances are compared. The parameters, such as resonance frequency, tuning capability, noise and power dissipation, are analyzed for these CMOS technologies and discussed. The design of a third order band pass filter using an active inductor is also presented. (semiconductor integrated circuits)

  11. Design and Modeling of RF Power Amplifiers with Radial Basis Function Artificial Neural Networks

    OpenAIRE

    Ali Reza Zirak; Sobhan Roshani

    2016-01-01

    A radial basis function (RBF) artificial neural network model for a designed high efficiency radio frequency class-F power amplifier (PA) is presented in this paper. The presented amplifier is designed at 1.8 GHz operating frequency with 12 dB of gain and 36 dBm of 1dB output compression point. The obtained power added efficiency (PAE) for the presented PA is 76% under 26 dBm input power. The proposed RBF model uses input and DC power of the PA as inputs variables and considers output power a...

  12. High voltage power supplies for ITER RF heating and current drive systems

    International Nuclear Information System (INIS)

    Gassmann, T.; Arambhadiya, B.; Beaumont, B.; Baruah, U.K.; Bonicelli, T.; Darbos, C.; Purohit, D.; Decamps, H.; Albajar, F.; Gandini, F.; Henderson, M.; Kazarian, F.; Lamalle, P.U.; Omori, T.; Parmar, D.; Patel, A.; Rathi, D.; Singh, N.P.

    2011-01-01

    The RF heating and current drive (H and CD) systems to be installed for the ITER fusion machine are the electron cyclotron (EC), ion cyclotron (IC) and, although not in the first phase of the project, lower hybrid (LH). These systems require high voltage, high current power supplies (HVPS) in CW operation. These HVPS should deliver around 50 MW electrical power to each of the RF H and CD systems with stringent requirements in terms of accuracy, voltage ripple, response time, turn off time and fault energy. The PSM (Pulse Step Modulation) technology has demonstrated over the past 20 years its ability to fulfill these requirements in many industrial facilities and other fusion reactors and has therefore been chosen as reference design for the IC and EC HVPS systems. This paper describes the technical specifications, including interfaces, the resulting constraints on the design, the conceptual design proposed for ITER EC and IC HVPS systems and the current status.

  13. An inkjet printed meandered dipole antenna for RF passive sensing applications

    KAUST Repository

    Quddious, Abdul

    2016-04-10

    In this paper, a low cost inkjet printed antenna envisioned for integration with printed and non-printed RF sensors is presented. The proposed meandered dipole dual-loop antenna is designed on a 0.25mm thick paper substrate. The antenna not only gives wireless remote sensing capability but also allows remote identification functionality. The antenna structure consists of an outer loop and an inner loop resonating at 3GHz and 5GHz respectively and used for obtaining unique electromagnetic signature by modifications in their dimensions.

  14. CTF3 Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, Ronald D

    2003-03-13

    The design of CLIC is based on a two-beam scheme, where short pulses of high power 30 GHz RF are extracted from a drive beam running parallel to the main beam. The 3rd generation CLIC Test Facility (CTF3) will demonstrate the generation of the drive beam with the appropriate time structure, the extraction of 30 GHz RF power from this beam, as well as acceleration of a probe beam with 30 GHz RF cavities. The project makes maximum use of existing equipment and infrastructure of the LPI complex, which became available after the closure of LEP.

  15. CLIC Test Facility 3

    CERN Multimedia

    Kossyvakis, I; Faus-golfe, A

    2007-01-01

    The design of CLIC is based on a two-beam scheme, where short pulses of high power 30 GHz RF are extracted from a drive beam running parallel to the main beam. The 3rd generation CLIC Test Facility (CTF3) will demonstrate the generation of the drive beam with the appropriate time structure, the extraction of 30 GHz RF power from this beam, as well as acceleration of a probe beam with 30 GHz RF cavities. The project makes maximum use of existing equipment and infrastructure of the LPI complex, which became available after the closure of LEP.

  16. High-power CO laser with RF discharge for isotope separation employing condensation repression

    Science.gov (United States)

    Baranov, I. Ya.; Koptev, A. V.

    2008-10-01

    High-power CO laser can be the effective tool in such applications as isotope separation using the free-jet CRISLA method. The way of transfer from CO small-scale experimental installation to industrial high-power CO lasers is proposed through the use of a low-current radio-frequency (RF) electric discharge in a supersonic stream without an electron gun. The calculation model of scaling CO laser with RF discharge in supersonic stream was developed. The developed model allows to calculate parameters of laser installation and optimize them with the purpose of reception of high efficiency and low cost of installation as a whole. The technical decision of industrial CO laser for isotope separation employing condensation repression is considered. The estimated cost of laser is some hundred thousand dollars USA and small sizes of laser head give possibility to install it in any place.

  17. Development and Performance Analysis of a Photonics-Assisted RF Converter for 5G Applications

    Science.gov (United States)

    Borges, Ramon Maia; Muniz, André Luiz Marques; Sodré Junior, Arismar Cerqueira

    2017-03-01

    This article presents a simple, ultra-wideband and tunable radiofrequency (RF) converter for 5G cellular networks. The proposed optoelectronic device performs broadband photonics-assisted upconversion and downconversion using a single optical modulator. Experimental results demonstrate RF conversion from DC to millimeter waves, including 28 and 38 GHz that are potential frequency bands for 5G applications. Narrow linewidth and low phase noise characteristics are observed in all generated RF carriers. An experimental digital performance analysis using different modulation schemes illustrates the applicability of the proposed photonics-based device in reconfigurable optical wireless communications.

  18. Experimental progress on virtual-cathode very high power microwave source development

    International Nuclear Information System (INIS)

    Fazio, M.V.; Hoeberling, R.F.

