WorldWideScience

Sample records for ghz mw gyrotron

  1. A 2 MW, CW, 170 GHz gyrotron for ITER

    International Nuclear Information System (INIS)

    Piosczyk, B.; Arnold, A.; Alberti, S.

    2003-01-01

    A 140 GHz gyrotron for CW operation is under development for the stellarator W7-X. With a prototype tube a microwave output power of about 0.9 MW has been obtained in pulses up to 180 s, limited by the capability of the high voltage power supply. The development work on coaxial cavity gyrotrons has demonstrated the feasibility of manufacturing of a 2 MW, CW 170 GHz tube that could be used for ITER. The problems specific to the coaxial arrangement have been investigated and all relevant information needed for an industrial realization of a coaxial gyrotron have been obtained in short pulse experiments (up to 17 ms). The suitability of critical components for a 2 MW, CW coaxial gyrotron has been studied and a first integrated design has been done. (author)

  2. 100 GHz, 1 MW, CW gyrotron study program. Final report

    International Nuclear Information System (INIS)

    Felch, K.; Bier, R.; Caplan, M.; Jory, H.

    1983-09-01

    The results of a study program to investigate the feasibility of various approaches in designing a 100 GHz, 1 MW CW gyrotron are presented. A summary is given of the possible configurations for a high average power, high frequency gyrotron, including an historical survey of experimental results which are relevant to the various approaches. A set of basic scaling considerations which enable qualitative comparisons between particular gyrotron interaction circuits is presented. These calculations are important in understanding the role of various electron beam and circuit parameters in achieving a viable gyrotron design. Following these scaling exercises, a series of design calculations is presented for a possible approach in achieving 100 GHz, 1 MW CW. These calculations include analyses of the electron gun and interaction circuit parts of the gyrotron, and a general analysis of other aspects of a high average power, high frequency gyrotron. Scalability of important aspects of the design to other frequencies is also discussed, as well as key technology issues

  3. Development of steady-state 2 MW, 170 GHz gyrotrons for ITER

    International Nuclear Information System (INIS)

    Piosczyk, B.; Arnold, A.; Thumm, M.; Dammertz, G.; Heidinger, R.; Illy, S.; Jin, J.; Koppenburg, K.; Leonhardt, W.; Neffe, G.; Rzesnicki, T.; Schmid, M.; Yang, X.; Alberti, S.; Chavan, R.; Fasel, D.; Goodman, T.; Henderson, M.; Hogge, J.P.; Tran, M.Q.; Yovchev, I.; Erckmann, V.; Laqua, H.P.; Michel, G.; Gantenbein, G.; Kasparek, W.; Mueller, G.; Schwoerer, K.; Bariou, D.; Beunas, A.; Giguet, E.; LeCloarec, G.; Legrand, F.; Lievin, C.; Dumbrajs, O.

    2005-01-01

    A prototype of a 1 MW, CW, 140 GHz conventional gyrotron for the W7-X stellarator in Greifswald/Germany has been tested successfully and the fabrication of series tubes started. In extended studies the feasibility for manufacturing a continuously operated high power coaxial cavity gyrotron has been demonstrated and all needed data for an industrial design has been obtained. Based on this results the fabrication of a first prototype of a 2 MW, CW, 170 GHz coaxial cavity gyrotron started recently in cooperation between European research institutions and European tube industry. The prototype tube is foreseen to be tested in 2006 at CRPP Lausanne where a suitable test facility is under construction. (author)

  4. Towards a 1 MW, 170 GHz gyrotron design for fusion application

    Science.gov (United States)

    Kumar, Anil; Kumar, Nitin; Singh, Udaybir; Bhattacharya, Ranajoy; Yadav, Vivek; Sinha, A. K.

    2013-03-01

    The electrical design of different components of 1 MW, 170 GHz gyrotron such as, magnetron injection gun, cylindrical interaction cavity and collector and RF window is presented in this article. Recently, a new project related to the development of 170 GHz, 1 MW gyrotron has been started for the Indian Tokamak. TE34,10 mode is selected as the operating mode after studied the problem of mode competition. The triode type geometry is selected for the design of magnetron injection gun (MIG) to achieve the required beam parameters. The maximum transverse velocity spread of 3.28% at the velocity ratio of 1.34 is obtained in simulations for a 40 A, 80 kV electron beam. The RF output power of more than 1 MW with 36.5% interaction efficiency without depressed collector is predicted by simulation in single-mode operation at 170 GHz frequency. The simulated single-stage depressed collector of the gyrotron predicted the overall device efficiencies >55%. Due to the very good thermal conductivity and very weak dependency of the dielectric parameters on temperature, PACVD diamond is selected for window design for the transmission of RF power. The in-house developed code MIGSYN and GCOMS are used for initial geometry design of MIG and mode selection respectively. Commercially available simulation tools MAGIC and ANSYS are used for beam-wave interaction and mechanical analysis respectively.

  5. Analysis of a prototype of a novel 1.5 MW, 170 GHz coaxial cavity gyrotron

    International Nuclear Information System (INIS)

    Rzesnicki, T.

    2007-06-01

    A 170 GHz, 2 MW coaxial cavity gyrotron is under development at the Institut fuer Hochleistungsimpuls- und Mikrowellentechnik (IHM) at Forschungszentrum Karlsruhe (FZK) which will be used as a high power microwave source for heating, current drive and stability control of plasmas in the International Thermonuclear Experimental Reactor (ITER). At frequencies above about 100 GHz the output power of conventional gyrotrons with cylindrical hollow waveguide cavities is limited to 1 MW in CW operation mainly due to the high Ohmic losses and the space charge voltage depression of the electron beam. The coaxial geometry enables a reduction of the mode competition in the gyrotron resonator and decreases also the influence of the beam voltage depression. As result a very high order operating mode (for example TE34,19 at 170 GHz) can be chosen which ultimately allows to increase the output power of the gyrotron in CW operation to a value as high as 2 MW. A first prototype of the 170 GHz, 2 MW coaxial cavity gyrotron has been designed, built and experimentally tested in short pulse operation at FZK. The main goal of this work was to investigate experimentally the design of the critical gyrotron components such as electron gun, resonator and a quasi-optical RF system. Those components are same as used in the first industrial coaxial prototype gyrotron for ITER. During the experiments a strong instability was observed inside the gyrotron tube due to the excitation of parasitic low frequency oscillations. The mechanism of the oscillations has been studied and possibilities for their suppression of these oscillations are proposed and experimentally verified. The RF output system is one of the most critical components. It is responsible for the coupling of the gyrotron power out of the gyrotron by converting the microwave power generated in the TE 34,19 -mode into a fundamental free space TEM 0,0 ''Gaussian'' mode. The performance of the RF output system has been tested in low

  6. Research on a 170 GHz, 2 MW coaxial cavity gyrotron with inner-outer corrugation

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Shenyong, E-mail: houshenyong@sohu.com [Yangtze Normal University, Chongqing, 408001 (China); Yu, Sheng; Li, Hongfu [University of Electronics Science and Technology of China, Chengdu 610054 (China)

    2015-03-15

    In this paper, a coaxial cavity gyrotron with inner-outer corrugation is researched. The electron kineto-equations and the first order transmission line equations of the gyrotron are derived from Lorentz force equation and the transmission line theory, respectively. And then, a 2 MW, 170 GHz coaxial cavity gyrotron with inner-outer corrugation is designed. By means of numerical calculation, the beam-wave interaction of the coaxial cavity gyrotron with inner-outer corrugation is investigated. Results show that the efficient and the outpower of the gyrotron are 42.3% and 2.38 MW, respectively.

  7. Experimental study of a 1 MW, 170 GHz gyrotron oscillator

    Science.gov (United States)

    Kimura, Takuji

    A detailed experimental study is presented of a 1 MW, 170 GHz gyrotron oscillator whose design is consistent with the ECH requirements of the International Thermonuclear Experimental Reactor (ITER) for bulk heating and current drive. This work is the first to demonstrate that megawatt power level at 170 GHz can be achieved in a gyrotron with high efficiency for plasma heating applications. Maximum output power of 1.5 MW is obtained at 170.1 GHz in 85 kV, 50A operation for an efficiency of 35%. Although the experiment at MIT is conducted with short pulses (3 μs), the gyrotron is designed to be suitable for development by industry for continuous wave operation. The peak ohmic loss on the cavity wall for 1 MW of output power is calculated to be 2.3 kW/cm2, which can be handled using present cooling technology. Mode competition problems in a highly over-moded cavity are studied to maximize the efficiency. Various aspects of electron gun design are examined to obtain high quality electron beams with very low velocity spread. A triode magnetron injection gun is designed using the EGUN simulation code. A total perpendicular velocity spread of less than 8% is realized by designing a low- sensitivity, non-adiabatic gun. The RF power is generated in a short tapered cavity with an iris step. The operating mode is the TE28,8,1 mode. A mode converter is designed to convert the RF output to a Gaussian beam. Power and efficiency are measured in the design TE28,8,1 mode at 170.1 GHz as well as the TE27,8,1 mode at 166.6 GHz and TE29,8,1 mode at 173.5 GHz. Efficiencies between 34%-36% are consistently obtained over a wide range of operating parameters. These efficiencies agree with the highest values predicted by the multimode simulations. The startup scenario is investigated and observed to agree with the linear theory. The measured beam velocity ratio is consistent with EGUN simulation. Interception of reflected beam by the mod-anode is measured as a function of velocity ratio

  8. Development of MW gyrotrons for fusion devices by University of Tsukuba

    International Nuclear Information System (INIS)

    Minami, R.; Kariya, T.; Imai, T.; Numakura, T.; Endo, Y.; Nakabayashi, H.; Eguchi, T.; Shimozuma, T.; Kubo, S.; Yoshimura, Y.; Igami, H.; Takahashi, H.; Mutoh, T.; Ito, S.; Idei, H.; Zushi, H.; Yamaguchi, Y.; Sakamoto, Keishi; Mitsunaka, Y.

    2012-11-01

    Over-1 MW power gyrotrons for electron cyclotron heating (ECH) have been developed in the joint program of NIFS and University of Tsukuba. The obtained maximum outputs are 1.9 MW for 0.1 s on the 77 GHz Large Helical Device (LHD) tube and 1.0 MW for 1 ms on the 28 GHz GAMMA 10 one, which are new records in these frequency ranges. In long pulse operation, 300 kW for 40 min at 77 GHz and 540 kW for 2 s at 28 GHz were achieved. A new program of 154 GHz 1 MW development has started for high density plasma heating in LHD and the first tube has been fabricated. These lower frequency tubes like 77 GHz or 28 GHz one are also important for advanced magnetic fusion devices, which use Electron Bernstein Wave (EBW) heating / current drive. As a next activity of 28 GHz gyrotron, we have already started the development of over-1.5 MW gyrotron and a new design study of 28 GHz / 35 GHz dual frequency gyrotron, which indicates the practicability of the multi-purpose gyrotron. (author)

  9. Development of frequency step tunable 1 MW gyrotron at 131 to 146.5 GHz

    Energy Technology Data Exchange (ETDEWEB)

    Samartsev, A.; Gantenbein, G.; Dammertz, G.; Illy, S.; Kern, S.; Leonhardt, W.; Schlaich, A.; Schmid, M.; Thumm, M., E-mail: andrey.samartsev@kit.edu [Karlsruhe Institute of Technology, Association EURATOM-KIT, Karlsruhe (Germany)

    2011-07-01

    Effective control of power absorption in tokamaks and stellarators could be achieved by the frequency tuning of ECH and CD power delivered by high-power gyrotrons. In this report some results of the development of a frequency tunable gyrotron with fused-silica Brewster window are presented. Excitation of several modes at 1 MW power level in the range of frequencies from 131 to 146.5 GHz is achieved. (author)

  10. Feasibility study of the EU home team on a 170 GHz 1 MW CW gyrotron for ECH on ITER

    International Nuclear Information System (INIS)

    Iatrou, C.T.; Kern, S.; Thumm, M.; Moebius, A.; Nickel, H.U.; Horajitra, P.; Wien, A.; Tran, T.M.; Bon Mardion, G.; Pain, M.; Tonon, G.

    1995-03-01

    The gyrotron system for ECH and burn control on ITER requires at least 50 MW of RF power at frequencies near 170 GHz operating in CW. To meet these requirements, high efficiency gyrotron tubes with ≥1 MW power output capability are necessary, as well as simple coupling to either a quasi-optical or waveguide transmission line. The paper reports the feasibility study on the design of an ITER-relevant gyrotron oscillator at 170 GHz, 1 MW CW employing a diode electron gun, an advanced internal quasi-optical converter, a cryogenically cooled single disk sapphire window, and a depressed potential collector. The operating mode selection and the cavity design is a compromise between many design constraints. (author) 18 figs., 6 tabs., 21 refs

  11. New results in development of MW output power gyrotrons for fusion systems

    International Nuclear Information System (INIS)

    Litvak, A.G.; Denisov, G.G.; Ilin, V.I.; Kurbatov, V.I.; Myasnikov, V.E.; Soluyanova, E.A.; Tai, E.M.; Usachev, S.V.; Zapevalov, V.E.

    2005-01-01

    The paper presents the latest achievements of the Russian gyrotron team in development of MW power gyrotrons for fusion installations. During two last years four new gyrotrons were designed and tested: a new version of 170 GHz gyrotron for ITER; multi-frequency (105-140 GHz) gyrotron for Asdex-Up, 84GHz gyrotron for LHD and 82.7 GHz gyrotron for SST-1. All these gyrotrons are equipped with diamond CVD windows and depressed collectors

  12. Design and operation of 140 GHz gyrotron oscillators for power levels up to 1 MW CW

    Energy Technology Data Exchange (ETDEWEB)

    Jory, H.; Bier, R.; Craig, L.J.; Felch, K.; Ives, L.; Lopez, N.; Spang, S.

    1986-12-01

    Varian has designed and tested 140 GHz gyrotron oscillators that have generated output powers of 100 kW CW and 200 kW for 1 ms pulses. Upcoming tubes will be designed to operate at power levels of 200 kW CW and ultimately up to 1 MW CW. The important design considerations which are addressed in the higher power tubes include the design of the electron gun, interaction circuit, and output window. These issues will be discussed and the results of the earlier 140 GHz gyrotron work at Varian will be summarized.

  13. Design and operation of 140 GHz gyrotron oscillators for power levels up to 1 MW CW

    International Nuclear Information System (INIS)

    Jory, H.; Bier, R.; Craig, L.J.; Felch, K.; Ives, L.; Lopez, N.; Spang, S.

    1986-12-01

    Varian has designed and tested 140 GHz gyrotron oscillators that have generated output powers of 100 kW CW and 200 kW for 1 ms pulses. Upcoming tubes will be designed to operate at power levels of 200 kW CW and ultimately up to 1 MW CW. The important design considerations which are addressed in the higher power tubes include the design of the electron gun, interaction circuit, and output window. These issues will be discussed and the results of the earlier 140 GHz gyrotron work at Varian will be summarized

  14. A 2 MW, 170 GHz coaxial cavity gyrotron - experimental verification of the design of main components

    Energy Technology Data Exchange (ETDEWEB)

    Piosczyk, B [Forschungszentrum Karlsruhe, Association EURATOM-FZK, Institut fuer Hochleistungsimpuls- und Mikrowellentechnik (IHM), Postfach 3640, D-76021 Karlsruhe (Germany); Dammertz, G [Forschungszentrum Karlsruhe, Association EURATOM-FZK, Institut fuer Hochleistungsimpuls- und Mikrowellentechnik (IHM), Postfach 3640, D-76021 Karlsruhe (Germany); Dumbrajs, O [Department of Engineering Physics and Mathematics, Helsinki University of Technology, Association EURATOM-TEKES, FIN-02150 Espoo (Finland)] (and others)

    2005-01-01

    A 2 MW, CW, 170 GHz coaxial cavity gyrotron is under development in cooperation between European Research Institutions (FZK Karlsruhe, CRPP Lausanne, HUT Helsinki) and the European tube industry (TED, Velizy, France). The design of critical components has recently been examined experimentally at FZK Karlsruhe with a short pulse ({approx} few ms) coaxial cavity gyrotron. This gyrotron uses the same cavity and the same quasioptical (q.o.) RF-output system as designed for the industrial prototype and a very similar electron gun.

  15. The 140 GHZ, 1 MW Gyrotron - Status and Recent Results

    Science.gov (United States)

    Gantenbein, G.; Dammertz, G.; Illy, S.; Kern, S.; Leonhardt, W.; Piosczyk, B.; Schmid, M.; Thumm, M.; Braune, H.; Erckmann, V.; Laqua, H. P.; Michel, G.; Kasparek, W.; Lechte, C.; Legrand, F.; Lievin, C.; Prinz, O.

    2009-04-01

    A 10 MW ECRH system is currently under construction for the stellarator W7-X which will be built up and operated by IPP in Greifswald, Germany. The present status of the complete system is reported in [1]. The RF power will be provided by 10 gyrotrons. A European collaboration has been established to develop and build the 10 gyrotrons each with an output power of 1 MW for continuous wave (CW) operation [2]. Nine gyrotrons are being manufactured by Thales Electron Devices (TED), Vélizy, France, one gyrotron was produced by CPI, Palo Alto, CA and passed the acceptance tests at IPP. The acceptance tests of the TED gyrotrons are performed at the test stand at FZK and on site at IPP. The first series tube yielded a total output power of 0.98 MW, with an efficiency of 31 % (without a single stage depressed collector) in short pulse operation and of 0.92 MW in pulses of 1800 s (efficiency of almost 45 % at a depression voltage of 29 kV) [3], The Gaussian mode output power was 0.91 MW. The RF power, measured in a calorimetric load at the end of a 25 m long quasi-optical transmission line with seven mirrors, was 0.87 MW. In this contribution typical results of the next series gyrotrons will be reported.

  16. Megawatt Power Level 120 GHz Gyrotrons for ITER Start-Up

    Energy Technology Data Exchange (ETDEWEB)

    Choi, E M; Marchewka, C; Mastovsky, I; Shapiro, M A; Sirigiri, J R; Temkin, R J [MIT - Plasma Science and Fusion Center, NW16-186, 167 Albany Street, Cambridge, MA 02139 (United States)

    2005-01-01

    We report operation of a 110 GHz gyrotron with 1.67 MW of output power measured in short pulses (3{mu}s) at an efficiency of 42% in the TE{sub 22,6} mode. We also present a preliminary design of a 1 MW, 120 GHz gyrotron for ITER start-up with an efficiency greater than 50%.

  17. Megawatt Power Level 120 GHz Gyrotrons for ITER Start-Up

    International Nuclear Information System (INIS)

    Choi, E M; Marchewka, C; Mastovsky, I; Shapiro, M A; Sirigiri, J R; Temkin, R J

    2005-01-01

    We report operation of a 110 GHz gyrotron with 1.67 MW of output power measured in short pulses (3μs) at an efficiency of 42% in the TE 22,6 mode. We also present a preliminary design of a 1 MW, 120 GHz gyrotron for ITER start-up with an efficiency greater than 50%

  18. RF Behavior of Cylindrical Cavity Based 240 GHz, 1 MW Gyrotron for Future Tokamak System

    Science.gov (United States)

    Kumar, Nitin; Singh, Udaybir; Bera, Anirban; Sinha, A. K.

    2017-11-01

    In this paper, we present the RF behavior of conventional cylindrical interaction cavity for 240 GHz, 1 MW gyrotron for futuristic plasma fusion reactors. Very high-order TE mode is searched for this gyrotron to minimize the Ohmic wall loading at the interaction cavity. The mode selection process is carried out rigorously to analyze the mode competition and design feasibility. The cold cavity analysis and beam-wave interaction computation are carried out to finalize the cavity design. The detail parametric analyses for interaction cavity are performed in terms of mode stability, interaction efficiency and frequency. In addition, the design of triode type magnetron injection gun is also discussed. The electron beam parameters such as velocity ratio and velocity spread are optimized as per the requirement at interaction cavity. The design studies presented here confirm the realization of CW, 1 MW power at 240 GHz frequency at TE46,17 mode.

  19. Experimental results for a 1.5 MW, 110 GHz gyrotron oscillator with reduced mode competition

    Science.gov (United States)

    Choi, E. M.; Marchewka, C. D.; Mastovsky, I.; Sirigiri, J. R.; Shapiro, M. A.; Temkin, R. J.

    2006-02-01

    A new result from a 110GHz gyrotron at MIT is reported with an output power of 1.67MW and an efficiency of 42% when operated at 97kV and 41A for 3μs pulses in the TE22,6 mode. These results are a major improvement over results obtained with an earlier cavity design, which produced 1.43MW of power at 37% efficiency. These new results were obtained using a cavity with a reduced output taper angle and a lower ohmic loss when compared with the earlier cavity. The improved operation is shown experimentally to be the result of reduced mode competition from the nearby TE19,7 mode. The reduced mode competition agrees well with an analysis of the startup scenario based on starting current simulations. The present results should prove useful in planning long pulse and CW versions of the 110GHz gyrotron.

  20. Experimental results for a 1.5 MW, 110 GHz gyrotron oscillator with reduced mode competition

    International Nuclear Information System (INIS)

    Choi, E.M.; Marchewka, C.D.; Mastovsky, I.; Sirigiri, J.R.; Shapiro, M.A.; Temkin, R.J.

    2006-01-01

    A new result from a 110 GHz gyrotron at MIT is reported with an output power of 1.67 MW and an efficiency of 42% when operated at 97 kV and 41 A for 3 μs pulses in the TE 22,6 mode. These results are a major improvement over results obtained with an earlier cavity design, which produced 1.43 MW of power at 37% efficiency. These new results were obtained using a cavity with a reduced output taper angle and a lower ohmic loss when compared with the earlier cavity. The improved operation is shown experimentally to be the result of reduced mode competition from the nearby TE 19,7 mode. The reduced mode competition agrees well with an analysis of the startup scenario based on starting current simulations. The present results should prove useful in planning long pulse and CW versions of the 110 GHz gyrotron

  1. Development of over 1 MW and multi-frequency gyrotrons for fusion

    International Nuclear Information System (INIS)

    Imai, T.; Kariya, T.; Minami, R.; Numakura, T.; Kato, T.; Endo, Y.; Ichimura, M.; Eguchi, T.; Mitsunaka, Y.; Shimozuma, T.; Kubo, S.; Takahashi, H.; Yoshimura, Y.; Igami, H.; Ito, S.; Mutoh, T.; Sakamoto, Keishi; Idei, H.; Zushi, H.; Nagasaki, K.; Sano, F.; Ono, M.

    2014-10-01

    The development of wide frequency range from 14 to 300 GHz of high power mega-watt gyrotron for fusion is in progress in University of Tsukuba. The strong development activity was carried out in collaboration with JAEA, NIFS, TETD and universities. Over-1 MW dual frequency gyrotron of new frequency range (14 – 35 GHz), where the reduction of diffraction loss and cathode optimization are quite important, has been developed for EC/EBW H and CD for GAMMA 10/PDX, QUEST, Heliotron J and NSTX-U. Output power of 1.25 MW at 28 GHz and estimated oscillation power of 1.2 MW at 35.45 GHz from the same tube have been achieved with the cathode angle improvement and two frequency window. This is the first demonstration of the over 1 MW dual-frequency operations in lower frequency, which contributes to the technology of wide band multi-frequency/multi-MW tube. The output power of 600 kW for 2 s at 28 GHz is also demonstrated. It is applied to the QUEST and has resulted higher EC-driven current than ever. As for higher frequency range, in the joint program of NIFS and Tsukuba for LHD ECH gyrotrons, a new frequency of 154 GHz has been successfully developed with a TE 28,8 cavity, which delivered 1.16 MW for 1 s and the total power of 4.4 MW to LHD plasma with other three 77 GHz tubes, which extended the LHD plasma to high T e region. All these gyrotron performances are new records in each frequency range. The sub-THz gyrotron development is also just begun in collaboration with JAEA for Demo-Reactor ECH system. (author)

  2. Status of the development of the EU 170 GHz/1 MW/CW gyrotron

    Energy Technology Data Exchange (ETDEWEB)

    Pagonakis, Ioannis Gr., E-mail: ioannis.pagonakis@kit.edu [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany); Albajar, Ferran [The European Joint Undertaking for ITER and The Development of Fusion Energy, Barcelona (Spain); Alberti, Stefano [École Polytechnique Fédérale de Lausanne, Centre de Recherches en Physique des Plasmas (CRPP), Lausanne (Switzerland); Avramidis, Konstantinos [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany); Bonicelli, Tullio [The European Joint Undertaking for ITER and The Development of Fusion Energy, Barcelona (Spain); Braunmueller, Falk [École Polytechnique Fédérale de Lausanne, Centre de Recherches en Physique des Plasmas (CRPP), Lausanne (Switzerland); Bruschi, Alex [Plasma Physics Institute, National Research Council of Italy, Milano (Italy); Chelis, Ioannis [School of Electrical and Computer Engineering, National Technical University of Athens (Greece); Cismondi, Fabio [The European Joint Undertaking for ITER and The Development of Fusion Energy, Barcelona (Spain); Gantenbein, Gerd [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany); Hermann, Virgile [Thales Electron Devices (TED), Vélizy-Villacoublay (France); Hesch, Klaus [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany); Hogge, Jean-Philippe [École Polytechnique Fédérale de Lausanne, Centre de Recherches en Physique des Plasmas (CRPP), Lausanne (Switzerland); Jelonnek, John; Jin, Jianbo; Illy, Stefan [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany); Ioannidis, Zisis C. [Faculty of Physics, National and Kapodistrian University of Athens (Greece); Kobarg, Thorsten [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany); and others

    2015-10-15

    The progress in the development of the European 170 GHz, 1 MW/CW gyrotron for electron cyclotron heating & current drive (ECH&CD) on ITER is reported. A continuous wave (CW) prototype is being manufactured by Thales Electron Devices (TED), France, while a short-pulse (SP) prototype gyrotron is in parallel under manufacture at Karlsruhe Institute of Technology (KIT), with the purpose of validating the design of the CW industrial prototype components. The fabrication of most of the sub-assemblies of the SP prototype has been completed. In a first step, an existing magnetron injection gun (MIG) available at KIT was used. Despite this non-ideal configuration, the experiments provided a validation of the design, substantiated by an excellent agreement with numerical simulations. The tube, operated without a depressed collector, is able to produce more than 1 MW of output power with efficiency in excess of 30%, as expected, and compatible with the ITER requirements.

  3. Experimental results and recent developments on the EU 2 MW 170 GHz coaxial cavity gyrotron for ITER

    Directory of Open Access Journals (Sweden)

    Thumm M. K.

    2012-09-01

    Full Text Available The European Gyrotron Consortium (EGYC is responsible for developing one set of 170 GHz mm-wave sources, in support of Europe’s contribution to ITER. The original plan of targeting a 2 MW coaxial gyrotron is currently under discussion, in view of essential delays and damages. This paper reports on the latest results and plans with regard to the two 2 MW gyrotron prototypes, the industrial prototype at CRPP’s CW test stand and a modular pre-prototype at KIT. The industrial prototype was delivered to CRPP end of September 2011 and reached an output power of 2 MW at an efficiency of 45 % and with good RF beam pattern, in only four days of short pulse RF test. These results validated all design changes made in reaction to the results of the experiments in 2008. On the fifth experimental day, an internal absorber broke, terminating any further experiment with this tube. In parallel, design and experimental activities at KIT went on, in particular featuring reduced stray radiation down to 4% of the RF power. Next years’ plans for the 2 MW modular pre-prototype foresee a stepwise increase of pulse length.

  4. 2 MW 110 GHz ECH heating system for DIII-D

    International Nuclear Information System (INIS)

    Moeller, C.; Prater, R.; Callis, R.; Remsen, D.; Doane, J.; Cary, W.; Phelps, R.; Tupper, M.

    1990-09-01

    A 2 MW 110 GHz ECH system using Varian 0.5 MW gyrotrons is under construction for use on the DIII-D tokamak by late 1991. Most of the components are being design and fabricated at General Atomics, including the gyrotron tanks, superconducting magnets, and transmission line. These components are intended for operation with 10 second pulses and, in the future, with 1 MW gyrotrons. 6 refs., 5 figs

  5. Gyrotron development at KIT: FULGOR test facility and gyrotron concepts for DEMO

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, M., E-mail: martin.schmid@kit.edu [Institute for Pulsed Power and Microwave Technology (IHM), Karlsruhe Institute of Technology, Association EURATOM-KIT, Karlsruhe (Germany); Franck, J.; Kalaria, P.; Avramidis, K.A.; Gantenbein, G.; Illy, S. [Institute for Pulsed Power and Microwave Technology (IHM), Karlsruhe Institute of Technology, Association EURATOM-KIT, Karlsruhe (Germany); Jelonnek, J. [Institute for Pulsed Power and Microwave Technology (IHM), Karlsruhe Institute of Technology, Association EURATOM-KIT, Karlsruhe (Germany); Institute of High Frequency Techniques and Electronics (IHE), Karlsruhe Institute of Technology, Association EURATOM-KIT, Karlsruhe (Germany); Pagonakis, I. Gr.; Rzesnicki, T. [Institute for Pulsed Power and Microwave Technology (IHM), Karlsruhe Institute of Technology, Association EURATOM-KIT, Karlsruhe (Germany); Thumm, M. [Institute for Pulsed Power and Microwave Technology (IHM), Karlsruhe Institute of Technology, Association EURATOM-KIT, Karlsruhe (Germany); Institute of High Frequency Techniques and Electronics (IHE), Karlsruhe Institute of Technology, Association EURATOM-KIT, Karlsruhe (Germany)

    2015-10-15

    Highlights: • Substantial extension of the KIT gyrotron test facility FULGOR has started. • FULGOR will be able to test gyrotrons with continuous RF output power up to 4 MW. • Design of 240 GHz gyrotrons for efficient electron cyclotron current drive is progressing. • Output power of 240 GHz gyrotrons with conventional cavity up to 830 kW, with coaxial cavity up to 2 MW is feasible. • Multi-frequency operation with gyrotrons is also possible (170–267 GHz). - Abstract: At the Karlsruhe Institute of Technology (KIT), theoretical and experimental foundations for the development of future gyrotrons for fusion applications are being laid down. This includes the construction of the new Fusion Long Pulse Gyrotron Laboratory (FULGOR) test facility as well as physical design studies towards DEMO-compatible gyrotrons. Initially FULGOR will comprise of a 10 MW CW power supply, a 5 MW water cooling system (upgradeable to 10 MW), a superconducting 10 T magnet, one or two 2 MW ECRH test loads and a new control and data acquisition system for all these elements. The test facility will then be equipped to test the conventional 1 MW or coaxial 2 MW gyrotrons for DEMO, currently under design, as well as possible upgraded gyrotrons for W7-X and ITER. The design of the new high voltage DC power supply (HVDCPS) is flexible enough to handle gyrotrons with 4 MW CW output power (conceivably up to 170 GHz), but also test gyrotrons with higher frequencies (>250 GHz) which, due to physical limitations in the gyrotron design, will require less power but have more stringent demands on voltage stability.

  6. Development of over-1 MW gyrotrons for the LHD and the GAMMA 10 ECH systems

    International Nuclear Information System (INIS)

    Imai, T.; Kariya, T.; Minami, R.

    2010-11-01

    For the ECH upgrade program of LHD and GAMMA10, over-1 MW power gyrotrons have been developed in the joint program of NIFS and University of Tsukuba. The gyrotrons for LHD and GAMMA 10 have TE 18,6 cavity and a diamond window at 77 GHz, and with TE 8,3 cavity at 28 GHz, respectively. The maximum outputs obtained are 1.9 MW for 0.1 s on the 77 GHz LHD tube and ∼ 1 MW on the 28 GHz one, which are the new records in these frequency ranges. The results of 1.8 MW for 1 s, 1.6 MW for 1.8s, 1 MW for 5 s, 300 kW for 40 min and 200 kW for 75 min were achieved at 77 GHz. In the long pulse operation, it is found that the stray RF is the major cause limiting the pulse length. Design improvements of the diffraction loss, the cavity and pitch factor α (=v sub(perpendicular)/v sub(parallel)) dispersion of the MIG have made the 77 GHz tube performance better, which have enabled to demonstrate 1.9 MW output and long pulse operation for more than 1 hour with 200 kW. The three 77 GHz gyrotrons have already been installed in the LHD ECH system and more than 3 MW has been injected into LHD plasma. In the 28 GHz long pulse operation, 400 kW for 1 sec has been obtained and it is found the higher and longer pulse operation would be possible with the operation optimization and conditioning. (author)

  7. Electron gun simulation for 95 GHz gyrotron

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Udaybir; Kumar, Nitin; Sinha, A.K., E-mail: uday.ceeri@gmail.com, E-mail: aksinha@ceeri.ernet.in [Gyrotron Laboratory, Microwave Tube Area, Central Electronics Engineering Research Institute, Pilani (India); Purohit, L.P. [Department of Physics, Gurukul Kangri Vishwavidyalaya, Haridwar (India)

    2011-07-01

    A triode type Magnetron Injection Gun (MIG) for a 2 MW, 95 GHz Gyrotron has been designed by using commercially available code EGUN and another in-house developed code MIGANS. The operating mode of the gyrotron is TE{sub 24.8} and it is operated in the fundamental harmonic. The operating voltages of the modulating anode and the accelerating anode are 61 kV and 85 kV respectively. The parametric dependences of modulating anode voltage and cathode magnetic field on the beam quality have also been studied. (author)

  8. Electron gun simulation for 95 GHz gyrotron

    International Nuclear Information System (INIS)

    Singh, Udaybir; Kumar, Nitin; Sinha, A.K.; Purohit, L.P.

    2011-01-01

    A triode type Magnetron Injection Gun (MIG) for a 2 MW, 95 GHz Gyrotron has been designed by using commercially available code EGUN and another in-house developed code MIGANS. The operating mode of the gyrotron is TE 24.8 and it is operated in the fundamental harmonic. The operating voltages of the modulating anode and the accelerating anode are 61 kV and 85 kV respectively. The parametric dependences of modulating anode voltage and cathode magnetic field on the beam quality have also been studied. (author)

  9. The DIII-D 3 MW, 110 GHz ECH System

    International Nuclear Information System (INIS)

    Callis, R.W.; Lohr, J.; Ponce, D.; O'Neill, R.C.; Prater, R.; Luce, T.C.

    1999-01-01

    Three 110 GHz gyrotrons with nominal output power of 1 MW each have been installed and are operational on the DIII-D tokamak. One gyrotron is built by Gycom and has a nominal rating of 1 MW and a 2 s pulse length, with the pulse length being determined by the maximum temperature allowed on the edge cooled Boron Nitride window. The second and third gyrotrons were built by Communications and Power Industries (CPI). The first CPI gyrotron uses a double disc FC-75 cooled sapphire window which has a pulse length rating of 0.8 s at 1 MW, 2s at 0.5 MW and 10s at 0.35 MW. The second CPI gyrotron, utilizes a single disc chemical-vapor-deposition diamond window, that employs water cooling around the edge of the disc. Calculation predict that the diamond window should be capable of full 1 MW cw operation. All gyrotrons are connected to the tokamak by a low-loss-windowless evacuated transmission line using circular corrugated waveguide for propagation in the HEl 1 mode. Each waveguide system incorporates a two mirror launcher which can steer the rf beam poloidally from the center to the outer edge of the plasma. Central current drive experiments with the two gyrotrons with 1.5 MW of injected power drove about 0.17 MA. Results from using the three gyrotron systems will be reported as well as the plans to upgrade the system to 6 MW

  10. Velocity diagnostics of electron beams within a 140 GHz gyrotron

    International Nuclear Information System (INIS)

    Polevoy, J.T.

    1989-06-01

    Experimental measurements of the average axial velocity v parallel of the electron beam within the M.I.T. 140 GHz MW gyrotron have been performed. The method involves the simultaneous measurement of the radial electrostatic potential of the electron beam V p and the beam current I b . V p is measured through the use of a capacitive probe installed near or within the gyrotron cavity, while I b is measured with a previously installed Rogowski coil. Three capacitive probes have been designed and built, and two have operated within the gyrotron. The probe results are repeatable and consistent with theory. The measurements of v parallel and calculations of the corresponding transverse to longitudinal beam velocity ratio α = v perpendicular /v parallel at the cavity have been made at various gyrotron operation parameters. These measurements will provide insight into the causes of discrepancies between theoretical rf interaction efficiencies and experimental efficiencies obtained in experiments with the M.I.T. 140 GHz MW gyrotron. The expected values of v parallel and α are determined through the use of a computer code entitled EGUN. EGUN is used to model the cathode and anode regions of the gyrotron and it computes the trajectories and velocities of the electrons within the gyrotron. There is good correlation between the expected and measured values of α at low α, with the expected values from EGUN often falling within the standard errors of the measured values. 10 refs., 29 figs., 2 tabs

  11. Velocity diagnostics of electron beams within a 140 GHz gyrotron

    Science.gov (United States)

    Polevoy, Jeffrey Todd

    1989-06-01

    Experimental measurements of the average axial velocity v(sub parallel) of the electron beam within the M.I.T. 140 GHz MW gyrotron have been performed. The method involves the simultaneous measurement of the radial electrostatic potential of the electron beam V(sub p) and the beam current I(sub b). The V(sub p) is measured through the use of a capacitive probe installed near or within the gyrotron cavity, while I(sub b) is measured with a previously installed Rogowski coil. Three capacitive probes have been designed and built, and two have operated within the gyrotron. The probe results are repeatable and consistent with theory. The measurements of v(sub parallel) and calculations of the corresponding transverse to longitudinal beam velocity ratio (alpha) = v(sub perpendicular)/v(sub parallel) at the cavity have been made at various gyrotron operation parameters. These measurements will provide insight into the causes of discrepancies between theoretical RF interaction efficiencies and experimental efficiencies obtained in experiments with the M.I.T. 140 GHz MW gyrotron. The expected values of v(sub parallel) and (alpha) are determined through the use of a computer code (EGUN) which is used to model the cathode and anode regions of the gyrotron. It also computes the trajectories and velocities of the electrons within the gyrotron. There is good correlation between the expected and measured values of (alpha) at low (alpha), with the expected values from EGUN often falling within the standard errors of the measured values.

  12. Numerical Simulation of a Double-anode Magnetron Injection Gun for 110 GHz, 1 MW Gyrotron

    Science.gov (United States)

    Singh, Udaybir; Kumar, Nitin; Purohit, L. P.; Sinha, Ashok K.

    2010-07-01

    A 40 A double-anode magnetron injection gun for a 1 MW, 110 GHz gyrotron has been designed. The preliminary design has been obtained by using some trade-off equations. The electron beam analysis has been performed by using the commercially available code EGUN and the in-house developed code MIGANS. The operating mode of the gyrotron is TE22,6 and it is operated in the fundamental harmonic. The electron beam with a low transverse velocity spread ( δ {β_{ bot max }} = 2.26% ) and the transverse-to-axial velocity ratio of the electron beam (α) = 1.37 is obtained. The simulated results of the MIG obtained with the EGUN code have been validated with another trajectory code TRAK. The results on the design output parameters obtained by both the codes are in good agreement. The sensitivity analysis has been carried out by changing the different gun parameters to decide the fabrication tolerance.

  13. The 110 GHz Gyrotron System on DIII-D: Gyrotron Tests and Physics Results

    International Nuclear Information System (INIS)

    Lohr, J.; Calahan, P.; Callis, R.W.

    1999-01-01

    The DIII-D tokamak has installed a system with three gyrotrons at the 1 MW level operating at 110 GHz. Physics experiments on electron cyclotron current drive, heating, and transport have been performed. Good efficiency has been achieved both for on-axis and off-axis current drive with relevance for control of the current density profile leading to advanced regimes of tokamak operation, although there is a difference between off-axis ECCD efficiency inside and outside the magnetic axis. Heating efficiency is excellent and electron temperatures up to 10 keV have been achieved. The gyrotron system is versatile, with poloidal scan and control of the polarization of the injected rf beam. Phase correcting mirrors form a Gaussian beam and focus it into the waveguide. Both perpendicular and oblique launch into the tokamak have been used. Three different gyrotron designs are installed and therefore unique problems specific to each have been encountered, including parasitic oscillations, mode hops during modulation and polarization control problems. Two of the gyrotrons suffered damage during operations, one due to filament failure and one due to a vacuum leak. The repairs and subsequent testing will be described. The transmission system uses evacuated, windowless waveguide and the three gyrotrons have output windows of three different materials. One gyrotron uses a diamond window and generates a Gaussian beam directly. The development of the system and specific tests and results from each of the gyrotrons will be presented. The DIII-D project has committed to an upgrade of the system, which will add three gyrotrons in the 1 MW class, all using diamond output windows, to permit operation at up to ten seconds per pulse at one megawatt output for each gyrotron

  14. High power, 140 GHz gyrotron

    International Nuclear Information System (INIS)

    Kreischer, K.E.; Temkin, R.J.; Mulligan, W.J.; MacCabe, S.; Chaplya, R.

    1982-01-01

    The design and construction of a pulsed 100 kW, 140 GHz gyrotron is described. Initial gyrotron operation is expected in early 1982. Advances in gyrotron theory have also been carried out in support of this experimental research. The application of gyrotrons to plasma diagnostics is also under investigation. (author)

  15. Development of 1 MW gyrotron and progress of ECH system for the GAMMA 10 tandem mirror in Tsukuba

    International Nuclear Information System (INIS)

    Imai, T.; Kariya, T.; Minami, R.; Shidara, H.; Endo, Y.; Harigae, M.; Nakamura, M.; Sakagoshi, Y.; Murofushi, N.; Ichimura, M.; Nakashima, Y.; Yoshikawa, M.; Yamaguchi, Y.; Sakamoto, Keishi; Kubo, S.; Shimozuma, T.; Mutoh, T.; Takahashi, H.; Mitsunaka, Y.

    2008-10-01

    High power gyrotrons with TE 4,2 cavity at 28 GHz and with TE 18,6 cavity and a diamond window at 77 GHz have been developed for GAMMA 10 and LHD in the joint program of NIFS and University of Tsukuba. The maximum outputs of 570 kW at 28 GHz and 1.1 MW at 77 GHz were obtained corresponding to each design. The operations of more than 750 kW for 5 sec. and 810 kW for 3.5 sec. were achieved in the developing tubes at 77 GHz, which is the first high power-long pulse result of the 77 GHz tube. The experimental simulation of the effect of the stray RF in the 28 GHz tube indicates the stray RF is the one of the major causes limiting gyrotron performance. The output of more than 1 MW with 40% oscillation efficiency is expected from the design of the next 28 GHz gyrotron for GAMMA 10. Installation of the polarizer in the transmission line enhanced the performance of the ECH system in GAMMA 10, that is the first result which clearly showed ∼100% X mode excitation is a key to design the efficient fundamental ECH system of strong field side injection in mirror devices. (author)

  16. Numerical Simulation of Single-anode and Double-anode Magnetron Injection Guns for 127.5 GHz 1 MW Gyrotron

    Science.gov (United States)

    Singh, Udaybir; Kumar, Nitin; Kumar, Anil; Purohit, Laxmi Prasad; Sinha, Ashok Kumar

    2011-07-01

    This paper presents the design of two types of magnetron injection guns (MIG's) for 1 MW, 127.5 GHz gyrotron. TE24,8 mode has been chosen as the operating mode. In-house developed code MIGSYN has been used to estimate the initial gun parameters. The electron trajectory tracing program EGUN and in-house developed code MIGANS have been used to optimize the single-anode and the double-anode design for 80 kV, 40 A MIG. The parametric analysis of MIG has also been presented. The advantages and the disadvantages of each kind of configuration have been critically examined.

  17. Circuit design and simulation of a HV-supply controlling the power of 140 GHz 1 MW gyrotrons for ECRH on W7-X

    International Nuclear Information System (INIS)

    Brand, P.; Mueller, G.A.

    2003-01-01

    For plasma heating by ECR in the Stellarator W7-X under construction, 140 GHz gyrotrons with 1 MW cw output power are under development. These tubes have a voltage depressed collector for electron energy recovery. Each gyrotron is fed by two high-voltage sources: a high-power supply for driving the electron beam and a precision low-power supply for beam acceleration. In addition, a protection system with a thyratron crowbar for fast power removal in case of gyrotron arcing is installed. The low-power high-voltage source for beam acceleration is realized by a high-voltage servo-amplifier driving the depression voltage such that the influence of the voltage noise of the main high-power supply on the acceleration voltage is suppressed by feed-back control of the amplifier. Design and simulation of the servo-amplifier by PSpice is presented

  18. Design considerations in achieving 1 MW CW operation with a whispering-gallery-mode gyrotron

    International Nuclear Information System (INIS)

    Felch, K.; Feinstein, J.; Hess, C.; Huey, H.; Jongewaard, E.; Jory, H.; Neilson, J.; Pendleton, R.; Pirkle, D.; Zitelli, L.

    1989-09-01

    Varian is developing high-power, CW gyrotrons at frequencies in the range 100 GHz to 150 GHz, for use in electron cyclotron heating applications. Early test vehicles have utilized a TE 15,2,1 interaction cavity, have achieved short-pulse power levels of 820 kW and average power levels of 80 kW at 140 GHz. Present tests are aimed at reaching 400 kW under CW operating conditions and up to 1 MW for short pulse durations. Work is also underway on modifications to the present design that will enable power levels of up to 1 MW CW to be achieved. 7 refs., 2 figs

  19. Recent result of gyrotron operation in NIFS

    Directory of Open Access Journals (Sweden)

    Ito Satoshi

    2015-01-01

    Full Text Available In the last Large Helical Device (LHD experimental campaign, a 154GHz gyrotron which had been conditioned to generate 1 MW/2 s, 0.5 MW/CW was installed for LHD experiments. Four high power gyrotrons (three-77 GHz/1~1.5 MW and one-154 GHz/1 MW and a CW gyrotron (84 GHz/0.2 MW are ready. Our experiment requires high energy and various injection patterns for Electron Cyclotron Resonance Heating (ECRH. Higher individual injection power and various injection patterns, we developed a power enhancement method by stepped anode acceleration voltage control and operated the gyrotron in the hard excitation region. These operations were realized by a remote controlled waveform generator. However the oscillation map of high power or long pulse operation in the hard excitation region were limited because in order to achieve the hard excitation region by the anode voltage control one must pass through the high anode current phase within a time short enough that the anode or the anode power supply is not overloaded. This limitation becomes more critical when the gyrotron beam current is increased in order to increase the output power. In the long pulse operation it was impossible to reach the hard excitation region in a low beam current (<10A.

  20. Three-dimensional simulation of triode-type MIG for 1 MW, 120 GHz gyrotron for ECRH applications

    Science.gov (United States)

    Singh, Udaybir; Kumar, Nitin; Kumar, Narendra; Kumar, Anil; Sinha, A. K.

    2012-01-01

    In this paper, the three-dimensional simulation of triode-type magnetron injection gun (MIG) for 120 GHz, 1 MW gyrotron is presented. The operating voltages of the modulating anode and the accelerating anode are 57 kV and 80 kV respectively. The high order TE 22,6 mode is selected as the operating mode and the electron beam is launched at the first radial maxima for the fundamental beam-mode operation. The initial design is obtained by using the in-house developed code MIGSYN. The numerical simulation is performed by using the commercially available code CST-Particle Studio (PS). The simulated results of MIG obtained by using CST-PS are validated with other simulation codes EGUN and TRAK, respectively. The results on the design output parameters obtained by using these three codes are found to be in close agreement.

  1. 110GHz-500kW long-pulse gyrotron with built-in quasi-optical mode converter

    International Nuclear Information System (INIS)

    Sakamoto, Keishi; Kariya, Tsuyoshi; Hayashi, Ken-ichi.

    1994-01-01

    We have designed, fabricated, and tested a 110 GHz-500 kW long-pulse gyrotron. The gyrotron incorporates a quasi-optical mode converter which transforms the oscillation mode, TE 22,2 , into a Gaussian radiation beam. The adoption of a built-in mode converter enabled us to design the electron beam collector so as to be capable of tolerating a 2 MW heat load. Attention was also paid to designing the gyrotron cavity and output window so as to permit long-pulse operations. In an experiment, we observed a maximum output power of 550 kW and achieved 1.3 s operation at a power level of 410 kW. (author)

  2. Experimental measurements on a 100 GHz frequency tunable quasioptical gyrotron

    International Nuclear Information System (INIS)

    Alberti, S.; Tran, M.Q.; Hogge, J.P.; Tran, T.M.; Bondeson, A.; Muggli, P.; Perrenoud, A.; Joedicke, B.; Mathews, H.G.

    1990-01-01

    Experiments on a 100 GHz quasioptical (QO) gyrotron operating at the fundamental (ω=Ω ce ) are described. Powers larger than 90 kW at an efficiency of about 12% were achieved. Depending on the electron beam parameters, the frequency spectrum of the output can be either single moded or multimoded. One of the main advantages of the QO gyrotron over the conventional gyrotron is its continuous frequency tunability. Various techniques to tune the output frequency have been tested, such as changing the mirror separation, the beam voltage, or the main magnetic field. Within the limitations of the present setup, 5% tunability was achieved. The QO gyrotron designed for operation at the fundamental frequency exhibits simultaneous emission at 100 GHz (fundamental) and 200 GHz (second harmonic). For a beam current of 4 A, 20% of the total rf power is emitted at the second harmonic

  3. Recent operating experience with Varian 70 GHz and 140 GHz gyrotrons

    International Nuclear Information System (INIS)

    Felch, K.; Bier, R.; Fox, L.; Huey, H.; Ives, L.; Jory, H.; Lopez, N.; Shively, J.; Spang, S.

    1985-01-01

    The design features and initial test results of Varian 70 GHz and 140 GHz CW gyrotrons are presented. The first experimental 140 GHz tube has achieved an output power of 102 kW at 24% efficiency under pulsed conditions in the desired TE 031 0 cavity mode. Further tests aimed at achieving the design goal of 100 kW CW are currently underway. The 70 GHz tube has achieved an output power of 200 kW under pulsed conditions and possesses a wide dynamic range for output power variations. 6 refs., 8 figs

  4. Cold test measurements on components of the 1 MW, 140 GHz, CW gyrotron for the stellarator Wendelstein 7-X

    International Nuclear Information System (INIS)

    Dammertz, G.; Alberti, S.; Arnold, A.; Giguet, E.; LeGoff, Y.; Thumm, M.

    2001-01-01

    For the development of a 1 MW, 140 GHz gyrotron for CW operation which will be installed at the stellarator facility Wendelstein 7-X at IPP Greifswald, a collaboration between different European research institutes and an industrial company has been established. In order to prove the proper functioning of the millimeter wave components installed in the gyrotron -- such as the cavity, the waveguide taper and the quasioptical mode converter -- these components should be cold tested, preferably before installation. However, due to lack of time as well as long delivery times, this was not possible. Therefore, two units of the quasioptical mode converter and the cavity were fabricated with identical geometry, one of those being used for measurements on the low power test device. To perform these cold tests for tapers and mode converters, the gyrotron cavity output mode has to be simulated. This means that a high order rotating mode (TE 28,8 mode) must be generated at low power. This can be achieved by means of a mode generator consisting of two mirrors and a coaxial cavity with a perforated outer wall. Before applying the mode generator to the components, its proper behavior and the accurate alignment of the system must be verified either by radiation pattern measurements or k-spectrometer measurements. As the coupling through the holes of the k-spectrometer is extremely low, a special vector network analyzer with a dynamic range of at least 100 dB had to be developed. This has been achieved by integration of a phase locked backward-wave oscillator with a line width of 100 Hz and an output power of 10 mW. A non-destructive measurement of the resonance frequency and the quality factor of the cavity does not seem possible. The second cavity will be prepared for the cold measurement by drilling a small radial hole into its wall in the plane of the field maximum. This hole is then used for the input coupling. The accuracy required for this hole is rather critical. The

  5. Development of Gyrotron and JT-60U EC heating system for fusion reactor

    International Nuclear Information System (INIS)

    Sakamoto, K.; Kasugai, A.; Ikeda, Yo.

    2003-01-01

    The progress of ECH technology, for ITER and JT-60U tokamak, are presented. In the development of gyrotron, 0.9MW/9.2sec, 0.5MW/30sec, 0.3MW/60sec, etc. have been demonstrated at 170GHz. At 110GHz, 1.3MW/1.2sec, 1.2MW/4.1sec, 1MW/5sec were obtained. It is found that the reduction of the stray radiation and the enhancement of cooling capability are keys for CW operation. Four 110GHz gyrotrons are under operation in the ECH system of JT-60U. The power up to approximately 3MW/2.7sec was injected into the plasma through the poloidally movable mirrors, and contributed to the electron heating up to 26keV(n e ∼0.5x10 13 cm -3 ), and the suppression of the neo-classical tearing mode. (author)

  6. Development of gyrotron and JT-60U EC heating system for fusion reactor

    International Nuclear Information System (INIS)

    Sakamoto, K.; Kasugai, A.; Ikeda, Yo.

    2003-01-01

    The progress of ECH technology, for ITER and JT-60U tokamak, are presented. In the development of gyrotron, 0.9MW/9.2sec, 0.5MW/30sec, 0.3MW/60sec, etc. have been demonstrated at 170GHz. At 110GHz, 1.3MW/1.2sec, 1.2MW/4. 1sec. 1MW/5sec were obtained. It is found that the reduction of the stray radiation and the enhancement of cooling capability are keys for CW operation. Four 110GHz gyrotrons are under operation in the ECH system of JT-60U. The power up to approximately 3MW/2.7sec was injected into the plasma through the poloidally movable mirrors, and contributed to the electron heating up to 26keV(n e ∼0.5x10 13 cm -3 ), and the suppression of the neo-classical tearing mode. (author)

  7. Investigation on heat transfer analysis and its effect on a multi-mode, beam-wave interaction for a 140 GHz, MW-class gyrotron

    Science.gov (United States)

    Liu, Qiao; Liu, Yinghui; Chen, Zhaowei; Niu, Xinjian; Li, Hongfu; Xu, Jianhua

    2018-04-01

    The interaction cavity of a 140 GHz, 1 MW continuous wave gyrotron developed in UESTC will be loaded with a very large heat load in the inner surface during operation. In order to reduce the heat, the axial wedge grooves of the outside surface of the cavity are considered and employed as the heat radiation structure. Thermoanalysis and structural analysis were discussed in detail to obtain the effects of heat on the cavity. In thermoanalysis, the external coolant-flow rates ranging from 20 L/min to 50 L/min were considered, and the distribution of wall loading was loaded as the heat flux source. In structural analysis, the cavity's deformation caused by the loads of heat and pressure was calculated. Compared with a non-deformed cavity, the effects of deformation on the performance of a cavity were discussed. For a cold-cavity, the results show that the quality factor would be reduced by 72, 89, 99 and 171 at the flow rates of 50 L/min, 40 L/min, 30 L/min and 20 L/min, respectively. Correspondingly, the cold-cavity frequencies would be decreased by 0.13 GHz, 0.15 GHz, 0.19 GHz and 0.38 GHz, respectively. For a hot-cavity, the results demonstrate that the output port frequencies would be dropped down, but the offset would be gradually decreased with increasing coolant-flow rate. Meanwhile, the output powers would be reduced dramatically with decreasing coolant-flow rate. In addition, when the coolant-flow rate reaches 40 L/min, the output power and the frequency are just reduced by 30 kW and 0.151 GHz, respectively.

  8. First 200 kW CW operation of a 60 GHz gyrotron

    International Nuclear Information System (INIS)

    Jory, H.; Bier, R.; Evans, S.; Felch, K.; Fox, L.; Huey, H.; Shively, J.; Spang, S.

    1983-01-01

    The gyrotron is a microwave tube which employs the electron cyclotron maser interaction to produce high power output at millimeter wavelengths. It has important and growing applications for heating of plasmas in controlled thermonuclear fusion experiments. The Varian 60 GHz gyrotron has recently generated microwave power in excess of 200 kW during CW operation, wth excellent dynamic range and operating stability. This is the highest average power ever produced by a microwave tube in the millimeter wave region. A description of the gyrotron design and test results are presented

  9. Active heater control and regulation for the Varian VGT-8011 gyrotron

    International Nuclear Information System (INIS)

    Harris, T.E.

    1991-10-01

    The Varian VGT-8011 gyrotron is currently being used in the new 110 GHz 2 MW ECH system installed on D3-D. This new ECH system augments the 60 GHz system which uses Varian VA-8060 gyrotrons. The new 110 GHz system will be used for ECH experiments on D3-D with a pulse width capability of 10 sec. In order to maintain a constant RF outpower level during long pulse operation, active filament-heater control and regulation is required to maintain a constant cathode current. On past D3-D experiments involving the use of Varian VA-8060 gyrotrons for ECH power, significant gyrotron heater-emission depletion was experienced for pulse widths > 300 msec. This decline in heater-emission directly results in gyrotron-cathode current droop. Since RF power from gyrotrons decreases as cathode current decreases, it is necessary to maintain a constant cathode current level during gyrotron pulses for efficient gyrotron operation. Therefore, it was determined that a filament-heater control system should be developed for the Varian VGT-8011 gyrotron which will include cathode-current feed-back. This paper discusses the mechanisms used to regulate gyrotron filament-heater voltage by using cathode-current feed-back. 1 fig

  10. Efficient Low-Voltage Operation of a CW Gyrotron Oscillator at 233 GHz.

    Science.gov (United States)

    Hornstein, Melissa K; Bajaj, Vikram S; Griffin, Robert G; Temkin, Richard J

    2007-02-01

    The gyrotron oscillator is a source of high average power millimeter-wave through terahertz radiation. In this paper, we report low beam power and high-efficiency operation of a tunable gyrotron oscillator at 233 GHz. The low-voltage operating mode provides a path to further miniaturization of the gyrotron through reduction in the size of the electron gun, power supply, collector, and cooling system, which will benefit industrial and scientific applications requiring portability. Detailed studies of low-voltage operation in the TE(2) (,) (3) (,) (1) mode reveal that the mode can be excited with less than 7 W of beam power at 3.5 kV. During CW operation with 3.5-kV beam voltage and 50-mA beam current, the gyrotron generates 12 W of RF power at 233.2 GHz. The EGUN electron optics code describes the low-voltage operation of the electron gun. Using gun-operating parameters derived from EGUN simulations, we show that a linear theory adequately predicts the low experimental starting currents.

  11. A study of parametric instability in a harmonic gyrotron: Designs of third harmonic gyrotrons at 94 GHz and 210 GHz

    International Nuclear Information System (INIS)

    Saraph, G.P.; Antonsen, T.M. Jr.; Nusinovich, G.S.; Levush, B.

    1995-01-01

    Mode competition can present a major hurdle in achieving stable, efficient operation of a gyrotron at the cyclotron harmonics. A type of mode interaction in which three modes at different cyclotron harmonics are parametrically coupled together is analyzed here. This coupling can lead to parametric excitation or suppression of a mode; cyclic mode hopping; or the coexistence of three modes. Simulation results are presented for the parametric instability involving modes at the fundamental, second harmonic, and third harmonic of the cyclotron frequency. It is shown that the parametric excitation can lead to stable, efficient operation of a high-power gyrotron at the third harmonic. Based on this phenomenon, two practical designs are presented here for the third harmonic operation at 94 and 210 GHz. copyright 1995 American Institute of Physics

  12. Numerical Simulation of MIG for 42 GHz, 200 kW Gyrotron

    Science.gov (United States)

    Singh, Udaybir; Bera, Anirban; Kumar, Narendra; Purohit, L. P.; Sinha, Ashok K.

    2010-06-01

    A triode type magnetron injection gun (MIG) of a 42 GHz, 200 kW gyrotron for an Indian TOKAMAK system is designed by using the commercially available code EGUN. The operating voltages of the modulating anode and the accelerating anode are 29 kV and 65 kV respectively. The operating mode of the gyrotron is TE03 and it is operated in fundamental harmonic. The simulated results of MIG obtained with the EGUN code are validated with another trajectory code TRAK.

  13. Micro-pulses generation in ECR breakdown stimulated by gyrotron radiation at 37,5 GHz

    International Nuclear Information System (INIS)

    Skalyga, V.; Zorin, V.; Izotov, I.; Golubev, S.; Razin, S.; Sidorov, A.; Vodopyanov, A.

    2012-01-01

    The present work is devoted to experimental and theoretical investigation of the creation of short pulsed (< 100 μs) multicharged ion beams. The possibility of quasi-stationary generation of short pulsed beams under conditions of quasi-gasdynamic plasma confinement was shown in recent experiments. Later another way of such beams creation based on the Pre-glow effect was proposed. In present work it was demonstrated that in the case when duration of microwave (MW) pulse is less than formation time of Pre-glow peak, realization of a regime when ion current is negligible during MW pulse and intense multicharged ions flux appears only when MW ends could be possible. Such pulses after the end of MW were called micro-pulses. In the present work the generation of micro-pulses was observed in experiments with ECR discharge stimulated by gyrotron radiation at 37,5 GHz, 100 kW. In this case pulses with duration less than 30 μs were obtained. Probably the same effect was observed in GANIL where 14 GHz radiation was used and pulses with duration about 2 ms were registered. In present work it was shown that the intensity of such micro-pulse could be higher than intensity of Pre-glow peak at the same conditions but with longer MW pulse. The generation of micro-pulses of nitrogen and argon multicharged ions with current of a few mA and length about 30 μs after MW pulse with duration of 30-100 μs was demonstrated. The low level of impurities, high current density and rather high average charge make possible to consider such micro-pulse regime as a possibility for the creation of a short pulsed ion source. The paper is followed by the slides of the presentation. (authors)

  14. ITER ECFR Coaxial gyrotron and window development (EU-T360). Pt. 1: Coaxial gyrotron development. Final report

    International Nuclear Information System (INIS)

    Piosczyk, B.; Braz, O.; Dammertz, G.; Kuntze, G.; Michel, G.; Moebius, A.; Thumm, M.

    1999-02-01

    Based on the experience gained with the inverse magnetron injection gun (IMIG) for coaxial cavity gyrotrons, a new 4.5 MW electron gun for operation at a cathode voltage of 90 kV and a beam current of 50 A has been designed and is currently under fabrication at Thomson Tubes Electroniques (TTE). The gun is of the diode type. Different from the LaB 6 IMIG currently used, the emission of the electrons will not be directed towards the coaxial insert but towards the anode similar like in conventional MIG gyrotron electron guns. The inner conductor is supported from the gun inner conductor side and can be aligned in a reproducible way in the fully assembled tube. The insert is cooled as required for operation at long pulses up to cw. The cathode will be equipped with an impregnated tungsten matrix emitter as used in industrial tubes. A 160/170 GHz, 1.5 MW, 100 ms pulse length coaxial gyrotron employing the new electron gun and a single-stage depressed collector has been designed. The advanced quasi-optical converter for transforming the TE -31,17 cavity mode at 165 GHz into a single RF-output wave beam (only one output window) consists of a simple launcher and two mirrors. The first mirror is quasi-elliptical and the second mirror has a non-quadratic phase-correcting surface to generate an approximately homogeneous RF-field distribution with a high fundamental Gaussian content in the window plane. First test experiments with the new gyrotron have been performed employing the available LaB 6 -IMIG. (orig.)

  15. Quasi-optical internal mode converters for 110 GHz gyrotrons

    International Nuclear Information System (INIS)

    Harper, B.M.; Lorbeck, J.A.; Vernon, R.J.

    1995-01-01

    Many early gyrotrons had a microwave output in the same mode that was produced in the microwave cavity, e.g. the TE 02 mode. These modes were often converted outside of the tube to a more desirable mode for plasma heating using a system of perturbed-wall waveguide mode converters. The current generation of gyrotrons commonly have cavity modes with a high azimuthal index, such as the rotating TE 22,6 mode. Mode conversion by means of waveguide mode converters is not usually practical for such cases. However, an output of a Gaussian beam or other desirable field pattern can be obtained by using a Vlasov-type launcher feeding a series of two or more reflectors. This system may be placed outside or inside of the gyrotron but there are advantages to placing it within the tube, e.g. allowing for a larger collector and smaller reflectors. When such a converter system is placed inside the gyrotron, it is usually preferable to use a modification to the simple Vlasov launcher such as the Denisov-type launcher, which incorporates a series of perturbations within it. The authors have designed both internal and external versions of such quasi-optical converters. They discuss an internal converter which was designed for use inside of a Varian 110 GHz gyrotron producing the TE 22,6 cavity mode. This design consists of four reflectors which are fed by a Denisov-type launcher. Design techniques for the reflector system are discussed and experimental results are presented

  16. Numerical Design of Megawatt Gyrotron with 120 GHz Frequency and 50% Efficiency for Plasma Fusion Application

    Science.gov (United States)

    Kumar, Nitin; Singh, Udaybir; Kumar, Anil; Bhattacharya, Ranajoy; Singh, T. P.; Sinha, A. K.

    2013-02-01

    The design of 120 GHz, 1 MW gyrotron for plasma fusion application is presented in this paper. The mode selection is carried out considering the aim of minimum mode competition, minimum cavity wall heating, etc. On the basis of the selected operating mode, the interaction cavity design and beam-wave interaction computation are carried out by using the PIC code. The design of triode type Magnetron Injection Gun (MIG) is also presented. Trajectory code EGUN, synthesis code MIGSYN and data analysis code MIGANS are used in the MIG designing. Further, the design of MIG is also validated by using the another trajectory code TRAK. The design results of beam dumping system (collector) and RF window are also presented. Depressed collector is designed to enhance the overall tube efficiency. The design study confirms >1 MW output power with tube efficiency around 50% (with collector efficiency).

  17. Experimental investigation of plasma-neutralized operation of a gyrotron

    International Nuclear Information System (INIS)

    Kirkpatrick, D.A.; Sullivan, C.; Gold, S.H.; Manheimer, W.M.; Levush, B.; Antonsen, T.M.

    1989-01-01

    The authors present plans and preliminary results of an experiment to investigate the effects of a neutralizing background plasma on the operation of a gyrotron oscillator. Previous experiments operating without a neutralizing background plasma achieved output powers P = 100 - 250MW at a frequency f = 35 GHz, with beam voltages in the range V = 0.60 - 1.35MV, and beam currents I = 1 -3kA. A completely ionized plasma is injected into a gyrotron interaction region from an upstream array of plasma guns. The peak plasma density available from the plasma guns exceeds n p > 10 13 cm -3 . The plasma density is measured by 70 GHz microwave interferometry and Langmuir probes. A high current electron beam from a field emission electron gun enters the plasma-filled gyrotron cavity from the upstream side. The density of the neutralizing plasma is varied by changing the delay between the firing of plasma guns and the VEBA accelerator. The authors present measurements of the transmitted electron beam current. Subsequent design of a gyrotron oscillator which utilizes the enhanced capabilities are presented

  18. 110GHz ECH on DIII-D

    International Nuclear Information System (INIS)

    Cary, W.P.; Allen, J.C.; Callis, R.W.; Doane, J.L.; Harris, T.E.; Moetler, C.P.; Neren, A.; Prater, P.; Rensen, D.

    1992-01-01

    This paper reports on a new high power electron cyclotron heating (ECH) system which has been introduced on DIII-D. This system is designed to operate at 110 GHz with a total output power of 2 MW. The system consists of four Varian VGT-8011 gyrotrons (output power of 500 kW), and their associated support equipment. All components have been designed for up to a 10 second pulse duration. The 110 GHz system is intended to further progress in rf current drive experiments on DIII-D when used in conjunction with the existing 60 GHz ECH (1. 6 MW) , and the 30-60 MHz ICH (2MW) systems. H-mode physics, plasma stabilization experiments and transport studies are also to be conducted at 110 GHz

  19. Startup and mode competition in a 420 GHz gyrotron

    Science.gov (United States)

    Qixiang Zhao, A.; Sheng Yu, B.; Tianzhong Zhang, C.

    2017-09-01

    In the experiments of a 420 GHz second-harmonic gyrotron, it is found that the electron beam voltage and current ranges for single mode operation of TE17.4 are slightly narrower than those in the simulation. To explain this phenomenon, the startup scenario has been investigated with special emphasis on mode competition. The calculations indicate that the decreases of the operating ranges are caused by the voltage overshoot in the startup scenario.

  20. The MTX computer control system for the 400 kilowatt 140 Ghz gyrotron

    International Nuclear Information System (INIS)

    Jackson, M.C.; Ferguson, S.W.; Petersen, D.E.

    1992-01-01

    This paper reports on a 400 kilowatt, 140 Ghz gyrotron employed on MTX as a source of direct plasma heating and, additionally, as a driver for a free electron laser, which is used for plasma heating. The control system that operates this gyrotron uses a new graphics oriented software system called TACL (Thaumaturgic Automated Control Logic) developed by the Continuous Electron Beam Accelerator Facility (CEBAF) and owned by DOE. This control language does not require a software specialist, but is easily handled by the engineer or technician working on the system. All control logic and custom displays are entered via graphics oriented editors and no actual lines of code need to be written. The graphics displays make the gyrotron operation quite simple and allow individual users to define displays to meet their own needs or develop one for a specific set of tests to be run. The system, additionally, can be used for data logging functions, which have been found quite useful in tracking long term trends in vacion current and calorimetry of gyrotron cooling circuits

  1. Transmission Line for 258 GHz Gyrotron DNP Spectrometry

    Science.gov (United States)

    Bogdashov, Alexandr A.; Belousov, Vladimir I.; Chirkov, Alexey V.; Denisov, Gregory G.; Korchagin, Vyacheslav V.; Kornishin, Sergey Yu.; Tai, Evgeny M.