    1987-01-01

    The evolution of rf accelerator technology toward high-power, high-current, low-emittance beams produces an ever-increasing demand for efficient, very high power microwave sources. The present klystron technology has performed very well but is not expected to produce reliable gigawatt peak-power units in the 1- to 10-GHz regime. Further major advancements must involve other types of sources. The reflexing electron sources can produce microwave powers at the gigawatt level and have demonstrated operation from 800 MHz to 40 GHz. Pulse length appears to be limited by electron-beam diode closure, and reflexing electron devices have been operated in a repetitively pulsed mode. An experiment is under way to investigate concepts to stabilize the frequency of the virtual cathode source. If one can successfully frequency and phase lock this source to an external signal, then this source can operate as a very high power microwave amplifier making it practical for accelerator applications. The progress on an experiment to test these concepts will be discussed

  19. A wideband high-linearity RF receiver front-end in CMOS

    NARCIS (Netherlands)

    Arkesteijn, V.J.; Klumperink, Eric A.M.; Nauta, Bram

    This paper presents a wideband high-linearity RF receiver-front-end, implemented in standard 0.18 μm CMOS technology. The design employs a noise-canceling LNA in combination with two passive mixers, followed by lowpass-filtering and amplification at IF. The achieved bandwidth is >2 GHz, with a noise

  20. TESLA superconducting RF cavity development

    International Nuclear Information System (INIS)

    Koepke, K.

    1995-01-01

    The TESLA collaboration has made steady progress since its first official meeting at Cornell in 1990. The infrastructure necessary to assemble and test superconducting rf cavities has been installed at the TESLA Test Facility (TTF) at DESY. 5-cell, 1.3 GHz cavities have been fabricated and have reached accelerating fields of 25 MV/m. Full sized 9-cell copper cavities of TESLA geometry have been measured to verify the higher order modes present and to evaluate HOM coupling designs. The design of the TESLA 9-cell cavity has been finalized and industry has started delivery. Two prototype 9-cell niobium cavities in their first tests have reached accelerating fields of 10 MV/m and 15 MV/m in a vertical dewar after high peak power (HPP) conditioning. The first 12 m TESLA cryomodule that will house 8 9-cell cavities is scheduled to be delivered in Spring 1995. A design report for the TTF is in progress. The TTF test linac is scheduled to be commissioned in 1996/1997. (orig.)

  1. 5.2 GHz variable-gain amplifier and power amplifier driver for WLAN IEEE 802.11a transmitter front-end

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Xuelian; Yan Jun; Shi Yin [Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China); Foster, Dai Fa, E-mail: xlzhang@semi.ac.c [Department of Electrical and Computer Engineering, Auburn University, Auburn, AL 36849-5201 (United States)

    2009-01-15

    A 5.2 GHz variable-gain amplifier (VGA) and a power amplifier (PA) driver are designed for WLAN IEEE 802.11a monolithic RFIC. The VGA and the PA driver are implemented in a 50 GHz 0.35 mum SiGe BiCMOS technology and occupy 1.12 x 1.25 mm{sup 2} die area. The VGA with effective temperature compensation is controlled by 5 bits and has a gain range of 34 dB. The PA driver with tuned loads utilizes a differential input, single-ended output topology, and the tuned loads resonate at 5.2 GHz. The maximum overall gain of the VGA and the PA driver is 29 dB with the output third-order intercept point (OIP3) of 11 dBm. The gain drift over the temperature varying from -30 to 85 deg. C converges within +-3 dB. The total current consumption is 45 mA under a 2.85 V power supply.

  2. High voltage power supplies for INDUS-2 RF system

    International Nuclear Information System (INIS)

    Badapanda, M.K.; Hannurkar, P.R.

    2003-01-01

    The RF system of Indus-2 employs klystron amplifiers operating at 505.812 MHz. A precession controlled high voltage DC supply of appropriate rating is needed for each klystron amplifier, as its bias supply. Since internal flashover and arcing are common with the operation of these klystrons and stored energies beyond particular limit inside its bias power supply is detrimental to this device, a properly designed crowbar is incorporated between each klystron and its power supply. This crowbar bypass these stored energies and helps protecting klystron under any of these unfavorable conditions. In either case, power supply sees a near short circuit across its load. So, its power circuit is designed to reduce the fault current level and its various components are also designed to withstand these fault currents, as and when it appears. Finally, operation of these high voltage power supplies (HVPS) generates lot of harmonics on the source side, which distort the input waveform substantially and reduces the input power factor also. Source multiplication between two power supplies are planned to improve upon above parameters and suitable detuned line filters are incorporated to keep the input voltage total harmonics distortion (THD) below 5 % and input power factor (IFF) near unity. (author)

  3. A 3.1-4.8 GHz transmitter with a high frequency divider in 0.18 μm CMOS for OFDM-UWB

    International Nuclear Information System (INIS)

    Zheng Renliang; Ren Junyan; Li Wei; Li Ning

    2009-01-01

    A fully integrated low power RF transmitter for a WiMedia 3.1-4.8 GHz multiband orthogonal frequency division multiplexing ultra-wideband system is presented. With a separate transconductance stage, the quadrature up-conversion modulator achieves high linearity with low supply voltage. The co-design of different resonant frequencies of the modulator and the differential to single (D2S) converter ensures in-band gain flatness. By means of a series inductor peaking technique, the D2S converter obtains 9 dB more gain without extra power consumption. A divided-by-2 divider is used for carrier signal generation. The measurement results show an output power between -10.7 and -3.1 dBm with 7.6 dB control range, an OIP3 up to 12 dBm, a sideband rejection of 35 dBc and a carrier rejection of 30 dBc. The ESD protected chip is fabricated in the Jazz 0.18 μm RF CMOS process with an area of 1.74 mm 2 and only consumes 32 mA current (at 1.8 V) including the test associated parts. (semiconductor integrated circuits)

  4. A 3.1-4.8 GHz transmitter with a high frequency divider in 0.18 {mu}m CMOS for OFDM-UWB

    Energy Technology Data Exchange (ETDEWEB)

    Zheng Renliang; Ren Junyan; Li Wei; Li Ning, E-mail: jyren@fudan.edu.c [Micro/Nano Science and Innovation Platform, State Key Laboratory of ASIC and System, Fudan University, Shanghai 201203 (China)

    2009-12-15

    A fully integrated low power RF transmitter for a WiMedia 3.1-4.8 GHz multiband orthogonal frequency division multiplexing ultra-wideband system is presented. With a separate transconductance stage, the quadrature up-conversion modulator achieves high linearity with low supply voltage. The co-design of different resonant frequencies of the modulator and the differential to single (D2S) converter ensures in-band gain flatness. By means of a series inductor peaking technique, the D2S converter obtains 9 dB more gain without extra power consumption. A divided-by-2 divider is used for carrier signal generation. The measurement results show an output power between -10.7 and -3.1 dBm with 7.6 dB control range, an OIP3 up to 12 dBm, a sideband rejection of 35 dBc and a carrier rejection of 30 dBc. The ESD protected chip is fabricated in the Jazz 0.18 {mu}m RF CMOS process with an area of 1.74 mm{sup 2} and only consumes 32 mA current (at 1.8 V) including the test associated parts. (semiconductor integrated circuits)

  5. Realization of an X-Band RF System for LCLS

    CERN Document Server

    McIntosh, Peter; Brooks, William; Emma, Paul; Rago, Carl

    2005-01-01

    A single X-band (11.424 GHz) accelerating structure is to be incorporated in the LCLS Linac design to linearize the energy-time correlation (or gradient) across each bunch, features which originate in the preceding accelerating structures (L0 and L1). This harmonic RF system will operate near the negative RF crest to decelerate the beam, reducing these non-linear components of the correlation, providing a more efficient compression in the downstream bunch compressor chicanes (BC1 and BC2). These non-linear correlation components, if allowed to grow, would lead to Coherent Synchrotron Radiation (CSR) instabilities in the chicanes, effectively destroying the coherence of the photon radiation in the main LCLS undulator. The many years devoted at SLAC in the development of X-band RF components for the NLC/JLC linear collider project, has enabled the technical and financial realization of such an RF system for LCLS. This paper details the requirements for the X-band system and the proposed scheme planned for achie...

  6. A 30 KW RF power amplifier for the RFQ accelerator (Paper No. CP 27)

    International Nuclear Information System (INIS)

    Luktuke, R.D.; Garud, A.N.; Murthy, P.N.K.; Sethi, R.C.

    1990-01-01

    A radio frequency quadrupole (RFQ) accelerator, to accelerate deuterons to an energy of 150 keV with beam current of 20 mA, has been designed and is under construction. This accelerator needs approximately 30 kW of RF power to generate the desired voltage of 55 kV on the electrodes, at a frequency of 45 MHz. The power amplifier is designed with four stages of RF amplification using vacuum tubes. The first two stages are built with the tubes 6146 and BEL 250 CX, to deliver about 100 watts power to the grid circuit of the pre driver. The pre driver (EIMAC 5 CX 1500 A) and the driver (BEL 4000 CX) give an output power of about 5kW, at the grid of the high power amplifier. All the four tubes operate in class A/AB mode. The high power amplifier has been designed and is being built around the BEL power tetrode tube CQK-50-2. The output from the high power amplifier is fed to the RFQ, via a matching network to tranform the plate impedance to 50 ohm loop impedeance at the RFQ. The paper presents the design aspects of the high power amplifier, matching network and the results obtained for the earlier stages. (author). 3 refs., 3 tabs., 2 figs

  7. An RF Power Amplifier in a Digital CMOS Process

    DEFF Research Database (Denmark)

    Nielsen, Per Asbeck; Fallesen, Carsten

    2002-01-01

    A two stage class B power amplifier for 1.9 GHz is presented. The amplifier is fabricated in a standard digital EPI-CMOS process with low resistivity substrate. The measured output power is 29 dBm in a 50 Omega load. A design method to find the large signal parameters of the output transistor...... is presented. It separates the determination of the optimal load resistance and the determination of the large signal drain-source capacitance. Based on this method, proper values for on-chip interstage matching and off-chip output matching can be derived. A envelope linearisation circuit for the PA...... is proposed. Simulations and measurements of a fabricated linearisation circuit are presented and used to calculate the achievable linearity in terms of the spectral leakage and the error vector magnitude of a EDGE (3 pi /8-8PSK) modulated signal....

  8. Investigations of DC power supplies with optoelectronic transducers and RF energy converters

    Science.gov (United States)

    Guzowski, B.; Gozdur, R.; Bernacki, L.; Lakomski, M.

    2016-04-01

    Fiber Distribution Cabinets (FDC) monitoring systems are increasingly popular. However it is difficult to realize such system in passive FDC, due to lack of source of power supply. In this paper investigation of four different DC power supplies with optoelectronic transducers is described. Two converters: photovoltaic power converter and PIN photodiode can convert the light transmitted through the optical fiber to electric energy. Solar cell and antenna RF-PCB are also tested. Results presented in this paper clearly demonstrate that it is possible to build monitoring system in passive FDC. During the tests maximum obtained output power was 11 mW. However all converters provided enough power to excite 32-bit microcontroller with ARM-cores and digital thermometer.

  9. Pulsed rf systems for large storage rings

    International Nuclear Information System (INIS)

    Wilson, P.B.

    1979-03-01

    The possibility is considered that by using a pulsed rf system a substantial reduction can be made in the rf power requirement for the next generation of large storage rings. For a ring with a sufficiently large circumference, the time between bunch passages, T/sub b/, can exceed the cavity filling time, T/sub f/. As the ratio T/sub b//T/sub f/ increases, it is clear that at some point the average power requirement can be reduced by pulsing the rf to the cavities. In this mode of operation, the rf power is turned on a filling time or so before the arrival of a bunch and is switched off again at the time of bunch passage. There is no rf energy in the accelerating structure, and hence no power dissipation, for most of the period between bunches

  10. X-band rf power production and deceleration in the two-beam test stand of the Compact Linear Collider test facility

    Directory of Open Access Journals (Sweden)

    E. Adli

    2011-08-01

    Full Text Available We discuss X-band rf power production and deceleration in the two-beam test stand of the CLIC test facility at CERN. The rf power is extracted from an electron drive beam by a specially designed power extraction structure. In order to test the structures at high-power levels, part of the generated power is recirculated to an input port, thus allowing for increased deceleration and power levels within the structure. The degree of recirculation is controlled by a splitter and phase shifter. We present a model that describes the system and validate it with measurements over a wide range of parameters. Moreover, by correlating rf power measurements with the energy lost by the electron beam, as measured in a spectrometer placed after the power extraction structure, we are able to identify system parameters, including the form factor of the electron beam. The quality of the agreement between model and reality gives us confidence to extrapolate the results found in the present test facility towards the parameter regime of CLIC.