    2011-06-01

    We describe the design and test results of the transmission line for liquid-state (LS) and solid-state (SS) DNP spectrometers with the second-harmonic 258.6 GHz gyrotron at the Institute of the Biophysical Chemistry Center of Goethe University (Frankfurt). The 13-meter line includes a mode converter, HE11 waveguides, 4 mitre bends, a variable polarizer-attenuator, directional couplers, a water-flow calorimeter and a mechanical switch. A microwave power of about 15 W was obtained in the pure HE11 mode at the spectrometer inputs.

  2. The Use of a 28 GHz Gyrotron for EBW Startup Experiments on MAST

    Science.gov (United States)

    Caughman, J. B.; Bigelow, T. S.; Diem, S. J.; Peng, Y. K. M.; Rasmussen, D. A.; Shevchenko, V.; Hawes, J.; Lloyd, B.

    2009-11-01

    The use of electron Bernstein waves for non-inductive plasma current startup in MAST has recently been demonstrated [1]. The injection of 100 kW at 28 GHz generated plasma currents of up to 33 kA without the use of solenoid flux, and limited solenoid assist resulted in up to 55 kA of plasma current. A higher power 28 GHz gyrotron, with power levels of up to 300 kW for 0.5 seconds, is currently being commissioned. It is being used to investigate the scaling of startup current with microwave power and power profile as a function of time. Power modulation experiments are also being explored. Gyrotron performance and experimental results will be presented. [4pt] [1] V. Shevchenko, et al., Proceedings of the 15^th Joint Workshop on ECE and ECRH, Yosimite, USA, p. 68 (2009)

  3. The first preliminary experiments on an 84 GHz gyrotron with a single-stage depressed collector

    International Nuclear Information System (INIS)

    Shimozuma, T.; Sato, M.; Takita, Y.

    1997-10-01

    We fabricated and tested an 84GHz gyrotron with a single-stage depressed collector. The gyrotron has a high-voltage insulating section made of a low loss silicon nitride composite. In this preliminary experiment in the depressed collector configuration, we obtained 591kW, 41% operation with a depression voltage of 22.5kV. Access to the higher efficiency region was inhibited by an increase in anode current. (author)

  4. The MTX computer control system for the 400 kilowatt 140 GHz gyrotron

    International Nuclear Information System (INIS)

    Jackson, M.C.; Ferguson, S.W.; Petersen, D.E.

    1991-09-01

    A 400 kilowatt, 140 Ghz gyrotron is employed on MTX as a source of direct plasma heating and, additionally, as a driver for a free electron laser, which is used for plasma heating. The control system that operates this gyrotron uses a new graphics oriented software system called TACL (Thaumaturgic Automated Control Logic) developed by the Continuous Electron Beam Accelerator Facility (CEBAF) and owned by DOE. This control language does not require a software specialist, but is easily handled by the engineer or technician working on the system. All control logic and custom displays are entered via graphics oriented editors and no actual lines of code need to be written. The graphics displays make the gyrotron operation quite simple and allow individual users to define displays to meet their own needs or develop one for a specific set of tests to be run. The system, additionally, can be used for logging functions, which have been found quite useful in tracking long term trends in vacion current and calorimetry of gyrotron cooling circuits. The system is composed of one computer (HP 9000 series 300) controlling multiple CAMAC crates located at the various components used in the system. A second series 300 computer is used as a supervisor and is located in the main tokamak control room. This supervisory computer provides remote operation of the gyrotron, and also provides a link to the microwave transport vacuum control (also TACL). The supervisory computer, additionally, is used as a subsystem status summary point for permissives to the gyrotron control system

  5. Design and simulation of a ~390 GHz seventh harmonic gyrotron using a large orbit electron beam

    Science.gov (United States)

    Li, Fengping; He, Wenlong; Cross, Adrian W.; Donaldson, Craig R.; Zhang, Liang; Phelps, Alan D. R.; Ronald, Kevin

    2010-04-01

    A ~390 GHz harmonic gyrotron based on a cusp electron gun has been designed and numerically modelled. The gyrotron operates at the seventh harmonic of the electron cyclotron frequency with the beam interacting with a TE71 waveguide mode. Theoretical as well as numerical simulation results using the 3D particle-in-cell code MAGIC are presented. The cusp gun generated an axis-encircling, annular shaped electron beam of energy 40 keV, current 1.5 A with a velocity ratio α of 3. Smooth cylindrical waveguides have been studied as the interaction cavities and their cavity Q optimized for 390 GHz operation. In the simulations ~600 W of output power at the design frequency has been demonstrated.

  6. Numerical design and analysis of parasitic mode oscillations for 95 GHz gyrotron beam tunnel

    Science.gov (United States)

    Kumar, Nitin; Singh, Udaybir; Yadav, Vivek; Kumar, Anil; Sinha, A. K.

    2013-05-01

    The beam tunnel, equipped with the high lossy ceramics, is designed for 95 GHz gyrotron. The geometry of the beam tunnel is optimized considering the maximum RF absorption (ideally 100%) and the suppression of parasitic oscillations. The excitation of parasitic modes is a concerning problem for high frequency, high power gyrotrons. Considering the problem of parasitic mode excitation in beam tunnel, a detail analysis is performed for the suppression of these kinds of modes. Trajectory code EGUN and CST Microwave Studio are used for the simulations of electron beam trajectory and electromagnetic analysis, respectively.

  7. Design and simulation of a {approx}390 GHz seventh harmonic gyrotron using a large orbit electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Li Fengping; He Wenlong; Cross, Adrian W; Donaldson, Craig R; Zhang Liang; Phelps, Alan D R; Ronald, Kevin, E-mail: Fengping.li@strath.ac.u [SUPA, Department of Physics, University of Strathclyde, Glasgow, G4 0NG (United Kingdom)

    2010-04-21

    A {approx}390 GHz harmonic gyrotron based on a cusp electron gun has been designed and numerically modelled. The gyrotron operates at the seventh harmonic of the electron cyclotron frequency with the beam interacting with a TE{sub 71} waveguide mode. Theoretical as well as numerical simulation results using the 3D particle-in-cell code MAGIC are presented. The cusp gun generated an axis-encircling, annular shaped electron beam of energy 40 keV, current 1.5 A with a velocity ratio {alpha} of 3. Smooth cylindrical waveguides have been studied as the interaction cavities and their cavity Q optimized for 390 GHz operation. In the simulations {approx}600 W of output power at the design frequency has been demonstrated.

  8. Demonstration of a High-Order Mode Input Coupler for a 220-GHz Confocal Gyrotron Traveling Wave Tube

    Science.gov (United States)

    Guan, Xiaotong; Fu, Wenjie; Yan, Yang

    2018-02-01

    A design of high-order mode input coupler for 220-GHz confocal gyrotron travelling wave tube is proposed, simulated, and demonstrated by experimental tests. This input coupler is designed to excite confocal TE 06 mode from rectangle waveguide TE 10 mode over a broadband frequency range. Simulation results predict that the optimized conversion loss is about 2.72 dB with a mode purity excess of 99%. Considering of the gyrotron interaction theory, an effective bandwidth of 5 GHz is obtained, in which the beam-wave coupling efficiency is higher than half of maximum. The field pattern under low power demonstrates that TE 06 mode is successfully excited in confocal waveguide at 220 GHz. Cold test results from the vector network analyzer perform good agreements with simulation results. Both simulation and experimental results illustrate that the reflection at input port S11 is sensitive to the perpendicular separation of two mirrors. It provides an engineering possibility for estimating the assembly precision.

  9. Continuous-Wave Operation of a Frequency-Tunable 460-GHz Second-Harmonic Gyrotron for Enhanced Nuclear Magnetic Resonance

    Science.gov (United States)

    Torrezan, Antonio C.; Han, Seong-Tae; Mastovsky, Ivan; Shapiro, Michael A.; Sirigiri, Jagadishwar R.; Temkin, Richard J.; Griffin, Robert G.; Barnes, Alexander B.

    2012-01-01

    The design, operation, and characterization of a continuous-wave (CW) tunable second-harmonic 460-GHz gyrotron are reported. The gyrotron is intended to be used as a submillimeter-wave source for 700-MHz nuclear magnetic resonance experiments with sensitivity enhanced by dynamic nuclear polarization. The gyrotron operates in the whispering-gallery mode TE11,2 and has generated 16 W of output power with a 13-kV 100-mA electron beam. The start oscillation current measured over a range of magnetic field values is in good agreement with theoretical start currents obtained from linear theory for successive high-order axial modes TE11,2,q. The minimum start current is 27 mA. Power and frequency tuning measurements as a function of the electron cyclotron frequency have also been carried out. A smooth frequency tuning range of 1 GHz was obtained for the operating second-harmonic mode either by magnetic field tuning or beam voltage tuning. Long-term CW operation was evaluated during an uninterrupted period of 48 h, where the gyrotron output power and frequency were kept stable to within ±0.7% and ±6 ppm, respectively, by a computerized control system. Proper operation of an internal quasi-optical mode converter implemented to transform the operating whispering-gallery mode to a Gaussian-like beam was also verified. Based on the images of the gyrotron output beam taken with a pyroelectric camera, the Gaussian-like mode content of the output beam was computed to be 92% with an ellipticity of 12%. PMID:23761938

  10. Design, Development & Functional Validation of Magnets system in support of 42 GHz Gyrotron in India

    Directory of Open Access Journals (Sweden)

    Pradhan S.

    2017-01-01

    Full Text Available A multi institutional initiative is underway towards the development of 42 GHz, 200 kW gyrotron system in India under the frame work of Department of Science and Technology, Government of India. Indigenous realization comprising of design, fabrication, prototypes and functional validations of an appropriate Magnet System is one of the primary technological objective of these initiatives. The 42 GHz gyrotron magnet system comprises of a warm gun magnet, a NbTi/Cu based high homogenous superconducting cavity magnet and three warm collector magnets. The superconducting cavity magnet has been housed inside a low loss cryostat. The magnet system has been designed in accordance with gyrotron physics and engineering considerations respecting highly homogenous spatial field profile as well as maintaining steep gradient as per the compression and velocity ratios between the emission and resonator regions. The designed magnet system further ensures the co-linearity of the magnetic axis with that of the beam axis with custom winding techniques apart from a smooth collection of beam with the collector magnet profiles. The designed magnets have been wound after several R & D validations. The superconducting magnet has been housed inside a low loss designed cryostat with in-built radial and axial alignment flexibilities to certain extent. The cryostat further houses liquid helium port, liquid nitrogen ports, current communication ports, ports for monitoring helium level and other instrumentations apart from over-pressure safety intensive burst disks etc. The entire magnet system comprising of warm and superconducting magnets has been installed and integrated in the Gyrotron test set-up. The magnet system has been aligned in both warm and when the superconducting cavity magnet is cold. The integrated geometric axes have been experimentally ensured as well as the field profiles have been measured with the magnets being charged. Under experimental conditions

  11. DIII-D electron cyclotron heating 2 MW upgrade project. Final report for the period FY89 through FY97

    International Nuclear Information System (INIS)

    Callis, R.W.

    1997-08-01

    The 2 MW, 110 GHz ECH system was based on the General Atomics Proposal to the Department of Energy: DIII-D Fusion Research Program Vol. I Technical, and Vol. II Cost (GACP-72-166, July 1987 and revised). This proposal was reviewed in August 1987 by a senior technical review committee, who recommended to vigorously pursue increasing the ECH power to 6 MW. The realization of the higher frequency and power ECH on DIII-D was recognized by the committee to be important, not only for the DIII-D program, but also for future devices and the whole ECH area. Subsequently, an engineering cost and schedule review was conducted by DOE-OAK which confirmed the GA costs and schedules and recommended proceeding directly to 10 MW. However, because of budgetary constraints, in the April 1988 Field Task Proposal submission, GA proposed a phased ECH approach, Phase I being 2 MW and Phase II increasing the power to 10 MW. After review, DOE instructed GA to initiate the prototype 2 MW, 110 GHz program. The contract to procure four 500 kW, 110 GHz, 10 s gyrotrons from Varian Associates was initiated in April 1989 with final delivery by November 1990. Because of difficulties in spreading the energy of the electron beam over the collector area, the testing of the first gyrotron delayed its delivery until February 1991. The second gyrotron was able to operate for 1 s at 500 kW and 2 s at 300 kW, but failed when the cavity suffered thermal damage

  12. High-power and long-pulse operation of TE{sub 31,11} mode gyrotron

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, Ryosuke, E-mail: ikeda.ryosuke@jaea.go.jp; Kajiwara, Ken; Oda, Yasuhisa; Takahashi, Koji; Sakamoto, Keishi

    2015-10-15

    Highlights: • We are under development of TE{sub 31,11} mode gyrotron to aim ITER specification. • HE{sub 11} mode purity reached 96% of ITER specification. • Mode competition was suppressed in initial phase of oscillation by anode voltage control. • Maximum output power of 1.2 MW was achieved. • Steady state operation of 500 MJ was achieved. - Abstract: The ITER electron cyclotron system is designed to inject a 20 MW RF beam by using twenty-four 170 GHz/1 MW gyrotrons. JAEA is currently developing a gyrotron having a high-order mode (TE{sub 31,11}) to reduce the heat load in the cavity resonator and achieve an output power greater than 1 MW. The measured radiation profile at the front of the diamond window agreed with the results of the calculation. In order to suppress RF loss in the equatorial and upper port launchers, a high-quality HE{sub 11} mode is required at the exit of the matching optics unit (MOU). An HE{sub 11} mode purity of 96% was achieved by finely adjusting the two mirrors in the MOU. During the oscillation start-up phase, mode competition with counter-rotating TE{sub 29,12} mode was observed on the higher magnetic field side which caused arcing and pressure increase in the gyrotron. To avoid the counter-rotating TE{sub 29,12} mode from being excited, a start-up scenario that controls the voltage between the anode and cathode electrodes at the initial phase of operation was introduced, which was able to achieve a stable start-up of TE{sub 31,11} mode. A 1.2 MW output power having a total electric efficiency of 43% was obtained in high-power experiments. In steady-state operation, a 1000 s oscillation length and output power of 0.51 MW was achieved.

  13. Design and experimental investigation of a second harmonic 20 kW class 28 GHz gyrotron for evaluation of new emitter technologies

    Energy Technology Data Exchange (ETDEWEB)

    Malygin, Anton

    2016-07-01

    Gyrotrons are high-power mm-wave tubes. Here, the design, construction and experimental investigation of a 20 kW, 28 GHz gyrotron (2nd harmonic) are reported. This tube was designed to evaluate new emitters for future highly efficient and reliable fusion gyrotrons and for material processing applications. Following experimental results have been achieved in CW operation: 22.5 kW output power at 23.4 kV electron beam voltage and 2.23 A beam current with the world record efficiency of 43 %.

  14. Design of 28 GHz, 200 kW Gyrotron for ECRH Applications

    Science.gov (United States)

    Yadav, Vivek; Singh, Udaybir; Kumar, Nitin; Kumar, Anil; Deorani, S. C.; Sinha, A. K.

    2013-01-01

    This paper presents the design of 28 GHz, 200 kW gyrotron for Indian TOKAMAK system. The paper reports the designs of interaction cavity, magnetron injection gun and RF window. EGUN code is used for the optimization of electron gun parameters. TE03 mode is selected as the operating mode by using the in-house developed code GCOMS. The simulation and optimization of the cavity parameters are carried out by using the Particle-in-cell, three dimensional (3-D)-electromagnetic simulation code MAGIC. The output power more than 250 kW is achieved.

  15. Advances in High Power Calorimetric Matched Loads for Short Pulses and CW Gyrotrons

    International Nuclear Information System (INIS)

    Bin, W.M.; Bruschi, A.; Cirant, S.; Gandini, F.; Granucci, G.; Mellera, V.; Muzzini, V.; Nardone, A.; Sozzi, C.; Spinicchia, N.

    2006-01-01

    the CW version at 2 MW, 170 GHz, are described in the paper. High power tests on short-pulse loads have been done using a double frequency gyrotron, 105 GHz/600 kW for 0.5 s and 140 GHz/800 kW for 1 s. Also a method for emulating 2 MW conditions while using 1 MW gyrotron has been applied for testing the load to be used for the European 2 MW coaxial cavity gyrotron development programme. (author)

  16. Innovation on high-power long-pulse gyrotrons

    International Nuclear Information System (INIS)

    Litvak, Alexander; Sakamoto, Keishi; Thumm, Manfred

    2011-01-01

    Progress in the worldwide development of high-power gyrotrons for magnetic confinement fusion plasma applications is described. After technology breakthroughs in research on gyrotron components in the 1990s, significant progress has been achieved in the last decade, in particular, in the field of long-pulse and continuous wave (CW) gyrotrons for a wide range of frequencies. At present, the development of 1 MW-class CW gyrotrons has been very successful; these are applicable for self-ignition experiments on fusion plasmas and their confinement in the tokamak ITER, for long-pulse confinement experiments in the stellarator Wendelstein 7-X (W7-X) and for EC H and CD in the future tokamak JT-60SA. For this progress in the field of high-power long-pulse gyrotrons, innovations such as the realization of high-efficiency stable oscillation in very high order cavity modes, the use of single-stage depressed collectors for energy recovery, highly efficient internal quasi-optical mode converters and synthetic diamond windows have essentially contributed. The total tube efficiencies are around 50% and the purity of the fundamental Gaussian output mode is 97% and higher. In addition, activities for advanced gyrotrons, e.g. a 2 MW gyrotron using a coaxial cavity, multi-frequency 1 MW gyrotrons and power modulation technology, have made progress.

  17. Design of 84 Ghz, 500 kW gyrotron for ECRH application

    International Nuclear Information System (INIS)

    Singh, Udaybir; Nitin Kumar; Anil Kumar; Rao, R.R.; Sinha, A.K.

    2013-01-01

    The design and numerical simulation of the 84 GHz gyrotron, are performed for first harmonic operation. TE 10,4 is selected as the operating mode after the rigorous analysis of several TE modes. Then the interaction cavity geometrical parameters are optimized on the basis of cold cavity simulations and Q factor calculation. The electron beam parameters are optimized in the beam-wave interaction simulations using Particle-in-Cell (PIC) code MAGIC. The triode-type magnetron injection gun with the accelerating voltage 70 kV, the beam current 10 A and the maximum transverse velocity spread less than 5% is designed. (author)

  18. High voltage K/sub a/-band gyrotron oscillator experiment

    International Nuclear Information System (INIS)

    Gold, S.H.; Fliflet, A.W.; Manheimer, W.M.; Black, W.M.; Granatstein, V.L.; Kinkead, A.K.; Hardesty, D.L.; Sucy, M.

    1986-01-01

    Future applications of millimeter-waves may require significantly higher powers (>100 MW) than are available from the long-pulse thermionic gyrotrons that are presently available or under development. Scaling studies suggest that these power levels should be accessible to gyrotrons employing relativistic (0.5-1 MeV), multi-kA electron beams, such as can be generated for short pulse lengths (≤100 nsec) using pulseline accelerators with plasma-induced field-emission cathodes. To explore this potential, the authors have assembled a new gyrotron experiment based on a compact Febetron pulser. Initial experiments using a 350keV, 700A electron beam with a ratio of transverse to longitudinal velocity of ≅0.75 have produced ≅20MW at 35GHz at 8.5% efficiency in a TE/sub 62/ mode, in good agreement with the predictions of theory for the experimental parameters. Substantially higher powers and efficiencies are predicted for a new experimental configuration, which will operate at a higher voltage with improved beam parameters. In this new experiment, a 600 keV, multi-kA electron beam will be produced with low initial transverse energy. Transverse kinetic energy will then be added to the beam either by resonant pumping, via a magnetic wiggler, or by transit through a nonadiabatic magnetic ''bump.'' Finally, the beam will be adiabatically compressed to the desired radius in the gyrotron cavity with a final α≅1. The authors plan to report on the latest results from this new experimental configuration

  19. Quasi-optical gyrotron development at the CRPP

    International Nuclear Information System (INIS)

    Tran, M.Q.

    1990-09-01

    The operation of the 100GHz quasi-optical (Q.O.) gyrotron of the Centre de Recherches en Physique des Plasmas in Lausanne is described. Power up to 90kW and efficiency up to 12% have been achieved. Other features of the Q.O. gyrotron include single longitudinal mode operation, frequency tunability. Second harmonic emission (200GHz) has been observed with a resonator designed for operation at the fundamental. The issues pertinent to the Q.O. gyrotron concept are also discussed. (author) 26 refs., 13 figs., 2 tabs

  20. Gyrotrons for fusion. Status and prospects

    International Nuclear Information System (INIS)

    Litvak, A.G.; Alikaev, V.V.; Denisov, G.G.; Kurbatov, V.I.; Myasnikov, V.E.; Tai, E.M.; Zapevalov, V.E.

    2001-01-01

    Gyrotrons are the most advanced high-power sources of millimeter wavelength radiation. They have been used for many years in electron-cyclotron-wave (ECW) systems of many existing fusion installations. Typically modern gyrotrons produce power of 0.5...0.8 MW in pulses of 2-3 seconds, or lower power in longer pulses (e.g. 300-400 kW in pulses up to 10-15 seconds). For the next generation of fusion installations, such as ITER or W7-X the ECW systems based on gyrotrons capable to produce 1MW/CW radiation are considered. Definitely, such gyrotrons with enhanced performance are very interesting also for the use also at existing installations

  1. Development of frequency tunable gyrotrons for plasma diagnostics

    International Nuclear Information System (INIS)

    Idehara, T.; Mitsudo, S.; Sabchevski, S.; Glyavin, M.; Ogawa, I.; Sato, M.; Kawahata, K.; Brand, G.F.

    2000-01-01

    Development of two types of frequency tunable gyrotrons are described. One is frequency step-tunable gyrotrons (Gyrotron FU Series) which cover wide range from millimeter to submillimeter wavelength region. The other is a quasi-optical gyrotron operating in 90 and 180 GHz bands. Both are applicable for plasma diagnostics as power sources. (author)

  2. Installation and operation of the 400 kW 140 GHz gyrotron on the MTX experiment

    International Nuclear Information System (INIS)

    Ferguson, S.W.; Felker, B.; Jackson, M.C.; Petersen, D.E.; Sewall, N.R.; Stever, R.D.

    1991-09-01

    This paper describes the installation and operation of the 400 kW 140 GHz gyrotron used for plasma heating on the Microwave Tokamak Experiment (MTX) at Lawrence Livermore National Laboratory (LLNL). The Varian VGT-8140 gyrotron has operated at a power level of 400 kW for 100 ms in conjunction with MTX plasma shots. The gyrotron system is comprised of a high voltage (-80 kV) modulated power supply, a multistation CAMAC computer control, a 5-tesla superconducting magnet, a series of conventional copper magnets, a circulating fluorinert (FC75) window cooling system, a circulating oil cooling system, a water cooling system, and microwave frequency and power diagnostics. Additionally, a Vlasov launcher is used to convert the gyrotron TE 15,2 mode to a Gaussian beam. Two versions of the Vlasov launcher have been used on the gyrotron, one version designed by LLNL and one version designed by the Japan Atomic Energy Research Institute (JAERI). The Gaussian beam from the Vlasov launcher is transported to the MTX tokamak by a series of 5 mirrors in a 35-meter-long, high-efficiency, quasioptical beam transport system. A twist polarizer is built into one of the mirrors to adjust for horizontal polarization in the tokamak. No windows are used between the Vlasov reflector and the MTX tokamak. A laser alignment system is used to perform the initial system alignment. A summary of the design and operating characteristics of each of these systems is included. Also included is a summary of the system operation and performance

  3. Analysis of parasitic oscillations in 42 GHz gyrotron beam tunnel

    Science.gov (United States)

    Kumar, N.; Singh, U.; Singh, T. P.; Sinha, A. K.

    2011-02-01

    Parasitic oscillation excitation analysis has been carried out for the 42 GHz gyrotron beam tunnel. This article presents a systematic approach for the analysis of parasitic oscillation excitation. The electron trajectory code EGUN has been used for the estimation of the electron beam parameters in the beam tunnel. The electromagnetic simulation code CST-MS has been used for the eigenmode and Q value analysis. The analysis of the parasitic oscillations has been performed for the symmetric TE modes and the first three cavity side copper rings. Four different approaches- the Q value study, the mode maxima-electron beam radius mismatching, the electron cyclotron frequency-mode excitation frequency mismatching and the backward wave interaction analysis- have been used for the parasitic oscillation analysis.

  4. Parasitic oscillation in and suppression of a gyro BW mode in a low-Q 8 GHz gyrotron

    International Nuclear Information System (INIS)

    Muggli, P.; Tran, M.Q.; Tran, T.M.

    1991-12-01

    The parasitic oscillation of the TE o 21 gyrotron Backward Wave (gyro BW) mode is observed in a low-Q, 8 GHz TE o 011 gyrotron. Although at low power (P BW o 011 mode efficiency of less than 0.25. The parasitic oscillation is suppressed by operating the gyrotron with a negative magnetic field gradient along the electron beam, which allows the maximum efficiency to reach 0.40 and the output power to be multiplied by a factor varying from 1.4 to 1.7. The optimum efficiency curve of the TE o 011 mode indicates that the low-Q cavity behaves as a much higher Q diff cavity. Too large magnetic field gradient and α values favour the TE o 012 longitudinal mode, which oscillates in place of the TE o 011 mode and limits its maximum output power. This competitive process is responsible for the high-Q like output power. (author) 14 figs., 14 refs

  5. Characteristics of a superconducting magnet using a persistent current for a 110 GHz gyrotron

    International Nuclear Information System (INIS)

    Maebara, Sunao; Kasugai, Atsushi; Sakamoto, Keishi; Tsuneoka, Masaki; Imai, Tsuyoshi

    1996-03-01

    A superconducting magnet (SCM) using a persistent current for a 110 GHz gyrotron was developed to reduce liquid-helium loss, the boiled-off rate of 0.13 liter/hour was attained in a persistent current operation. It shows that the continuous operation for 50 days is capable without additional liquid-helium supply. Moreover, the 3040 liter in a year is used for a gyrotron test during five months and for the maintenance during seven months and liquid-helium savings of 65% was successfully demonstrated. The SCM is capable to excite the maximum magnetic field of 5.0 T in the persistent current mode. A mirror ratio between resonant cavity and magnetron injection gun (MIG) is 20 for operating the main coils in the persistent mode, since cavity coils and gun coils are connected in series. Auxiliary coils are equipped independently to control the mirror ratio, the mirror ratio of 13.6 - 37.0 at the 110 GHz is available. A two-stage refrigerator using helium gas was also installed and made liquid-nitrogen for cooling thermal shield of 80 K free. By developing this new type SCM, the number of routine works was drastically decreased in one time per 22-50 days, while routine works of a few times per week was needed up to now. (author)

  6. 60 GHz gyrotron development program. Final report, April 1979-June 1984

    International Nuclear Information System (INIS)

    Shively, J.F.; Bier, R.E.; Caplan, M.

    1986-01-01

    The original objective of this program was to develop a microwave amplifier or oscillator capable of producing 200 kW CW power output at 110 GHz. The use of cyclotron resonance interaction was pursued, and the design phases of this effort are discussed. Later, however, the program's objective was changed to develop a family of oscillators capable of producing 200 kw of peak output power at 60 GHz. Gyrotron behavior studies were performed at 28 GHz to obtain generic design information as quickly as possible. The first experimental device at 60 GHz produced over 200 kw of peak power at a pulse duration of 20 μs. Heating problems and mode interference were encountered. The second experimental tube incorporated an optimized gun location but also suffered from mode interference. The third experimental tube included modifications that reduced mode interference. It demonstrated 200 kw of peak output at 100 ms pulse duration. The fourth experimental tube, which used an older rf circuit design but in a CW configuration, produced 71.5 kW CW. The fifth experimental tube incorporated a thinner double-disc output window which improved window bandwidth and reduced window loss. This tube also incorporated modifications to the drift tunnel and cavity coupling, which had proven successful in the third experimental pulse tube tests. It produced 123 kW of CW output power at 60 GHz rf load coolant boiling and tube window failure terminated the tests. A new waterload was designed and constructed, and alternative window designs were explored

  7. Analysis of Mig-type electron guns for a 35GHz gyrotron

    International Nuclear Information System (INIS)

    Barroso, J.J.; Galvao, G.P.

    1988-05-01

    A 35GHz gyrotron is currently under construction at the Associated Plasma Laboratory of the Institute for Space Research to be used in plasma heating and noninductive current drive experiments. A critical component of the device is the electrooptical system, which must generate a beam with low velocity spread and high transverse energy. One way to decrease the velocity spread is to use laminar beams. For laminar flow, where the trajectories do not cross, the axial component of the space-charge forces changes sign each half cycle models of magnetron injection guns that produce laminar beams are analyzed and procedures for controlling the pitch angle parameter, which defines the transverse-to-axial electron velocity ratio are investigated. (author)

  8. Development of EC technology in JAERI

    International Nuclear Information System (INIS)

    Sakamoto, Keishi; Takahashi, Koji; Kasugai, Atsushi; Hayashi, Kenichi; Ikeda, Yoshitaka; Kajiwara, Ken; Fujii, Tsuneyuki; Imai, Tsuyoshi; Kariya, Tsuyoshi; Mitsunaka, Yoshika

    2003-01-01

    Recent progress of electron cyclotron (EC) heating and current drive technologies in JAERI is reported. In 170 GHz gyrotron development, 0.9 MW/9.2 sec (efficiency: 43%), 0.5 MW/30 sec (46%), etc, have been demonstrated. As for 110 GHz gyrotron, 1 MW/5 sec and 1.2 MW/4.1 sec were obtained. Using four 110 GHz gyrotrons, a 3 MW power injection into JT- 60U plasma was carried out. In parallel, a launcher design and its development that includes neutron irradiation of the launcher components and a remote steering launcher are underway for ITER application. (authors)

  9. Progress of the 10 MW ECRH System for W7-X

    International Nuclear Information System (INIS)

    Michel, G.; Brand, P.; Dammertz, G.

    2003-01-01

    The electron cyclotron resonance heating system for the W7-X stellarator is a joint effort of the Max-Planck-Institut fuer Plasmaphysik in Greifswald, the Institut fuer Plasmaforschung Stuttgart and the Forschungszentrum Karlsruhe under the supervision of the latter. Currently it is being constructed at the Greifswald branch of IPP. It will consist of 10 gyrotrons (each with 1 MW 140 GHz in the CW regime) and a quasi optical multi-beam transmission line. W7-X gyrotron candidates are being developed separately in Western Europe and the USA. The prototype phase of the gyrotrons is almost over and significant results have been achieved. The manufacturing of the transmission line is ongoing. An overview over the system including data acquisition and control issues will be given and the current status of the construction will be presented. (authors)

  10. Research on megawatt gyrotrons, January 1983-December 1984

    International Nuclear Information System (INIS)

    Read, M.E.

    1984-01-01

    During the last several years, NRL has performed research on concepts for high power gyrotrons. The work funded by the Department of Energy has been in support of industrial development of high frequency (60 to 140 GHz) CW gyrotrons, with NRL research being on the origination, development, and testing of advanced concepts. The research performed under this agreement has included experimental work on quasi-optical and complex cavity gyrotrons and theoretical efforts on these concepts as well as whispering gallery gyrotrons

  11. Design of an electronically tunable millimeter wave Gyrotron Backward Wave Oscillator

    International Nuclear Information System (INIS)

    Caplan, M.

    1987-01-01

    A non-linear self-consistent computer simulation code is used to analyze the saturated output of the Gyrotron Backward Wave Oscillator (Gyro BWO) which can be used as a tunable driver for a 250 GHz FEL amplifier. Simulations show that the Gyrotron BWO using a Pierce/Wiggler gun configuration can produce at least 10 kW of microwave power over the range 249 GHz to 265 GHz by varying beam voltage alone

  12. Interpretation of the nonlinear mode excitation in the ITER gyrotron

    International Nuclear Information System (INIS)

    Nusinovich, G. S.; Sinitsyn, O. V.

    2007-01-01

    This study was motivated by an interesting physical effect observed in experiments with a 1 MW, 170 GHz, continuous-wave gyrotron developed at the Japan Atomic Energy Agency for plasma heating and current drive in ITER [see, e.g., Fusion Eng. Des. 55, issues 2-3 (2001)]. In these experiments, the gyrotron switching from a parasitic mode to the operating one was observed with the increase in external magnetic field in the region of hard self-excitation of the operating mode where it cannot be excited from the noise level in the absence of other modes. Below, the theory describing this effect is developed. The switching mechanism caused by merging and disappearance of two (one stable and another unstable) equilibrium states with nonzero amplitudes of both modes is proposed. It is found that the present theory can correctly interpret experimental results qualitatively, but the lack of experimental data does not let the authors carry out some simulations more adequate to experimental conditions

  13. State-of-the-art of high power gyro-devices and free electron masers. Update 2015

    Energy Technology Data Exchange (ETDEWEB)

    Thumm, Manfred [Karlsruher Institut fuer Technologie (KIT), Eggenstein-Leopoldshafen (Germany). Inst. fuer Hochleistungsimpuls- und Mikrowellentechnik, Programm Fusion

    2016-07-01

    Gyrotron oscillators (gyromonotrons) are mainly used as high power millimeter wave sources for electron cyclotron resonance heating (ECRH), electron cyclotron current drive (ECCD), stability control and diagnostics of magnetically confined plasmas for generation of energy by controlled thermonuclear fusion. The maximum pulse length of commercially available 140 GHz, megawatt- class gyrotrons employing synthetic diamond output windows is 30 minutes (CPI and European KIT-CRPP-TED collaboration). The world record parameters of the European megawatt-class 140 GHz gyrotron are: 0.92 MW output power at 30 min. pulse duration, 97.5% Gaussian mode purity and 44% efficiency, employing a single-stage depressed collector (SDC) for energy recovery. A maximum output power of 1.5 MW in 4.0 s pulses at 45% efficiency was generated with the JAEA-TOSHIBA 110 GHz gyrotron. The Japan 170 GHz ITER gyrotron achieved 1 MW, 800 s at 55% efficiency and holds the energy world record of 2.88 GJ (0.8 MW, 60 min.) and the efficiency record of 57% for tubes with an output power of more than 0.5 MW. The Russian 170 GHz ITER gyrotron achieved 0.99 (1.2) MW with a pulse duration of 1000 (100) s and 53 (53) % efficiency. The prototype tube of the European 2 MW, 170 GHz coaxial-cavity gyrotron achieved in short pulses the record power of 2.1 MW at 46% efficiency and 96% Gaussian mode purity. Gyrotrons with pulsed magnet for various short-pulse applications deliver P{sub out}=210 kW with τ=20 μs at frequencies up to 670 GHz (η≅20%), P{sub out}=5.3 kW at 1 THz (η=6.1%), and P{sub out}=0.5 kW at 1.3 THz (η=0.6%). Gyrotron oscillators have also been successfully used in materials processing. Such technological applications require gyrotrons with the following parameters: f ≥ 24 GHz, P{sub out}=4-50 kW, CW, η≥30%. This paper gives an update of the experimental achievements related to the development of high power gyrotron oscillators for long-pulse or CW operation and pulsed gyrotrons for

  14. Quasi-optical mode converter for a coaxial cavity gyrotron

    International Nuclear Information System (INIS)

    Jin, J.

    2007-03-01

    This work concentrates on the synthesis of the quasioptical mode converter for the 170 GHz, TE 34,19 -mode, 2MW, CW coaxial-cavity gyrotron at Forschungszentrum Karlsruhe (FZK). The improvement of the general method for the design of so-call dimpled-wall launcher to provide a good Gaussian mode content is described. This method is verified through the design of a launcher operating in the TE 22,6 mode at 118 GHz. A phase rule is proposed as a quality criterion for monitoring the optimization and the choices of parameters of the quasi-optical mode converter. High-order harmonics introduced to the launcher wall deformations are proposed for this gyrotron. The launcher is numerically optimized, the fields on the cut edges are suppressed. The fields in the launcher are well approximated by the waveguide modes, the radiated fields are calculated using the scalar diffraction integral. The procedure for the numerical optimization of the mirror system is improved, the tolerance conditions of the phase correcting mirrors are investigated. A conversion efficiency of 95.8% to the circular fundamental Gaussian distribution with 20mm beam waist and power transmission of 90% are achieved in the window plane using the optimized quasi-optical mode converter. The methods to ameliorate the initial conditions of the phase correcting mirrors are explored. (orig.)

  15. 1 megawatt, 100 GHz gyrotron study. Final report, March 21-September 1, 1983

    International Nuclear Information System (INIS)

    Dionne, N.J.; Mallavarpu, R.; Palevsky, A.

    1983-01-01

    This report provides the results of a design study on a gyrotron device employing a new type of hollow gyrobeam formation system and having a capability for delivering megawatt CW power at 100 GHz to an ECRH-heated, magnetically-confined plasma. The conceptual basis for the beam formation system is the tilt-angle gun (TAG) in which a conically-shaped electron beam is formed in a magnetically-shielded region and is then injected into the stray-field region of the main magnetic focusing system. Because fluid coolants can be accessed through the central pole of the TAG-type gun, rf interaction can be contemplated with cavity configurations not practical with the conventional MIG-type gyrobeam formation systems

  16. Architecture of central control system for the 10 MW ECRH-plant at W7-X

    Energy Technology Data Exchange (ETDEWEB)

    Braune, H. [Max-Plank-Institut fuer Plasmaphysik, Euratom Association Teilinstitut Greifswald, Wendelsteinstrasse 1, D-17491 Greifswald (Germany)], E-mail: harald.braune@ipp.mpg.de; Brand, P. [Universitaet Stuttgart, Institut fuer Plasmaforschung Pfaffenwaldring 31, D-70569 Stuttgart (Germany); Erckmann, V.; Jonitz, L. [Max-Plank-Institut fuer Plasmaphysik, Euratom Association Teilinstitut Greifswald, Wendelsteinstrasse 1, D-17491 Greifswald (Germany); Leonhardt, W.; Mellein, D. [Forschungszentrum Karlsruhe, Association EURATOM-FZK, IHM, FZK, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Michel, G. [Max-Plank-Institut fuer Plasmaphysik, Euratom Association Teilinstitut Greifswald, Wendelsteinstrasse 1, D-17491 Greifswald (Germany); Mueller, G. [Universitaet Stuttgart, Institut fuer Plasmaforschung Pfaffenwaldring 31, D-70569 Stuttgart (Germany); Purps, F. [Max-Plank-Institut fuer Plasmaphysik, Euratom Association Teilinstitut Greifswald, Wendelsteinstrasse 1, D-17491 Greifswald (Germany); Schlueter, K.-H. [Universitaet Stuttgart, Institut fuer Plasmaforschung Pfaffenwaldring 31, D-70569 Stuttgart (Germany); Winkler, M. [Max-Plank-Institut fuer Plasmaphysik, Euratom Association Teilinstitut Greifswald, Wendelsteinstrasse 1, D-17491 Greifswald (Germany)

    2007-10-15

    Electron Cyclotron Resonance Heating (ECRH) is the main heating method for the Wendelstein 7-X stellarator (W7-X) which is presently under construction at IPP Greifswald. The mission of W7-X is to demonstrate the inherent steady state capability of stellarators at reactor relevant plasma parameters. A modular 10 MW ECRH-plant at 140 GHz with 1 MW CW-capability power for each module is also under construction to support the scientific objectives. The commissioning of the ECRH-plant is well under way; three gyrotrons are operational. The strict modular design allows to operate each gyrotron separately and independent from all others. The ECRH-plant consists of many devices such as gyrotrons and high voltage power supplies, superconductive magnets, collector sweep coils, gyrotron cooling systems with many water circuits and last but not least the quasi-optical transmission line for microwaves with remote controlled mirrors and further water cooled circuits. All these devices are essential for a CW operation. A steady state ECRH has specific requirements on the stellarator machine itself, on the microwave sources, transmission elements and in particular on the central control system. The quasi steady state operation (up to 30 min) asks for real time microwave power adjustment during the different segments of one stellarator discharge. Therefore, the ECRH-plant must operate with a maximum reliability and availability. A capable central control system is an important condition to achieve this goal. The central control system for the 10 MW ECRH-plant at W7-X comprises three main parts. In detail these are the voltage and current regulation of each gyrotron, the interlock system to prevent the gyrotrons from damages and the remote control system based on a hierarchy set of PLCs and computers. The architecture of this central control system is presented.

  17. Initial results for a 170 GHz high power ITER waveguide component test stand

    Science.gov (United States)

    Bigelow, Timothy; Barker, Alan; Dukes, Carl; Killough, Stephen; Kaufman, Michael; White, John; Bell, Gary; Hanson, Greg; Rasmussen, Dave

    2014-10-01

    A high power microwave test stand is being setup at ORNL to enable prototype testing of 170 GHz cw waveguide components being developed for the ITER ECH system. The ITER ECH system will utilize 63.5 mm diameter evacuated corrugated waveguide and will have 24 >150 m long runs. A 170 GHz 1 MW class gyrotron is being developed by Communications and Power Industries and is nearing completion. A HVDC power supply, water-cooling and control system has been partially tested in preparation for arrival of the gyrotron. The power supply and water-cooling system are being designed to operate for >3600 second pulses to simulate the operating conditions planned for the ITER ECH system. The gyrotron Gaussian beam output has a single mirror for focusing into a 63.5 mm corrugated waveguide in the vertical plane. The output beam and mirror are enclosed in an evacuated duct with absorber for stray radiation. Beam alignment with the waveguide is a critical task so a combination of mirror tilt adjustments and a bellows for offsets will be provided. Analysis of thermal patterns on thin witness plates will provide gyrotron mode purity and waveguide coupling efficiency data. Pre-prototype waveguide components and two dummy loads are available for initial operational testing of the gyrotron. ORNL is managed by UT-Battelle, LLC, for the U.S. Dept. of Energy under Contract DE-AC-05-00OR22725.

  18. Photonic-band-gap gyrotron amplifier with picosecond pulses

    Science.gov (United States)

    Nanni, Emilio A.; Jawla, Sudheer; Lewis, Samantha M.; Shapiro, Michael A.; Temkin, Richard J.

    2017-12-01

    We report the amplification of 250 GHz pulses as short as 260 ps without observation of pulse broadening using a photonic-band-gap circuit gyrotron traveling-wave-amplifier. The gyrotron amplifier operates with a device gain of 38 dB and an instantaneous bandwidth of 8 GHz. The operational bandwidth of the amplifier can be tuned over 16 GHz by adjusting the operating voltage of the electron beam and the magnetic field. The amplifier uses a 30 cm long photonic-band-gap interaction circuit to confine the desired TE03-like operating mode while suppressing lower order modes which can result in undesired oscillations. The circuit gain is >55 dB for a beam voltage of 23 kV and a current of 700 mA. These results demonstrate the wide bandwidths and a high gain achievable with gyrotron amplifiers. The amplification of picosecond pulses of variable lengths, 260-800 ps, shows good agreement with the theory using the coupled dispersion relation and the gain-spectrum of the amplifier as measured with quasi-CW input pulses.

  19. Spectrum response and analysis of 77 GHz band collective Thomson scattering diagnostic for bulk and fast ions in LHD plasmas

    DEFF Research Database (Denmark)

    Nishiura, M.; Kubo, S.; Tanaka, K.

    2014-01-01

    A collective Thomson scattering (CTS) diagnostic was developed and used to measure the bulk and fast ions originating from 180 keV neutral beams in the Large Helical Device (LHD). Electromagnetic waves from a gyrotron at 77 GHz with 1 MW power output function as both the probe and electron cyclot...

  20. Fast power measurement on a 30 GHz/15 kW gyrotron

    International Nuclear Information System (INIS)

    Saala, G.

    2004-09-01

    This work has been developed in the scope of a study-thesis at the Universitaet Karlsruhe (TH). The realization took place at the Institut fuer Hochleistungsimpuls- und Mikrowellentechnik (IHM) at the Forschungszentrum Karlsruhe (FZK). The aim was to investigate the possibilities of a fast power measurement at a compact, industrial gyrotron-system. To measure the output-power a small fraction of the gyrotron microwave radiation is coupled out and analyzed using a diode-detector. At the beginning of the work a mirror of the quasi-optical transmission line with a built in λ/4-coupler was available. This built-in coupler and other coupling structures which have been set up during this work have been characterized. To be able to perform reproduceable measurements several computer programs have been developed. Using these programs the gyrotron-system can be remote-controlled from a PC. The diode-detector signal has been analyzed under different conditions of gyrotron operation with respect to its short-term- and long-term-stability. After that the dependency of the calorimetrically measured output-power of the gyrotron has been used to calibrate the diode-voltage. (orig.)

  1. Recent progress in fusion gyrotron development

    International Nuclear Information System (INIS)

    Shively, J.F.; Stone, D.S.

    1981-01-01

    The gyrotron, a microwave tube capable of producing high power output at millimeter wavelengths, has recently found applications for electron cyclotron resonance heating of plasmas in controlled thermonuclear fusion reactor experiments. This paper describes work in progress to develop a gyrotron oscillator to deliver 200 kW CW at 60 GHz (/lambda/sub //. 5 mm). A pulsed oscillator is described which produced over 200 kw peak power. A CW oscillator is under construction. The latest experimental results are presented

  2. Development of ITER CODAC compatible gyrotron local control system and its operation

    International Nuclear Information System (INIS)

    Ohshima, Katsumi; Oda, Yasuhisa; Takahashi, Koji; Terakado, Masayuki; Ikeda, Ryosuke; Moriyama, Shinichi; Kajiwara, Ken; Sakamoto, Keishi; Hayashi, Kazuo

    2016-03-01

    In Japan Atomic Energy Agency, an ITER relevant control system for ITER gyrotron was developed according to Plant Control Design Handbook. This control system was developed based on ITER CODAC Core System and implemented state machine control of gyrotron operation system, sequential timing control of gyrotron oscillation startup, and data acquisition. The operation of ITER 170 GHz gyrotron was demonstrated with ITER relevant power supply configuration. This system is utilized for gyrotron operation test for ITER procurement. This report describes the architecture of gyrotron local control system, its basic and detailed design, and recent operation results. (author)

  3. 34 GHz, 45 MW pulsed magnicon

    International Nuclear Information System (INIS)

    Nezhevenko, Oleg A.; LaPointe, Michael A.; Yakovlev, Vyacheslav P.; Hirshfield, Jay L.; Serdobintsev, Gennady V.; Kuznetsov, Gennady I.; Persov, Boris Z.; Fix, Alexander

    2002-01-01

    A high efficiency, high power magnicon at 34.272 GHz has been designed and built as a microwave source to develop RF technology for a future multi-TeV electron-positron linear collider. The tube is designed to provide a peak output power of ∼45 MW in a 1 microsecond pulse, with a gain of 55 dB, using a 500 kV, 220 A, 1 mm-diameter electron beam. The status of the tube itself as well as the near-term experimental program is presented

  4. Operation and control of high power Gyrotrons for ECRH systems in SST-1 and Aditya

    Energy Technology Data Exchange (ETDEWEB)

    Shukla, B.K., E-mail: shukla@ipr.res.in; Bora, D.; Jha, R.; Patel, Jatin; Patel, Harshida; Babu, Rajan; Dhorajiya, Pragnesh; Dalakoti, Shefali; Purohit, Dharmesh

    2016-11-15

    Highlights: • Operation and control of high power Gyrotrons. • Data acquisition and control (DAQ) for Gyrotron system. • Ignitron based crowbar protection. • VME and PXI based systems. - Abstract: The Electron Cyclotron Resonance Heating (ECRH) system is an important heating system for the reliable start-up of tokamak. The 42 GHz and 82.6 GHz ECRH systems are used in tokamaks SST-1 and Aditya to carry out ECRH related experiments. The Gyrotrons are high power microwave tubes used as a source for ECRH systems. The Gyrotron is a delicate microwave tube, which deliver megawatt level power at very high voltage ∼40–50 kV with the current requirement ∼10 A–50 A. The Gyrotrons are associated with the subsystems like: High voltage power supplies (Beam voltage and anode voltage), dedicated crowbar system, magnet, filament and ion pump power supplies, cooling, interlocks and a dedicated data acquisition & control (DAC) system. There are two levels of interlocks used for the protection of Gyrotron: fast interlocks (arcing, beam over current, dI/dt, anode voltage and anode over current etc.) operate within 10 μs and slow interlocks (cooling, filament, silence of Gyrotron, ion pump and magnet currents) operate within 100 ms. Two Gyrotrons (42 GHz/500 kW/500 ms and 82.6 GHz/200 kW/1000 s) have been commissioned on dummy load for full parameters. The 42 GHz ECRH system has been integrated with SST-1 & Aditya tokamak and various experiments have been carried out related to ECRH assisted breakdown and start-up of tokamak at fundamental and second harmonic. These Gyrotrons are operated with VME based data acquisition and control (DAC) system. The DAC system is capable to acquire 64 digital and 32 analog signals. The system is used to monitor & acquire the data and also used for slow interlocks for the protection of Gyrotron. The data acquired from the system are stored online on VME system and after the shot stored in a file in binary format. The MDSPlus, a set of

  5. Design of the ITER Electron Cyclotron Heating and Current Drive Waveguide Transmission Line

    Science.gov (United States)

    Bigelow, T. S.; Rasmussen, D. A.; Shapiro, M. A.; Sirigiri, J. R.; Temkin, R. J.; Grunloh, H.; Koliner, J.

    2007-11-01

    The ITER ECH transmission line system is designed to deliver the power, from twenty-four 1 MW 170 GHz gyrotrons and three 1 MW 127.5 GHz gyrotrons, to the equatorial and upper launchers. The performance requirements, initial design of components and layout between the gyrotrons and the launchers is underway. Similar 63.5 mm ID corrugated waveguide systems have been built and installed on several fusion experiments; however, none have operated at the high frequency and long-pulse required for ITER. Prototype components are being tested at low power to estimate ohmic and mode conversion losses. In order to develop and qualify the ITER components prior to procurement of the full set of 24 transmission lines, a 170 GHz high power test of a complete prototype transmission line is planned. Testing of the transmission line at 1-2 MW can be performed with a modest power (˜0.5 MW) tube with a low loss (10-20%) resonant ring configuration. A 140 GHz long pulse, 400 kW gyrotron will be used in the initial tests and a 170 GHz gyrotron will be used when it becomes available. Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Dept. of Energy under contract DE-AC05-00OR22725.

  6. Asymmetric modes in gyrotron tubes and their experimental study

    International Nuclear Information System (INIS)

    Garin, P.; Jedar, E.; Jendrzejczak, G.; mourier, G.; Payen, F.; Teyssier, L.

    1989-01-01

    High power gyrotron tubes suffer from the competition between oscillations on different modes of the resonant cavity. Different techniques for mode selection are outlined and the advantages of non symmetric modes are indicated. Their experimental study is described on a 100 GHz-200 kW - 100 ms - TE34 gyrotron. Some possible extrapolations are briefly presented. (author). 6 refs.; 4 figs

  7. Operation of a 1.3 GHz, 10 MW Multiple Beam Klystron

    CERN Document Server

    Bohlen, H P; Cattelino, M; Cox, L; Cusick, M; Forrest, S; Friedlander, F; Staprans, A; Wright, E; Zitelli, L

    2004-01-01

    Results will be reported for a 1.3 GHz, 10 MW multiple beam klystron that is being developed for the TESLA linear accelerator facility. The design parameters for the device are 10 MW peak RF output power with 150 kW average power, 1.5 ms pulse length, 65% efficiency, 50 dB gain, and 2.0 A/cm2

  8. Update on the DIII-D ECH system: experiments, gyrotrons, advanced diagnostics, and controls

    Directory of Open Access Journals (Sweden)

    Lohr John

    2017-01-01

    Full Text Available The ECH system on DIII-D is continuing to be upgraded, while simultaneously being operated nearly daily for plasma experiments. The latest major hardware addition is a new 117.5 GHz gyrotron, which generated 1.7 MW for short pulses during factory testing. A new gyrotron control system based on Field Programmable Gate Array (FPGA technology with very high speed system data acquisition has significantly increased the flexibility and reliability of individual gyrotron operation. We have improved the performance of the fast mirror scanning, both by increasing the scan speeds and by adding new algorithms for controlling the aiming using commands generated by the Plasma Control System (PCS. The system is used for transport studies, ELM control, current profile control, non-inductive current generation, suppression of MHD modes, startup assist, plasma density control, and other applications. A program of protective measures, which has been in place for more than two years, has eliminated damage to hardware and diagnostics caused by overdense operation. Other activities not directly related to fusion research have used the ECH system to test components, study methods for improving production of semiconductor junctions and materials, and test the feasibility of using ground based microwave systems to power satellites into orbit.

  9. Update on the DIII-D ECH system: experiments, gyrotrons, advanced diagnostics, and controls

    Science.gov (United States)

    Lohr, John; Brambila, Rigoberto; Cengher, Mirela; Gorelov, Yuri; Grosnickle, William; Moeller, Charles; Ponce, Dan; Torrezan, Antonio; Ives, Lawrence; Reed, Michael; Blank, Monica; Felch, Kevin; Parisuaña, Claudia; LeViness, Alexandra

    2017-08-01

    The ECH system on DIII-D is continuing to be upgraded, while simultaneously being operated nearly daily for plasma experiments. The latest major hardware addition is a new 117.5 GHz gyrotron, which generated 1.7 MW for short pulses during factory testing. A new gyrotron control system based on Field Programmable Gate Array (FPGA) technology with very high speed system data acquisition has significantly increased the flexibility and reliability of individual gyrotron operation. We have improved the performance of the fast mirror scanning, both by increasing the scan speeds and by adding new algorithms for controlling the aiming using commands generated by the Plasma Control System (PCS). The system is used for transport studies, ELM control, current profile control, non-inductive current generation, suppression of MHD modes, startup assist, plasma density control, and other applications. A program of protective measures, which has been in place for more than two years, has eliminated damage to hardware and diagnostics caused by overdense operation. Other activities not directly related to fusion research have used the ECH system to test components, study methods for improving production of semiconductor junctions and materials, and test the feasibility of using ground based microwave systems to power satellites into orbit.

  10. Development and simulation of RF components for high power millimeter wave gyrotrons

    Energy Technology Data Exchange (ETDEWEB)

    Pereyaslavets, M.; Sato, M.; Shimozuma, T.; Takita, Y.; Idei, H.; Kubo, S.; Ohkubo, K.; Hayashi, K.

    1996-11-01

    To test gyrotron RF components, efficient low-power generators for rotating high-order modes of high purity are necessary. Designs of generators for the TE{sub 15,3} mode at 84 GHz and for the TE{sub 31,8} mode at 168 GHz are presented and some preliminary test results are discussed. In addition, Toshiba gyrotron cavities at 168 GHz were analyzed for leakage of RF power in the beam tunnel. To decrease RF power leakage, the declination angle of the cut-off cavity cross section has to be decreased. A TE{sub 15,3} waveguide nonlinear uptaper is analyzed at 84 GHz as well as 168 GHz uptapers. Since the calculated conversion losses are slightly higher than designed value, an optimization of those uptapers may be required. (author)

  11. Dynamic nuclear polarization by frequency modulation of a tunable gyrotron of 260GHz.

    Science.gov (United States)

    Yoon, Dongyoung; Soundararajan, Murari; Cuanillon, Philippe; Braunmueller, Falk; Alberti, Stefano; Ansermet, Jean-Philippe

    2016-01-01

    An increase in Dynamic Nuclear Polarization (DNP) signal intensity is obtained with a tunable gyrotron producing frequency modulation around 260GHz at power levels less than 1W. The sweep rate of frequency modulation can reach 14kHz, and its amplitude is fixed at 50MHz. In water/glycerol glassy ice doped with 40mM TEMPOL, the relative increase in the DNP enhancement was obtained as a function of frequency-sweep rate for several temperatures. A 68 % increase was obtained at 15K, thus giving a DNP enhancement of about 80. By employing λ/4 and λ/8 polarizer mirrors, we transformed the polarization of the microwave beam from linear to circular, and achieved an increase in the enhancement by a factor of about 66% for a given power. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Integrated Design of Undepressed Collector for Low Power Gyrotron

    Science.gov (United States)

    Kumar, Anil; Goswami, Uttam K.; Poonia, Sunita; Singh, Udaybir; Kumar, Nitin; Alaria, M. K.; Bera, A.; Khatun, Hasina; Sinha, A. K.

    2011-06-01

    A 42 GHz, 200 kW continuous wave (CW) gyrotron, operating at TE03 mode is under development for the electron cyclotron resonance plasma heating of the Indian TOKAMAK system. The gyrotron is made up of an undepressed collector. The undepressed collector is simple to design and cost effective. In this paper, a detailed design study of the undepressed collector for the 42 GHz gyrotron is presented. The EGUN code is used to analyze the spent electron beam trajectory for the maximum spread to reduce the power loading on the collector surface. To achieve wall loading ≤1 kW/cm2, a collector with a length of 800 mm and a radius of 42.5 mm is designed. The design also includes the three magnet systems around the collector for maximum and uniform beam spread. The thermal and the structural analyses are done using the ANSYS code to optimize the collector structure and dimensions with tolerance.

  13. Control of the Superconducting Magnets current Power Supplies of the TJ-II Gyrotrons

    International Nuclear Information System (INIS)

    Ros, A.; Fernandez, A.; Tolkachev, A.; Catalan, G.

    2006-01-01

    The TJ-II ECRH heating system consists of two gyrotrons, which can deliver a maximum power of 300 kW at a frequency of 53.2 GHz. Another 28 GHz gyrotron is going to be used in the Bernstein waves heating system. In order to get the required frequency, the gyrotrons need and homogeneous magnetic field of several tesla, which is generated by a superconducting coil field by a current source. This document describes the current source control as well as the high precision ammeters control. These ammeters measure the current in the superconducting coils. The user interface and the programming of the control system are described. The communication between devices is also explained. (author) 9 Refs

  14. Cusp-Gun Sixth-Harmonic Slotted Gyrotron

    Science.gov (United States)

    Stutzman, R. C.; McDermott, D. B.; Hirata Luhmann, Y., Jr.; Gallagher, D. A.; Spencer, T. A.

    2000-10-01

    A high-harmonic slotted gyrotron has been constructed at UC Davis to be driven by a 70 kV, 3.5 A, axis-encircling electron beam from a Northrop Grumman Cusp gun. The 94 GHz, slotted sixth-harmonic gyrotron is predicted to generate 50 kW with an efficiency of 20%. Using the profile of the adiabatic field reversal from the UC Davis superconducting test-magnet, EGUN simulations predict that an axis-encircling electron beam will be generated with an axial velocity spread of Δ v_z/v_z=10% for the desired velocity ratio of α =v_z/v_z=1.5. The design will also be presented for an 8th-harmonic W-band gyrotron whose magnetic field can be supplied by a lightweight permanent magnet.

  15. Feasibility of a dual regime gyrotron

    International Nuclear Information System (INIS)

    Sawant, Ashwini; Jain, Prerit; Kartikeyan, M.V.

    2012-01-01

    The design concept of a 42/84 GHz, 500 kW, CW, dual-regime gyrotron for ECRH of plasma in an experimental Tokamak will be presented in this paper. Operation at 42 GHz is fundamental where as that in 84 GHz will be second harmonic so that a similar guidance system will be retained for dual regime operation. In this paper, the mode competition and mode selection procedures are presented for such a dual regime operation. Cold cavity design and self-consistent calculations will be carried out for power and efficiencies. (author)

  16. Numerical investigation of collector cooling for a 1 MW ITER gyrotron operated with vertical sweeping

    Energy Technology Data Exchange (ETDEWEB)

    Savoldi, Laura; Bertani, Cristina [Dipartimento Energia, Politecnico di Torino (Italy); Cau, Francesca; Cismondi, Fabio [Fusion for Energy, Barcelona (Spain); Gantenbein, Gerd; Illy, Stefan [KIT, Karlsruhe (Germany); Monni, Grazia [Dipartimento Energia, Politecnico di Torino (Italy); Zanino, Roberto, E-mail: roberto.zanino@polito.it [Dipartimento Energia, Politecnico di Torino (Italy)

    2015-11-15

    The present gyrotron designs for EC plasma heating in nuclear fusion reactors require the safe exhaust of a power comparable to that injected into the plasma, in order to keep the maximum temperature below the acceptable value of 300 °C. In this paper, the commercial computational fluid dynamics (CFD) software STAR-CCM+{sup ®} is used to analyze the thermal performance of the annular copper collector of a 1 MW ITER gyrotron, equipped with a hypervapotron structure made of annular fins with rectangular cavities of aspect ratio (depth/width) = 3, cooled by highly subcooled (90–100 °C) pressurized water flowing at ∼4 m/s. It is assumed that the simple vertical sweeping strategy is used to reduce the very high peak heat flux on the collector (up to 30 MW/m{sup 2} transient, 5 MW/m{sup 2} time average), due to the spent electron beam. The 2D steady-state conjugate heat transfer problem is solved assuming azimuthal symmetry and accounting for 2-phase flow. The single-cavity flow and heat transfer problem is considered first, to optimize the mesh and the selection of the turbulence model. For the operating conditions considered in this paper, the full collector (100+ cavities) solution shows that boiling occurs only in a limited number of cavities close to the peaks of the heat flux, with the vapor remaining trapped in the bottom of the cavities, i.e. no full hypervapotron regime should be achieved in these operating conditions. The steady-state analysis allows the numerical evaluation of the heat transfer coefficients between Cu and water; these are then used as input for the simplified, purely thermal (solid only) analysis of the actual transient problem for the full collector. The results of the simplified model, which allows a huge reduction of the computational effort, are successfully benchmarked against those of a comprehensive thermal–hydraulic simulation. The computed peak Cu temperature is below the acceptable limit under the steady-state (time averaged

  17. Development of gyrotrons for plasma diagnostics (invited)

    International Nuclear Information System (INIS)

    Woskoboinikow, P.

    1986-01-01

    Recent advances in high-frequency (>100 GHz) gyrotron technology are reviewed and application to millimeter/submillimeter wave plasma diagnostics is discussed. Gyrotrons have useful capabilities of high-power (>1 kW), long pulse/cw operation, narrow linewidth (<100 kHz), and good spatial mode quality with efficient (--90%) mode converters. These capabilities could be used to significantly improve collective Thomson scattering diagnostics for the study of instabilities, plasma waves, turbulence, and thermal ion fluctuations. Imaging applications with many detector arrays of plasma density, field direction, and microinstabilities may be possible with gyrotons. In a high-field compact ignition tokamak experiment a possible millimeter wave diagnostics window could be exploited by a gyrotron to measure a number of parameters, including alpha particle density and velocity distribution

  18. Design of the 1-Mw, 200-Ghz, Fom Fusion Fem

    NARCIS (Netherlands)

    Urbanus, W. H.; Best, R. W. B.; Bongers, W. A.; Vaningen, A. M.; Manintveld, P.; Sterk, A. B.; Verhoeven, A. G. A.; van der Wiel, M. J.; Caplan, M.; Bratman, V. L.; Denisov, G. G.; Varfolomeev, A. A.; Khlebnikov, A. S.

    1993-01-01

    The FOM Institute for Plasma Physics has obtained funding for the development of a 1 MW, long pulse, 140-250 GHz free-electron maser. The engineering design is presently being performed in an international collaboration. In this paper the main components of the free-electron maser, the electron beam

  19. Subterahertz gyrotron developments for collective Thomson scattering in LHDa)

    Science.gov (United States)

    Notake, T.; Saito, T.; Tatematsu, Y.; Kubo, S.; Shimozuma, T.; Tanaka, K.; Nishiura, M.; Fujii, A.; Agusu, La; Ogawa, I.; Idehara, T.

    2008-10-01

    Collective Thomson scattering (CTS) is expected to provide the spatially resolved velocity distribution functions of not only thermal and tail ions but also alpha particles resulting from fusion reactions. CTS using gyrotrons with frequency higher than the conventional ones used for plasma heating would have advantages to alleviate refraction, cutoff effects, and background electron cyclotron emission noise. Therefore, a high-power pulse gyrotron operating at approximately 400 GHz is being developed for CTS in Large Helical Device (LHD). A single-mode oscillation with a frequency greater than 400 GHz, applying the second-harmonic resonance, was successfully demonstrated in the first stage. At the same time, concrete feasibility study based on ray tracing, scattering spectra, and electron cyclotron emission calculations has been conducted.

  20. High power gyrotrons: a close perspective

    International Nuclear Information System (INIS)

    Kartikeyan, M.V.

    2012-01-01

    Gyrotrons and their variants, popularly known as gyrodevices are millimetric wave sources provide very high powers ranging from long pulse to continuous wave (CW) for various technological, scientific and industrial applications. From their conception (monotron-version) in the late fifties until their successful development for various applications, these devices have come a long way technologically and made an irreversible impact on both users and developers. The possible applications of high power millimeter and sub-millimeter waves from gyrotrons and their variants (gyro-devices) span a wide range of technologies. The plasma physics community has already taken advantage of the recent advances of gyrotrons in the areas of RF plasma production, heating, non-inductive current drive, plasma stabilization and active plasma diagnostics for magnetic confinement thermonuclear fusion research, such as lower hybrid current drive (LHCD) (8 GHz), electron cyclotron resonance heating (ECRH) (28-170-220 GHz), electron cyclotron current drive (ECCD), collective Thomson scattering (CTS), heat-wave propagation experiments, and space-power grid (SPG) applications. Other important applications of gyrotrons are electron cyclotron resonance (ECR) discharges for the generation of multi- charged ions and soft X-rays, as well as industrial materials processing and plasma chemistry. Submillimeter wave gyrotrons are employed in high frequency, broadband electron paramagnetic resonance (EPR) spectroscopy. Additional future applications await the development of novel high power gyro-amplifiers and devices for high resolution radar ranging and imaging in atmospheric and planetary science as well as deep space and specialized satellite communications, RF drivers for next generation high gradient linear accelerators (supercolliders), high resolution Doppler radar, radar ranging and imaging in atmospheric and planetary science, drivers for next-generation high-gradient linear accelerators

  1. Time-dependent spectrum analysis of high power gyrotrons

    Energy Technology Data Exchange (ETDEWEB)

    Schlaich, Andreas

    2015-07-01

    In this work, an investigation of vacuum electronic oscillators capable of generating multi-megawatt continuous wave output power in the millimeter-wave range (so-called gyrotrons) through spectral measurements is presented. The centerpiece is the development of a measurement system with a high dynamic range (50-60 dB) for time-dependent spectrum analysis, covering the frequency range 100-170 GHz with instantaneous bandwidths of 6-12 GHz. Despite relying on heterodyne reception through harmonic mixers, the Pulse Spectrum Analysis (PSA) system maintains RF unambiguity in the spectrogram output through the application of a novel RF reconstruction technique. Using the new possibilities, a wide range of spectral phenomena in gyrotrons has been investigated, such as cavity mode jumps, lowfrequency modulation, frequency tuning in long pulses and the spectral behavior during the presence of an RF window arc. A dedicated investigation on parasitic RF oscillations in W7-X gyrotrons combining several analysis techniques led to the conclusion that after-cavity oscillations can be physical reality in high power gyrotrons, and are the probable cause for the undesired signals observed. Apart from systematic parameter sweeps using the PSA system, an analytical dispersion analysis in the Brillouin diagram was applied, and numerical gyrotron interaction simulations of unprecedented extent were conducted. Furthermore, the improved frequency measurement capabilities were employed to analyze the frequency tuning through thermal expansion and electrostatic neutralization caused by ionization inside the tube in long-pulse operation. By macroscopically modeling the gas dynamics and ionization processes in combination with a fitting process, the time dependences of the two processes could be investigated. In doing so, indication was found that the neutralization in W7-X gyrotrons amounts to only 60% of the electrostatic depression voltage, instead of 100% as widely believed for

  2. Time-dependent spectrum analysis of high power gyrotrons

    International Nuclear Information System (INIS)

    Schlaich, Andreas

    2015-01-01

    In this work, an investigation of vacuum electronic oscillators capable of generating multi-megawatt continuous wave output power in the millimeter-wave range (so-called gyrotrons) through spectral measurements is presented. The centerpiece is the development of a measurement system with a high dynamic range (50-60 dB) for time-dependent spectrum analysis, covering the frequency range 100-170 GHz with instantaneous bandwidths of 6-12 GHz. Despite relying on heterodyne reception through harmonic mixers, the Pulse Spectrum Analysis (PSA) system maintains RF unambiguity in the spectrogram output through the application of a novel RF reconstruction technique. Using the new possibilities, a wide range of spectral phenomena in gyrotrons has been investigated, such as cavity mode jumps, lowfrequency modulation, frequency tuning in long pulses and the spectral behavior during the presence of an RF window arc. A dedicated investigation on parasitic RF oscillations in W7-X gyrotrons combining several analysis techniques led to the conclusion that after-cavity oscillations can be physical reality in high power gyrotrons, and are the probable cause for the undesired signals observed. Apart from systematic parameter sweeps using the PSA system, an analytical dispersion analysis in the Brillouin diagram was applied, and numerical gyrotron interaction simulations of unprecedented extent were conducted. Furthermore, the improved frequency measurement capabilities were employed to analyze the frequency tuning through thermal expansion and electrostatic neutralization caused by ionization inside the tube in long-pulse operation. By macroscopically modeling the gas dynamics and ionization processes in combination with a fitting process, the time dependences of the two processes could be investigated. In doing so, indication was found that the neutralization in W7-X gyrotrons amounts to only 60% of the electrostatic depression voltage, instead of 100% as widely believed for

  3. Perspective gyrotron with mode converter for co- and counter-rotation operating modes

    Energy Technology Data Exchange (ETDEWEB)

    Chirkov, A. V.; Kuftin, A. N. [Institute of Applied Physics, Russian Academy of Sciences, 46 Ul' yanov Street, 603950 Nizhny Novgorod (Russian Federation); Denisov, G. G. [Institute of Applied Physics, Russian Academy of Sciences, 46 Ul' yanov Street, 603950 Nizhny Novgorod (Russian Federation); University of Nizhny Novgorod, 23 Prospekt Gagarina, 603950 Nizhny Novgorod (Russian Federation)

    2015-06-29

    A gyrotron oscillator operating efficiently at modes of both rotations was developed and tested. The gyrotron operation can be switched between two modes: co- and counter rotating ones with respect to electron rotation in a resonance magnetic field. A synthesized mode converter provides output of both waves in the form of two different paraxial wave beams corresponding to direction of the mode rotation. Measured gyrotron power (up to 2 MW), interaction efficiency (34%), and diffraction losses in the mode converter (≈2%) agree well with the design values. The proposed gyrotron scheme alloys principal enhancement in the device parameters—possibility of electronic switching of output wave beam direction and possibility to arrange an effective scheme to provide frequency/phase locking of a gyrotron-oscillator.