  11. X-band rf power production and deceleration in the two-beam test stand of the Compact Linear Collider test facility

    CERN Document Server

    Adli, E; Dubrovskiy, A; Syratchev, I; Ruber, R; Ziemann, V

    2011-01-01

    We discuss X-band rf power production and deceleration in the two-beam test stand of the CLIC test facility at CERN. The rf power is extracted from an electron drive beam by a specially designed power extraction structure. In order to test the structures at high-power levels, part of the generated power is recirculated to an input port, thus allowing for increased deceleration and power levels within the structure. The degree of recirculation is controlled by a splitter and phase shifter. We present a model that describes the system and validate it with measurements over a wide range of parameters. Moreover, by correlating rf power measurements with the energy lost by the electron beam, as measured in a spectrometer placed after the power extraction structure, we are able to identify system parameters, including the form factor of the electron beam. The quality of the agreement between model and reality gives us confidence to extrapolate the results found in the present test facility towards the parameter reg...

  12. Low temperature rf sputtering deposition of (Ba, Sr) TiO3 thin film with crystallization enhancement by rf power supplied to the substrate

    International Nuclear Information System (INIS)

    Yoshimaru, Masaki; Takehiro, Shinobu; Abe, Kazuhide; Onoda, Hiroshi

    2005-01-01

    The (Ba, Sr) TiO 3 thin film deposited by radio frequency (rf) sputtering requires a high deposition temperature near 500 deg. C to realize a high relative dielectric constant over of 300. For example, the film deposited at 330 deg. C contains an amorphous phase and shows a low relative dielectric constant of less than 100. We found that rf power supplied not only to the (Ba, Sr) TiO 3 sputtering target, but also to the substrate during the initial step of film deposition, enhanced the crystallization of the (Ba, Sr) TiO 3 film drastically and realized a high dielectric constant of the film even at low deposition temperatures near 300 deg. C. The 50-nm-thick film with only a 10 nm initial layer deposited with the substrate rf biasing is crystallized completely and shows a high relative dielectric constant of 380 at the deposition temperature of 330 deg. C. The (Ba, Sr) TiO 3 film deposited at higher temperatures (upwards of 400 deg. C) shows preferred orientation, while the film deposited at 330 deg. C with the 10 nm initial layer shows a preferred orientation on a -oriented ruthenium electrode. The unit cell of (Ba, Sr) TiO 3 (111) plane is similar to that of ruthenium (001) plane. We conclude that the rf power supplied to the substrate causes ion bombardments on the (Ba, Sr) TiO 3 film surface, which assists the quasiepitaxial growth of (Ba, Sr) TiO 3 film on the ruthenium electrode at low temperatures of less than 400 deg. C

  13. Low temperature rf sputtering deposition of (Ba, Sr) TiO3 thin film with crystallization enhancement by rf power supplied to the substrate

    Science.gov (United States)

    Yoshimaru, Masaki; Takehiro, Shinobu; Abe, Kazuhide; Onoda, Hiroshi

    2005-05-01

    The (Ba, Sr) TiO3 thin film deposited by radio frequency (rf) sputtering requires a high deposition temperature near 500 °C to realize a high relative dielectric constant over of 300. For example, the film deposited at 330 °C contains an amorphous phase and shows a low relative dielectric constant of less than 100. We found that rf power supplied not only to the (Ba, Sr) TiO3 sputtering target, but also to the substrate during the initial step of film deposition, enhanced the crystallization of the (Ba, Sr) TiO3 film drastically and realized a high dielectric constant of the film even at low deposition temperatures near 300 °C. The 50-nm-thick film with only a 10 nm initial layer deposited with the substrate rf biasing is crystallized completely and shows a high relative dielectric constant of 380 at the deposition temperature of 330 °C. The (Ba, Sr) TiO3 film deposited at higher temperatures (upwards of 400 °C) shows preferred orientation, while the film deposited at 330 °C with the 10 nm initial layer shows a preferred orientation on a -oriented ruthenium electrode. The unit cell of (Ba, Sr) TiO3 (111) plane is similar to that of ruthenium (001) plane. We conclude that the rf power supplied to the substrate causes ion bombardments on the (Ba, Sr) TiO3 film surface, which assists the quasiepitaxial growth of (Ba, Sr) TiO3 film on the ruthenium electrode at low temperatures of less than 400 °C.

  14. Influence of RF power on the properties of sputtered ZnO:Al thin films

    Energy Technology Data Exchange (ETDEWEB)

    Antony, Aldrin; Carreras, Paz; Keitzl, Thomas; Roldan, Ruben; Nos, Oriol; Frigeri, Paolo; Asensi, Jose Miguel; Bertomeu, Joan [Grup d' Energia Solar, Universitat de Barcelona (Spain)

    2010-07-15

    Transparent conducting, aluminium doped zinc oxide thin films (ZnO:Al) were deposited by radio frequency (RF) magnetron sputtering. The RF power was varied from 60 to 350 W whereas the substrate temperature was kept at 160 C. The structural, electrical and optical properties of the as-deposited films were found to be influenced by the deposition power. The X-ray diffraction analysis showed that all the films have a strong preferred orientation along the [001] direction. The crystallite size was varied from 14 to 36 nm, however no significant change was observed in the case of lattice constant. The optical band gap varied in the range 3.44-3.58 eV. The lowest resistivity of 1.2 x 10{sup -3}{omega} cm was shown by the films deposited at 250 W. The mobility of the films was found to increase with the deposition power. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  15. A highly sensitive RF-to-DC power converter with an extended dynamic range

    KAUST Repository

    Almansouri, Abdullah Saud Mohammed; Ouda, Mahmoud H.; Salama, Khaled N.

    2017-01-01

    This paper proposes a highly sensitive RF-to-DC power converter with an extended dynamic range that is designed to operate at the medical band 433 MHz and simulated using 0.18 μm CMOS technology. Compared to the conventional fully cross

  16. An updated overview of the LEB RF system

    International Nuclear Information System (INIS)

    Rogers, J.D.; Ferrell, J.H.; Curbow, J.E.; Friedrichs, C.

    1992-01-01

    Each of the Low Energy Booster (LEB) rf systems consists of the following major subsystems: a vacuum tube final rf amplifier driven by a solid state rf amplifier, a ferrite-tuned rf cavity used to bunch and accelerate the beam, a low-level rf system including rf feedback systems, a computer-based supervisory control system, and associated power supplies. The LEB rf system is broadband with the exception of the rf cavity, which is electronically tuned from approximately 47.5 MHz to 59.7 MHz in 50 ms. The design and development status of the LEB rf system is presented, with particular emphasis on the cavity and tuner, and the tuner bias power supply

  17. Mechanical Design and Fabrication of a New RF Power Amplifier for LANSCE

    International Nuclear Information System (INIS)

    Chen, Zukun

    2011-01-01

    A Full-scale prototype of a new 201.25 MHz RF Final Power Amplifier (FPA) for Los Alamos Neutron Science Center (LANSCE) has been designed, fabricated, assembled and installed in the test facility. This prototype was successfully tested and met the physics and electronics design criteria. The team faced design and manufacturing challenges, having a goal to produce 2 MW peak power at 13% duty factor, at the elevation of over 2 km in Los Alamos. The mechanical design of the final power amplifier was built around a Thales TH628 Diacrode R , a state-of-art tetrode power tube. The main structure includes Input circuit, Output circuit, Grid decoupling circuit, Output coupler, Tuning pistons, and a cooling system. Many types of material were utilized to make this new RF amplifier. The fabrication processes of the key components were completed in the Prototype Fabrication Division shop at Los Alamos National Laboratory. The critical plating procedures were achieved by private industry. The FPA mass is nearly 600 kg and installed in a beam structural support stand. In this paper, we summarize the FPA design basis and fabrication, plating, and assembly process steps with necessary lifting and handling fixtures. In addition, to ensure the quality of the FPA support structure a finite element analysis with seismic design forces has also been carried out.

  18. Mechanical Design and Fabrication of a New RF Power Amplifier for LANSCE

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zukun [Los Alamos National Laboratory

    2011-01-01

    A Full-scale prototype of a new 201.25 MHz RF Final Power Amplifier (FPA) for Los Alamos Neutron Science Center (LANSCE) has been designed, fabricated, assembled and installed in the test facility. This prototype was successfully tested and met the physics and electronics design criteria. The team faced design and manufacturing challenges, having a goal to produce 2 MW peak power at 13% duty factor, at the elevation of over 2 km in Los Alamos. The mechanical design of the final power amplifier was built around a Thales TH628 Diacrode{sup R}, a state-of-art tetrode power tube. The main structure includes Input circuit, Output circuit, Grid decoupling circuit, Output coupler, Tuning pistons, and a cooling system. Many types of material were utilized to make this new RF amplifier. The fabrication processes of the key components were completed in the Prototype Fabrication Division shop at Los Alamos National Laboratory. The critical plating procedures were achieved by private industry. The FPA mass is nearly 600 kg and installed in a beam structural support stand. In this paper, we summarize the FPA design basis and fabrication, plating, and assembly process steps with necessary lifting and handling fixtures. In addition, to ensure the quality of the FPA support structure a finite element analysis with seismic design forces has also been carried out.

  19. Differential RF MEMS interwoven capacitor immune to residual stress warping

    KAUST Repository

    Elshurafa, Amro M.

    2012-07-27

    A RF MEMS capacitor with an interwoven structure is designed, fabricated in the PolyMUMPS process and tested in an effort to address fabrication challenges usually faced in MEMS processes. The interwoven structure was found to offer several advantages over the typical MEMS parallel-plate design including eliminating the warping caused by residual stress, eliminating the need for etching holes, suppressing stiction, reducing parasitics and providing differential capability. The quality factor of the proposed capacitor was higher than five throughout a 2–10 GHz range and the resonant frequency was in excess of 20 GHz.

  20. Differential RF MEMS interwoven capacitor immune to residual stress warping

    KAUST Repository

    Elshurafa, Amro M.; Salama, Khaled N.

    2012-01-01

    A RF MEMS capacitor with an interwoven structure is designed, fabricated in the PolyMUMPS process and tested in an effort to address fabrication challenges usually faced in MEMS processes. The interwoven structure was found to offer several advantages over the typical MEMS parallel-plate design including eliminating the warping caused by residual stress, eliminating the need for etching holes, suppressing stiction, reducing parasitics and providing differential capability. The quality factor of the proposed capacitor was higher than five throughout a 2–10 GHz range and the resonant frequency was in excess of 20 GHz.

  1. Design, construction and test of RF solid state power amplifier for IRANCYC-10

    Science.gov (United States)

    Azizi, H.; Dehghan, M.; Abbasi Davani, F.; Ghasemi, F.

    2018-03-01

    In this paper, design, simulation and construction of a high power amplifier to provide the required power of a cyclotron accelerator (IRANCYC-10) is presented step-by-step. The Push-Pull designed amplifier can generate 750 W at the operating frequency of 71 MHz continous wave (CW). In this study, achieving the best efficiency of the amplifier, as well as reducing overall volume using baluns, were two important goals. The new offered water-cooled heat sink was used for cooling the amplifier which increases the operating life of the transistor. The gain and PAE of the SSPA were obtained 20 dB and 77.7%, respectively. The simulated and measured RF results are in good agreement with each other. The results show that, using an RF transformer in matching impedance of matching networks, it causes a smaller size and also a better amplifier performance.

  2. The Effects of RF Sputtering Power and Gas Pressure on Structural and Electrical Properties of ITiO Thin Film

    Directory of Open Access Journals (Sweden)

    Accarat Chaoumead

    2012-01-01

    Full Text Available Transparent conductive titanium-doped indium oxide (ITiO films were deposited on corning glass substrates by RF magnetron sputtering method. The effects of RF sputtering power and Ar gas pressure on the structural and electrical properties of the films were investigated experimentally, using a 2.5 wt% TiO2-doped In2O3 target. The deposition rate was in the range of around 20~60 nm/min under the experimental conditions of 5~20 mTorr of gas pressure and 220~350 W of RF power. The lowest volume resistivity of 1.2×10−4  Ω-cm and the average optical transmittance of 75% were obtained for the ITiO film, prepared at RF power of 300 W and Ar gas pressure of 15 mTorr. This volume resistivity of 1.2×10−4  Ω-cm is low enough as a transparent conducting layer in various electrooptical devices, and it is comparable with that of ITO or ZnO:Al conducting layer.

  3. A new slip stacking RF system for a twofold power upgrade of Fermilab's Accelerator Complex

    Energy Technology Data Exchange (ETDEWEB)

    Madrak, Robyn [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2014-05-15

    Fermilab's Accelerator Complex has been recently upgraded, in order to increase the 120 GeV proton beam power on target from about 400 kW to over 700 kW for NOvA and other future intensity frontier experiments. One of the key ingredients of the upgrade is the offloading of some Main Injector synchrotron operations - beam injection and RF manipulation called ''slip stacking'' - to the 8GeV Recycler Ring, which had until recently been used only for low-intensity antiproton storage and cooling. This required construction of two new 53 MHz RF systems for the slip-stacking manipulations. The cavities operate simultaneously at Vpeak ≲150 kV, but at slightly different frequencies (Δf=1260 Hz). Their installation was completed in September 2013. This article describes the novel solutions used in the design of the new cavities, their tuning system, and the associated high power RF system. First results showing effective operation of the RF system, beam capture and successful slip-stacking in the Recycler Ring are presented.