  4. Perspective gyrotron with mode converter for co- and counter-rotation operating modes

    International Nuclear Information System (INIS)

    Chirkov, A. V.; Kuftin, A. N.; Denisov, G. G.

    2015-01-01

    A gyrotron oscillator operating efficiently at modes of both rotations was developed and tested. The gyrotron operation can be switched between two modes: co- and counter rotating ones with respect to electron rotation in a resonance magnetic field. A synthesized mode converter provides output of both waves in the form of two different paraxial wave beams corresponding to direction of the mode rotation. Measured gyrotron power (up to 2 MW), interaction efficiency (34%), and diffraction losses in the mode converter (≈2%) agree well with the design values. The proposed gyrotron scheme alloys principal enhancement in the device parameters—possibility of electronic switching of output wave beam direction and possibility to arrange an effective scheme to provide frequency/phase locking of a gyrotron-oscillator

  5. Development of two series ingnitron based crowbar protection system for 42 GHz and 82.6 GHz gyroton in SST-1

    International Nuclear Information System (INIS)

    Dhorajiya, Pragnesh; Dalakoti, Shefali; Patel, Harshida; Ingle, Krunal; Patel, Jatin; Sathyanarayana, K.; Rajanbabu; Shukla, B.K.

    2013-01-01

    Gyrotrons are used to generate the high power at microwave frequency that is used to heat the plasma inside a Tokamak. A conventional high voltage power supply is used for the testing of 82.6 GHz, 200 kW/CW and 42 GHz, 500 kW/500ms gyrotrons at our institute. Its maximum operating cathode parameters are -55 kV DC, 20 A. Like any other High RF power tubes gyrotrons need to be protected against arc faults within the tube. If the energy dumped in such arc fault is more than the critical crater energy of the tube, irreparable damage can occur inside the RF tube or microwave tube and rendering it useless. The specified maximum fault energy for the 42 GHz and 82.6 GHz gyrotrons is 10 joules. When conventional HVDC power supplies feed high power RF tubes or microwave tubes, a reliable crowbar protection is required which is tested separately to limit the energy to the tube in case of any type of fault to assure the tube safety. Two series ignitron (NL-37248) based crowbar system developed in-house is used to limit the arc fault energy under the acceptance level by diverting the fault current from the load or Gyrotron. Fault current diversion and interruption are initiated by the sensing element and protection system. The required protection cards are designed and developed in-house and required performance is achieved. With this crowbar system the high voltage switch-off to the gyrotron is achieved within 5 μsec after occurrence of critical faults. The crowbar is tested for voltage hold-off up to 80 kV DC. This paper presents the critical requirement of the time delay for the fault sensing and crowbar trigger generation and necessary protections that are incorporated with the ignitron switch crowbar like over voltage, pulsed over current and continuous over current. The crowbar system developed in-house, tested at rated value. The results obtained during the stand-alone tests and commissioning tests are also mentioned. Using this crowbar system the high voltage power

  6. Accurate frequency measurements on gyrotrons using a ''gyro-radiometer''

    International Nuclear Information System (INIS)

    Rebuffi, L.

    1986-08-01

    Using an heterodyne system, called ''Gyro-radiometer'', accurated frequency measurements have been carried out on VARIAN 60 GHz gyrotrons. Changing the principal tuning parameters of a gyrotron, we have detected frequency variations up to 100 MHz, ∼ 40 MHz frequency jumps and smaller jumps (∼ 10 MHz) when mismatches in the transmission line were present. FWHM bandwidth of 300 KHz, parasitic frequencies and frequency drift during 100 msec pulses have also been observed. An efficient method to find a stable-, high power-, long pulse-working point of a gyrotron loaded by a transmission line, has been derived. In general, for any power value it is possible to find stable working conditions tuning the principal parameters of the tube in correspondance of a maximum of the emitted frequency

  7. Design of 95 GHz gyrotron based on continuous operation copper solenoid with water cooling

    International Nuclear Information System (INIS)

    Borodin, Dmitri; Ben-Moshe, Roey; Einat, Moshe

    2014-01-01

    The design work for 2nd harmonic 95 GHz, 50 kW gyrotron based on continuous operation copper solenoid is presented. Thermionic magnetron injection gun specifications were calculated according to the linear trade off equation, and simulated with CST program. Numerical code is used for cavity design using the non-uniform string equation as well as particle motion in the “cold” cavity field. The mode TE02 with low Ohmic losses in the cavity walls was chosen as the operating mode. The Solenoid is designed to induce magnetic field of 1.8 T over a length of 40 mm in the interaction region with homogeneity of ±0.34%. The solenoid has six concentric cylindrical segments (and two correction segments) of copper foil windings separated by water channels for cooling. The predicted temperature in continuous operation is below 93 °C. The parameters of the design together with simulation results of the electromagnetic cavity field, magnetic field, electron trajectories, and thermal analyses are presented

  8. Design of 95 GHz gyrotron based on continuous operation copper solenoid with water cooling

    Energy Technology Data Exchange (ETDEWEB)

    Borodin, Dmitri; Ben-Moshe, Roey; Einat, Moshe [Department of Electrical and Electronic Engineering, Ariel University, Ariel 40700 (Israel)

    2014-07-15

    The design work for 2nd harmonic 95 GHz, 50 kW gyrotron based on continuous operation copper solenoid is presented. Thermionic magnetron injection gun specifications were calculated according to the linear trade off equation, and simulated with CST program. Numerical code is used for cavity design using the non-uniform string equation as well as particle motion in the “cold” cavity field. The mode TE02 with low Ohmic losses in the cavity walls was chosen as the operating mode. The Solenoid is designed to induce magnetic field of 1.8 T over a length of 40 mm in the interaction region with homogeneity of ±0.34%. The solenoid has six concentric cylindrical segments (and two correction segments) of copper foil windings separated by water channels for cooling. The predicted temperature in continuous operation is below 93 °C. The parameters of the design together with simulation results of the electromagnetic cavity field, magnetic field, electron trajectories, and thermal analyses are presented.

  9. Multimegawatt relativistic harmonic gyrotron traveling-wave tube amplifier experiments

    International Nuclear Information System (INIS)

    Menninger, W.L.; Danly, B.G.; Temkin, R.J.

    1996-01-01

    The first multimegawatt harmonic relativistic gyrotron traveling-wave tube (gyro-twt) amplifier experiment has been designed, built, and tested. Results from this experimental setup, including the first ever reported third-harmonic gyro-twt results, are presented. Operation frequency is 17.1 GHz. Detailed phase measurements are also presented. The electron beam source is SNOMAD-II, a solid-state nonlinear magnetic accelerator driver with nominal parameters of 400 kV and 350 A. The flat-top pulsewidth is 30 ns. The electron beam is focused using a Pierce geometry and then imparted with transverse momentum using a bifilar helical wiggler magnet. Experimental operation involving both a second-harmonic interaction with the TE 21 mode and a third-harmonic interaction with the TE 31 mode, both at 17 GHz, has been characterized. The third-harmonic interaction resulted in 4-MW output power and 50-dB single-pass gain, with an efficiency of up to ∼8%. The best measured phase stability of the TE 31 amplified pulse was ±10 degree over a 9-ns period. The phase stability was limited because the maximum RF power was attained when operating far from wiggler resonance. The second harmonic, TE 21 had a peak amplified power of 2 MW corresponding to 40-dB single-pass gain and 4% efficiency. The second-harmonic interaction showed stronger superradiant emission than the third-harmonic interaction. Characterizations of the second- and third-harmonic gyro-twt experiments presented here include measurement of far-field radiation patterns, gain and phase versus interaction length, phase stability, and output power versus input power

  10. 8 GHz, high power, microwave system for heating of thermonuclear plasmas

    International Nuclear Information System (INIS)

    Di Giovenale, S.; Fortunato, T.; Mirizzi, F.; Roccon, M.; Sassi, M.; Tuccillo, A.A.; Maffia, G.; Baldi, L.

    1993-01-01

    The Frascati Tokamak Upgrade (FTU) is a machine included in the European Thermonuclear Fusion Program aimed at investigating high density plasmas in the presence of powerful additional RF heating systems. The Lower Hybrid Resonant Heating (LHRH) system, based on 9 independent modules, works at 8 GHz, and will generate, at full performances, a total amount of 9 MW, in the pulsed regime (pulse length = 1 s, duty cycle = 1/600). The microwave power source is a gyrotron oscillator, developed by Thomson Tubes Electroniques (France) for this specific application, and capable of producing up to 1 MW. An overmoded, low loss, circular waveguide transmits the RF power toward the plasma; an array of 12x4 rectangular waveguides (the 'grill') launches this power into the plasma. The paper describes the LHRH system for FTU and analyses both its main performances and experimental results

  11. 154 GHz collective Thomson scattering in LHD

    Science.gov (United States)

    Tanaka, K.; Nishiura, M.; Kubo, S.; Shimozuma, T.; Saito, T.; Moseev, D.; Abramovic, I.

    2018-01-01

    Collective Thomson scattering (CTS) was developed by using a 154 GHz gyrotron, and the first data has been obtained. Already, 77 GHz CTS has worked successfully. However, in order to access higher density region, 154 GHz option enhances the usability that reduces the refraction effect, which deteriorates in the local measurements. The system in the down converted frequency was almost identical to the system for 77 GHz. Probing beam, a notch filter, a mixer, and a local oscillator in the receiver system for 77 GHz option were replaced to those for the 154 GHz option. 154 GHz gyrotron was originally prepared for the second harmonic electron cyclotron heating (ECRH) at 2.75 T. However, scattering signal was masked by the second harmonic electron cyclotron emission (ECE) at 2.75 T. Therefore, 154 GHz CTS was operated at 1.375 T with fourth harmonic ECE, and an acceptable signal to noise ratio was obtained. There is a signature of fast ion components with neutral beam (NB) injection. In addition, the CTS spectrum became broader in hydrogen discharge than in deuterium discharge, as the theoretical CTS spectrum expects. This observation indicates a possibility to identify ion species ratio by the 154 GHz CTS diagnostic.

  12. Design of the all solid high-voltage power supply for a gyrotron body

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Yihua [School of Mathematics and Physics, University of South China, Hengyang, 421001 (China); Chen, Wenguang, E-mail: 430000485393@usc.edu.cn [School of Electrical Engineering, University of South China, Hengyang, 421001 (China); Hu, Bo [School of Electrical Engineering, University of South China, Hengyang, 421001 (China); Rao, Jun; Huang, Mei; Kang, Zihua; Feng, Kun [Southwestern Institute of Physics, Chengdu, 610041 (China); Huang, Jiaqi [School of Electrical Engineering, University of South China, Hengyang, 421001 (China)

    2017-04-15

    Highlights: • Completed design of all solid-state high-voltage power supply for gyrotron body on HL-2M ECRH. • Consist of 58 PSM modules and one BUCK module, controlled by DSP system. • Fabricated full voltage 35 kV, 200 mA BPS and tested in dummy load. • The BPS can operate in three modes: single pulse mode, multi-pulse modulation mode and the six-level preset mode. - Abstract: Gyrotron plays an important role in the research of electron cyclotron resonance heating (ECRH) on Tokomak. The high-frequency switched power supply technology and pulse step modulation (PSM) technology are used in the development of the all solid high-voltage body power supply (BPS) for 1 MW/105 GHz Gyrotron on ECRH system. Firstly, the basic structure of the BPS and its control system are introduced. Secondly, the software control algorithm of voltage stabilization and modulate method are developed. Finally, the design is verified by the experiments. The experimental results of the single pulse mode, the multi-pulse modulation mode and the six-level preset mode, are shown. The output voltage of the power supply can reach 35 kV and the current at about 200 mA, which are adjustable in the full range. The maximum modulation frequency can reach 1 kHz and the front edge of the pulse can be adjust from 0 to 3 ms and the accuracy of the output voltage is less than 100 V. The results show that the control method is feasible and can be applied to other high power microwave sources.

  13. Single-stage depressed collectors for gyrotrons

    International Nuclear Information System (INIS)

    Piosczyk, B.; Iatrou, C.T.; Dammertz, G.; Thumm, M.; Univ. Karlsruhe

    1996-01-01

    Two 140 GHz gyrotrons with a single-step depressed collector have been operated. The different position of the isolating collector gap in the stray magnetic field causes the electron motion in the retarding region to be in one case adiabatic and in the other case nonadiabatic. The kind of motion within the retarding field influences strongly the behavior of the gyrotron with a depressed collector. In the case of nonadiabatic motion a significant amount of transverse momentum is given to the electrons reflected at the collector potential. This causes the reflected electrons to be trapped between the magnetic mirror and the collector. The electrons escape from the trap by diffusion across the magnetic field to the body of the tube thus contributing to the body current. Despite the high body current there is no observable influence of the collector voltage on the RF output power. In the case of adiabatic motion the reflected electrons do not gain a sufficient amount of transverse momentum to be trapped by the magnetic mirror. They pass the cavity toward the gun and they are trapped between the negative gun potential and the collector. The interaction with the RF field by electrons traveling through the cavity enhances the diffusion in the velocity space thus enabling the trapped electrons to overcome the potential barrier and escape toward the collector. Therefore the body current stays at low values since in this case the reflected electrons do not contribute to it. However, at higher collector voltages a reduction of RF power occurred and some noise in the electron beam was observed. The main motivation for the development of gyrotrons in the frequency range above 100 GHz with power levels in excess of several hundreds kW per tube, is the application in magnetic fusion devices for plasma heating and for electron current drive

  14. Commissioning a Megawatt-class Gyrotron with Collector Potential Depression

    Science.gov (United States)

    Lohr, J.; Cengher, M.; Gorelov, Y. A.; Ponce, D.; Prater, R.

    2013-10-01

    A 110 GHz depressed collector gyrotron has been installed on the DIII-D tokamak. The commissioning process rapidly achieved operation at full parameters, 45 A and 94 kV total voltage, with 29 kV depression. Although short pulse, 2 ms, factory testing demonstrated 1.2 MW at 41% electrical efficiency, long pulse testing at DIII-D achieved only 33% efficiency at full power parameters, for pulse lengths up to 10 s. Maximum generated power was ~950 kW, considerably below the 1.2 MW target. During attempts to increase the power at 5 s pulse length, it was noted that the collector cooling water was boiling. This led to the discovery that 14 of the 160 cooling channels in the collector had been blocked by braze material during manufacture of the tube. The locations of blocked channels were identified using infrared imaging of the outside of the collector during rapid changes in the cooling water temperature. Despite these difficulties, the rf beam itself was of very high quality and the stray rf found calorimetrically in the Matching Optics Unit, which couples the Gaussian rf beam to the waveguide, was only 2% of the generated power, about half that of our previous best quality high power beam. Details of the power measurements and collector observations will be presented. Work supported by the US DOE under DE-FC02-04ER54698.

  15. ECH Technology Development

    Energy Technology Data Exchange (ETDEWEB)

    Temkin, Richard [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2014-12-24

    Electron Cyclotron Heating (ECH) is needed for plasma heating, current drive, plasma stability control, and other applications in fusion energy sciences research. The program of fusion energy sciences supported by U. S. DOE, Office of Science, Fusion Energy Sciences relies on the development of ECH technology to meet the needs of several plasma devices working at the frontier of fusion energy sciences research. The largest operating ECH system in the world is at DIII-D, consisting of six 1 MW, 110 GHz gyrotrons capable of ten second pulsed operation, plus two newer gyrotrons. The ECH Technology Development research program investigated the options for upgrading the DIII-D 110 GHz ECH system. Options included extending present-day 1 MW technology to 1.3 – 1.5 MW power levels or developing an entirely new approach to achieve up to 2 MW of power per gyrotron. The research consisted of theoretical research and designs conducted by Communication and Power Industries of Palo Alto, CA working with MIT. Results of the study would be validated in a later phase by research on short pulse length gyrotrons at MIT and long pulse / cw gyrotrons in industry. This research follows a highly successful program of development that has led to the highly reliable, six megawatt ECH system at the DIII-D tokamak. Eventually, gyrotrons at the 1.5 megawatt to multi-megawatt power level will be needed for heating and current drive in large scale plasmas including ITER and DEMO.

  16. Plasma scattering measurement using a submillimeter wave gyrotron as a radiation source

    International Nuclear Information System (INIS)

    Ogawa, I.; Idehara, T.; Itakura, Y.; Myodo, M.; Hori, T.; Hatae, T.

    2004-01-01

    Plasma scattering measurement is an effective technique to observe low frequency density fluctuations excited in plasma. The spatial and wave number resolutions and the S/N ratio of measurement depend on the wavelength range, the size and the intensity of a probe beam. A well-collimated, submillimeter wave beam is suitable for improving the spatial and wave number resolutions. Application of high frequency gyrotron is effective in improving the S/N ratio of the measurement because of its capacity to deliver high power. Unlike the molecular vapor lasers, the gyrotrons generate diverging beam of radiation with TE mn mode structure. It is therefore necessary to convert the output radiation into a Gaussian beam. A quasi-optical antenna is a suitable element for the conversion system under consideration since it is applicable to several TE 0n and TE 1n modes. In order to apply the gyrotron to plasma scattering measurement, we have stabilized the output (P = 110 W, f = 354 GHz) of gyrotron up to the level (ΔP/P < 1 %, Δf< 10 kHz). The gyrotron output can be stabilized by decreasing the fluctuation of the cathode potential. (authors)

  17. Improved Design of Beam Tunnel for 42 GHz Gyrotron

    Science.gov (United States)

    Singh, Udaybir; Kumar, Nitin; Purohit, L. P.; Sinha, A. K.

    2011-04-01

    In gyrotron, there is the chance of generation and excitation of unwanted RF modes (parasite oscillations). These modes may interact with electron beam and consequently degrade the beam quality. This paper presents the improved design of the beam tunnel to reduce the parasite oscillations and the effect of beam tunnel geometry on the electron beam parameters. The design optimization of the beam tunnel has been done with the help of 3-D simulation software CST-Microwave Studio and the effect of beam tunnel geometry on the electron beam parameters has been analyzed by EGUN code.

  18. State-of-the-art of high power gyro-devices and free electron masers

    International Nuclear Information System (INIS)

    Thumm, M.

    1993-10-01

    At present, gyrotron oscillators are mainly used as high power millimeter wave sources for electron cyclotron resonance heating (ECRH) and diagnostics of magnetically confined plasmas for generation of energy by controlled thermonuclear fusion. 140 GHz gyrotrons with output power P out = 0.58 MW, pulse length τ = 2.0 s and efficiency η = 34% are commercially available. Diagnostic gyrotrons deliver P out = 40 kW with τ = 40 μs at frequencies up to 650 GHz (η ≥ 4%). Recently, gyrotron oscillators have also been successfully used in material processing and plasma chemistry. Such technological applications require gyrotrons with the following parameters: f ≥ 28 GHz, P out = 10-30 kW, CW, η ≥ 30%. This paper reports on achievements and problems related to the development of very high power mm-wave gyrotrons for long pulse or CW operation and describes the microwave technological pecularities of the different development steps. In addition, this work gives a short overview of the present development of gyrotrons for technological applications, quasi-optical gyrotrons, cyclotron autoresonance masers (CARMs), gyro-klystrons, gyro-TWT amplifiers, gyro-BWO's and free electron masers (FEMs). The most impressive FEM output parameters are: P out = 2 GW, τ = 20 ns, η = 13% at 140 GHz (LLNL) and P out = 15 kW, τ = 20 μs, η = 5% in the range from 120 to 900 GHz (UCSB). (orig.) [de

  19. Electron beam emission and interaction of double-beam gyrotron

    International Nuclear Information System (INIS)

    Singh, Udaybir; Kumar, Anil; Kumar, Nitin; Kumar, Narendra; Pratap, Bhanu; Purohit, L.P.; Sinha, A.K.

    2012-01-01

    Highlights: ► The complete electrical design of electron gun and interaction structure of double-beam gyrotron. ► EGUN code is used for the simulation of electron gun of double-beam gyrotron. ► MAGIC code is used for the simulation of interaction structure of double-beam gyrotron. ► Design validations with other codes. - Abstract: This paper presents the numerical simulation of a double-beam magnetron injection gun (DB-MIG) and beam-wave interaction for 60 GHz, 500 kW gyrotron. The beam-wave interaction calculations, power and frequency growth estimation are performed by using PIC code MAGIC. The maximum output power of 510 kW at 41.5% efficiency, beam currents of 6 A and 12 A, electron beam velocity ratios of 1.41 and 1.25 and beam voltage of 69 kV are estimated. To obtain the design parameters, the DB-MIG with maximum transverse velocity spread less than 5% is designed. The computer simulations are performed by using the commercially available code EGUN and the in-house developed code MIGANS. The simulated results of DB-MIG design obtained by using the EGUN code are also validated with another trajectory code TRAK, which are in good agreement.

  20. Electron beam emission and interaction of double-beam gyrotron

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Udaybir, E-mail: uday.ceeri@gmail.com [Gyrotron Laboratory, Microwave Tube Area, Central Electronics Engineering Research Institute (CEERI), Council of Scientific and Industrial Research (CSIR), Pilani, Rajasthan 333031 (India); Department of Physics, Gurukul Kangri University, Haridwar 249404 (India); Kumar, Anil [Gyrotron Laboratory, Microwave Tube Area, Central Electronics Engineering Research Institute (CEERI), Council of Scientific and Industrial Research (CSIR), Pilani, Rajasthan 333031 (India); Kumar, Nitin, E-mail: nitin_physika@rediffmail.com [Gyrotron Laboratory, Microwave Tube Area, Central Electronics Engineering Research Institute (CEERI), Council of Scientific and Industrial Research (CSIR), Pilani, Rajasthan 333031 (India); Kumar, Narendra; Pratap, Bhanu [Gyrotron Laboratory, Microwave Tube Area, Central Electronics Engineering Research Institute (CEERI), Council of Scientific and Industrial Research (CSIR), Pilani, Rajasthan 333031 (India); Purohit, L.P. [Department of Physics, Gurukul Kangri University, Haridwar 249404 (India); Sinha, A.K., E-mail: aksinha@ceeri.ernet.in [Gyrotron Laboratory, Microwave Tube Area, Central Electronics Engineering Research Institute (CEERI), Council of Scientific and Industrial Research (CSIR), Pilani, Rajasthan 333031 (India)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer The complete electrical design of electron gun and interaction structure of double-beam gyrotron. Black-Right-Pointing-Pointer EGUN code is used for the simulation of electron gun of double-beam gyrotron. Black-Right-Pointing-Pointer MAGIC code is used for the simulation of interaction structure of double-beam gyrotron. Black-Right-Pointing-Pointer Design validations with other codes. - Abstract: This paper presents the numerical simulation of a double-beam magnetron injection gun (DB-MIG) and beam-wave interaction for 60 GHz, 500 kW gyrotron. The beam-wave interaction calculations, power and frequency growth estimation are performed by using PIC code MAGIC. The maximum output power of 510 kW at 41.5% efficiency, beam currents of 6 A and 12 A, electron beam velocity ratios of 1.41 and 1.25 and beam voltage of 69 kV are estimated. To obtain the design parameters, the DB-MIG with maximum transverse velocity spread less than 5% is designed. The computer simulations are performed by using the commercially available code EGUN and the in-house developed code MIGANS. The simulated results of DB-MIG design obtained by using the EGUN code are also validated with another trajectory code TRAK, which are in good agreement.

  1. EU Developments of the ITER ECRH System

    International Nuclear Information System (INIS)

    Henderson, M.

    2006-01-01

    The electron cyclotron (EC) heating and current drive (H (and) CD) system of ITER will deliver 20 MW/CW in the plasma at 170 GHz for H (and) CD in addition to 2.5 MW/3 s at 120 GHz for plasma start-up. The EC system is composed of power supplies (PS), up to 24 H (and) CD gyrotrons (1 to 2 MW tubes), 3 start-up gyrotrons (1 MW tubes), 24 transmission lines and two sets of launching antennas: equatorial (EL) and upper (UL) launchers. Under the present ITER procurement package the EU is responsible for one third of the H (and) CD 170 GHz gyrotrons, all PSs associated with the H (and) CD system, and the whole set (4) of upper launchers. In all areas of participation, the EU EC partnership (coordinated by the European Fusion Development Association - EFDA) aims toward advancing the technology of each of these subsystems. For example, procurement of Pulse Step Modulator (PSM) HVPS is under consideration, which might have equivalent costs to the present ITER design (thyristor HVPS and HV series switch), but with an increased flexibility in operation and variation in the EC power waveform. The EU is at the forefront in gyrotron research and is developing a 2 MW CW 170 GHz coaxial cavity gyrotron offering an increase in output power while maintaining moderate power densities in the gyrotron cavity and collector. THALES R in collaboration with its EFDA partners (FZK, CRPP, TEKES) is manufacturing a series of prototype tubes in three phases of typically 1 s, 100 s and then CW pulse capacity (∼ 20 10 ). A 2 MW, CW gyrotron test facility is being built at CRPP that will be used to develop the 2 MW coaxial tube, in addition to testing various components required by the EC system. EFDA has undertaken a parallel development of two launcher options: front (FS) and remote (RS) steering, with the aim of providing an optimum launcher for ITER weighing EC physics aspects and operation reliability. The FS launcher (ITER reference design) offers a significant enhancement in physics

  2. Generation of electron beams in cyclotron motion and its interaction with electromagnetic fields in weakly irregular cavities: a study applied to conceptual elaboration of a 35 GHz gyrotron

    International Nuclear Information System (INIS)

    Castro, J.J.B. de.

    1988-12-01

    It is presented an investigation of different phenomena that occur in the gyrotron: 1) generation and transport of helical electron beams, 2) interaction of electrons in cyclotron motion with a transverse electric mode in resonant cavities operating near cutoff and 3) electron deposition over the collector active region. An exact ballistic model, which points out the nonlinear attributes of the relativistic equation of electron cyclotron motion and that includes a complex formulation for the longitudinal electric field distribution in weakly irregular waveguides, is used. Physically realizable RF field profiles are studied with the objective of maximizing gyrotron efficiency. For this purpose, an investigation is made of the resonant properties of truncated cones cavities and a new resonator type, with a profile described in terms of a continuous function, is developed. High perpendicular efficiencies (η perpendicular MAX =0.86) have been calculated for interaction at the fundamental 1 cyclotron harmonic and for uniform external magnetic field. A maximum efficiency scaling parameter S has been introduced, by which scaling relations η perpendicular MAX = η perpendicular MAX (S) are applicable to a variety of field profiles. The conceptual design of a 35 GHz gyrotron gives emphasis to selection criteria of operating parameters in compliance with technical constraints and with the requirement of soft self-excited oscillations. The proposed gyrotron operates in the azimuthally symetrical mode TE 021 and is able to produce, with an electronic efficiency of 40%, an output power of 100 kW, in pulses of 20 ms, with a duty factor of 0.04%. (author) [pt

  3. State-of-the-art of high power gyro-devices and free electron masers 1994

    International Nuclear Information System (INIS)

    Thumm, M.

    1995-04-01

    At present, gyrotron oscillators are mainly used as high power millimeter wave sources for electron cyclotron resonance heating (ECRH) and diagnostics of magnetically confined plasmas for generation of energy by controlled thermonuclear fusion. 140 GHz gyrotrons with output power P out =0.54 MW, pulse length τ=3.0 s and efficiency η=42% are commercially available. Total efficiencies around 50% have been achieved using single-stage depressed collectors. Diagnostic gyrotrons deliver P out =40 kW with τ=40 μs at frequencies up to 650 GHz (η≥4%). Recently, gyrotron oscillators have also been successfully used in material processing and plasma chemistry. Such technological applications require gyrotrons with the following parameters: f≥24 GHz, P out =10-50 kW, CW, η≥30%. This paper reports on achievements and problems related to the development of very high power mm-wave gyrotrons for long pulse or CW operation and describes the microwave technological pecularities of the different development steps. In addition, this work gives a short overview of the present development of gyrotrons for technological applications, relativistic gyrotrons, quasi-optical gyrotrons, cyclotron autoresonance masers (CARMs), gyro klystrons, gyro-TWT amplifiers, gyrotwystron amplifiers, gyro-BWO's, peniotrons and free electron masers (FEMs). The most impressive FEM output parameters are: P out =2 GW, τ=20 ns, η=13% at 140 GHz (LLNL) and P out =15 kW, τ=20 μs, η=5% in the range from 120 to 900 GHz (UCSB). (orig.) [de

  4. High-frequency gyrotrons and their application to tokamak plasma heating

    International Nuclear Information System (INIS)

    Kreischer, K.E.

    1981-01-01

    A comprehensive analysis of high frequency (100 to 200 GHz) and high power (> 100 kW) gyrotrons has been conducted. It is shown that high frequencies will be required in order for electron cyclotron radiation to propagate to the center of a compact tokamak power reactor. High power levels will be needed in order to ignite the plasma with a reasonable number of gyrotron units. In the first part of this research, a set of analytic expressions, valid for all TE cavity modes and all harmonics, is derived for the starting current and frequency detuning using the Vlasov-Maxwell equations in the weakly relativistic limit. The use of an optical cavity is also investigated

  5. Study of the parasitic oscillations in a gyrotron; Etudes des oscillations parasites dans un gyrotron

    Energy Technology Data Exchange (ETDEWEB)

    Pedrozzi, M. [Ecole Polytechnique Federale, Lausanne (Switzerland). Centre de Recherche en Physique des Plasma (CRPP)

    1997-01-01

    This work is dedicated to the study of parasitic instabilities in a gyrotron, and to the influence of such instabilities on the interaction efficiency. The gyrotron is a high-power millimeter wave radiation source, based on the resonant interaction between a weakly relativistic electron beam immersed in a guiding magnetic field, and an electromagnetic wave. The gyrotron investigated here operates at a frequency close to 100 GHz: its main feature is that it is quasi optical. In this configuration, the electron beam interacts with a high order TEM eigenmode of a Fabry-Perot resonator, the axis of which is perpendicular to the electron beam path. During the development of this source, the highest efficiency that was achieved is approximately 30% lower than the theoretical predictions. At the same time, parasitic oscillations at frequencies close to the maximum relativistic cyclotronic frequency are detected. The power associated with these oscillations ranges from a few watts to a few kilowatts, with threshold currents of the order of 100 mA. It is suspected that the excitation of parasitic oscillations in the beam duct section before the interaction region might have a dramatic effect on the electron beam distribution function inducing, in particular, an energy spread. The cyclotron maser instability responsible for the energy exchange between particles and fields in a gyrotron, is very sensitive to energy spreads. It is thus necessary to identify the origin of the parasitic radiation. A few physical mechanisms suspected to lead to a degradation of the electron beam properties were investigated: the cyclotron maser process itself, the Bernstein electrostatic instability and the Langmuir instability. The experimental work concentrated on the study of the beam ducts between the electron gun and the resonant cavity. (author) figs., tabs., 90 refs.

  6. Startup methods for single-mode gyrotron operation

    International Nuclear Information System (INIS)

    Whaley, D.R.; Tran, M.Q.; Alberti, S.; Tran, T.M.; Antonsen, T.M. Jr.; Dubrovin, A.; Tran, C.

    1995-01-01

    Experimental results of startup studies on a 118 GHz TE 22,6 gyrotron are presented and compared with theory. The startup paths through the energy-velocity-pitch-angle plane are determined by the time evolution of the beam parameters during the startup phase. These startup paths are modified by changing the anode and cathode voltage rise from zero to their nominal values and are seen to determine the cavity oscillating mode. Experimental results show specifically that competition between the TE 22,6 and TE -19,7 mode can be completely eliminated by use of the proper startup method in a case where a typical triode startup results in oscillation in the competing TE -19,7 mode. These new results are shown to be in excellent agreement with the theory whose approach is general and therefore applicable to gyrotrons operating in any arbitrary cavity mode. (author) 3 figs., 4 refs

  7. Upgrade Of The TH1506B 118 GHz Gyrotron Using Modeing Tools

    International Nuclear Information System (INIS)

    Darbos, C.; Bouquey, F.; Lambert, R.; Magne, R.; Traisnel, E.; Arnold, A.; Prinz, H. O.; Thumm, M.; Hogge, J. P.; Lievin, C.

    2007-01-01

    The first TH1506B prototype showing problems of overheating and spurious oscillations, a new modified gyrotron was built. During the tests, the extwo peaks, which was never predicted by simulations. Various low evel tests were performed on the mode converter with different shapes for the launcher but without real improvement. Besides measurements, the use of a new software Surf3D[l] showed that the problem mainly comes from the 3rd mirror whose curvature is too high and not well taken nto account by the calculation. This analysis software is based on ntegral equations and the complete 3D modelling alowed to determine a new profile for the 3rd mirror. An aluminium model of a new mirror was manufactured and thorough low level tests made at FZK showed that there was no double peak.The next step would consist in building a gyrotron based on this new design, to confirm the simulation and to valdate it for long pulses

  8. Gyrotron: an application of the relativistic bunching of electrons to the generation of intense millimeter microwave radiation

    International Nuclear Information System (INIS)

    Caplan, M.

    1986-01-01

    The cyclotron maser or gyrotron is capable of generating high power microwaves at millimeter wave frequencies for applications in fusion heating, radar astronomy and communications. Analytic and numerical simulation models are developed that describe the behavior of these devices under realistic laboratory conditions including the effects of circuit geometry, beam thermal spread, and mode competition. In Chapter 2, a generalized linear theory for the gyrotron is presented in the form of an integro-differential equation that can be solved within various circuit geometries thus describing gyro-amplifiers, gyro-oscillatory and gyroklystrons. In Chapter 3 a complete description of a finite size electromagnetic particle simulation model is presented that describes gyrotrons operating in a TE/sub mn/ waveguide mode. In Chapter 4 simulations and theoretical analysis are made of gyrotron amplifiers operating in the TE/sub 01/ mode. In Chapter 5 the linear eigenmodes and eigenfrequencies of gyrotron oscillators are examined. In Chapter 6 the experimental development of a GHz gyrotron is presented. Theoretical and numerical predictions of oscillation thresholds and efficiencies compare favorably with experimental data

  9. RECENT DEVELOPMENTS ON THE 110 GHz ELECTRON CYCLOTRON INSTATLLATION ON THE DIII-D TOKAMAK

    International Nuclear Information System (INIS)

    PONCE, D.; CALLIS, R.W.; CARY, W.P.; FERRON, J.R.; GREEN, M.; GRUNLOH, H.J.; GORELOV, Y.; LOHR, J.; ELLIS, R.A.

    2002-01-01

    OAK A271 RECENT DEVELOPMENTS ON THE 110 GHZ ELECTRON CYCLOTRON INSTALLATION ON THE DIII-D TOKAMAK. Significant improvements are being implement4ed to the capability of the 110 GHz electron cyclotron system on the DIII-D tokamak. Chief among these is the addition of the fifth and sixth 1 MW class gyrotrons, increasing the power available for auxiliary heating and current drive by nearly 60%. These tubes use artificially grown diamond rf output windows to obtain high power with long pulse capability. The beams from these tubes are nearly Gaussian, facilitating coupling to the waveguide. A new fully articulating dual launcher capable of high speed spatial scanning has been designed and tested. The launcher has two axis independent steering for each waveguide. the mirrors can be rotated at up to 100 o /s. A new feedback system linking the DIII-D Plasma Control System (PCS) with the gyrotron beam voltage waveform generators permits real-time feedback control of some plasma properties such as electron temperature. The PCS can use a variety of plasma monitors to generate its control signal, including electron cyclotron emission and Mirnov probes. Electron cyclotron heating and electron cyclotron current drive (ECH and ECCD) were used during this year's DIII-D experimental campaign to control electron temperature, density, and q profiles, induce an ELM-free H-mode, and suppress the m=2/n=1 neoclassical tearing mode. The new capabilities have expanded the role of EC systems in tokamak plasma control

  10. Suppression criteria of parasitic mode oscillations in a gyrotron beam tunnel

    Science.gov (United States)

    Kumar, Nitin; Singh, Udaybir; Singh, T. P.; Sinha, A. K.

    2011-02-01

    This paper presents the design criteria of the parasitic mode oscillations suppression for a periodic, ceramic, and copper loaded gyrotron beam tunnel. In such a type of beam tunnel, the suppression of parasitic mode oscillations is an important design problem. A method of beam-wave coupling coefficient and its mathematical formulation are presented. The developed design criteria are used in the beam tunnel design of a 42 GHz gyrotron to be developed for the Indian TOKAMAK system. The role of the thickness and the radius of the beam tunnel copper rings to obtain the developed design criteria are also discussed. The commercially available electromagnetic code CST and the electron trajectory code EGUN are used for the simulations.

  11. Suppression criteria of parasitic mode oscillations in a gyrotron beam tunnel

    International Nuclear Information System (INIS)

    Kumar, Nitin; Singh, Udaybir; Sinha, A. K.; Singh, T. P.

    2011-01-01

    This paper presents the design criteria of the parasitic mode oscillations suppression for a periodic, ceramic, and copper loaded gyrotron beam tunnel. In such a type of beam tunnel, the suppression of parasitic mode oscillations is an important design problem. A method of beam-wave coupling coefficient and its mathematical formulation are presented. The developed design criteria are used in the beam tunnel design of a 42 GHz gyrotron to be developed for the Indian TOKAMAK system. The role of the thickness and the radius of the beam tunnel copper rings to obtain the developed design criteria are also discussed. The commercially available electromagnetic code CST and the electron trajectory code EGUN are used for the simulations.

  12. Startup methods for single-mode gyrotron operation

    International Nuclear Information System (INIS)

    Whaley, D.R.; Tran, M.Q.; Alberti, S.; Tran, T.M.; Antonsen, T.M.; Tran, C.

    1995-03-01

    Experimental results of startup studies on a 118 GHz TE 22,6 gyrotron are presented and compared with theory. The theoretical excitation regimes of competing modes are computed in the energy-velocity-pitch-angle plane near the operation point. The startup paths through the plane are determined by the time evolution of the beam parameters during the startup phase. These startup paths are modified by changing the anode and cathode voltage rise from zero to their nominal values and are seen to determine the cavity oscillating mode. Experimental results show specifically that competition between the TE 22,6 and TE -19,7 mode can be completely eliminated by using the proper startup method in a case where a typical triode startup results in oscillation in the competing TE -19,7 mode. These new results are shown to be in excellent agreement with theory whose approach is general and therefore applicable to gyrotrons operating in any arbitrary cavity mode. (author) 5 figs., 1 tab., 13 refs

  13. Power systems for the Doublet III 2-MW ECH system

    International Nuclear Information System (INIS)

    Remsen, D.B. Jr.

    1981-10-01

    A system providing 5 second pulses at 60 GHz from ten 200 kW gyrotrons is being prepared for electron cyclotron heating experiments on Doublet III. The power supply for the gyrotron system is a power supply currently under construction by Universal Voltronics Corporation for the Doublet III neutral beam power supply, and is to have the option of reverse polarity (negative) to fill the needs of the system of ten gyrotons operating in parallel. The output of this power supply is 80 kV at 100A for 5 second pulses with good regulation. The output pulse rise and fall times and fault protection response time are all compatible with the gyrotron requirements

  14. Control of the Superconducting Magnets current Power Supplies of the TJ-II Gyrotrons; Control de las Fuentes de Corriente de las Bobinas Superconductoras de los Girotrones del TJ-II

    Energy Technology Data Exchange (ETDEWEB)

    Ros, A; Fernandez, A; Tolkachev, A; Catalan, G

    2006-07-01

    The TJ-II ECRH heating system consists of two gyrotrons, which can deliver a maximum power of 300 kW at a frequency of 53.2 GHz. Another 28 GHz gyrotron is going to be used in the Bernstein waves heating system. In order to get the required frequency, the gyrotrons need and homogeneous magnetic field of several tesla, which is generated by a superconducting coil field by a current source. This document describes the current source control as well as the high precision ammeters control. These ammeters measure the current in the superconducting coils. The user interface and the programming of the control system are described. The communication between devices is also explained. (author) 9 Refs.

  15. Low-voltage gyrotrons

    International Nuclear Information System (INIS)

    Glyavin, M. Yu.; Zavolskiy, N. A.; Sedov, A. S.; Nusinovich, G. S.

    2013-01-01

    For a long time, the gyrotrons were primarily developed for electron cyclotron heating and current drive of plasmas in controlled fusion reactors where a multi-megawatt, quasi-continuous millimeter-wave power is required. In addition to this important application, there are other applications (and their number increases with time) which do not require a very high power level, but such issues as the ability to operate at low voltages and have compact devices are very important. For example, gyrotrons are of interest for a dynamic nuclear polarization, which improves the sensitivity of the nuclear magnetic resonance spectroscopy. In this paper, some issues important for operation of gyrotrons driven by low-voltage electron beams are analyzed. An emphasis is made on the efficiency of low-voltage gyrotron operation at the fundamental and higher cyclotron harmonics. These efficiencies calculated with the account for ohmic losses were, first, determined in the framework of the generalized gyrotron theory based on the cold-cavity approximation. Then, more accurate, self-consistent calculations for the fundamental and second harmonic low-voltage sub-THz gyrotron designs were carried out. Results of these calculations are presented and discussed. It is shown that operation of the fundamental and second harmonic gyrotrons with noticeable efficiencies is possible even at voltages as low as 5–10 kV. Even the third harmonic gyrotrons can operate at voltages about 15 kV, albeit with rather low efficiency (1%–2% in the submillimeter wavelength region).

  16. Development of collective Thomson scattering system using the gyrotrons of sub-tera Hz region

    International Nuclear Information System (INIS)

    Tatematsu, Y.; Kubo, S.; Nishiura, M.

    2010-11-01

    Collective Thomson scattering (CTS) system is being developed for fusion plasma and CTS measurement on the large helical device (LHD) plasma is discussed. Sub-terahertz frequencies are suitable to the probe beam for CTS on LHD. According to the feasibility study, frequency around 0.4 THz is best for the CTS measurement on LHD high density plasma, and power of 100 kW is required. Thus, only gyrotrons in the sub-terahertz range can meet these parameters. At the first stage of development, second harmonic gyrotrons have been developed. A sealed-off type of gyrotrons has been manufactured to improve a demountable one. Measured output power has increased to about 60 kW. In parallel with the development of gyrotrons, an actual CTS system using a 77 GHz gyrotron originally installed for heating is being developed as a benchmark of LHD CTS. A heterodyne receiver system of a fundamental mixer with a fixed frequency local oscillator was installed on the upstream of the transmission line. The probe beam is 100% power modulated at 50 Hz to separate the scattering component from background ECE. Signals that can be attributed to the CTS were obtained and the analysis method of these data is developed. (author)

  17. Status of gyrotron development

    International Nuclear Information System (INIS)

    Craig, L.J.

    1987-01-01

    This discussion briefly reviews the usual scaling law for predicting higher-power gyrotron performance from existing data, proposes another way of charting improvement progress, perhaps more applicable than the scaling laws, and shows the number of actual experimental vehicles that were required to achieve various high-power CW gyrotron goals. It also briefly touches on some of the key elements and design factors considered for CW gyrotron design. Ongoing megawatt-gyrotron experiments at Varian Associates are presented and gyrotron applications in accelerators, weapons, ceramic sintering, and fusion are assessed

  18. Advantages of using gyrotron scattering for alpha particle diagnostics

    International Nuclear Information System (INIS)

    Woskoboinikow, P.P.; Cohn, D.R.; Machuzak, J.S.; Myer, R.C.; Rhee, R.Y.

    1987-07-01

    Millimeter-wave gyrotron collective Thomson scattering can be an effective diagnostic technique for the study of alpha particle behavior in ignited plasmas. The measurement of alpha particle density, velocity distribution, and alpha particle induced plasma instabilities can be accomplished with both spatial and temporal resolution. Advantages include long pulse operation which can make possible very high signal to noise ratios and use of millimeter waves which maximizes the Doppler shifted scattered signal in WHz -1 and makes possible scattering angles up to 180 0 . Extraordinary mode scattering at approximately 60 and 200 GHz would be used in TFTR and CIT respectively, and 140 GHz ordinary mode scattering in JET. 8 refs., 1 fig

  19. Experimental considerations concerning the velocity measurement of the relativistic electron beam in a gyrotron by means of Thomson scattering

    International Nuclear Information System (INIS)

    Siegrist, M.R.; Soumagne, G.; Tran, M.Q.

    1992-11-01

    The feasibility of Thomson scattering to determine the beam velocity in a gyrotron has been analyzed and preliminary experiments to implement such a system on our 100 GHz quasi-optical gyrotron are reported. Although the project had to be abandoned due to technical problems, the conclusions are that for the 90 o scattering arrangement discussed it should be possible to determine at least one velocity component with an acceptable signal-to-noise ratio. (author) 11 figs., 10 refs

  20. Control of generation spectrum of gyrotron with external reflection in mode of several longitudinal modes

    International Nuclear Information System (INIS)

    Rozental', R.M.; Ginzburg, N.S.; Zajtsev, N.I.; Ilyakov, E.V.; Kulagin, I.S.

    2006-01-01

    One studies possibility to control the spectrum of multiparticle generation in a gyrotron due to application of external reflections. It is shown that in self-modulation regimes of generation the radiation spectrum lines may be close to the resonance frequencies throughout electrodynamic system covering a part of output waveguide restricted by a reflector. Under the mentioned conditions variation of distance between mode frequencies and, respectively, period of self-modulation may be reached due to varying of position of the reflector. The theory deductions are supported by the results of experimental investigation into 30 GHz region relativistic gyrotron with external reflections [ru

  1. Intense high-frequency gyrotron-based microwave beams for material processing

    Energy Technology Data Exchange (ETDEWEB)

    Hardek, T.W.; Cooke, W.D.; Katz, J.D.; Perry, W.L.; Rees, D.E.

    1997-03-01

    Microwave processing of materials has traditionally utilized frequencies in the 0.915 and 2.45 GHz regions. Microwave power sources are readily available at these frequencies but the relatively long wavelengths can present challenges in uniformly heating materials. An additional difficulty is the poor coupling of ceramic based materials to the microwave energy. Los Alamos National Laboratory scientists, working in conjunction with the National Center for Manufacturing Sciences (NCMS), have assembled a high-frequency demonstration processing facility utilizing gyrotron based RF sources. The facility is primarily intended to demonstrate the unique features available at frequencies as high as 84 GHz. The authors can readily provide quasi-optical, 37 GHz beams at continuous wave (CW) power levels in the 10 kW range. They have also provided beams at 84 GHz at 10 kW CW power levels. They are presently preparing a facility to demonstrate the sintering of ceramics at 30 GHz. This paper presents an overview of the present demonstration processing facility and describes some of the features they have available now and will have available in the near future.

  2. Extension of high T{sub e} regime with upgraded electron cyclotron resonance heating system in the Large Helical Device

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, H., E-mail: takahashi.hiromi@LHD.nifs.ac.jp; Shimozuma, T.; Kubo, S.; Yoshimura, Y.; Igami, H.; Ito, S.; Kobayashi, S.; Mizuno, Y.; Okada, K.; Mutoh, T.; Nagaoka, K.; Osakabe, M.; Yamada, I.; Nakano, H.; Yokoyama, M.; Ido, T.; Shimizu, A.; Seki, R.; Ida, K.; Yoshinuma, M. [National Institute for Fusion Science, Toki 509-5292 (Japan); and others

    2014-06-15

    Enhancement of the output power per gyrotron has been planned in the Large Helical Device (LHD). Three 77-GHz gyrotrons with an output power of more than 1 MW have been operated. In addition, a high power gyrotron with the frequency of 154 GHz (1 MW/5 s, 0.5 MW/CW) was newly installed in 2012, and the total injection power of Electron cyclotron resonance heating (ECRH) reached 4.6 MW. The operational regime of ECRH plasma on the LHD has been extended due to the upgraded ECRH system such as the central electron temperature of 13.5 keV with the line-averaged electron density n{sub e-fir} = 1 × 10{sup 19} m{sup −3}. The electron thermal confinement clearly improved inside the electron internal transport barrier, and the electron thermal diffusivity reached neoclassical level. The global energy confinement time increased with increase of n{sub e-fir}. The plasma stored energy of 530 kJ with n{sub e-fir} = 3.2 × 10{sup 19} m{sup −3}, which is 1.7 times larger than the previous record in the ECRH plasma in the LHD, has been successfully achieved.

  3. Millimetre waves and plasma physics

    International Nuclear Information System (INIS)

    Brand, G.F.

    1999-01-01

    Full text: This talk is a review of the plasma-related presentations at the 23rd International Conference on Infrared and Millimeter Waves held at the University of Essex, Colchester, UK 7-11 September 1998. Of most relevance to fusion is the development of high-power sources for electron cyclotron resonance heating and current drive. The requirements for ITER are a total of 50 MW at 170 GHz. The state of the art is illustrated by (a) high-power gyrotrons that deliver 1 MW for 1 s at 170 GHz, and (b) a free-electron maser that has generated millimetre waves for the first time, 730 kW at 200 GHz. A number of papers describe new technologies that allow high powers to be achieved; internal mode converters to convert the whispering-gallery mode generated in the gyrotron cavity into a gaussian beam, depressed collectors to raise the efficiency from 1/3 to better than 1/2, CVD diamond output windows and coaxial gyrotrons with improved mode purity. Other papers describe transmission lines and steerable mirrors. Several papers deal with millimetre-wave plasma diagnostics for fusion such as electron cyclotron emission measurements and reflectometry. (author)

  4. Application of Fusion Gyrotrons to Enhanced Geothermal Systems (EGS)

    Science.gov (United States)

    Woskov, P.; Einstein, H.; Oglesby, K.

    2013-10-01

    The potential size of geothermal energy resources is second only to fusion energy. Advances are needed in drilling technology and heat reservoir formation to realize this potential. Millimeter-wave (MMW) gyrotrons and related technologies developed for fusion energy research could contribute to enabling EGS. Directed MMW energy can be used to advance rock penetration capabilities, borehole casing, and fracking. MMWs are ideally suited because they can penetrate through small particulate extraction plumes, can be efficiently guided long distances in borehole dimensions, and continuous megawatt sources are commercially available. Laboratory experiments with a 10 kW, 28 GHz CPI gyrotron have shown that granite rock can be fractured and melted with power intensities of about 1 kW/cm2 and minute exposure times. Observed melted rock MMW emissivity and estimated thermodynamics suggest that penetrating hot, hard crystalline rock formations may be economic with fusion research developed MMW sources. Supported by USDOE, Office of Energy Efficiency and Renewable Energy and Impact Technologies, LLC.

  5. T25 ITER ECH window development 110 GHz ECH distributed window development. Final report, May 1, 1994 - December 31, 1995

    International Nuclear Information System (INIS)

    Olstad, R.A.; Moeller, C.P.; Grunloh, H.J.

    1998-01-01

    Electron Cyclotron Heating (ECH) is one of the major candidates for Heating and Current Drive on ITER. ECH is extremely attractive from a reactor engineering point of view, offering compact launch structures, high injected power density, and a simple interface with the shield/blanket. Economic deployment of ECH for ITER requires MW unit microwave sources (gyrotrons). The present technology limitation is the availability of suitable low loss output windows. These are needed for the torus as well as the tube. The torus window, in particular, is a demanding application as it also serves as a tritium barrier. Several distinct window concepts are under development by the various Parties. This report summarizes the efforts to make and test a open-quotes distributedclose quotes window suitable for 1 MW cw operation at 110 GHz. A companion report (Final Report on Task 245+) describes the efforts to make a distributed window suitable for 1 MW cw operation at 170 GHz, the main frequency of interest to ITER. General Atomics (GA) fabricated a 4 in. x 4 in. 110 GHz distributed window which was delivered in September 1995 to Communications and Power Industries (CPI). Hot tests at CPI confirmed the power handling capability of the window. Tests were conducted with a reduced beam size at 200 kW with 0.7 s pulses without any arcing or excessive window temperatures. The power density and pulse length were equivalent to that in a full size 1.2 MW CW beam with a peak-to-average power ratio of 2.7. This window was assembled using a gold braze material to bond the sapphire strips to the niobium frame. The braze was successful except for small leaks at two locations, and re-braze efforts were unsuccessful

  6. Gyrotrons

    International Nuclear Information System (INIS)

    Ebrahim, N.A.

    1987-05-01

    The purpose of this study is to bring together some relevant ideas and developments in the field of gyrotrons. The development of the electron cyclotron resonance maser (ECRM or Gyrotron) was an important break through in microwave electronics in the 1970s. As we look to the 1980's, we find scientists channelling their collective efforts to shorten the wavelength and increase output power and efficiency, thereby yielding an important device for generating high power microwave radiation. 24 refs

  7. Problem-Oriented Simulation Packages and Computational Infrastructure for Numerical Studies of Powerful Gyrotrons

    International Nuclear Information System (INIS)

    Damyanova, M; Sabchevski, S; Vasileva, E; Balabanova, E; Zhelyazkov, I; Dankov, P; Malinov, P

    2016-01-01

    Powerful gyrotrons are necessary as sources of strong microwaves for electron cyclotron resonance heating (ECRH) and electron cyclotron current drive (ECCD) of magnetically confined plasmas in various reactors (most notably ITER) for controlled thermonuclear fusion. Adequate physical models and efficient problem-oriented software packages are essential tools for numerical studies, analysis, optimization and computer-aided design (CAD) of such high-performance gyrotrons operating in a CW mode and delivering output power of the order of 1-2 MW. In this report we present the current status of our simulation tools (physical models, numerical codes, pre- and post-processing programs, etc.) as well as the computational infrastructure on which they are being developed, maintained and executed. (paper)

  8. The 8 MW lower hybrid electron mode system for the additional heating of the plasma of the FTU Tokamak

    International Nuclear Information System (INIS)

    Andreani, R.; De Marco, F.; Ferro, C.; Mirizzi, F.; Papitto, P.; Santini, F.; Segre, S.E.; Sassi, M.

    1985-01-01

    The ''Electron Mode'' regime of LH Heating, based on the same physics as the current drive, has been extensively studied and experimentally tested especially with respect to the relation between frequency and density limit. These results have largely contributed to the decision to build a CD system on TORE SUPRA. Based on the same motivations, the Lower Hybrid 'Electron Mode' Heating (frequency: 8 ''Electron Mode'' Heating (frequency: 8 GHz), has been chosen to heat the plasma of the FTU Tokamak. The RF power required (8 MW at 8 GHz) will be produced by 16 gyrotron oscillators (500 KW unit power) feeding 16 grill couplers installed on 8 equatorial ports of FTU. The dc power supplies will be ,odularly built to be compatible even with completely different sort of tubes (e.g. for IRCH). The transmission lines between the generators and the grills will be circular oversized waveguides to reduce the losses to less than 1 dB. Each grill will consist of an 8x8 matrix of rectangular waveguides pressurized and terminated by thik (one wavelength) alumina windows facing the grill mouth. Gyrotron availability has been verified through studies conducted by the two major manufacturers presently on the market. Preliminary quotations and delivery times have been obtained. The design of the grill couplers has been supplemented by a study contract with an industrial research laboratory which is producing a prototype structure and ceramic windows with very promising results. Microwave mode converters and power dividers for the transmission system have been designed and prototypes are being built and will be tested shortly. An 8 GHz, 25 KW cw test bench has been already commissioned and will be used to test all the microwave components. The power level is more than adequate also to process single channels of the coupling structures

  9. Stability analysis of a coaxial-waveguide gyrotron traveling-wave amplifier

    International Nuclear Information System (INIS)

    Hung, C.L.; Yeh, Y.S.

    2005-01-01

    The gyrotron traveling-wave tube (gyro-TWT) amplifier is known to be highly susceptible to spurious oscillations. This study develops a simulation approach to analyze the stability of a coaxial-waveguide gyro-TWT with distributed wall losses. The interplay among the absolute instabilities, the gyrotron backward-wave oscillations, and the circuit parameters is analyzed. Simulation results reveal that the distributed wall losses effectively stabilize spurious oscillations in the coaxial gyro-TWT. Furthermore, the wall resistivity of the center conductor is shown to be an additional effective mechanism for suppressing oscillations. Under stable operation conditions, the coaxial gyro-TWT with distributed losses is predicted to generate 435 kW in the Ka band with 31% efficiency, a saturated gain of 45 dB, and a bandwidth of 1.86 GHz (≅5.8%) for a 70 kV, 20 A electron beam with an α(=ν perpendicular )/ν z )=1.0 and an axial velocity spread of Δν z /ν z =5%

  10. Study of a cylindrical cavity gyrotron, influence of power reflection and of the oscillation of a travelling mode

    International Nuclear Information System (INIS)

    Muggli, P.

    1991-11-01

    The quality factor and oscillating mode of a gyrotron cavity are essential parameters to consider when trying to obtain a high power (>500 kW), high efficiency (∼50%) microwave source, which oscillates in a stable manner in the principal mode of the cavity. The study and development of an 8 GHz gyrotron whose resonant cavity is formed by a cylindrical waveguide of slowly varying radius, is undertaken. The study is principally concerned with the phenomena associated with the low quality factor of the TE o 011 mode of the cavity. (author) figs., tabs., 102 refs

  11. Upgrade of a 30 kV/10 mA anode power supply for triode type gyrotron

    Energy Technology Data Exchange (ETDEWEB)

    Siravo, Ugo, E-mail: ugo.siravo@epfl.ch; Alberti, Stefano; Dubray, Jérémie; Fasel, Damien; Hogge, Jean-Philippe; Marlétaz, Blaise; Marmillod, Philippe; Perez, Albert; Silva, Miguel

    2015-10-15

    Highlights: • Triode type gyrotron is fed by 3 power supplies: the main, an anode PS(APS) and a heater. • This paper presents the upgrade of 3APS, supplied in 1999, that never fulfilled the specs. • The new working principle is very efficient, easy to implement, for a minimal cost. • Upgraded APS provides extended modulation capabilities, no overshoot and lowerripple. • This upgrade will allow exploring new operation regimes for the 3 TCV X3 gyrotrons. - The RF power of a gyrotron with a triode type magnetron-injection-gun (MIG) can be directly controlled via the voltage applied between its anode and its cathode. Hence, the performance of this type of gyrotron relies directly on the possibilities offered by the power supply controlling the anode to cathode voltage. For a system of gyrotrons connected to the same main high-voltage power supply, with a triode MIG one has the additional advantage of independently controlling each individual gyrotron. This paper presents the modifications brought to the three existing 30 kV/10 mA anode power supplies connected to the 500 kW/118 GHz/2s X3 gyrotrons operated on the TCV Tokamak. The new working principle based on phase-shift modulation (PSM) is described in detail. Experimental results obtained on dummy load are compared to simulations performed during the design phase. With respect to the initial working principle, the modulation frequency capability has been increased by a factor 10 reaching more than 5 kHz, whereas the output voltage ripple as well as the overshoot/undershoot have been significantly reduced.

  12. Operation of a quasi-optical gyrotron with a gaussian output coupler

    Energy Technology Data Exchange (ETDEWEB)

    Hogge, J.P.; Tran, T.M.; Paris, P.J.; Tran, M.Q. [Ecole Polytechnique Federale, Lausanne (Switzerland). Centre de Recherche en Physique des Plasma (CRPP)

    1996-03-01

    The operation of a 92 GHz quasi-optical gyrotron (QOG) having a resonator formed by a spherical mirror and a diffraction grating placed in -1 order Littrow mount is presented. A power of 150 kW with a gaussian output pattern was measured. The gaussian content in the output was 98% with less than 1% of depolarization. By optimizing the magnetic field at fixed frequency, a maximum efficiency of 15% was reached. (author) 12 figs., 2 tabs., 22 refs.

  13. The Experimental Verification of Gaussian Beam Coupling for ECH Transmission Line at 400 GHz

    Directory of Open Access Journals (Sweden)

    Choe Mun Seok

    2017-01-01

    Full Text Available We design a quasi-optical transmission line system for a 400 GHz gyrotron beam. The 400GHz Gaussian beam is injected to a corrugated waveguide bounced from a quasi-optical mirror. From detailed 2D field patterns of the output beam emitted from the corrugated waveguide, we analyze the mode contents and the source of non-ideal beam expansion

  14. Recent developments on the 110 GHz electron cyclotron installation on the DIII-D tokamak

    International Nuclear Information System (INIS)

    Ponce, D.; Callis, R.W.; Cary, W.P.; Ferron, J.R.; Green, M.; Grunloh, H.J.; Gorelov, Y.; Lohr, J.; Ellis, R.A.

    2003-01-01

    Significant improvements are being implemented to the capability of the 110 GHz electron cyclotron system on the DIII-D tokamak. Chief among these is the addition of the fifth and sixth 1 MW class gyrotrons, increasing the power available for auxiliary heating and current drive by nearly 60%. These tubes use artificially grown diamond r.f. output windows to obtain high power with long pulse capability. The beams from these tubes are nearly Gaussian, facilitating coupling to the waveguide. A new fully articulating dual launcher capable of high speed spatial scanning has been designed and tested. The launcher has two axis independent steering for each waveguide. The mirrors can be rotated at up to 100 deg./s. A new feedback system linking the DIII-D Plasma Control System (PCS) with the gyrotron beam voltage waveform generators permits real-time feedback control of some plasma properties such as electron temperature. The PCS can use a variety of plasma monitors to generate its control signal, including electron cyclotron emission and Mirnov probes. Electron cyclotron heating and electron cyclotron current drive were used during this year's DIII-D experimental campaign to control electron temperature, density, and q profiles, induce an ELM-free H-mode, and suppress the m=2/n=1 neoclassical tearing mode. The new capabilities have expanded the role of EC systems in tokamak plasma control

  15. Particle-in-cell analysis of beam-wave interaction in gyrotron cavity with tapered magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, A., E-mail: anil.gyrotron@gmail.com [Gyrotron Lab., Microwave Tube Area, Central Electronics Engineering Research Inst. (CEERI, CSIR), Pilani, Rajasthan (India); Banasthali Univ., Dept. of Physics, Banasthali, Rajasthan (India); Khatun, H.; Kumar, N.; Singh, U.; Sinha, A.K. [Gyrotron Lab., Microwave Tube Area, Central Electronics Engineering Research Inst. (CEERI, CSIR), Pilani, Rajasthan (India); Vyas, V. [Banasthali Univ., Dept. of Physics, Banasthali, Rajasthan (India)

    2010-11-15

    A commercially available electromagnetic simulator -- MAGIC, a particle-in-cell (PIC) code -- has been used to carry out a comparative study of the beam-wave interaction under uniform and tapered magnetic field profiles of a 42 GHz, 200kW gyrotron. The magnetic field profile across the resonant cavity varies by ±6.5% with a peak value of 1.615 T. The MAGIC simulation shows the desire performance of the gyrotron under both magnetic field conditions with an operating mode TE{sub 03} and a pitch factor of 1.26. The analysis of the simulated results show that stability in the power growth was reached more quickly and achieved higher output power in the case of a tapered magnetic field. (author)

  16. Simultaneous Stabilization of Gyrotron Frequency and Power by PID Double Feedback Control on the Acceleration and Anode Voltages

    Science.gov (United States)

    Khutoryan, E. M.; Idehara, T.; Kuleshov, A. N.; Tatematsu, Y.; Yamaguchi, Y.; Matsuki, Y.; Fujiwara, T.

    2017-07-01

    In this paper, we present the results of simultaneous stabilization of both the frequency and the output power by a double PID feedback control on the acceleration and anode voltages in the 460-GHz gyrotron FU CW GVI, also known as "Gyrotron FU CW GO-1" (according to the nomenclature adopted at Osaka University). The approach used in the experiments is based on the modulation of the cyclotron frequency and the pitch factor (velocity ratio) of the electron beam by varying the acceleration and the anode voltages, respectively. In a long-term experiment, the frequency and power stabilities were made to be better than ±10-6 and ±1%, respectively.

  17. Effects of electron beam parameters and velocity spread on radio frequency output of a photonic band gap cavity gyrotron oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Ashutosh, E-mail: asingh.rs.ece@iitbhu.ac.in [Faculty of Physical Sciences, Institute of Natural Sciences and Humanities, Shri Ramswaroop Memorial University, Lucknow-Deva Road, Uttar Pradesh 225003 (India); Center of Research in Microwave Tubes, Department of Electronics Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India); Jain, P. K. [Center of Research in Microwave Tubes, Department of Electronics Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India)

    2015-09-15

    In this paper, the effects of electron beam parameters and velocity spread on the RF behavior of a metallic photonic band gap (PBG) cavity gyrotron operating at 35 GHz with TE{sub 041}–like mode have been theoretically demonstrated. PBG cavity is used here to achieve a single mode operation of the overmoded cavity. The nonlinear time-dependent multimode analysis has been used to observe the beam-wave interaction behavior of the PBG cavity gyrotron, and a commercially available PIC code “CST Particle Studio” has been reconfigured to obtain 3D simulation results in order to validate the analytical values. The output power for this typical PBG gyrotron has been obtained ∼108 kW with ∼15.5% efficiency in a well confined TE{sub 041}–like mode, while all other competing modes have significantly low values of power output. The output power and efficiency of a gyrotron depend highly on the electron beam parameters and velocity spread. The influence of several electron beam parameters, e.g., beam voltage, beam current, beam velocity pitch factor, and DC magnetic field, on the PBG gyrotron operations has been investigated. This study would be helpful in optimising the electron beam parameters and estimating accurate RF output power of the high frequency PBG cavity based gyrotron oscillators.

  18. The upgrade of the DIII-D EC system using 120 GHz ITER gyrotrons

    International Nuclear Information System (INIS)

    Callis, R.W.; Lohr, J.; Gorelov, I.A.; Ponce, D.; Kajiwara, K.; Tooker, J.F.

    2005-01-01

    The planned growth in the EC system on DIII-D over the next few years requires the installation of two depressed collector gyrotrons, a high voltage power supply, two low loss transmission lines, and the required support equipment. This new DIII-D EC equipment could be made identical to the ITER EC system requirements. By building the DIII-D hardware to the ITER specifications, it will allow ITER to gain beneficial prototyping experience on a working tokamak, prior to committing to building the hardware for delivery to ITER

  19. Development program for a 200-kW, cw gyrotron. Quarterly report No. 9, July-September 1981

    International Nuclear Information System (INIS)

    Tancredi, J.J.; Caplan, M.; Matranga, V.A.; Sandoval, J.J.

    1981-01-01

    The objective of this program is the design and development of a millimeter-wave device to produce 200 kW of continuous-wave power at 60 GHz. The device, which will be a gyrotron oscillator, will be compatible with power delivery to an electron-cyclotron plasma. Smooth control of rf power output over a 17 dB range is required, and the device should be capable of operation into a severe time-varying rf load mismatch. The superconducting solenoid which had been sent back to the manufacturer because of an open coil, was repaired and returned to Hughes. The gyrotron S/N 1 was successfully operated at a frequency of 59.7 GHz with a power level of 160 kW peak. Diagnostic x-ray measurements of the collector area revealed a reasonable beam power density of 600 W/cm 2 , under worst case conditions of no rf output, and with no auxilary means of spreading the beam. The latter portion of this report period was spent characterizing S/N 1's rf and dc performance and evaluating an anomolous oscillation emitted from the electron gun

  20. Microwave sintering of zirconia toughened alumina at 28GHz

    International Nuclear Information System (INIS)

    Samandi, M.; Ji, H.; Miyake, S.