  4. Characterization of Energy Availability in RF Energy Harvesting Networks

    Directory of Open Access Journals (Sweden)

    Daniela Oliveira

    2016-01-01

    Full Text Available The multiple nodes forming a Radio Frequency (RF Energy Harvesting Network (RF-EHN have the capability of converting received electromagnetic RF signals in energy that can be used to power a network device (the energy harvester. Traditionally the RF signals are provided by high power transmitters (e.g., base stations operating in the neighborhood of the harvesters. Admitting that the transmitters are spatially distributed according to a spatial Poisson process, we start by characterizing the distribution of the RF power received by an energy harvester node. Considering Gamma shadowing and Rayleigh fading, we show that the received RF power can be approximated by the sum of multiple Gamma distributions with different scale and shape parameters. Using the distribution of the received RF power, we derive the probability of a node having enough energy to transmit a packet after a given amount of charging time. The RF power distribution and the probability of a harvester having enough energy to transmit a packet are validated through simulation. The numerical results obtained with the proposed analysis are close to the ones obtained through simulation, which confirms the accuracy of the proposed analysis.

  5. A capacitive power sensor based on the MEMS cantilever beam fabricated by GaAs MMIC technology

    Science.gov (United States)

    Yi, Zhenxiang; Liao, Xiaoping

    2013-03-01

    In this paper, a novel capacitive power sensor based on the microelectromechanical systems (MEMS) cantilever beam at 8-12 GHz is proposed, fabricated and tested. The presented design can not only realize a cantilever beam instead of the conventional fixed-fixed beam, but also provide fine compatibility with the GaAs monolithic microwave integrated circuit (MMIC) process. When the displacement of the cantilever beam is very small compared with the initial height of the air gap, the capacitance change between the measuring electrode and the cantilever beam has an approximately linear dependence on the incident radio frequency (RF) power. Impedance compensating technology, by modifying the slot width of the coplanar waveguide transmission line, is adopted to minimize the effect of the cantilever beam on the power sensor; its validity is verified by the simulation of high frequency structure simulator software. The power sensor has been fabricated successfully by Au surface micromachining using polyimide as the sacrificial layer on the GaAs substrate. Optimization of the design with impedance compensating technology has resulted in a measured return loss of less than -25 dB and an insertion loss of around 0.1 dB at 8-12 GHz, which shows the slight effect of the cantilever beam on the microwave performance of this power sensor. The measured capacitance change starts from 0.7 fF to 1.3 fF when the incident RF power increases from 100 to 200 mW and an approximate linear dependence has been obtained. The measured sensitivities of the sensor are about 6.16, 6.27 and 6.03 aF mW-1 at 8, 10 and 12 GHz, respectively.

  6. Femtosecond precision measurement of laser–rf phase jitter in a photocathode rf gun

    International Nuclear Information System (INIS)

    Shi, Libing; Zhao, Lingrong; Lu, Chao; Jiang, Tao; Liu, Shengguang; Wang, Rui; Zhu, Pengfei; Xiang, Dao

    2017-01-01

    We report on the measurement of the laser–rf phase jitter in a photocathode rf gun with femtosecond precision. In this experiment four laser pulses with equal separation are used to produce electron bunch trains; then the laser–rf phase jitter is obtained by measuring the variations of the electron bunch spacing with an rf deflector. Furthermore, we show that when the gun and the deflector are powered by the same rf source, it is possible to obtain the laser–rf phase jitter in the gun through measurement of the beam–rf phase jitter in the deflector. Based on these measurements, we propose an effective time-stamping method that may be applied in MeV ultrafast electron diffraction facilities to enhance the temporal resolution.

  7. Femtosecond precision measurement of laser–rf phase jitter in a photocathode rf gun

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Libing; Zhao, Lingrong; Lu, Chao; Jiang, Tao; Liu, Shengguang; Wang, Rui; Zhu, Pengfei; Xiang, Dao, E-mail: dxiang@sjtu.edu.cn

    2017-03-21

    We report on the measurement of the laser–rf phase jitter in a photocathode rf gun with femtosecond precision. In this experiment four laser pulses with equal separation are used to produce electron bunch trains; then the laser–rf phase jitter is obtained by measuring the variations of the electron bunch spacing with an rf deflector. Furthermore, we show that when the gun and the deflector are powered by the same rf source, it is possible to obtain the laser–rf phase jitter in the gun through measurement of the beam–rf phase jitter in the deflector. Based on these measurements, we propose an effective time-stamping method that may be applied in MeV ultrafast electron diffraction facilities to enhance the temporal resolution.

  8. Inductive current startup in large tokamaks with expanding minor radius and rf assist

    International Nuclear Information System (INIS)

    Borowski, S.K.

    1984-02-01

    Auxiliary rf heating of electrons before and during the current-rise phase of a large tokamak, such as the Fusion Engineering Device (R = 4.8 m, a = 1.3 m, sigma = 1.6, B/sub T/ = 3.62 T), is examined as a means of reducing both the initiation loop voltage and resistive flux expenditure during startup. Prior to current initiation, 1 to 2 MW of electron cyclotron resonance heating power at approx. 90 GHz is used to create a small volume of high conductivity plasma (T/sub e/ approx. = 100 eV, n/sub e/ approx. = 10 19 m -3 ) near the upper hybrid resonance (UHR) region. This plasma conditioning permits a small radius (a 0 approx. = 0.2 to 0.4 m) current channel to be established with a relatively low initial loop voltage (less than or equal to 25 V as opposed to approx. 100 V without rf assist). During the subsequent plasma expansion and current ramp phase, a combination of rf heating (up to 5 MW) and current profile control leads to a substantial savings in volt-seconds by: (1) minimizing the resistive flux consumption; and (2) maintaining the internal flux at or near the flat profile limit

  9. Reducing Energy Degradation Due to Back-bombardment Effect with Modulated RF Input in S-band Thermionic RF Gun

    Science.gov (United States)