    1998-01-01

    Microwave radiation from a 10 kW, CW gyrotron operating at 28 GHz was employed to sinter 10% zirconia toughened alumina (ZTA) ceramic samples. It has been established that the use of millimetre wave radiation circumvents the difficulties encountered during the sintering of ceramics, i e. formation of hot spot, by radiation at industrially permissible frequency of 2.45GHz. Further, careful density measurement and microstructural characterisation of mm- wave and conventionally sintered samples by XRD, SEM and TEM has unequivocally demonstrated the effectiveness of mm-wave radiation for obtaining high density ceramics at lower sintering temperatures. Copyright (1998) Australasian Ceramic Society

  1. A high-order particle-in-cell method for low density plasma flow and the simulation of gyrotron resonator devices

    International Nuclear Information System (INIS)

    Stock, Andreas

    2013-01-01

    of its huge computational demand and the thereby resulting long calculation time. Using the presented high-order discontinuous Galerkin Particle-in-Cell scheme on high-performance-computers, this thesis demonstrates for the first time that full-wave and transient research- and design-simulations of gyrotron resonators with high mode-indices can be efficiently performed. For benchmark issues the developed discontinuous Galerkin Particle-in-Cell scheme is verified with a 30 GHz resonant cavity and the results are compared to the SELFT code, which is a state-of-the-art design code for resonators. The discontinuous Galerkin Particle-in-Cell scheme is used to simulate the resonator of the 1 MW, 140 GHz, TE(28,8)-mode gyrotron, used for plasma heating of the Wendelstein 7-X fusion-reactor. Due to the huge number of degrees of freedom and particles, this type of simulation can only be performed on high-performance-computers with enough memory and computational power. Hence, the discontinuous Galerkin Particle-in-Cell code is improved by a new parallelization approach for the high-order shape-function deposition method on unstructured grids, allowing for a high-order coupling between the particles and the electromagnetic field. To further improve the discontinuous Galerkin Particle-in-Cell code, a multi-rate time-stepping method, based on an Adams-Bashforth approach, for the hyperbolic divergence cleaning is developed and verified. This new approach considers the different time scales occurring in the hyperbolic divergence cleaning allowing for a more efficient time-stepping-algorithm then standard time-stepping-schemes. A rule for the construction of arbitrary-order multi-rate time-stepping methods has been derived. The presented simulations provide new physical insights to the complex particle-field-interaction appearing in gyrotrons. The discontinuous Galerkin Particle-in-Cell scheme can be used to analyse transient phenomena, such as beam-miss-alignment, mode competition

  2. A high-order particle-in-cell method for low density plasma flow and the simulation of gyrotron resonator devices

    Energy Technology Data Exchange (ETDEWEB)

    Stock, Andreas

    2013-04-26

    of its huge computational demand and the thereby resulting long calculation time. Using the presented high-order discontinuous Galerkin Particle-in-Cell scheme on high-performance-computers, this thesis demonstrates for the first time that full-wave and transient research- and design-simulations of gyrotron resonators with high mode-indices can be efficiently performed. For benchmark issues the developed discontinuous Galerkin Particle-in-Cell scheme is verified with a 30 GHz resonant cavity and the results are compared to the SELFT code, which is a state-of-the-art design code for resonators. The discontinuous Galerkin Particle-in-Cell scheme is used to simulate the resonator of the 1 MW, 140 GHz, TE(28,8)-mode gyrotron, used for plasma heating of the Wendelstein 7-X fusion-reactor. Due to the huge number of degrees of freedom and particles, this type of simulation can only be performed on high-performance-computers with enough memory and computational power. Hence, the discontinuous Galerkin Particle-in-Cell code is improved by a new parallelization approach for the high-order shape-function deposition method on unstructured grids, allowing for a high-order coupling between the particles and the electromagnetic field. To further improve the discontinuous Galerkin Particle-in-Cell code, a multi-rate time-stepping method, based on an Adams-Bashforth approach, for the hyperbolic divergence cleaning is developed and verified. This new approach considers the different time scales occurring in the hyperbolic divergence cleaning allowing for a more efficient time-stepping-algorithm then standard time-stepping-schemes. A rule for the construction of arbitrary-order multi-rate time-stepping methods has been derived. The presented simulations provide new physical insights to the complex particle-field-interaction appearing in gyrotrons. The discontinuous Galerkin Particle-in-Cell scheme can be used to analyse transient phenomena, such as beam-miss-alignment, mode competition

  3. Development of field simulator to test and qualify the gyrotron local control unit for ITER-India Gyrotron Test Facility

    International Nuclear Information System (INIS)

    Shah, Ronak; Mandge, Deepak; Rathod, Vipal; Parmar, Rajvi; Dilip, E. Sharan; Yadav, Amit; Sharma, Anjali; Rao, S.L.

    2017-01-01

    High power RF sources such as a Gyrotron system are operated at required output parameter by using various auxiliary power supplies, High voltage power supplies, auxiliary services and a dedicated Local Control Unit (LCU). These sub-systems must be operated in synchronous and safe way to control the gyrotron output parameters. The LCU performs remote, synchronous and safe operation of the all the gyrotron sub-systems. Broadly the LCU functions are operational control, data acquisition, protection and safety of the gyrotron system. At ITER-India gyrotron Test Facility (IIGTF) a local control unit (LCU) is being developed to operate the complete gyrotron system. This paper presents the design, development and various features of the field simulator. It also discuss LCU functionality test cases and results obtained using field simulator

  4. Operational upgrades to the DIII-D 60 GHz electron cyclotron resonant heating system

    International Nuclear Information System (INIS)

    Harris, T.E.; Cary, W.P.

    1993-10-01

    One of the primary components of the DIII-D radio frequency (rf) program over the past seven years has been the 60 GHz electron cyclotron resonant heating (ECRH) system. The system now consists of eight units capable of operating and controlling eight Varian VGE-8006 60 GHz, 200 kW gyrotrons along with their associated waveguide components. This paper will discuss the operational upgrades and the overall system performance. Many modifications were instituted to enhance the system operation and performance. Modifications discussed in this paper include an improved gyrotron tube-fault response network, a computer controlled pulse-timing and sequencing system, and an improved high-voltage power supply control interface. The discussion on overall system performance will include operating techniques used to improve system operations and reliability. The techniques discussed apply to system start-up procedures, operating the system in a conditioning mode, and operating the system during DIII-D plasma operations

  5. Gyrotron: an ECH system component

    International Nuclear Information System (INIS)

    Loring, C.M.; Eason, H.O.; Kimrey, H.D.; White, T.L.; Jory, H.R.; Evans, S.J.

    1981-01-01

    The gyrotron, or electron-cyclotron maser, in the form of a gyromonotron, is being developed as a source of millimeter wave energy for fusion plasma heating. The characteristics of this high power, high efficiency electron tube are described in terms of the requirements for the beam power supply system, the mechanical support system, the cooling system, the focusing and tuning magnets, and the waveguide system. Requirements of power level and transmission efficiency dictate the use of oversize waveguide. The implications, both to the user and to the interaction mechanisms in the gyrotron, of the use of oversize waveguide are treated. The effects of variations of various operating parameters upon the gyrotron's power output and stability are also discussed. Data from gyrotron development and system operation are used where appropriate

  6. The three-dimensional particle-in-cell simulation analysis of cavity of high power subterahertz pulsed gyrotron

    International Nuclear Information System (INIS)

    Ito, Koyu; Jiang, Weihua

    2013-01-01

    High power sub-terahertz pulsed gyrotrons for Collective Thomson Scattering (CTS) diagnostics of fusion plasmas are being developed. The typical target parameters are: output power of 100-200 kW, operation frequency of 300 GHz, and pulsed length > 10 us. In order to support experimental development, numerical simulations were carried out by using Particle-In-Cell (PIC) code MAGIC. The oscillation mode of the electromagnetic radiation was selected as TE_1_5_,_2, for which the beam parameters and cavity dimensions were determined accordingly. The simulation results have showed maximum power of 144 kW at oscillation frequency of 292.80 GHz, with oscillation efficiency of 22.15%. (author)

  7. DC space-charge induced frequency up-shift in a quasi-optical gyrotron

    International Nuclear Information System (INIS)

    Alberti, S.; Tran, M.Q.; Tran, T.M.

    1990-10-01

    Recent experiments on a 100GHz quasi-optical gyrotron have shown that for a large resonator set-up the observed frequency up-shift between the starting current and a current of 10A corresponds to a shift of 4-5 longitudinal modes. In this Letter it is shown that the interpretation of this frequency up-shift should involve the current dependent electron beam voltage depression in the beam tunnel and the interaction region for both the single-mode and multi-mode time evolution codes. (author) 7 refs., 5 figs., 1 tab

  8. Development of a dummy load and waveguide components for 1 MW CW gyrotron

    Energy Technology Data Exchange (ETDEWEB)

    Ioki, Kimihiro, E-mail: ioki@toyama-jp.com [Toyama Company Limited, 3816-1 Kishi, Ymakita-machi, Ashigarakami-gun, Kanagawa 258-0112 (Japan); Hiranai, Shinichi; Moriyama, Shinichi [Naka Fusion Institute, JAEA, 801-1, Mukoyama, Naka-shi, Ibaraki 311-0193 (Japan); Tanaka, Suguru [Toyama Company Limited, 3816-1 Kishi, Ymakita-machi, Ashigarakami-gun, Kanagawa 258-0112 (Japan)

    2016-11-01

    Highlights: • A dummy load is a required component for the electron cyclotron heating system to test and adjust a gyrotron or a transmission line in ITER and JT60SA. • A new design concept was developed considering reliable durability and long lifetime. • Linear movement is used as a main mechanism for the reflector to mitigate the heat deposition concentration instead of rotating reflector, and the vacuum boundary for the linear movement is simply made with bellows. • The distribution of the ceramic coating thickness is carefully optimized considering the heat deposition rate. • A prototypical dummy load will be manufactured and tested, following the design phase. - Abstract: A dummy load dissipates the radiofrequency power and is required for the electron cyclotron heating system to test and adjust a gyrotron or a transmission line in ITER and JT60SA. The dummy load is comprised of a water-cooled vacuum chamber and a reflector. The vacuum chamber has intensive cooling and the inside surface has a ceramic coating layer. It is important that the dummy load has reliable durability and long lifetime. Linear movement is used as a main mechanism for the reflector to mitigate the heat deposition concentration instead of rotating reflector. The vacuum boundary for the linear movement is simply made with bellows and the bellows is accessible from the outside. The distribution of the ceramic coating thickness is carefully optimized considering the heat deposition rate. Another critical issue is to minimize the back reflection of the RF power from the dummy load. However, it is desired to design the dummy load without the pre-dummy-load. A prototypical dummy load will be manufactured and tested, following the design phase.

  9. Gyrotron development at the Instituto de Pesquisas Espaciais

    International Nuclear Information System (INIS)

    Barroso, J.J.; Castro, P.J. de; Correa, R.A.; Galvao, G.P.; Ludwig, G.O.; Montes, A.; Nono, M.C.A.

    1987-07-01

    The conceptual design of a 35GHz gyrotron operating in the TE 01 mode, intended for plasma heating experiments, is presented. The electrooptical system is sinthesized from electron beam parameters in the cavity region and the electrodynamical system includes a conventional resonator consisting of truncated cones. The starting and operating characteristics are calculated by integrating the exact equation of electron motion under de action of an RF field with fixed spatial distribution. The experimental activities are concentrated on the construction of a system of magnetic coils, able to generate a 15 KG magnetic induction with a fluctuation of 0.1% over an extension of 13 cm; the manufacture of caerties by using electroforming techniques; and the development of techiques for the construction of electron guns. (author) [pt

  10. Development program for a 200 kW, cw gyrotron. Quarterly report No. 11, January-March 1982

    International Nuclear Information System (INIS)

    Tancredi, J.J.; Caplan, M.; Sandoval, J.J.; Matranga, V.A.

    1982-01-01

    The objective of this program is the design and development of a millimeter wave device to produce 200 kW of continuous-wave power at 60 GHz. The device, a gyrotron oscillator, will be compatible with power delivery to an electron-cyclotron plasma. Smooth control of RF power output over a 17 dB range is required, and the device should be capable of operation into a severe time-varying load mismatch. During this report period, the beam instability problem which plagued S/N 1 testing was evaluated in more detail. Separate tests were conducted on the gun tester and the lossy drift section, as well as both of these combined, and the results were compared to gyrotron tests on S/N 1. The instability problem now appears to be associated with RF leakage from the cavity

  11. TFTR 60 GHz alpha particle collective Thomson Scattering diagnostic

    International Nuclear Information System (INIS)

    Machuzak, J.S.; Woskov, P.P.; Gilmore, J.; Bretz, N.L.; Park, H.K.; Bindslev, H.

    1995-03-01

    A 60 GHz gyrotron collective Thomson Scattering alpha particle diagnostic has been implemented for the D-T period on TFM. Gyrotron power of 0.1-1 kW in pulses of up to 1 second can be launched in X-mode. Efficient corrugated waveguides are used with antennaes and vacuum windows of the TFTR Microwave Scattering system. A multichannel synchronous detector receiver system and spectrum analyzer acquire the scattered signals. A 200 Megasample/sec digitizer is used to resolve fine structure in the frequency spectrum. By scattering nearly perpendicular to the magnetic field, this experiment will take advantage of an enhancement of the scattered signal which results from the interaction of the alpha particles with plasma resonances in the lower hybrid frequency range. Significant enhancements are expected, which will make these measurements possible with gyrotron power less than 1 kW, while maintaining an acceptable signal to noise ratio. We hope to extract alpha particle density and velocity distribution functions from the data. The D and T fuel densities and temperatures may also be obtainable by measurement of the respective ion cyclotron harmonic frequencies

  12. Free-electron masers vs. gyrotrons prospects for high-power sources at millimeter and submillimeter wavelengths

    CERN Document Server

    Thumm, M K

    2002-01-01

    The possible applications of high-power millimeter (mm) and sub-mm waves from free-electron masers (FEMs) and gyro-devices span a wide range of technologies. The plasma physics community has already taken advantage of recent advances in applying high-power mm waves generated by long pulse or continuous wave (CW) gyrotron oscillators and short pulse very high-power FEMs in the areas of RF-plasma production, heating, non-inductive current drive, plasma stabilization and active plasma diagnostics for magnetic confinement thermonuclear fusion research, such as electron cyclotron resonance heating (28-170 GHz), electron cyclotron current drive , collective Thomson scattering , microwave transmission and heat-wave propagation experiments. Continuously frequency tunable FEMs could widen these fields of applications. Another important application of CW gyrotrons is industrial materials processing, e.g. sintering of high-performance functional and structural nanostructured ceramics. Sub-mm wave sources are employed in...

  13. Development program for a 200 kW, CW gyrotron. Quarterly report No. 4, April-June 1980

    International Nuclear Information System (INIS)

    Tancredi, J.J.; Caplan, M.; Sandoval, J.J.; Weiss, W.

    1980-01-01

    The objective of this program is the design and development of a millimeter-wave device to produce 200 kW of continuous-wave power at 60 GHz. The device, which will be a gyrotron oscillator, will be compatible with power delivery to an electron-cyclotron plasma. Smooth control of rf power output over a 17 db range is required, and the device should be capable of operation into a severe time-varyinng rf load mismatch

  14. EBT-S 28-GHz, 200-kW, CW, mixed-mode, quasi-optical plasma heating system

    International Nuclear Information System (INIS)

    White, T.L.; Kimrey, H.D.; Bigelow, T.S.; Bates, D.D.; Eason, H.O.

    1984-07-01

    The ELMO Bumpy Torus-Scale (EBT-S) 28-GHz, 200-kW, cw, plasma heating system consists of a gyrotron oscillator, an oversized waveguide two-bend transmission system, and a quasi-optical mixed-mode microwave distribution manifold that feeds microwave power to the 24 plasma loads of the EBT-S fusion experiment. Balancing power to the 24 loads of the EBT-S fusion experiment. Balancing power to the 24 loads was achieved by adjusting the areas at 24 coupling irises. System performance is easily measured using system calorimetry. The distribution manifold mixed-mode power transmission, reflection, and loss coefficients are 89%, 6%, and 5%, respectively. The overall system efficiency (plasma power/gyrotron power) is 80%, but with some modifications to the distribution manifold we believe the ultimate efficiency can approach 90%. The system reliability is outstanding with a world's record 1 x 10 5 kW h of 28-GHz energy delivered to the EBT-S device with well over 1 x 10 3 operating hours

  15. Maturing ECRF technology for plasma control

    International Nuclear Information System (INIS)

    Callis, R.W.; .; Cary, W.P.; Chu, S.

    2003-01-01

    The availability of high power, (∼1 MW) long pulse length (effectively cw), high frequency, (>100 GHz) gyrotrons has opened the opportunity for enhanced scientific results on magnetic confinement devices for fusion research worldwide. This has led to successful experiments on electron cyclotron heating, electron cyclotron current drive, non-inductive tokamak operation, tokamak energy transport, suppression of instabilities and advanced profile control leading to enhanced performance. The key development in the gyrotron community that has led to the realization of high power long pulse gyrotrons is the availability of edge cooled synthetic diamond gyrotron output windows, which have low loss and excellent thermal and mechanical properties. In addition to the emergence of reliable high power gyrotrons, ancillary equipment for efficient microwave transmission over distances of hundreds of meters, polarization control, diagnostics, and flexible launch geometry have all been developed and proven in regular service. (author)

  16. InP MMIC Chip Set for Power Sources Covering 80-170 GHz

    Science.gov (United States)

    Ngo, Catherine

    2001-01-01

    We will present a Monolithic Millimeter-wave Integrated Circuit (MMIC) chip set which provides high output-power sources for driving diode frequency multipliers into the terahertz range. The chip set was fabricated at HRL Laboratories using a 0.1-micrometer gate-length InAlAs/InGaAs/InP high electron mobility transistor (HEMT) process, and features transistors with an f(sub max) above 600 GHz. The HRL InP HEMT process has already demonstrated amplifiers in the 60-200 GHz range. In this paper, these high frequency HEMTs form the basis for power sources up to 170 GHz. A number of state-of-the-art InP HEMT MMICs will be presented. These include voltage-controlled and fixed-tuned oscillators, power amplifiers, and an active doubler. We will first discuss an 80 GHz voltage-controlled oscillator with 5 GHz of tunability and at least 17 mW of output power, as well as a 120 GHz oscillator providing 7 mW of output power. In addition, we will present results of a power amplifier which covers the full WRIO waveguide band (75-110 GHz), and provides 40-50 mW of output power. Furthermore, we will present an active doubler at 164 GHz providing 8% bandwidth, 3 mW of output power, and an unprecedented 2 dB of conversion loss for an InP HEMT MMIC at this frequency. Finally, we will demonstrate a power amplifier to cover 140-170 GHz with 15-25 mW of output power and 8 dB gain. These components can form a power source in the 155-165 GHz range by cascading the 80 GHz oscillator, W-band power amplifier, 164 GHz active doubler and final 140-170 GHz power amplifier for a stable, compact local oscillator subsystem, which could be used for atmospheric science or astrophysics radiometers.

  17. A 11 mW 2.4 GHz 0.18 µm CMOS Transceivers for Wireless Sensor Networks.

    Science.gov (United States)

    Hou, Bing; Chen, Hua; Wang, Zhiyu; Mo, Jiongjiong; Chen, Junli; Yu, Faxin; Wang, Wenbo

    2017-01-24

    In this paper, a low power transceiver for wireless sensor networks (WSN) is proposed. The system is designed with fully functional blocks including a receiver, a fractional-N frequency synthesizer, and a class-E transmitter, and it is optimized with a good balance among output power, sensitivity, power consumption, and silicon area. A transmitter and receiver (TX-RX) shared input-output matching network is used so that only one off-chip inductor is needed in the system. The power and area efficiency-oriented, fully-integrated frequency synthesizer is able to provide programmable output frequencies in the 2.4 GHz range while occupying a small silicon area. Implemented in a standard 0.18 μm RF Complementary Metal Oxide Semiconductor (CMOS) technology, the whole transceiver occupies a chip area of 0.5 mm² (1.2 mm² including bonding pads for a QFN package). Measurement results suggest that the design is able to work at amplitude shift keying (ASK)/on-off-keying (OOK) and FSK modes with up to 500 kbps data rate. With an input sensitivity of -60 dBm and an output power of 3 dBm, the receiver, transmitter and frequency synthesizer consumes 2.3 mW, 4.8 mW, and 3.9 mW from a 1.8 V supply voltage, respectively.

  18. Extrapolation of the Dutch 1 MW tunable free electron maser to a 5 MW ECRH source

    International Nuclear Information System (INIS)

    Caplan, M.; Nelson, S.; Kamin, G.; Antonsen, T. Levush, B.; Urbanus, W.; Tulupov, A.

    1995-01-01

    A Free Electron Maser (FEM) is now under construction at the FOM Institute (Rijnhuizen) Netherlands with the goal of producing 1 MW long pulse to CW microwave output in the range 130 GHz to 250 GHz with wall plug efficiencies of 50% (Verhoeven, et al EC-9 Conference). An extrapolated version of this device is proposed which by scaling up the beam current, would produce microwave power levels of up to 5 MW CW in order to reduce the cost per watt and increase the power per module, thus providing the fusion community with a practical ECRH source

  19. An integrated gyrotron controller

    Energy Technology Data Exchange (ETDEWEB)

    Michel, Georg, E-mail: michel@ipp.mpg.de; Sachtleben, Juergen

    2011-10-15

    The ECRH system of W7-X is composed of 10 independent gyrotron modules. Each module consists of one gyrotron and its peripherals such as power supplies, cooling plants and distributed PLC systems. The fast real-time control functions such as the timing of the two high voltage supplies, trigger pulses, protection, modulation and communication with the central control of W7-X, is implemented in an integrated controller which is described in this paper. As long-term maintainability and sustainability are important for nuclear fusion experiments, the choice fell on an FPGA-based design which is exclusively based on free (as in 'freedom') software and configuration code. The core of the controller consists of a real-time Java virtual machine (JVM) that provides the TCP-IP connectivity as well as more complicated control functions, and which interacts with the gyrotron-specific hardware. Both the gyrotron-specific hardware and the JVM are implemented on the same FPGA, which is the main component of the controller. All 10 controllers are currently completed and operational. All parameters and functions are accessible via Ethernet. Due to the open, FPGA-based design, most hardware modifications can be made via the network as well. This paper discusses the capabilities of the controllers and their integration into the central W7-X control.

  20. Chaos in high-power high-frequency gyrotrons

    International Nuclear Information System (INIS)

    Airila, M.

    2004-01-01

    Gyrotron interaction is a complex nonlinear dynamical process, which may turn chaotic in certain circumstances. The emergence of chaos renders dynamical systems unpredictable and causes bandwidth broadening of signals. Such effects would jeopardize the prospect of advanced gyrotrons in fusion. Therefore, it is important to be aware of the possibility of chaos in gyrotrons. There are three different chaos scenarios closely related to the development of high-power gyrotrons: First, the onset of chaos in electron trajectories would lead to difficulties in the design and efficient operation of depressed potential collectors, which are used for efficiency enhancement. Second, the radio-frequency signal could turn chaotic, decreasing the output power and the spectral purity of the output signal. As a result, mode conversion, transmission, and absorption efficiencies would be reduced. Third, spatio-temporal chaos in the resonator field structure can set a limit for the use of large-diameter interaction cavities and high-order TE modes (large azimuthal index) allowing higher generated power. In this thesis, the issues above are addressed with numerical modeling. It is found that chaos in electron residual energies is practically absent in the parameter region corresponding to high efficiency. Accordingly, depressed collectors are a feasible solution also in advanced high-power gyrotrons. A new method is presented for straightforward numerical solution of the one-dimensional self-consistent time-dependent gyrotron equations, and the method is generalized to two dimensions. In 1D, a chart of gyrotron oscillations is calculated. It is shown that the regions of stationary oscillations, automodulation, and chaos have a complicated topology in the plane of generalized gyrotron variables. The threshold current for chaotic oscillations exceeds typical operating currents by a factor of ten. However, reflection of the output signal may significantly lower the threshold. 2D

  1. Extension of high T{sub e} regime with upgraded ECRH system in the LHD

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, H.; Shimozuma, T.; Kubo, S.; Yoshimura, Y.; Igami, H.; Ito, S.; Kobayashi, S.; Mizuno, Y.; Okada, K.; Mutoh, T.; Nagaoka, K.; Osakabe, M.; Yamada, I.; Nakano, H.; Yokoyama, M.; Ido, T.; Shimizu, A.; Seki, R.; Ida, K.; Yoshinuma, M. [National Institute for Fusion Science, Toki, 509-5292 (Japan); and others

    2014-02-12

    Enhancement of the output power per gyrotron has been planned in the Large Helical Device (LHD). Three 77-GHz gyrotrons with an output power of more than 1 MW have been operated. In addition, a high power gyrotron with the frequency of 154 GHz (1 MW/5 s, 0.5 MW/CW) was newly installed in 2012 and the total injection power of ECRH reached 4.6 MW. The operational regime of ECRH plasma on the LHD has been extended due to the upgraded ECRH system such as the central electron temperature T{sub e0} = 13.5 keV with n{sub e} = 1×10{sup 19}m{sup −3}. In the LHD, an electron-internal-transport barrier (e-ITB) related to the production of high T{sub e} plasmas has been realized by strongly centre-focused ECRH. The electron thermal confinement clearly improved inside the e-ITB. The radial electric field was measured using the heavy ion beam probe. The formation of the positive E{sub r} was observed in the core region, which well agreed with the prediction of the neoclassical transport theory. The energy confinement characteristics have been investigated in the ECRH plasmas. It was found that higher plasma stored energy and lower radiation power was realized in the outward configuration. The plasma stored energy of 530 kJ with n{sub e} = 3.2×10{sup 19}m{sup −3}, which is the 1.7 times larger than the previous record in the ECRH plasma in the LHD, has been successfully achieved.

  2. Cold test of cylindrical open resonator for 42 GHz, 200 kW gyrotron

    Indian Academy of Sciences (India)

    particular quality factor for TE mode at the frequency 42 GHz. The perturbation tech ... frequency 42 GHz. The good agreement ... see its performance before the final assembly of the device. This paper .... theoretical work was found. The results ...

  3. Free electron laser with small period wiggler and sheet electron beam: A study of the feasibility of operation at 300 GHz with 1 MW CW output power

    International Nuclear Information System (INIS)

    Booske, J.H.; Granatstein, V.L.; Antonsen, T.M. Jr.

    1988-01-01

    The use of a small period wiggler (/ell//sub ω/ 2 ). Based on these encouraging results, a proof-of-principle experiment is being assembled, and is aimed at demonstrating FEL operating at 120 GHz with 300 kW output power in 1 μs pulses: electron energy would be 410 keV. Preliminary design of a 300 GHz 1 MW FEL with an untapered wiggler is also presented. 10 refs., 5 figs., 3 tabs

  4. Construction of a 35 GHz 100 kW gyrotron

    International Nuclear Information System (INIS)

    Aso, Y.; Barroso, J.J.; Castro, P.J.; Correa, R.A.; Ludwing, G.O.; Montes, A.; Morgado, U.T.F.; Nono, M.C.A.; Rossi, J.O.; Silva, P.R.

    1989-09-01

    In this work a description of a 35 GHz 100 kW gyrocon is described which is under construction at the National Space Research Institute Plasma Laboratory. Project conceptual aspects are emphasized, specifically high current density thermionic cathodes, high time and spatial resolution intense magnetic fields generation, high-vacuum systems, techniques of ceramic-metal sealing, and high-voltage electrical modulator circuits. (author). 8 refs., 9 figs., 1 tab

  5. Recent Progress on ECH Technology for ITER

    Science.gov (United States)

    Sirigiri, Jagadishwar

    2005-10-01

    The Electron Cyclotron Heating and Current Drive (ECH&CD) system for ITER is a critical ITER system that must be available for use on Day 1 of the ITER experimental program. The applications of the system include plasma start-up, plasma heating and suppression of Neoclassical Tearing Modes (NTMs). These applications are accomplished using 27 one megawatt continuous wave gyrotrons: 24 at a frequency of 170 GHz and 3 at a frequency of 120 GHz. There are DC power supplies for the gyrotrons, a transmission line system, one launcher at the equatorial plane and three upper port launchers. The US will play a major role in delivering parts of the ECH&CD system to ITER. The present state-of-the-art includes major advances in all areas of ECH technology. In the US, a major effort is underway to supply gyrotrons of up to 1.5 MW power level at 110 GHz to General Atomics for use in heating the DIII-D tokamak. This presentation will include a brief review of the state-of-the-art, worldwide, in ECH technology. The requirements for the ITER ECH&CD system will then be reviewed. ITER calls for gyrotrons capable of operating from a 50 kV power supply, after potential depression, with a minimum of 50% overall efficiency. This is a very significant challenge and some approaches to meeting this goal will be presented. Recent experimental results at MIT showing improved efficiency of high frequency, 1.5 MW gyrotrons will be described. These results will be incorporated into the planned development of gyrotrons for ITER. The ITER ECH&CD system will also be a challenge to the transmission lines, which must operate at high average power at up to 1000 seconds and with high efficiency. The technology challenges and efforts in the US and other ITER parties to solve these problems will be reviewed. *In collaboration with E. Choi, C. Marchewka, I. Mastovosky, M. A. Shapiro and R. J. Temkin. This work is supported by the Office of Fusion Energy Sciences of the U. S. Department of Energy.

  6. Depressed collectors for millimeter wave gyrotrons

    International Nuclear Information System (INIS)

    Singh, A.; Granatstein, V.L.

    1992-01-01

    The main issues relating to design of depressed collectors for millimeter wave gyrotrons are discussed. A flow diagram is presented and the interlinking steps are outlined. Design studies are given for two kinds of gyrotrons on which severe constraints on the maximum radii of the collectors had been imposed; namely, for a cavity type and a quasi-optical gyrotron. A collector efficiency of the order of 70 percent is shown to be feasible for either case using careful tailoring of magnetic field profiles. A code has been developed to assist in doing this. A general approach toward initial placement of collectors has been indicated

  7. Development program for a 200 kW, CW, 28 GHz gyroklystron. Final report, April 1976-September 1980

    International Nuclear Information System (INIS)

    Shively, J.; Conner, C.; Evans, S.

    1980-01-01

    The objective of this program was to develop a microwave amplifier or oscillator capable of producing 200 kW, CW power output at 28 GHz. The use of the gyrotron or cyclotron resonance interaction was pursued. A room temperature hollow core solenoid magnet with an iron case was designed to produce the magnetic field required for electron cyclotron resonance. Three pulsed gyroklystron amplifiers were built providing increasing stable output powers of 6, 65 and 76 kW. A back-up pulsed gyrotron oscillator produced 248 kW. A ceramic cone broadband water load was developed. Tests are described for the various tubes that were developed

  8. Superconducting ECR ion source: From 24-28 GHz SECRAL to 45 GHz fourth generation ECR

    Science.gov (United States)

    Zhao, H. W.; Sun, L. T.; Guo, J. W.; Zhang, W. H.; Lu, W.; Wu, W.; Wu, B. M.; Sabbi, G.; Juchno, M.; Hafalia, A.; Ravaioli, E.; Xie, D. Z.

    2018-05-01

    The development of superconducting ECR source with higher magnetic fields and higher microwave frequency is the most straight forward path to achieve higher beam intensity and higher charge state performance. SECRAL, a superconducting third generation ECR ion source, is designed for 24-28 GHz microwave frequency operation with an innovative magnet configuration of sextupole coils located outside the three solenoids. SECRAL at 24 GHz has already produced a number of record beam intensities, such as 40Ar12+ 1.4 emA, 129Xe26+ 1.1 emA, 129Xe30+ 0.36 emA, and 209Bi31+ 0.68 emA. SECRAL-II, an upgraded version of SECRAL, was built successfully in less than 3 years and has recently been commissioned at full power of a 28 GHz gyrotron and three-frequency heating (28 + 45 + 18 GHz). New record beam intensities for highly charged ion production have been achieved, such as 620 eμA 40Ar16+, 15 eμA 40Ar18+, 146 eμA 86Kr28+, 0.5 eμA 86Kr33+, 53 eμA 129Xe38+, and 17 eμA 129Xe42+. Recent beam test results at SECRAL and SECRAL II have demonstrated that the production of more intense highly charged heavy ion beams needs higher microwave power and higher frequency, as the scaling law predicted. A 45 GHz superconducting ECR ion source FECR (a first fourth generation ECR ion source) is being built at IMP. FECR will be the world's first Nb3Sn superconducting-magnet-based ECR ion source with 6.5 T axial mirror field, 3.5 T sextupole field on the plasma chamber inner wall, and 20 kW at a 45 GHz microwave coupling system. This paper will focus on SECRAL performance studies at 24-28 GHz and technical design of 45 GHz FECR, which demonstrates a technical path for highly charged ion beam production from 24 to 28 GHz SECRAL to 45 GHz FECR.

  9. Nonstationary oscillations in gyrotrons revisited

    International Nuclear Information System (INIS)

    Dumbrajs, O.; Kalis, H.

    2015-01-01

    Development of gyrotrons requires careful understanding of different regimes of gyrotron oscillations. It is known that in the planes of the generalized gyrotron variables: cyclotron resonance mismatch and dimensionless current or cyclotron resonance mismatch and dimensionless interaction length complicated alternating sequences of regions of stationary, periodic, automodulation, and chaotic oscillations exist. In the past, these regions were investigated on the supposition that the transit time of electrons through the interaction space is much shorter than the cavity decay time. This assumption is valid for short and/or high diffraction quality resonators. However, in the case of long and/or low diffraction quality resonators, which are often utilized, this assumption is no longer valid. In such a case, a different mathematical formalism has to be used for studying nonstationary oscillations. One example of such a formalism is described in the present paper

  10. Development program for a 200-kW, c-w gyrotron. Quarterly report No. 7, January-March 1981

    International Nuclear Information System (INIS)

    Tancredi, J.J.; Caplan, M.; Sandoval, J.J.; Jordan, E.; Matranga, V.A.

    1981-01-01

    The objective of this program is the design and development of a millimeter-wave device to produce 200 kW of continuous-wave power at 60 GHz. The device, which will be a gyrotron oscillator, will be compatible with power delivery to an electron-cyclotron plasma. Smooth control of rf power output over a 17 dB range is required, and the device should be capable of operation into a severe time-varying rf load mismatch. An interim program goal is to demonstrate operation at 100 ms pulse widths by 31 December 1981. During this quarter, progress was made in the areas of tube, solenoid, and facility construction. Two magnetron injection gun assemblies were completed, and one was partially evaluated as a gun tester. The superconducting solenoid was assembled, but a vacuum leak prevented early delivery in March. Construction began on the gyrotron test facility by enclosing the area and providing bake-out and vacuum processing utilities

  11. Operations Studies of the Gyrotrons on DIII-D

    Science.gov (United States)

    Storment, Stephen; Lohr, John; Cengher, Mirela; Gorelov, Yuri; Ponce, Dan; Torrezan, Antonio

    2017-10-01

    The gyrotrons are high power vacuum tubes used in fusion research to provide high power density heating and current drive in precisely localized areas of the plasma. Despite the increasing experience with both the manufacture and operation of these devices, individual gyrotrons with similar design and manufacturing processes can exhibit important operational differences in terms of generated rf power, efficiency and lifetime. This report discusses differences in the performance of several gyrotrons in operation at DIII-D and presents the results of a series of measurements that could lead to improved the performance of single units based on a better understanding of the causes of these differences. The rf power generation efficiency can be different from gyrotron to gyrotron. In addition, the power loading of the collector can feature localized hot spots, where the collector can locally be close to the power deposition limits. Measurements of collector power loading provide maps of the power deposition and can provide understanding of the effect of modulation of the output rf beam on the total loading, leading to improved operational rules increasing the safety margins for the gyrotrons under different operational scenarios. Work supported by US DOE under DE-FC02-04ER54698.

  12. High harmonic terahertz confocal gyrotron with nonuniform electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Wenjie; Guan, Xiaotong; Yan, Yang [THz Research Center, School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2016-01-15

    The harmonic confocal gyrotron with nonuniform electron beam is proposed in this paper in order to develop compact and high power terahertz radiation source. A 0.56 THz third harmonic confocal gyrotron with a dual arc section nonuniform electron beam has been designed and investigated. The studies show that confocal cavity has extremely low mode density, and has great advantage to operate at high harmonic. Nonuniform electron beam is an approach to improve output power and interaction efficiency of confocal gyrotron. A dual arc beam magnetron injection gun for designed confocal gyrotron has been developed and presented in this paper.

  13. Advanced Output Coupling for High Power Gyrotrons

    Energy Technology Data Exchange (ETDEWEB)

    Read, Michael [Calabazas Creek Research, Inc., San Mateo, CA (United States); Ives, Robert Lawrence [Calabazas Creek Research, Inc., San Mateo, CA (United States); Marsden, David [Calabazas Creek Research, Inc., San Mateo, CA (United States); Collins, George [Calabazas Creek Research, Inc., San Mateo, CA (United States); Temkin, Richard [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Guss, William [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Lohr, John [General Atomics, La Jolla, CA (United States); Neilson, Jeffrey [Lexam Research, Redwood City, CA (United States); Bui, Thuc [Calabazas Creek Research, Inc., San Mateo, CA (United States)

    2016-11-28

    The Phase II program developed an internal RF coupler that transforms the whispering gallery RF mode produced in gyrotron cavities to an HE11 waveguide mode propagating in corrugated waveguide. This power is extracted from the vacuum using a broadband, chemical vapor deposited (CVD) diamond, Brewster angle window capable of transmitting more than 1.5 MW CW of RF power over a broad range of frequencies. This coupling system eliminates the Mirror Optical Units now required to externally couple Gaussian output power into corrugated waveguide, significantly reducing system cost and increasing efficiency. The program simulated the performance using a broad range of advanced computer codes to optimize the design. Both a direct coupler and Brewster angle window were built and tested at low and high power. Test results confirmed the performance of both devices and demonstrated they are capable of achieving the required performance for scientific, defense, industrial, and medical applications.

  14. Research on nuclear fusion reactor - Development of mm-wve (Electron cyclotron) heating device

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Sae Young; Myung, Jung Su; Lee, Keun Ho; Lee, Myung Jae; Kim, Hyung Suk; Hur, Jin Woo; Song, Ho Young [Institute for Advanced Engineering, Seoul (Korea, Republic of)

    1996-08-01

    To establish cooperating system with foreign relevant research institutes, consultation has been given to IAE by Dr. T. V. George regarding ECRH and gyrotron development plan. Discussions with Prof. Temkin and Dr. Kreisher at MIT, who are working for ITER gyrotron development, were made and those helped IAE to collect necessary information for fundamental parameters of ECCD. Also, Prof. Vic Granatstein, U. of Maryland, and Dr. Baruch Levush, NRL, were consulted for computer codes of the gyrotron R and D. It will also be prepared for cooperation in ECCD and mm-wave heating with device research teams of General Atomics and Russia. By visiting various University labs and research institutes and investigating the up-to-date research results, the basic operating parameters of gyrotron for KSTAR project has been determined. By cooperation with MIT, a conceptual design has been made for the KSTAR gyrotron that should generate 1 MW and 110 GHz CW waves. The simulation result of EGUN using self-consistent theory shows that 1.2 MW power with the efficiency of 42.8% can be obtained for TE22,6,1 mode where the average ohmic loss is 0.54 kW/cm{sup 2} assuming 77 kV cathode voltage, 34 A beam current, velocity ratio of 1.62 and perpendicular velocity spread of 6.5%. 9 refs., 5 figs., 3 tabs. (author)

  15. Gyrotron development at the Instituto de Pesquisas Espaciais

    International Nuclear Information System (INIS)

    Barroso, J.J.; Castro, P.J. de; Correa, R.A.; Galvao, G.P.

    1987-01-01

    The conceptual design of a 35GHz gyrotron operating in the TE 021 mode, intended for plasma heating experiments, is presented. The electrooptical system is synthesized from the electron beam parameters in the cavity region and the electrodynamical system includes a conventional resonator consisting of truncated cones. The starting and operating characteristics are calculated by integrating the exact equation of electron motion under the action of an RF fiel with fixed spatial distribution. For the moment, the experimental activities, in addition to providing all the infrastructure for the laboratory, are concentrated on the construction of a system of magnetic coils, able to generated a 15kG magnetic induction with a fluctuation of 0.1% over an extension of 13cm, on the manufacture of cavities by using electroforming techniques and on the development of techniques for the construction of electron guns. (author) [pt

  16. Electron beam instabilities in gyrotron beam tunnels

    International Nuclear Information System (INIS)

    Pedrozzi, M.; Alberti, S.; Hogge, J.P.; Tran, M.Q.; Tran, T.M.

    1997-10-01

    Electron beam instabilities occurring in a gyrotron electron beam can induce an energy spread which might significantly deteriorate the gyrotron efficiency. Three types of instabilities are considered to explain the important discrepancy found between the theoretical and experimental efficiency in the case of quasi-optical gyrotrons (QOG): the electron cyclotron maser instability, the Bernstein instability and the Langmuir instability. The low magnetic field gradient in drift tubes of QOG makes that the electron cyclotron maser instability can develop in the drift tube at very low electron beam currents. Experimental measurements show that with a proper choice of absorbing structures in the beam tunnel, this instability can be suppressed. At high beam currents, the electrostatic Bernstein instability can induce a significant energy spread at the entrance of the interaction region. The induced energy spread scales approximately linearly with the electron beam density and for QOG one observes that the beam density is significantly higher than the beam density of an equivalent cylindrical cavity gyrotron. (author) figs., tabs., refs

  17. Microwave generation for magnetic fusion energy applications: Task A -- Experimental and numerical study of microwave sources for ECRH incorporating depressed collectors and with ITER-relevant parameters, and Task B -- Theory and modeling of high frequency, high power gyrotron operation. Final report, July 15, 1994--July 14, 1995

    International Nuclear Information System (INIS)

    1995-01-01

    A proof-of-principle short pulse (∼ 100 ns) experiment has successfully demonstrated operation of a sheet-beam FEL amplifier with output power of 250 kW at 86 Ghz and with 24 dB saturated gain and ∼ 3% efficiency. Gain in the linear region was 30 dB. Measured performance parameters were in good agreement with predictions of a multi-mode, time dependence code. Also, a code has been developed to design depressed collectors which will enhance efficiency of ECRH sources (both FELs and gyrotrons). Extensive analytical and theoretical work in support of high power gyrotron development at Varian and MIT, and in support of ITER has been carried out. Specific studies are described. The effect of beam quality on the operation of the 145 GHz gyrotrons at MIT has been characterized using experimentally measured beam velocity distribution functions. The observed performance of these devices is consistent with a 10% RMS perpendicular velocity spread. An extensive study of mode competition in the 110 GHZ experiments at Varian and MIT has been carried out. Design criteria for the suppression of parasitic modes have been given for these experiments. The issues of mode competition and beam quality in the proposed 170 GHz megawatt gyrotrons for ITER have been investigated. Designs of cavities which eliminate unwanted modes have been made, and their sensitivity to beam quality studied. The constraints of lower power density and absence of mode competition coupled with the anticipated beam quality restrict efficiency. Efficiency can be improved by increasing the power density in the wall, improving beam quality, or perhaps by using a more advanced cavity. Studies of the causes of velocity spread in MIG guns have been initiated. Further, the effect of beam cavity misalignment on mode competition has been addressed

  18. Experimental measurements of competition between fundamental and second harmonic emission in a quasi-optical gyrotron

    International Nuclear Information System (INIS)

    Alberti, S.; Pedrozzi, M.; Tran, M.Q.; Hogge, J.P.; Tran, T.M.; Muggli, P.; Joedicke, B.; Mathews, H.G.

    1990-04-01

    A quasi-optical gyrotron (QOG) designed for operation at the fundamental (Ω ce ≅100 GHz) exhibits simultaneous emission at Ω ce and 2Ω ce (second harmonic). For a beam current of 4 A, 20% of the total RF power is emitted at the second harmonic. The experimental measurements show that the excitation of the second harmonic is only possible when the fundamental is present. The frequency of the second harmonic is locked by the frequency of the fundamental. Experimental evidence shows that when the second harmonic is not excited, total efficiency is enhanced. (author) 6 refs., 5 figs., 1 tab

  19. Frequency pulling in a low-voltage medium-power gyrotron

    Science.gov (United States)

    Luo, Li; Du, Chao-Hai; Huang, Ming-Guang; Liu, Pu-Kun

    2018-04-01

    Many recent biomedical applications use medium-power frequency-tunable terahertz (THz) sources, such as sensitivity-enhanced nuclear magnetic resonance, THz imaging, and biomedical treatment. As a promising candidate, a low-voltage gyrotron can generate watt-level, continuous THz-wave radiation. In particular, the frequency-pulling effect in a gyrotron, namely, the effect of the electron beam parameters on the oscillation frequency, can be used to tune the operating frequency. Most previous investigations used complicated and time-consuming gyrotron nonlinear theory to study the influence of many beam parameters on the interaction performance. While gyrotron linear theory investigation demonstrates the advantages of rapidly and clearly revealing the physical influence of individual key beam parameters on the overall system performance, this paper demonstrates systematically the use of gyrotron linear theory to study the frequency-pulling effect in a low-voltage gyrotron with either a Gaussian or a sinusoidal axial-field profile. Furthermore, simulations of a gyrotron operating in the first axial mode are carried out in the framework of nonlinear theory as a contrast. Close agreement is achieved between the two theories. Besides, some interesting results are obtained. In a low-current sinusoidal-profile cavity, the ranges of frequency variation for different axial modes are isolated from each other, and the frequency tuning bandwidth for each axial mode increases by increasing either the beam voltage or pitch factor. Lowering the voltage, the total tuning ranges are squeezed and become concentrated. However, the isolated frequency regions of each axial mode cannot be linked up unless the beam current is increased, meaning that higher current operation is the key to achieving a wider and continuous tuning frequency range. The results presented in this paper can provide a reference for designing a broadband low-voltage gyrotron.

  20. First experimental results of the LAP/INPE (Plasma Associated Lab) gyrotron

    International Nuclear Information System (INIS)

    Barroso, J.J.; Rossi, J.O.; Castro, P.J.; Correa, R.A.; Montes, A.; Ludwig, G.O.; Idehara, T.; Ogawa, I.

    1994-01-01

    The design and operation of a high power pulsed gyrotron are reported. A magnetron injection gun generates a 5 A, 50 keV helical laminar electron beam with a pitch ratio of 1.5. The electron beam is then placed on the second radial maximum of the T E 02 nominal mode in the resonant cavity. The magnet system comprises three independent water-cooled solenoids located in the gun, cavity and collector regions, consisting of split pair magnets with the field direction vertical. The resonator is a weakly tapered waveguide with a straight section of 0.5 cm in length, a down taper angle of 0.8 0 and an up taper angle of 5 0 The gyrotron runs in pulsed regime with a 20μs pulse length at a frequency repetition rate of 10 Hz and during operation the pressure in the tube is ordinarily less than 4.0 X 10 -7 Torr. Several TE modes were detected over the magnetic field range 9.5 to 12.5 kG and the measured resonant frequencies (29.0 to 32.0 GHz) showed to be in close agreement with the self-consistent calculated values. Experiments are currently under way to measure the absolute output power and to identify the modes through field pattern measurement techniques. (author). 3 refs, 3 figs

  1. 1-MW klystron for fusion plasma heating

    International Nuclear Information System (INIS)

    Okamoto, Tadashi; Miyake, Setsuo; Ohno, Hiroaki

    1985-01-01

    A plasma test apparatus to bring about the critical plasma conditions for nuclear fusion is now under construction in Japan Atomic Energy Research Institute. Among various means of plasma heating, the most promising is the lower hybrid resonance heating (LHRF) in the 2-GHz region. Although it has so far requied 7 to 8 MW of microwave power for the plasma test apparatus, the new klystron, E3778, now constructed by Toshiba has the world's highest output power of 1 MW in the 2-GHz region. In addition to the excellent high-power operation for 10 seconds, the wide operating frequency range of 1.7 to 2.26 GHz by dint of sophisticated high-speed tuning mechanism, and the high durability to reflected power of up to 2.0 of VSWR are the high-lighted features of this klystron, which have never been achieved by conventional klystrons. (author)

  2. Large power electron tubes for high frequency heating

    International Nuclear Information System (INIS)

    Okamoto, Tadashi; Sato, Hisaaki.

    1988-01-01

    On the large power electron tubes used for electron cyclotron heating, lower hybrid resonance frequency heating, and ion cyclotron range of frequency heating, namely gyrotron, klystron and quadrupole tube, the features, the present status of development, the construction, the principle and so on are explained. The research and development of gyrotrons are most advanced in USSR, the inventor. The course of the development of gyrotrons in foreign countries and in Japan is described. There are many variants of gyrotrons, for example whispering gallery mode, klystron type, backward wave oscillator type, gyro-peniotron and others. The principle of gyrotrons is explained, and about the examples of the developed gyrotrons, the design parameters are shown. For the purpose of using for the LHRF heating in JT-60, a superlarge power klystron of 1 MW output at 2 GHz frequency, which is the largest class in the world, has been developed. Its total length is 2.7 m, and weight is 1.5 t. It features, construction, function and performance are reported. The trend of large power quadrupole tubes is toward stable action with large power in VHF zone, and the typical products in USA and Europe are shown. (Kako, I.)

  3. High-power microwave transmission and launching systems for fusion plasma heating systems

    International Nuclear Information System (INIS)

    Bigelow, T.S.

    1989-01-01

    Microwave power in the 30- to 300-GHz frequency range is becoming widely used for heating of plasma in present-day fusion energy magnetic confinement experiments. Microwave power is effective in ionizing plasma and heating electrons through the electron cyclotron heating (ECH) process. Since the power is absorbed in regions of the magnetic field where resonance occurs and launching antennas with narrow beam widths are possible, power deposition location can be highly controlled. This is important for maximizing the power utilization efficiency and improving plasma parameters. Development of the gyrotron oscillator tube has advanced in recent years so that a 1-MW continuous-wave, 140-GHz power source will soon be available. Gyrotron output power is typically in a circular waveguide propagating a circular electric mode (such as TE 0,2 ) or a whispering-gallery mode (such as TE 15,2 ), depending on frequency and power level. An alternative high-power microwave source currently under development is the free-electron laser (FEL), which may be capable of generating 2-10 MW of average power at frequencies of up to 500 GHz. The FEL has a rectangular output waveguide carrying the TE 0,1 mode. Because of its higher complexity and cost, the high-average-power FEL is not yet as extensively developed as the gyrotron. In this paper, several types of operating ECH transmission systems are discussed, as well systems currently being developed. The trend in this area is toward higher power and frequency due to the improvements in plasma density and temperature possible. Every system requires a variety of components, such as mode converters, waveguide bends, launchers, and directional couplers. Some of these components are discussed here, along with ongoing work to improve their performance. 8 refs

  4. The ECRH system for dite and compass experiments

    International Nuclear Information System (INIS)

    Riviere, A.C.; Alcock, M.W.; Collins, P.R.; Ainsworth, N.R.; Dellis, A.N.; Moody, D.; Goodenough, S.; Green, S.R.

    1987-01-01

    Electron Cyclotron Resonance Heating is one of the main auxiliary heating mechanisms in the Culham Laboratory Fusion programme. The system described here is aimed initially at injecting 0.6MW of 60 GHz power into the existing DITE tokamak. A planned increase in power by the addition of further stages will result in a system capable of delivering up to 2MW of power at 60 GHz into the new COMPASS tokamak currently under construction. The scientific aims and the general technical structure of the system are described. The description will cover layout, power supplies, cooling systems, safety and the microwave transmission system necessary to convey the power from the gyrotron sources to the plasmas which can be situated up to 50 metres distant. A highly specialized transmission line consisting of circular overmoded waveguide with filters, bends and mode converters is necessary and data are presented showing the performance of these items and their method of manufacture. Most of these units have been previously tested on the CLEO experiment. In addition to the 2 MW 60 GHz system a single 200 KW source at 28 GHz will be used for preionisation

  5. Initial operation of a high-power quasi-optical gyrotron

    International Nuclear Information System (INIS)

    Fliflet, A.W.; Hargreaves, T.A.; Manheimer, W.M.; Fischer, R.P.; Barsanti, M.L.

    1990-01-01

    Results from the initial operating of a high-power quasi-optical gyrotron based on the 90-kV 50-A Varian VUW-8144 electron gun are reported. The output power and efficiency have been measured for a resonator mirror separation of 19.4 cm with a magnetic field of 4.95 T, corresponding to resonator output coupling of 1.9%, and for a resonator mirror separation of 21.4 cm with a magnetic field of 4.7 T, corresponding to a resonator output coupling of 3.1%. Operation was multimoded with 3--6 modes excited in the range of 125--130 GHz for the 4.95-T magnetic field. A peak efficiency of 15% at an output power of 161 kW was obtained for a gun voltage of 93 kV and a current of 12 A. A peak-output power of 364 kW at an efficiency of 10% was obtained at a voltage of 95.6 kV and 37.5 A

  6. Low-order-mode harmonic multiplying gyrotron traveling-wave amplifier in W band

    International Nuclear Information System (INIS)

    Yeh, Y. S.; Chen, C. H.; Yang, S. J.; Lai, C. H.; Lin, T. Y.; Lo, Y. C.; Hong, J. W.; Hung, C. L.; Chang, T. H.

    2012-01-01

    Harmonic multiplying gyrotron traveling-wave amplifiers (gyro-TWAs) allow for magnetic field reduction and frequency multiplication. To avoid absolute instabilities, this work proposes a W-band harmonic multiplying gyro-TWA operating at low-order modes. By amplifying a fundamental harmonic TE 11 drive wave, the second harmonic component of the beam current initiates a TE 21 wave to be amplified. Absolute instabilities in the gyro-TWA are suppressed by shortening the interaction circuit and increasing wall losses. Simulation results reveal that compared with Ka-band gyro-TWTs, the lower wall losses effectively suppress absolute instabilities in the W-band gyro-TWA. However, a global reflective oscillation occurs as the wall losses decrease. Increasing the length or resistivity of the lossy section can reduce the feedback of the oscillation to stabilize the amplifier. The W-band harmonic multiplying gyro-TWA is predicted to yield a peak output power of 111 kW at 98 GHz with an efficiency of 25%, a saturated gain of 26 dB, and a bandwidth of 1.6 GHz for a 60 kV, 7.5 A electron beam with an axial velocity spread of 8%.

  7. Stability and nonlinear dynamics of gyrotrons at cyclotron harmonics

    International Nuclear Information System (INIS)

    Saraph, G.P.; Nusinovich, G.S.; Antonsen, T.M. Jr.; Levush, B.

    1992-01-01

    Gyrotrons operating at higher harmonics of the cyclotron frequency can overcome the frequency limitations caused by achievable strength of the magnetic field. However, the excitation of modes at the fundamental frequency exhibit a major problem for stable operation of harmonic gyrotron at high power with high efficiency. Therefore the issues of stability of gyrotron operation at the cyclotron harmonics and nonlinear dynamics of mode interaction are of great importance. The results of the authors stability analysis and multimode simulation are presented here. A detailed nonlinear theory of steady state single mode operation at cyclotron harmonics has been presented previously, taking into account beam-wave coupling and nonlinear gain function at cyclotron harmonics. A set of equations describing low gain regime interaction of modes resonant at different cyclotron harmonics was studied before. The multifrequency time-dependent nonlinear analysis presented here is based on previous gyrotron studies and beam-wave interaction at cyclotron harmonics. The authors have determined the parameter space for stable single mode operation at the second harmonic. The nonlinear dynamics of mode evolution and mode interaction for a harmonic gyrotron is presented. A new nonlinear effect in which the parasite at the fundamental harmonic helps excite the operating mode at the second harmonic has been demonstrated

  8. Short-duration exposure to 2.45 GHz microwave radiation induces ...

    African Journals Online (AJOL)

    OBEMBE

    The genotoxic effects of 2.45 GHz microwave (MW) radiation on the testis and ovary of Sprague Dawley rats was ... Microwave (MW) radiation is a non-ionizing electromagnetic radiation ..... microwave field and not in any way related to indirect.

  9. Improved Collectors for High Power Gyrotrons

    International Nuclear Information System (INIS)

    Ives, R. Lawrence; Singh, Amarjit; Read, Michael; Borchard, Philipp; Neilson, Jeff

    2009-01-01

    High power gyrotrons are used for electron cyclotron heating, current drive and parasitic mode suppression in tokamaks for fusion energy research. These devices are crucial for successful operation of many research programs around the world, including the ITER program currently being constructed in France. Recent gyrotron failures resulted from cyclic fatigue of the copper material used to fabricated the collectors. The techniques used to collect the spent beam power is common in many gyrotrons produced around the world. There is serious concern that these tubes may also be at risk from cyclic fatigue. This program addresses the cause of the collector failure. The Phase I program successfully demonstrated feasibility of a mode of operation that eliminates the cyclic operation that caused the failure. It also demonstrated that new material can provide increased lifetime under cyclic operation that could increase the lifetime by more than on order of magnitude. The Phase II program will complete that research and develop a collector that eliminates the fatigue failures. Such a design would find application around the world.

  10. Thermal analysis of gyrotron traveling-wave tube collector

    International Nuclear Information System (INIS)

    Zheng Zhiqing; Luo Yong; Jiang Wei; Tang Yong

    2013-01-01

    In order to solve cooling problem of the gyrotron traveling-wave tube(TWT) collector and guarantee the gyrotron TWT's reliability and stability, the electron trajectories in the gyrotron TWT are simulated using CST electron simulation software. Thermal analysis of the collector with finite element software ANSYS is performed. The ways of applying boundary that affects the distribution of collector temperature are compared. The influence of the water temperature and flow rate on collector temperature distribution under actual heat fluxes (boundary condition) is researched. The size and number of collector fins are optimized, and a relatively perfect structure is obtained finally. The result estimated by simulation is consistent with the experiment and proves that the model and method employed in this work are suitable. (authors)

  11. Review of gyrotron development at the Centre de Recherche en Physique des Plasmas

    International Nuclear Information System (INIS)

    Tran, M.Q.

    1990-01-01

    Gyrotron development activities at the Centre de Recherche en Physique des Plasmas in Lausanne are directed along two directions, quasi optical gyrotrons and, with less emphasis, cylindrical cavity gyrotrons. This paper will review the recent work performed in these two fields. (author) 9 refs., 5 figs

  12. Three-Dimensional Numerical Simulation of a 30-GHz Gyrotron Resonator With an Explicit High-Order Discontinuous-Galerkin-Based Parallel Particle-In-Cell Method

    DEFF Research Database (Denmark)

    Stock, Andreas; Neudorfer, Jonathan; Riedlinger, Marc

    2012-01-01

    Fast design codes for the simulation of the particle–field interaction in the interior of gyrotron resonators are available. They procure their rapidity by making strong physical simplifications and approximations, which are not known to be valid for many variations of the geometry and the operat...

  13. Components for transmission of very high power mm-waves (200 kW at 28, 70 and 140 GHz) in overmoded circular waveguides

    International Nuclear Information System (INIS)

    Thumm, M.; Erckmann, V.; Kasparek, W.; Kumric, H.; Mueller, G.A.; Schueller, P.G.; Wilhelm, R.

    1986-03-01

    Optimized overmoded circular waveguide components of transmission lines developed for high-power (200 kW) millimeter wave applications at 28, 70 and 140 GHz, as e.g. electron cyclotron resonance heating (ECRH) of plasmas for thermonuclear fusion research with gyrotrons, are described. Axisymmetric, narrow, pencil-like beams with well-defined polarization (HE11 hybrid mode) are used at open-ended corrugated waveguide antennas. The HE11 mode is generated from TEsub(On) gyrotron modes by the two multi-step mode conversion processes: (1) TEsub(On)->TE 01 ->TE 11 ->HE 11 or (2) TEsub(On)->TE 01 ->TM 11 ->HE 11 . This paper reports computer-aided analyses and measurements on mode transducer systems of the first type at 28 and 70 GHz and of the second type at 140 GHz. In all cases the overall efficiency of the complete mode conversion sequence in the desired mode is approximately (92-95)%. The mode purity in the transmission lines is conserved by using corrugated gradual waveguide bends with optimized curvature distribution and diameter tapers with non-linear contours. Highly efficient corrugated-wall mode selective filters decouple the different waveguide sections. Mode content and reflected power are determined by a novel device (k-spectrometer). Absolute power calibration is done with newly developed calorimetric loads using an organic absorbing fluid. (orig.) [de

  14. Diamond window and its application to ITER gyrotron

    International Nuclear Information System (INIS)

    Sakamoto, K.

    1999-01-01

    On the background of having to reduce the overall cost for ITER to 50% it is proposed to replace conventional glass windows on gyrotrons by diamonds. The successful production and testing of such diamond windows is reported. A diamond window can transmit 5 times more power than usual double disk transmission windows while only costing 3 times as much. As a tradeoff, the gyrotrons could be replaced by more powerful ones and one would need fewer of them

  15. Dielectric properties during electron irradiation of alternative materials for gyrotron windows

    International Nuclear Information System (INIS)

    Vila, R.; Ibarra, A.; Hodgson, E.R.

    1996-01-01

    Recent work on high power gyrotron windows has focused interest on some homopolar insulators as alternatives to sapphire due to their combined low dielectric loss and high thermal conductivity. The two main candidates at this moment, CVD diamond and high resistivity silicon, have been studied. As an indicator of their radiation behaviour, loss tangent and permittivity at about 15 GHz have been measured under 1.8 MeV electron irradiation at RT. In the case of silicon the previously observed radiation-induced decrease of loss tangent has been confirmed reaching a lower saturation level of 3.5 x 10 -5 at higher doses, and falling with increasing frequency. An even more important observation is that the sensitivity to ionizing radiation dropped by 4 orders of magnitude due to the radiation dose. First results for diamond are also promising, only a small degradation at relatively short times being seen with no further changes up to the maximum dose used. (orig.)

  16. Development of High Power Vacuum Tubes for Accelerators and Plasma Heating

    International Nuclear Information System (INIS)

    Srivastava, Vishnu

    2012-01-01

    High pulsed power magnetrons and klystrons for medical and industrial accelerators, and high CW power klystrons and gyrotrons for plasma heating in tokamak, are being developed at CEERI. S-band 2.0MW pulsed tunable magnetrons of centre frequency 2856MHz and 2998 MHz were developed, and S-band 2.6MW pulsed tunable magnetron is being developed for medical LINAC, and 3MW pulsed tunable magnetron is being developed for industrial accelerator. S-band (2856MHz), 5MW pulsed klystron was developed for particle accelerator, and S-band 6MW pulsed klystron is under development for 10MeV industrial accelerator. 350MHz, 100kW (CW) klystron is being developed for proton accelerator, and C-band 250kW (CW) klystron is being developed for plasma heating. 42GHz, 200kW (CW/Long pulse) gyrotron is under development for plasma heating. Plasma filled tubes are also being developed for switching. 25kV/1kA and 40kV/3kA thyratrons were developed for high voltage high current switching in pulse modulators for magnetrons and klystrons. 25kV/3kA Pseudospark switch of current rise time of 1kA/|a-sec and pulse repetition rate of 500Hz is being developed. Plasma assisted high power microwave device is also being investigated.

  17. Development of High Power Vacuum Tubes for Accelerators and Plasma Heating

    Science.gov (United States)

    Srivastava, Vishnu

    2012-11-01

    High pulsed power magnetrons and klystrons for medical and industrial accelerators, and high CW power klystrons and gyrotrons for plasma heating in tokamak, are being developed at CEERI. S-band 2.0MW pulsed tunable magnetrons of centre frequency 2856MHz and 2998 MHz were developed, and S-band 2.6MW pulsed tunable magnetron is being developed for medical LINAC, and 3MW pulsed tunable magnetron is being developed for industrial accelerator. S-band (2856MHz), 5MW pulsed klystron was developed for particle accelerator, and S-band 6MW pulsed klystron is under development for 10MeV industrial accelerator. 350MHz, 100kW (CW) klystron is being developed for proton accelerator, and C-band 250kW (CW) klystron is being developed for plasma heating. 42GHz, 200kW (CW/Long pulse) gyrotron is under development for plasma heating. Plasma filled tubes are also being developed for switching. 25kV/1kA and 40kV/3kA thyratrons were developed for high voltage high current switching in pulse modulators for magnetrons and klystrons. 25kV/3kA Pseudospark switch of current rise time of 1kA/|a-sec and pulse repetition rate of 500Hz is being developed. Plasma assisted high power microwave device is also being investigated.

  18. Modeling of mode purity in high power gyrotrons

    International Nuclear Information System (INIS)

    Cai, S.Y.; Antonsen, T.M. Jr.; Saraph, G.P.

    1993-01-01

    Spurious mode generation at the same frequency of the operational mode in a high power gyrotron can significantly reduce the power handling capability and the stability of a gyrotron oscillator because these modes are usually not matched at the output window and thus have high absorption and reflection rates. To study the generation of this kind of mode, the authors developed a numerical model based on an existing multimode self-consistent time-dependent computer code. This model includes both TE and TM modes and accounts for mode transformations due to the waveguide inhomogeneity. With this new tool, they study the mode transformation in the gyrotron and the possibility of excitation of parasitic TE and TM modes in the up taper section due to the gyroklystron mechanism. Their preliminary results show moderate excitation of both TE and TM modes at the same frequency as the main operating mode at locations near their cutoff. Details of the model and further simulation results will be presented

  19. Annual review of Plasma Physics Laboratory, Kyoto University, April, 1983

    International Nuclear Information System (INIS)

    1983-04-01

    The devices for additionally heating joul-heated plasma in the Heliotron E, such as electron cyclotron resonance heating and neutral beam injection, were in operation in 1982. In the ECRH experiment, the microwaves of 200 kW at 28 GHz were generated by a gyrotron, but the pulse width was extended from 10 ms to 40 ms this year. By this, a currentless plasma of Te-1 keV was achieved. In the NB1 experiment, the neutral beam of about 1.5 MW was injected into joule-heated plasma, and the plasma of Ti(O)-950 eV, Te(O)-800 eV and Ne = 3 x 10 19 /m 3 was attained. The first experiment to inject neutral beam into ECRH currentless plasma was carried out. By this method, the density of the plasma increased as well as the ion temperature and electron temperature. As to the theory, a critical beta was calculated by using stellarator expansion, which should be 3 to 7 % in the Heliotron E. Two gyrotrons of 200 kW at 53 GHz each and an ion cyclotron resonance heating equipment of 1.5 MW at 26.7 MHz are prepared. As to the reactor study, the design of Heliotron H in the first phase was completed. The location of impurity sources in NB1 ion sources and beam lines was found. (Kako, I.)

  20. Enhancement of oscillation characteristics of a gyrotron by a built-in quasi-optical mode converter

    International Nuclear Information System (INIS)

    Hayashi, Kenichi; Mitsunaka, Yoshika; Komuro, Mitsuo

    1994-01-01

    Oscillation characteristics are analyzed experimentally and numerically by using two gyrotrons with a power level of 500 kW, a conventional tube and a tube with a built-in quasi-optical mode converter. Both tubes have a 120 GHz, TE 12,2 cavity of the same geometry and a single disk alumina window. The quasi-optical mode converter consists of an α-cut launcher and five mirrors. In the conventional tube, reflection of the competing mode at the output window prevents the main mode from oscillating stably in the operation region predicted by the design. Mode selectivity of the quasi-optical mode converter removes the influence of the reflection on the oscillation. Consequently, the experimental results in the tube with the quasi-optical mode converter are in good agreement with the design values. (author)

  1. ECRH/EBWH system for NSTX-U

    Directory of Open Access Journals (Sweden)

    Hosea J.C.

    2012-09-01

    Full Text Available The National Spherical Torus Experiment Upgrade (NSTX-U will operate at an axial toroidal field of up to 1 T, about twice the field available on NSTX. A 28 GHz electron cylotron resonance heating (ECRH system is currently being planned for NSTX-U. A 1 MW 28 GHz gyrotron will be employed. Intially the system will use short, 10-50 ms, 1 MW pulses for ECRH-assisted discharge start-up. Later the pulse length will be extended to 1-5 s to study electron Bernstein wave heating (EBWH during the plasma current flat top. A mirror launcher will be used to couple microwave power to the plasma via O-mode to the slow X-mode to EBW (O-X-B double mode conversion. This paper presents a pre-conceptual design for the ECRH/EBWH system proposed for NSTX-U and includes ray tracing and Fokker-Planck modeling results for 28 GHz ECRH during plasma start-up and EBW heating and current drive during the plasma current flattop of a NSTX-U advanced H-mode plasma scenario.

  2. Operation of a quasioptical electron cyclotron maser

    International Nuclear Information System (INIS)

    Morse, E.C.; Pyle, R.V.

    1984-12-01

    The electron cyclotron maser or gyrotron concept has been developed to produce sources producing 200 kW at 28 GHz continuously, and higher power outputs and frequencies in pulsed mode. These sources have been useful in electron cyclotron resonance heating (ECRH) in magnetically confined fusion devices. However, higher frequencies and higher power levels will be required in reactor-grade fusion plasmas, with likely requirements of 1.0 MW or more per source at 140 GHz. Conventional gyrotrons follow a trend of decreasing power for increasing frequency. In order to circumvent this problem, the quasioptical electron cyclotron maser was proposed. In this device, the closed resonator of the conventional gyrotron is replaced with an open, Fabry-Perot type resonator. The cavity modes are then the TEM-type modes of an optical laser. The advantage of this configuration is that the cavity size is not a function of frequency, since the length can be any half-integer number of wavelengths. Furthermore, the beam traverses across the cavity transverse to the direction of radiation output, and thus the rf window design is less complicated than in conventional tubes. The rf output, if obtained by diffraction coupling around one of the mirrors, could be in a TEM mode, which would allow for quasioptical transmission of the microwaves into the plasma in fusion devices. 4 references, 1 figure

  3. Elmo Bumpy Torus proof of principle, Phase II: Title 1 report. Volume IV. Microwave system. Preliminary design report

    International Nuclear Information System (INIS)

    Adams, R.N.

    1982-01-01

    The EBT-P Microwave System provides microwaves for electron cyclotron resonance heating (ECRH) to both stabilize and heat the EBT-P plasma. A 28 gigahertz (GHz) system is required to form the hot electron annulus plasma that provides MHD stabilization to the core plasma. A 60 GHz system is required to heat the core plasma and will provide some second harmonic heating of the hot electron annulus. The principal microwave system elements and their design characteristics are summarized. The microwave system includes 200 kilowatt (kW) gyrotrons at 60 GHz for core heating and 200 kW gyrotrons at 28 GHz for annulus heating. The basic operating complement will be six (6) 60 GHz tubes and two (2) 28 GHz tubes. PACE (Plant and Capital Equipment) procurement will include four (4) 60 GHz gyrotrons with two (2) GHz tubes procured under operations and the two (2) 28 GHz tubes will be provided, with mounts, from the EBT-S program. Each tube is rigidly mounted on an oil filled tank assembly which provides electrical isolation and cooling. All tubes and mounts will be located in the lower level of the torus enclosure. An extensive demineralized water flow system is required to provide gyrotron cooling

  4. Performance, diagnostics, controls and plans for the gyrotron system on the DIII-D tokamak

    Directory of Open Access Journals (Sweden)

    Ponce D.M.

    2012-09-01

    Full Text Available The DIII-D ECH complex is being upgraded with three new depressed collector gyrotrons. The performance of the existing system has been very good. As more gyrotrons having higher power are added to the system, diagnostics of gyrotron operation, optimization of the performance and qualification of components for higher power become more important. A new FPGA-based gyrotron control system is being installed, additional capabilities for rapid real time variation of the rf injection angles by the DIII-D Plasma Control System are being tested and infrastructure enhancements are being completed. Longer term plans continue to include ECH as a major component in the DIII-D heating and current drive capabilities.

  5. Design and simulation for the pulse high-voltage DC power supply (HVPS) of 1.2 MW/2.45 GHz HT-7U lower hybrid current drive system

    International Nuclear Information System (INIS)

    Huang Yiyun; Kuang Guangli; Xu Weihua; Liu Baohua; Lin Jianan; Wu Junshuan; Zheng Guanghua; Yang Chunshen

    2000-01-01

    The superconducting tokamak HT-7U has been designed by the Institute of Plasma Physics since 1998 and will be set up before 2003. The 1.2 MW/2.45 GHz HT-7U LHCD (Lower hybrid current drive) system which being the most efficient non-induction device can heat the plasma and drive the plasma current has been efficiently in operation now, and a particular design of the 2.8 MW/-35 kV high-voltage DC power supply has been already completed and will apply to the klystron of LHCD on HT-7 and the future HT-7U, and the project of the power supply has been examined and approved professionally by an authorized group of high-level specialist in the Institute of Plasma Physics. The detailed design of the power supply and the simulation results are referred

  6. Multi-MW K-Band Harmonic Multiplier: RF Source For High-Gradient Accelerator R & D

    Science.gov (United States)

    Solyak, N. A.; Yakovlev, V. P.; Kazakov, S. Yu.; Hirshfield, J. L.

    2009-01-01

    A preliminary design is presented for a two-cavity harmonic multiplier, intended as a high-power RF source for use in experiments aimed at developing high-gradient structures for a future collider. The harmonic multiplier is to produce power at selected frequencies in K-band (18-26.5 GHz) using as an RF driver an XK-5 S-band klystron (2.856 GHz). The device is to be built with a TE111 rotating mode input cavity and interchangeable output cavities running in the TEn11 rotating mode, with n = 7,8,9 at 19.992, 22.848, and 25.704 GHz. An example for a 7th harmonic multiplier is described, using a 250 kV, 20 A injected laminar electron beam; with 10 MW of S-band drive power, 4.7 MW of 20-GHz output power is predicted. Details are described of the magnetic circuit, cavities, and output coupler.

  7. Design of a 17.14 GHz quasi-optical pulse compressor

    International Nuclear Information System (INIS)

    Petelin, M. I.; Kuzikov, S. V.; Danilov, Yu. Yu.; Granatstein, V. L.; Nusinovich, G. S.

    1999-01-01

    A quasi-optical version of the ring cavity pulse compressor is considered. This concept is based on the coupling of the input wave to a whispering gallery mode of a barrel-like cavity due to helical corrugations of the cavity wall. Low-power tests of the prototype were carried out at 11.4 GHz and demonstrated reasonable agree-ment between experimental data and theoretical predictions. The design of a similar pulse compressor at 17.14 GHz compatible with the 17.14 GHz, 100 MW gyroklystron currently under development at the University of Maryland is presented

  8. Progress of high power and long pulse ECRH system in EAST

    International Nuclear Information System (INIS)

    Wang, Xiaojie; Liu, Fukun; Shan, Jiafang; Xu, Handong; DajunWu; Li, Bo; Wei, Wei; Zhang, Jian; Huang, Yiyun; Tang, Yunying; Xu, Weiye; Hu, Huaichuan; Wang, Jian; Xu, Li; Zhang, Liyuan; Feng, Jianqiang

    2015-01-01

    Highlights: • The design and the status of the 140 GHz/4 MW/1000 s ECRH system on EAST tokamak is described in detail. • Two of the four gyrotrons are tested in factory. • The transmission line and the equatorial launcher for the first 2 MW system are ready for installation. • Series tests have been carried out for the most critical elements for the real-time launcher. • The auxiliary system includes the water cooling system, the HVPS system, the vacuum system have been installed and tested. - Abstract: In accordance with the long pulse objectives of the Experimental Advanced Superconducting Tokamak (EAST), an electron cyclotron resonance heating (ECRH) system with the feature of 4 MW power for a pulse length up to 1000 s at 140 GHz, using second harmonic of the extraordinary mode (X2) is presently under construction at the institute of plasma physics, Chinese academy of sciences (ASIPP). The missions of the system are to provide central heating, current drive, plasma profile tailoring and control of magneto-hydrodynamic (MHD) instabilities. The continuous wave (CW) power is transmitted from the gyrotrons to EAST via low-loss evacuated waveguide transmission lines. Considering the diverse applications of the EC system, the front steering launcher is designed to inject four individually steered beams across nearly the entire plasma cross section. The beam's launch angles can be continuously varied with the optimized scanning range of over 30° in poloidal direction and ±25° in toroidal, as well as the polarization will be adjusted during the discharge by the orientations of a pair of polarizers in the transmission line to maintain the highest absorption for different operational scenarios. The commissioning of the first 2 MW system will be commenced in the end of 2014.

  9. High power microwave diagnostic for the fusion energy experiment ITER

    DEFF Research Database (Denmark)

    Korsholm, Søren Bang; Leipold, Frank; Goncalves, B.

    2016-01-01

    Microwave diagnostics will play an increasingly important role in burning plasma fusion energy experiments like ITER and beyond. The Collective Thomson Scattering (CTS) diagnostic to be installed at ITER is an example of such a diagnostic with great potential in present and future experiments....... The ITER CTS diagnostic will inject a 1 MW 60 GHz gyrotron beam into the ITER plasma and observe the scattering off fluctuations in the plasma — to monitor the dynamics of the fast ions generated in the fusion reactions....

  10. Mechanical reliability of current alumina and beryllia ceramics used in microwave windows for gyrotrons

    International Nuclear Information System (INIS)

    Becher, P.F.; Ferber, M.K.

    1983-02-01

    The mechanical reliability was evaluated for the alumina and beryllia ceramics now used as microwave windows in the high-power (greater than or equal to 200 kW) high-frequency (greater than or equal to 60 GHz) gyrotron tubes being developed for plasma heating in fusion systems. Analysis of the stresses generated in the various window configurations and tube operating conditions indicated that significant tensile stresses are generated in the ceramic window by dielectric heating. As a result, we characterized the static and dynamic fatigue behavior and the inert strength distributions for these two ceramics (i.e., fatigue studies included the behavior in the fluorocarbon fluid used for window cooling at 22 and 48 0 C and in both air (65% relative humidity) and distilled water at 22 0 C. These data were then analyzed in order to construct reliability diagrams for these materials

  11. Circular waveguide mode converters at 140 GHz

    International Nuclear Information System (INIS)

    Trulsen, J.; Woskoboinikow, P.; Temkin, R.J.

    1986-01-01

    A unified derivation of the coupled mode equations for circular waveguide is presented. Also, approximate design criteria for TE/sub 0n/ to TE/sub 0n'/ axisymmetric, TE 01 to TE 11 wriggle, and TE 01 to TM 11 bend converters are reviewed. Numerically solving the coupled mode equations, an optimized set of mode converters has been designed for conversion of a 2 millimeter wave TE 03 mode into TE 11 . This set consists of axisymmetric TE 03 to TE 02 and TE 02 to TE 01 converters followed by a wriggle TE 01 to TE 11 converter. This mode converter set was fabricated and tested using a 3 kW, 137 GHz gyrotron. A TE 11 mode purity of better than 97% was achieved. The TE 01 to TE 11 wriggle converter was experimentally optimized for a measured conversion efficiency of better than 99% not including ohmic losses

  12. Development of a 2 MW CW Waterload for Electron Cyclotron Heating Systems

    Energy Technology Data Exchange (ETDEWEB)

    R. Lawrence,Ives; Maxwell Mizuhara; George Collins; Jeffrey Neilson; Philipp Borchard

    2012-11-09

    Calabazas Creek Research, Inc. developed a load capable of continuously dissipating 2 MW of RF power from gyrotrons. The input uses HE11 corrugated waveguide and a rotating launcher to uniformly disperse the power over the lossy surfaces in the load. This builds on experience with a previous load designed to dissipate 1 MW of continuous RF power. The 2 MW load uses more advanced RF dispersion to double the capability in the same size device as the 1 MW load. The new load reduces reflected power from the load to significantly less than 1 %. This eliminates requirements for a preload to capture reflected power. The program updated control electronics that provides all required interlocks for operation and measurement of peak and average power. The program developed two version of the load. The initial version used primarily anodized aluminum to reduce weight and cost. The second version used copper and stainless steel to meet specifications for the ITER reactor currently under construction in France. Tests of the new load at the Japanese Atomic Energy Agency confirmed operation of the load to a power level of 1 MW, which is the highest power currently available for testing the load. Additional tests will be performed at General Atomics in spring 2013. The U.S. ITER organization will test the copper/stainless steel version of the load in December 2012 or early in 2013. Both loads are currently being marketed worldwide.

  13. Local control unit for ITER-India gyrotron test facility (IIGTF)

    Energy Technology Data Exchange (ETDEWEB)

    Rathod, Vipal, E-mail: vipal.rathod@iter-india.org; Shah, Ronak; Mandge, Deepak; Parmar, Rajvi; Rao, S.L.

    2016-11-15

    Highlights: • A dedicated full scale ITER prototype Local Control Unit for ITER-India Gyrotron test facility. • National Instruments® make PXIe system for real time control & data acquisition and Siemens® PLC for sequence control function. • Hardwired FPGA based fast protection interlock system. • High speed analog fiber optical transmission link using V/F and F/V technique. • Software framework based on LabVIEW™ platform and ITER CODAC Core System. - Abstract: Electron Cyclotron system on ITER, is one of the important RF ancillary systems based on high power Gyrotron RF sources, that is used for plasma heating and current drive applications. To operate a Gyrotron source, various auxiliary systems and services such as Super Conducting Magnet set, High Voltage Power Supplies, Auxiliary Power Supplies, Waveguide components, Cooling water system and a Local Control Unit (LCU) are required. The LCU plays a very crucial role for the safe and reliable operation of Gyrotron system. A dedicated full scale ITER prototype LCU is being developed for testing and commissioning of an ITER like Test Gyrotron at ITER-India Gyrotron Test facility (IIGTF). The main functions of LCU include Sequence Control, Local Interlock Protection and Real Time Data Acquisition. PLC based slow controller is used for implementing the Sequence Control & Slow Interlock functions. Critical Protection Interlocks are required to have a response time of <10 μs and are implemented using custom built hardware and PXIe based fast controller. Also PXIe system is used for implementing Real Time Data Acquisition function that is required to have slow and fast acquisition with online visualization and off line analysis facility. A Signal Conditioning Unit (SCU) is used to interface and faithfully transmit the field signals to the remote control systems. Necessary controller hardware is procured and several pre-prototype developments have been taken up to establish the critical subsystems such as

  14. Local control unit for ITER-India gyrotron test facility (IIGTF)

    International Nuclear Information System (INIS)

    Rathod, Vipal; Shah, Ronak; Mandge, Deepak; Parmar, Rajvi; Rao, S.L.

    2016-01-01

    Highlights: • A dedicated full scale ITER prototype Local Control Unit for ITER-India Gyrotron test facility. • National Instruments® make PXIe system for real time control & data acquisition and Siemens® PLC for sequence control function. • Hardwired FPGA based fast protection interlock system. • High speed analog fiber optical transmission link using V/F and F/V technique. • Software framework based on LabVIEW™ platform and ITER CODAC Core System. - Abstract: Electron Cyclotron system on ITER, is one of the important RF ancillary systems based on high power Gyrotron RF sources, that is used for plasma heating and current drive applications. To operate a Gyrotron source, various auxiliary systems and services such as Super Conducting Magnet set, High Voltage Power Supplies, Auxiliary Power Supplies, Waveguide components, Cooling water system and a Local Control Unit (LCU) are required. The LCU plays a very crucial role for the safe and reliable operation of Gyrotron system. A dedicated full scale ITER prototype LCU is being developed for testing and commissioning of an ITER like Test Gyrotron at ITER-India Gyrotron Test facility (IIGTF). The main functions of LCU include Sequence Control, Local Interlock Protection and Real Time Data Acquisition. PLC based slow controller is used for implementing the Sequence Control & Slow Interlock functions. Critical Protection Interlocks are required to have a response time of <10 μs and are implemented using custom built hardware and PXIe based fast controller. Also PXIe system is used for implementing Real Time Data Acquisition function that is required to have slow and fast acquisition with online visualization and off line analysis facility. A Signal Conditioning Unit (SCU) is used to interface and faithfully transmit the field signals to the remote control systems. Necessary controller hardware is procured and several pre-prototype developments have been taken up to establish the critical subsystems such as

  15. A 65mW,0.4-2.3 GHz bandpass filter for satellite receivers

    NARCIS (Netherlands)

    Tang, van der J.D.; Kasperkovitz, D.; Bretveld, A.

    2002-01-01

    A monolithic tunable bandpass filter for satellite receiver front-ends is presented. The nter frequency of the bandpass filter can be tuned from 0.4 GHz to 2.3 GHz. The filter is constructed using four transconductor-C poly-phase filter sections and has a 50 dB variable gain range. At 20 dB

  16. Recent results on electron cyclotron current drive and MHD activity in RTP

    NARCIS (Netherlands)

    Donne, A.J.H.; Schuller, F.C.; Oomens, A.A.M.; de Baar, M.R.; Barth, C.J.; Beurskens, M.N.A.; Box, F.M.A.; van Gelder, J.F.M.; Grobben, B.J.J.; Groot, de B.; Herranz, J.M.; Hogeweij, G.M.D.; Hokin, S.A.; Howard, J.; Hugenholtz, C.A.J.; Karelse, F.A.; de Kloe, J.; Kruijt, O.G.; Kuyvenhoven, S.; Lok, J.; Cardozo, N.J.L.; van der Meiden, H.J.; Meijer, F.G.; Montvai, A.; Oyevaar, T.; Pijper, F.J.; Polman, R.W.; Rommers, J.H.; Salzedas, F.; Schokker, B.C.; Smeets, P.H.M.; Tanzi, C.P.; Tito, C.J.; Verhaag, G.C.H.M.; Westerhof, E.

    1997-01-01

    The RTP tokamak (R = 0.72 m, a = 0.164 m, B-phi < 2 5.T, I-p = < 150 kA) is equipped with three gyrotrons (2 x 60 GHz, 180 kW, 100 ms each; 1 x 110 GHz, 500 kW, 200 ms) for electron cyclotron heating (ECH) and current drive (ECCD). The power from one of the 60 GHz gyrotrons is launched via an

  17. Soviet Development of Gyrotrons

    Science.gov (United States)

    1986-05-01

    Relationship Type of Device Remarks V, - Vc, anomalous Doppler Capable of 100 percent efficiency, CRM but more cumbersome than Cheren- kov devices V...authors; and discusses inlividual Soviet reseaLc- groups, the basic organizational units responAiLle for the CRM and gyrotron research and development. The...maintained a cCnEistEnt iecord of significant achievements; it has managed to overcome the systenic yeaxness of the Soviet R&C systeg in teimg atle to

  18. Status of the new multi-frequency ECRH system for ASDEX Upgrade

    DEFF Research Database (Denmark)

    Wagner, D.; Grünwald, G.; Leuterer, F.

    2008-01-01

    Currently, a new multi-frequency ECRH system is under construction at the ASDEX Upgrade tokamak experiment. This system employs, for the first time in a fusion device, multi-frequency gyrotrons, step-tunable in the range 105-140 GHz. The first two gyrotrons, working at 105 and 140 GHz, were...

  19. Short-duration exposure to 2.45 GHz microwave radiation induces ...

    African Journals Online (AJOL)

    OBEMBE

    The genotoxic effects of 2.45 GHz microwave (MW) radiation on the testis ... electromagnetic radiation present in the environment and ..... intrinsic (quantum) energy is too low to dislodge an .... wave on brain enzymes of developing rat brain.

  20. Analytic theory of the gyrotron

    International Nuclear Information System (INIS)

    Lentini, P.J.

    1989-06-01

    An analytic theory is derived for a gyrotron operating in the linear gain regime. The gyrotron is a coherent source of microwave and millimeter wave radiation based on an electron beam emitting at cyclotron resonance Ω in a strong, uniform magnetic field. Relativistic equations of motion and first order perturbation theory are used. Results are obtained in both laboratory and normalized variables. An expression for cavity threshold gain is derived in the linear regime. An analytic expression for the electron phase angle in momentum space shows that the effect of the RF field is to form bunches that are equal to the unperturbed transit phase plus a correction term which varies as the sine of the input phase angle. The expression for the phase angle is plotted and bunching effects in and out of phase (0 and -π) with respect to the RF field are evident for detunings leading to gain and absorption, respectively. For exact resonance, field frequency ω = Ω, a bunch also forms at a phase of -π/2. This beam yields the same energy exchange with the RF field as an unbunched, (nonrelativistic) beam. 6 refs., 10 figs

  1. Arbitrary waveform modulated pulse EPR at 200 GHz

    Science.gov (United States)

    Kaminker, Ilia; Barnes, Ryan; Han, Songi

    2017-06-01

    We report here on the implementation of arbitrary waveform generation (AWG) capabilities at ∼200 GHz into an Electron Paramagnetic Resonance (EPR) and Dynamic Nuclear Polarization (DNP) instrument platform operating at 7 T. This is achieved with the integration of a 1 GHz, 2 channel, digital to analog converter (DAC) board that enables the generation of coherent arbitrary waveforms at Ku-band frequencies with 1 ns resolution into an existing architecture of a solid state amplifier multiplier chain (AMC). This allows for the generation of arbitrary phase- and amplitude-modulated waveforms at 200 GHz with >150 mW power. We find that the non-linearity of the AMC poses significant difficulties in generating amplitude-modulated pulses at 200 GHz. We demonstrate that in the power-limited regime of ω1 10 MHz) spin manipulation in incoherent (inversion), as well as coherent (echo formation) experiments. Highlights include the improvement by one order of magnitude in inversion bandwidth compared to that of conventional rectangular pulses, as well as a factor of two in improvement in the refocused echo intensity at 200 GHz.

  2. High Power Microwave Emission of Large and Small Orbit Gyrotron Devices in Rectangular Interaction Structures

    Science.gov (United States)

    Hochman, J. M.; Gilgenbach, R. M.; Jaynes, R. L.; Rintamaki, J. I.; Luginsland, J. W.; Lau, Y. Y.; Spencer, T. A.

    1996-11-01

    Experiments utilize large and small orbit e-beam gyrotron devices in a rectangular-cross-section (RCS) gyrotron. This device is being explored to examine polarization control. Other research issues include pulse shortening, and mode competition. MELBA generates electron beams with parameters of: -800kV, 1-10kA diode current, and 0.5-1.0 μ sec pulselengths. The small orbit gyrotron device is converted to a large orbit experiment by running MELBA's annular electron beam through a magnetic cusp. Initial experiments showed an increase in beam alpha (V_perp/V_par) of a factor of ~ 4 between small and large orbit devices. Experimental results from the RCS gyrotron will be compared for large-orbit and small-orbit electron beams. Beam transport data and frequency measurements will be presented. Computer modeling utilizing the MAGIC and E-gun codes will be shown.

  3. Construction of a 35 GHz 100 kW gyrotron; Construcao de um girotron de 35 GHz e de 100 kW

    Energy Technology Data Exchange (ETDEWEB)

    Aso, Y; Barroso, J J; Castro, P J; Correa, R A; Ludwing, G O; Montes, A; Morgado, U T.F.; Nono, M C.A.; Rossi, J O; Silva, P R

    1989-09-01

    In this work a description of a 35 GHz 100 kW gyrocon is described which is under construction at the National Space Research Institute Plasma Laboratory. Project conceptual aspects are emphasized, specifically high current density thermionic cathodes, high time and spatial resolution intense magnetic fields generation, high-vacuum systems, techniques of ceramic-metal sealing, and high-voltage electrical modulator circuits. (author). 8 refs., 9 figs., 1 tab.

  4. Quasi-optical gyrotron: present status and future prospect

    International Nuclear Information System (INIS)

    Tran, M.Q.

    1989-01-01

    A review of the main experiments on quasi-optical gyrotron is presented. Methods to improve the efficiency (pencil beam electron gun and depressed collector) will be discussed. (author) 5 figs., 1 tab., 10 refs

  5. Design of a tunable 4-MW Free Electron Maser for heating fusion plasmas

    International Nuclear Information System (INIS)

    Caplan, M.; Kamin, G.; Shang, C.C.; Lindquist, W.

    1993-09-01

    There is an ongoing program at the FOM institute, The Netherlands, to develop a 1-MW, long-pulse, 200-Ghz Free Electron Maser (FEM) using a DC accelerator system with depressed collector. We present an extrapolation of this design to more than 4MW of output microwave power in order to reduce the cost per kW and increase the power per module in a plasma heating system

  6. Design of a tunable 4-MW free electron maser for heating fusion plasmas

    International Nuclear Information System (INIS)

    Caplan, M.; Kamin, G.; Shang, C.C.; Lindquist, W.

    1993-01-01

    There is an ongoing program at the FOM institute, The Netherlands, to develop a 1 -MW, long-pulse, 200-GHz Free Electron Maser (FEM) using a DC accelerator system with depressed collector. The authors present an extrapolation of this design to more than 4 MW of output microwave power in order to reduce the cost per kW and increase the power per module in a plasma heating system

  7. High power rf amplifiers for accelerator applications: The large orbit gyrotron and the high current, space charge enhanced relativistic klystron

    International Nuclear Information System (INIS)

    Stringfield, R.M.; Fazio, M.V.; Rickel, D.G.; Kwan, T.J.T.; Peratt, A.L.; Kinross-Wright, J.; Van Haaften, F.W.; Hoeberling, R.F.; Faehl, R.; Carlsten, B.; Destler, W.W.; Warner, L.B.

    1991-01-01

    Los Alamos is investigating a number of high power microwave (HPM) sources for their potential to power advanced accelerators. Included in this investigation are the large orbit gyrotron amplifier and oscillator (LOG) and the relativistic klystron amplifier (RKA). LOG amplifier development is newly underway. Electron beam power levels of 3 GW, 70 ns duration, are planned, with anticipated conversion efficiencies into RF on the order of 20 percent. Ongoing investigations on this device include experimental improvement of the electron beam optics (to allow injection of a suitable fraction of the electron beam born in the gun into the amplifier structure), and computational studies of resonator design and RF extraction. Recent RKA studies have operated at electron beam powers into the device of 1.35 GW in microsecond duration pulses. The device has yielded modulated electron beam power approaching 300 MW using 3-5 kW of RF input drive. RF powers extracted into waveguide have been up to 70 MW, suggesting that more power is available from the device than has been converted to-date in the extractor

  8. Simulation of Non-Uniform Electron Beams in the Gyrotron Electron-Optical System

    Science.gov (United States)

    Louksha, O. I.; Trofimov, P. A.

    2018-04-01

    New calculated data on the effect of emission inhomogeneities on the quality of the electron beam, which is formed in an electron-optical system of a gyrotron, have been obtained. The calculations were based on emission current density distributions, which were measured for the different cathodes in the gyrotron of Peter the Great St. Petersburg Polytechnic University. A satisfactory agreement between the experimental and calculated data on the influence of emission nonuniformities on the velocity spread of electrons has been shown. The necessity of considering the real distribution of the emission current density over the cathode surface to determine the main parameters of the electron beam—the velocity and energy spreads of the electrons, spatial structure of the beam, and coefficient of reflection of electrons from the magnetic mirror—has been demonstrated. The maximum level of emission inhomogeneities, which are permissible for effective work of gyrotrons, has been discussed.

  9. Suppression and nonlinear excitation of parasitic modes in second harmonic gyrotrons operating in a very high order mode

    International Nuclear Information System (INIS)

    Nusinovich, Gregory S.; Pu, Ruifeng; Granatstein, Victor L.

    2015-01-01

    In recent years, there was an active development of high-power, sub-terahertz (sub-THz) gyrotrons for numerous applications. For example, a 0.67 THz gyrotron delivering more than 200 kW with about 20% efficiency was developed. This record high efficiency was achieved because the gyrotron operated in a high-order TE 31,8 -mode with the power of ohmic losses less than 10% of the power of outgoing radiation. That gyrotron operated at the fundamental cyclotron resonance, and a high magnetic field of about 27 T was created by a pulse solenoid. For numerous applications, it is beneficial to use gyrotrons at cyclotron harmonics which can operate in available cryomagnets with fields not exceeding 15 T. However, typically, the gyrotron operation at harmonics faces severe competition from parasitic modes at the fundamental resonance. In the present paper, we consider a similar 0.67 THz gyrotron designed for operation in the same TE 31,8 -mode, but at the second harmonic. We focus on two nonlinear effects typical for interaction between the fundamental and second harmonic modes, viz., the mode suppression and the nonlinear excitation of the mode at the fundamental harmonic by the second harmonic oscillations. Our study includes both the analytical theory and numerical simulations performed with the self-consistent code MAGY. The simulations show that stable second harmonic operation in the TE 31,8 mode is possible with only modest sacrifice of efficiency and power

  10. Towards the optimization of the thermal–hydraulic performance of gyrotron collectors

    Energy Technology Data Exchange (ETDEWEB)

    Savoldi, Laura; Bertani, Cristina [Dipartimento Energia, Politecnico di Torino, 10129 Torino (Italy); Cau, Francesca; Cismondi, Fabio [F4E, Barcelona (Spain); Gantenbein, Gerd; Illy, Stefan [Karlsruhe Institute of Technology (KIT), Institute for Pulsed Power and Microwave Technology (IHM), Kaiserstr. 12, 76131 Karlsruhe (Germany); Monni, Grazia [Dipartimento Energia, Politecnico di Torino, 10129 Torino (Italy); Rozier, Yoann [Thales Electron Devices, 78141 Vélizy-Villacoublay (France); Zanino, Roberto, E-mail: roberto.zanino@polito.it [Dipartimento Energia, Politecnico di Torino, 10129 Torino (Italy)

    2015-11-15

    Different configurations of water-cooled Cu collector for gyrotrons are investigated using the StarCCM + CFD code, aimed at optimizing its thermal–hydraulic (TH) performance. Although the current collectors show a good performance, the collector can be subjected to transient heat loads, due to the spent electron beam, of up to several tens of MW/m{sup 2}, and there is an interest to increase the gyrotron output power in the future. Furthermore, an optimized cooling will lead to improved reliability and lifetime of the collector. Starting from a hypervapotron (HV)-like collector, characterized by 100+ deep rectangular cavities with aspect ratio (AR) = 3, we present in the first part of the paper a single-cavity steady-state parametric analysis of the effect of AR on the heat exhaust capabilities. The investigation is then extended to other collector designs, including circumferential ribs and dimples, in order to assess the options for further improvements of the TH performance. The peak Cu temperature is computed by the code and its minimization is the target of the present optimization exercise. A self-consistent estimate of the heat transfer coefficient between collector and coolant is also obtained, which could be useful for fatigue and lifetime assessments. In the second part of the paper the most promising collector geometries identified in the first part are analyzed in the case of a transient heat load (vertical sweeping), first at the level of a single spatial period of the collector structure, then at the full-collector level. The results of the TH transient analysis are compared with both the results of the first part and with the transient purely thermal analysis of the full collector, showing for all geometries considered in this study a room for cooling efficiency improvement with respect to the HV-like design with AR = 3, at least in the operating conditions considered for this study (V ∼ 4 m/s, almost 100 °C sub-cooling).

  11. A CMOS frequency generation module for 60-GHz applications

    International Nuclear Information System (INIS)

    Zhou Chunyuan; Zhang Lei; Wang Hongrui; Qian He

    2012-01-01

    A frequency generation module for 60-GHz transceivers and phased array systems is presented in this paper. It is composed of a divide-by-2 current mode logic divider (CML) and a doubler in push-push configuration. Benefiting from the CML structure and push-push configuration, the proposed frequency generation module has a wide operating frequency range to cover process, voltage, and temperature variation. It is implemented in a 90-nm CMOS process, and occupies a chip area of 0.64 × 0.65 mm 2 including pads. The measurement results show that the designed frequency generation module functions properly with input frequency over 15 GHz to 25 GHz. The whole chip dissipates 12.1 mW from a 1.2-V supply excluding the output buffers. (semiconductor integrated circuits)

  12. Numerical optimization of quasi-optical mode converter for frequency step-tunable gyrotron

    International Nuclear Information System (INIS)

    Drumm, O.

    2002-08-01

    This work concentrates on the design of a quasi-optical mode converter for a frequency step-tunable gyrotron. Special attention is paid to the optimization of the conversion and forming of the exited wave of different frequencies inside the resonator. The investigations were part of the HGF-strategy-fonds-project ''Optimization of Tokamak Operation with controlled ECRH-Deposition''. In the resonator of the gyrotron modes can be exited at frequencies between 105 and 140 GHz. With the designed converter the desired field distribution at the output window for all frequencies will be approximately obtained. The newly gained knowledge and invented synthesis methods are applied to this practical example and verified. In this work, the waveguide antenna and the mirror system of the quasi-optical mode converter are presented separately from each other. At the beginning the synthesis of the aperture antenna for a frequency step-tunable design of the Vlasov-type as well as the Denisov-type is considered. As a conclusion of the investigation, the important parameters for the design of all antennas are summarized and the frequency behavior is compared. In the second part of this work new broadband design methods for the synthesis of the mirror surface are presented. These mirrors make an optimal wave forming for all frequencies equally possible. Therefore new quality criteria are introduced for the broadband evaluation of the mirror. Afterwards the surface is varied until the criteria reach an optimum. For the numerical optimization, in this work the gradient method and the extended Katsenelenbaum-Semenov algorithm are invented and applied. The efficient realization of the described algorithms on a computer is the significant point. The theoretical background of the presented methods for the synthesis of a mirror system is based on the general solution of the Helmholtz equation. Due to this, these methods can be utilized in other fields outside the microwave applications in

  13. ITER Plasma at Electron Cyclotron Frequency Domain: Stimulated Raman Scattering off Gould-Trivelpiece Modes and Generation of Suprathermal Electrons and Energetic Ions

    Science.gov (United States)

    Stefan, V. Alexander

    2011-04-01

    Stimulated Raman scattering in the electron cyclotron frequency range of the X-Mode and O-Mode driver with the ITER plasma leads to the ``tail heating'' via the generation of suprathermal electrons and energetic ions. The scattering off Trivelpiece-Gould (T-G) modes is studied for the gyrotron frequency of 170GHz; X-Mode and O-Mode power of 24 MW CW; on-axis B-field of 10T. The synergy between the two-plasmon decay and Raman scattering is analyzed in reference to the bulk plasma heating. Supported in part by Nikola TESLA Labs, La Jolla, CA

  14. Prototyping high-gradient mm-wave accelerating structures

    International Nuclear Information System (INIS)

    Nanni, Emilio A.; Dolgashev, Valery A.; Haase, Andrew; Neilson, Jeffrey; Tantawi, Sami

    2017-01-01

    We present single-cell accelerating structures designed for high-gradient testing at 110 GHz. The purpose of this work is to study the basic physics of ultrahigh vacuum RF breakdown in high-gradient RF accelerators. The accelerating structures are π-mode standing-wave cavities fed with a TM 01 circular waveguide. The structures are fabricated using precision milling out of two metal blocks, and the blocks are joined with diffusion bonding and brazing. The impact of fabrication and joining techniques on the cell geometry and RF performance will be discussed. First prototypes had a measured Q 0 of 2800, approaching the theoretical design value of 3300. The geometry of these accelerating structures are as close as practical to singlecell standing-wave X-band accelerating structures more than 40 of which were tested at SLAC. This wealth of X-band data will serve as a baseline for these 110 GHz tests. Furthermore, the structures will be powered with short pulses from a MW gyrotron oscillator. RF power of 1 MW may allow an accelerating gradient of 400 MeV/m to be reached.

  15. Korea Superconducting tokamak advanced research project - Development of heating system

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Byung Ho [Korea Atomic Energy Research Institute, Taejon (Korea)

    1998-10-01

    The heating and current drive systems for KSTAR based on multiple technologies (neutral beam, ion cyclotron, lower hybrid and electron cyclotron) have been designed to provide heating and current drive capabilities as well as flexibility in the control of current density and pressure profiles needed to meet the mission and research objectives of the machine. They are designed to operate for long-pulse lengths of up to 300 s. The NBI system initially delivers 8 MW of neutral beam power to the plasma from one co-directed beam line and shall be upgraded to provide 20 MW of neutral beam power with two co-directed beam lines plus one counter-directed beam line. It will be capable of being reconfigured such that the source arrangement is changed from horizontal to vertical stacking, with 6 MW beam power to the plasmas per beam line, in order to facilitate profile control. The RF system initially delivers 6 MW of rf power to the plasma, using a single four-strap antenna mounted in a midplane port. The system will be upgraded to proved 12 MW of rf power through 2 adjacent ports. In the first phase, we completed the basic design of RF system and the system have the capabilities to be operationable for pulse length up to 300 sec and in the 25-60 MHz frequency range. Lower hybrid system initially provides 1.5 MW LH rf power to the plasma at 3.7 GHz through a horizontal port, which has a capability to be operated for pulse length up to 300 sec, and shall be upgraded to provide 4.5 MW of LH rf power to the plasma. In the first phase, we completed the basic design of LHCD system which incorporate the TPX-type launcher and independently phase-changeable transmission system for the fully phased coupler. The ECH system will deliver up to 0.5 MW of power to the plasma for up to 0.5 sec. In the first phase, we completed the basic design of ECH system which includes an 84 GHz gyrotron system, a transmission system, and a launcher. The basic design of the low loss transmission system

  16. Short-duration exposure to 2.45 GHz microwave radiation induces ...

    African Journals Online (AJOL)

    ... disorganization in the testis of exposed group with increasing SARs. These results suggest that MW radiation has the potential to affect both male and female fertility adversely. Keywords: 2.45 GHz microwave radiation, histopathology, DNA single strand break, ovary, testis. African Journal of Biotechnology Vol. 12(2), pp.

  17. PXIe based data acquisition and control system for ECRH systems on SST-1 and Aditya tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Jatinkumar J., E-mail: jatin@ipr.res.in [Institute for Plasma Research, Bhat, Gandhinagar (India); Shukla, B.K.; Rajanbabu, N.; Patel, H.; Dhorajiya, P.; Purohit, D. [Institute for Plasma Research, Bhat, Gandhinagar (India); Mankadiya, K. [Optimized Solutions Pvt. Ltd (India)

    2016-11-15

    Highlights: • Data Aquisition and control system (DAQ). • PXIe hardware–(PXI–PCI bus extension for Instrumention Express). • RHVPS–Regulated High Voltage Power supply. • SST1–Steady state superconducting tokamak. - Abstract: In Steady State Superconducting (SST-1) tokamak, various RF heating sub-systems are used for plasma heating experiments. In SST-1, Two Electron Cyclotron Resonance Heating (ECRH) systems have been installed for pre-ionization, heating and current drive experiments. The 42 GHz gyrotron based ECRH system is installed and in operation with SST-1 plasma experiments. The 82.6 GHz gyrotron delivers 200 kW CW power (1000 s) while the 42 GHz gyrotron delivers 500 kW power for 500 ms duration. Each gyrotron system consists of various auxiliary power supplies, the crowbar unit and the water cooling system. The PXIe (PCI bus extension for Instrumentation Express)bus based DAC (Data Acquisition and Control) system has been designed, developed and under implementation for safe and reliable operation of the gyrotron. The Control and Monitoring Software applications have been developed using NI LabView 2014 software with real time support on windows platform.

  18. PXIe based data acquisition and control system for ECRH systems on SST-1 and Aditya tokamak

    International Nuclear Information System (INIS)

    Patel, Jatinkumar J.; Shukla, B.K.; Rajanbabu, N.; Patel, H.; Dhorajiya, P.; Purohit, D.; Mankadiya, K.

    2016-01-01

    Highlights: • Data Aquisition and control system (DAQ). • PXIe hardware–(PXI–PCI bus extension for Instrumention Express). • RHVPS–Regulated High Voltage Power supply. • SST1–Steady state superconducting tokamak. - Abstract: In Steady State Superconducting (SST-1) tokamak, various RF heating sub-systems are used for plasma heating experiments. In SST-1, Two Electron Cyclotron Resonance Heating (ECRH) systems have been installed for pre-ionization, heating and current drive experiments. The 42 GHz gyrotron based ECRH system is installed and in operation with SST-1 plasma experiments. The 82.6 GHz gyrotron delivers 200 kW CW power (1000 s) while the 42 GHz gyrotron delivers 500 kW power for 500 ms duration. Each gyrotron system consists of various auxiliary power supplies, the crowbar unit and the water cooling system. The PXIe (PCI bus extension for Instrumentation Express)bus based DAC (Data Acquisition and Control) system has been designed, developed and under implementation for safe and reliable operation of the gyrotron. The Control and Monitoring Software applications have been developed using NI LabView 2014 software with real time support on windows platform.

  19. A high-power millimeter wave driven steam gun for pellet injectors

    International Nuclear Information System (INIS)

    Itoh, Yasuyuki

    1997-01-01

    A concept of steam gun is proposed for using in two-stage pneumatic hydrogen isotope pellet injectors. The steam gun is driven by megawatt-level high-power millimeter waves (∼100 GHz) supplied by gyrotrons. A small amount of water is injected into its pump tube. The water is instantaneously heated by the millimeter waves and vaporized. Generated high-pressure steam accelerates a piston for compressing light gas to drive a frozen pellet. Discussions in this paper concentrate on the piston acceleration. Results show that 1 MW millimeter waves accelerate the 25 g piston to velocities of ∼200 m/s in a 1 m-long pump tube. The piston acceleration characteristics are not improved in comparison to light gas guns with first valves. The steam gun concept, however, avoids the use of a large amount of high-pressure gas for piston accelerations. In future fusion reactors, gyrotrons used during preionization and start-up phase would be available for producing required millimeter waves. (author)

  20. Design and testing of data analysis tool for ECRH systems in labview

    International Nuclear Information System (INIS)

    Patel, Jatinkumar; Patel, H.; Purohit, D.; Rajanbabu, N.; Mistry, H.; Shukla, B.K.

    2017-01-01

    Electron Cyclotron Resonance Heating (ECRH) is one of the essential RF heating sub systems used for pre-ionization and current drive experiments in SST1. In SST-1, Gyrotron based two ECRH systems are installed. 42 GHz gyrotron system capable of delivering 500kW RF power for 500ms and the 82.6 GHz gyrotron capable of delivering 200kW continuously for 1000 second. VME based Data acquisition and control (DAC) system is installed with the gyrotron systems and is under operation with SST-1. This paper explains the basic features of PXI DAC and the data analysis tool designed in labview 2014 and the problems faced during design and testing of different lengths of data plot. It has various features of plotting data in different categories i.e. plotting of fast acquisition signals data to decide the sequence of gyrotron interlocks happened during the gyrotron operations, conversion of main binary file into 32 .text files and all the 32 analog signals data plot in a single plot, auto update of selected important signals plot at the end of the shot

  1. MAGY: An innovative high voltage-low current power supply for gyrotron

    International Nuclear Information System (INIS)

    Siravo, Ugo; Alex, Juergen; Bader, Michael; Carpita, Mauro; Fasel, Damien; Gavin, Serge; Perez, Albert

    2011-01-01

    From the electrical point of view, the body and the anode of high power gyrotrons behave as capacitive loads. A highly dynamic power supply is, therefore, hard to achieve. The MAGY concept (Modulator for the Anode of a triode type GYrotron) embodies an innovative solution to manage the capacitive current ensuring a very low ripple on the output voltage. It consists of a series of independent, bi-directional and regulated DC sources. Compared to existing topologies, this solution requires a smaller number of power modules. It avoids internal high frequency modulation and simultaneously offers high resolution of the output voltage and a wide range of operating scenarios.

  2. Development and contribution of rf heating and current drive systems to long pulse, high performance experiments in JT-60U

    International Nuclear Information System (INIS)

    Moriyama, Shinichi; Seki, Masami; Terakado, Masayuki; Shimono, Mitsugu; Ide, Shunsuke; Isayama, Akihiko; Suzuki, Takahiro; Fujii, Tsuneyuki

    2005-01-01

    To contribute to high performance long pulse (∼65 s) experiments in JT-60U, the target of the electron cyclotron (EC) operation in long pulse is 0.6 MW for 30 s with four gyrotrons, though 10 MJ (2.8 MW and 3.6 s) was achieved in high power operation before 2003. One of the critical issues for the long pulse operation is detuning due to decay in beam current of the gyrotron. This decay comes from the cathode cooling by continuous electron emission. As a countermeasure for this issue, active adjustments for the heater current and anode voltage during the pulse have successfully extended the duration of a good oscillation condition for the gyrotron. As a result, 0.4 MW for 16 s with one gyrotron to the dummy load and for 8.7 s to the plasma have been achieved up to now

  3. Development of 24GHz Rectenna for Receiving and Rectifying Modulated Waves

    International Nuclear Information System (INIS)

    Shinohara, Naoki; Hatano, Ken

    2014-01-01

    In this paper, we show experimental results of RF-DC conversion with modulated 24GHz waves. We have already developed class-F MMIC rectenna with resonators for higher harmonics at no modulated 24GHz microwave for RF energy transfer. Dimensions of the MMIC rectifying circuit is 1 mm × 3 mm on GaAs. Maximum RF-DC conversion efficiency is measured 47.9% for a 210 mW microwave input of 24 GHz with a 120 Ω load. The class-F rectenna is based on a single shunt full-wave rectifier. For future application of a simultaneous energy and information transfer system or an energy harvesting from broadcasting waves, input microwave will be modulated. In this paper, we show an experimental result of RF-DC conversion of the class-F rectenna with 24GHz waves modulated by 16QAM as 1st modulation and OFDM as 2nd modulation

  4. Development of 24GHz Rectenna for Receiving and Rectifying Modulated Waves

    Science.gov (United States)

    Shinohara, Naoki; Hatano, Ken

    2014-11-01

    In this paper, we show experimental results of RF-DC conversion with modulated 24GHz waves. We have already developed class-F MMIC rectenna with resonators for higher harmonics at no modulated 24GHz microwave for RF energy transfer. Dimensions of the MMIC rectifying circuit is 1 mm × 3 mm on GaAs. Maximum RF-DC conversion efficiency is measured 47.9% for a 210 mW microwave input of 24 GHz with a 120 Ω load. The class-F rectenna is based on a single shunt full-wave rectifier. For future application of a simultaneous energy and information transfer system or an energy harvesting from broadcasting waves, input microwave will be modulated. In this paper, we show an experimental result of RF-DC conversion of the class-F rectenna with 24GHz waves modulated by 16QAM as 1st modulation and OFDM as 2nd modulation.

  5. High-harmonic relativistic gyrotron as an alternative to FEL

    Energy Technology Data Exchange (ETDEWEB)

    Bratman, V L; Kalynov, Yu K; Kolganov, N G; Manuilov, V N; Ofitserov, M M; Samsonov, S V; Volkov, A B [Russian Academy of Sciences, Nizhny Novgorod (Russian Federation). Inst. of Applid Physics

    1997-12-31

    A submillimeter wave gyrotron operating at moderately relativistic electron energies of 200-300 keV is proposed as a simple alternative to FEL. It is shown that high pulsed magnetic fields of 20-30 T and selective excitation of separate modes for resonances up to the 5-7 th harmonics will make it possible to obtain in a single device the coherent radiation with broadband frequency step tuning within the whole submillimeter wavelength range. At large pitch angles the coupling of the electron beam with cavity modes at higher harmonics should be as strong as at the fundamental one. In order to check the theoretical predictions, two gyrotrons were designed: LOG-1 (250 kV, 10 A, 10 ms) with a thermionic emission cathode and LOG-2 (350 kV, 35 A, 20 ns) with an explosive emission cathode. (J.U.). 7 refs.

  6. Development of new generation software tools for simulation of electron beam formation in novel high power gyrotrons

    Science.gov (United States)

    Sabchevski, S.; Zhelyazkov, I.; Benova, E.; Atanassov, V.; Dankov, P.; Thumm, M.; Dammertz, G.; Piosczyk, B.; Illy, S.; Tran, M. Q.; Alberti, S.; Hogge, J.-Ph

    2006-07-01

    Computer aided design (CAD) based on numerical experiments performed by using adequate physical models and efficient simulation codes is an indispensable tool for development, investigation, and optimization of gyrotrons used as radiation sources for electron cyclotron resonance heating (ECRH) of fusion plasmas. In this paper, we review briefly the state-of-the-art in the field of modelling and simulation of intense, relativistic, helical electron beams formed in the electron-optical systems (EOS) of powerful gyrotrons. We discuss both the limitations of the known computer codes and the requirements for increasing their capabilities for solution of various design problems that are being envisaged in the development of the next generation gyrotrons for ECRH. Moreover, we present the concept followed by us in an attempt to unite the advantages of the modern programming techniques with self-consistent, first-principles 3D physical models in the creation of a new highly efficient and versatile software package for simulation of powerful gyrotrons.

  7. 10 GHz frequency comb spectral broadening in AlGaAs-on-Insulator nano-waveguide with ultra-low pump power

    DEFF Research Database (Denmark)

    Hu, Hao; Pu, Minhao; Yvind, Kresten

    2017-01-01

    We experimentally demonstrated 10 GHz frequency comb spectral broadening with a 30-dB bandwidth of 238 nm in an 11-mm long AlGaAsOI nano-waveguide. The 10-GHz 230-fs pump pulse has an average power of only 12 mW.......We experimentally demonstrated 10 GHz frequency comb spectral broadening with a 30-dB bandwidth of 238 nm in an 11-mm long AlGaAsOI nano-waveguide. The 10-GHz 230-fs pump pulse has an average power of only 12 mW....

  8. Plans for improvements to the ATF ECH system

    International Nuclear Information System (INIS)

    Bigelow, T.S.; Goldfinger, R.C.; Murakami, M.; Schaich, C.R.; Wilgen, J.B.

    1993-01-01

    The Advanced Toroidal Facility (ATF) stellarator experiment at Oak Ridge National Laboratory (ORNL) uses electron cyclotron waves for plasma formation and heating. Although the existing systems are quite reliable and produce acceptable plasmas, a few deficiencies should be corrected. Therefore, several possible upgrades to the electron cyclotron heating (ECH) systems have been planned. Some of the desirable changes are (1) improving the launcher to make power deposition in the plasma more centralized, (2) improving the gyrotron power waveform monitoring diagnostics, (3) building a high-field launch system for higher density operation at 53-GHz (4) building a separate transmission line for the 35-GHz gyrotron, and (5) installing a higher frequency, higher power (84- or 110-GHz) gyrotron system for improved plasma density and temperature capability. This paper discusses options for these improvements and conceptual designs. (orig.)

  9. Modification of the Heating Position Using a Moveable Mirror in the TJ-II ECRH System

    International Nuclear Information System (INIS)

    Cappa, A.; Tribaldos, V.; Likin, K.; Fernandez, A.; Martin, R.

    1999-01-01

    During the first stages of operation, start-up and heating of plasmas in TJ-II stellarator are being produced by EC waves. These are launched by two 1/2-MW type gyrotrons at 53.2 GHz and transmitted to the plasma by two quasi-optical transmission lines located at two symmetrical stellarator positions. The last mirror of both lines, placed inside the vacuum vessel, is a moveable mirror allowing for changes in the final direction of the microwave beam and therefore in the heating position. This report is devoted to the calculations describing the movement of this mirror and its influence in the position of the reflected beam. (Author)

  10. System constitution of plasma high frequency heating device and element equipment

    International Nuclear Information System (INIS)

    Nagashima, Takashi

    1988-01-01

    On the high frequency heating device used for nuclear fusion experiment, the system constitution and the main items of development for the element equipment are described. As for the high frequency heating device, large technical progress was observed in the past 10 years as the second stage heating for tokamaks and one of the main means of current drive. At present, three frequency zones are regarded as promising for plasma high frequency heating in large nuclear fusion devices, and the experiment of 10 MW class is in progress at JT-60, JET and so on. There are electron cyclotron heating, lower hybrid resonance frequency heating and ion cyclotron range of frquency heating. The basic constitution of these heating devices includes a high frequency source, a transmission system, a connection system, and a common system for control, cooling, record and others. The ECH device using gyrotrons of several tens GHz, the LHRF heating device using large power klystrons up to several GHz and the ICRF heating device up to 200 MHz are briefly explained. The main element equipments composing the high frequency heating systems of several tens MW are discussed. (Kako, I.)

  11. Current status of ITER EC design

    International Nuclear Information System (INIS)

    Bosia, G.

    2003-01-01

    The ITER-FEAT Electron Cyclotron System employs one equatorial launcher and three upper port launchers to inject 20 + 20 MW of mm-wave power at 170 GHz through slots in the plasma-facing neutron and radiation shield. The equatorial launcher includes 3 sets of toroidally steer-able mirrors, each collecting 8 RF beams from 24 circular cross-section corrugated wave-guides. In the upper-port launcher, eight beams, reflected in pairs by four toroidally angled (∼30 angle) and poloidally steer-able (∼ 10 angle) mirrors focus of the RF power on the plasma m = 2 and m = 3/2 plasma flux rational surfaces, for neo-classical tearing mode(s) (NTM) control. Conceptual studies of remote steering that would possibly allow removing the beam- steering equipment from the vacuum vessel and locating them in more protected positions have been carried out. All EC wave transmission is based on low losses circular cross section corrugated and evacuated wave guides each connected to a 170 GHz, 1 MW CW Gyrotron tube oscillator featuring an overall efficiency of ∼ 50%, obtained by depressed-collector energy recovery. In the paper, requirements, issues and the current status of the design is reviewed. (authors)

  12. A compact high-gradient 25 MeV 17 GHz RF linac for free-electron laser research

    International Nuclear Information System (INIS)

    Danly, B.G.; Chen, S.C.; Kreischer, K.E.

    1995-01-01

    A new compact high-gradient (60 MeV/m) high-frequency (17.136 GHz) RF linac is presently under construction by Haimson Research Corp. (HRC) for installation at the MIT Plasma Fusion Center in the High-Gradient Accelerator and High Power Microwave Laboratory. This accelerator will utilize an existing traveling-wave relativistic klystron (TWRK) which is now operation at MIT with 25 MW power, 67 dB gain, and 52% efficiency at 17.136 GHz

  13. Frequency-agile gyrotron for electron decoupling and pulsed dynamic nuclear polarization

    Science.gov (United States)

    Scott, Faith J.; Saliba, Edward P.; Albert, Brice J.; Alaniva, Nicholas; Sesti, Erika L.; Gao, Chukun; Golota, Natalie C.; Choi, Eric J.; Jagtap, Anil P.; Wittmann, Johannes J.; Eckardt, Michael; Harneit, Wolfgang; Corzilius, Björn; Th. Sigurdsson, Snorri; Barnes, Alexander B.

    2018-04-01

    We describe a frequency-agile gyrotron which can generate frequency-chirped microwave pulses. An arbitrary waveform generator (AWG) within the NMR spectrometer controls the microwave frequency, enabling synchronized pulsed control of both electron and nuclear spins. We demonstrate that the acceleration of emitted electrons, and thus the microwave frequency, can be quickly changed by varying the anode voltage. This strategy results in much faster frequency response than can be achieved by changing the potential of the electron emitter, and does not require a custom triode electron gun. The gyrotron frequency can be swept with a rate of 20 MHz/μs over a 670 MHz bandwidth in a static magnetic field. We have already implemented time-domain electron decoupling with dynamic nuclear polarization (DNP) magic angle spinning (MAS) with this device. In this contribution, we show frequency-swept DNP enhancement profiles recorded without changing the NMR magnet or probe. The profile of endofullerenes exhibits a DNP profile with a <10 MHz linewidth, indicating that the device also has sufficient frequency stability, and therefore phase stability, to implement pulsed DNP mechanisms such as the frequency-swept solid effect. We describe schematics of the mechanical and vacuum construction of the device which includes a novel flanged sapphire window assembly. Finally, we discuss how commercially available continuous-wave gyrotrons can potentially be converted into similar frequency-agile high-power microwave sources.

  14. Design of a Wideband 900 GHz Balanced Frequency Tripler for Radioastronomy

    Science.gov (United States)

    Tripon-Canseliet, Charlotte; Maestrini, Alain; Mehdi, Imran

    2004-01-01

    We report on the design of a fix-tuned split-block waveguide balanced frequency tripler working nominally at 900GHz. It uses a GaAs Schottky planar diode pair in a balanced configuration. The circuit will be fabricated with JPL membrane technology in order to minimize dielectric loading. The multiplier is bias-less to dramatically ease the mounting and the operating procedure. At room temperature, the expected output power is 50- 130 (micro)W in the band 800-970 GHz when the tripler is pumped with 4mW. By modifying the waveguide input and output matching circuit, the multiplier can be tuned to operate at lower frequencies.

  15. Design and measurement of a TE{sub 13} input converter for high order mode gyrotron travelling wave amplifiers

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yan; Liu, Guo, E-mail: liuguo@uestc.edu.cn; Shu, Guoxiang; Yan, Ran; Wang, Li; Agurgo Balfour, E.; Fu, Hao; Luo, Yong [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Wang, Shafei, E-mail: rockingsandstorm@163.com [North Electronic Device Research Institution, Box 947, Beijing 100141 (China)

    2016-03-15

    A technique to launch a circular TE{sub 13} mode to interact with the helical electron beam of a gyrotron travelling wave amplifier is proposed and verified by simulation and cold test in this paper. The high order (HOM) TE{sub 13} mode is excited by a broadband Y-type power divider with the aid of a cylindrical waveguide system. Using grooves and convex strips loaded at the lateral planes of the output cylindrical waveguide, the electric fields of the potential competing TE{sub 32} and TE{sub 71} modes are suppressed to allow the transmission of the dominant TE{sub 13} mode. The converter performance for different structural dimensions of grooves and convex strips is studied in detail and excellent results have been achieved. Simulation predicts that the average transmission is ∼−1.8 dB with a 3 dB bandwidth of 7.2 GHz (91.5–98.7 GHz) and port reflection is less than −15 dB. The conversion efficiency to the TE{sub 32} and TE{sub 71} modes are, respectively, under −15 dB and −24 dB in the operating frequency band. Such an HOM converter operating at W-band has been fabricated and cold tested with the radiation boundary. Measurement from the vector network analyzer cold test and microwave simulations show a good reflection performance for the converter.

  16. Non-Uniform Cathode Emission Studies of a MIG Gun

    Science.gov (United States)

    Marchewka, C. D.; Shapiro, M. A.; Sirigiri, J. R.; Temkin, R. J.

    2004-11-01

    We present the initial results of the modeling of the effect of emission non-uniformity in 96 kV, 40 A Magnetron Injection Gun (MIG) of a 1.5 MW 110 GHz gyrotron using a 3D gun simulation code. The azimuthal emission nonuniformity can lead to increased mode competition and an overall decreased efficiency of the device [1]. The electron beam is modeled from the cathode to a downstream position where the velocity spread saturates using the AMAZE 3D suite of codes. After bench marking the results of the 3D code with 2D codes such as TRAK2D and EGUN, the emitter was modified to simulate asymmetric emission from the cathode to gain an understanding into the effects of inhomogeneous beam current density on the velocity spread and pitch factor of the electron beam. [1] G. S. Nusinovich, A.N. Vlasov, M. Botton, T. M. Antonsen, Jr., S. Cauffman, K. Felch, ``Effect of the azimuthal inhomogeneity of electron emission on gyrotron operation,'' Phys. Plasmas, vol. 8, no. 7, pp. 3473-3479, 2001

  17. Experiment and operation of a LHCD-35 kV/2.8 MW/1000 s high-voltage power supply on HT-7 tokamak

    International Nuclear Information System (INIS)

    Huang Yiyun

    2002-01-01

    A-35 kV/2.8 MW/1000s high-voltage power supply (HVPS) for HT-7 superconducting tokamak has been built successfully. The HVPS is scheduled to run on a 2.45 GHz/1 MW lower hybrid current drive (LHCD) system of HT-7 superconducting tokamak before the set-up of HT-7 superconducting tokamak in 2003. The HVPS has a series of advantages such as good steady and dynamic response, logical computer program controlling the HVPS without any fault, operational panel and experimental board for data acquisition, which both are grounded distinctively in a normative way to protect the main body of HVPS along with its attached equipment from dangers. Electric power cables and other control cables are disposed reasonably, to prevent signals from magnetic interference and ensure the precision of signal transfer. The author introduced the experiment and operation of a 35 kV/2.8 MW/1000 s HVPS for 2.45 GHz/1 MW LHCD system. The reliability and feasibility of the HVPS has been demonstrated in comparison with experimental results of original design and simulation data

  18. CARM and harmonic gyro-amplifier experiments at 17 GHz

    International Nuclear Information System (INIS)

    Menninger, W.L.; Danly, B.G.; Alberti, S.; Chen, C.; Rullier, J.L.; Temkin, R.J.

    1993-01-01

    Cyclotron resonance maser amplifiers are possible sources for applications such as electron cyclotron resonance heating of fusion plasmas and driving high-gradient rf linear accelerators. For accelerator drivers, amplifiers or phase locked-oscillators are required. A 17 GHz cyclotron autoresonance maser (CARM) amplifier experiment and a 17 GHz third harmonic gyro-amplifier experiment are presently underway at the MIT Plasma Fusion Center. Using the SRL/MIT SNOMAD II introduction accelerator to provide a 380 kV, 180 A, 30 ns flat top electron beam, the gyro-amplifier experiment has produced 5 MW of rf power with over 50 dB of gain at 17 GHz. The gyro-amplifier operates in the TE 31 mode using a third harmonic interaction. Because of its high power output, the gyro-amplifier will be used as the rf source for a photocathode rf electron gun experiment also taking place at MIT. Preliminary gyro-amplifier results are presented, including measurement of rf power, gain versus interaction length, and the far-field pattern. A CARM experiment designed to operate in the TE 11 mode is also discussed

  19. A fully-differential phase-locked loop frequency synthesizer for 60-GHz wireless communication

    International Nuclear Information System (INIS)

    Kuang Lixue; Chi Baoyong; Chen Lei; Wang Zhihua; Jia Wen

    2014-01-01

    A 40-GHz phase-locked loop (PLL) frequency synthesizer for 60-GHz wireless communication applications is presented. The electrical characteristics of the passive components in the VCO and LO buffers are accurately extracted with an electromagnetic simulator HFSS. A differential tuning technique is utilized in the voltage controlled oscillator (VCO) to achieve higher common-mode noise rejection and better phase noise performance. The VCO and the divider chain are powered by a 1.0 V supply while the phase-frequency detector (PFD) and the charge pump (CP) are powered by a 2.5 V supply to improve the linearity. The measurement results show that the total frequency locking range of the frequency synthesizer is from 37 to 41 GHz, and the phase noise from a 40 GHz carrier is −97.2 dBc/Hz at 1 MHz offset. Implemented in 65 nm CMOS, the synthesizer consumes a DC power of 62 mW, including all the buffers. (semiconductor integrated circuits)

  20. A fully-differential phase-locked loop frequency synthesizer for 60-GHz wireless communication

    Science.gov (United States)

    Lixue, Kuang; Baoyong, Chi; Lei, Chen; Wen, Jia; Zhihua, Wang

    2014-12-01

    A 40-GHz phase-locked loop (PLL) frequency synthesizer for 60-GHz wireless communication applications is presented. The electrical characteristics of the passive components in the VCO and LO buffers are accurately extracted with an electromagnetic simulator HFSS. A differential tuning technique is utilized in the voltage controlled oscillator (VCO) to achieve higher common-mode noise rejection and better phase noise performance. The VCO and the divider chain are powered by a 1.0 V supply while the phase-frequency detector (PFD) and the charge pump (CP) are powered by a 2.5 V supply to improve the linearity. The measurement results show that the total frequency locking range of the frequency synthesizer is from 37 to 41 GHz, and the phase noise from a 40 GHz carrier is -97.2 dBc/Hz at 1 MHz offset. Implemented in 65 nm CMOS, the synthesizer consumes a DC power of 62 mW, including all the buffers.

  1. Multi-gigabit wireless data transfer at 60 GHz

    International Nuclear Information System (INIS)

    Soltveit, H K; Schöning, A; Wiedner, D; Brenner, R

    2012-01-01

    In this paper we describe the status of the first prototype of the 60 GHz wireless Multi-gigabit data transfer topology currently under development at University of Heidelberg using IBM 130 nm SiGe HBT BiCMOS technology. The 60 GHz band is very suitable for high data rate and short distance applications. One application can be a wireless multi Gbps radial data transmission inside the ATLAS silicon strip detector, making a first level track trigger feasible. The wireless transceiver consists of a transmitter and a receiver. The transmitter includes an On-Off Keying (OOK) modulator, a Local Oscillator (LO), a Power Amplifier (PA) and a Band-pass Filter (BPF). The receiver part is composed of a Band-pass Filter (BPF), a Low Noise Amplifier (LNA), a double balanced down-convert Gilbert mixer, a Local Oscillator (LO), then a BPF to remove the mixer introduced noise, an Intermediate Amplifier (IF), an On-Off Keying demodulator and a limiting amplifier. The first prototype would be able to handle a data-rate of about 3.5 Gbps over a link distance of 1 m. The first simulations of the LNA show that a Noise figure (NF) of 5 dB, a power gain of 21 dB at 60 GHz with a 3 dB bandwidth of more than 20 GHz with a power consumption 11 mW are achieved. Simulations of the PA show an output referred compression point P1dB of 19.7 dB at 60 GHz.

  2. The jet 10-MW lower hybrid current drive system

    International Nuclear Information System (INIS)

    Gormezano, C.; Bosia, G.; Brinkschulte, H.; David, C.; Dobbing, J.A.; Kaye, A.S.; Jacquinot, J.; Lloyd, B.; Knowlton, S.; Moreau, D.

    1987-01-01

    A Lower Hybrid system to control the plasma current profile is being prepared so that a higher central electron temperature can be obtained. The proposed system is designed to launch 10 MW of power at f = 3.7 GHz through a single port in JET, producing between 1 and 2 MA of RF driven current at an average density of 5 x 10 19 m -3 . Current drive efficiency is maximized by using a low value of the parallel wave number spectrum (N// - 1.3 - 2.3). The final launcher will be made of 48 multijunctions fed by 24 klystrons with the proper phasing. Dynamic matching of the launcher will be optimized by moving the launcher in real time during the pulse. A first stage (2 MW) is presently under construction. The full system is being designed to be in operation in 1990

  3. Final Report for 'Gyrotron Design and Evaluation using New Particle-in-Cell Capability'

    International Nuclear Information System (INIS)

    Smithe, David N.

    2008-01-01

    ITER will depend on high power CW gyrotrons to deliver power to the plasma at ECR frequencies. However, gyrotrons can suffer from undesirable low frequency oscillations (LFO's) which are known to interfere with the gun-region diagnostics and data collection, and are also expected to produce undesirable energy and velocity spread in the beam. The origins and processes leading to these oscillations are poorly understood, and existing gyrotron R and D tools, such as static gun solvers and interaction region models, are not designed to look at time-dependant oscillatory behavior. We have applied a time-domain particle-in-cell method to investigate the LFO phenomenon. Our company is at the forefront of smooth-curved-boundary treatment of the electromagnetic fields and particle emission surfaces, and such methods are necessary to simulate the adiabatically trapped and reflected electrons thought to be driving the oscillations. This approach provides the means for understanding, in microscopic detail, the underlying physical processes driving the low-frequency oscillations. In the Phase I project, an electron gun region from an existing gyrotron, known to observe LFO's, was selected as a proof-of-principle geometry, and was modeled with the curved-geometry time-domain simulation tool, in order to establish the feasibility of simulating LFO physics with this tool on office-scale, and larger, parallel cluster computers. Generally, it was found to be feasible to model the simulation geometry, emission, and magnetic features of the electron gun. Ultimately, the tool will be used to investigate the origins and life cycle within the trapped particle population. This tool also provides the foundations and validation for potential application of the software to numerous other time-dependant beam and rf source problems in the commercial arena.

  4. GA microwave window development

    International Nuclear Information System (INIS)

    Moeller, C.P.; Kasugai, A.; Sakamoto, K.; Takahashi, K.

    1994-10-01

    The GA prototype distributed window was tested in a 32 mm diam. waveguide system at a power density suitable for a MW gyrotron, using the JAERI/Toshiba 110 GHz long pulse internal converter gyrotron in the JAERI test stand. The presence of the untilted distributed window had no adverse effect on the gyrotron operation. A pulse length of 10 times the calculated thermal equilibrium time (1/e time) of 30 msec was reached, and the window passed at least 750 pulses greater than 30 msec and 343 pulses greater than 60 msec. Beyond 100 msec, the window calorimetry reached steady state, allowing the window dissipation to be measured in a single pulse. The measured loss of 4.0% agrees both with the estimated loss, on which the stress calculations are based, and with the attenuation measured at low power in the HE 11 mode. After the end of the tests, the window was examined; no evidence of arcing air coating was found in the part of the window directly illuminated by the microwaves, although there was discoloration in a recess containing an optical diagnostic which outgassed, causing a local discharge to occur in that recess. Finally, there was no failure of the metal-sapphire joints during a total operating time of 50 seconds consisting of pulses longer than 30 msec

  5. Fabrication of an electro-absorption transceiver with a monolithically integrated optical amplifier for fiber transmission of 40–60 GHz radio signals

    International Nuclear Information System (INIS)

    Zhang, Andy Zhenzhong; Wang, Qin; Fonjallaz, Pierre-Yves; Almqvist, Susanne; Karlsson, Stefan; Kjebon, Olle; Schatz, Richard; Chacinski, Marek; Thylén, Lars; Berggren, Jesper; Hammar, Mattias; Honecker, Jörg; Steffan, Andreas

    2011-01-01

    We report on the fabrication of a monolithically integrated semiconductor optical amplifier (SOA) and a reflective electro-absorption transceiver (EAT) for 40–60 GHz radio-over-fiber applications. The EAT can either function as a transmitter (reflective modulator) or as a receiver (photodetector) depending on operation mode. The SOA and the EAT sections are based on different InGaAsP multiple quantum-well active layers connected by a butt joint. Benzocyclobutene is used to reduce the capacitance beside the ridge mesa. Devices are designed to have a peaked response at the operating frequency through the design of microwave waveguides on top of the devices. The packaged device exhibits at 0.1 mW optical input power an amplified DC responsivity of 18.5 mA mW −1 and a modulation efficiency of 0.67 mW V −1 . The estimated radio frequency loss at 40 GHz of an optical link consisting of two SOA–EAT devices was 23 dB using an unmodulated optical input carrier to the transmitter of 0.94 mW

  6. Third harmonic X-mode electron cyclotron resonance heating on TCV using top launch

    International Nuclear Information System (INIS)

    Porte, L.; Alberti, S.; Arnoux, G.; Martin, Y.; Hogge, J.P.; Goodman, T.P.; Henderson, M.A.; Nelson-Melby, E.; Pochelon, A.; Tran, M.Q.