    Kii, Toshiteru; Nakai, Yoko; Fukui, Toshio; Zen, Heishun; Kusukame, Kohichi; Okawachi, Norihito; Nakano, Masatsugu; Masuda, Kai; Ohgaki, Hideaki; Yoshikawa, Kiyoshi; Yamazaki, Tetsuo

    2007-01-01

    Energy degradation due to back-bombardment effect is quite serious to produce high-brightness electron beam with long macro-pulse with thermionic rf gun. To avoid the back-bombardment problem, a laser photo cathode is used at many FEL facilities, but usually it costs high and not easy to operate. Thus we have studied long pulse operation of the rf gun with thermionic cathode, which is inexpensive and easy to operate compared to the photocathode rf gun. In this work, to reduce the energy degradation, we controlled input rf power amplitude by controlling pulse forming network of the power modulator for klystron. We have successfully increased the pulse duration up to 4 μs by increasing the rf power from 7.8 MW to 8.5 MW during the macro pulse.

  10. Room temperature RF characterization of niobium SCRF cavities and their prototypes

    International Nuclear Information System (INIS)

    Mahawar, Ashish; Mohania, Praveen; Shrivastava, P.; Yadav, Anand; Puntambekar, A.M.

    2013-01-01

    Raja Ramanna Centre for Advanced Technology is working on development of 1.3 GHz and 650 MHz multi-cell SCRF cavities. The multi-cell cavities require RF characterization at various stages of fabrication to ensure that the final welded cavity has the right resonant frequency. The prototype cavities as well as the final cavities were extensively characterized at each stage of half cell, dumb bell and end group development and assembly stages. The paper will provide details of the RF characterizations done and the final results achieved. (author)

  11. A Coupled Field Multiphysics Modeling Approach to Investigate RF MEMS Switch Failure Modes under Various Operational Conditions

    Directory of Open Access Journals (Sweden)

    Khaled Sadek

    2009-10-01

    Full Text Available In this paper, the reliability of capacitive shunt RF MEMS switches have been investigated using three dimensional (3D coupled multiphysics finite element (FE analysis. The coupled field analysis involved three consecutive multiphysics interactions. The first interaction is characterized as a two-way sequential electromagnetic (EM-thermal field coupling. The second interaction represented a one-way sequential thermal-structural field coupling. The third interaction portrayed a two-way sequential structural-electrostatic field coupling. An automated substructuring algorithm was utilized to reduce the computational cost of the complicated coupled multiphysics FE analysis. The results of the substructured FE model with coupled field analysis is shown to be in good agreement with the outcome of previously published experimental and numerical studies. The current numerical results indicate that the pull-in voltage and the buckling temperature of the RF switch are functions of the microfabrication residual stress state, the switch operational frequency and the surrounding packaging temperature. Furthermore, the current results point out that by introducing proper mechanical approaches such as corrugated switches and through-holes in the switch membrane, it is possible to achieve reliable pull-in voltages, at various operating temperatures. The performed analysis also shows that by controlling the mean and gradient residual stresses, generated during microfabrication, in conjunction with the proposed mechanical approaches, the power handling capability of RF MEMS switches can be increased, at a wide range of operational frequencies. These design features of RF MEMS switches are of particular importance in applications where a high RF power (frequencies above 10 GHz and large temperature variations are expected, such as in satellites and airplane condition monitoring.

  12. Simulation of spatially dependent excitation rates and power deposition in RF discharges for plasma processing

    International Nuclear Information System (INIS)

    Kushner, M.J.; Anderson, H.M.; Hargis, P.J.

    1985-01-01

    In low pressure, radio frequency (RF) discharges of the type used in plasma processing of semiconductor materials, the rate of electron impact excitation and energy transfer processes depends upon both the phase of the RF excitation and position in the discharge. Electron impact collisions create radicals that diffuse or drift to the surfaces of interest where they are adsorbed or otherwise react. To the extent that these radicals have a finite lifetime, their transport time from point of creation to surface of interest is an important parameter. The spatial dependence of the rate of the initial electron impact collisions is therefore also an important parameter. The power that sustains the discharge is coupled into the system by two mechanisms: a high energy e-beam component of the electron distribution resulting from electrons falling through or being accelerated by the sheaths, and by joule heating in the body of the plasma. In this paper, the authors discuss the spatial dependence of excitation rates and the method of power deposition iin RF discharges of the type used for plasma processing

  13. 94 GHz power amplifier MMIC development in state of the art MHEMT and AlGaN/GaN technology

    NARCIS (Netherlands)

    Heijningen, M. van; Bent, G. van der; Rodenburg, M.; Vliet, F.E. van; Quay, R.; Brückner, P.; Schwantuschke, D.; Jukkala, P.; Narhi, T.

    2012-01-01

    Solid-state power amplifiers at W-band (75 - 110 GHz) are attractive for the generation of local-oscillator (LO) power for super-heterodyne receivers operating at sub-millimetre wave frequencies, as needed for example in future space instruments for Earth observation. Apart from space applications

  14. SRF and RF systems for LEReC Linac

    Energy Technology Data Exchange (ETDEWEB)

    Belomestnykh, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Stony Brook Univ., NY (United States); Ben-Zvi, I. [Brookhaven National Lab. (BNL), Upton, NY (United States); Stony Brook Univ., NY (United States); Brutus, J. C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Fedotov, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); McIntyre, G. [Brookhaven National Lab. (BNL), Upton, NY (United States); Polizzo, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Smith, K. [Brookhaven National Lab. (BNL), Upton, NY (United States); Than, R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Tuozzolo, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Veshcherevich, V. [Cornell Univ., Ithaca, NY (United States); Wu, Q. [Brookhaven National Lab. (BNL), Upton, NY (United States); Xiao, B. [Brookhaven National Lab. (BNL), Upton, NY (United States); Xu, W. [Brookhaven National Lab. (BNL), Upton, NY (United States); Zaltsman, A. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    The Low Energy RHIC electron Cooling (LEReC) is under development at BNL to improve RHIC luminosity at low energies. It will consist of a short electron linac and two cooling sections, one for blue and one for yellow rings. For the first stage of the project, LEReC-I, we will install a 704 MHz superconducting RF cavity and three normal conducting cavities operating at 9 MHz, 704 MHz and 2.1 GHz. The SRF cavity will boost the electron beam energy up to 2 MeV. The warm cavities will be used to correct the energy spread introduced in the SRF cavity. The paper describes layouts of the SRF and RF systems, their parameters and status.