    2003-01-01

    A third harmonic electron cyclotron resonance heating system (X3) has been installed, commissioned and brought into service on the Tokamak a Configuration Variable (TCV). It comprises three 118 GHz, 0.5 MW gyrotrons designed to produce pulses up to 2 seconds long. In the present configuration, 1.0MW is launched vertically from the top of the vessel into the plasma and the remaining 0.5MW is launched horizontally from the low field side. X3 has been used to heat plasmas at density exceeding the 2 nd harmonic cut-off significantly extending the operational space of additionally heated TCV plasmas. Studies have been performed to determine the optimal plasma/launcher configuration for X3 absorption for various plasma conditions and to find methods for real time feedback control of the X3 launcher. First experiments have been performed aimed at heating H-mode plasmas on TCV. First results show that the ELMs in TCV ohmic H-mode plasmas exhibit all characteristics of Type III ELMs. If, at moderate X3 power ( 0.45MW) the Type III ELMs disappear and the H-mode discharge exhibits different MHD phenomena eventually disrupting. (author)

  7. Preionization and start-up in the ISX-B tokamak using electron cyclotron heating at 28 GHz

    International Nuclear Information System (INIS)

    Kulchar, A.G.; Eldridge, O.C.; England, A.C.

    1983-10-01

    A 28-GHz gyrotron was used to produce a plasma at the electron cyclotron resonance in the Impurity Study Experiment (ISX-B) tokamak. The influence of the toroidal magnetic field magnitude, error fields, gas pressure, microwave power, microwave pulse length, and microwave timing was studied for experiments with magnetic field and gas only. Also, experiments with preionization followed by capacitor discharges were carried out in which these quantities were varied, as were the capacitor bank voltages. Optimum conditions of preionization for some of the parameters were determined. A theoretical model that adequately reproduces the data is given. Calculations based on this model show the temporal evolution of the electron temperature and density, the neutral density, and the plasma current. The model adequately accounts for present and previous experimental results and can be used to make predictions for future experiments

  8. All-optical signal processing at 10 GHz using a photonic crystal molecule

    Energy Technology Data Exchange (ETDEWEB)

    Combrié, Sylvain; Lehoucq, Gaëlle; Junay, Alexandra; De Rossi, Alfredo, E-mail: alfredo.derossi@thalesgroup.com [Thales Research and Technology, 1 Avenue A. Fresnel, 91767 Palaiseau (France); Malaguti, Stefania; Bellanca, Gaetano; Trillo, Stefano [Department of Engineering, Università di Ferrara, v. Saragat 1, 44122 Ferrara (Italy); Ménager, Loic [Thales Systèmes Aeroportés, 2 Av. Gay Lussac, 78851 Elancourt (France); Peter Reithmaier, Johann [Institute of Nanostructure Technologies and Analytics, CINSaT, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel (Germany)

    2013-11-04

    We report on 10 GHz operation of an all-optical gate based on an Indium Phosphide Photonic Crystal Molecule. Wavelength conversion and all-optical mixing of microwave signals are demonstrated using the 2 mW output of a mode locked diode laser. The spectral separation of the optical pump and signal is crucial in suppressing optical cross-talk.

  9. A 94 GHz CMOS based oscillator transmitter with an on-chip meandered dipole antenna

    KAUST Repository

    Cheema, Hammad M.

    2015-10-26

    A miniaturized 94 GHz oscillator transmitter in 65nm CMOS is presented. An extremely small silicon foot-print of 0.25mm2 is achieved through meandering of the top-metal dipole antenna, conjugate matching between the oscillator and the antenna without impedance matching elements and efficient placement of the oscillator circuit within the antenna. The antenna demonstrates bandwidth of 90 to 99 GHz (10%) and a gain of -6dBi. The use of parasitic aware antenna-circuit code-sign strategy results in an accurate measured oscillation frequency of 94.1 GHz. The oscillator exhibits a measured output power of -25 dBm, phase noise of -88 dBc/Hz at 1 MHz offset and consumes 8.4mW from a 1V supply. © 2015 IEEE.

  10. InP-DHBT-on-BiCMOS technology with fT/fmax of 400/350 GHz for heterogeneous integrated millimeter-wave sources

    DEFF Research Database (Denmark)

    Kraemer, Tomas; Ostermay, Ina; Jensen, Thomas

    2013-01-01

    -100 GHz. The 0.8 × 5 μm2 InP DHBTs show fT/fmax of 400/350 GHz with an output power of more than 26 mW at 96 GHz. These are record values for a heterogeneously integrated transistor on silicon. As a circuit example, a 164-GHz signal source is presented. It features a voltage-controlled oscillator in Bi......This paper presents a novel InP-SiGe BiCMOS technology using wafer-scale heterogeneous integration. The vertical stacking of the InP double heterojunction bipolar transistor (DHBT) circuitry directly on top of the BiCMOS wafer enables ultra-broadband interconnects with

  11. A 12 GHz RF Power Source for the CLIC Study

    Energy Technology Data Exchange (ETDEWEB)

    Schirm, Karl; /CERN; Curt, Stephane; /CERN; Dobert, Steffen; /CERN; McMonagle, Gerard; /CERN; Rossat, Ghislain; /CERN; Syratchev, Igor; /CERN; Timeo, Luca; /CERN; Haase, Andrew /SLAC; Jensen, Aaron; /SLAC; Jongewaard, Erik; /SLAC; Nantista, Christopher; /SLAC; Sprehn, Daryl; /SLAC; Vlieks, Arnold; /SLAC; Hamdi, Abdallah; /Saclay; Peauger, Franck; /Saclay; Kuzikov, Sergey; /Nizhnii Novgorod, IAP; Vikharev, Alexandr; /Nizhnii Novgorod, IAP

    2012-07-03

    The CLIC RF frequency has been changed in 2008 from the initial 30 GHz to the European X-band 11.9942 GHz permitting beam independent power production using klystrons for CLIC accelerating structure testing. A design and fabrication contract for five klystrons at that frequency has been signed by different parties with SLAC. France (IRFU, CEA Saclay) is contributing a solid state modulator purchased in industry and specific 12 GHz RF network components to the CLIC study. RF pulses over 120 MW peak at 230 ns length will be obtained by using a novel SLED-I type pulse compression scheme designed and fabricated by IAP, Nizhny Novgorod, Russia. The X-band power test stand is being installed in the CLIC Test Facility CTF3 for independent structure and component testing in a bunker, but allowing, in a later stage, for powering RF components in the CTF3 beam lines. The design of the facility, results from commissioning of the RF power source and the expected performance of the Test Facility are reported.

  12. A 12 GHZ RF Power source for the CLIC study

    CERN Document Server

    Peauger, F; Curt, S; Doebert, S; McMonagle, G; Rossat, G; Schirm, KM; Syratchev, I; Timeo, L; Kuzikhov, S; Vikharev, AA; Haase, A; Sprehn, D; Jensen, A; Jongewaard, EN; Nantista, CD; Vlieks, A

    2010-01-01

    The CLIC RF frequency has been changed in 2008 from the initial 30 GHz to the European X-band 11.9942 GHz permitting beam independent power production using klystrons for CLIC accelerating structure testing. A design and fabrication contract for five klystrons at that frequency has been signed by different parties with SLAC. France (IRFU, CEA Saclay) is contributing a solid state modulator purchased in industry and specific 12 GHz RF network components to the CLIC study. RF pulses over 120 MW peak at 230 ns length will be obtained by using a novel SLED-I type pulse compression scheme designed and fabricated by IAP, Nizhny Novgorod, Russia. The X-band power test stand is being installed in the CLIC Test Facility CTF3 for independent structure and component testing in a bunker, but allowing, in a later stage, for powering RF components in the CTF3 beam lines. The design of the facility, results from commissioning of the RF power source and the expected performance of the Test Facility are reported.

  13. Backscattering of gyrotron radiation and short-wavelength turbulence during electron cyclotron resonance plasma heating in the L-2M stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Batanov, G. M.; Borzosekov, V. D., E-mail: tinborz@gmail.com; Kovrizhnykh, L. M.; Kolik, L. V.; Konchekov, E. M.; Malakhov, D. V.; Petrov, A. E.; Sarksyan, K. A.; Skvortsova, N. N.; Stepakhin, V. D.; Kharchev, N. K. [Russian Academy of Sciences, Prokhorov General Physics Institute (Russian Federation)

    2013-06-15

    Backscattering of gyrotron radiation ({theta} = {pi}) by short-wavelength density fluctuations (k{sub Up-Tack} = 30 cm{sup -1}) in the plasma of the L-2M stellarator was studied under conditions of electron cyclotron resonance (ECR) plasma heating at the second harmonic of the electron gyrofrequency (75 GHz). The scattering of the O-wave emerging due to the splitting of the linearly polarized gyrotron radiation into the X- and O-waves was analyzed. The signal obtained after homodyne detection of scattered radiation is a result of interference of the reference signal, the quasi-steady component, and the fast oscillating component. The coefficients of reflection of the quasi-steady component, R{sub =}{sup 2}(Y), and fast oscillating component, R{sub {approx}}{sup 2}(Y), of scattered radiation are estimated. The growth of the R{sub {approx}}{sup 2}(Y) coefficient from 3.7 Multiplication-Sign 10{sup -4} to 5.2 Multiplication-Sign 10{sup -4} with increasing ECR heating power from 190 to 430 kW is found to correlate with the decrease in the energy lifetime from 1.9 to 1.46 ms. The relative density of short-wavelength fluctuations is estimated to be Left-Pointing-Angle-Bracket n{sub {approx}}{sup 2} Right-Pointing-Angle-Bracket / Left-Pointing-Angle-Bracket n{sub e}{sup 2} Right-Pointing-Angle-Bracket = 3 Multiplication-Sign 10{sup -7}. It is shown that the frequencies of short-wavelength fluctuations are in the range 10-150 kHz. The recorded short-wavelength fluctuations can be interpreted as structural turbulence, the energy of which comprises {approx}10% of the total fluctuations energy. Simulations of transport processes show that neoclassical heat fluxes are much smaller than anomalous ones. It is suggested that short-wavelength turbulence plays a decisive role in the anomalous heat transport.

  14. Electron cyclotron heating of plasmas

    International Nuclear Information System (INIS)

    Guest, Gareth

    2009-01-01

    As nuclear fusion becomes an increasingly important potential energy source in these times of global oil and energy crises, the development of technologies that can lead to the realization of this virtually inexhaustible source of energy takes on ever greater urgency. Over the past decade electron cyclotron heating has undergone a significant maturation and has emerged as an essential component of the major approaches to achieving controlled nuclear fusion. The gyrotron, first developed in the Soviet Union, has made it possible to employ ECH in large tokamak and stellarator fusion devices by providing megawatts of microwave power at frequencies above 100 GHz. A contemporary VGT-8110 gyrotron, for example, shown here with Kevin Felch and Pat Cahalan of Communications and Power Industries, is capable of delivering 10 second pulses of 1 MW of power at 110 GHz. The present monograph addresses the ECH physics critical to the international fusion reactor experiment, ITER, but also presents the fundamentals of ECH that are essential to its successful implementation in applications that range from active experiments in planetary magnetospheres to commercial plasma sources for the manufacture of computer chips. The book seeks to convey the physics of ECH in an orderly and coherent fashion to a professional audience by presenting the basic theoretical foundations and then using the theory to interpret a number of established experimental results. Exercises are included to aid the reader in making the theory more concrete. (orig.)

  15. Low cost low power 24 GHz FMCW radar transceiver for indoor presence detection

    NARCIS (Netherlands)

    Suijker, E.M.; Bolt, R.J.; Wanum, M. van; Heijningen, M. van; Maas, A.P.M.; Vliet, F.E. van

    2014-01-01

    In this paper a first time right 24 GHz FMCW radar transceiver is presented. The MMIC has a low power consumption of 86 mW and an output power of -10 dBm. Due to the integrated IF amplifier, the conversion gain of the receiver is 51 dB and the base band signals are directly processed with an ADC.

  16. MFTF-B quasi-optical ECRH transmission system

    International Nuclear Information System (INIS)

    Yugo, J.J.; Shearer, J.W.; Ziolkowski, R.W.

    1983-01-01

    The microwave transmission system for ERCH on MFTF-B will utilize quasi-optical transmission techniques. The system consists of ten gyrotron oscillators: two gyrotrons at 28 GHz, two at 35 GHz, and six at 56 GHz. The 28 and 35 GHz gyrotrons both heat the electrons in the end plug (potential peak) while the 56 GHz sources heat the minimum-B anchor region (potential minimum). Microwaves are launched into a pair of cylindrical mirrors that form a pseudo-cavity which directs the microwaves through the plasma numerous times before they are lost out of the cavity. The cavity allows the microwave beam to reach the resonance zone over a wide range of plasma densities and temperatures. The fundamental electron cyclotron resonance moves to higher axial positions as a result of beta-depression of the magnetic field, doppler shifting of the resonance, and relativistic mass corrections for the electrons. With this system the microwave beam will reach the resonance surface at the correct angle of incidence for any density or temperature without active aiming of the antennas. The cavity also allows the beam to make multiple passes through the plasma to increase the heating efficiency at low temperatures and densities when the single pass absorption is low. In addition, neutral beams and diagnostics have an unobstructed view of the plasma

  17. Extrapolation of the FOM 1 MW free-electron maser to a multi-megawatt millimeter microwave source

    NARCIS (Netherlands)

    Caplan, M.; Valentini, M.; Verhoeven, A.; Urbanus, W.; Tulupov, A.

    1997-01-01

    A Free-Electron Maser is now under test at the FOM Institute (Rijnhuizen, Netherlands) with the goal of producing 1 MW long pulse to CW microwave output in the range 130-250 GHz with wall plug efficiencies of 60%. An extrapolated version of this device is proposed, which by scaling up beam current

  18. A program of high power microwave source research and development from 8 GHz to 600 GHz

    International Nuclear Information System (INIS)

    Granatstein, V.L.; Antonsen, T.M. Jr.; Bidwell, S.; Booske, J.; Carmel, Y.; Destler, W.W.; Kehs, R.A.; Latham, P.E.; Levush, B.; Lou, W.R.; Mayergoyz, I.D.; Minami, K.; Radack, D.J.

    1990-01-01

    We review research results both on a plasma filled, backward wave oscillator (BWO), and on a free electron laser (FEL) driven by a sheet electron beam. Recently, it was demonstrated that a plasma filled BWO driven by an intense relativistic electron beam can generate hundreds of megawatts of microwave radiation at an unusually high efficiency of 40% compared with a typical efficiency of ∼10% in a BWO without a background plasma. Furthermore, the enhanced efficiency can be maintained even for large electron beam currents approaching the vacuum space charge limiting current, and we anticipate this might hold even for larger current values. Theoretical studies and numerical simulations indicate that the enhanced efficiency as well as a lower value for the start oscillation current in the linear regime may be due to the finite length of the BWO circuit coupled with modification of the dispersion relation due to the background plasma. In the case of our FEL studies, we present designs for a 1 MW, CW, tapered FEL amplifier operating at frequencies of 280 GHz and 560 GHz. A short wiggler period (ell w ∼ 1 cm) is combined with a sheet beam of electrons having energy ∼1 MeV. Depressed collector techniques would allow the main power supply rating to be reduced to ∼200 kV. Efficient sheet beam transport (>99%) has been demonstrated through 10 wiggler periods, and transport through 60 wiggler periods is currently under study. Finally, plans for a proof-of-principle tapered FEL amplifier experiment at 94 GHz are presented. 8 refs., 7 figs

  19. Synthesis of mig-type electron guns for gyrotrons

    International Nuclear Information System (INIS)

    Castro, J.J.B. de; Montes, A.; Silva, C.A.B.

    1984-01-01

    A synthesis method is used in the design of axially symmetrical guns in the moderate to high space charge regime. Self-consistent equations for the temperature limited emission case are used to represent the beam and solve the internal problem, under the requirement of laminar flow. The external problem is solved by integrating the equations with boundary conditions defined by the analytically extended solutions of the internal problem. This technique will be used in the development of INPE's gyrotron. (Author) [pt

  20. Remote Control System of the TJ-II Microwave Transmission Lines Mirrors

    International Nuclear Information System (INIS)

    Lopez Sanchez, A.; Fernandez, A.; Cappa, A.; Gama, J. de la; Olivares, J.; Garcia, R.; Chamorro, M.

    2007-01-01

    The ECRH system of the TJ-II stellarator has two gyrotrons, which deliver a maximum power of 300 kW each at a frequency of 53.2 GHz. Another 28 GHz gyrotron will be used to heat the plasma by electron Bernstein waves (EBWH). The microwave power is transmitted from the gyrotrons to the vacuum chamber by two quasi-optical transmission lines for ECRH and a corrugated waveguide for EBWH. All transmission lines have an internal movable mirror inside the vacuum chamber to focus the beam and to be able to change the launching angle. The control of the beam polarization is very important and the lines have two corrugated mirrors, which actuate as polarizers. In this report the control system of the position of these three internal mirrors and the polarizers of the EBWH transmission line is described. (Author) 20 refs

  1. Remote Control System of the TJ-II Microwave Transmission Lines Mirrors; Sistema de Control Remoto de los Espejos de las Lineas de Transmision de Microondas del TJ-II

    Energy Technology Data Exchange (ETDEWEB)

    Lopez Sanchez, A.; Fernandez, A.; Cappa, A.; Gama, J. de la; Olivares, J.; Garcia, R.; Chamorro, M.

    2007-09-27

    The ECRH system of the TJ-II stellarator has two gyrotrons, which deliver a maximum power of 300 kW each at a frequency of 53.2 GHz. Another 28 GHz gyrotron will be used to heat the plasma by electron Bernstein waves (EBWH). The microwave power is transmitted from the gyrotrons to the vacuum chamber by two quasi-optical transmission lines for ECRH and a corrugated waveguide for EBWH. All transmission lines have an internal movable mirror inside the vacuum chamber to focus the beam and to be able to change the launching angle. The control of the beam polarization is very important and the lines have two corrugated mirrors, which actuate as polarizers. In this report the control system of the position of these three internal mirrors and the polarizers of the EBWH transmission line is described. (Author) 20 refs.

  2. A low power 20 GHz comparator in 90 nm COMS technology

    Science.gov (United States)

    Kai, Tang; Qiao, Meng; Zhigong, Wang; Ting, Guo

    2014-05-01

    A low power 20 GHz CMOS dynamic latched regeneration comparator for ultra-high-speed, low-power analog-to-digital converters (ADCs) is proposed. The time constant in both the tracking and regeneration phases of the latch are analyzed based on the small signal model. A dynamic source-common logic (SCL) topology is adopted in the master-slave latch to increase the tracking and regeneration speeds. Implemented in 90 nm CMOS technology, this comparator only occupies a die area of 65 × 150 μm2 with a power dissipation of 14 mW from a 1.2 V power supply. The measurement results show that the comparator can work up to 20 GHz. Operating with an input frequency of 1 GHz, the circuit can oversample up to 20 Giga-sampling-per-second (GSps) with 5 bits resolution; while operating at Nyquist, the comparator can sample up to 20 GSps with 4 bits resolution. The comparator has been successfully used in a 20 GSps flash ADC and the circuit can be also used in other high speed applications.

  3. Cold test of deep groove plarizer for 170 GHz ECCD system

    International Nuclear Information System (INIS)

    Saigusa, M.; Ookouti, K.; Sazawa, S.; Yuasa, S.; Takei, N.; Takahashi, K.; Sakamoto, K.; Imai, T.

    2001-01-01

    The single deep groove mirror was proposed as a new concept polarizer instead of the conventional two mirror polarizers for producing ordinary (or extraordinary) wave with high mode purity at an arbitrary injection angle in electron cyclotron current drive (ECCD) experiments. The estimated mode purity of O and X waves on the plasma surface is expected to be higher than about 93% for reasonable ECCD experimental conditions. The three types of deep groove mirrors, which are the rectangular groove mirror and the non-rectangular one, are manufactured and tested at the frequency range from 140 GHz to 170 GHz and the power level of 30 mW. The groove parameters are the period of 0.9-1 mm, the ridge width of 0.45-0.5 mm, and the groove depth of 1.98 mm, which is deeper than a wavelength at 170 GHz. The measured results of deep groove polarizers agree with the theoretical predictions, qualitatively. Those prove the feasibility of a single mirror polarizer for ECCD system

  4. ECRH and W7-X: An intriguing pair

    Science.gov (United States)

    Erckmann, V.; Braune, H.; Gantenbein, G.; Jelonnek, J.; Kasparek, W.; Laqua, H. P.; Lechte, C.; Marushchenko, N. B.; Michel, G.; Plaum, B.; Thumm, M.; Weissgerber, M.; Wolf, R.; W7-X ECRH Teams

    2014-02-01

    The construction of the W7-X basic machine is almost completed and the device is approaching the commissioning phase. W7-X operation will be supported by ECRH working at 140 GHz in 2nd harmonic X- or O-mode with 10 MW cw power. Presently the activities at W7-X concentrate on the implementation of wall-armour, in-vessel components and diagnostics. The ECRH-system is in stand by with 5 out of 10 gyrotrons operational. The status of both, the W7-X device and the ECRH system is reported. Further R&D activities concentrate on extending the launching capability for sophisticated confinement investigations with remote steering launchers in a poloidal plane with weak magnetic field gradient.

  5. High-power corrugates waveguide components for mm-wave fusion heating systems

    International Nuclear Information System (INIS)

    Olstad, R.A.; Doane, J.L.; Moeller, C.P.; O'Neill, R.C.; Di Martino, M.

    1996-10-01

    Considerable progress has been made over the last year in the U.S., Japan, Russia, and Europe in developing high power long pulse gyrotrons for fusion plasma heating and current drive. These advanced gyrotrons typically operate at a frequency in the range 82 GHz to 170 GHz at nearly megawatt power levels for pulse lengths up to 5 s. To take advantage of these new microwave sources for fusion research, new and improved transmission line components are needed to reliably transmit microwave power to plasmas with minimal losses. Over the last year, General Atomics and collaborating companies (Spinner GmbH in Europe and Toshiba Corporation in Japan) have developed a wide variety of new components which meet the demanding power, pulse length, frequency, and vacuum requirements for effective utilization of the new generation of gyrotrons. These components include low-loss straight corrugated waveguides, miter bends, miter bend polarizers, power monitors, waveguide bellows, de breaks, waveguide switches, dummy loads, and distributed windows. These components have been developed with several different waveguide diameters (32, 64, and 89 mm) and frequency ranges (82 GHz to 170 GHz). This paper describes the design requirements of selected components and their calculated and measured performance characteristics

  6. Component development for X-band above 100 MW

    International Nuclear Information System (INIS)

    Fowkes, W.R.; Callin, R.S.; Studzinski, M.

    1991-05-01

    The requirement for some of the components described in this paper began with the Relativistic Klystron program done in collaboration with LLNL and LBL. This effort culminated in a klystron operating at 11.4 GHz delivering 330 MW into a pair of high-gradient accelerating structures. The electron beam for this klystron was formed in a 1 MeV induction linac at a very low duty cycle. The subsequent RF source development work at SLAC for the Next Linear Collider utilized some of these components, and required further and new development of others, work reliably at higher average power. 6 refs., 6 figs., 1 tab

  7. New window materials for high power gyrotron

    International Nuclear Information System (INIS)

    Afsar, M.N.; Hua Chi

    1993-01-01

    A single free standing synthetic diamond window seems to have higher absorption coefficient value at millimeter wavelength region at this time although it is claimed that it possesses good mechanical strength and higher thermal conductivity characteristics. It certainly does not rule out the use of diamond film on single crystal high resistivity silicon to improve its mechanical strength and thermal conductivity. One may have to use an appropriate film thickness for a particular wavelength in gyrotron window application. It is also necessary to use an appropriate thickness for the silicon perhaps equivalent to a quaterwavelength in order to avoid the reflection mismatch

  8. Predicted Performance of a Dc Beam Driven Fem Oscillator Designed for Fusion Applications at 200-250 Ghz

    NARCIS (Netherlands)

    Caplan, M.; Best, R. W. B.; Verhoeven, A. G. A.; van der Wiel, M. J.; Urbanus, W. H.; Bratman, V. L.; Denisov, G. G.

    1993-01-01

    At the FOM Institute (The Netherlands) a free electron laser using a dc beam with depressed collector is being developed for plasma heating, which will be capable of producing 1 MW cw output over an adjustable tuning range of 200-250 GHz. The basic design parameters for the electron beam, undulator

  9. Characterization of high-power RF structures using time-domain field codes

    International Nuclear Information System (INIS)

    Shang, C.C.; DeFord, J.F.; Swatloski, T.L.

    1992-01-01

    We have modeled gyrotron windows and gyrotron amplifier sever structures for TE modes in the 100--150 GHz range and have computed the reflection and transmission characteristics from the field data. Good agreement with frequency domain codes and analytic analysis have been obtained for some simple geometries. We present results for realistic structures with lousy coatings and describe implementation of microwave diagnostics

  10. Design of a 3.7 GHz oscillator for the solid state drive of the LHCD system

    International Nuclear Information System (INIS)

    Sainkar, Sandeep; Dixit, Harish; Cheeran, Alice; Sharma, P.K.

    2017-01-01

    The LHCD system is commissioned on the SST-1 tokamak for the current drive. It has a capability to generate power of 2 MW CW at 3.7 GHz and deliver the power to the tokamak via a grill antenna through a phased array of wave guides. The system relies on 4 Klystrons (TH-2103D) each generating 500 kW CW power. The klystrons act as an amplifier providing a gain of 40 dB with a bandwidth of 10 MHz and amplify the input power provided by a solid state driver. The klystron requires a supply of 65 kV and 20A for its operation and has to be extensively conditioned before it can be operated even for obtaining lower power levels. This paper describes the design of oscillator for this system. The oscillator is based on bipolar junction transistor BFR360F. Linear and non-linear analysis has been performed on the design to ascertain its performance. The oscillator delivered a power of 20 mW at 3.7 GHz

  11. Development of a thermionic magnicon amplifier at 11.4 GHz

    International Nuclear Information System (INIS)

    Gold, S.H.; Hafizi, B.; Fliflet, A.W.; Kinkead, A.K.; True, R.

    1997-01-01

    The magnicon is a scanning-beam microwave amplifier tube that is being developed as an rf source for the proposed TeV Next Linear Collider. In it, a solid electron beam is spun up to high transverse momentum in a series of deflection cavities containing synchronously rotating TM modes, and then spun down again in an output cavity whose mode is synchronous with that of the deflection cavities. A recent magnicon experiment at NRL, using a ∼ 650 kV, 225 A, 5.5-mm-diam. electron beam produced from a cold cathode driven by a single-shot Marx generator, demonstrated 14 MW (±3 dB) at 11.12 GHz with 105 efficiency in the synchronous magnicon mode, but was limited by plasma loading in the deflection cavities to a regime in which the last cavity of the deflection system (the penultimate cavity) was unstable. A new 11.4 GHz rep-rated thermionic magnicon experiment is being assembled, using an advanced ultra-high-convergence electron gun driven by a 10 Hz, 1.5 microsecond modulator top produce a 500 kV, 210 A, 2-mm diameter electron beam. The magnicon circuit has been optimized for minimum surface rf fields and maximum efficiency, and will be engineered for high temperature bakeout and high vacuum operation. This experiment should begin operation in the Summer of 1997. The predicted power is 60 MW at ∼ 60% efficiency

  12. Measurements of the temporal and spatial phase variations of a 33 GHz pulsed free electron laser amplifier and application to high gradient RF acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Volfbeyn, P.; Bekefi, G. [Massachusetts Institute of Technology, Cambridge, MA (United States)

    1995-12-31

    We report the results of temporal and spatial measurements of phase of a pulsed free electron laser amplifier (FEL) operating in combined wiggler and axial guide magnetic fields. The 33 GHz FEL is driven by a mildly relativistic electron beam (750 kV, 90-300 A, 30 ns) and generates 61 MW of radiation with a high power magnetron as the input source. The phase is measured by an interferometric technique from which frequency shifting is determined. The results are simulated with a computer code. Experimental studies on a CERN-CLIC 32.98 GHz 26-cell high gradient accelerating section (HGA) were carried out for input powers from 0.1 MW to 35 MW. The FEL served as the r.f. power source for the HGA. The maximum power in the transmitted pulse was measured to be 15 MW for an input pulse of 35 MW. The theoretically calculated shunt impedance of 116 M{Omega}/m predicts a field gradient of 65 MeV/m inside the HGA. For power levels >3MW the pulse transmitted through the HGA was observed to be shorter than the input pulse and pulse shortening became more serious with increasing power input. At the highest power levels the output pulse length (about 5 nsec) was about one quarter of the input pulse length. Various tests suggest that these undesirable effects occur in the input coupler to the HGA. Light and X-ray production inside the HGA have been observed.

  13. A high-voltage equipment (high voltage supply, high voltage pulse generators, resonant charging inductance, synchro-instruments for gyrotron frequency measurements) for plasma applications

    International Nuclear Information System (INIS)

    Spassov, Velin

    1996-01-01

    This document reports my activities as visitor-professor at the Gyrotron Project - INPE Plasma Laboratory. The main objective of my activities was designing, construction and testing a suitable high-voltage pulse generator for plasma applications, and efforts were concentrated on the following points: Design of high-voltage resonant power supply with tunable output (0 - 50 kV) for line-type high voltage pulse generator; design of line-type pulse generator (4 microseconds pulse duration, 0 - 25 kV tunable voltage) for non linear loads such as a gyrotron and P III reactor; design of resonant charging inductance for resonant line-type pulse generator, and design of high resolution synchro instrument for gyrotron frequency measurement. (author)

  14. 200 MW S-band traveling wave resonant ring development at IHEP

    Science.gov (United States)

    Zhou, Zu-Sheng; Chi, Yun-Long; Git, Meng-Ping; Pei, Guo-Xi

    2010-03-01

    The resonant-ring is a traveling wave circuit, which is used to produce high peak power with comparatively smaller stored energy. The application to be considered is its use as a high power simulator mainly for testing the klystron ceramic output window, as well as for high power microwave transmission devices. This paper describes the principle of a resonant ring and introduces the structure and property of the newly constructed traveling wave resonant ring at IHEP. Our goal is to produce a 200 MW class resonant ring at 2.856 GHz with a pulse length of 2 μs and repetition rate of 25 Hz. The installation, commissioning and testing of the ring have been completed and a peak power of 200 MW at 3 μs has been achieved. The conditioning results show that all the parameters of the resonant ring reach the design goals.

  15. Comparison between the electron cyclotron current drive experiments on DIII-D and predictions for T-10

    International Nuclear Information System (INIS)

    Lohr, J.; Harvey, R.W.; Luce, T.C.; Matsuda, Kyoko; Moeller, C.P.; Petty, C.C.; Prater, R.; James, R.A.; Giruzzi, G.; Gorelov, Y.; DeHaas, J.

    1990-11-01

    Electron cyclotron current drive has been demonstrated on the DIII-D tokamak in an experiment in which ∼1 MW of microwave power generated ∼50 kA of non-inductive current. The rf-generated portion was about 15% of the total current. On the T-10 tokamak, more than 3 MW of microwave power will be available for current generation, providing the possibility that all the plasma current could be maintained by this method. Fokker-Planck calculations using the code CQL3D and ray tracing calculations using TORAY have been performed to model both experiments. For DIII-D the agreement between the calculations and measurements is good, producing confidence in the validity of the computational models. The same calculations using the T-10 geometry predict that for n e (0) ∼ 1.8 x 10 13 cm -3 , and T e (0) ∼ 7 keV, 1.2 MW, that is, the power available from only three gyrotrons, could generate as much as 150 kA of non-inductive current. Parameter space scans in which temperature, density and resonance location were varied have been performed to indicate the current drive expected under different experimental conditions. The residual dc electric field was considered in the DIII-D analysis because of its nonlinear effect on the electron distribution, which complicates the interpretation of the results. A 110 GHz ECH system is being installed on DIII-D. Initial operations, planned for late 1991, will use four gyrotrons with 500 kW each and 10 second output pulses. Injection will be from the low field side from launchers which can be steered to heat at the desired location. These launchers, two of which are presently installed, are set at 20 degrees to the radial and rf current drive studies are planned for the initial operation. 8 refs., 10 figs

  16. 37 GHz Direct-Modulation Bandwidth of Multi-Section InGaAsP/InP DBR-Laser with weakly coupled active grating section

    DEFF Research Database (Denmark)

    Kaiser, W.; Bach, L.; Reithmaier, J. P.

    2003-01-01

    37 GHz direct-modulation bandwidth could be obtained by a multi-section design with an integrated weakly coupled DBR grating. The laser shows side mode suppression ratios of 45 dB and output powers exceeding 20 mW....

  17. Characterization of high-power RF structures using time-domain field codes

    International Nuclear Information System (INIS)

    Shang, C.C.; DeFord, J.F.; Swatloski, T.L.

    1992-01-01

    We have modeled gyrotron windows and gyrotron amplifier sever structures for TE modes in the 100-150 GHz range and have computed the reflection and transmission characteristics from the field data. Good agreement with frequency domain codes and analytic analysis have been obtained for some simple geometries. We present results for realistic structures with lossy coatings and describe implementation of microwave diagnostics. (Author) 5 figs., 7 refs

  18. Novel dielectric photonic-band-gap resonant cavity loaded in a gyrotron

    International Nuclear Information System (INIS)

    Chen Xiaoan; Liu Gaofeng; Tang Changjian

    2010-01-01

    A novel resonant cavity composed of a periodic, multilayer, dielectric photonic crystal is proposed. Using the transfer matrix method and the Bloch theorem for periodic systems, an analysis on the band-gap property of such a structure is made, and the basic electromagnetic property of the photonic-band-gap resonant cavity (PBGC) is preliminarily exhibited. The theoretical studies and the cold cavity simulation results obtained from a high-frequency structure simulator are presented. On the basis of the present research, such a PBGC is quite similar to the two-dimensional PBGC made of triangular lattices of metal rods with a defect at its centre, in which a frequency selectivity is similarly demonstrated. Because of its unique electromagnetic property, the cavity has many promising applications in active and passive devices operating in the millimetre, sub-millimetre, and even THz wave range. As a specific application, the feasibility of substituting the traditional cylindrical resonant cavity loaded in a gyrotron for a dielectric PBGC to achieve a transverse high-order operation is discussed under the consideration of the electromagnetic features of the cavity. The study shows the great potential value of such a cavity for gyrotron devices.

  19. Indicators of Macromolecular Oxidative Damage and Antioxidant Defence Examinees Exposed to the Radar Frequencies 1.5 - 10.9 GHz

    International Nuclear Information System (INIS)

    Marjanovic, A.M.; Flajs, D.; Pavicic, I.; Domijan, A.

    2011-01-01

    Radar is an object-detection system which uses microwaves (Mw). As a result of increased use of radar there is a rising concern regarding health effects of Mw radiation on human body. Living organisms are complex electrochemical systems being evolved in a relatively narrow range of well-defined environmental parameters. For life to be maintained these parameters must be kept within their normal range, since deviations can induce biochemical effects causing cell function impairment and disease. Some theories indicate connection between Mw radiation, oxidative damage as well as antioxidant defence of organism. Aim of this study was to evaluate level and damage of macromolecular structures - proteins and lipids in blood of men occupationally exposed to Mw radiation. Concentration of glutathione (GSH), a known indicator of organism antioxidant defence, was also determined. Blood samples were collected from 27 male workers occupationally exposed to radar frequencies 1.5 to 10.9 GHz. Corresponding control group (N = 8) was a part of study. Concentrations of total and oxidised proteins, protein carbonyls, and GSH were measured by spectrophotometric method, while malondialdeyde (MDA), product of lipid peroxidation, was determined by high performance liquid chromatography (HPLC). Gained concentrations of oxidised proteins, GSH and MDA were presented in relation to total proteins. Concentration of oxidised proteins between control and exposed group of examinees did not show any significant statistical difference. However, concentration of GSH in exposed group was found considerably decreased, while concentration of MDA was found to be increased. Results indicate that Mw radiation of radar operating at frequencies 1.5 - 10.9 GHz could cause damage to proteins and lipids in addition to impairment of antioxidant defence of organism. (author)

  20. A low power and low phase-noise 91 96 GHz VCO in 90 nm CMOS

    Science.gov (United States)

    Lin, Yo-Sheng; Lan, Kai-Siang; Chuang, Ming-Yuan; Lin, Yu-Ching

    2018-06-01

    This paper reports a 94 GHz CMOS voltage-controlled oscillator (VCO) using both the negative capacitance (NC) technique and series-peaking output power and phase noise (PN) enhancement technique. NC is achieved by adding two variable LC networks to the source nodes of the active circuit of the VCO. NMOSFET varicaps are adopted as the required capacitors of the LC networks. In comparison with the conventional one, the proposed active circuit substantially decreases the input capacitance (Cin) to zero or even a negative value. This leads to operation (or oscillation) frequency (OF) increase and tuning range (TR) enhancement of the VCO. The VCO dissipates 8.3 mW at 1 V supply. The measured TR of the VCO is 91 96 GHz, close to the simulated (92.1 96.7 GHz) and the calculated one (92.2 98.2 GHz). In addition, at 1 MHz offset from 95.16 GHz, the VCO attains an excellent PN of - 98.3 dBc/Hz. This leads to a figure-of-merit (FOM) of -188.5 dBc/Hz, a remarkable result for a V- or W-band CMOS VCO. The chip size of the VCO is 0.75 × 0.42 mm2, i.e. 0.315 mm2.

  1. Robust Sub-harmonic Mixer at 340 GHz Using Intrinsic Resonances of Hammer-Head Filter and Improved Diode Model

    Science.gov (United States)

    Wang, Cheng; He, Yue; Lu, Bin; Jiang, Jun; Miao, Li; Deng, Xian-Jin; Xiong, Yong-zhong; Zhang, Jian

    2017-11-01

    This paper presents a sub-harmonic mixer at 340 GHz based on anti-parallel Schottky diodes (SBDs). Intrinsic resonances in low-pass hammer-head filter have been adopted to enhance the isolation for different harmonic components, while greatly minimizing the transmission loss. The application of new DC grounding structure, impedance matching structure, and suspended micro-strip mitigates the negative influences of fabrication errors from metal cavity, quartz substrate, and micro-assembly. An improved lumped element equivalent circuit model of SBDs guarantees the accuracy of simulation, which takes current-voltage (I/V) behavior, capacitance-voltage (C/V) behavior, carrier velocity saturation, DC series resistor, plasma resonance, skin effect, and four kinds of noise generation mechanisms into consideration thoroughly. The measurement indicates that with local oscillating signal of 2 mW, the lowest double sideband conversion loss is 5.5 dB at 339 GHz; the corresponding DSB noise temperature is 757 K. The 3 dB bandwidth of conversion loss is 50 GHz from 317 to 367 GHz.

  2. Study and development of different techniques for the generation, conversion, propagation, and radiation of high power microwaves for the electronic cyclotron frequency plasma heating

    International Nuclear Information System (INIS)

    Rebuffi, L.

    1987-10-01

    The development and optimization of a microwave technique, concerning the high frequency (electronic cyclotron frequency) plasma heating is presented. The experiments are effectuated on the Fontenay-aux-Roses TFR tokamak, with 660 kw whole power, during 100 msec, produced at 60 GHz. Low power tests are performed on the different transmission line components (there are 3, formed by metallic circular waveguides). The work also includes: the development of a lens formed by thin metallic plans; the study of slotted surface mirror; the development of a system for the accurate measurement (5.10 -6 ) of the gyrotronic frequency; a theory, based on the equivalent circuits method, generalized to the rotational and polarization mirrors; the development of a numerical simulation code. A practical scheme, for the optimization of the parameters concerning the optical transmission line project, is given. The results of this work can be applied to the experiment involving power levels, frequencies and times of impulsion increasingly higher (respectively about MW, 100 GHz and 10s) than the reported ones. Moreover, they can also be used in any experiment in the microwave field [fr

  3. Precision Characterization of Gyrotron Window Materials

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Charles R. [North Carolina Central Univ., Durham, NC (United States)

    2012-12-31

    The response of dielectric material to electromagnetic waves in the millimeter wavelength range (30 to 300 GHz) has received relatively little study and the processes that give rise to absorption in this region are often poorly understood. Understanding the origin of absorption at these wavelengths has basic significance for solid state physics as well as importance for development of technology in this region of the RF spectrum. This project has provided high-quality data on the temperature dependence of the dielectric loss in high-purity, semi-insulating silicon carbide (HPSI SiC), a material that holds much promise for application, especially in devices that must operate in the high power and high frequency regime. Comparison of this experimental data with theoretical predictions for various loss processes provides convincing evidence that the loss in HPSI SiC arises almost entirely from intrinsic lattice loss (ILL) as described by Garin. Fitting the data to this model yields an accurate value for the Debye temperature that characterizes crystalline SiC. In addition, our results refute a previous study(2) which reported much higher loss, attributed to the presence of free charge. The quality of the data acquired in this project is clear evidence for the value of the experimental technique that was employed here. This technique combines the excitation of a high-quality open resonator by a phase-locked backward wave oscillator (BWO) with use of a spectrum analyzer to measure the change in the resonator response curve when the sample is inserted. This system has demonstrated consistent results for very challenging measurements and does not suffer from the artifacts that often arise when using other techniques that rely on thermal sources. The low absorption loss found in HPSI SiC, when combined with its other outstanding material properties, e.g. high thermal conductivity, high tensile strength, and high carrier mobility, should provide incentive for designers to

  4. Test results from the LLNL 250 GHz CARM experiment

    International Nuclear Information System (INIS)

    Kulke, B.; Caplan, M.; Bubp, D.; Houck, T.; Rogers, D.; Trimble, D.; VanMaren, R.; Westenskow, G.; McDermott, D.B.; Luhmann, N.C. Jr.; Danly, B.

    1991-05-01

    We have completed the initial phase of a 250 GHz CARM experiment, driven by the 2 MeV, 1 kA, 30 ns induction linac at the LLNL ARC facility. A non-Brillouin, solid, electron beam is generated from a flux-threaded, thermionic cathode. As the beam traverses a 10 kG plateau produced by a superconducting magnet, ten percent of the beam energy is converted into rotational energy in a bifilar helix wiggler that produces a spiraling, 50 G, transverse magnetic field. The beam is then compressed to a 5 mm diameter as it drifts into a 30 kG plateau. For the present experiment, the CARM interaction region consisted of a single Bragg section resonator, followed by a smooth-bore amplifier section. Using high-pass filters, we have observed broadband output signals estimated to be at the several megawatt level in the range 140 to over 230 GHz. This is consistent with operation as a superradiant amplifier. Simultaneously, we also observed K a band power levels near 3 MW

  5. Test results from the LLNL 250 GHz CARM experiment

    International Nuclear Information System (INIS)

    Kulke, B.; Caplan, M.; Bubp, D.; Houck, T.; Rogers, D.; Trimble, D.; VanMaren, R.; Westenskow, G.; McDermott, D.B.; Luhmann, N.C. Jr.; Danly, B.

    1991-01-01

    The authors have completed the initial phase of a 250 GHz CARM experiment, driven by the 2 MeV, 1 kA, 30 ns induction linac at the LLNL ARC facility. A non-Brillouin, solid, electron beam is generated from a flux-threaded, thermionic cathode. As the beam traverses a 10 kG plateau produced by a superconducting magnet, ten percent of the beam energy is converted into rotational energy in a bifilar helix wiggler that produces a spiraling, 50 G, transverse magnetic field. The beam is then compressed to a 5 mm diameter as it drifts into a 30 kG plateau. For the present experiment, the CARM interaction region consisted of a single Bragg section resonator, followed by a smooth-bore amplifier section. Using high-pass filters, they have observed broadband output signals estimated to be at the several megawatt level in the range 140 to over 230 GHz. This is consistent with operation as a superradiant amplifier. Simultaneously, they also observed K a band power levels near 3 MW

  6. Nonlinearly driven oscillations in the gyrotron traveling-wave amplifier

    International Nuclear Information System (INIS)

    Chiu, C. C.; Pao, K. F.; Yan, Y. C.; Chu, K. R.; Barnett, L. R.; Luhmann, N. C. Jr.

    2008-01-01

    By delivering unprecedented power and gain, the gyrotron traveling-wave amplifier (gyro-TWT) offers great promise for advanced millimeter wave radars. However, the underlying physics of this complex nonlinear system is yet to be fully elucidated. Here, we report a new phenomenon in the form of nonlinearly driven oscillations. A zero-drive stable gyro-TWT is shown to be susceptible to a considerably reduced dynamic range at the band edge, followed by a sudden transition into driven oscillations and then a hysteresis effect. An analysis of this unexpected behavior and its physical interpretation are presented.

  7. High power testing of a 17 GHz photocathode RF gun

    International Nuclear Information System (INIS)

    Chen, S.C.; Danly, B.G.; Gonichon, J.

    1995-01-01

    The physics and technological issues involved in high gradient particle acceleration at high microwave (RF) frequencies are under study at MIT. The 17 GHz photocathode RF gun has a 1 1/2 cell (π mode) room temperature cooper cavity. High power tests have been conducted at 5-10 MW levels with 100 ns pulses. A maximum surface electric field of 250 MV/m was achieved. This corresponds to an average on-axis gradient of 150 MeV/m. The gradient was also verified by a preliminary electron beam energy measurement. Even high gradients are expected in our next cavity design

  8. User requirements and conceptual design of the ITER Electron Cyclotron Control System

    Energy Technology Data Exchange (ETDEWEB)

    Carannante, Giuseppe, E-mail: Giuseppe.Carannante@F4E.europa.eu [Fusion for Energy, Josep Pla 2, Barcelona 08019 (Spain); Cavinato, Mario [Fusion for Energy, Josep Pla 2, Barcelona 08019 (Spain); Gandini, Franco [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Granucci, Gustavo [Istituto di Fisica del Plasma ENEA-CNR-EURATOM, via Cozzi 53, 20125 Milano (Italy); Henderson, Mark; Purohit, Dharmesh [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Saibene, Gabriella; Sartori, Filippo [Fusion for Energy, Josep Pla 2, Barcelona 08019 (Spain); Sozzi, Carlo [Istituto di Fisica del Plasma ENEA-CNR-EURATOM, via Cozzi 53, 20125 Milano (Italy)

    2015-10-15

    The ITER Electron Cyclotron (EC) plant is a complex system, essential for plasma operation. The system is being designed to supply up to 20 MW of power at 170 GHz; it consists of 24 RF sources (or Gyrotrons) connected by switchable transmission lines to four upper and one equatorial launcher. The complexity of the EC plant requires a Plant Controller, which provides the functional and operational interface with CODAC and the Plasma Control System and coordinates the various Subsystem Control Units, i.e. the local controllers of power supplies, Gyrotrons, transmission lines and launchers. A conceptual design of the Electron Cyclotron Control System (ECCS) was developed, starting from the collection of the user requirements, which have then been organized as a set of operational scenarios exploiting the EC system. The design consists in a thorough functional analysis, including also protection functions, and in the development of a conceptual I&C architecture. The main aim of the work was to identify the physics requirements and to translate them into control system requirements, in order to define the interfaces within the components of the ECCS. The definition of these interfaces is urgent because some of the subsystems are already in an advanced design phase. The present paper describes both the methodology used and the resulting design.

  9. The Effect of 2.45 GHz Microwave Radiation on Brain Cell Apoptosis in Sprague Dawley Rats

    International Nuclear Information System (INIS)

    Wan Saffiey Wan Abdullah; Rozaimah Abdul Rahim; Zulkifli Yusof

    2016-01-01

    Microwave radiation is a part of non-ionizing electromagnetic radiations present in the environment and is now being perceived as health risks. The study was performed to investigate the effect of 2.45 GHz microwave radiation on brain cell apoptosis in Sprague Dawley rat. In the research done, 32 Sprague Dawley rat were used and divided into four groups; control group, G1 (1 month exposure), G2 (2 months exposure) and G3 (3 months exposure). The presence of apoptotic activity in control group was compared molecularly with exposed group through DNA ladder test. Each exposed group were irradiated in GTEM cell at frequency of 2.45 GHz located at RF/ MW laboratory. There was presence of necrotic instead of apoptotic activity in brain cell and increase in weight of Sprague Dawley rat. Therefore the effect of 2.45GHz microwave radiation shown no presence of apoptosis and increase in weight of Sprague Dawley rat. (author)

  10. Velocity-space tomography of fusion plasmas by collective Thomson scattering of gyrotron radiation

    DEFF Research Database (Denmark)

    Salewski, Mirko; Jacobsen, A.S.; Jensen, Thomas

    2016-01-01

    -tonoise ratio becomes fairly low for MeV-range ions. Ions at any energy can be detected well by collective Thomson scattering of mm-wave radiation from a high-power gyrotron. We demonstrate how collective Thomson scattering can be used to measure 푓2퐷푣 in the MeV-range in reactor relevant plasmas...

  11. Effect of ion compensation of the beam space charge on gyrotron operation

    Energy Technology Data Exchange (ETDEWEB)

    Fokin, A. P.; Glyavin, M. Yu. [Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod 603950 (Russian Federation); Nusinovich, G. S. [Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742-3511 (United States)

    2015-04-15

    In gyrotrons, the coherent radiation of electromagnetic waves takes place when the cyclotron resonance condition between the wave frequency and the electron cyclotron frequency or its harmonic holds. The voltage depression caused by the beam space charge field changes the relativistic cyclotron frequency and, hence, can play an important role in the beam-wave interaction process. In long pulse and continuous-wave regimes, the beam space charge field can be partially compensated by the ions, which appear due to the beam impact ionization of neutral molecules of residual gases in the interaction space. In the present paper, the role of this ion compensation of the beam space charge on the interaction efficiency is analyzed. We also analyze the effect of the electron velocity spread on the limiting currents and discuss some effects restricting the ion-to-beam electron density ratio in the saturation stage. It is shown that the effect of the ion compensation on the voltage depression caused by the beam space charge field can cause significant changes in the efficiency of gyrotron operation and, in some cases, even result in the break of oscillations.

  12. Diamond Based DDR IMPATTs: Prospects and Potentiality as Millimeter-Wave Source at 94 GHz Atmospheric Window

    Directory of Open Access Journals (Sweden)

    A. Acharyya

    2013-06-01

    Full Text Available Large-signal simulation is carried out in this paper to investigate the prospects and potentiality of Double-Drift Region (DDR Impact Avalanche Transit Time (IMPATT device based on semiconducting type-IIb diamond as millimeter-wave source operating at 94 GHz atmospheric window frequency. Large-signal simulation method developed by the authors and presented in this paper is based on non-sinusoidal voltage excitation. The simulation is carried out to obtain the large-signal characteristics such as RF power output, DC to RF conversion efficiency etc. of DDR diamond IMPATT device designed to operate at 94 GHz. The results show that the device is capable of delivering a peak RF power output of 7.01 W with 10.18% DC to RF conversion efficiency for a bias current density of 6.0×10^8 A m^-2 and voltage modulation of 60% at 94 GHz; whereas for the same voltage modulation 94 GHz DDR Si IMPATT can deliver only 693.82 mW RF power with 8.74 efficiency for the bias current density of 3.4×10^8 A m^-2.

  13. 30 GHz High Power Production for CLIC

    CERN Document Server

    Syratchev, I V

    2006-01-01

    The CLIC Power Extraction and Transfer Structure (PETS) is a passive microwave device in which bunches of the drive beam interact with the impedance of the periodically loaded waveguide and excite preferentially the synchronous TM01 mode at 30 GHz. The RF power produced (several hundred MW) is collected at the downstream end of the structure by means of the Power Extractor and conveyed to the main linac structure. The PETS geometry is a result of multiple compromises between beam stability along a single decelerator sector (600 m) and the active length of the structure to match the main linac RF power needs and layout. Surface electric and magnetic fields, power extraction method, HOM damping, ON/OFF capability and fabrication technology were all evaluated to provide a reliable design.

  14. 30 kV/10 mA solid state anode modulator for gyrotron plasma heating: design issues and results

    International Nuclear Information System (INIS)

    Fasel, D.; Lucia, C.; Ganuza, D.; Doyharzabal, I.

    2001-01-01

    Three 30 kV/10 mA solid state pulsed modulators have been delivered to the CRPP in Lausanne, by the company JEMA. Each modulator supplies the anode grid of a triode type gyrotron, used for heating purpose at the third harmonic in the TCV Tokamak. The main parameters of the final design are: the use of solid state technology, a floating output referred to the -80 kV of the gyrotron cathode potential, an output voltage range of -5 to 30 kV, 1 kHz square and sinusoidal modulation, fast switching off to -5 kV (10 μs) and pulsed operation (duty cycle of 1%). After studying and testing a solution based on regulated Mosfet transistors in series, a more stable alternative has been adopted. The final topology consists of a rectifier fed from an insulated 230 V input, a chopper, two inverter steps (for +30 and -5 kV) supplying two diode rectifiers bridges through HV transformers with two switches which commute the load to the positive or negative voltage, connected in series. This article presents the most significant aspects of the design, with special emphasis on the control principle. The final results will be presented in the context of normal operation, supplying a triode gyrotron

  15. Performance Analysis of OFDM 60GHz System and SC-FDE 60GHz System

    Directory of Open Access Journals (Sweden)

    Han Xueyan

    2016-01-01

    Full Text Available In this paper, the performance of 60GHz wireless communication system with SC and OFDM is studied, the models of OFDM 60GHz system and SC 60GHz frequency domain equalization (SC-FDE system are established, and the bit error rate (BER performance of OFDM 60GHz system and SC-FDE 60GHz system in 802.15.3c channels is compared. The simulation results show that SC-FDE 60GHz system has a slight advantage over OFDM system in line-of-sight (LOS channels, while OFDM 60GHz system has a slight advantage over SC-FDE system in non-line-of-sight (NLOS channels. For 60GHz system, OFDM 60GHz system has a slight advantage over SC-FDE system in overcoming multipath fading, but the performance of both is close whether in the LOS or NLOS case.

  16. Entanglement swapping of a GHZ state via a GHZ-like state

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Chia-Wei; Hwang, Tzonelih, E-mail: hwangtl@ismail.csie.ncku.edu.t [National Cheng Kung University, Department of Computer Science and Information Engineering, No. 1 Ta-Hsueh Road, Tainan City 701, Taiwan (China)

    2011-10-15

    This study uses the Greenberger-Horne-Zeilinger (GHZ)-like state |G>= 1/2 (|001>+|010>+|100>+|111>) to establish an entanglement swapping protocol on a pure GHZ state. A quantum circuit is proposed to assist in teleporting the entanglement of the pure GHZ state. Furthermore, on the basis of the generation of the GHZ-like state, an improved protocol to reduce the number of transmitted photons required in the process of entanglement swapping is proposed.

  17. The gyrotron - a natural source of high-power orbital angular momentum millimeter-wave beams

    Science.gov (United States)

    Thumm, M.; Sawant, A.; Choe, M. S.; Choi, E. M.

    2017-08-01

    Orbital angular momentum (OAM) of electromagnetic-wave beams provides further diversity to multiplexing in wireless communication. The present report shows that higher-order mode gyrotrons are natural sources of high-power OAM millimeter (mm) wave beams. The well-defined OAM of their rotating cavity modes operating at near cutoff frequency has been derived by photonic and electromagnetic wave approaches.

  18. 8.64-11.62 GHz CMOS VCO and divider in a zero-IF 802.11a/b/g WLAN and Bluetooth application

    International Nuclear Information System (INIS)

    Sun Yu; Mei Niansong; Lu Bo; Huang Yumei; Hong Zhiliang

    2010-01-01

    A fully integrated VCO and divider implemented in SMIC 0.13-μm RFCMOS 1P8M technology with a 1.2 V supply voltage is presented. The frequency of the VCO is tuning from 8.64 to 11.62 GHz while the quadrature LO signals for 802.11a WLAN in 5.8 GHz band or for 802.11b/g WLAN and Bluetooth in 2.4 GHz band can be obtained by a frequency division by 2 or 4, respectively. A 6 bit switched capacitor array is applied for precise tuning of all necessary frequency bands. The testing results show that the VCO has a phase noise of-113 dBc - 1 MHz offset from the carrier of 5.5 GHz by dividing VCO output by two and the VCO core consumes 3.72 mW. The figure-of-merit for the tuning-range (FOM T ) of the VCO is -192.6 dBc/Hz. (semiconductor integrated circuits)

  19. 8.64-11.62 GHz CMOS VCO and divider in a zero-IF 802.11a/b/g WLAN and Bluetooth application

    Energy Technology Data Exchange (ETDEWEB)

    Sun Yu; Mei Niansong; Lu Bo; Huang Yumei; Hong Zhiliang, E-mail: yumeihuang@fudan.edu.c [ASIC and System State Key Laboratory, Fudan University, Shanghai 201203 (China)

    2010-10-15

    A fully integrated VCO and divider implemented in SMIC 0.13-{mu}m RFCMOS 1P8M technology with a 1.2 V supply voltage is presented. The frequency of the VCO is tuning from 8.64 to 11.62 GHz while the quadrature LO signals for 802.11a WLAN in 5.8 GHz band or for 802.11b/g WLAN and Bluetooth in 2.4 GHz band can be obtained by a frequency division by 2 or 4, respectively. A 6 bit switched capacitor array is applied for precise tuning of all necessary frequency bands. The testing results show that the VCO has a phase noise of-113 dBc - 1 MHz offset from the carrier of 5.5 GHz by dividing VCO output by two and the VCO core consumes 3.72 mW. The figure-of-merit for the tuning-range (FOM{sub T}) of the VCO is -192.6 dBc/Hz. (semiconductor integrated circuits)

  20. Environmental assessment for the Satellite Power System (SPS): studies of honey bees exposed to 2. 45 GHz continuous-wave electromagnetic energy

    Energy Technology Data Exchange (ETDEWEB)

    Gary, N E; Westerdahl, B B

    1980-12-01

    A system for small animal exposure was developed for treating honey bees, Apis mellifera L., in brood and adult stages, with 2.45 GHz continuous wave microwaves at selected power densities and exposure times. Post-treatment brood development was normal and teratological effects were not detected at exposures of 3 to 50 mw/cm/sup 2/ for 30 minutes. Post-treatment survival, longevity, orientation, navigation, and memory of adult bees were also normal after exposures of 3 to 50 mw/cm/sup 2/ for 30 minutes. Post-treatment longevity of confined bees in the laboratory was normal after exposures of 3 to 50 mw/cm/sup 2/ for 24 hours. Thermoregulation of brood nest, foraging activity, brood rearing, and social interaction were not affected by chronic exposure to 1 mw/cm/sup 2/ during 28 days. In dynamic behavioral bioassays the frequency of entry and duration of activity of unrestrained, foraging adult bees was identical in microwave-exposed (5 to 40 mw/cm/sup 2/) areas versus control areas.

  1. Silicon Oil DC200(R)5CST as AN Alternative Coolant for Cvd Diamond Windows

    Science.gov (United States)

    Vaccaro, A.; Aiello, G.; Meier, A.; Schere, T.; Schreck, S.; Spaeh, P.; Strauss, D.; Gantenbein, G.

    2011-02-01

    The production of high power mm-wave radiation is a key technology in large fusion devices, since it is required for localized plasma heating and current drive. Transmission windows are necessary to keep the vacuum in the gyrotron system and also act as tritium barriers. With its excellent optical, thermal and mechanical properties, synthetic CVD (Chemical Vapor Deposition) diamond is the state of the art material for the cw transmission of the mm-wave beams produced by high power gyrotrons. The gyrotrons foreseen for the W7-X stellarator are designed for cw operation with 1 MW output power at 140 GHz. The output window unit is designed by TED (Thales Electron Devices, France) using a single edge circumferentially cooled CVD-diamond disc with an aperture of 88 mm. The window unit is cooled by de-ionized water which is considered as chemical aggressive and might cause corrosion in particular at the brazing. The use of a different coolant such as silicon oil could prevent this issue. The cooling circuit has been simulated by steady-state CFD analysis. A total power generation of 1 kW (RF transmission losses) with pure Gaussian distribution has been assumed for the diamond disc. The performance of both water and the industrial silicon oil DC200(R) have been investigated and compared with a focus on the temperature distribution on the disc, the pressure drop across the cooling path and the heat flux distribution. Although the silicon oil has a higher viscosity (~x5), lower heat capacity (~x1/2) and lower thermal conductivity (~x1/3), it has proven to be a good candidate as alternative to water.

  2. Extension of electron cyclotron heating at ASDEX Upgrade with respect to high density operation

    Directory of Open Access Journals (Sweden)

    Schubert Martin

    2017-01-01

    Full Text Available The ASDEX Upgrade electron cyclotron resonance heating operates at 105 GHz and 140 GHz with flexible launching geometry and polarization. In 2016 four Gyrotrons with 10 sec pulse length and output power close to 1 MW per unit were available. The system is presently being extended to eight similar units in total. High heating power and high plasma density operation will be a part of the future ASDEX Upgrade experiment program. For the electron cyclotron resonance heating, an O-2 mode scheme is proposed, which is compatible with the expected high plasma densities. It may, however, suffer from incomplete single-pass absorption. The situation can be improved significantly by installing holographic mirrors on the inner column, which allow for a second pass of the unabsorbed fraction of the millimetre wave beam. Since the beam path in the plasma is subject to refraction, the beam position on the holographic mirror has to be controlled. Thermocouples built into the mirror surface are used for this purpose. As a protective measure, the tiles of the heat shield on the inner column were modified in order to increase the shielding against unabsorbed millimetre wave power.

  3. A low power 2.4 GHz transceiver for ZigBee applications

    International Nuclear Information System (INIS)

    Liu Weiyang; Chen Jingjing; Wang Haiyong; Wu Nanjian

    2013-01-01

    This paper presents a low power 2.4 GHz transceiver for ZigBee applications. This transceiver adopts low power system architecture with a low-IF receiver and a direct-conversion transmitter. The receiver consists of a new low noise amplifier (LNA) with a noise cancellation function, a new inverter-based variable gain complex filter (VGCF) for image rejection, a passive quadrature mixer, and a decibel linear programmable gain amplifier (PGA). The transmitter adopts a quadrature mixer and a class-B mode variable gain power amplifier (PA) to reduce power consumption. This transceiver is implemented in 0.18 μm CMOS technology. The receiver achieves −95 dBm of sensitivity, 28 dBc of image rejection, and −8 dBm of third-order input intercept point (IIP3). The transmitter can deliver a maximum of +3 dBm output power with PA efficiency of 30%. The whole chip area is less than 4.32 mm 2 . It only consumes 12.63 mW in receiving mode and 14.22 mW in transmitting mode, respectively. (semiconductor integrated circuits)

  4. Exploitation of a diamagnetic loop for modulated ECH power absorption measurements in TCV

    International Nuclear Information System (INIS)

    Manini, A.; Moret, J.M.; Alberti, S.; Goodman, T.P.; Henderson, M.A.

    2003-01-01

    For the evaluation of the performance of auxiliary heating methods and for the understanding of the transport properties of auxiliary heated plasmas, it is of fundamental importance to determine the fraction of the launched power that is actually transferred to the plasma, as well as where in the plasma the power is deposited. The diagnostic which is probably the best suited for the first goal is the Diamagnetic Loop (DML) providing a measurement of the diamagnetic flux of the plasma, which is directly related to the total plasma kinetic energy. TCV is equipped with a very versatile Electron Cyclotron Heating (ECH) system. It consists of six gyrotrons operating at the second harmonic, 82.7 GHz, and three gyrotrons at the third harmonic, 118 GHz. The nominal power for each 82.7 GHz gyrotron is 465 kW and for each 118 GHz gyrotron is 480 kW, resulting in a total of radio frequency power of 4.2 MW. In this paper we present the method that has been developed for determining the absorbed power in the ECH experiments in TCV, pointing out especially the results of the first third harmonic X-Mode (X3) ECH experiments, leaving the problem of the power deposition localisation to other reports. For the determination of the total plasma kinetic energy, the DML has also been used on other devices such as JET, ASDEX and TEXTOR, but only for this last case modulation experiments have been performed and analysed. Modulated ECH has been used to determine the ECH X2 and X3 power absorption from the measurement of the diamagnetic flux variations using the DML. Since only the modulation contribution is relevant to the analysis, the method does not require a perfect compensation of the diamagnetic flux measurement, although a good compensation of the vessel poloidal image current is crucial for ensuring a sufficiently large bandwidth to allow the use of high frequency modulation. The analysis of the behaviour of the amplitude and phase response in the modulation frequency scan has

  5. Study of a high-order-mode gyrotron traveling-wave amplifier

    International Nuclear Information System (INIS)

    Chiu, C. C.; Tsai, C. Y.; Kao, S. H.; Chu, K. R.; Barnett, L. R.; Luhmann, N. C. Jr.

    2010-01-01

    Physics and performance issues of a TE 01 -mode gyrotron traveling-wave amplifier are studied in theory. For a high order mode, absolute instabilities on neighboring modes at the fundamental and higher cyclotron harmonic frequencies impose severe constraints to the device capability. Methods for their stabilization are outlined, on the basis of which the performance characteristics are examined in a multidimensional parameter space under the marginal stability criterion. The results demonstrate the viability of a high-order-mode traveling-wave amplifier and provide a roadmap for design tradeoffs among power, bandwidth, and efficiency. General trends are observed and illustrated with specific examples.

  6. Modelling, simulation and computer-aided design (CAD) of gyrotrons for novel applications in the high-power terahertz science and technologies

    Science.gov (United States)

    Sabchevski, S.; Idehara, T.; Damyanova, M.; Zhelyazkov, I.; Balabanova, E.; Vasileva, E.

    2018-03-01

    Gyrotrons are the most powerful sources of CW coherent radiation in the sub-THz and THz frequency bands. In recent years, they have demonstrated a remarkable potential for bridging the so-called THz-gap in the electromagnetic spectrum and opened the road to many novel applications of the terahertz waves. Among them are various advanced spectroscopic techniques (e.g., ESR and DNP-NMR), plasma physics and fusion research, materials processing and characterization, imaging and inspection, new medical technologies and biological studies. In this paper, we review briefly the current status of the research in this broad field and present our problem-oriented software packages developed recently for numerical analysis, computer-aided design (CAD) and optimization of gyrotrons.

  7. Recent Upgrades and Extensions of the ASDEX Upgrade ECRH System

    Science.gov (United States)

    Wagner, Dietmar; Stober, Jörg; Leuterer, Fritz; Monaco, Francesco; Münich, Max; Schmid-Lorch, Dominik; Schütz, Harald; Zohm, Hartmut; Thumm, Manfred; Scherer, Theo; Meier, Andreas; Gantenbein, Gerd; Flamm, Jens; Kasparek, Walter; Höhnle, Hendrik; Lechte, Carsten; Litvak, Alexander G.; Denisov, Gregory G.; Chirkov, Alexey; Popov, Leonid G.; Nichiporenko, Vadim O.; Myasnikov, Vadim E.; Tai, Evgeny M.; Solyanova, Elena A.; Malygin, Sergey A.

    2011-03-01

    The multi-frequency Electron Cyclotron Heating (ECRH) system at the ASDEX Upgrade tokamak employs depressed collector gyrotrons, step-tunable in the range 105-140 GHz. The system is equipped with a fast steerable launcher allowing for remote steering of the ECRH RF beam during the plasma discharge. The gyrotrons and the mirrors are fully integrated in the discharge control system. The polarization can be controlled in a feed-forward mode. 3 Sniffer probes for millimeter wave stray radiation detection have been installed.

  8. W-band power amplifier MMIC with 400 mW output power in 0.1 μm AlGaN/GaN technology

    NARCIS (Netherlands)

    Heijningen,M. van; Rodenburg, M.; Vliet, F.E. van; Massler, M.; Tessmann, A.; Brückner, F.; Müller, S.; Schwantuschke, D.; Quay; Narhi, T.

    2012-01-01

    The 0.1 μm AlGaN/GaN technology and design of two W-band power amplifiers in this technology are described. The dual-stage amplifier reaches an output power of 400 mW at 90 GHz at an operation bias of 20 V. Two designs with different driver to final stage gate width ratio are discussed. More than 10

  9. An overview of control system for the ITER electron cyclotron system

    International Nuclear Information System (INIS)

    Purohit, D.; Bigelow, T.; Billava, D.; Bonicelli, T.; Caughman, J.; Darbos, C.; Denisov, G.; Gandini, F.; Gassmann, T.; Henderson, M.; Journeux, J.Y.; Kajiwara, K.; Kobayashi, N.; Nazare, C.; Oda, Y.; Omori, T.; Rao, S.L.; Rasmussen, D.; Ronden, D.; Saibene, G.

    2011-01-01

    The ITER electron cyclotron (EC) system having capability of up to 26 MW generated power at 170 GHz is being procured by 5 domestic agencies via 10 procurement arrangements. This implies diverse types of equipment and complex interface management. It also places a challenge on control system architecture to entertain the constraints of procurement slicing and meeting the overall functional requirement. The envisioned architecture is to use the local control units (supplied with each procurement) and a supervisory plant controller (by ITER). This offers a reliable control configuration for such delicate and complex EC plant system. The control system is envisioned to monitor the whole plant and perform automated tasks that are today performed via direct human intervention. For example, the automated gyrotron conditioning and active control of the EC plant to respond to requests from the plasma control system (PCS). This later aspect requires rapid shut down of the gyrotrons and power supplies, deviation of the actuators to direct the power from an equatorial to upper launcher and then restart of the power generation for rapid stabilization of the magneto hydrodynamic (MHD) instabilities that occur in high performance plasma operation. The plant controller will be designed for optimized performance with the PCS and the feedback control system used to actively control the power (with modulation capability up to 5 kHz) and launching direction for MHD stabilization.

  10. Remote-Steering Antennas for 140 GHz Electron Cyclotron Heating of the Stellarator W7-X

    Directory of Open Access Journals (Sweden)

    Lechte C.