  15. Locking Lasers to RF in an Ultrafast FEL

    International Nuclear Information System (INIS)

    Wilcox, R.; Huang, G.; Doolittle, L.; White, W.; Frisch, J.; Coffee, R.

    2010-01-01

    Using a novel, phase-stabilized RF-over-fiber scheme, they transmit 3GHz over 300m with 27fs RMS error in 250kHz bandwidth over 12 hours, and phase lock a laser to enable ultrafast pump-probe experiments. Free-electron lasers (FELs) are capable of producing short-duration (< 10fs), high-energy X-ray pulses for a range of scientific applications. The recently activated Linac Coherent Light Source (LCLS) FEL facility at SLAC will support experiments which require synchronized light pulses for pump-probe schemes. They developed and operated a fiber optic RF transmission system to synchronize lasers to the emitted X-ray pulses, which was used to enable the first pump-probe experiments at the LCLS.

  16. A no-load RF calorimeter

    Science.gov (United States)

    Chernoff, R. C.

    1975-01-01

    The described device can be used to measure the output of any dc powered RF source. No dummy load is required for the measurements. The device is, therefore, called the 'no-load calorimeter' (NLC). The NLC measures the power actually fed to the antenna or another useful load. It is believed that the NLC can compete successfully with directional coupler type systems in measuring the output of high-power RF sources.

  17. Broadband photonic single sideband frequency up-converter based on the cross polarization modulation effect in a semiconductor optical amplifier for radio-over-fiber systems.

    Science.gov (United States)

    Lee, Seung-Hun; Kim, Hyoung-Jun; Song, Jong-In

    2014-01-13

    A broadband photonic single sideband (SSB) frequency up-converter based on the cross polarization modulation (XPolM) effect in a semiconductor optical amplifier (SOA) is proposed and experimentally demonstrated. An optical radio frequency (RF) signal in the form of an optical single sideband (OSSB) is generated by the photonic SSB frequency up-converter to solve the power fading problem caused by fiber chromatic dispersion. The generated OSSB RF signal has almost identical optical carrier power and optical sideband power. This SSB frequency up-conversion scheme shows an almost flat electrical RF power response as a function of the RF frequency in a range from 31 GHz to 75 GHz after 40 km single mode fiber (SMF) transmission. The photonic SSB frequency up-conversion technique shows negligible phase noise degradation. The phase noise of the up-converted RF signal at 49 GHz for an offset of 10 kHz is -93.17 dBc/Hz. Linearity analysis shows that the photonic SSB frequency up-converter has a spurious free dynamic range (SFDR) value of 79.51 dB · Hz(2/3).

  18. Power amplifiers for the S-, C-, X- and Ku-bands an EDA perspective

    CERN Document Server

    Božanić, Mladen

    2016-01-01

    This book provides a detailed review of power amplifiers, including classes and topologies rarely covered in books, and supplies sufficient information to allow the reader to design an entire amplifier system, and not just the power amplification stage. A central aim is to furnish readers with ideas on how to simplify the design process for a preferred power amplifier stage by introducing software-based routines in a programming language of their choice. The book is in two parts, the first focusing on power amplifier theory and the second on EDA concepts. Readers will gain enough knowledge of RF and microwave transmission theory, principles of active and passive device design and manufacturing, and power amplifier design concepts to allow them to quickly create their own programs, which will help to accelerate the transceiver design process. All circuit designers facing the challenge of designing an RF or microwave power amplifier for frequencies from 2 to 18 GHz will find this book to be a valuable asset.

  19. High-powered microwave ablation with a small-gauge, gas-cooled antenna: initial ex vivo and in vivo results.

    Science.gov (United States)

    Lubner, Meghan G; Hinshaw, J Louis; Andreano, Anita; Sampson, Lisa; Lee, Fred T; Brace, Christopher L

    2012-03-01

    To evaluate the performance of a gas-cooled, high-powered microwave system. Investigators performed 54 ablations in ex vivo bovine livers using three devices-a single 17-gauge cooled radiofrequency(RF) electrode; a cluster RF electrode; and a single 17-gauge, gas-cooled microwave (MW) antenna-at three time points (n = 6 at 4 minutes, 12 minutes, and 16 minutes). RF power was applied using impedance-based pulsing with maximum 200 W generator output. MW power of 135 W at 2.45 GHz was delivered continuously. An approved in vivo study was performed using 13 domestic pigs. Hepatic ablations were performed using single applicators and the above-mentioned MW and RF generator systems at treatment times of 2 minutes (n = 7 MW, n = 6 RF), 5 minutes (n = 23 MW, n = 8 RF), 7 minutes (n = 11 MW, n = 6 RF), and 10 minutes (n = 7 MW, n = 9 RF). Mean transverse diameter and length of the ablation zones were compared using analysis of variance (ANOVA) with post-hoc t tests and Wilcoxon rank-sum tests. Single ex vivo MW ablations were larger than single RF ablations at all time points (MW mean diameter range 3.5-4.8 cm 4-16 minutes; RF mean diameter range 2.6-3.1 cm 4-16 minutes) (P generation of large ablation zones in short times. Copyright © 2012 SIR. Published by Elsevier Inc. All rights reserved.

  20. Optimization of traceable coaxial RF reflection standards with 7-mm-N-connector using genetic algorithms

    Directory of Open Access Journals (Sweden)

    T. Schrader

    2003-01-01

    Full Text Available A new coaxial device with 7-mm-N-connector was developed providing calculable complex reflection coefficients for traceable calibration of vector network analyzers (VNA. It was specifically designed to fill the gap between 0 Hz (DC, direct current and 250MHz, though the device was tested up to 10GHz. The frequency dependent reflection coefficient of this device can be described by a model, which is characterized by traceable measurements. It is therefore regarded as a “traceable model". The new idea of using such models for traceability has been verified, found to be valid and was used for these investigations. The DC resistance value was extracted from RF measurements up to 10 GHz by means of Genetic Algorithms (GA. The GA was used to obtain the elements of the model describing the reflection coefficient Γ of a network of SMD resistors. The DC values determined with the GA from RF measurements match the traceable value at DC within 3·10-3, which is in good agreement with measurements using reference air lines at GHz frequencies.