    2017-01-01

    Full Text Available For electron cyclotron resonance heating of the stellarator W7-X at IPP Greifswald, a 140 GHz/10 MW cw millimeter wave system has been built. Two out of 12 launchers will employ a remote-steering design. This paper describes the overall design of the two launchers, and design issues like input coupling structures, manufacturing of corrugated waveguides, optimization of the steering range, integration of vacuum windows, mitrebends and vacuum valves into the launchers, as well as low power tests of the finished waveguides.

  11. High frequency CARM driver for rf linacs

    International Nuclear Information System (INIS)

    Danly, B.G.

    1993-01-01

    This CARM program has successfully demonstrated the first ever long-pulse CARM oscillator operation; these results demonstrate the potential of CARMs as an alternative source of millimeter waves to the gyrotron for ECRH plasma heating. The result of 1.8 MW at 27.8 GHz and 0.5 μs pulse width in the TE 11 mode represent a clear demonstration of the capabilities of the CARM oscillator for the production of high powers with large frequency upshift. It is hoped that this successful proof-of-principle demonstration.will lead to further development of the CARM as an ECRH source by the DOE Office of Fusion Energy, Development and Technology Division. This success is a direct outcome of this support of the Advanced Energy Projects Office of DOE in the form of this program. The CARM amplifier component of the program, although unsuccessful at obtaining CARM amplifier operation at 17 GHz, has succeeded by furthering the understanding of the limitations and difficulties that lie ahead for continued CARM amplifier development. The amplifier component of the program has successfully demonstrated a high power second and third harmonic gyro-TWT amplifier. Up to 5 MW of power at 17.1 GHz and >50dB gain have been obtained. These results should be viewed as an important contribution of this program to the development of viable microwave sources for powering the next linear collider. Indeed, the present gyro-amplifier, which resulted from this program, is presently being used in ongoing high-gradient accelerator research at MIT under a DOE High Energy Physics grant. As a result of both the oscillator and amplifier advances made during this program, the CARM and harmonic gyro-TWT have reached a significantly more mature level; their future role in specific applications of benefit to DOEs OFE and HEP offices may now be pursued

  12. An InGaAs/InP 40 GHz CML static frequency divider

    International Nuclear Information System (INIS)

    Su Yongbo; Jin Zhi; Cheng Wei; Ge Ji; Wang Xiantai; Chen Gaopeng; Liu Xinyu; Xu Anhuai; Qi Ming

    2011-01-01

    Static frequency dividers are widely used as a circuit performance benchmark or figure-of-merit indicator to gauge a particular device technology's ability to implement high speed digital and integrated high performance mixed-signal circuits. We report a 2 : 1 static frequency divider in InGaAs/InP heterojunction bipolar transistor technology. This is the first InP based digital integrated circuit ever reported on the mainland of China. The divider is implemented in differential current mode logic (CML) with 30 transistors. The circuit operated at a peak clock frequency of 40 GHz and dissipated 650 mW from a single -5 V supply. (semiconductor integrated circuits)

  13. SEMICONDUCTOR INTEGRATED CIRCUITS 8.64-11.62 GHz CMOS VCO and divider in a zero-IF 802.11a/b/g WLAN and Bluetooth application

    Science.gov (United States)

    Yu, Sun; Niansong, Mei; Bo, Lu; Yumei, Huang; Zhiliang, Hong

    2010-10-01

    A fully integrated VCO and divider implemented in SMIC 0.13-μm RFCMOS 1P8M technology with a 1.2 V supply voltage is presented. The frequency of the VCO is tuning from 8.64 to 11.62 GHz while the quadrature LO signals for 802.11a WLAN in 5.8 GHz band or for 802.11b/g WLAN and Bluetooth in 2.4 GHz band can be obtained by a frequency division by 2 or 4, respectively. A 6 bit switched capacitor array is applied for precise tuning of all necessary frequency bands. The testing results show that the VCO has a phase noise of—113 dBc @ 1 MHz offset from the carrier of 5.5 GHz by dividing VCO output by two and the VCO core consumes 3.72 mW. The figure-of-merit for the tuning-range (FOMT) of the VCO is -192.6 dBc/Hz.

  14. Quasi-optical converters for high-power gyrotrons: a brief review of physical models, numerical methods and computer codes

    International Nuclear Information System (INIS)

    Sabchevski, S; Zhelyazkov, I; Benova, E; Atanassov, V; Dankov, P; Thumm, M; Arnold, A; Jin, J; Rzesnicki, T

    2006-01-01

    Quasi-optical (QO) mode converters are used to transform electromagnetic waves of complex structure and polarization generated in gyrotron cavities into a linearly polarized, Gaussian-like beam suitable for transmission. The efficiency of this conversion as well as the maintenance of low level of diffraction losses are crucial for the implementation of powerful gyrotrons as radiation sources for electron-cyclotron-resonance heating of fusion plasmas. The use of adequate physical models, efficient numerical schemes and up-to-date computer codes may provide the high accuracy necessary for the design and analysis of these devices. In this review, we briefly sketch the most commonly used QO converters, the mathematical base they have been treated on and the basic features of the numerical schemes used. Further on, we discuss the applicability of several commercially available and free software packages, their advantages and drawbacks, for solving QO related problems

  15. A 5.2/5.8 GHz Dual Band On-Off Keying Transmitter Design for Bio-Signal Transmission

    Science.gov (United States)

    Wu, Chang-Hsi; You, Hong-Cheng; Huang, Shun-Zhao

    2018-02-01

    An architecture of 5.2/5.8-GHz dual-band on-off keying (DBOOK) modulated transmitter is designed in a 0.18-μm CMOS technology. The proposed DBOOK transmitter is used in the biosignal transmission system with high power efficiency and small area. To reduce power consumption and enhance output swing, two pairs of center-tapped transformers are used as both LC tank and source grounding choke for the designed voltage controlled oscillator (VCO). Switching capacitances are used to achieve dual band operations, and a complemented power combiner is used to merge the differential output power of VCO to a single-ended output. Besides, the linearizer circuits are used in the proposed power amplifier with wideband output matching to improve the linearity both at 5.2/5.8-GHz bands. The designed DBOOK transmitter is implemented by dividing it into two chips. One chip implements the dual-band switching VCO and power combiner, and the other chip implements a linear power amplifier including dual-band operation. The first chip drives an output power of 2.2mW with consuming power of 5.13 mW from 1.1 V supply voltage. With the chip size including pad of 0.61 × 0.91 m2, the measured data rate and transmission efficiency attained are 100 Mb/s and 51 pJ/bit, respectively. The second chip, for power enhanced mode, exhibits P1 dB of -9 dBm, IIP3 of 1 dBm, the output power 1 dB compression point of 12.42 dBm, OIP3 of about 21 dBm, maximum output power of 17.02/16.18 dBm, and power added efficiency of 17.13/16.95% for 5.2/ 5.8 GHz. The chip size including pads is 0:693 × 1:084mm2.

  16. The Compact Ignition Tokamak and electron cyclotron heating: Description of need; assessment of prospects

    International Nuclear Information System (INIS)

    Ignat, D.W.; Cohn, D.R.; Woskov, P.P.

    1989-01-01

    The CIT will benefit from auxiliary heating of 10 to 40 MW. The schedules of both the CIT construction project and the operating plan contain adequate time to develop and implement ECH systems based on the gyrotron and the induction free electron laser (IFEL). Each approach has advantages and is the object of R and D at the level of many millions of dollars per year. While the gyrotron is further advanced in terms of power and pulse length achieved, rapid progress is scheduled for the IFEL, including experiments on tokamaks. Plans of CIT, gyrotron, and IFEL make 1992 an appropriate time frame to commit to one or both systems. 12 refs., 8 figs., 2 tabs

  17. Development of a thermionic magnicon amplifier at 11.4 GHz. Final report for period May 16, 1995 - May 15, 2001

    International Nuclear Information System (INIS)

    Gold, Steven H.; Fliflet, Arne W.

    2001-01-01

    This is the final report on the research program ''Development of a Thermionic Magnicon Amplifier at 11.4 GHz,'' which was carried out by the Plasma Physics Division of the Naval Research Laboratory. Its goal was to develop a high-power, frequency-doubling X-band magnicon amplifier, an advanced scanning-beam amplifier, for use in future linear colliders. The final design parameters were 61 MW at 11.424 GHz, 59 dB gain, 59% efficiency, 1 microsecond pulselength and 10 Hz repetition rate. At the conclusion of this program, the magnicon was undergoing high-power conditioning, having already demonstrated high-power operation, phase stability, a linear drive curve, a small operational frequency bandwidth and a spectrally pure, single-mode output

  18. 12 MW

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Pena Diaz, Alfredo; Mikkelsen, Torben

    '12MW: final report' is for the project with the full title ‘12 MW wind turbines: the scientific basis for their operation at 70 to 270 m height offshore’ that had the goal to experimentally investigate the wind and turbulence characteristics between 70 and 270 m above sea level and thereby...... establish the scientific basis relevant for the next generation of huge 12 MW wind turbines operating offshore. The project started 1st October 2005 and ended 31st March 2009. Firstly was conducted a 6-month experiment at the Horns Rev offshore wind farm deploying a lidar and a sodar on the transformer...

  19. Design of a 100 MW X-band klystron

    International Nuclear Information System (INIS)

    Eppley, K.

    1989-02-01

    Future linear colliders will require klystrons with higher peak power at higher frequency than are currently in use. SLAC is currently designing a 100 MW klystron at 11.4 GHz as a prototype for such a tube. The gun has been designed for 440 KV and 510 amps. Transporting this beam through a 5 mm radius X-band drift tube presents the major design problem. The area convergence ratio of 190 to one is over ten times higher than is found in conventional klystrons. Even with high magnetic fields of 6 to 7 kilogauss careful matching is required to prevent excessive scalloping. Extensive EGUN and CONDOR simulations have been made to optimize the transmission and rf efficiency. The EGUN simulations indicate that better matching is possible by using resonant magnetic focusing. CONDOR calculations indicate efficiencies of 45 percent are possible with a double output cavity. We will discuss the results of the simulations and the status of the experimental program. 3 refs., 6 figs., 2 tabs

  20. Design of a 100 MW X-band klystron

    Science.gov (United States)

    Eppley, Kenneth

    1989-02-01

    Future linear colliders will require klystrons with higher peak power at higher frequency than are currently in use. SLAC is currently designing a 100 MW klystron at 11.4 GHz as a prototype for such a tube. The gun has been designed for 440 kV and 510 amps. Transporting this beam through a 5 mm radius X-band drift tube presents the major design problem. The area convergence ratio of 190 to one is over ten times higher than is found in conventional klystrons. Even with high magnetic fields of 6 to 7 kilogauss careful matching is required to prevent excessive scalloping. Extensive EGUN and CONDOR simulations have been made to optimize the transmission and RF efficiency. The EGUN simulations indicate that better matching is possible by using resonant magnetic focusing. CONDOR calculations indicate efficiencies of 45 percent are possible with a double output cavity. We will discuss the results of the simulations and the status of the experimental program.

  1. Construction, completion, and testing of replacement monitoring wells MW 3-2, MW 6-2, MW 7-2, and MW 11-2, Mountain Home Air Force Base, Idaho, February through April 2000

    Science.gov (United States)

    Parliman, D.J.

    2000-01-01

    In February and March 2000, the U.S. Geological Survey Western Regional Research Drilling Operation constructed replacement monitoring wells MW 3–2, MW 6–2, MW 7–2, and MW 11–2 as part of a regional ground-water monitor- ing network for the Mountain Home Air Force Base, Elmore County, Idaho. Total well depths ranged from 435.5 to 456.5 feet, and initial depth-to-water measurements ranged from about 350 to 375 feet below land surface. After completion, wells were pumped and onsite measurements were made of water temperature, specific conductance, pH, and dissolved oxygen. At each well, natural gamma, spontaneous potential, resistivity, caliper, and temperature logs were obtained from instruments placed in open boreholes. A three- dimensional borehole flow analysis was completed for MW 3–2 and MW 11–2, and a video log was obtained for MW 11–2 to annotate lithology and note wet zones in the borehole above saturated rock.

  2. The fusion-FEM: 0,75 MW of mm-wave power

    Energy Technology Data Exchange (ETDEWEB)

    Smeets, P.H.M.; Bongers, W.A.; Brons, S.; Geer, C.A.J. van der; Lingier, K.L.; Manintveld, P.; Plomp, J.; Pluygers, J.; Poelman, A.J.; Sterk, A.B.; Verhoeven, A.G.A.; Urbanus, W.H. [FOM Inst. voor Plasmafysica ' Rijnhuizen' , Nieuwegein (Netherlands); Bratman, V.L.; Denisov, G.G.; Savilov, A.V. [Inst. of Applied Physics, Nizhny Novgorod (Russian Federation); Caplan, M. [Lawrence Livermore National Lab., CA (United States); Varfolomeev, A.A. [Russian Research Center ' Kurchatov Inst.' , Moscow (Russian Federation)

    1998-07-01

    The free-electron maser for fusion applications (Fusion-FEM) is the prototype for a high power, rapid tunable mm-wave source. The basic parameters such as frequency range (130 - 260 GHz) and output power (1 MW) are dedicated to Electron Cyclotron Resonance applications on future plasma fusion research devices, such as ITER. In October 1996 the electron beam was successfully accelerated and transported through the undulator and the mm-wave cavity. Loss currents are below 0.05 %. In October 1997 first lasing was achieved. The mm-wave output power has been measured at various frequencies and for various electron beam currents and energies. The highest output power reached so far is 730 kW at 205 GHz, for an electron beam of 7.2 A and 1.77 MeV. Both output power and start-up time correspond well with simulation results. The output beam has a Gaussian mode content of more than 99.8 % for all operating frequencies. So far, the pulse length was limited to 12{mu}s, because the electron beam recovery system was not yet installed. This system, an electron decelerator and a 3-stage depressed collector, is presently under construction. It serves to recover the charge and energy of the spend electron beam. In this paper we will address some aspects of the design of the collector. (author)

  3. The fusion-FEM: 0,75 MW of mm-wave power

    International Nuclear Information System (INIS)

    Smeets, P.H.M.; Bongers, W.A.; Brons, S.; Geer, C.A.J. van der; Lingier, K.L.; Manintveld, P.; Plomp, J.; Pluygers, J.; Poelman, A.J.; Sterk, A.B.; Verhoeven, A.G.A.; Urbanus, W.H.; Bratman, V.L.; Denisov, G.G.; Savilov, A.V.; Caplan, M.; Varfolomeev, A.A.

    1998-01-01

    The free-electron maser for fusion applications (Fusion-FEM) is the prototype for a high power, rapid tunable mm-wave source. The basic parameters such as frequency range (130 - 260 GHz) and output power (1 MW) are dedicated to Electron Cyclotron Resonance applications on future plasma fusion research devices, such as ITER. In October 1996 the electron beam was successfully accelerated and transported through the undulator and the mm-wave cavity. Loss currents are below 0.05 %. In October 1997 first lasing was achieved. The mm-wave output power has been measured at various frequencies and for various electron beam currents and energies. The highest output power reached so far is 730 kW at 205 GHz, for an electron beam of 7.2 A and 1.77 MeV. Both output power and start-up time correspond well with simulation results. The output beam has a Gaussian mode content of more than 99.8 % for all operating frequencies. So far, the pulse length was limited to 12μs, because the electron beam recovery system was not yet installed. This system, an electron decelerator and a 3-stage depressed collector, is presently under construction. It serves to recover the charge and energy of the spend electron beam. In this paper we will address some aspects of the design of the collector. (author)

  4. A 12b 2.9GS/s DAC with IM3>60dB beyond 1 GHz in 65nm CMOS

    NARCIS (Netherlands)

    Lin, C.H.; Goes, F.; Westra, J.; Mulder, J.; Lin, Y.; Arslan, E.; Ayranci, E.; Liu, X.; Bult, K.

    2009-01-01

    A 12b 2.9GS/s current-steering DAC implemented in 65nm CMOS is presented, with an IM3 «-60dBc beyond 1GHz while driving a 50¿ load with an output swing of 2.5Vpp-diff and dissipating a power of 188mW. The SFDR measured at 2.9GS/s is better than 60dB beyond 340MHz.

  5. 120 MW, 800 MHz Magnicon for a Future Muon Collider

    International Nuclear Information System (INIS)

    Jay L. Hirshfield

    2005-01-01

    Development of a pulsed magnicon at 800 MHz was carried out for the muon collider application, based on experience with similar amplifiers in the frequency range between 915 MHz and 34.3 GHz. Numerical simulations using proven computer codes were employed for the conceptual design, while established design technologies were incorporated into the engineering design. A cohesive design for the 800 MHz magnicon amplifier was carried out, including design of a 200 MW diode electron gun, design of the magnet system, optimization of beam dynamics including space charge effects in the transient and steady-state regimes, design of the drive, gain, and output cavities including an rf choke in the beam exit aperture, analysis of parasitic oscillations and design means to eliminate them, and design of the beam collector capable of 20 kW average power operation

  6. A 65 nm CMOS high efficiency 50 GHz VCO with regard to the coupling effect of inductors

    International Nuclear Information System (INIS)

    Ye Yu; Tian Tong

    2013-01-01

    A 50 GHz cross-coupled voltage controlled oscillator (VCO) considering the coupling effect of inductors based on a 65 nm standard complementary metal oxide semiconductor (CMOS) technology is reported. A pair of inductors has been fabricated, measured and analyzed to characterize the coupling effects of adjacent inductors. The results are then implemented to accurately evaluate the VCO's LC tank. By optimizing the tank voltage swing and the buffer's operation region, the VCO achieves a maximum efficiency of 11.4% by generating an average output power of 2.5 dBm while only consuming 19.7 mW (including buffers). The VCO exhibits a phase noise of −87 dBc/Hz at 1 MHz offset, leading to a figure of merit (FoM) of −167.5 dB/Hz and a tuning range of 3.8% (from 48.98 to 50.88 GHz). (semiconductor integrated circuits)

  7. High-power millimeter-wave mode converters in overmoded circular waveguides using periodic wall perturbations

    International Nuclear Information System (INIS)

    Thumm, M.

    1984-07-01

    This work reports on measurements and calculations (coupled mode equations) on the conversion of circular elecric TEsub(0n) gyrotron mode compositions (TE 01 to TE 04 ) at 28 and 70 GHz to the linearly polarized TE 11 mode by means of a mode converter system using periodic waveguide wall perturbations. Mode transducers with axisymmetric radius perturbations transform the TEsub(0n) gyrotron mode mixture to the more convenient TE 01 mode for long-distance transmission through overmoded waveguides. Proper matching of the phase differences between the TEsub(0n) modes and of lengths and perturbation amplitudes of the several converter sections is required. A mode converter with constant diameter and periodically perturbed curvature transfers the unpolarized TE 01 mode into the TE 11 mode which produces an almost linearly polarized millimeter-wave beam needed for efficient electron cyclotron heating (ECRH) of plasmas in thermonuclear fusion devices. The experimentally determined TEsub(0n)-to-TE 01 conversion efficiency is (98+-1)% at 28 and 70 GHz (99% predicted) while the TE 01 -to-TE 11 converter has a (96+-2)% conversion efficiency at 28 GHz (95% predicted) and (94+-2)% at 70 GHz (93% predicted); ohmic losses are included. (orig./AH)

  8. 60 GHz system-on-chip (SoC) with built-in memory and an on-chip antenna

    KAUST Repository

    Ghaffar, Farhan A.

    2014-04-01

    A novel 60 GHz transmitter SoC with an on-chip antenna and integrated memory in CMOS 65 nm technology is presented in this paper. This highly integrated transmitter design can support a data rate of 2 GBPS with a transmission range of 1 m. The transmitter consists of a fundamental frequency 60 GHz PLL which covers the complete ISM band. The modulator following the PLL can support both BPSK and OOK modulation schemes. Both stored data on the integrated memory or directly from an external source can be transmitted. A tapered slot on chip antenna is integrated with the power amplifier to complete the front end of the transmitter design. Size of the complete transmitter with on-chip antenna is only 1.96 mm × 1.96 mm. The core circuits consume less than 100 mW of power. The high data rate capability of the design makes it extremely suitable for bandwidth hungry applications such as unencrypted HD video streaming and transmission.

  9. 60 GHz system-on-chip (SoC) with built-in memory and an on-chip antenna

    KAUST Repository

    Ghaffar, Farhan A.; Arsalan, Muhammad; Cheema, Hammad; Salama, Khaled N.; Shamim, Atif

    2014-01-01

    A novel 60 GHz transmitter SoC with an on-chip antenna and integrated memory in CMOS 65 nm technology is presented in this paper. This highly integrated transmitter design can support a data rate of 2 GBPS with a transmission range of 1 m. The transmitter consists of a fundamental frequency 60 GHz PLL which covers the complete ISM band. The modulator following the PLL can support both BPSK and OOK modulation schemes. Both stored data on the integrated memory or directly from an external source can be transmitted. A tapered slot on chip antenna is integrated with the power amplifier to complete the front end of the transmitter design. Size of the complete transmitter with on-chip antenna is only 1.96 mm × 1.96 mm. The core circuits consume less than 100 mW of power. The high data rate capability of the design makes it extremely suitable for bandwidth hungry applications such as unencrypted HD video streaming and transmission.

  10. 2.45-GHz microwave irradiation adversely affects reproductive function in male mouse, Mus musculus by inducing oxidative and nitrosative stress.

    Science.gov (United States)

    Shahin, S; Mishra, V; Singh, S P; Chaturvedi, C M

    2014-05-01

    Electromagnetic radiations are reported to produce long-term and short-term biological effects, which are of great concern to human health due to increasing use of devices emitting EMR especially microwave (MW) radiation in our daily life. In view of the unavoidable use of MW emitting devices (microwaves oven, mobile phones, Wi-Fi, etc.) and their harmful effects on biological system, it was thought worthwhile to investigate the long-term effects of low-level MW irradiation on the reproductive function of male Swiss strain mice and its mechanism of action. Twelve-week-old mice were exposed to non-thermal low-level 2.45-GHz MW radiation (CW for 2 h/day for 30 days, power density = 0.029812 mW/cm(2) and SAR = 0.018 W/Kg). Sperm count and sperm viability test were done as well as vital organs were processed to study different stress parameters. Plasma was used for testosterone and testis for 3β HSD assay. Immunohistochemistry of 3β HSD and nitric oxide synthase (i-NOS) was also performed in testis. We observed that MW irradiation induced a significant decrease in sperm count and sperm viability along with the decrease in seminiferous tubule diameter and degeneration of seminiferous tubules. Reduction in testicular 3β HSD activity and plasma testosterone levels was also noted in the exposed group of mice. Increased expression of testicular i-NOS was observed in the MW-irradiated group of mice. Further, these adverse reproductive effects suggest that chronic exposure to nonionizing MW radiation may lead to infertility via free radical species-mediated pathway.

  11. Research on Gyrotrons.

    Science.gov (United States)

    1985-04-15

    8217 ) (2N’n I roBo )2wL(I - I/vo)exptEo2(aw/w) 2/2j { 2(kp , /mor4) 2("-1t[ 0 2L~o2 ( A/,’w)/2 - n ](2 TQV) ’, (1) C mw)m, = [n + (n2 + 42 .,4)i2 I/ 2 2...Acknowledgement The author would like to express his gratitude to his advisor , Professor Jay L. Hirshfield, for the indefatigable scientific discussion which

  12. Design of an induction linac driven CARM [Cyclotron Auto Resonance Maser] oscillator at 250 GHz

    International Nuclear Information System (INIS)

    Caplan, M.; Kulke, B.

    1990-01-01

    We present the design of a 250 GHz, 400 MW Cyclotron Auto Resonance Maser (CARM) oscillator driven by a 1 KA, 2 MeV electron beam produced by the induction linac at the ARC facility of LLNL. The oscillator circuit is designed as a feedback amplifier operating in the TE 11 mode at ten times cutoff terminated at each end with Bragg reflectors. Theory and cold test results are in good agreement for a manufactured Bragg reflector using 50 μm corrugations to ensure mode purity. The CARM is to be operational by February 1990. 3 figs., 2 tabs

  13. Measurements Techniques for Gyrotron characterization

    International Nuclear Information System (INIS)

    Castro, P.J. de.

    1987-08-01

    Experiments planned for the characterization of the 35GHz girotron, which is being built at the Plasma Laboratory of INPE, are described. The methods of the measurements are presented and the required instrumentation and devices are specified. Special attention is given to the measurement techniques of the resonator electric field profile. (author) [pt

  14. Antenne Design for 24 GHz and 60 GHz Emerging Microwave Applications

    NARCIS (Netherlands)

    Jansen, F.; Dolmans, W.M.C.

    2006-01-01

    In this project integrated antennas on a LAMP3 substrate for automotive radar systems at 24 GHz and wireless networks at 60 GHz have been designed. The most severe requirements on the antennas were the large bandwidth, which can not be met with conventional patch antennas. A tapered slot antenna and

  15. Design and High Power Measurements of a 3 GHz Rotary Joint for Medical Applications

    CERN Document Server

    Degiovanni, Alberto; Garlasche, Marco; Giner-Navarro, Jorge; Magagnin, Paolo; Mcmonagle, Gerard; Syratchev, Igor; Wuensch, Walter

    2016-01-01

    The TUrning LInac for Protontherapy (TULIP) project requires the transport of RF power from modulator/klystron systems at rest on the floor to the linac structures mounted on a rotating gantry, via a waveguide system that can operate over a range of angles of rotation. A waveguide rotary joint capable of transporting RF power at 3 GHz and up to 20 MW has been designed and built in collaboration between TERA Foundation, CERN Beams and CERN Engineering Departments. A high-power test of the prototype has been performed at the CLIC Test Facility (CTF3), at CERN. The design and the results of the tests are reported in this article.

  16. The 3 MW ECRH/ECCD transmission and launching system on TORE SUPRA

    International Nuclear Information System (INIS)

    Lennholm, M.; Agarici, G.; Berger-By, G.; Bosia, P.; Bouquey, F.; Clary, J.; Darbos, C.; Giruzzi, G.; Jung, M.; Magne, R.; Roux, D.; Petit, T.; Segui, J.L.; Zou, X.L.

    2003-01-01

    The ECRH experiment on TORE SUPRA is designed to inject up to 3 MW of power at 118 GHz using an antenna consisting of six fixed spherical mirrors and three mobile steering mirrors. The position of the mobile mirrors can be varied in real time using two stepper motors for each mobile mirror. In addition to controlling the injection angle, the position of the mobile mirrors also affects the polarisation of the injected wave. Accurate formulae to compute, in real time, the stepper motor positions required to obtain the desired beam injection angles have been derived. Formulae to determine the effect on the wave polarisation, of the actual mobile mirror positions have also been determined. These formulae have been verified by precise laser measurements and by comparison of power deposition calculations and experimental results. (authors)

  17. Contactless Investigations of Yeast Cell Cultivation in the 7 GHz and 240 GHz Ranges

    International Nuclear Information System (INIS)

    Wessel, J; Schmalz, K; Meliani, C; Gastrock, G; Cahill, B P

    2013-01-01

    Using a microfluidic system based on PTFE tubes, experimental results of contactless and label-free characterization techniques of yeast cell cultivation are presented. The PTFE tube has an inner diameter of 0.5 mm resulting in a sample volume of 2 μ1 for 1 cm sample length. Two approaches (at frequencies around 7 GHz and 240 GHz) are presented and compared in terms of sensitivity and applicability. These frequency bands are particularly interesting to gain information on the permittivity of yeast cells in Glucose solution. Measurements from 240 GHz to 300 GHz were conducted with a continuous wave spectrometer from Toptica. At 7 GHz band, measurements have been performed using a rat-race based characterizing system realized on a printed circuit board. The conducted experiments demonstrate that by selecting the phase as characterization parameter, the presented contactless and label-free techniques are suitable for cell cultivation monitoring in a PTFE pipe based microfluidic system.

  18. Magnetron injection gun for a broadband gyrotron backward-wave oscillator

    International Nuclear Information System (INIS)

    Yuan, C. P.; Chang, T. H.; Chen, N. C.; Yeh, Y. S.

    2009-01-01

    The magnetron injection gun is capable of generating relativistic electron beam with high velocity ratio and low velocity spread for a gyrotron backward-wave oscillator (gyro-BWO). However, the velocity ratio (α) varies drastically against both the magnetic field and the beam voltage, which significantly limits the tuning bandwidth of a gyro-BWO. This study remedies this drawback by adding a variable trim field to adjust the magnetic compression ratio when changing the operating conditions. Theoretical results obtained by employing a two-dimensional electron gun code (EGUN) demonstrate a constant velocity ratio of 1.5 with a low axial velocity spread of 6% from 3.4-4.8 Tesla. These results are compared with a three-dimensional particle-tracing code (computer simulation technology, CST). The underlying physics for constant α will be discussed in depth.

  19. Magnetron injection gun for a broadband gyrotron backward-wave oscillator

    Science.gov (United States)

    Yuan, C. P.; Chang, T. H.; Chen, N. C.; Yeh, Y. S.

    2009-07-01

    The magnetron injection gun is capable of generating relativistic electron beam with high velocity ratio and low velocity spread for a gyrotron backward-wave oscillator (gyro-BWO). However, the velocity ratio (α) varies drastically against both the magnetic field and the beam voltage, which significantly limits the tuning bandwidth of a gyro-BWO. This study remedies this drawback by adding a variable trim field to adjust the magnetic compression ratio when changing the operating conditions. Theoretical results obtained by employing a two-dimensional electron gun code (EGUN) demonstrate a constant velocity ratio of 1.5 with a low axial velocity spread of 6% from 3.4-4.8 Tesla. These results are compared with a three-dimensional particle-tracing code (computer simulation technology, CST). The underlying physics for constant α will be discussed in depth.

  20. A 5.2GHz, 0.5mW RF powered wireless sensor with dual on-chip antennas for implantable intraocular pressure monitoring

    KAUST Repository

    Arsalan, Muhammad; Ouda, Mahmoud H.; Marnat, Loic; Ahmad, Talha Jamal; Shamim, Atif; Salama, Khaled N.

    2013-01-01

    For the first time a single chip implantable wireless sensor system for Intraocular Pressure Monitoring (IOPM) is presented. This system-on-chip (SoC) is battery-free and harvests energy from incoming RF signals. The chip is self-contained and does not require external components or bond wires to function. This 1.4mm3 SoC has separate 2.4GHz-transmit and 5.2GHz-receive antennas, an energy harvesting module, a temperature sensor, a 7-bit TIQ Flash ADC, a 4-bit RFID, a power management and control unit, and a VCO transmitter. The chip is fabricated in a standard 6-metal 0.18μm CMOS process and is designed to work with a post-processed MEMS pressure sensor. It consumes 513μW of peak power and when implanted inside the eye, it is designed to communicate with an external reader using on-off keying (OOK). © 2013 IEEE.

  1. A 5.2GHz, 0.5mW RF powered wireless sensor with dual on-chip antennas for implantable intraocular pressure monitoring

    KAUST Repository

    Arsalan, Muhammad

    2013-06-01

    For the first time a single chip implantable wireless sensor system for Intraocular Pressure Monitoring (IOPM) is presented. This system-on-chip (SoC) is battery-free and harvests energy from incoming RF signals. The chip is self-contained and does not require external components or bond wires to function. This 1.4mm3 SoC has separate 2.4GHz-transmit and 5.2GHz-receive antennas, an energy harvesting module, a temperature sensor, a 7-bit TIQ Flash ADC, a 4-bit RFID, a power management and control unit, and a VCO transmitter. The chip is fabricated in a standard 6-metal 0.18μm CMOS process and is designed to work with a post-processed MEMS pressure sensor. It consumes 513μW of peak power and when implanted inside the eye, it is designed to communicate with an external reader using on-off keying (OOK). © 2013 IEEE.

  2. Low conversion loss 94 GHz and 188 GHz doublers in InP DHBT technology

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy; Johansen, Tom Keinicke; Squartecchia, Michele

    2017-01-01

    An Indium Phosphide (InP) Double Heterojunction Bipolar Transistor (DHBT) process has been utilized to design two doublers to cover the 94 GHz and 188 GHz bands. The 94 GHz doubler employs 4-finger DHBTs and provides conversion loss of 2 dB. A maximum output power of nearly 3 dBm is measured whil...... operate over a broad bandwidth. The total circuit area of each chip is 1.41 mm2....

  3. A versatile and modular quasi optics-based 200 GHz dual dynamic nuclear polarization and electron paramagnetic resonance instrument

    Science.gov (United States)

    Siaw, Ting Ann; Leavesley, Alisa; Lund, Alicia; Kaminker, Ilia; Han, Songi

    2016-03-01

    Solid-state dynamic nuclear polarization (DNP) at higher magnetic fields (>3 T) and cryogenic temperatures (∼2-90 K) has gained enormous interest and seen major technological advances as an NMR signal enhancing technique. Still, the current state of the art DNP operation is not at a state at which sample and freezing conditions can be rationally chosen and the DNP performance predicted a priori, but relies on purely empirical approaches. An important step towards rational optimization of DNP conditions is to have access to DNP instrumental capabilities to diagnose DNP performance and elucidate DNP mechanisms. The desired diagnoses include the measurement of the "DNP power curve", i.e. the microwave (MW) power dependence of DNP enhancement, the "DNP spectrum", i.e. the MW frequency dependence of DNP enhancement, the electron paramagnetic resonance (EPR) spectrum, and the saturation and spectral diffusion properties of the EPR spectrum upon prolonged MW irradiation typical of continuous wave (CW) DNP, as well as various electron and nuclear spin relaxation parameters. Even basic measurements of these DNP parameters require versatile instrumentation at high magnetic fields not commercially available to date. In this article, we describe the detailed design of such a DNP instrument, powered by a solid-state MW source that is tunable between 193 and 201 GHz and outputs up to 140 mW of MW power. The quality and pathway of the transmitted and reflected MWs is controlled by a quasi-optics (QO) bridge and a corrugated waveguide, where the latter couples the MW from an open-space QO bridge to the sample located inside the superconducting magnet and vice versa. Crucially, the versatility of the solid-state MW source enables the automated acquisition of frequency swept DNP spectra, DNP power curves, the diagnosis of MW power and transmission, and frequency swept continuous wave (CW) and pulsed EPR experiments. The flexibility of the DNP instrument centered around the QO MW

  4. A versatile and modular quasi optics-based 200GHz dual dynamic nuclear polarization and electron paramagnetic resonance instrument.

    Science.gov (United States)

    Siaw, Ting Ann; Leavesley, Alisa; Lund, Alicia; Kaminker, Ilia; Han, Songi

    2016-03-01

    Solid-state dynamic nuclear polarization (DNP) at higher magnetic fields (>3T) and cryogenic temperatures (∼ 2-90K) has gained enormous interest and seen major technological advances as an NMR signal enhancing technique. Still, the current state of the art DNP operation is not at a state at which sample and freezing conditions can be rationally chosen and the DNP performance predicted a priori, but relies on purely empirical approaches. An important step towards rational optimization of DNP conditions is to have access to DNP instrumental capabilities to diagnose DNP performance and elucidate DNP mechanisms. The desired diagnoses include the measurement of the "DNP power curve", i.e. the microwave (MW) power dependence of DNP enhancement, the "DNP spectrum", i.e. the MW frequency dependence of DNP enhancement, the electron paramagnetic resonance (EPR) spectrum, and the saturation and spectral diffusion properties of the EPR spectrum upon prolonged MW irradiation typical of continuous wave (CW) DNP, as well as various electron and nuclear spin relaxation parameters. Even basic measurements of these DNP parameters require versatile instrumentation at high magnetic fields not commercially available to date. In this article, we describe the detailed design of such a DNP instrument, powered by a solid-state MW source that is tunable between 193 and 201 GHz and outputs up to 140 mW of MW power. The quality and pathway of the transmitted and reflected MWs is controlled by a quasi-optics (QO) bridge and a corrugated waveguide, where the latter couples the MW from an open-space QO bridge to the sample located inside the superconducting magnet and vice versa. Crucially, the versatility of the solid-state MW source enables the automated acquisition of frequency swept DNP spectra, DNP power curves, the diagnosis of MW power and transmission, and frequency swept continuous wave (CW) and pulsed EPR experiments. The flexibility of the DNP instrument centered around the QO MW

  5. Studies of self-consistent field structure in a quasi-optical gyrotron

    International Nuclear Information System (INIS)

    Antonsen, T.M. Jr.

    1993-04-01

    The presence of an electron beam in a quasi-optical gyrotron cavity alters the structure of the fields from that of the empty cavity. A computer code has been written which calculates this alteration for either an electron beam or a thin dielectric tube placed in the cavity. Experiments measuring the quality factor of such a cavity performed for the case of a dielectric tube and the results agree with the predictions of the code. Simulations of the case of an electron beam indicate that self-consistent effects can be made small in that almost all the power leaves the cavity in a symmetric gaussian-like mode provided the resonator parameters are chosen carefully. (author) 6 figs., 1 tab., 13 refs

  6. 60-MW test using the 30-MW klystrons for the KEKB project

    Science.gov (United States)

    Fukuda, S.; Michizono, S.; Nakao, K.; Saito, Y.; Anami, S.

    1995-07-01

    The B-Factory is a future plan, requiring an energy upgrade of the KEK linac from 2.5 GeV to 8.0 GeV (KEKB Project). This paper describes the recent development of an S-band high-power pulse klystron to be used as the PF-linac rf-source of the B-Factory. This tube is a modified version of the existing 30-MW tube, which produces 51 MW at a 310 kV beam voltage by optimizing the focusing magnetic field. In order to increase the reliability, the cathode diameter, the gun housing, and the insulation ceramic-seal were enlarged. This tube was redesigned so as to have the same characteristics as the test results of 30-MW tubes at a higher applied voltage without changing the rf interaction region. Four prototype tubes have been manufactured; final test results showed that these new tubes produce an output power of more than 50 MW at 310 kV with an efficiency of 46%. Recently this tube has produced more than 60 MW at a 350 kV beam voltage for a demonstration test. A comparison between the FCI-code prediction and the test results is also given in this paper.

  7. New design for the anode power supply of a gyrotron

    International Nuclear Information System (INIS)

    Fasel, D.; Alberti, S.; Favre, A.; Perez, A.; Acero, J.; Ganuza, D.; Garcia, I.; Lucia, C.

    1998-01-01

    The introduction will remind the main supply structure installed in the CRPP, related to the ECRH (Electron Cyclotron Resonance Heating) project on the TCV (Tokamak Configuration Variable) tokamak. Then this paper concentrates on the description of the power source designed to supply the anode of the triode type gyrotron. First the requirements asked for this power supply will be presented, taking into account the possible feeding structures in relation with the existing HV DC cathode power supply. The following section will focus on the selected design, describing in details the power structure based on MOSFET, referred to the cathode potential. Afterwards the control electronics is presented, including the feedback control implemented, the HV measurements, the internal reference generator and the interface to the TCV control. Finally, the last section will give information on the project status. (author)

  8. Integrated 60GHz RF beamforming in CMOS

    CERN Document Server

    Yu, Yikun; van Roermund, Arthur H M

    2011-01-01

    ""Integrated 60GHz RF Beamforming in CMOS"" describes new concepts and design techniques that can be used for 60GHz phased array systems. First, general trends and challenges in low-cost high data-rate 60GHz wireless system are studied, and the phased array technique is introduced to improve the system performance. Second, the system requirements of phase shifters are analyzed, and different phased array architectures are compared. Third, the design and implementation of 60GHz passive and active phase shifters in a CMOS technology are presented. Fourth, the integration of 60GHz phase shifters

  9. A low-power 802.11 AD compatible 60-GHz phase-locked loop in 65-NM CMOS

    KAUST Repository

    Cheema, Hammad M.; Arsalan, Muhammad; Salama, Khaled N.; Shamim, Atif

    2015-01-01

    A 60-GHz fundamental frequency phase locked loop (PLL) as part of a highly integrated system-on-chip transmitter with onchip memory and antenna is presented. As a result of localized optimization approach for each component, the PLL core components only consume 30.2 mW from a 1.2 V supply. A systematic design procedure to achieve high phase margin and wide locking range is presented. The reduction of parasitic and fixed capacitance contributions in the voltage controlled oscillator enables the coverage of the complete 802.11 ad frequency band from 57.2 to 65.8 GHz. A new 4-stage distribution network supplying the local oscillator (LO) signal to the mixer, the feedback loop and the external equipment is introduced. The prescaler based on the static frequency division approach is enhanced using shunt-peaking and asymmetric capacitive loading. The current mode logic based divider chain is optimized for low power and minimum silicon foot-print. A dead-zone free phase frequency detector, low leakage charge pump, and an integrated second-order passive filter completes the feedback loop. The PLL implemented in 65 nm CMOS process occupies only 0.6 mm2 of chip space and has a measured locking range from 56.8 to 66.5 GHz. The reference spurs are lower than -40 dBc and the in-band and out-of-band phase noise is -88.12 dBc/Hz and -117 dBc/Hz, respectively.

  10. A low-power 802.11 AD compatible 60-GHz phase-locked loop in 65-NM CMOS

    KAUST Repository

    Cheema, Hammad M.

    2015-01-23

    A 60-GHz fundamental frequency phase locked loop (PLL) as part of a highly integrated system-on-chip transmitter with onchip memory and antenna is presented. As a result of localized optimization approach for each component, the PLL core components only consume 30.2 mW from a 1.2 V supply. A systematic design procedure to achieve high phase margin and wide locking range is presented. The reduction of parasitic and fixed capacitance contributions in the voltage controlled oscillator enables the coverage of the complete 802.11 ad frequency band from 57.2 to 65.8 GHz. A new 4-stage distribution network supplying the local oscillator (LO) signal to the mixer, the feedback loop and the external equipment is introduced. The prescaler based on the static frequency division approach is enhanced using shunt-peaking and asymmetric capacitive loading. The current mode logic based divider chain is optimized for low power and minimum silicon foot-print. A dead-zone free phase frequency detector, low leakage charge pump, and an integrated second-order passive filter completes the feedback loop. The PLL implemented in 65 nm CMOS process occupies only 0.6 mm2 of chip space and has a measured locking range from 56.8 to 66.5 GHz. The reference spurs are lower than -40 dBc and the in-band and out-of-band phase noise is -88.12 dBc/Hz and -117 dBc/Hz, respectively.

  11. Microwave Power Beaming Infrastructure for Manned Lightcraft Operations: Part 2

    International Nuclear Information System (INIS)

    Myrabo, Leik N.

    2008-01-01

    In the past ∼7 years, microwave gyrotron technology has rapidly evolved to a critical threshold wherein ultra-energetic space launch missions based on beamed energy propulsion (BEP) now appear eminently feasible. Over the next 20 years, hundred megawatt-class microwave power-beaming stations could be prototyped on high deserts and 3- to 4 km mountain peaks before migrating into low Earth orbit, along with their passive microwave relay satellites. Described herein is a 20 GW rechargeable nuclear power satellite and microwave power-beaming infrastructure designed for manned space launch operations in the year 2025. The technological readiness of 2500 GJ superconducting magnetic energy storage 'batteries', 433-m ultralight space structures, 100 MW liquid droplet radiators, 1-6+ MW gyrotron sources, and mega-scale arrays (e.g., 3000 phase-locked units) is addressed. Microwave BEP is 'breakthrough' technology with the very real potential to radically reduce space access costs by factors of 100 to 1000 in the forseeable future

  12. Oak Ridge rf Test Facility

    International Nuclear Information System (INIS)

    Gardner, W.L.; Hoffman, D.J.; McCurdy, H.C.; McManamy, T.J.; Moeller, J.A.; Ryan, P.M.

    1985-01-01

    The rf Test Facility (RFTF) of Oak Ridge National Laboratory (ORNL) provides a national facility for the testing and evaluation of steady-state, high-power (approx.1.0-MW) ion cyclotron resonance heating (ICRH) systems and components. The facility consists of a vacuum vessel and two fully tested superconducting development magnets from the ELMO Bumpy Torus Proof-of-Principle (EBT-P) program. These are arranged as a simple mirror with a mirror ratio of 4.8. The axial centerline distance between magnet throat centers is 112 cm. The vacuum vessel cavity has a large port (74 by 163 cm) and a test volume adequate for testing prototypic launchers for Doublet III-D (DIII-D), Tore Supra, and the Tokamak Fusion Test Reactor (TFTR). Attached to the internal vessel walls are water-cooled panels for removing the injected rf power. The magnets are capable of generating a steady-state field of approx.3 T on axis in the magnet throats. Steady-state plasmas are generated in the facility by cyclotron resonance breakdown using a dedicated 200-kW, 28-GHz gyrotron. Available rf sources cover a frequency range of 2 to 200 MHz at 1.5 kW and 3 to 18 MHz at 200 kW, with several sources at intermediate parameters. Available in July 1986 will be a >1.0-MW, cw source spanning 40 to 80 MHz. 5 figs

  13. Measurement Results of the Caltech Submillimeter Observatory 230 GHz and 460 GHz Balanced Receivers

    Science.gov (United States)

    Kooi, J. W.; Monje, R. R.; Force, B. L.; Rice, F.; Miller, D.; Phillips, T. G.

    2010-03-01

    The Caltech Submillimeter observatory (CSO) is located on top of Mauna Kea, Hawaii, at an altitude of 4.2km. The existing suite of heterodyne receivers covering the submillimeter band is rapidly aging, and in need of replacement. To this extend we have developed a family of balanced receivers covering the astrophysical important 180-720 GHz atmospheric windows. For the CSO, wide IF bandwidth receivers are implemented in a balanced receiver configuration with dual frequency observation capability. This arrangement was opted to be an optimal compromise between scientific merit and finite funding. In principle, the balanced receiver configuration has the advantage that common mode amplitude noise in the LO system is canceled, while at the same time utilizing all available LO power. Both of these features facilitate the use of commercially available synthesized LO system. In combination with a 4 GHz IF bandwidth, the described receiver layout allows for rapid high resolution spectral line surveys. Dual frequency observation is another important mode of operation offered by the new facility instrumentation. Two band observations are accomplished by separating the H and V polarizations of the incoming signal and routing them via folded optics to the appropriate polarization sensitive balanced mixer. Scientifically this observation mode facilitates pointing for the higher receiver band under mediocre weather conditions and a doubling of scientific throughput (2 x 4 GHz) under good weather conditions. Not only do these changes greatly enhance the spectroscopic capabilities of the CSO, they also enable the observatory to be integrated into the Harvard-Smithsonian Submillimeter Array (eSMA) as an additional baseline. The upgrade of the 345 GHz/650 GHz dual band balanced receivers is not far behind. All the needed hardware has been procured, and commissioning is expected the summer of 2010. The SIS junctions are capable of a 2-12 GHz bandwidth.

  14. Analysis and design of double-anode magnetron injection gun

    International Nuclear Information System (INIS)

    Yang Tie; Niu Xinjian; Liu Yinghui

    2013-01-01

    Based on electro-optical theory and adiabatic compression theory, a double-anode magnetic injection gun for TE 34,19 , 170 GHz gyrotron was analyzed and designed with EGUN software. Concerning with the factors such as positions of anode and magnetic field distance between anodes, we obtained the result that the velocity ratio of electron beam approximated 1.3, and the velocity spread was under 3%. Furthermore, we found that electron beam was sensitive with these factors, such as that the velocity ratio decreased when the distance between anodes increased, while the velocity spread decreased first and then increased. The double-anode magnetic injection gun is employed in the experiments of gyrotron. (authors)

  15. A 35 GHz wireless millimeter-wave power sensor based on GaAs micromachining technology

    International Nuclear Information System (INIS)

    Wang, De-bo; Liao, Xiao-ping

    2012-01-01

    A novel MEMS wireless millimeter-wave power sensor based on GaAs MMIC technology is presented in this paper. The principle of this wireless millimeter-wave power sensor is explained. It is designed and fabricated using MEMS technology and the GaAs MMIC process. With the millimeter-wave power range from 0.1 to 80 mW, the sensitivity of the wireless millimeter-wave power sensor is about 0.246 mV mW −1 at 35 GHz. In order to verify the power detection capability, this wireless power sensor is mounted on a PCB which influences the microwave performance of the CPW-fed antenna including the return loss and the radiation pattern. The frequency-dependent characteristic and the degree-dependent characteristic of this wireless power sensor are researched. Furthermore, in addition to the combination of the advantages of CPW-fed antenna with the advantages of the thermoelectric power sensor, another significant advantage of this wireless millimeter-wave power sensor is that it can be integrated with MMICs and other planar connecting circuit structures with zero dc power consumption. These features make it suitable for various applications ranging from the environment or space radiation detection systems to radar receiver and transmitter systems. (paper)

  16. A 60 GHz Frequency Generator Based on a 20 GHz Oscillator and an Implicit Multiplier

    NARCIS (Netherlands)

    Zong, Z.; Babaie, M.; Staszewski, R.B.

    2016-01-01

    This paper proposes a mm-wave frequency generation technique that improves its phase noise (PN) performance and power efficiency. The main idea is that a fundamental 20 GHz signal and its sufficiently strong third harmonic at 60 GHz are generated simultaneously in a single oscillator. The desired 60

  17. Design of test JIG for centralized interlock and protection module of ITER-India Gyrotron Test Facility

    International Nuclear Information System (INIS)

    Rathod, Vipal; Rao, S.L.; Edappala, Praveenlal; Rajpal, Rachana

    2017-01-01

    Fast Interlock and protection system plays very crucial role in ensuring the safe and reliable operation of high power RF sources such as a Gyrotron system. Critical Protection Interlocks are generally implemented using hardwired components and are required to have a response time as fast as < 10 μs. In this context, an Industrial grade prototype Centralized Interlock and Protection Module (CIM) based on ITER-India design has been developed successfully with the help of local industry. This paper presents the complete requirements, approach, detailed design concept and current status of Test JIG in detail

  18. Sadhana | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Sadhana. Nitin Kumar. Articles written in Sadhana. Volume 38 Issue 6 December 2013 pp 1347-1356. Cold test of cylindrical open resonator for 42 GHz, 200 kW gyrotron · Vivek Yadav Sudeep Sharan Hasina Khatun Nitin Kumar M K Alaria B Jha S C Deorani A K Sinha P K Jain · More Details Abstract ...

  19. Nonstationary oscillation of gyrotron backward wave oscillators with cylindrical interaction structure

    International Nuclear Information System (INIS)

    Chen, Shih-Hung; Chen, Liu

    2013-01-01

    The nonstationary oscillation of the gyrotron backward wave oscillator (gyro-BWO) with cylindrical interaction structure was studied utilizing both steady-state analyses and time-dependent simulations. Comparisons of the numerical results reveal that the gyro-BWO becomes nonstationary when the trailing field structure completely forms due to the dephasing energetic electrons. The backward propagation of radiated waves with a lower resonant frequency from the trailing field structure interferes with the main internal feedback loop, thereby inducing the nonstationary oscillation of the gyro-BWO. The nonstationary gyro-BWO exhibits the same spectral pattern of modulated oscillations with a constant frequency separation between the central frequency and sidebands throughout the whole system. The frequency separation is found to be scaled with the square root of the maximum field amplitude, thus further demonstrating that the nonstationary oscillation of the gyro-BWO is associated with the beam-wave resonance detuning

  20. The DAN-AERO MW Experiments

    DEFF Research Database (Denmark)

    Aagaard Madsen, Helge; Bak, Christian; Schmidt Paulsen, Uwe

    a number of coordinated, innovative measurements on full scale MW size rotors as well as on airfoils for MW size turbines in wind tunnels. Shear and turbulence inflow characteristics were measured on a Siemens 3.6 MW turbine with a five hole pitot tube. Pressure and turbulent inflow characteristics were...... on the blade was further instrumented with around 50 microphones for high frequency surface pressure measurements. The surface pressure measurements have been correlated with inflow measurements from four five hole pitot tubes and two sensors for measuring the high frequency (50 Hz to10 kHz) contents...

  1. Progress in the ITER electron cyclotron heating and current drive system design

    Energy Technology Data Exchange (ETDEWEB)

    Omori, Toshimichi, E-mail: toshimichi.omori@iter.org [ITER Organization, Route de Vinon sur Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Albajar, Ferran; Bonicelli, Tullio; Carannante, Giuseppe; Cavinato, Mario; Cismondi, Fabio [Fusion for Energy, Josep Pla 2, Barcelona 08019 (Spain); Darbos, Caroline [ITER Organization, Route de Vinon sur Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Denisov, Grigory [Institute of Applied Physics Russian Academy of Sciences, 46 Ulyanov Street, Nizhny Novgorod 603950 (Russian Federation); Farina, Daniela [Istituto di Fisica del Plasma, Association EURATOM-ENEA-CNR, Milano (Italy); Gagliardi, Mario [Fusion for Energy, Josep Pla 2, Barcelona 08019 (Spain); Gandini, Franco; Gassmann, Thibault [ITER Organization, Route de Vinon sur Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Goodman, Timothy [CRPP, Association EURATOM-Confédération Suisse, EPFL Ecublens, CH-1015 Lausanne (Switzerland); Hanson, Gregory [US ITER Project Office, ORNL, 055 Commerce Park, PO Box 2008, Oak Ridge, TN 37831 (United States); Henderson, Mark A. [ITER Organization, Route de Vinon sur Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Kajiwara, Ken [Japan Atomic Energy Agency (JAEA), 801-1 Mukoyama, Naka-shi, Ibaraki 311-0193 (Japan); McElhaney, Karen [US ITER Project Office, ORNL, 055 Commerce Park, PO Box 2008, Oak Ridge, TN 37831 (United States); Nousiainen, Risto [Fusion for Energy, Josep Pla 2, Barcelona 08019 (Spain); Oda, Yasuhisa [Japan Atomic Energy Agency (JAEA), 801-1 Mukoyama, Naka-shi, Ibaraki 311-0193 (Japan); Oustinov, Alexander [Institute of Applied Physics Russian Academy of Sciences, 46 Ulyanov Street, Nizhny Novgorod 603950 (Russian Federation); and others

    2015-10-15

    Highlights: • EC system is designed with an ability to upgrade in power to 28 MW then 40 MW. • The TL is capable of 3 buildings movements; ±15 mm displacements at the worst. • Improved power deposition access injecting 20 MW across nearly the entire plasma. • Ensured nuclear safety by appropriate definition of confinement boundaries. • Proposed I&C architecture for the overall EC plant was successfully reviewed. - Abstract: An electron cyclotron system is one of the four auxiliary plasma heating systems to be installed on the ITER tokamak. The ITER EC system consists of 24 gyrotrons with associated 12 high voltage power supplies, a set of evacuated transmission lines and two types of launchers. The whole system is designed to inject 20 MW of microwave power at 170 GHz into the plasma. The primary functions of the system include plasma start-up, central heating and current drive, and magneto-hydrodynamic instabilities control. The design takes present day technology and extends towards high power CW operation, which represents a large step forward as compared to the present state of the art. The ITER EC system will be a stepping stone to future EC systems for DEMO and beyond. The EC system is faced with significant challenges, which not only includes an advanced microwave system for plasma heating and current drive applications but also has to comply with stringent requirements associated with nuclear safety as ITER became the first fusion device licensed as basic nuclear installations as of 9 November 2012. Since conceptual design of the EC system established in 2007, the EC system has progressed to a preliminary design stage in 2012, and is now moving forward towards a final design. The majority of the subsystems have completed the detailed design and now advancing towards the final design completion.

  2. Progress in the ITER electron cyclotron heating and current drive system design

    International Nuclear Information System (INIS)

    Omori, Toshimichi; Albajar, Ferran; Bonicelli, Tullio; Carannante, Giuseppe; Cavinato, Mario; Cismondi, Fabio; Darbos, Caroline; Denisov, Grigory; Farina, Daniela; Gagliardi, Mario; Gandini, Franco; Gassmann, Thibault; Goodman, Timothy; Hanson, Gregory; Henderson, Mark A.; Kajiwara, Ken; McElhaney, Karen; Nousiainen, Risto; Oda, Yasuhisa; Oustinov, Alexander

    2015-01-01

    Highlights: • EC system is designed with an ability to upgrade in power to 28 MW then 40 MW. • The TL is capable of 3 buildings movements; ±15 mm displacements at the worst. • Improved power deposition access injecting 20 MW across nearly the entire plasma. • Ensured nuclear safety by appropriate definition of confinement boundaries. • Proposed I&C architecture for the overall EC plant was successfully reviewed. - Abstract: An electron cyclotron system is one of the four auxiliary plasma heating systems to be installed on the ITER tokamak. The ITER EC system consists of 24 gyrotrons with associated 12 high voltage power supplies, a set of evacuated transmission lines and two types of launchers. The whole system is designed to inject 20 MW of microwave power at 170 GHz into the plasma. The primary functions of the system include plasma start-up, central heating and current drive, and magneto-hydrodynamic instabilities control. The design takes present day technology and extends towards high power CW operation, which represents a large step forward as compared to the present state of the art. The ITER EC system will be a stepping stone to future EC systems for DEMO and beyond. The EC system is faced with significant challenges, which not only includes an advanced microwave system for plasma heating and current drive applications but also has to comply with stringent requirements associated with nuclear safety as ITER became the first fusion device licensed as basic nuclear installations as of 9 November 2012. Since conceptual design of the EC system established in 2007, the EC system has progressed to a preliminary design stage in 2012, and is now moving forward towards a final design. The majority of the subsystems have completed the detailed design and now advancing towards the final design completion.

  3. Rectenna Technology Program: Ultra light 2.45 GHz rectenna 20 GHz rectenna

    Science.gov (United States)

    Brown, William C.

    1987-01-01

    The program had two general objectives. The first objective was to develop the two plane rectenna format for space application at 2.45 GHz. The resultant foreplane was a thin-film, etched-circuit format fabricated from a laminate composed of 2 mil Kapton F sandwiched between sheets of 1 oz copper. The thin-film foreplane contains half wave dipoles, filter circuits, rectifying Schottky diode, and dc bussing lead. It weighs 160 grams per square meter. Efficiency and dc power output density were measured at 85% and 1 kw/sq m, respectively. Special testing techniques to measure temperature of circuit and diode without perturbing microwave operation using the fluoroptic thermometer were developed. A second objective was to investigate rectenna technology for use at 20 GHz and higher frequencies. Several fabrication formats including the thin-film scaled from 2.45 GHz, ceramic substrate and silk-screening, and monolithic were investigated, with the conclusion that the monolithic approach was the best. A preliminary design of the monolithic rectenna structure and the integrated Schottky diode were made.

  4. Test facility for investigation of heating of 30 GHz accelerating structure imitator for the CLIC project

    International Nuclear Information System (INIS)

    Elzhov, A.V.; Ginzburg, N.S.; Kaminsky, A.K.; Kuzikov, S.V.; Perelstein, E.A.; Peskov, N.Yu.; Petelin, M.I.; Sedykh, S.N.; Sergeev, A.P.; Sergeev, A.S.; Syratchev, I.; Zaitsev, N.I.

    2004-01-01

    Since 2001 an experimental test facility for investigation of lifetime of a copper material, with respect to multiple RF pulse actions, was set up on the basis of the JINR (Dubna) FEM oscillator, in collaboration with IAP RAS (Nizhny Novgorod). A high-Q copper cavity, which simulates the parameters of the accelerating structure of the collider CLIC at an operating frequency of 30 GHz, is used in the investigation. The experimental setup consists of a wavebeam injector--FEM oscillator (power of ∼25 MW, pulse duration up to 200 ns, spectral bandwidth not higher than 0.1%), a quasi-optic two-mirror transmission line, a wave-type converter, and a testing cavity. The frequency and transmission features of the components of the quasi-optic line were analyzed

  5. 45-GHz and 60-GHz 90 nm CMOS power amplifiers with a fully symmetrical 8-way transformer power combiner

    Institute of Scientific and Technical Information of China (English)

    Zhengdong JIANG; Kaizhe GUO; Peng HUANG; Yiming FAN; Chenxi ZHAO; Yongling BAN; Jun LIU; Kai KANG

    2017-01-01

    In this paper,45 GHz and 60 GHz power amplifiers (PAs) with high output power have been successfully designed by using 90 nm CMOS process.The 45 GHz (60 GHz) PA consists of two (four) differential stages.The sizes of transistors have been designed in an appropriate way so as to trade-off gain,efficiency and stability.Due to limited supply voltage and low breakdown voltage of CMOS MOSFET compared with the traditional Ⅲ-Ⅴ technologies,the technique of power combining has been applied to achieve a high output power.In particular,a novel 8-way distributed active transformer power combiner has been proposed for realizing such mm-wave PA.The proposed transformer combiner with a fully symmetrical layout can improve its input impedance balance at mm-wave frequency regime significantly.Taking its advantages of this novel transformer based power combiner,our realized 45 GHz (60 GHz) mm-wave PA has achieved the gain of 20.3 dB (16.8 dB),the maximum PAE of 14.5% (13.4%) and the saturated output power of 21 dBm (21 dBm) with the 1.2 V supply voltage.

  6. 60-GHz Millimeter-Wave Radio: Principle, Technology, and New Results

    Directory of Open Access Journals (Sweden)

    Nan Guo

    2006-12-01

    Full Text Available The worldwide opening of a massive amount of unlicensed spectra around 60 GHz has triggered great interest in developing affordable 60-GHz radios. This interest has been catalyzed by recent advance of 60-GHz front-end technologies. This paper briefly reports recent work in the 60-GHz radio. Aspects addressed in this paper include global regulatory and standardization, justification of using the 60-GHz bands, 60-GHz consumer electronics applications, radio system concept, 60-GHz propagation and antennas, and key issues in system design. Some new simulation results are also given. Potentials and problems are explained in detail.

  7. Chip design of a 5.8-GHz fractional-N frequency synthesizer with a tunable Gm−C loop filter

    International Nuclear Information System (INIS)

    Huang Jhin-Fang; Lai Wen-Cheng; Shin Chun-Wei; Hsu Chien-Ming; Liu Ron-Yi

    2012-01-01

    This paper proposes a novel G m −C loop filter instead of a conventional passive loop filter used in a phase-locked loop. The innovative advantage of the proposed architecture is tunable loop filter bandwidth and hence the process variations of passive elements of resistance R and capacitance C can be overcome and the chip area is greatly reduced. Furthermore, the MASH 1-1-1 sigma-delta (ΣΔ) modulator is adopted for performing the fractional division number and hence improves the phase noise as well. Measured results show that the locked phase noise is −114.1 dBc/Hz with lower G m −C bandwidth and −111.7 dBm/C with higher G m −C bandwidth at 1 MHz offset from carrier of 5.68 GHz. Including pads and built-in G m −C filter, the chip area of the proposed frequency synthesizer is 1.06 mm 2 . The output power is −8.69 dBm at 5.68 GHz and consumes 56 mW with an off-chip buffer from 1.8-V supply voltage. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  8. Performance of the TJ-II ECRH system with the new -80 kV 50 A high voltage power supply

    International Nuclear Information System (INIS)

    Fernandez, A.; de la Fuente, J.M.; Ganuza, D.; Kirpitchev, I.; Alonso, J.; Garcia, F.; Ascasibar, E.; del Rio, J.M.; Garcia, I.; Ros, A.; Alvarez, P.; Tolkachev, A.; Catalan, G.

    2009-01-01

    The ECRH system of the TJ-II stellarator consists of two triode - 53.2 GHz - gyrotrons, which can deliver a maximum power of 300 kW each, during 1 s. Both gyrotrons are fed by a common high voltage power supply (HVPS). During the last experimental campaigns the performance of the gyrotrons were limited by the HVPS, whose maximum output current was limited to 30 A and the ripple level of the output voltage was around 7%. In order to guarantee the reliability of the ECRH system and to improve its performance, a new HVPS has been developed and manufactured by the company JEMA and was commissioned at CIEMAT during 2007. The design is based on solid-state technology and high frequency commutation techniques. The new unit reaches -80 kV and 50 A during a maximum pulse length of 1 s. The complete design, testing and commissioning of the HVPS are presented, as well as the routine operation of the ECRH system during the TJ-II experimental campaign.

  9. Performance of the TJ-II ECRH system with the new -80 kV 50 A high voltage power supply

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, A. [Laboratorio Nacional de Fusion, EURATOM-CIEMAT Association, Avda. Complutense 22, 28040 Madrid (Spain)], E-mail: angela.curto@ciemat.es; de la Fuente, J.M.; Ganuza, D. [Grupo JEMA, Paseo del Circuito 10, 20160 Lasarte-Oria (Spain); Kirpitchev, I.; Alonso, J. [Laboratorio Nacional de Fusion, EURATOM-CIEMAT Association, Avda. Complutense 22, 28040 Madrid (Spain); Garcia, F. [Grupo JEMA, Paseo del Circuito 10, 20160 Lasarte-Oria (Spain); Ascasibar, E. [Laboratorio Nacional de Fusion, EURATOM-CIEMAT Association, Avda. Complutense 22, 28040 Madrid (Spain); del Rio, J.M.; Garcia, I. [Grupo JEMA, Paseo del Circuito 10, 20160 Lasarte-Oria (Spain); Ros, A.; Alvarez, P.; Tolkachev, A.; Catalan, G. [Laboratorio Nacional de Fusion, EURATOM-CIEMAT Association, Avda. Complutense 22, 28040 Madrid (Spain)

    2009-06-15

    The ECRH system of the TJ-II stellarator consists of two triode - 53.2 GHz - gyrotrons, which can deliver a maximum power of 300 kW each, during 1 s. Both gyrotrons are fed by a common high voltage power supply (HVPS). During the last experimental campaigns the performance of the gyrotrons were limited by the HVPS, whose maximum output current was limited to 30 A and the ripple level of the output voltage was around 7%. In order to guarantee the reliability of the ECRH system and to improve its performance, a new HVPS has been developed and manufactured by the company JEMA and was commissioned at CIEMAT during 2007. The design is based on solid-state technology and high frequency commutation techniques. The new unit reaches -80 kV and 50 A during a maximum pulse length of 1 s. The complete design, testing and commissioning of the HVPS are presented, as well as the routine operation of the ECRH system during the TJ-II experimental campaign.

  10. Design of a double-anode magnetron-injection gun for the W-band gyrotron

    Science.gov (United States)

    Jang, Kwang Ho; Choi, Jin Joo; So, Joon Ho

    2015-07-01

    A double-anode magnetron-injection gun (MIG) was designed. The MIG is for a W-band 10-kW gyrotron. Analytic equations based on adiabatic theory and angular momentum conservation were used to examine the initial design parameters such as the cathode angle, and the radius of the beam emitting surface. The MIG's performances were predicted by using an electron trajectory code, the EGUN code. The beam spread of the axial velocity, Δvz/vz, obtained from the EGUN code was observed to be 1.34% at α = 1.3. The cathode edge emission and the thermal effect were modeled. The cathode edge emission was found to have a major effect on the velocity spread. The electron beam's quality was significantly improved by affixing non-emissive cylinders to the cathode.

  11. Broadband Amplification of Low-Terahertz Signals Using Axis-Encircling Electrons in a Helically Corrugated Interaction Region

    Science.gov (United States)

    He, W.; Donaldson, C. R.; Zhang, L.; Ronald, K.; Phelps, A. D. R.; Cross, A. W.

    2017-11-01

    Experimental results are presented of a broadband, high power, gyrotron traveling wave amplifier (gyro-TWA) operating in the (75-110)-GHz frequency band and based on a helically corrugated interaction region. The second harmonic cyclotron mode of a 55-keV, 1.5-A, axis-encircling electron beam is used to resonantly interact with a traveling TE21 -like eigenwave achieving broadband amplification. The gyro-TWA demonstrates a 3-dB gain bandwidth of at least 5.5 GHz in the experimental measurement with 9 GHz predicted for a wideband drive source with a measured unsaturated output power of 3.4 kW and gain of 36-38 dB. The approach may allow a gyro-TWA to operate at 1 THz.

  12. A 0.1-1.4 GHz inductorless low-noise amplifier with 13 dBm IIP3 and 24 dBm IIP2 in 180 nm CMOS

    Science.gov (United States)

    Guo, Benqing; Chen, Jun; Chen, Hongpeng; Wang, Xuebing

    2018-01-01

    An inductorless noise-canceling CMOS low-noise amplifier (LNA) with wideband linearization technique is proposed. The complementary configuration by stacked NMOS/PMOS is employed to compensate second-order nonlinearity of the circuit. The third-order distortion of the auxiliary stage is also mitigated by that of the weak inversion transistors in the main path. The bias and scaling size combined by digital control words are further tuned to obtain enhanced linearity over the desired band. Implemented in a 0.18 μm CMOS process, simulated results show that the proposed LNA provides a voltage gain of 16.1 dB and a NF of 2.8-3.4 dB from 0.1 GHz to 1.4 GHz. The IIP3 and IIP2 of 13-18.9 and 24-40 dBm are obtained, respectively. The circuit core consumes 19 mW from a 1.8 V supply.

  13. Conceptual design of CFETR electron cyclotron wave system

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Yunying, E-mail: yytang@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Shushanhu Road 350, Hefei 230031, Anhui (China); University of Science and Technology of China, Jinzhai Road 96, Hefei 230026, Anhui (China); Wang, Xiaojie; Liu, Fukun; Zhang, Liyuan; Wei, Wei; Xu, Handong; Xu, Weiye; Wu, Dajun; Feng, Jianqiang [Institute of Plasma Physics, Chinese Academy of Sciences, Shushanhu Road 350, Hefei 230031, Anhui (China)

    2015-05-15

    Highlights: • The conceptual design of 170 GHz/20 MW electron cyclotron wave system was introduced. • The layout of RF sources was given. • The design and layout of transmission lines were shown and series of microwave components were introduced. • The structure of launcher was described in detail. • By the optic calculation and optimization of RF propagation inside the launcher, the quasi-optical parameters for launcher design were given. And then temperature distribution and thermal-stress of the injection mirror were analyzed. - Abstract: China Fusion Engineering Test Reactor (CFETR) is a test tokamak which is built for magnetically confined fusion plasma experiments. The electron cyclotron (EC) wave system of CFETR is designed to inject 20 MW RF power into the plasma for heating and current drive (H&CD) applications. The EC wave system consists of RF sources, twenty transmission lines (TLs) and one equatorial launcher. RF sources contain twenty gyrotrons with the output power 1 MW. There are series of microwave components distributed along the TL and the percentage of power losses of each TL is about 8.7%. In the equatorial launcher, five RF beams are injected into one focusing mirror and then reflected to the plasma via one injection mirror. The focusing mirror is spherical to focus Gaussian beam and the injection mirror which is flat can steer in the toroidal direction. After optic calculation and optimization, all the quasi-optical parameters for launcher design are given. Combining with the thermal stress analysis, the chosen inner diameter of water channel of injection mirror is 12 mm and the suggested water velocity is 3 m/s.

  14. Test facility for investigation of heating of 30 GHz accelerating structure imitator for the CLIC project

    CERN Document Server

    Elzhov, A V; Kaminsky, A K; Kuzikov, S V; Perelshtejn, E A; Peskov, N Yu; Petelin, M I; Sedykh, S N; Sergeev, A P; Sergeev, A S; Syratchev, I V; Zaitsev, N I

    2004-01-01

    Since 2001 an experimental test facility for investigation of lifetime of a copper material, with respect to multiple RF pulse actions, was set up on the basis of the JINR (Dubna) FEM oscillator, in collaboration with IAP RAS (Nizhny Novgorod). A high-Q copper cavity, which simulates the parameters of the accelerating structure of the collider CLIC at an operating frequency of 30GHz, is used in the investigation. The experimental setup consists of a wavebeam injector - FEM oscillator (power of similar to 25MW, pulse duration up to 200ns, spectral bandwidth not higher than 0.1%), a quasi-optic two-mirror transmission line, a wave-type converter, and a testing cavity. The frequency and transmission features of the components of the quasi-optic line were analyzed.

  15. Computation of temperature elevation in rabbit eye irradiated by 2.45-GHz microwaves with different field configurations.

    Science.gov (United States)

    Hirata, Akimasa; Watanabe, Soichi; Taki, Masao; Fujiwara, Osamu; Kojima, Masami; Sasaki, Kazuyuki

    2008-02-01

    This study calculated the temperature elevation in the rabbit eye caused by 2.45-GHz near-field exposure systems. First, we calculated specific absorption rate distributions in the eye for different antennas and then compared them with those observed in previous studies. Next, we re-examined the temperature elevation in the rabbit eye due to a horizontally-polarized dipole antenna with a C-shaped director, which was used in a previous study. For our computational results, we found that decisive factors of the SAR distribution in the rabbit eye were the polarization of the electromagnetic wave and antenna aperture. Next, we quantified the eye average specific absorption rate as 67 W kg(-1) for the dipole antenna with an input power density at the eye surface of 150 mW cm(-2), which was specified in the previous work as the minimum cataractogenic power density. The effect of administrating anesthesia on the temperature elevation was 30% or so in the above case. Additionally, the position where maximum temperature in the lens appears is discussed due to different 2.45-GHz microwave systems. That position was found to appear around the posterior of the lens regardless of the exposure condition, which indicates that the original temperature distribution in the eye was the dominant factor.

  16. DANAERO MW: Final Report

    DEFF Research Database (Denmark)

    Troldborg, Niels; Bak, Christian; Aagaard Madsen, Helge

    This report describes the results of the EUDP funded DANAERO MW II project carried out by DTU Wind Energy (formerly Risø DTU) and the industrial partners, LM Wind Power, Vestas Wind Systems A/S and Siemens Wind Power. An overview of the data available from the project as well as the results from...... analysis of the data is given with the main objective to explore in detail the influence of atmospheric and wake turbulence on MW turbine performance, loading and stability. Finally, validation and demonstration of simulation codes are carried out....

  17. Low-intensity electromagnetic irradiation of 70.6 and 73 GHz frequencies enhances the effects of disulfide bonds reducer on Escherichia coli growth and affects the bacterial surface oxidation-reduction state

    International Nuclear Information System (INIS)

    Torgomyan, Heghine; Trchounian, Armen

    2011-01-01

    Highlights: → Low intensity 70.6 and 73 GHz electromagnetic irradiation (EMI) strongly suppressed Escherichia coli growth at 73 GHz and pH 7.3. → Reducer DL-dithiothreitol had bactericidal effect and disturbed the SH-groups number. → EMI enhanced E. coli sensitivity toward dithiothreitol. → EMI decreased the SH-groups number of membrane disturbed by ATP and N,N'-dicyclohexycarbodiimide. → The changed membrane oxidation-reduction state could be the primary mechanisms in EMI effects. -- Abstract: Low-intensity electromagnetic irradiation (EMI) of 70.6 and 73 GHz frequencies (flux capacity - 0.06 mW cm -2 ) had bactericidal effects on Escherichia coli. This EMI (1 h) exposure suppressed the growth of E. coli K-12(λ). The pH value (6.0-8.0) did not significantly affect the growth. The lag-phase duration was prolonged, and the growth specific rate was inhibited, and these effects were more noticeable after 73 GHz irradiation. These effects were enhanced by the addition of DL-dithiothreitol (DTT), a strong reducer of disulfide bonds in surface membrane proteins, which in its turn also has bactericidal effect. Further, the number of accessible SH-groups in membrane vesicles was markedly decreased by EMI that was augmented by N,N'-dicyclohexycarbodiimide and DTT. These results indicate a change in the oxidation-reduction state of bacterial cell membrane proteins that could be the primary membranous mechanism in the bactericidal effects of low-intensity EMI of the 70.6 and 73 GHz frequencies.

  18. Design of 2.5 GHz broad bandwidth microwave bandpass filter at operating frequency of 10 GHz using HFSS

    Science.gov (United States)

    Jasim, S. E.; Jusoh, M. A.; Mahmud, S. N. S.; Zamani, A. H.

    2018-04-01

    Development of low losses, small size and broad bandwidth microwave bandpass filter operating at higher frequencies is an active area of research. This paper presents a new route used to design and simulate microwave bandpass filter using finite element modelling and realized broad bandwidth, low losses, small dimension microwave bandpass filter operating at 10 GHz frequency using return loss method. The filter circuit has been carried out using Computer Aid Design (CAD), Ansoft HFSS software and designed with four parallel couple line model and small dimension (10 × 10 mm2) using LaAlO3 substrate. The response of the microwave filter circuit showed high return loss -50 dB at operating frequency at 10.4 GHz and broad bandwidth of 2.5 GHz from 9.5 to 12 GHz. The results indicate the filter design and simulation using HFSS is reliable and have the opportunity to transfer from lab potential experiments to the industry.

  19. 105 GHz Notch Filter Design for Collective Thomson Scattering

    DEFF Research Database (Denmark)

    Furtula, Vedran; Michelsen, Poul; Leipold, Frank

    2011-01-01

    A millimeter-wave notch filter with 105-GHz center frequency, >20-GHz passband coverage, and 1-GHz rejection bandwidth has been constructed. The design is based on a fundamental rectangular waveguide with cylindrical cavities coupled by narrow iris gaps, i.e., small elongated holes of negligible...

  20. 60 Gbit/s 400 GHz Wireless Transmission

    DEFF Research Database (Denmark)

    Yu, Xianbin; Asif, Rameez; Piels, Molly

    2015-01-01

    We experimentally demonstrate a 400 GHz carrier wireless transmission system with real-time capable detection and demonstrate transmission of a 60 Gbit/s signal derived from optical Nyquist channels in a 12.5 GHz ultra-dense wavelength division multiplexing (UD-WDM) grid and carrying QPSK...

  1. Comparative analysis of gyrotron backward-wave oscillators operating at different cyclotron harmonics

    International Nuclear Information System (INIS)

    Yeh, Y.S.; Chang, T.H.; Wu, T.S.

    2004-01-01

    A comparative analysis between the fundamental and second cyclotron harmonics of gyrotron backward-wave oscillators (gyro-BWOs) is presented. The simulation results reveal that nonlinear field contraction is a common feature for both harmonic interactions. Besides, the electron transit angle, used to characterize the axial modes of the fundamental harmonic TE 11 mode at the start-oscillation conditions, is found to be applicable even for the second harmonic TE 21 mode. Each axial mode of either the fundamental harmonic TE 11 or the second harmonic TE 21 modes is maintained at a constant value of the electron transit angle while changing the operating parameters, such as magnetic field and beam voltage. Extensive numerical calculations are conducted for the start-oscillation currents and tuning properties. Moreover, single-mode operating regimes are suggested where the second harmonic TE 21 gyro-BWO could generate a considerable output power, comparing with the fundamental harmonic TE 11 gyro-BWO

  2. High sensitivity broadband 360GHz passive receiver for TeraSCREEN

    Science.gov (United States)

    Wang, Hui; Oldfield, Matthew; Maestrojuán, Itziar; Platt, Duncan; Brewster, Nick; Viegas, Colin; Alderman, Byron; Ellison, Brian N.

    2016-05-01

    TeraSCREEN is an EU FP7 Security project aimed at developing a combined active, with frequency channel centered at 360 GHz, and passive, with frequency channels centered at 94, 220 and 360 GHz, imaging system for border controls in airport and commercial ferry ports. The system will include automatic threat detection and classification and has been designed with a strong focus on the ethical, legal and practical aspects of operating in these environments and with the potential threats in mind. Furthermore, both the passive and active systems are based on array receivers with the active system consisting of a 16 element MIMO FMCW radar centered at 360 GHz with a bandwidth of 30 GHz utilizing a custom made direct digital synthesizer. The 16 element passive receiver system at 360 GHz uses commercial Gunn diode oscillators at 90 GHz followed by custom made 90 to 180 GHz frequency doublers supplying the local oscillator for 360 GHz sub-harmonic mixers. This paper describes the development of the passive antenna module, local oscillator chain, frequency mixers and detectors used in the passive receiver array of this system. The complete passive receiver chain is characterized in this paper.

  3. 41 GHz and 10.6 GHz low threshold and low noise InAs/InP quantum dash two-section mode-locked lasers in L band

    DEFF Research Database (Denmark)

    Dontabactouny, M.; Piron, R.; Klaime, K.

    2012-01-01

    This paper reports recent results on InAs/InP quantum dash-based, two-section, passively mode-locked lasers pulsing at 41 GHz and 10.6 GHz and emitting at 1.59 mu m at 20 degrees C. The 41-GHz device (1 mm long) starts lasing at 25 mA under uniform injection and the 10.6 GHz (4 mm long) at 71 m...

  4. Demonstration of a Submillimeter-Wave HEMT Oscillator Module at 330 GHz

    Science.gov (United States)

    Radisic, Vesna; Deal, W. R.; Mei, X. B.; Yoshida, Wayne; Liu, P. H.; Uyeda, Jansen; Lai, Richard; Samoska, Lorene; Fung, King Man; Gaier, Todd; hide

    2010-01-01

    In this work, radial transitions have been successfully mated with a HEMT-based MMIC (high-electron-mobility-transistor-based monolithic microwave integrated circuit) oscillator circuit. The chip has been assembled into a WR2.2 waveguide module for the basic implementation with radial E-plane probe transitions to convert the waveguide mode to the MMIC coplanar waveguide mode. The E-plane transitions have been directly integrated onto the InP substrate to couple the submillimeter-wave energy directly to the waveguides, thus avoiding wire-bonds in the RF path. The oscillator demonstrates a measured 1.7 percent DC-RF efficiency at the module level. The oscillator chip uses 35-nm-gate-length HEMT devices, which enable the high frequency of oscillation, creating the first demonstration of a packaged waveguide oscillator that operates over 300 GHz and is based on InP HEMT technology. The oscillator chip is extremely compact, with dimensions of only 1.085 x 320 sq mm for a total die size of 0.35 sq mm. This fully integrated, waveguide oscillator module, with an output power of 0.27 mW at 330 GHz, can provide low-mass, low DC-power-consumption alternatives to existing local oscillator schemes, which require high DC power consumption and large mass. This oscillator module can be easily integrated with mixers, multipliers, and amplifiers for building high-frequency transmit and receive systems at submillimeter wave frequencies. Because it requires only a DC bias to enable submillimeter wave output power, it is a simple and reliable technique for generating power at these frequencies. Future work will be directed to further improving the applicability of HEMT transistors to submillimeter wave and terahertz applications. Commercial applications include submillimeter-wave imaging systems for hidden weapons detection, airport security, homeland security, and portable low-mass, low-power imaging systems

  5. High power microwave transmission systems for electron cyclotron resonance plasma heating

    International Nuclear Information System (INIS)

    Vernon, R.J.

    1989-08-01

    This progress report is for the fourth year of a grant from the US Department of Energy for the design, development, and fabrication of ECRF transmission and mode conversion systems to transport microwave power from a gyrotron to a magnetically confined plasma. The development and testing of new and improved components for such systems and underlying theory, where necessary, is the focus of this project. Devising and improving component testing and diagnostic techniques is also an important part of this effort. During the last year, we developed a preliminary design for a Te 15,2 --TE 15, 1 mode converter for the MIT 150 GHz gyrotron and considered its performance as the frequency and mode was step tuned. A preliminary design for a combined uptaper and TE 15,2 --TE 15,1 converter for possible use with the Varian 140 GHz gyrotron was also developed. Work was begun on a combined TE 15,n uptaper -- mode converter to produce a mode combination which would reduce microwave radiation into an azimuthal waveguide gap. Simple models for the radiation from TE 0n and TM 0n Vlasov launcher baffles were developed and compared with measurements which were taken in our radiation pattern measurement facility. Work began on testing possible methods for generating high azimuthal index rotating modes. Work on the further refinement of the method of mode content determination from open-end radiation pattern measurement was carried out. An investigation of the Wiener-Hopf method for obtaining open- end radiation patterns produced improved radiation patterns for the TE 0n modes in a circular waveguide. 15 refs., 15 figs

  6. Low-intensity electromagnetic irradiation of 70.6 and 73 GHz frequencies enhances the effects of disulfide bonds reducer on Escherichia coli growth and affects the bacterial surface oxidation-reduction state

    Energy Technology Data Exchange (ETDEWEB)

    Torgomyan, Heghine [Department of Biophysics of Biology Faculty, Yerevan State University, Yerevan 0025 (Armenia); Trchounian, Armen, E-mail: Trchounian@ysu.am [Department of Biophysics of Biology Faculty, Yerevan State University, Yerevan 0025 (Armenia)

    2011-10-14

    Highlights: {yields} Low intensity 70.6 and 73 GHz electromagnetic irradiation (EMI) strongly suppressed Escherichia coli growth at 73 GHz and pH 7.3. {yields} Reducer DL-dithiothreitol had bactericidal effect and disturbed the SH-groups number. {yields} EMI enhanced E. coli sensitivity toward dithiothreitol. {yields} EMI decreased the SH-groups number of membrane disturbed by ATP and N,N'-dicyclohexycarbodiimide. {yields} The changed membrane oxidation-reduction state could be the primary mechanisms in EMI effects. -- Abstract: Low-intensity electromagnetic irradiation (EMI) of 70.6 and 73 GHz frequencies (flux capacity - 0.06 mW cm{sup -2}) had bactericidal effects on Escherichia coli. This EMI (1 h) exposure suppressed the growth of E. coli K-12({lambda}). The pH value (6.0-8.0) did not significantly affect the growth. The lag-phase duration was prolonged, and the growth specific rate was inhibited, and these effects were more noticeable after 73 GHz irradiation. These effects were enhanced by the addition of DL-dithiothreitol (DTT), a strong reducer of disulfide bonds in surface membrane proteins, which in its turn also has bactericidal effect. Further, the number of accessible SH-groups in membrane vesicles was markedly decreased by EMI that was augmented by N,N'-dicyclohexycarbodiimide and DTT. These results indicate a change in the oxidation-reduction state of bacterial cell membrane proteins that could be the primary membranous mechanism in the bactericidal effects of low-intensity EMI of the 70.6 and 73 GHz frequencies.

  7. Construction of a 13 kG magnetic coil system

    International Nuclear Information System (INIS)

    Rossi, J.O.; Aso, Y.; Castro, P.J.; Barroso, J.J.; Ludwig, G.O.; Montes, A.; Nono, M.C.A.; Correa, R.A.

    1991-08-01

    The construction of magnetic coil system for a 35 GHz gyrotron is reported in great detail. This system is designed to generate a magnetic induction of 13,2 kG over an extension of 13 cm. By using an operating current of about 100 A, it was verified that both the axial magnetic field profile and the spatial non-uniformity are in close agreement with those theoretically predicted. (author)

  8. Initial results of a high-power microwave sintering experiment at ORNL

    International Nuclear Information System (INIS)

    Kimrey, H.D.; White, T.L.; Bigelow, T.S.; Becher, P.F.

    1986-01-01

    Experiments have recently begun at Oak Ridge National Laboratory to develop microwave sintering techniques suitable for large ceramic parts. Microwave sintering offers the advantages of faster heating rates, more uniform heating, and greater energy efficiency than conventional sintering techniques. We are using 28-GHz, 200-kW cw gyrotrons as the heating source. An untuned cavity is used as the applicator to eliminate geometry sensitivity in coupling efficiency

  9. RESEARCH PROGRESS AND HARDWARE SYSTEMS AT DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    PETERSEN,P.I; THE DIII-D TEAM

    2003-10-01

    OAK-B135 During the last two years significant progress has been made in the scientific understanding of DIII-D plasmas. Much of this progress has been enabled by the addition of new hardware systems. The electron cyclotron (EC) system has been upgraded from 3 MW to 6 MW, by adding three 1 MW gyrotrons with diamond windows and three steerable launchers (PPPL). The new gyrotrons have been tested to 1.0 MW for 5 s. The system has been used to control the 3/2 and 2/1 neoclassical tearing modes and to locally heat the plasma and thereby indirectly control the current density. Electron cyclotron current drive ECCD has been used to directly affect the current density. A Li-beam diagnostic has been brought on-line for measuring the edge current density using Zeeman splitting. A set of 12 coils (1-coils), consisting of six picture frame coils each above and below the midplane, with a capability of 7 kA for 10 s has been installed inside the DIII-D vessel. These coils, along with the existing six C-coils, are used to apply non-axisymmetric fields to the plasma for both exciting and controlling plasma instabilities. The DIII-D digital plasma control system is now used to not just control the shape and location of the plasma but also the electron temperature, density, the NTMs, RWMs, plasma beta and disruption mitigation. Plasma disruption experiments are extended to mitigation of real time detected disruptions on DIII-D.

  10. GHz-rate optical parametric amplifier in hydrogenated amorphous silicon

    International Nuclear Information System (INIS)

    Wang, Ke-Yao; Foster, Amy C

    2015-01-01

    We demonstrate optical parametric amplification operating at GHz-rates at telecommunications wavelengths using a hydrogenated amorphous silicon waveguide through the nonlinear optical process of four-wave mixing. We investigate how the parametric amplification scales with repetition rate. The ability to achieve amplification at GHz-repetition rates shows hydrogenated amorphous silicon’s potential for telecommunication applications and a GHz-rate optical parametric oscillator. (paper)

  11. A 31 GHz Survey of Low-Frequency Selected Radio Sources

    Science.gov (United States)

    Mason, B. S.; Weintraub, L.; Sievers, J.; Bond, J. R.; Myers, S. T.; Pearson, T. J.; Readhead, A. C. S.; Shepherd, M. C.

    2009-10-01

    The 100 m Robert C. Byrd Green Bank Telescope and the 40 m Owens Valley Radio Observatory telescope have been used to conduct a 31 GHz survey of 3165 known extragalactic radio sources over 143 deg2 of the sky. Target sources were selected from the NRAO VLA Sky Survey in fields observed by the Cosmic Background Imager (CBI); most are extragalactic active galactic nuclei (AGNs) with 1.4 GHz flux densities of 3-10 mJy. The resulting 31 GHz catalogs are presented in full online. Using a maximum-likelihood analysis to obtain an unbiased estimate of the distribution of the 1.4-31 GHz spectral indices of these sources, we find a mean 31-1.4 GHz flux ratio of 0.110 ± 0.003 corresponding to a spectral index of α = -0.71 ± 0.01 (S ν vprop να) 9.0% ± 0.8% of sources have α > - 0.5 and 1.2% ± 0.2% have α > 0. By combining this spectral-index distribution with 1.4 GHz source counts, we predict 31 GHz source counts in the range 1 mJy S 31) = (16.7 ± 1.7) deg-2(S 31/1 mJy)-0.80±0.07. We also assess the contribution of mJy-level (S 1.4 GHz < 3.4 mJy) radio sources to the 31 GHz cosmic microwave background power spectrum, finding a mean power of ell(ell + 1)C src ell/(2π) = 44 ± 14 μK2 and a 95% upper limit of 80 μK2 at ell = 2500. Including an estimated contribution of 12 μK2 from the population of sources responsible for the turn-up in counts below S 1.4 GHz = 1 mJy, this amounts to 21% ± 7% of what is needed to explain the CBI high-ell excess signal, 275 ± 63 μK2. These results are consistent with other measurements of the 31 GHz point-source foreground.

  12. A New 95 GHz Methanol Maser Catalog. I. Data

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Wenjin; Xu, Ye; Lu, Dengrong; Ju, Binggang; Li, Yingjie [Purple Mountain Observatory, Chinese Academy of Science, Nanjing 210008 (China); Chen, Xi [Center for Astrophysics, GuangZhou University, Guangzhou 510006 (China); Ellingsen, Simon P., E-mail: wjyang@pmo.ac.cn, E-mail: xuye@pmo.ac.cn, E-mail: chenxi@shao.ac.cn [School of Physical Sciences, University of Tasmania, Hobart, Tasmania (Australia)

    2017-08-01

    The Purple Mountain Observatory 13.7 m radio telescope has been used to search for 95 GHz (8{sub 0}–7{sub 1}A{sup +}) class I methanol masers toward 1020 Bolocam Galactic Plane Survey (BGPS) sources, leading to 213 detections. We have compared the line width of the methanol and HCO{sup +} thermal emission in all of the methanol detections, and on that basis, we find that 205 of the 213 detections are very likely to be masers. This corresponds to an overall detection rate of 95 GHz methanol masers toward our BGPS sample of 20%. Of the 205 detected masers, 144 (70%) are new discoveries. Combining our results with those of previous 95 GHz methanol maser searches, a total of 481 95 GHz methanol masers are now known. We have compiled a catalog listing the locations and properties of all known 95 GHz methanol masers.

  13. 77 FR 45558 - 4.9 GHz Band

    Science.gov (United States)

    2012-08-01

    ..., our rules currently require 4.9 GHz licensees to ``cooperate in the selection and use of channels in... directional and thus can be represented as narrow paths on a coordination map; in contrast, they note, the low-power, less- directional, geographically-dispersed links in a 4.9 GHz network must be represented as a...

  14. A 1.8 GHz Voltage-Controlled Oscillator using CMOS Technology

    Science.gov (United States)

    Maisurah, M. H. Siti; Emran, F. Nazif; Norman Fadhil, Idham M.; Rahim, A. I. Abdul; Razman, Y. Mohamed

    2011-05-01

    A Voltage-Controlled Oscillator (VCO) for 1.8 GHz application has been designed using a combination of both 0.13 μm and 0.35 μm CMOS technology. The VCO has a large tuning range, which is from 1.39 GHz to 1.91 GHz, using a control voltage from 0 to 3V. The VCO exhibits a low phase-noise at 1.8 GHz which is around -119.8dBc/Hz at a frequency offset of 1 MHz.

  15. A low noise 665 GHz SIS quasi-particle waveguide receiver

    Science.gov (United States)

    Kooi, J. W.; Walker, C. K.; Leduc, H. G.; Hunter, T. R.; Benford, D. J.; Phillips, T. G.

    1993-01-01

    Recent results on a 565-690 GHz SIS heterodyne receiver employing a 0.36 micron(sup 2) Nb/AlOx/Nb SIS tunnel junction with high quality circular non-contacting back short and E-plane tuners in a full height wave guide mount are reported. No resonant tuning structures were incorporated in the junction design at this time, even though such structures are expected to help the performance of the receiver. The receiver operates to at least the gap frequency of Niobium, approximately 680 GHz. Typical receiver noise temperatures from 565-690 GHz range from 160K to 230K with a best value of 185K DSB at 648 GHz. With the mixer cooled from 4.3K to 2K the measured receiver noise temperatures decreased by approximately 15 percent, giving roughly 180K DSB from 660 to 680 GHz. The receiver has a full 1 GHz IF pass band and was successfully installed at the Caltech Submillimeter Observatory in Hawaii.

  16. Magnetic films for GHz applications (abstract)

    International Nuclear Information System (INIS)

    Korenivski, V.; van Dover, R.B.

    1997-01-01

    Tremendous growth of the communications industry and the increasingly high demand for low-cost light-weight/small-size products drive technology to designs with a high degree of integration. In particular, planar inductors used in integrated circuits with significantly improved inductance per unit area characteristics are needed for further miniaturization of cellular phones operating at 0.95 and 1.9 GHz. Little has been done, however, to use magnetic films to improve the performance and/or reduce size of planar magnetic flux devices. The successful thin-film material would have a high ferromagnetic resonance (FMR) frequency (well above the operating frequency of the device), large permaeability, and low magnetic loss, and very importantly be technologically attractive, i.e., be process compatible with IC technology and have as few preparation steps as possible. Here, we report on fabrication of metallic ferromagnetic films of CoNbZr, CoNbZr/AlN mulitilayered laminates, and exchange-biased structures suitable for GHz applications. Lamination of CoNbZr with thin insulating layers of AlN is shown to significantly improve the microstructure and dc magnetic properties of the films having thicknesses >0.2 μm, as well as to be effective in suppressing eddy current losses at frequencies up to 1 endash 2 GHz. We use exchange biasing to increase the FMR frequency of soft CoNbZr. In-plane unidirectional anisotropy fields of ∼50 Oe are achieved, which result in FMR frequencies >2 GHz. Permeability values of ∼200 with quality factors of ∼10 at 1 GHz are demonstrated. The films are deposited at room temperature and require no postdeposition processing. Application of these films in planar inductors is discussed.copyright 1997 American Institute of Physics

  17. An ITER-relevant evacuated waveguide transmission system for the JET-EP ECRH project

    International Nuclear Information System (INIS)

    Henderson, M.A.; Alberti, S.; Bird, J.

    2003-01-01

    An over-moded evacuated waveguide line was chosen for use in the transmission system for the proposed JET-enhanced performance project (JET-EP) electron cyclotron resonance heating (ECRH) system. A comparison between the quasi-optical, atmospheric waveguide and evacuated waveguide systems was performed for the project with a strong emphasis placed on the technical and financial aspects. The evacuated waveguide line was chosen as the optimal system in light of the above criteria. The system includes six lines of 63.5mm wave guide for transmitting 6.0 MW(10 s) at 113.3 GHz from the gyrotrons to the launching antenna. The designed lines are on average 72m in length and consist of nine mitre bends, for an estimated transmission efficiency of ∼90%. Each line is designed to include an evacuated switch leading to a calorimetric load, two dc breaks, two gate valves, one pump out tee, a power monitor mitre bend and a double-disc CVD window near the torus. The location of waveguide support is positioned to minimize the power converted to higher-order modes from waveguide sagging and misalignment. The two gate valves and CVD window are designed to be used as tritium barriers at the torus and between the J1T and J1D buildings. The last leg of the waveguide leading to the torus has to be designed to accommodate the torus movement during disruptions and thermal cycles. All lines are also designed to be compatible with the ITER ECRH system operating at 170 GHz. (author)

  18. The FELIX RF system

    International Nuclear Information System (INIS)

    Manintveld, P.; Delmee, P.F.M.; Geer, C.A.J. van der; Meddens, B.J.H.; Meer, A.F.G. van der; Amersfoort, P.W. van

    1992-01-01

    The performance of the RF system for the Free Electron Laser for Infrared eXperiments (FELIX) is discussed. The RF system provides the input power for a triode gun (1 GHz, 100 W), a prebuncher (1 GHz, 10 kW), a buncher (3 GHz, 20 MW), and two linacs (3 GHz, 8 MW each). The pulse length in the system is 20 μs. The required electron beam stability imposes the following demands on the RF system: a phase stability better than 0.3 deg for the 1 GHz signals and better than 1 deg for the 3 GHz signals; the amplitude stability has to be better than 1% for the 1 GHz and better than 0.2% for the 3 GHz signals. (author) 3 refs.; 6 figs

  19. First lower hybrid current drive experiments at 3.7 GHz in Tore Supra

    International Nuclear Information System (INIS)

    Tonon, G.; Goniche, M.; Moreau, D.

    1989-01-01

    The results of electromagnetic waves injection in the Tore Supra plasma, at a frequency of 3.7 GHz, are reported. The process is applied for current generation and plasma heating, through Landau damping on the electron population. The experimental set-up is described. The lower hybrid current drive experiments in Tore Supra are carried out under the following conditions: major and minor radii of the plasma are respectively 2.37 m and 0.77 m and the toroidal magnetic field is 1.8 Teslas. A multijunction-grill composed of 128 waveguides is applied. Up to 1.25 MW of rf power is injected in Tore Supra, after less than 30 plasma shots. The results lead to the conclusion that the coupling, not yet optimized, is good enough for safe klystron operation with no circulator. The measured value RIp P RF -1 (δV L /V L ) obtained on Tore Supra (Bt = 1.8 T) is closed to one observed on PETULA-B (Bt = 2.75 T) at the same frequency and density

  20. A study of 60 GHz intersatellite link applications

    Science.gov (United States)

    Anzic, G.; Connolly, D. J.; Haugland, E. J.; Kosmahl, H. G.; Chitwood, J. S.

    Applications of intersatellite links operating at 60 GHz are reviewed. Likely scenarios, ranging from transmission of moderate and high data rates over long distances to low data rates over short distances are examined. A limited parametric tradeoff is performed with system variables such as radiofrequency power, receiver noise temperature, link distance, data rate, and antenna size. Present status is discussed and projections are given for both electron tube and solid state transmitter technologies. Monolithic transmit and receive module technology, already under development at 20 to 30 GHz, is reviewed and its extension to 60 GHz, and possible applicability is discussed.

  1. A study of 60 GHz intersatellite link applications

    Science.gov (United States)

    Anzic, G.; Connolly, D. J.; Haugland, E. J.; Kosmahl, H. G.; Chitwood, J. S.

    1983-01-01

    Applications of intersatellite links operating at 60 GHz are reviewed. Likely scenarios, ranging from transmission of moderate and high data rates over long distances to low data rates over short distances are examined. A limited parametric tradeoff is performed with system variables such as radiofrequency power, receiver noise temperature, link distance, data rate, and antenna size. Present status is discussed and projections are given for both electron tube and solid state transmitter technologies. Monolithic transmit and receive module technology, already under development at 20 to 30 GHz, is reviewed and its extension to 60 GHz, and possible applicability is discussed.

  2. The 30/20 GHz communications system functional requirements

    Science.gov (United States)

    Siperko, C. M.; Frankfort, M.; Markham, R.; Wall, M.

    1981-01-01

    The characteristics of 30/20 GHz usage in satellite systems to be used in support of projected communication requirements of the 1990's are defined. A requirements analysis which develops projected market demand for satellite services by general and specialized carriers and an analysis of the impact of propagation and system constraints on 30/20 GHz operation are included. A set of technical performance characteristics for the 30/20 GHz systems which can serve the resulting market demand and the experimental program necessary to verify technical and operational aspects of the proposed systems is also discussed.

  3. Formation of helical electron beams by electrostatic pumping

    International Nuclear Information System (INIS)

    Barroso, J.J.; Spassovsky, L.P.; Stellati, C.

    1993-01-01

    A non-adiabatic gun for a 35 GHz, 100 kw gyrotron is presented. A 50 kV, 10 A laminar helical electron beam has been achieved with a perpendicular to parallel velocity ratio of 1.9. A non-adiabatic change of the pumping electric field is used to impart rotational velocity to the beam particles which are extracted at the cathode surface in a direction parallel to the guiding magnetic field. (author)

  4. 50 MW C-band pulse klystron; 50MW C band pulse klystron

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    C-band pulse klystron E3746 with an output of 50 MW class was developed jointly with the High-Energy Accelerator Research Organization in the Ministry of Education as the klystron for a linear accelerator. For a large-sized linear accelerator in the next generation, a klystron with higher operating frequency has been required to obtain a compact and efficient accelerator. In E3746, the problem of power resistance during high-frequency operation was solved by mounting a traveling-wave multi-cell output circuit. Moreover, stable operation in the pulse width of 2.5 {mu}s and the output of 54 MW was performed at the same operation efficiency (44%) as the conventional S-band tube by using the frequency (in a C-band frequency band) that is two times as high as the conventional general accelerator. (translated by NEDO)

  5. Traveling-Wave Maser for 32 GHz

    Science.gov (United States)

    Shell, James; Clauss, Robert

    2009-01-01

    The figure depicts a traveling-wave ruby maser that has been designed (though not yet implemented in hardware) to serve as a low-noise amplifier for reception of weak radio signals in the frequency band of 31.8 to 32.3 GHz. The design offers significant improvements over previous designs of 32-GHz traveling-wave masers. In addition, relative to prior designs of 32-GHz amplifiers based on high-electron-mobility transistors, this design affords higher immunity to radio-frequency interference and lower equivalent input noise temperature. In addition to the basic frequency-band and low-noise requirements, the initial design problem included a requirement for capability of operation in a closed-cycle helium refrigerator at a temperature .4 K and a requirement that the design be mechanically simplified, relative to prior designs, in order to minimize the cost of fabrication and assembly. Previous attempts to build 32- GHz traveling-wave masers involved the use of metallic slow-wave structures comprising coupled transverse electromagnetic (TEM)-mode resonators that were subject to very tight tolerances and, hence, were expensive to fabricate and assemble. Impedance matching for coupling signals into and out of these earlier masers was very difficult. A key feature of the design is a slow-wave structure, the metallic portions of which would be mechanically relatively simple in that, unlike in prior slow-wave structures, there would be no internal metal steps, irises, or posts. The metallic portions of the slow-wave structure would consist only of two rectangular metal waveguide arms. The arms would contain sections filled with the active material (ruby) alternating with evanescent-wave sections. This structure would be transparent in both the signal-frequency band (the aforementioned range of 31.8 to 32.3 GHz) and the pump-frequency band (65.75 to 66.75 GHz), and would impose large slowing factors in both frequency bands. Resonant ferrite isolators would be placed in the

  6. 47 CFR 25.143 - Licensing provisions for the 1.6/2.4 GHz mobile-satellite service and 2 GHz mobile-satellite...

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Licensing provisions for the 1.6/2.4 GHz mobile-satellite service and 2 GHz mobile-satellite service. 25.143 Section 25.143 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Applications and Licenses...

  7. 1.3 GHz superconducting RF cavity program at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Ginsburg, C.M.; Arkan, T.; Barbanotti, S.; Carter, H.; Champion, M.; Cooley, L.; Cooper, C.; Foley, M.; Ge, M.; Grimm, C.; Harms, E.; /Fermilab

    2011-03-01

    At Fermilab, 9-cell 1.3 GHz superconducting RF (SRF) cavities are prepared, qualified, and assembled into cryomodules (CMs) for Project X, an International Linear Collider (ILC), or other future projects. The 1.3 GHz SRF cavity program includes targeted R&D on 1-cell 1.3 GHz cavities for cavity performance improvement. Production cavity qualification includes cavity inspection, surface processing, clean assembly, and one or more cryogenic low-power CW qualification tests which typically include performance diagnostics. Qualified cavities are welded into helium vessels and are cryogenically tested with pulsed high-power. Well performing cavities are assembled into cryomodules for pulsed high-power testing in a cryomodule test facility, and possible installation into a beamline. The overall goals of the 1.3 GHz SRF cavity program, supporting facilities, and accomplishments are described.

  8. Wave Dragon MW

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Frigaard, Peter

    Wave Dragon is a wave energy converter of the overtopping type. The device has been thoroughly tested on a 1:51.8 scale model in wave laboratories and a 1:4.5 scale model deployed in Nissum Bredning, a large inland waterway in Denmark. Based on the experience gained a full scale, multi MW prototype...

  9. Conceptual designs for 100-MW space radiators

    International Nuclear Information System (INIS)

    Prenger, F.C.; Sullivan, J.A.

    1982-01-01

    A description and comparison of heat rejection systems for multimegawatt space-based power supplies is given. Current concepts are described, and through a common performance parameter, these are compared with three advanced radiator concepts. The comparison is based on a power system that rejects 100 MW of heat while generating 10 MW of electrical power

  10. A low spur, low jitter 10-GHz phase-locked loop in 0.13-μm CMOS technology

    International Nuclear Information System (INIS)

    Mei Niansong; Sun Yu; Lu Bo; Pan Yaohua; Huang Yumei; Hong Zhiliang

    2011-01-01

    This paper presents a 10-GHz low spur and low jitter phase-locked loop (PLL). An improved low phase noise VCO and a dynamic phase frequency detector with a short delay reset time are employed to reduce the noise of the PLL. We also discuss the methodology to optimize the high frequency prescaler's noise and the charge pump's current mismatch. The chip was fabricated in a SMIC 0.13-μm RF CMOS process with a 1.2-V power supply. The measured integrated RMS jitter is 757 fs (1 kHz to 10 MHz); the phase noise is -89 and -118.1 dBc/Hz at 10 kHz and 1 MHz frequency offset, respectively; and the reference frequency spur is below -77 dBc. The chip size is 0.32 mm 2 and the power consumption is 30.6 mW. (semiconductor integrated circuits)

  11. Latest Results in SLAC 75-MW PPM Klystrons

    International Nuclear Information System (INIS)

    Sprehn, D.; Caryotakis, G.; Haase, A.; Jongewaard, E.; Laurent, L.; Pearson, C.; Phillips, R.

    2006-01-01

    75 MW X-band klystrons utilizing Periodic Permanent Magnet (PPM) focusing have been undergoing design, fabrication and testing at the Stanford Linear Accelerator Center (SLAC) for almost nine years. The klystron development has been geared toward realizing the necessary components for the construction of the Next Linear Collider (NLC). The PPM devices built to date which fit this class of operation consist of a variety of 50 MW and 75 MW devices constructed by SLAC, KEK (Tsukuba, Japan) and industry. All these tubes follow from the successful SLAC design of a 50 MW PPM klystron in 1996. In 2004 the latest two klystrons were constructed and tested with preliminary results reported at EPAC2004. The first of these two devices was tested to the full NLC specifications of 75 MW, 1.6 microseconds pulse length, and 120 Hz. This 14.4 kW average power operation came with a tube efficiency >50%. The most recent testing of these last two devices will be presented here. Design and manufacturing issues of the latest klystron, due to be tested by the Fall of 2005, are also discussed

  12. Optimizing the coupling of output of a quasi-optical gyrotron owing to a diffraction grating with ellipsoidal support

    International Nuclear Information System (INIS)

    Hogge, J.P.

    1993-12-01

    The output scheme of a quasi-optical gyrotron has been optimized in order to produce a gaussian output microwave beam suitable for transmission over long distances. The technique which has been applied consists of substituting one of the mirrors of the Fabry-Perot resonator in which the particle-wave interaction takes place by a diffraction grating placed in the -1 order Littrow mount and designed such that only orders -1 and 0 can propagate. In such a configuration, the diffraction angle of the order -1 coincides exactly with the incidence direction, thus providing a feedback in the cavity, whereas the order 0 constitutes the output of the resonator. A theoretical study of the power content in each diffracted order of a planar grating of infinite extent with equally spaced linear grooves as a function of the grating parameters has been performed. It has been shown that parameter domains can be found, which provide appropriate efficiencies in both orders for an application on a quasi-optical gyrotron. The Littrow condition was then adapted in order to match the spherical wavefronts of a gaussian beam incident on a possibly non-planar surface. The grooves become thus curvilinear and are no longer equally spaced. Measurements made on a cold test stand have confirmed the validity of the Littrow condition extension and allowed to determine its limits. It has also been shown that this type of cavity provides a mode having an optimal gaussian content and giving a minimal cavity transmission. The angular dispersion of the grating leads to a higher cavity transmission and to a slightly lower gaussian content for the adjacent resonator modes. The fundamental eigenmode electric field profile has been measured inside the cavity and is similar to that of an equivalent resonator made with two spherical mirrors. (author) figs., tabs., 141 refs

  13. IHEP S-band 45 MW pulse power klystron development

    International Nuclear Information System (INIS)

    Dong Dong; Zhou Zusheng; Zhang Liang; Li Gangying; Tian Shuangmin

    2006-01-01

    S-band 45 MW pulse power klystron has been developed in the Institute of High Energy Physics (IHEP) for the Beijing Electron Positron Collider (BEPC) upgrade projects (BEPC-II). This new klystron has 5 cavities in its RF-beam interaction and single RF output window, and the RF output power is 45 MW at 310 kV, the gain is 50 dB, the efficiency 40%. The manufacturing, training and testing of a prototype klystron has been finished in IHEP and RF power 45 MW at 300 kV has been reached. The testing results show that all the parameters of the 45 MW klystron reach the design goal. (authors)

  14. Packaging of microwave integrated circuits operating beyond 100 GHz

    Science.gov (United States)

    Samoska, L.; Daniel, E.; Sokolov, V.; Sommerfeldt, S.; Bublitz, J.; Olson, K.; Gilbert, B.; Chow, D.

    2002-01-01

    Several methods of packaging high speed (75-330 GHz) InP HEMT MMIC devices are discussed. Coplanar wirebonding is presented with measured insertion loss of less than 0.5dB and return loss better than -17 dB from DC to 110 GHz. A motherboard/daughterboard packaging scheme is presented which supports minimum loss chains of MMICs using this coplanar wirebonding method. Split waveguide block packaging approaches are presented in G-band (140-220 GHz) with two types of MMIC-waveguide transitions: E-plane probe andantipodal finline.

  15. 47 CFR 25.139 - NGSO FSS coordination and information sharing between MVDDS licensees in the 12.2 GHz to 12.7 GHz...

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false NGSO FSS coordination and information sharing between MVDDS licensees in the 12.2 GHz to 12.7 GHz band. 25.139 Section 25.139 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Applications and Licenses...

  16. Synthesis method for using in the design of an electron gun for gyrotion

    International Nuclear Information System (INIS)

    Silva, C.A.B.

    1987-09-01

    In this work a synthesis method is applied to the design of an electron gun for a 94GHz gyrotron. Using the synthesis method, it is found the shape of the electrodes compatible with the laminar flow which minimizes the action of space change on the electron velocity dispersion. A sistematic procedure is presented to fuid the parameters of the synthesis method which, in turn, are closely related to the characteristics of the aptoclechonic system. (author) [pt

  17. Remote Effects of Electromagnetic Millimeter Waves on Experimentally Induced Cold Pain: A Double-Blinded Crossover Investigation in Healthy Volunteers.

    Science.gov (United States)

    Partyla, Tomasz; Hacker, Henriette; Edinger, Hardy; Leutzow, Bianca; Lange, Joern; Usichenko, Taras

    2017-03-01

    The hypoalgesic effect of electromagnetic millimeter waves (MW) is well studied in animal model; however, the results of human research are controversial. The aim of this study was to evaluate the effects of various frequency ranges of MW on hypoalgesia using the cold pressor test (CPT). Experimental pain was induced using standardized CPT protocols in 20 healthy male volunteers. The skin of the lower part of sternum was exposed to MW with a frequency of 42.25 GHz (active generator); MW within 50-75 GHz frequency range (noise generator); or an inactive MW device (placebo generator) in a random crossover double-blinded manner. Pain threshold, measured using the CPT, was the primary outcome. Other CPT parameters, heart rate, blood pressure, incidence of subjective sensations (paresthesia) during exposure, as well as quality of volunteers' blinding were also recorded. The end points of the condition with exposure to 42.25 GHz, were compared with baseline; exposure to noise 50-75 GHz; and placebo generators. Pain threshold increased during exposure to the 42.25 GHz generator when compared with baseline: median difference (MD), 1.97 seconds (95% confidence interval [CI], 0.35-3.73) and noise generator: MD, 1.27 seconds (95% CI, 0.05-2.33) but not compared with the placebo generator. Time to onset of cold and increasing pain sensations as well as diastolic blood pressure increased under the exposure to the 42.25 GHz generator when compared with baseline and noise generator. Other outcome measures were comparable among the study conditions. We were able to partially confirm the previously suggested hypoalgesic effects of low-intensity electromagnetic MW. However, the effect was indistinguishable from the placebo condition in our investigation.

  18. Spatial and Temporal Characterization of Indoor Millimeter Wave Propagation at 24 GHz

    Directory of Open Access Journals (Sweden)

    Seok-hwan Min

    2016-01-01

    Full Text Available Indoor millimeter wave propagation at the frequency of 24 GHz is studied by experimental methods. Measurements are performed to obtain temporal and spatial channel model using a channel sounder and rotating antennas in a corridor. The measured impulse responses are processed to obtain compact channel model following Saleh-Valenzuela’s model. The responses are compared with those of 5.3 GHz for the same test sites. Angular spread of 24 GHz is found to be smaller than that of 5.3 GHz, while echoes of 24 GHz are found to be longer than those of 5.3 GHz.

  19. Dynamic Confinement of ITER Plasma by O-Mode Driver at Electron Cyclotron Frequency Range

    Science.gov (United States)

    Stefan, V. Alexander

    2009-05-01

    A low B-field side launched electron cyclotron O-Mode driver leads to the dynamic rf confinement, in addition to rf turbulent heating, of ITER plasma. The scaling law for the local energy confinement time τE is evaluated (τE ˜ 3neTe/2Q, where (3/2) neTe is the local plasma thermal energy density and Q is the local rf turbulent heating rate). The dynamics of unstable dissipative trapped particle modes (DTPM) strongly coupled to Trivelpiece-Gould (T-G) modes is studied for gyrotron frequency 170GHz; power˜24 MW CW; and on-axis B-field ˜ 10T. In the case of dynamic stabilization of DTPM turbulence and for the heavily damped T-G modes, the energy confinement time scales as τE˜(I0)-2, whereby I0(W/m^2) is the O-Mode driver irradiance. R. Prater et. al., Nucl. Fusion 48, No 3 (March 2008). E. P. Velikhov, History of the Russian Tokamak and the Tokamak Thermonuclear Fusion Research Worldwide That Led to ITER (Documentary movie; Stefan Studios Int'l, La Jolla, CA, 2008; E. P. Velikhov, V. Stefan.) M N Rosenbluth, Phys. Scr. T2A 104-109 1982 B. B. Kadomtsev and O. P. Pogutse, Nucl. Fusion 11, 67 (1971).

  20. New concepts in microwave sources for e-e+ supercolliders

    International Nuclear Information System (INIS)

    Granatstein, V.L.; McAdoo, J.H.; Striffler, C.D.; Lawson, W.; Latham, P.E.; Reiser, M.

    1986-01-01

    The realization of e - e + supercolliders will require advances in tehnology including the development of x-band microwave amplifiers with pulse energy > 60 J. Candidate microwave amplifiers include klystrons, lasertrons, free electron lasers (FEL's), and gyrotrons; gyrotron amplifiers employing a multicavity gyroklystron configuration appear advantageous at λ ≅ 3 cm. Measurements on a 50 kW, 1 μs gyroklystron show phase jitter 0 indicating compatibility of this type of amplifier with collider requirements. The University of Maryland is currently developing an x-band, TE 0 01 mode gyroklystron driven by 500 keV, 160 A, 2 μs electron beam pulses; combining this tube with a TE 0 01 binary pulse compression circuit under development at SLAC could produce 475 MW, 120 ns microwave pulses which imply the feasibility of achieving linac accelerating fields in the range 100-200 MV/m

  1. Comparison of Stationarity Regions for Wireless Channels From 2 GHz to 30 GHz

    DEFF Research Database (Denmark)

    Yi, Tan; Wang, Chengxiang; Nielsen, Jesper Ødum

    2017-01-01

    Millimeter wave (mmWave) communication works in the frequencies above 6 gigahertz (GHz), with the system bandwidth up to 500 megahertz (MHz) or wider. In this case, the channel situations are dramatically different from the existing wireless channels in Third Generation/Fourth Generation (3G/4G...

  2. The EUMETSAT OSI SAF near 50 GHz sea ice emissivity model

    Directory of Open Access Journals (Sweden)

    Rasums T. Tonboe

    2013-02-01

    Full Text Available A sea ice thermal microwave emission model for 50 GHz was developed under EUMETSAT's Ocean and Sea Ice Satellite Application Facility (OSI SAF programme. The model is based on correlations between the surface brightness temperature at 18, 36 and 50 GHz. The model coefficients are estimated using simulated data from a combined thermodynamic and emission model. The intention with the model is to provide a first guess sea ice surface emissivity estimate for atmospheric temperature sounding applications in the troposphere in numerical weather prediction (NWP models assimilating Advanced Microwave Sounding Unit (AMSU and Special Sensor Microwave Imager/Sounder (SSMIS data. The spectral gradient ratio is defined as the difference over the sum of the SSMIS brightness temperatures at 18 and 36 GHz vertical linear polarisation (GR1836. The GR1836 is related to the emissivity at the atmospheric temperature sounding channels at around 50 GHz. Furthermore, the brightness temperatures and the polarisation ratio (PR at the neighbouring 18, 36 and 50 GHz channels are highly correlated. Both the gradient ratio at 18 and 36 GHz and the PR at 36 GHz measured by SSMIS are input into the model predicting the 50 GHz emissivity for horizontal and vertical linear polarisations and incidence angles between 0° and 60° The simulated emissivity is compared to the emissivity derived with alternative methods. The fit to real AMSU observations is investigated using the different emissivity estimates for simulating the observations with atmospheric data from a regional weather prediction model.

  3. Light Rotor: The 10-MW reference wind turbine

    DEFF Research Database (Denmark)

    Bak, Christian; Bitsche, Robert; Yde, Anders

    2012-01-01

    design show a rather well performing wind turbine both in terms of power and loads, but in the further work towards the final design the challenges in the control needs to be solved and the balance between power performance and loads and between structural performance and mass will be investigated......This paper describes the design of a rotor and a wind turbine for an artificial 10-MW wind turbine carried out in the Light Rotor project. The turbine called the Light Rotor 10-MW Reference Wind Turbine (LR10-MW RWT), is designed with existing methods and techniques and serves as a reference...... like the determination of the specific power and upscaling of the turbine. The design of Iteration #2 of the LR10-MW RWT is carried out in a sequence between aerodynamic rotor design, structural design and aero-servo-elastic design. Each of these topics is described. The results from the Iteration #2...

  4. 77 FR 48097 - Operation of Radar Systems in the 76-77 GHz Band

    Science.gov (United States)

    2012-08-13

    ... modify the emission limits for vehicular radar systems operating within the 76-77 GHz band. Specifically.... 15.253 of the rules for vehicular radar systems operating in the 76-77 GHz band. Vehicular radars can... sensors operating in the 76-77 GHz band, the spectrum shall be investigated up to 231 GHz. (f) Fundamental...

  5. MIMIC-compatible GaAs and InP field effect controlled transferred electron (FECTED) oscillators

    Science.gov (United States)

    Scheiber, Helmut; Luebke, Kurt; Diskus, Christian G.; Thim, Hartwig W.; Gruetzmacher, D.

    1989-12-01

    A MIMIC-(millimeter and microwave integrated circuit) compatible transferred electron oscillator is investigated which utilizes the frequency-independent negative resistance of the stationary charge dipole domain that forms in the channel of a MESFET. The device structure, analysis, and simulation are described. Devices fabricated from GaAs and InP exhibit very high power levels of 56 mW at 29 GHz and 55 mW at 34 GHz, respectively. Continuous wave power levels are somewhat lower (30 mW).

  6. 47 CFR 15.251 - Operation within the bands 2.9-3.26 GHz, 3.267-3.332 GHz, 3.339-3.3458 GHz, and 3.358-3.6 GHz.

    Science.gov (United States)

    2010-10-01

    ... exceed 3000 microvolts/meter/MHz at 3 meters in any direction. Further, an AVIS, when in its operating position, shall not produce a field strength greater than 400 microvolts/meter/MHz at 3 meters in any... maximum of 100 microvolts/meter/MHz at 3 meters, measured from 30 MHz to 20 GHz for the complete system...

  7. Towards low-cost gigabit wireless systems at 60 GHz

    NARCIS (Netherlands)

    Yang, Haibing

    2008-01-01

    The world-wide availability of the huge amount of license-free spectral space in the 60 GHz band provides wide room for gigabit-per-second (Gb/s) wireless applications. A commercial (read: low-cost) 60-GHz transceiver will, however, provide limited system performance due to the stringent link budget

  8. Design of a 40-nm CMOS integrated on-chip oscilloscope for 5-50 GHz spin wave characterization

    Science.gov (United States)

    Egel, Eugen; Csaba, György; Dietz, Andreas; Breitkreutz-von Gamm, Stephan; Russer, Johannes; Russer, Peter; Kreupl, Franz; Becherer, Markus

    2018-05-01

    Spin wave (SW) devices are receiving growing attention in research as a strong candidate for low power applications in the beyond-CMOS era. All SW applications would require an efficient, low power, on-chip read-out circuitry. Thus, we provide a concept for an on-chip oscilloscope (OCO) allowing parallel detection of the SWs at different frequencies. The readout system is designed in 40-nm CMOS technology and is capable of SW device characterization. First, the SWs are picked up by near field loop antennas, placed below yttrium iron garnet (YIG) film, and amplified by a low noise amplifier (LNA). Second, a mixer down-converts the radio frequency (RF) signal of 5 - 50 GHz to lower intermediate frequencies (IF) around 10 - 50 MHz. Finally, the IF signal can be digitized and analyzed regarding the frequency, amplitude and phase variation of the SWs. The power consumption and chip area of the whole OCO are estimated to 166.4 mW and 1.31 mm2, respectively.

  9. Band rejection filter for measurement of electron cyclotron emission during electron cyclotron heating

    International Nuclear Information System (INIS)

    Iwase, Makoto; Ohkubo, Kunizo; Kubo, Shin; Idei, Hiroshi.

    1996-05-01

    For the measurement of electron cyclotron emission from the high temperature plasma, a band rejection filter in the range of 40-60 GHz is designed to reject the 53.2 GHz signal with large amplitude from the gyrotron for the purpose of plasma electron heating. The filter developed with ten sets of three quarters-wavelength coupled by TE 111 mode of tunable resonant cavity has rejection of 50 dB and 3 dB bandwidth of 500 MHz. The modified model of Tschebysheff type for the prediction of rejection is proposed. It is confirmed that the measured rejection as a function of frequency agrees well with the experimental results for small coupling hole, and also clarified that the rejection ratio increases for the large coupling hole. (author)

  10. Multiparty quantum secret sharing based on GHZ states

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Tzonelih; Hwang, Cheng-Chieh [Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan, 701 Taiwan (China); Li, Chuan-Ming, E-mail: hwangtl@ismail.csie.ncku.edu.tw [Department of Information Management, Shu-Zen College of Medicine and Management, Kaohsiung, 821 Taiwan (China)

    2011-04-15

    Gao (2009 Commun. Theor. Phys. 52 421-4) has proposed an efficient multiparty quantum secret sharing (MQSS) with two-photon three-dimensional Einstein-Podolsky-Rosen (EPR) pairs. This work shows that a similar idea can also be used to construct an MQSS using the Greenberger-Horne-Zeilinger (GHZ) states. Compared to other MQSSs using GHZ-related states, the newly proposed protocol is more efficient in the aspect of qubit utilization.

  11. Hurricane Satellite (HURSAT) Microwave (MW)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Hurricane Satellite (HURSAT) from Microwave (MW) observations of tropical cyclones worldwide data consist of raw satellite observations. The data derive from the...

  12. The DAN-AERO MW experiments. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Aagaard Madsen, H.; Bak, C.; Schmidt Paulsen, U.; Gaunaa, M. (Risoe DTU, Roskilde (Denmark)); Fuglsang, P. (LM Glasfiber, Kolding (Denmark)); Romblad, J.; Olesen, N.A. (Vestas Wind Systems, Ringkoebing (Denmark)); Enevoldsen, P.; Laursen, J. (Siemens Wind Power, Ballerup (Denmark)); Jensen, Leo (DONG Energy, Fredericia (Denmark))

    2010-09-15

    This report describes the DAN-AERO MW experiments carried out within a collaborative, three years research project between Risoe DTU and the industrial partners LM Glasfiber, Siemens Wind Power, Vestas Wind Systems A/S and the utility company DONG Energy. The main objective of the project was to establish an experimental data base which can provide new insight into a number of fundamental aerodynamic and aero-acoustic issues, important for the design and operation of MW size turbines. The most important issue is the difference between airfoil characteristics measured under 2D, steady conditions in a wind tunnel and the unsteady 3D flow conditions on a rotor. The different transition characteristics might explain some of the differences between the 2D and 3D airfoil data and the experiments have been set up to provide data on this subject. The overall experimental approach has been to carry out a number of coordinated, innovative measurements on full scale MW size rotors as well as on airfoils for MW size turbines in wind tunnels. Shear and turbulence inflow characteristics were measured on a Siemens 3.6 MW turbine with a five hole pitot tube. Pressure and turbulent inflow characteristics were measured on a 2MW NM80 turbine with an 80 m rotor. One of the LM38.8 m blades on the rotor was replaced with a new LM38.8 m blade where instruments for surface pressure measurements at four radial sections were build into the blade during the blade production process. Additionally, the outmost section on the blade was further instrumented with around 50 microphones for high frequency surface pressure measurements. The surface pressure measurements have been correlated with inflow measurements from four five hole pitot tubes and two sensors for measuring the high frequency (50 Hz to10 kHz) contents of the inflow turbulence. In parallel, 2D wind tunnel measurements on common airfoils for wind turbine applications have been conducted in three different wind tunnels at Delft

  13. Analisis Kelayakan Implementasi Teknologi LTE 1.8 GHz Bagi Operator Seluler di Indonesia [Feasibility Analysis of LTE 1.8 GHz for Mobile Operators in Indonesia

    Directory of Open Access Journals (Sweden)

    Sri Ariyanti

    2015-06-01

    Full Text Available Peningkatan kebutuhan layanan data mendorong operator telekomunikasi berusaha mengimplementasikan jaringan akses broadband yang lebih handal.  Teknologi LTE merupakan salah satu teknologi dengan kecepatan mencapai tiga kali dibanding teknologi HSDPA, sehingga diharapkan dapat memenuhi kebutuhan pelanggan data mobile. Refarming frekuensi 1.8 GHz  untuk penerapan teknologi LTE memberikan efisiensi karena tidak perlu membayar BHP lagi untuk menyewa frekuensi baru. Teknologi 2G GSM selama ini juga semakin ditinggalkan, masyarakat di daerah perkotaan cenderung lebih banyak menggunakan layanan data.  Sebelum diterapkannya teknologi LTE pada frekuensi 1.8 GHz perlu adanya kajian untuk mengetahui kelayakan teknologi LTE pada frekuensi 1.8 GHz. Penelitian ini bertujuan untuk melakukan cost-benefit analysis implementasi LTE pada frekuensi 1.8 GHz.  Metode penelitian menggunakan pendekatan kualitataif yang didukung dengan data kuantitatif.  Hasil penelitian menunjukkan bahwa minimal bandiwdth yang diperlukan agar implementasi LTE layak digunakan adalah 15 MHz.  Meskipun tanpa Global Frequency Returning, penggunaan bandwidth 10 MHz tidak layak digunakan untuk implementasi LTE.      *****The incresing of data demand drives mobile operators to implement more reliable broadband access network. LTE technology has downlink peak rate up to three times than HSDPA,  hence it may fulfill the mobile data user requirement. Frequency 1.8 GHz refarming can be implemented to provide efficiency because They do not need to pay licence fee for leasing new frequency. GSM technology will be abandoned since it is not growing anymore. Besides that, dense urban users tend to use data mobile.  Before implementing LTE technology  on 1.8 GHz frequency, It is necessary to analysis the feasibility such technology. This research used qualitative method supported by quantitative  approach.  The result of this research showed that minimum bandwidth to implement 1.8 GHz LTE

  14. 30 400 MW worldwide in early 2003

    International Nuclear Information System (INIS)

    Anon.

    2003-01-01

    Accounting for more than 74% of wind power output in the world, Europe is now more than ever the spearhead of the wind energy industry. First estimates for 2002 show a 6 000 MW progression that now places total world output around 30 400 MW, that is enough to electrify 17 million households. Nevertheless, although it's still growing at a remarkable speed, the rate of development for wind energy has slowed down for the first time in years. (authors)

  15. Energy and Exergy Analysis of 210 MW Jamshoro Thermal Power Plant

    Directory of Open Access Journals (Sweden)

    Muhib Ali Rajper

    2016-04-01

    Full Text Available In this paper, thermodynamic analysis of 210 MW dual-fire, subcritical, reheat steam power plant, situated near Jamshoro, Pakistan has been performed. Firstly, the plant is modeled by EES (Engineering Equation Solver software. Moreover; a parametric study is performed to assess the impacts of various operating parameters on the performance. The net power output, energy efficiency and exergy efficiency are considered as performance parameters of the plant whereas, condenser pressure, main steam pressure and main steam temperature are nominated as operating parameters. According to the results, the net power output, energy efficiency and exergy efficiency are determined as 186.5 MW, 31.37% and 30.41% respectively, under design operating conditions. The condenser contributed a major share in the total energy loss i.e. 280 MW (68.7% followed by boiler with 89 MW (21.8%. The major exergy destructing area is found in the boiler with 350 MW (82.11% of the total exergy destruction followed by turbine with 43.1 MW (10.12% and condenser 12 MW (5.74 %. According to the parametric study, variation in operating parameters had great influence on the plant performance

  16. Transmission lines and launching systems for ECRH on the garching stellarators W VIIa and W VII-AS

    International Nuclear Information System (INIS)

    Thumm, M.; Janzen, G.; Mueller, G.; Schueller, P.G.; Wilhelm, R.; Erckmann, V.

    1983-01-01

    The transmission lines and launching systems for non ohmic plasma production and heating by ECR-waves at 28 GHz (200 kW, 40 ms) and 70 GHz (200 kW, 100 ms) in the Garching Wendelstein Stellarator W VIIa and at 70 GHz (800 kW, cw) in the future Advanced Stellarator W VII-AS are described. The ECRH systems meet the requirements for neutral gas breakdown (R-wave), heating of a cold plasma (X-mode) and heating of a warm plasma (0-mode) in a combined way. Periodically modulated wall mode converters (sinusoidal m=0 radius modulation, a 0 =31.75 mm at 28 GHz, a 0 =13.9 mm at 70 GHz) convert the circular electric TE/sub on/ gyrotron output mode mixture (mainly TE 02 mode) into a pure TE 01 wave which is used for the long distance transmission in smooth overmoded waveguides (I.D. = 63.5 mm). At the converter inputs the phases between the TE/sub on/ modes are matched by phase shifters. The measured conversion efficiency for characteristic mode mixtures (TE 02 /TE 01 /TE 03 ) at 28 GHz is about 98 %. For the geometrical and electrical matching of different waveguide diameters waveguide tapers with approximate Tschebycheff mode-conversion responses are used

  17. Indoor Corridor Wideband Radio Propagation Measurements and Channel Models for 5G Millimeter Wave Wireless Communications at 19 GHz, 28 GHz, and 38 GHz Bands

    Directory of Open Access Journals (Sweden)

    Ahmed M. Al-samman

    2018-01-01

    Full Text Available This paper presents millimeter wave (mmWave measurements in an indoor environment. The high demands for the future applications in the 5G system require more capacity. In the microwave band below 6 GHz, most of the available bands are occupied; hence, the microwave band above 6 GHz and mmWave band can be used for the 5G system to cover the bandwidth required for all 5G applications. In this paper, the propagation characteristics at three different bands above 6 GHz (19, 28, and 38 GHz are investigated in an indoor corridor environment for line of sight (LOS and non-LOS (NLOS scenarios. Five different path loss models are studied for this environment, namely, close-in (CI free space path loss, floating-intercept (FI, frequency attenuation (FA path loss, alpha-beta-gamma (ABG, and close-in free space reference distance with frequency weighting (CIF models. Important statistical properties, such as power delay profile (PDP, root mean square (RMS delay spread, and azimuth angle spread, are obtained and compared for different bands. The results for the path loss model found that the path loss exponent (PLE and line slope values for all models are less than the free space path loss exponent of 2. The RMS delay spread for all bands is low for the LOS scenario, and only the directed path is contributed in some spatial locations. For the NLOS scenario, the angle of arrival (AOA is extensively investigated, and the results indicated that the channel propagation for 5G using high directional antenna should be used in the beamforming technique to receive the signal and collect all multipath components from different angles in a particular mobile location.

  18. Development of a 5 MW reference gearbox for offshore wind turbines: 5 MW reference gearbox

    Energy Technology Data Exchange (ETDEWEB)

    Nejad, Amir Rasekhi [Norwegian Research Center for Offshore Wind Technology, Norwegian University of Science and Technology, Trondheim Norway; Center for Ships and Ocean Structures, Norwegian University of Science and Technology, Trondheim Norway; Guo, Yi [National Wind Technology Center, National Renewable Energy Laboratory, Golden Colorado USA; Gao, Zhen [Center for Ships and Ocean Structures, Norwegian University of Science and Technology, Trondheim Norway; Moan, Torgeir [Norwegian Research Center for Offshore Wind Technology, Norwegian University of Science and Technology, Trondheim Norway; Center for Ships and Ocean Structures, Norwegian University of Science and Technology, Trondheim Norway

    2015-07-27

    This paper presents detailed descriptions, modeling parameters and technical data of a 5MW high-speed gearbox developed for the National Renewable Energy Laboratory offshore 5MW baseline wind turbine. The main aim of this paper is to support the concept studies and research for large offshore wind turbines by providing a baseline gearbox model with detailed modeling parameters. This baseline gearbox follows the most conventional design types of those used in wind turbines. It is based on the four-point supports: two main bearings and two torque arms. The gearbox consists of three stages: two planetary and one parallel stage gears. The gear ratios among the stages are calculated in a way to obtain the minimum gearbox weight. The gearbox components are designed and selected based on the offshore wind turbine design codes and validated by comparison to the data available from large offshore wind turbine prototypes. All parameters required to establish the dynamic model of the gearbox are then provided. Moreover, a maintenance map indicating components with high to low probability of failure is shown. The 5 MW reference gearbox can be used as a baseline for research on wind turbine gearboxes and comparison studies. It can also be employed in global analysis tools to represent a more realistic model of a gearbox in a coupled analysis.

  19. The 1.4 GHZ light curve of GRB 970508

    NARCIS (Netherlands)

    Galama, TJ; Wijers, RAMJ; Groot, PJ; Strom, RG; De Bruyn, AG; Kouveliotou, C; Robinson, CR; van Paradus, J

    1998-01-01

    We report on Westerbork 1.4 GHz radio observations of the radio counterpart to gamma-ray burst GRB 970508, between 0.80 and 138 days after this event. The 1.4 GHz light curve shows a transition from optically thick to thin emission between 39 and 54 days after the event. We derive the slope p of the

  20. Control systems for ITER diagnostics, heating and current drive

    Energy Technology Data Exchange (ETDEWEB)

    Simrock, Stefan, E-mail: stefan.simrock@iter.org

    2016-11-15

    The ITER Diagnostic, Heating and Current Drive systems might appear, on the face of it, to have very different control requirements. There are approximately 45 diagnostic systems, including magnetic sensors for plasma position and shape determination, imaging systems in the IR and visible, Thompson scattering for electron temperature and density, neutron detectors and collective scattering for alpha particle density and energy distribution. The H&CD systems encompass Electron Cyclotron Heating, using 24 1MW, 170 GHz gyrotrons and 5 steerable launchers to deliver 20 MW to the plasma, Ion Cyclotron Heating, using 8 3MW, 40–55 MHz sources and two multi-element launchers to deliver 20 MW to the plasma, and 2 Negative Ion Neutral Beam Injectors, each of which can deliver up to 16.5 MW of 1 MeV beams to the plasma. Although there are substantial differences in the needs for protection, when handling multi-MW heating systems, and in data throughput for many diagnostics, the formal processes needed to translate system requirements into Instrumentation and Control are identical. Due to the distributed procurement of ITER sub-systems and the need to integrate as painlessly as possible to CODAC, the formal processes, together with a substantial degree of standardization, are even more than usually essential. Starting from the technical, safety and protection, integration and operation requirements, a loop of functional analysis and signal listing is used to generate the controller configuration and the conceptual architecture. These elements in their turn lead to the physical and software design. The paper will describe the formal processes of control system design and the methods used by the ITER project to achieve the standardization of systems engineering practices. These have been applied to several use-cases covering all operation relevant phases such as plasma operation, maintenance, testing and conditioning. There are a number of running contracts that are developing